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Abstract

Background: Comprehensive breast cancer risk prediction models enable identifying and targeting women at
high-risk, while reducing interventions in those at low-risk. Breast cancer risk prediction models used in clinical
practice have low discriminatory accuracy (0.53-0.64). Machine learning (ML) offers an alternative approach to
standard prediction modeling that may address current limitations and improve accuracy of those tools. The
purpose of this study was to compare the discriminatory accuracy of ML-based estimates against a pair of established
methods—the Breast Cancer Risk Assessment Tool (BCRAT) and Breast and Ovarian Analysis of Disease Incidence and
Carrier Estimation Algorithm (BOADICEA) models.

Methods: We quantified and compared the performance of eight different ML methods to the performance of BCRAT
and BOADICEA using eight simulated datasets and two retrospective samples: a random population-based sample of
U.S. breast cancer patients and their cancer-free female relatives (N = 1143), and a clinical sample of Swiss breast cancer
patients and cancer-free women seeking genetic evaluation and/or testing (N = 2481).

Results: Predictive accuracy (AU-ROC curve) reached 88.28% using ML-Adaptive Boosting and 88.89% using
ML-random forest versus 62.40% with BCRAT for the U.S. population-based sample. Predictive accuracy
reached 90.17% using ML-adaptive boosting and 89.32% using ML-Markov chain Monte Carlo generalized
linear mixed model versus 59.31% with BOADICEA for the Swiss clinic-based sample.

Conclusions: There was a striking improvement in the accuracy of classification of women with and without
breast cancer achieved with ML algorithms compared to the state-of-the-art model-based approaches. High-
accuracy prediction techniques are important in personalized medicine because they facilitate stratification of
prevention strategies and individualized clinical management.
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Background

Since 2009, the U.S. Preventive Services Task Force rec-
ommends breast cancer screening with biannual mam-
mograms for women age 50 to 74 years old [1]. In 2013,
Switzerland also adopted a national strategy, recom-
mending biannual breast cancer screening for women
over 50 [2, 3]. Age over 50 years is the sole risk factor
considered for entering a population screening program
[4—6]. However, about 25% of breast cancer patients are
diagnosed in women under 50 years old [7, 8]. Mammo-
grams are less effective as a breast cancer screening tool
for younger women, who are more likely to have dense
breast tissue, compromising the utility of routine mam-
mograms in this age group. This contributes to diagnos-
tic delays and increased morbidity and mortality [8, 9].
Risk-based screening could be more effective, less mor-
bid, and more cost-effective [10-17]. Comprehensive
breast cancer risk prediction models, able to classify
women into clinically meaningful risk groups, will enable
identifying and targeting women at high-risk, while re-
ducing interventions in those at low risk.

The Breast Cancer Risk Assessment Tool (BCRAT),
also known as the Gail model, and the Breast and Ovar-
ian Analysis of Disease Incidence and Carrier Estimation
Algorithm (BOADICEA) model were developed to iden-
tify high-risk women based on known risk factors and
have been integrated into clinical guidelines to help
guide decision making about breast cancer risk manage-
ment [18, 19]. BCRAT was developed and validated with
data from the US Surveillance, Epidemiology, and End
Results registry [20]. The model uses eight risk factors,
i.e., age, age of menarche, age of first live birth, number
of previous biopsies, benign disease, BRCA mutations,
race, and number of first-degree relatives affected with
breast cancer, to calculate 5-year and lifetime risk for
women older than 35 years old [21]. The National Com-
prehensive Cancer Network suggests using BCRAT to
identify women with a 5-year risk greater than 1.66%
and women with remaining lifetime risk greater than
20%, who could consider risk-reducing chemo-
prevention and annual screening with mammograms
and MRIs (magnetic resonance imaging) starting at 30
years old. The BOADICEA model was the first polygenic
breast cancer risk prediction model, based on data from
2785 UK families. BOADICEA uses information from
personal and family history of breast cancer, including
information from breast cancer pathology, ethnicity, and
BRCA mutations [22]. Clinical guidelines in several
European countries and Switzerland recommend using
BOADICEA for breast cancer risk prediction [23, 24].

