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Abstract 

Microbial infection and cancer are two leading causes of global mortality. Discovering and developing new therapeu-
tics with better specificity having minimal side-effects and no drug resistance are of an immense need. In this regard, 
cationic antimicrobial peptides (AMP) with dual antimicrobial and anticancer activities are the ultimate choice. For 
better efficacy and improved stability, the AMPs available for treatment still required to be modified. There are several 
strategies in which AMPs can be enhanced through, for instance, nano-carrier application with high selectivity and 
specificity enables researchers to estimate the rate of drug delivery to a particular tissue. In this review we present the 
biology and modes of action of AMPs for both anticancer and antimicrobial activities as well as some modification 
strategies to improve the efficacy and selectivity of these AMPs.
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Introduction
AMPs, also considered as host defense present in almost 
any living being from bacteria to plants and more com-
plex ones such as vertebrates and invertebrates [1]. These 
hydrophobic amphipathic peptides are usually 10 to 
50 residues long and demonstrate a net positive charge 
ranging from + 2 to + 13 [1, 2]. As a key component of 
innate immune system, they play a crucial role against 
resistant pathogenic organisms, making them a potential 
candidate for future antibiotic classes [3, 4]. Furthermore, 
these peptides have also proved to function as anticancer 
agents (ACP/Anticancer peptides) [5] with higher selec-
tivity resulting in less side-effects than contemporary 
chemotherapeutics. Therefore, these peptides are novel 
candidates -for cancer therapy due to low toxicity (less 
side-effect), short time-frame of interaction (decreasing 
resistance probability), higher specificity, adequate solu-
bility as well as tumor penetration [6, 7]. Although there 
are millions of natural and synthetic peptides known to 
us, but only a few of them have undergone clinical trials, 
mainly because of various challenges of these peptides 

as pharmaceutical drugs, for instance,their high synthe-
sis cost is significantly problematic [7]. In this review we 
are focusing on these challenges and some modification 
strategies to improve these AMPs.

What are the AMPs?
AMPs are cationic, amphipathic host defense peptides 
with a short length of 10 to 50 residues [8]. AMP genes 
have remained unchanged throughout natural selection 
and practically all living creatures from single-celled bac-
teria to those with multicellular organisms like plants, 
invertebrates and vertebrates beings tend to generate 
them. While AMPs in bacteria have the role of destroy-
ing other bacteria threatening their ecological niche, in 
more complex creatures, they are a crucial part of natural 
immunity and lead to defending the host against patho-
gens [9]. There are two groups of AMPs existing in bac-
teria functioning as bacteriocins: non-lantibiotics and 
lantibiotics. In 1947, the first bacterial lantibiotic AMP 
nisin was isolated from Lactococcus lactis [10]. AMPs 
affect not only a wide range of bacteria but also fungi, 
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viruses and unicellular protozoa [11]. Many plants also 
contain AMP encoding genes leading to production of 
AMPs full of cysteine and disulfide bonds and ultimately 
use them as their main defense mechanism against 
microbial infections [12]. Thionins [13], plant defensins 
[14] and cyclotides are the best known examples of 
plant AMPs [15] which usually accumulate in leaves, 
flowers, seeds and tubers [16]. Just like plants, all inver-
tebrates studied up-to-date do not benefit from an adap-
tive immune system and thus have to fully rely on innate 
immune system as their mechanism of defense [17]. A 
wide variety of AMPs have been found in vertebrates. For 
instance, the neutrophil granules in mammals contain 
AMPs and they are also secreted by epithelial cells. Up 
to date, over 500 AMPs have been found in amphibian 
skin glands [16]. Cathelicidin and defensins are two of the 
most significant AMPs in vertebrates [18].

Types of AMPs
AMPs are classified based on their characteristics such as 
structure, sequence or mechanism of action like killing 
bacteria, immune modulation, preventing biofilm forma-
tion, and anti-cancer or anti-viral function [1].

AMPs classified by their secondary structures com-
prise α-helix, β sheet and extended/ random coil pep-
tides [19, 20]. In aqueous solution, usually α-helix 
AMPs are unstructured, however, they show the amphi-
pathic helical formation as they come in contact with 

trifluoroethanol, detergents/surfactants above critical 
micellar concentration such as sodium dodecyl sulfate 
(SDS) micelles and liposomes [21]. The two best known 
members of this category are (i) LL-37 [20] produced in 
neutrophils and epithelial cells as an inactive precursor 
in the 18  kDa human cathelicidin antimicrobial protein 
(hCAP18) [22], and (ii) human lactoferricin which can 
be found in milk and exocrine secretions and is derived 
by proteolytic cleavage of the antimicrobial and immu-
nomodulatory iron binding glycoprotein lactoferrin [23]. 
To improve the anti-microbial activity in helix peptides, 
C-terminus amidation must be applied (Tables  1). This 
method also stabilizes the peptide localization at the 
cell’s surface by increasing the electrostatic interaction 
between the cationic AMPs and the bacterial anionic 
membrane [24].

Furthermore, one specific feature observed in all 
β-sheet peptides is being cysteine rich and full of disulfide 
bonds. These bonds increase the peptides stability as well 
as diminishing the effect of proteolytic enzymes on the 
peptide [25]. Β-sheet AMPs tend to keep a quite stable 
structure in both aqueous condition and membrane envi-
ronment [26]. The well-known defensins comprise a large 
portion in this group and are produced by neutrophils, 
macrophages plus epithelial cells as inactive precursors 
[20, 22].

