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Abstract 

The differential impacts of climate and anthropogenic stressors on body size and growth are 

trends of interest for many ecologists studying climate change impacts. These stressors are 

known to be co-occuring in nature, so untangling the response of body size from one or the other 

causes is difficult to do without long-term datasets, which are often difficult to access. Recent 

digitization efforts have now opened the door to new analysis possibilities by providing 

historical growth data from 1950 to 2019 at 1069 inland lakes in Michigan. I combined historical 

data with data from recent monitoring efforts to examine changes in mean bluegill length at age. 

In this study I find juvenile bluegill (Lepomis macrochirus) ages one to four have experienced 

losses in mean body length, while mature adults ages six to eight have seen gains in body size 

over the same time period. Using Boosted Regression Tree models, I was able to delineate trends 

in growth that could be attributed to increasing temperatures and length of growing seasons, and 

morphological characteristics of the lakes, while also accounting for the impacts of other 

stressors such as land-cover changes, increasing human populations, and assemblage changes at 

the same time. These models explain between 22% and 61% of deviance in bluegill growth. 
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Introduction | 

Body size is an important metric which mediates both ecological and physiological processes of 

animals (Peters, 1983). The most frequent measure of an organism, body size is used to 

understand change occurring in a variety of taxa and as a comparative metric. Organism 

fecundity, metabolic rate, dispersal ability, and other core physiological and ecological processes 

scale with body size and temperature (Ahti et al., 2020; Brown et al., 2004; Hantak et al., 2021; 

Roy et al., 2003; Rypel, 2014; Weeks et al., 2020). The factors which cause growth to change are 

multi-faceted and can be indicative of changes to habitat condition. 

With climate change increasing environmental temperatures across a range of habitats, we have 

already seen evidence that body size is decreasing in many species (Sheridan & Bickford, 2011). 

For example, bird tarsals are shrinking across species as climatic temperatures increase, and the 

response by many other taxa has been a similar shift to smaller body sizes(Roy et al., 2003; 

Sheridan & Bickford, 2011; Weeks et al., 2020). Similar decreasing body size can be seen in the 

fossil record during warming periods of the earth’s history. As the climate continues to warm, 

and thermal tolerances are increasingly exceeded, taxa may be incentivized to spend less time 

foraging and more time seeking or staying in refuge which limits energy available for growth 

(Sheridan & Bickford, 2011). A common measure of temperature is the Degree Day (DD), or 

Growing Degree Day (GDD), which is an integration of the temperature optimal for growth and 

the length of the growing season (Vøllestad et al., 2022). Although, increasing temperatures are 

not solely responsible for changes in growth. 

Other habitat factors also play a role in determining animal body size (Faurby & Araújo, 2017; 

Hantak et al., 2021). Preferential harvesting or predation of the largest individuals in 

communities exerts selective forces to decrease size; and losses in biodiversity reduce food and 
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nutrient availability that limit growth (Ahti et al., 2020; Rypel, 2014). Land use and land cover 

development can also dramatically change hydrologic patterns, increasing runoff and nutrient 

flow to water bodies, and increasing biologically available energy available in inland lakes 

(Quesada et al., 2017; Zhu & Li, 2014). The other habitat factors do not act independently of 

climactic stressors but co-occur and potentially interact with one another (Hantak et al., 2021; 

Lynch et al., 2016). With co-occuring stressors the degree to which changes in the environment 

impact changes in growth is obscured (Faurby & Araújo, 2017).  

Work to understand connections between macroecological patterns in size, the underlying 

process of growth, and environmental condition has historically focused terrestrial vertebrates 

and there is a need to understand these patterns in aquatic taxa so we can understand how climate 

change has and will impact populations (Rypel, 2014). Ectothermic organisms, such as insects, 

reptiles, and fishes, are especially reliant on thermal-ecological conditions to control their 

metabolism, and subsequently body size and rate of growth. Increasing temperatures lead to 

decreases in body size unless the organism compensates with more food intake (Sheridan & 

Bickford, 2011). Aquatic ectotherms rely on more than temperature to grow, characteristics of 

the aquatic and surrounding terrestrial environment they reside in also limits growth capacity.  

In this study I focus on somatic body size in Bluegill (Lepomis macrochirus), due to the species’ 

ubiquity and recorded sensitivity to environmental gradients (Tomcko & Pierce, 2001, 2005). 

