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Thrombomodulin is associated 
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Abstract 

Background:  Acute respiratory failure (ARF) can progress to acute respiratory distress syndrome and death. Biomark-
ers may allow for risk stratification and prognostic enrichment in ARF. Thrombomodulin (TM) is a transmembrane 
antithrombotic mediator expressed in endothelial cells. It is cleaved into its soluble form (sTM) during inflammation 
and vascular injury. Levels of sTM correlate with inflammation and end organ dysfunction.

Methods:  This was a prospective observational study of 432 patients aged 2 weeks—17 years requiring invasive 
mechanical ventilation. It was ancillary to the multicenter clinical trial, Randomized Evaluation of Sedation Titration for 
Respiratory Failure (RESTORE). After consent, patients had up to 3 plasma samples collected at 24-h intervals within 
5 days after intubation. sTM was assayed by ELISA. The Hazard ratio (HR) for 90-day mortality was determined by 
Cox regression. Mixed effect models (MEM) were used to test for association with extrapulmonary multiorgan failure 
(MOF) and oxygenation index (OI). Age, race, sex and PRISM-III scores were used as confounding variables for multi-
variable analyses.

Results:  sTM values ranged from 16.6 to 670.9 ng/ml within 5 days after intubation. Higher sTM was associated with 
increased 90-day mortality (n = 432, adjusted HR = 1.003, p = 0.02) and worse OI in the first 5 days after intubation 
(n = 252, Estimate = 0.02, p < 0.01). Both initial and slope of sTM were associated with increased extrapulmonary MOF 
in unadjusted and adjusted analyses (Intercept, Estimate = 0.003, p < 0.0001; and slope, Estimate = 0.01, p = 0.0009, 
n = 386).

Conclusions:  Plasma sTM is associated with mortality, severity of hypoxic respiratory failure and worsening extrapul-
monary MOF in children with ARF. This suggests a role of vascular injury in the pathogenesis of ARF and provides 
potential applicability towards targeted therapies.
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Background
Acute respiratory failure (ARF) can progress to pedi-
atric acute respiratory distress syndrome (PARDS), 
multiorgan failure (MOF) and death [1–3]. The hetero-
geneity of ARF and PARDS  are potential impediments 
to the discovery of effective therapeutic options [4], and 
consequently, recent studies have aimed to endotype, 
subclassify and prognostically enrich ARDS based on 
clinical and serum biomarkers [5, 6]. In adults, clinical 
markers such as dead space fraction [7–9] and the ven-
tilatory ratio [10–12] have highlighted the contribution 
of inefficient ventilation in the prognosis of ARDS and 
are starting to be used in clinical investigation. Serum 
biomarkers, by enabling mechanism-specific subclassi-
fication of ARDS, may also elucidate pathway-targeted 
therapies and enable predictive enrichment [13]. A role 
for inflammation in the pathogenesis of PARDS has 
been supported by studies that showed  plasma levels 
of interleukins (IL)-6, IL-8, IL-10, IL-18, soluble Tumor 
Necrosis Factor Receptor-2 and interleukin-1 receptor 
antagonist [14–16] are associated with higher mortal-
ity in these patients. In addition, plasminogen activa-
tor inhibitor-1, soluble thrombomodulin (sTM) and 
von Willebrand factor-antigen, involved in endothelial 
injury and dysregulated coagulation, are also impli-
cated in the pathogenesis of adult [17–19] and pediat-
ric [20, 21] ARDS, potentially through microvascular 
thrombosis contributing to dead space ventilation and 
organ dysfunction.

Soluble thrombomodulin is an attractive candidate bio-
logical marker for respiratory failure and ARDS because 
thrombomodulin, an anti-thrombotic agent found in 
the endothelial cell surface, is cleaved into its soluble 
form in response to local endothelial damage [22]. Both 
full length and the soluble form of thrombomodulin are 
protective against thrombosis; however, once thrombo-
modulin is cleaved and released into the circulation, it is 
assumed that the local anti-thrombotic effect is lost due 
to reduced avidity of the marker after cleavage, the gen-
eration of fragments of varying lengths and affinities, and 
whole-body redistribution. While it is likely that sTM 
levels increase in response to endothelial damage in a 
variety of organs, thrombomodulin is most prominently 
expressed in the human lung [22]. Thrombomodulin also 
plays an important role in lung development [23], which 
may imply a higher concentration of sTM in the pediatric 
lung, but this is not known.

