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• We create a model to quantify the value of distributed energy resources for meeting

decarbonized heavy duty vehicle energy demand.

• Distributed energy resources are deployed at 78% to 95% of all charging stations.

• Annual cost savings from distributed energy resources investments can be as high

as $1.9 billion nation-wide, and $104 million at an individual station.

• Small modular microreactors supply approximately between 24% and 30% of heavy

duty vehicle energy demand annually.
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Abstract

Electric and hydrogen vehicles can help decarbonize heavy duty vehicles (HDV). Few

studies examine how to meet energy requirements of decarbonized HDVs, and all assume

electricity will come from centralized systems. However, decarbonized HDVs could sig-

nificantly increase energy demands in areas with limited transmission access, potentially

favoring deployment of distributed energy resources (DERs). In this paper, we develop an

optimization-based techno-economic model that minimizes costs of meeting HDV energy

demands by optimizing investments in and operations of DERs, investments in transmis-

sion interconnections, and wholesale electricity purchases. We apply it to a modeled U.S.

dataset of electric HDV charging demands to quantify the deployment and value poten-

tial of three DERs - solar, batteries, and nuclear small modular reactors (SMRs) in the year

2040. For fleets of 100% electric HDVs to 60% electric and 40% hydrogen HDVs, DERs are

deployed at 78% to 95% of all charging stations and meet between 24% to 30% of total HDV

energy demand. Investments in DERs reduce annual costs by $647 million to $1.9 billion

across all stations, while individual stations can save $20 million to over $100 million

annually. SMRs make up over 99% of total deployed DER capacity, indicating significant

potential for SMR deployment in this emerging market. Widespread DER deployment is

robust to capital cost uncertainty in SMRs and transmission lines, wholesale electricity

prices, and other factors.

Keywords: distributed energy resources, small modular reactors, decarbonized heavy

duty vehicles, transportation sector decarbonization
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1 Introduction

To limit global average temperature increases to 1.5°C or 2°C above pre-industrial lev-

els, greenhouse gas (GHG) emissions in developed countries must rapidly decline through

2050 [1]. In the United States, the transportation sector surpassed the electricity sector

as the largest source of GHG emissions in 2017 [2]. In 2019, the transportation sector

was responsible for 29% of national GHG emissions, with further emissions growth ex-

pected [3, 1]. To reduce the sector’s emissions in line with climate change mitigation

goals, transitioning from liquid petroleum fuels to alternative fuels is critical. Heavy

duty vehicles (HDVs), defined as class 7 and class 8 trucks, which are vehicles with gross

vehicle weight rating above 26,001 lbs [4], were the fastest growing source of global oil

demand for the last two decades [5], accounting for roughly 40% of GHG emissions from

the global transportation sector [6]. Without any further policy efforts, global oil de-

mand is expected to continue to grow at least through 2035 at an average annual growth

rate between 1.13% and 5% [7, 5], mostly due to increase in global road freight demand

[5, 8]. Thus, decarbonizing the HDV fleet is essential to decarbonize the transportation

sector. This transition is just beginning for HDVs, as they pose a larger decarbonization

challenge than light or medium duty vehicles (LDVs or MDVs). While electrification of

LDVs and MDVs has rapidly progressed [9], electrifying HDVs is challenged by heavier

battery weights and higher power requirements for fast charging [10, 11]. Hydrogen is

an alternative promising decarbonization pathway for HDVs, but remains in early stages

of development and deployment [12, 13, 14, 15, 16, 17].

Many electrified end uses, including electrified light-duty vehicles, will increase de-

mand in densely populated areas with ample transmission system access [18]. Con-

versely, given their long-distance hauls, decarbonized HDVs could introduce significant

new energy demands in sparsely populated areas with limited transmission system access
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[19]. Meeting these new demands through the centralized power system could require

significant transmission investments, which could be challenged by costs and social resis-

tance [20, 21]. Distributed energy applications could avoid these complications [22] while

serving the emerging potential market of providing energy input for decarbonized HDV

charging demand. The estimated increase in electricity demand due to decarbonization

of the HDV fleet will be significant [19]. Charging a single electric HDV could increase

electricity demand by as high as 2.5 MW in an hour, and total HDV energy demand for

one NERC region could be as high as 175 GWh daily [19].

Few studies have examined how to meet energy requirements for decarbonized HDVs.

[16] couple a centralized infrastructure planning model with a power system optimiza-

tion model in Germany to study the power system implications of different designs of fuel

cell HDV refueling networks. They find cost savings when planning for fuel cell HDV

and power system infrastructure together rather than independently. [19] meet charging

demand at each of 219 charging stations assuming 100% of the HDV fleet is electrified

across the U.S. They meet this demand by dispatching existing generators in the bulk

(or centralized) power system, then quantify emissions changes due to HDV charging

demand.

These papers offer valuable insights into the physical and technical feasibility of de-

carbonizing HDVs. However, they both assume that decarbonized HDV demand is met

fully by centralized electricity generation, and either ignore [19] or significantly sim-

plify [16] the cost of transmission expansion for connecting HDV charging stations with

the centralized grid. We extend this existing literature in two novel ways. First, we

quantitatively evaluate distributed energy options for meeting energy demands of decar-

bonized HDVs, and compare distributed to centralized energy options. Second, in con-

sidering centralized energy options, we account for spatially- and capacity-differentiated

transmission expansion costs. Spatially-differentiated costs reflect locations of transmis-
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sion lines and charging stations, while capacity-differentiated costs reflect the capacity

of power purchased by charging stations from the bulk power system.

Using this new novel framework, this paper studies the feasibility of distributed en-

ergy resources (DERs) for meeting energy demands of decarbonized HDVs, as opposed

to centralized energy resources. All DERs need to compete among each other and with

centralized energy resources on economic and technical grounds to provide electricity

and/or hydrogen to decarbonize the HDV fleet. Distributed systems could include exist-

ing technologies, such as solar photovoltaics (PV) or batteries, or emerging technologies.

Two such emerging technologies that have promising potential are nuclear small modular

reactors and microreactors (which we will collectively refer to as SMRs). Microreactors

have nameplate capacities between 1 and 20 MW [23], while small modular reactors can

be sized up to 300 MW [24]. The small size of SMRs grants them greater siting flexi-

bility than conventional nuclear plants [25], and their construction can occur via mass

fabrication, potentially enabling large cost reductions through economies of number and

component-based learning [25, 26, 27]. Due to these advantages, studies are beginning

to consider SMRs in niche electricity and/or industrial thermal markets [22, 28, 29, 30],

including in remote settings [31, 32]. [24] also assess the value of SMRs in niche and large

electricity and thermal markets using a simplified levelized cost of energy approach that

ignores SMR operational needs to meet a given end use demand. These studies share two

significant gaps. First, they do not optimize deployment and operations of SMRs in an

emerging market given competition from centralized and decentralized energy resources.

Second, they do not consider SMR deployment to meet decarbonized HDV energy de-

mands, despite the potential benefits of this match as detailed above.

We fill critical gaps in two areas of literature: (1) understanding how to meet emerging

energy demands of decarbonized HDVs and (2) understanding viable markets for SMR

deployment (Table 1). To fill these gaps, we answer the following research questions:
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How can decarbonized HDV energy demand be met with distributed versus centralized

energy, and what role, if any, can SMRs play in this emerging market? To answer these

research questions, we develop an optimization-based techno-economic model to com-

pare the value of different DERs (including SMRs) versus centralized energy resources

for charging electric and/or refueling hydrogen HDVs (collectively referred to as HDV

energy demand) in the year 2040. Given the uncertainties in the availability and scalabil-

ity of future technologies and policy constraints, as well as future wholesale electricity

prices, we also perform sensitivity analyses to test the robustness of our results under a

wide range of capital costs, infrastructure upgrades, infrastructure utilization, and differ-

ent modeled years corresponding to different wholesale electricity price scenarios.

While prior work has used macro-scale power system models to understand how

HDV demands change bulk power system operations, our novel framework instead quan-

tifies the value of distributed energy resources versus centralized power purchases for

meeting HDV demands.
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Paper Methods Study focus Gaps

Literature on meeting decarbonized HDV demand:

Power system implications of No DER consideration;

[16] Power system model different hydrogen HDV refueling simple assumptions about

network designs the cost of connecting refueling

stations to the power grid

[19] Truck dispatch and Meet charging demand assuming No DER consideration;

economic dispatch 100% electrified HDV fleet no transmission expansion cost

Literature on SMR applications:

[22], [28] Summary ; economic Discussion of SMR applications No application in HDV

[29], [30] comparisons; in small niche markets market; no SMR operation and

estimation deployment optimization

Discussion of SMR applications No application in HDV

[31], [32] Cost analysis in remote settings market; no SMR operation and

deployment optimization

[24] Simplified levelized Estimates of SMR costs in No SMR operation and

cost of energy large thermal/energy markets deployment optimization

Table 1: Review of current strands of literature

2 Methods

To answer our research questions, we use an optimization-based techno-economic

model to compare the value of distributed versus centralized energy resources for charg-

ing electric and/or hydrogen HDVs (hereafter referred to as the HDV Charging Model)

(Figure 1). The HDV Charging Model optimizes investments in DERs, operations of those

investments, investments in transmission lines to access the bulk power system, and

wholesale electricity purchases enabled by those transmission investments. The model

runs on an hourly basis for a calendar year using annualized capital costs and combines

highly spatially resolved datasets for future station locations, transmission system ac-

cess, and solar resources. With model outputs, we quantify investments, operations, and
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fixed and variable costs to meet energy demand from decarbonized HDVs. By modify-

ing investment options in the model via scenarios, we quantify the value of different

technologies in charging and/or refueling decarbonized HDVs.

Figure 1: Flowchart of HDV Charging Model.