Bluegill body size is correlated with age, habitat preference, and population density. As bluegill 

mature, they undergo developmental shifts in habitat choice (Werner & Hall, 1988). Juveniles 

stay in littoral habitats in inland lakes which provide refuge from predators given there is 

vegetative cover. As bluegill grow with age, they become large enough to avoid predation from 

most gape limited predators, primarily largemouth bass (Micropterus salmoides), and have 
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access to higher energy food sources in the pelagic zones of lakes (Werner & Hall, 1988). 

Previous studies have demonstrated the variability of bluegill size among differing 

environmental conditions, such as temperature gradients which suggests we will see changes in 

bluegill length over time with warming temperatures (Ehlinger, 1990; Ehlinger et al., 1997; 

Schneider, 1997; Shoup et al., 2007; Unmuth et al., 1999; White et al., 2020).  

Bluegill growth is strongly related to population density and when juvenile population density of 

bluegill in a lake reaches a critical point bluegill growth stunts (Chizinski et al., 2010). The 

energy in the environment which is bioavailable to juvenile bluegill in littoral zones becomes a 

source of intraspecific variation for smaller juvenile year classes. Additionally, instead of 

bioavailable energy being allocated towards growth it is shifted to reproduction in stunted 

populations with slower juvenile growth that reaches a lowered asymptotic limit – hampering 

individuals in the population from reaching large sizes compared to. Research has found that 

introducing predators to target bluegill recruitment can be an effective means of restoring larger 

sizes to populations. Though bluegill growth is often a factor of population density, 

environmental stressors still apply a selective pressure on populations (Ahti et al., 2020; Tomcko 

& Pierce, 2001).  

In recent decades, increases in climatic and other anthropogenic stressors, such as pollution and 

contaminants, noise and light pollution, and biotic invasions whose impacts are known to interact 

have been recorded (Reid et al., 2019). I expect that with long term sampling records I will be 

able to identify trends in body size across a range of ages of bluegill which can be explained 

using ecological habitat data. With this in mind, I seek to answer the following questions: a) 

How has the size of bluegill across age ranges, and across the state of Michigan changed over 

time?, b)Which environmental factors drive changes in bluegill length the most?, c)What 
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relationships does length have with the environmental factors?, and d) How do these patterns 

change across bluegill ontogeny. 

Materials and Methods 

Datasets 

The Institute for Fisheries Research (IFR) houses a collection of cards with historical survey data 

from Michigan inland lakes as old as 1888. Thanks to a community science effort to transcribe 

data through the Zooniverse platform (Alofs et al. In Prep), I was able to use this newly available 

dataset to evaluate historic changes in fish growth.  

I used a combination of seven datasets to construct my model of Michigan’s changing 

environment: 1) Historical Inland Lake Summary and Growth Data acts as the scaffolding for the 

rest of the dataset. The historic lake summary cards hold information on the different surveys, 

such as the name and location of the lake, sampling date, age groups, minimum, maximum, mean 

length of each age group, and the number of fish used to calculate the mean. Mean lengths here 

are reported in inches but converted to millimeters. Records of co-occurring fish species were 

also used to determine the presence of key bluegill predators including Walleye (Sander vitreus), 

Largemouth Bass (Micropterus salmoides), and Northern Pike (Esox lucius). 2) The Michigan 

Department of Natural Resources’ Status and Trends (SnT) data complements historic lake 

summary cards as the modern sampling program in the state (Hayes et al., 2003). The modern 

sampling program also uniquely identifies each lake within the state’s sampling program and is 

what was used to georeference latitude/longitude, lake depth, and lake area in addition to 

measures of growth. Further, fish captured for SnT data were collected under a standardized 

sampling program, using a variety of nets (e. g. Fyke Nets, Gill Nets, Seines) and boom-shocking 
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equipment. Standard protocols are in place for the volume and intensity of sampling efforts, 

which is correlated to lake surface area; 3) United States Geologic Survey Modeled Historical 

Land Use and Land Cover for the Conterminous United States: 1938-1992 was used to evaluate 

land-cover across Michigan for the historic period. This raster dataset classifies 14 different land-

cover types at a 0.25 km2 resolution. Land-cover variables were grouped and represented in my 

dataset as Urban Land Cover, Forested Land Cover, Wetland Land Cover, and Agricultural Land 

