

A Comprehensive Review of Machine Learning Methods in Stock Market

by

Magdalena Spinu

A thesis in partial fulfilment

of the requirements for the degree of

Master of Science

(Information Systems and Technology)

in the University of Michigan-Dearborn

2022

Master’s Thesis Committee

Assistant Professor Jin Lu, Chair

Assistant Professor Birhanu Eshete

Assistant Professor Zhen

ii

Acknowledgements

This thesis would have not been possible without the support and guidance of my advisor Dr. Jin

Lu; I am forever grateful for your help and contribution. I want to thank my husband for his

constantan support and inspiration for pushing me to do better. While I was working on this thesis

wonderful events happen in my life, one of which was the birth of my son. Therefore, this Thesis

is memorable to me.

iii

Preface

I came to the USA in 2014 on a music scholarship to study violin music performance. After 1 year

in US, I have realized that music is not meant to be more than a hobby which led to me switching

to accounting. Fast-forward to 2018, I have graduated with a Bachelor of Science in Accounting.

After 1 year of work in accounting industry I felt that many of the tasks done by an accountant

could be automated which would greatly improve the job satisfaction. Hoping that I can learn the

tricks and master the field of technology I decided to pursue a Master in Information Science and

Technology, so that I can have the knowledge needed for automating the analytics task which an

accountant is bound to do for example Financial Statements at year or quarter end. My father who

has passed because of cancer in 2020 was an engineer and a pioneer of learning new things and

was very passionate about the stock market. Hence, I have decided to take my father’s interest

further and do the analysis of the different factors that affect the stock market performance and the

different methods one can go about to improve the return on investment.

iv

Table of Contents

Acknowledgements ... ii

Preface.. iii

List of Tables ... vi

List of Figures ... vii

Abstract .. ix

Chapter 1 Introduction .. 1

1.1 Financial Markets .. 1

1.2 How to Trade ... 2

1.3 Stock Market ... 3

Chapter 2 Machine Learning .. 6

2.1 Portfolio Optimization ... 6

2.2 Sentiment Analysis .. 6

Chapter 3 Reinforcement Learning ... 8

3.1 Markov Decision Process .. 8

3.1.1 Agent-Environment Interface ... 8

3.1.2 Rewards And Returns .. 9

3.1.3 Policies And Value Functions .. 10

3.1.4 Optimality .. 11

3.2 Dynamic Programming ... 13

3.3 Temporal-Difference Methods .. 15

3.4 Exploration vs. Exploitation .. 16

 v

3.4.1 On-Policy Methods .. 17

3.4.2 Off-Policy Methods .. 18

3.5 State-Of-The-Art ... 20

3.5.1 Deep Q-learning ... 21

3.5.1.1 Experience Replay .. 23

3.5.1.2 Target Networks .. 24

3.5.2 Related Work .. 26

Chapter 4 Experimental Design .. 27

Chapter 5 Results .. 31

5.1 Simple Moving Average ... 31

5.2 Signal Rolling Agent ... 33

5.3 Policy Gradient Agent ... 35

5.4 Q-Learning Agent ... 37

5.5 Recurrent Q learning Agent .. 39

5.6 Future Work .. 44

Chapter 6 Conclusions .. 45

References ... 46

vi

List of Tables

Table 1: Results for AAON stock using the 5 agents ... 42

Table 2:Results for AAP stock using the 5 agents .. 42

Table 3:Results for AMS stock using the 5 agents ... 42

Table 4: Results for COOP stock using the 5 agents .. 43

vii

List of Figures

Figure 1:Schema of the agent-environment interaction in MDP (Sutton) 9

Figure 2:Schema of actions and positions, source: own ... 29

Figure 3: Representation of the AAON stock performance using moving average agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 11.3 31

Figure 4: Representation of the AAP stock performance using moving average agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -132.80... 32

Figure 5:Representation of the AMS stock performance using moving average agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 0.23 32

Figure 6:Representation of the COOP stock performance using moving average agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 4.81 33

Figure 7:Representation of the AAON stock performance using signal rolling agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -13.884... 33

Figure 8: Representation of the AAP stock performance using signal rolling agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 72.64 34

Figure 9:Representation of the AMS stock performance using signal rolling agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -1.52....... 34

Figure 10:Representation of the COOP stock performance using signal rolling agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -13.06..... 35

Figure 11:: Representation of the AAON stock performance using policy gradient agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 34.02 35

Figure 12:Representation of the AAP stock performance using policy gradient agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -2046.07. 36

Figure 13:: Representation of the AMS stock performance using policy gradient agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -74.34..... 36

Figure 14:Representation of the COOP stock performance using policy gradient agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -538.77... 37

 viii

Figure 15:Representation of the AAON stock performance using Q-Learning agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 49.52 37

Figure 16:Representation of the AAP stock performance using Q-Learning agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -253.33... 38

Figure 17:Representation of the AMS stock performance using Q-Learning agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -37.66..... 38

Figure 18:Representation of the COOP stock performance using Q-Learning agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -2488.64. 39

Figure 19:: Representation of the COOP stock performance using Recurrent Q-Learning agent.

The black symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -

17.236.. 39

Figure 20:Representation of the AAP stock performance using Recurrent Q-Learning agent. The

black symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -

9956.99.. 40

Figure 21:Representation of the AMS stock performance using Recurrent Q-Learning agent. The

black symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -

4084.80.. 40

Figure 22:Representation of the COOP stock performance using Recurrent Q-Learning agent. The

black symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 2.64

... 41

file:///C:/Users/Magda/Desktop/Thesis_Summer%202022_Defended_MS_Final_submit.docx%23_Toc112012805
file:///C:/Users/Magda/Desktop/Thesis_Summer%202022_Defended_MS_Final_submit.docx%23_Toc112012805
file:///C:/Users/Magda/Desktop/Thesis_Summer%202022_Defended_MS_Final_submit.docx%23_Toc112012805

ix

Abstract

The analysis of the performance of different agents on 20 stocks given a 6 years’ time range of the

stock market, comparison between the agents, and identifying the most/least reliant agent.

Identifying and evaluating the different factors and events that contribute to the changes in the

stock market and proposing a potential solution for better stock performance

1

Chapter 1 Introduction

The advancement of technology led to an expansion across all industries. The discovery of

intelligent systems is a big step forward for humankind, leading to a more productive and efficient

world. As the famous saying goes, “Work smarter, not harder.” The progress in the technical world

led to a new distribution of work. Now, one can design algorithms that will do repetitive tasks

instead of spending countless hours working out each task by hand. The invention of algorithms

led to a more precise and optimal output, which resulted in better decisions, and hence more profit

when it comes to stock trading.

Similar work that we have looked at is a comprehensive state-of-the-art investigation of the recent

advances in data science in emerging economic applications (Nosratabadi). However, this work

focuses on the hybrid models. Le, D. Y. N., Maag et al provides an extensive research on Deep

Learning and Machine Learning models. The authors extracted required quantitative information,

applications, and results on different methodologies. Sarangi et al presented a detailed review of

different learning models used to predict the stock market for last 50 years (1970 to 2020) in the

paper “A Study on Stock Market Forecasting and Machine Learning Models.” In our work we

focus on how the different agents perform in the stock market given a range of 6 years.

1.1 Financial Markets

Here is provided a brief introduction to the critical aspects of financial markets, starting with the

definition.

An investor is a person who puts in money with the expectation of them increasing. Stock market

has been commonly defined as the place where numerous investors meet to buy and sell stocks.

To ensure a profitable investment, one needs to know as much as possible about the financial as

well as the potential of the company they wish to put their money in.

The rise in artificial intelligence helped numerous investment companies create optimum

portfolios for their clients, such as mixed portfolios: combining a wide range of investments

https://sciprofiles.com/profile/677685

2

from the most aggressive to the safest, such as stock, bonds, cash and money security. A good

investor will adjust the above based on their risk tolerance and the time available.

Even though the term “Financial market “is widely used in society with the same core meaning,

its true meaning depends on the context it is used. First, it was applied in the business world in the

context of the rise of the stock market, also identified as the stock market. (Adambekova).

At the core, the function of the financial market is to reallocate funds from a group that has an

excess of funds to those who need tangible resources to invest in, along with the risks that they

carry. Therefore, one can notice three aspects of the financial market: A traded asset does not have

a fixed price, but rather is determined by the interactions between the buyers.

1. The financial market allows the investors to let go of the obligation of keeping an asset by

shifting its risks and obligations onto a different investor.

2. By far the best part of the stock market is the reduction in cost of a transaction as the cost

for search and information are almost non-existent.

Depending on whether the funds were borrowed or provided, one can differentiate the market by

the nature of the claim. The difference between the cash market and derivatives market is the

timing of the claim. Another aspect of the market is the maturity of claims, as there are markets

with long-term claims known as capital markets and short-term claims or money markets.

Seasoning of claims is another property of the financial market. Here we can distinguish between

primary markets that deal with newly issued claims and secondary markets that work with

previously issued claims.

