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Abstract

Background: Immunoglobulin G4-related disease (IgG4-RD) and systemic sclerosis (SSc) are rare autoimmune
diseases characterized by the presence of CD4+ cytotoxic T cells in the blood as well as inflammation and fibrosis
in various organs, but they have no established etiologies. Similar to other autoimmune diseases, the gut
microbiome might encode disease-triggering or disease-sustaining factors.

Methods: The gut microbiomes from IgG4-RD and SSc patients as well as healthy individuals with no recent
antibiotic treatment were studied by metagenomic sequencing of stool DNA. De novo assembly-based taxonomic
and functional characterization, followed by association and accessory gene set enrichment analysis, were applied
to describe microbiome changes associated with both diseases.

Results: Microbiomes of IgG4-RD and SSc patients distinctly separated from those of healthy controls: numerous
opportunistic pathogenic Clostridium and typically oral Streptococcus species were significantly overabundant, while
Alistipes, Bacteroides, and butyrate-producing species were depleted in the two diseases compared to healthy controls.
Accessory gene content analysis in these species revealed an enrichment of Th17-activating Eggerthella lenta strains in
IgG4-RD and SSc and a preferential colonization of a homocysteine-producing strain of Clostridium bolteae in SSc.
Overabundance of the classical mevalonate pathway, hydroxyproline dehydratase, and fibronectin-binding protein in
disease microbiomes reflects potential functional differences in host immune recognition and extracellular matrix
utilization associated with fibrosis. Strikingly, the majority of species that were differentially abundant in IgG4-RD and SSc
compared to controls showed the same directionality in both diseases. Compared with multiple sclerosis and rheumatoid
arthritis, the gut microbiomes of IgG4-RD and SSc showed similar signatures; in contrast, the most differentially abundant
taxa were not the facultative anaerobes consistently identified in inflammatory bowel diseases, suggesting the microbial
signatures of IgG4-RD and SSc do not result from mucosal inflammation and decreased anaerobism.

Conclusions: These results provide an initial characterization of gut microbiome ecology in fibrosis-prone IgG4-RD and
SSc and reveal microbial functions that offer insights into the pathophysiology of these rare diseases.
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Background
The gut microbiome exists in an essential symbiosis with
its human host by serving as a source of nutrients and
small molecules, informing the development and activity
of the immune system and providing colonization resist-
ance against pathogens. Strains of gut bacteria stimulate
the expansion of various immune cell populations [1] and
provide signals for orchestrated anti- and pro-inflammatory
responses locally and systemically [2]. Dysregulation of this
symbiosis through expansion or depletion of specific taxa
and their associated proteins and metabolic capabilities has
been correlated with multiple diseases. In inflammatory
bowel diseases (IBD) and rheumatoid arthritis (RA), micro-
biome studies yielded potential clues to the identity of
specific microbes (e.g., Ruminococcus gnavus, Prevotella
copri) that may act as sources of disease-triggering or
disease-sustaining molecules and antigens.
Microbial antigens are recognized by the immune

system via presentation on major histocompatibility
complex (MHC) class II molecules to CD4+ T cells.
Recently, an unusual subset of cytotoxic CD4+ T cells
has been described in patients with two rare, fibrosis-prone
autoimmune disorders: immunoglobulin G4-related disease
(IgG4-RD) and systemic sclerosis (SSc) [3–5]. IgG4-RD and
SSc are complex diseases characterized by chronic inflam-
mation and generalized fibrosis in multiple organs as well
as dysregulation of adaptive and innate immunity. IgG4-RD
has been reported in almost every organ [6–8], with similar
histopathological and serological features regardless of the
disease site [6, 9, 10]. SSc, on the other hand, is a rare
connective tissue disease that can be classified into four
main subgroups: limited cutaneous SSc, diffuse cutaneous
SSc, sine scleroderma, and overlap scleroderma [11]. These
subgroups are determined based on the localization of the
fibrosis, extent of skin involvement, circulating autoanti-
bodies, and manifestation of other connective tissue dis-
eases [11]. While both conditions can lead to failure of
affected organs, IgG4-RD typically responds to therapy
[10], while SSc has limited therapeutic options and is asso-
ciated with high morbidity and mortality [12–14]. To date,
the etiology and pathogenesis of each disease remain elusive
and poorly understood.
The immunological characteristics of IgG4-RD and

SSc overlap, where CD4+ T cells—including the unusual
subpopulation of IFN-γ, IL-1β, and TGF-β secreting
cytotoxic CD4+ T cells (CTLs)—play a key role in
disease pathogenesis [4, 15]. Accordingly, they are the
major constituents of the lymphoplasmacytic infiltrate in
IgG4-RD and SSc lesions [3, 7, 16]. B cells have been im-
plicated in pathogenesis by acting as antigen-presenting
cells to CD4+ CTLs and producing different autoanti-
bodies [17, 18]. Genetic studies in SSc have identified
multiple single-nucleotide polymorphisms in the human
leukocyte antigen (HLA) locus and in non-coding

regions of the genome that strongly associate with the
disease phenotype [15, 19]. In IgG4-RD, certain HLA
haplotypes have been associated with autoimmune pan-
creatitis in Japanese and Korean populations [6, 7, 20].
Since the HLA genes encode MHC proteins that present
antigens to CD4+ T cells, individuals with a certain gen-
etic architecture could be predisposed to react to
disease-triggering antigens. Antigens that are not exclu-
sive to IgG4-RD and SSc have been implicated in the
pathogenesis of each disease, including Annexin A11 [9]
and galectin-3 [21]. These may stem from abnormal ex-
pression of intracellular proteins in damaged tissue after
long-term exposure to toxic industrial chemicals [9, 11]
or an encounter with specific microbes.
Given the pivotal role of the immune system in the patho-