Cover (Sohl et al., 2016); 4) The National Land Cover Database (NCLD) is the contemporary 

compliment to the USGS historical land cover data. This data set consisted of 16 land-cover 

types and is a raster which has a 0.0009 km2 resolution. (Dewitz, 2021); 5) LAGOS-NE is a 

database of lakes across the northeastern United States, which collects a variety of lake condition 

factors such as secchi disk depth, alkalinity, and lake-basin footprints. I used lake basin 

footprints from LAGOS-NE as the area for analyzing land-cover changes. (Soranno et al., 2017) 

; 6) US Census data allowed us to track county population for each lake. I used county 

population, per decade, as a rough proxy of fishing pressure and general anthropogenic activity 

(Social Explorer, 2022); 7) Degree Day (provided by J. Breck, the Institute for Fisheries 

Research) summarized the annual number of days where mean surface temperature of the lakes 

were above 0° C. Degree Days for a given period is calculated as the sum of the daily values of 

temperature above a specified base value. For example, if the surface water temperatures on 

three successive days are 14, 16, and 18 C, the Degree Days for that three-day period would be 

48 for a base of 0 C, and 33 for a base of 5 C.  The Institute for Fisheries Research uses a 

modification of the method of Shuter et al. (1983) to represent the seasonal temperature regime 

in a lake by using half a sine wave. With this approach, the Degree Days for the open-water 

period in the lake can be calculated as the area under the temperature curve that is above a base 
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of 0 C. The mean surface water temperature during the open-water period can then be calculated 

by dividing the total Degree Days by the duration (in days) of the open-water period.

 

Figure 1. Example of growth card, digitization makes hardcopy data available to conduct 

computer analysis. 

All together the combined dataset represents 11,109 unique observations of mean bluegill length 

at age. 3,368 of which come from SnT data, and the remaining from historical growth cards. 

Recorded bluegill ages span from zero (young-of-year) to 18. These data span across both 

peninsulas, from 1888 – 2019, however growth data were only available for two lakes before 

1950, therefore, to reduce the possible influence of outliers, I only use data from 1950 and later 

totaling 1069 inland lakes within the state of Michigan. Ages zero and 11-18 all have less than 

100 observations and so were not included in the model. Ages one to eight all had more than 500 

observations, so I restrict my models to only these age groups.  
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Figure 2 Map of study area. Circles indicate a lake sampled before the contemporary Status and 

Trends monitoring system - which are indicated by triangles. 
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I used Geographic Information System (GIS) ArcGIS Pro to quantify land-use land-cover data 

from both the USGS (Sohl et al., 2016) and NLCD (Dewitz, 2021). I used lake-basin footprint 

shapefiles from the LAGOS-NE dataset to set bounds on the influence of the land and to 

spatially link the growth data (Soranno et al., 2017). 

Table 1. Statistical summary of the continuous variables analyzed. 

  Min Max Mean 

Standard 

Deviation 

Sample 

Size 

Mean Length 

(mm) 27.94 304.8 151.17 48.52  
Age 1 27.94 215.9 71.13  849 

Age 2 43.18 223.52 103.34  1528 

Age 3 68.58 254 130.63  1956 

Age 4 91.44 248.92 153.95  1933 

Age 5 96.52 248.92 171.29  1664 

Age 6 121.9 264.2 186.3  1261 

Age 7 127 304.8 186.3  867 

Age 8 142.2 276.9 210.2  510 

Year 1955 2019 1988 16.27  
Month 1 12.000 31709.50 24.81  

% Forest 0% 100% 45% 26%  
% Wetlands 0% 100% 14% 13%  

% Urban 0 97% 8% 14%  
% Agricultural 0 93% 27% 26%   

Lake Area (Ac) 2.44 5092.69 295.51 433.49  
Mean Lake Depth 

(ft) 0.500 141 13.78 9.00  
County Population 3447 2337891 158088.73 298578.57  

Degree Days 2749.19 6522.38 4746.75 1640.47  
 

Statistical Analyses 

All statistical analyses were conducted in R (R Core Team, 2021). I used simple linear 

regressions to model the change in mean length over years for each age class, with an α of 0.05 



12 
 

to determine significance. Summary statistics including minimum and maximum value, mean 

and standard deviation can be found in table 1. 

