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Abstract

Background: Accurately recognizing rare diseases based on symptom description is an important task in patient
triage, early risk stratification, and target therapies. However, due to the very nature of rare diseases, the lack of
historical data poses a great challenge to machine learning-based approaches. On the other hand, medical
knowledge in automatically constructed knowledge graphs (KGs) has the potential to compensate the lack of labeled
training examples. This work aims to develop a rare disease classification algorithm that makes effective use of a
knowledge graph, even when the graph is imperfect.

Method: We develop a text classification algorithm that represents a document as a combination of a “bag of words”
and a “bag of knowledge terms,” where a “knowledge term” is a term shared between the document and the
subgraph of KG relevant to the disease classification task. We use two Chinese disease diagnosis corpora to evaluate
the algorithm. The first one, HaoDaiFu, contains 51,374 chief complaints categorized into 805 diseases. The second
data set, ChinaRe, contains 86,663 patient descriptions categorized into 44 disease categories.

Results: On the two evaluation data sets, the proposed algorithm delivers robust performance and outperforms a
wide range of baselines, including resampling, deep learning, and feature selection approaches. Both
classification-based metric (macro-averaged F1 score) and ranking-based metric (mean reciprocal rank) are used in
evaluation.

Conclusion: Medical knowledge in large-scale knowledge graphs can be effectively leveraged to improve rare
diseases classification models, even when the knowledge graph is incomplete.

Keywords: Rare disease diagnosis, Knowledge graph, Machine learning, Text classification, Extremely imbalanced
data

Background
A disease is defined as rare if it affects fewer than 1 in
2000 people in Europe [1], or it affects fewer than 200,000
people in the United States (1 in 1500 people) [2]. China
has recently released its first national list of rare diseases
[3]. Across the globe, hundreds of millions of people could
be affected by one of about 6000 known rare diseases [4].

Accurate diagnosis of rare diseases is an important task
in patient triage, risk stratification, and targeted ther-
apies. Rare disease symptoms often appear unfamiliar

*Correspondence: qmei@umich.edu
4School of Information, University of Michigan, Ann Arbor, MI, United States
Full list of author information is available at the end of the article

and atypical to a clinician, as the cases are too rare
to encounter [5]. This brings significant challenge for
clinicians to diagnose rare diseases timely, and calls for
machine-assisted diagnosis methods.

Rare disease diagnosis is challenging to machine learn-
ing approaches as well. Machine learning algorithms often
require a significant number of training examples to
achieve a good generalization performance. However, by
the very nature of rare diseases, the number of relevant
clinical records is bounded by the size of population.
To compensate the lack of training data for rare disease
diagnosis, we need to make use of domain knowledge.
Recent efforts in information extraction and knowledge
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engineering communities have created large-scale knowl-
edge graphs [6–8], in which a large number of entities
and relations are extracted from unstructured and semi-
structured data, verified manually or semi-automatically,
and then organized into a massive graph. Although many
of these knowledge graphs are freely available as web-
based services, most of them have limited coverage and
accuracy. They are often built without considering down-
stream machine learning tasks, therefore imperfect from a
task point of view. In this paper, we are interested in lever-
aging such knowledge resources in machine-assisted rare
disease diagnosis.

We present a simple and effective statistical learning
method that improves rare disease classification using an
imperfect knowledge graph. We define a rare disease in
its statistical sense, i.e. a disease that affects a small per-
centage (in this paper, less than 0.1%) of the population in
a large disease diagnosis corpus. The proposed method is
based on the intuition that if a rare disease has a corre-
sponding entity in the knowledge graph, then we can use
this piece of knowledge to guide the classifier on “where to
focus” when examining a clinical document. This proves
to be an effective strategy in classifying rare diseases when
the training documents are too few for the algorithm
to learn informative features. On two disease classifica-
tion corpora, the proposed method demonstrates robust
improvements over strong baseline methods on rare dis-
eases diagnosis.

