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Abstract 

Background:  Hospital-acquired pressure injuries (PIs) induce significant patient suffering, inflate healthcare costs, 
and increase clinical co-morbidities. PIs are mostly due to bed-immobility, sensory impairment, bed positioning, and 
length of hospital stay. In this study, we use electronic health records and administrative data to examine the contrib-
uting factors to PI development using artificial intelligence (AI).

Methods:  We used advanced data science techniques to first preprocess the data and then train machine learning 
classifiers to predict the probability of developing PIs. The AI training was based on large, incongruent, incomplete, 
heterogeneous, and time-varying data of hospitalized patients. Both model-based statistical methods and model-free 
AI strategies were used to forecast PI outcomes and determine the salient features that are highly predictive of the 
outcomes.

Results:  Our findings reveal that PI prediction by model-free techniques outperform model-based forecasts. The 
performance of all AI methods is improved by rebalancing the training data and by including the Braden in the model 
learning phase. Compared to neural networks and linear modeling, with and without rebalancing or using Braden 
scores, Random forest consistently generated the optimal PI forecasts.

Conclusions:  AI techniques show promise to automatically identify patients at risk for hospital acquired PIs in differ-
ent surgical services. Our PI prediction model provide a first generation of AI guidance to prescreen patients at risk for 
developing PIs.

Clinical impact:  This study provides a foundation for designing, implementing, and assessing novel interventions 
addressing specific healthcare needs. Specifically, this approach allows examining the impact of various dynamic, per-
sonalized, and clinical-environment effects on PI prevention for hospital patients receiving care from various surgical 
services.
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Background
Pressure injuries (PIs) continue to negatively impact 
clinical practice and increase patient suffering. The 

enduring incidence of PIs in hospitals and other health-
care settings frustrate all stakeholders, including 
patients, families, caregivers, insurers, and health-pol-
icymakers. The expectation is that providers can thwart 
these “preventable” injuries. However, due to the many 
potential clinical dimensions that increase the risk for 
developing PIs, and the dynamic nature of the problem, 
they persist.
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Research reports in the literature about the incidence 
and prevalence of PIs are numerous. Three recent sys-
tematic reviews illustrate the difficulty of quantifying the 
incidence and prevalence of the problem.

Bufone et al. [1] conducted a systematic review of peri-
operative PIs. Of the eleven articles that met their inclu-
sion criteria, the incidence range was between 1.3% and 
54.8%. Although a meta-analysis was not performed, 
the range in reported outcomes was highly variable. The 
authors note that likely contributors to their heterogene-
ous findings were that the studies varied on the PI stages 
that were included (e.g., Stage I, I & II, III & IV), assess-
ment tool used (Braden, Norton, RAPS or not reported), 
and type of surgery (orthopedics, cardiac, ENT, others). 
Recommendations for future research included clarify-
ing the differences in PI among different surgical services 
and using risk assessment tools that include intraopera-
tive variables [1].

Jackson et  al. [2] reviewed 29 cross sectional and 
cohort studies about the prevalence and incidence of PI 
related to medical devices. The studies included all age 
groups, mixed unit types, and took place in 14 countries 
with data from 126,150 patients. The pooled incidence 
reported in 13 studies was 12% (95% CI 8–18) with het-
erogeneity of I2 = 95.9%, p < 0.001. The pooled prevalence 
from 16 studies was 10% (95% CI 6–16). Many of the PI 
involved mucosal tissue, so the stage was not provided in 
most of the included studies. Explanations for the het-
erogeneity included variation in clinical environments, 
patient characteristics, types of devices and staging [2].

Chaboyer et  al. [3] reviewed 22 observational, cross 
sectional and cohort studies of adult patients in inten-
sive care units (ICUs). The findings from the meta-anal-
ysis were a pooled incidence range (95% CI 10.0 – 25.9), 
I2 = 98 and pooled prevalence (95% CI 16.9 – 23.8), 
I2 = 92. High heterogeneity was explained by variation in 
measurement methods, regional variation and a range of 
data that may have been contributory but was not pro-
vided, for example delivery of PI prevention strategies, 
nurse/patient ratios and length of stay in the ICU.