genesis of IgG4-RD and SSc, it is important to identify
triggers of inflammatory responses and the potential contri-
bution from the human gut microbiome. To our knowledge,
there have been no reports on the microbiome in IgG4-RD,
and only a few 16S studies in SSc described microbiome
changes [22]. Here we evaluated stool microbiomes of pa-
tients with IgG4-RD and SSc, characterized their compos-
ition by metagenomics, and pinpointed strain differences
and functional capabilities that distinguish them from a
healthy control population. We detected consistent micro-
biome signatures in the two disorders that extend beyond
known microbial species and include clades of unknown
Firmicutes. These changes resemble microbiome signatures
from other autoimmune diseases (e.g., Eggerthella lenta
enrichment in RA) but not IBD. We also identified over-
abundance of microbiome pathways related to nutrition
(ethanolamine utilization) and fibrosis (hydroxyproline
utilization and fibronectin binding). Finally, strain-level
analysis showed preferential colonization of autoimmune
patients by Clostridium bolteae encoding a strain-specific
cystine uptake and metabolism locus as well as by a proin-
flammatory strain of E. lenta.

Methods
Cohort and approval for human subject research
Patients with immunoglobulin G4-related disease (IgG4-
RD, N = 58) and systemic sclerosis (SSc, N = 90) were
recruited at Massachusetts General Hospital (MGH) and
the University of Michigan, respectively. The IgG4-RD
cohort included patients in remission (N = 45) and with
active disease (N = 13) assessed using the IgG4-RD re-
sponder index [23]. SSc patients met the 2013 American
College of Rheumatology/EULAR classification and were
further subclassified as limited cutaneous SSc (lcSSc,
N = 39), diffuse cutaneous SSc (dcSSc, N = 39), sine
scleroderma (ssSSc, N = 7), and overlap scleroderma
(osSSc, N = 5). Available patient information included
age, sex, and current medication. As controls, healthy,
non-medicated individuals (N = 165) were recruited
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during screening visits at MGH. For the purpose of this
study, we only collected stool samples from the study
participants. Human patient research in the IgG4-RD
cohort was reviewed and approved by the Partners
Human Research Committee (2008P002154). Human
patient research in the SSc cohort, who meet the 2013
classification criteria, was approved by the Institutional
Review Board of the University of Michigan Medical
School (HUM00101836). Human patient research in the
healthy control cohort was reviewed and approved by
the Partners Human Research Committee (2015P000275).
The study was approved by the Office of Research Subject
Protection at the Broad Institute of MIT and Harvard. All
experiments adhered to the regulations of these review
boards. Study procedures were performed in compliance
with all relevant ethical and federal regulations. This
research conformed to the principles of the Helsinki
Declaration. All study participants gave their written
informed consent for sample collection and to participate
in the study.

Sample handling and sequencing
Stool samples were collected by study participants at
home using self-collection kits in 100% ethanol and
stored at room temperature for less than 48 h prior to
dissection and long-term storage at − 80 °C, as previously
described [24]. To extract nucleic acid from stool
samples, we used the AllPrep 96 PowerFecal DNA/RNA
kit from QIAGEN (custom product # 1114341). This
method pairs bead-beating on a Tissuelyser II (QIAG
EN) with a 96 well AllPrep protocol and is available
through QIAGEN. Purified DNA was stored at − 20 °C.
For metagenomic library construction, DNA samples
were first quantified by Quant-iT PicoGreen dsDNA
Assay (Life Technologies) and normalized to a concen-
tration of 50 pg/μL. Illumina sequencing libraries were
prepared from 100 to 250 pg of DNA using the Nextera
XT DNA Library Preparation kit (Illumina) according to
the manufacturer’s recommended protocol, with reac-
tion volumes scaled accordingly. Prior to sequencing,
libraries were pooled by collecting equal volumes (200
nl) of each library from batches of 96 samples. Insert
sizes and concentrations for each pooled library were
determined using an Agilent Bioanalyzer DNA 1000 kit
(Agilent Technologies). Libraries were sequenced on
HiSeq 2500 2 × 101 to yield ~ 10 million paired-end
reads per sample. De-multiplexing and BAM and FAST
Q file generation were performed using the Picard suite
(https://broadinstitute.github.io/picard).

Processing of sequencing data
The quality control for the metagenomic data was
conducted using Trim Galore! to detect and remove
sequencing adapters (minimum overlap of 5 bp) and

kneadData v0.7.2 to remove human DNA contamination
and trim low-quality sequences (HEADCROP:15, SLID
INGWINDOW:1:20), retaining reads that were at least
50 bp long. Metagenomic reads were assembled indi-
vidually for each sample into contigs using MEGAHIT
[25], followed by an open reading frame prediction with
Prodigal [26] and retaining predicted genes that had
both a start and a stop codon. A non-redundant gene
catalog was constructed by clustering predicted genes
based on sequence similarity at 95% identity and 90%
coverage of the shorter sequence using CD-HIT [27, 28].
Reads were mapped to the gene catalog with the
Burrows-Wheeler Aligner (BWA) requiring a unique,
strong mapping with at least 95% sequence identity over
the length of the read [29], counted (count matrix) and
normalized to transcript-per-million (TPM matrix) using
in-house scripts. Count matrix served as an input for
binning genes into metagenomic species pan-genomes
(core and accessory genes) using MSPminer with default
settings [30]. We represented the abundance of every
metagenomic species (MSP) in a sample as a median
TPM for 30 top representative core genes reported by
MSPminer. Assembled genes were annotated with
KEGG KO genes [31] using eggNOG-Mapper [32] and
at species, genus, and phylum levels with NCBI RefSeq
(version May 2018) as described previously [33]. To an-
notate phylogenetically MSPs that had no match to any
species from NCBI RefSeq, we used Phylophlan with de-
fault settings [34]. For reference-based microbiome ana-
lysis, we used MetaPhlAn v2.7.730 to determine relative
abundance at species and phylum levels and HUMAnN2
v0.11.2 31 to functionally profile with MetaCyc
pathways.