Prior work
Machine-assisted rare disease diagnosis. Machine-
assisted diagnosis approaches have attracted various lines
of research recently [5]. Svenstrup et al. developed a
search system that, given symptoms as a search query,
returns probable rare disease diagnosis [9]. MacLeod et
al. applied gradient boosted decision tree classifiers on
behavioral survey data to identify potential rare diseases.
Shen et al. proposed a neighborhood-based collaborative
filtering algorithm, where patients with similar pheno-
types receive similar diagnosis [10]. Their follow-up work
further incorporated phenotype-disease associations in
biomedical literature [11] and biomedical ontology [12] to
improve disease recommendation results. In the current
work, we approach rare disease diagnosis in a multi-
class classification formulation, which has been shown to
deliver state-of-the-art performance in Web-scale appli-
cations like ranking and recommendation [13, 14].

Imbalanced data classification. From a machine learn-
ing perspective, rare diseases in a patient population can
be viewed as rare classes in a data set, which is a typical
example of imbalanced data set. We can therefore con-
sider imbalanced learning techniques in rare disease clas-
sification [15]. Typical imbalanced learning techniques
include resampling, cost-sensitive learning, and rare class

data synthesis [16]. However, typical machine learning
research deals with class imbalance ratios between 1:4
and 1:100, and few recent works tackle imbalance ratio
as extreme as 1:1,000 or lower [17, 18]. In this study, we
only consider resampling as one of the potential meth-
ods, as its performance closely resembles that of cost-
sensitive learning, and synthesizing text documents from
rare classes is itself a challenging task.

Feature engineering. When training documents are
too few to provide high-quality features, various feature
engineering techniques can help enhance data represen-
tation. Feature selection methods can be used to identify
informative features for the classification task and discard
irrelevant features to alleviate overfitting, especially for
high-dimensional data such as text [19]. Instead of reduc-
ing features, feature generation aims to add features using
external knowledge [20]. The technique first identifies a
set of knowledge concepts related to a given document,
and then “appends” informative words in these concepts
to the document. In between the above two strategies are
feature labeling and highlighting, which originated from
interactive machine learning literature [21–23]. These
methods use domain knowledge to identify a subset of
existing informative features, then incorporate them as
certain type of informative prior in subsequent classifier
training process. In this study, we evaluate various feature
engineering methods for integrating domain knowledge
into disease classification algorithm.

Methods
Data Description and Problem Formulation
We start by describing the two corpora and the knowledge
graph used in our study, followed by our definition of rare
diseases, all of which lead to our problem formulation.

Corpora: HaoDaiFu and ChinaRe. We use two Chi-
nese patient diagnosis corpora. The first corpus, Hao-
DaiFu, contains 51,374 patient records categorized into
805 diseases. Each document contains the symptom
description submitted by a patient to Haodf.com, the
largest Chinese online platform that connects patients
to doctors. These patients have been previously diag-
nosed by a clinician, and now come to the platform
for further consultation. The second corpus, ChinaRe,
contains 86,663 patient records categorized into 44 dis-
ease categories. Each document contains the symptom
description of a patient written by an insurance pro-
fessional in ChinaRe, which is one of the largest rein-
surance groups in China. The diagnoses were deter-
mined by a clinician and sent to the insurance com-
pany. Table 1 summarizes basic statistics of the two
corpora. Jieba package was used for Chinese word
segmentation [24].

Figure 1 shows disease distributions of the two cor-
pora. We see that both distributions are highly skewed: a
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Table 1 Corpora statistics

HaoDaiFu ChinaRe

# of documents 51,374 86,663

# of classes (diseases) 805 44

Vocabulary size 59,879 41,087

Average # of words/doc 26.7 29.7

Average # of knowledge terms/doc 10.8 4.0

A “knowledge terms” is a term appearing in medical knowledge graph (see
“Acquiring knowledge features from KG entities” section)

few diseases account for thousands of people, while many
diseases affect a small percentage of the population.

