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Abstract 

Background: Mammographic density (MD) phenotypes, including percent density (PMD), area of dense tissue (DA), 
and area of non‑dense tissue (NDA), are associated with breast cancer risk. Twin studies suggest that MD phenotypes 
are highly heritable. However, only a small proportion of their variance is explained by identified genetic variants.

Methods: We conducted a genome‑wide association study, as well as a transcriptome‑wide association study 
(TWAS), of age‑ and BMI‑adjusted DA, NDA, and PMD in up to 27,900 European‑ancestry women from the MODE/
BCAC consortia.

Results: We identified 28 genome‑wide significant loci for MD phenotypes, including nine novel signals (5q11.2, 
5q14.1, 5q31.1, 5q33.3, 5q35.1, 7p11.2, 8q24.13, 12p11.2, 16q12.2). Further, 45% of all known breast cancer SNPs 
were associated with at least one MD phenotype at p < 0.05. TWAS further identified two novel genes (SHOX2 and 
CRISPLD2) whose genetically predicted expression was significantly associated with MD phenotypes.

Conclusions: Our findings provided novel insight into the genetic background of MD phenotypes, and further dem‑
onstrated their shared genetic basis with breast cancer.

Keywords: Mammographic density, Breast cancer, Genome‑wide association study (GWAS), Transcriptome‑wide 
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Background
Heterogeneity of breast tissue composition can be 
observed through radiographic imaging using mammog-
raphy. Epithelial and connective tissues are radiologically 
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dense with white appearance, while adipose tissue is radi-
ologically lucent with dark appearance on a mammogram 
[1]. Mammographic density (MD) has been widely estab-
lished as one of the strongest risk factors for breast can-
cer [2–4], the most common cancer type among women 
in the USA [5]. Specifically, quantitative MD measures, 
including mammographic dense area (DA), non-dense 
area (NDA), and the percentage of dense area in the 
whole breast (PMD), have all been independently associ-
ated with breast cancer [3, 6–8]. In analyses adjusting for 
body mass index (BMI) and age, women with higher DA 
and PMD have an elevated risk of breast cancer, while 
NDA is associated with a decreased breast cancer risk.

Twin studies indicate that genetic factors explain a large 
fraction of the variation in MD phenotypes, with herit-
ability estimates for DA, NDA, and PMD, after adjust-
ing for age and individual-specific shared environmental 
factors, exceeding 60% [9–11]. Previous genome-wide 
association studies (GWAS) have identified 46 genetic 
variants that are significantly (p < 5 ×  10−8) associated 
with at least one MD phenotype, including 27 associ-
ated with DA, 17 associated with NDA, and 20 associated 
with PMD [12–17]. Importantly, many of these vari-
ants have also been discovered as the susceptible loci of 
breast cancer, suggesting the critical role played by MD 
as an intermediate phenotype for the disease. However, 
only a small fraction of the variance of MD phenotypes 
can be explained by these significant variants [14, 17]. To 
enhance our understanding of the genetic basis of MD, 
additional GWAS with larger sample sizes is needed.

In the present study, we conducted GWAS and a 
transcriptome-wide association study (TWAS) in up to 
27,900 European ancestry women with the goal of identi-
fying novel loci associated with MD phenotypes.

Methods
Study population and data collection
We conducted a GWAS for three MD phenotypes (DA, 
NDA, and PMD) using data from 21 studies which pro-
vided individual-level genotype and phenotype data 
(Additional file  2: Table  S1) as well as nine additional 
studies which provided GWAS summary statistics (Addi-
tional file  2: Table  S2), under the Breast Cancer Asso-
ciation Consortium (BCAC) and the Markers of Density 
Consortium (MODE). The overall study sample com-
prised of 6666 breast cancer cases and 21,234 controls. 
All the individuals had PMD data collected, while the 
DA and NDA measures were only available in a propor-
tion of the study population. The final sample sizes used 
in the meta-analyses were 24,579 (DA), 24,689 (NDA), 
and 27,900 (PMD). For breast cancer cases, mammo-
grams collected prior to the cancer diagnosis were used 
for density assessment. Study-specific approaches to 

obtain quantitative measures of MD phenotypes are 
summarized in Additional file  2: Table  S1, and study-
specific protocols for MD measurement are given in the 
Additional file 1. Most of studies included in our analysis 
used CUMULUS, a computer-assisted semi-automated 
thresholding software [18]. Age and BMI at time of mam-
mogram collection were included as covariates in the 
GWAS. For participants with missing BMI at mammo-
gram (N = 1767), self-reported BMI within five years of 
mammogram collection was used as an approximation.