Ultimately, there are not many AMPs in nature to fol-
low the extended/random coil formation. These AMPs 

Table 1  Types of AMPs based on structure

Category Peptides Sequence feature Source References

α Helical peptides Aurein 1-2
Mellitin
Brevinin 1
Maculatins
Citropin
Buforin II
Cathelicidins:
-LL-37
-BMAP27,28,34
-Magainins
Cecropins

Amidated C-terminus
Amidated C-terminus
–
Amidated C-terminus
Amidated C-terminus
–
Amidated C-terminus
–
–
Amidated C-terminus

Frogs
Bees
Frogs
Frogs
Frogs
Toad
Humans
Bovine
Frogs
Insect

[29]
[30]
[31]
[32]
[33]
[34]
[35]

β-sheet peptides Cathelicidins:
-Protegrins
-Bactenecin
Defensins:
-α-defensins
-β-defensins
-θ-defensins
Tachyplesins
Polyphemusin

Cysteine rich
Disulfide forming loop/arginine rich
Three disulfide bonds
Three disulfide bonds
Three disulfide bonds
Cysteine/arginine rich
Amidated C-terminus

Pigs
Bovine
Mammals
Mammals
Gorilla
Horse crab
Horse crab

[35]
[36]
[37]
[38]

Extended/
flexible

Cathelicidins:
-PR-39
-Tritrpticin
-Indolicidin
-Crotalicidin
Histatines

Proline and arginine rich
Tryptophan and arginine rich
Tryptophan and amidated C-terminus
Lysine rich
Histidine rich and amidated C-terminus

Pigs
Pigs
Bovine
Snakes
Humans

[35]
[39]
[40]
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have no secondary structure and are usually full of argi-
nine, proline, tryptophan and/or histidine residues [19, 
27]. Indolicidin is one of the best examples of this class, 
isolated from bovine neutrophils, with only 13 amino 
acid residues containing mainly tryptophan [28].

Biochemical properties of AMPs
There are a number of principal features that are the 
same in nearly all kinds of AMPs regardless of their diver-
sity in sources, structure and sequence. The first com-
mon key feature is hydrophobicity or the percentage of 
hydrophobic residues such as valine, leucine, isoleucine, 

Table 2  AMPs as therapeutic agents

Peptide Phase Application Sources Route of administration References

Iseganan III Oral mucositis in patients receiving radio-
therapy for head and neck malignancy

Ptotegrin-1 (pigs) Oral solution [71, 72]

TD-1792 III Gram positive infections/ skin and soft 
tissue infections

Synthetic peptide Topical [73]

CZEN-002 IIb Vaginal candidiasis αMSH (human) Vaginal gel [73]

NP-432 Pre-clinical Methicillin-resistant Staphylococcus aureus 
(MRSA) / P. aeruginosa C. difficile infections

Synthetic peptide Intravenous [73]

lytixar I/II Uncomplicated gram-positive skin infec-
tions, impetigo, nasal colonization with 
S. aureus

Synthetic antimicrobial 
peptidomimetics

Topical hydrogel [74]

C16G2 II Dental caries synthetic Topical [73]

Omiganan II/III Catheter infection and rosacea Indolicidine (bovine) Topical gel [75]

TD-6424 III Osteomyelitis Bacterial infection Synthetic peptide Intravenous [73]

PXL01 II Prevention of post-surgical adhesion 
formation in hand surgery

Lactoferricin (human) Hyaluronic acid based- hydrogel for 
administration at the surgical site

[2]

hLF1-11 I/II Bacteremia and mycosis in immuno-
compromized haematopoetic stem cell 
transplant recipients

Lactoferricin (human) Intravenous treatment [75]

Novexatin II Onychomycosis Defensins (human Topical brush-on treatment [75]

LL-37 I/II Hard-to-heal venous leg ulcers LL-37 (human) Solution for administration in the wound 
bed

[75]

PAC-113 II Oral candidiasis in HIV seropositive 
patients

Histatin3 (human saliva) Mouth rinse [75]

Table 3  Therapeutic peptides and their uses in cancer therapy

Peptide Source Mechanism References

Lactoferricin B Bovine Apoptosis [93]

SALF Shrimp Apoptosis [94]

KLA repeat AMP [(KLAKLAK)2] Synthetic Apoptosis [95]

Pardaxin Fish Apoptosis [96]

Tat-bim Fusion of Tat and Bim peptides Apoptosis [97]

Poropeptide-Bax Bax Apoptosis [98]

R8-Bax Fusion of poropeptide-Bax with argenine Induced cell death [98]

CT20-NP Derived from Bax Interruption the membrane integrity [99]

RRM-MV Synthetic peptide cytotoxic to different cancerous cell lines [100]

TIP Derived from p53 Inhibition of p53-MDM2 interaction [101]

PNC-27 Synthetic peptide necrosis [102]

Kahalalide F Marine-derived peptide necrosis [103]

Polybia- MPI Natural ACP Induction of necrosis in various leukemia cells [104–106]

ABT-510 De novo design Inhibition of tumor angiogenesis [107, 108]

HNP-1 Human Inhibition of angiogenesis [104, 109]
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alanine, methionine, phenylalanine, tyrosine and trypto-
phan in AMP sequence (typically 50%). Hydrophobicity 
is one of the essential factors that a cell membrane needs 
for its permeabilization. However, excessive hydropho-
bicity causes toxicity and loss of anti-microbial selectiv-
ity in mammalian cells [40, 41]. Furthermore, Chen et al. 
examined the effect of hydrophobicity of V13KL, a syn-
thetic α-helical AMP, on hemolysis of human red blood 
cells (RBCs) and found that for a good anti-microbial 
performance,optimum hydrophobicity is required and 
any sequence with higher or lesser than that ideal level is 
likely to inactivate the peptide [41].

