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The bacterial density of clinical rectal swabs 
is highly variable, correlates with sequencing 
contamination, and predicts patient risk 
of extraintestinal infection
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Abstract 

Background:  In ecology, population density is a key feature of community analysis. Yet in studies of the gut micro-
biome, bacterial density is rarely reported. Studies of hospitalized patients commonly use rectal swabs for microbi-
ome analysis, yet variation in their bacterial density—and the clinical and methodologic significance of this varia-
tion—remains undetermined. We used an ultra-sensitive quantification approach—droplet digital PCR (ddPCR)—to 
quantify bacterial density in rectal swabs from 118 hospitalized patients. We compared bacterial density with bacterial 
community composition (via 16S rRNA amplicon sequencing) and clinical data to determine if variation in bacterial 
density has methodological, clinical, and prognostic significance.

Results:  Bacterial density in rectal swab specimens was highly variable, spanning five orders of magnitude (1.2 × 
104–3.2 × 109 16S rRNA gene copies/sample). Low bacterial density was strongly correlated with the detection of 
sequencing contamination (Spearman ρ = − 0.95, p < 10−16). Low-density rectal swab communities were dominated 
by peri-rectal skin bacteria and sequencing contaminants (p < 0.01), suggesting that some variation in bacterial 
density is explained by sampling variation. Yet bacterial density was also associated with important clinical exposures, 
conditions, and outcomes. Bacterial density was lower among patients who had received piperacillin-tazobactam 
(p = 0.017) and increased among patients with multiple medical comorbidities (Charlson score, p = 0.0040) and 
advanced age (p = 0.043). Bacterial density at the time of hospital admission was independently associated with sub-
sequent extraintestinal infection (p = 0.0028), even when controlled for severity of illness and comorbidities.

Conclusions:  The bacterial density of rectal swabs is highly variable, and this variability is of methodological, clinical, 
and prognostic significance. Microbiome studies using rectal swabs are vulnerable to sequencing contamination and 
should include appropriate negative sequencing controls. Among hospitalized patients, gut bacterial density is asso-
ciated with clinical exposures (antibiotics, comorbidities) and independently predicts infection risk. Bacterial density is 
an important and under-studied feature of gut microbiome community analysis.
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Introduction
The past decade has witnessed an explosion in gut 
microbiome research. Between 2013 and 2017, 12,900 
gut microbiome publications were published; prior to 
that time it took four decades to reach 3000 studies on 
the topic [1]. This acceleration has been propelled by the 
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advent and widespread use of 16S rRNA gene amplicon-
based sequencing [2, 3]. The majority of these gut micro-
biome studies characterize microbial taxa as relative 
fractions of a sample sequence library (relative abun-
dance). A key limitation of this approach is that it omits 
the study of the total population density (absolute abun-
dance), a fundamental parameter in ecologic analysis [4]. 
The few studies that have considered the bacterial density 
of the gut microbiome have found that it is robust against 
confounding variables [5–7], and correlated with varia-
tion in disease status in a manner unappreciated by com-
munity composition alone [5, 6, 8].

Rectal swabs are commonly used in gut microbiome 
studies due to their convenience and ubiquitous clinical 
use [9–11]. While the bacterial density of fecal specimens 
has been shown to have both methodologic and clinical/
prognostic significance [5, 6, 8], the bacterial density of 
rectal swabs has not been reported. Methodologically, 
rectal swabs may be vulnerable to the sequencing con-
tamination that plagues low-biomass microbiome studies 
[11–14]. Clinically, it is unknown if rectal swab bacterial 
density is influenced by clinical exposures (e.g., antibiotic 
use) or is prognostic of clinical outcomes.

To address these gaps, we quantified bacterial den-
sity in rectal swabs from 118 hospitalized patients using 
droplet digital PCR, an ultra-sensitive quantification 
technique. We compared bacterial density with com-
munity composition (using 16S rRNA gene amplicon 
sequencing), clinical exposures (e.g., antibiotics and 
comorbidities), and subsequent risk of culture-confirmed 
extraintestinal infection.

Methods
Study setting and design
We designed a retrospective cohort study using hospital 
admission rectal swabs previously collected, processed, 
and analyzed for a study of gut microbiome risk factors 
for Vancomycin-resistant Enterococcus (VRE) acquisi-
tion in 118 patients admitted to the University of Michi-
gan Hospital in 2016–2017 [15]. The infection control 
practice throughout the study period was to perform 
routine surveillance for VRE using rectal swabs on eight 
adult hospital units, including intensive care units, the 
hematology and oncology ward, and the bone marrow 
transplant (BMT) ward, in concordance with recom-
mendations from the Centers for Disease Control and 
Prevention (CDC) the Society for Healthcare Epidemiol-
ogy of America [16]. All hospitalized patients had rou-
tine collection of rectal swabs on admission and weekly 
thereafter to screen for VRE. Rectal swabs specimens 
were collected with the BD™ ESwab Regular Collection 
Kit (Franklin, NJ). The prescribed practice at our institu-
tion during the study period was to acquire rectal swabs 

from patients in left lateral decubitus position. A rectal 
swab was inserted through the rectal sphincter 2–3 cm, 
rotated 360°, withdrawn, and checked for the presence of 
fecal soilage. These swabs were then were stored at − 80 
°C.

The current study was a secondary analysis of a previ-
ously reported case-control study [15]. In the prior study, 
cases were defined as subjects with an initial VRE-nega-
tive swab followed by a VRE-positive swab when evalu-
ated by selective culture. We matched each case subject 
to a control subject with an initial VRE-negative swab fol-
lowed by repeat VRE-negative swab within the same time 
at risk. An additional matching factor was the unit from 
which the first positive VRE was recovered for cases or 
the matched swab after the time at risk for controls. For 
the current study, we restricted our analysis to admission 
rectal swabs (one swab per patient).