Knowledge graph: CN-DBpedia. A knowledge graph
(KG), also known as an ontology, is a collection of enti-
ties and relations between entities. An entity has a set of
attributes, some of which may itself be an entity. Figure 2
illustrates a small part of a medical KG.

In our study, it would be ideal to have a well-curated
medical KG. Unfortunately there is no equivalent of
English medical KG like the Unified Medical Language
System (UMLS) in Chinese. As it is challenging to

Fig. 1 Zipf’s plots of disease frequency in the two corpora. The x-axis is the disease frequency rank; the y-axis is the disease frequency (number of
documents in the disease category). Common diseases appear on the left; rare diseases correspond to the long tail on the right. We annotate cutoff
ranks above which the diseases are rarer than the specified percentage
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Fig. 2 An illustrative example of two disease entities and some of their attributes in a knowledge graph

guarantee accurate translation of an English KG to Chi-
nese using machine translation, only a small fraction of
UMLS concepts has Chinese translation. We leave this
direction for future work. We therefore resort to a general
Chinese knowledge graph, CN-DBpedia [25]. It aggre-
gates knowledge from various resources and constructed
in a similar manner as DBpedia. At the time of writing,
it contains 16,892,423 entities and 223,137,127 relations.
We use a web-based platform that provides RESTful API
access to CN-DBpedia (Knowledge Works [26]). Given
a textual query, the API returns matched entities. This
allows us to perform entity linking relatively easily. Since
CN-DBpedia is automatically constructed from Chinese
equivalents of Wikipedia, it does not have perfect cover-
age over all medical entities, and the crowd-contributed
medical content may be inaccurate or incomplete. Not all
diseases in the above two corpora have a corresponding
entity in the current CN-DBpedia. We find an entity for
751 out of 805 diseases in HaoDaifu and 37 out of 44
diseases in ChinaRe.

Rare disease definition. Since different countries and
regions adopt different definitions of rare diseases [1, 2],
and new rare diseases continue to be registered [3], there
is no commonly accepted definition of rare diseases.

For the purpose of this study, we define a rare disease
in its statistical sense: a disease is rare if it affects no
more than a small percentage of the patient records in a
large diagnosis corpus. We set the percentage to 0.1%, or
1/1,000, which is slightly higher than the 1/1,500 – 1/2,000
threshold used in the United States and Europe, since both
corpora are biased samples of the entire population, i.e.,
missing the healthy sub-population. This definition allows
us to develop and evaluate algorithms on a wide variety
of statistically rare diseases observed in empirical data.
In HaoDaiFu, 571 diseases have a percentage lower than

0.1% of all the records. In ChinaRe, 10 diseases have a
percentage lower than 0.1% of all the records.

Problem formulation. Our goal is to build text classifi-
cation algorithms that can automatically assign a disease
label given the narrative description of a patient’s symp-
toms. Besides a set of training documents, we also assume
access to an existing knowledge graph that contains an
entity for (at least a subset of ) the diseases in question.
In this paper, we specifically focus on classifying rare dis-
eases, or diseases accounting for no more than 0.1% of
records in a corpus.

Knowledge Graph Enhanced Rare Disease Classification
This section describes the proposed method for KG-
enhanced rare disease classification. The basic idea is to
use external knowledge to “emphasize” existing features
in the classifier. To illustrate, let us consider a concrete
example in Fig. 3. Suppose we want to detect the rare dis-
ease syringomyelia in text, but the training documents are
extremely few (in the HaoDaifu corpus, 12 out of 41,105,
or 1 out of 3425 records). A text classifier essentially aims
to identify important words among many irrelevant words
that indicate syringomyelia. This is a difficult task given
the very few training documents and a large vocabulary
of words. How can we identify important features, assum-
ing we have access to a KG? A natural strategy is to look
up the entity syringomyelia in the KG, take the attributes
that describe this entity, and “inform” the classifier that
words mentioned in the attributes are important features.
Figure 3 illustrates this idea.

