
Tuhrieol Raport Documtoti'' Page

1. R-rt No. 2. bvommmt Accemion No. 3. Recipimt'r Catalog No.

1 I

4. Title and Subtitle 1 5. Rmeort Dote 1
THE WIZARD OF OZ: A TOOL FOR RAPID
DEVELOPMENT OF USER INTERFACES

7. Auhods)

Paul Green and L i s a Wei-Haas
9. P w k i c l p Orqavirmtion Nan. m d Address

U n i v e r s i t y o f Mich igan
T r a n s p o r t a t i o n Research I n s t i t u t e
Ann Arbor , M I 48109-2150 U.S.A.

12. Spmsoring A m y N r w a14 Add****

U n i v e r s i t y o f Mich igan
T r a n s p o r t a t i o n Research I n s t i t u t e
Ann Arbor, M I 48109-2150 U.S.A.

June 1985
6. Perfomin9 Orgonirotion Code

8 . Pwfomiag Organzation Report NO.

11. Contract or Grant No.

13- T Y ~ . of R . p d and Period Coretd

F i n a l

14. Sponsorin# Agency Code 1
I

IS. Suppl-tay M o w s

The Wizard of Oz technique is an efficient way to
examine user interaction with computers and facilitate rapid
iterative development of dialog wording and logic. The
technique requires two machines linked together, one for the
user and one for the experimenter. The experimenter (the
"wizard"), pretending to be a computer, responds to user
queries either directly or by pressing function keys to
which common messages have been assigned. The software
automatically records the dialog and its timing. This
report provides a detailed description of the initial
implementation of the Oz paradigm using microcompu~ers, and
a summary of previous applications on other machines.
Implementation guidelines, emphasizing potential pitfalls
and enhancements not currently included in the literature,
are also presented.

17. Key Wwdr User In te r faces , human-
computer i n t e r a c t i o n , r a p i d p r o t o -
t y p i n g , human f a c t o r s , ergonomics

18. Distributim Stormrrt

19. kordty Ctnsil. (04 this nl*.r)

Uncl ass i f i ed
L

I
aD. kcwiv CImau1. (of l(*s p o p)

U n c l a s s i f i e d

21. No. of Pages

18
2 2 Price

TABLE OF CONTENTS

ACKNOWLEDGMENTS .
. ORIGINOFTHEIDEA

. PREVIOUSAPPLICATIONS

. THIS IMPLEMENTATION

. ENTANGLEMENTS. ENLIGHTENMENTS. and ENHANCEMENTS

CONCLUSIONS .
REFERENCES .

ACKNOWLEDGMENTS

We would like to thank Stacy Reifeis, Marijean Price, and Kara

Heinrichs for their reviews of drafts of this report and Paul Ziots for

his help with debugging early versions of the software. We would also

like to thank Elizabeth Zoltan-Ford for her meticulous explanation of

the origins of the Oz technique. Finally, we would like to thank

Marilyn Mantei, who at a seminar, brought the Oz technique to Paul's

attention.

ORIGIN OF THE IDEA

The Wizard of Oz paradigm is based upon the L.P.Baum (1900) story

of that title. In the story, the Wizard produced astonishing images of

himself by manipulating a set of controls while hidden behind a curtain.

Witnesses of these apparitions initially believed them to be the Wizard

himself. The Wizard of Oz paradigm discussed here provides much the

same scenario, in that images of the software prototype are presented to

the user by a "wizard" (the experimenter) from behind the scenes. The

unknowing user believes that a fully functional application system

exists.

The formalization of the paradigm occurred in Chapanis's

communications laboratory at Hopkins. While several different

explanations of its origin have been offered, the most likely one comes

from Gerald Weeks, as described in a letter from Zoltan-Ford (1984).

The idea was conceived but not fully implemented in 1975 during

development of Michael Kelly's Ph.D. dissertation (Kelly and Chapanis,

1977), when Weeks was a research scientist at Hopkins. At that time Oz

was referred to as the "experimenter in the loop technique."