2.1 Overview of HDV Charging Model

The HDV Charging Model minimizes total annual costs of meeting HDV energy de-

mand at the charging station level. Annual total costs equal the sum of capital costs in

transmission and DERs; operational costs of transmission infrastructure and distributed

energy capacity resources; and wholesale electricity purchase costs as detailed in equa-

tion (1).
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where pBK
is the annualized battery power rating cost ($/MW-year), kB

s is the battery

power rating at charging station s (MW), pBC
is the battery energy capacity cost ($/MWh),

eBs is the battery energy capacity at station s (MWh), pBE
is the battery operating cost

($/MWh), gBst is battery discharge in time t at charging station s (MWh), pHK
is the an-

nualized hydrogen power rating cost ($/MW-year), kH
s is the hydrogen power rating at

charging charging station s (MW), pHC
is the hydrogen energy capacity cost ($/kg), eHs

is the hydrogen energy capacity at station s (kg), pHE
is the hydrogen operating cost

($/kg), gHst is the hydrogen discharge in time t at charging station s (kg), pPK
is the an-

nualized solar capital cost ($/MW-year), kP
s is the solar capacity at charging charging

station s (MW), pPE
is the solar operating cost ($/MWh), gPst is solar generation in time

t at charging station s (MWh), pMK
is the annualized SMR capital cost ($/MW-year), k̄M

is the SMR module capacity (MW), uM
s is the (whole) number of SMR modules built at

charging station s, pME
is the SMR operating cost ($/MWh), gMst is the SMR generation

in time t at charging station s (MWh), pWK
si is the annualized total transmission capital

and operating cost for station s of capacity class i ($/MW-year), k̄si is the effective capac-

ity of transmission line at station s of class i (MW), uW
si is the binary number indicating

whether or not a transmission line of capacity class i at charging station s is built, pWE
st

is the wholesale electricity price at charging station s at time t ($/MWh), gWst is the elec-
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tricity generation purchased from the wholesale electricity markets in time t at charging

station s (MWh), and pWO
is overhead cost in percentage.

The model enforces several demand- and supply-side constraints. The model ensures

hourly energy supply meets charging demand at each charging station for both electric-

ity, detailed in equation (2a), and hydrogen, detailed in equation (2b).

gBst + gPst + gMst + gWst ≥ dEst + dBst +

(
1

cH

)
dHst , ∀s ∈ S, ∀t ∈ T, (2a)

gHst ≥ d̄Hst , ∀s ∈ S, ∀t ∈ T (2b)

where dEst is total electricity demand in time t at charging station s (MWh), dBst is the

battery inflow in time t at charging station s (MWh), dHst is hydrogen inflow in time t

at charging station s (kg), cH is the conversion factor between battery electricity and

hydrogen, and d̄Hst is the total hydrogen demand in time t at charging station s (kg).

Electricity generation by each SMR is constrained by minimum stable load and ramp-

ing constraints:

gMst ≥ gMmin, ∀s ∈ S, ∀t ∈ T, (3a)

∥gMst − gMs(t−1)∥ ≤ rMs uM
s k̄M , ∀s ∈ S, ∀t ∈ T (3b)

where gMmin is the minimum stable load of SMR in a given hour, rMs is the ramping con-

straint for SMR at charging station s, measured in percentage of the resources’ nameplate

capacities. For storage technologies (battery and hydrogen storage), the model enforces

state of charge constraints:
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xB
st = xB

s(t−1) + dBst − gBst, ∀s ∈ S, ∀t ∈ T, (4a)

0 ≤ xB
st ≤ eBs , ∀s ∈ S, ∀t ∈ T, (4b)

xH
st = xH

s(t−1) + dHst − gHst , ∀s ∈ S, ∀t ∈ T (4c)

0 ≤ xH
st ≤ eHs , ∀s ∈ S, ∀t ∈ T, (4d)

where xB
st (xH

st ) is the state of charge of battery (hydrogen) storage at station s at time

t, and xB
s(t−1) (xH

s(t−1)) is the battery (hydrogen) storage’s state of charge at the same

station in the previous hour. Hydrogen storage takes electricity input, either from on-

site distributed resources (solar PV, battery storage) or from purchased electricity from

the grid, and is used to refuel hydrogen HDVs only. The model does not consider the case

where hydrogen storage can produce electricity to supply electric HDVs. For solar PV,

the model limits hourly generation by on-site solar PV at each charging station based on

available hourly solar resources.

0 ≤ gBst ≤ fP
stk

P
st, ∀s ∈ S, ∀t ∈ T, (5)

where fP
st is solar PV capacity factor in percentage at station s at time t.

The model is programmed in Pyomo (Python) and solved using CPLEX Version 20.1.0.1.

Our model’s high spatiotemporal resolution allows us to capture crucial trade-offs be-

tween distributed and centralized energy solutions that will drive the value of future DER

deployment at HDV charging stations. Alternative analytical approaches, e.g. macroscale

energy system models, would better capture regional interactions across HDV charging

stations. However, these alternative approaches are computationally intensive, so re-

quire significant spatiotemporal simplifications that could lessen their value at capturing
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DER versus centralized energy solutions for HDV charging stations. We suggest alter-

native approaches be used in future work, guided by the insights generated through our

analytical approach.

2.2 Transmission Expansion Cost Modeling

To capture the cost of purchasing electricity from wholesale markets, our model in-

cludes two relevant categories: transmission expansion costs and wholesale electricity

purchase costs. We assume each station requires additional transmission capacity to

serve new electrical load and estimate the cost of constructing a new transmission line

for both single and double circuit lines at 5 voltage classes (69kV, 161kV, 230kV, 345kV,

and 500kV). Costs are developed primarily using the methodology and data in [33] with

a modified land cost method to generalize the framework beyond the Midcontinent Inde-

pendent System Operator (MISO) territory as illustrated in Figure 2 and described below.

For a given station, we measure the straight line distance from the station to the near-

est existing transmission line of each capacity class using ArcGIS Pro 2.8 [34]. Existing

transmission infrastructure data is drawn from the Homeland Infrastructure Foundation

Level Database Electric Power Transmission Lines layer [35] and lines are binned into

the five voltage classes previously described. Given that a single line cannot provide suf-

ficient power for a double circuit of the same voltage, double circuit lines are routed to

the nearest point at least one voltage class above (i.e. 69 kV double circuit connects to

at least 161 kV etc.) with double circuit 500kV lines interconnecting to existing 735kV

infrastructure.

To calculate total land costs, we sum acquisition, permitting, and right-of-way prepa-

ration (e.g. clearing trees, grading) costs. To find these values, we combine the area

along each route with acquisition costs per acre [36], land cover types [37] and prepa-

ration costs [33], and permitting expenses [33]. At each station and capacity class land
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costs are summed together with conductor and structure (tower) costs to find the trans-

mission line capital subtotal as detailed in Appendix C.5. Following [33], a 30 percent

contingency is added to the straight-line estimate recognizing that a new line likely could

not be built along the absolute shortest path.

Substation costs are added assuming a new substation is built at each end of the line.

We apply a 17.5% overhead and 30% contingency allowance to the subtotal to produce

a total estimated capital expense, which is annualized using a capital recovery factor

(CRF). Finally, annual operating and maintenance expenses for both the transmission line

($7,300.75 per circuit mile) and substation ($1,543.65 per MVA) are estimated based on an

average from 17 and 12 large utilities respectively [38]. Further detail on the transmission

line expansion methods and data can be found in section Appendix C.5 in the SI.

While the cost estimates include a substation at each end of a new line, they do not

include any distribution infrastructure between the substation and charging station. Sim-

ilarly, estimates for new distributed assets (solar, SMR/microreactors) do not include any

new distribution infrastructure. These costs are omitted because it is impractical to de-

velop reasonable estimates without detailed design beyond the scope of this study and

because we hypothesize that the required infrastructure would be similar across scenar-

ios (i.e. new local distribution requirements would be similar for a solar facility, SMR, or

transmission interconnection, excluding the substation). One additional limitation of the

transmission expansion model is the model does not consider interaction among charg-

ing station loads, which could lead to underestimating expansion costs because multiple

stations with demand profiles whose sum exceeds existing capacity can interconnect to

the same transmission line.

12



Figure 2: Transmission expansion capital cost modeling approach and data sources. Percentages are the

average contribution of each subcategory to the total line capital cost across all stations and voltage classes.

Bulleted items in the cost subcategories are the primary data sources.

2.3 Hydrogen Modeling

To include hydrogen HDVs in our decarbonized HDV fleet, we convert a portion of

the energy consumption of electric HDVs from [19] to hydrogen demand. To do this, first,

we employ a simplified physics-based model to calculate the ratio of energy consumed

by hydrogen versus electric HDVs ‘at the wheels’ based on differing vehicle weights and

power train efficiencies. We use a Monte Carlo simulation to quantify the distribution

of possible energy consumption ratios given the range of vehicle parameters reported in

the literature (Appendix Table A.1). The mean value of the resulting distribution is used

to convert energy demand of electric HDVs (in kWh) to equivalent energy demand for

hydrogen HDVs (still in kWh). Second, we convert the hydrogen HDV energy demand

(in kWh) to hydrogen demand (in kg) using the higher heating value of hydrogen.
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We model on-site hydrogen production via electrolysis and above-ground hydrogen

storage. The electricity demand for producing H
2

is calculated by multiplying hydro-

gen demand by an electrolyzer conversion ratio. We use above-ground storage as un-

derground caverns for hydrogen storage might not exist at our analyzed HDV charging

stations. Further details of how we model hydrogen HDVs are in Appendix B.9.

2.4 Data

We apply the HDV Charging Model for one year for each of 167 HDV charging sta-

tions, whose locations and electricity load profiles are obtained from [19]. [19] determine

daily electricity load profiles at individual charging stations that would result from 100%

electrification of the current inter-state HDV fleet. [19] optimize charging station loca-

tions and daily load profiles using a truck dispatch model that takes into account truck

flows, driving conditions, departure schedules, and other factors. To generate annual

electricity load profiles, we assume each charging stations’ daily load profile repeats for

the entire year. We remove three charging stations from our study - two stations for

having flat demands due to [19]’s assumptions and one station for requiring over-water

transmission line development to get access to bulk power, which we do not have a good

cost estimate for. We choose to base our study on the year 2040 when electric and hydro-

gen HDVs could be deployed at large scale, and when SMR technology could be mature

enough to be a viable DER option.