Individual-level genotype data were generated with 
either the iCOGs [19] or OncoArray [20] arrays. We 
applied standard quality control filters as described 
elsewhere [19]. Genotype data were imputed to 1000 
Genomes phase 3 version 5 using IMPUTE2 [21]. Gen-
otype dosage, ranging between 0 and 2, was generated 
for imputed variants. Single nucleotide polymorphisms 
(SNPs) with low imputation quality (INFO < 0.3) or with 
a minor allele frequency (MAF) < 1% were excluded. 
Approximately 9.8 million variants were included in the 
association analysis. Genomic positions of the variants 
were based on Genome Reference Consortium GRCh37 
(hg19).

Genome‑wide association study (GWAS)
We conducted study-specific multivariable adjusted lin-
ear regression analysis for each MD phenotype. All MD 
phenotypes were square-root transformed before analy-
sis as this resulted in distributions that were close to 
normal. Age and 1/BMI at mammogram, and the first 
ten ancestry informative principal components, as pre-
viously described [14], were included as covariates in 
each regression model. Analyses were performed using 
R 3.6.1 (R Foundation). We then combined study-specific 
GWAS results with previously derived GWAS summary 
statistics using a sample-size weighted meta-analysis (the 
‘SAMPLESIZE’ scheme as implemented in METAL [22]). 
To be included in the meta-analysis, a variant needed to 
have a valid Z-statistic from at least three individual stud-
ies and a minimum sample size of 3000. Regional asso-
ciation plot for each genome-wide significant locus in the 
meta-analysis was generated using the LocusZoom soft-
ware [23].

Sensitivity and conditional analysis
The majority of studies included in our analysis were 
population-based or breast cancer nested case–con-
trol studies. To assess if any identified SNP-MD asso-
ciations was an artifact resulting from oversampling 
of breast cancer cases in our population, we replicated 
the association analysis for all genome-wide signifi-
cant SNPs in controls only (N = 21,234), as a sensitivity 
analysis. As mammographic NDA is strongly associated 
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with BMI, we also assessed the association between sig-
nificant NDA loci and BMI among 13,915 individuals 
with NDA, BMI, and genotype data available.

To quantify the number of independent signals in 
each significant GWAS locus, we performed a condi-
tional analysis using the COndition and JOint analy-
sis tool implemented in the Genome-wide Complex 
Trait Analysis software (COJO-GCTA) [24]. Since 
COJO-GCTA  requires beta and standard error esti-
mates, which were not available in our sample-size 
weighted meta-analysis data, we performed a stand-
ard error weighted meta-analysis with the normal-
ized square-rooted MD phenotypes (per study, 
[sqrt-MD − mean(sqrt-MD)]/stderr(sqrt-MD)) as the 
outcomes. For each locus, we defined the lead SNP as 
the first independent signal, and performed the con-
ditional analysis for SNPs located within + / − 500  kb. 
The top-ranked SNP with conditional p value <  10−5 
was added to the independent signal list, and the con-
ditional analysis was run again for rest of the SNPs. 
The conditional analysis was halted when no variant 
reached the threshold of conditional p value <  10−5. For 
the loci with multiple independent signals identified in 
the conditional analysis, all signals are annotated on the 
regional association plot.

Breast cancer association analysis
We examined the association between MD phenotype-
associated SNPs and breast cancer risk, overall and by 
estrogen receptor (ER) status, using publicly available 
breast cancer GWAS summary statistics [19], based on 
122,977 cases (including 69,501 ER-positive and 21,468 
ER-negative cases) and 105,974 controls of European 
ancestry from the BCAC. We also assessed if known 
breast cancer SNPs [25] were associated with MD 
phenotypes.

Exploratory bioinformatics analysis
We used linkage disequilibrium (LD) score regression to 
estimate the SNP heritability (h2

SNP) of MD phenotypes 
[26]. We partitioned the h2

SNP by 74 functional genomic 
categories [27], and estimated the heritability enrich-
ment for each category. We quantified the genome-wide 
genetic correlation between each MD phenotype and 
breast cancer [19, 28]. We also estimated the local genetic 
correlation between MD phenotypes and overall breast 
cancer using ρHESS [29, 30], which estimates the local 
shared heritability between two traits across 1703 inde-
pendent genomic blocks, based on LD in European ances-
try populations [31]. We defined statistically significant 
local genetic correlations as p < 0.05/1703 = 2.94 ×  10−5.