As with any discovery, what is important is not who was first, but

whose report led to other events. Within Chapanis's group, the first

use of the paradigm was for a comparison of voice and keyboard natural-

language inputs, using Randy Ford's CHECKBOOK program (Zoltan, Weeks,

and Ford, 1982). The first public presentation of the idea had actually

occurred a year earlier in Gould's description of a "listening

typewriter" study done at IBM (Gould, Conti, iiovanyecz, 1981). While

not the first report of its use, Chapanis's lucid explanation of its

merits at a symposium (Chapanis, 1982) was instrumental in drawing

attention to the technique. (In Chapanis's case, the methodological

details actually appeared in a proceedings appendix, submitted after the

meeting had ended,)

The first appearance of the "Wizard of Oz" name in print was in

Jeff Kelley's thesis (Kelley, 1983a, 1983b, 1984a). It is thought the

name was coined in response to a question at a graduate seminar at

Hopkins (Chapanis, 1984; Kelley, 1984b). "What happens if the subject

sees the experimenter" (behind the "curtain" in an adjacent room acting

as the computer)? Kelley answered, "Well, that's just like what

happened to Dorothy in the Wizard of Oz." And so the name stuck.

PREVIOUS APPLICATIONS

Four applications of the Wizard of Oz technique exist in the open

literature, Each application is somewhat different, with each

contributing a new idea about how the methodology might be applied.

In the initial application, Gould, Conti, and Hovanyecz (1981,

1982, 1983) examined the use of a large-vocabulary "speech-driven

typewriter." Since such a machine was beyond the state of the art,

Gould simulated one, Subjects dictated into a microphone and a skilled

typist listening from another room immediately entered what was said

into a terminal connected to an IBM mainframe, Words in the vocabulary

were echoed to a terminal before the subject. Echoing was on a word-by-

word basis to enhance the illusion of a "listening typewriter ." Basic

editing and correction capabilities were also provided. For example,

saying "nuts" would erase the last word, "nuts 5 " the last five.

Zoltan, Weeks, and Ford examined the effect of input mode on user

interaction with a natural-language checking account manager running on

an IBM mainframe. In response to either typed or spoken input, output

appeared on a CRT. A clever twist to this experiment was inclusion of a

practice condition where subjects "trained" the computer to recognize

their voice by reading standardized phrases (e.g., "Now is the time for

all good men to come to the aid of their country"), Unknown to the

subject, the voice recognizer was actually an experimenter in another

room, typing in what the subject said into a computer.

Kelley (1983a, 1983b, 1984a) used the Oz method to develop a

natural-language interface for a computerized calendar. Early on, the

Oz paradigm, running on a mainframe computer, was used to simulate the

interface. The experimenter, behind the scenes, recoded queries and

entered them into a real data base. From information obtained in these

interactions, a language processor was derived. Later, the Oz technique

supplemented this interface, with the wizard (a "co-processor") handling

inputs that the program was not able to process, With subsequent

versions of the language processor, involvement of the invisible wizard

diminished, until the program ran without intervention. The notion of

testing the strength of the software by phasing out the wizard is one of

the contributions of Kelley's research.

Wixon, Whiteside, Good, and Jones (1983) (see also Good,

Whiteside, Wixon, and Jones, 1984) used the Oz technique to define an

interface for an electronic mail system. This study represents the

transition of Oz from a purely research tool to one that is also useful

in software development. Participants were tested in both the lab

(using a superminicomputer) and in a shopping center store (using a

minicomputer). Any commands the subject entered on the computer that

were not in the command set were intercepted by an unseen experimenter

and translated into acceptable system commands. Using this "interactive

system," an expanded set of common commands was generated.

Thus, previous applications have focused on natural language

interfaces. For one-of-a-kind tests it often does not make sense to

develop special computer hardware and software when flexible liveware

(people acting as wizards) with fully functional natural language

interfaces are readily available.