Below we describe our method in detail. It comprises of
three steps: (1) To identify relevant KG entity (or entities)
for each disease; (2) To extract important word features
from a given KG entity; (3) To incorporate the importance
of features into a text classifier.
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Fig. 3 An illustrative example of using knowledge graph to “emphasize” features (words) in a document. This is an ideal case, where the highlighted
features are relevant to the diagnosis. In practice, all features that appear in diagnosis-related part of KG will be highlighted

Mapping diseases to KG entities
In this step, we use the KG API to map a disease to the

corresponding KG entity. The API performs entity link-
ing and resolves different surface forms (or “mentions”)
to the same entity, e.g. mapping “cancer” and “malig-
nancy” to the cancer entity. Some disease names may
have ambiguous matches. For instance, insomnia matches
both a health-related entity and a song. To filter out non-
medical entities, we further check the category attribute
of an entity. We call it the matched entity of a disease.

As discussed before, some diseases cannot be mapped
to an entity due to the incompleteness of the KG in use.
We devised a fall-back strategy to handle these cases. The
goal here is to identify not the exact, but the most rele-
vant, entity of a disease. To do so, we evaluate the content
overlap between a disease (represented by high inverse
document frequency words in all documents of a dis-
ease) and an entity (represented by words in its various
attributes), and select the entity with the highest content
overlap. We call it the surrogate entity of a disease.

As a real example, the KG API did not find an entity
for complex congenital heart disease, so we resort to a
surrogate entity antiarrhythmics (a drug for heart rhythm
disorders) which shares many content words with this
disease.
Acquiring knowledge features from KG entities
In the following discussion, we use V to denote the native
word features found in all training documents, where
Chinese stop words are removed.

If a disease has a matched entity, we use words in its
attributes and related entity names to form disease fea-
tures. Accumulating over all diseases, we obtain a set of
words K1. K1 has overlap with V but may also contain
words not in V.

If a disease has a surrogate entity, we do not extract
features as above because unlike a matched entity, the
attributes of a surrogate entity are highly likely to be irrel-
evant to the associated disease. We only extract words
that appear at least once in any training document of the
disease and appear in 0.01% of KG entities (to ensure
specificity – similar to the idea of inverse document fre-
quency). This gives us a set of words K2. By construction,
K2 ⊂ V .

In the above example, the surrogate entity antiarrhyth-
mics and the training documents of complex congeni-
tal heart disease share words such as “heart”, “atrium”,
“arrhythmia”, “severe”, and “syndrome”. These antiarrhyth-
mics-related words are used to detect the presence of
complex congenital heart disease. They can be helpful but
may also introduce errors, depending on their relevance
to the actual disease.

We call the union set K = K1 ∪ K2 knowledge features,
or knowledge terms.

Integrating knowledge features into text classifier
Choice of text classifier. We employed one-vs-rest sup-

port vector machine (SVM) classifier with linear kernel,
sparse bag-of-words (BOW) feature representation. We
found that dense representation methods such as long
short-term memory (LSTM) networks perform compara-
bly with sparse SVM on frequent diseases but much worse
on rare diseases, with or without pretrained word vec-
tors. In later experiments, we still include the LSTM for
comparison.

Feature vector construction. Given BOW feature set
V and knowledge feature set K, we construct the feature
vector for a document d as follows (d is viewed as a set of
words):
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1. Construct a |V |-dimensional count vector for BOW
features, then apply TF-IDF (term frequency-inverse
document frequency [27]) transformation and L2
length normalization;

2. Construct a |V ∩ K |-dimensional count vector for
knowledge features in d ∩ K , then apply TF-IDF
transformation and L2 length normalization;

3. Concatenate the above two vectors to represent the
document.

The first step constructs a feature vector for the original
document. The second step constructs a feature vector for
words in the document that are mentioned in KG (d ∩ K).
Concatenating feature vectors is also called early fusion
in multimodal learning, where different vector segments
correspond to different modalities of the same data [28].