Transcriptome‑wide association study (TWAS)
To estimate the association between imputed gene 
expression and MD phenotypes, we conducted a tran-
scriptome-wide association analysis (TWAS). We used 
genotype and gene expression data in mammary tissue 
from 396 individuals collected by the GTEx consortium 
(Release V8) to build gene-specific SNP prediction mod-
els of gene expression [32]. Predictive models were built 
based on variants located + / − 500 kb of each gene, using 
three different approaches (Top 1, Elastic Net [33], and 
LASSO [34]). Gene-specific expression levels were then 
imputed with the model showing the highest predictive 
R-square based on cross-validation. A total of 7284 genes 
with nominally significant (p < 0.01) heritability were 
included in the association analysis for each MD pheno-
type. Construction of predictive models and association 
analysis using GWAS summary statistics were performed 
using the R-based pipeline FUSION [34]. A significance 
threshold of p < 0.05/(7284*3) = 2.29 ×  10−6 was utilized 
to identify statistically significant associations between 
imputed gene expression levels and MD phenotypes.

Replication of novel GWAS and TWAS findings
Replication analyses of the novel GWAS loci were per-
formed using data from a previous GWAS meta-analysis 
of mammographic density phenotypes in an independ-
ent population of 24,192 European ancestry women par-
ticipating in the Kaiser Permanente Northern California 
(KPNC) Research Program on Genes, Environment and 
Health (RPGEH) [17]. Briefly, MD phenotypes were 
measured using Cumulus6 on a single craniocaudal view 
from 20,311 Hologic and 3881 GE full-field digital mam-
mography (FFDM) exams. MD phenotypes were trans-
formed separately within each cohort to attain standard 
normal distributions and to facilitate meta-analysis and 
interpretation of effect sizes in SD units. Genotypes were 
assayed using the Affymetrix Axiom array with > 650,000 
variants, and imputed using the 1000 Genomes Project 
Phase III reference panel. Allele dosage effects were esti-
mated using linear regression models adjusted for age at 
mammography, ln(BMI), the first ten principal compo-
nents of European ancestry, genotyping reagent kit, and 
image batch separately in the Hologic and GE cohorts, 
and the estimates were combined using inverse-variance 
weighted meta-analysis.

Replication analyses of the novel TWAS loci were per-
formed in 24,158 women from the Kaiser RPGEH mam-
mographic density GWAS [17] with genotypes imputed 
using the Haplotype Reference Consortium reference 
panel for single-nucleotide variants, and 1000 Genomes 
Project Phase III reference panel for indels [35]. Expres-
sion levels of 7 genes (MTMR11, SHOX2, CRISPLD2, 
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Table 1 Lead SNPs of the genome‑wide significant loci identified in the GWAS meta‑analysis of mammographic dense area (DA), non‑
dense area (NDA) and percent mammographic density (PMD)

1 Genomic positions based on build GRCh37/hg19
2 Closest gene to the lead variant
3 Coded as reference allele/effect allele
4 Minor allele frequency, based on the European Ancestry population in the 1000 Genome project
5 Z-scores were obtained using sample size weighted meta-analysis of GWAS. The multivariate linear regression model used in GWAS analysis adjusted for age and 
BMI at mammogram, as well as the first ten principal components representing population structure. Additive inheritance model was used. Square-root transformed 
mammographic density phenotypes were used as the outcome variable
6 Whether the locus is novel (Yes) or has previously been reported (No) to be associated with at least one MD phenotype in the literature

Region rs ID Chromosome Position1 Gene2 Alleles3 MAF4 Z‑score5 p Value Novel  locus6

DA (N = 18)

