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Whole lung tissue is the preferred sampling
method for amplicon-based
characterization of murine lung microbiota
Jennifer M. Baker1,2, Kevin J. Hinkle2, Roderick A. McDonald2, Christopher A. Brown2, Nicole R. Falkowski2,
Gary B. Huffnagle1,2,3,4 and Robert P. Dickson1,2,5*

Abstract

Background: Low-biomass microbiome studies (such as those of the lungs, placenta, and skin) are vulnerable to
contamination and sequencing stochasticity, which obscure legitimate microbial signal. While human lung
microbiome studies have rigorously identified sampling strategies that reliably capture microbial signal from these
low-biomass microbial communities, the optimal sampling strategy for characterizing murine lung microbiota has
not been empirically determined. Performing accurate, reliable characterization of murine lung microbiota and
distinguishing true microbial signal from noise in these samples will be critical for further mechanistic microbiome
studies in mice.

Results: Using an analytic approach grounded in microbial ecology, we compared bacterial DNA from the lungs of
healthy adult mice collected via two common sampling approaches: homogenized whole lung tissue and
bronchoalveolar lavage (BAL) fluid. We quantified bacterial DNA using droplet digital PCR, characterized bacterial
communities using 16S rRNA gene sequencing, and systematically assessed the quantity and identity of bacterial
DNA in both specimen types. We compared bacteria detected in lung specimens to each other and to potential
source communities: negative (background) control specimens and paired oral samples. By all measures, whole
lung tissue in mice contained greater bacterial signal and less evidence of contamination than did BAL fluid.
Relative to BAL fluid, whole lung tissue exhibited a greater quantity of bacterial DNA, distinct community
composition, decreased sample-to-sample variation, and greater biological plausibility when compared to potential
source communities. In contrast, bacteria detected in BAL fluid were minimally different from those of procedural,
reagent, and sequencing controls.

(Continued on next page)

© The Author(s). 2021, corrected publication July 2021. Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this article are included in
the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a
credit line to the data.

* Correspondence: rodickso@med.umich.edu
1Department of Microbiology and Immunology, University of Michigan
Medical School, Ann Arbor, MI 48109, USA
2Division of Pulmonary and Critical Care Medicine, Department of Internal
Medicine, University of Michigan Health System, 6220 MSRB III/SPC 5642,
1150 W. Medical Center Dr, Ann Arbor, MI 48109-5642, USA
Full list of author information is available at the end of the article

Baker et al. Microbiome            (2021) 9:99 
https://doi.org/10.1186/s40168-021-01055-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-021-01055-4&domain=pdf
http://orcid.org/0000-0002-6875-4277
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:rodickso@med.umich.edu


(Continued from previous page)

Conclusions: An ecology-based analytical approach discriminates signal from noise in this low-biomass
microbiome study and identifies whole lung tissue as the preferred specimen type for murine lung microbiome
studies. Sequencing, analysis, and reporting of potential source communities, including negative control specimens
and contiguous biological sites, are crucial for biological interpretation of low-biomass microbiome studies,
independent of specimen type.
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Background
Though the development of next-generation sequencing
has led to heightened interest in the study of microbial
communities across biological contexts, the study of
low-biomass microbiomes is particularly challenging and
requires the development of new methodological ap-
proaches. Low-biomass samples—samples with low
densities of bacterial cells and therefore low quantities of
bacterial DNA—are susceptible to contamination with
background-derived signal, which affects the taxonomic
composition of low-biomass samples [1, 2]. This chal-
lenge of background DNA, contamination, and sequen-
cing stochasticity (here collectively referred to as
“noise”) intermingled with legitimate bacterial signal ori-
ginating from a biological specimen (here referred to as
“signal”) makes it challenging to decipher biological
meaning from sequencing data [3]. These methodo-
logical challenges exist in all fields that study low-
biomass microbial communities across environmental,
industrial, and biomedical contexts.
Low-biomass microbiome fields have had variable suc-

cess in overcoming these methodological challenges.
Whereas early findings related to the purported placenta
microbiome have subsequently been attributed to con-
tamination [4, 5], the lung microbiome field has flour-
ished with robust, validated findings: lung microbiota
are detectable in health [6–13], correlated with lung im-
munity both in health [7, 8, 14, 15] and disease [16–18],
correlated with disease severity and predictive of re-
sponse to therapy [19–22], and prognostic of clinical
outcomes in multiple conditions [23–30]. The lung
microbiome field addressed the challenge of low-
biomass microbiome sampling in humans by systematic-
ally defining methods that collect representative popula-
tions of lung microbiota to maximize bacterial DNA
content and minimize vulnerability to background con-
tamination [9–12]. As a result, empirically validated
sampling approaches such as bronchoalveolar lavage
(BAL) fluid, which (in humans) samples a large surface
area and yields high sample volumes, have been success-
fully implemented in lung microbiome studies [31].
Yet despite their routine use in human lung micro-

biome studies, these sampling methods are not easily
adapted for sampling lung microbiota in murine models,