These reviews, encompassing 62 studies, illustrate two 
primary conclusions: First, the incidence and prevalence 
of PI remain unacceptably high; and second, there is 
widespread heterogeneity in epidemiological studies of 
PI. Reducing the problem of PI is critically important. 
The purpose of this research was to develop accurate 
PI prediction models that can be translated into practi-
cal tools for individualized and targeted PI prevention 
interventions. Specifically, the study goals were to:

1.	 Build model-based statistical inference and model-
free artificial intelligence (AI) techniques to mine and 
interrogate high-dimensional clinical data aiming to:

a.	 predict specific PI related clinical outcomes for 
patients:

b.	 identify salient features in the data that are highly 
predictive of the outcomes, and

2.	 Derive computed phenotypes by unsupervised clus-
tering.

Risk prediction complexity and Pressure Injury Prediction 
Modeling (PIPM)
In order to reduce the incidence and prevalence of PI, 
prevention is critical. Risk assessment is at the fore-
front of this effort and has been the subject of research 
for decades. Tschannen and Anderson’s [4] synthesis of 
existing PI conceptual models showed that despite the 
extensive literature on the topic, gaps remain in under-
standing PI risk. The authors reviewed 59 studies that 
showed current evidence about factors that predict 
hospital acquired PIs. After synthesizing the evidence, 
the Pressure Injury Prediction Model (PIPM) was 
developed representing 6 constructs: pressure, tissue 
tolerance, friction and shear, as well as three new con-
structs—patient characteristics, environment, and epi-
sode of care. These constructs arose from 53 concepts, 
often having multiple measures and indicators. Similar 
to the incidence and prevalence studies, the sheer num-
ber of possible predictors and predictor combinations 
contributes to the complexity of PI risk assessment 
and prevention [4]. The advancement of the electronic 
health record (EHR) provides the opportunity for large 
scale data analysis, accounting for all of the identified 
predictors of hospital-acquired PIs.

PI risk prediction using EHR
Widespread use of the electronic health record (EHR) 
has led to the collection of vast amounts of clinical data. 
As a result, researchers are developing new methods to 
improve PI prediction that take advantage of this both in 
terms of the number of cases analyzed and in the gran-
ularity of the variables used. For example, Rondinelli 
et al. [5] conducted a retrospective cohort study of over 
700,000 inpatient episodes in 35 hospitals to examine the 
time from admission to the development of a healthcare 
acquired PI. Independent variables included age, gen-
der, diagnoses, admission and discharge information and 
comorbidities that were present on admission. A comor-
bidity point score, severity of illness score and the overall 
Braden Scale were also used. Their analysis, using a mul-
tivariate Cox proportional hazards model showed signifi-
cant hazard ratios for age, severity of illness, comorbidity 
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and the Braden scale as risk predictors. Significant varia-
tion among the hospitals was also found.

Using another approach, Jin et  al. [6] used multiple 
logistic regression to select variables extracted from the 
EHR and to develop an algorithm for PI risk prediction 
that was then tested in real time. Ten factors, from the 
original 4,211, resulted in a daily risk score that compared 
favorably with the Braden score, but did not require any 
input from the nursing staff. The researchers noted that 
the risk score did not allow the staff to view specific 
risk factors, nor did it account for any injury prevention 
interventions.

Recent analytic approaches to identifying PI risk more 
accurately has included the use of advanced data sci-
ence analytics with Big Data. Advanced analytic meth-
ods, such as machine learning and artificial intelligence 
(AI) techniques, allow analysis of large, incongruent, 
incomplete, heterogeneous, and time-varying data [7–
11]. More simply, the use of machine learning allows 
researchers to look for patterns that can help explain the 
current state or be used to make predictions about the 
future [12]. Such data analysis techniques have been used 
successfully in determining predictors of other health 
outcomes, such as catheter associated urinary tract infec-
tion [13], septic shock [14], Parkinson’s disease [15], and 
more recently, PIs.