1q21.2 rs11205303 1 149,906,413 MTMR11 T/C 0.369  − 6.772 1.25E−11 No

2q14.2 rs17625845 2 121,089,731 INHBB T/C 0.221 7.949 1.87 E−15 No

4q13.3 rs6851733 4 75,518,708 AREG T/C 0.226 6.874 6.23 E−12 No

5q11.2 rs150249911 5 52,119,132 ITGA1 A/G 0.018  − 5.928 3.06 E−09 Yes

5q23.2 rs335189 5 122,446,856 PRDM6 C/G 0.265 6.655 2.84 E−11 No

5q35.1 rs2042239 5 169,566,329 DOCK2 A/G 0.354 6.485 8.87 E−09 Yes

6q25.1 rs9397436 6 151,952,002 ESR1 A/G 0.073 7.951 1.86 E−15 No

7p11.2 rs10155920 7 55,308,930 ELDR T/C 0.145 5.755 8.66 E−09 Yes

8q24.13 rs58847541 8 124,610,166 – A/G 0.153 5.994 2.05 E−09 Yes

10q21.2 rs10995187 10 64,273,026 ZNF365 A/G 0.148 8.933 4.14 E−19 No

11p15.5 rs4980383 11 1,902,097 LSP1 T/C 0.451  − 7.228 4.90 E−13 No

12p12.1 rs11836164 12 26,446,625 SSPN/ITPR2 T/C 0.248 6.028 1.66 E−09 No

12p11.2 rs7297051 12 28,174,817 PTHLH T/C 0.233 6.166 7.01 E−10 Yes

12q23.2 rs833472 12 103,005,100 IGF1 T/C 0.032 7.134 9.76 E−13 No

19q13.33 rs1231281 19 49,239,200 FUT2/MAMSTR A/G 0.458 6.860 6.87 E−12 No

20q13.13 rs17789629 20 48,892,374 SMIM25 A/C 0.137  − 5.478 4.30 E−08 No

22q13.1 rs34066050 22 38,612,604 TMEM184B A/G 0.467  − 5.534 3.14 E−08 No

22q13.2 rs6001939 22 40,892,794 MKL1 T/C 0.102 8.791 1.48 E−18 No

NDA (N = 6)

1p12 rs78395856 1 119,495,096 TBX15 A/C 0.046 5.525 3.29 E−08 No

5q14.1 rs413472 5 80,930,992 SSBP2 T/C 0.445 5.551 2.84 E−08 Yes

8p11.23 rs16885613 8 36,848,357 – T/C 0.148  − 12.788 1.92 E−37 No

10q21.2 rs2138555 10 64,220,494 ZNF365 A/G 0.419 5.900 3.63 E−09 No

12q22 rs61938093 12 96,026,737 NTN4 T/C 0.290  − 6.266 3.72 E−10 No

22q13.2 rs73169097 22 41,027,870 MKL1 T/C 0.100 6.012 1.83 E−09 No

PMD (N = 15)

1q21.2 rs1868992 1 149,908,108 MTMR11 A/G 0.259 5.517 3.44 E−08 No

5q23.2 rs335189 5 122,446,856 PRDM6 C/G 0.265 6.196 5.78 E−10 No

5q31.1 rs76876329 5 131,237,759 MEIKIN T/C 0.151 5.530 3.21 E−08 Yes

5q33.3 rs11745230 5 158,171,008 EBF1 T/G 0.166  − 5.793 6.90 E−09 Yes

5q35.1 rs2112670 5 169,557,594 DOCK2 A/G 0.345  − 5.598 2.17 E−08 Yes

6p22.3 rs3819405 6 16,399,557 ATXN1 T/C 0.340 5.806 6.42 E−09 No

6q25.1 rs4897107 6 149,601,591 TAB2 T/C 0.162 6.842 7.81 E−12 No

6q25.1 rs9397436 6 151,952,002 ESR1 A/G 0.073 7.303 2.81 E−13 No

8p11.23 rs10087804 8 36,858,140 – C/G 0.142 6.282 3.35 E−10 No

10q21.2 rs10995187 10 64,273,026 ZNF365 A/G 0.148 10.424 1.92 E−25 No

11p15.5 rs4980383 11 1,902,097 LSP1 T/C 0.451  − 5.860 4.62 E−09 No

12q23.2 rs61941038 12 102,989,316 IGF1 A/T 0.033  − 6.477 9.37 E−11 No

15q26.1 rs4499190 15 94,275,057 – G/C 0.341  − 5.654 1.57 E−08 No

16q12.2 rs11646715 16 53,824,007 FTO A/G 0.456 7.183 6.84 E−13 Yes

19q13.33 rs12462111 19 49,171,306 FUT2/MAMSTR T/C 0.427 5.847 5.02 E−09 No
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SMIM25, TMEM184B, EP300, and DESI1) were esti-
mated using the PredictDB GTEx v8 Elastic Net mod-
els for mammary tissue [33], which did not include 
MRPL23-AS1. Associations of the predicted gene expres-
sion levels with the standardized MD phenotypes were 
estimated using linear regression models adjusted for age 
at mammography, ln(BMI), the first ten principal compo-
nents of European ancestry, genotyping reagent kit, and 
image batch separately in the Hologic (n = 20,282) and 
GE (n = 3876) cohorts, and the estimates were combined 
using inverse-variance weighted meta-analysis.