Elevated levels of plasma sTM reflect inflammation, 
endothelial damage and loss of protection against throm-
bosis. A post hoc analysis of the FACTT trial revealed 
that elevated levels of plasma sTM were associated 
with higher mortality in adult patients with ARDS [19], 
and another study reported that specific gene polymor-
phisms of thrombomodulin have been associated with 
increased mortality in adult ARDS [24]. In children, a 
study in septic meningitis demonstrated the loss of local 
endothelial thrombomodulin and an elevation of plasma 
sTM [25]. In addition, we reported preliminary findings 
that sTM levels are associated with increased mortal-
ity in children with ARDS caused by indirect lung injury 
[21], though these findings have not yet been validated 
in an independent, heterogeneous cohort. A recent sys-
tematic review has highlighted the insufficient number 
of studies evaluating the role of sTM as a predictor of 
mortality in ARDS [26]. Therefore, as part of the Genetic 
Variation and Biomarkers in Children with Acute Lung 
Injury (BALI; R01HL095410) which enrolled over 500 
patients who were part of the Randomized Evaluation 
of Sedation Titration for Respiratory Failure (RESTORE; 
U01 HL086622) prospective clinical trial, we tested 
the hypothesis that plasma sTM is a predictor of ARDS 
severity, mortality and worse outcomes in pediatric 
patients with acute respiratory failure requiring mechani-
cal ventilation.

Methods
Patients
This study, Genetic Variation and Biomarkers in Children 
with Acute Lung Injury (BALI; R01HL095410), was an 
ancillary study to the multisite clinical trial, Randomized 
Evaluation of Sedation Titration for Respiratory Fail-
ure (RESTORE; U01 HL086622) that enrolled intubated 
mechanically ventilated children [16]. Details of the study 
methodology have been published previously [27], and 
relevant details are summarized in the appendix.

Measurements
Blood samples were taken within 24  h of consent and 
again 24 and 48  h later, with the first blood sample 
drawn within three days of intubation (days 0–3) in 
most patients (98%). Plasma thrombomodulin levels 
were measured using two-antibody sandwich enzyme 
linked immunosorbent assays (ELISA, Asserchrome, 
Diagnostica Stago). The measurements were carried out 

Trial registration: https://​clini​caltr​ials.​gov/​ct2/​show/​NCT00​814099.
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in duplicate and followed the manufacturer’s protocol. 
For this study, we analyzed up to three sTM measure-
ments per patient, collected within the first 5 days after 
intubation.

Primary outcomes
We examined the association between plasma sTM and 
90-day in-hospital mortality adjusted for confounding 
variables.

Secondary outcomes
We examined the association of sTM with OI, the pres-
ence of non-pulmonary organ failure, ventilation-free 
days and PICU length of stay in survivors. We used the 
PALICC definition of ARDS. The determination of other 
secondary outcomes is as described in the supplement.

Confounding variables
The main analysis was adjusted for age, race, sex and 
PRISM-III scores by multivariable analyses. Additional 
multivariable models incorporated OI from the first 24 h 
after intubation, use of vasopressors at day 1 and use of 
neuromuscular blockade at day 1. These confounders 
were chosen a priori for their clinical significance and 
face validity. We used PRISM-III to adjust for baseline 
severity of illness.

Statistics
Given the unique nature of our dataset, which included 
repeated measurements of sTM along several days, and 
both continuous and binary outcomes with time vary-
ing covariates, we tested the relationship between sTM 
and primary and secondary outcomes using multiple 
approaches. We calculated odds ratio (OR) of mortality 
(alive or deceased at 90  days) given daily sTM level for 
days 0–2 by use of logistic regression. Receiver operat-
ing characteristic (ROC) curves were then evaluated to 
assess whether sTM drawn on these days could predict 
mortality. We also analyzed the relationship of sTM with 
mortality utilizing a composite estimate of all sTM levels 
in an individual patient using sTM intercept and slope. 
sTM intercept and sTM slope were determined by estab-
lishing a least square (LS) estimate between daily sTM 
values measured in the first 5 days. The intercept was the 
projected value of sTM where the LS line crossed t = 0. 
The slope indicates the rate of change of sTM in the first 
5 days.

Finally, the hazard ratio (HR) for 90  day in-hospital 
mortality was assessed from sTM of all patient plasma 
samples collected between the day of intubation (day 0) 
and day 5 using counting process Cox proportional haz-
ard model [28].

sTM values on individual days up to day 3 were com-
pared by Mann–Whitney U test between patients with 
PARDS and those without (days 4 and 5 were excluded 
due to low numbers).