However, both models have considerable limitations.
BCRAT can only be used for women above 35 years old,
and only takes into account history of breast cancer in first-
degree relatives (mother, sisters, or daughters), without
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including age at diagnosis of these relatives. It does not
consider family history of ovarian cancer, which may be of
crucial importance for women with hereditary breast and
ovarian cancer (HBOC). The BOADICEA model does not
account for risk factors associated with reproductive history
and hormonal exposure and has limited utility in cases with
small family history. Although both models have been vali-
dated with large cohort data, their discriminatory ability,
area under the ROC (receiver operating characteristics)
curve, is between 0.53 and 0.64 [21, 25—-28]. There is 36 to
47% chance that the BCRAT and BOADICEA model will
not identify high-risk women, while some low-risk women
may receive unnecessary preventive treatments. Both
models make implicit assumptions that risk factors relate
to cancer development in a linear way and are mostly inde-
pendent from other risk factors. Thus, both models likely
oversimplify complex relationships and non-linear interac-
tions in numerous risk factors [27].

Machine learning (ML) forecasting

ML offers an alternative approach to standard prediction
modeling that may address current limitations and im-
prove accuracy of breast cancer prediction tools [29].
ML techniques developed from earlier studies of pattern
recognition and computational statistical learning. They
make fewer assumptions and rely on computational al-
gorithms and models to identify complex interactions
among multiple heterogeneous risk factors. This is
achieved by iteratively minimizing specific objective
functions of predicted and observed outcomes [30]. ML
has been used in models related to cancer prognosis and
survival and produced better accuracy and reliability es-
timates [31-34]. To date, very few studies applied ML
methods for personalized breast cancer risk prediction
or compared the predictive accuracy and reliability with
models commonly used in clinic practice [35]. The pur-
pose of this study was to apply different ML techniques
for forecasting individualized breast cancer risk and to
compare the discriminatory accuracy of ML-based esti-
mates against the BCRAT and BOADICEA models.

Methods

To provide strong assessment, reliable comparison, and
reproducible results, we compared ML-based estimates
and estimates from BCRAT and BOADICEA model using
eight synthetic simulated datasets and two actual observa-
tional datasets. In order to have fair comparisons, we used
the same risk factors as BCRAT and BOADICEA models,
respectively, as input for the ML algorithms in each
comparison.

Simulated datasets
We used simulated data to compare the performance
between the different ML algorithms and determine the
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stability and validity of these predictions within each al-
gorithm. We generated two sets of four simulated data-
sets (eight in total), one set consistent with the input
values of BCRAT and the other consistent with the input
values of the BOADICEA model. The BCRAT and BOA-
DICEA models rely on different risk factors, which
necessitated this dichotomy. For each of the two scenar-
ios, we generated four synthetic datasets: A. simulated
data with no signal (null data); B. simulated data with
artificial signals; C. simulated dataset (B) adding 20%
missing values; and D. simulated dataset (C) after apply-
ing multiple imputations. We randomly masked as miss-
ing 20% of values in datasets (B) to generate datasets
(C), then we applied multiple imputations to datasets
(C) to generate datasets (D). The cancer outcome for
simulated dataset (B) for the BCRAT was simulated
based on linear aggregation effects of all variables, with
an artificial effect size for each variable. Variables in the
null dataset (A) had no signal—these were generated
with completely random values within specific ranges. In
our simulation, having certain risk factors could elevate
an individual’s breast cancer risk. This relative risk (sig-
nal or artificial effect size) is given according to pub-
lished meta-analyses for that specific risk factor. Each
individual had a baseline probability randomly assigned
to them. After adding each risk factor’s attribution (RR
multiplied by baseline) to baseline, we set a cutoff of the
final probability to classify each sample as “healthy” or
“sick”. Datasets (B) for BCRAT and BOADICEA have
different input variables and data structure. For example,
in data used for the BOADICEA model, each individual
is imbedded into a family pedigree and have two individ-
uals as parents. We randomly set family sizes between 3
and 80 members, and the number of generations from 1
to 5 in each family, based on our observations in the
Swiss clinic-based dataset. Family members’ age and age
gap between the two closest generations was set accord-
ing to average age for first child birth. The pedigree
(hierarchical) dataset (B) with artificial signal for the
BOADICEA model was generated with R Package “pe-
dantics,” enabling pedigree-based genetic simulation,
pedigree manipulation, characterization, and viewing
[36]. Multiple imputations with R package “MICE”
(multivariate imputation by chained equations) [37] ad-
dressed missing data in datasets (C).