A second focus of previous applications has been on special-

purpose Oz software designed to run on large computers. While that is

fine for research, designers need software to run on small machines to

foster iterative development.

THIS IMPLEMENTATION

This implementation of the Wizard of Oz is unique, in that it

relies upon microcomputers, is much simpler than its predecessors, and

makes extensive use of user-definable function keys for message

presentation. The experimenter, acting as the "wizard," sits at a

microcomputer that is connected to the subject's machine, To create a

message for the subject, the experimenter either types it in directly or

presses a function key to which a multiple-character message has been

assigned. Only after a return key is encountered is the message sent to

the subject's machine. The subject sees the cursor reveal the message

as a smooth stream. However, keystrokes entered by the subject appear

on the experimenter's screen as they are typed, allowing the

experimenter to anticipate replies. Each character presented, along

with the time between returns, is automatically recorded by the Oz

software running on the experimenter's computer.

To implement Oz studies, the experimenter needs an IBM Personal

Computer (PC) with at least 64K of memory (128K is preferred), one disk

drive, an RS-232 serial interface, display and a display driver, and

either a second PC or a dumb terminal for the subject. (Currently the

Ann Arbor Terminals 431E, Ambassador, and Zenith Z-19 are supported.

Other terminals may work, depending upon how they handle destructive

backspace.) The two machines are linked via a standard null modem

cable,

Required software includes Advanced BASIC (version 1 1 PC-DOS

(version 1.1 or later), and the Oz software written in interpretive

BASIC. (There are actually two versions of the Oz software, one for the

experimenter's microcomputer and a terminal emulator for the subject's

microcomputer,)

Also required is a keyboard enhancer/macro processor. Software

used to date includes PROKEY (Rosesoft, 1983), KEYSWAPPER (Vertex

Systems, 1984), and NEWKEY (Bell, 1984). This software allows the

experimenter to assign character strings to keys (e.g., F1 = "Enter

choice"). Thus, lengthy messages can be generated with a single

keystroke. This makes the "system" response times brief and helps

preserve the illusion of communicating with a computer. (Direct entry

is primarily for on-the-spot creation of messages to subjects for

unanticipated errors.)

The initial application at The University of Michigan involved 38

students (mostly seniors) enrolled in Industrial and Operations

Engineering 491--Human Factors in Computer Systems (Green, 1984). Two-

thirds of the students were in Industrial Engineering; almost all of the

remainder were studying Computer Science or Electrical Engineering. The

industrial engineers had completed one human factors course and

generally one computer course. The other students had completed many

computer courses but had no previous human factors training.

The class was divided into ten interdisciplinary teams. Each team

was asked to develop a user interface for a home computer banking

program. The software would allow customers to determine the current

balance in checking and savings accounts, transfer funds between them,

pay bills, stop payment on checks, and perform security-related

functions. The interface was to be easily learned and used by people of

all levels of computer experience.

Each group was required to produce a simulated interface, several

reports, a user's manual, and a short videotape of the interface in

operation, To be included in one report were predictions of learning

and performance times of novice and expert users. Performance

predictions could be based on Oz simulations or derived from the Model

Human Processor (Card, Moran, and Newell, 1983).

As part of the development process, it was strongly suggested that

students use the Wizard of Oz software. Computer science students

initially leaned towards exercising their programming skills rather than

using the unfamiliar Oz software. Examples of coding problems helped

change their minds. (For instance, "$4.00," "300," "2,100," and those

values correctly and incorrectly spelled out as words, could all be

acceptable entries for money.) Nonetheless, three of the ten groups

chose not to use the existing Oz package, One wrote a program in PASCAL

for the Apple Lisa, one team decided to write application-specific

software, and the last group modified the program by placing all

messages in a disk file instead of using keyboard-enhancing software.

Both the PASCAL and the application-specific programs required an

extraordinary amount of effort to write. Message retrieval in the file-

based system (retrieved as needed) was particularly slow.