Alpha and beta diversity calculations
Alpha diversities were calculated using Shannon and
beta diversity was calculated using Bray-Curtis dissimi-
larity based on relative abundances at species and MSP
levels (R package vegan). The significance of differences
in alpha diversity between disease and control cohorts
was determined using linear fixed effects modeling with
covariates (age, sex, treatment information). Alpha diver-
sity differences in IgG4-RD patients due to the disease
activity and stratified by SSc subgroups were also evalu-
ated using linear fixed effects modeling with age, sex, and
treatment information as covariates.

PERMANOVA analysis
The permutational multivariate analysis of variance
(PERMANOVA) analysis was performed on the species-
level data to identify correlation between the fixed effect
covariates (age, sex, cohort information, and treatment
information) and the composition of the gut microbiome
as a whole. The PERMANOVA implementation in the
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adonis() function from the vegan-package in R was utilized
in this study. A model selection step, determining the
order of the linear predictors (fixed effect covariates) in
the adonis function’s model formula, was performed prior
to PERMANOVA analysis. Each covariate was individually
analyzed for its association to the microbial dataset and
then ordered based on the effect size (i.e., partial R-
squared) from the most significant to the least. The pair-
wise distances between the species were determined using
the Bray-Curtis dissimilarity measure and 1000 permuta-
tions were performed per analysis. Other parameters of
the analysis were kept as default.

Accessory genes analysis
We used USEARCH to identify, in the gene catalog,
homologs of the 7 genes specific to E. lenta’s cgr locus
[35], and detected strong hits for 5 of them at 95%
sequence identity and 90% coverage (cgr1, cac1, cac3,
cac4, cac5). An additional search for the missing hits to
cgr2 and cac6 revealed that they assembled on the ends
of the contigs as partial genes and hence were missing
from the gene catalog (data not shown). We used a
summed count of reads mapping to all 5 cgr locus gene
homologs as a signal for abundance of the cgr locus. It is
often difficult to disentangle the absence of a gene or
operon in a bacterial genome from a missing observation
due to an insufficient depth of sequencing. Yet the ab-
sence of a gene can readily be assessed when the counts
of the core genes are proportional to the counts of the
accessory genes, as identified by MSPminer [30].
Accordingly, the cgr genes can be reliably detected only
in samples where the coverage of the E. lenta genome is
sufficient. We used the proportionality between the cgr
locus counts and the counts of the top 30 top represen-
tative core genes reported by MSPminer for E. lenta to
derive the minimal number of reads mapping to E. lenta
core genes that would allow the observation of at least 1
read mapping to the cgr locus. In that way, the metage-
nomic samples with less than 16 reads mapping to E.
lenta core genes were discarded from the analysis. Odds
ratios and significance of enrichment of the cgr locus in
disease compared to controls were determined using a
one-sided Fisher’s test. We note here that in the read
mapping procedure, after the BWA step, we filter align-
ments to only retain uniquely mapped reads at 95% or
greater level of nucleotide identity along the read length.
This alleviates the risk of recruiting reads originating from
identical or highly homologous regions in other genes.
For the microbiome-wide search for enriched accessory

modules, we used a similar approach. A threshold of at
least 1 mapped read was used to analyze the presence and
absence of accessory modules reported by MSPminer and
associated with specific MSPs; a minimal number of reads
mapping to the top 30 representative core genes reported

by MSPminer for a given MSP was similarly derived based
on the proportionality rule to determine samples with
enough signal for that MSP to be included in the analysis
[30]. Additionally, we only considered MSPs detected in
more than 20 healthy control, 20 IgG4-RD, and 20 SSc
samples. Odds ratios and significance of enrichment of
the accessory modules in disease compared to controls
were determined using a two-sided Fisher’s test and nom-
inal P values were adjusted for multiple hypothesis testing
using Benjamini-Hochberg correction.

Differential abundance analysis
Linear fixed effects modeling, as implemented in the
lm() function from stats-package in R, was performed to
identify differentially abundant features (metagenomic
species, phyla, and various functional categories) between
cohorts, SSc subgroups, and individuals with active and in-
active IgG4-RD status. Prior to linear modeling, features
present in less than 20% of the samples were filtered out.
In analyses involving multiple cohorts, the less prevalent
species (< 20% samples) that are specifically absent in ei-
ther the control or disease cohorts (identified using Fisher’s
exact test, FDR < 0.05) were included in downstream
analyses. Furthermore, the zeros were replaced by half of
the smallest non-zero measurement on a per-feature basis
and log10 transformation was applied on the relative
abundances for normality. In analyses studying differences
between the cohorts (controls vs diseased, IgG4-RD vs
SSc), linear modeling included fixed effect covariates: age,
sex, cohort information and treatment information.
Variable “treatment information” represented 6 different
treatment categories: no treatment, rituximab (RTX),
prednisone, other medication, RTX with prednisone and
prednisone with other medication. Moreover, in analyses
within a particular cohort, such as between individuals
with the active and inactive IgG4-RD status and the SSc
subgroups, covariates related to the IgG4-RD status and
SSc subgroups were added to the respective models, while
the cohort information was excluded. Comparison between
the SSc subgroups and the control cohort was performed
by expanding the cohort information with the four SSc
subgroup classifications (i.e. classifying the samples belong-
ing to the SSc category in the cohort-covariate into their
respective subgroups). Nominal P values from the lm()
output were adjusted for multiple testing using Benjamini-
Hochberg correction and associations at FDR < 0.05
(unless stated differently) were considered as significant.