Amphipathicity is the next common property among 
AMPs and can be defined as the relative abundance of 
hydrophilic and hydrophobic residues or domains within 
the AMPs. In other words, it is the balance between the 
cationic and hydrophobic residues, in both the AMPs 
primary sequence and 2D/3D structure. Among all 
AMPs conformations, α-helix can show amphipathic-
ity. It consists of peptides forming two faces of polar and 
non-polar which are actually hydrophobic and hydro-
philic side chain of the residues [42].

Lastly, all AMPs show a net positive charge from + 2 
to + 13 and might have a specific cationic domain. Lysine, 
arginine and sometimes histidine residues are said to be 
the reason for the AMPs cationic nature [43, 44]. It has 
been determined that an increase of charge from + 3 
to + 5 in magainin 2 would enhance its antimicrobial 
effect against both gram-positive and negative bacteria. 
Meanwhile, an increase from + 3 to + 6 or + 7 results 
in more hemolysis as well as decreasing antimicrobial 
activity [44]. This last consequence is due to the power-
ful interaction between the peptide and the phospholipid 
head group that is likely to stop the peptide to enter the 
membrane [42].

Antimicrobial activities of AMPs
Over the past few years, global public health has faced the 
emergence of multidrug-resistant microorganisms due to 
excessive use of antibiotics. This has created an urgent 
need for novel antibiotics to enter the clinical phases. In 
this regard, since the discovery of the magainins, the first 
AMPs discovered from the skin of the African clawed 
frog Xenopus laevis by Zasloff et al., AMPs have become 
a potentially favorable future therapeutic candidate [45]. 
They are an important part of natural defense and immu-
nity system to perform various effective mechanisms and 
thus kill the pathogens [46]. Cell membrane disruption, 
protein and DNA synthesis inhibition, suppressing vital 
cellular processes such as folding of proteins, synthesis of 
cell wall and metabolic turnover are a number of antimi-
crobial activities shown by AMPs [47].

Mechanism of action:
In order to use AMPs for therapeutic purposes, 
we firstly need to know their mechanism of action 
(MOA). Earlier, it was assumed that the only func-
tion of AMPs is to disrupt the cell membrane result-
ing into cell death. However, today based on available 
evidences we know AMPs demonstrate a wide variety 
of mechanisms for microbial elimination [48]. Regard-
less of their structure, primary sequence or positive 
net charge, all of them have the ability to identify the 
microbial target. There are generally two classes for 
AMPs mechanism of action: (1) Direct killing, and (2) 
immune modulation [49].

Direct killing: membrane permeabilizing mechanism 
of action
There are basically two ways by which AMPs can target 
the cell membrane and disrupt it: (A) receptor-mediated 
(B) non-receptor mediated. Many of the bacterial AMPs 
such as nisin use the receptor-mediated way and these 
bacteriocins are active in  vitro in the nanomolar range 
[50]. However, most AMPs produced by vertebrates and 
invertebrates tend to affect the cell membrane by manip-
ulating its components and do not have any interaction 
with the receptors. These latter AMPs are typically active 
in vitro at micromolar levels [51].

Actually the outer cell envelope structure as the cyto-
plasmic membrane is the same in both gram-positive 
and gram-negative bacteria [52]. A thick peptidoglycan 
layer covers gram-positive bacteria, while gram negative 
bacteria have a thin peptidoglycan layer in addition to 
an extra outer membrane [2]. The reason why positively 
charged AMPs significantly attract bacterial membranes 
is due to membrane head groups with negative charge 
such as phospholipids, phosphtidylglycerol, cardiolipin, 
and phosphatidylserine. Moreover, the teichoic acid 
and LPS in gram-positive cell wall and gram-negative 
outer membrane respectively create an extra electron-
egativity to the bacterial surface [22, 53]. On the other 
hand, mammalian cell membrane is neutral in terms of 
net charge as it is filled with the zwitterionic phospho-
lipid, phosphatydylethanolamine, phosphatydylcholine 
and sphingomyelin [53]. Moreover, there is asymmet-
ric distribution of phospholipids in the mammalian cell 
membranes where zwitterionic phospholipids are local-
ized in the outer leaflet and the negatively charged head 
groups, if available, in the cytoplasmic leaflet [22]., This 
is the reason why the interaction between mammalian 
cell membrane and AMPs is hydrophobic and undoubt-
edly weaker compared with AMP-bacterial membrane 
electrostatic interaction. Furthermore, mammalian cell 
membranes consist of cholesterol [2], which is supposed 
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to stabilize the phospholipid bilayer and thus diminishing 
the AMPs activity [45]. It is also noteworthy to mention 
that bacterial negative transmembrane potential (-130 
and -150  mV) is noticeably more than in mammalian 
cells (− 90 to − 110 mV) [54], influencing AMPs selectiv-
ity and, therefore, results in AMPs targeting on bacterial 
cells over the mammalian ones [42] (Fig. 1).

