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Abstract

Background: BMI is a strong indicator of complications from type I diabetes, especially under intensive treatment.

Methods: We have genotyped 435 type 1 diabetics using Illumina Infinium Omni Express Exome-8 v1.4 arrays and
performed mitoGWAS on BMI. We identified additive interactions between mitochondrial and nuclear variants in
genes associated with mitochondrial functioning MitoCarta2.0 and confirmed and refined the results on external
cohorts: the Framingham Heart Study (FHS) and GTEx data. Linear mixed model analysis was performed using the
GENESIS package in R/Bioconductor.

Results: We find a borderline significant association between the mitochondrial variant rs28357980, localized to
MT-ND2, and BMI (β = − 0.69, p = 0.056). This BMI association was confirmed on 1889 patients from FHS cohort
(β = − 0.312, p = 0.047). Next, we searched for additive interactions between mitochondrial and nuclear variants.
MT-ND2 variants interacted with variants in the genes SIRT3, ATP5B, CYCS, TFB2M and POLRMT. TFB2M is a
mitochondrial transcription factor and together with TFAM creates a transcription promoter complex for the
mitochondrial polymerase POLRMT. We have found an interaction between rs3021088 in MT-ND2 and rs6701836
in TFB2M leading to BMI decrease (inter_pval = 0.0241), while interaction of rs3021088 in MT-ND2 and rs41542013
in POLRMT led to BMI increase (inter_pval = 0.0004). The influence of these interactions on BMI was confirmed in
external cohorts.

Conclusions: Here, we have shown that variants in the mitochondrial genome as well as additive interactions
between mitochondrial and nuclear SNPs influence BMI in T1DM and general cohorts.
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Background
Mitochondria are organelles whose main role is energy pro-
duction. They are the only organelles that contain their own
genome. The mitochondrial genome is a double stranded
16.5 kb long molecule which resembles that of an alpha-

proteobacterium [1]. The two strands differ in nucleotide
(G+T) composition – the guanosine-rich strand is named
the heavy (H) strand; the other, cystosine-rich strand is called
the L-strand (light strand). Like a free-living eubacterium,
mitochondrial genome contains no introns and minimal
intergenic regions, although it contains an approximately
1000 nucleotide non-coding control region (displacement
loop or D-loop) where the origin of replication of the H-
strand as well as promoters of transcription, both for H- and
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L-strands are localized. mtDNA codes for 37 genes. Among
them 13 code for polypeptides, while the remainder - 2
rRNAs (12S and 16S) and 22 tRNAs – are necessary for
mitochondrial protein synthesis. All 13 mRNAs code for
subunits of oxidative phosphorylation (OXPHOS) com-
plexes. The rest of the peptides needed to build the electron
transport chain (ETC), as well as to maintain mitochondrial
functioning, are nuclear-encoded [2]. It has been shown that
mitochondrial function correlates with cells’ metabolic state
and can influence obesity [3].
Obesity is a severe epidemic world-wide [4]. Current

trends suggest that by the year 2030 more than 50% of
Americans will be obese [5], while morbid obesity will
affect even 10% of the UK population [6]. Type 1 dia-
betics have seen an even greater increase in obesity inci-
dence than is observed in the general population, [7],
with obesity in type 1 diabetics becoming two times
more prevalent over the last 30 years [8, 9]. Obesity in
type 1 diabetics has been associated with severe compli-
cations, especially in patients undergoing intensive ther-
apy [10]. Such a burst in obesity prevalence can, in part,
be attributed to lifestyle and to higher doses of insulin
[11], however obesity is also highly heritable. Twin stud-
ies suggest that 40–70% of variability of BMI, the most
popular measure to assess obesity, can be attributed to
genetic variation [12]. Even though large scale genome
wide association studies (GWAS) including hundreds of
thousands of individuals and millions of autosomal sin-
gle nucleotide variants have been performed, they led to
discovery of only around 100 genetic variants associated
with BMI [13–15]. Thus, a substantial part of genetic
variation that influences BMI remains to be discovered.
As with most complex traits, most of the associated vari-
ants are non-coding (making explanation of their role in
obesity even more difficult) [16].
Ultimately, obesity results from an imbalance between

