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Abstract 

Background:  Understanding gene regulation is important but difficult. Elucidating tissue-specific gene regulation 
mechanism is even more challenging and requires gene co-expression network assembled from protein–protein 
interaction, transcription factor and gene binding, and post-transcriptional regulation (e.g., miRNA targeting) informa-
tion. The miRNA binding affinity could therefore be changed by SNP(s) located at the 3′ untranslated regions (3′UTR) 
of the target messenger RNA (mRNA) which miRNA(s) interacts with. Genome-wide association study (GWAS) has 
reported significant numbers of loci hosting SNPs associated with many traits. The goal of this study is to pinpoint 
GWAS functional variants located in 3′UTRs and elucidate if the genes harboring these variants along with their tar-
geting miRNAs are associated with genetic traits relevant to certain tissues.

Methods:  By applying MIGWAS, CoCoNet, ANNOVAR, and DAVID bioinformatics software and utilizing the gene 
expression database (e.g. GTEx data) to study GWAS summary statistics for 43 traits from 28 GWAS studies, we have 
identified a list of miRNAs and targeted genes harboring 3′UTR variants, which could contribute to trait-relevant tissue 
over miRNA-target gene network.

Results:  Our result demonstrated that strong association between traits and tissues exists, and in particular, the 
Primary Biliary Cirrhosis (PBC) trait has the most significant p-value for all 180 tissues among all 43 traits used for this 
study. We reported SNPs located in 3′UTR regions of genes (SFMBT2, ZC3HAV1, and UGT3A1) targeted by miRNAs for 
PBC trait and its tissue association network. After employing Gene Ontology (GO) analysis for PBC trait, we have also 
identified a very important miRNA targeted gene over miRNA-target gene network, PFKL, which encodes the liver 
subunit of an enzyme.

Conclusions:  The non-coding variants identified from GWAS studies are casually assumed to be not critical to trans-
lated protein product. However, 3′ untranslated regions (3′UTRs) of genes harbor variants can often change the bind-
ing affinity of targeting miRNAs playing important roles in protein translation degree. Our study has shown that GWAS 
variants could play important roles on miRNA-target gene networks by contributing the association between traits 

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​
mmons​.org/publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  yongshengbaicool@gmail.com
7 Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, 
USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-9944-5426
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-020-00830-w&domain=pdf


Page 2 of 13Li et al. BMC Med Genomics 2020, 13(Suppl 11):191

Background
A microRNA (miRNA), a noncoding RNA which con-
tains about 22 nucleotides, plays a significant role on 
the regulation of gene expression. By binding to the 3′ 
untranslated regions (3′UTR) of the target messenger 
RNA (mRNA), which transfers the genetic informa-
tion from DNA to the ribosome for protein synthesis 
in RNA polymerase, miRNA suppresses the transla-
tion of the targeting mRNA and/or can activate gene 
expression under certain conditions [1]. Due to those 
features and miRNA’s ability to control cell growth and 
differentiation, people believe that there is an associa-
tion between miRNA’s deficiency or excess and human 
diseases [2].

Single nucleotide polymorphism or SNP is a change 
or mutation at a single position in a DNA sequence. 
The development of human diseases is also affected 
by SNP(s) on the basis of the observation that SNPs 
can cause synonymous and non-synonymous changes 
which affects amino acid sequence or protein func-
tion [3]. However, 3′ untranslated regions (3′UTR) of 
genes often contain variants which can change binding 
affinity of targeting miRNAs so that gene expression 
and protein translation will be affected. It’s important 
to pinpoint functional important variants in 3′UTRs 
and elucidate if the genes harboring these variants 
along with their targeting miRNAs are associated with 
genetic traits.

In many cancers, the gene PTEN is known to be regu-
lated by miRNAs through competing endogenous RNA 
networks [4, 5]. Such miRNAs can also have other tar-
geted genes containing SNPs that could contribute 
to cancers and/or human diseases by changing DNA 
sequences or influencing gene expression.