Recent efforts to predict PIs more accurately have 
included the use of data science analytics and machine 
learning. For example, Kaewprag and colleagues [16] 
evaluated 7,717 ICU patient records (590 patients with 
PI) using 6 machine learning algorithms to develop 
predictive models for PI. Their methods included first 
univariate analysis to determine association and then 
logistic regression, support vector machine, decision 
tree, random forest, k-nearest neighbor and Naïve Bayes 
to analyze data that included variables associated with 
the Braden Scale, medications, and diagnosis. Logistic 
regression and Naïve Bayes models yielded the highest 
area under the receiver operating characteristic curve 
(AUC). Specifically, the combination of diagnosis and 
Braden features yielded the best predictive model for PI 
incidence, with an AUC using logistic regression of 0.83 
compared with the Braden features alone at 0.73, how-
ever the sensitivity was low at 0.160.The Naïve Bayes 
method had a lower AUC (0.815) and better sensitivity 
(0.628).Although the study integrated over 828 unique 
medications and 861 diagnoses, other contributing fac-
tors for PI incidence were not included, thus potentially 
limiting the overall accuracy of the risk predictor.

In another study, Hu et  al. [17] created three predic-
tion models for inpatient PI using machine learning tech-
niques (e.g. decision tree, logistic regression, and random 
forest). Analysis of 11,838 inpatient records—including 

both indirect and direct variables of interest—found 36 
significant predictors of PI development. Attribute selec-
tion was initially based on correlation analysis prior to 
model development. The model built using random forest 
was the strongest, with precision of 0.998, and the aver-
age AUC of 1.00, in the training set, however the AUC in 
the validation set the AUC was 0.864 with random for-
est still providing the best results. Although much more 
inclusive of previously identified predictors of PI, exclu-
sions of key variables (e.g. presence of comorbidities, 
oxygenation and/or nutrition deficits, friction and shear) 
were noted. In addition, a very limited sample of patients 
with a PI (1.5% of sample) was included, which may have 
contributed to the difference between training and vali-
dation sets (e.g. treatment of the outcome imbalance in 
the training sets).

Cramer and colleagues [18] examined structured EHR 
data from 50,851 admissions to predict PI in the ICU 
using various machine learning techniques. Models that 
incorporated over 40 EHR features were captured in the 
dataset, accounting for the first 24 h of admission, includ-
ing physiologic, admission, and lab variables. Analysis 
was conducted on training and test sets using advanced 
techniques such as logistic regression, elastic net, sup-
port vector machine, random forest, gradient boosting 
machine, and a feed forward neural network approach. 
Findings identified the weighted logistic regression 
model to be the best model, although all models were 
limited in their precision (0.09–0.67) and recall (0–0.94). 
Despite this, the model outperformed the Braden scale, 
the traditional approach to identifying risk for PI. Simi-
lar to other studies, imbalance in the sample and missing 
data were identified as limitations in the analysis.

Despite the promising use of advanced data analytics in 
determining the true risk for PI development, several lim-
itations in the work to date require further exploration. 
Several of the studies conducted using machine learning 
thus far have shown improved risk prediction [17, 19, 20]. 
However, prior reports also use limited model features, 
sample imbalances, and missing data as limitations. 
For this reason, further exploration with a large dataset 
incorporating all predictors of PI risk is needed.

More broadly, over the past decade a number of pow-
erful computational and artificial intelligence approaches 
have been developed, tested, and validated on medi-
cal data [21–23]. Most techniques have advantages and 
limitations. For instance, some evidence suggests that 
Support Vector Machine (SVM) and Artificial Immune 
Recognition System (AIRS) are very reliable in specific 
medical applications [21]. Whereas deep neural network 
learning yields the most statistically consistent, accurate, 
reliable, and unbiased results in medical image classifica-
tion, parcellation, and pathological detection [24, 25].
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Methods
Data
Using the PIPM as a guide, we extracted two years of 
clinical and administrative data from a large, tertiary 
health system. Electronic health record (EHR) data for 
over 23,000 patient encounters discharged between June 
1st, 2014 and June 26th, 2016 were obtained from the 
study site. The health system uses the EPIC© vendor for 
inpatient documentation. Inclusion criteria for extraction 
of patient records included: [1] adults (≥ 18 years of age); 
[2] undergoing a surgical procedure; and [3] hospitalized 
for two or more days between June 2014 and June 2016. 
Administrative data, including nurse staffing data, were 
extracted for all nursing units where the patients were 
admitted during the study timeframe.