energy intake and its expenditure. Since interaction and
communication between nuclear and mitochondrial ge-
nomes is indispensable for normal cell function [17, 18],
it seems reasonable to look for interactions between
SNPs in the nuclear genome and SNPs in the mitochon-
drial genome associated with obesity [19–21]. Here, we
have performed mitochondrial GWAS as well as a study
of genetic interactions between mitochondrial and nu-
clear variants which are localized to genes known to
have an influence on mitochondrial functioning, associ-
ating variants in both genomes with BMI.

Methods
Patients
Patients were recruited either in Department of Metabolic
Diseases University Hospital in Krakow or in Division of
Reproduction Department of Obstetrics, Gynecology and
Gynecological Oncology, Poznan University of Medical

Sciences. All patients enrolled to the study were young
women with type 1 diabetes (T1D) and on insulin treat-
ment, who were pregnant or were trying to conceive.
Whole blood samples were drawn and stored at − 80 °C.
This study was approved by the Bioethical Committees of
the Jagiellonian University and Poznan University of Med-
ical Sciences and performed according to the Helsinki
Declaration. Written informed consent was collected from
all patients.

Genotyping
DNA was extracted from whole blood with the use of
automated nucleic acid extraction system Maxwell (Pro-
mega). Five hundred twenty-seven samples were geno-
typed on Illumina Infinium Omni Express Exome-8 v1.4
arrays according to manufacturer’s instructions.

Quality control (QC)
Genotypes were called by GenomeStudio software Geno-
typing module (version 2.0, Illumina Inc.) according to
manufacturers’ instructions (Technical Note: Genotyping,
Infinium® Genotyping Data Analysis, www.illumina.com).
Briefly, we removed all samples with 10%GenCall score <
0.4, Call Rate < 0.95 and discordant sex information. Then,
all SNPs on chrX, chrM, chr0 were removed and hard cut
off metrics was applied. Next, we manually curated 201
variants on chrM also in Genome Studio, recalculated sta-
tistics and excluded samples with Call Rate < 0.99 (180
remained in the analysis). Remaining nuclear genotypes
for 940,911 SNPs and 513 samples were exported as cus-
tom report using plink (version 1.09) [22].
Second step of quality check was performed using

custom rscript in Rstudio (version 1.1.383) [23] with R
(version 3.4.2) [24] according to plink manufacturers’ in-
structions and KING [25]. Briefly, we removed dupli-
cates with lower Call Rate and samples with cryptic
kinship, equivalent to third-degree relatives and higher
(kinship coefficient > 0.0442). In addition, we also
checked for heterozygosity rate of autosomal SNPs and
removed variants with deviation from the Hardy-
Weinberg equilibrium (HWE) with P < 1e10–5. The last
part of QC was based on EIGENSOFT [26, 27] in order
to determine population structure in our samples based
on HapMap3 dataset [28]. Samples that failed to qualify
as European population (CEU) were removed. Finally,
476 individuals with 940,374 nuclear variants passed QC
and were included in the analysis, however, due to lack
of metadata only 435 patients were included in the final
analysis. Apart from nuclear variants, 180 mitochondrial
variants were included in the analysis.

Imputation
The QC-filtered genotype data were checked against ref-
erence panel of the Haplotype Reference Consortium
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(HRC r1.1 2016, ftp://ngs.sanger.ac.uk/production/hrc/
HRC.r1-1/HRC.r1-1.GRCh37.wgs.mac5.sites.tab.gz) with
[29] “HRC/1KG Imputation Preparation and Checking
Tool” (v.4.2.9, https://www.well.ox.ac.uk/~wrayner/tools)
to exclude strand coding issues during the imputation
step. Imputation of QC-filtered genotypes was per-
formed on Michigan Imputation Server (using Mini-
mac3) [30] with the HRC r1.1 reference panel. Phasing
was performed with ShapeIT (version 2.r790) [31]. The
Minimac3 output dosage files were then converted to
hard calls in PLINK. For further analysis imputed
MitoExome variants were chosen based on MitoCarta2.0
gene localization [32]. The phenotypic data were avail-
able for 435 patients which were included into the final
analysis.

