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Abstract

Background: Tumor initiation and progression are associated with numerous metabolic alterations. However, the
biochemical drivers and constraints that contribute to metabolic gene dysregulation are unclear.

Methods: Here, we present MetOncoFit, a computational model that integrates 142 metabolic features that can
impact tumor fitness, including enzyme catalytic activity, pathway association, network topology, and reaction flux.
MetOncoFit uses genome-scale metabolic modeling and machine-learning to quantify the relative importance of
various metabolic features in predicting cancer metabolic gene expression, copy number variation, and survival
data.

Results: Using MetOncoFit, we performed a meta-analysis of 9 cancer types and over 4500 samples from TCGA,
Prognoscan, and COSMIC tumor databases. MetOncoFit accurately predicted enzyme differential expression and its
impact on patient survival using the 142 attributes of metabolic enzymes. Our analysis revealed that enzymes with
high catalytic activity were frequently upregulated in many tumors and associated with poor survival. Topological
analysis also identified specific metabolites that were hot spots of dysregulation.

Conclusions: MetOncoFit integrates a broad range of datasets to understand how biochemical and topological
features influence metabolic gene dysregulation across various cancer types. MetOncoFit was able to achieve
significantly higher accuracy in predicting differential expression, copy number variation, and patient survival than
traditional modeling approaches. Overall, MetOncoFit illuminates how enzyme activity and metabolic network
architecture influences tumorigenesis.
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Background
Tumors reprogram cellular metabolism to support un-
controlled cell proliferation [1–4]. A common metabolic
reprogramming exhibited by tumors is the Warburg ef-
fect, where malignant cells shift metabolic flux away
from oxidative phosphorylation to glycolysis [5, 6]. Al-
though diverse tumors exhibit common metabolic

features such as the Warburg effect, recent meta-
analysis studies of cancer transcriptome and metabo-
lome revealed that metabolic changes are highly hetero-
geneous across different tumor types [7]. This suggests
that tumors have diverse metabolic objectives. Given the
enormous redundancy in the metabolic network [8, 9],
we hypothesized that cancer cells make systemic changes
at several regulatory layers, resulting in few key changes
in the metabolic network. We hence examined fre-
quently dysregulated metabolic genes using a multi-scale
systems-biology approach to determine if there are com-
mon features that contribute to metabolic dysregulation
in tumors.
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MetOncoFit is a data-driven approach we developed
to identify the topological and biochemical features that
are predictive of metabolic alterations in tumors. While
recent meta-analyses have interpreted tumor-omics data
using known metabolic pathways and metabolic network
models [7, 10–13], these studies do not provide insights
on how enzyme kinetic properties or network topology
can impact metabolic reprogramming. Our approach
goes beyond existing methods by focusing on an exten-
sive set of biochemical, topological, and metabolic fac-
tors that are analyzed together for the first time. The
MetOncoFit approach accounts for a broad range of at-
tributes including enzyme catalytic activity, expression
levels, metabolic pathway membership, topological con-
nectivity to biomass and media components, and meta-
bolic flux from in silico knockout experiments.
Through meta-analysis of copy number variation (CNV)

and transcriptomic data from various cancer databases
using MetOncoFit, our study demonstrates how specific
biochemical features such as catalytic activity are predict-
ive of metabolic gene dysregulation across various cancer
types. This finding explains why some genes within the
same pathway show vast differences in the frequency of
dysregulation. Further, the inclusion of novel topological
and biochemical features enabled our approach to achieve
significantly higher accuracy in predicting dysregulated
genes compared to traditional grouping of genes into
pathways. MetOncoFit revealed common pan-cancer ob-
jectives of metabolic dysregulation and accurately pre-
dicted how dysregulation of metabolic gene activity will
alter tumor fitness and patient survival.
For any new transcriptomics or CNV dataset, MetOn-

coFit can be deployed to uncover the relative importance
of various metabolic and topological features in predict-
ing dysregulation observed in the dataset. Quantifying
the relative importance of various factors can potentially
be significant for developing metabolic therapeutics. For
example, if the network topology factors, such as con-
nectivity to key nutrients, dominate in a given tumor,
then focusing on eliminating specific nutrients can be an
effective strategy. In contrast, if dysregulated enzyme ac-
tivity best explains the metabolic phenotype, then treat-
ments should focus on reducing the activity of a specific
enzyme or pathway. This approach will ultimately im-
prove our ability to predict targeted metabolic therapies.

Results
Biochemical and network features used in MetOncoFit
MetOncoFit uses biochemical and network-level proper-
ties of a metabolic gene to predict if it will be dysregulated
in tumors. Two objectives guided the choice of features
and datasets used in our model. First, we identified meta-
bolic features that could affect cancer cell fitness. Second,
we shortlisted features that can be easily quantified and are

widely available. We grouped the feature set for each gene
into three major classes—biochemical, topological, and dy-
namic properties described below (Fig. 1). The topological
and dynamic parameters quantify the position of each en-
zyme in the network and its impact on network fluxes, re-
spectively, while the biochemical properties quantify the
relative abundance and intrinsic activity of each enzyme.
In total, 142 features were used as input for MetOncoFit.
These features can help identify common properties of
genes that are frequently dysregulated in tumors.