Results
Our study population was on average 56.6 years old and 
had an average BMI of 26.5 kg/m2 at the time of mam-
mogram. The mean DA, NDA, and PMD were 28.5  cm2, 
120.4  cm2, and 23.4%, respectively. Age and BMI at mam-
mogram, as well as the square-root transformed MD 
measures, all approximately followed a normal distribu-
tion (Additional file 2: Figure S1). Genomic inflation fac-
tors (λGC) were between 1.11 and 1.13 (Additional file 2: 

Figure S2), with LD-score regression intercepts between 
1.05 and 1.06, suggesting that the observed genomic 
inflation is partly driven by the polygenic effects of many 
variants [26].

GWAS of MD phenotypes
We identified 28 distinct loci associated with at least one 
MD phenotype at p < 5 ×  10−8 (Table 1, Additional file 1: 
Figures  S3–S8). Of these, 18 were associated with DA, 
six with NDA, and 15 with PMD (Fig. 1). SNPs in seven 
regions (1q21.2, 5q23.2, 5p35.1, 6q25.1, 11p15.5, 12q23.2, 
19q13.33) were associated with both DA and PMD. SNPs 
at 8q11.23 were associated with both NDA and PMD; 
SNPs at 22q13.2 were associated with both DA and NDA; 
and SNPs at 10q21.2 were associated with all three MD 
phenotypes. The phenotypic variance explained by the 
lead SNPs of the genome-wide significant loci was 2.6% 
for DA, 0.8% for NDA, and 1.6% for PMD. Nine of the 
significant loci (5q11.2, 5q14.1, 5q31.1, 5q33.3, 5q35.1, 
7p11.2, 8q24.13, 12p11.2, 16q12.2) had not previously 
been associated with MD phenotypes. Conditional 

Fig. 1 Manhattan plots of the GWAS meta‑analysis results of mammographic a dense area (DA, N = 24,579), b non‑dense area (NDA, N = 24,689), 
and c percent mammographic density (PMD, N = 27,900). p value thresholds for genome‑wide significance (p = 5 ×  10−8, red dash line) and 
suggestive significance (p =  10−5, blue dash line) are shown as horizontal lines. The gene closest to each lead variant is annotated. Novel loci are 
marked red. a Manhattan plot of the GWAS meta‑analysis results of DA. b Manhattan plot of the GWAS meta‑analysis results of NDA. c Manhattan 
plot of the GWAS meta‑analysis results of PMD
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analysis showed evidence that four DA-associated loci 
(5q35.1, 10q21.2, 20q13.13, 22q13.2) and one NDA-asso-
ciated locus (8p11.23) had two independent signals at 
conditional p value <  10−5 (Additional file 2: Table S3).

For the 10 novel SNPs identified (corresponding to nine 
loci as the 5q35.1 region was associated with both DA 
and PMD), we performed look-ups using 24,192 women 
of European ancestry [17]. Of the ten SNPs, seven repli-
cated at p < 0.05 with the same direction of effect (three 
with DA (5q35.1, 8q24.13, 12p11.2) and four with PMD 
(5q31.1, 5q33.3, 5q35.1, 16q12.2), Additional file  2: 
Table S4). One DA SNP (5q11.2) had a concordant direc-
tion of association, whereas one DA SNP (7p11.2) and 
the NDA SNP (5q14.1) had discordant directions of asso-
ciation in the look-up with p > 0.05.

Sensitivity analysis based on 21,234 controls showed 
consistent direction of effect and comparable effect size 
to the main analysis (Additional file  2: Table  S5). None 
of the NDA-associated SNPs were associated with BMI 
at p < 0.05 (Additional file  2: Table  S6), suggesting that 
observed SNP-NDA associations were not due to resid-
ual confounding with BMI.