Genome-wide association studies (GWAS) has iden-
tified and analyzed millions of genetic risk variants 
which trigger the development of complex diseases [6], 
and it has reported significant numbers of loci hosting 
SNPs associated with many traits as well [7]. The dis-
ease causativeness annotation for non-coding variants 
(e.g. 3′UTR variants) identified from GWAS studies 
and clarification of their effects on miRNAs binding are 
challenging. MIGWAS (miRNA–target gene networks 
enrichment on GWAS) is an analytic pipeline to quan-
titatively evaluate tissue enrichment and elucidate com-
plex biology of the genetic traits over miRNA-target 
gene networks which provide resources for the genetics 

of human complex traits, and thus contributes to a 
deeper understanding of miRNA’s influence on human 
diseases as well as drug discovery [7, 8].

Composite likelihood-based Covariance regression 
Network model (CoConet) is a network method for iden-
tification of trait-relevant tissues or cell types by incor-
porating tissue-specific gene co-expression networks [9]. 
CoCoNet further understands data from GWAS by dem-
onstrating gene co-expression sub-networks which helps 
predict gene-level association effect sizes on and GWAS 
traits and diseases. Moreover, CoConet infers trait-rele-
vant tissue based on tissue-specific gene co-expression 
patterns and proves that tissue-specific gene networks 
underlie disease etiology [9].

ANNOVAR [10] is an efficient software tool to utilize 
update-to-date information to annotate genetic variants 
based on their functional influence. SNPs reported from 
large scale association studies and sequencing projects 
can be annotated by ANNOVAR which can be utilized 
to report functional score and identify variants based on 
SNPs’ functional influence on genes [10].

The goal of our study is to identify causative SNPs 
which could change the binding affinity of miRNAs and 
genes, which could contribute to trait-tissue relevance 
over miRNA-target gene network.

Methods
We obtained summary statistics in the form of mar-
ginal z-scores for 43 traits from 28 GWAS studies [11]. 
These studies collect a wide range of complex traits and 
diseases that can be classified into six phenotype catego-
ries [12, 13]: anthropometric traits (e.g. height and BMI), 
hematological traits (e.g. MCHC and RBC), autoimmune 
diseases (e.g. CD and IBD), neurological diseases (e.g. 
Alzheimer’s disease and Schizophrenia), metabolic traits 
(e.g. FG and HDL), and social traits (e.g. ever smoked 
and college completion). We removed SNPs within the 
major histocompatibility complex (MHC) region (Chr6: 
25–34 Mb) following [14]. We then intersected the SNPs 
from all the studies and retained a common set of 622,026 
SNPs for analysis. We paired the marginal z-scores from 
these studies with the SNP correlation matrix estimated 
using 503 individuals of European ancestry from the 1000 
Genomes Project [15] for inference.

We employed MIGWAS [7], CoCoNet [9], and ANNO-
VAR [10] software packages to infer trait-relevant tissues 
based on next-generation sequencing omics data (e.g. 

and tissues. Our analysis expands our knowledge on trait-relevant tissue network and paves way for future human 
disease studies.
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GTEx data [16]) and annotated the variants obtained 
from GWAS and harbored by miRNAs targeted genes 
associated with traits. We also conducted functional 
analysis on miRNA targeted genes harboring 3′UTR 
variants with significant tissue-trait association using 
annotation tool DAVID [17, 18] for the Primary Biliary 
Cirrhosis (PBC) trait (Fig. 1).

Results
Data acquisition
We obtained 43 traits from various published resources 
and classified them into six different categories with 
the total number of samples 3 × 106 (Table 1). Details of 
the information for the summary statistics of 43 traits 

from 29 GWAS studies are provided in Additional file 1: 
Table  S1. The table lists the phenotype name, category, 
abbreviation, number of individuals, reference, and 
downloaded websites for each of the 43 traits.