Topological features
We used pathway association and network-level character-
istics as topological features for each gene in our model.
Tumors frequently upregulate transporters to increase nu-
trient uptake [14, 15]. Yet traditional pathway annotations
do not capture the network-level proximity of enzymes to
nutrients and metabolic precursors. We hence derived this
topological parameter using the human genome-scale
metabolic reconstruction, RECON1, which contains 3747
reactions, 1496 open reading frames, 2004 proteins, and
2766 metabolites [16]. This model represents the mechan-
istic relationships between genes, proteins, and metabolites
in a human cell. This network was used to calculate the
shortest path from 33 exogenous media components, such
as glucose and amino acids, to reaction products catalyzed
by a metabolic enzyme. Similarly, we also calculated the
total distance from the metabolic reaction to 44 individual
biomass components (such as nucleotides and lipids) and
the total distance from the reaction to all biomass and
media components. We call these the topological biomass
epicenter score and topological media epicenter score, re-
spectively. Finally, we considered the canonical metabolic
pathway association (e.g., glycolysis or citric acid cycle) and
the metabolic subnetwork (central carbon metabolism,
intermediate metabolism, and secondary metabolism) asso-
ciations as topological features within our model.

Dynamic features
In addition to the static topological network attributes
that are fixed for each gene in a condition, we analyzed
the impact of each enzyme on the overall flux through
each reaction in the network using flux balance analysis
(FBA) [17]. FBA optimizes a cellular objective, usually
the conversion of nutrients to biomass. FBA has been
applied successfully to predict metabolic behaviors of
various cancer cells and tissues [10, 18–20]. To identify
metabolic reactions that are differentially active in spe-
cific cancer tissues, we used the NCI-60 cell-line meta-
bolic models from Yizhak et al. [21]. For each gene in
the cancer-specific metabolic model, we calculated the
average metabolic flux from systematic single gene dele-
tions in the model through 52 metabolic pathways (see
the “Methods” section, Additional file 1: Table S1).
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Biochemical activity features
We used the enzyme catalytic activity (kcat) and expres-
sion levels as the biochemical activity features for each
gene in our model, which are equally important in deter-
mining reaction flux. Enzyme levels in a cell are fine-
tuned to convert media components to biomass. In con-
trast to expression levels, the role of the catalytic activity
on dysregulation frequency is not known. The catalytic
activity values for each enzyme were taken from the
manually curated SABIO Biochemical Reaction database
[22]. Cell-type specific gene expression for each meta-
bolic gene was obtained from the NCI-60 panel of can-
cer cell lines [23].

MetOncoFit accurately predicts dysregulated metabolic
genes using biochemical and network properties
The MetOncoFit approach operates on the hypothesis
that fundamental biochemical and network level

properties of a metabolic gene are predictive of dysregu-
lations leading to increased fitness of tumors. We identi-
fied genes that impact tumor fitness as those that are
recurrently differentially expressed in matched tumor-
normal samples from TCGA, exhibit recurrent copy
number changes in COSMIC database, or if their activity
is significantly associated with cancer patient survival in
PrognoScan database [24, 25]. Overall, our datasets in-
cluded data for 904 metabolic genes from 4459 tran-
scriptomics samples with at least 500 samples for each
tumor type, CNV data from 4415 samples, and survival
data based on 6185 samples (Additional file 1: Table S2).
MetOncoFit trains a machine learning algorithm, ran-

dom forests, on the topological, dynamic, and biochemical
activity features to predict three prognostic markers of a
gene’s impact on tumor fitness: differential metabolic gene
expression, copy number variation, and cancer patient
survival (see the “Methods” section). We classified genes

Fig. 1 Overview of the MetOncoFit Approach. a The MetOncoFit model consists of 142 metabolic features (Additional file 1: Table S1). These
features include biochemical properties (e.g., catalytic activity (kcat)), topological parameters from the RECON1 network model (e.g., biomass
epicenter score), and dynamic properties computed from the NCI-60 cancer cell line metabolic models (e.g., reaction flux). These features for each
gene are used to make predictions on its impact on tumor fitness in a specific cancer context. b The sample dataset in the figure shows the
input matrix for MetOncoFit. The columns span the 142 features used in our model. The features are inputted into a random forest classification
algorithm and it outputs ternary predictions (increased/neutral/decreased) for copy number variation, differential gene expression, and cancer
patient survival based on the predicted impact of gene activity on tumor fitness. We evaluated MetOncoFit performance using 10-fold cross-
validation. MetOncoFit also ranks features based on their predictive importance and outputs the direction of impact with expression, survival, or
CNV (i.e., positive or negative correlation)
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into those that had increased, decreased, or had no impact
on tumor fitness for each of the three markers, based on
their biochemical and network-level properties (Fig. 1).
Due to the large availability of cancer cell line datasets, we
wanted to see if our machine learning approach can pre-
dict the dysregulated genes in patients using in silico
models generated from the NCI-60 cancer cell line panel.
We evaluated the performance of MetOncoFit using

data from nine different cancers: breast, B-cell lymphoma,
ovarian, glioma, melanoma, prostate, colon, non-small cell
lung, and renal cancer. These nine cancers were chosen as
they are represented in the NCI-60 cancer cell line panel,
which has been extensively studied using transcriptomics,
proteomics, and metabolomics. Curated genome-scale
metabolic models for these cell lines are available [21].
We assessed the performance of MetOncoFit using 10-

fold cross-validation, leave-one-cell line out, leave-one-
feature-set out, and holdout validation for 30% of the
dataset. We assessed accuracy using confusion matrices,
precision-recall curves, and the area under the receiver op-
erating characteristic (AUROC) curve for predicting each
cancer prognostic target (Additional file 1: Tables S3–S5;
see the “Methods” section). In holdout validation, 70% of
the data was randomly selected to train the model while
the remaining 30% was used to test the model accuracy for
each iteration. MetOncoFit was able to achieve an accuracy
of 90% for 10-fold cross accuracy while predicting differen-
tial expression, copy number variation, and patient survival.
Predicting differential expression and patient survival across
all cancers had an overall higher average accuracy (97% and
94%) across all cancers, while predicting CNV had a modest
average accuracy of 79%. The holdout accuracies were simi-
lar (Additional file 1: Tables S3–S5), demonstrating that
our predictions are robust. Overall, MetOncoFit is able to
predict differential expression and patient survival with high
sensitivity and is able to predict CNV with modest
sensitivity. The results suggest that the features used for
classification are generalizable and show consistently high
performance in identifying the metabolic genes that are
dysregulated in each of the nine cancer tissue models.
Next, we categorized the input feature dataset into