Given the heterogenous format of this dataset, I used Boosted Regression Tree (BRT) modelling 

to evaluate the relative influence of individual variables on mean body size at age(Chu et al., 

2016; Elith et al., 2008). In contrast to linear models, BRT models are robust in their ability to 

oversee datasets with multiple data formats such as different distributions or non-nominal data. 

BRT models can also account for missing values or NAs in the dataset which is an advantage 

when dealing with “patchy” data availability such as in this project. For ages 1 to 8, I use BRT 

models to evaluate the relative influence of predictor variables on mean body size, and to 

examine the impact these predictors have while also accounting for the impact of other 

predictors. 

BRT finds relationships in data through the machine learning process called boosting, which 

combines many different regression trees to improve predictive performance (Elith et al., 2008). 

The regression trees compare predictor variables to a given response (such as mean length at 

age) and make groupings which link the most homogenous spaces of the response. Many large 

trees are constructed using this method, combined through boosting, and cross-validated with a 

subset of the data. BRT models quantify the relative influence of the predictor variables on the 

response based on the number of times that a given predictor was found to be important in 

evaluating a response. Thousands of trees are often constructed, the number determined through 

manually set learning rates, interaction complexity, and stochasticity or bag rate (Elith et al., 

2008). For my models, a learning rate of 0.001 was used, modelling fifth degree interactions, and 

a bag rate of 0.5. Modelling was accomplished with the “dismo” and “gbm” packages 

(Greenwell et al., 2020; Hijmans et. al, 2021) in R. The distribution of some variables (county 
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population, lake area, and mean lake depth) made interpretation difficult due to high counts of 

observations occurring across a limited value range. To increase interpretability, I used a log-e 

transformation to distribute observations more evenly. For my complete model, I used the mean 

length observations of each age class as a dependent predictor, while the explanatory variables 

which the boosted regression model were fitted to are the year and month the survey occurred; 

proportion of land cover which was urban, wetland, forested, or agricultural; presence indicators 

for walleye, largemouth bass, northern pike, and yellow perch; degree days; mean lake depth and 

surface area; and the population of the surrounding county as reported by the closest US Census. 

Mean lake depth, lake surface area, and county population are all transformed with a natural log 

transformation. I ran two additional models, one with only degree days as an explanatory 

predictor and another with degree days, log-e transformed mean lake depth, and log-e 

transformed lake surface area. The additional models aided in determining the impact of climate 

compared to other values on model performance. Multivariate models were simplified to remove 

variables which were redundant in model creation by removing variables one at a time until the 

deviance explained by the model failed to explain more than the mean deviance. 

I evaluated the accuracy of these models using pseudo-R-squared values (Chu et al., 2016). 

Pseudo-R-squared quantifies the reduction in predictive deviance as the number of trees are 

increased. This statistic is calculated as, 1- (Residual Deviance/ Total Deviance). Like an R-

squared value, it is a ratio which approaches 1 as predictive performance increases. 

The results of these models were also interpreted using partial dependence plots, which show the 

effect of predictor variables on size at age – independent of the influence of other predictors. I 

display only the predictors which explain the top eight relative influences for simplicity. 

Results | 
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I found changes in mean length varied by age group (Figure 3). Age classes one to four have a 

negative relationship between mean length and year, and beyond age class five the relationship 

becomes positive. The changes in body size over time are significant trends in most year classes; 

p-values for age groups were less than 0.001, except for ages five and eight which were 0.093, 

and 0.052, respectively. R2 values for these linear models ranged from less than 0.001 to 0.28 

and explain a small amount of the variation seen in growth. In general, juvenile bluegill ages four 

and younger are reaching smaller sizes at these ages, whereas mature bluegill age five and older 

are not experiencing changes in their body size or are reaching larger sizes. 
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Figure 3. Changes in mean length over time. Regression line takes the form 𝐿𝑒𝑛𝑔𝑡ℎ = 𝑚 ∗
𝑌𝑒𝑎𝑟 + 𝑏, where m is the slope of the regression line. R2 values, ascending by year, are as 

follows: 0.29, 0.13, 0.04, 0.005, 0.001, 0.01, 0.02, and 0.01. 
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Influence of Environmental Factors 

The percentage of deviance explained by BRT models increases with factors added to the model, 

regression trees using only Degree Days as an explanatory factor pseudo-R-squared values range 

from 0.031 to 0.27 and was higher for ages seven and eight than for other models. Adding lake 

morphological factors, mean depth and surface area, improves explanatory power to 0.07 to 0.33. 

