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Abstract 

The current state-of-the-art in extracting machine-readable attack behavior graphs from natural 

language cyber threat intelligence (CTI) reports relies on one prominent CTI source such as a high-

profile advanced persistent threat (APT) report. This thesis hypothesizes that multiple CTI sources 

offer complementary fragments of attack behavior due to factors such as variation in analysis 

details of an attack, polymorphic nature of malicious behavior manifestations, and experience and 

resources available to the analyst(s) who produce a CTI report. To test this hypothesis, this work 

proposes a systematic attack behavior graph aggregation approach, called CYTAG, that 

significantly enhances the fidelity of an attack graph given multiple CTI sources about a given 

attack such as an APT. CYTAG achieves this while preserving attack semantics and minimizing 

redundancy of nodes and edges in the aggregated attack graph. Evaluation of CYTAG on CTI 

reports covering multiple years and comparing its attack graph aggregation results with state-of-

the-art attack behavior extraction approach suggests that CYTAG significantly improves the 

detection and forensics arsenal of cyber threat hunters with reasonable aggregation performance 

overhead. 
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Chapter 1: Introduction 

In the world of cyber threat hunting and security operations, Cyber Threat Intelligence (CTI) is 

publicly released as technical reports by practitioners, white papers by security vendors, and 

technical security blogs by researchers. CTI reports play a crucial role as invaluable sources of 

actionable cyber threat information pertinent to attack vectors such as malware, botnets, 

ransomware, and sophisticated cyber-attacks such as Advanced Persistent Threats (APTs). In CTI 

reports, attack motives, goals, and technical progressions are narrated with a wealth of Indicators 

of compromise (IOCs) and causal links among attack activities. 

Prior work: To make the best use of CTI reports for effective cyber threat hunting, attack 

detection, and forensic analysis, the cybersecurity community has developed methods focusing on 

various priorities. Among the notable directions taken are IOC representation and exchange [1]–

[3], IOC extraction [[4], [5]], attack campaign characterization [6], and automated attack behavior 

graph extraction [7]–[9]. All these approaches aim to empower attack detection by reinforcing 

cyber defense countermeasures such as Anti-virus software and Intrusion Detection Systems 

(IDSs). 

Motivation: The focus of this work is on automated extraction of attack behavior graphs from 

natural language CTI reports. The current state-of-the-art [8], [9] in automated extraction of 

machine-readable attack behavior graphs from CTI reports relies on analyzing one prominent CTI 

source such as a high-profile advanced persistent threat (APT) report —hence suffers from the 

single CTI source problem. In this work, we observe that multiple CTI sources often capture 

complementary fragments of threat behavior, and this observation is attributed to multiple factors. 
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Among the main factors are variations in breadth and depth of analysis of an attack, variations in 

how malicious behaviors manifest depending on target environments and triggers, and experience 

and resources available to the analyst(s) who examine attacks and produce CTI reports. This work 

hypothesizes that, if carefully stitched together, the complementary attack semantics fragments 

from multiple CTI sources can potentially result in an attack behavior graph that is even richer in 

attack semantics and consequently improves attack detection and forensics capabilities in 

enterprise settings. 

Approach Overview: To test the aforementioned hypothesis, this work proposes a systematic 

attack behavior graph aggregation approach, called CYTAG, that significantly enhances the 

fidelity of an attack graph given multiple CTI sources about a given attack such as an APT. 

CYTAG achieves this while preserving attack semantics and minimizing redundancy of nodes and 

edges in the aggregated attack graph. Given multiple CTI reports about the same attack (e.g., an 

APT), CYTAG operates in two phases: (i) attack behavior graph extraction and (ii) attack behavior 

graphs aggregation. In phase (i), CYTAG builds on the technique in Extractor [9]and improves it 

to extract attack behavior graphs from complex CTI reports. In phase (ii), attack behavior graphs 

extracted from multiple sources are systematically aggregated to enrich a single-source attack 

behavior graph by adding new nodes and edges. This is done while preserving the overall threat 

behavior narrative and eliminating repetitions that result from overlaps among CTI sources. The 

key intuition here is that through complementary attack behavior captured across multiple sources, 

CYTAG offers improved detection and forensics capabilities when the aggregated attack behavior 

graph is used. 

