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Many researchers who work in fields such as bioinformatics and biomathematics, will

have, at some point, come across the well-known query of whether they have ‘experi-

mentally validated’ their results. This question, which is predominantly raised by

people outside the computational field, is often asked with cynicism or at best suspi-

cion towards results obtained from computational, mathematical or statistical models

and more generally theoretical reasoning applied to empirical observations in an auto-

mated fashion. We argue here that the combined use of orthogonal sets of computa-

tional and experimental methods within a scientific study can increase confidence in

its findings and that the use of the term ‘experimental validation’ is a hindrance to this

endeavour.

Many misunderstandings—scientific or otherwise—stem from the presence of a lan-

guage barrier. We do not here refer to differences in the set of words or expressions

used by scientists in different specialties, but rather to the enlistment of terms in com-

mon general usage to denote a precise scientific concept. Take for example the term

‘normal distribution’, which is used extensively when making statistical inferences in

various empirical studies [1]. Although this term is often understood correctly as a

statistical concept, it can also be misconstrued due to the connotations in everyday use

of the term ‘normal’, i.e. natural, standard, correct or even healthy [2, 3].

Similar misunderstandings arise with the phrase experimental validation. Within the

field of computational biology, ‘experimental validation’ refers to the process of repro-

ducing a scientific finding obtained using computational methods by performing inves-

tigations that do not rely on the extensive use of computational resources. This

process involves the accumulation of additional evidence that lend support to the con-

clusions of the computational study. However, as with the term ‘normal’, the term ‘val-

idation’ carries with it connotations from everyday usage such as ‘prove’, ‘demonstrate’,

‘authenticate’ or even ‘legitimise’. We would argue that these associations are a hin-

drance to scientific understanding and that the term experimental validation would be

better replaced with alternative terms, such as ‘experimental calibration’ or ‘experimen-

tal corroboration’.
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Theoretical modelling
Consider a computational model that aims to explain a biological phenomenon such as

tumour growth; how a cancer initiates, progresses and expands; and how it can be

halted by the use of a therapeutic compound. The question often asked is whether the

results of this model should be assessed, e.g. in vitro with a cell line assay for it to be of

any merit. In other words, is this validation step critical to claim that the computational

model works correctly?

To answer this, we should revisit the concept of a computational model. Simply put,

a computational model comprises a mathematical framework built upon assumptions,

which are themselves derived from a series of empirical observations. In the above-

mentioned example, we know that cancer is a genetic disease with abnormal cell prolif-

eration where the number of cells is increased by one upon each cell division. If our

computational model fails to accurately estimate the number of cancer cells after n di-

visions, this deviation does not originate from the exponential function but rather from

our assumptions or over-simplicity of the model. For instance, we did not include other

variables in our model such as nutrient levels or interaction of the tumour with the im-

mune system. In fact, it is essential to have some level of empirically-based knowledge

a priori for model reconstruction. However, the critical point is that the computational

model itself does not require validation, as it is merely a logical system for deducing

more complex features from a priori data [4]. Previously acquired empirical knowledge

has an important role to play in tuning the parameters of a model, and model parame-

ters may be adjusted to fit experimental data optimally. The role of experimental data

in this scenario would be better described, rather than ‘validation’, as ‘calibration’. We

should also note that in some instances experimental calibration is not appropriate to

test the accuracy of a computational model when the ground truth is unknown. For ex-

ample, early cancer genome studies predicted the titin gene (TTN) as a cancer driver

based on a selection pressure model incorporating the non-synonymous to synonymous

mutation ratio [5]. Hitherto, due to having the longest coding sequence in the human

genome [6], TTN has been found as a recurrently hit gene in many cohorts across mul-

tiple tumour types and its frequent presence is highly likely to be ‘validated’ in further

independent cohorts. However, an improved driver model, which adjusts for back-

ground mutation rate [7], no longer identifies TTN as a cancer driver but rather more

likely a footprint of somatic mutation accumulation.