Finally, adding all collected environmental factors model performance ranged from 0.22 to 0.61 

(Figure 4). 

 

Figure 4: Pseudo R-squared values for three models (shown as ModN, or Model Number) with 

1,3, and all environmental factors included. 
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Pseudo-R2 values are highest in the final model for ages one and eight, explaining a range of 

deviance from 22% to 61%. The relative influence of the environmental factors varied by age 

class as well; of the eight age classes modeled, mean depth was the most influential factor in 

ages four, five, and six (Table 2). Age classes one, two and three were both influenced the most 

by the month in which the survey was conducted; the final two age classes seven and eight are 

most influenced by the population of the encompassing county. Degree days tend to be the third 

or fourth most influential factor across age groups, though its influence increased in older age 

classes. Finally, land-use land-cover factors show a marginal increase in influence with bluegill 

age – only being the third most influential factor for ages seven and eight. In juvenile age 

classes, land-use land-cover factors are the least influential, and agricultural land-use land-cover 

tended to be the most influential of the different cover types.  
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Table 2: Influence Rank 1-8 for each age group, with relative influence in parentheses. Bolded 

factors have been log transformed. Blue cells indicate lake geomorphic features, yellow cells 

indicate Degree Days, and green cells indicate land-cover variables. 

 

 

 

Influence 

Rank Age 1 Age 2 Age 3 Age 4 

1 Month (47.19) Month (46.46) Month (28.20) Mean Depth (22.74) 

2 Year (15.44) Year (14.64) Degree Days (12.51) 

County Population 

(15.51) 

3 County Population (9.14) Degree Days (12.49) Lake Area (11.45) Degree Days (15.01) 

4 Forests (5.43) Mean Depth (11.25) Year (9.19) Month (13.97) 

5 Degree Days (5.17) Lake Area (10.53) Mean Depth (10.02) Lake Area (13.33) 

6 Urban (4.62) 
 

Agriculture (6.59) Agriculture (11.95) 

7 Mean Depth (3.69) 
 

County Population (6.46) Year (7.46) 

8 Agriculture (3.52)       

     

 
Age 5 Age 6 Age 7 Age 8 

1 Mean Depth (22.23) Mean Depth (24.49) County Population (25.76) 

County Population 

(23.13) 

2 County Population (15.18) County Population (24.44) Mean Depth (24.41) Degree Days (15.41) 

3 Degree Days (13.63) Degree Days (15.22) Degree Days (15.35) Mean Depth (15.40) 

4 Agriculture (12.63) Lake Area (13.92) Agriculture (13.13) Agriculture (11.92) 

5 Lake Area (10.13) Year (11.04) Year (11.65) Wetlands (9.68) 

6 Wetlands (7.42) Agriculture (10.87) Lake Area (9.68) Lake Area (6.79) 

7 Forests (6.66) 
  

Urban (5.19) 

8 Year (6.63)     Forests (4.45) 
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Partial Dependence Plots – How do factors impact growth? 

Adding predictors to BRTs of size at each age clarified the impact of individual factors by 

smoothing relationships in partial dependence plots while the underlying patterns remained 

similar regardless the number of predictors in the model. Each predictor’s relative influence 

varied across age groups, but the patterns of variable effects stayed relatively consistent across 

age groups and variable combinations. Lake geomorphological factors and land-use land-cover 

factors showed a change in effect, where the growth response from bluegill was age dependent, 

juveniles showed decreases in size at age whereas adults experienced increases in size (Fig. 5). 

Forested land-cover and urban land-cover both had a negative effect on juvenile growth, which 

was positive once bluegill reached age five. While increasing wetland and agricultural land-

covers had a negative effect on mature bluegill growth, and a positive effect on juveniles. Lake 

geomorphological factors, such as mean lake depth (Fig. 5) and lake area, had a negative effect 

on juvenile growth. In mature age classes, this was a positive effect. 

County population had a negative effect on the mean length of all age groups, an effect which 

was more pronounced in mature age classes, or at the largest counties in juvenile ages (Fig. 6). 