Data for fixed O&M cost and capital costs for battery storage and solar PV are taken

from U.S. National Renewable Energy Laboratory (NREL)’s 2020 Electricity Annual Tech-

nology Baseline [39]. To annualize capital costs, we apply a capital recovery factor using

a discount rate of 3% per federal guidance [40]. This interest rate is also within a rea-

sonable range of discount rates for SMRs [24]. Solar capacity factors at the locations of

the charging stations are calculated by [41] using solar resource data from NREL’s Na-
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tional Solar Radiation Data Base (NSRDB) in 2014. The hourly costs of purchasing energy

from the wholesale markets to serve charging stations’ demands are taken from NREL’s

Cambium dataset [42]. To reflect the long lead time to a fully electrified HDV fleet, we

use wholesale electricity prices for 2040. Wholesale prices for each station equal the pro-

jected hourly marginal energy prices at the balancing authorities in which each station

is located.

We obtain capital and operational costs of SMRs from [43], which details data in-

put for SMRs from NuScale LLC, a major developer of SMRs that has one of the most

advanced SMR technologies to date. We obtain capital and operational costs of microre-

actor from [24], which conducts a thorough evaluation of the cost of electricity and heat

from microreactors of 10 MW nameplate capacity. Details of SMR and microreactor data

input can be found in Table A.5 in the SI.

For hydrogen HDVs, we impute a conversion factor of electricity demand of electri-

fied HDVs to hydrogen demand of hydrogen HDVs of 0.0471 kg/kWh (Appendix B.9).

Capital cost of hydrogen electrolyzers is obtained from [44] and the cost of storing hy-

drogen in above-ground hydrogen storage is obtained from [45]. Finally, the electricity to

hydrogen production ratio via electrolyzer is taken from [46]. Details of hydrogen inputs

can be found in Table A.3 in the SI.

Summary of capital and operational costs for the DERs studied in this paper are de-

tailed in Table 2.

DER CAPEX Fixed O&M Cost Energy Cost Variable O&M Cost Data

Technology $/kW $/MW-year $/kWh/h ($/kg/h) $/kWh ($/kg) Source

SMR $2,616.00 $25.00 – $8.71 [43]

Battery Storage $1,455.00 $36.37 $0.00 $0.00 [39]

Hydrogen Storage $1,058.00 $0.00 $39.4 $0.00 [44, 45]

Solar PV $1,354.00 $19.00 – $0.00 [39]

Table 2: Capital and operational costs of different DERs for year 2040. Parenthesis indicate units for hy-

drogen storage. Values are in 2018$.
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The effective transmission capacity at each voltage class at individual charging station

level is calculated as the theoretical power capacity by voltage class, taken from [33],

minus Ohmic losses along the line. Ohmic losses are calculated as the length of the

transmission line times the conductor’s electrical resistance per unit length times the

current squared. Table 3 reports the medians and ranges of these effective transmission

capacities across the transmission line voltage classes and charging stations.

Voltage Class Median (Minimum - Maximum)

Effective Transmission Capacity (MW)

<100 kV 139 (133 - 140)

<100 kV double 279 (262 - 278)

100-161 kV 459 (449 - 460)

161 kV double 917 (850 - 919)

200-287 kV 655 (622 - 657)

230 kV double 1,308 (1,193 - 1,313)

345 kV 1,969 (1,911 - 1,972)

345 kV double 3,919 (3,608 - 3,943)

500 kV 2,594 (2,544 - 2,597)

500 kV double 5,073 (4,764 - 5,192)

Table 3: Median, minimum, and maximum effective transmission capacity by voltage class across stations.

2.5 Scenarios and Sensitivity Analyses

Given uncertain penetrations of electrified versus hydrogen HDVs, we run six sce-

narios to quantify the economic impacts of DER investments with different levels of hy-

drogen HDV demands (Table 4). Scenario 1, which is the Reference scenario, allows DER

investments at all charging stations but there are no hydrogen HDVs in the decarbonized

HDV fleet. Scenario 2 differs from the Reference scenario in that DERs are not an invest-

ment option. The difference between Scenario 2 and Scenario 1 captures the impacts of

DER investments on costs and deployments of other technologies at the charging sta-

tions when there is no hydrogen HDV charging demand. Scenarios 3 through 6 facilitate

similar comparisons with and without DER investment options but at increasing levels
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of hydrogen HDV demand.

100% Electric 80% Electric+20% H
2

60% Electric+40% H
2

HDV Fleet HDV Fleet HDV Fleet

With DER Investment Options Scenario 1 (Reference) Scenario 3 Scenario 5

No DER Investment Options Scenario 2 Scenario 4 Scenario 6

Table 4: Main scenarios of the study

To test the robustness of our results, we run several sensitivity analyses. Given cost

uncertainty related to SMRs and transmission expansion, we run sensitivity analyses on

lower and higher annualized capital costs of SMRs and transmission lines relative to our

reference assumptions. Additionally, we assume existing transmission lines’ capacities

can be fully utilized for serving HDV demand, which might not be true. To capture this

uncertainty, we rerun our analysis assuming new HDV demand can utilize only 30% or

50% of existing transmission capacity. Finally, due to uncertainty in the timeline of com-

mercialization of electric and hydrogen HDVs, we run two sensitivities using wholesale

electricity prices in 2030 and 2050. Relative to our reference 2040 prices, 2030 and 2050

LMPs are on average lower and higher, respectively. LMPs in 2030 through 2050 arise

from electricity systems with increasing renewable energy (wind and solar PV) penetra-

tions, from 37% in 2030 to 58% in 2050 [47]. Due to increasing renewables, LMPs become

increasingly volatile through 2050. In 2030, the number of hours with electricity prices

higher than $50/MWh observed at a single charging station is 270 hours, or 3% of all

hours [48]. In 2040, [48] predict that a charging station could observe as many as 695

hours, or 8% of all hours, with electricity prices over $50/MWh, and the number of ex-

tremely high electricity prices (over $1,000/MWh) also increases compared to their 2020

projection. In total, we run 13 sensitivity analyses as described below.

17



Sensitivity Scenario Description

SMR+10 SMR annualized capital cost is 10% more expensive

SMR+20 SMR annualized capital cost is 20% more expensive

SMR+30 SMR annualized capital cost is 30% more expensive

SMR+100 SMR annualized capital cost is 100% more expensive

SMR-10 SMR annualized capital cost is 10% less expensive

SMR-20 SMR annualized capital cost is 20% less expensive

SMR-30 SMR annualized capital cost is 30% less expensive

Trans+30 Transmission annualized capital cost is 30% more expensive

Trans-30 Transmission annualized capital cost is 30% less expensive

Util 50 Transmission lines can only be utilized up to 50% of capacity

Util 30 Transmission lines can only be utilized up to 30% of capacity

LMP 2030 Using 2030 LMPs

LMP 2050 Using 2050 LMPs

Table 5: Sensitivity analysis scenarios

3 Results

We first explore the deployment of distributed versus centralized energy resources

for meeting decarbonized HDV energy demand. In this context, we then quantify the

economic value provided by DERs versus relying only on centralized energy resources

(or the bulk power system). Finally, we explore the robustness of our results across sen-

sitivities.

3.1 Distributed versus Centralized Energy Resources for Meeting
Decarbonized HDV Energy Demand

We find that DERs meet a large share of decarbonized HDV energy demand in a least-

cost strategy. In aggregate across stations, we find DERs supply between 24% and 30%

of HDV energy demand annually depending on the levels of hydrogen HDVs (Figure 3).

In a 100% electrified HDV fleet (no hydrogen HDVs), total HDV energy demand is 268

TWh. The least-cost strategy uses DERs to meet 64 TWh, or 24% of HDV energy demand,

and purchases from the centralized (or bulk) power system to meet the remaining 204
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TWh, or 76% of HDV energy demand. When hydrogen HDV demand is 20% (40%) of

total HDV energy demand, total HDV energy demand is 465 TWh (668 TWh), of which

DERs supply 130 TWh (200 TWh), or 28% (30%), and centralized energy resources provide

the remaining 72% (70%). Total electricity demand increases when decarbonized HDVs

include increasing levels of hydrogen vehicles (Figure 3) because hydrogen HDVs have

higher energy consumption per mile traveled than electric HDVs [49]. This means that

hydrogen HDVs require more energy than electric HDVs to travel the same amount of

distance.

Figure 3: Total annual generation by SMRs and purchases from wholesale electricity markets. Batteries

and solar generators make up of at most 1% of total generation, so are omitted from the figure.

We also find DER deployment is a widespread strategy across charging stations. Of

167 charging stations, 130 stations (or 78%) deploy distributed energy resources with a

100% electrified HDV fleet (Figure 4a). These stations in total deploy 9.79 GW of DER

capacity (Table 7). The number of stations investing in DERs increases as the levels of

hydrogen HDVs increases. When hydrogen HDV demand is 20% of total HDV energy
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demand, 151 stations, or 90% of all stations, invest in DERs (Figure 4b), deploying in total

19.14 GW. Finally, when hydrogen HDV demand is 40% of total HDV energy demand,

159 stations, or 95% of all stations, invest in DERs (Figure 4c), deploying in total 28.23

GW.

Among DERs, the least-cost strategy deploys SMRs at significantly greater capacities

than battery storage and solar PV. Under a 100% electrified HDV fleet, installed capacities

of SMRs equals 9.54 GW, and installed capacity of solar PV and battery storage combined

equals 0.25 GW. SMRs provide 99% of the 64 TWh of electricity generation from dis-

tributed energy resources, whereas solar PV and battery storage provide roughly 1% of

electricity generation. SMRs not only provide most distributed energy generation, but

also are most widely deployed across charging stations. Roughly 77% of all charging sta-

tions invest in SMRs as a DER to meet their HDV energy demand (Figure 4), and 98%

of all charging stations that invest in DERs invest in SMRs. Of all charging stations that

invest in SMRs, 83% invest in a 60 MW capacity SMR. The largest observed installed SMR

capacity at a charging station is 240 MW without hydrogen HDVs (Figure 4a) and 1,020

MW with hydrogen HDVs (Figures 4b and 4c). Charging stations that deploy larger SMR

capacities in general are located along heavily travelled truck routes, so have more con-

stant charging demand profiles than other stations. More specifically, charging stations

with higher load factors, defined as the ratio of average load over peak load, tend to de-

ploy greater SMR capacities (Figure 5). Charging stations that do not deploy SMRs have

low overall demands and load factors (between 0.13 and 0.22). The majority of charging

stations that deploy more than 180 MW of SMRs have greater demands and load factors

(between 0.24 and 0.51).