1.2 How to Trade

As Warren Buffet once said, “Investing is a way to set aside money now so that it can multiply in

the future.” Today there is a wide range of possibilities to invest in, starting with online brokers

who can make the investment for you for a set fee. The big companies normally use these types of

investors as they come with substantial fees or percentages of transactions.

Robo-Advisors are the use of technology meant to streamline and lower investment costs through

the help of technology which uses different algorithms meant to filter out and detect the best stock

choices given the parameters. Another way of investing is through the employer, which given a

small percentage of one’s salary is deducted before tax and invested into a retirement plan.

 3

1.3 Stock Market

Each ownership share in a corporation authorizes the holder to one vote on the company

affairs, also called stocks. Afterward, the vote is debated at the annual get-together and decided on

how it may better the company's finances. There are known to be two kinds of stocks that are

differentiated by the amount of influence the priority attached to the influence of the earnings.

Hence, one can distinguish between preferred stockholders, who benefit from fixed dividends, and

everybody else or common stockholders who receive the gains at the end (Aggarwal).

Common Stock has two characteristics differentiated by the nature of the claim: residual- meaning

that unless the company is in liquidation, the shareholders will receive their share last once the

interest and taxes have been paid and limited liability, which is probably the safest yet not most

rewarded as the most one can lose is the amount initially invested. A limited liability shareholder

is not personally liable for the obligations of the firm (Ireland).

When a company wants to expand, it issues stock so that it can gather new financial sources. This

process is done through an initial public offering known as floating. This process transitions a

company from being private to a public one. Further, the IPO is subsidized by an investment bank

that will arrange for the shares to be recorded on the stock exchanges. When a company publishes

its shares on trading platforms, the profits go straight to the issuing firm, a process known as

primary offering, or to any private investors, a process known as secondary offering (Prasad D.).

Once the shares are available for public purchase, the funds pass unrestricted between the public

investors. In this case, the stock market will act as a secondary market. The only difference is that

the company will not be influenced by these changes in capital or be required to reimburse the

money to the individuals who have invested. The lenders must undergo all the ups and downs that

the market might take. Hence, the market capitalization or the value is determined by the total of

all the shares (Dias). In the case of a common investor, the profit gained from one of the shares

comes from two different sources:

1. Dividend payment- a payout which is typically done by more mature companies in the

shape of cash or extra shares of stock. This payment is not mandatory and hence ignored

by the newly established companies.

2. Changes in the price of the stock- the differences between the purchase price and the

current price at which the shares are being traded determine either the capital gain or capital

 4

loss. In essence, the owner of the shares is determining the gain or loss considering the sale

at that specific moment of time.

Some investors take a different yet still popular approach to trading stocks known as short selling.

As a result of this the investor makes profits when the prices fall rather than when they rise. Short

selling is done by borrowing shares from a broker and selling them to a third party, afterwards the

seller buys back the shares from the third party and gives them back to the original broker. If during

this time the price has gone down, then the equivalent the investor made in profits (Woolridge).

Supply and demand are just one aspect of the financial market that decides the prices. To

understand these other factors, analysts and investors implement the knowledge gained acquired

by fundamental analysis and technical analysis. The analysis of the financial state of a company

to determine its value is known as Fundamental Analysis (Abad). This idea is that even if a stock

has a price that does not correspond to the share’s actual value, eventually, the correct price will

reach in the end. Hence, by following this idea, an investor can buy or sell a stock at the wrong

price and then wait until the market naturally reprices the share. On the other hand, technical

analysis uses past data to predict the trend of prices. This method depends on techniques known

as time series analysis, also statistical and signal analysis.

The techniques mentioned above were a go-to for a long time. However, a new idea recently

emerged, which states that market prices are basically impossible to predict. This theory is partly

based on the efficient market hypothesis that states that the market prices reflect the information

available, Hence the idea that it is not possible to beat the market (Malkiel).

The new ideas directed investors and analysts toward algorithmic trading, where investors tried to

automate the process using computer programs because these algorithms can handle a lot more

input at a parallel time and are more efficient in analyzing the information than a human trader. A

few of these strategies are:

1. Trend following strategies: such as moving averages, channel breakouts, price level

movements, and related technical indicator. Hence the exchange is done based on the trends

that occur.

2. Arbitrage opportunities: another approach to selling is when there are two markets,

purchase the stock from the market which is at a lower price, and sell it at the second market

 5

for a higher price, hence generating a profit. Designing an algorithm that can perform this

operation creates numerous beneficial occasions.

3. Mean revision: this is an approach where an investor defines a range between which the

prices must fall. Hence, defining a price range will allow for the exchange to happen

accordingly whenever the price falls within the defined criteria.

4. Volume-weighted and Time-weighted average price: These are two strategies that are

formed by dividing a bigger order and using a volume that is specific for the stock in case

published to the market in smaller increments by ensuring the timing and volume is split

into historically appropriate groups.

Algorithmic trading is an essential part of the stock market world since automation of the needed

tasks to trade has improved their performance significantly (Nuti). Therefore, helping investors be

more efficient

6

Chapter 2 Machine Learning

With the tendency to move repetitive tasks to machine-designed processes, machine learning

appears to be the best progressive move. This method involves making decisions by considering

three critical aspects of any exchange: time, price, and volume. Hence, machine learning is the

best way to go about such tasks (Choudhry). The tendency is to have a pre-programmed machine

learn and execute trading decisions on its own. The applications of machine learning in the recent

past that have been explored are:

Stock price forecasting is predicting the price of a share of stock is a challenge. Even though for a

long time it has been believed, and it still is at times, that the changes in the market situation are

just a random walk, technical analysis assumes that all the necessary information is stated in a

company’s recent prices. Therefore, going by the belief that the price reflects the company’s

financial well-being, one can notice a trend, and therefore, prices can be forecasted. Stock market

prices are affected by a wide range of factors, such as political situation, company progress, new

consumer trends, credit rates, and community events. Despite all these factors, machine learning

can be divided based on its models. The earlier models used were LSTM, ARIMA, and Support

Vector Machine. Recently, traders have preferred Neural Networks for their greater capabilities

(Hsu).

2.1 Portfolio Optimization

Depending on the investor’s priorities, such as maximizing profit or minimizing risk, one can

select a group of stocks accordingly. The issue with selecting these portfolios manually is that they

generate an enormous possibility of outcomes, which makes it unappealing when it is done by a

human (Tola). However, it is a wonderful opportunity for managing risk when it is done

automatically by a computer algorithm.

2.2 Sentiment Analysis

Sentiment Analysis has a greater impact because of the development of social media. In the earlier

days, the newspapers were the primary source of information about anything new

7

happening, whether it was a new product developed by a company, a new car model designed by

Ford, or General Motors, some great or pessimistic news (Chan). Then it became the TV, and with

the entrance of the internet into modern lives, the news has gotten quicker at catching public

attention. In the machine world, this information is obtained using Natural Language Processing

(Luccioni). Even though the public may be guided by the news alone, for a more precise outcome,

in the world of data scientists this is an addition to the information coming from the numbers,

rather than a factor alone.

8

Chapter 3 Reinforcement Learning

In this section, we will present the field of Reinforcement Learning. We will start with the

traditional model for sequential decision making, the model in which one decision impacts all the

following options and results (Ni). Afterward, we will transition toward more modern solutions

such as Dynamic Programming. To be efficient at solving the above-mentioned problems, the

solution comes in the fashion of state-of-the-art algorithms like Neural Networks.

3.1 Markov Decision Process

MDP or Markov Decision Process are supposed to be a simple arrangement to formulating a

problem by interchanging operations to realize a final target with the help of an object called agent

(Feinberg). The entity the interaction is happening with that consists of all the elements except the

agent is called the environment. In the perpetual process of the agent interacting with the

environment, the agent is given rewards based on its responses to the different scenarios given by

environment, where the agent is constantly strives to maximize the rewards.

3.1.1 Agent-Environment Interface

The interaction between agent and environment happens in the form of a clearly defined

progression of occurrences based on time (Wang). For instance, at each subsequent time t = 0,1,2,3,

the agent gets one depiction of the surroundings and records its corresponding reaction. Afterward,

the agent is numerically rewarded based on its action, which puts it in a new state. Hence, in the

end, the model creates a succession that is noted as follows: 𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, . ..

The following schema provides a visual representation of the above-mentioned method.

9

Figure 1:Schema of the agent-environment interaction in MDP (Sutton)

In the case of a defined MDP, the elements are well defined, in which case the random variables

are defined accordingly based on their anterior state and action.

3.1.2 Rewards And Returns

When it comes to reinforcement learning, the main purpose of the agent comes in the form of an

incentive or reward given by the environment to the agent. A reward is a real number given by

the environment to the agent. Hence, the purpose of the agent is to boost the aggregated amount

of the rewards. By adjusting the incentive in a clear way of what our final goal is, we can set up

the environment to reach our goal by the agent maximizing its rewards (Wen). Hence, the critical

need to be specific in the goal determination.

We can interpret the return as some specific function of the sequence 𝐺𝑡 =f (𝑅𝑡+1, 𝑅𝑡+2, . . . 𝑅𝑇),

given T is to be considered as the final time step.