US population-based retrospective data

We used baseline data from a prospective randomized
trial conducted in Michigan (USA) including a statewide,
randomly selected sample of young breast cancer survi-
vors (YBCS) who were diagnosed with invasive breast
cancer or ductal carcinoma in situ (DCIS) and their
cancer-free female relatives [38, 39]. The trial recruited
women diagnosed with breast cancer younger than 45
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years old from the state cancer registry. The sample was
stratified by race, Black versus White/Other, for ad-
equate representation of Black YBCS. YBCS recruited
cancer-free, first- and second-degree female relatives.
The trial collected all information required for calculat-
ing BCRAT scores from 850 YBCS and 293 of relatives
(total n = 1143), after excluding individuals younger than
35 years old.

Swiss clinic-based retrospective data

The oncology department at the Geneva University Hos-
pital (HUG) has been offering genetic evaluation and test-
ing since 1998 to breast cancer patients and cancer-free
individuals. During the genetic consultation process, infor-
mation about demographic and clinical characteristics,
disease history, previous genetic test results, and a detailed
family pedigree are recorded with “Progeny” software [40].
Information from pathology reports, archived tumor tis-
sue, and cancer treatment is recorded for breast cancer
patients. Data from genetic consultation records and Pro-
geny files were extracted with R packages “tm” and “gdata”
[41] from 2481 families with totally 112,587 individuals.
Extracted data is suitable for risk calculations with the
BOADICEA model for one female member from each
family. Information from 2481 women are included in this
study, who are either the first female in their family to re-
ceive genetic evaluation or testing, or were a first-degree
relative of a male who received genetic evaluation or
testing.

Missing values

For the US population-based dataset, there were less
than 3% missing values among the variables used by the
BCRAT model. For Swiss clinical datasets, there were
about 13% missing values among the variables used by
the BOADICEA model. Among those missing values,
BRCA mutations, estrogen receptor, and progesterone
receptor attributed the most (11%). Thus, missing values
in BRCA mutation and hormone receptor testing were
given a separate category of “unknown” in the analyses,
in addition to “positive” and “negative.” This approach is
also consistent with the flexibility of the BOADICEA
models in handling missing information.

Statistical analyses

Descriptive statistics, i.e., frequencies, percentages, means,
and standard deviations, were computed describing sam-
ple characteristics for both categorical and continuous
variables in the BRCAT and BOADICEA models and in
ML approaches for n = 1143 US YBCS and cancer-free rel-
atives and n = 2481 Swiss cancer patients and cancer-free
individuals.
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BCRAT

Comparisons between ML versus BRCAT were based on
performance assessment on five datasets: Simulated data
A to D (n=1200) and retrospective data from the U.S.
population-based trial (n =1143 women). The R package
“brca” version 2.0 was used to calculate absolute lifetime
risk of invasive breast cancer according to BCRAT algo-
rithm for specific race/ethnic groups and age intervals
for each individual in the datasets [42].

BOADICEA model

Comparisons between ML versus the BOADICEA model
were based on performance assessment on five datasets:
Simulated data A to D (n = 2500 women) and retrospect-
ive data from HUG with 2481 females from 2481 fam-
ilies including 112,587 family members. Lifetime risk
predictions were generated with the web-based batch
processing from the BOADICEA web application. The
lifetime risk for each woman was calculated using data
from all the members in her family. In simulated data-
sets A to D, we randomly assigned a female member in
each family as the index case.

ML algorithms

We used both model-based and model-free ML tech-
niques for predictive analytics. The model-based ap-
proaches included generalized linear models (GLM),
logistic regression (LOGIT), linear discriminant analysis
(LDA), Markov Chain Monte Carlo generalized linear
mixed model (MCMC GLMM), and quadratic discrim-
inant analysis (QDA) [43]. The model-free predictive an-
alytics involved adaptive boosting (ADA), random forest
(RF), and k-nearest neighbors (KNN) [43]. We selected
these algorithms based on prior reports of their reliabil-
ity and effectiveness in identifying, tracking, and exploit-
ing salient features in complex, heterogeneous, and
incongruent biomedical and healthcare datasets [29, 43—
46]. Variables included in each comparison were listed
in Table 1.