The generai plan was for groups to develop an initial message set

and decision rules, test one or two users, revise the messages and

rules, test additional users, and so forth. Typically, four to six

users were tested as part of the development process. The result of

such an iterative procedure is enhanced usability (Gould and Lewis,

1983).

To further the reader's understanding of how this software might

be used, a sample experimenter's start-up screen (Figure 1); a listing

of pre-defined keys (Table 11, an experimenter's mid-session screen

(Figure 2) , and an output file listing for an abbreviated hypothetical

session (Figure 3) are provided.

WIZARD OF 02 COMMUNICATIONS PROGRAM FOR THE IBM PC/XT
written by Paul Green (with help from Paul Ziots)
University of Michigan (Ann Arbor)
version of 9/4/84

This program w i l l record communications between your IBM PC or XT and

a t e s t subject's terminal. A l l characters typed along with the time

between carriage returns are recorded in a disk f i l e .

--- Files a re ..
C :\comrn . <DIR> . <DID PC-TALK .EXE PC-TALK ,KEY
PCTKREM .MRG PC-TALK .DEF PC-TALK .DIR 02-E . BAS
OZ-S , BAS 02-OUT1 TALK64 .BAT TALK128 ,BAT
PC-TALK .BAS OZ-INSTR OZ-HUMOR

5091328 Bytes f ree

..

Enter the name of the f i l e where the data goes. demo

Enter the experimenter(s)' i n i t i a l s . pg

Enter the subject 's name or in i t i a l s . Guess Who

I s the subject using an IBM PC/XT? (y or n)? y

To end the t e s t , press the escape key on the IBM keyboard.

Press any key to s t a r t recording.

Figure 1. Sample experimenter's start-up screen.

TABLE 1

HYPOTHETICAL LISTING OF PRE-DEFINED KEYS

Key combination Definition

F 1 Welcome to the MICROBANK Home Banking System
F2 What do you want to do?
Shif t/F2 a) not sure

b) withdraw all of my money
C) logoff
d) none of the above
And now for something completely different-

Computer is ready to begin. (Communications opened.)
Welcome to the MICROBANK Home Banking System
What do you want to do?
a) not sure
b) withdraw all of my money
c) logoff
d) none of the above
Enter a description of what you want to do. . . .etc

return key sends line to subject ... esc key ends test

Notes :
1. The message "Computer ... opened,)" is from the Oz software. A

similar message appears on the subject ' s screen, ("Computer is
ready. ")

2. The last (25th) line "return key ,.. test" appears only on the
experimenters' screen and serves as a reminder. It does not
scroll.

Figure 2. Experimenter's screen from a hypothetical session
(shown mid-session).

Wizard of Oz dialog of 09-05-1984 11:39:13

,.program written by Paul Green (with the help of Paul Ziots)
..U of Michigan, UMTRI-Human Factors, Ann Arbor, MI 48109-2150

Experimenter(s)=pg Subject=Guess Who

listing of file=derno

12 E: Welcome to the MICROBANK Home Banking System.
2 E: What do you want to do?
1 E: a) not sure
1 E: b) withdraw all of my money
1 E: c) logoff
1 E: d) none of the above
15 S: d
17 E: Enter a description of what you want to do.
12 S: This is a stickup.
25 E: "Stickup" is not a legal operation.
21 E: ... Please come to the bank for assistance.
12 E: This sounds like a Monty Python routine.
2 E: And now for something completely different-
16 E: Enter a description of what you want to do.
22 S: I want to tell a terminal joke,
11 E: "terminal joke" - what's that?
33 S: enough
10 E: logging off ... Have a nice day!
1 A [

ended at 00-05-1984 11:46:30

Notes: 1. Each line contains in columns 1-3 the time in seconds from
the return of the previous line (or the start signal for the
first line) until the return for the line in question was
encountered, in column 5 who originated the line (the
experimenter (E) or the subject (S)), and in columns 8 and
beyond what was entered.

