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Preface 

 

I came to the USA in 2014 on a music scholarship to study violin music performance. After 1 year 

in US, I have realized that music is not meant to be more than a hobby which led to me switching 

to accounting. Fast-forward to 2018, I have graduated with a Bachelor of Science in Accounting. 

After 1 year of work in accounting industry I felt that many of the tasks done by an accountant 

could be automated which would greatly improve the job satisfaction. Hoping that I can learn the 

tricks and master the field of technology I decided to pursue a Master in Information Science and 

Technology, so that I can have the knowledge needed for automating the analytics task which an 

accountant is bound to do for example Financial Statements at year or quarter end. My father who 

has passed because of cancer in 2020 was an engineer and a pioneer of learning new things and 

was very passionate about the stock market. Hence, I have decided to take my father’s interest 

further and do the analysis of the different factors that affect the stock market performance and the 

different methods one can go about to improve the return on investment. 
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Abstract 

 

The analysis of the performance of different agents on 20 stocks given a 6 years’ time range of the 

stock market, comparison between the agents, and identifying the most/least reliant agent. 

Identifying and evaluating the different factors and events that contribute to the changes in the 

stock market and proposing a potential solution for better stock performance
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Chapter 1 Introduction 

 

The advancement of technology led to an expansion across all industries. The discovery of 

intelligent systems is a big step forward for humankind, leading to a more productive and efficient 

world. As the famous saying goes, “Work smarter, not harder.” The progress in the technical world 

led to a new distribution of work. Now, one can design algorithms that will do repetitive tasks 

instead of spending countless hours working out each task by hand. The invention of algorithms 

led to a more precise and optimal output, which resulted in better decisions, and hence more profit 

when it comes to stock trading. 

Similar work that we have looked at is a comprehensive state-of-the-art investigation of the recent 

advances in data science in emerging economic applications (Nosratabadi). However, this work 

focuses on the hybrid models. Le, D. Y. N., Maag et al provides an extensive research on Deep 

Learning and Machine Learning models. The authors extracted required quantitative information, 

applications, and results on different methodologies. Sarangi et al presented a detailed review of 

different learning models used to predict the stock market for last 50 years (1970 to 2020) in the 

paper “A Study on Stock Market Forecasting and Machine Learning Models.” In our work we 

focus on how the different agents perform in the stock market given a range of 6 years.  

1.1 Financial Markets 

Here is provided a brief introduction to the critical aspects of financial markets, starting with the 

definition. 

An investor is a person who puts in money with the expectation of them increasing. Stock market 

has been commonly defined as the place where numerous investors meet to buy and sell stocks. 

To ensure a profitable investment, one needs to know as much as possible about the financial as 

well as the potential of the company they wish to put their money in.  

The rise in artificial intelligence helped numerous investment companies create optimum 

portfolios for their clients, such as mixed portfolios: combining a wide range of investments 

https://sciprofiles.com/profile/677685
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from the most aggressive to the safest, such as stock, bonds, cash and money security. A good 

investor will adjust the above based on their risk tolerance and the time available. 

Even though the term “Financial market “is widely used in society with the same core meaning, 

its true meaning depends on the context it is used. First, it was applied in the business world in the 

context of the rise of the stock market, also identified as the stock market. (Adambekova). 

At the core, the function of the financial market is to reallocate funds from a group that has an 

excess of funds to those who need tangible resources to invest in, along with the risks that they 

carry. Therefore, one can notice three aspects of the financial market:  A traded asset does not have 

a fixed price, but rather is determined by the interactions between the buyers.  

1. The financial market allows the investors to let go of the obligation of keeping an asset by 

shifting its risks and obligations onto a different investor.  

2. By far the best part of the stock market is the reduction in cost of a transaction as the cost 

for search and information are almost non-existent.  

Depending on whether the funds were borrowed or provided, one can differentiate the market by 

the nature of the claim. The difference between the cash market and derivatives market is the 

timing of the claim. Another aspect of the market is the maturity of claims, as there are markets 

with long-term claims known as capital markets and short-term claims or money markets. 

Seasoning of claims is another property of the financial market. Here we can distinguish between 

primary markets that deal with newly issued claims and secondary markets that work with 

previously issued claims.  

1.2 How to Trade 

As Warren Buffet once said, “Investing is a way to set aside money now so that it can multiply in 

the future.” Today there is a wide range of possibilities to invest in, starting with online brokers 

who can make the investment for you for a set fee. The big companies normally use these types of 

investors as they come with substantial fees or percentages of transactions. 

Robo-Advisors are the use of technology meant to streamline and lower investment costs through 

the help of technology which uses different algorithms meant to filter out and detect the best stock 

choices given the parameters. Another way of investing is through the employer, which given a 

small percentage of one’s salary is deducted before tax and invested into a retirement plan.  
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1.3 Stock Market 

Each ownership share in a corporation authorizes the holder to one vote on the company 

affairs, also called stocks. Afterward, the vote is debated at the annual get-together and decided on 

how it may better the company's finances. There are known to be two kinds of stocks that are 

differentiated by the amount of influence the priority attached to the influence of the earnings. 

Hence, one can distinguish between preferred stockholders, who benefit from fixed dividends, and 

everybody else or common stockholders who receive the gains at the end (Aggarwal).  

Common Stock has two characteristics differentiated by the nature of the claim: residual- meaning 

that unless the company is in liquidation, the shareholders will receive their share last once the 

interest and taxes have been paid and limited liability, which is probably the safest yet not most 

rewarded as the most one can lose is the amount initially invested. A limited liability shareholder 

is not personally liable for the obligations of the firm (Ireland). 

When a company wants to expand, it issues stock so that it can gather new financial sources. This 

process is done through an initial public offering known as floating. This process transitions a 

company from being private to a public one. Further, the IPO is subsidized by an investment bank 

that will arrange for the shares to be recorded on the stock exchanges. When a company publishes 

its shares on trading platforms, the profits go straight to the issuing firm, a process known as 

primary offering, or to any private investors, a process known as secondary offering (Prasad D.). 

Once the shares are available for public purchase, the funds pass unrestricted between the public 

investors. In this case, the stock market will act as a secondary market. The only difference is that 

the company will not be influenced by these changes in capital or be required to reimburse the 

money to the individuals who have invested. The lenders must undergo all the ups and downs that 

the market might take. Hence, the market capitalization or the value is determined by the total of 

all the shares (Dias). In the case of a common investor, the profit gained from one of the shares 

comes from two different sources: 

1. Dividend payment- a payout which is typically done by more mature companies in the 

shape of cash or extra shares of stock. This payment is not mandatory and hence ignored 

by the newly established companies.  

2. Changes in the price of the stock- the differences between the purchase price and the 

current price at which the shares are being traded determine either the capital gain or capital 
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loss. In essence, the owner of the shares is determining the gain or loss considering the sale 

at that specific moment of time. 

Some investors take a different yet still popular approach to trading stocks known as short selling. 

As a result of this the investor makes profits when the prices fall rather than when they rise. Short 

selling is done by borrowing shares from a broker and selling them to a third party, afterwards the 

seller buys back the shares from the third party and gives them back to the original broker. If during 

this time the price has gone down, then the equivalent the investor made in profits (Woolridge).  

Supply and demand are just one aspect of the financial market that decides the prices. To 

understand these other factors, analysts and investors implement the knowledge gained acquired 

by fundamental analysis and technical analysis. The analysis of the financial state of a company 

to determine its value is known as Fundamental Analysis (Abad). This idea is that even if a stock 

has a price that does not correspond to the share’s actual value, eventually, the correct price will 

reach in the end. Hence, by following this idea, an investor can buy or sell a stock at the wrong 

price and then wait until the market naturally reprices the share. On the other hand, technical 

analysis uses past data to predict the trend of prices. This method depends on techniques known 

as time series analysis, also statistical and signal analysis. 