𝐺𝑡 = 𝑅𝑡+1 + ⋯ + 𝑅𝑇 = ∑ 𝑅𝑘

𝑇

𝑘=𝑡+1

Hence this method is valid for situations in which the final time step T exists, or when the

exchange between the agent and environment can be divided into smaller chains called episodes,

the ending of each episode is known as terminal state St which is thereafter accompanied by a

readjustment to the beginning position. Following is the new episode, which is independent of

the preceding one. Hence, the idea is that episodes finish within the same state, however, with

different rewards depending on the result. These tasks are known by the name of episodic tasks.

The process of discounting is a process where the agent purposefully chooses actions that

maximize the discounted reward. To be more specific, the agent would pick so that the expected

discounted return is at its maximum. This process is needed to prevent the scenario where the

 10

agent-environment interaction does not break on its own, avoiding a moment where T would

reach infinity.

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ = ∑ 𝛾𝑘−(𝑡+1)

∞

𝑘=𝑡+1

𝑅𝑘

The discounted rate is called when 0 ≤ 𝛾 ≤ 1.

If the reward chain is linked, the infinite sum has a finite value, and in the worst-case scenario

where 𝛾 = 0, the agent’s job is only maximizing immediate rewards as soon as it becomes closer

to 1, the goal shifts onto future returns as well (Hu).

It can be beneficial to establish a notation that would cover both finite and infinite cases at the

same time. The following can be done if we view the end of the episode as a new start (Seijen).

3.1.3 Policies And Value Functions

The primary purpose of the algorithms that are determined by the expected return in reinforcement

learning is to determine the benefit of the agent in a particular state, as the rewards to be obtained

are based on policies. Formally, a policy is a formulation from states and actions to the likelihood

of the agent choosing to take those specific actions 𝜋 ∶ 𝑆 × Α → [0,1]. In other words, if the agent

goes along with the policy 𝜋 at time 𝑡, then 𝜋𝑡(𝑎|𝑠) becomes the probability of 𝐴𝑡 =

𝑎 will be the choice when 𝑆𝑡 = 𝑠. (Ding).

Reinforcement learning defines how an agent’s policy will change depending on the experience it

has gained. Hence, the specific policy will be attributed to a specific value. Therefore, we can

define a policy 𝜋 with a function with value 𝜐𝜋. The expected return when starting in s followed

by a policy 𝜋 . Hence,

𝜐𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑠𝑡 = 𝑠]

It is important to keep in mind that the value of the final state would always be 0. The same way,

the expected return of the action a taken in the state s following policy 𝜋

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

Where 𝑞𝜋 is the action-value function for policy 𝜋 . Hence, the relation

 11

𝜐𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠]

⇒ 𝜐𝜋(𝑠) = ∑ 𝜋(𝑎|𝑠)𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

𝑎∈𝐴

⇒ 𝜐𝜋(𝑠) = ∑ 𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)𝑎∈𝐴

Is satisfied. It is important to note that even the recursive relationship should still be satisfied.

𝜐𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠]

⇒ 𝜐𝜋(𝑠) = 𝔼𝜋[𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠]

⇒ 𝜐𝜋(𝑠) = ∑ 𝜋(𝑎|𝑠)

𝑎𝜖𝐴

∑ ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝔼𝜋[𝐺𝑡+1|𝑆𝑡 = 𝑠′]]

𝑟𝜖𝑅𝑎′𝜖𝑆

⇒ 𝜐𝜋(𝑠) = ∑ 𝜋(𝑎|𝑠)

𝑎𝜖𝐴

∑ ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝜐𝜋(𝑠′)]

𝑟𝜖𝑅𝑎′𝜖𝑆

This is known to be the Bellman equation for the action value function.

3.1.4 Optimality

The goal of reinforcement learning is to determine a policy that will accomplish the task and gain

the most rewards. In the case of finite MDPs value functions are defined as a policy 𝜋 would be a

better than or equal to a policy 𝜋′ if its return is greater than or equal to that of 𝜋 for all states

(Bhandari). Hence, 𝜋 > 𝜋′ if and only if 𝜐𝜋(s) > 𝜐𝜋′(s) for all optimal policy which are noted as

𝜋∗. All these policies have a common function, known as state-value function.

𝜐∗ (𝑠) =
𝑚𝑎𝑥

𝜋
𝜐𝜋(𝑠)

For all s ∈ S and a ∈ A.

 The value function of a policy must satisfy Bellman’s equation unity for the state values.

However, the value function may be expressed in a different form, excluding any reference to a

particular policy. Hence, the Bellman optimality equation demonstrates that given an optimal

policy, the state value will equal the expected return in the case of the best action of that state.

 12

𝜐∗(𝑠) =
𝑚𝑎𝑥

𝑎
𝑞∗(𝑠, 𝑎)

⇒ 𝜐∗(𝑠) =
𝑚𝑎𝑥

𝑎
𝔼[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

⇒ 𝜐∗(𝑠) =
𝑚𝑎𝑥

𝑎
𝔼[𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

⇒ 𝜐∗(𝑠) =
𝑚𝑎𝑥

𝑎
𝔼[𝑅𝑡+1 + 𝛾𝜐∗(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

⇒ 𝜐∗(𝑠) =
𝑚𝑎𝑥

𝑎
∑ ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝜐∗(𝑠′)]

𝑟𝜖𝑅𝑠′𝜖𝑆

Similarly, when it comes to action-value function

𝑞∗(𝑠, 𝑎) = 𝔼[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

⇒ 𝑞∗(𝑠, 𝑎) = 𝔼[𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠, +𝐴𝑡 = 𝑎]

⇒ 𝑞∗(𝑠, 𝑎) = 𝔼[𝑅𝑡+1 + 𝛾𝜐∗(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

⇒ 𝑞∗(𝑠, 𝑎) = 𝔼[𝑅𝑡+1 + 𝛾
𝑚𝑎𝑥

𝑎′
𝑞∗(𝑆𝑡+1, 𝑎′)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

⇒ 𝑞∗(𝑠, 𝑎) = ∑ ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾
𝑚𝑎𝑥

𝑎′
𝑞∗(𝑠′, 𝑎′)]

𝑟𝜖𝑅𝑠′𝜖𝑆

An optimal policy is any policy where a nonzero probability can be assigned (Singh). In other

words, it is a one-step search or when 𝜐∗ is known the actions which are best suited after a one-

step search are thought to be optimal actions. The optimal policy is easily determined if 𝜐∗, is

known, also in Bellman optimality equation one will find more than one action where maximum

can be obtained. Finding an optimal action when we know 𝑞∗ is an easier task because now the

agent can eliminate the step of doing a search ahead. Instead, the agent can find those actions that

increase 𝑞∗(s,a) because the above-mentioned value will determine the value in an efficient

manner. Therefore, in the long run we will get values that are available straight away.

One of the draw backs of using the Bellman optimality equation is that the corresponding solution

is useful in very few cases, due to the many options when it comes to searching and the

corresponding probabilities (Rincon‐Zapatero). Furthermore, when it comes to practice few

assumptions have to be true for the solution to work the three assumptions are: the dynamics of

the environment are well known, sufficient resources to fulfill the computation, and lastly the

 13

system must satisfy Markov property. In a perfect world where all three of these assumptions are

true it is easy to implement Bellman’s optimality equation. However, in practicality, one of the

three is usually not satisfied. On the other hand, other reinforcement learning methods are thought

to be close to Bellman’s equation, the only difference being that the methods tend to use actual

experienced transition and not expected transitions.

3.2 Dynamic Programming

Dynamic Programming refers to an algorithmic technique that breaks a problem into multiple

subproblems and finding the optimal solution to each of the smaller problems, hence at the end we

have a perfectly optimal solution for the problem (Eddy). The importance of the dynamic

programming cannot be underlined enough as it is at the core of the theory. However, given the

computational expense they require, one may agree they are of very little use when it comes to

reinforcement learning.

Policy evaluation is the calculation of the 𝜐𝜋 for a policy 𝜋. If the dynamics of the environment

are fully known, then we can use Bellman equation for a system of |𝑆| simultaneous linear equation

in |𝑆| unknowns (the 𝜐𝜋 (s), s ∈ S) (Cappen). Hence, the solution we can implement is a simple

calculation. However, we must consider for the purpose of our case an iterative method may be

more appropriate. Suppose a case of value functions 𝜐0 , 𝜐1, 𝜐2,…, each mapping 𝑆+ to R. The

beginning value 𝜐0 is any randomly chosen value, compared to the ending state where a value of

0 must be assigned. To update the algorithm, we will use Bellman’s equation.

𝑣𝑘+1(𝑠) = ∑ 𝜋(𝑎|𝑠) =

𝑎∈𝐴

∑ ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣𝑘(𝑠′)]

𝑟𝜖𝑅𝑠′𝜖𝑆

for all s ∈ S. The value of each step is updated at every repetition to the new value function.

Bellman equation guarantees the equality 𝜐𝑘 = 𝜐𝜋. Therefore, the above-mentioned approach is

implemented till the point where the value function estimate exceeds the threshold 𝜃.