Specific data elements extracted for the study aligned 
with the PIPM framework. PIPM represents the many 
risk factors for PI that have been reported in the litera-
ture, and organized into six constructs: patient, pressure, 
shear, tissue tolerance, environment and episode of care. 
Each construct includes multiple concepts that are in 
turn, represented by indicators and measures that were 
used to develop the data dictionary and the extraction 
plan.

Staffing level data were collected for each day the 
patient spent on specific patient care units. Likewise, 
data pertaining to the intraoperative phase were col-
lected for each procedure that occurred during the spe-
cific hospitalization. For example, the American Society 
of Anesthesiologists (ASA) score was used as a measure 
of severity of illness and the length and type of the proce-
dure were recorded for each operation.

All data was initially captured as a raw csv file. Data was 
cleaned and formatted for use with statistical software. 
The data were collected for each day the patient spent in 
the hospital and, when relevant, for each surgical proce-
dure if more than one operation occurred. For example, 
age, gender and ethnicity were demographic features 
that did not change over the course of the hospital stay 
whereas vital signs, medications and Braden scores were 
collected for each day. For the purposes of this study, 
data were aggregated to hospital-stay level variables. For 
example, total Braden scores were captured for each day 
of a patient’s stay, respectively. These values were then 
aggregated to three stay-level variables: Total Braden min 
(e.g., lowest Braden score for the stay); Total Braden max 
(e.g., highest Braden score for the stay); and Total Braden 
average (e.g., average score of all daily Braden scores).

In the Additional file 1 section, we include a table map-
ping the compressed variable names into explicit clini-
cally relevant descriptions.

Data preprocessing
We used previously developed and validated data pre-
processing protocols [26–29]. These include imputation 
of missing values, data harmonization and aggregation 
across multiple data tables, hot-coding of categorical 
variables as numeric dummy variables, normalization to 
facilitate cross-feature distance calculations, rebalanc-
ing to stabilize the sample-sizes in different cohorts, and 
extraction of summary statistics characterizing the dis-
tributions of various features. Table  1 shows examples 
of preprocessing steps for different types of biomark-
ers. This preprocessing was necessary to generate an 
integrated canonical form of the data as a computable 
object that can be visualized, analyzed, models, and train 
the AI/ML classifiers. Figure 1 depicts the key elements 
of the end-to-end computational workflow we built to 
ingest the heterogeneous data, perform preprocessing, 
fit models and derive model-free prediction, and validate 
the performance of different methods.

Comparing the patients with and without PIs pre-
sented a very imbalanced study design, which may 
obfuscate hidden biases in the results. To address this 
issue, we introduced a cohort-rebalancing protocol to 
roughly equalize the sample sizes based on the synthetic 
minority-sample oversampling technique (SMOTE) [30]. 
Applying AI techniques such as Random Forests (RF) 
directly on the raw PI data may be challenging as dif-
ferent patient subgroups may be naturally segregated, 
such as with surgical service (e.g. orthopedic, trauma, 
cardiac). For brevity, we don’t show all results; however, 
we built a global RF model independent of the surgical 
service, as well as, separate individual service-specific 
RF-prediction models for each surgical service. Global 
and service-based model fitting used the corresponding 
rebalanced cohorts. To simplify the clinical interpreta-
tion of the global (hospital-wide) and the service-specific 
(within surgical service) models, only the 20 most salient 
features were identified and utilized in the corresponding 
RF models.

We counted the number of all the services and pro-
cedures associated with each hospitalization, including 
the ones with multiple services. These frequencies were 
included in a new derived predictive feature whose values 
were used during the model training phase (Table 2).