three distinct sets, specifically the dynamic features,
static topological features, and biochemical activity fea-
tures, and held out each set to determine the impact of
specific feature categories on MetOncoFit’s performance
(Additional file 1: Table S6). While biochemical activity
features strongly contributed to MetOncoFit perform-
ance as expected, static topological features contributed
as much, if not more, than the biochemical activity fea-
tures to MetOncoFit’s accuracy across all nine cancer
tissues and the pan cancer model (Additional file 1:
Table S6). This suggests that the metabolic gene position
within the network is an important attribute that influ-
ences dysregulation during tumorigenesis.

In the subsequent sections, we discuss our results on
three cancer types: breast cancer, non-small cell lung can-
cer (NSCLC), and melanoma. The feature importance and
performance details for the other six cancers are provided
in Additional file 2: Figures S1–S6. The top features for
each cancer can be interactively explored using the sup-
plementary website (https://metoncofit.med.umich.edu).

Biochemical and topological predictors of in vivo differential
expression are shared across several tumor types
MetOncoFit showed very high accuracy in predicting
matched tumor samples differential expression from the
TCGA cancer patient gene expression data (CV accuracy
= 98–99% for breast cancer, NSCLC, and melanoma)
(Fig. 2). Several topological features dominated the top
10 most important predictors of differential expression
in each cancer. Although some of the top 10 predictors
show weak correlation (R < 0.6) with differential expres-
sion, the random forest algorithm can combine multiple
weak predictors together to create an accurate model.
The topological distance to the nucleotides—CMP and

ATP, appear as the top biological features in breast can-
cer (Fig. 2). MetOncoFit suggests that the metabolic en-
zymes closer to these nucleotides were more likely to be
upregulated. MetOncoFit was hence able to correctly
predict the upregulation of RRM2, a breast cancer bio-
marker that catalyzes the formation of deoxyribonucleo-
tides [26, 27] (Additional file 2: Figure S7).
The presence of numerous topological features as top

predictors across all cancers supports the idea that the
metabolic network topology strongly influences metabolic
dysregulation. Furthermore, for many cancer types, the
topological biomass score was significantly correlated with
gene expression. While enzymes that are near the network
center would be expected to be dysregulated due to their
interconnectedness with other pathways, our findings sug-
gest that enzymes farther from the center of the network
are more likely to be dysregulated in cancers, resulting in
altered nutrient uptake and biomass synthesis.
Furthermore, enzyme catalytic activity was found to be

a top predictor of differential expression across all can-
cer types. This suggests that enzyme biochemical prop-
erties can influence tumor metabolic rewiring strategies.
We found that there was a positive correlation between
the catalytic activity and differential expression in many
cancers, including ovarian cancer and NSCLC. For ex-
ample, enzymes in glycolysis and TCA cycle with low
catalytic activity, such as HK3, FBP2, and GCK (median
kcat = 29, 16.7, and 40.1 s−1), are more likely to be down-
regulated in tumors (Fig. 2). In contrast, enzymes in
these pathways with high catalytic activity are more
likely to be upregulated, such as TPI1, LDHA, and
ENO1 (median kcat = 1.44 × 107, 308, and 115.25 s−1; see
the “Methods” section) (Fig. 2). TPI1, LDHA, and ENO1
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Fig. 2 (See legend on next page.)
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were also found to be frequently upregulated across vari-
ous tumor types in a prior meta-analysis study [11].
Overall, these static biochemical and topological trends
were shared across the nine tumors.
In addition, there was a significant correlation across

all cancers between the NCI-60 gene expression and
cancer patient differential expression from the TCGA.
Genes with high NCI-60 cell line expression were upreg-
ulated in tumors. NCI-60 gene expression feature as a
top predictor suggests that metabolic gene expression
profiles from the NCI-60 cell line panel can be predict-
ive of in vivo expression changes in tumors.

Enzyme catalytic activity and flux through amino acid
metabolism are top predictors of copy number gain and
loss
While some metabolic enzyme copy number variants
(CNV) such as PHGDH amplification have been associated
with cancer [28], the link between CNV and its impact on
cancer metabolism is still unclear. We included CNV as a
target in our model to begin understanding how copy num-
ber gain or loss contributes to metabolic reprogramming in
cancer cells. MetOncoFit showed high accuracy in predict-
ing copy number gain/loss ratios (10-fold CV accuracy =
85%, 94%, 90% for breast cancer, NSCLC, and melanoma,
respectively; Fig. 3). Similar to the MetOncoFit model for
predicting differential expression, the topological media
and biomass epicenters appear in the top 10 important fea-
tures for predicting CNV in most cancers. MetOncoFit also
identified the enzyme catalytic activity (kcat), the metabolic
pathway association, the metabolic flux through arginine
and proline metabolism, and flux through pyruvate metab-
olism as top 10 features contributing to CNV predictions
for breast cancer, NSCLC, and melanoma.
Flux change in the urea cycle was positively correlated

with the CNV ratio in NSCLC, suggesting a gain in copy
number for those genes associated with those metabolic
pathways (Fig. 3). The genes in these pathways—GLUL,
GLS2, NOS1/3, GOT2, and ASL—displayed an overall