Evaluation Overview: Evaluation of CYTAG on diverse CTI reports covering multiple years and 

comparing its attack graph aggregation results with state-of-the-art attack behavior extraction 
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approach suggests that CYTAG significantly improves the detection and forensics arsenal of cyber 

threat hunters with reasonable aggregation performance overhead. We evaluated CYTAG by 

analyzing the node, edge, nodeedge relationship of the attack graph generated from the three other 

sources that were collected for each APT report. The APTs analyzed range from currently active 

to obsolete exploited threats. We applied CYTAG on 1K+ dataset of CTI reports which resulted 

in an improved attack graph extraction rate of an average of 21% more than Extractor [9](current 

state-of-the-art approach). Our results show that CYTAG is able to generate IoC-rich aggregated 

attack graphs from multiple CTI sources with high accuracy, demonstrating that our system 

produces promising directions towards improved arsenal for attack behavior graphs for cyber 

threat hunting. 

Contributions: In the space of CTI-guided cyber threat hunting, this work makes the following 

contributions: 

• Enhanced single-source attack graph extraction that improves current state-of-the-art 

(Extractor [9]) with enhancements to data collection and improvement of underlying threat 

dictionary used to power NLP-based graph extraction. 

• A new multi-source attack graph aggregation approach that results in semantically-rich 

attack behavior graph. 

• An evaluation that spans multiple years (2013 – 2019) of CTI reports and a demonstration 

of CYTAG’s superior attack graph extraction capabilities. 

Thesis Organization: This rest of this thesis report is organized as follows. In Chapter 2, we cover 

the background and related work. In Chapter 3, we present the approach details of CYTAG with 

the design on how CYTAG works in more details. In Chapter 4, we evaluate the performance of 
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CYTAG and analyze the effect of the graph aggregation techniques on CTI report datasets. Finally, 

we conclude with insights gained from the study and possible gaps in Chapter 5.
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Chapter 2: Background and Related Work 

This chapter first defines terminology and notations (Section 2.1), and then presents related work 

relevant to CYTAG (Section 2.2). 

2.1 Background 

To ease forthcoming discussions, we define important terminology and notations to be used 

throughout this thesis. 

Indicator of Compromise (IOC). While different variations of the term exist [10], [11] we will 

consider the following as the working definition: an artifact observed on a network or in an 

operating system that, with high confidence, indicates a computer intrusion/attack. Typical IOCs 

include malware signatures, IP addresses/hostnames/URLs associated with malware, botnets, and 

command-and-control (C&C) servers, and hash values of malware binaries. Cyber threat hunters 

or security operation centers leverage preliminary IOCs to build more concrete indicators such as 

unusual inbound and outbound network traffic, unknown programs running within a host, unusual 

activities from privileged accounts (e.g., administrators), and abnormally large number of requests 

for the same file. Once IOCs are identified, they are typically used for early detection of attack 

attempts as part of anti-virus (AV) software and intrusion detection system (IDS). 

Advanced Persistent Threat (APT). It is a stealthy threat actor, typically a nation state or state-

sponsored group, which gains unauthorized access to a computer network and remains undetected 

for an extended period. Alternatively, the term may also refer to non-state-sponsored groups 

conducting large-scale targeted intrusions for specific goals [12]. A typical APT is characterized 
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by the so called “APT kill-chain” which consists of an initial penetration/compromise (e.g., via a 

drive-by-download or a spear-phishing attack) reconnaissance, C&C communication, privilege 

escalation, lateral movement through a network, ex-filtration of confidential information, and 

clean-up of attack footprint [13]. 

Cyber Threat Intelligence (CTI). It is defined as “evidence-based knowledge, including context, 

mechanisms, indicators, implications, and actionable advice, about an existing or emerging 

menace or hazard to assets that can be used to inform decisions regarding the subject’s response 

to that menace or hazard [14]. CTI is instrumental in enabling an enterprise build insight into the 

ever-changing cyber threat landscape to proactively identify and mitigate cyber [15]. With IOCs 

as integral parts, CTI often comes in several forms and a natural language CTI is the subject of 

this thesis. From now on, when we say, “CTI reports”, we mean CTI written a natural language 

such as English, and it contains a technical narrative of how an attack (such as an APT) unfolds. 

Attack Behavior Graph (ABG). For the purpose of this work, what we refer to as a ABG is a 

directed acyclic graph (DAG) representation where the nodes capture entities such as 

programs/processes, files, network sockets etc. Edges represent actions/events such as execution, 

write, read, connect, send etc. An illustration of a ABG is shown in Figure 2-1. The edges are 

meant to capture information flow/causality among nodes depending on the direction. 