Bacterial DNA isolation
After confirming visible fecal soilage of rectal swab speci-
mens, genomic DNA was extracted from rectal swabs, 
re-suspended in 360 μL ATL buffer (cell lysis solution, 
Qiagen DNeasy Blood & Tissue kit) and homogenized in 
fecal DNA bead tubes using a modified protocol previ-
ously demonstrated to isolate bacterial DNA [17]. This 
resulted in a homogenized 500 μL specimen, half of 
which was used for ddPCR sequencing, and half of which 
was used for 16S amplicon sequencing. ZymoBIOMICS 
Microbial Community DNA Standard (Zymo Research) 
was sequenced as a positive control. Sterile laboratory 
water and AE buffer (solution of 10 mM Tris-Cl 0.5 
mM in EDTA; pH 9.0) used in DNA isolation were col-
lected and analyzed as potential sources of contamina-
tion (negative controls). To minimize the potential for 
batch effects influencing our results, all specimens were 
extracted by a single laboratory technician using a single 
extraction kit.

Bacterial density quantification
Bacterial DNA was quantified using a QX200 Droplet 
Digital PCR System (BioRad, Hercules, CA). The tech-
nique partitions a single sample into 20,000 droplets. A 
standard PCR reaction then amplifies 16S specific cDNA 
in each droplet, and each droplet is individually counted 
by the associated target dependent fluorescence signal 
as positive or negative. This allows for absolute 16S copy 
number quantification without generating a standard 
curve [18–20]. Primers and cycling conditions were per-
formed according to a previously published protocol [20]. 
To summarize, primers were 5′-GCA​GGC​CTA​ACA​CAT​
GCA​AGTC-3′ (63F) and 5′-CTG​CTG​CCT​CCC​GTA​
GGA​GT-3′ (355R). The cycling protocol was as follows: 
1 cycle at 95 °C for 5 min, 40 cycles at 95 °C for 15 s, and 
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60 °C for 1 min, 1 cycle at 4 °C for 5 min, 1 cycle at 90 °C 
for 5 min, all at a ramp rate of 2 °C/s. The BioRad C1000 
Touch Thermal Cycler was used for PCR cycling. Drop-
lets were detected using the automated droplet reader 
(Bio-Rad, catalog no. 1864003), quantified using Quan-
tasoft™ Analysis Pro (version 1.0.596), and imported to 
R for visualization and statistical analysis. Both sterile 
water controls, as well as isolation controls, were run 
alongside rectal swab specimens.

16s rRNA gene sequencing
The V4 region of the 16s rRNA gene was amplified using 
published primers and the dual-indexing sequencing 
strategy described previously [17]. Sequencing was per-
formed using the Illumina MiSeq platform (San Diego, 
CA), using a MiSeq Reagent Kit V2 (500 cycles), accord-
ing to the manufacturer’s instructions with modifica-
tions found in the standard operating procedure of the 
laboratory of Patrick Schloss [17, 21]. All samples were 
sequenced in a single sequencing run to minimize the 
potential for batch effects influencing our results.

Clinical metadata
We collected data from the electronic medical record to 
describe host health both by the severity of the acute ill-
ness that prompted hospitalization and by the severity 
of chronic disease before hospitalization. We measured 
acute illness and chronic disease with the Sequential 
Organ Failure Assessment Score (SOFA score) [22–25] 
and Charlson comorbidity index [26–28], respectively. 
We collected data on the antibiotic exposure of patients 
in the Emergency Department prior to collection of 
their initial rectal swab. A total 116 of 118 subjects were 
included in the clinical analysis, as two subjects had 
sensitive information inaccessible through the medical 
record.

We used infection-free survival to study the prognos-
tic significance of bacterial density on rectal swabs. We 
defined extra-intestinal infection as the growth of a bac-
terial organism by traditional culture media in a site con-
sidered by clinicians to be “sterile” (blood, urine, ascites 
fluid, cerebrospinal fluid, sputum, deep tissue culture) 
meeting clinical criteria set by major medical societies 
and the Centers for Disease Control and Prevention [29–
35]. Clinical adjudication of positive culture growth led 
to categorization as colonization, contamination, or clini-
cal infection.

We reviewed the electronic medical record documen-
tation to determine the admitting diagnosis for patients 
in the cohort. We broadly classified admitting diagno-
ses into 7 categories: cardiopulmonary disorder (which 
included congestive heart failure, myocardial infarction, 
respiratory failure not attributable to pneumonia, and 

post-operative ICU stay after major cardiac surgery); pri-
mary neurologic disorder (which included intracranial 
hemorrhage, ischemic stroke, or post-operative recovery 
after major neurosurgery), sepsis syndrome (defined as 
a presumed infection on admission requiring the use of 
antibiotics), gastrointestinal disruption (which included 
inflammatory bowel disease, pancreatitis, bowel obstruc-
tion or perforation, or post-operative status after major 
gastrointestinal surgery), trauma, non-infectious com-
plications of chemotherapy (which included acute renal 
injury, cytopenia without the presence of neutropenic 
fever, and nausea and vomiting attributable to chemo-
therapy), and non-infectious complications of bone-mar-
row transplantation (which included graft versus host 
disease as well as nausea and vomiting in the absence of 
recent chemotherapy administration).

Statistical analysis of clinical metadata
All analyses were performed using the R statistical pro-
gramming language (v 4.0.2) [36]. To account for the 
paired nature of the data, we built a linear mixed-effects 
model stratified by matched pair status and used clinical 
covariates to predict log transformed bacterial density. 
We constructed Kaplan-Meier curves and built a frailty 
model, also stratified by matched pair status, with the 
survival [37] (v 3.1-8) package in R. Pairwise significance 
was determined as appropriate by the Wilcoxon test with 
the Benjamini-Hochberg correction, Tukey’s HSD test, 
and Mann-Whitney U test. All tests used p = 0.05 as a 
threshold for significance.