The techniques mentioned above were a go-to for a long time. However, a new idea recently 

emerged, which states that market prices are basically impossible to predict. This theory is partly 

based on the efficient market hypothesis that states that the market prices reflect the information 

available, Hence the idea that it is not possible to beat the market (Malkiel).  

The new ideas directed investors and analysts toward algorithmic trading, where investors tried to 

automate the process using computer programs because these algorithms can handle a lot more 

input at a parallel time and are more efficient in analyzing the information than a human trader. A 

few of these strategies are:  

1. Trend following strategies: such as moving averages, channel breakouts, price level 

movements, and related technical indicator. Hence the exchange is done based on the trends 

that occur.  

2. Arbitrage opportunities: another approach to selling is when there are two markets, 

purchase the stock from the market which is at a lower price, and sell it at the second market 
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for a higher price, hence generating a profit. Designing an algorithm that can perform this 

operation creates numerous beneficial occasions. 

3. Mean revision: this is an approach where an investor defines a range between which the 

prices must fall. Hence, defining a price range will allow for the exchange to happen 

accordingly whenever the price falls within the defined criteria.  

4. Volume-weighted and Time-weighted average price: These are two strategies that are 

formed by dividing a bigger order and using a volume that is specific for the stock in case 

published to the market in smaller increments by ensuring the timing and volume is split 

into historically appropriate groups. 

Algorithmic trading is an essential part of the stock market world since automation of the needed 

tasks to trade has improved their performance significantly (Nuti). Therefore, helping investors be 

more efficient
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Chapter 2 Machine Learning 

 

With the tendency to move repetitive tasks to machine-designed processes, machine learning 

appears to be the best progressive move. This method involves making decisions by considering 

three critical aspects of any exchange: time, price, and volume. Hence, machine learning is the 

best way to go about such tasks (Choudhry). The tendency is to have a pre-programmed machine 

learn and execute trading decisions on its own. The applications of machine learning in the recent 

past that have been explored are: 

Stock price forecasting is predicting the price of a share of stock is a challenge. Even though for a 

long time it has been believed, and it still is at times, that the changes in the market situation are 

just a random walk, technical analysis assumes that all the necessary information is stated in a 

company’s recent prices. Therefore, going by the belief that the price reflects the company’s 

financial well-being, one can notice a trend, and therefore, prices can be forecasted. Stock market 

prices are affected by a wide range of factors, such as political situation, company progress, new 

consumer trends, credit rates, and community events. Despite all these factors, machine learning 

can be divided based on its models. The earlier models used were LSTM, ARIMA, and Support 

Vector Machine. Recently, traders have preferred Neural Networks for their greater capabilities 

(Hsu). 

2.1 Portfolio Optimization 

Depending on the investor’s priorities, such as maximizing profit or minimizing risk, one can 

select a group of stocks accordingly. The issue with selecting these portfolios manually is that they 

generate an enormous possibility of outcomes, which makes it unappealing when it is done by a 

human (Tola). However, it is a wonderful opportunity for managing risk when it is done 

automatically by a computer algorithm.   

2.2 Sentiment Analysis 

Sentiment Analysis has a greater impact because of the development of social media. In the earlier 

days, the newspapers were the primary source of information about anything new 
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happening, whether it was a new product developed by a company, a new car model designed by 

Ford, or General Motors, some great or pessimistic news (Chan). Then it became the TV, and with 

the entrance of the internet into modern lives, the news has gotten quicker at catching public 

attention. In the machine world, this information is obtained using Natural Language Processing 

(Luccioni). Even though the public may be guided by the news alone, for a more precise outcome, 

in the world of data scientists this is an addition to the information coming from the numbers, 

rather than a factor alone.    
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Chapter 3 Reinforcement Learning 

 

In this section, we will present the field of Reinforcement Learning. We will start with the 

traditional model for sequential decision making, the model in which one decision impacts all the 

following options and results (Ni). Afterward, we will transition toward more modern solutions 

such as Dynamic Programming. To be efficient at solving the above-mentioned problems, the 

solution comes in the fashion of state-of-the-art algorithms like Neural Networks.  

3.1 Markov Decision Process 

MDP or Markov Decision Process are supposed to be a simple arrangement to formulating a 

problem by interchanging operations to realize a final target with the help of an object called agent 

(Feinberg). The entity the interaction is happening with that consists of all the elements except the 

agent is called the environment. In the perpetual process of the agent interacting with the 

environment, the agent is given rewards based on its responses to the different scenarios given by 

environment, where the agent is constantly strives to maximize the rewards.  

3.1.1 Agent-Environment Interface 

The interaction between agent and environment happens in the form of a clearly defined 

progression of occurrences based on time (Wang). For instance, at each subsequent time t = 0,1,2,3, 

the agent gets one depiction of the surroundings and records its corresponding reaction. Afterward, 

the agent is numerically rewarded based on its action, which puts it in a new state. Hence, in the 

end, the model creates a succession that is noted as follows: 𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, . .. 

The following schema provides a visual representation of the above-mentioned method.
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Figure 1:Schema of the agent-environment interaction in MDP (Sutton) 

In the case of a defined MDP, the elements are well defined, in which case the random variables 

are defined accordingly based on their anterior state and action. 

3.1.2 Rewards And Returns 

When it comes to reinforcement learning, the main purpose of the agent comes in the form of an 

incentive or reward given by the environment to the agent. A reward is a real number given by 

the environment to the agent. Hence, the purpose of the agent is to boost the aggregated amount 

of the rewards. By adjusting the incentive in a clear way of what our final goal is, we can set up 

the environment to reach our goal by the agent maximizing its rewards (Wen). Hence, the critical 

need to be specific in the goal determination. 

We can interpret the return as some specific function of the sequence 𝐺𝑡 =f (𝑅𝑡+1, 𝑅𝑡+2, . . . 𝑅𝑇), 

given T is to be considered as the final time step.   

𝐺𝑡 = 𝑅𝑡+1 + ⋯ + 𝑅𝑇 = ∑ 𝑅𝑘

𝑇

𝑘=𝑡+1

 

Hence this method is valid for situations in which the final time step T exists, or when the 

exchange between the agent and environment can be divided into smaller chains called episodes, 

the ending of each episode is known as terminal state St which is thereafter accompanied by a 

readjustment to the beginning position. Following is the new episode, which is independent of 

the preceding one. Hence, the idea is that episodes finish within the same state, however, with 

different rewards depending on the result. These tasks are known by the name of episodic tasks. 

The process of discounting is a process where the agent purposefully chooses actions that 

maximize the discounted reward. To be more specific, the agent would pick so that the expected 

discounted return is at its maximum. This process is needed to prevent the scenario where the 
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agent-environment interaction does not break on its own, avoiding a moment where T would 

reach infinity.  

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ = ∑ 𝛾𝑘−(𝑡+1)

∞

𝑘=𝑡+1

𝑅𝑘 

The discounted rate is called when 0 ≤ 𝛾 ≤ 1.  

If the reward chain is linked, the infinite sum has a finite value, and in the worst-case scenario 

where 𝛾 = 0, the agent’s job is only maximizing immediate rewards as soon as it becomes closer 

to 1, the goal shifts onto future returns as well (Hu).  