If a document contains a word w ∈ V ∩ K , then it will
appear twice in the feature vector: one as a BOW fea-
ture, the other as a knowledge feature. Note that the two
feature values will not be identical, since the two vectors
will have different L2 lengths before normalization. Such a
word will receive a larger feature value in the second vec-
tor, since the “KG-mentioned part” (d ∩ K) is shorter than
the original document (d). Table 1 shows that each doc-
ument in HaoDaiFu has 26.7 words on average, in which
10.8 words are knowledge features. The ratio is lower in
ChinaRe (4.0/29.7). Therefore, the second feature vector
can be understood as emphasizing knowledge features in a
document.

Experimental Evaluation
In this section, we evaluate the effectiveness of proposed
method and a suite of baseline settings on the rare diseases
in the two corpora.

Train-test split. To reduce the variance of results due
to a random train-test split, we average the results of 10
runs. In each run, we randomly split the corpus into 80%
for training and 20% for test. To avoid the case where some
classes do not appear in training or test set, the random
split is applied on a per-class basis.

Compared methods
Except for LSTM, all compared methods use one-vs-rest
linear SVM classifier, sparse feature representation. We
performed grid search for the hyperparameter C over
{0.001, 0.01, 0.1, 1, 10, 100} on a validation set, and found
that C = 1 consistently delivered the best performance
to the baseline method BOW (described below). We set
C = 1 in all SVM classifiers.

Methods that do not make use of knowledge features:

1. BOW: only use BOW feature vector in “Integrating
knowledge features into text classifier” section.

2. LSTM: the long short-term memory neural
networks, hidden state size = 256, randomly

initialized word vectors (slightly higher performance
on rare classes than pretrained word vectors).

3. UpSample: upsample the rare disease documents in
the training set, so that each disease has equal
number of documents. This is a standard method for
imbalanced classification.

4. χ2: use |V ∩ K1| features selected by the χ2 criterion.
We want to compare the efficacy of features selected
by external knowledge (KG) vs. standard feature
selection method (χ2).

5. BOW+χ2: concatenate the BOW and χ2 feature
vectors in the same manner as in “Integrating
knowledge features into text classifier” section.

Methods that make use of knowledge features:

1. KG1: only use V ∩ K1 as features;
2. KG12: only use (V ∩ K1) ∪ K2 as features;
3. BOW+KGearly-fusion

1 : concatenate BOW and KG1
feature vectors as in “Integrating knowledge features
into text classifier” section;

4. BOW+KGearly-fusion
12 : concatenate BOW and KG12

feature vectors as in “Integrating knowledge features
into text classifier” section.

Other variants that also make use of both BOW features
and KG1 features:

1. BOW+KGlate-fusion
1 : the late fusion strategy (as

opposed to early fusion/concatenating features in
multimodal learning [28]): we combine two SVM
predictions: one trained on BOW vectors, the other
trained on KG1 vectors. To combine the predictions
for each document, we rank the predicted labels from
most to least probable, and combine the two
predicted lists using Borda’s rank aggregation
method [29].

2. BOW+KGpseudo-count
1 : the pseudo count strategy

[21]: concatenating KG features to BOW is
equivalent to increasing the corresponding BOW
feature values, which in turn is equivalent to
increasing corresponding word counts. For each
word in a given document that also appears in KG1,
we add k pseudo word counts to the BOW feature
vector. We tuned k = 1, 10, 100 and set k = 1 as it
gives the best performance.

3. BOW+KGpseudo-doc
1 : the pseudo document strategy:

we view the mention of a knowledge feature in a
training document as annotating the rationale of the
label. We then use the rationale learning strategy to
generate pseudo training documents [30].