which will be critical to understand the mechanisms that
govern the relationship between respiratory tract micro-
biota and pulmonary disease. Anatomic considerations
make the application of sequencing-based techniques to
murine lung microbiome studies particularly challen-
ging, as collection of BAL fluid is severely limited by the
small (~1 mL) volume of the murine lung and terminal
nature of the procedure in mice [32]. In contrast, ana-
lysis of homogenized lung tissue is more feasible in mice
than humans and represents a viable option for maxi-
mizing the bacterial DNA content in murine lung sam-
ples [33]. Thus, the ability to effectively sample low-
biomass microbial communities is inherently context-
dependent and will require new solutions adapted to the
particular context of each study.
We therefore designed an empirical approach to com-

pare microbial signal detected in two distinct sample
types collected from the same ecological site (murine
lungs) with the following goal: to determine the sam-
pling method that is best suited for the characterization
of the murine lung microbiome. To accomplish this
goal, we quantified and sequenced the bacterial DNA
present in BAL fluid and whole lung tissue from other-
wise genetically—and environmentally—identical healthy
mice and compared them using a microbial ecology-
based analytic approach (Fig. 1).

Methods
Mice
Eight-week-old female C57BL/6 mice (n = 20) were pur-
chased from Jackson Laboratories and housed under
specific pathogen–free conditions. Mice were housed in
five-animal cages in a common animal housing room
and did not receive independent ventilation. Mice were
allowed to acclimate for 1 week before harvest at 9
weeks of age. To avoid batch effect, mice were randomly
assigned to specimen type (BAL fluid or whole lung tis-
sue) and evenly sampled across cages. Animal experi-
mentation was performed in compliance with the
ARRIVE Guidelines [34, 35].

Tissue collection and processing
On the day of harvest, mice were randomized to either
the whole lung tissue or BAL fluid groups (Fig. 1, step
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1). To account for cage effect during downstream ana-
lysis, two or three mice per five-mouse cage were ran-
domly assigned to each sampling group, for a total of 10
mice from each of the four cages in the whole lung tis-
sue and BAL fluid groups. Mice were sacrificed via CO2

asphyxiation, and organs were harvested in the following

order: tongue, whole lung tissue or BAL fluid, and
cecum. A summary of all tissue samples and controls
used in this study is provided in Supplementary Table 1.
All tissue samples were collected using sterile technique,
and instruments were rinsed with ethanol and flamed
between each organ. Tongue (n=20) and cecum (n=20)

Fig. 1 An ecology-based experimental and analytic approach can distinguish bacterial signal from noise in low-biomass microbiome studies.
Graphical and conceptual outline of an experimental and analytic approach to low-biomass microbiome studies. This approach was applied to
murine lung microbiome sampling optimization in this study and may be useful in other low-biomass microbiome studies across
biological contexts
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samples, which were collected to serve as low- and high-
biomass positive controls, respectively, were immediately
snap-frozen using liquid nitrogen and stored at −80°C
until DNA isolation.
Both types of lung samples collected for this study

were harvested and processed according to previously
published protocols [6, 36], described in brief below.
Murine whole lung tissue (n=10) was excised, placed in
tubes containing 1 mL sterile water, and mechanically
homogenized using a Tissue-Tearor (Biospec Products,
Bartlesville, OK). The tissue homogenizer was cleaned
and rinsed in ethanol and water between each tissue
sample. Water control specimens from homogenization
(n=2) rinsed with clean instruments were included as
procedural controls for whole lung tissue. Lung hom-
ogenate was centrifuged at 13,000 rpm, supernatant was
removed, and the cellular pellet was snap-frozen with li-
quid nitrogen and stored at −80°C until DNA isolation.
BAL fluid (n=10) was collected by (1) sterile dissec-

tion to expose and make a small incision in the trachea,
(2) insertion of a piece of sterile tubing (BD Intramedic
polyethylene tubing, 0.58-mm internal diameter, catalog
no. 427410) and connected sterile syringe needle (BD
PrecisionGlideTM 23 gauge needle, catalog no. 305145)
into the incision, (3) tightening of a piece of sterile sur-
gical thread around the intubated trachea to create an
air-tight seal, and (4) two rounds of instillation and re-
trieval of 1 mL of sterile phosphate-buffered saline
(PBS) into the lungs using a sterile syringe (BD 1 mL
sterile syringe, catalog no. 309659). Each tubing-needle-
syringe setup was rinsed thoroughly with sterile PBS
between the collection of each sample. Sterile PBS (n=
2) used for lavage and PBS rinses (n=4) of the syringe,
needle, and tubing (pre- and post-lavage) were collected
as procedural controls. BAL fluid was prepared by pool-
ing the two serial lavages from each mouse, yielding up
to 2 mL total BAL fluid per mouse. Pooled BAL fluid
was centrifuged at 13,000 rpm for 30 min, supernatant
was removed, and the cellular pellet was snap-frozen
with liquid nitrogen and stored at −80°C until DNA
isolation.