It can be beneficial to establish a notation that would cover both finite and infinite cases at the 

same time. The following can be done if we view the end of the episode as a new start (Seijen).                                                                     

3.1.3 Policies And Value Functions  

The primary purpose of the algorithms that are determined by the expected return in reinforcement 

learning is to determine the benefit of the agent in a particular state, as the rewards to be obtained 

are based on policies. Formally, a policy is a formulation from states and actions to the likelihood 

of the agent choosing to take those specific actions 𝜋 ∶ 𝑆 × Α → [0,1]. In other words, if the agent 

goes along with the policy 𝜋 at time 𝑡, then 𝜋𝑡(𝑎|𝑠) becomes the probability of 𝐴𝑡 =

𝑎  will be the choice when 𝑆𝑡 = 𝑠. (Ding). 

Reinforcement learning defines how an agent’s policy will change depending on the experience it 

has gained. Hence, the specific policy will be attributed to a specific value. Therefore, we can 

define a policy 𝜋 with a function with value 𝜐𝜋. The expected return when starting in s followed 

by a policy 𝜋 . Hence,  

𝜐𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑠𝑡 = 𝑠] 

It is important to keep in mind that the value of the final state would always be 0. The same way, 

the expected return of the action a taken in the state s following policy 𝜋  

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

Where 𝑞𝜋 is the action-value function for policy 𝜋 . Hence, the relation  
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𝜐𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] 

⇒ 𝜐𝜋(𝑠) = ∑ 𝜋(𝑎|𝑠)𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

𝑎∈𝐴

 

⇒ 𝜐𝜋(𝑠) = ∑ 𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)𝑎∈𝐴                                                                                                                                           

Is satisfied. It is important to note that even the recursive relationship should still be satisfied. 

𝜐𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] 

⇒ 𝜐𝜋(𝑠) = 𝔼𝜋[𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠] 

⇒ 𝜐𝜋(𝑠) = ∑ 𝜋(𝑎|𝑠)

𝑎𝜖𝐴

∑ ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝔼𝜋[𝐺𝑡+1|𝑆𝑡 = 𝑠′]]

𝑟𝜖𝑅𝑎′𝜖𝑆

 

⇒ 𝜐𝜋(𝑠) = ∑ 𝜋(𝑎|𝑠)

𝑎𝜖𝐴

∑ ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝜐𝜋(𝑠′)]

𝑟𝜖𝑅𝑎′𝜖𝑆

 

 

This is known to be the Bellman equation for the action value function.  

3.1.4 Optimality 

The goal of reinforcement learning is to determine a policy that will accomplish the task and gain 

the most rewards. In the case of finite MDPs value functions are defined as a policy 𝜋 would be a 

better than or equal to a policy 𝜋′ if its return is greater than or equal to that of 𝜋 for all states 

(Bhandari). Hence, 𝜋 >  𝜋′ if and only if 𝜐𝜋(s) > 𝜐𝜋′(s) for all optimal policy which are noted as 

𝜋∗. All these policies have a common function, known as state-value function.  

𝜐∗ (𝑠) =
𝑚𝑎𝑥

𝜋
𝜐𝜋(𝑠) 

For all s ∈ S and a ∈ A. 

 

 The value function of a policy must satisfy Bellman’s equation unity for the state values. 

However, the value function may be expressed in a different form, excluding any reference to a 

particular policy. Hence, the Bellman optimality equation demonstrates that given an optimal 

policy, the state value will equal the expected return in the case of the best action of that state.  
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𝜐∗(𝑠) =
𝑚𝑎𝑥

𝑎
𝑞∗(𝑠, 𝑎) 

⇒ 𝜐∗(𝑠) =
𝑚𝑎𝑥

𝑎
𝔼[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

⇒ 𝜐∗(𝑠) =
𝑚𝑎𝑥

𝑎
𝔼[𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

⇒ 𝜐∗(𝑠) =
𝑚𝑎𝑥

𝑎
𝔼[𝑅𝑡+1 + 𝛾𝜐∗(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

⇒ 𝜐∗(𝑠) =
𝑚𝑎𝑥

𝑎
∑ ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝜐∗(𝑠′)]

𝑟𝜖𝑅𝑠′𝜖𝑆

 

Similarly, when it comes to action-value function 

𝑞∗(𝑠, 𝑎) =  𝔼[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

⇒ 𝑞∗(𝑠, 𝑎) =  𝔼[𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠, +𝐴𝑡 = 𝑎] 

⇒ 𝑞∗(𝑠, 𝑎) =  𝔼[𝑅𝑡+1 + 𝛾𝜐∗(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

⇒ 𝑞∗(𝑠, 𝑎) =  𝔼[𝑅𝑡+1 + 𝛾
𝑚𝑎𝑥

𝑎′
𝑞∗(𝑆𝑡+1, 𝑎′)|𝑆𝑡 = 𝑠, 𝐴𝑡 =  𝑎] 

⇒ 𝑞∗(𝑠, 𝑎) = ∑ ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾
𝑚𝑎𝑥

𝑎′
𝑞∗(𝑠′, 𝑎′)]

𝑟𝜖𝑅𝑠′𝜖𝑆

 

An optimal policy is any policy where a nonzero probability can be assigned (Singh). In other 

words, it is a one-step search or when 𝜐∗ is known the actions which are best suited after a one-

step search are thought to be optimal actions. The optimal policy is easily determined if 𝜐∗, is 

known, also in Bellman optimality equation one will find more than one action where maximum 

can be obtained. Finding an optimal action when we know 𝑞∗ is an easier task because now the 

agent can eliminate the step of doing a search ahead. Instead, the agent can find those actions that 

increase 𝑞∗(s,a) because the above-mentioned value will determine the value in an efficient 

manner. Therefore, in the long run we will get values that are available straight away.  

One of the draw backs of using the Bellman optimality equation is that the corresponding solution 

is useful in very few cases, due to the many options when it comes to searching and the 

corresponding probabilities (Rincon‐Zapatero). Furthermore, when it comes to practice few 

assumptions have to be true for the solution to work the three assumptions are: the dynamics of 

the environment are well known, sufficient resources to fulfill the computation, and lastly the 
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system must satisfy Markov property. In a perfect world where all three of these assumptions are 

true it is easy to implement Bellman’s optimality equation. However, in practicality, one of the 

three is usually not satisfied. On the other hand, other reinforcement learning methods are thought 

to be close to Bellman’s equation, the only difference being that the methods tend to use actual 

experienced transition and not expected transitions.  

3.2 Dynamic Programming 

Dynamic Programming refers to an algorithmic technique that breaks a problem into multiple 

subproblems and finding the optimal solution to each of the smaller problems, hence at the end we 

have a perfectly optimal solution for the problem (Eddy). The importance of the dynamic 

programming cannot be underlined enough as it is at the core of the theory. However, given the 

computational expense they require, one may agree they are of very little use when it comes to 

reinforcement learning.  

Policy evaluation is the calculation of the 𝜐𝜋 for a policy 𝜋. If the dynamics of the environment 

are fully known, then we can use Bellman equation for a system of |𝑆| simultaneous linear equation 

in  |𝑆| unknowns (the 𝜐𝜋 (s), s ∈ S) (Cappen).  Hence, the solution we can implement is a simple 

calculation. However, we must consider for the purpose of our case an iterative method may be 

more appropriate. Suppose a case of value functions 𝜐0 , 𝜐1, 𝜐2,…, each mapping 𝑆+ to R. The 

beginning value 𝜐0 is any randomly chosen value, compared to the ending state where a value of 

0 must be assigned. To update the algorithm, we will use Bellman’s equation.  

𝑣𝑘+1(𝑠) = ∑ 𝜋(𝑎|𝑠) =

𝑎∈𝐴

∑ ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣𝑘(𝑠′)]

𝑟𝜖𝑅𝑠′𝜖𝑆

 

for all s ∈ S. The value of each step is updated at every repetition to the new value function. 