gain in copy number in the COSMIC database, suggest-
ing increased activity for these enzymes (Additional file
2: Figure S8). The copy number for these enzymes might
be altered in lung cancer to support nitrogen metabol-
ism. This metabolic rewiring strategy has been observed
in KRAS/LBK1 mutant NSCLCs to manipulating nitro-
gen flow from ammonia to pyrimidine metabolism [29].
Flux through glycolysis plays an important role in melan-

oma initiation and maintenance [30, 31], and MetOncoFit
was able to correctly predict that increased glycolytic flux is
associated with copy number gain. MetOncoFit also pre-
dicted that copy number gains are associated with increased
metabolic flux through tyrosine metabolism in melanoma.
Previous studies have indicated that tyrosine and phenyl-
alanine restriction in diet can suppress metastasis in
in vitro and in vivo melanoma murine models [32, 33], sug-
gesting that there is an increase in tyrosine metabolic
activity for melanomas. Notably, MetOncoFit correctly pre-
dicted increased tyrosine metabolic flux, despite the CNV
ratios for some genes in this pathway suggesting a loss in
copy number. This suggests that MetOncoFit is able to
infer rewiring due to enzymes upstream of a pathway rather
than relying on genes in one pathway alone.
Gene expression fold change values in cancer patients

show a positive correlation with CNVs in several studies
[34, 35]. Hence, to further improve our accuracy, we
retrained our model to include the TCGA cancer atlas
gene expression fold change. MetOncoFit was able to pre-
dict CNV with higher accuracy after including TCGA ex-
pression data (10-fold CV accuracy = 92%, 98%, and 98%)
for breast cancer, NSCLC, and melanoma, respectively
(Additional file 2: Figure S9). We found that the top 10
important features in all three cancers essentially
remained the same to the model without using TCGA ex-
pression. Additionally, the TCGA expression fold change
was predicted to have the highest impact in the CNV pre-
diction for all three cancers. In sum, these results suggest
that MetOncoFit can accurately predict how metabolic
gene copy number influences cancer metabolism.

(See figure on previous page.)
Fig. 2 MetOncoFit accurately predicts differential expression in vivo using biochemical and topological properties of metabolic genes. The dot
plots show the distribution of the values of each feature for the three classes of genes (upregulated, downregulated, or not differentially
expressed in tumors compared to matched normal samples). The prominent diamond is the median value within the distribution, while the lines
display the standard deviation from the median. Features are sorted based on their relative importance in predicting differential expression (top
10 shown). The [+], [~], and [−] square panels show the direction of the Pearson correlation value between differentially expressed classes and a
given feature (see “Methods” section). Confusion matrices report MetOncoFit performance using 10-fold cross-validation; higher diagonal values
indicate higher prediction accuracy of a specific class. Data for the three representative cancers were shown. See Additional file 2: Figures S3–S8
for corresponding data for all nine cancer types. The supplementary website provides data for each gene. Top panel: features predictive of
differential expression in breast cancer include NCI-60 gene expression levels, catalytic activity, and flux after gene knockout through arginine and
proline metabolism. The topological distances to the biomass component—CMP, are negatively correlated with breast cancer differential
expression; enzymes topologically closer to CMP, such as RRM2, were more likely to be upregulated. Middle panel: a similar set of top features
found in breast cancer were predictive of differential expression in NSCLC as well. In addition, enzymes topologically closer to the biomass
components dGMP and phosphatidic acid were more likely to be upregulated. Bottom panel: in melanoma, the topological distance from
ammonia was found to be a top predictor that is negatively correlated with differential expression
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Fig. 3 Predicting copy number variation using MetOncoFit. The dot plots show the distribution of the values of each feature for the three classes
of genes (gain, loss, or neutral). Top 10 features predictive of copy number variation in breast cancer (top panel), NSCLC (middle panel), and
melanoma (bottom panel) are shown. The 10-fold cross-validation accuracy is 85%, 94%, and 90% for breast cancer, NSCLC, and melanoma,
respectively. Similar set of features were predictive of copy number variation in all three cancers including NCI-60 gene expression levels, catalytic
activity, and flux after gene knockout through arginine and proline metabolism, and pyruvate metabolism. In NSCLC, increased flux through the
urea cycle/amino group metabolism is associated with a gain in copy number. See Additional file 2: Figure S3 for corresponding data for all nine
cancer types. The supplementary website provides data for each gene

Oruganty et al. Cancer & Metabolism             (2020) 8:5 Page 7 of 15



Enzyme catalytic activity and expression level are
predictive of patient survival
MetOncoFit showed high accuracy for cancer patient
survival prediction (10-fold CV accuracy = 86%, 85%,

98% for breast cancer, NSCLC, and melanoma, respect-
ively) (Fig. 4). Metabolic features that improve cancer fit-
ness are likely to have a detrimental effect on patient
survival. The total biomass and media epicenter scores