Evaluation metrics
To evaluate the effect of different methods at different
rarity levels, we bin the diseases by their percentage in a
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corpus. Three bins are below 0.1% (our definition of rare
diseases):

• (0 – 0.02%]: no more than 1/5,000;
• (0.02% – 0.05%]: 1/5,000 to 1/2000;
• (0.05% – 0.1%]: 1/2,000 to 1/1,000.

For a comprehensive comparison, we also include two
bins between 0.1% and 1%:

• (0.1% – 0.5%]: 1/1,000 to 1/200;
• (0.5% – 1%]: 1/200 to 1/100.

Results
Machine-assisted diagnosis can be viewed both as a clas-
sification task (to assign a disease label to a document)
and a ranking task (to sort disease labels by their rel-
evance to a document). To evaluate the classification
performance, we use macro-averaged F1 score [31] as it
balances precision and recall and is not biased by major-
ity classes. To evaluate the retrieval performance, we use
mean reciprocal rank (MRR) [32] since in both corpora,
each document has only one associated disease. We report
macro-averaged F1 and MRR on the test data of each bin.

In Tables 2 and 3, we report macro-averaged F1
and MRR results in each bin across different methods.
Statistical significance of these results against the BOW
baseline is assessed by randomization test [33]. We set the
type I error control at α = 0.05.

Discussion
First, we observe that for rare diseases (three bins under
0.1%), the proposed methods BOW+KGearly-fusion

1 and

BOW+KGearly-fusion
12 deliver robust performance: they are

almost always among the top two performers on both cor-
pora. As the disease becomes less rare (two bins above
0.1%), simple BOW baseline and supervised feature selec-
tion work better. This is expected as the proposed meth-
ods can be viewed as doing feature selection using external
knowledge. With more training data in each class, the
knowledge inside training data allows us to select higher
quality, more task-specific features than external knowl-
edge.

In the disease-to-KG-entity mapping step (“Mapping
diseases to KG entities” section), including surrogate enti-
ties is sometimes beneficial to rare disease classification,
but not always. The performance gain of having higher
entity coverage (BOW+KG12 compared to BOW+KG1) is
the most salient when the disease is extremely rare (below
0.02%). This suggests that if we had a more complete KG,
the rare disease classification performance could be even
better.

The performance of LSTM is extremely low on rare dis-
eases. Indeed, deep learning methods need a large quan-
tity of training data to perform well, which are unavailable
for rare classes in the long tail. Using pretrained word vec-
tors did not help, since rare classes have far less training
documents than frequent classes to fine-tune the relevant
word vectors.

The performance of upsampling is very unstable,
which agrees with previous literature [16]. It dramati-
cally improves classification performance in one specific
case (ChinaRe, 0.02% – 0.05%). But in most other cases,
upsampling does not help or even hurts performance
compared to the BOW baseline. Combining upsampling

Table 2 Rare disease classification performance on HaoDaiFu corpus

Percentage Bins (0, 0.02%] (0.02%, 0.05%] (0.05%, 0.1%] (0.1%, 0.5%] (0.5%, 1%]

89 diseases 277 diseases 205 diseases 194 diseases 32 diseases

F1 MRR F1 MRR F1 MRR F1 MRR F1 MRR

BOW 34.10 45.86 40.80 49.91 49.48 58.81 53.23 62.80 62.23 75.31

LSTM 0.00 0.41 0.01 1.07 0.38 5.91 12.29 27.23 40.07 53.04

UpSample 35.17∗ 47.10∗ 40.69 50.43∗ 47.63 57.63 49.85 59.75 58.6 68.95

χ2 34.04 46.75∗ 40.81∗ 50.66∗ 49.15 58.53 51.74 61.38 61.55 74.05

BOW+χ2 34.56 47.25∗ 42.41 51.84∗ 50.03∗ 59.33∗ 53.15 62.34 62.10 73.97

KG1 33.66 44.98 38.25 47.45 45.17 53.97 48.07 57.55 59.21 71.29

KG12 33.51 44.92 39.08 48.07 45.23 54.55 48.66 58.00 59.2 71.43

BOW+KGpseudo-doc
1 31.91 42.81 37.51 46.08 44.08 53.22 47.01 56.94 55.91 69.47

BOW+KGpseudo-count
1 34.87∗ 46.14∗ 41.74∗ 50.14∗ 49.31 57.94 52.56 61.59 61.65 74.19