Framingham heart study cohort
The genotype and clinical phenotype files were down-
loaded from dbGaP (project #5358; accession number
phs000007). Only the genotypes corresponding to the
SHARe substudy were used (obtained via OMNI5M
genotyping array, phg000256). In the GLMs, the follow-
ing covariates were used: age (phv00177930), gender
(phv00177929) and blood glucose level (phv00007558).
Our access was approved by the Ohio State University
IRB (Protocol #2013H0096) (see Availability of data and
materials).

GTEx
Tissue specific RNA sequencing data was acquired from
the Genotype and Tissue Expression Project (GTEx -v7)
via the website gtexportal.org. The phenotye data was
accessed via dbGaP Project #5358 (dbGaP accession
number phs000424).
RNA sequencing had been generated using poly-

adenylated priming with reads aligned to HG19, Genco-
dev12. For further details see Lonsdale et al. [33] and the
GTEx website (http://www.gtexportal.org/home/docu-
mentationPage). We considered subcutaneous adipose
and thyroid gland. Testing for eQTLs was performed via
the GTEx online search tool [34]. The GLM approach
was utilized to test the association between BMI
(phv00169070) (adjusted for age (phv00169063) and sex
(phv00169062)) and expression of selected mitochon-
drial and/or nuclear mRNAs (see Availability of data and
materials).

Generalized linear model (GLM) analysis
The linear mixed model analysis was performed using
the GENESIS package in R/Bioconductor [35]. In brief,
first the genetic relatedness matrix was estimated via the
PC-AiR and PC-Relate methods, subsequently a linear
model was built and Wald’s test was used to assign sig-
nificance. The interactions between variants was

modeled via the option ‘ivars’ in function ‘assoc-
TestMM’. All p-values reported are non-adjusted for
multiple testing.

Filtering variants likely to be involved in epistatic
interactions
For the analysis of epistatic interactions between the
mitochondrial and nuclear (whole genome) variants a fil-
tering step was performed to increase the likelihood of
detection and limit the number of hypotheses tested.
The details of our approach are presented in the Supple-
mentary Methods. Our concept is closely related to the
notion of variance QTLs [36, 37] i.e. variants which are
associated with the variability of a trait. In brief, we com-
pare the relative dispersion (conditional on the given
nuclear SNP) of the residuals in two GLMs: (1) BMI ~
covariates+mito_variant, and (2) BMI ~ covariates+mito_
variant+nuc_variant. The basic assumption is that if the
residuals of the second GLM have higher relative (condi-
tional on the nuclear SNP) dispersion that the residuals
from the first model, then the nuclear SNP is more likely
to interact with a variable (not necessarily the mitochon-
drial genotype) in the context of BMI. We test this as-
sumption (together with our filtering approach) by
means of simulation and random subsampling (from
real-life data) and will present complete results in a
forthcoming paper (results, data and code available upon
request). Below we show that this approach allows to se-
lect variants likely to interact epistaticaly with the MT-
ND2 rs28357980 variant (Table 5). At the same time, a
more extensive analysis based on the FHS genotype data
proves that our method allows to select subsets of vari-
ants which are enriched in epistatic interactions in the
context of BMI.