Data-driven inference
The recent advent of high-throughput technologies has enabled the generation of awe-

inspiring amounts of biological data, especially in the realm of omics, and developing

accurate methods and models to analyse and interpret data is as crucial as the data gen-

eration itself. In other words, big data has changed the way we deal with biological data

simply because of its size. For example, it would be infeasible to look at DNA sequen-

cing chromatograms for millions of reads to analyse the genomic sequence of a sample,

and therefore sophisticated methods and pipelines have been developed to deal with

signal reading, alignment and variant calling. It is thus important to remember that

computational methods have been developed out of necessity to deal with such big

data, rather than as a replacement for experimentation, which remains core to biology

in the new era.
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A question often raised in different academic settings after a biological inference has

been made using computational analysis of high-throughput biological data, is whether

it is essential to undertake additional low-throughput experiments to validate the

inference?

While low-throughput gold standard methods (such as Sanger dideoxy sequencing or

Western blotting) may seem more tangible to many, it does not necessarily follow that

such methods are more reliable or robust than high-throughput methods, particularly

given the inherently variable nature of empirical data. For this reason, the performance

of an experimental study that represents an orthogonal method for partially reprodu-

cing the results of a computational biology study is more appropriately described as

‘corroboration’ than ‘validation’. We illustrate this with a series of examples as follows.

We also argue that when dealing with orthogonal approaches, more confidence should

be placed in inferences derived from data from higher throughput or higher resolution

experiments.

Copy number aberration calling (WGS vs FISH)

Copy number aberration (CNA) is a hallmark of virtually all cancer types. Its accurate

estimation is not only key in estimating other features of a given tumour such as gen-

omic instability and purity, but, at the functional level, it is also essential in estimating

gene dosage and assessing the two-hit hypothesis (bi-allelic inactivation) for any given

gene. CNA is nowadays called at the genome-wide level based on whole-genome se-

quencing (WGS) data of the tumour sample and its matched normal pair. The most re-

cently developed methods can not only detect total copy number, but also allele-

specific copy number, and can distinguish CNAs found in all tumour cells (‘clonal’

events) from those found in a subset of cells (‘subclonal’) [8, 9]. These methods have

the resolution to detect smaller CNAs than previous methods such as SNP arrays and

array comparative genomic hybridisation (aCGH) since they utilise read counts from

every base-pair within the genome. Karyotyping and fluorescent in-situ hybridisation

(FISH) of a number of cells (typically ~ 20–100 cells) have served as gold standard

methods to detect CNAs in a tumour. FISH has superior resolution to karyotyping

[10], but usually utilises one or a few locus/chromosome-specific probes to extrapolate

the absence/presence and count of an entire chromosome, while WGS-based CNA call-

ing is based on signals from thousands of SNPs in a region. Further, FISH-based ana-

lysis requires a trained eye to distinguish a hybridisation signal from the background

colour noise and is somewhat subjective, while the WGS-based computational methods

are quantitative, and typically use statistical thresholds to call CNAs. While FISH has

advantages in certain scenarios, such as the detection of whole-genome duplicated sam-

ples, it is not clear that results from FISH are more reliable than those from WGS, and

it provides lower resolution of subclonal and sub-chromosome arm size events. For this

reason, we encourage the field to embrace alternative methods for corroborating CNA

calls, such as the use of low-depth WGS of thousands of single cells [11].

Mutation calling (WGS/WES vs Sanger)

One of the core analyses of WES/WGS is variant calling using germline (e.g. Platypus

[12]) or somatic (e.g. MuTect [13]) pipelines to identify aetiological variants in disease
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predisposition or initiation/progression respectively. If novel variants or genes are iden-

tified, there is commonly a desire to replicate this finding. The gold standard for variant

detection is Sanger dideoxy sequencing. However, this method cannot reliably detect

variants with variant allele frequency (VAF) below ~ 0.5. In the case of mosaicism [11]

at the germline level and low-purity clonal variants or high-purity subclonal variants at

the somatic level [14] Sanger sequencing will not detect variants that have been de-

tected by relatively high coverage WGS and higher coverage WES experiments. A more

appropriate replication would be high-depth targeted sequencing of detected loci of

interest. This method not only has greater power to detect the candidate variants, but

can also give more precise VAF estimates, and is more readily applied to a much larger

number of variants.