There are a number of pore and non-pore formation 
mechanisms by which AMPs at optimum concentra-
tion are able to permeabilize the cytoplasmic membrane 
[52]. One considered model that is categorized under the 
transmembrane pore group is called ‘Barrel-Stave model’. 
In this model, AMPs are firstly placed alongside with the 
membrane and then enter into it vertically [55] (Fig. 2), 
building lateral peptide-peptide interactions, like mem-
brane protein ion channels. The peptide amphipathicity 
plays a key role in creation of the pore as the hydropho-
bic region of the peptide align with the lipid region and 
hydrophilic region of the peptide contribute to the for-
mation of the pore interior [21]. Not too many AMPs but 
some of them such as alamethicin [56], pardaxin [57] and 
protegrins [21] show this model for the killing of mam-
malian and bacterial cells.

Another explained model is known as ‘Toroidal pore 
model’ in which AMPs vertically enter into the lipid 
membrane but there is no peptide-peptide interaction 
formed [56]. However, the transient toroidal pores in this 

model are structured partially by both peptides and phos-
pholipid head group (Fig. 2). The deeper AMP molecules 
are induced into the cytoplasmic membrane, the more 
lipid head groups are replaced and taken to the lipid tail 
area leading to the creation of toroidal pores, lipid dis-
order and change in membrane curvature [58]. As it is 
evident, the organization of hydrophobic and hydro-
philic residues in bilayer membrane is manipulated and 
disrupted in toroidal model, while in barrel-stave model 
these arrangements remain same. Magainin 2 [26], lac-
ticin Q [26], aurein 2.2 [59] and melittin [26, 56] demon-
strated toroidal pores. Eventually, whether it is the AMPs 
forming barrel-stave or toroidal pore model, it all depo-
larizes the membrane and ultimately causes cell death.

On the other hand, some AMPs disrupt the cell mem-
brane through ‘carpet mechanism’ which is also called as 
‘detergent model’. In this model, an influential and critical 
concentration of AMPs must be adsorbed parallel to the 
lipid membrane and fully cover the cell surface forming 
the ‘carpet’ (Fig.  2). This creates a detergent-like model 
which eventually results in micelle formation and thus 
the membrane is disrupted leading to cell death. In this 
process, unlike the pore models, no peptide insertion 
into the membrane, peptide-peptide interaction and any 
particular peptide structures are formed [42]. Cecropin 
[60], indolicidin [61], aurein 1.2 [62], and LL-37 [51] are 
some of the AMPs to follow this mode of action. There 

Fig. 1  Interaction of cationic AMPs with the eukaryotic and bacterial membranes
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are also other models of AMP action mechanism such 
as Shai-Huang-Matsazuki model, the interfacial activity 
model and the electroporation model [26].

Not all AMPs target cell membrane disruption to kill 
the cell; some of them target other parts, including the 
cell wall or intracellular targets, in bacteria (Fig.  3). In 

Fig. 2  Mechanism of AMPs action on membrane permeabilization

Fig. 3  Non membrane targeting mechanism of action of AMPs
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order for AMPs to kill the cell by affecting intracellu-
lar components, they initially have to interact with the 
cytoplasmic membrane to pass through. AMPs with this 
approach usually tend to influence vital processes such as 
inhibiting the synthesis of proteins/DNA and inhibiting 
the protein/enzymatic activities [21]. Buforin II, a histone 
derived AMP found in frogs, is the example of an AMP 
that passes through E-coli membrane causing no damage 
to it, and ultimately binds to the bacterial DNA and RNA 
[1]. Human α defensin 5 also exerts its antimicrobial 
effects by entering E-coli and accumulating at the cell’s 
opposite poles and division plate. Indolicidin [1], human 
β-defensin 4 [63], human α-defensin 1 and PR-39 [1] are 
some other AMPs to destroy the cell by attacking intra-
cellular targets.

Immune modulation mechanism of action
Interestingly, some AMPs activate and employ immune 
cells, leading to an improved response for microbial kill-
ing and/or inflammation control [64]. Hence, AMPs 
present in neutrophils and macrophages are essen-
tial components of innate immune system as the first 
line of defense against pathogens [16]. When an infec-
tion occurs, immune responses are generated to attract 
immune cells at the infection site and inflammation is 
controlled. Activation, attraction, and differentiation 
of white blood cells, stimulation of angiogenesis and 
reactive oxygen/nitrogen species are different kinds 
of immune responses generated by AMPs [65]. Addi-
tionally, exaggerated and damaging pro-inflammatory 
responses like sepsis are avoided by other immunomodu-
latory activities of AMPs such as suppression of toll-like 
receptors (TLR) and/or cytokine-mediated production of 
inflammatory cytokines and anti-endotoxin activity [66]. 
LL-37 and β defensins are human chemoattractive AMPs 
to command mast cells [67], leukocytes [68] and den-
dritic cells to the infection site [69]. Furthermore, there 
are synthetic versions of AMPs available called as innate 
defense regulators (IDR) that play a role in suppress-
ing pro-inflammatory cytokines when mice are infected 
(IDR-1 and IDR-1018) [70]. Mice severely infected by 
malaria were given anti-malaria drugs plus IDR-1018. 
A significant reduction occurred in the neural inflam-
mation that would normally cause death in the infected 
mice, suggesting that IDR-1018 is indirectly responsible 
for this inflammation control. Moreover, there is also 
proof showing that AMPs not only participate in innate 
immune system but also affect adaptive immune system, 
the T and B cells, although it is yet to fully be examined 
and understood [64]. There are number of models indi-
cating the AMPs immunomodulatory mechanism in 
mammalian cells [22]: ‘Alternate ligand model’ suggests 
that AMPs directly bind to the particular cell membrane 

receptors for downstream signaling cascades. Mean-
while, in ‘membrane disruption model’, the AMPs indi-
rectly affect the receptor activation by altering a specific 
site of membrane that contains the receptor. In another 
model called ‘transactivation’, a membrane-bound factor 
is released because of the AMPs effect, which could bind 
to its receptor afterwards. Finally, AMPs are also able 
to prevent inflammation by collecting and clearing the 
endotoxin LPS, which normally binds to the TLR4 caus-
ing inflammation [22].