SMRs make up an increasing share of DER generation when there are hydrogen HDVs

in the decarbonized HDV fleet. If SMRs are not available for deployment, 99.7% of total

HDV energy demand is supplied by electricity bought from wholesale electricity markets.
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Distributed solar and battery storage serve the remaining 0.3% of HDV demand across

all charging stations. This indicates that among distributed energy resources, SMRs but

not solar PV and battery storage are economically competitive with electricity purchases

from the bulk power system. As hydrogen HDV demand increases to 20% (40%) of total

decarbonized HDV demand, the installed capacity of SMRs equals 17.94 GW (26.28 GW),

installed capacities of solar PV and battery storage combined equal 1.20 GW (1.95 GW),

and SMRs account for 99.5% (99.2%) of electricity generation from DERs. SMR installed

capacities increase at higher hydrogen HDV levels due to increasing SMR capacity fac-

tors. Increasing penetrations of hydrogen HDVs increase electricity demand, so SMRs

generate more electricity during off-peak hours, raising SMR capacity factors. The av-

erage SMR capacity factor across all charging stations increases from 76% to 83% to 87%

when increasing the share of hydrogen HDV energy demand from 0% to 20% to 40% of

total decarbonized HDV energy demand.
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(a) 100% electric HDV fleet

(b) 80% electric + 20% H
2

HDV fleet

(c) 60% electric + 40% H
2

HDV fleet

Figure 4: Map of SMR deployments across 167 charging stations, at three different levels of hydrogen HDVs.

The circle sizes indicate annual loads across charging stations.
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(a) 100% electric HDV fleet (b) 80% electric + 20% H
2

HDV fleet (c) 60% electric + 40% H
2

HDV fleet

Figure 5: Station load factors versus their SMR deployments.

DERs only meet a portion of load at each charging station in the least-cost solution,

so all stations invest in new transmission to access power from the centralized grid. By

meeting a portion of load, distributed energy deployment shifts transmission investments

to lower voltage levels, regardless of hydrogen HDV levels (Table 6). Without DERs, in

a 100% electric HDV fleet, 96 stations (57% of all stations) build transmission lines of

voltage classes at or lower than 161 kV to purchase bulk power, while 71 stations (43% of

all stations) build transmission lines above 161 kV, of which 11 stations (7% of all stations)

build transmission lines of 345 kV and above. When stations invest in DERs, 109 stations

(65% of all stations) build transmission lines at or lower than 161 kV, while 58 stations

(35% of all stations) build transmission lines above 161 kV, of which only 5 stations (5%

of all stations) need to build transmission lines of 345 kV or higher.

The impacts of DERs on transmission expansion depends on how big of a role hy-

drogen plays in the decarbonized HDV fleet (Figure 6). Higher levels of hydrogen HDVs

increase electricity demand for decarbonized HDVs, requiring more high voltage trans-

mission lines to be built. Some of these additional high voltage line investments can be

avoided with DER deployments. When hydrogen HDV demand is 20% of total HDV en-

ergy demand, developments of 14 transmission lines of voltage classes between 230 kV
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double and 500 kV are avoided due to distributed energy deployments. When hydrogen

HDV demand is 40% of total HDV energy demand, expansions of 8 transmission lines

of very high voltage (500 kV) and expansions of 14 transmission lines of voltage classes

above 345 kV are avoided due to distribute energy deployments.

Voltage Class 100% Electric 80% Electric+20% H
2

60% Electric+40% H
2

HDV Fleet HDV Fleet HDV Fleet

<100 kV 6 (+3) 0 (+1) 0 (0)

<100 kV double 11 (+2) 2 (-1) 1 (0)

100-161 kV 52 (+14) 7 (+5) 3 (+1)

161 kV double 27 (-6) 45 (+3) 13 (+6)

200-287 kV 43 (-1) 15 (+6) 5 (+5)

230 kV double 17 (-6) 40 (-5) 43 (+1)

345 kV 10 (-6) 38 (-1) 52 (+1)

345 kV double 0 (0) 3 (-2) 27 (-6)

500 kV 1 (0) 16 (-6) 21 (-7)

500 kV double 0 (0) 1 (0) 2 (-1)

Table 6: Number of transmission lines built in different voltage classes with DER deployments and changes

in the number of transmission lines of each voltage class due to DER deployments. Numbers in parenthesis

denote the change in the number of transmission lines built due to DER investments.
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(a) 100% electric HDV fleet

(b) 80% electric + 20% H
2

HDV fleet

(c) 60% electric + 40% H
2

HDV fleet

Figure 6: Map of changes in transmission line expansions when DER deployments are allowed, compared to

when DER deployments are not allowed in the HDV Charging Model (Table 4), across 167 charging stations,

in three scenarios of different levels of hydrogen HDVs: a) 0% - Scenario 1 compared to Scenario 2, b) 20% -

Scenario 3 compared to Scenario 4, and c) 40% of decarbonized HDV fleet - Scenario 5 compared to Scenario

6. The circle sizes indicate transmission capacity investments when there are no DER deployments across

charging stations.
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3.2 Economic Value of Distributed Energy Resources

To quantify the economic value of DERs in meeting decarbonized HDV energy de-

mand, we calculate per-station and total costs of meeting decarbonized HDV energy de-

mand when DERs are and are not available for deployment. When not available, charging

stations must rely 100% on purchased power from wholesale electricity markets to serve

HDV energy demand. In this case, the total annual cost of meeting energy demands for a

fully electrified HDV fleet is $9.27 billion, of which $8.30 billion, or 90%, equals electric-

ity purchase costs and the remaining 10%, or $0.97 billion, equal transmission expansion

costs. Total annual costs increase with increasing hydrogen HDV levels because of the

high capital cost of hydrogen production and storage. When hydrogen HDV demand is

20% (40%) of total HDV energy demand, the total annual cost of meeting HDV energy

demands is $61.01 billion ($113.08 billion), of which $13.80 billion ($19.30 billion), or 23%

(17%), equals electricity purchase costs, $45.30 billion ($90.36 billion), or 74% (80%), and

the remaining 3%, or $1.91 billion (3%, or $3.42 billion), equal transmission expansion

costs.

Allowing DER deployment yields total cost savings of $647 million to $1,926 million

depending on hydrogen HDV levels. With a 100% electrified HDV fleet, the total cost

saving of $647 million equals avoided centralized energy costs of $2,604 million minus

incurred DER costs of $1,957 million. Avoided centralized energy costs include avoided

$2,516 million in power purchases and $88 million in transmission upgrades. Incurred

DER costs include SMR capital ($1,318 million) and generation ($600 million) costs, and

battery and solar PV total cost ($39 million). Total cost savings from DERs increase with

increasing hydrogen HDV demands, but the percent of total costs saved decreases be-

cause of high hydrogen-related costs. Total cost savings from DER deployment across

all charging stations is $1,508 million, or 2.4%, and $1,926 million, or 1.7%, respectively,
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when hydrogen HDV demand is 20% and 40% of total HDV energy demand. In these

cases, total cost savings from DER investments include the avoided bulk power-related

costs of $5,410 million and $10,083 million, and the incurred DER costs of $3,902 million

and $8,159 million, when hydrogen HDV demand is 20% and 40% of total HDV energy

demand, respectively.

100% Electric 80% Electric+20% H
2

60% Electric+40% H
2

HDV Fleet HDV Fleet HDV Fleet

Total Cost (Billion $) 8.62 59.51 111.15

Cost Saving (Million $) 647 (7.0%) 1,508 (2.4%) 1,926 (1.7%)

From Power Purchase 2,516 4,670 6,689

From Infrastructure Upgrades 88 740 3,394

From SMR Generation -600 -1,233 -4,424

From SMR Deployment -1,318 -2,479 -3,424

From Battery and Solar Costs -39 -190 -309

DER Deployment (GW) 9.79 19.14 28.23

No. DER Investing Stations 130 (78%) 151 (90%) 159 (95%)

Table 7: Economic impacts of DER deployments.

Individual stations’ cost savings from DERs, which are largely SMRs here, vary across

locations and demand profiles (Figure 7). With a 100% electrified HDV fleet (Figure 7a),

individual stations can save as much as $20.1 million annually, or 18.5% of their total

costs, with DER deployments. When hydrogen HDV demand is 20% (40%) of total HDV

energy demand (Figures 7b and 7c), individual stations can save up to $73.5 million, or

8.1% of their total annual costs ($104.9 million, or 9.0% of their total annual costs) by

investing in DERs.
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(a) 100% electric HDV fleet (b) 80% electric + 20% H
2

HDV fleet (c) 60% electric + 40% H
2

HDV fleet

Figure 7: Individual stations’ cost savings from DER investments sorted from lowest to highest (million $).

3.3 Sensitivity Analyses

We perform 13 sensitivity analyses to capture uncertainty in SMR capital costs, trans-

mission costs and utilization, and electricity prices. Table 8 reports a selection of sensitiv-

ity analysis scenarios that represent our main findings. The rest of the sensitivity analyses

are in Table A.12, Table A.13, and Table A.14 in the SI.

At an annualized SMR capital cost 30% greater than reference, total DER deployment

decreases by 3.76 GW, or 38%, compared to reference. This 3.76 GW difference is the net

of 3.84 GW decrease in SMR deployment and 0.08 GW increase in solar PV and battery

deployments. The number of stations deploying DERs also decreases by 35 stations, or

30%, compared to reference. Due to less deployment, total cost savings from DER de-

ployment are $430 million, or 32% less than total cost savings from DER deployment in

the reference case. At an extremely high annualized SMR capital cost (100% greater than

reference), total DER deployment decreases to 430 MW, all of which comes from bat-

tery and solar PV at 27 charging stations. Conversely, at an annualized SMR capital cost

of 30% lower than reference, total DER deployment increases by 2.86 GW, or 29%, com-

pared to reference, of which SMR deployment increases by 3.06 GW while solar PV and

battery deployments combined decreases by 0.2 GW. The number of stations deploying
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DERs increases by 19 stations, or 15%, compared to reference. Total cost savings from

DER deployment are $1.1 billion, which is 70% more than total cost savings from DER

deployment in reference. These results indicate a sizeable market for SMRs as DERs for

meeting HDV energy demand across a wide range of potential SMR capital costs.