Degree days also had an overall negative relationship with mean length, with length declining 

significantly past 4000 degree days across years (Fig. 7). The month each sample was collected 

maintains a logistic growth relationship, with a noticeable increase in growth occuring in the late 

summer. The largest increase in size between spring and fall occured in juvenile age classes (Fig. 

8). 

  



20 
 

 

Figure 5. Partial dependence plots showing the effect of mean depth on bluegill mean length.  
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Figure 6. Partial dependence plots showing the effect of the surrounding county population, log-

e transformed, on the mean length for age groups one to eight. In my BRT models, county 

population was removed in simplifying the predictor set for age 2. 

 



22 
 

 

 Figure 7. Partial Dependence Plots representing the effect of Degree Days on mean length. 

These plotted relationships demonstrate the effect on mean length, while taking the mean effect 

of the other variables into account. 
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Figure 8. Partial dependence plot showing the effect of sampling month on bluegill size at age. 

While the shape of plots is similar, note the change in y-axis scale which becomes smaller with 

age. 
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Discussion |  

Over the 69-year time span of this study, juvenile bluegill have been growing slower and some 

mature age classes of bluegill have been growing faster. Results from my linear regression 

models indicate the shift in growth trend happens after age five, which has not significantly 

experienced any changes in growth. The most influential factor related to bluegill growth for 

ages one to three, and second most influential for age four, was the month in which the survey 

was conducted, with most of the growth occurring over the summer months from June to 

September, overlapping with the spawning season for bluegill. As fishes age, the rate of growth 

declines and, as expected, growth achieved over the summer decreases with age group (Patnaik 

et al., 1994). Wagner et al. (2007) also reported seasonality (Fall, Winter, Spring, Summer) to be 

the most important factors in models of bluegill growth for ages two and three, though they are 

treated as dummy or control variables. The impact of sampling month may be related to 

temperature variations within a given year, a potential confounding variable for which my data 

currently does not have the resolution to account. 

As bluegill age, mean lake depth (for ages five and six) and the population of the surrounding 

county (ages seven and eight) have stronger relative influence on growth. Mean lake depth 

informs how much littoral habitat there is in each lake, as lakes increase in mean depth generally 

the proportion of shallow, littoral zones decrease. Bluegill rely on littoral zones for breeding and 

refuge from predators, both mechanisms of recruitment for the species. As bluegill become large 

enough to avoid predation, they also become less adapted for these zones as they change 

morphologically, adapting to conditions of the open water (Bell & Jacquemin, 2017). For older 

and larger bluegill then, the amount of deep, open water space available to be inhabited becomes 

an increasingly important habitat factor. In my model county population was used to 
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approximate fishing pressure in the absence of mortality data. The relationship between county 

population and size is negative across all age classes but increases is increasingly influential for 

older age classes. Recreational fishing is highly size selective, removing the largest and often 

oldest individuals from a population, lowering the mean length for older bluegill living in highly 

populated counties (Rypel, 2014).  

As ectothermic organisms, fish metabolic activity is regulated by environmental temperatures 

and given all else is equal with an increase in Degree Days, the number of days available for 

growth, – we expect that growth should increase (Brown et al., 2004). Additionally, we expected 

that temperature would be highly influential in determining growth. However, degree days were 

not as influential as the above-mentioned factors, typically being second or third most influential. 

Partial dependence plots from my models show that as the average number of degree days 

experienced goes up, growth increases briefly in some cases (particularly ages five, seven, and 

eight) before sharply declining. There are several explanations for declines in size with 

increasing degree days including temperatures exceeding the optimum for growth (Have & Jong, 

1996), lack of productivity and food resources to meet increasing metabolic demands (Sheridan 

& Bickford, 2011), density-dependence or other ecological interactions.  