MIGWAS Results
We applied MIGWAS to 43 traits (total sam-
ples = 3,035,223) and identified biologically relevant tis-
sues. In particular, we identified that 94 out of 180 tissues 
have significant (p-value < 0.01) association  with at least 
two traits and that 11 traits have significant association 
with more than 10 tissues (Fig. 2).

We calculated p-value association between traits and 
all tissues using MIGWAS for 43 GWAS. Interestingly, it 

Fig. 1  Workflow of elucidating variants and miRNAs contributed to tissue-trait association
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reported that PBC trait has the most significant p-value 
for all tissues (Fig. 3). A detailed association result from 
MIGWAS is shown in Additional file 2: Table S2.

We have identified total 332 miRNAs as candidate bio-
markers of all traits. The miRNA distribution statistics 
for all reported traits by MIGWAS is shown in Fig.  4. 
We found that there are no miRNAs identified through 

Table 1  Total 43 traits and number of samples adopted in the study

Italic traits gave significant (p-value < 0.01) results identified by MIGWAS

Phenotype Study category Abbreviation # of Samples

Birth length Anthropometric BL 28,459

Birth weight Anthropometric BW 26,836

Bone density in the femoral neck Anthropometric FNBMD 32,961

Bone density in the lumbar spine Anthropometric LSBMD 31,800

Childhood obesity Anthropometric Child_Obes 13,848

Childhood body mass index Anthropometric Child_BMI 35,668

Height Anthropometric Height 253,288

Pubertal growth Anthropometric PG 13,960

Hemoglobin levels Hematological HB 61,155

Mean corpuscular hemoglobin concentration Hematological MCHC 56,475

Mean cell hemoglobin Hematological MCH 51,711

Mean red cell volume Hematological MCV 58,114

Mean platelet volume Hematological MPV 29,755

Packed cell volume Hematological PCV 53,089

Platelet count Hematological PLT 68,102

Red blood cell count Hematological RBC 53,661

Crohn’s disease Immune CD 20,883

Inflammatory bowel disease Immune IBD 34,652

Primary biliary cirrhosis Immune PBC 13,239

Rheumatoid arthritis Immune RA 37,681

Systemic lupus erythematosus Immune Lupus 14,267

Ulcerative colitis Immune UC 27,432

Age at menarche Metobolic Menarche 182,416

Coronary artery disease Metobolic CAD 77,210

Fasting glucose Metobolic FG 46,186

High-density lipoproteins Metobolic HDL 97,749

Heart rate Metobolic HR 181,171

Low-density lipoproteins Metobolic LDL 93,354

Total cholesterol Metobolic TC 100,184

Triglycerides Metobolic TG 94,461

Type 1 diabetes Metobolic T1D 26,890

Type 2 diabetes Metobolic T2D 60,786

Alzheimer’s disease Neurological Alzheimer 54,162

Autism Neurological Autism 10,263

Attention deficit-hyperactivity disorder Neurological ADD 5422

Bipolar disorder/Schizophrenia Neurological BIPSCZ 39,202

Bipolar disorder Neurological BIP 16,731

Depressive symptoms Neurological DS 161,460

Schizophrenia Neurological SCZ 70,100

College completion Social College 126,559

Ever smoked Social EverSmoked 74,053

Neuroticism Social Neuroticism 170,911

Years of education Social YE 328,917
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Fig. 2  Association between tissues and traits identified by MIGWAS for 43 GWAS
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MIGWAS overlapping across significant tissue-traits. We 
divided 31 traits into two groups that the significant trait 
group has 15 traits and the non-significant trait group has 

16 traits. If the p-value of the trait is less than 0.01 in at 
least one tissue, it is considered as a significant trait. The 
non-significant trait Height has 60 miRNAs which is the 

Fig. 3  Association between traits with all tissues identified by MIGWAS for 43 GWAS
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most among all 31 traits. A list of detailed gene-miRNA 
pairs reported for all traits is shown in Additional file 3: 
Table S3.