We captured the lead SNPs from 46 distinct loci that 
have previously been reported to associate with at least 

one MD phenotype. We investigated their associations 
(N = 63) with the corresponding MD phenotype based on 
our study (Additional file  2: Table  S7). We were able to 
replicate 26 out of 28 DA SNPs, 13 out of 16 NDA SNPs, 
and 15 out of 19 PMD SNPs at p < 0.05. Among these, 10 
DA SNPs, 2 NDA SNPs, and 5 PMD SNPs were found 
with genome-wide significance at p < 5 ×  10−8.

Association of MD significant loci with breast cancer
We assessed whether the identified MD phenotype-
associated SNPs were also associated with breast cancer 
risk. Of the 28 lead SNPs, 13 were associated with overall 
breast cancer risk at genome-wide significance (Table 2). 
In addition, one SNP (22q13.1) was significantly associ-
ated with ER-positive breast cancer (p = 5.6 ×  10−8 for 
overall breast cancer). For nine of these 14 SNPs, the 
direction of association was consistent with that expected 
(i.e., the same direction for DA, PMD and breast cancer 
risk, and opposite direction for NDA and breast cancer 
risk), while for five SNPs the direction was the opposite; 
some of these conflicting results have been observed pre-
viously [14]. An additional seven lead SNPs were associ-
ated with breast cancer risk at p < 0.05. We also assessed 
the associations between 205 independent genome-wide 

Fig. 1 continued
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significant variants for breast cancer [19] and MD phe-
notypes (Fig. 2, Additional file 2: Table S8) at p < 0.05, 63 
(31%, 48 with consistent direction as expected) breast 
cancer variants were associated with DA, 36 (18%, 20 
with opposite direction as expected) with NDA, and 
62 (30%, 49 with consistent direction as expected) with 
PMD, respectively. In total, 92 (45%, 67 with expected 
direction) breast cancer variants were associated with at 
least one MD phenotype.

Exploratory bioinformatic analysis
We estimated the phenotypic variance attributable to 
common variants, as previously described [26]. SNP her-
itability (h2

SNP) was estimated as 0.32 (se = 0.04) for DA, 
0.24 (se = 0.03) for NDA, and 0.27 (se = 0.03) for PMD. 
By partitioning the h2

SNP by 74 functional annotations 
[27], we observed that active enhancers marked by his-
tone modification H3K27ac were enriched for all MD 
phenotypes (2.25-fold for DA, p = 7.10 ×  10−11; 2.11-
fold for NDA, p = 9.71 ×  10−7 and 2.22-fold for PMD 
p = 7.71 ×  10−10, Additional file 2: Table S9).

We further quantified the genetic correlation between 
MD phenotypes and breast cancer risk (Fig. 3). DA and 
PMD showed positive genetic correlations with over-
all breast cancer (DA: rg = 0.24, p = 1.11 ×  10−4; PMD: 

rg = 0.29, p = 1.90 ×  10−9), ER-positive (DA: rg = 0.21, 
p = 2.59 ×  10−4; PMD: rg = 0.26, p = 4.71 ×  10−8), and 
ER-negative breast cancer (DA: rg = 0.26, p = 1.04 ×  10−3; 
PMD: rg = 0.27, p = 5.95 ×  10−5). In contrast, NDA 
showed a negative genetic correlation with breast can-
cer (overall: rg =  − 0.17, p = 9.50 ×  10−4; ER-positive: 
rg =  − 0.12, p = 0.021; ER-negative: rg = -0.17, p = 0.018).

We estimated the local genetic correlation between 
MD phenotypes and overall breast cancer by partition-
ing the genome into 1,703 independent blocks. In total, 
we identified nine significant pairwise local genetic cor-
relations between MD phenotypes and overall breast 
cancer (DA: 6q25.1, 10q21.2, 11p15.5, 12p11.2, 22q13.2; 
NDA: 8p11.23; PMD: 5q33.3, 6q25.1, 10q21.2) (Addi-
tional file 1: Figure S9). All nine regions harbored at least 
one genome-wide significant locus for a MD phenotype 
and were directionally consistent with the breast cancer 
association.