Cases and features with less than 50% observed val-
ues were triaged. The remaining ones were imputed, as 
needed. Multiple imputation [31–33] was used to gen-
erate a computable data object consisting of instances 
(multiple chains) of the complete dataset with no missing 
observations.
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AI modeling and analytics
To model the risk profiles of patients, we used model-
based and model-free techniques [10, 11, 34–38] and 
prospectively tested their performance to accurately pre-
dict the chance of developing PIs in hospitalization set-
tings. We also examined PI risk globally across the health 
system, as well as within separate surgical specialty 
services.

Different machine learning models were fit for each of 
the following data combinations:

1.	 All data without Braden metrics and without minor-
ity class rebalancing.

2.	 All data including Braden metrics and without 
minority class rebalancing.

3.	 All data without Braden metrics and with minority 
balancing.

4.	 All data including Braden metrics and with minority 
class balancing.

The pragmatics of the clinical applications of an AI app for 
modeling PI in hospital settings motivates the specific four 
complementary scenarios investigated in this 2× 2 design. 
The first factor reflects the availability of the Braden met-
rics, which are useful, but now always available and resource 
intensive to compute. The second factor in the design 
addresses the acute need for rebalancing the data to account 
for the relatively rare event of developing PI, in general.

Model-based PI prediction was accomplished using the 
generalized linear model (logistic regression) and regu-
larized linear modeling (LASSO) [35, 39–41]. Model-free 
AI methods included random forests and deep learning 
[35, 42, 43]. The neural network fit to the data used the 
keras package. The data was split into training: testing 
and a sequential network model was fit using the follow-
ing parameter settings: units = 500, activation = relu or 
sigmoid, layer dropout rate in the range [0.3, 0.4], layer 
unit density between 2 and 128, loss function = binary 
cross-entropy, ADAM optimizer, accuracy metric, 

Table 1  Illustrations of alternative types of data preprocessing filters applied to different types of clinical measurements

*American Society of Anesthesiologists (ASA)

Item Date group/type Data type/nature Derived-data aggregation method

1 Biographical Static/single As is

2 Daily vital data Time series (daily) Min, max, mean

3 Braden (4 metrics) Time series min, max for each

4 Location/units Unit names and dates LOS for each location

5 Periop Time series avg, absolute min, absolute max

6 Surgical related data

 Anesthesia duration Time series (minutely) Total duration

 Procedure room stay Time series (minutely) Total duration

 Surgical schedule? Categorical As is?

 Surgical service? Categorical As is?

7 Staffing data Time series Mean (RN HPPD and Total HPPD)

8 ASA data (severity of illness) Time series Min, max, mean, SD

Fig. 1  Graphical flowchart illustrating the end-to-end pipeline process from ingesting the raw data, through the preprocessing, modeling, analysis, 
prediction, and visualization of the results
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epochs = 100, batch size = 10, and validation split = 0.3. 
Model performance was assessed using metrics shown in 
Table 3 and Fig. 2.

Results
The original dataset included 26,258 cases over the 
study time period. After removal of cases that didn’t 
meet the study inclusion criteria (e.g. LOS ≥ 2 days, 
and undergoing a surgical procedure, and having staff-
ing data), 18,943 of cases remained. Note that cases 
were excluded when the event staffing data was not 
available. Of those, 959 (5.06%) of cases developed a 
hospital acquired PI during their stay. Average length 
of stay for the sample was 7.33 days, with a range of 2 
to 233. All patients were admitted for a surgical proce-
dure, with the vast majority of patients being admitted 
under the Orthopedics service, followed by neurosur-
gery and urology. As noted in Table 2, a large percent-
age of patients did not have an identified service, thus, 
they were only included in fitting the global models.

Data summary
Table 4 shows some of the sample distributions of the 
stratified cohorts and the complete dataset. The imbal-
ance between PI-positive and PI-negative cases is clear 
across the strata.

Table  5 shows the performance of the AI mod-
els trained using data with Braden scores. For each 
model, we show both the results using the raw imbal-
anced (left) and the post-processed rebalanced (right) 
datasets.