Afterwards, the value function can be implemented to reach policy improvement. Such as, incase

when we need to find the value function 𝜐𝜋 for a policy 𝜋. Sometimes, the state s may require a

different approach, such as the policy may need to be able to make a choice using deterministic

approach to find an action. In other words, we consider choosing a in s and then following an

established policy 𝜋. Here, we have a value that is defined as 𝑞𝜋(s,a) and an important step, to

 14

check if it is greater or less than 𝜐𝜋(s). In the case that it is greater, we can benefit more by choosing

a once in s and then follow 𝜋, rather than following 𝜋 constantly. One obvious progression is to

keep in mind all possible choices and the corresponding actions but choose the best fitting action

given 𝑞𝜋(s,a). Hence, we appraise a greedy policy 𝜋′ in the case of

𝜋′(𝑠) =argmax𝑎 [𝑞𝜋 (𝑠, 𝑎)]

⇒ 𝜋′(𝑠) =argmax𝑎 [∑ ∑ 𝑝|(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝜈𝜋

𝑠′∈𝑆𝑟∈𝑅

(𝑠′)]]

here 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 is value a where the next expression is maximized. In the case when the new greedy

policy 𝜋′ is as good as, however not better than the old policy 𝜋, in which case 𝜐𝜋 = 𝜐𝜋′ , then for

all s ∈ S:

𝜈𝜋′(𝑠) =
max

𝑎
[𝔼 [𝑅𝑡+1 + ϒ𝜈𝜋′(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]]

⇒𝜈𝜋′(𝑠) =
max

𝑎
[∑ ∑ 𝑝|(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝜈𝜋𝑠′∈𝑆𝑟∈𝑅 (𝑠)]]

Because the above is similar to Bellman optimality equation, 𝜐𝜋, must be 𝜐∗, and both 𝜋 and 𝜋′

should be optimal policies. As a rule, when it comes to policy improvement it means that the new

policy must be better than the old one (Engel).

One can obtain a series of upgraded policies and value functions if policy 𝜋 is improved and

gives us a better 𝜋′, hence we can determine 𝜐𝜋′ and find a even better 𝜋′’ and so on. This way

we can eventually find the most optimal policy 𝜋.

𝜋0

E
→ 𝜐𝜋0

I
→ 𝜋1

E
→ 𝜐𝜋1

I
→ . . .

I
→ 𝜋∗

E
→ 𝜐𝜋∗

Here,
𝐸
→ stands for policy evaluation and

𝐼
→ is for policy improvement. Going from the theory that

MDP has a finite number of policies, and that each individual policy promises to be better than the

 15

previous one, the whole process must reach eventually to an optimal policy and optimal value

functions, a process called policy iteration.

Algorithm 1: Policy Iteration:

Inputs: θ

Initialize Policy function π(s) with random values

Initialize value function V(s, a) with random values

Policy Evaluation:

While Δ > θ do

 Δ← 0

 for each s do

 𝜈 ← 𝑉(𝑠)

 𝑉(𝑠)← ∑ 𝑃(𝑠′, 𝑟|𝑠, 𝜋(𝑠))[𝑟 + 𝛾𝑉(𝑠′)]𝑠′,𝑟

 Δ ← max (Δ| 𝜈 – 𝑉 (s))

 end

Policy Improvement:

Policy stable ← True

for each s do

 old_action ← 𝜋(𝑠)

 𝜋(𝑠) ← argmax𝑎 ∑ 𝑃(𝑠′, 𝑟|𝑠, 𝜋(𝑠))[𝑟 + 𝛾𝑉(𝑠′)]𝑠′,𝑟

 Δ ← max (Δ| 𝜈 – 𝑉 (s))

 If 𝜋(𝑠) ≠ old_action then

 Policy_stable← False

 end

end

3.3 Temporal-Difference Methods

The temporal difference methods are a mix between Monte Carlo and Dynamic Programming

methods. With the difference that this mix acquired the ability to learn straight from the unpolished

 16

material and without the need for knowledge of the environment’s dynamics. As well as the TD

methods’ capability to make updates without having to wait for the final outcome, but rather using

learned estimates.

MC method lacks the ability to make updates on their own, but rather it needs the knowledge of

𝑉(𝑆𝑡)to be an estimation of 𝜐(s) where we have the expected return 𝐺𝑡be the target.

𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡) + 𝛼[𝐺𝑡 − 𝑉(𝑆𝑡)]

3.4 Exploration vs. Exploitation

The policy evaluation problem for action values is to estimate q (𝑠, 𝑎), that is the expected return

in state 𝑠, taking action 𝑎, and following policy 𝑝. In an episode we consider visiting a state action

pair (s,a) when the state s is visited and action a has been taken. However, not all pairs will be

visited, leaving some of the pairs unexplored. In the case of policy evaluation, it is important to

facilitate perpetual exploration (Auer).

Hence, we arrive at a point where we call the situation in general terms exploration vs. exploitation

trade-off. In this situation we can prove the need to balance the exploitation of those behaviors

which give the most outcome while exploring new behaviors that are not yet known to the agent.

One common technique to achieve the encounter of all state-action pairs is the use of the policies

which are stochastic and have a nonzero possibility of choosing all actions in every state (Singh).

With that stated, the policy will select the best-known action while exploiting. However, there will

be scenarios in which the policy will choose an action that is random while exploring. The two

ways to ensure this are: On policy methods and Off policy methods.

On policy methods are the policies that attempt to evaluate and improve the policy used to make

decisions. In the case of an on-policy methods the policy is the one that is soft, or where 𝜋(𝑎|𝑠) >

0 for all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴, but slowly moved closer to create an optimal policy. One such example is

the 𝜖- greedy policies, which theoretically they would prefer an action that have maximum

estimated action values, but with a probability 𝜀 they rather chose an action at random. With that

said, all nongreedy actions will have a minimal probability of choosing 𝜖|𝐴|. The remaining

portion of the probability 1 − 𝜀 + 𝜀/|𝐴| will be given to the greedy action. We can be certain that

we will develop a better policy by using the concept of a greedy policy for 𝜀-soft policies.

 17

However, we need to be aware that one can only find the best policy among the 𝜀-soft policies not

the best policy.

Off policy methods are the ones that improve or evaluate a policy the policy that is different from

the policy used to acquire the data. The on-policy approach is a compromise due to the ability to

learn the action values for the near-optimal policy rather than for the optimal policy.

The best technique is to rather use a combination of the above two mentioned policies. In that case

we have a policy for generating behavior and becomes the behavior policy and another one for

which the method learns, hence it becomes the optimal or the target policy. In a classic scenario

the target policy will be a deterministic greedy policy, but the action value function will be given

by the behavior policy.

3.4.1 On-Policy Methods

The simplest scenario where one can see the application of the TD idea as an on-policy method is

the SARSA algorithm (Rummery). The update rule in this scenario is executed after every

alteration of the nonterminal state 𝑆𝑡.

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆𝑡, 𝐴𝑡)]

In the scenario that 𝑆𝑡+1 is the terminal state, then Q (𝑆𝑡+a…) would be set to 0. Hence, the earlier

mentioned rule uses every element of the five-folded equation (𝑆𝑡, 𝐴𝑡, 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1)known to

be the conversion of one state-action pair to another. This five-folded equation is the reason behind

the name of the algorithm, SARSA (Zou). The perpetual estimation of 𝑞𝜋 for a policy 𝜋 is done

simultaneously with 𝜋’s change regarding greediness when considering for 𝑞𝜋.

Hence, we arrive at the following algorithm:

 18

Algorithm 2: SARSA

__

Inputs: Μ, ε,α

Initialize action value function 𝑄 (𝑠, 𝑎)with random values

for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 ∶ 𝑀 do

 Initialize 𝑠𝑡

 for 𝑡 = 1: 𝑇 do

 With probability ε select random 𝑎𝑡, otherwise 𝑎𝑡 =argmax𝑎 𝑄 (𝑠, 𝑎)

 Execute action 𝑎𝑡 and observe reward 𝑟𝑡+1 and 𝑠𝑡+1

 With probability ε select a random 𝑎𝑡+1 , otherwise, 𝑎𝑡+1 =argmax𝑎 𝑄 (𝑠, 𝑎)

 𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + α[𝑟𝑡+1 + ϒ𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)

 𝑠𝑡 ← 𝑠𝑡+1

 𝛼𝑡 ← 𝛼𝑡+1

 end

end

3.4.2 Off-Policy Methods

Alternatively, an off-policy method can also be created by modifying the update rule

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾
max

𝑎
𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)]

Here the Q is approximating q*. In this case q* is the optimal action-values function which lacks

dependence from the policy that follows it, therefore it is an off-policy algorithm (Wulfmeier).

Nevertheless, the effects of the policy are still important as it establishes the state-action pairs to

be visited and therefore updated. We show the details in the following algorithm.