Shape Notations: An oval represents a process/program (e.g., bash, sh, /bin/rm). A box refers to 

a file (e.g., /tmp/netrecon.log). A diamond represents network socket/IP address (e.g., 0-

128.61.240.66 9999). Edges are directed from active node such as a process to passive node such 

as a file/network socket, and edge direction indicates information flow (e.g., write, sendto) or 

causality (e.g., clone, execve). 
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Figure 2-1: An illustration of an attack behavior graph structure used in this work 

 

2.2 Related Work 

Existing literature on analysis of CTI reports falls into two broad categories: extraction and 

exchange of IOCs and attack behavior/narrative extraction. In this chapter, we review related work 

in these two categories. 

2.2.1 IOC Extraction and Exchange 

IOC representation via the OpenIOC standard [1] is among the notable CTI exchange formats. 

Based on OpenIOC, several methods for automatically capture of IOCs from unstructured text and 

technical publications were developed. These include STIX [16] and MISP [3], with the flexibility 

of converting one to another. This is typically done by establishing a relation between the IOC 

token and other content in the CTI report, such as the terms “downloads”, “attachment” in Error! 

Reference source not found. adapted from [5]. 

2.2.2 Attack Behavior/Narrative Extraction 

iACE [5]: This approach is an NLP-based semantic enrichment of basic IOC tokens leveraging 

named entity recognition (NER) and relationship extraction (RE). By employing a novel 

application of graph similarity comparison to anchor a phrase with probable IOC tokens and 

context terms, the approach quickly validates the validity of these elements using their 

relationships. This basic technique has been shown to be extremely effective, far exceeding the 

industry’s top-of-the-line IOC analyzer [4] and Named Entity Resolution (NER) tool [17] in terms 

bash "/home/theia/script/simple_x64"1: execve

_0-128.61.240.66_99992: sendto

simple_x64

3: clone
4: clone
7: clone

10: clone
11: clone

"/tmp/netrecon"
5: write
6: write

8: execve

"/bin/sh"
12: execve

"/tmp/netrecon.log"9: write

sh
13: clone
15: clone "/bin/rm"

14: execve
16: execve
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of precision and coverage. Through analysis of over 71,000 security blogs, a substantial number 

of IOCs (over 900K) were extracted, and they include attack domains, hash values signatures, and 

IP addresses of malicious actors. While iACE is among the early methods to automatically enrich 

IOCs from CTI reports, it is limited to a single source (only security blogs) and its semantic 

enrichment is limited to sentence (misses intra- and inter-CTI report semantic link).

 

Figure 2-2: An example of relation between the IOC token and other content [5] 

TTPDrill [7]: This work demonstrates the use of threat action ontology [7] and makes use of 

reports from technical CTI websites (e.g., Symantec Security Center). These reports are filtered 

based on some features such as number of words as articles containing Tactics, techniques, and 

procedures (TTPs) which usually have longer words as they help give a description of the attack, 

their threats, actions, and targets compared to other articles such as news on the web page and ads 

that are considerably shorter [18]. Another feature is securityAction-word density [19] i.e., 

extracting all verbs and calculate the percentage of appearance of verbs in an article compared to 

the total number of words in it and securityTarget-word density, i.e., extracting all security nouns, 

calculating the percentage of nouns in an article compared to the total number of words in the 

article. Each report contains links that are downloaded, some containing irrelevant information to 
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CTI such as ads, contact-us, etc. A document classifier, Support Vector Machine (SVM), is used 

to filter out unwanted content. There is a text sanitization process on the scraped texts by 

comparing the Document Object Model (DOM) trees to nodes that correlate to web elements such 

as images and HyperText Markup Language (HTML) tags to remove them. 

ChainSmith [6]: This work presents extraction of IOCs from technical security articles by 

detecting based on multiple articles and not specific IoCs and categorizing them based on the 

malware delivery model as CTI reports contain noise, i.e., information not related to attack. The 

dataset used were collected from Symantec’s WINE platform [20] because of the coverage on 

large number of hosts and similarity with other security vendors. The sources were selected on 

articles likely to contain detailed information about the attack and from diverse sources (blogs, 

news websites, etc.). ChainSmith makes use of python NLTK [21] and Stanford coreNLP [22]and 

uses word2vec [23] to parse words semantically. To get functional similarity instead of topical 

similarity on words, ChainSmith utilizes dependency-based word embedding. To improve the 

classification of IOCs by removing irrelevant words, a list of rules with regular expressions to 

identifying candidate IOCs are used. With known repetitions found in sentences when describing 

the same IOC, ChainSmith trains binary classifiers to identify topic probabilities and defines 

features to identify sentence topics that result in a reduced false positive rate. 