One benefit of using ML approaches was the super-
vised classification of breast cancer patients and cancer-
free controls, where controls could outnumber patients
or vice versa. We rebalanced the datasets prior to ML
predictions to reduce the potential for estimate bias with
the R packages “unbalanced™(racing for unbalanced
methods selection) and “SMOTE” (Synthetic Minority
Over-sampling TEchnique) [47, 48]. These packages im-
plement known ML techniques to propose a racing algo-
rithm for adaptively selecting the most appropriate
strategy for a given unbalanced task.

To ensure the reliability of ML predictions and the
consistency of the forecasts, we used internal statistical
n-fold cross-validation. This is an alternative strategy for

Page 4 of 11

Table 1 Variables included in ML for comparison with BCRAT
and BOADICEA

Variables list

Comparison ~ Comparison

between ML between ML

and BCRAT ~ and
BOADICEA

Age

Age at menarche
Age at first live birth
Race

Number of biopsies

Atypical hyperplasia

NN N NENENEN

Number of first-degree relatives
with breast cancer

\

Breast cancer

Family pedigree (beyond second-degree v
contained affected and unaffected

members from both maternal

and paternal side) including:

Age (or age at death)
Gender

Deceased status
Ashkenazi Jewish

Ovary cancer age onset

NN NN

Prostate cancer age onset (male
member only)

Pancreatic cancer

Pancreas cancer age onset

Breast cancer age onset

Contralateral breast cancer age onset
Estrogen receptor

Progesterone receptor

NN NS NIRNEN

BRCA mutation

validating risk estimates without a prospective dataset
[49] and provides a powerful preventative measure
against model overfitting [50]. Random subsampling
split the entire datasets into n samples of equal size (n-
folds). Each algorithm used #n -1 folds for training the
ML algorithm and tested its accuracy with the last fold
of the data in each of the n experiments. The final error
estimate of the classification was obtained by averaging
the n individual error estimates. We used n =10 folds
cross-validation with 20 repetitions in this process [51].

Comparisons of predictive accuracy

The performance of BCRAT and the BOADICEA
models were evaluated using measure of the area under
the receiver operating characteristic curve (AU-ROC),
while for the ML techniques the performance is pre-
sented with the mean AU-ROC from 10-fold cross
validations.
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Variable importance ranking

To understand, interpret, and gain trust in the ML tech-
niques, we identified the salient features with the highest
contribution to the accuracy of these predictions by
ranking them within each cross validation using training
sets (1 — 1 folds). These features were explored to ensure
they are in line with both human domain knowledge and
reasonable expectations. For decision tree classification
methods (e.g., RF and ADA), we ranked variable import-
ance on variable selection frequency as a decision node.
For GLM, LOGIT, LDA, QDA, and MCMC GLMM al-
gorithms, variable importance was determined by the
coefficient effect size. KNN used an overall weighting of
the variable within the model.

Results

Sample characteristics

Table 2 presents sample characteristics of the two inde-
pendent observational retrospective datasets. The US
population-based trial oversampled Black participants.
There were more cancer cases than controls in the US
sample, while the opposite was true for the Swiss
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sample. The average number of family members affected
by breast cancer was higher in the US database, while
the Swiss database included more known mutation car-
riers. Despite these differences, using breast cancer as an
outcome grouping variable, we had sufficient number in
each group even before applying a data balancing
protocol.