Results
The autoimmune diseases IgG4-RD and SSc share a
fibrotic phenotype and characteristic skew in immune
cell populations. Both are associated with polymorphisms
in the HLA locus and characterized by the presence of an
unusual subset of cytotoxic CD4+ T cells [5], suggesting
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that dysfunctional immune recognition of microbial sig-
nals might underlie these pathologies. To identify poten-
tial sources of microbial signals, we sought to characterize
the stool microbiome sampled at a single time point of pa-
tients diagnosed with IgG4-RD (N = 58) and SSc (N = 90),
respectively recruited at Massachusetts General Hospital
and University of Michigan (Table 1, Additional file 1:
Table S1). The IgG4-RD cohort had similar numbers of
males and females, while SSc patients were primarily
female (82%). SSc patients were further classified across
four common subgroups: limited cutaneous SSc (N = 39),
diffuse cutaneous SSc (N = 39), sine scleroderma (N = 7),
and overlap scleroderma (N = 5). Individuals in both
disease cohorts had a similar age distribution (mean
age ~ 60 years old) and approximately half were on
treatment with immunosuppressive agents, such as
prednisone and rituximab (RTX, mainly in IgG4-RD).
A few individuals received a combination of drugs, such
as RTX and prednisone or prednisone and another
form of treatment (e.g., mycophenolate mofetil) (Table
1, Additional file 1: Table S1). Nearly a quarter of the
IgG4-RD patients in this study had active disease at the
time of sampling (N = 13, Table 1, Additional file 1:
Table S1). As a control cohort, we used 165 healthy,
non-medicated subjects (65% female) with age distribu-
tion similar to that of cases, recruited at Massachusetts
General Hospital (Table 1, Additional file 1: Table S1).

Decreased diversity and a common microbiome
architecture in IgG4-RD and SSc
To study the composition and function of the gut
microbiome in IgG4-RD and SSc, we applied metagenomic
sequencing to the stool samples collected, generating on
average 24M paired-end reads per sample. We taxonomic-
ally profiled the microbiomes using both reference-based
(MetaPhlAn2 [36]) and de novo assembly-based (MSPminer
[30]) methods, detecting 438 species and 504 metagenomic
species (MSPs) respectively. The assembly-based micro-
biome profiling showed a higher alpha diversity compared

to the reference-based profiling for all cohorts (P < 1 × 10− 8,
Additional file 2: Figure S1), likely due to uncharacterized
taxa that only an assembly-based approach can quantify.
This motivated us to focus our taxonomic analysis on the
assembly-based classification, while the reference-based pro-
filing was only used for functional classification. Indeed,
when considering taxonomic annotation of MSPs derived
from a comprehensive and recent database of reference ge-
nomes (NCBI RefSeq), on average 26% of the relative abun-
dance signal came from MSPs that had no species-level
annotation (Additional file 2: Figure S2).
Comparison of the Shannon diversity index revealed

that IgG4-RD had a decreased alpha diversity compared
to healthy controls (Fig. 1a, FDR = 0.06). While we did
observe a similar trend in SSc patients, it was not statis-
tically significant (Fig. 1a, FDR = 0.41). Rather, we
observed a decrease in alpha diversity in SSc patients
treated with oral prednisone in combination with other
treatments (various disease-modifying antirheumatic
drugs, DMARDs) (Additional file 1: Table S2, FDR =
0.001), indicating that anti-inflammatory medications
can affect microbiome composition. No significant
changes in alpha diversity were associated with different
subgroups of SSc patients or IgG4-RD active disease
status (Additional file 1: Table S2). To evaluate micro-
biome community structure differences between SSc or
IgG4-RD patients and healthy controls, we analyzed
microbiome beta diversity using Bray-Curtis distance.
Principal coordinate analysis revealed a distinct sample
separation along the disease-health axis independent of
disease type (Fig. 1b). Using a multivariate statistical
approach with medication, age, and sex as covariates,
we confirmed the microbiome differences between
healthy and disease subjects (PERMANOVA FDR < 0.05,
Additional file 1: Table S3). Cohort determination (IgG4-
RD, SSc, or healthy control) had the strongest effect on the
microbiome variation between the subjects, with 3.6% ex-
plained variance (Additional file 1: Table S3). Additional
PERMANOVA analysis for IgG4-RD patients only revealed

Table 1 Characteristics of the IgG4-RD, SSc, and control cohorts used in the study. Other treatments include mycophenolate mofetil,
methotrexate, hydroxychloroquine, abatacept, cyclophosphamide, azathioprine, tocilizumab, and etanercept. RTX rituximab, lcSSc
limited cutaneous, dcSSc diffuse cutaneous, ssSSc sine scleroderma, osSSc overlap scleroderma

Controls IgG4-RD Systemic sclerosis

N samples 165 58 90

N per subtype na Active: 13, inactive: 45 lcSSc: 39, dcSSc: 39, ssSSc: 7, osSSc: 5

Age, years (median ± sd) 57 ± 8 61 ± 13 57 ± 12

Males/females 58/107 29/29 16/74

RTX 0 16 1

Prednisone 0 7 27

Other treatment 0 3 44

Data collection center Massachusetts General Hospital Massachusetts General Hospital University of Michigan
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no significant differences in the microbiomes of patients
with active disease relative to those of patients in remission
(Additional file 1: Table S3). Altogether, our diversity ana-
lysis revealed a significantly altered microbiome architec-
ture in IgG4-RD and SSc relative to healthy controls. In the
case of SSc, this confirms earlier gut microbiome studies
that employed 16S rDNA sequencing [22, 37]. Importantly,
the clustering of samples from IgG4-RD and SSc based on
their microbiome diversity strongly suggests that they share
common microbial signatures.