Fig. 4 MetOncoFit identified topological and dynamic metabolic features that are predictive of gene’s activity on tumor fitness and patient
survival. Genes were grouped into three classes based on their expression in poor survival group compared to good survival
group—upregulated/neutral/downregulated (see the “Methods” section). The top 10 features predictive of a gene’s impact on patient survival in
all three cancers include NCI-60 gene expression levels, catalytic activity, and flux through arginine and proline metabolism after gene knockout.
The presence of catalytic activity and expression levels as top predictors suggest that enzyme activity is limiting tumor growth to a greater extent
than specific metabolites. Genes that impact flux through arginine, proline, pyrimidine catabolism, and NAD metabolism when knocked out were
found to be downregulated in melanoma patients with poor survival (bottom panel). In NSCLC (middle panel), genes that impact flux through
pyruvate and the urea cycle/amino group metabolism were upregulated in patients with poor survival. The topological distance from glycogen
biomass is negatively correlated with patient mortality in breast cancer (top panel), suggesting that upregulation of enzymes closer to these
metabolites is associated with poor survival. The confusion matrices report the accuracy of model predictions using 10-fold cross validation. See
Additional file 2: Figure S4 for corresponding data for all nine cancer types. The supplementary website provides data for each gene
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are consistently identified as the top 10 predictors of pa-
tient survival. This finding supports the assumption that
cancer cells optimize biomass synthesis and nutrient up-
take to increase their fitness. The total score of media
and biomass components also show a bimodal distribu-
tion, suggesting that there are specific enzymes farther
from the network center that are frequently dysregulated
to enhance tumor fitness. For instance, DHFR, SQLE,
and TYMS are located distant from the center of the
network and are frequently upregulated in many tumors
[36]. We further found that an increase in pyruvate me-
tabolism flux has a positive impact on lung cancer pa-
tient survival (Fig. 4). Flux through pyruvate metabolism
is a key metabolic branchpoint that controls the War-
burg effect, which provides a metabolic benefit for can-
cer cell proliferation and serves as a prognostic marker
in the clinic [5, 37]. Flux through pyruvate metabolism
was upregulated in samples from lung cancer patients
with increased survival. MetOncoFit found that in-
creased glycolysis enhances tumor growth while in-
creased pyruvate metabolism is associated with better
patient survival. For example, LDHA is upregulated in
lung cancers with poor survival and is associated with
increased glycolytic flux [38].
Since gene expression and CNV in cancer patients are

predictive of patient survival [39, 40], we also retrained
MetOncoFit to predict survival using TCGA fold change
data and copy number gain/loss ratios along with all 142
features. In addition to increasing the accuracy of our
models, (Additional file 2: Figure S10; 10-fold CV accur-
acy = 93.7%, 97.9%, 99.3% for breast cancer, NSCLC,
and melanoma, respectively), this analysis revealed spe-
cific metabolites that contribute to cancer patient sur-
vival. The model predicted that increased activity of
enzymes topologically close to the nutrient glutamine is
associated with increased melanoma patient mortality
(Additional file 2: Figure S10). Glutamine is an essential
metabolite for cancer cells involved in nitrogen and
redox metabolism. Analysis of gene expression data also
uncovered a strong association between ammonia me-
tabolism and melanoma (Fig. 2), consistent with prior
studies [41, 42]. MetOncoFit thus accurately recovers
well-studied metabolic reprogramming associated with
known oncogenic processes.

Pan cancer model identifies pathways critical for all
cancers
To identify biological features that enhance fitness
across all cancers, we trained a pan cancer model to pre-
dict the CNV gain/loss ratios, differential expression,
and patient survival in all nine cancer types (Fig. 5). The
performance of the pan cancer model was high for all
fitness markers except for predicting CNV in compari-
son with cancer-specific models (10-fold CV accuracy =

97%, 64%, 93% for differential expression, CNV ratio,
and survival, respectively). This suggests that the impact
of copy number variation cannot be generalized and is
tumor-specific. The top 10 features include NCI-60 cell
line gene expression levels, catalytic activity, and impact
on flux through glycolysis and amino acid synthesis
pathways. Our pan cancer model also identified that dys-
regulation of central carbon metabolism and folate me-
tabolism are important metabolic features that are
conserved across all cancers. Both metabolic pathways
undergo significant metabolic rewiring during cancer
progression to support biomass, bioenergetics, and redox
demands [36, 43]. Flux through folate metabolism gener-
ally contributes to decreased patient survival in our pan
cancer model. Folate is used as a cofactor in purine syn-
thesis [44] enabling cancer cells to keep up with cellular
proliferation demands. Folate also plays a key role in
changing the methylation patterns in DNA and histone
proteins, altering gene expression to favor cancer cell
survival [45]. Inhibiting folate metabolism was recently
found to reduce proliferation of 16 different cancer cell
types [11].

Discussion
While recent genomic studies have cataloged several
mutated genes and dysregulated enzymes, it is unclear
why specific metabolic genes are recurrently dysregu-
lated over others. Two prevailing hypotheses suggest
that these recurrently dysregulated metabolic genes oc-
cupy key position in the network (the network hypoth-
esis) or perform unique biochemical activities favorable
for tumor fitness [1, 46] (enzyme activity hypothesis).
While these assumptions are widely used in literature, a
systematic analysis of the common attributes of recur-
rently mutated genes is lacking. To test these two hy-
potheses, we developed a data-driven framework called
MetOncoFit to identify the common biochemical and
network-level features of metabolic genes that impact
tumor fitness. Our analysis using MetOncoFit supports
both these assumptions, although the relative import-
ance changes with tumor type. We identified tumors
that are limited primarily by either substrates or enzyme
activity, which can lead to distinct treatment options
such as nutrient depletion or enzyme inhibition,
respectively.
We first validated the MetOncoFit approach by asses-

sing its accuracy in predicting differential expression and
CNV in tumors from in vivo samples. Our analysis
across nine different cancers revealed that the biochem-
ical, topological, and flux features were sufficient to pre-
dict expression and CNV features with accuracies close
to 90% and 80%, respectively, across all nine tumor types
(Additional file 1: Table S3). Similarly, by identifying
metabolic alterations that favor increased or decreased
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proliferation, we predicted with 90% accuracy the im-
pact of these metabolic alterations on cancer patient
survival (Additional file 1: Table S5). Overall,
MetOncoFit accurately quantifies the impact of en-
zyme activity and metabolic network attributes on
tumor fitness.