Prediction accuracy

Tables 3 and 4 present prediction ability comparison for
BCRAT and BOADICEA models and the ML tech-
niques. In the simulated dataset A with no signal, all
approaches failed to discriminate cancer cases from
cancer-free controls, i.e., AU-ROCs were around 50%. In
the simulated dataset B with artificial signal, most ML
algorithms (except GLM) showed about 90% accuracy in
prediction. The ML (except GLM) methods also main-
tained high accuracy (89.77-93.00%) in dataset C with
20% missing values and dataset D with multiple imputa-
tions. Using the same risk factors and similar sample
sizes, the accuracy of ML techniques was superior to
BCRAT and BOADICEA models in the US and Swiss

Table 2 Sample characteristics of the US population-based sample (n = 1143) and the Swiss clinic-based sample (n = 2481)

Variables included in BCRAT and BOADICEA
models and in ML algorithms

US population-based sample

n=1143

Swiss clinic-based sample
n=2481

Age (range)
Age at menarche (range)
Age at first live birth (range)
Number of biopsies (n = 847)
Atypical hyperplasia
Breast cancer
First-ductal carcinoma in situ (DCIS)
First-invasive breast cancer
First-breast cancer age onset (range)
Bilateral breast cancer
Estrogen receptor (ER) positive
Progesterone receptor (PR) positive
Pancreatic cancer
Pancreatic cancer age onset (range)
Ovarian cancer
Ovarian cancer age onset (range)
Having also breast cancer
Ethnicity (% Black)
Ashkenazi Jewish origin
Number of first-degree relatives with breast cancer
Breast cancer patients
Relatives of breast cancer patients

BRCAT or BRCA2 germline mutations

50.86 + 6.22 (35-64)
1256 +1.54 (8-18)
24.29£562 (13-42)
1.20+£1.21

14 (1.65%)

850 (74.37%)

434 (51.06%)

404 (47.52%)

40.03 £4.79 (26-54)
4 (047%)

9 (0.79%)

45.83 £5.00 (36-50)
4

401 (35.08%)

12 (1.05%)

098+ 1.05
0.81+1.05
1494088

32 (2.79%) 235 tested

50.78 +12.77 (13-89)
1291 +1.59 (8-18)
24.13£5.72 (15-48)

886 (35.71%)

50 (5.64%)

807 (91.08%)

46.07 £10.69 (22-84)
160 (18.06%)

618 (69.75%)

561 (63.32%)

13 (0.52%)
55.10+9.35 (36-75)
133 (5.36%)

56.44 +13.16 (21-85)
20

71 (2.86%)

65 (2.29%)
025055

209 (8.42%) 1052 tested

- Data not available
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observational retrospective samples. For the US
population-based sample, predictive accuracy reached
88.28% using ADA and 88.89% using RF versus BCRAT
AUC 62.40%. For the Swiss clinic-based sample, predict-
ive accuracy reached 90.17% using ADA and 89.32%
using MCMC GLMM versus BOADICEA AUC 59.31%.
Compared to BCRAT and BOADICEA models, predict-
ive accuracy increased by approximately 35% and 30%,
respectively. In order to visualize the accuracy improve-
ment, we generated the ROC curves in Fig. la, b from
predictions of BCRAT and BOADICEA models and one
ML approaches performed best.

ML variable importance rankings

Tables 5 and 6 present the most influential variables in
different ML algorithms and the relative rank of the top
five variables in decreasing order. In the US population-
based sample, three of the risk factors included in
BCRAT (number of biopsies, age, and number of first-
degree relatives with breast cancer) were the top-ranked
risk factors for almost all ML algorithms, except for
LDA. Four ML algorithms (RF, ADA, KNN, and MCMC
GLMM) identified number of biopsies as the most im-
portant risk factor for discriminatory accuracy (Table 5).
For the Swiss clinic-based sample, two of the risk factors
included in the BOADICEA model (age, family history)
were the top-ranked risk factors for all ML algorithms,
except for KNN and QDA (Table 6).