Depletion of Bacteroidetes and overabundance of
Firmicutes in disease microbiomes
To identify specific taxonomic groups that contribute to
the reconfigured gut microbiome architecture in these
diseases, we tested the association of their relative abun-
dances to disease status using a linear model with age,
sex, and medication as covariates. As expected, IgG4-
RD, SSc, and control microbiomes were dominated by
Bacteroidetes and Firmicutes species (Fig. 2a); however,
we saw a consistent depletion of Bacteroidetes in both
diseases (FDR ≤ 1 × 10−3) with a concordant increase of
Firmicutes in SSc (FDR = 0.06) and Actinobacteria in
IgG4-RD (FDR = 0.15) relative to controls (Fig. 2b). At
the species level, we detected 38 MSPs concordantly
overabundant or depleted in both diseases compared to
controls (FDR < 0.05, Additional file 1: Table S4, Fig. 2c,
d). All 11 differentially abundant Bacteroidetes MSPs
were depleted in one or both diseases (Fig. 2d), consist-
ent with our phylum-level observations, and included
phylogenetically related taxa (e.g., four Alistipes and four

Bacteroides species). Among the Firmicutes, numerous
opportunistic pathogenic Clostridium species were over-
abundant (e.g., C. innocuum, C. clostridioforme, C.
bolteae, and C. symbiosum). These Clostridia are well-
adapted to invade host tissue by encoding pathogenicity
factors, such as antibiotic resistance genes and flagellins,
and have been identified as extraintestinal infectious
agents [38–40]. Additionally, multiple commensals
typical of the oral cavity were overabundant in disease,
including three Veillonella and five Streptococcus
species. Colonization of the lower parts of the gastro-
intestinal (GI) tract by oral microbes is a recognized
phenomenon in systemic diseases such as RA [41] and
has been reported in other immune-mediated diseases
such as IBD [42, 43]. In contrast, Faecalibacterium
species from group IV Clostridium (two MSPs annotated
as Faecalibacterium prausnitzii) that are known for their
beneficial butyrate production were depleted in the two
diseases. Lastly, an additional 67 MSPs that were differ-
entially abundant in only one disease showed a consist-
ent trend of overabundance or depletion in the other
disease (Additional file 2: Figure S3, Additional file 1:
Table S4).
The overabundance of Actinobacteria was attributed

to one of the top differentially abundant species,
Eggerthella lenta (SSc FDR = 5.4 × 10−7 and IgG4-RD
FDR = 1.8 × 10−4). E. lenta is also overabundant in the
gut microbiome of RA and multiple sclerosis patients
[44, 45], suggesting that E. lenta might be playing an
important role in multiple autoimmune diseases. Apart
from the species with known taxonomy, we observed 36

Fig. 1 Microbiome community structure in IgG4-RD and SSc. a Alpha diversity boxplots indicate significantly lower alpha diversity in IgG4-RD
compared to controls (FDR = 0.06). Boxplots show median and lower/upper quartiles; whiskers show inner fences. b PCoA plot of beta diversity
using Bray-Curtis dissimilarity measure. Beta diversity correlates significantly with sample annotation according to IgG4-RD, SSc, or control status
(PERMANOVA FDR = 0.004). Marginal figures present distributions of samples along each axis. Controls N = 165, IgG4-RD N = 58, SSc N = 90
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differentially abundant MSPs with no species-level infor-
mation (FDR < 0.05, Additional file 1: Table S4). Phylogen-
etic analysis [34] revealed that most of them represented
previously uncharacterized Firmicutes (Additional file 2:
Figure S4). Among those depleted in disease (33/36
MSPs), we observed that MSP 182, MSP 234, MSP 326,
and MSP 378 clustered closely with F. prausnitzii, indicat-
ing an additional decreased abundance of potential
butyrate-producing species. Among those overabundant
in either IgG4-RD or SSc, we observed that MSP 038,
MSP 122, and MSP 179 formed a closely phylogenetically
related clade and as such might encode similar functional-
ities that allow them to bloom in these diseases or are
relevant to the disease phenotype. Finally, we want to
highlight that no significant differences in known or un-
known MSPs were observed comparing IgG4-RD and SSc
patients, reinforcing the view that these diseases share a
common microbiome signature.
We next asked if SSc subgroups are characterized by

overabundance or depletion of specific MSPs in order to
identify potential pathobionts unique to each subgroup.
We compared microbiomes in limited cutaneous SSc
(lcSSc), diffuse cutaneous SSc (dcSSc), sine scleroderma
(ssSSc), and overlap scleroderma (osSSc) to healthy

controls. We observed 16 MSPs that were commonly
differentially abundant between at least two SSc
subgroups; most notably, overabundance of three
Streptococcus species, S. parasanguinis, S. vestibularis,
and S. salivarius was common to lcSSc, dcSSc, and
osSSc. Each subgroup also showed unique microbial
changes relative to healthy controls (FDR < 0.05,
Additional file 1: Table S5, Additional file 2: Figure S5).
Depletion of F. prausnitzii characterized lcSSc, while
overabundance of two taxa typical of the oral cavity,
Veillonella parvula and Klebsiella pneumoniae, was ob-
served in dcSSc. We also tested the pairwise differences
between the four SSc subgroups and observed four dif-
ferentially abundant species in osSSc compared to either
lcSSc or dcSSc (FDR < 0.05, Additional file 1: Table S5).
Finally, we turned to IgG4-RD patients and tested for
species-level differences between patients with active
disease or in remission, and observed no significant
association.