DNA extraction, quantification, and 16S rRNA gene
sequencing
DNA was extracted, amplified, and sequenced according
to previously published protocols [37, 38] (Fig. 1, steps 2
and 4). DNA isolation was performed with a single kit
according to a modified protocol previously demon-
strated to isolate bacterial DNA [37]. Briefly, genomic
DNA was extracted from mouse tissue samples using a
DNeasy Blood & Tissue kit (Qiagen, Hilden, Germany,
catalog no. 69506) and homogenized in PowerBead
Tubes (Qiagen, Hilden, Germany, catalog no. 13123-50).
To detect contamination introduced by the DNA

isolation kit, elution (AE) buffer (n=6) and specimen-
free DNA isolations using empty bead tubes (n=6) were
collected and sequenced as negative controls. Samples
were processed in a randomized order to reduce false
pattern formation due to reagent contamination [1].

Bacterial DNA quantification
Bacterial DNA in lung specimens and negative controls
was quantified with a QX200 ddPCR system (Bio-Rad,
Hercules, CA) according to a previously published
protocol [39]. Sampling and DNA isolation controls and
sterile PCR-grade water used for sample dilution as a no
template control (n=4) were run alongside lung speci-
mens. All lung specimens and negative controls were
run with two technical replicates. Droplets were gener-
ated using an automated droplet generator (Bio-Rad,
catalog no. 1864101). PCR amplification was performed
with the Bio-Rad C1000 Touch Thermal Cycler (catalog
no. 1851197). Primers were 5′- GCAGGCCTAACACA
TGCAAGTC-3′ (63F) and 5′- CTGCTGCCTC
CCGTAGGAGT-3′ (355R). The cycling protocol was 1
cycle at 95°C for 5 min, 40 cycles at 95°C for 15 s and
60°C for 1 min, 1 cycle at 4°C for 5 min, and 1 cycle at
90°C for 5 min, with all steps at a ramp rate of 2°C/s.
Droplets were detected using the automated droplet
reader (Bio-Rad, catalog no. 1864003), quantified using
QuantasoftTM Analysis Pro (version 1.0.596), and
imported to R (version 4.0.2) for visualization and statis-
tical analysis.

16S rRNA gene sequencing
The V4 region of the 16S rRNA gene was amplified
using published primers [40] and the dual-indexing se-
quencing strategy developed by the laboratory of Patrick
D. Schloss [38], according to the manufacturer’s instruc-
tions with modifications found in the Schloss standard
operating procedures (SOP) [41] as published previously
[42, 43]. For primary PCR, each 20 μL PCR reaction
contained the following: 5 μL of a 4 μM equimolar pri-
mer set, 2 μL 10X AccuPrime PCR Buffer II (Life Tech-
nologies, catalog no. 12346094), 9.85 μL sterile PCR-
grade water, 0.15 μL Accuprime High Fidelity Taq Poly-
merase (Life Technologies catalog no. 12346094), and 3
μL of template DNA. PCR cycling conditions were 95°C
for 2 min, followed by 20 cycles of touchdown PCR
(95°C 20 s, 60°C 15 s and decreasing 0.3° each cycle,
72°C 5 min), then 20 cycles of standard PCR (95°C for
20 s, 55°C for 15 s, and 72°C for 5 min), and finished
with 72°C for 10 min. PCR products were visualized
using an E-Gel 96 with SYBR Safe DNA Gel Stain, 2%
(Life Technologies catalog no. G7208-02). Samples that
did not amplify during the first round of PCR were
reamplified during a single round of troubleshooting
using the same PCR cycling protocol and reaction
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composition as described above, except for the following
modifications: increasing template DNA volume from 3
to 5 μL and decreasing the sterile PCR-grade water vol-
ume by 2 μL to yield a total reaction volume of 20 μL.
After confirming successful amplification of all sam-

ples, libraries were normalized using SequalPrep
Normalization Plate Kit (Life Technologies, catalog no.
A10510-01) following the manufacturer’s protocol for
sequential elution. The concentration of the pooled sam-
ples was determined using Kapa Biosystems Library
Quantification kit for Illumina platforms (Kapa Biosys-
tems, catalog no. KK4824), and amplicon size was deter-
mined using the Agilent Bioanalyzer High Sensitivity
DNA analysis kit (catalog no. 5067-4626). Libraries were
prepared according to Illumina’s “Preparing Libraries for
Sequencing on the MiSeq” protocol for 2 nM libraries
(part no. 15039740 Rev. D). The final library consisted of
equimolar amounts from each of the plates normalized
to the pooled plate at the lowest concentration. The final
load concentration was 5 pM, spiked with PhiX at 15%
to add diversity. Sequencing reagents were prepared ac-
cording to the Schloss SOP, and custom read 1, read 2,
and index primers were added to the reagent cartridge.
Amplicons were sequenced using the Illumina MiSeq
platform (San Diego, CA) using a MiSeq Reagent Kit V2
(Illumina, catalog no. MS102-2003) for 500 cycles. Ster-
ile water (n=8) and empty wells (n=28) were sequenced
as negative controls, and a synthetic community (n=4;
ZymoBIOMICS Microbial Community DNA Standard,
Zymo Research catalog no. D6306) was sequenced as a
positive control. FASTQ files were generated with paired
end reads and retained for further analysis.