Discussion

We examined whether using ML algorithms could im-
prove breast cancer predictive accuracy compared to the
BCRAT and BOADICEA models. We computed the pre-
dictive accuracy of these two models and eight different
ML algorithms using datasets with artificial signals
(datasets B to D) and two observational retrospective
datasets from two different countries and different target
samples (population-based versus clinic-based). Com-
pared to BCRAT and the BOADICEA models, most ML
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techniques we tested were superior at distinguishing
cancer cases from cancer-free controls. ML algorithms
improved significantly the predictive accuracy of both
models from less than 0.65 to about 0.90, especially
when tested with real samples. ML algorithms that pro-
duced the best accuracy were ADA followed by RF using
variables of BCRAT, and the MCMC GLMM using vari-
ables of the BOADICEA model. The increased predictive
accuracy observed with ML algorithms was not due to
additional input variables, since we used exactly the
same risk factors as the BCRAT and the BOADICEA
models. Rather, this was due to inherently better predict-
ive ability of ML algorithms. With supervised learning
approaches, the artificial or natural complexities of each
dataset were restored and adhered to different algo-
rithms with high accuracy. When the datasets were
intentionally perturbed by introducing missing values or
performing multiple imputations, the prediction per-
formance of the ML algorithms remained stable.

Using different simulated datasets allow us to control
the input and assess the case-classification/prediction re-
sults relative to “ground truth.” We simulated dataset
(A) as a “null” reference case-study. This helps us iden-
tify false-positive predictions, because when no signal
exists in the dataset, all approaches should fail to classify
the samples. In simulated datasets (B), (C), and (D), we
created the artificial signals within the datasets to
strongly correlate with the outcome (breast cancer yes/
no). This approach allows us to test whether the ma-
chine learning algorithms we used can detect these arti-
ficial signals and provide valid and stable predictions,
even when there are missing values. This helps us iden-
tify false-negative predictions.

In the simulated datasets, we assigned estimations
(e.g., coefficient or weight) to each risk factor based on
published epidemiological data. Unfortunately, there is
no available information about the underlying estimation
of each risk factor used in the BCRAT and BOADICEA
models. The only available information is that these

Table 3 Performance AU-ROC curve of BCRAT and ML algorithms (with standard deviation) predicting breast cancer lifetime risk
from simulated datasets (n =1200) and the US population-based sample (n=1143)

Dataset BCRAT ML: ML: Logistic ML: adapt ~ ML: Linear ~ ML: K-nearest ML: linear ~ ML: quadratic ML:
random Regression  boosting Model neighbors discriminant discriminant ~ MCMC
forest GLMM

A.Sim_no_signal 0.5333 05016 05133 0.5067 0.5015 0.5054 05158 05133 0.5090
(0.0231) 0.0271)  (0.0307) (0.0220) 0.0211) (0.0276) (0.0323) (0.0210)

B.Sim_atifical_signal 0.5261 0.9308 0.9417 0.9292 0.7859 0.9125 0.9312 09188 0.9329
0.0171) (0.0103)  (0.0095) (0.0197) (0.0109) (0.0154) 0.0111) (0.0087)

C. Sim_ atifical_signal +20% 0.5068 0.9275 0.9217 0.9258 0.7807 0.9012 0.9213 09104 09191

missing (0.0179) (0.0259)  (0.0113) (0.0227) (0.0120) (0.0202) (0.0237) (0.0210)

D. Sim_ atifical_signal + 20% 0.5035 0.9167 09300 09213 0.7824 0.9058 09275 09121 09232

missing + imputation (0.0184) (0.0111)  (0.0119) (0.0200) (0.0117) (0.0148) (0.0081) (0.0099)

US population-based sample  0.6240 0.8889 07192 08828 06813 0.8089 0.8692 0.8675 0.8234
(0.0201) (0.0314)  (0.0229) (0.03798) (0.0217) (0.0284) (0.0241) (0.0189)
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Table 4 Performance AU-ROC curve of the BOADICEA model and ML algorithms (with standard deviation) predicting breast cancer
lifetime risk from simulated datasets (n = 2500) and Swiss clinic-based sample (n= 112,587 women from 2481 families)