 19

Algorithm 3: Q-learning

__

Inputs: Μ, ε, α

Initialize action value function 𝑄 (𝑠, 𝑎)with random values

for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 ∶ 𝑀 do

 Initialize 𝑠𝑡

 for 𝑡 = 1: 𝑇 do

 With probability ε select random 𝑎𝑡, otherwise 𝑎𝑡 =argmax𝑎 𝑄 (𝑠, 𝑎)

 Execute action 𝑎𝑡 and observe reward 𝑟𝑡+1 and 𝑠𝑡+1

 With probability ε select a random 𝑎𝑡+1 , otherwise, 𝑎𝑡+1 =argmax𝑎 𝑄 (𝑠, 𝑎)

 𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + α[𝑟𝑡+1 + ϒ𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝛼) − 𝑄(𝑠𝑡, 𝑎𝑡)

 𝑠𝑡 ← 𝑠𝑡+1

 end

end

This algorithm’s limitation is because of the implication of the maximization when the target

policies are defined, it may lead to a great bias for the Q-values and therefore negatively

impacting the algorithm and increasing the likelihood of creating a suboptimal policy (Icarte).

We can run into this problem because we use the sample for both determination of the maximum

action and for the estimation of the value. To solve the mentioned issue, we can refer to the idea

of Double Q-learning. By using this approach, we effectively divide the samples in two

subgroups. Following we use these subgroups to learn two independent estimates Q1(a) and

Q2(a) respectively. Each of these are estimates of the true value q(a) for all 𝑎 ∈ 𝐴. Afterwards,

we can establish the maximizing action 𝐴*= 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄1(𝑎) and 𝑄2 correspondingly to come

up with an estimate of the value 𝑄2(𝐴 ∗) = 𝑄2(𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄1 (a)). This estimate will therefore be

unbiased meaning

𝔼[𝑄2(𝐴∗)] = 𝑞(𝐴∗).

This process can be replicated by reversing the estimates so that we get a second unbiased estimate

𝑄1(𝐴∗) = 𝑄1(𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄2(𝑎)) in this way the two approximate value functions will be treated in

a symmetrical way therefore removing the bias.

 20

Algorithm 4: Double Q-Learning

__

Inputs: Μ,ε,α

Initialize action value function 𝑄1 (𝑠, 𝑎) with random values

Initialize action value function 𝑄2 (𝑠, 𝑎) with random values

for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 ∶ 𝑀 do

 Initialize 𝑠𝑡

 for 𝑡 = 1: 𝑇 do

 With probability ε select random 𝑎𝑡, otherwise 𝑎𝑡 =argmax𝑎 𝑄 (𝑠, 𝑎)

 Execute action 𝑎𝑡 and observe reward 𝑟𝑡+1 and 𝑠𝑡+1

 If 𝑡 % 2 = 0 then

 𝑄1(𝑠𝑡, 𝑎𝑡) ← 𝑄1(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + ϒ𝑄2(𝑠𝑡+1 , 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄1(𝑠𝑡+1, 𝛼)) − 𝑄1(𝑠𝑡, 𝑎𝑡)]

 else

 𝑄2(𝑠𝑡, 𝑎𝑡) ← 𝑄2(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + ϒ𝑄1(𝑠𝑡+1 , 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄2(𝑠𝑡+1, 𝛼)) − 𝑄2(𝑠𝑡, 𝑎𝑡)]

 end

 end

3.5 State-Of-The-Art

What all the methods previously discussed have in common is that the data is arranged in a

diagrammatic way, allowing us to apply it to problems that have a much larger scale. Nevertheless,

numerous scenarios where we can apply Reinforcement Learning the state space is a mixture of

different data setups, creating a place that is difficult to separate creating difficulties for reaching

an optimal policy. Other problems that we could potentially encounter with large state spaces, is

the possibility of finding states that have not been previously explored. Hence, we can elaborate a

new function that is closely related to some of the previously already explored states, this is

achieved through an occurrence called function approximation. The function approximation

basically attempts to design a new function based on the ideas already explored from the previous

functions (Freidman). Therefore, we believe function approximation to be a form of supervised

learning.

 21

A value-based algorithm estimates a state-action value function that guides the optimal policy. Q-

learning approximates a Q value (expected return) by iteratively updating a Q-table, which works

for problems with small discrete state spaces and action spaces. An actor-critic based algorithm

combines the advantages of value based and policy-based algorithms. It updates two neural

networks, namely, an actor network updates the policy (probability distribution) while a critic

network estimates the state-action value function. (Liu). The state-of-art actor-critic based

algorithms are deep deterministic policy gradient (DDPG), proximal policy optimization (PPO),

asynchronous advantage actor critic (A3C), advantage actor critic (A2C), soft actor-critic (SAC),

multi-agent DDPG, and twin-delayed DDPG (TD3) (Liu).

3.5.1 Deep Q-learning

The capacity to learn complex data and nonlinear functions makes Neural Networks a perfect

candidate for becoming the go-to method when it comes to function approximation. The Q-

learning algorithm’s simplicity and optimality together with the ability to learn complex functions

have created the perfect ecosystem for the evolution of a novel algorithm, Deep Q-learning (DQL)

(Du). DQL focuses on the creation of a function 𝑄(𝑠, 𝑎; 𝜃) constitute as a parametrized functional

form with weights 𝜃 that approximates the action-value function q (s; a). To establish and improve

the approximate solutions given by the weights 𝜃 we need to define a cost function 𝐿(𝜃). Here is

where the mean-square loss definition comes in handy.

(𝐿(𝜃) = 𝔼𝑠,𝑎 𝜌(.)[(𝑦𝑖 − 𝑄(𝑠, 𝑎; 𝜃))2]

Here 𝜌(𝑠, 𝑎) are the probability distribution of the state action pairs. We can then get the

approximate solutions and by using the stochastic gradient descent we can calculate the optimal

weights 𝜃. Furthermore, by updating the target 𝑌𝑡 for the before mentioned weights, we can use

the general gradient rule, given the weights approximate 𝑞(𝑆𝑡, 𝐴𝑡) this includes SARSA or Q-

learning updates. Therefore, we can apply the general gradient-descent update rule.

𝜃𝑡+1 = 𝜃𝑡 + 𝛼[𝑌𝑡 − 𝑄(𝑆𝑡, 𝐴𝑡; 𝜃𝑡]∇𝜃𝑡
𝑄(𝑆𝑡, 𝐴𝑡; 𝜃𝑡)

Despite the multitude of options for creating a Q-network to be able to approximate a q function,

the ability to have a unique output representation for each possible action. Nevertheless, only the

state representation become the input to the Neural Networks. In this method, the outputs we align

 22

with the input values predicted by Q-values which have only one forward pass through the

network. The ability to train the Q-network values allows us to reduce the sequence of loss

functions 𝐿𝑡 (𝜃𝑡) that otherwise would change at every iteration t. In this case 𝑦𝑡 =

𝔼𝑠′𝜖ℰ[𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃𝑡−1)|𝑠, 𝑎] is the target for iteration t, and 𝜀 is the emulator of the

environment used to train the network. By applying the update rule of Q-learning, 𝑌𝑡 = 𝑅𝑡+1 +

𝛾
𝑚𝑎𝑥

𝑎
𝑄(𝑆𝑡+1, 𝑎; 𝜃𝑡) as well as, applying the back-propagation technique we arrive at the optimal

utilization of the DQ Learning algorithm (Mnih). The algorithm learns the greedy policy where

𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑎, 𝑎; 𝜃) essentially making it an off-policy method, however, it still follows a

behavior distribution that allows adequate exploration. Following is the algorithm

 23

Algorithm 5: Deep Q- Learning (DQL)

__

Inputs: 𝑁, 𝑀, 𝜀, 𝐶

Initialize replay memory 𝐷 to capacity 𝑁

Initialize action-value function 𝑄 with random weights 𝜃

for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 ∶ 𝑀 do

 for 𝑡 = 1: 𝑇 do

 With probability ε select a random 𝑎𝑡, otherwise 𝑎𝑡 =argmax𝑎 𝑄 (𝑠𝑡, 𝑎; 𝜃)

 Execute action 𝑎𝑡 in emulator and reward 𝑟𝑡+1 and 𝑠𝑡+1

 Store transition (𝑠𝑡, 𝑎𝑡,𝑟𝑡+1,𝑠𝑡+1) in 𝐷

 Store transition (𝑠𝑗 , 𝑎𝑗,𝑟𝑗+1,𝑠𝑗+1) in 𝐷

 Set 𝑦𝑗 =

{
𝑟𝑡+1 𝑓𝑜𝑟 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡+1

𝑟𝑡+1 + ϒ max𝑎 𝑄 (𝑠𝑡, 𝑎; 𝜃) 𝑓𝑜𝑟 𝑛𝑜𝑛 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡+1

 Perform a gradient descent step on (𝑦𝑗 − 𝑄(𝑠𝑡,, 𝑎; 𝜃)) ^2

 end

end

3.5.1.1 Experience Replay

For the effectiveness of the training of the Q-networks training, we must consider the concept of

Experience Replay. When it comes to tabular Reinforcement Learning, the updates are executed

online (Yin). The updates are done in a fashion that when each new transition done the value

function is updated. The requirement for immense amounts of data makes for this method to be

optimal and functional policy makes this method less desirable. If we look deeper at this method,

we will notice that essentially, the weight adjustment for one pair will create a cascade effect on

other pairs in the state-action space. In this technique the agent will store the experience for every

time step 𝑒𝑡 = (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) which therefore help us construct the dataset also known as replay

memory 𝐷 = {𝑒0,, 𝑒1, … }. We will use the samples randomly picked for the training portion of the

learning step, rather than utilizing the current state, because this approach gives us the opportunity

to a more efficient data since the experience can be used in other updates as well. This approach

 24

gives samples the freedom to avoid being correlated and more random, hence the variance of the

updates will inevitably be reduced.