Bellman equation guarantees the equality 𝜐𝑘 = 𝜐𝜋. Therefore, the above-mentioned approach is 

implemented till the point where the value function estimate exceeds the threshold 𝜃.  

Afterwards, the value function can be implemented to reach policy improvement. Such as, incase 

when we need to find the value function 𝜐𝜋 for a policy 𝜋. Sometimes, the state s may require a 

different approach, such as the policy may need to be able to make a choice using deterministic 

approach to find an action. In other words, we consider choosing a in s and then following an 

established policy 𝜋. Here, we have a value that is defined as 𝑞𝜋(s,a) and an important step, to 
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check if it is greater or less than 𝜐𝜋(s). In the case that it is greater, we can benefit more by choosing 

a once in s and then follow 𝜋, rather than following 𝜋 constantly. One obvious progression is to 

keep in mind all possible choices and the corresponding actions but choose the best fitting action 

given 𝑞𝜋(s,a). Hence, we appraise a greedy policy 𝜋′ in the case of  

 

𝜋′(𝑠) =argmax𝑎 [𝑞𝜋  (𝑠, 𝑎)] 

⇒ 𝜋′(𝑠) =argmax𝑎 [∑ ∑ 𝑝|(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝜈𝜋

𝑠′∈𝑆𝑟∈𝑅

(𝑠′)]] 

 

here 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 is value a where the next expression is maximized. In the case when the new greedy 

policy 𝜋′ is as good as, however not better than the old policy 𝜋, in which case 𝜐𝜋 = 𝜐𝜋′ , then for 

all s ∈ S: 

 

𝜈𝜋′(𝑠) =
max    

𝑎
[𝔼 [𝑅𝑡+1 + ϒ𝜈𝜋′(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]] 

⇒𝜈𝜋′(𝑠) =
max    

𝑎
[∑ ∑ 𝑝|(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝜈𝜋𝑠′∈𝑆𝑟∈𝑅 (𝑠)]] 

Because the above is similar to Bellman optimality equation, 𝜐𝜋, must be 𝜐∗, and both 𝜋 and 𝜋′ 

should be optimal policies. As a rule, when it comes to policy improvement it means that the new 

policy must be better than the old one (Engel).  

One can obtain a series of upgraded policies and value functions if policy 𝜋 is improved and 

gives us a better 𝜋′, hence we can determine 𝜐𝜋′ and find a even better 𝜋′’ and so on. This way 

we can eventually find the most optimal policy 𝜋.  

𝜋0

E
→ 𝜐𝜋0

I
→ 𝜋1

E
→ 𝜐𝜋1

I
→ . . .

I
→ 𝜋∗

E
→ 𝜐𝜋∗

 

Here, 
𝐸
→ stands for policy evaluation and  

𝐼
→ is for policy improvement. Going from the theory that 

MDP has a finite number of policies, and that each individual policy promises to be better than the 



   15 

 

previous one, the whole process must reach eventually to an optimal policy and optimal value 

functions, a process called policy iteration.  

 

Algorithm 1: Policy Iteration: 

 

Inputs: θ 

Initialize Policy function π(s) with random values  

Initialize value function V(s, a) with random values  

Policy Evaluation:  

While Δ > θ do 

    Δ← 0 

    for each s do 

            𝜈 ← 𝑉(𝑠) 

           𝑉(𝑠)← ∑ 𝑃(𝑠′, 𝑟|𝑠, 𝜋(𝑠))[𝑟 + 𝛾𝑉(𝑠′)]𝑠′,𝑟  

           Δ ← max (Δ| 𝜈 – 𝑉 (s)) 

    end 

Policy Improvement: 

Policy stable ← True 

for each s do 

       old_action ← 𝜋(𝑠) 

        𝜋(𝑠) ← argmax𝑎 ∑ 𝑃(𝑠′, 𝑟|𝑠, 𝜋(𝑠))[𝑟 + 𝛾𝑉(𝑠′)]𝑠′,𝑟  

        Δ ← max (Δ| 𝜈 – 𝑉 (s)) 

        If  𝜋(𝑠) ≠ old_action then  

                Policy_stable← False 

       end 

end 

 

3.3 Temporal-Difference Methods  

The temporal difference methods are a mix between Monte Carlo and Dynamic Programming 

methods. With the difference that this mix acquired the ability to learn straight from the unpolished 
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material and without the need for knowledge of the environment’s dynamics. As well as the TD 

methods’ capability to make updates without having to wait for the final outcome, but rather using 

learned estimates.   

MC method lacks the ability to make updates on their own, but rather it needs the knowledge of 

𝑉(𝑆𝑡)to be an estimation of 𝜐(s) where we have the expected return 𝐺𝑡be the target.   

           

𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡) + 𝛼[𝐺𝑡 − 𝑉(𝑆𝑡)] 

3.4 Exploration vs. Exploitation 

The policy evaluation problem for action values is to estimate q (𝑠, 𝑎), that is the expected return 

in state 𝑠, taking action 𝑎, and following policy 𝑝. In an episode we consider visiting a state action 

pair (s,a) when the state s is visited and action a has been taken. However, not all pairs will be 

visited, leaving some of the pairs unexplored. In the case of policy evaluation, it is important to 

facilitate perpetual exploration (Auer).  

Hence, we arrive at a point where we call the situation in general terms exploration vs. exploitation 

trade-off. In this situation we can prove the need to balance the exploitation of those behaviors 

which give the most outcome while exploring new behaviors that are not yet known to the agent. 

One common technique to achieve the encounter of all state-action pairs is the use of the policies 

which are stochastic and have a nonzero possibility of choosing all actions in every state (Singh). 

With that stated, the policy will select the best-known action while exploiting. However, there will 

be scenarios in which the policy will choose an action that is random while exploring. The two 

ways to ensure this are: On policy methods and Off policy methods.  

On policy methods are the policies that attempt to evaluate and improve the policy used to make 

decisions. In the case of an on-policy methods the policy is the one that is soft, or where 𝜋(𝑎|𝑠) >

0 for all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴, but slowly moved closer to create an optimal policy. One such example is 

the 𝜖- greedy policies, which theoretically they would prefer an action that have maximum 

estimated action values, but with a probability 𝜀 they rather chose an action at random. With that 

said, all nongreedy actions will have a minimal probability of choosing 𝜖|𝐴|. The remaining 

portion of the probability 1 − 𝜀 + 𝜀/|𝐴| will be given to the greedy action. We can be certain that 

we will develop a better policy by using the concept of a greedy policy for 𝜀-soft policies. 
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However, we need to be aware that one can only find the best policy among the 𝜀-soft policies not 

the best policy.  

Off policy methods are the ones that improve or evaluate a policy the policy that is different from 

the policy used to acquire the data. The on-policy approach is a compromise due to the ability to 

learn the action values for the near-optimal policy rather than for the optimal policy.  

The best technique is to rather use a combination of the above two mentioned policies. In that case 

we have a policy for generating behavior and becomes the behavior policy and another one for 

which the method learns, hence it becomes the optimal or the target policy. In a classic scenario 

the target policy will be a deterministic greedy policy, but the action value function will be given 

by the behavior policy.  

3.4.1 On-Policy Methods 

The simplest scenario where one can see the application of the TD idea as an on-policy method is 

the SARSA algorithm (Rummery). The update rule in this scenario is executed after every 

alteration of the nonterminal state 𝑆𝑡. 