16S gene amplicon analysis
Sequence data were processed and analyzed using the 
software mothur v.1.43.0 [38] according to the standard 
operating procedure for MiSeq sequence data [17, 39]. 
We followed the mothur standard operating procedure 
without deviation, and no low-amplicon sequences were 
filtered during the analysis. To summarize, the SILVA 
rRNA database [40] (v. 132, silva.nr_v132.regionV4.align) 
was used as a reference for sequence alignment and taxo-
nomic classification. K-mer searching with 8-mers was 
used to assign raw sequences to their closest matching 
template in the reference database, and pairwise align-
ment was performed with the Needleman-Wunsch [41] 
and NAST algorithms [42]. A k-mer-based naive Bayesian 
classifier [43] was used to assign sequences to their cor-
rect taxonomy with a bootstrap confidence score thresh-
old of 80. Pairwise distances between aligned sequences 
were calculated by the method employed by Sogin et al. 
where pairwise distance equals mismatches, including 
indels, divided by sequence length [44]. A distance matrix 
was passed to the OptiCLUST clustering algorithm [45] 
to cluster sequences into “operational taxonomic units” 
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(OTUs) by maximizing the Matthews correlation coef-
ficient with a dissimilarity threshold of 3% [46]. OTU 
numbers were arbitrarily assigned in the binning process 
and are referred to throughout the manuscript in asso-
ciation with their most specified level of taxonomy (typi-
cally genus or family). OTUs were classified using the 
mothur implementation of the Ribosomal Database Pro-
ject (RDP) classifier and RDP taxonomy training set 16 
(trainset16_022016.rdp.fasta, trainset16_022016.rdp.tax), 
available on the mothur website.

After clustering and classification of sequencing data, 
we evaluated differences in community structure with 
permutational multivariate analysis of variance (PER-
MANOVA) in the vegan package (v 2.0-4) [47] in R, and 
with the mvabund [48] package in R. We determined 
the individual OTU differences driving separation of 
microbial communities with a random forest classifica-
tion model built with the ranger package (v 0.11.2) [49]. 
We used the caret (v 6.0-84) [50] package in R for cross-
validation and hyperparameter optimization. We used 
latent class regression with the flexMix package in R [51] 
to determine the critical threshold at which rectal swabs 
are open to sequencing contamination. All OTUs were 
included in diversity and abundance analyses.

Results
The bacterial density of rectal swabs is highly variable 
and does not correlate with amplicon sequencing depth
We first sought to establish the variability of bacte-
rial density in rectal swab specimens. Using ddPCR, we 
quantified bacterial density in 118 rectal swabs from hos-
pitalized patients collected at the time of their admission. 
We compared this variation with extraction control spec-
imens with sterile water used in DNA extraction (n = 3), 
and isolation control specimens (n = 6) (Table 1, Fig. 1). 
The bacterial density in rectal swab specimens was highly 
variable, spanning five orders of magnitude (range 1.18 
× 104–3.23 × 109 16S rRNA gene copies/specimen, IQR 
4.63*107 16S rRNA gene copies/swab) (Fig. 1A). All rec-
tal swabs contained greater bacterial density than all 
negative control specimens: the minimum number of 16S 
rRNA gene copies/specimen was almost double the max-
imum number of 16S copies in negative control speci-
mens. We thus concluded that the bacterial density in 
rectal swab specimens is highly variable, yet consistently 
greater than that of negative control specimens.

We also observed variation in the number of 16S 
rRNA gene amplicon reads generated via Illumina MiSeq 
sequencing (Fig.  1B). We thus asked if the variation in 
specimen bacterial density (as quantified by ddPCR) 
correlates with the number of 16S rRNA gene amplicon 
reads generated via Illumina MiSeq sequencing (as has 
been assumed in published studies [52, 53]). As shown 

in Fig.  1 and Table  1, we found far less variation in the 
number of MiSeq reads than we found in bacterial den-
sity. The average number of MiSeq 16S reads was not sig-
nificantly different between rectal swab specimens and 
water control specimens (p = 0.99; Tukey’s range test) 
but was significantly different than isolation controls (p 
= 0.04; Tukey’s range test). We next asked if variation in 
bacterial density correlates with variation in 16S rRNA 
gene amplicon reads. We found no correlation between 
the bacterial density of rectal swab specimens and the 
number of 16S rRNA gene amplicon reads generated via 
MiSeq sequencing (p = 0.59, Fig. 1C). We thus concluded 
that the number of amplicon reads could not reliably 
distinguish rectal swab specimens from negative control 
specimens, and the number of 16S rRNA gene amplicon 
reads generated via MiSeq sequencing is unrelated to 
bacterial density, and should not serve as a proxy.

Rectal swabs are vulnerable to sequencing contamination
Low-biomass microbiome studies are vulnerable to con-
tamination due to bacterial DNA present in reagents 
used in DNA extraction and library preparation [12, 13]. 
Given the wide variation in bacterial density, we observed 
in rectal swab specimens, we asked if bacterial commu-
nities detected in rectal swab specimens contained any 
evidence of sequencing contamination. We character-
ized bacterial communities in rectal swabs and negative 
controls using 16S rRNA gene amplicon sequencing. We 
detected unambiguous evidence of sequencing (back-
ground) contamination, as negative control communities 
were dominated by a single bacterial taxonomic group 
(OTU0001) classified as Pseudomonas (Fig.  2A). This 
same Pseudomonas (OTU0001) was detected in rectal 

Table 1  Summary statistics for droplet digital PCR (ddPCR) and 
Illumina MiSeq results by specimen type