By giving priority to the most suitable experiences, we can boost this method, because the in this

scenario we would keep away from the expensive searches through a larger amount of memory as

we can just shift our attention to a specific portion. Hence, the importance of every transition is

defined by the main portion of the experience reply. In a perfect scenario this portion is to be the

amount that an agent can learn, however its seldom availability, makes it difficult to calculate.

Therefore, we can approximate it by using 𝛿 of TD update that gives us the distance from a value

to the next step (Woergoetter). The probability of the sampling transition I is defined in the

following equation:

𝑃(𝑖) =
𝑝𝑖

𝛼

∑ 𝑝𝑗
𝛼

𝑗

Here 𝑝𝑖 is the priority transition where 𝑖 and 𝑎 are the ones to control the amount of prioritization

to be used. The two variations of this are 𝑝𝑖 = |𝛿𝑖| + 𝜀, with 𝜀 being a small positive constant

which stops the edge case of from being revisited in case the update is 0. We consider prioritizing

the cases by rank such as 𝑝𝑖 = 1/rank(i), here rank(i) is the rank of transition 𝑖 when the memory

is sorted conform |𝛿𝑖|.

3.5.1.2 Target Networks

Considering the need for further improvement of the method’s stability in the Q-learning approach,

we can investigate the utilization of a different network that we can use to obtain targets 𝑦𝑖. In

other words, we will replicate the Q-network after C updates which basically gives us the ability

to get to the target network Q’. Therefore, enabling us to get the Q-learning targets 𝑦𝑖for the new

C updates to Q prior to the new duplication. These actions are required because they make the

algorithm more robust. Otherwise, we risk having an update that increases 𝑄(𝑆𝑡, 𝐴𝑡)that leads to

an increased 𝑄(𝑆𝑡+1, 𝑎)for all 𝑎. As a result, the target 𝑦𝑡 also increases creating the risk of a

discrepancy between policies. A possible solution to this problem that would ensure these

discrepancies don’t happen would be to add targets that have older sets of parameters which

eventually would retain the period between a Q update and its subsequent effects on 𝑦𝑖. Bellow,

we show the algorithm

 25

Algorithm 6: Deep Q- Learning with target Network (DQL)

__

Inputs: 𝑁, 𝑀, 𝜀, 𝐶

Initialize replay memory 𝐷 to capacity 𝑁

Initialize action-value function 𝑄 with random weights 𝜃

Initialize target action-values function 𝑄 with random weights 𝜃′ = 𝜃

for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 ∶ 𝑀 do

 for 𝑡 = 1: 𝑇 do

 With probability ε select a random 𝑎𝑡, otherwise 𝑎𝑡 =argmax𝑎 𝑄 (𝑠𝑡, 𝑎; 𝜃)

 Execute action 𝑎𝑡 in emulator and observe 𝑟𝑡 and 𝑠𝑡+1

 Store transition (𝑠𝑡, 𝑎𝑡,𝑟𝑡+1,𝑠𝑡+1) in 𝐷

 Sample random minibatch (𝑠𝑗 , 𝑎𝑗,𝑟𝑗+1,𝑠𝑗+1) from 𝐷

 Set 𝑦𝑗 =

{
𝑟𝑡+1 𝑓𝑜𝑟 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡+1

𝑟𝑡+1 + ϒ max𝑎 𝑄 (𝑠𝑡, 𝑎; 𝜃) 𝑓𝑜𝑟 𝑛𝑜𝑛 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡+1

 Perform a gradient descent step on (𝑦𝑗 − 𝑄(𝑠𝑡,, 𝑎𝑡; 𝜃)) ^2

 Every 𝐶 step align networks with 𝜃′ = 𝜃

 end

end

With the help of Double-Q-Learning we could achieve even better results. Q-learning by itself is

not a perfect method due to the likelihood of overestimating the q-values. If we are to separate the

maximization operation into action selection and action evaluation (Jang). Hence, we propose to

assess the greedy policy considering the online network Q, all while utilizing the target network

Q’ to estimate its value. Doing so allows us to decrease the chances of overestimation.

𝑌𝑡 = 𝑅𝑡+1 + 𝛾𝑄′(𝑆𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑆𝑡+1, 𝑎; 𝜃𝑡); 𝜃′
𝑡)

Here, by changing between the weights we can upgrade 𝜃 and 𝜃′.

Above, we display in detail the algorithm.

 26

3.5.2 Related Work

There are many existing works on Deep Reinforcement Learning in quantitative financial tasks.

The work of Moody & Saffell implemented a policy search for stock trading. Deng et al. showed

that DRL can obtain more profits than conventional methods. Nan et al, Vadori et al, Yang et al,

Zhang et al, talk about more applications that include stock trading because of the lack of labeling

data, they use traditional time series stock price data and combines it with news headline

sentiments, while leveraging knowledge graphs for exploiting news about implicit relationships.

Zhang et al, discuss futures contracts in their paper, Koratamaddi et al discuss alternative data

(news sentiments). The algorithm designs trading strategies for continuous futures contracts. Both

discrete and continuous action spaces are considered, and volatility scaling, Ganesh et al discuss

high frequency trading, they propose very-long short term memory networks, or VLSTMs, to deal

with such extreme length sequences. Bao et al discuss liquidation strategy analysis, their work

builds the foundation for future multi-agent environment trading analysis. Secondly, they analyze

the cooperative and competitive behaviors between agents by adjusting the reward functions for

each agent, which overcomes the limitation of single-agent reinforcement learning algorithms.

Finally, they simulate trading and develop an optimal trading strategy with practical constraints by

using a reinforcement learning method, which shows the capabilities of reinforcement learning

methods in solving realistic liquidation problems. and Buehler et al discusses a new application of

reinforcement learning: to the problem of hedging a portfolio of “over-the-counter” derivatives

under market frictions such as trading costs and liquidity constraints.

27

Chapter 4 Experimental Design

For this part we will use the industry notions and description we have previously elaborated to

present a technique to solve or help in stock market guidance using methods previously described.

To do this we have used the Jupyter Notebook. We have run the code using different agents to

determine the best agent among them. The data we used has been downloaded from GitHub and it

encompasses 6 years’ worth of data between the years 2013 and 2019. We chose 20 stocks to run

our code on, those are:

• AAON, AAP, AMS, COOP, ETO, FANG, FCCY, FIX, GOGL, HCCI, LULU, LUNA,

NQP, PSA, REED, SUMR, SUPN, TREE, VET, ZYXI

The actions one can do according to our findings are: Buy, Sell and Hold. We are going to explain

each of them. An investor would Buy a share at the specified price and would calculate the profit

from it. Sell if the share price is above the point it was bought at. Hold or wait for the next iteration

before deciding to buy or sell. Since there are only a certain number of actions possible to execute,

we are going to classify them accordingly and decide based on their logic.

Flat- one can keep the stock to remain Flat, or buy to become Long, or if choose to sell it becomes

Short.

Short- one can hold to stay Short or buy if they want for it to become Flat, if sell to become Short.

The way we encourage the algorithm to perform according to our intentions in the stock market is

by giving the agent a reward according to its performance defined by the returns. The reason behind

the returns being a better measurement than the prices, it is because it is a more powerful tool that

gives one the freedom to generalize between the stocks and compare them adequately.

We compute the positions we take in the following way:

28

If the agent doesn’t have a position to take, the position taken is considered Flat, the reward at that

time step is computed as:

𝑅𝑡 = 0

The agent will take a Long position if it will buy at time-step 𝑡𝑒𝑛𝑡𝑟𝑦 at price 𝑃𝑒𝑛𝑡𝑟𝑦 because of the

expectancy of an increase in price.

𝑅𝑡 =
𝑃𝑡 − 𝑃𝑒𝑛𝑡𝑟𝑦

𝑃𝑒𝑛𝑡𝑟𝑦

If the expectation is that price will fall the agent will sell at time-step 𝑡𝑒𝑛𝑡𝑟𝑦 at price 𝑃𝑒𝑛𝑡𝑟𝑦 . This

is considered the short position.

𝑅𝑡 =
𝑃𝑒𝑛𝑡𝑟𝑦 − 𝑃𝑡

𝑃𝑒𝑛𝑡𝑟𝑦

Actions

The actions that are possible to take are hold, buy, or sell.

Hold: the agent will do nothing, will just skip that time-step

Buy: the agent will open a buy the share and save it as entry_price

Sell: the agent will close the position, will sell, and calculate the profit

 29

Figure 2:Schema of actions and positions, source: own

Only certain position and action combination are permissible. Hence, the above figure

representation of the logic.

Flat- we can keep our position to stay Flat, if we buy, we become Long, and if we sell, we become

short.