Dataset BOADICEA ML: ML: logistic ML: adapt ML: ML: K-nearest ML: linear ML: quadratic ML:
model random  regression boosting  linear neighbors discriminant discriminant ~ MCMC
forest model GLMM
A.Sim_no_signal 0.5103 0.5020 0.5093 0.5029 0.5151 0.5254 0.5094 0.5002 0.5075
(0.0197)  (0.0210) (0.0177) (0.0190)  (0.0199) (0.0241) (0.0216) (0.0201)
B.Sim_ atifical_signal 0.5392 09101 09233 09321 0.6659 0.9301 0.9109 0.9244 09219
(0.0148)  (0.0172) (0.0122) (0.0164)  (0.0159) (0.0187) (0.0166) (0.0151)
CSim_ atifical_signal + 20% 0.5022 0.8977 0.9100 0.9291 0.6407 0.9232 0.8982 0.9209 0.9088
missing (0.0183)  (0.0293) (0.0156) (0.0257)  (0.0180) (0.0276) (0.0297) (0.0219)
D.Sim_ atifical_signal + 20% 05115 0.9028 0.9203 0.9299 0.6463 0.9276 0.9035 0.9220 09154
missing +imputation 0.0127)  (0.0157) (0.0110) (0.0147)  (0.0140) (0.0159) (0.01471) (0.0137)
Swiss clinic-based sample 0.5931 0.8535 08271 0.9017 06921 0.8377 0.7899 0.8369 0.8932
(0.0214)  (0.0189) (0.0162) (0.0202)  (0.0156) (0.0188) (0.0192) (0.0149)
a ROC Curve for U.S. population-based sample (n=1,143)
:;EL
R
Chance
——— BCRA
° ML-RandomForest
s -~ ] e 95%Cl
0.0 0.2 04 06 08 1.0
False positive rate
b ROC Curve for Swiss clinic-based sample (2,481 families)
_g_;
g <
—— Chance
—— BOADICEA
o —— ML-AdaptBoosting
= - 95%Cl

T T T T T T
0.0 0.2 0.4 06 08 1.0

False positive rate

Fig. 1 a The area under the receiver operating characteristic curves (AU-ROC) for BCRAT and ML-Random forest approach. b The area under the
receiver operating characteristic curves (AU-ROC) for BOADICEA model and ML-adapt boosting approach
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Table 5 Top five important risk factors in descending order for different ML algorithms based on the US population-based training
samples in 10-fold internal statistical cross-validations

ML: random ML: logistic ML: adapt ML: linear model ML: K-nearest ML: linear ML: quadratic ML: MCMC
forest regression boosting neighbors discriminant discriminant GLMM
Number of Number of first-  Number of Age Number of Age Number of first- Number of
biopsies degree relatives  biopsies biopsies degree relatives  biopsies

with breast with breast

cancer cancer
Age Age Age Number of Number of first-  Number of Number of Age

biopsies degree relatives  biopsies biopsies
with breast
cancer
Number of first-  Number of Number of first-  Number of first-  Age Ethnicity Age Number of first-
degree relatives  biopsies degree relatives  degree relatives degree relatives
with breast with breast with breast with breast
cancer cancer cancer cancer
Age at Ethnicity Age at Age at Ethnicity Number of first-  Ethnicity Age at first live
menarche menarche menarche degree relatives birth
with breast
cancer

Ethnicity Age at first live  Ethnicity Age at first live  Age at first live  Age at first live  Age at Age at

birth birth birth birth menarche menarche

estimations are derived from large cohort studies over
time. Therefore, it is possible that the estimations in
the simulated datasets are different from the estima-
tions used by the BCRAT and BOADICEA models,
which may explain the underperformance of the later
models to predict the class in the simulated datasets.
Moreover, the simulated datasets have oversimplified
artificial signals, which make it relatively easier for
the more general approaches of machine learning to
pick up a signal and identify features in the con-
trolled simulated data than in real datasets. Thus, the
machine learning-based algorithms showed opposite
trends on simulated data compared to the model-
based methods. Finally, the simulated datasets were
not used for a comparison between the machine
learning algorithms and the BCRAT or the BOADI-
CEA model. The main purpose of using simulated
datasets was to compare predictions between different

machine learning algorithms and the stability within
each machine learning method.