2. The times for the first few lines are short (1-2 seconds)
because they were function key entries (Fl, F2, shift/F2),

Figure 3. Output file listing for a hypothetical session.

ENTANGLEMENTS, ENLIGHTENMENTS, AND ENHANCEMENTS

What kinds of facilities are needed?

In the application at Michigan, students conducted user tests

either in the laboratory or at the Engineering Library. At the library,

experimenters signed out connecting cables and linked any two PC's

together from among the rows of machines present. Because many

computers were in use at a time, it was often not apparent to subjects

that they were conversing with the experimenters at another computer in

the same room.

Most of the laboratory studies were performed at the University of

Michigan Transportation Research Institute at night or on weekends.

Cables were strewn down the hallway between various offices and a nearby

conference room. Despite their impromptu nature, both arrangements

worked successfully.

What kind of instructional materials are needed?

Experimenters were provided with a four-page handout supplemented

by instructions scribbled on the blackboard describing the software,

There were no manuals or demonstration videotapes. Additional

instructional materials could have overcome several minor difficulties.

Nonetheless, the ability of students to learn and utilize the software

rapidly with minimal instruction testifies to its simplicity, Most

questions concerned the keyboard enhancing software, not the Oz package,

Are changes to the communications process needed?

Students reported there was an intermittent communications bug

(causing the first character of a session to be misinterpreted), and the

300 baud rate seemed sluggish at times. They were not major problems.

Upgrading the baud rate to 1200 may require implementing an XON/XOFF

protocol and possibly compiling the code to avoid communications buffer

overflows.

One common problem was concurrent entry of data by the

experimenter and subject. For example, if the experimenter typed "ENTER

SELECTION" and the subject typed "pay from checking," "EpNaTy EfR rSoEmL

chECeTckIOinNgM would appear on both screens. These conflicts clearly

detracted from the credibility of the simulation. Enabling the keys on

the subject's machine to beep or click often helped, but only under very

quiet conditions. Future versions of Oz should buffer lines to prevent

these collisions.

The return function frequently presented problems for both

experimenters and test subjects. When defining keys for the interface,

experimenters had the option of embedding a return at the end of the

message. If excluded from the definition, the experimenter had to

remember to type it after pressing the defined key. Theoretically,

omission of the return in the key definition was to increase efficiency,

as messages and menus could be combined as needed. However, this

inconsistency promoted delays and experimenter errors. Explicitly

showing where returns are needed on the experimenter's listing of

defined keys may alleviate this problem. Switching the cursor from a

blinking underscore to a blinking or steady block may also help, as

could giving the experimenter a second monitor showing exactly what the

subject is seeing.

In spite of these difficulties, the ease of use of the Oz

technique and its "magical" effectiveness created considerable

enthusiasm in both subjects and experimenters. Subjects commented that

at times they forgot they were not in communication with a real banking

system.

Which keyboard enhancer should be used?

Associated with each enhancer were unique problems. Of the three

packages examined thus far, NEWKEY is the cheapest (available on local

computer bulletin boards), least powerful, and least well documented;

PROKEY is at the other end of the scale on all dimensions, and

KEYSWAPPER lies somewhere in between. KEYSWAPPER (not copy-protected)

was made available for trial use by students. Some groups obtained

their own copies of PROKEY (copy-protected). NEWKEY was not available

when the course was taught. Insufficient memory tor key definitions and

the controlling software in the 64K machine was a problem encountered by

groups using the PROKEY software, even for this moderately sized

interface. This problem was circumvented by either deleting comments

from the Oz program or using a 128K machine.