Adequacy of sequencing
The full dataset obtained from the sequencing run in-
cluded 5,560,120 total reads, with a mean ± SD of 46,
334 ± 63,233 reads per specimen and a range of 53–287,
832 reads per specimen. The dataset post-mothur pro-
cessing included 2,062,759 identified bacterial reads,
with a mean ± SD of 17,190 ± 23,515 reads per speci-
men and a range of 12–113,592 reads per specimen.
One whole lung tissue sample, one isolation control, one
elution buffer control, two water controls, and four empty
well controls were identified as having an insufficient
number of sequencing reads (< 150 reads) and were ex-
cluded from further analysis. All other tissue and control
samples met the minimum requirement for number of se-
quencing reads (≥ 150 reads) and were retained for further
analysis (Supplementary Figure 1). No major differences
between the conclusions drawn from hypothesis tests con-
ducted with the full sequencing dataset compared to the
trimmed, quality-checked sequencing dataset were ob-
served (Supplementary Table 2).

Data analysis
16S rRNA gene sequencing data were processed using
mothur (v. 1.43.0) according to the Standard Operat-
ing Procedure for MiSeq sequence data using a mini-
mum sequence length of 250 base pairs [41, 44]. A
shared community file and a genus-level phylotyping
file were generated using operational taxonomic units
(OTUs) binned at 97% identity, using SILVA (v. 132)
for sequence alignment (silva.nr_v132.regionV4.align).
OTU numbers were arbitrarily assigned in the bin-
ning process and are referred to throughout the
manuscript in association with their most specified
level of taxonomy (typically genus or family). OTUs
were classified using the mothur implementation of
the Ribosomal Database Project (RDP) classifier and
RDP taxonomy training set 16 (trainset16_
022016.rdp.fasta, trainset16_022016.rdp.tax), available
on the mothur website [41]. After data processing
with mothur, shared community (OTU) and tax-
onomy files were imported to R for trimming and
quality checks. OTUs that composed greater than
0.1% of reads in all samples were retained in the
trimmed dataset for further analysis. One sample
(WVB_Lung_L3) yielded less than 150 reads and was
removed from the quality-checked dataset; all other
experimental and control samples were retained in
the quality-checked dataset, which was used for the
main analysis.
Microbial community analysis of the quality-checked

dataset was performed in R (version 4.0.2) [45] and re-
lied primarily on the tidyverse (v. 1.3.0) [46], ggplot2 (v.
3.3.0) [47], vegan (v. 2.5-6) [48], and cbmbtools (v.
0.0.09025) [49] packages. For relative abundance, sam-
ples were normalized to the percent of total reads, and
analysis was restricted to OTUs that were present at
greater than 0.1% of the sample population. No OTUs
were excluded from the dataset to account for back-
ground contamination. Diversity comparisons were per-
formed by calculating community richness rarefied to
100 reads per sample, Shannon diversity index, and the
Bray-Curtis dissimilarity index. Ordinations were per-
formed using principal component analysis on
Hellinger-transformed OTU count tables generated
using Euclidean distances [50].
Overall significance was determined as appropriate by

the Kruskal-Wallis test and by permutational multivari-
ate analysis of variance (PERMANOVA) with 10,000
permutations using Hellinger-transformed OTU count
tables and Euclidean distances with the adonis function
in the R package vegan. Pairwise significance was deter-
mined as appropriate by the Wilcoxon test with the
Benjamini-Hochberg correction for multiple compari-
sons, Tukey’s honest significant difference (HSD) test,
two-sample independent Mann-Whitney U test, and
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two-group PERMANOVA as described for overall sig-
nificance testing. All statistical tests used p=0.05 as a
threshold for significance.

Results
Murine whole lung tissue contains more bacterial DNA
than BAL fluid and negative controls
Obtaining quality sequencing data depends on the pres-
ence of sufficient bacterial DNA in the samples to be an-
alyzed. Therefore, we first compared the quantity of
bacterial DNA in whole lung tissue and BAL fluid ob-
tained from healthy C57BL/6 mice (Fig. 1, step 3). We
hypothesized that whole lung tissue contains more bac-
terial DNA compared to BAL fluid. To test this hypoth-
esis, we determined the number of 16S rRNA gene
copies present in DNA isolated from whole lung tissue,
BAL fluid, and negative control specimens using droplet
digital PCR (ddPCR). As seen in Fig. 2, BAL fluid and
whole lung tissue both contained a significantly greater
quantity of bacterial DNA than the isolation control (p=
0.008 and 0.003, respectively). In contrast, BAL fluid did
not contain more bacterial DNA than sampling controls
or no template controls (p>0.05). Whole lung tissue

contained significantly more bacterial DNA than all
other groups, including all negative controls (p=
0.00005). Whole lung tissue contained 27-fold more 16S
rRNA gene copies than BAL fluid (42,740 vs. 1578 mean
copies/specimen, respectively; p=0.0002). We thus con-
cluded that murine whole lung tissue contains a greater
quantity of bacterial DNA than does BAL fluid.
Having confirmed the presence of detectable bacterial