Differential protein expression (mass spectrometry vs Western blot/ELISA)

Mass spectrometry (MS) has revolutionised proteomics by delivering robust, accurate

and reproducible protein detection in recent years. The gold standard in the field, how-

ever, remains the western blotting assay which is a non- or semi-quantitative method

for the detection of specific proteins in complex biological samples based on the speci-

ficity of select antibodies. Given the fine detail of MS and, crucially, the higher number

of data points in this method, the presence/absence of a peptide/protein can be called

with much higher confidence [15]. For instance, in a complex extract of a tumour sam-

ple, compare MS results pertaining to a protein based on more than five peptides that

cover ~ 30% of the protein sequence (with an E value < 10−10) with the results of three

replicates of western blotting by using an antibody with a linear epitope which has less

than 1% coverage. It is clear that more confidence can be placed in the reliability of MS

results. In addition, it is worthy of note that antibodies for Western Blot/ELISA are not

available for all identified proteins and, even if available, they may not have the ex-

pected efficiency due to the high rate of non-silent somatic mutations in cancer cells.

Consistent with this, it was recently argued that there should be a reprioritisation

where MS supersedes western blotting due to its higher resolution [16].

Differentially expressed genes (RNA-seq vs RT-qPCR)

Reprioritisation of experimental methods has also occurred in transcriptomic studies

[17–21]. Whole-transcriptome RNA-seq is a comprehensive approach for the identifi-

cation of transcriptionally stable genes compared with reverse transcription-

quantitative PCR (RT-qPCR). The high coverage of RNA-seq analysis of an intricate

RNA pool of cancer cells also enables the identification of transcripts within the sample

to nucleotide-level resolution in a sequence-agnostic fashion thus allowing detection of

novel expressed genes [22]. RNA-seq techniques have also allowed further exploration

of the complexity and heterogeneity of tumours by single-cell transcriptomics of

tumour samples, which is not feasible with RT-qPCR.

In conclusion, we strongly support multidisciplinary science that integrates computa-

tional and experimental biology studies. We believe that the use of the phrase ‘experi-

mental validation’ is hindering rather than enabling such research, by preventing

objective evaluation of the relative strengths of high-throughput and low-throughput

methods, and we encourage the use of less value-laden terms such as ‘experimental
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calibration’ or ‘experimental corroboration’. As in experimental biology, computational

biology requires an understanding of the limitations of the existing methods, which

generally is acquired from years spent working with big data [23]. It is essential that

computational scientists convey the intricacies of their methods to non-computational

colleagues to enable appropriate interpretation and evaluation of results, especially

when multiple tools are available for the same analysis. Evaluating the underlying as-

sumptions of computational models often represents a superior method of evaluation

than conducting further empirical studies. Finally, we encourage all scientists to evalu-

ate all empirical evidence, whether from high-throughput or low-throughput experi-

ments, in a balanced manner, even if this means putting more faith in modern high-

throughput experiments than older techniques commonly regarded as ‘gold standard’.

We thus envision a world where ‘experimental’ scientists are requested to do ‘computa-

tional validation’ in the same manner that ‘computational’ scientists are currently asked

to do experimental validation (Fig. 1).

Acknowledgements
We would like to thank Dr. Florian Markowetz for critical reading of the manuscript.

Authors’ contributions
M.J, D.C.W, and N.A-P conceived the idea for this manuscript. All authors wrote, revised, and approved the final version
of the manuscript.

Funding
None.

Fig. 1 All research in wet- and dry-lab biology use computational methods that examine strength of
evidence [24]. Everybody starts from the lab with original data generation or data collection, and it only
diverges when we try to analyse and make inferences. We argue that ‘computational validation’ is
undertaken in all experimental and computational studies. For instance, replication of experiments in a
case-control setting is in itself inherently a computational validation since we compare mean ± SD or any
other computationally-derived summary metric between cases and controls to distinguish signal from
noise. Therefore, ‘computational validation’ is a term that should be publicised along with ‘experimental
validation’, to scientifically reproduce findings from experimental as well as computational biology.
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