GapFinder [24]: In this work, the proposed approach checks for semantic inconsistencies in CTI 

reporting and analyzes structured relations extracted from CTI sources with over 474K articles. It 

identifies technical inconsistencies that arise in the description of open-source malware by 

inferring similar terms for different words in unstructured reports. GapFinder derives structured 

relation-types and entity-types of the text. In the relation-type a malware dictionary is created to 

find sentences that contain malware names using Part of Speech (PoS) tagging and dependency 
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parsing and constructs a malware graph based on the common node which refers to the malware 

name. 

Extractor [9]: This approach is aimed to generate provenance graphs automatically from CTI 

reports, evaluate various threat reports and real-world attacks by extracting graphs that match those 

produced manually by security specialists. It solves one of the challenges of extracting IOCs from 

complex sentences seen in iACE[5] . Various NLP toolkits (e.g., Spacy [25], deep BiLSTM) are 

used on the unstructured texts of the CTI reports to ensure the output contains information relating 

to the attacks. Several analyses were done on the text of the CTI reports from text transformation 

to shorten long sentences to shorter forms which contain an action per sentence to homogenization 

(replacing multiple textual representations of the same concept to a common textual 

representation). The success of this paper was the several rounds of text transformations that 

enables to convert a highly complex sentence into a simpler form while still having the behavior 

of the attack i.e., the action and its context. This thesis builds on Extractor with multi-source 

aggregation of attack behavior graphs as the novel contribution. In section 4.3.2, we compare 

CYTAG’s aggregated graph results against Extractor’s single-source attack behavior graph 

results. 

AttacKG [8]: This study proposes automatic extraction of structured attack behavior graphs from 

several CTI reports while identifying the adopted attack techniques. The key idea is due to the gap 

that exists in individual reports that give a limited description of an attack pattern. It scrapes CTI 

reports using NLP-based report parsing [26] to extract attack-relevant entities. In doing so, it 

preserves the information of the entities by replacing them with commonly used words to exclude 

special characters based on the entity type identified with an open-source IOC recognizer [4]. 

Similar to GapFinder [24], entities are separated into IOC and non-IOC entities with non-IOC 
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classified into 7 types. With this classification a NER model is adopted to allow for better 

extraction and recognition of entities in CTI reports. To extract dependencies, a dependency tree 

is constructed using a learning-based natural language processing which parses each sentence as 

each entity establishes dependencies with an entity closest to it. Given the attack entities and 

dependencies, an attack graph is generated that describes the attack behaviors that appear in a CTI 

report using the MITRE template [27].
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Chapter 3: Approach 

This chapter first presents an overview of CYTAG in Section 3.1 and then details of CYTAG in 

Sections 3.2 - 3.5. 

3.1 CYTAG Overview 

The main goal in CYTAG is to enrich an attack behavior graph via systematic aggregation of 

individual attack graphs generated from individual CTI reports. As motivated Chapter 1, the key 

intuition behind CYTAG is that multiple CTI sources offer complementary IOCs that, if 

systematically aggregated, are crucial to result in a richer attack behavior graph that not only covers 

more ground but also enables capturing more attack signals when the aggregated graph is used as 

a basis for intrusion detection or forensic analysis. Towards this goal, given multiple CTI reports 

about the same attack (e.g., an APT), CYTAG operates in two phases: (i) attack behavior graph 

extraction and (ii) attack behavior graphs aggregation. 

In phase (i), CYTAG learns the relationship between IOCs and the threat actions within a sentence 

using NLP techniques. To capture the characteristics of IOCs in CTI reports, of-the-shelf NLP 

techniques are not suitable for cybersecurity related domains. To address this limitation, in 

CYTAG, we instead rely on analysis of sentences from a dictionary of cybersecurity related words 

and adopt the attack behavior graph extraction technique in Extractor [9] to extract attack graphs 

from complex sentences containing IOCs. 

In phase (ii), attack behavior graphs extracted from multiple sources are systematically aggregated 

to enrich a single-source attack behavior graph by adding new nodes and edges. This is done while 
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preserving the overall attack behavior narrative and eliminating repetitions that result from 

overlaps among CTI sources. 

Figure 3-1 shows an overview of CYTAG with elaborations on phases (i) and (ii). As part of phase 

(i), we perform data collection to acquire multiple CTI reports for each widely disclosed attack. In 

CTI, due to the unstructured manner of collecting sources, finding a centralized repository that 

consists of multiple CTI reports over the years is not easy. To fill this data acquisition gap, we 

begin with the CTI reports maintained in the OSINT Framework [28] and the APTnotes corpus 

[29] —a repository that contains CTI reports of prominent APTs spanning well over a decade 

(2008 – 2022). To augment the APTNotes dataset in a manner that enables us to collect multiple 

CTI reports for each APT, we build a web scrapper and filter. To sanitize each CTI report from 

non-IOC content, we apply DOM tree analysis to remove content that may lead to false positives 

(e.g., IP address/host name of the CTI source). The next step involves the preprocessing of each 

sentence to determine Subject-Verb-Object (SVO) triplets in each CTI report to serve as pre-

cursors for extraction of attack behavior attack graphs. At the core of the graph extraction method 

is Semantic Role Labeling (SRL), which assigns role-related labels (e.g., subject, object, action) 

to enable the extraction of the attack behavior graph. 