Our analysis revealed three key insights on cancer me-
tabolism and tumor evolution. First, topological features
were highly predictive of dysregulation. MetOncoFit re-
vealed that enzymes away from the center of the net-
work towards biomass components were more likely to
be upregulated in tumors. Membrane transporters

Fig. 5 Pan cancer analysis identified common metabolic pathways contributing to tumor fitness across all cancer types. Top panel: predicting
differential expression across all cancers. Genes that impact flux through oxidative phosphorylation are more likely to be downregulated in
tumors. Middle panel: predicting copy number variation across all cancers. The very low predictive accuracy (65%) suggests that most features
predictive of CNV are not conserved between cancers. Bottom panel: predicting patient survival across all cancers. Genes that impact flux
through pyruvate, glycine, serine, and threonine metabolism, glycolysis, oxidative phosphorylation, arginine and proline metabolism, and folate
metabolism are predictive of patient survival across all cancers. Notably, expression of genes highly expressed in NCI-60 cancer cell lines is
associated with poor survival
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control substrate availability and are frequently overex-
pressed in cancer cells [3]. Our topological network ana-
lysis also identified limiting nutrients and biomass
components. MetOncoFit predicted that enzymes topo-
logically close to the synthesis of nucleotides such as
cytosine monophosphate (CMP) were more likely to be
upregulated in breast cancer and also appear as a top 10
feature in melanoma (Fig. 2). Thymidylate synthase
(TYMS) is a classic example of an important metabolic
enzyme that is recurrently dysregulated in several tu-
mors to support DNA synthesis and affects patient sur-
vival [18]. Similarly, our model suggests that breast
cancers may also upregulate enzymes that produce other
pyrimidines, such as cytosine. This suggests that cancers
upregulate enzymes that are bottleneck biomass synthe-
sis. A similar observation on the impact of network loca-
tion was made based on a meta-analysis of mutations
across human diseases [46]. While this meta-analysis
study focused on overall network topology alone across
numerous diseases, our study quantifies the relative pre-
dictive power of specific topological factors in relation to
other biochemical and network factors for individual
tumor types.
Second, the enzyme catalytic activity (kcat) is predictive

of change in enzyme expression levels in tumors, sug-
gesting that intrinsic enzyme properties can influence
metabolic rewiring strategies. The enzyme catalytic ac-
tivity and enzyme expression are directly proportional to
metabolic flux, and therefore altering the expression
levels of enzymes with high enzyme catalytic activity re-
sults in flux rewiring with reduced protein cost. While
the impact of aberrant expression of metabolic enzymes
leading to oncogenic rewiring is widely documented, the
role of the catalytic activity on dysregulation frequency
is not known. We found that enzymes with high cata-
lytic activity were more likely to show increased activity
across most cancers through copy number gain or in-
creased gene expression.
Finally, heterogeneous changes in multiple enzymes in

tumors resulted in few key changes at the overall net-
work level. This overarching framework of increased
tumor fitness helps unify the highly diverse alterations
observed in tumors. Several top predictive features for
predicting CNV were also predictive of differential ex-
pression, suggesting that diverse mechanisms are used to
achieve the same fitness goal. While the tumor fitness
optimization assumption is a promising approach for
understanding cancer metabolism, looking at individual-
omics datasets alone may not reveal the optimal network
state, as multiple complementary mechanisms are used
to achieve optimal fitness.
While MetOncoFit was able to reveal key insights into

several cancer metabolic rewiring strategies, there are lim-
itations to the interpretability of our data-driven approach,

as there are with all models. First, while differential ex-
pression and patient survival models had high accuracy,
copy number variation could not be predicted with high
accuracy in the pan cancer model, suggesting that CNVs
cannot be generalized across cancers and a more stratified
approach could be better at explaining CNVs. Further,
some metabolic rewiring strategies are likely to be patient-
specific and personalized cancer metabolic models can en-
able single patient analyses in the future [47, 48]. MetOn-
coFit identified enzyme catalytic activity to be a top
predictor despite the lack of data (missing values) for sev-
eral enzymes, suggesting that new technologies that would
allow us to estimate these enzymatic parameters in a high-
throughput manner would further increase model accur-
acy. Finally, metabolism is a dynamic process occurring
over a wide timescale and is controlled by several regula-
tory levels. Incorporating additional parameters into meta-
bolic modeling, such as post-translational modifications,
proteomics, metabolomics, epigenetic markers, and me-
tabolite feedback would further improve our ability to
understand these diverse rewiring strategies in cancer cells
[18, 48, 49].

Conclusion
In summary, we developed a data-driven framework
called MetOncoFit to identify the common features of
metabolic genes that are frequently dysregulated in tu-
mors. Analysis of cancer-specific and pan cancer data-
sets revealed that tumor fitness is maximized by
increasing expression of metabolic enzymes with high
catalytic activity that are close to specific media compo-
nents. These alterations result in increased flux through
several metabolic pathways contributing to biomass syn-
thesis, including glycolysis and the folate pathway. We
also predicted that downregulation of metabolic enzymes
in arginine and proline metabolism was correlated with
increased patient survival; these pathways impact several
redox and anaplerotic pathways. Overall, our analysis re-
vealed new insights on the role of enzyme catalytic activ-
ity and the location of the enzyme in the metabolic
network on tumor evolution and fitness.

Methods
Constructing cancer-specific MetOncoFit models
We constructed our MetOncoFit models using enzyme
kinetics data from the SABIO enzyme biochemical data-
base [22], metabolic network topology from the human
metabolic network reconstruction RECON1 [16], copy
number and mutation data from the COSMIC database
of genetic alterations in cancers [24], transcriptomic
database of NCI-60 cancer panel [23], and the multi-
cancer patient survival database, PrognoScan [25].
Cancer-specific gene expression data for nine different
cancer tissues (breast, central nervous system, colon,
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leukemia, melanoma, non-small cell lung, ovarian, pros-
tate, and renal cancer) was taken from the NCBI Gene
Expression Omnibus (GSE32474).
The number of unique metabolic genes varies with

each cancer tissue model based on the available gene ex-
pression, survival, and CNV data. Genes with missing
values were removed from the analysis. We did not fill
in missing genes with a “NEUTRAL” label for two rea-
sons. First, this would increase the class imbalance
already present in the current models, inflating MetOn-
coFit’s prediction accuracies. Second, just because a gene
was not measured in these datasets does not mean it has
a neutral contribution towards the cancer tissue’s fitness.
Our glioma model has the least number of unique meta-
bolic genes (n = 190), while our pan cancer model has
the maximum number of metabolic genes (n = 904)
(Additional file 1: Table S2).