Mixed effect modelling (MEM) was used to test the 
relationship of sTM with MOF and PICU length of stay. 
MEM was also used to evaluate the relationship between 
the initial sTM (intercept) or the rate of increase in sTM 
(slope) and maximum OI. Daily OIs (or if unavailable, 
converted OSIs) up until maximum value were analyzed 
using mixed effect modelling (MEM), with sTM inter-
cepts and slopes as predictor variables and age, gender, 
race/ethnicity and PRISM-III score as confounding vari-
ables. The relationship between initial sTM or rate of 
change of sTM and daily number of failed organs within 
the first 28 days was also evaluated using MEM.

The outcome of ventilation free days was analyzed 
using Fine and Gray model with Cox proportional hazard 
regression. Death was utilized as a competing risk.

Study approval
Written informed consent was obtained from patients or 
their guardians prior to inclusion in the study. The study 
was approved by the Institutional Review Boards at all 
participating sites.

Results
Study population
In total, 549 patients were enrolled in the BALI study 
with 480 having plasma samples. Of those, 432 had one 
to three samples assayed for sTM within 5 days of intuba-
tion (day 0) (Additional file 2: Figure S1). These patients 
formed the population for this study. Clinical charac-
teristics of the entire BALI cohort as well as those with 
and without PARDS have been described previously [15]. 
Clinical characteristics of the population for this study 
is shown in Additional file  1: Table  S1. Mortality in the 
BALI cohort was 9%, with a median duration of mechani-
cal ventilation of 7.1 days (IQR, 4.0–13.6) and a median 
PICU length of stay in survivors of 10.6 days (IQR, 6.6–
18.4) [16]. The main primary cause of death was respira-
tory failure (17 patients, 4%), followed by multi organ 
failure (10 patients, 2.3%), as listed in Additional file  1: 
Table S2.

Plasma soluble thrombomodulin increases with time
One to three measurements of daily sTM were obtained 
within the first 5 days of the study for 432 patients (Addi-
tional file  2: Figure S1). Linear regression revealed that 
the rate of increase in sTM over the first 5 days was sta-
tistically significant, with an average daily increase of 
5.00  ng/ml (p < 0.01). The distribution and the median 
values of sTM by day are illustrated in Fig.  1. The 
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distribution of sTM on individual days was not statisti-
cally different between patients with or without PARDS 
(unadjusted, Additional file  2: Figure S2). The wide 
standard deviation for sTM was partly attributed to the 
inherent heterogeneity of the study population. As such, 
multivariate analyses were utilized to adjust for the 
effects of age, race and severity of illness.

Soluble thrombomodulin correlates with increased 
mortality in ventilated pediatric patients
We performed univariate analysis using sTM as the pre-
dictor variable with mortality as the outcome, and mul-
tivariable analysis incorporating age, PRISM-III score, 
race (caucasian vs. not) and sex as covariates. Univariate, 
logistic regression analysis on individual days revealed 
that sTM measured at days 1 and 2 were associated 
with higher OR for mortality (day 1, OR = 1.005 per unit 
increase in sTM, CI = 1.001–1.008, n = 233 and day 2, 
OR = 1.004 per unit increase in sTM, CI = 1.002–1.007, 
n = 321, data not shown). Multivariable analysis of indi-
vidual days revealed that sTM levels adjusted for selected 
covariates and measured at days 1 and 2 were associated 
with higher OR for mortality (1.01, p = 0.02 for day 1, 
Table 1, and p < 0.01 for day 2, data not shown).

A receiver-operating characteristic (ROC) curve for 
the univariate analysis of sTM and mortality revealed 
an area under the curve (AUC) of 0.70 for thrombo-
modulin at day 1 (Fig.  2) and an AUC of 0.63 for day 
2 (data not shown). Given the higher AUC, empirically 
selected values of day 1 sTM were assessed for their 
utility in predicting mortality. At day 1, we found that 
the level of sTM that would provide the optimal sensi-
tivity and specificity based on ROC would be 130  ng/