Strain-specific gene enrichment in disease
A species-level focus in human microbiome studies can
lack the specificity necessary for attributing functional
roles, as different strains of the same species can harbor

Fig. 2 Overabundant and depleted gut microbiome taxa in IgG4-RD and SSc. a Relative abundances of the five most abundant phyla in the
disease and control cohorts. b Differentially abundant phyla in at least one of the disease cohorts when compared to the controls (FDR < 0.2).
Boxplots show median and lower/upper quartiles; whiskers show inner fences. c Top 30 differentially abundant species in IgG4-RD and/or SSc
when compared to the controls (*FDR < 0.05). See also Additional file 1: Table S4. d The number of overabundant or depleted species from each
phylum in the disease cohorts. In total, 19 overabundant and 19 depleted species were common to both IgG4-RD and SSc; no discordant species
(i.e., overabundant in one disease and depleted in the other) were identified. Panels a, c, and d use the same color scheme to represent phyla
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vastly different accessory genomes. These genomic
differences can be particularly relevant in the context of
immune system activation. For instance, different strains
of K. pneumoniae show variable potential in activating
type 1 T helper (Th) cells, highlighting the importance
of accessory genes on modulating immune function [46].
With that in mind, we evaluated the genetic composition
of E. lenta, which was one of the top differentially
abundant species in our comparison (Fig. 2c). E. lenta is
well-known for its potential to inactivate plant toxins,
including the cardiac drug digoxin, in the human gut via
a strain-specific cardiac glycoside reductase (cgr) operon
[47]. The cgr locus has been attributed immunomodula-
tory function: cgr locus positive (cgr+) E. lenta drive acti-
vation of Th17 cells and production of pro-inflammatory
cytokines, while cgr− strains do not show this phenotype
[48]. To determine if there is a colonization bias of cgr+
E. lenta strains in SSc and IgG4-RD patients, we identi-
fied five genes in the assembled gene catalog that com-
prise the cgr locus and evaluated their abundances in
each sample. Using that signal as the marker for pres-
ence or absence of the cgr locus, in samples with suffi-
cient coverage of E. lenta (see the “Methods” section),

we observed that approximately half of the healthy con-
trols were cgr+ E. lenta carriers, consistent with previous
reports on the distribution of that function in a general
human population [35]. E. lenta in patients affected by
IgG4-RD and SSc, however, were more likely to be cgr+
(~ 75% patients; Fisher’s test, IgG4-RD P = 0.04, SSc P =
0.01, Fig. 3a). Additionally, E. lenta tended to reach
higher relative abundance in cgr+ samples compared to
cgr- samples (Wilcoxon, controls P = 2 × 10−5, IgG4-RD
P = 0.02, SSc P = 0.04). These observations implicate E.
lenta as a potential microbiome factor with strain-
dependent enzymatic activity that might lead to the
breakdown of immune homeostasis and expansion of its
population in colonized subjects.
Our assembly-based microbiome characterization

through MSPs grouped genes into clusters based on
their presence and co-abundance pattern such that each
species is represented by its core genes and often
multiple clusters of different accessory genes. In order to
perform a microbiome-wide screen for disease-related
accessory modules, we evaluated whether any specific
accessory module was differentially distributed in IgG4-
RD and SSc compared to healthy controls. We detected

Fig. 3 Strain-level signals in IgG4-RD and SSc. a Top, Strains of E. lenta are more likely to harbor a cgr operon (cgr+) in disease samples than
healthy control samples (Fisher’s test, comparison with controls: IgG4-RD P = 0.04; SSc P = 0.01; N controls = 107, N IgG4-RD = 51, N SSc = 81).
Bottom, Cgr+ E. lenta achieve a higher relative abundance than cgr− E. lenta in control, IgG4-RD, and SSc samples. Boxplots show median and
lower/upper quartiles; whiskers show inner fences. b Species-specific accessory modules (acc) that are enriched or depleted in SSc or IgG4-RD
compared to healthy controls (FDR < 0.05). Effect size is shown as log2 odds ratio. The number of genes contained in each accessory module is
indicated by the size of a dot. c Accessory module acc 058 in C. bolteae. Left, Gene composition of the locus encoding cystine uptake and
homocysteine metabolism genes. Right, NCBI’s phylogenetic tree of 15 C. bolteae reference genomes. Stars indicate strains encoding the locus
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53 accessory modules (acc) that were enriched or
depleted in SSc (FDR < 0.05, Fig. 3b). These accessory
modules showed largely similar enrichment or depletion
trends in IgG4-RD, however only one was significant in
this lower-powered cohort (FDR < 0.05, Fig. 3b). The
identified accessory modules contained between 4 and
158 genes that encoded for various, often related func-
tions (Additional file 1: Table S6). The only accessory
gene set enriched in both SSc and IgG4-RD, acc 002
from Clostridium scindens, contained multiple proteins
involved in nutrient transport across membranes (ABC
transporters, efflux pumps, and antiporters). In SSc-
enriched acc 058 from C. bolteae, five of its six genes
co-assembled next to each other on the same contig in
our samples; two additional genes were predicted in the
contig using Glimmer [49]. These similarly co-assemble
in a subset of C. bolteae reference genomes and repre-
sent a variation present only in some strains of this spe-
cies (Fig. 3c, Additional file 2: Figure S6). Interestingly,
this accessory module likely expands access of C. bolteae
to the sulfur-containing amino acid cysteine as it
encodes three cystine transporters (homologs to TCYA,
TCYB, and TCYC transport system), which is consistent
with the ability of C. bolteae to bloom with cysteine as a
sole carbon source [50]. An additional gene found in this
module, cystathionine beta-lyase (CBL), catalyzes the
breakdown of the cysteine-related metabolite cystathio-
nine to homocysteine and pyruvate. Increased homocyst-
eine concentration in circulation could contribute to
SSc-related vasculopathy, according to a model in which
homocysteine inhibits hydrogen sulfide signaling in
blood vessels [51].