Results
Single SNP analysis – mitoGWAS
The cohort consisted of 435 young women with mean
age of 28.5 years. Most of them were of normal weight
and have never been pregnant before being included to
the study. Mean disease duration was 12 years, while me-
dian insulin daily dose equaled 40 IU. Anthropometric
data are presented in Table 1.
Forty-two mitochondrial variants were included in the

analysis after filtering according to alternative allele fre-
quency (Table S1a). Borderline significant nominal asso-
ciation with lower BMI was shown for 4 mitochondrial
variants. Three of them were localized to non-coding
part of mitochondrial genome – one to mitochondrial
ribosomal gene MT-RNR2 and two to MT-tRNAs (Arg,
Thr). The last one – rs28357980 was localized to MT-
ND2 gene (MitoA4917G), which is part of the complex I
of electron transport chain. The variant leads to amino
acid change from Asparagine to Aspartic acid in position
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150 of MT-ND2 protein. Results of mitoGWAS on BMI
in T1DM cohort are presented in Table 2.
An analogous analysis of 87 mitochondrial variants

(Table S1b) on 1889 subjects gathered in Framingham
Heart Study (validation cohort) was performed. For the
analysis, only the first measurement of BMI was used.
The cohort consisted of 1037 women and 852 men.
Their mean age was 34.6, half of them were normogly-
cemic. Median BMI for this cohort was 24.28 (Table 3).
Nominal associations with BMI were found for 7 vari-

ants. All nominally associated variants led to BMI de-
crease. Four of them were coding, the rest was localized
to rRNA and tRNAs.
Among coding variants, we have found the same vari-

ant rs28357980 localized to MT-ND2 gene for which an
association with BMI in T1DM cohort was found. Re-
sults of mitoGWAS on BMI in FHS cohort are presented
in Table 4.

MT-ND2 gene - nuclear genes interactions
Each of the analysis we performed (mitoGWAS in both
cohorts) directed us towards MT-ND2 gene. Since there
must be a tight communication between the mitochon-
drial and the nuclear genome in order to achieve effect-
ive energy management [38–41], we looked for the
interactions (i.e. epistasis between genetic variants in
GLMs) between the two genomes. The results are pre-
sented in Table 5.
We also performed such an analysis on FHS cohort and

found 53 nuclear variants which interact with rs28357980
(MT-ND2), several of which served as eQTLs. When
these genes were subjected to GoTerm analysis we found
an enrichment of terms associated with mitochondria
(Mitochondrion padj = 9.56e-05, Mitochondrial part
padj = 2.62e-04, Mitochondrial matrix padj = 2.52e-03).

MT-ND2 gene interactions within MitoCarta
The above results (i.e. the enrichment of genes involved
in the functioning of mitochondria among the ones
which have variants involved in epistatic interaction with
rs28357980) guided us to further explore the potential
for epistasis between the MT-ND2 variant and nuclear
SNPs located in the MitoCarta genes, which are known
to be associated with mitochondrial pathways (Table
S2a, b). Most significant interactions for MT-ND2 were
associated with TCA cycle and respiratory electron
transport, metabolism of amino acids and mitochondrial
biogenesis (Table S3). The last category can potentially
have the most crucial influence on mitochondrial func-
tioning and can have profound significance for energy
metabolism. Reactome lists 17 genes (POLRMT,
TFB1M, TFAM, MTERF, PERM1, TFB2M, ATP5B,
SSBP1, SIRT3, POLG2, PPARGC1A, CYCS, NRF1,
ALAS1, PEO1, GABPA, ESRRA) which constitute this
pathway, five of which are present in the results of our
analysis. The list of MT-ND2 variants interactions
within this pathway is presented in Table 6.
We looked closer into these interactions and found that

variant rs3021088 of MT-ND2 gene interacted with vari-
ants in TFB2M (rs6701836) and POLMRT (rs41542013)
genes, both of which are necessary for mitochondrial tran-
scription. TFB2M is a mitochondrial transcription factor
which, together with TFAM, creates transcription pro-
moter complex and enables transcription by mitochon-
drial polymerase POLRMT (Figure S1).
When looking at the interaction between TFB2M nu-

clear variant – rs6701836 and MT-ND2 mitochondrial
variant – rs3021088 we found that the combination of
the two led to BMI decrease [(nuc_eff(single model) = −
0.0660, nuc_pval(single) = 0.857, joint_eff(inter) = 0.0874,
nuc_pval(inter) = 0.0773, inter_eff = − 2.225, inter_pval =
0.0241]. Neither nuclear nor mitochondrial variant on its