Water Isolation controls Rectal swabs

ddPCR 16S copies/sample
  Mean 14 3.14*103 9.67*107

  Median 15 3.22*103 3.17*106

  Minimum 9 1.41*103 1.18*104

  Maximum 17 5.21*103 3.23*109

  Standard deviation 2.4 1.22*103 3.41*108

  Interquartile range 3.3 1.17*103 4.63*107

Illumina MiSeq 16S reads/sample
  Mean 7.39*105 5.37*105 7.39*105

  Median 8.45*105 5.57*105 7.45*105

  Minimum 4.42*105 2.39*105 83

  Maximum 9.29*105 7.86*105 1.46*106

  Standard deviation 2.60*105 1.73*105 2.23*105

  Interquartile range 2.44*105 2.09*105 2.95*105
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swab specimens, and its relative abundance was strongly 
and negatively correlated with bacterial density (Fig. 2B). 
Visualizing the relationship between bacterial density 
and the relative abundance of the Pseudomonas contami-
nant revealed that there appeared to be a critical thresh-
old above which bacterial density was not correlated with 
the abundance of the contaminant taxa. We used latent 
class regression to determine a critical threshold where 
bacterial density became strongly correlated with the 
relative abundance of the Pseudomonas contaminant, 
and we determined that above a threshold of 106 copies/
specimen, the contaminant OTU was nearly undetected. 
Below 106 copies/specimen, this Pseudomonas taxon was 
the dominant community member. Formal correlation 

testing revealed that the bacterial density of rectal swab 
specimens almost entirely explained the variation in the 
relative abundance of this contaminant bacterial DNA 
(Spearman ρ = − 0.95, p = 2.2*10−16). Altogether, this 
sequencing contaminant was detected in 62% of all rectal 
swabs, and in 99% of swabs with a density lower than 106 
copies/swab. We thus concluded that rectal swab speci-
mens are vulnerable to sequencing contamination, espe-
cially specimens with a density less than 106 16S rRNA 
gene copies/specimen.

Our group has previously shown the ability to dis-
tinguish Pseudomonas aeruginosa, a common hospital 
acquired pathogen, from non-aeruginosa Pseudomonas 
spp. via 16S rRNA gene amplicon sequencing [54]. We 

Fig. 1  The bacterial density of clinical rectal swabs is highly variable and is not correlated with sequencing depth via 16S rRNA gene amplicon 
sequencing. We used droplet digital PCR (ddPCR, BioRad) to quantify bacterial density by the absolute copy number of 16S gene in rectal swab 
specimens from 118 patients admitted to an acute care hospital. We used amplicon sequencing of the 16S rRNA gene (MiSeq, Illumina) to 
characterize bacterial communities. A The bacterial density of rectal swabs was highly variable, spanning 5 orders of magnitude. Rectal swabs 
specimens had significantly higher bacterial density compared to negative controls (p < 0.01 for both comparisons with Tukey’s multiple 
comparison of means). B The number of reads generated via 16S rRNA amplicon sequencing did not distinguish rectal swabs from water control 
specimens (p = 0.99 for rectal swab specimens compared to water controls, p = 0.04 for isolation controls, respectively, Tukey’s comparison). C 
The number of amplicon reads per sample was not correlated with the bacterial density of rectal swab specimens (Pearson’s r = 0.048, p = 0.59). 
Significance key: ns p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001
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therefore sought to determine if this contaminant OTU 
may represent Pseudomonas aeruginosa. To accomplish 
this, we analyzed our positive control samples from the 
ZymoBIOMICS Microbial Community DNA Stand-
ard, which contains a known 12% relative abundance of 
Pseudomonas aeruginosa. We noted the presence of 2 
Pseudomonas classified OTUs in the mock community 
samples, OTU0001 present at an abundance of 0.2% and 
0.1% in two of three of the mock community samples, and 
OTU0028 present at an abundance of 9–10% in all three 
mock community samples. Given the large difference in 
abundance of these two different Pseudomonas classified 
OTUs, one approximating the known relative abundance 
of Pseudomonas aeruginosa in the mock community, 
and one with extremely low abundance, we inferred that 
OTU0001 was a non-aeruginosa Pseudomonas.

We next investigated whether variation in bacterial 
density is correlated with variation in community com-
position. To accomplish this, we interrogated the bacte-
rial community structure of rectal swab specimens and 
asked how community composition varies with bacterial 
density. First, we visualized communities using princi-
pal component analysis, color-coding specimens by bac-
terial density (less than or greater than 106 16S rRNA 
gene copies/specimen (Fig. 3A). This demonstrated clear 
separation of specimens by bacterial density, confirmed 
statistically by PERMANOVA (p < 0.001) and by resam-
pling of a generalized linear model (mvabund, p < 0.001). 
We next interrogated which specific bacteria drove the 
overall difference in community composition across 

specimens varying in bacterial density. To accomplish 
this, we built a Random Forest classification model and 
applied a permutation heuristic developed to correct for 
feature importance bias [55] and identified those features 
that were significant at p < 0.05 (Fig. 3B). The model iden-
tified nine bacterial taxa correlated with bacterial density 
(Fig.  3C). The previously identified Pseudomonas con-
taminant (OTU0001) was the most strongly correlated 
taxonomic group, followed by two common sequenc-
ing contaminants, Flavobacterium (OTU0029) and 
another Pseudomonas (OTU0008). These were followed 
by two commonly reported skin bacteria, Staphylococ-
cus (OTU0016) and Corynebacterium (OTU0042). Four 
gut bacterial taxa were correlated with bacterial density, 
Bacillus (OTU000058), Lactobacillus (OTU0026), Bacte-
roides (OTU0006), and Akkermansia (OTU0005). When 
we restricted our analysis to swabs above the contami-
nation threshold of 106 16S copies/sample (above), we 
identified three significant taxa: the previously identi-
fied Lactobacillus (OTU0026), as well as Anaerococcus 
(OTU0037) and Synergistaceae (OTU 0104). Lactobacil-
lus (OTU0026), a known bacteriocin-producing probi-
otic bacteria [56, 57], was the most strongly correlated 
taxonomic group in the subset analysis, and was inversely 
correlated with bacterial density (p = 9.9*10−3). This sug-
gests that the relationship between bacterial density and 
community composition was not entirely attributable to 
specimen quality or sequencing contamination, but also 
reflects authentic correlations across gut communities. 
We thus concluded that bacterial density and bacterial 

Fig. 2  The bacterial density of rectal swab specimens determines their vulnerability to sequencing contamination. A The bacterial DNA identified in 
negative sequencing controls (n = 9) was dominated by a single contaminant bacterial taxon (Otu0001: Pseudomonas). B This same Pseudomonas 
contaminant was present in rectal swab specimens, and variation in its relative abundance was almost entirely explained by the bacterial density of 
the specimen (Spearman ρ = − 0.95, p < 2.2*10−16)
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community composition are correlated, reflecting vari-
ation both in sampling/sequencing contamination as 
well as intrinsic differences within lower gut bacterial 
communities.