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆𝑡, 𝐴𝑡)] 

In the scenario that 𝑆𝑡+1 is the terminal state, then Q (𝑆𝑡+a…) would be set to 0. Hence, the earlier 

mentioned rule uses every element of the five-folded equation (𝑆𝑡, 𝐴𝑡, 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1 )known to 

be the conversion of one state-action pair to another. This five-folded equation is the reason behind 

the name of the algorithm, SARSA (Zou). The perpetual estimation of 𝑞𝜋 for a policy 𝜋 is done 

simultaneously with 𝜋’s change regarding greediness when considering for 𝑞𝜋.  

Hence, we arrive at the following algorithm: 
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Algorithm 2: SARSA  

__________________________________________________________________________________ 

Inputs: Μ, ε,α 

Initialize action value function 𝑄 (𝑠, 𝑎)with random values  

for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 ∶ 𝑀 do 

      Initialize  𝑠𝑡 

      for 𝑡 = 1: 𝑇 do 

            With probability ε select random 𝑎𝑡, otherwise   𝑎𝑡 =argmax𝑎 𝑄 (𝑠, 𝑎)     

              Execute action 𝑎𝑡 and observe reward 𝑟𝑡+1 and 𝑠𝑡+1 

                With probability ε select a random 𝑎𝑡+1 , otherwise, 𝑎𝑡+1 =argmax𝑎  𝑄 (𝑠, 𝑎)  

              𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + α[𝑟𝑡+1 +  ϒ𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡) 

              𝑠𝑡 ← 𝑠𝑡+1 

              𝛼𝑡 ← 𝛼𝑡+1 

      end 

end 

 

3.4.2 Off-Policy Methods 

Alternatively, an off-policy method can also be created by modifying the update rule 

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾
max    

𝑎
𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)] 

Here the Q is approximating q*. In this case q* is the optimal action-values function which lacks 

dependence from the policy that follows it, therefore it is an off-policy algorithm (Wulfmeier). 

Nevertheless, the effects of the policy are still important as it establishes the state-action pairs to 

be visited and therefore updated. We show the details in the following algorithm.  
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Algorithm 3: Q-learning 

______________________________________________________________________________

Inputs: Μ, ε, α 

Initialize action value function 𝑄 (𝑠, 𝑎)with random values  

for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 ∶ 𝑀 do 

      Initialize  𝑠𝑡 

     for 𝑡 = 1: 𝑇 do 

            With probability ε select random 𝑎𝑡, otherwise   𝑎𝑡 =argmax𝑎 𝑄 (𝑠, 𝑎)     

              Execute action 𝑎𝑡 and observe reward 𝑟𝑡+1 and 𝑠𝑡+1 

                With probability ε select a random 𝑎𝑡+1 , otherwise, 𝑎𝑡+1 =argmax𝑎  𝑄 (𝑠, 𝑎)  

              𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + α[𝑟𝑡+1 +  ϒ𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝛼) − 𝑄(𝑠𝑡, 𝑎𝑡) 

              𝑠𝑡 ← 𝑠𝑡+1 

      end 

end 

 

This algorithm’s limitation is because of the implication of the maximization when the target 

policies are defined, it may lead to a great bias for the Q-values and therefore negatively 

impacting the algorithm and increasing the likelihood of creating a suboptimal policy (Icarte). 

We can run into this problem because we use the sample for both determination of the maximum 

action and for the estimation of the value. To solve the mentioned issue, we can refer to the idea 

of Double Q-learning. By using this approach, we effectively divide the samples in two 

subgroups. Following we use these subgroups to learn two independent estimates Q1(a) and 

Q2(a) respectively. Each of these are estimates of the true value q(a) for all 𝑎 ∈ 𝐴. Afterwards, 

we can establish the maximizing action 𝐴*= 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄1(𝑎) and 𝑄2 correspondingly to come 

up with an estimate of the value 𝑄2(𝐴 ∗) = 𝑄2(𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄1 (a)). This estimate will therefore be 

unbiased meaning  

𝔼[𝑄2(𝐴∗)] = 𝑞(𝐴∗). 

This process can be replicated by reversing the estimates so that we get a second unbiased estimate 

𝑄1(𝐴∗) = 𝑄1(𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄2(𝑎))  in this way the two approximate value functions will be treated in 

a symmetrical way therefore removing the bias.  
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Algorithm 4: Double Q-Learning 

______________________________________________________________________________ 

Inputs: Μ,ε,α 

Initialize action value function 𝑄1 (𝑠, 𝑎) with random values  

Initialize action value function 𝑄2 (𝑠, 𝑎) with random values  

for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 ∶ 𝑀 do 

      Initialize  𝑠𝑡 

      for 𝑡 = 1: 𝑇 do 

            With probability ε select random 𝑎𝑡, otherwise   𝑎𝑡 =argmax𝑎 𝑄 (𝑠, 𝑎)     

             Execute action 𝑎𝑡 and observe reward 𝑟𝑡+1 and 𝑠𝑡+1 

             If 𝑡 % 2 = 0  then 

                   𝑄1(𝑠𝑡, 𝑎𝑡) ← 𝑄1(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + ϒ𝑄2(𝑠𝑡+1 , 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄1(𝑠𝑡+1, 𝛼)) − 𝑄1(𝑠𝑡, 𝑎𝑡)] 

            else 

                  𝑄2(𝑠𝑡, 𝑎𝑡) ← 𝑄2(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + ϒ𝑄1(𝑠𝑡+1 , 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄2(𝑠𝑡+1, 𝛼)) − 𝑄2(𝑠𝑡, 𝑎𝑡)]   

            end 

      end 

 

3.5 State-Of-The-Art 

What all the methods previously discussed have in common is that the data is arranged in a 

diagrammatic way, allowing us to apply it to problems that have a much larger scale. Nevertheless, 

numerous scenarios where we can apply Reinforcement Learning the state space is a mixture of 

different data setups, creating a place that is difficult to separate creating difficulties for reaching 

an optimal policy. Other problems that we could potentially encounter with large state spaces, is 

the possibility of finding states that have not been previously explored. Hence, we can elaborate a 

new function that is closely related to some of the previously already explored states, this is 

achieved through an occurrence called function approximation. The function approximation 

basically attempts to design a new function based on the ideas already explored from the previous 

functions (Freidman). Therefore, we believe function approximation to be a form of supervised 

learning.  
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A value-based algorithm estimates a state-action value function that guides the optimal policy. Q-

learning approximates a Q value (expected return) by iteratively updating a Q-table, which works 

for problems with small discrete state spaces and action spaces. An actor-critic based algorithm 

combines the advantages of value based and policy-based algorithms. It updates two neural 

networks, namely, an actor network updates the policy (probability distribution) while a critic 

network estimates the state-action value function. (Liu). The state-of-art actor-critic based 

algorithms are deep deterministic policy gradient (DDPG), proximal policy optimization (PPO), 

asynchronous advantage actor critic (A3C), advantage actor critic (A2C), soft actor-critic (SAC), 

multi-agent DDPG, and twin-delayed DDPG (TD3) (Liu).  

3.5.1 Deep Q-learning 

The capacity to learn complex data and nonlinear functions makes Neural Networks a perfect 

candidate for becoming the go-to method when it comes to function approximation. The Q-

learning algorithm’s simplicity and optimality together with the ability to learn complex functions 

have created the perfect ecosystem for the evolution of a novel algorithm, Deep Q-learning (DQL) 

(Du). DQL focuses on the creation of a function 𝑄(𝑠, 𝑎; 𝜃) constitute as a parametrized functional 

form with weights 𝜃 that approximates the action-value function q (s; a). To establish and improve 

the approximate solutions given by the weights 𝜃 we need to define a cost function 𝐿(𝜃). Here is 

where the mean-square loss definition comes in handy.  