CoCoNet output
We took candidate target genes identified by MIG-
WAS to retrieve Gene Level Effective Size of each gene 
(Ensemble gene ID) for the PBC trait. We used CoCoNet 
to calculate the association between traits and tissues in 
terms of log likelihood (Fig. 5).

ANNOVAR annotation
We examined the PBC trait showing the smallest associa-
tion p-value reported by MIGWAS to see if there are any 
SNPs located in 3′UTR regions of genes targeted by miR-
NAs. To do so, we took the SNP list for the PBC trait and 
converted them to ANNOVAR variant annotated input 
format with ANNOVAR package. We obtained 9,890 
annotated variants (5279 genes) exclusively located in 
3′UTR region of these genes (Additional file 4: Table S4).

We crossed the 55 genes reported by MIGWAS with 
5279 genes annotated by ANNOVAR and obtained 13 

genes in common. The detailed information about these 
13 genes is shown in Table 2.

PTEN associated variant analysis
Since PBC is a liver-related trait, we searched the TCGA 
LIHC dataset [19] and checked anti-correlated pairs for 
PTEN targeted miRNA: hsa-mir-590. We then used hsa-
mir-590 to identify its targeted genes in the anti-corre-
lated pair list and obtained 22 additional target genes. 
We then identified SNPs using UCSC Genome Browser 
for ten genes including PTEN with ClinVar variant infor-
mation and reported the result in a new Additional file 5: 
Table S5.

Functional analysis
Gene Ontology (GO) analysis on 55 miRNA targeted 
genes harboring 3′UTR variants with significant tis-
sue-trait association for PBC trait only showed that 
PFKL is located in a set of genes with term Acetylation 
(p-value < 0.05). This gene encodes the liver (L) subunit 
of an enzyme that catalyzes the conversion of d-fructose 
6-phosphate to d -fructose 1,6-bisphosphate, which is a 
key step in glucose metabolism (glycolysis) [20].

a b

Fig. 4  The miRNA count distribution for all reported traits by MIGWAS (a includes significant traits whose p-value are less than 0.01 in at least one 
tissue, while b includes non-significant traits
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Fig. 5  Likelihood values between PBC trait and tissues (red ones have greater loglikelihood based on − 4536.7474 (the log(likelihood) for PBC))
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Table 2  Annotation information for 13 genes shared by MIGWAS and ANNOVAR