The bacterial density of rectal swab specimens 
is correlated with clinical comorbidities and clinical 
exposures
Having established that bacterial density variation in 
rectal swab specimens is not entirely attributable to 

Fig. 3  The bacterial DNA identified in low-density rectal swabs is characterized by sequencing contaminants, skin bacteria, and distinct gut 
bacteria. A We visualized the community structure of low density and high density rectal swabs using principal components analysis, which 
demonstrated a clear separation in community structure. Separation between communities was confirmed as statistically significant with 
PERMANOVA (p < 0.001). B A random forest classification model identified the bacterial taxa that drove the differences in community composition 
across the critical threshold of 106 16S rRNA gene copies per specimen. C After correcting for feature importance bias, 9 bacterial taxa were 
significantly associated with bacterial density. The presence of common sequencing contaminants (red) and skin bacteria (green) was associated 
with low bacterial density. Bacteriocin-producing Lactobacillus and Bacillus spp. were associated with decreased bacterial density, and Bacteroides 
and Akkermansia spp. were associated with increased bacterial density. Significance key: ns p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 
0.0001
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variation in sampling and sequencing contamination, 
we next interrogated the clinical significance of bacte-
rial density variation. To accomplish this, we compared 

bacterial density variation with patient clinical charac-
teristics, including demographics, comorbidities, anti-
biotic exposure, and VRE colonization. Gender, race, 
specific comorbidities, and reason for admission were 
not individually associated with bacterial density vari-
ation (Table  2, see Supplemental Table  1 for univariate 
comparisons). Out of 118 patients in the cohort, 116 had 
data accessible through the electronic medical record and 
were included in the analysis.

Recent studies have demonstrated that antibiotics dif-
fer in their impact on gut microbiota [58, 59], with piper-
acillin-tazobactam causing more disruption that other 
antibiotics [58, 59]. Therefore, we asked if antibiotics dif-
fer in their impact on the bacterial density of admission 
rectal swabs. We first characterized the antibiotic expo-
sure in our cohort (Table 3, Supplemental Table 2). There 
were a total of 104 antibiotic doses administered to the 
cohort prior to rectal swab collection. Vancomycin (n = 
35), metronidazole (n = 22), piperacillin-tazobactam (n 
= 20), and cefepime (n = 18) were the most administered 
antibiotics. We compared the mean bacterial density in 
admission rectal swabs between patients who were and 
were not exposed to each antibiotic with the Mann-
Whitney U test. We found that only piperacillin-tazo-
bactam was associated with lower bacterial density (p = 
0.006), consistent with prior work [58, 59].

Next, we asked if bacterial density was correlated with 
clinical covariates. To account for the prior matched 
case-control study design, we built a mixed effects model 
incorporating the matched pair as a random intercept. 
We used age, antibiotic exposure, admission diagno-
sis, chronic comorbidities (via the Charlson comorbid-
ity index [26–28]), and acute severity of illness (via the 
Sequential Organ Failure Assessment, or SOFA, score 
[22–25]) to predict the log-transformed bacterial density 
of rectal swabs. Given our finding that only piperacillin-
tazobactam was significantly associated with bacterial 
burden, it was the only antibiotic included in the model. 
Increased age and comorbidity burden were all inde-
pendently associated with increased bacterial density 
(Table 4, Fig. 4). Every decade of age was associated with 
a 0.43 ± 0.40 log-fold increase in 16S rRNA gene copies/

Table 2  Demographics and comorbidities of cohort

N = 116 (out 
of 118 swabs)

Demographics N (proportion)
  Age (mean ± SE) 60.0±1.37

  Female 52 (0.45)

  Non-white race 17 (0.15)

Comorbidities
  C. difficile infection 15 (0.13)

  Leukemia 30 (0.26)

  Lymphoma 14 (0.12)

  Bone marrow transplant 20 (0.17)

  Solid organ malignancy 81 (0.70)

  Metastatic malignancy 54 (0.47)

  Diabetes 47 (0.41)

  Coronary artery disease 18 (0.16)

  Congestive heart failure 38 (0.33)

  COPD 53 (0.46)

  Peripheral vascular disease 7 (0.06)

  End stage renal disease 46 (0.40)

  Connective tissue disease 5 (0.040)

  Peptic ulcer disease 16 (0.14)

  Cirrhosis 12 (0.10)

  Cerebrovascular disease 24 (0.21)

  Hemiplegia 10 (0.10)

  Dementia 4 (0.03)

  Charlson Score (mean ± SE) 4.0 ± 0.19

Admission diagnosis
  Cardiopulmonary disorder 22 (0.19)

  Gastrointestinal disorder 12 (0.1)

  Complications of chemotherapy 36 (0.31)

  Neurologic abnormality 3 (0.02)

  Sepsis syndrome 34 (0.29)

  Non-infectious transplant complication 4 (0.03)

  Trauma 5 (0.04)

Table 3  Antibiotic exposure for cohort

16S rRNA gene copies/sample ± SE (log scale)

Subjects treated N 
(proportion)

No treatment Received antibiotic P value

Vancomycin 35 (0.3) 15.18 ± 0.39 14.81 ± 0.53 0.58

Metronidazole 22 (0.19) 15.03 ± 0.37 15.21 ± 0.55 0.79

Piperacillin-tazobactam 20 (0.17) 15.46 ± 0.34 13.15 ± 0.70 **0.006

Cefepime 18 (0.16) 14.95 ± 0.35 15.70 ± 0.72 0.35
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specimen (p = 0.043), and every point increase in the 
Charlson comorbidity index (signifying more comor-
bidities) was associated with an average of 0.45 ± 0.29 
log-fold increase in 16S rRNA gene copies/specimen (p 
= 0.0040). Piperacillin-tazobactam exposure was associ-
ated with a 1.84 ± 1.42 log-fold decrease in 16S rRNA 
gene copies/specimen (p = 0.017). We noted that neither 
VRE colonization status nor admission diagnosis were 
associated with bacterial burden after controlling for 

age, antibiotic exposure, and chronic comorbidities. We 
concluded that patient demographics, comorbidities, and 
antibiotic exposure were all associated with variation in 
rectal swab bacterial density, confirming the clinical and 
biological significance of this feature of gut microbial 
communities.