ml, which in this cohort provided a specificity of 69% 
and a sensitivity of 67% for its association with mortal-
ity. Additionally, at day 1, a cut off sTM level of 185 ng/
ml would provide a specificity of 90%, however, a sensi-
tivity of only 33% for correlation with mortality in this 
population, as assessed by ROC (Fig.  2). Conversely, 
a sTM cut-off value of 80 ng/ml would confer a sensi-
tivity of 89% and a specificity of 31%. We finally asked 
whether sTM obtained within the first 5 days of intuba-
tion was associated with in-hospital 90-day mortality. 
Using Cox regression, in both univariate and multivari-
able models, sTM had a statistically significant asso-
ciation with mortality. For univariate analysis, the HR 
was 1.003 (95% CI 1.001–1.005, p < 0.002) and for mul-
tivariable analysis, HR was 1.003 (95% CI 1.000–1.005, 
p = 0.024) for each nanogram/milliliter increase in 
measured sTM (Table 2). Further, we evaluated an addi-
tional model where OI obtained within the first 24  h 
after intubation was incorporated into a multivariable 
analyses along with the covariates of age, PRISM-III 
score, race and sex. sTM was still independently associ-
ated with mortality after adjusting for these covariates 

Fig. 1  Box plot representing distribution of daily sTM values 
collected for each patient. Mean for each day is represented by ‘x’, 
outliers are represented by an open circle. Number (n) for individual 
days is as follows: 56 on day 0, 134 on day 1, 167 on day 2, 118 on day 
3, 45 on day 4, 4 on day 5

Table 1  Soluble Thrombomodulin from Day 1 predicts Mortality

Multivariable logistic regression analysis of the Odds Ratio of Mortality based on 
selected covariates. sTM from day 1 was the selected predictor variable. n = 233

Covariates OR (95% CI) P value

sTM day 1 1.01 (1.00 – 1.01) 0.02

Age (Years) 1.12 (1.02 – 1.22) 0.02

Sex (Male) 0.68 (0.25 – 1.89) 0.46

Race (White v not) 0.89 (0.27 – 3.02) 0.86

PRISM-III Score 1.04 (0.98 – 1.12) 0.25

Fig. 2  Receiver operating curve for the odds ratio of mortality based 
on sTM measured at day 1. n = 233
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using Cox proportional hazard regression (HR = 1.003, 
CI = 1.001–1.006, p < 0.01, n = 432). We then performed 
an exploratory analysis of interaction terms to evaluate 
whether severity of respiratory failure as captured by 
OI would differentially affect the correlation between 
sTM and mortality. There was no interaction between 
OI and sTM for the outcome of mortality by various 
statistical approaches (p = 0.258 by Cox proportional 
hazard model, p = 0.428 by mixed effect modeling, and 
p = 0.358 by logistic regression utilizing day 1 sTM as 
the predictor variable). Finally, given that 59% of our 
study population received neuromuscular blockade at 
day 1, and 50% received vasopressor support at day 1, 
we evaluated an additional multivariable model incor-
porating day 1 sTM, Age, Sex, PRISM-III score, vaso-
pressor use and neuromuscular blockade. In this model, 
day 1 sTM was still independently associated with mor-
tality by logistic regression (OR 1.005, CI 1.001–1.009, 
p = 0.02, n = 233, Additional file 1: Table S3).

Levels of soluble thrombomodulin correlate 
with the presence of multi‑organ failure
Next, we asked if sTM levels obtained within 5 days of 
intubation were associated with increased number of 
non-pulmonary failed organs up to hospital day 28. Out 
of the 432 patients with sTM collected within 5  days 
of intubation, 45% (194) experienced non-pulmonary 
multiorgan failure (2 or more failed organs in addi-
tion to the need for ventilation). To evaluate for num-
ber of failed organs as an outcome, the rate of change 
of sTM (slope) and projected sTM at day 0 (intercept) 
were used as the predictor variables. A multivariable 
MEM adjusting for age, sex, race (Caucasian vs not) 
and PRISM-III score revealed that higher starting val-
ues of sTM as well as the rate of increase in sTM (i.e., 
intercept and slope) were associated with an increased 
number of extrapulmonary failed organs daily up to day 
28 (For sTM intercept, Estimate = 0.003, p < 0.0001; For 
sTM slope, Estimate = 0.01, p < 0.001, n = 386, Table 3).

Soluble thrombomodulin did not correlate with ventilator 
free days or ICU length of stay
We evaluated if sTM levels correlated with length of stay 
(LOS) in the pediatric ICU (PICU) or ventilator free days. 
Competing risk analysis utilizing Cox proportional haz-
ard regression revealed that neither increased slope of 
sTM nor the sTM intercept (i.e., initial sTM) incurred a 
statistically significant association with ventilator free 
days (p > 0.4 for slope and intercept, n = 430, data not 
shown). Additionally, Cox proportional hazard analysis 
revealed no association between sTM and PICU LOS 
(p > 0.4 for sTM slope and intercept, n = 430, data not 
shown).