Table 1 Antropometric data of T1DM cohort

Min 1st Q Median Mean 3rd Q Max

Age (years) 17 25 28 28.51 32 48

Disease duration (years) 0.50 5 12 12.07 18 36

Daily insulin dose (IU) 1 30 40 41.62 52 120

# of pregnancies 1 1 1 1.44 2 4

Before pregnancy BMI [kg/m2] 16.20 21.05 23.38 23.97 25.95 45.17

Table 2 mitoGWAS results on BMI in T1DM cohort

Probe_ID rs_number MAF Mitochondrial localization Gene βSNP SE p-value

exm-rs28358279-132_T_R_1990486714 rs28358279 10.8% 10,463 MT-TR −0.73 0.355 0.040

exm2263338-0_B_R_1978044975 rs28357980 10.3% 4917 MT-ND2 −0.69 0.362 0.056

exm2263337-0_B_R_1978044973 rs527236198 9.9% 15,928 MT-TT −0.70 0.370 0.056

exm2216232-0_T_F_1955482039 rs2897260 9.6% 1888 MT-RNR2 −0.70 0.374 0.058
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own had such an effect [p(nuc) – p = 0.8577, p(mito) –
p = 0.116].
Interaction between POLRMT variant rs41542013 and

MT-ND2 mitochondrial variant rs3021088 led to BMI
increase [nuc_eff(single model) = 0.296, nuc_pval(sin-
gle) = 0.546, nuc_eff(inter) = − 0.085, joint_pval(inter) =
0.0016, inter_eff = 4.015, inter_pval = 0.0004]. None of
these variants on its own was not associated with BMI.
Thus, we have found an example of negative inter-

action between MT-ND2 and TFB2M and positive inter-
action between MT-ND2 and POLRMT variants.

Functional significance
Next, we assessed the functional significance of these in-
teractions. Mitochondrial rs3021088 is a missense vari-
ant which leads to Alanine to Threonine substitution in
position 331 of MT-ND2 protein.
eQTL data (GTEx) for nuclear rs6701836 showed that

it influenced TFB2M expression in thyroid gland.
POLRMT variant rs41542013 in subcutaneous adipose
tissue leads to lower POLRMT expression (Fig. 1). In
GTEx data, mRNA levels of MT-ND2 and TFB2M cor-
related with higher BMI [p(nuc) = 0.0269, eff_nuc =
2.465e-01, p(mito) = 0.0244, eff_mito = 2.243e-04] in
liver tissue, however, their interaction led to decrease of
BMI [p = 0.0308, inter_eff = − 1.009e-05]. In GTEx data,
mRNA levels of MT-ND2 and POLRMT on its own cor-
related with lower BMI [p(nuc) = 0.0492, eff_nuc = −
2.386e-01, p(mito) = 0.0688, eff_mito = − 2.233e-04] in
subcutaneous adipose tissue, however, their interaction
led to increase of BMI [p = 0.0235, inter_eff = 1.023e-05].
Taken together, the interactions on the mRNA level are
in line with what was discovered in the T1DM cohort.

Validation cohort
We also used FHS as a validation cohort to confirm the
epistatic interactions between SIRT3, ATP5B, CYCS,
TFB2M or POLRMT and MT-ND2.
We were able to confirm the interactions and their in-

fluence on BMI for SIRT3 and ATP5B genes. For SIRT3
we have found an interaction between mitochondrial
variant localized to 5460 position (MAF 10.1%) and two
nuclear variants – rs11602954 (p = 0.03) and rs11606393
(p = 0.028). These variants are in LD with each other
and with previously described variants in SIRT3 (in
Table 6). For ATP5B gene we have found that mito-
chondrial variant localized to position 4769 interacted
with seven variants (rs2255074, rs1107479, rs7973157,
rs2950390, rs2958154, rs2290893, rs2035081) which
were in LD with rs2950393.
We looked closer into interactions of MT-ND2 and