Long- keep to stay Long, sell to become Flat. However, an action to buy to stay Long will become

a hold to stay Long.

Short- we can hold to stay Short, buy to become Flat, and if we sell to become Short it will be

considered as hold to stay Short.

Agents –

After we have established all the details necessary for the environment, we need to test our data,

we can move on to designing the agents. We are going to do so through the help of Deep Learning

 30

techniques. We will look at Neural Networks which is basically a foundation composed of neurons

that has been used mostly for its ability to incorporate the backpropagation algorithm.

The agents we have described in the thesis are:

 Simple Moving Average Agent

 Signal Rolling Agent

 Policy Gradient Agent

 Q-Learning Agent

 Recurrent Deep Q learning Agent

We have chosen to use Recurrent Deep Q learning as it is one of the most popular baseline deep

learning models in the automate trading.

To prove how the agents perform we have tested it on 20 stocks. Due to the limitation of space,

we will present how the agents performed on 4 of these stocks. The stocks are: AAON, AAP, AMS

and COO

31

Chapter 5 Results

We have used the Y axis for the price and X axis for the number of shares involved in a

transaction. Most of the stocks seemed to have performed in the same way. While performing the

experiments, we notice the general trend that the simpler methods compared to the more

complex have less ups and downs markers. In other words, the frequency of the buy and sell

signals are triggered similarly among stocks depending on the agent.

5.1 Simple Moving Average

The graphs show us that there were few events along the way. Despite the dips in the market, the

graphs show a similar pattern.

AAON- moving average agent

Figure 3: Representation of the AAON stock performance using moving average agent. The

black symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 11.3

32

AAP- moving average agent

Figure 4: Representation of the AAP stock performance using moving average agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -132.80

AMS- moving average agent

Figure 5:Representation of the AMS stock performance using moving average agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 0.23

 33

COOP- moving average agent

Figure 6:Representation of the COOP stock performance using moving average agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 4.81

5.2 Signal Rolling Agent

From the experiment we do notice how the agent is more sensitive to the environment and is

performing much more buy/sell actions compared to previous agent.

AAON- signal rolling agent

Figure 7:Representation of the AAON stock performance using signal rolling agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -13.884

 34

AAP- signal rolling agent

Figure 8: Representation of the AAP stock performance using signal rolling agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 72.64

AMS- signal rolling agent

Figure 9:Representation of the AMS stock performance using signal rolling agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -1.52

 35

COOP- signal rolling agent

Figure 10:Representation of the COOP stock performance using signal rolling agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -13.06

5.3 Policy Gradient Agent

This agent is more sensitive to the changes of the market and is taking in to account more

parameters making it more susceptible to the changes of the market. Among all stocks we

noticed the sensitivity of the agent.

AAON- policy gradient agent

Figure 11:: Representation of the AAON stock performance using policy gradient agent. The

black symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 34.02

 36

AAP- policy gradient agent

Figure 12:Representation of the AAP stock performance using policy gradient agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -2046.07

AMS- policy gradient agent

Figure 13:: Representation of the AMS stock performance using policy gradient agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -74.34

 37

COOP- policy gradient agent

Figure 14:Representation of the COOP stock performance using policy gradient agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -538.77

5.4 Q-Learning Agent

The market changes reflect on the performance of the Q-learning agent. We can notice the trend

by looking at the data plotted on the bellow figures

AAON Q-Learning Agent

Figure 15:Representation of the AAON stock performance using Q-Learning agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = 49.52

 38

AAP Q-Learning Agent

Figure 16:Representation of the AAP stock performance using Q-Learning agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -253.33

AMS Q-Learning Agent

Figure 17:Representation of the AMS stock performance using Q-Learning agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -37.66

 39

COOP Q-Learning Agent

Figure 18:Representation of the COOP stock performance using Q-Learning agent. The black

symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -2488.64

5.5 Recurrent Q learning Agent

The most complex agent, however not as sensitive to market changes, we are further

investigating this problem in the bellow tables.

AAON Recurrent Q-Learning Agent

Figure 19:: Representation of the COOP stock performance using Recurrent Q-Learning agent.

The black symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -

17.236

 40

AAP Recurrent Q-Learning Agent

Figure 20:Representation of the AAP stock performance using Recurrent Q-Learning agent. The

black symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -

9956.99

AMS Recurrent Q-Learning Agent

Figure 21:Representation of the AMS stock performance using Recurrent Q-Learning agent. The

black symbols denote selling signal, the blue symbols denote buying signal. Total Gains = -

4084.80

 41

COOP Recurrent Q-Learning Agent

Figure 22:Representation of the COOP stock performance using Recurrent Q-Learning agent.

The black symbols denote selling signal, the blue symbols denote buying signal. Total Gains =

2.64

 42

AAON

Algorithm

Total

Balance

Total

Gains

Total Investments

(%)

Moving Average Agent 10011.31 11.32 0.1132

Signal Rolling Agent 9986.11 -13.88 -0.1388

Policy Gradient Agent 10034.024 34.02 0.3402

Q-Learning Agent 10049.52 49.52 0.4952

Recurrent Q Learning Agent 9982.76 -17.23 -0.1723

Table 1: Results for AAON stock using the 5 agents

AAP

Algorithm

Total

Balance

Total

Gains

Total Investments

(%)

Moving Average Agent 9867.2 -132.79 -1.3279

Signal Rolling Agent 10072.64 72.63 0.7263

Policy Gradient Agent 7953.93 -2046.07 -20.4607

Q-Learning Agent 9746.67 -253.33 -2.5333

Recurrent Q Learning Agent 136.154 -9956.98 -99.5698

Table 2:Results for AAP stock using the 5 agents

AMS

Algorithm

Total

Balance

Total

Gains

Total Investments

(%)

Moving Average Agent 10000.23 0.23 0.0023

Signal Rolling Agent 9998.48 -1.52 -0.0152

Policy Gradient Agent 9925.66 -74.34 -0.7434

Q-Learning Agent 9962.33 -37.66 -0.3766

Recurrent Q Learning Agent 5915.22 -4084.77 -40.8477

Table 3:Results for AMS stock using the 5 agents

 43

COOP

Algorithm

Total

Balance

Total

Gains

Total Investments

(%)

Moving Average Agent 10004.81 4.81 0.0481

Signal Rolling Agent 99986.93 -13.06 -0.1306

Policy Gradient Agent 9461.23 -538.76 -5.3876

Q-Learning Agent 7511.35 -2488.64 -24.88

Recurrent Q Learning Agent 9288.44 2.64 0.0264

Table 4: Results for COOP stock using the 5 agents

By looking at the above tables we can better understand, and prove our suspicion from the

graphs section, which was that the more complex an agent is, the poorer it performs. There are

multiple factors which could influence such a performance. Will describe these factors in more

detail in the conclusion. The algorithms with higher frequency might imply that they are more

sensitive to temporal changes in short time. However, high sensitivity might not always be

advantageous due to a significantly increased transaction fee, which in real world would be

considered.

Source code for the above performed experiments can be found at:

https://github.com/Magda123-blip/A-Comprehensive-Review-of-Machine-Learning-

Methods-in-Stock-Market

https://github.com/Magda123-blip/A-Comprehensive-Review-of-Machine-Learning-Methods-in-Stock-Market
https://github.com/Magda123-blip/A-Comprehensive-Review-of-Machine-Learning-Methods-in-Stock-Market

 44

5.6 Future Work

We can expand our analysis by incorporating Natural Language Processing. Integrating news

and social media data, could give us a better sense of what the public thinks and how they feel

about certain companies. Sentimental Analysis will give the investors the upper hand on

knowing where to invest and data analysts will be able to design better algorithms to capture a

larger portion of the market.

45

Chapter 6 Conclusions

Machine learning has been successfully applied to financial market prediction and investment.

Several studies show that machine learning has great performance comparing with other

methods. To achieve good generalization performance across a wide variety of financial

products, stocks, and markets, the choice of models and training data matter. Therefore, the goal

of this paper was to review the theoretical and practical factors that impact the stock market

movement and price to better understand what impacts the market and how a data analyst should

choose, process, and look at the data. We reviewed which auto trading algorithm performs better.

We further investigate the advancement of AI applications in financial market, especially on the

existing reinforcement learning and deep learning methodologies. In our study, we pre-process a

fairly small-to-mid-scale stock market dataset and compare the models on the configuration

commonly seen for individuals who often have very limited number of computational resources.

Among different agents that we have analyzed we can conclude that in our experiments more

parameters and more complex models could lead to worse performance. One possible solution

would be to have a larger set of training data, a better machine with a greater computational

power. Another resolution is to train the model with a larger set of training data specifically

when we choose the deep reinforcement learning models, to generate a more generalized mode

46

References

Abad, C., Thore, S. A., & Laffarga, J. (2004). Fundamental analysis of stocks by two‐stage

DEA. Managerial and Decision Economics, 25(5), 231-241.

Aggarwal, R. K., & Wu, G. (2006). Stock market manipulations. The Journal of Business, 79(4),

1915-1953.