Anticancer activities
Cancer is a leading cause of death worldwide. It arises 
from the transformation of normal cells into tumor cells 
that grow beyond their usual boundaries, turning into 
tumor masses. They possess angiogenesis enabling it to 
spread and invade other parts of the body (metastasis) 
[76]. Lung cancer is the most common while colorectal 
cancer is the second one followed by prostate and breasts 
cancers [7]. In case of cancer treatment, doctors often 
recommend chemotherapy which is an aggressive form 
of chemical drug therapy meant to destroy rapidly grow-
ing cells [77]. However, there are several unfavorable side 
effects of chemotherapy such as multiple drug resistance 
[78] and the lack of drug selectivity [78, 79]. Therefore, 
currently, antineoplastic agents of higher selectivity with 
lesser side effects are in great demand [80, 81]. Thera-
peutic peptides are acknowledged as a new potential and 
favorable option for cancer therapy [82]. Boohaker et al. 
[83] classified therapeutic anticancer peptides into three 
general groups- (A) anti-microbial/pore-forming pep-
tides that are naturally produced by all living creatures, 
also known as anticancer peptides or ACP, (B) cell-per-
meable peptides and (C) tumor targeting peptides [84]. 
Therapeutic peptides have many significant advantages 
such as their small size, high activity, specificity and affin-
ity, least drug-drug interaction, ability to pass through 
the membrane and no sign of AMP accumulation in vital 
organs like kidney and liver decreasing the toxic side 
effects (Table 2) [82]. Moreover, being easily synthesized 
and modified [83] as well as being less immunogenic than 
recombinant antibodies and proteins are other beneficial 
features of AMPs [85].

Mechanism of ACP action:
There are practically two mechanisms by which ACPs 
affect the membrane and cause cell death: necrosis and 
apoptosis.

A normal cell holds 3–9% phosphatidyl serine (PS) 
of the total amount of phospholipids in its inner-leaflet 
making it neutral [86]. Cancer cell membranes typi-
cally have a high negative net charge as they hold PS in 
their outer leaflet [87]. Moreover, heparin sulfates and 
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O-glycosylated mucins on the tumor cells surface [88], 
highly negative potential of the cell, elevated membrane 
fluidity and surface area [89], altogether create a great 
electrostatic interaction between anionic membrane 
and the cationic ACPs [90]. It has been proved that in 
the membranes of cancer cells, as in leukemia and lung 
cancer, there is lesser content of cholesterol [91]. Con-
sequently, the membrane fluidity is increased and it 
becomes destabilized, enhancing the lytic activity of 
ACPs such as cecropins [92]. However, the role of choles-
terol in activating ACPs is still uncertain. Finally, cancer 
cells tend to have a greater surface area than normal cells 
as they transform and possess a lot of microvilli. This 
allows for an increased number of ACPs to bind to the 
cancer cells. After being attached to these cells, AMPs 
tend to destroy them through necrosis or apoptosis [6]. 
Overall, changes in the cancerous cell membrane con-
tents and morphology are cancer biomarkers to be iden-
tified by ACPs (Table 3).

Induction of tumor apoptosis
There are two pathways in which a cell dies through: 
apoptosis and necrosis. Apoptosis is a highly regulated 
process of programmed cell death for the elimination of 
unwanted cells, helping the cell population remain stable 
in tissues [110]. Furthermore, cells undergoing develop-
ment or cellular stress might be damaged beyond repair 
and here,too, apoptosis plays a vital role [111, 112]. If 
apoptosis is for some reason stopped or prevented, it can 
lead to uncontrolled cell division and subsequently devel-
opment of a tumor, metastasis and resistance to cancer 
therapeutics [113].

There are mainly two pathways for apoptosis initia-
tion: intrinsic and extrinsic. Intrinsic pathway is under 
control of Bcl-2 family protein members (e.g., Bcl-2 and 
Bcl-XL) (promoting cell survival) and pro-apoptotic pro-
teins (e.g., Bax and Bak) (promoting cell death) [114] and 
[115]. When a cell is stressed, apoptotic signals are gener-
ated meaning that the cell is infected or the DNA is being 
damaged. Throughout these signals, BH3-only proteins 
activate pro-apoptotic proteins, namely Bak and Bax 
which are in charge of cell death either by directly binding 
to them or by inhibiting anti-apoptotic proteins such as 
Bcl2 and Bcl-XL which indirectly results in Bak and Bax 
activation. This eventually leads to the formation of pores 
in mitochondrial outer membrane [116] and cytochrome 
c is then released into the cytosol. Cytochrome c sub-
sequently activates apoptotic protease-activating fac-
tor-1(APAG-1) and procaspase-9 by binding to them 
and as a result apoptosome is created [117]. Finally, the 
apoptosome influences and activates caspase-9 which 
itself activates procaspase-3 and -7 leading to apoptosis 
[118] (Fig. 4). Overexpression of anti-apoptotic proteins 

interrupts apoptosis [113] and thus onset of cancers such 
as prostate, neuroblastoma, kidney, breast cancer, acute 
lymphoblastic leukemia, chronic lymphoblastic leukemia 
and non-Hodgkin’s lymphomas happens. Generally, it is 
such a good idea to examine and target apoptosis path-
ways for effective use of therapeutics in premalignant and 
malignant cells [119].