Using 2030 electricity prices, which have the lowest annual average prices, results in

a decrease in DER deployment of 1.81 GW, or 18%, compared to reference. This 1.81 GW

decrease is the net of a 1.56 GW decrease in SMR deployment and a 0.25 GW decrease

in solar PV and battery deployments. The number of stations investing in DERs in this

case also decreases by 18 stations, or 14%, compared to reference. Using the 2050 LMP

time series, which is the most volatile and higher on average than 2030 (though lower

than 2040), DER deployment decreases by 770 MW, or 8%, compared to reference. This

770 MW decrease is the net of a 720 MW decrease in SMR deployment and a 50 MW

decrease in solar PV and battery deployments. The number of stations investing in DER

in this case decreases by 3 stations, or 2%, compared to reference. These results indicate

that the higher and more volatile LMPs, the higher DER deployments and more stations

investing in DERs. The market for DERs proves to be viable in all of the LMP time series

we run in this analysis; at least 67% of all stations invest in DERs in the least-cost solution

regardless of LMPs.

An increase or decrease of 10%, 20%, or 30% in transmission capital cost has little

impact on total capacity of DERs deployed or the number of stations investing in DERs

(Table 8 and Table A.13). Similarly, limiting transmission line utilization to 50% or 30% of

the technical capacity has minimal effects on DER deployments and stations’ decisions

to invest in DERs.
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Reference SMR SMR SMR Util LMP LMP

+30 +100 -30 30 2030 2050

Total Cost (Billion $) 8.62 8.94 9.24 8.17 9.19 8.55 8.59

Saving (Million $) 647 430 30 1,103

(7.0%) (4.6%) (0.3%) (11.9%)

DER Deployment (GW) 9.79 6.03 0.43 12.65 13.63 8.09 9.02

SMR Deployment (GW) 9.54 5.70 0.0 12.60 11.70 7.98 8.82

No. DER Investing Stations 130 95 27 149 128 112 127

(78%) (57%) (2%) (89%) (76%) (67%) (76%)

Table 8: Selected Sensitivity Analyses

4 Discussion

This paper examined the cost effectiveness of distributed energy resources versus cen-

tralized energy resources to provide energy for a decarbonized HDV fleet in the U.S. We

considered two types of DERs: mature technologies that are already widespread (solar

PV and battery storage) and emerging technologies (SMRs). We quantified the aggregate

and individual charging station-level cost savings from investing in on-site DERs to sup-

ply HDV energy demand when the HDV fleet is all electric and when the HDV fleet is

part electric, part hydrogen. To do this, we used an optimization-based techno-economic

model to compare the values of DERs against centralized energy resources for provid-

ing electricity and/or hydrogen input for the decarbonized HDV fleet across the U.S. Our

model accounted for spatial heterogeneity in solar resources, transmission system access,

and HDV charging station location.

We found that DERs were deployed across most HDV stations in the least-cost so-

lution, indicating distributed energy solutions are economically competitive with cen-

tralized energy resources. DERs reduced total costs of refueling electric and hydrogen

HDVs at a majority of charging stations by replacing 24% to 30% of their total electricity

purchased from the grid with their on-site generation. Individual stations’ cost savings
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varied significantly based on their locations and load profiles. Among DER deployment,

SMRs deployment made up more than 99% of deployed capacity while solar PV and bat-

tery storage deployments combined made up less than 1%. Overall, these results demon-

strate that DERs, particularly SMRs, can be an integral part of a least-cost pathway for

serving emerging HDV charging demand. SMR deployment was favored at stations with

flatter load profiles and in higher hydrogen penetration scenarios.

We tested the robustness of our results through sensitivity analysis to uncertainty

in SMR and transmission line capital costs, transmission line utilization capabilities, and

future wholesale electricity prices. Unless SMR capital cost is extremely more expen-

sive that current estimate (100% more expensive than reference case), we found that the

market for SMRs would be large (at last 5.7 GW) across these sensitivities. Installed capac-

ities and cost savings from SMR investments were most sensitive to future SMR capital

costs and wholesale electricity prices. Specifically, lower SMR capital costs and higher

and/or more volatile electricity prices would increase deployment of and cost savings

from SMRs.

Our analysis adopts a station-centric perspective to meeting emerging HDV energy

demands. However, emerging HDV energy demands will in the aggregate affect regional

energy demand, and could in turn be met with regional energy solutions. We do not cap-

ture interactions between local DER investments, regional energy demand, and regional

electricity prices, but instead assume regional prices do not vary with local DER invest-

ments. This interaction is likely minor, as future decarbonized HDV energy demands will

be small relative to total regional demand. Nonetheless, future work could capture inter-

actions between regional and local investments through a macro-energy system model,

e.g. a capacity expansion model. The drawback of this approach is that these macro-scale

models are so computationally intensive that they require significant simplifications in

data inputs, which could elide important spatiotemporal heterogeneity across stations.
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A macro-scale approach could also quantify the value of DERs in enabling system-wide

greenhouse gas emission reductions.

This paper has several other limitations that future work can address. First, our anal-

ysis assumed HDV charging stations would purchase electricity at the wholesale rather

than retail rate. Since retail rates exceed wholesale prices, stations purchasing electricity

at retail rates would likely see more value from DER deployment. Similarly, the mid-case

price scenario we use does not account for the capacity expansion required in a scenario

where HDVs are fully electrified and therefore may underestimate prices. Second, to buy

electricity from the grid, we assumed that charging stations have to build new trans-

mission lines of voltage class high enough to serve their peak loads. In reality, given

the physical difficulties, regulatory obstacles, and social opposition of constructing new

long distance high voltage transmission lines, charging stations are more likely to ex-

plore upgrading existing transmission lines to higher voltage classes to minimize these

challenges. However, routing along existing infrastructure would also present challenges

as structures and right-of-ways would need to be upgraded/expanded for higher voltage

lines. Third, our analysis assumed each station requires additional transmission capacity

to buy bulk power and thus did not capture existing transmission capacity to stations be-

low 69 kV. This assumption could lead to overestimation of transmission expansion costs.

Finally, our model assumed a static transmission system that stays the same in all differ-

ent electricity price times series scenarios (2030, 2040, and 2050). This assumption could

also potentially result in overestimation of transmission expansion costs, e.g. if signifi-

cant transmission expansion occurs for broader decarbonization purposes. However, as

noted previously, significant uncertainty surrounds future transmission expansion due to

regulatory, political, and social acceptability hurdles. Overall, though, we believe these

limitations do not significantly impact the robustness of our results because transmission

expansion cost not only makes up a small percentage of total cost of meeting HDV energy
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demand (less than 10% in a 100% electric HDV fleet, and in the cases of higher levels of

hydrogen HDV demand, 3%), but also has minimal impacts on stations’ DER investment

decisions as demonstrated by our sensitivity analyses.

5 Conclusion

Decarbonizing the HDV fleet via electricity and/or hydrogen is crucial to limit global

warming below 1.5°C or 2°C above the pre-industrial levels. HDVs pose a bigger challenge

in transitioning compared to smaller vehicles due to their sizes and weights, but little re-

search has explored different avenues for meeting decarbonized HDV energy demand.

In this paper, we use a technoeconomic optimization model with high spatiotemporal

resolution to compare between distributed versus centralized energy sources for charg-

ing electric and/or refueling hydrogen HDVs. We apply this model to solar PV, battery,

and SMR DER options at 167 charging stations across the United States. We find that

for a wide ranges of scenarios, DERs - and specifically SMRs - can be viable resources

for decarbonizing the HDV fleet. SMR value and deployment increases with increas-

ing hydrogen HDVs, decreasing SMR capital costs, and increasing wholesale electricity

prices. Investments in DERs can offer annual cost savings up to over $1.9 billion across

all charging stations, with individual charging station’s annual cost-saving up to over

$104 million. These findings emphasize the potential market competitiveness of DERs to

provide energy input for HDV energy demand and the large role that the emerging HDV

energy market could play for the emerging SMR technology. Future research on meet-

ing decarbonized HDV energy demands should extend our analysis by capturing retail

electricity rates, upgrading existing transmission corridors, and integrating distributed

energy options for charging stations within macro-scale power system models.
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Appendix A Model Overview

The HDV Charging Model is an optimization-based techno-economic model that min-

imizes total annual costs of meeting HDV energy demand at the charging station level,

subject to technology and power system constraints.. Annual total costs equal the sum of

capital costs in transmission and DERs; operational costs of transmission infrastructure

and distributed energy capacity resources; and wholesale electricity purchase costs.

Appendix B Functional Forms

Appendix B.1 Battery Storage Capacity Expansion and Operat-
ing Costs

The annual total cost to expand kB
s MW of new battery power rating, eBs MWh of

battery energy capacity, and produce gBst MWh of battery storage generation at charging

station s for all hour t in a given year is given by:

TCB
s = pBKkB

s + pBCeBs +
∑
t

pBEgBst, (B.1)

where pBK
is the annualized battery power rating cost in $/MW-year, pBC

is the battery

energy capacity cost in $/MWh, and pBE
is the battery operating cost in $/MWh.

In addition, hourly battery inflow and generation at charging station s, dBst and gBst
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respectively, are limited to the battery’s power rating:

0 ≤ dBst ≤ kB
s , ∀s ∈ S, ∀t ∈ T (B.2a)

0 ≤ gBst ≤ kB
s , ∀s ∈ S, ∀t ∈ T (B.2b)

where kB
s is battery’s power rating at charging station s, S is the set of charging stations,

and T is is the set of hours.

Battery generation at charging station s at time t is also limited to the battery’s state

of charge at that particular hour, xB
st, which cannot exceed battery’s energy capacity eBs :

0 ≤ gBst ≤ xB
st ≤ eBs , ∀s ∈ S, ∀t ∈ T (B.3)

Battery energy capacity depends on our assumption of battery hours hB
:

eBs = hBkB
s , ∀s ∈ S (B.4)

Finally, the state of charge of battery at station s at time t also has to equal to the

state of charge in previous hour, t− 1 plus the battery inflow in current hour, and minus

generation in current hour:

xB
st = xB

s(t−1) + dBst − gBst, ∀s ∈ S, ∀t ∈ T (B.5)

where xB
s(t−1) is the state of charge of battery at charging station s and at time t− 1. The

initial battery state of charge is assumed to equal to the state of charge in the last hour,

t = 8760, plus the battery inflow and minus generation in the first hour:

xB
s(t=1) = xB

s(t=8760) + dBt=1) − gBs(t=1), ∀s ∈ S, ∀t ∈ T (B.6)
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Appendix B.2 Hydrogen Storage Capacity Expansion and Oper-
ating Costs

The annual total cost to expand kH
s MW of new hydrogen power rating, eHs kg of

hydrogen energy capacity, and produce gHst kg of battery storage generation at charging

station s for all hour t in a given year is given by:

TCH
s = pHKkH

s + pHCeHs +
∑
t

pHEgHst , (B.7)

where pHK
is the annualized hydrogen power rating cost in $/MW-year, pHC

is the hy-

drogen energy capacity cost in $/kg, and pHE
is the hydrogen operating cost in $/kg.