Changes to immune signaling and ECM-related microbial
functions
In addition to strain-specific functional potential, multiple
species can contribute to similar functional capabilities.
To investigate this in an untargeted manner, we summa-
rized the relative abundance of microbial pathways using
HUMAnN2 [52]. Consistent with the overall reconfigur-
ation of the microbiome composition in IgG4-RD and
SSc, a large number of MetaCyc database pathways were
differentially abundant (FDR < 0.05, Fig. 4a, Additional file
1: Table S7). Among the top pathways overabundant in
IgG4-RD and SSc were those involved in lipid biosyn-
thesis, including the classical mevalonate pathway (IgG4-
RD FDR = 0.003, SSc FDR = 8.6 × 10−10) that is encoded
by specific microbial families [53]. This overabundance
signal was consistent when we investigated the eight
enzymes that constitute this pathway (Additional file 1:
Table S8). The classical mevalonate pathway leads to the
production of isopentenyl pyrophosphate (IPP), a building
block for membrane lipids and an important signaling
molecule to immune cells [54].

Many biologically important genes are not annotated
as pathways; hence, we also evaluated abundance of
genes from the assembled gene catalog that were anno-
tated using eggNOG-Mapper [32]. Intriguingly, 12 genes
belonging to the ethanolamine utilization compartment
were overabundant in IgG4-RD and SSc compared to
healthy controls (FDR < 0.05, Fig. 4b). Ethanolamine is
particularly prevalent in the GI tract where it is released
as a phosphatidylethanolamine from the renewing
epithelium, and its abundance increases during inflam-
mation, as observed in IBD [55, 56]. Importantly, etha-
nolamine can be used as a carbon and nitrogen source
to give a growth advantage to the microbes capable of
metabolizing it, providing a plausible explanation for the
overabundance of potential ethanolamine metabolizers
observed in this study, such as R. gnavus, Blautia pro-
ducta, or C. clostridioforme (Additional file 2: Figure S7).
Finally, we specifically focused on relative abundance

changes in functions related to extracellular matrix
(ECM) binding and fibrosis. Using eggNOG-Mapper
[32], we detected the fibronectin-binding gene sfb1
(K13734) to be overabundant in SSc and IgG4-RD com-
pared to healthy controls (FDR < 0.1, Fig. 4c). Fibronec-
tins, among others, bind to ECM that is excessively
produced during fibrosis, and many pathogens including
streptococci use fibronectins as anchors to the epithe-
lium [57, 58]. We also evaluated changes to the recently
described 4-hydroxyproline dehydratase (HypD) that de-
grades the major constituent of ECM, hydroxyproline,
and provides access to this nutrient as an energy source
for the encoding bacteria [59]. As a relatively novel func-
tional category, it was missing from the annotations
obtained using eggNOG-Mapper. We directly searched
for homologs of HypD from Clostridioides difficile
(A0A031WDE4) in the assembled gene catalog and de-
tected 17 homologs with at least 62% amino acid identity
[60]. The combined relative abundance signal of the
identified HypD homologs was increased in SSc com-
pared to healthy controls (FDR = 0.01, Fig. 4d), which
may be reflective of overabundant matrix components in
this fibrosis-prone autoimmune disease.

Discussion
Here we characterized a strikingly similar gut micro-
biome architecture between two fibrotic autoimmune
diseases: IgG4-RD and SSc. Consistent sampling, data
generation, and processing allowed us to avoid technical
biases and identify biologically relevant features common
between the disorders. The gut microbiomes in both
diseases were significantly different from healthy con-
trols and showed a depletion of typical, health-associated
commensals and expansion of potentially pathogenic
and pro-inflammatory species.
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Our analysis greatly expanded the number of samples
analyzed and added species-level and functional depth to
a previous 16S rRNA-based report on the SSc micro-
biome [37]. Consistent with this study, we observed a
depletion of numerous Bacteroides and Faecalibacterium
species as well as an overabundance of Bifidobacterium
dentium and several Lactobacillus species. We addition-
ally identified different Clostridium and Streptococcus
species to be overabundant in SSc compared to healthy
controls, a signature that indicates either fewer GI symp-
toms in our cohort or a cohort-specific signal [14, 37].
In contrast to these previous studies, we directly modeled
the contribution of potential confounders, including non-
antibiotic medications, when identifying significant associa-
tions, which is important for disentangling disease-specific
effects [61]. We detected a negative effect on alpha diversity

from combinatorial treatment with prednisone and DMAR
Ds, mainly mycophenolate mofetil, methotrexate, or hydro-
xychloroquine. This observation supports previous reports
of the gut microbiome being affected by immunosuppres-
sive medications, such as methotrexate [62] and glucocorti-
coids [63]. Given a lack of dietary information in this
cohort, we could not similarly evaluate the expected effect
of diet on the gut microbiome.
By employing a de novo assembly approach to study