(𝐿(𝜃) = 𝔼𝑠,𝑎 𝜌(.)[(𝑦𝑖 − 𝑄(𝑠, 𝑎; 𝜃))2] 

Here 𝜌(𝑠, 𝑎) are the probability distribution of the state action pairs. We can then get the 

approximate solutions and by using the stochastic gradient descent we can calculate the optimal 

weights 𝜃. Furthermore, by updating the target 𝑌𝑡 for the before mentioned weights, we can use 

the general gradient rule, given the weights approximate 𝑞(𝑆𝑡, 𝐴𝑡) this includes SARSA or Q-

learning updates. Therefore, we can apply the general gradient-descent update rule.  

𝜃𝑡+1 = 𝜃𝑡 + 𝛼[𝑌𝑡 − 𝑄(𝑆𝑡, 𝐴𝑡; 𝜃𝑡]∇𝜃𝑡
𝑄(𝑆𝑡, 𝐴𝑡; 𝜃𝑡) 

 

Despite the multitude of options for creating a Q-network to be able to approximate a q function, 

the ability to have a unique output representation for each possible action. Nevertheless, only the 

state representation become the input to the Neural Networks. In this method, the outputs we align 
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with the input values predicted by Q-values which have only one forward pass through the 

network. The ability to train the Q-network values allows us to reduce the sequence of loss 

functions 𝐿𝑡 (𝜃𝑡) that otherwise would change at every iteration t. In this case 𝑦𝑡 =

𝔼𝑠′𝜖ℰ[𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃𝑡−1)|𝑠, 𝑎] is the target for iteration t, and 𝜀 is the emulator of the 

environment used to train the network. By applying the update rule of Q-learning, 𝑌𝑡 = 𝑅𝑡+1 +

𝛾
𝑚𝑎𝑥

𝑎
𝑄(𝑆𝑡+1, 𝑎; 𝜃𝑡) as well as, applying the back-propagation technique we arrive at the optimal 

utilization of the DQ Learning algorithm (Mnih). The algorithm learns the greedy policy where  

𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑎, 𝑎; 𝜃) essentially making it an off-policy method, however, it still follows a 

behavior distribution that allows adequate exploration. Following is the algorithm 
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Algorithm 5: Deep Q- Learning (DQL) 

______________________________________________________________________________ 

Inputs: 𝑁, 𝑀, 𝜀, 𝐶 

Initialize replay memory 𝐷 to capacity 𝑁 

Initialize action-value function 𝑄 with random weights 𝜃 

for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 ∶ 𝑀 do 

       for 𝑡 = 1: 𝑇 do 

             With probability ε select a random 𝑎𝑡, otherwise 𝑎𝑡 =argmax𝑎 𝑄 (𝑠𝑡, 𝑎; 𝜃)  

             Execute action 𝑎𝑡 in emulator and reward 𝑟𝑡+1 and 𝑠𝑡+1 

              Store transition (𝑠𝑡, 𝑎𝑡,𝑟𝑡+1,𝑠𝑡+1 ) in 𝐷 

              Store transition (𝑠𝑗 , 𝑎𝑗,𝑟𝑗+1,𝑠𝑗+1 ) in 𝐷 

             Set 𝑦𝑗  =

{
𝑟𝑡+1                                                              𝑓𝑜𝑟 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡+1                                        

𝑟𝑡+1   + ϒ max𝑎 𝑄 (𝑠𝑡, 𝑎; 𝜃)                                 𝑓𝑜𝑟 𝑛𝑜𝑛 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡+1               
 

            Perform a gradient descent step on (𝑦𝑗 − 𝑄(𝑠𝑡,, 𝑎; 𝜃)) ^2 

       end 

end 

 

3.5.1.1 Experience Replay 

For the effectiveness of the training of the Q-networks training, we must consider the concept of 

Experience Replay. When it comes to tabular Reinforcement Learning, the updates are executed 

online (Yin). The updates are done in a fashion that when each new transition done the value 

function is updated. The requirement for immense amounts of data makes for this method to be 

optimal and functional policy makes this method less desirable. If we look deeper at this method, 

we will notice that essentially, the weight adjustment for one pair will create a cascade effect on 

other pairs in the state-action space. In this technique the agent will store the experience for every 

time step 𝑒𝑡 = (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) which therefore help us construct the dataset also known as replay 

memory 𝐷 = {𝑒0,, 𝑒1, … }. We will use the samples randomly picked for the training portion of the 

learning step, rather than utilizing the current state, because this approach gives us the opportunity 

to a more efficient data since the experience can be used in other updates as well. This approach 
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gives samples the freedom to avoid being correlated and more random, hence the variance of the 

updates will inevitably be reduced.  

By giving priority to the most suitable experiences, we can boost this method, because the in this 

scenario we would keep away from the expensive searches through a larger amount of memory as 

we can just shift our attention to a specific portion. Hence, the importance of every transition is 

defined by the main portion of the experience reply. In a perfect scenario this portion is to be the 

amount that an agent can learn, however its seldom availability, makes it difficult to calculate. 

Therefore, we can approximate it by using 𝛿 of TD update that gives us the distance from a value 

to the next step (Woergoetter). The probability of the sampling transition I is defined in the 

following equation:                   

𝑃(𝑖) =
𝑝𝑖

𝛼

∑ 𝑝𝑗
𝛼

𝑗
 

Here 𝑝𝑖 is the priority transition where 𝑖 and 𝑎 are the ones to control the amount of prioritization 

to be used. The two variations of this are 𝑝𝑖 =  |𝛿𝑖| + 𝜀, with 𝜀 being a small positive constant 

which stops the edge case of from being revisited in case the update is 0. We consider prioritizing 

the cases by rank such as 𝑝𝑖 = 1/rank(i), here rank(i) is the rank of transition 𝑖 when the memory 

is sorted conform |𝛿𝑖|.  

3.5.1.2 Target Networks 

Considering the need for further improvement of the method’s stability in the Q-learning approach, 

we can investigate the utilization of a different network that we can use to obtain targets 𝑦𝑖. In 

other words, we will replicate the Q-network after C updates which basically gives us the ability 

to get to the target network Q’. Therefore, enabling us to get the Q-learning targets 𝑦𝑖for the new 

C updates to Q prior to the new duplication. These actions are required because they make the 

algorithm more robust. Otherwise, we risk having an update that increases 𝑄(𝑆𝑡, 𝐴𝑡)that leads to 

an increased 𝑄(𝑆𝑡+1, 𝑎)for all 𝑎. As a result, the target 𝑦𝑡 also increases creating the risk of a 

discrepancy between policies. A possible solution to this problem that would ensure these 

discrepancies don’t happen would be to add targets that have older sets of parameters which 

eventually would retain the period between a Q update and its subsequent effects on 𝑦𝑖. Bellow, 

we show the algorithm  
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Algorithm 6: Deep Q- Learning with target Network (DQL) 

__________________________________________________________________________________ 

Inputs: 𝑁, 𝑀, 𝜀, 𝐶 

Initialize replay memory 𝐷 to capacity 𝑁 

Initialize action-value function 𝑄 with random weights 𝜃 

Initialize target action-values function 𝑄 with random weights 𝜃′ = 𝜃 

for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 ∶ 𝑀 do 

       for 𝑡 = 1: 𝑇 do 

             With probability ε select a random 𝑎𝑡, otherwise 𝑎𝑡 =argmax𝑎 𝑄 (𝑠𝑡, 𝑎; 𝜃)  

             Execute action 𝑎𝑡 in emulator and observe  𝑟𝑡 and 𝑠𝑡+1 

              Store transition (𝑠𝑡, 𝑎𝑡,𝑟𝑡+1,𝑠𝑡+1 ) in 𝐷 

              Sample random minibatch (𝑠𝑗 , 𝑎𝑗,𝑟𝑗+1,𝑠𝑗+1 ) from 𝐷 

             Set 𝑦𝑗  =

{
𝑟𝑡+1                                                              𝑓𝑜𝑟 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡+1                                        

𝑟𝑡+1   + ϒ max𝑎 𝑄 (𝑠𝑡, 𝑎; 𝜃)                                 𝑓𝑜𝑟 𝑛𝑜𝑛 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡+1               
 

             Perform a gradient descent step on (𝑦𝑗 − 𝑄(𝑠𝑡,, 𝑎𝑡; 𝜃)) ^2 

              Every 𝐶 step align networks with 𝜃′ = 𝜃 

      end 

end 

 

With the help of Double-Q-Learning we could achieve even better results. Q-learning by itself is 

not a perfect method due to the likelihood of overestimating the q-values. If we are to separate the 

maximization operation into action selection and action evaluation (Jang). Hence, we propose to 

assess the greedy policy considering the online network Q, all while utilizing the target network 

Q’ to estimate its value. Doing so allows us to decrease the chances of overestimation.  