Target tumor suppressor proteins
While p53 level in normal and healthy cells is low due to 
its rapid degradation by ubiquitin-dependent proteoly-
sis [120]but it increases in damaged cells [121], leading 
to apoptosis. However, the activity of p53 is inhibited in 
many cancers through overexpression of MDM2, which 
acts as p53 repressor protein that binds to p53 and lim-
its this transcription factor and is able to cause its quick 
degradation. In order to stop the rapid degradation of 
p53 by obstructing the interaction between MDM2 and 
p53, several peptides were designed from p53 amino acid 
sequence [122]. Bottger et al. separated TIP peptide from 
the N-terminal MDM2- binding domain region of p53 
blocks p53-MDM2 interaction, results in increased levels 
of p53 in addition to its activation as a transcription fac-
tor [101].

Induction of tumor necrosis
Necrosis is another form of cell death caused by exter-
nal factors. Many accidental (physical or chemical injury) 
or pathological conditions lead to unregulated digestion 
of cell components. Chromatin flocculation, swelling, 
degeneration of the cytoplasm and the mitochondrial 
matrix, cellular blebs, spilling of the cytoplasmic con-
tents into the extracellular space occur in necrosis [123]. 
Necrosis inducing peptides are considered to be an 
exceptionally novel class of anticancer agents since these 
peptides have the ability to disrupt the membrane by 
their lytic activity, have better selectivity than traditional 
chemotherapeutic drugs in addition to preventing multi-
drug resistance [124].

Inhibition of tumor angiogenesis
Angiogenesis is one of the fundamental steps in tran-
sition of a benign to malignant tumor. It is a process 
through which new blood vessels are formed from pre-
existing ones. Although it is a normal and essential pro-
cess in a healthy body, in cancer it provides vital nutrients 
and oxygen for the tumor as well as carrying away its 
wastes [125]. Tumor angiogenesis occurs under the influ-
ence of fibroblast growth factor (FGF), epidermal growth 
factor (EGF), vascular endothelial growth factor (VEGF), 
placental growth factor (PLGF),tumor necrosis factor-
alpha (TNFa), platelet-derived growth factor (PDGF) 
and angiogenin (Ang) [126, 127]. However, today many 
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peptides are known to have anti-angiogenesis and anti-
tumor effects by blocking the interaction between growth 
factor and its receptor on the cancerous cells.

Immunomodulatory function
Malignant tumors tend to produce cytokines and growth 
factors affecting a wide range of cells like endothelial 
cells, inflammatory immune cells and fibroblasts. These 
tumor controlled cells and the molecules of extracellular 
matrix together are considered as the tumor microenvi-
ronment [128] where antitumor immunity and tumor-
originated pro-inflammatory activity are finely balanced 
and disadvantaging the antitumor immunity [129]. There 

are a number of bioactive peptides that have been proved 
to be effective in treatment of cancer by modulating the 
immune responses (Fig. 5) [130].

AMPs as therapeutic agents; challenges 
and improvements
Challenges
Although the advantages of utilizing AMPs are widely 
proved due to their antimicrobial and anticancer effects, 
only a few of them are going through clinical trials and 
developments [131]. Evidently, scientists are facing sev-
eral technical, regulatory, and commercial challenges 
including AMP’s susceptibility to proteolysis, their 

Fig. 4  Therapeutic peptides and their roles in apoptosis
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poor pharmacokinetic (PK) properties and high cost of 
production.

There are a number of ways available to improve 
AMPs’ PK features. Firstly, AMPs stability could be 
enhanced by employing D-enantiomers [132]. Further-
more, cyclization of AMPs by joining the backbone N- 
and C-terminals or by disulfide bridges similar to human 
defensins [133] improves their serum stability and takes 
place. End-tagging by hydrophobic oligo amino acid 
stretches [134], and blocking or exerting changes on 
the N-or C-terminals of AMPs including N-acetylation, 
N-pyroglutamate or C-amidation are other approaches 
for increasing the AMPs resistance against proteolytic 
enzymes [135]. Another approach is PEGylation or the 
addition of polyethylene glycol (PEG) to AMPs [136, 137] 
resulting in lesser host toxicity [138]. In fact, PEGylation 
aids improving AMPs PK properties [139] by increas-
ing AMPs hydrophilicity. Thus PEG plays the role of a 
protective shield for AMPs protease digestion, extends 
their circulation time as well as decreasing of glomeru-
lar filtration rate [140, 141]. Tachyplesin I, magainin 2 
[142] and nisin undergone PEGylation being benefited 

with the mentioned features [143].Targeted delivery of 
the peptide to a cancer cell is enabled through a strat-
egy called as liposomal delivery in which the lysosome is 
tagged by a cancer cell-specific ligand [144]. On the other 
hand AMPs could also be designed as a component of 
nanoparticles that would help enhance their PK proper-
ties but this is yet to be fully examined [145]. Moreover, 
the amino acid substitution may improve the therapeu-
tic function of peptides. For example, the EGFR lytic-
peptide potentially leaves cytotoxic effects on various 
groups of cancer cells which are resistant to anti-EGFR 
antibodies and EGFR tyrosine kinase inhibitors (TKIs) 
[146]. In order to enhance the anticancer activity of this 
peptide, arginine could substitute for the second histidine 
in EGFR lytic-peptide, leading to create a new bioactive 
form known as EGFR(2R)-lytic with better binding affin-
ity for sticking to the EGFR of cancer cells and stronger 
anticancer activity than the unmodified version [147].