TWAS of MD phenotypes
Finally, we performed a TWAS investigating associations 
between the imputed expression of 7284 genes and MD 
phenotypes (Additional file  1: Figure S10, Additional 
file  2: Tables S10–S12), and identified significant asso-
ciations with eight genes (Table 3). Six genes were either 

Fig. 1 continued
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located in (MTMR11, SMIM25, and TMEM184B) or 
within the 1 Mb of the GWAS loci (EP300, DES11, and 
MRPL23-AS1). The imputed expression of two additional 
genes was associated with MD phenotypes, including 
SHOX2 (positively associated with NDA) and CRISPLD2 
(negatively associated with PMD). We replicated our 
TWAS findings using individual-level data for 24,158 
women from an independent GWAS to impute expres-
sion for seven of the identified genes with available mod-
els in PredictDB [17, 33]. Five of the seven genes, except 
EP300 and DESI1, were replicated at p < 0.05 with a con-
sistent direction of effect (Additional file 2: Table S13).

Discussion
We conducted a GWAS for three MD phenotypes in 
27,900 European ancestry women. We identified 28 dis-
tinct loci that were associated with at least one MD phe-
notype at genome-wide significance. Nine of these have 
not previously been reported to be associated with mam-
mographic density. In addition, 14 of the 28 loci were 
also associated with breast cancer risk at genome-wide 

significance. We quantified the genetic correlation 
between MD phenotypes and breast cancer, further 
establishing the shared genetic basis between MD phe-
notypes and breast cancer risk. Finally, we conducted a 
TWAS and identified two additional novel associations 
between imputed expression level and MD phenotypes.

Previous GWAS based on data from MODE/BCAC 
identified 12 MD loci [12–16] and a recent GWAS of 
MD based on 24,192 women further discovered 31 novel 
loci [17]. In addition, GWAS investigating volumetric 
MD revealed one novel locus for percent dense volume 
(HABP2 at 10q25.3) and two loci for absolute dense vol-
ume (INHBB at 2q14.2, LINC01483 at 17q24.3) [36]. Pre-
vious studies support the association for DA lead SNP 
rs150249911, which is an intronic variant of the ITGA1 
gene at 5q11.2. ITGA1-coded integrin α1 protein upreg-
ulated following the expression of estrogen receptor β, 
a marker of breast cancer [37]. SNP rs413472 (5q14.1) 
is located in the SSBP2 gene which has previously been 
implicated in breast cancer (p = 4.00 ×  10−5) in Indone-
sian women [38]. DA lead SNP rs10155920 is in a long 

Fig. 2 Manhattan‑like plots showing the association between genome‑wide significant breast cancer SNPs and the three mammographic density 
phenotypes (DA, NDA, PMD). p value thresholds for genome‑wide significance (p = 5 ×  10−8, red line), suggestive significance (p =  10−5, blue 
line) and nominal significance (p = 0.05, green line) are shown as horizontal dash lines. For signals with genome‑wide significance for both MD 
phenotype and breast cancer, the nearest gene is annotated. a GWAS results of DA for significant SNPs of breast cancer. b GWAS results of NDA for 
significant SNPs of breast cancer. c GWAS results of PMD for significant SNPs of breast cancer
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non-coding RNA located downstream of the EGFR gene 
at chromosome 7p11.2. EGFR is one of the most well-
studied signaling pathways that contributes to the inva-
sion, dissemination, and metastasis of breast tumors 
[39]. Breast cancer fine-mapping analysis has identified 
DA lead SNP rs7297051 as one of the four independ-
ent association signals of breast cancer at chromosome 
12p11 [40], which is approximately 50 kb upstream of the 
PTHLH gene. PTHLH encodes parathyroid hormone-
related protein (PTHrP), which aids in normal mammary 
gland development [41]. PTHrP has also been related to 
the prognosis of breast cancer, as its occasional secretion 
by tumor cells may promote osteoclastic activity and con-
tribute to osteolytic bone metastases [42]. PMD lead SNP 
rs11646715 is in the FTO gene at chromosome 16q12.2 
which encodes an mRNA demethylase and is well-known 
for its association with fat mass and obesity. Research has 
indicated that the FTO gene may play a role in cellular 
sensing of macronutrients and may be involved in the 
regulation of cell growth, which can at least partly explain 
its relationship with both obesity and breast cancer [43]. 
As we adjusted for BMI in our GWAS model, and further, 
rs11646715 was not associated with BMI in our data, 
the mechanisms underlying the associations between 

genetic variation in this region and MD likely differ from 
its effect on adiposity. Future studies are essential to elu-
cidate potential biological mechanisms that link these 
genes to MD and ultimately breast cancer susceptibility. 
The novel DA locus at 8q24 has previously been associ-
ated with multiple types of cancer, including breast can-
cer [44]. To rule out that our finding was an artifact due 
to oversampling of breast cancer cases, we assessed the 
association with DA using controls only and observed a 
significant association (p = 5.64 ×  10−4). Interestingly, 
rs58847541 is associated with breast cancer but in the 
opposite direction to the effect on DA.