Levels of soluble thrombomodulin correlate 
with worsening oxygenation
We tested the relationship of sTM measured within the 
first 5  days after intubation with maximum OI values 
measured or converted from OSI within those 5  days. 
Only sTM values collected before the peak OI was 
reached were utilized for this analysis. A unit increase in 
sTM (1 ng/ml) was associated with a statistically signifi-
cant increase in OI (Table  4, estimate = 0.015, p = 0.01, 
n = 252) after adjusting for age, sex, PRISM-III score 
and race (caucasian vs. not). Levels of sTM examined on 

Table 2  Time-dependent multivariate analysis for mortality

Counting process Cox regression analyses were done. sTM between days 0 and 
5 were used as the selected predictor variable. Selected covariates as listed. The 
outcome is death. n = 432

Covariates HR (95% CI) P value

sTM 1.00 (1.00–1.01) 0.024

Age (Years) 1.09 (1.03–1.15)  < 0.01

Sex (Male) 0.85 (0.43–1.66) 0.626

Race (White v not) 0.64 (0.30–1.38) 0.253

PRISM-III Score 1.02 (0.98–1.07) 0.299

Table 3  Multivariable mixed effect analysis of increase in 
number of failed organs in the first 28 days

Slope of sTM was derived from up to three values of sTM collected within 5 days 
of enrollment for each patient. Intercept of sTM was derived from the slope. 
Patients with only one measurement of sTM were excluded. SE standard error. 
n = 386

Covariates Estimate SE P value

Intercept sTM 2.77 E−3 5.21 E−4  < 1.00 E−4

Slope sTM 1.00 E−2 3.01 E−3 9.00 E−4

Age (years) 2.96 E−2 6.40 E−3  < 1.00 E−4

Sex (male) 4.80 E−2 7.37 E−2 0.51

Race (white) 7.15 E−3 8.50 E−2 0.93

PRISM-III Score 6.03 E−2 5.35 E−3  < 1.00 E−4

Table 4  Estimate of effect of sTM on OI/OSI in the first 5 days

Multivariable mixed effect model to estimate effect of sTM on OI/OSI in the first 
5 days, adjusted for the covariates of age, gender, race and PRISM-III score. sTM 
was the selected predictor variable. n = 252

Covariates Estimate SE P value

sTM 1.51 E−2 5.53 E−3 0.01

Age (years) −1.77 E−1 1.06 E−1 0.10

Sex (male) −1.25 1.22 0.31

Race (White v not) 4.53 E−1 1.37 0.74

Prism III Score 1.46 E−1 8.58 E−2 0.09
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individual days revealed no statistically significant asso-
ciation with maximal OI (data not shown).

Discussion
In this study, higher initial values and rates of increase 
in soluble thrombomodulin (sTM) were associated with 
mortality in children with ARF. Moreover, elevated lev-
els of sTM, particularly on day 1, independently associate 
with increased risk of in-hospital mortality after adjust-
ing for several factors such as age, different markers of 
disease severity, severity of respiratory failure and use 
of neuromuscular blockade. There was also a statisti-
cally significant association between sTM and worsen-
ing oxygenation index, a validated marker of pulmonary 
dysfunction and ARDS severity [29, 30]. Finally, higher 
initial values of sTM, and/or a greater rate of increase in 
sTM, were associated with multi-organ failure.

Thrombomodulin is an attractive candidate for assess-
ment of ARF and ARDS given that the majority of throm-
bomodulin is found in the lung [22] and its cleaved, 
soluble form (sTM) can be detected in patient plasma 
[31]. We observed that at day 1, the area under the ROC 
curve was 0.7, which suggests moderate usefulness in 
prognosticating mortality from respiratory failure in this 
population. In context, this is similar to the AUC for pro-
calcitonin in differentiating between bacterial and viral 
pneumonia in adults [32]. It will be useful to evaluate 
the utility of sTM as a prognostic marker in combina-
tion with other biologic and clinical markers of ARDS in 
future studies.