The nesting of key definitions is a feature in all three

enhancers, and potentially an advantage since it can conserve large

amounts of memory. However, this function must be used with some

caution, since accidental use of a previously defined key in a message

string might produce nonsense. For example, if the letter "f" was

defined as "Found your account," and the F1 key as "Press ENTER to

confirm," then pressing the F1 key would create the message, "Press

ENTER to conFound your accountirm . . "
It is much easier to assign multiple character messages and menus

to a single key using the PROREY than the other software. NEWKEY has

the disadvantage to making it easy to accidentally redefine one key in

the process of defining another. In one demonstration, the "a" key was

inadvertently redefined as the adjacent "s" key. When a subsequent

message was typed, a very elusive pseudo-typographical error appeared.

With KEYSWAPPER, many students inadvertently loaded the Dvorak keyboard.

Subsequent typing caused a panic as many believed they had "broken" the

computes .
Ideally, future versions of Oz should include an integral keyboard

enhancer. Definitions should be constructed by using a variety of

editors and reading them into memory prior to a test. This could

increase the response time of the software, but probably not very much.

Incorporating the feature implies dismissing the capability to define

keys on the fly. Experience has shown that this is rarely done, and

when it occurs, the spontaneous definitions are often wrong.

How many experimenters are needed to conduct a test?

Short response times were essential to maintaining the illusion of

a working system. Those were fostered by practice walkthroughs prior to

testing subjects. Although Oz requires only one experimenter to run a

test, several groups discovered it was better to have two "wizards."

With one person to aid in the referencing of the code sheet, the

"system" response time improved. Moreover, the additional "wizard" was

able to note difficulties as they unfolded (e.g., instructions scrolling

off the screen after repeated errors, mid-response delays, etc.). The

ability to annotate dialogs via the keyboard as they occur may be a

valuable feature to add to the Oz software.

It was also beneficial to place a third experimenter unobtrusively

near the subject to note the subject's comments and problems, and, in

this study, to act as the bank "HELP" phone. In a more formal

laboratory test, this observer would watch the subject using a one-way

mirror or video system and a real "HELP" phone would be provided.

What additional features are needed?

A great deal more could be done with the time data, Splitting the

between-return key times into thinking time (from the ending of one line

until typing recommences) and typing time would be useful. Also

convenient would be a routine to sort the messages according to their

associated thought times. Clearly, the messages with the longest times

are the ones most likely to need revision.

In demonstrations given since the course, people have suggested

that tab keys and protected fields (for form-filling), mice, joysticks,

speech input, speech output, pull-down and pop-up menus, and windows be

supported to facilitate the evaluation of state-of-the-art hardware and

software. (The current Oz simulation is basically a "glass teletype.")

What procedures should be followed in conducting tests?

People on several teams commented that formalization of the

materials given to subjects (copies of their own phone bills and

statements, written tasks to perform, etc.) made the experiment much

more realistic, Others noted that it was wise to keep the explanations

to subjects of the banking problem at a minimum, since this detracted

from the legitimacy of the test.

CONCLUSIONS

While the previous discussion identifies many weaknesses of the

current implementation, this quick and inexpensive tool has proven to be

extremely useful. Teams of students enrolled in a three-credit course

who had never before designed a user interface developed reasonable

protocols for one, in one month, at the end of a semester, when there

were many competing demands from other courses. In addition to its

development, manuals and reports for the prototype were written, and a

videotape created, all in that month!

Clearly, the Wizard of Oz tool greatly expedited interface

development and emphasized the iterative nature of the process.

Virtually no programming code must be written for the interface

prototype; hence, dialogs can be developed and modified without having

to worry about potentially tiresome code changes or a break in a daily

testing schedule.

Moreover, this preliminary set of studies emphasized the

simplicity of learning to use the Oz methodology. Students with minimal

experience with the tool and little instruction were able to collect

useful data almost immediately.

All too often, work is not fun. Subjects enjoyed participating in

Oz studies and so too did the experimenters,

Finally, the materials needed to conduct a similar user interface

study are minimal, as access to two machines (one an IBM Personal

Computer) is no longer a major limitation. With the previously

mentioned enhancements added to the Oz software package, the Wizard of

Oz paradigm provides a compelling methodology for developing user

interfaces,

REFERENCES

Baum, L.F., The Wizard of Oz, (originally written in 1900), New York:

Holt, Rinehart, and Winston, 1982.