DNA in whole lung tissue and BAL fluid, we proceeded
with 16S rRNA gene sequencing according to a standard
low-biomass protocol. Along with whole lung tissue and
BAL fluid, we sequenced a variety of controls, including
cecum as a high-biomass positive control, tongue as a
low-biomass positive control and potential source com-
munity of the lower respiratory tract, a synthetic mock
community as a positive sequencing control, and nega-
tive controls for each stage of specimen processing, in-
cluding sampling, DNA isolation, and sequencing
controls. Despite the increased amount of bacterial DNA
in whole lung tissue, BAL fluid returned a greater num-
ber of reads than whole lung tissue. These results are
consistent with the compositional, rather than quantita-
tive, nature of amplicon-based sequencing, and are likely

Fig. 2 Murine whole lung tissue contains increased bacterial burden relative to BAL fluid and negative controls. Whole lung tissue contains more
copies of the bacterial 16S rRNA gene per mL of DNA isolated from lung or control specimens as quantified by ddPCR. Mean ± SEM and
individual data points (representing the average of technical duplicates) are shown. Overall significance was determined by the Kruskal-Wallis test
(p = 0.00005). Pairwise significance was determined by the pairwise Wilcoxon test and corrected for multiple comparisons using the Benjamini-
Hochberg method (pairwise comparisons including whole lung or BAL fluid that are not shown were not significant). Significance key: *p ≤ 0.05;
**p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001
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attributable to the high host-to-bacteria ratio in whole
lung tissue (Supplementary Figure 1). With the exception
of one whole lung tissue sample and five negative controls,
all other specimens returned an adequate number of reads
for further analysis. More details regarding adequacy of se-
quencing are provided in the “Methods” section.

Murine whole lung tissue has increased alpha diversity
and decreased sample-to-sample variation relative to BAL
fluid and negative controls
We next determined if the alpha (within-sample) diversity
also differed across sampling approaches (Fig. 1, step 5).
We hypothesized that the increased quantity of bacterial
DNA in whole lung tissue would yield greater diversity of
bacterial taxa in whole lung tissue compared to BAL fluid.
To test this hypothesis, we calculated community richness
as measured by the number of unique operational taxo-
nomic units (OTUs) per 100 reads present in each speci-
men and negative control. As predicted, whole lung tissue
had greater community richness than BAL fluid (p=
0.00002) and sampling, isolation, and sequencing controls
(p<0.0001 for all comparisons) (Fig. 3). In contrast, whole
lung and BAL specimens did not significantly differ in
Shannon diversity index, which reflects both community
richness and evenness (p>0.05; Supplementary Figure 2).
We therefore concluded that alpha diversity differs across
sampling approaches, with greater alpha diversity in whole

lung tissue driven by the detection of greater numbers of
unique OTUs relative to BAL fluid.
Since BAL fluid contained low quantities of bacterial

DNA and fewer unique OTUs than whole lung tissue, we
suspected that incomplete sampling of the respiratory
tract via saline lavage may also result in increased sam-
pling and/or sequencing stochasticity [51], which both
lead to decreased specimen-to-specimen reproducibility of
cohoused mice. We have previously shown that mice from
the same shipment and vendor have similar lung micro-
biota [6], and thus made this assumption in the following
comparison. We hypothesized that whole lung tissue
would have decreased sample-to-sample variation relative
to BAL fluid, representing greater replicability. To test this
hypothesis, we computed the Bray-Curtis dissimilarity
index, a beta-diversity metric based on pairwise inter-
sample distances between specimens of the same type (i.e.,
we compared each whole lung tissue specimen to each
other whole lung tissue specimen, and likewise for BAL
fluid). Whole lung tissue yielded a decrease in average
Bray-Curtis dissimilarity index relative to that of BAL fluid
and empty well controls (p<0.0001) (Fig. 4). In contrast,
the average Bray-Curtis dissimilarity index for BAL fluid
was not significantly different than the highly dissimilar
empty well controls (p=0.3). The high dissimilarity among
BAL fluid samples is likely attributable to the low amount
of bacterial DNA present in this sample type, as previous