TFB2M or POLRMT. For TFB2M gene, we have found
two interactions. Variant rs10924779 interacted with
MT-ND2 variant localized to 5460 position (MAF =
10.1%). Their interaction leads to BMI increase (p =
0.037), while each of these variants on their own did not
have an influence on BMI. Variant rs4654291 interacts
with the same mitochondrial variant and leads to BMI
increase (p = 0.045), while each of these on its own does
not affect BMI. For POLRMT gene we have identified an
intronic variant rs10411491 (MAF = 3%) which inter-
acted with mitochondrial variant positioned at 4647
(MAF = 4.8%). Their interaction led to BMI increase, al-
though due to low intronic variant MAF it did not reach
statistical significance.
Thus, we can conclude that interactions between

TFB2M or POLRMT and MT-ND2 gene might affect
BMI.

Table 3 Antropometric data of FHS cohort

Min 1st Q Median Mean 3rd Q Max

Age (years) 5 28 34 34.6 41 59

Blood glucose levels (mg/dL) 65 95 100 99.98 105 214

BMI [kg/m2] 13.52 21.80 24.28 24.77 27.12 50.98

Table 4 mitoGWAS results on BMI on FHS cohort

Probe_ID rs_number MAF Mitochondrial localization Gene βSNP SE p-value

MitoG3012A rs3928306 45.8% 3010 MT-RNR2 −0.241 0.113 0.033

MitoA4918G rs28357980 19.1% 4917 MT-ND2 −0.312 0.157 0.047

MitoT9900C rs41345446 3.8% 9899 MT-CO3 −0.785 0.338 0.020

MitoA11252G rs869096886 35.8% 11,251 MT-ND4 −0.241 0.123 0.051

200,610–74 rs193302994 36.1% 15,452 MT-CYB −0.242 0.123 0.049

MitoG15929A rs527236198 18.2% 15,928 MT-TT −0.396 0.163 0.015

MitoA16164G rs41479950 4.6% 16,163 MT-TP −0.689 0.310 0.027
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Whole genome MT-ND2 interactions
Next, we investigated whole genome MT-ND2 interac-
tions. All variants which entered statistically significant
interactions with MT-ND2 gene in FHS cohort and
T1DM cohort were listed (Table S4a, b). These variants
were compared to results gathered in GWAS catalog.
Among 366 nuclear variants which interacted with mito-
chondrial variant rs28357980, 5 were found in GWAS
Catalog and 2 of them met genome wide significance
threshold. Out of 1157 variants which interacted with
mitochondrial variant rs3021088, 35 were listed in
GWAS Catalog and 13 were significant at the level of
p < e10–09 (Table S4c). According to GWAS Catalog
these variants were associated, among others, with blood
metabolite levels, blood protein levels, LDL and total
cholesterol, bone mineral density, age-related hearing
impairment.

Discussion
Functioning of mitochondria have a profound effect on
whole organism. The variants within mitochondrial as
well as nuclear genomes might have an influence on the
levels of ATP produced within mitochondria. ATP de-
pletion can induce endoplasmic reticulum (ER) stress
and lead to reactive oxygen species (ROS) generation,

which later on will result in mitochondrial DNA damage
and create a vicious cycle of mitochondrial inefficacy.
Here we have looked for mitochondrial variants and
their interaction with nuclear variants which may be as-
sociated with BMI in the general population as well as in
T1DM patients.
Our mitoGWAS analyses have shown that both pro-

tein coding and non-coding variants are associated with
BMI. We have however looked closer into the former, as
they might directly influence electron transport chain
(ETC) and cells energy production. The analysis of
T1DM cohort led to discovery of a variant in MT-ND2
gene. The predictive algorithms do not suggest that
rs28357980 (G4917A) might be damaging (SIFT - 0.09,
PolyPhen – 0.06), however the variant has been shown
to be associated with multiple sclerosis [42] and colorec-
tal cancer [43]. The G4917A variant is one of the defin-
ing variants of haplogroup T, which in 2013 was shown
to be a risk factor for morbid obesity [44]. Moreover, the
variant is non-synonymous and affects the protein by
substitution of highly conserved Aspartate at amino acid
150 to an Asparagine. What is more interesting, our
analysis of the validation cohort (FHS) confirmed the as-
sociation of the same variant with BMI.
rs28357980 (G4917A) is localized to MT-ND2 gene