𝑌𝑡 = 𝑅𝑡+1 + 𝛾𝑄′(𝑆𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑆𝑡+1, 𝑎; 𝜃𝑡); 𝜃′
𝑡) 

Here, by changing between the weights we can upgrade 𝜃 and 𝜃′. 

Above, we display in detail the algorithm.  
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3.5.2 Related Work 

There are many existing works on Deep Reinforcement Learning in quantitative financial tasks. 

The work of Moody & Saffell implemented a policy search for stock trading. Deng et al. showed 

that DRL can obtain more profits than conventional methods. Nan et al, Vadori et al, Yang et al, 

Zhang et al, talk about more applications that include stock trading because of the lack of labeling 

data, they use traditional time series stock price data and combines it with news headline 

sentiments, while leveraging knowledge graphs for exploiting news about implicit relationships. 

Zhang et al, discuss futures contracts in their paper, Koratamaddi et al discuss alternative data 

(news sentiments). The algorithm designs trading strategies for continuous futures contracts. Both 

discrete and continuous action spaces are considered, and volatility scaling, Ganesh et al discuss 

high frequency trading, they propose very-long short term memory networks, or VLSTMs, to deal 

with such extreme length sequences. Bao et al discuss liquidation strategy analysis, their work 

builds the foundation for future multi-agent environment trading analysis. Secondly, they analyze 

the cooperative and competitive behaviors between agents by adjusting the reward functions for 

each agent, which overcomes the limitation of single-agent reinforcement learning algorithms. 

Finally, they simulate trading and develop an optimal trading strategy with practical constraints by 

using a reinforcement learning method, which shows the capabilities of reinforcement learning 

methods in solving realistic liquidation problems. and Buehler et al discusses a new application of 

reinforcement learning: to the problem of hedging a portfolio of “over-the-counter” derivatives 

under market frictions such as trading costs and liquidity constraints.
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Chapter 4 Experimental Design 

 

For this part we will use the industry notions and description we have previously elaborated to 

present a technique to solve or help in stock market guidance using methods previously described. 

To do this we have used the Jupyter Notebook. We have run the code using different agents to 

determine the best agent among them. The data we used has been downloaded from GitHub and it 

encompasses 6 years’ worth of data between the years 2013 and 2019. We chose 20 stocks to run 

our code on, those are: 

• AAON, AAP, AMS, COOP, ETO, FANG, FCCY, FIX, GOGL, HCCI, LULU, LUNA, 

NQP, PSA, REED, SUMR, SUPN, TREE, VET, ZYXI 

The actions one can do according to our findings are: Buy, Sell and Hold. We are going to explain 

each of them. An investor would Buy a share at the specified price and would calculate the profit 

from it. Sell if the share price is above the point it was bought at. Hold or wait for the next iteration 

before deciding to buy or sell. Since there are only a certain number of actions possible to execute, 

we are going to classify them accordingly and decide based on their logic. 

Flat- one can keep the stock to remain Flat, or buy to become Long, or if choose to sell it becomes 

Short.  

Short- one can hold to stay Short or buy if they want for it to become Flat, if sell to become Short.  

The way we encourage the algorithm to perform according to our intentions in the stock market is 

by giving the agent a reward according to its performance defined by the returns. The reason behind 

the returns being a better measurement than the prices, it is because it is a more powerful tool that 

gives one the freedom to generalize between the stocks and compare them adequately. 

We compute the positions we take in the following way: 
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If the agent doesn’t have a position to take, the position taken is considered Flat, the reward at that 

time step is computed as: 

𝑅𝑡 = 0 

 

The agent will take a Long position if it will buy at time-step 𝑡𝑒𝑛𝑡𝑟𝑦 at price 𝑃𝑒𝑛𝑡𝑟𝑦 because of the 

expectancy of an increase in price.  

𝑅𝑡 =
𝑃𝑡 − 𝑃𝑒𝑛𝑡𝑟𝑦

𝑃𝑒𝑛𝑡𝑟𝑦 
 

  

If the expectation is that price will fall the agent will sell at time-step 𝑡𝑒𝑛𝑡𝑟𝑦 at price 𝑃𝑒𝑛𝑡𝑟𝑦 . This 

is considered the short position.  

𝑅𝑡 =
𝑃𝑒𝑛𝑡𝑟𝑦 − 𝑃𝑡

𝑃𝑒𝑛𝑡𝑟𝑦
 

 

Actions  

The actions that are possible to take are hold, buy, or sell.  

 

Hold: the agent will do nothing, will just skip that time-step 

Buy: the agent will open a buy the share and save it as entry_price 

Sell: the agent will close the position, will sell, and calculate the profit 
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Figure 2:Schema of actions and positions, source: own 

Only certain position and action combination are permissible. Hence, the above figure 

representation of the logic. 

Flat- we can keep our position to stay Flat, if we buy, we become Long, and if we sell, we become 

short.  

Long- keep to stay Long, sell to become Flat. However, an action to buy to stay Long will become 

a hold to stay Long.  

Short- we can hold to stay Short, buy to become Flat, and if we sell to become Short it will be 

considered as hold to stay Short. 

Agents – 

After we have established all the details necessary for the environment, we need to test our data, 

we can move on to designing the agents. We are going to do so through the help of Deep Learning 
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techniques. We will look at Neural Networks which is basically a foundation composed of neurons 

that has been used mostly for its ability to incorporate the backpropagation algorithm.    

The agents we have described in the thesis are: 

 Simple Moving Average Agent 

 Signal Rolling Agent 

 Policy Gradient Agent 

 Q-Learning Agent 

 Recurrent Deep Q learning Agent 

We have chosen to use Recurrent Deep Q learning as it is one of the most popular baseline deep 

learning models in the automate trading. 

To prove how the agents perform we have tested it on 20 stocks. Due to the limitation of space, 

we will present how the agents performed on 4 of these stocks. The stocks are: AAON, AAP, AMS 

and COO
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Chapter 5 Results 

  

We have used the Y axis for the price and X axis for the number of shares involved in a 

transaction. Most of the stocks seemed to have performed in the same way. While performing the 

experiments, we notice the general trend that the simpler methods compared to the more 

complex have less ups and downs markers. In other words, the frequency of the buy and sell 

signals are triggered similarly among stocks depending on the agent. 

 

5.1 Simple Moving Average 

The graphs show us that there were few events along the way. Despite the dips in the market, the 

graphs show a similar pattern. 