Having discovered an association between bacte-
rial density and clinical comorbidities and exposures, 
we next sought to determine if these associations could 
be due to bias introduced during rectal swab sampling. 
While we performed an informal quality control check 
by verifying fecal soilage of the sequenced rectal swabs, 
in this retrospective study, we were unable to verify that 
specimen acquisition was performed in a uniform man-
ner for every subject. We thus asked if variation in nurs-
ing practices across different patient units was associated 
with bacterial density. To accomplish this, we compared 
the bacterial density across unit of admission. We found 
no collective difference in bacterial density across units 
(Kruskal-Wallis test, p = 0.33, Supplemental Table  3, 
Supplemental Fig.  1), nor any significant differences 
between individual units of admission when comparing 
mean bacterial density with Tukey’s HSD test (Supple-
mental Table 4). Given the technical difficulty of sampling 
a mechanically ventilated patient, we next asked if the 
bacterial density of rectal swabs acquired from mechani-
cally ventilated patients was systematically lower than 
non-mechanically ventilated patients. We found that the 
bacterial density of rectal swabs was increased among 
patients receiving mechanical ventilation (Difference in 
means 1.22 log 16S copies/sample, 95% CI 0.15–2.43 log 

Table 4  Fixed effects in linear mixed effects model stratified by 
matched pair of features associated with bacterial density (log 
16S copies/specimen)

Coefficient (95% CI) P value

Piperacillin-tazobactam − 1.84 (− 3.26 to − 0.42) 0.017*

Age (decade) 0.43 (0.04–0.83) 0.043*

Charlson comorbidity index 0.45 (0.16–0.74) 0.004*

SOFA Score 0.07 (− 0.13–0.27) 0.51

VRE colonization − 0.073 (− 1.18–1.06) 0.90

Admission diagnosis

  Cardiopulmonary disorder 0.67 (− 5.421–6.707) 0.84

  Neurologic abnormality 2.41 (− 4.534–9.273) 0.52

  Trauma 1.35 (− 5.104–7.798) 0.70

  Sepsis syndrome 1.45 (− 4.582–7.428) 0.65

  Non-infectious transplant com-
plication

− 0.53 (− 7.275–6.276) 0.89

  Gastrointestinal abnormality 2.30 (− 3.944–8.433) 0.49

  Complications of chemotherapy 0.40 (− 5.607–6.357) 0.90

REML criteria at convergence: 571.6

Fig. 4  The bacterial density of rectal swabs is strongly associated with piperacillin-tazobactam use. Bacterial density of rectal swabs was 
compared with clinical features and exposures using multivariable linear mixed-effect regression, stratified by matched case/control pair. 
Piperacillin-tazobactam exposure was associated with a 1.8 log fold decrease in bacterial density (β = − 1.83, p = 0.017). Bacterial density was 
positively correlated with patient age and medical comorbidities (as described by the Charlson comorbidity score) (increase in decade of age β = 
0.43, p = 0.03; Charlson comorbidity score β = 0.45, p = 0.0040)
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16S copies/sample, p = 0.043 by t test). We added both 
the unit of admission and mechanical ventilation status 
to our original model of bacterial density and found that 
our previous findings still held, and neither of these two 
possible confounding variables were significantly associ-
ated with bacterial density (Supplemental Table 5).

The bacterial density of rectal swab specimens 
is associated with subsequent extra‑intestinal infections
Several studies have shown that in hospitalized patients, 
the gut microbiome serves as a reservoir for potentially 
infectious pathogens [5, 60–64]. Therefore, we asked 
if bacterial density variation is associated with subse-
quent extra-intestinal infections in hospitalized patients 
(including culture-confirmed bacteremia, pneumonia, 
urinary tract infections, spontaneous bacterial peritoni-
tis, and soft tissue infections; Supplemental Tables 6 and 
7). We first constructed Kaplan-Meier curves of infec-
tion-free survival in the cohort. Using a threshold of 106 
16S rRNA gene copies/specimen, we found that patients 
with low bacterial density were more likely to be alive 
and infection-free at both 7 and 14 days after sampling (p 

= 0.016 by the log-rank test, Fig. 5). We then constructed 
a single variable frailty model stratified by matched pairs 
to predict infection-free survival in the study cohort as a 
function of the bacterial density at the time of admission. 
We found that every log-fold increase in bacterial density 
associated with an increased hazard rate of infection by 
17% (p = 0.0079).

Given our findings that age, comorbidities, and antibi-
otics are associated with bacterial density, we next asked 
if bacterial density is independently associated with sub-
sequent infection, or is merely an indirect measure of 
susceptibility. We built a multivariable frailty model 
to stratified by matched pairs to account for the paired 
nature of the data. We incorporated age, piperacillin-
tazobactam exposure, VRE colonization, chronic comor-
bidities (via the Charlson comorbidity index), and acute 
severity of illness (via the SOFA score) into the model. 
We included an admission diagnosis of sepsis syndrome 
in the model to determine if differences in infection-
free survival were driven by new infections or by infec-
tions present on admission. In this multivariable model, 
only bacterial density was associated with subsequent 

Fig. 5  The bacterial density of rectal swabs at the time of hospital admission is predictive of subsequent extra-intestinal infections. Kaplan-Meier 
curves of infection-free survival in our cohort of hospitalized patients. Cross tick-marks represent censored patients. Using a threshold of 106 16S 
rRNA gene copies/specimen, we found that patients with high bacterial density were more likely to have extraintestinal infections at 7 and 14 days 
following sampling (p = 0.016 with stratified log-rank)
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infection (HR 1.21 ± 0.16, p = 0.0028, Table 5, Fig. 6). To 
determine if these associations still held after including 
possible confounding variables, we constructive an alter-
native model which included both mechanical ventilation 
status and unit of admission as covariates. We found that 
these possible confounding variables were not signifi-
cantly associated with subsequent infection, and bacterial 

density remained the only predictor of subsequent infec-
tion (Supplemental Table 8).