IgG4-RD and SSc patient microbiomes, we pinpointed
changes to the as-yet uncultured constituents of the
human gut and performed strain analysis focused on the
variation in accessory gene content. This revealed an
enrichment in IgG4-RD and SSc of cgr+ E. lenta strains,
a clade that increasingly is being attributed pro-inflammatory
functions [48]. We further observed preferential colonization

Fig. 4 Functional microbiome signatures common to IgG4-RD and SSc. a Top 20 significantly up- and downregulated MetaCyc pathways
common to IgG4-RD and SSc compared to healthy controls (FDR < 0.05). b Numerous genes belonging to the ethanolamine utilization pathway
were increased in abundance in disease. Asterisks (*, **) indicate differential abundance at FDR < 0.2 and FDR < 0.05 levels. Differential
abundances (transcripts per million, TPM) of c Sfb1 (SSc FDR = 0.008, IgG4-RD FDR = 0.07) and d HypD (SSc FDR = 0.01) in IgG4-RD and SSc
compared to controls. Boxplots show median and lower/upper quartiles; whiskers show inner fences. Full list of differentially abundant MetaCyc
pathways and KEGG KO genes are in Additional file 1: Tables S7 and S9
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of SSc patients with a strain of C. bolteae encoding a
homocysteine metabolism locus. SSc is associated with
vasculopathy that may be promoted by elevated levels
of homocysteine in circulation [51], which have been
reported in SSc and atherosclerosis. Disease-associated
microbiomes also showed changes in relative abun-
dances of lipid metabolism and ECM-modifying
enzymes. We detected an increase in the relative abun-
dances of genes encoding an ECM binding protein
(sfb1) and an enzyme that potentially allows for energy
extraction from ECM (HypD homologs). These enrich-
ments might enhance the availability of ECM to specific
microbial species for attachment and additional nutri-
ent sources [57, 59].
Several functional signatures link the microbiomes of

IgG4-RD and SSc patients to inflammation. The classical
mevalonate pathway that leads to IPP synthesis was in-
creased in both diseases. IPP and other metabolites from
this pathway are recognized by ɣδ T cells as a part of
surveillance against microbial infections [64]; differences
in the signaling molecule repertoire may alter immune
responses in IgG4-RD and SSc patients. Another unify-
ing functional characteristic that we observed was the
expansion of pro-inflammatory, Th17 cell-activating
cgr+ E. lenta [48]. Th17 cell expansion is often related to
breakdown of gut microbiome homeostasis and impaired
T regulatory cell activity and has been studied experimen-
tally in IBD [65]. Consistent with an increased abundance
of cgr+ E. lenta, the levels of circulating Th17 cells are ele-
vated in patients with IgG4-RD and SSc [66, 67]. While
there is not yet consensus in the field, mouse models of
SSc and cellular assays connect the level of IL-17 signaling
with the overproduction of collagen and fibrosis [68–70].
Such disease-relevant taxonomical and functional

characteristics encourage further study into the identifica-
tion of specific microbiome-derived molecules that can
drive autoimmune pathologies [71], such as microbiome
proteins that molecularly mimic disease-associated
autoantigens as reported in RA [72]. To date, no specific
autoantigens for IgG4-RD or SSc have been identified to
facilitate such a discovery, and this remains a challenge for
autoimmune diseases in general. Identification of autoan-
tigens and other immune-centered efforts will be needed
to link microbiome changes reported here and elsewhere
with immunophenotypes in order to further understand
the role of the microbiome in IgG4-RD and SSc.
The shared microbiome signature in IgG4-RD and SSc

raises a question about the existence of a more universal
microbiome architecture in immune-mediated disorders.
We observed expansions of E. lenta and taxa typical of
the oral cavity that are similar to autoimmune diseases
including the neuroimmune disorder multiple sclerosis
and RA, a disease with multiple joint pathologies [42, 44,
73]. Comparing the differentially abundant species in

IgG4-RD and SSc with those from ulcerative colitis and
Crohn’s disease, we observed enrichment in four species
typically overabundant in IBD (S. parasanguinis, B.
producta, Lactobacillus gasseri, and R. gnavus) as well as
common signals with 11 out of 42 species depleted in
IBD [74]. We observed Escherichia coli to be overabun-
dant, albeit weakly, in SSs but not IgG4-RD. This patho-
biont has been associated with mucosal inflammation
and decreased gut anaerobism in IBD [75]. Gut fibrosis
in Crohn’s disease leads to thickening of the intestinal
wall and strictures; therefore, we searched for the HypD
overabundance signal in this disease [24, 56] but
detected no significant associations. Future integrative
studies will be needed to present a coherent view of gut
microbiome signals broadly implicated in immune-
mediated disorders.

Conclusions
Our characterization of the gut microbiome in fibrosis-
prone IgG4-RD and SSc revealed taxonomic and functional
gut microbiome features that are common in these two
diseases, including reduction of health-associated commen-
sals and expansion of potentially pathogenic and pro-
inflammatory species. IgG4-RD and SSc patients showed
expansion of a Th17-inducing strain of E. lenta that encodes
a cgr locus, indicating a potential microbiome-driven skew-
ing of the immune cell population in the context of these
rare autoimmune diseases. We also found that microbiome
changes in IgG4-RD and SSc partially recount observations
from other autoimmune diseases and that IgG4-RD- and
SSc-specific effects likely further shape the landscape of the
associated gut microbiomes.
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