Chr Start End Ref Alt Func.refGene Gene.refGene Targeting.MiRNA

chr5 35,952,140 35,952,140 C T UTR3 UGT3A1 hsa-mir-1207

chr5 35,953,169 35,953,169 G A UTR3 UGT3A1 hsa-mir-1207

chr5 35,953,320 35,953,320 C T UTR3 UGT3A1 hsa-mir-1207

chr5 35,954,143 35,954,143 C T UTR3 UGT3A1 hsa-mir-1207

chr1 23,755,513 23,755,513 T C UTR3 ASAP3 hsa-mir-1207

chr1 23,755,716 23,755,716 T C UTR3 ASAP3 hsa-mir-1207

chr1 23,756,155 23,756,155 T C UTR3 ASAP3 hsa-mir-1207

chr12 42,475,888 42,475,888 G A UTR3 GXYLT1 hsa-mir-1205

chr12 42,476,613 42,476,613 A C UTR3 GXYLT1 hsa-mir-1205

chr12 42,478,556 42,478,556 A C UTR3 GXYLT1 hsa-mir-1205

chr12 42,479,450 42,479,450 A G UTR3 GXYLT1 hsa-mir-1205

chr12 42,481,545 42,481,545 T C UTR3 GXYLT1 hsa-mir-1205

chr21 34,730,954 34,730,954 G A UTR3 IFNAR1 hsa-mir-1976

chr3 119,243,549 119,243,549 G A UTR3 CD80 hsa-mir-16-2

chr3 119,243,934 119,243,934 G A UTR3 CD80 hsa-mir-16-2

chr3 119,244,421 119,244,421 A C UTR3 CD80 hsa-mir-16-2

chr22 39,778,167 39,778,167 A G UTR3 SYNGR1 hsa-mir-4728

chr22 39,778,327 39,778,327 T C UTR3 SYNGR1 hsa-mir-4728

chr22 39,778,419 39,778,419 T C UTR3 SYNGR1 hsa-mir-4728

chr22 39,780,961 39,780,961 C T UTR3 SYNGR1 hsa-mir-4728

chr22 20,796,175 20,796,175 T C UTR3 KLHL22 hsa-mir-1207

chr11 111,223,111 111,223,111 A G UTR3 POU2AF1 hsa-mir-4728

chr10 7,202,028 7,202,028 C T UTR3 SFMBT2 hsa-mir-1207

chr10 7,202,931 7,202,931 C T UTR3 SFMBT2 hsa-mir-1207

chr20 1,545,468 1,545,468 T C UTR3 SIRPB1 hsa-mir-1207

chr20 1,545,617 1,545,617 T C UTR3 SIRPB1 hsa-mir-1207

chr20 1,609,952 1,609,952 C T UTR3 SIRPG hsa-mir-1207

chr20 1,610,201 1,610,201 C T UTR3 SIRPG hsa-mir-1207

chr7 138,729,795 138,729,795 A C UTR3 ZC3HAV1 hsa-mir-1206

chr7 138,730,025 138,730,025 T C UTR3 ZC3HAV1 hsa-mir-1206

chr7 138,730,361 138,730,361 T C UTR3 ZC3HAV1 hsa-mir-1206

chr7 138,731,398 138,731,398 T C UTR3 ZC3HAV1 hsa-mir-1206

chr7 138,732,107 138,732,107 C T UTR3 ZC3HAV1 hsa-mir-1206

chr19 37,674,259 37,674,259 G A UTR3 ZNF585B hsa-mir-1237

Table 3  Genes and GO terms in the top cluster for 55 genes identified by DAVID

Genes Term Category p-value

PFKL, ZC3HAV1, PKN1, SYNGR1, STAT6, LRP1, CDKN2A, CLIC4, MAPT, KLHL22, MYH14, UBLCP1, 
CARM1, TNFAIP3, ARHGDIB, PRPF40A

Acetylation UP_KEYWORDS 0.02307187

PFKL, ZC3HAV1, KIF17, DTX3, PKN1, ASAP3, CASC3, RALGDS, STAT6, LRP1, CDKN2A, CLIC4, 
MAPT, KLHL22, SPIB, CARM1, TNFAIP3, KIF21B, ARHGDIB

Cytoplasm UP_KEYWORDS 0.05299595

PFKL, KIF17, PKN1, CASC3, RALGDS, STAT6, CDKN2A, RASGRF1, CLIC4, MAPT, MYH14, CARM1, 
TNFAIP3, ARHGDIB

GO:0005829~cytosol GOTERM_CC_DIRECT 0.15378123

PFKL, ZC3HAV1, RRP7A, DTX3, PKN1, ASAP3, STAT6, LRP1, CDKN2A, CLIC4, MAPT, KLHL22, SPIB, 
CARM1, TNFAIP3, KIF21B, ARHGDIB, PRPF40A

GO:0005737~cytoplasm GOTERM_CC_DIRECT 0.33828457



Page 10 of 13Li et al. BMC Med Genomics 2020, 13(Suppl 11):191

The list of genes and their GO terms identified as the 
top cluster by DAVID is shown in Table 3.

We have also conducted a GO analysis for 22 genes tar-
geted by hsa-mir-590 with target relationship of PTEN. 
Some enrichment analysis results are reported in Table 4. 
The detailed DAVID results are reported in Additional 
file 6: Table S6 and Additional file 7: Table S7.

Discussions
In our study, we used several cutting-edge bioinformat-
ics tools (MIGWAS, CoCoNet and ANNOVAR) to dis-
secting SNPs reported for 43 traits from GWAS. The 
MIGWAS reported miRNA enrichment over target 
gene network for most (31) of traits. The CoCoNet was 
adopted to analyze the PBC trait for its significant tis-
sue association over gene co-expression network. The 
ANNOVAR tool was employed to annotate 3′UTR vari-
ants class harbored by a list of miRNA target genes asso-
ciated with Primary Biliary Cirrhosis (PBC) traits.