Table  6 shows the performance of the AI models 
trained without using the Braden metrics. Again, for each 
model, we show both the results using the raw imbal-
anced (left) and the post-processed rebalanced (right) 
data. The LASSO model-based approach resulted in 
the same model prediction. Clearly the model predic-
tion accuracy using training data without Braden scores 
is lower compared to their counterparts fit using the 
Braden scores, Table 5.

Table 7 contrasts the performance of the model-based 
(regularized linear modeling) and the model-free (ran-
dom forest) AI predictions. There are notable differences 
between the two types of AI predictors as well as a clear 
impact of the availability of Braden scores, which enhance 
the performance metrics (first column). Rebalancing for 
the minority (PI) cohort also significantly improves the 
model prediction accuracy. With or without using the 
Braden scores and with or without rebalancing, random 
forest significantly outperforms the linear model-based 
prediction. The values in the table represent averages of 
tenfold internal statistical cross-valuation performance.

Discussion
Hospital-acquired PIs are difficult to predict in advance, 
carry significant health burden, and inflate healthcare 
costs. In this study, we employ innovative data science 
techniques to predict the likelihood of developing PIs 
based on available clinical and administrative data. Our 
results suggest that model-free AI techniques outper-
form their model-based counterparts in forecasting PI 
outcomes. This suggests that compared to classical par-
ametric inference, data-driven prediction may provide 
higher forecasting accuracy due to violations of paramet-
ric assumptions (e.g., independence, normality, random 
sampling, etc.) Sample rebalancing of the EHR training 

Table 2  Number of episodes of care by surgical service

Name Count Percent

Orthopedics 4081 15.5

Missing 3340 12.7

Neurosurgery 2767 10.5

Urology 2240 8.5

Cardiac 2153 8.2

Trauma 1637 6.2

Thoracic 1489 5.7

Otolaryngology 1255 4.8

Vascular 1128 4.3

Plastics 955 3.6

Colorectal 948 3.6

Transplant 944 3.6

Gynecology 750 2.9

Hepatobiliary 743 2.8

Minimally Invasive Surgery 706 2.7

Oral Surgery 469 1.8

Surgical Oncology 299 1.1

General Surgery Endocrine 251 1.0

Ophthalmology 62 0.2

Dentistry 15 0.1

Podiatry 12 0.0

Anesthesiology 8 0.0

Radiology 4 0.0

Other 1 0.0

Pediatric Cardiac 1 0.0

Table 3  Confusion matrix for binary classification

Confusion matrix Reference

Predicted Event No event

Event A B

No event C D
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data and inclusion of Braden scores enhance the qual-
ity of the models. The improved performance with the 
Braden score is not surprising as the risk assessment 
tool has been shown to predict PIs, despite its inabil-
ity to account for all factors associated with PI risk [4]. 
Although the performance was improved with inclusion 
of the Braden scores, the analysis revealed the impor-
tance of many other characteristics not included in the 

Braden tool, as the tool only accounts for moisture, nutri-
tion, sensory perception, friction and shear, mobility, and 
activity.

Another key finding in this study was the comparison of 
feature importance among patients in the various surgical 
services. Unlike previous work, which has shown global 
predictive results [4, 16] or results based on one spe-
cialty group such as cardiac surgery patients [44, 45], we 
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Fig. 2  Model evaluation metrics

Table 4  Main sample-size distributions

Case type Original data (size) With LOS ≥ 2 With surgical 
procedure

Location not in staffing data 
removed

Intersection final

PI negative 24,928 21,266 21,920 21,601 16,194

PI positive 1330 1142 1015 1137 738

Total cases 26,258 22,408 22,935 22,738 16,932
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compared feature profiles for patients in over 20 specialty 
services and found clinically significant differences. This 
is important going forward because it provides a basis for 
developing individualized plans of care for the prevention 
of PI and reducing the health impact of hospital acquired 
ulcers. For example, the primary risk predictors of ortho-
pedic patients include length of surgery, length of stay, and 
Braden friction and shear, whereas, patients within the 
urology service have creatinine value, surgical time, and 
diastolic blood pressure (during surgery) as primary pre-
dictors of PI development. This type of information will 
make it possible to tailor prevention interventions based 
on specific type of surgical service. Furthermore, preemp-
tive automatic identification of patients with high-risk of 
developing PIs in certain surgical services may provide 
health and economic benefits, in additional to improving 
patient hospitalization experiences more generally.