Fig. 3 Bacterial communities in murine whole lung tissue have increased alpha diversity relative to BAL fluid and negative controls. a Whole lung
tissue contains a greater number of unique bacterial taxa than BAL fluid and negative controls. Richness of the bacterial community in each
tissue or control specimen was determined by clustering reads with species-level similarity (≥ 97% sequence identity) into operational taxonomic
units (OTUs) and calculating the number of unique OTUs within each specimen, normalized to 100 reads per specimen to account for variation in
sequencing depth. Mean ± SEM and individual data points are shown. Pairwise significance was determined by comparing whole lung tissue and
BAL fluid to pooled sampling, isolation, and sequencing controls (respectively, as shown) using Tukey’s Honest Significant Difference (HSD) test.
Significance key: ns p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001
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work from our group showed an increase in sequencing
stochasticity as bacterial biomass of the sample decreases
[51]. Notably, the average Bray-Curtis dissimilarity index
for whole lung tissue still showed a large amount of vari-
ation (median = 0.72). Since technical replicates were not
sequenced in this study, the degree to which sequencing
stochasticity contributes to the high amount of variation
observed among lung microbiota from either sample type
remains unknown. However, this variation observed in
whole lung tissue is at least partly attributable to the sam-
pling of mice from four different cages and the innate
microbiological variation that occurs when sampling a sin-
gle timepoint in the lung, which experiences rapid turn-
over of microbiota due to constant immune surveillance
[14]. By comparison, the average Bray-Curtis dissimilarity
index for whole lung tissue was lower than that of oral
samples, supporting the biological plausibility of the ob-
served variation between whole lung tissue samples.
Taken together, these results suggest that whole lung tis-
sue displays decreased sample-to-sample variation and
likely samples the lung microbiome of mice more repro-
ducibly than BAL fluid.

The taxonomic composition of murine whole lung tissue
is similar to its oral microbiome source community and is
distinct from negative controls, whereas that of BAL fluid
is not distinct from negative controls
Having identified differences in bacterial quantity and
diversity across sampling approaches, we next assessed

whether the taxonomic composition of whole lung tissue
and BAL fluid differed from each other and from nega-
tive controls (Fig. 1, step 6). Since whole lung tissue had
higher bacterial DNA content and alpha diversity than
BAL fluid, we hypothesized that the taxonomic compos-
ition of BAL fluid would more closely resemble that of
negative control specimens than would whole lung tis-
sue, reflecting background contamination and sequen-
cing noise as predominant sources of taxa in BAL fluid.
To test this hypothesis, we used principal component
analysis (PCA) to compare the similarity of taxa identi-
fied in whole lung tissue, BAL fluid, and negative control
specimens. As seen in Fig. 5a, the taxonomic compos-
ition of whole lung tissue was distinct from that of BAL
fluid (p=0.00009) and pooled sampling controls (p=
0.0004). In contrast, BAL fluid showed prominent over-
lap with sampling controls and did not differ in overall
community composition (p=0.46). Similar results were
obtained when comparing whole lung tissue and BAL
fluid with isolation and sequencing controls (Supple-
mentary Figure 3AB). Overall, these data show that the
taxonomic composition of whole lung tissue is distinct
from that of BAL fluid and negative controls, whereas
BAL fluid is not distinct from most negative controls.
We next assessed the biological plausibility of bacter-

ial taxa by comparing whole lung tissue and BAL fluid
communities to their likely source community, the oral
microbiome (Fig. 1, step 7). We hypothesized that the
taxonomic composition of whole lung tissue would

Fig. 4 Bacterial communities in murine whole lung tissue show decreased variation among biological replicates compared to those in BAL fluid.
Variation among lung bacterial communities of healthy mice from the same shipment was quantified using the Bray-Curtis dissimilarity index. For
comparison, Bray-Curtis dissimilarity was also calculated for empty wells as a representative negative control with high variation, cecal
communities as a representative body site with low variation, and tongue as a representative seed community for the lower respiratory tract.
Median, IQR, and all unique pairwise comparisons (individual data points) are shown. Pairwise significance was determined by pairwise Wilcoxon
test and corrected for multiple comparisons using the Benjamini-Hochberg method. Significance key: ns p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤
0.001; ****p ≤ 0.0001
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more closely resemble that of the oral microbiome
source community than does BAL fluid. Principal com-
ponent analysis confirmed that tongue and whole lung
tissue display similar but statistically different (p=0.01)
taxonomic compositions, whereas BAL fluid clusters
separately both from tongue (p=0.00009) and whole
lung tissue (Fig. 5b). We confirmed these results by cal-
culating the Bray-Curtis dissimilarity index for matched
(i.e., from the same mouse) tongue and lung samples
(Fig. 5c). Consistent with the PCA results, whole lung
tissue more closely resembled the oral source commu-
nity than did BAL fluid (p=0.0004). Rank abundance
analysis revealed that the prominent taxa in whole lung
tissue were also common in tongue specimens,
whereas taxa in BAL fluid bore little resemblance to
oral taxa and instead resembled taxa in negative con-
trols (Fig. 5d). The similarity of taxa in the whole
lung and tongue samples and the BAL fluid and
negative control samples, respectively, can also be ob-
served when ordering rank abundance plots by the
taxa found in the tongue or pooled negative controls
(Supplementary Figure 4). Together, these results con-
firm that the bacterial taxa identified in whole lung
tissue are more biologically plausible than those de-
tected in BAL fluid (Fig. 1, step 8).