BOW+KGlate-fusion
1 33.33 45.42 38.41 48.68 47.15 56.39 51.13 60.18 61.42 73.30

BOW+KGearly-fusion
1 36.87 48.36∗ 43.11∗ 51.79∗ 50.06∗ 58.99 52.86 61.90 61.90 73.57

BOW+KGearly-fusion
12 36.94∗ 48.22∗ 42.63∗ 51.40∗ 49.66 58.62 52.60 61.51 61.47 73.23

The higher F1 and MMR, the better. Each column’s highest number is shown in boldface, second highest number shown with underline. The left three percentage bins are
rare disease bins; the right two bins are for comparison purposes. “∗” denotes results significantly higher than BOW (randomization test, significance level α = 0.05)
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Table 3 Rare disease classification performance on ChinaRe corpus

Percentage Bins (0, 0.02%] (0.02%, 0.05%] (0.05%, 0.1%] (0.1%, 0.5%] (0.5%, 1%]

5 diseases 3 diseases 2 diseases 7 diseases 9 diseases

F1 MRR F1 MRR F1 MRR F1 MRR F1 MRR

BOW 91.58 93.36 29.76 53.97 90.49 93.49 88.69 92.64 92.6 95.09

LSTM 0.00 4.03 0.00 4.75 0.00 9.64 22.38 44.68 85.86 93.55

UpSample 88.36 94.81 52.22 66.54 90.11 93.06 89.36 94.27 92.62 95.76

χ2 91.38 95.83∗ 47.97 65.12 90.40 93.68 91.92 95.41 93.84 96.45

BOW+χ2 93.37∗ 97.55∗ 42.14∗ 62.80∗ 90.73 93.95 92.01 95.55 94.05 96.43

KG1 91.06 97.47∗ 22.63 43.64 48.52 48.11 80.54 86.67 74.32 77.33

KG12 92.26∗ 97.70∗ 31.20 43.91 85.61 91.42 83.71 87.96 80.05 83.18

BOW+KGpseudo-doc
1 75.68 82.49 34.86 52.08 83.20 87.84 78.79 85.57 88.34 91.86

BOW+KGpseudo-count
1 88.14 91.02 30.04∗ 52.62 89.02 93.61 85.54 88.64 90.8 93.34

BOW+KGlate-fusion
1 89.01 95.41∗ 29.76 48.8 68.63 70.80 86.18 89.65 86.89 86.21

BOW+KGearly-fusion
1 92.30∗ 97.66∗ 54.73∗ 69.88 90.27 92.54 91.00 95.05 93.59 95.92

BOW+KGearly-fusion
12 93.43∗ 97.13 47.78 62.04 91.68 95.41 90.70 94.49 93.46 95.70

See the footnote below Table 2 for details

with other methods (e.g. χ2 or KG1) results in even more
unstable performance, which we omit. This suggests that
resampling is not suitable for extremely imbalanced text
classification tasks.

On rare diseases, concatenating the vectors of original
BOW features and knowledge features tends to perform
better than using either alone, for both χ2-selected fea-
tures and KG-selected features. We can understand this
phenomenon as a type of regularization: the selected
feature segment can be understood as “to put empha-
sis on these features”. Or equivalently, it can be under-
stood as “to reduce attention (lower the weights) on the
rest of the BOW features”. To illustrate this, Table 4
shows examples of learned feature weights that for the
rare disease syringomyelia. Conceptually, this is related to
group-wise regularization: to apply different regulariza-
tion strengths on two groups of features: V ∩ K and V\K .
The problem with group-wise regularization is that for
each disease, we would need a different hyperparameter
to balance the strength of regularization on two feature
groups. The proposed method does not have this problem.