AAON- moving average agent

 

Figure 3: Representation of the AAON stock performance using moving average agent. The 

black symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 11.3
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AAP- moving average agent 

 

Figure 4: Representation of the AAP stock performance using moving average agent. The black 

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -132.80 

 

 

AMS- moving average agent 

 

Figure 5:Representation of the AMS stock performance using moving average agent. The black 

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 0.23 
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COOP- moving average agent 

 

Figure 6:Representation of the COOP stock performance using moving average agent. The black 

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 4.81 

5.2 Signal Rolling Agent 

From the experiment we do notice how the agent is more sensitive to the environment and is 

performing much more buy/sell actions compared to previous agent. 

AAON- signal rolling agent 

 

Figure 7:Representation of the AAON stock performance using signal rolling agent. The black 

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -13.884 
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AAP- signal rolling agent 

 

Figure 8: Representation of the AAP stock performance using signal rolling agent. The black 

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 72.64 

 

AMS- signal rolling agent 

 

Figure 9:Representation of the AMS stock performance using signal rolling agent. The black 

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -1.52 

 

 

 

 



   35 

 

COOP- signal rolling agent 

 

Figure 10:Representation of the COOP stock performance using signal rolling agent. The black 

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -13.06 

 

5.3 Policy Gradient Agent 

This agent is more sensitive to the changes of the market and is taking in to account more 

parameters making it more susceptible to the changes of the market. Among all stocks we 

noticed the sensitivity of the agent.  

AAON- policy gradient agent 

 

Figure 11:: Representation of the AAON stock performance using policy gradient agent. The 

black symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 34.02 

 



   36 

 

AAP- policy gradient agent  

 

Figure 12:Representation of the AAP stock performance using policy gradient agent. The black 

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -2046.07 

AMS- policy gradient agent 

 

Figure 13:: Representation of the AMS stock performance using policy gradient agent. The black 

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -74.34 
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COOP- policy gradient agent 

 

Figure 14:Representation of the COOP stock performance using policy gradient agent. The black 

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -538.77 

 

5.4 Q-Learning Agent 

The market changes reflect on the performance of the Q-learning agent. We can notice the trend 

by looking at the data plotted on the bellow figures 

AAON Q-Learning Agent 

 

Figure 15:Representation of the AAON stock performance using Q-Learning agent. The black 

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 49.52 
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AAP Q-Learning Agent 

 

Figure 16:Representation of the AAP stock performance using Q-Learning agent. The black 

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -253.33 

AMS Q-Learning Agent 

 

Figure 17:Representation of the AMS stock performance using Q-Learning agent. The black 

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -37.66 
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COOP Q-Learning Agent 

 

Figure 18:Representation of the COOP stock performance using Q-Learning agent. The black 

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -2488.64 

 

5.5 Recurrent Q learning Agent 

The most complex agent, however not as sensitive to market changes, we are further 

investigating this problem in the bellow tables.  

AAON Recurrent Q-Learning Agent 

 

 

Figure 19:: Representation of the COOP stock performance using Recurrent Q-Learning agent. 

The black symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -

17.236 
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AAP Recurrent Q-Learning Agent 

 

Figure 20:Representation of the AAP stock performance using Recurrent Q-Learning agent. The 

black symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -

9956.99 

 

AMS Recurrent Q-Learning Agent 

 

Figure 21:Representation of the AMS stock performance using Recurrent Q-Learning agent. The 

black symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -

4084.80 
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COOP Recurrent Q-Learning Agent 

 

Figure 22:Representation of the COOP stock performance using Recurrent Q-Learning agent. 

The black symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 

2.64 
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AAON 

Algorithm 

Total 

Balance 

Total 

Gains 

Total Investments 

(%) 

Moving Average Agent 10011.31 11.32 0.1132 

Signal Rolling Agent  9986.11 -13.88 -0.1388 

Policy Gradient Agent  10034.024 34.02 0.3402 

Q-Learning Agent 10049.52 49.52 0.4952 

Recurrent Q Learning Agent  9982.76 -17.23 -0.1723 

Table 1: Results for AAON stock using the 5 agents 

AAP 

Algorithm 

Total 

Balance 

Total 

Gains 

Total Investments 

(%) 

Moving Average Agent 9867.2 -132.79 -1.3279 

Signal Rolling Agent  10072.64 72.63 0.7263 

Policy Gradient Agent  7953.93 -2046.07 -20.4607 

Q-Learning Agent 9746.67 -253.33 -2.5333 

Recurrent Q Learning Agent  136.154 -9956.98 -99.5698 

Table 2:Results for AAP stock using the 5 agents 

AMS 

Algorithm 

Total 

Balance 

Total 

Gains 

Total Investments 

(%) 

Moving Average Agent 10000.23 0.23 0.0023 

Signal Rolling Agent  9998.48 -1.52 -0.0152 

Policy Gradient Agent  9925.66 -74.34 -0.7434 

Q-Learning Agent 9962.33 -37.66 -0.3766 

Recurrent Q Learning Agent  5915.22 -4084.77 -40.8477 

Table 3:Results for AMS stock using the 5 agents 
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COOP 

Algorithm 

Total 

Balance 

Total 

Gains 

Total Investments 

(%) 

Moving Average Agent 10004.81 4.81 0.0481 

Signal Rolling Agent  99986.93 -13.06 -0.1306 

Policy Gradient Agent  9461.23 -538.76 -5.3876 

Q-Learning Agent 7511.35 -2488.64 -24.88 

Recurrent Q Learning Agent  9288.44 2.64 0.0264 

Table 4: Results for COOP stock using the 5 agents 

By looking at the above tables we can better understand, and prove our suspicion from the 

graphs section, which was that the more complex an agent is, the poorer it performs. There are 

multiple factors which could influence such a performance. Will describe these factors in more 

detail in the conclusion. The algorithms with higher frequency might imply that they are more 

sensitive to temporal changes in short time. However, high sensitivity might not always be 

advantageous due to a significantly increased transaction fee, which in real world would be 

considered.  

Source code for the above performed experiments can be found at: 

https://github.com/Magda123-blip/A-Comprehensive-Review-of-Machine-Learning-

Methods-in-Stock-Market 

  

https://github.com/Magda123-blip/A-Comprehensive-Review-of-Machine-Learning-Methods-in-Stock-Market
https://github.com/Magda123-blip/A-Comprehensive-Review-of-Machine-Learning-Methods-in-Stock-Market
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5.6 Future Work 

We can expand our analysis by incorporating Natural Language Processing. Integrating news 

and social media data, could give us a better sense of what the public thinks and how they feel 

about certain companies. Sentimental Analysis will give the investors the upper hand on 

knowing where to invest and data analysts will be able to design better algorithms to capture a 

larger portion of the market.
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Chapter 6 Conclusions 

 

Machine learning has been successfully applied to financial market prediction and investment. 

Several studies show that machine learning has great performance comparing with other 

methods. To achieve good generalization performance across a wide variety of financial 

products, stocks, and markets, the choice of models and training data matter. Therefore, the goal 

of this paper was to review the theoretical and practical factors that impact the stock market 

movement and price to better understand what impacts the market and how a data analyst should 

choose, process, and look at the data. We reviewed which auto trading algorithm performs better. 

We further investigate the advancement of AI applications in financial market, especially on the 

existing reinforcement learning and deep learning methodologies. In our study, we pre-process a 

fairly small-to-mid-scale stock market dataset and compare the models on the configuration 

commonly seen for individuals who often have very limited number of computational resources.  

Among different agents that we have analyzed we can conclude that in our experiments more 

parameters and more complex models could lead to worse performance. One possible solution 

would be to have a larger set of training data, a better machine with a greater computational 

power. Another resolution is to train the model with a larger set of training data specifically 

when we choose the deep reinforcement learning models, to generate a more generalized mode
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