In this study, levels of sTM correlated not only with 
mortality but also with severity of hypoxic respiratory 
failure. It is likely that pulmonary vascular damage would 
be a principal contributor to serum sTM in this study of 
pediatric acute respiratory failure from primary pulmo-
nary or airways disease. Given the known association 
of sTM with vascular damage, and the loss of the anti-
thrombotic molecule at the site of injury, it is conceivable 
that elevated sTM may reflect an increase in pulmonary 
dead space ventilation in ARDS. Dead space is a strong 
predictor of mortality in ARDS, even surpassing markers 
that measure oxygenation such as OI and P/F ratio [8, 9, 
33]. Since the RESTORE trial did not record parameters 
for dead space ventilation, future studies on sTM would 
benefit from a prospective evaluation of sTM and dead 
space ventilation in ARDS or ARF.

Finally, sTM was associated with higher rates of 
extrapulmonary multiorgan failure. We posit whether 
this is a consequence of the pro-thrombotic state caused 
by the cleavage of thrombomodulin. Indeed, recombi-
nant sTM, by replacing the vasculitis-induced depletion 
of membrane-bound local thrombomodulin, has been 
implicated in protection or reversal of vascular injury, 

disseminated intravascular coagulation (DIC) and in ani-
mal models of ARDS. In animal studies, recombinant 
sTM was shown to have a protective effect on septic 
rats by suppressing leukocyte adhesion to the microvas-
culature, reducing thrombus formation and preventing 
endothelial damage [34]; and murine studies have sug-
gested a protective role of sTM in LPS-induced ARDS 
[35]. In humans, a randomized clinical trial evaluating 
patients with DIC suggested that treatment with recom-
binant sTM showed a more significant reversal of DIC 
than did heparin therapy, but did not evaluate the out-
come of mortality [36]. However, a large, multicenter 
clinical trial testing the therapeutic effect of recombinant 
sTM on 800 patients with sepsis-associated coagulopathy 
revealed no effect of sTM therapy on patient mortality, or 
secondary outcomes such as shock free, dialysis free and 
ventilator free days [37]. Since the latter study enrolled 
patients presenting with sepsis complicated by DIC, it 
is very possible that the population was too heterogene-
ous to observe an effect on patients that would otherwise 
benefit from therapy. There was no effort in that trial to 
enrich for patients with an elevated thrombomodulin 
plasma level. In contrast, the BALI cohort, in which we 
did find an association of elevated levels of sTM with 
higher mortality, included only children with a primary 
respiratory diagnosis. We postulate that since sTM is pri-
marily derived from lung endothelium, patients with res-
piratory failure may be more likely to show a benefit from 
recombinant thrombomodulin compared to a population 
with non-pulmonary sources of sepsis. In addition, given 
the promising therapeutic effect of recombinant sTM 
on murine ARDs, it would be important to evaluate the 
therapeutic role of recombinant thrombomodulin spe-
cifically in patients with ARDS demonstrating elevated 
dead space ventilation and increased sTM as a marker of 
thrombomodulin depletion from the pulmonary vascular 
endothelium. Dead space could be measured at the bed-
side with the ventilatory ratio, an index that is associated 
with higher mortality in ARDS [10].

The strength of this study lies in its relatively large sam-
ple size that includes a diverse study population in chil-
dren. In addition, the study benefits from the availability 
of plasma samples from multiple time points and a well 
curated collection of data elements. The chosen out-
comes of mortality, severity of hypoxic respiratory failure 
and multi-organ failure are of high clinical applicabil-
ity and are arguably the most useful in assessing patient 
health. One study limitation is that we did not have access 
to data on ventilator parameters such as tidal volume and 
PEEP, which precluded our ability to investigate how ven-
tilator changes may correlate with sTM levels. Another 
limitation was that all outcomes studied were measured 
in a population with some subtype of respiratory failure 
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as a primary diagnosis, with almost 70% of the cohort 
developing PARDS within 5 days of intubation. As such, 
these findings can only be interpreted in the context of 
respiratory failure commonly leading to PARDS. Another 
limitation is that since over 90% of patients who devel-
oped PARDS did so by day 1, there was limited oppor-
tunity to assess the association of sTM with PARDS 
development.

Conclusion
Plasma levels of sTM in pediatric patients receiving venti-
latory support were predictive of worsening oxygenation 
defect, higher mortality and more organ failure. Con-
sequently, sTM may have clinical promise in biomarker 
guided therapies. Future studies are needed to evalu-
ate whether sTM correlates with worsening dead space 
ventilation and whether dead space could be reversed in 
select patients with ARF treated with sTM.
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