Ranking importance of variables in each model was
consistent with our expectations. Biopsy testing indi-
cated suspicious cell abnormality. Number of first-
degree relatives affected with breast cancer as well as
cancer age onset in a family pedigree can partially reflect
the common environmental exposures, inherited infor-
mation, and lifestyles. We observed variations and simi-
larities in the importance of risk factors depending on
the core algorithms in each ML approach and variable
types. ADA and RF were both based on decision trees
and resembled closely in variables and ranking. QDA
placed more importance on categorical variables, e.g.,
number of first-degree relatives with breast cancer, while
LDA placed more importance on continuous variable,
e.g., age in both comparisons. This finding has implica-
tions for future research aiming to develop a new breast

Table 6 Top five important risk factors in descending order for different ML algorithms based on the Swiss clinical-based training

samples in 10-fold internal statistical cross-validations

ML: random ML: logistic ML: adapt ML: linear model ML: K-nearest ML: linear ML: quadratic ML: MCMC
forest regression boosting neighbors discriminant discriminant GLMM
Breast cancer Age Breast cancer Age Family history Age Breast cancer age Breast cancer
age onset age onset onset age onset
Age Breast cancer Age Breast cancer Mutation Breast cancer Mutation Age
age onset age onset age onset
Mutation Ashkenazi Mutation Ashkenazi Age Mutation Age Mutation
Jewish origin Jewish origin
Ashkenazi Ovarian cancer  Ashkenazi Mutation Ashkenazi Ashkenazi Ashkenazi Jewish  Ovarian cancer
Jewish origin age onset Jewish origin Jewish origin Jewish origin origin age onset
Ovarian cancer ~ Mutation Ovarian cancer ~ Ovarian cancer ~ Ovarian cancer ~ Ovarian cancer ~ Ovarian cancer Ashkenazi
age onset age onset age onset age onset age onset age onset Jewish origin
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cancer risk prediction model, incorporating established
and newly evaluated risk factors.

As firm supporters of “open-science,” we have pack-
aged, documented, and distributed the complete end-to-
end R-protocol used to generate the synthetic data and
perform all data analytics reported in this manuscript.
We have shared the protocol via GitHub (https://github.
com/SOCR/ML_BCPY/).

Strengths and limitations

The inclusion-exclusion selection criteria of the US and
the Swiss datasets may have influenced the association
between observed variance and outcomes. In the US
population-based sample, YBCS had fewer affected rela-
tives than their cancer-free relatives. Thus, number of af-
fected relatives was detected as an important variable
but without external validity in interpretation. Interpret-
ability of the function modeled by ML algorithms is only
partially limited by the “black-box” nature of ML algo-
rithms in our study because we included a limited num-
ber of well-established breast cancer risk factors.
However, the inherent complexity of how risk factors
interact with each other, their independent effect on the
outcome, and how effect sizes are determined within
each ML algorithm is not known.

Significant strengths of the study include the novelty
of the approach, i.e., applying ML algorithms in individ-
ual breast cancer risk prediction and comparing predict-
ive accuracy with existing models. The improvement
achieved with ML algorithms in accurate classification
of women with and without breast cancer compared to
the state-of-the-art model-based approaches was strik-
ing. We demonstrated a range of ML algorithms with
cross-validations, which is lacking in other applications
of ML for cancer prognosis [32]. Different ML algo-
rithms for feature selection and classification showed
great adaptability and discriminatory accuracy in our
study by handling multidimensional and heterogeneous
data. Ranking variable importance may inform algorithm
selection with diverse predictive risk factors for future
development of new risk prediction models.

Conclusions

Predictive models are essential in personalized medicine
because they contribute to early identification of high-
risk individuals based on known epidemiological and
clinical risk factors. Accurate breast cancer risk esti-
mates can inform clinical care and risk management
across the breast cancer continuum, e.g., behavioral
changes, chemoprevention, personalized screening, and
risk-stratified follow-up care. Available risk prediction
models have an overall accuracy less than 0.65. ML ap-
proaches offer the exciting prospect of achieving im-
proved and more precise risk estimates. This is the first
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step in developing new risk prediction approaches and
further explores diverse risk factors. ML algorithms are
not limited to a specific number of risk factors but have
the flexibility to change or incorporate additional ones.
The improvement in predictive accuracy achieved in this
study should be further explored and duplicated with
prospective databases and additional risk factors, e.g.,
mammographic density, risk factors in IBIS Breast Can-
cer Risk Evaluation Tool, and polygenic genetic scores.
Improvements in computational capacity and data man-
agement in healthcare systems can be followed by
opportunities to exploit ML to enhance risk prediction
of disease and survival prognosis in clinical practice [52].
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