Thirteen of the 28 GWAS loci were also associated 
with overall breast cancer risk with genome-wide sig-
nificance, and had little difference in effect by cancer 
subtype. Among these, we observed multiple unex-
pected inconsistency in the direction of associations 
between MD-associated loci and breast cancer risk, 
including DA and PMD loci 1q21.2 and 2q14.2, DA 
loci 8q24.13 and 22q13.2, and NDA and PMD locus 
8q11.23. The underlying biological mechanisms driv-
ing these discrepancies are unclear, but one potential 
explanation is that these loci may be involved in mul-
tiple pathways across life stages, which differentially 

Fig. 2 continued
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affect breast development and the risk of breast can-
cer. Furthermore, the MD phenotypes we studied were 
radiologic reflection of the underlying breast tissue 
composition, which made it difficult to distinguish the 
epithelium from stroma tissue of the breast. We also 
investigated the association between 205 independent 
breast cancer SNPs and MD phenotypes and found that 
45% of the variants were associated with at least one 
MD phenotype at p < 0.05. The local genetic correlation 
analysis in our study highlighted specific loci at which 
MD phenotypes and breast cancer showed evidence 
of shared heritability (DA: ESR1, ZNF365, LSP1, and 
MKL1; NDA: 8p11.23; PMD: ESR1 and ZNF365). These 
observations reinforce the strong shared genetic basis 
between mammographic density and breast cancer.

The SNP heritability (h2
SNP), which can be interpreted 

as the proportion of phenotypic variance explained by the 
additive effects of all genotyped variants, was estimated 
to be 0.32 for DA, 0.24 for NDA, and 0.27 for PMD. 
Our estimates were slightly lower than those previously 
reported [17, 36], perhaps due to differences in the study 
populations or methodology [45]. Twin studies have esti-
mated the heritability of the three MD phenotypes to 
all exceed 60% [9, 10]. The difference between the SNP-
heritability estimates in our analysis and the estimates 

from twin studies may reflect the effect of rare variants 
not being genotyped and not in LD with any genotyped 
variants, or may be due to non-additive genetic effects, 
interactions between genetic variants and environmental 
factors, or uncontrolled shared environmental factors in 
the twin studies.

Our TWAS identified eight genes for which imputed 
expression levels were significantly associated with MD 
phenotypes. Six of these were either located in or close 
to the identified GWAS loci, suggesting the observed 

Fig. 2 continued

Fig. 3 Genetic correlations between three MD phenotypes (DA, 
NDA, PMD) and breast cancer (overall, ER‑positive, and ER‑negative), 
estimated by LD score regression
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genotype–phenotype association may be mediated 
through gene expression. Two additional genes SHOX2 
and CRISPLD2 were associated with NDA and PMD, 
respectively, and replicated in an independent study. 
Future studies are thus needed to elucidate the biological 
bases of these findings.

Our study has several strengths. It is the largest GWAS 
of mammographic density to date, enabling us to dis-
cover nine novel MD loci. We performed sensitivity anal-
yses using controls, which reaffirmed that all significant 
associations were not spurious artifacts due to oversam-
pling of cases. However, a few studies included in our 
study used the thresholding approach other than CUMU-
LUS, which may cause inconsistency in the measurement 
of MD phenotypes and thus lead to biased results. Also, 
although previous studies have demonstrated that the 
MD measurement collected by CUMULUS was highly 
reproducible [8, 46], it is important to acknowledge that 
it was a reader-dependent approach and thus might 
inevitably be subjective to measurement error. Another 
weakness with our study is the lack of diversity, as our 
study sample only included women of European ances-
try. Considering that the risk of breast cancer attributable 
to mammographic density may differ among racial/eth-
nic groups [47], future efforts should be made to collect 
mammogram and genotype data from racially diverse 
populations.

Conclusion
In this study, we conducted a GWAS and TWAS of MD 
phenotypes using 27,900 women of European ancestry. 
Our study improved our understanding about the genetic 
background of MD phenotypes, and reinforced the evi-
dence of their shared genetic basis with breast cancer risk.
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