Flux balance analysis of cancer cell line metabolic models
We focused on cancers exemplified in the NCI-60 cancer
cell panel, which has been extensively studied using tran-
scriptomic, proteomics, and metabolomics, and curated
computer models of metabolism for these cell lines are
available. The NCI-60 cancer cell line panel was represen-
tative of nine cancer types: breast cancer, B cell lymph-
oma, ovarian cancer, glioma, melanoma, prostate cancer,
colon cancer, non-small cell lung cancer, and renal cell
carcinoma. The cancer cell line specific cancer models
were obtained from Yizhak et al.’s study; the models were
built using the PRIME approach, which was shown to ac-
curately recapitulate the metabolic state of various tumor
cell lines by integrating cancer-specific transcriptomic and
metabolic data [21]. The flux values were determined in
each cancer-specific MetOncoFit model using flux balance
analysis (FBA) from the Cobra Toolbox package (available
in MATLAB and Python). To obtain a single unique flux
solution for each cancer model, the sum total of fluxes
through the metabolic network was minimized [50]. FBA
was performed for each model to obtain the wild-type flux
values for all reactions. Next, we performed single gene
deletion analysis in each of the NCI-60 cancer cell line
models and calculated the difference between wild-type
and the cancer models. The average flux redistribution for
each metabolic subsystem was calculated by taking the
mean of all reaction flux differences corresponding to a
given subsystem.

Curating enzyme catalytic activity (kcat) data
The wild-type metabolic enzyme kcat values were taken
from the manually curated SABIO Biochemical Reaction
database [22] using the UniProt identifiers associated
with each human gene. Because the distribution of cata-
lytic efficiency values spans a large range of values, we
used the log2(kcat) value to train the model. For

metabolic enzymes with multiple kcat entries corresponding
to different substrates, we used the median log2(kcat) value.
If the kinetic data was not available for that particular meta-
bolic enzyme, the value was set to the median log2(kcat)
value across all metabolic enzymes in the dataset.

Topological epicenter calculation
The topological distances of each gene to biomass com-
ponents and media components were calculated using
an unweighted directed graph of all reactant to product
conversions. We used the Python library networkx to
transform the metabolic network into a directed graph
and the shortest_path function to obtain the shortest
possible path between the source and the target. If a re-
action is irreversible, all the reactants and products are
connected by an edge from each reactant to product
combination. If the reaction is reversible, the reactants
and products are connected by two edges with both for-
ward and backward directions. For each reaction in the
graph, we computed the shortest path from the reaction
to both medium components and biomass components.
We then used the gene-reaction mapping relationship to
find the distance between a gene and biomass or media
components. The shortest path was used for genes that
participate in more than one reaction. The sum total of
such shortest distances to all biomass components, all
media components, and sum of all topological distances
were calculated to obtain the epicenter scores.

Survival, CNV, and pan cancer class assignments and
calculations
Cancer patient gene expression data was obtained from
the PrognoScan database [25]. To designate the impact
of a gene to the survival or mortality of a patient, three
thresholds were set. For each gene in a tumor-specific
context, the hazard ratio (HR) and the p value obtained
from the Cox proportional hazard test were calculated
across all cancers. If the HR was greater than or equal to
1.33 and the p value = 0.05 or less, the gene was desig-
nated as “UPREG.” If the HR was less than or equal to
0.75 and the p value = 0.05 or less, the gene was desig-
nated “DOWNREG.” The “NEUTRAL” class was desig-
nated for a gene if the HR between 0.75 and 1.33, or if
the gene did not reach statistical significance. Some
genes were detected multiple times in the same cohort.
To reconcile potential class differences (i.e., a gene that
had three entries corresponding to UPREG, UPREG, and
NEUTRAL), we took the class that was observed the
most frequently. In the previous example, we would
label the gene UPREG. In the event of a tie or conflicting
labels, we labeled the gene NEUTRAL.
We varied the HR thresholds for labeling between

0.5–2.0 and 0.90–1.10 as well to test different thresholds.
We found that the model accuracy after 10-fold cross
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validation was lower in the scheme using a HR of 0.90–
1.10, suggesting that the cutoffs are not sufficient to dis-
criminate between labels. The more stringent cutoff of
0.5–2.0 has a clear clinical interpretation: a HR of 2.0 in-
dicates that a gene is associated with twice the chance of
dying compared to the control and vice versa. However,
these labeling schemes resulted in less “DOWNREG”
classifications across all cancer models. To balance pre-
dictive accuracy while controlling for class imbalance,
we chose our final thresholds to be 0.75–1.33 (Add-
itional file 1: Table S9).
Copy number variation (CNV) data from healthy and

cancer patients were obtained from the Catalogue of
Somatic Mutations in Cancer (COSMIC) database [24].
To determine if there was a gain or loss of CNV, we
used COSMIC v83 definitions described below:

� To be classified as “GAIN” in copy number:
� Average genome ploidy ≤ 2.7 AND total copy

number ≥ 5, OR
� Average genome ploidy > 2.7 AND total copy

number ≥ 9
� To be classified “LOSS” in copy number:

� Average genome ploidy ≤ 2.7 AND total copy
number = 0, OR

� Average genome ploidy > 2.7 AND total copy
number < (average genome ploidy, 2.7)

Our target label for each gene prediction is the ratio of
CNV GAIN/LOSS. We assigned our targets as follows:
“NEUTRAL” if the CNV ratio was between 0.5 and 2.0
or if the total number of CNV measurements for the
gene in a given cancer is less than 5. Otherwise, if the ra-
tio was above 2.0, it was assigned “GAIN,” and less than
0.5 it was assigned “LOSS.”
To classify gene expression upregulation or downregu-

lation for differential expression, we used the TCGA
gene expression data from cancer patients for the 9
tumor models, available in the NCI-GDC Data Portal
(https://portal.gdc.cancer.gov/). If a metabolic gene was
identified multiple times in the same tissue, we took the
median value as the final value. We took the log2 fold
change of the tumor values over the normal gene ex-
pression values in healthy patients. A value of 2 or above
was assigned as “UPREG,” while a value of − 2 or below
was assigned as “DOWNREG.” A value between 2 and −
2 was assigned “NEUTRAL.”

Data processing, analysis, and visualization
The analysis was performed using Python 3.6+ and sev-
eral scientific computing libraries, notably scikit-learn.
Since there is considerable variation in gene expression
and other measures between cell lines, we use training
data from all cell lines within a cancer type when

developing a model for that cancer. For instance, for
training the breast cancer model, we use five sets of data
per gene from all five breast cancer cell lines (BT-549,
HS-578-T, MCF7, MDA-MB-231, and T47D). The bio-
logical variation in the features between cell lines in a
cancer type would minimize overfitting to any one cell
line and will help in generalizing the model to novel data
from other cell lines or by extension, patient-derived
data. Features containing string data as the value such as
the RECON1 subsystem feature were encoded with nu-
merical values and were mapped back after making
model predictions to get the true label association.
The resulting numeric array consisted of n genes in

the cancer model × 142 features. These values were
scaled by the interquartile range for each cancer model-
ing using the scikit-learn RobustScaler() function. To ac-
count for imbalanced classes within our dataset, we
performed random oversampling to adjust the class dis-
tribution using the imbalanced-learn package. Finally, to
generate the points in the dot plot, data from each gene-
cell line pair was combined using a majority vote based
on classification label or the medium value in the event
of a tie. The figures in the manuscript were generated
using the Matplotlib and Seaborn packages.

MetOncoFit random forest classifier
We used copy number variation, TCGA differential ex-
pression, and PrognoScan patient survival as classification
targets for MetOncoFit training. As shown in Fig. 1, the
features described above are used with a random forest
classifier from the scikit-learn Python package to predict
each of the cancer fitness markers per gene. The overfit-
ting to the training data was checked by testing against
30% of the initial data kept separate as validation data.
The performance of the best parameters for each classifi-
cation target via differential expression, CNV ratio, and
over and under gene expression for survival benefit is
given in Additional file 1: Tables S3–S5. Using random
forests, we were able to measure and rank feature import-
ance from classification using the Gini impurity index.

Model validation
For each cancer model and target prediction, we calcu-
lated a confusion matrix using the test dataset and the
model’s prediction. This comparison provides four met-
rics: true positives (TP), true negatives (TN), false posi-
tives (FP), and false negatives (FN) for each class. These
values are used to calculate the precision, recall (sensitiv-
ity), specificity, and the area under the receiver operating
characteristic curve (AUROC) score for each cancer
model (Additional file 1: Table S3).
We found that MetOncoFit had high average precision

and recall across all classes for predicting the cancer tar-
gets. We also calculated the harmonic average of the
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precision and recall (F1 score) and Matthew’s correlation
coefficient (MCC), two measures that use the precision
and recall values to evaluate the error in the model
(Additional file 1: Tables S3–S5). We further calculated
the upper-tailed t test p value and Z-score for the aver-
age accuracy in the test set based on a distribution of ac-
curacy values obtained after 1000 iterations of shuffling
the classification labels randomly. The p value for aver-
age accuracy across all models was less than 1× 10−50

(Additional file 1: Tables S3–S5).
To further test our model, we performed a holdout valid-

ation and 10-fold cross-validation and found that the sensi-
tivity and specificity of prediction of each of the targets in
eight different cancers is greater than 90% in both cross-
validation and holdout validation. Taken together, the re-
sults suggest that the parameters used for classification are
generalizable and show high performance in classifying the
genes in each cancer model. Since the prediction targets
and features are independent of each other, the high accur-
acy of the models indicates that biologically relevant fea-
tures are being used for the classification.
To identify biases that are present within a given cancer

cell line for the tissue models, we performed leave-one-cell
line out analysis by calculating the model prediction accur-
acies after systematically removing a single cell line from
the dataset (Additional file 1: Table S7). MetOncoFit had
an average accuracy of 80% predicting all cancer markers
across all cancers. The worst performing model was the
prostate cancer model predicting CNV, which is due to the
small sample size (n = 2 cell lines; DU-145 and PC-3).
The best performing model was the renal cancer
model for predicting patient survival (n = 7; 99%
across all holdouts). Overall, we determined that the
dataset we used to train MetOncoFit on is reasonable
to make predictions for TCGA differential expression,
CNV, and patient survival.

Correlation between metabolic features and prognostic
cancer targets
Pearson correlation coefficients were calculated between
each metabolic/biochemical feature and its corresponding
target—differential expression, copy number variation, and
cancer patient survival. This determined if there was a posi-
tive or negative relationship between the feature and the
predicted target. The upper and lower R values (R > 0.6 or
R < − 0.6) were chosen as the cutoff for the positive (+) or
negative (−) correlation.
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