In addition, hourly hydrogen inflow and generation at charging station s, dHst and gHst

respectively, are limited to the its power rating:

0 ≤
(

1

cH

)
dHst ≤ kH

s , ∀s ∈ S, ∀t ∈ T (B.8a)

0 ≤
(

1

cH

)
gHst ≤ kH

s , ∀s ∈ S, ∀t ∈ T (B.8b)

where kH
s is hydrogen’s power rating at charging station s in MW and cH is kg to MWh

conversion.

Hydrogen generation at charging station s at time t is also limited to the its state of

charge at that particular hour, xH
st , which cannot exceed its energy capacity eHs :

0 ≤ gHst ≤ xH
st ≤ eHs , ∀s ∈ S, ∀t ∈ T (B.9)

The state of charge of hydrogen at station s at time t also has to equal to the state of

charge in previous hour, t − 1 plus the hydrogen inflow in current hour, and minus its
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generation in current hour:

xH
st = xH

s(t−1) + dHst − gHst , ∀s ∈ S, ∀t ∈ T (B.10)

where xH
s(t−1) is the state of charge of hydrogen at charging station s and at time t − 1.

The initial hydrogen state of charge is assumed to be equal to the state of charge in the

last hour, t = 8760, plus the hydrogen inflow and minus hydrogen generation in that

first hour:

xH
s(t=1) = xH

s(t=8760) + dHs(t=1) − gHs(t=1), ∀s ∈ S, ∀t ∈ T (B.11)

Appendix B.3 Solar Capacity Expansion and Operating Costs

The annual total cost to expand kP
s MW of new solar power capacity, and produce gPst

MWh of solar generation at charging station s for all hour t in a given year is given by:

TCP
s = pPK

s kP
s +

∑
t

pPE
st gPst, (B.12)

where pPK
is the annualized solar capital cost in $/MW-year, and pPE

is the solar oper-

ating cost in $/MWh.

Additionally, each solar PV system at charging station s has a limit on the amount of

electricity it can produce at any given hour t, reflecting its available effective capacity:

0 ≤ gPst ≤ fP
stk

P
s , ∀s ∈ S, ∀t ∈ T (B.13)

where kP
s is solar capacity at charging station s, and fP

st is the solar capacity factor at

charging station s at time t, which will be discussed in details in below section.
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Appendix B.4 SMR Capacity Expansion and Operating Costs

The annual total cost to expand uM
s SMR modules, and produce gMst MWh of SMR

generation at charging station s for all hour t in a given year is given by:

TCM
s = pMKuM

s kM +
∑
t

pME
st gMst , (B.14)

where pMK
is the annualized SMR capital cost in $/MW-year, and pME

is the SMR oper-

ating cost in $/MWh, and uM
s is the (whole) number of SMR modules built at charging

station s.

The amount of electricity the SMR at charging station s can produce at any given

hour t is limited to its capacity:

0 ≤ gMst ≤ uM
s k̄M , ∀s ∈ S, ∀t ∈ T (B.15)

where k̄M
is the capacity of one SMR module.

The SMR system at any charging station s also need to follow its ramping constraint,

which is assumed to be a percentage rMs of its total capacity:

gMst − gMs(t−1) ≤ rMs uM
s k̄M

(B.16a)

gMs(t−1) − gMst ≤ rMs uM
s k̄M , (B.16b)

Finally, the SMR generation at charging station s at time t must be at least equal to a

minimum stable load gMmin:

gMst ≥ uM
s gMmin, ∀s ∈ S, ∀t ∈ T (B.17)
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Appendix B.5 TransmissionExpansion andWholesale PowerCosts

The annual total cost of purchasing electricity from wholesale electricity markets

equals the sum of annualized capital cost of expanding k̄W
si MW of effective transmission

capacity of class i at charging station s the cost of purchasing gWst MWh of electricity

generation from the wholesale electricity markets to charging station s across all time

periods t in a given year is given by:

TCW
s =

∑
i

(
1 + pWO

)
pWK
si k̄W

i uW
si +

∑
t

pWE
st gWst , (B.18)

where pWK
si is the annualized transmission capital cost in $/MW-year for station s of

capacity class i, uW
si ∈ {0, 1} is the binary decision variable that determines whether or

not a transmission line of effective capacity k̄W
si at charging station s is built, pWE

st is the

wholesale electricity price at charging station s at time t, and pWO
is overhead cost in

percentage. Additionally, there can only be at most one transmission line of one capacity

class being built at any station, therefore:

∑
i

uW
si < 1. (B.19)

Total transmission capital expense for a given station and voltage class is the sum of

estimated transmission line capital - covering structures, conductors, land acquisition,

site preparation, and soft costs - as well as substation costs. Capital costs are annualized

using a capital recovery factor and annual operating and maintenance expenses are added

to produce the final cost estimate. The methodology and costs are primarily derived from

the [33] Transmission Cost Estimation Guide and are detailed in Appendix C.5.
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Appendix B.6 Objective Function

The model’s objective function is the sum of total annualized cost of expanding ca-

pacity and operation of battery storage, hydrogen storage, solar PV, SMR, transmission,

and purchase of electricity from the wholesale electricity markets:

TCs = TCB
s + TCH

s + TCP
s + TCM

s + TCW
s

TCs =

[
pBKkB

s + pBCeBs +
∑
t

pBEgBst

]
+

[
pHKkH

s + pHCeHs +
∑
t

pHEgHst

]

+

[
pPKkP

s +
∑
t

pPEgPst

]
+

[
pMKuM

s k̄M +
∑
t

pMEgMst

]

+

[∑
i

(
1 + pWO

)
pWK
si k̄W

si u
W
si +

∑
t

pWE
st gWst

]
(B.20)

Appendix B.7 Market Clearing Conditions

The HDV model must satisfy the market clearing conditions for both hydrogen and

electricity:

gBst + gPst + gMst + gWst ≥ dEst + dBst +

(
1

cH

)
dHst , ∀s ∈ S, ∀t ∈ T (B.21a)

gHst ≥ d̄Hst , ∀s ∈ S, ∀t ∈ T (B.21b)

where dEst is total electricity demand in time t at charging station s (MWh), dBst is the

battery inflow in time t at charging station s (MWh), dHst is hydrogen inflow in time t at

charging station s (kg), d̄Hst is the total hydrogen demand in time t at charging station s

(kg), which is assumed to be equal to a percentage of total electricity demand at station

s at time t converted to kg of hydrogen from MWh of electricity using conversion factor
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cH . Conversion details are discussed in section Appendix B.9.

Appendix B.8 Model Solutions

The model solutions at each charging station s are the new capacity investments of

battery storage, hydrogen, solar PV, SMR, and effective transmission capacity of particu-

lar capacity class, as well as the hourly generations and inflows (in case of battery storage

and hydrogen storage) of battery storage, hydrogen, solar PV, SMR, and hourly electric-

ity purchased from the wholesale electricity markets. These solutions are resulted from

solving the optimization model described above with objective function (B.20) subject to

constraints (B.2a), (B.2b), (B.3), (B.4), (B.5), (B.6), (B.8a), (B.8b), (B.9), (4c), (B.11), (B.12),

(B.15), (B.16a), (B.16b), (B.17), (B.19), (B.21a), and (B.21b).

Appendix B.9 Electricity to Hydrogen Demand Conversion

Two major steps are concerned here, which are conversion from electricity demand

(in kWh) of Battery Electric Vehicle (BEV) to the electricity demand (in kWh) of Fuel Cell

Electric Vehicle (FCEV), and conversion from electricity demand (in kWh) of FCEV to

hydrogen demand (in kg) of FCEV. For the first step, bottom-up physics-based models

are introduced as below.

E =

∫
P (t) dt (B.22a)

E =

∫
Fdrag + Ffriction

η1 × η2
× v(t) dt (B.22b)

Fdrag =
1

2
× ρ× Cd × A× v2 (B.22c)

Ffriction = µ×m× g (B.22d)

where E is energy, P(t) is power, Fdrag is drag force, Ffriction is friction force, v(t) is

velocity of the vehicle (which we assume a constant of 70mph), η1 is drivetrain efficiency,
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η2 is battery efficiency for BEV and fuel cell efficiency for FCEV, ρ is density of air, Cd is

coefficient of drag, A is frontal area, µ is coefficient of friction, m is mass of the vehicle,

and g is the gravitational constant.

The only differences that lie between BEV and FCEV are battery/fuel cell efficiency

and masses. For BEV, its mass consists of base, powertrain, payload and BEV battery.

And for FCEV, its mass consists of base, powertrain, payload, FCEV battery, fuel cell and

tank. The parameters of both vehicles are as below.

Parameter BEV FCEV Source

ρ 1.2 1.2 –

g(N/kg) 9.81 9.81 –

A(m2
) [4.65,7.2] [4.65,7.2] [50],

[51]

Cd [0.45,0.7] [0.45,0.7] [51]

µ [0.2,0.8] [0.2,0.8] [52]

mpayload (kg) [12000,36000] [12000,36000] [51]

mpayload + mpowertrain(kg) [6000,8000] [6000,8000] [51]

η1 [0.9,0.95] [0.9,0.95] [51],

[53]

η2 [0.9,0.96] [0.45,0.55] [53],

[54], [55]

mbattery(kg) [170,550] [65,85] [56], [57]

mfuelcell(kg) – [125,220] [57], [58]

mtank(kg) – [270,340] [57]

Table A.1: BEV and FCEV Parameters

Monte Carlo simulations are done on the random variables, and the average energy

consumption ratio of FCEV to BEV is 1.857, with 25th percentile of 1.743 and 75th per-

centile of 1.962.