Bell, F.A., NEWKEY: A Keyboard Enhancer for the IBM Personal Computer,

version 1.1, 1984, (available from Frank A. Bell, 20950 Smallwood,

Birmingham, Michigan, 48010).

Card, S.K., Moran, T.P., Newell, A,, The Psychology of Human-Computer

Interaction, Hillsdale, New Jersey: Lawrence Erlbaum Associates, Inc.,

1983.

Chapani s , A. , "Man/Comput er Research at Johns Hopkins , " Information
Technology and Psychology: Prospects for the Future, Proceedings of the

3rd Houston Symposium, pp. 238-249 in R.A.Kasschau, R. Lachman, K.R.

Laughery, eds., New York: Praeger PuSlishers, 1982.

Chapanis, A., personal communication, 1984.

Good, M.D., Whiteside, J.A., Wixon, D.R., and Jones, S., "Building a

User-Derived Interface," Communications of the ACM, October 1984,

27(10), 1032-1043. -
Gould, J.D., Conti, J., and Hovanyecz, T., "Composing Letters on a

Simulated Listening Typewriter," Proceedings of the Human Factors

Society-25th Annual Meetinq, Santa Monica, CA: The Human Factors

Society, 1981.

G~uld, J.D., Conti, J., and Hovanyecz, T., "Composing Letters on a

Simulated Listening Typewriter," Proceedings of the Conference on Human

Factors and Computer Systems, Gaithersburg, MD, Association for

Computing Machinery, 1982.

Gould, J.D.1 Conti, J.1 and Hovanyecz, T., "Composing Letters with a

Simulated Listening Typewriter," Communications of the ACM, April 1983,

26(4), pp. 295-305. -
Gould, J.D. and Lewis, C., "Designing for Usability---Key Principles and

What Designers Think," Proceedings of the CHI'83 Conference on Human

Factors in Computing Systems, New York: Association for Computing

Machinery, Inc., 1983a, pp. 50-53,

Green, P., "Teaching a Course on Human Factors and Computer Systems, "

IEEE Computer Graphics and Applications, December 1984, - 4(12), 43-47.

Kelley, J.F., "An Empirical Methodology for Writing User-Friendly

Natural Language Computer Applications, " Proceedings of the CHI ' 83

Conference on Human Factors in Computing Systems, New York: Association

for Computing Machinery, Inc., 1983a, pp. 193-196,

Kelley, J.F., "Natural Language and Computers: Six Empirical Steps for

Writing and Easy-to-Use Application," unpublished Ph.D. dissertation,

Baltimore, MD: The Johns Hopkins University, 1983b.

Kelley, J.F., "An Iterative Design Methodology for User-Friendly Natural

Language Off ice Information Applications, " ACM Transactions on Off ice

Information Systems, March 1984a, 2(1), pp, 26-41.

Kelley, J.F., personal communication, 1984b.

Pew, R., "Lecture 22: How to Study User-Computer Systems," in Pew, R.

and Green, P., (eds,), Human Factors Engineering Short Course Notes

(25th edition), Ann Arbor, Michigan: The University of Michigan Chrysler

Center for Continuing Engineering Education, 1984.

RoseSoft, Inc., Prokey 3.0 User's Guide, Seattle, Washington: RoseSoft,

Inc., 1983.

Vertex Systems, KEYSWAPPER Version 1.4 User Manual, Los Angeles,

California: Vertex Systems, 1984.

Wixon, D., Whiteside, J., Good, M., Jones, S., "Building a User-Defined

Interface," Proceedings of the CHI'83 Conference on Human Factors in

Computing Systems, NSW York: Association for Computer Machinery, Inc.,

1983, pp. 24-27.

Zoltan-Ford, E., personal communication, 1984,