Although it may seem like the tools are interrelated 
and are three separate experiments, they are indeed con-
nected. We first applied the tool  MIGWAS to 43 traits 
and identified significant biologically relevant tissues. 
When the p-value association between traits and all tis-
sues  were calculated by using MIGWAS for 43 GWAS, 
we found that the PBC trait had the most significant 
p-value for all tissues. The CoCoNet experiment then uti-
lized some of the results produced by MIGWAS to pro-
vide an output. Specifically, for the retrieved PBC trait 
result from the MIGWAS experiment, we used CoCoNet 
to analyze the tissues association over gene co-expression 
network. Again, we used the PBC trait result reported by 
MIGWAS in another tool: ANNOVAR. We analyzed the 
PBC trait for SNPs in 3′UTR regions by converting the 
SNP list into ANNOVAR variant annotated input, and 
we retrieved 5279 genes located in 3′UTR regions. We 
then crossed the 55 genes from MIGWAS with the 5279 
genes from ANNOVAR and found 13 genes in common. 
The experiments might seem unrelated, but the results 
from MIGWAS analyzed by both CoCoNet and ANNO-
VAR shows that the 3 tools are indeed connected and are 
not interrelated.

In a previous study, the research found a strong asso-
ciation between PBC and rs231725 [21]. rs231725 is a 
SNP in the 3′ flanking region of CTLA4, a gene which has 
an impact on the risk of PBC [21]. Indeed, PTEN is asso-
ciated with 9 traits (Crohn’s disease [22], Inflammatory 
bowel disease [23], Rheumatoid arthritis [24], Systemic 
lupus erythematosus [25], Ulcerative colitis [23], Coro-
nary artery disease [26], Type 2 diabetes [27], Alzheimer’s 
disease [28], Autism [29]) out of our analyzed 43 traits.

Total 12 traits (Alzheimer’s disease, Coronary artery 
disease, Crohn’s disease, Ever Smoked, Fasting glucose, 
High density lipoproteins, Inflammatory bowel disease, 
Low density lipoproteins, Schizophrenia, Type 1 diabe-
tes, Triglycerides, Ulcerative colitis) do not have MIG-
WAS association results reported in the analysis. It seems 
that liver tissue does not appear to have the smallest 
likelihood with PBC based on the total genes in human 
genome. We also ran CoCoNet with the targeted gene 
set of miRNAs enriched over the target network for PBC 
trait only to calculate loglikelihood, and the result stays 
the same.

The transcript expression of PFKL has the highest 
RPKM (Reads Per Kilobase of transcript, per Million 
mapped reads) in kidney samples in the RNA-seq which 
was performed from 4 human individuals in order to 
determine tissue-specificity of all protein-coding genes 
[30].

PFKL contains a transcript variant ATP-dependent 
6-phosphofructokinase, liver type isoform a which rep-
resents the longer transcript and encodes the shorter 
isoform (a). The CD-Search shows the protein classifica-
tion of this transcript variant, which is Eukaryotic_PFK 
domain-containing protein, and finds a specific hit, 
Eukaryotic_PFK, which shows a high confidence associa-
tion between the query sequence and a domain model. 
Phosphofructokinase (PFK) is a key regulatory enzyme 
that that phosphorylates fructose 6-phosphate in glycoly-
sis. It belongs to the PFK family, evolving from the bacte-
rial PFKs by gene duplication and fusion events and then 
exhibiting complex behavior. PFK family also includes 
ATP-dependent phosphofructokinases (allosteric homo-
tetramers) and pyrophosphate (PPi)-dependent phos-
phofructokinases (mostly dimeric and nonallosteric 

Table 4  Genes and GO terms targeted by hsa-mir-590 with target relationship of PTEN 