Table 4 Example feature weights of the rare disease
syringomyelia

Feature BOW BOW+KGearly-fusion
1

Syrinx 1.19 1.34

Temperature sensation 0.52 0.82

Numb 0.76 0.45

Tremble 0.82 0.75

Our method BOW+KGearly-fusion
1 learned to place larger weights on knowledge

features (“syrinx” and “temperature sensation”) and smaller weights on
non-knowledge features (“numb” and “tremble”)

Among different ways of using the KG feature infor-
mation, we found that early fusion performs the best.
Combining classification predictions (late fusion) is chal-
lenging at the global level, since the combination weights
might be different for different diseases. The pseudo-
count method has no significant effect, because incre-
menting the count of an existing term by 1 has dimin-
ishing effect after TF-IDF transformation. On the other
hand, a large pseudo-count makes the document vector
as if containing only selected features. Instead, allocat-
ing additional dimensions for these features turns out
to be more beneficial. It has been shown that text clas-
sification can benefit from having many redundant but
not perfectly correlated features [34]. Finally, the pseudo-
example method performs poorly because it generates
more examples for large classes, making small classes even
smaller.

Implication
One of the biggest challenges in applying machine learn-
ing techniques to healthcare is the lack of supervision
signals in this domain. Unlike other domains (e.g., image,
speech) where the availability of training labels is bounded
by the annotation budget, in healthcare it is bounded
by the availability of domain experts, and in the case of
(rare) diseases, also bounded by the population of patients
[35]. How to efficiently transfer domain knowledge into
supervision signals for training machine learning models
has been a heated debate in both the research commu-
nity and industry of medical NLP. Under resource con-
straints, should the effort be spent on labeling additional
training examples, or constructing knowledge graphs?
Despite many potential advantages of knowledge graphs
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over unstructured annotations (e.g., precise and compact
knowledge representation, extendable, reusable for differ-
ent tasks [36]), there is always a concern that building a
complete and accurate KG can be labor-intensive, if not
impossible.

This work shows that a knowledge graph does not have
to be perfect (in terms of coverage and accuracy) to be
able to deliver desirable benefits for medical NLP tasks.
Our use of a general-purpose KG also indicates that prac-
titioners could start with customizing and refining an
open domain KG for their tasks instead of building a
medical KG from the scratch. Our results should resolve
some of the concerns of building knowledge graphs in the
practices of medical NLP.

Conclusion
This paper studied the problem of rare disease classifica-
tion, where rare diseases are defined by their presence in a
large corpus (lower than 0.1%). We developed a text classi-
fication algorithm that represents a document as a combi-
nation of a “bag of words” and a “bag of knowledge terms”,
where a “knowledge term” is a term shared between the
document and the subgraph of knowledge graph relevant
to the disease classification task. On two Chinese dis-
ease classification corpora, the algorithm delivers robust
performance gain over feature selection methods on rare
diseases.

In future work, we plan to explore a variety of meth-
ods for improving document representation. First, instead
of “emphasizing” all words that appear in medical-related
KG, we can do so more selectively. One way is to iden-
tify the most relevant KG entities to a specific document,
and only emphasize words in those entities. We can use
synonyms and word embedding methods to allow for
fuzzy matching between KG entities and a document, to
increase the coverage of knowledge features in a docu-
ment. We can also consider “appending” words in relevant
entities to a document, effectively performing feature gen-
eration. Finally, when medical experts are interacting with
a list of predicted rare diseases or most similar patients,
we can explore the opportunity of learning from experts
feedback and improve the diagnosis algorithm continu-
ously.
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