For the second step, we divide by the higher heating value (HHV) for hydrogen

39.4kWh/kg, which is defined as the amount of energy released by combusting a fuel

from 25
◦
C to 150

◦
C considering latent heat of vaporization. The result is the energy

demand ratio of FCEV (in kg) to BEV (in kWh) of 0.0471 kg/kWh. From these values, hy-

9



drogen demand and the corresponding electricity demand are calculated at each station

as:

d̄Hst = Scenario % H2 × dE0,st × 0.0471kWh/kg (B.23)

dEst = (1− Scenario % H2)× dE0,st + d̄Hst × 51.4kWh/kg (B.24)

where d̄H is the hydrogen demand in kg at station s at time t, dE0,st is the original electric

HDV demand at station s and time t from [19] in kWh, dEst is the total station electricity

demand under a given hydrogen scenario in kWh, the electricity to hydrogen electrolyzer

rate of 51.4 kWh/kg is from [46], and round trip efficiency is captured as a constraint.

Appendix C Data

In this section, we discuss the data and intermediate steps to calculate the parameters

that are used in the model.

Appendix C.1 Battery Storage Capital and Operating Costs

To determine the annualized battery storage capital cost pBK
, we obtain interest rate,

rB , fixed O&M cost, pBF
, and battery capital expenditure, CAPEXB

from U.S. National

Renewable Energy Laboratory (NREL)’s 2020 Electricity Annual Technology Baseline

[39]. The annualized battery storage capital cost is calculated as:

pBK = CAPEXB × CRFB + pPF
(C.1)

where CRFB =
rB

1− (1 + rB)CRPB is the capacity recovery factor (CRF) for battery

storage, CRFB
is capacity recovery period, or life time of battery storage. CAPEXB

is

assumed to be moderate and for a 4-hour battery. All of these parameters are detailed in

Table A.2.
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Parameter Unit Data Source

CAPEX $/kW $1,455.00 [39]

Capacity recovery period years 15 [39]

Fixed OM cost $/MW-year $36.37 [39]

Fixed energy cost $/kWh/h $0.00 [39]

Operating cost $/kWh $0.00 [39]

Battery hour hours 4 [39]

Round trip efficiency – 0.85 [39]

Interest rate – 0.15 [39]

Table A.2: Details of Battery Storage Parameters

Appendix C.2 Hydrogen Storage Capital and Operating Costs

Data to calculate hydrogen storage capital and operating costs are taken from [44]

and [45] as detailed in Table A.3.

Parameter Unit Data Source

BEV’s to FCEV’s energy demand ratio kg/kWh 0.0471 Imputed (see Appendix B.9)

Electricity to hydrogen via electrolyzer kWh/kg 51.4 [46]

Annualized capital cost $/kW/h 0.0148 [44]

Fixed energy cost $/kg $39.4 [45]

Operating cost $/kg $0.00 [44]

Round trip efficiency – 0.49 [44]

Table A.3: Details of Hydrogen Storage Parameters

Appendix C.3 Solar Capital and Operating Costs

Appendix C.3.1. Annualized Solar Capital Cost

To determine the annualized solar capital cost pPK
, we obtain solar capacity recovery

period, CRP P
, interest rate, rP , fixed O&M cost, and capital expenditure, CAPEXP

,

for utility PV from [39]. The annualized solar capital cost is calculated as:

pPK = CAPEXP × CRF P + pPF
(C.2)
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where CRF P =
rP

1− (1 + rP )CRPP is the solar capacity recovery factor, and CRP P

solar capacity recovery period for solar PV. CAPEXP
is assumed to be moderate. All

of these parameters are detailed in Table A.4.

Appendix C.3.2. Solar Capacity Factors

Solar capacity factors are allowed to vary by hour and location of each charging sta-

tion and are calculated by [41] using solar resource data from NREL’s National Solar

Radiation Data Base (NSRDB) in 2014. Hourly solar capacity factors in UTC time are

downloaded based on the coordinates of our model’s population of charging stations and

then converted into station’s location’s local time.

Parameter Unit Data Source

CAPEX $/kW $1,354 [39]

Capacity recovery period years 30 [39]

Fixed OM cost $/kW-year $19 [39]

Operating cost $/kWh $0.00 [39]

Interest rate – 0.15 [39]

Table A.4: Details of Solar PV Parameters
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Appendix C.4 SMR Capital and Operating Costs

Unit Data Source

SMR:
CAPEX $/kW $2,616.00 [43]

Life time years 40 [43]

Fixed OM cost $/kW-year $25.00 [43]

Variable OM cost $/MWh $0.75 [43]

Fuel cost $/MWh $8.71 [43]

Minimum stable load % of capacity 0.5 [43]

Ramp rate % of capacity 0.4 [43]

Module capacity MW 60 [43]

Microreactor:
CAPEX $/kW $3,000.00 [24]

Life time years 20 [24]

Fixed OM cost $/kW-year $50.00 [24]

Variable OM cost $/MWh $0.00 [24]

Fuel cost $/MWh $8.71 [24]

Minimum stable load % of capacity 0.5 [24]

Ramp rate % of capacity 0.4 [24]

Module capacity MW 10 [24]

Table A.5: Details of SMR and Microreactor Parameters

Appendix C.5 TransmissionExpansionCosts andWholesale Elec-
tricity Prices

Conductor Cost

Conductor costs include conductor, Optical Groundwire (OPGW), shield wire, and

corresponding installation costs for each circuit. The assumed conductor characteristics

for each transmission class are shown in Table A.6. The required conductor length in-

cludes 4% addition to the length described in Appendix C.5 to account for sag and waste

[33]. For conductor costs, double circuits estimates are twice the single circuit cost.
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69kV 161kV 230kV 345kV 500kV

Size (kcmil) 477 795 795 795 954

Type ACSS ACSS ACSS ACSS ACSR

(’Flicker’) (’Cuckoo’) (’Cuckoo’) (’Cuckoo’) (’Cardinal’)

Conductors per Circuit 1 1 1 2 3

Amp Rating
1
(A) 1180 1650 1650 1650 996

Power Rating (MVA) 140 460 657 1972 2598

Cost per Mile $53,465 $61,723 $61,723 $83,234 $113,742

Resistance
1

(Ω/mile) 0.227 0.137 0.137 0.137 0.12

Table A.6: Conductor Characteristics & Costs

Structure Cost

Structure costs account for material and installation costs for tangent, angle and dead

end support structures. This analysis uses the steel tower costs and assumptions from

[33] to estimate structure costs for each transmission class. The number of structures

and associated cost per mile is listed in A.7 and A.8.

69kV 161kV 230kV 345kV 500kV

Tangent (#/mile) 9 7 5 4.5 3

Running Angle (#/mile) 1 1 1 1 1

Non-angled Dead End (#/mile) 0.25 0.25 0.25 0.25 0.25

Angled Dead End (#/mile) 0.25 0.25 0.25 0.25 0.25

Cost per Mile $528,430 $520,772 $580,308 $969,786 $1,104,267

Table A.7: Single Circuit Structure Assumptions & Costs

1
Conductor characteristics from Southwire product documentation

ACSS: https://overheadtransmission.southwire.com/wp-content/uploads/2017/06/acss.pdf

ACSR: https://overheadtransmission.southwire.com/wp-content/uploads/2017/06/acsr.pdf
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69kV Double 161kV Double 230kV Double 345kV Double 500kV Double

Tangent (#/mile) 9.5 7.5 7 6 5

Running Angle (#/mile) 1 1 1 1 1

Non-angled Dead End (#/mile) 0.25 0.25 0.25 0.25 0.25

Angled Dead End (#/mile) 0.25 0.25 0.25 0.25 0.25

Cost per Mile $849,838 $1,005,009 $1,150,818 $1,991,936 $2,254,661

Table A.8: Double Circuit Structure Assumptions & Costs

Land Costs

To calculate land costs associated with the modeled transmission lines, we define

the route for each capacity class as the straight line distance from a given station to the

nearest transmission line of sufficient capacity. Using ArcGIS Pro Version 2.8 [34], and

right-of-way widths from MISO [33], we calculate the length, area in each county, and

area of each land cover type along a line path.

We estimate the cost to obtain a new right-of-way for each line by combining the area

per county data with the latest National Agricultural Statistics Service (NASS) county-

level cropland values [36], assuming transmission lines will be built through open space

of similar or lesser value. For cropland value, we use the 2017 NASS total agricultural

land asset value, including buildings. For the few geographic areas not included in the

NASS data (predominately independent cities in Virginia), we assign the value from the

surrounding or majority adjoining county. As these areas are small and only 41 exist in

the US, this assumption has minimal impact on any single transmission line. Finally, per

[33] we include an additional $15,235 per acre for permitting and acquisition costs.

To estimate ROW preparation costs, we aggregate the 2019 National Land Cover

Database (NLCD) [37] cover classifications to align with the terrain types in [33] as shown

in A.9. Multiplying the total acreage per terrain type by the preparation cost per acre

yields the ROW preparation estimate.
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MISO Terrain Type NLCD Cover Class(es) MISO Preparation Cost ($/Acre)

Light Vegetation 21, 22, 23, 24, 31, 51, 52, 71, 72, 73, 74, 81, 82 272

Forest 41, 42, 43 5,176

Wetland 11, 90, 95 108,871

Mountain 12 6,729

Table A.9: Land Cover Types and Preparation Costs

For county data, we use the Esri authoritative U.S. counties data layer [59]. The spe-

cific ArcGIS workflow is:

1. Use the tool “Select Layer by Attribute” from “Data Management Toolset” to sepa-

rately group all transmission lines into six classes according to their voltage class

(below 100kV, 100-161kV, 220-287kV, 345kV, 500kV, 735kV and above).

2. Use “Generate Near Table” from “Proximity Toolset” to calculate distances and

other proximity information between 219 stations and their nearest transmission

line for each class, and write results to a new stand-alone table.

3. Use the tool “XY to Line” to generate geodetic connection lines constructed based

on the values in the start and end x- and y-coordinate fields from previous analysis.

4. Use “Intersect” to compute the geometric overlapping intersection of connection

lines and the USA Counties or Land Cover type layer.

5. Use the “Add Join” tool to join intersected segments to entire connection lines, and

calculate the percentage of each county and land cover type.