Discussion
This study illustrates how an ecology-based analytical
approach can interrogate the reality of bacterial signal in
low-biomass microbiome studies. Our approach revealed
the superiority of murine whole lung tissue relative to
BAL fluid in detecting bacterial signal and validates the
use of whole lung tissue for lung microbiome studies in
mice. The bacterial signal in murine whole lung tissue is
stronger than that of BAL fluid by all comparisons: in-
creased quantity of bacterial DNA, greater diversity of
bacterial taxa, and taxonomic composition that is repro-
ducible across biological replicates, distinct from

negative controls, and more similar to the oral micro-
biome, a biologically plausible source community (Table
1).
This study represents the first systematic comparison

of sampling methods appropriate for the study of the
murine lung microbiome. The lack of empirically vali-
dated methods for sampling lung microbiota in mice is
particularly concerning in light of the current reproduci-
bility crisis [52] and recent controversial low-biomass
studies [4, 5, 53], which highlight the dangers of over-
interpreting noisy sequencing data in the absence of
rigorous, field-specific standards. A systematic examin-
ation of methods for sampling lung microbiota in mice
is overdue, especially considering the first report describ-
ing the murine lung microbiome was published almost a
decade ago [54]. Published murine lung microbiome
studies to date have used both whole lung tissue [6, 36,
55–59] as well as BAL fluid [60–62], but no study to
date has directly compared sampling approaches. Based
on the findings of the current study, we strongly recom-
mend whole lung tissue as a preferred sampling strategy
for subsequent murine lung microbiome studies.
While BAL fluid in mice contains weak bacterial signal

relative to lung tissue, in humans, the opposite has been
observed: human BAL specimens contain consistently
stronger bacterial signal than lung tissue acquired via bi-
opsy. This observation is consistent with anatomic and
ecologic differences across species. Anatomically, human
lungs are much larger than murine lungs, providing in-
creased surface area for sampling (~75 m2 vs. 0.008 m2)
and more airspace (6 L vs. 0.001 L) to accommodate the
collection of far larger volumes of BAL fluid [32, 33, 63].
Biopsy specimens of human lungs are typically small in
volume and peripheral in anatomic location, meaning
they are predominantly composed of interstitium rather
than airways and alveolar space (where bacteria are more
likely to be found). In contrast, use of whole lung hom-
ogenate in mice ensures capture of all bacterial DNA
within the entire respiratory tract. Thus, anatomic and

(See figure on previous page.)
Fig. 5 The taxonomic composition of bacterial communities in murine whole lung tissue is distinct from the background-dominant taxonomic
composition of BAL fluid and similar to that of the oral microbiome, a biologically plausible source community. a Whole lung tissue clusters
separately from BAL fluid and sampling controls by principal component analysis of Hellinger-transformed 16S rRNA gene sequencing data.
Individual data points represent specimens grouped by sample or control type. b Whole lung tissue, but not BAL fluid, clusters near tongue
samples by principal component analysis of Hellinger-transformed 16S rRNA gene sequencing data. Individual data points represent specimens
grouped by sample type. c Bacterial communities in whole lung tissue are more similar to matched (within-mouse) oral communities than BAL
fluid. Similarity of lung bacterial communities, grouped by sampling approach, to matched oral communities was quantified using Bray-Curtis
dissimilarity index. Median, IQR, and individual data points representing within-mouse comparisons of oral and lung communities are shown. d
Relative abundance of bacterial taxa in whole lung tissue are similar to that of oral bacterial communities. In contrast, the relative abundance of
bacterial taxa in BAL fluid is similar to that of negative controls. Bars are ranked by mean abundance in whole lung tissue and represent mean ±
SEM percent relative abundance of the top 50 bacterial taxa (OTUs) in whole lung tissue across sample types. Labels denote genus (or most
specific taxonomic level if no genus was assigned) and unique identifier for each OTU. Overall significance was determined by (a, b)
permutational multivariate ANOVA (p = 0.00009 for both). Pairwise significance was determined by (a, b) two-sample PERMANOVA (a only:
pooled sampling controls were compared to each lung sample type), and c two-sample unpaired Mann-Whitney U test. Significance key: ns p >
0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001
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ecologic differences between humans and mice necessi-
tate the use of murine-specific sampling approaches and
illustrate why a “one-size-fits-all” approach to low-
biomass microbiome sampling is unlikely to work: sam-
pling strategies will need to be tailored to their specific
environmental and biologic contexts.
Numerous sources of false signal can confound detec-