which is part of complex I of ETC. It is the first site of

Table 5 List of MT-ND2 interactions with nuclear variants in T1DM cohort

Probe_ID rs_number MitoMAF Nuclear SNP ID Nuclear MAF Nuclear localization p-value

exm2263338-0_B_R_1978044975 rs28357980 10% rs17380506 7.0% BRINP2 1.04e-07

rs10166792 8.0% HS1BP3 4.00e-06

rs17170333 6.9% Intergenic, nearest BMPER 2.45e-06

rs4739037 6.9% NKAIN3 1.04e-07

rs12541993 6.9% NKAIN3 1.04e-07

rs930840 6.2% LOC107986946 2.20e-06

rs4737627 6.0% Intergenic, nearest NKAIN3 8.45e-07

rs7020872 5.4% Intergenic, nearest SLC25A6P2 2.79e-07

rs10758117 17.3% Intergenic, nearest SLC25A6P2 2.51e-06

rs10970789 17.3% Intergenic, nearest SLC25A6P2 2.61e-06

rs10970792 21.1% Intergenic, nearest SLC25A6P2 3.25e-06

rs10970828 17.4% Intergenic, nearest SLC25A6P2 2.55e-06

Table 6 List of MT-ND2 interactions within mitochondrial biogenesis pathway

Probe_ID rs_number MitoMAF Nuclear SNP ID Nuclear MAF Nuclear localization p-value

exm2263338-0_B_R_1978044975 rs28357980 10.0% rs113919457 19.3% SIRT3 0.0016

rs11607019 19.3% SIRT3 0.0016

exm-rs3021088-132_B_R_1990477615 rs3021088 5.1% rs2950393 28.4% ATP5B 0.0028

rs10215217 28.9% CYCS 0.001

rs41542013 15.0% POLRMT 0.0004

rs6701836 37.0% TFB2M 0.024
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oxidative phosphorylation. Complex I is built of 46
proteins, 7 of which are mitochondrially coded (ND1,
ND2, ND3, ND4, ND4L, ND5, ND6) and form very
hydrophobic subunits within mitochondrial mem-
brane. Disruptive mutations in ND subunits are com-
monly found as somatic mutations in tumors, but are
not found as germline mutations associated with hu-
man diseases, due to their lethality [45]. Previous
studies have already associated variants in these genes
with obesity. A paper from 2014 has shown, apart
from associations with two other positions, an associ-
ation between three variants in complex I genes –
MT-ND1, MT-ND2 and MT-ND4L [46]. Moreover,
the variant C5178A in MT-ND2 gene was shown to
lead to lower incidence of autoimmune diabetes. The
A allele was protective against both autoimmune and
alloxan-induced free radical–mediated diabetes in
mice, possibly by suppressing ROS production at the
β-cell level [47–49]. Apart from metabolic disorders,
mutations in genes of complex I of ETC were shown
to be associated with childhood acute lymphoblastic
leukemia or were shown to be a poor prognostic fac-
tor in oral cancer [50].
Since several GWAS data show that a substantial part

of genetic variability of obesity is still unknown one
might suspect that it is hidden in more complex associa-
tions, meaning genetic interactions. It is known that
mitochondrial functioning is a result of anterograde and
retrograde signaling between mitochondrial and nuclear
genomes. Most of the studies performed by now, did not
analyze point mitochondrial variants, but conplastic ani-
mals in which nucleus from one organism was fused
with cytoplasts of the other. Such experiments have
shown that introduction of exogenous mitochondria (in