Bluegill growth has been strongly linked with density dependent mechanisms, where larger 

populations of bluegill grow more slowly. In stocked ponds the growth of bluegill populations 

shows an inverse relationship with density (Krumholz, 1949; Latta & Merna, 1976). Conversely, 

juvenile mortality can correspond to faster growth of juvenile year classes (Partridge & DeVries, 

1999). Management efforts to increase bluegill size, and reduce stunting, often leverage 

mechanisms that target juvenile survivorship such as increasing predator densities through 

stocking, or via fish kills (Neal, 2017; Schneider & Lockwood, 1997). Other warmwater adapted 
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centrarchids, such as largemouth bass have demonstrated increased fecundity and recruitment 

given an increase in degree day values (Casselman, 2002). It is likely then that decreases in 

bluegill growth with increasing degree days may similarly be due to increased fecundity and 

higher density juvenile populations. High density populations of bluegill consume many of the 

resources in their environment and are unable to leverage enough energy to grow to large sizes 

(Mittelbach, 1983). Natural reductions of density via mortality (e. g. predation, overwinter 

starvation, disease) for juveniles however are often mediated by other environmental factors, 

such as water temperature, spawning/hatching time (subsequently the length of first growing 

season), nutrient input, and productivity/food abundance (Casselman, 2002; Latta & Merna, 

1976). My model captures the variation of many environmental factors that mediate these 

processes and are indirectly represented through changes in bluegill growth. 

My model performance matches or improves upon other attempts to model bluegill growth with 

environmental factors. Studies such as Tomcko and Pierce, (2001) similarly use variables such as 

temperature, depth, and lake area to analyze relationships between bluegill growth and 

environmental factors. Their analysis, however, also included lake alkalinity, shoreline 

development and secchi-depth, explaining 16-33% of variation in bluegill size. Later, in 2005, 

the same authors improved their models by focusing on population density factors, such as year 

class strength, to explain 19-51% of variation in size at age, similar to models presented here 

(Tomcko & Pierce, 2005). With pseudo-R2 values ranging from 0.22-0.61, my model is effective 

at predicting mean lengths for the different age classes and improves on the explaining variation 

in growth compared to other models focusing similarly on landscape factors.  

Despite best practices, my dataset exhibits shortcomings. Historical records do not include 

estimates of population sizes for the different age classes, limiting our ability to conduct an 
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analysis with a direct measure of density. Future analyses could include bluegill CPUE to 

compensate for the lack of density measures. Similarly, the density of predators and competitors 

could be useful factors to consider for juvenile age groups. Other studies, such as Tomcko and 

Pierce (2001), also suggest that environmental variables such as secchi depth that could improve 

model performance.  

I am also missing data from a small period in-between the different sampling programs from 

1996-2002. Missing data exists in other storage formats that were outside the accessibility of this 

study but may be applicable for future research. Additionally, sampling methods have changed 

over the period of my study and particularly between the two survey datasets. Standardization of 

sampling methods across the state has led to better catches of juvenile age classes in SnT data. 

The standardization of bluegill sampling methods might suggest that historical data was biased to 

larger sizes, a possible explanation of decreasing lengths in juveniles, however using the mean 

length as a measure of body size should mitigate against that bias.  

Future studies should look to investigate other historical data formats. Museum specimens can be 

a reliable source of information describing geometric morphometric changes in bluegill, which 

are capable of characterizing changes experienced by bluegill more thoroughly than mean length 

alone can. Large scale temporal shifts in body shape may be accompanying the shifts in size 

reported in the study here, which could reveal an explanatory relationship. With more complete 

population information on species assemblages in these lakes or by including relative abundance 

of bluegill to account for intraspecific population dynamics more accurately, I may be able to 

account for variation more accurately in growth. Further, this work could be expanded upon by 

investigating the applicability of these models to other inland lake fish species.  
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Conclusions | 

In this study I used long term datasets to parse out the impacts of the changing environmental 

variables on fish growth by examining average size at age of bluegill in Michigan from 1950-

2019. This approach to analysis was able to explain 22% to 61% of the deviance in the mean 

length at an age class for bluegill, improving on previous models. Over the 69 years of my study 

data, length at age of juvenile bluegill ages one to four declined, and length at age of mature ages 

six and older increased. I found the influence of environmental factors to be variable across age 

groups, though the effects they have on the mean length of those age groups are functionally 

similar, indicating that for some predictors ontogenetic variation is less important for structuring 

bluegill size. Literature suggests that the impact of changing environmental variables is 

overlapping and could be obscuring the true nature of the relationships between the average size 

of a bluegill at a given age and the recent changes in climate. In my models degree days had an 

unexpected negative relationship with bluegill growth, potentially due to intraspecific 

competition of juveniles. Further investigation is needed to clarify these relationships 

specifically.  
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