The bacterial community composition of rectal swabs 
is associated with subsequent extra‑intestinal infection
Having established that bacterial density of rectal swabs 
is predictive of subsequent infections, we next asked if 

Table 5  Multivariable frailty model of features associated with bacterial infection

Hazard ratio (95% CI) P value

log (copies 16S/sample) 1.21 (1.067–1.378) 0.003**

SOFA Score 0.99 (0.866–1.125) 0.845

Charlson Comorbidity Index 1.02 (0.947–1.092) 0.650

VRE colonization 0.63 (0.308–1.298) 0.211

Piperacillin-tazobactam 2.32 (0.899–5.986) 0.082

Admission diagnosis of sepsis 2.20 (0.981–4.944) 0.056

Number of events = 37 Likelihood ratio test: p <2*10−8 Concordance: 0.857

Fig. 6  The bacterial density of rectal swabs predicts risk of extraintestinal infection in multivariate analysis. Forest plot for hazard ratio from frailty 
analysis of infection-free survival, stratified by matched pair. The bacterial density of clinical rectal swabs predicts total infection-free days (p = 
0.0028) with a hazard ratio of 1.21 for every log fold increase in 16S gene copies/sample. This remained significant after controlling for severity of 
acute illness, chronic comorbidities, antibiotic use, and admission for sepsis syndrome
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the observed association was solely an artifact of sam-
pling technique or was reflective of biologically mean-
ingful differences in microbiota structure. To accomplish 
this, we determined if bacterial community composition 
could predict extra-intestinal infection. We built a con-
strained PERMANOVA model stratified by matched case 
control pairs. We detected a statistically significant sepa-
ration in the gut communities between patients who did 
and did not develop extra-intestinal infection (p = 0.034). 
Next, we asked which taxa drove the difference in com-
munity structure. We built a random forest classification 
model incorporating clinical co-variates (the SOFA score 
and the Charlson comorbidity index), reason for admis-
sion, community composition, VRE colonization, and 
matched pair number to determine which bacterial taxa 
were predictive of infection. The model identified several 
taxa predictive of infection after correcting for feature 
importance bias (Supplemental Table  9). We noted that 
the same Lactobacillus taxa correlated with decreased 
bacterial density (OTU 0026) was identified as a feature 
protective against infection (OR 0.47, 95% CI 0.32–0.71, 
p = 0.0002). We noted that the only taxa correlated with 
both bacterial density and extra-intestinal infection was 
the previously identified Lactobacillus (OTU0026), and 
no sequencing contaminants were identified as associ-
ated with infection (after excluding OTU0001). We thus 
concluded that both community composition and bacte-
rial density of admission rectal swabs is associated with 
increased risk extra-intestinal infection.

Prior studies have shown that pathogen colonization 
at the time of ICU admission is predictive of subsequent 
infection [64]. We therefore asked if we could detect 
matches between gut microbiota and distant site clinical 

isolates. We focused on the most abundant Enterobacte-
riaceae taxa (OTU0002, and OTU0003) and found that 
patients with extra-intestinal Escherichia coli infections 
had a greater abundance of OTU0002 (p = 0.0060 by the 
Wilcoxon-Rank sum test, Fig. 7), and patients with extra-
intestinal Klebsiella infection had a greater abundance 
of OTU003 on admission rectal swab (p = 0.020 by the 
Wilcoxon-Rank sum test). We found that both OTUs 
were exclusively identical to Enterobacteriaceae-classi-
fied taxa when comparing closely aligned sequences from 
the SILVA rRNA database, including Escherichia coli, 
Enterobacter spp., and Klebsiella pneumoniae. Given the 
concordance between rectal swab microbiota and distal 
clinical isolates, we concluded that pathogen coloniza-
tion detected on rectal swab specimens was predictive 
of enteric gram-negative infection, consistent with prior 
studies [64].

Discussion
Our findings demonstrate that rectal swab bacterial 
density is highly variable, and that this variability is of 
methodological, clinical, and prognostic significance. We 
found that 16S gene amplicon sequencing of rectal swab 
specimens was vulnerable to sequencing contamina-
tion and that the influence of contamination was almost 
entirely dependent on the bacterial density of the speci-
men. We found evidence that bacterial density was not 
merely a marker of sampling adequacy, as it was both 
associated with clinical comorbidities and exposures and 
predictive of infection-free survival. Our findings sug-
gest that the bacterial density of rectal swab samples is an 
essential but overlooked ecologic feature in the study of 
the gut microbiome in hospitalized patients.

Fig. 7  Admission gut microbiota predict enteric gram-negative infection. We found patients with extra-intestinal E. coli infection had a greater 
abundance of OTU0002 (p = 0.0060 by Wilcoxon-Rank sum test), and patients with extra-intestinal Klebsiella infection had a greater abundance of 
OTU003 on admission rectal swab (p = 0.020 by Wilcoxon-Rank sum test). Significance key: ns p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 
0.0001
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Our key findings are aligned with those of prior stud-
ies. In culture-based studies, bacterial density predicted 
the onset of sepsis and pneumonia among critically ill 
patients [65, 66], a finding congruent with our culture-
independent results. Similar to other studies using cul-
ture-independent bacterial quantification, we found that 
bacterial density had clinical associations unappreciated 
by standard 16S gene amplicon sequencing [5, 6, 8]. In 
contrast to prior work, our ultra-sensitive quantification 
technique (ddPCR) was able to quantify variation in low 
and high biomass specimens with similar precision [20, 
67, 68] and allowed us to quantify the total number of 
copies of the 16S gene present in a rectal swab specimen 
without reference to the absolute abundance of individual 
species. Taken together with prior studies, our findings 
suggest that the measurement and analysis of bacterial 
density can provide methodological, clinical, and prog-
nostic insights into gut microbiome studies.