As firm supporters of open-science and effective integra-
tion of translational science and health analytics education, 
the authors are sharing the complete source code with syn-
thetic data that illustrate the utilization of this PI forecast-
ing model. This SOCR GitHub Project site (https://​github.​
com/​SOCR/​Press​ureIn​juryP​redic​tion) includes the end-
to-end protocol for the data preprocessing, analytics and 
visualization used in this manuscript. The sensitivity of the 
real EHR data used in this study prevented us from shar-
ing potentially personally identifiable information. Hence, 
we opted to package synthetic data that resembles the real 
clinical data used in the PI modeling and prediction. We 
have implemented this technique as a web-app to allow 
interactive community testing, validation, and engagement.

Conclusion
Accurate prediction of PI is critical to assure that patients 
with risk are receiving the nursing care needed to pre-
vent PI development. To date, our understanding of risk 

has been limited due to limitations in sampling (e.g., 
one surgical service) and/or methodology (e.g., failure to 
include all factors predictive of risk). This study is one of 
the first to use AI techniques with a large, general sample 
of surgical patients. Findings from this study have iden-
tified risk profiles for various surgical services that must 
be considered when determining prevention interven-
tion strategies to employ. The importance of getting this 
type of discrete information to the bedside nurse cannot 
be overstated. To meet this need, we are developing an 
interactive webapp that implements the RF model to pre-
dict PI within specific surgical services or globally for an 
entire hospital. The app allows interactive forecasting of 
the probability of acquiring PI in different hospitaliza-
tion settings using manual data input (one-patient-at-
a-time) or in batch model by importing and loading a 
large number of patient profiles. Thus, in the PIPM pre-
diction model webapp, the concrete cohort of patients 
can be specified by the research investigator or clinician 
applying the model to forecast the expected probability 
of developing a PI during hospitalization based on the 
individual patient’s data. Discrete data such as this will 
help the nurse to determine exactly what is needed for 
each patient, rather than continuing with a more general 
approach to PI prevention. Such a tailored approach to 
PI prevention may result in reduced costs (e.g., patients 
are not receiving care that is unnecessary) and improved 
outcomes.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12911-​021-​01608-5.

Additional file 1. Supplementary Dictionary of the compressed variable 
names used in PIPM.

Table 7  Results summary comparing model-based (LASSO) and model-free (RF) prediction on testing data

Metrics Logistics regression Random forest

Design Using the entire data Without Braden metrics Using the entire data Without Braden metrics

Balance Without 
balancing

With balancing Without 
balancing

With balancing Without 
balancing

With balancing Without 
balancing

With balancing

Accuracy 0.9567 0.86 0.953 0.84 0.985 0.99 0.957 0.994

Kappa 0.3871 0.69 0.302 0.642 0.813 0.979 0.2496 0.987

Sensitivity 0.677 0.767 0.6129 0.72 0.72 1 0.163 1

Specificity 0.963 0.912 0.959 0.9 0.998 0.9855 0.996 0.99

Pos pred val 0.289 0.823 0.217 0.8 0.95 0.973 0.677 0.98

Neg pred val 0.992 0.88 0.993 0.35 0.986 1 0.959 1

Balanced accuracy 0.82 0.83 0.788 0.813 0.859 0.993 0.579 0.996

F1 score 0.40 0.79 0.32 0.76 0.82 0.99 0.26 0.99

https://github.com/SOCR/PressureInjuryPrediction
https://github.com/SOCR/PressureInjuryPrediction
https://doi.org/10.1186/s12911-021-01608-5
https://doi.org/10.1186/s12911-021-01608-5
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