For any transmission paths with area not included in the U.S. counties layer (i.e. large

bodies of water), we correct the transmission line capital cost (excluding substations) by

the percentage of missing distance. For instance, if 10 percent of a line is missing, the

line capital cost is divided by 0.9 before being added to substation costs. Twenty-nine

lines across all stations and transmission classes (total 1314) have greater than a five

percent correction. The model was run with and without the correction and the resulting
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investment decisions did not change. Therefore, we include the correction as the best

available approach to developing the most reasonable total cost estimates given the data

limitations.

Overhead, Financing, and Contingency Costs

Overhead items shared among projects include Project Management (estimated as

5.5%), Administrative & General Overhead (estimated as 1.5%), allowance for funds used

during construction (7.5%), and Engineering, environmental studies, and commissioning (

3.0%). Combined, these items sum to a 17.5% overhead estimate that is applied to the total

project estimate before contingency. In addition, the estimates follow [33] methodology

in including a general 30% contingency applied to the total project estimate to address

the considerable uncertainty of a simplified cost per mile estimation approach.

The capital expense for a transmission line at a given capacity class and station is

annualized ($/MW-Year) using a capital recovery factor (CRF). We assume a conservative

line lifetime (capital recovery period) of 30 years and test scenarios with interest rates

at three and seven percent. Annualized costs also include operations and maintenance

expenses of $7,300.75 per circuit mile annually in 2021 dollars based on an average from

seventeen utilities [38]. Maintenance expenses are inflated from 2009 dollars to 2021

using the federal consumer price index.

Substation Cost

Substation costs are from [33] and include the construction of a new substation at

each end of the proposed transmission line with appropriate transformers sized accord-

ing to the power ratings listed in A.6. The substation costs at each charging station in-

clude transformers to step-down voltage to 69kV from the delivery line voltage, which

is the lowest voltage class available in [33]. Substation costs also include operations and

maintenance expenses of $1,543.65 per MVA annually in 2021 dollars based on an average
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from 12 utilities [38]. Maintenance expenses are inflated from January 2009 to January

2021 dollars using the federal consumer price index.

Wholesale Electricity Prices

Wholesale electricity prices at which charging stations purchase energy from to serve

charging demands are taken from NREL’s Cambium dataset [42]. These electricity prices

are assumed to be the projected hourly marginal energy prices for year 2040 at the bal-

ancing authorities in which the charging stations are located. We choose to use 2040 data

because this is the decade that is projected to start having rapid increase in renewable

energy penetration to compensate for more rapid retirements of coal and nuclear plants

[48].

Appendix D Model Code and Data Availability

Model code and data are available at https://github.com/atpham88/HDV.

All ArcGIS data (existing and modeled transmission lines, station locations, land cover

layer) is available via an online map at https://umich.maps.arcgis.com/home/item.html?

id=339298e71cb448ec8b4570c928b6f919.
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Appendix E Lists of Model Variables, Parameters, Sets, and Full
Model Formulation

Variable Definition Unit

kBs Battery power rating at charging station s MW

eBs Energy capacity for battery at charging station s MWh

gBst Battery electricity discharge at charging station s at time t MWh

dBst Inflow demand for battery at charging station s at time t MWh

xB
st State of charge for battery at charging station s at time t MWh

kHs H2 power rating at charging station s MW

eHs Energy capacity for H
2

at charging station s kg

gHst H
2

discharge at charging station s at time t kg

xH
st State of charge for H

2
at charging station s at time t kg

dHst Inflow demand for H
2

at charging station s at time t kg

kPs Solar capacity at charging station s MW

gPst Solar electricity generation at charging station s at time t MWh

gMst SMR electricity generation at charging station s at time t MWh

uM
s Number of SMR modules to build at charging station s Whole number

rM Ramping constraint for SMR at charging station s %

uW
si Build (1) or not build (0) effective transmission capacity of class i at charging station s Binary

gWst Electricity purchased from wholesale markets to charging station s at time t MWh

Table A.10: List of Variables
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Parameter/Set Definition Unit

Parameters:

pBK
Battery annual capital cost $/MW-year

pBC
Battery energy cost $/MWh

pBE
Battery hours (= 4) hour

pHK
H

2
capital cost $/MW-year

pHC
H

2
energy cost $/kg

pHE
H

2
operating cost $/kg

d̄Hst H
2

demand at charging station s at time t kg

cH Conversion factor from 1 MWh to kg of H
2

—

pPK
Solar capital cost $/MW-year

pPE
Solar operating cost $/MWh

fP
st Solar capacity factor at charging station s at time t %

gMmin SMR minimum stable load MWh

pMK
SMR capital cost $/MW-year

pME
SMR operating cost $/MWh

k̄M SMR module capacity MW

k̄Wsi Effective capacity transmission capacity of class i at charging station s MW

pWK
si Annualized total cost of effective transmission capacity of class i at charging station s $/MW-year

pWE
st Wholesale electricity cost at charging station s at time t $/MWh

pWO
s Overhead add-ons at charging station s %

dEst Electricity demand at charging station s at time t MWh

Sets:

I Set of transmission capacity classes, index i = {1, 2, 3, ..., 5/10} –

S Set of stations, index s = {1, 2, 3, ..., 170/161/152} –

T Set of hours in a typical year, index t = {1, 2, 3, ..., 8760} –

Z+
0 Set of whole numbers, Z+

0 = {0, 1, 2, 3, ...} –

Z2 Set of binary numbers, Z2 = {0, 1} –

Table A.11: List of Parameters and Sets
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s.t.

General Non-negativity: kB
s , k

H
s , kP

s , k
W
s , eBs , e

H
s ≥ 0, ∀s ∈ S (E.1)

Market Clearing Conditions: gBst + gPst + gMst + gWst ≥ dEst + dBst +

(
1

cH

)
dHst, ∀s ∈ S, ∀t ∈ T (E.2)

Battery Constraints: 0 ≤ dBst ≤ kB
s , ∀s ∈ S, ∀t ∈ T (E.3)

0 ≤ gBst ≤ kB
s , ∀s ∈ S, ∀t ∈ T (E.4)

0 ≤ gBst ≤ xB
st, ∀s ∈ S, ∀t ∈ T (E.5)

eBs = hBkB
s , ∀s ∈ S (E.6)

0 ≤ xB
st ≤ eBs , ∀s ∈ S, ∀t ∈ T (E.7)

xB
st = xB

s(t−1) + dBst − gBst, ∀s ∈ S, ∀t > 1 ∈ T (E.8)

xB
s(t=1) = xB

s(t=8760) + dBst − gBst, ∀s ∈ S (E.9)

Hydrogen Constraints: 0 ≤
(

1

cH

)
dHst ≤ kH

s , ∀s ∈ S, ∀t ∈ T (E.10)

0 ≤
(

1

cH

)
gHst ≤ kH

s , ∀s ∈ S, ∀t ∈ T (E.11)

0 ≤ gHst ≤ xH
st, ∀s ∈ S, ∀t ∈ T (E.12)

0 ≤ xH
st ≤ eHs , ∀s ∈ S, ∀t ∈ T (E.13)

xH
st = xH

s(t−1) + dHst − gHst , ∀s ∈ S, ∀t > 1 ∈ T (E.14)

xH
s(t=1) = xH

s(t=8760) + dHst − gHst , ∀s ∈ S (E.15)

gHst ≥ d̄Hst, ∀s ∈ S, ∀t ∈ T (E.16)

Solar PV Constraints: 0 ≤ gPst ≤ fP
stk

P
s , ∀s ∈ S, ∀t ∈ T (E.17)

SMR Constraints: 0 ≤ gMst ≤ uM
s k̄M , ∀s ∈ S, ∀t ∈ T (E.18)

uM
s ∈ Z+

0 , ∀s ∈ S (E.19)

gMst ≥ gMmin, ∀s ∈ S, ∀t ∈ T (E.20)

∥gMst − gMs(t−1)∥ ≤ rMs uM
s k̄M , ∀s ∈ S, ∀t ∈ T (E.21)

Wholesale Power Constraints: 0 ≤ gWst ≤
∑
i

uW
si k̄

W
si , ∀s ∈ S, ∀t ∈ T (E.22)

uW
si ∈ Z2, ∀s ∈ S, ∀i ∈ I (E.23)∑
i

uW
si ≤ 1, ∀s ∈ S, ∀i ∈ I (E.24)
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Appendix F Additional Results

Reference SMR+10 SMR+20 SMR+30 SMR-10 SMR-20 SMR-30

Total Cost (Billion $) 8.62 8.75 8.85 8.94 8.48 8.33 8.17

SMR Deployment (GW) 9.54 8.16 6.90 5.70 10.38 10.60 12.60

No. DER Investing Stations 130 111 107 95 135 143 149

Table A.12: Sensitivity Analyses - Uncertainty in SMR Capital Costs

Reference Trans+30 Trans-30 Util 50 Util 30

Total Cost (Billion $) 8.62 8.88 8.34 8.83 9.19

SMR Deployment (GW) 9.54 9.60 9.54 10.9 11.70

No. DER Investing Stations 130 128 128 124 128

Table A.13: Sensitivity Analyses - Uncertainty in Transmission Costs and Transmission Line Utilization

Factors

Reference LMP-2020 LMP-2030 LMP-2050

Total Cost (Billion $) 8.62 8.23 8.55 8.59

SMR Deployment (GW) 9.54 6.66 7.98 8.82

No. DER Investing Stations 130 104 112 127

Table A.14: Sensitivity Analyses - Uncertainty in Marginal Cost of Electricity

100% Electric 80% Electric+20% H
2

60% Electric+40% H
2

HDV Fleet HDV Fleet HDV Fleet

Total Cost (Billion $) 8.70 46.39 84.23

Cost Saving (Million $) 572 (6.2%) 684 (1.5%) 856 (1.0%)

From Power Purchase 2,516 2,996 3,456

From Infrastructure Upgrades 88 79 312

From Microreactor Generation -512 -622 -768

From Microreactor Deployment -1,000 -1,107 -1,355

From Battery and Solar Costs -62 -26 -8

Microreactor Deployment (GW) 7.2 8.01 9.81

No. Microreactor Investing Stations 164 (98%) 166 (99%) 166 (99%)

Table A.15: Economic impacts of DER deployments (with microreactors).
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