The bacterial density of rectal swabs has methodo-
logical importance, as it precisely quantifies the risk of 
sequencing contamination, an underappreciated chal-
lenge in gut microbiome studies. Many of our rectal swab 
specimens had very low bacterial density, comparable to 
what is commonly seen in low biomass microbiome stud-
ies, such as those of the lung [69, 70]. Given this wide var-
iation, many rectal swabs were vulnerable to sequencing 
contamination [12–14], a finding compatible with prior 
studies [11]. To our knowledge, our study is the first to 
describe the strong association between bacterial density 
and sequencing contamination, as the level of sequencing 
contamination in these specimens was negatively corre-
lated with bacterial density. The quantification of bacte-
rial density is thus clarifying in microbiome studies and 
should be strongly considered as a complementary assay 
to discriminate legitimate signals from those of back-
ground contamination.

We found that bacterial density holds clinical signifi-
cance, as it was associated with both clinical comorbidi-
ties and antibiotic exposure in a manner consistent with 
prior literature. Previous studies have shown that gut 
bacterial density increases with increased gut transit time 
[7]. We found that age and medical comorbidities, two 
features leading to decreased gut motility and increased 
transit time [71–73], were positively correlated with bac-
terial density. Among all administered antibiotics, we 
found that only piperacillin-tazobactam had a significant 
effect on the bacterial density of rectal swab specimens. 
This is concordant with a recent study using 16S ampli-
con sequencing, which showed that piperacillin-tazobac-
tam caused more disruption to gut microbiota than other 
antibiotics [58].

Our study found that bacterial density holds prog-
nostic significance, as it predicts the risk of infection 

during hospitalization. When controlling for acuity of 
illness, chronic medical comorbidities, and age, bacte-
rial density remained significant, while these previously 
validated predictors lost importance. We recently dem-
onstrated that the gut microbiota of hospitalized patients 
undergoes rapid and profound change [15] and that the 
majority of bacterial species present on admission are not 
present later in hospitalization. Given this rapid change, a 
global metric of bacterial density that captures informa-
tion about the population rather than individual mem-
bers of the population may be a more useful index of 
the dynamic state of the gut microbiome in hospitalized 
patients. Further study with longitudinal sampling of gut 
microbiota is needed to investigate this phenomenon.

We acknowledge that some of the observed variation 
in bacterial density was caused by variation in the speci-
men acquisition technique, as we were unable to deter-
mine whether the clinical nursing staff perfectly adhered 
to prescribed specimen acquisition protocols. In addi-
tion, we found that skin flora and common contaminants 
were present in low-density specimens. We do note that 
the hospital protocol at the University of Michigan dic-
tates that nursing staff perform and informal quality 
control check by verifying the presence of fecal soilage 
after rectal swab collection, which we verified immedi-
ately prior to specimen processing. We also evaluated for 
systematic differences between nursing staff in different 
hospital units, and for significant differences between 
technically challenging rectal swabs acquired from 
mechanically ventilated patients and found no evidence 
of systematic bias in these indirect analyses. Despite this 
limitation, these rectal swab specimens predicted the 
onset of infection with both bacterial density and com-
munity composition. The differences in community com-
position between infected and uninfected patients were 
not driven by sequencing contaminants or skin flora but 
rather by enteric organisms, including gram-negative 
organisms that matched distal clinical isolates and known 
probiotic Lactobacillus bacteria [56, 57]. Given that the 
same set of rectal swabs predicted the onset of infection 
when characterized by both bacterial density and com-
munity composition, we believe that it is unlikely that the 
observed variation is due solely to the specimen acquisi-
tion technique.

Some studies have questioned the use of rectal swab 
specimens for the characterization of gut microbiota by 
demonstrating that temporally discordant fecal and rec-
tal swab specimens have discordant gut microbiota [67]. 
Those results are inconsistent with other studies, which 
show concordance between rectal swab and fecal speci-
mens in hematology-oncology patients [11], critically ill 
patients [74], and healthy outpatients [9, 10]. Our group 
and others have shown that gut microbiota undergo 
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rapid and temporally dependent changes in hospital-
ized patients [15, 75, 76]; therefore, the finding that tem-
porally discordant samples show large differences in 
observed microbiota is unsurprising. This study adds to 
the growing body of literature demonstrating the clinical 
utility of rectal swab specimens for the characterization 
of gut microbiota, and we replicate findings that admis-
sion rectal swabs are predictive of infection and out-
comes in ICU patients [64, 77].

This retrospective cohort study using a convenience 
sample of rectal swabs has limitations that should prompt 
further validation and study. As a single-center study, our 
results may not be generalizable beyond the observed 
cohort. We quantified bacterial density using DNA quan-
tification of individual timepoints, which cannot reliably 
distinguish living bacteria from dead bacteria or describe 
the dynamic variation in bacterial density throughout 
hospitalization. We also could not reliably record the 
mass of fecal material present on our rectal swab speci-
mens or normalize the bacterial density of rectal swabs to 
the mass of fecal material on those swabs. Despite these 
limitations, which should obscure any clinically meaning-
ful associations, we were able to detect significant asso-
ciations between bacterial density, clinical covariates, and 
infection-free survival.

Conclusions
Population density is a fundamental parameter in under-
standing the health and function of any ecosystem, but 
has largely been ignored in the study of the gut micro-
biome. Here, we demonstrate the methodological, bio-
logical, and clinical importance of bacterial density 
quantification. Our findings should prompt further 
study of this fundamental parameter of the gut microbial 
ecosystem.
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