Genes Term Category p-value

RNF180, CYP2U1, ARIH1, AGBL5, ZHX1, BMPR2, NR3C1, RHOU, RNF32, FOXP1, 
PGGT1B

Metal-binding UP_KEYWORDS 0.001554879

RNF180, ARIH1, AGBL5, ZHX1, NR3C1, RNF32, FOXP1, PGGT1B Zinc UP_KEYWORDS 0.006809626

CSNK1A1, IRAK1, ARIH1, POMGNT1, FLT1, BMPR2, UBE2W, PGGT1B Transferase UP_KEYWORDS 0.00109919

CSNK1A1, RHOJ, IRAK1, FLT1, BMPR2, UBE2W, RHOU Nucleotide-binding UP_KEYWORDS 0.007386586
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homotetramers). In addition, protein sequences of 
Opisthokonta are in the multiple sequence alignment in 
the Eukaryotic_PFK [30].

We found 13 genes, UGT3A, SYNGR, ASAP3, CD80, 
GXYLT1, IFNAR, KLHL22, POU2AF1, SFMBT2, SIRPB1, 
SIRPG, ZC3HAV1 and ZNF585B which are in common 
in the gene list applied from MIGWAS and ANNOVAR.

ASAP3 encodes a member of a subfamily of ADP-ribo-
sylation factor(Arf ) GTPase-activating proteins that its 
expression level affects cell proliferation and migration, 
and it called up-related in liver cancer 1 [31]. DDEFL1 
(cloned ASAP3) is unregulated in hepatocellular carci-
noma (HCC) through microarray analysis. The studies 
[32] showed that DDEFL1 had increased expression and 
had overexpression which increased colony formation in 
NIH3T3 cells and human hepatoma cell lines [32].

In the transcript expression of UGT3A1, liver samples 
have the second highest RPKM among 27 different tis-
sues [33].

SFMBT2 are polycomb group proteins that bind to 
methylated lysins in histone tails. The formation of tran-
scription-resistant higher-order chromatin structures at 
target genes are induced by it so that this gene can repress 
transcription [34]. SFMBT2 was cloned and designated 
as KIAA1617 by Nagase et al. [35], who obtained clones 
from fetal brain cDNA library and then sequenced them 
[35]. Kuzmin et al. [36] reported that SFMBT2 interacted 
with the YY1 (600013) transcription when SFMBT2 was 
expressed from the paternal allele in mouse blastocysts 
and in mouse embryonic tissues early in development, 
and later during mouse embryonic development [36].

ZC3HAV1 encodes a zinc finger protein that can pre-
vent replication certain viruses and inhibit viral gene 
expression by targeting and eliminating viral mRNAs in 
the cytoplasm [37]. Yu et  al. [38] identified ZC3HAV1 
and called it ZAP in their analysis of gene expressed in 
human fetal liver [38]. Northern blot analysis of rat Zap 
that was cloned by Gao et  al. [39] showed that mRNA 
was highly expressed in kidney and liver [39].

Conclusions
Our study tried to understand GWAS data through iden-
tifying candidate miRNA-gene pairs over miRNA-target 
gene network. Using several cutting-edge bioinformati-
cal tools and databases and adopting visualization, we 
assessed trait-tissue relevance based on tissue-specific 
gene co-expression information including protein–pro-
tein interaction and transcription factor binding evi-
dence. We annotated 3′UTR variants harbored by genes 
targeted by miRNAs expressed in tissues significantly 
associated with PBC trait. Our study provides evidence 
that the association between tissues and traits could be 
affected by the 3′UTR variants of genes which change 

binding affinity of targeting miRNAs. The analysis 
emphasizes the influence of variants on genetic traits and 
miRNA-targeting gene networks, and thus could contrib-
ute to additional studies and detections on human dis-
eases. We think our study provided a valuable approach 
for elucidating 3′UTR variants which could contribute 
to genetic traits with tissue relevance in the context of 
miRNA influential human diseases.
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