tion of bacterial communities in low-biomass micro-
biome studies, including contamination (procedural,
reagent, and sequencing) and sequencing stochasticity.
Salter and colleagues elegantly demonstrated the suscep-
tibility of low-biomass samples to reagent contamination
by sequencing serial dilutions of a pure bacterial culture,
where increasingly diluted specimens contained increas-
ing abundances of taxa found in the DNA isolation re-
agents [1]. Other sources of contamination, such as
those introduced during specimen collection (e.g., bron-
choscope, surgical instruments, collection tubes) or se-
quencing (e.g., well-to-well contamination or index
switching) may also alter the taxonomic composition of
low-biomass samples [64, 65]. Additionally, it has re-
cently been demonstrated via the use of sequencing rep-
licates that sequencing stochasticity is itself a major
source of variability in microbial signal in low-biomass
studies [51]. Given the numerous sources of potential
false signal in low-biomass microbiome studies, we do
not believe this methodological challenge can be suffi-
ciently addressed with a simple, universal solution (e.g.,
a single bioinformatic “decontamination” step). Rather,
as illustrated in our approach, we believe the reality of
microbiologic signal must be assessed within the specific
ecologic context from which it is sampled, and anchored
in an understanding of microbial ecology.
Several approaches to false signal in low-biomass

microbiome studies have been proposed. Strategies used

to detect, interpret, and, in some cases, eliminate con-
tamination have included exclusion of taxa detected in
negative controls through statistical packages [66, 67] or
unbiased subtraction [7], extraction and sequencing
technical replicates [51], calculation of abundance ratios
[68], correlation analyses [69], hierarchical clustering
[70], and building neutral models [71]. In this study, we
implement an experimental and analytical approach
grounded in principles of microbial ecology to discrim-
inate true microbial signal from background-derived sig-
nal. Fundamentally, this approach relies on sampling the
low-biomass body site of interest and comparing the
size, diversity, and taxonomic composition of the micro-
bial community identified at that low-biomass site to all
potential source communities, including background sig-
nal derived from procedural, reagent, and sequencing
contamination and true microbial signal derived from
contiguous body sites. This approach can thus be ap-
plied to a single specimen type to discern true bacterial
signal from background-derived noise or to compare
multiple specimen types to determine the optimal sam-
pling method in the absence of a gold standard. We ad-
vocate for this approach to be applied to all low-biomass
studies, as the choice of sampling method and resulting
sample type should reflect that which yields the stron-
gest biological signal. Of note, this approach does not
preclude the use of complementary methods (such as
those intended to handle contamination mentioned
above), but rather builds a foundation rooted in thor-
ough experimental design, which can then be subjected
to further analysis with other bioinformatic tools.
There are several limitations to our study. We selected

methods of harvesting BAL fluid and whole lung tissue
which have been used by our lab and others successfully,
and thus cannot directly speak to other approaches (e.g.,

Table 1 Comparison of sampling methods for murine lung microbiome studies

Whole lung tissue Bronchoalveolar lavage fluid

Sample description Sample content All lung lobes homogenized in
sterile water

Dislodged airway and alveolar contents
(microbes, leukocytes, epithelial cells) in sterile
saline

Biological site sampled Airway and intra-alveolar space, in-
terstitium, and blood (if not
perfused)

Airway and intra-alveolar space only

Bacterial biomass Low Low

Host-to-microbe DNA ratio High Low

Summary of findings
(relative to each other)

Total DNA content High Low

Bacterial DNA content High Low

Variation among biological
replicates

Low High

Similarity to contaminating source
“communities” (negative controls)

Low High

Similarity to biological source
community (oral microbiome)

High Low
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use of lung portions or pooled BAL specimens from
multiple mice). While we implemented a strategy for
lung lavage that would maximize volume returned,
thereby maximizing bacterial signal from the lungs (and
minimizing the likelihood of a false negative conclusion),
the dilution of BAL fluid is a recognized source of vari-
ability in both humans and mice and may have impacted
our results. Our study only tested the use of whole lung
tissue and BAL fluid for the purposes of amplicon-based
sequencing and may yield different results if other se-
quencing methods (e.g., metagenomic sequencing) are
applied. Whole lung tissue contains much more host
DNA than bacterial DNA, which can confound attempts
at metagenomic analyses due to the depth of sequencing
required to return reliable bacterial data [72], and may
contribute to the lower numbers of reads observed in
whole lung tissue in our study. Given the impossibility
of performing both BAL and whole lung homogenization
on the same mouse, as lavaging the lungs before the col-
lection of whole lung tissue would confound the com-
parison of the two specimen types, we could not
perform paired analysis on the same mice. Based on
prior results [6], we assumed that co-housed mice from
the same vendor and shipment should have lung bacter-
ial communities with similar taxonomic composition,
but it remains possible that mouse-to-mouse variation
may have confounded some comparisons. Finally, des-
pite our efforts to thoroughly account for all possible
sources of bacterial signal found in both types of lung
specimens, it is possible that we have not accounted for
all potential source communities, including occult
sources of contamination or other body sites in contact
with the lungs, such as the nasopharynx and blood.

Conclusions
We here present evidence supporting the use of whole lung
tissue over BAL fluid in murine lung microbiome studies.
The use of an ecology-based experimental and analytic ap-
proach highlights the importance of sequencing, analyzing,
and reporting ample negative controls and, to the extent
possible, contiguous anatomical sites or other biological
source communities to assess the reality of bacterial signal
in low-biomass microbiome studies.
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