which mitochondrial genome differed from the original
by one or few nucleotides) influenced organismal pheno-
type. For example, conplastic rats where shown to have
impaired glucose tolerance, while mice were more resist-
ant to experimental autoimmune encephalomyelitis [51],
had disrupted activity of the components of TCA cycle
[52] or altered mitochondrial and cellular adaptation
during aging [53]. Moreover, the mutation in MT-ND2
gene (C4738A) in mouse fibroblasts led to significantly
higher mitochondrial complex I activity, enhanced ATP
production, reduced ROS production with similar MT-
ND2 protein expression levels [54]. A lot of studies have
shown that even a point mutation in mitochondrial gen-
ome which was introduced onto another nuclear back-
ground led to severe mitochondrial dysfunction. A point
mutation in ATP8 gene (7778 G/T) in C57BL/6 N-
mtFVB/N mice led to lower insulin secretion in isolated
islets after glucose stimulation when compared with
C57BL/6 N-mtAKR/J mice. It also had reduced mitochon-
drial function in brain, spleen and liver [55] as well as
showed a 3-fold higher generation of mitochondrial ROS
production compared to C57BL/6 N-mtAKR/J mice [56].
However, since mitochondrial genome mutates faster

than nuclear (for example due to ROS proximity) the in-
compatibility between the two genomes might occur
during organismal lifetime. What is more, these interac-
tions can also be influenced by the environment.
Thus, we have looked into epistatic interactions of

MT-ND2 variants. We therefore checked the potential
for interactions of MT-ND2 variant located in position
4917 in T1DM cohort. Our whole genome analysis has
shown that it possibly interacts with 12 variants, most of
which might influence energy metabolism or processes
that have been shown to be associated with obesity. One

Fig. 1 Downregulating effect of rs6701836 on expression of TFB2M gene in thyroid and rs41542013 on POLRMT expression in subcutaneous
adipose tissue
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variant was located in HS1BP3 gene. HS1BP3 is known
to be localized to mitochondria, be involved in autoph-
agy by inhibiting phospholipase D and its overexpression
leads to apoptosis [57–59]. We also found four variants,
in LD with each other, located either within or next to
NKAIN3 gene, which turned out to be eQTLs for GGH
gene. Gamma glutamyl-hydrolase is an enzyme involved
in folate metabolism, while lower folates levels were as-
sociated with reduced insulin sensitivity and obesity
[60–62]. Moreover, we identified 5 intergenic variants
located near SLC25A6P2 gene, which is a mitochondrial
transporter family [63–65]. The analysis of rs28357980
(MT-ND2) interactions in FHS also pointed us toward
analysis of nuclear mitochondrial genes.
The Reactome analysis done on MitoCarta genes has

shown an enrichment of interactions that are associated
with mitochondrial biogenesis. Our data show that
POLRMT and TFB2M variants interact with variants in
MT-ND2 and affect BMI. POLRMT and TFB2M are
genes that act in concert to perform mitochondrial tran-
scription and replication thus variation within their se-
quence, and simultaneously in the mitochondrial DNA
sequence, can have an influence on mitochondrial and
gene copy number as well as influence efficacy of the
two processes [66–68]. Since it is very difficult to assess
the significance of such interactions we also looked into
all interactions of MT-ND2 variants and checked
whether nuclear variants which interacted with mito-
chondrial MT-ND2 gene were listed as significant in any
GWAS study performed until today, as we believed this
would strengthen our findings. Our analysis has con-
firmed that some of the nuclear variants were signifi-
cantly associated with traits which are part of obesity
phenotype, e.g. cholesterol level, blood metabolites level
or with diseases which are known to be influenced by
mitochondrial deficiencies e.g. hearing loss.

Conclusions
In conclusion, here we find that rs28357980 localized to
MT-ND2 gene of mitochondrial genome is associated
with BMI both in T1DM and in general cohort. What is
more, we show that genetic epistasis might influence
obesity phenotype by interaction of variants in MT-ND2
gene with nuclear variants in genes responsible for mito-
chondrial replication and transcription.
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