Auer, P., Jaksch, T., & Ortner, R. (2008). Near-optimal regret bounds for reinforcement

learning. Advances in neural information processing systems, 21.

Bao, W., & Liu, X. Y. (2019). Multi-agent deep reinforcement learning for liquidation strategy

analysis. arXiv preprint arXiv:1906.11046.

Bhandari, J., & Russo, D. (2021, March). On the linear convergence of policy gradient methods

for finite mdps. In International Conference on Artificial Intelligence and Statistics (pp. 2386-

2394). PMLR.

Buehler, H., Gonon, L., Teichmann, J., Wood, B., Mohan, B., & Kochems, J. (2019). Deep

hedging: hedging derivatives under generic market frictions using reinforcement learning. Swiss

Finance Institute Research Paper, (19-80).

Choudhry, R., & Garg, K. (2008). A hybrid machine learning system for stock market

forecasting. International Journal of Computer and Information Engineering, 2(3), 689-692.

Deng, Y., Bao, F., Kong, Y., Ren, Z., & Dai, Q. (2016). Deep direct reinforcement learning for

financial signal representation and trading. IEEE transactions on neural networks and learning

systems, 28(3), 653-664.

Dias, A. (2013). Market capitalization and Value-at-Risk. Journal of Banking & Finance, 37(12),

5248-5260.

Ding, Z., Huang, Y., Yuan, H., & Dong, H. (2020). Introduction to reinforcement learning.

In Deep reinforcement learning (pp. 47-123). Springer, Singapore.

Du, S. S., Lee, J. D., Mahajan, G., & Wang, R. (2020). Agnostic Q-learning with function

approximation in deterministic systems: Tight bounds on approximation error and sample

complexity. arXiv preprint arXiv:2002.07125.

 47

Eddy, S. R. (2004). What is dynamic programming? Nature biotechnology, 22(7), 909-910.

Engel, Y., Mannor, S., & Meir, R. (2005, August). Reinforcement learning with Gaussian

processes. In Proceedings of the 22nd international conference on Machine learning (pp. 201-

208).

Feinberg, E. A., & Shwartz, A. (Eds.). (2012). Handbook of Markov decision processes: methods

and applications (Vol. 40). Springer Science & Business Media.

Friedman, J. H. (1994). An overview of predictive learning and function approximation. From

statistics to neural networks, 1-61.

Ganesh, P., & Rakheja, P. (2018). VLSTM: Very Long Short-Term Memory Networks for High-

Frequency Trading. arXiv preprint arXiv:1809.01506.

Hsu, M. W., Lessmann, S., Sung, M. C., Ma, T., & Johnson, J. E. (2016). Bridging the divide in

financial market forecasting: machine learners vs. financial economists. Expert Systems with

Applications, 61, 215-234.

Hu, J., & Wellman, M. P. (1998, June). Multiagent reinforcement learning: theoretical

framework and an algorithm. In ICML (Vol. 98, pp. 242-250).

Icarte, R. T., Klassen, T., Valenzano, R., & McIlraith, S. (2018, July). Using reward machines

for high-level task specification and decomposition in reinforcement learning. In International

Conference on Machine Learning (pp. 2107-2116). PMLR.

Ireland, P. (2010). Limited liability, shareholder rights and the problem of corporate

irresponsibility. Cambridge Journal of Economics, 34(5), 837-856.

Kappen, H. J. (2011). Optimal control theory and the linear Bellman equation

Koratamaddi, P., Wadhwani, K., Gupta, M., & Sanjeevi, S. G. (2021). Market sentiment-aware

deep reinforcement learning approach for stock portfolio allocation. Engineering Science and

Technology, an International Journal, 24(4), 848-859.

Le, D. Y. N., Maag, A., & Senthilananthan, S. (2020, November). Analysing Stock Market

Trend Prediction using Machine & Deep Learning Models: A Comprehensive Review. In 2020

5th International Conference on Innovative Technologies in Intelligent Systems and Industrial

Applications (CITISIA) (pp. 1-10). IEEE.

 48

Liu, X. Y., Yang, H., Gao, J., & Wang, C. D. (2021, November). FinRL: Deep reinforcement

learning framework to automate trading in quantitative finance. In Proceedings of the Second

ACM International Conference on AI in Finance (pp. 1-9).

Luccioni, A., & Palacios, H. (2019). Using natural language processing to analyze financial

climate disclosures. In Proceedings of the 36th International Conference on Machine Learning,

Long Beach, California.

Malkiel, B. G. (1989). Efficient market hypothesis. In Finance (pp. 127-134). Palgrave

Macmillan, London.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller,

M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602

Moody, J., & Saffell, M. (2001). Learning to trade via direct reinforcement. IEEE transactions

on neural Networks, 12(4), 875-889.

Mosavi, A., Faghan, Y., Ghamisi, P., Duan, P., Ardabili, S. F., Salwana, E., & Band, S. S.

(2020). Comprehensive review of deep reinforcement learning methods and applications in

economics. Mathematics, 8(10), 1640.

Nan, A., Perumal, A., & Zaiane, O. R. (2020). Sentiment and knowledge based algorithmic

trading with deep reinforcement learning. arXiv preprint arXiv:2001.09403.

Ni, Z., Paul, S., Zhong, X., & Wei, Q. (2017, November). A reinforcement learning approach for

sequential decision-making process of attacks in smart grid. In 2017 IEEE Symposium Series on

Computational Intelligence (SSCI) (pp. 1-8). IEEE.

Nosratabadi, S., Mosavi, A., Duan, P., Ghamisi, P., Filip, F., Band, S. S., ... & Gandomi, A. H.

(2020). Data science in economics: comprehensive review of advanced machine learning and

deep learning methods. Mathematics, 8(10), 1799

Nuti, G., Mirghaemi, M., Treleaven, P., & Yingsaeree, C. (2011). Algorithmic

trading. Computer, 44(11), 61-69.

Otterlo, M. V., & Wiering, M. (2012). Reinforcement learning and markov decision processes.

In Reinforcement learning (pp. 3-42). Springer, Berlin, Heidelberg.

Prasad, D. (1994). Is underpricing greater for mixed offerings as compared to pure primary

offerings in the OTC Market. Journal of Financial and Strategic Decisions, 7(1), 25-31.

Rincón‐Zapatero, J. P., & Rodríguez‐Palmero, C. (2003). Existence and uniqueness of solutions

to the Bellman equation in the unbounded case. Econometrica, 71(5), 1519-1555.

 49

Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using connectionist systems (Vol.

37, p. 14). Cambridge, UK: University of Cambridge, Department of Engineering.

Sarangi, P. K., Singh, S., & Sahoo, A. K. (2022). A Study on Stock Market Forecasting and

Machine Learning Models: 1970–2020. In Soft Computing: Theories and Applications (pp. 515-

522). Springer, Singapore

Singh, S. P., Jaakkola, T., & Jordan, M. I. (1994). Learning without state-estimation in partially

observable Markovian decision processes. In Machine Learning Proceedings 1994 (pp. 284-

292). Morgan Kaufmann.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Tola, V., Lillo, F., Gallegati, M., & Mantegna, R. N. (2008). Cluster analysis for portfolio

optimization. Journal of Economic Dynamics and Control, 32(1), 235-258.

Vadori, N., Ganesh, S., Reddy, P., & Veloso, M. (2020, October). Risk-sensitive reinforcement

learning: A martingale approach to reward uncertainty. In Proceedings of the First ACM

International Conference on AI in Finance (pp. 1-9).

Wang, S., & Jing, Y. (2017). Deep Reinforcement Learning with Surrogate Agent-Environment

Interface. arXiv preprint arXiv:1709.03942.

Wen, L., Zhou, K., Li, J., & Wang, S. (2020). Modified deep learning and reinforcement learning

for an incentive-based demand response model. Energy, 205, 118019.

Woergoetter, F., & Porr, B. (2008). Reinforcement learning. Scholarpedia, 3(3), 1448.

Woolridge, J. R., & Dickinson, A. (1994). Short selling and common stock prices. Financial

Analysts Journal, 50(1), 20-28.

Wulfmeier, M., Rao, D., Hafner, R., Lampe, T., Abdolmaleki, A., Hertweck, T., ... & Riedmiller,

M. (2021, July). Data-efficient hindsight off-policy option learning. In International Conference

on Machine Learning (pp. 11340-11350). PMLR.

Yang, H., Liu, X. Y., Zhong, S., & Walid, A. (2020, October). Deep reinforcement learning for

automated stock trading: An ensemble strategy. In Proceedings of the First ACM International

Conference on AI in Finance (pp. 1-8).

 50

Yin, M., & Wang, Y. X. (2020, June). Asymptotically efficient off-policy evaluation for tabular

reinforcement learning. In International Conference on Artificial Intelligence and Statistics (pp.

3948-3958). PMLR.

Zhang, Z., Zohren, S., & Roberts, S. (2020). Deep reinforcement learning for trading. The

Journal of Financial Data Science, 2(2), 25-40.

Zou, S., Xu, T., & Liang, Y. (2019). Finite-sample analysis for sarsa with linear function

approximation. Advances in neural information processing systems, 32.