Overall, therapeutic peptides have low metabolic sta-
bility, the main reason why they are less likely to be 
applied in clinical trials. In case of oral administration, 
there is the possibility of proteolytic digestion of AMPs 

Fig. 5  Immunomodulatory mechanism of action of AMPs



Page 12 of 18Parchebafi et al. Microbial Cell Factories          (2022) 21:118 

by trypsin and pepsin present in the digestive system 
[1]. On the other hand, systemic administration of the 
AMPs, turned out the possibility of AMP degradation 
by proteolytic enzymes, dropping off the AMPs half-
lives while organs like liver and kidneys quickly eliminate 
them from the circulatory system [148]. Hence, local 
application of AMPs seems to be the best and most logi-
cal choice, although there is a still the possibility of AMPs 
being decomposed by tissue proteases. Applying dermal 
creams and emollients to the skin, wounds or surgery 
site plus nasal spray for mucosal delivery are some of the 
examples of AMPs local applications.

Another challenge involved with AMPs is the signifi-
cant overpricing of synthesis and development of these 
peptides. Solid phase peptide synthesis with 50 amino 
acid residues at most [2] is an available and frequently 
used chemical method for the synthesis of these thera-
peutic peptides [149]. Other production methods of 
recombinant peptides by using bacteria, yeast, insect and 
mammalian cells proved to be efficient and cost effective.

Strategies to improve AMPs
AMPs isolated directly from natural sources are not 
adequately well-rounded for therapeutics. However, they 
have the potential to gain better efficacy, safety and sta-
bility after undergoing a number of strategies like recom-
binant technology, innovative formulation and design 
of drug delivery systems. Unfortunately, these crucial 
fields have received the least attention. For example, in 
formulation strategy, therapeutic peptides with minus 
side effects and an improved efficacy are resulted as this 
method provides the possibility to target the delivery of 
AMPs to a particular tissue while the drug release over 
time is also controlled [150].

Recombinant technology
Chemical synthesis of peptides is a complex and costly 
process with little output in the end [151], while genetic 
engineering is more of an efficient method which pro-
duces AMPs [151] in a larger scale by using various 
microorganisms including bacteria and yeasts as host 
cells [152]. For example, Pichia pastoris is a methy-
lotrophic yeast commonly exploited for recombinant 
productions [153]. P. pastoris is responsive to high cell 
density fermentations and only requires an inexpensive 
medium to quickly grow in [154]. It is a non-pathogenic 
microorganism able to directly secret useful proteins 
and peptides into the culture medium [155]. The fowli-
cidin-2 is a recombinant peptide produced by P. pastoris 
X-33 with the expression vector pPICZa-A, displaying 
a wide range of antimicrobial, hemolytic and antican-
cer activities [156]. However these recombinant AMPs 
are susceptible to yeast and bacterial proteases plus that 

exerting adequate post translational modifications on 
them, such as disulfide bond, is generally impossible 
[157]. Furthermore, plants are also considered as a good 
alternative candidate for AMPs production [158]. Since 
they are able to finely do the glycosylation, folding and 
disulfide bond formation in recombinant AMPs neces-
sary for their biological activities [159]. The leaves in 
plants such as lettuce, alfalfa, clover and tobacco, more 
specifically, are appropriate platforms for lasting expres-
sion of recombinant proteins [160]. LF chimera is a pep-
tide with a wide spectrum of antimicrobial activity which 
is originally made of the combination of another two 
anti-microbial peptides, namely lactoferricin (17–30) and 
lactoferrampin (265–284) connected at their C-termini. 
Interestingly, LF chimera has a shorter incubation time 
and demonstrates its antimicrobial activity in a lower 
required concentration than the two peptides it is made 
of [161]. LF chimera is an example of a recombinant pep-
tide that can be produced by tobacco when its sequence 
is placed in the plant and fused with endoplasmic retic-
ulum retention signals along with CaMV 35S promoter 
and then transferred by agrobacterium-mediated trans-
formation [162]. The bacterial recombinant system used 
for heterologous protein expression was Escherichia 
coli BL21 (DE3). JAMF1, a recombinant AMP produced 
in bacterial systems. This peptide consists of Human 
α-defensin 5, Secretory phospholipase A2 (sPLA2)  and 
gelsolin (an actin-binding protein). The efficacy of 
JAMF1 has been proved against both gram-negative 
and gram-positive bacteria like E. coli DH5α, extended-
spectrum beta-lactam-resistant Enterococcus spp. (SHV-
12 & CTX-M-14),), carbapenem-resistant  Klebsiella 
pneumoniae  (KPC) and quinolone-resistant  K. pneumo-
niae (qnrA) [163].

Nanobiotechnology
Nanotechnology is one of the strategies through which 
AMPs become significantly more efficient and their unfa-
vorable natural or synthetic features are amended [164]. 
The main role in this method is played by nanocarriers. 
a suitable choice for drug delivery process. It enables for-
mulation design for specific tissue delivery, controlled 
release of the drug over time due to controlled carrier 
degradation while the metabolic and chemical stability 
of the AMPs is quite maintained [165, 166]. The nano-
carriers are usually made of biocompatible and biode-
gradable materials such as lipids (e.g., phospholipids, 
triglycerides, cholesterol and monoolein) and polymers 
(e.g., Cellulose, chitisan, hyaloronicacid, polylactic-
co- glycolicacid (PLGA) and polylacticacid (PLA). Hya-
luronicacid nanogels exemplify one of the successful 
nanocarriers for LL-37 analog LLKKK18, improving the 
AMPs anti-microbial activity against mycobacteria both 
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in  vivo and in  vitro [167]. The mentioned nanocarrier 
not only increases the peptides resistance for proteases 
but also eliminates the toxicity against the host cell [167]. 
Moreover, liquid crystalline lipid nanoparticles and lipid 
nanocapsules have also shown to be a potent candidate 
for carrying some AMPs possessing various biophysi-
cal features. The AMPs characteristics like efficacy and 
antimicrobial functions were enhanced when carried by 
these nanoparticles [168]. Overall, although nanoformu-
lations as delivery system for AMPs have been examined 
on laboratory animals, there is a promising approach for 
this method to be brought at clinical level.

Mechanism of actions of nanocarriers  Nanocarriers can 
transport their containing substance toward the target in 
two principal ways: passive and active targeting. In pas-
sive targeting or non-directive delivery, there is no sur-
face modification but the nanocarrier’s size and shape is 
controlled [169]. In active targeting or directed delivery, 
the nanocarrier’s surface is decorated by ligands binding 
to tumor cell receptors and this increases the nanocarrier 
affinity for cancer cells, thus enhances the quantity of the 
drug delivered to a specific tissue. Comparing both sys-
tems, it is evident that the former delivery system usually 
has fewer agents and consequently is easier to be prepared 
as compared with the later one. However, as the active tar-
geting is facilitated with ligands, it creates a better inter-
action with the drug delivery system and the targeted site 
[170].

Conjugation with  gold nanoparticles   HP (2–20) is a 
peptide with 19 amino acids that has great antimicro-
bial activity against bacteria, fungi, and protozoa with 
no sign of hemolysis and is separated from the N-termi-
nus of Helicobacter pylori ribosomal protein L1 (RpL1). 
On the other hand, HPA3P is a peptide taken from HP 
(2–20) that has undergone several amino acid substitu-
tions [171]. A new delivery system that is being consid-
ered these days is by taking advantage of gold nanopar-
ticle-DNA aptamer (AuNP-Apt) conjugate [172] which 
has shown little toxicity and no immunogenicity, so far 
[173]. It has been proved that conjugating AMPs with 
gold as the nanocarrier makes the drug delivery process 
much more effective in mice [174]. In the study, there 
were two groups of mice infected with Vibrio vulnin-
ficus, a gram-negative, highly virulent bacterium that 
causes gastroenteritis, primary sepsis, and wound infec-
tion in humans. The result showed that mice in control 
group had died of infection while mice treated with 
AuNP-AptHis-HPA3PHis had survived. Furthermore, it 
was clear that treating the mice with HPA3PHis alone, 
also resulted in their death. These outcomes suggest 
that conjugation of HPA3PHis to the gold nanoparticle, 

AuNP-AptHis, is significantly beneficial. As it improves 
the peptides stability against proteolytic enzymes, 
makes the delivery process efficient and no host toxicity. 
Furthermore, it is a simple system to work with since 
AuNP-AptHis conjugates can stick to any kind of AMP 
which had been previously tagged with His. Besides, a 
single administration is effective enough as these gold 
particles provide a long-lasting efficacy. Nevertheless, 
more preclinical research has to be done to confirm the 
safety of this specific method and to determine whether 
it is an economically affordable process to step up for a 
large-scale production [172].

Challenges and  limitations of  AMPs and  Nanotechnol-
ogy  Till date, although plenty of AMPs (> 3000) have 
been discovered and characterized, almost all of them 
have disappointed scientists who hoped to use them for 
human medication purposes. However, there are still 
a few AMPs that have successfully passed clinical trials 
and received FDA approval to enter the market, namely 
gramicidin D, daptomycin, vancomycin, oritavancin, dal-
bavancin, and telavancin [175, 176].

It is interesting how there is no synthetic AMP 
approved by FDA [177]. Production of therapeutic pep-
tides is expensive enough and using nanocarriers for drug 
delivery system would add extra cost on to it. Possibility 
of the peptides being exposed to natural solvent through 
the process of preparing nanodelivery systems is another 
potential challenge. Furthermore, the drugs are likely to 
interact with the wall of nanocarriers leading to incom-
plete release and poor bioavailability of the drugs [178].

Conclusion
Infectious diseases and cancers are the two health chal-
lenges globally. Demonstrating different mechanisms 
of action, AMPs are the new promising and potential 
therapeutic candidates for these two lethal concerns. 
Furthermore, various methods and strategies have been 
considered and applied to improve different features 
of AMPs like modifying the existing AMPs, synthetiz-
ing new ones as well as preparing and employing vari-
ous delivery systems for these peptides. Overall, there is 
a chance for these novel candidates to be confirmed in 
terms of their therapeutic benefits and hopefully lead to 
market authorization of several new AMP-based drugs.
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