 

Figure 3-1: Overview of the CYTAG pipeline. 

As part of phase (ii), given multiple attack behavior graphs of the same CTI report, we analyze 

the nodes and edges of the generated graphs, and more importantly subgraphs in each graph 

that can be stitched together to result in a semantically-rich and comprehensive attack behavior 
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graph. The main intuition here is that by systematically aggregating complementary attack 

behavior captured across multiple sources, CYTAG offers improved detection and forensics 

capabilities when the aggregated attack behavior graph is used. It is noteworthy that in order to 

enrich the aggregated graph with threat-relevant graph elements we use a varying range of CTI 

sources that involve diverse threat actors such as malware, botnets, and ransomware. After the 

graph aggregation, the effectiveness is evaluated by comparing the aggregated graph against 

the individual graphs generated by Extractor [9] and graphs generated by AttacKG[8]  —a 

recent work that builds on Extractor. 

In the rest of this chapter, we expand our discussion on the different components of CYTAG. 

3.2 CTI Dataset Collection 

The common problem faced in CTI information gathering is that CTI reports are come in 

heterogeneous forms such as white-papers, technical reports, and blog posts. 

Moreover, they come as a mix of structured (e.g., CSVs) and mostly unstructured (e.g., natural 

language text). Although there exists an inventory of CTI reports via the centralized OSINT 

Framework which provides APTnotes [28], there are several other CTI reports that are not 

accounted for because of reasons such as authors naming of the CTI title differently, reports 

coming much later than the first CTI report, or simply overlooked by the maintainers of OSINT 

and APTNotes. 

Enhancement to CTI Data Collection: To acquire a more comprehensive CTI dataset for 

CYTAG, we scale up the data collection through a combination of headless browsing, web 

scrapping, file format conversion, and automated search. Leveraging the popular headless 

browser automation engine, Selenium [30], we automate the process of visiting and rendering 

a CTI source URL. Using the Beautiful Soup [31]web scrapping engine, we parse the web pages 

of CTI reports rendered by Selenium and extract data to a text format and use it as a universal 
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intermediate representation for processing CTI reports. Using PDFMiner [32], we convert CTI 

reports in PDF to text format. We leverage automated search APIs where we submit as search 

query the title of a CTI report or name of a high-profile APT (e.g., one of the names from 

APTNotes) and focus on URLs of the top search results from search engines such as Google 

and Bing. 

3.3 CTI Content Sanitization 

After the dataset collection step, to avoid including content like website name that do not pertain 

to the attack, the dataset is cleaned to remove details about the site such as promotions, contact 

details, login pages etc. This is done by analyzing the DOM tree of each website to understand the 

common HTML tags to be included in the scrapped data. Furthermore, an NLP-based text cleaner 

is designed to remove white spaces from the saved text files by analyzing each sentence in the text 

file and reducing the length. Doing so further reduces the graph generation time as the system goes 

through each sentence in the text file. 

3.4 Attack Behavior Graph Extraction 

To achieve extraction of graphs from the sanitized text of CTI reports, we build on the state-of-

the-art approach in Extractor [9]. The design of Extractor is powered by NLP techniques such as 

normalization, resolution, summarization, and semantic role labeling, all of which are tailored for 

CTI report analysis. 

The first round of transformation that simplifies long sentences to a canonical form by breaking 

them into shorter sentences is Normalization, while resolution handles text ambiguity. Then, 

summarization removes text in the sentences that are not related to the attack behavior i.e., do not 

contribute to the semantics of the attack narrative. The output of the summarized texts are in the 
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form of Subject, Verb, and Object (SVO). Finally, the graph extraction uses semantic Role 

labelling (SRL) to discover the roles of words in sentences, grouping them into arguments and a 

set of dictionaries (system call dictionary and CTI noun dictionary) to properly represent the verbs 

and actions in the sentences. 

Enhancement to Extractor: This thesis improves the extraction accuracy of Extractor [9] in two 

ways. First, since Extractor does not support extraction of IOCs from images embedded in CTI 

reports, we add this feature to enrich the scope of the analysis. We do so by leveraging the tesseract 

library for text extraction from images [33]. Second, we add more words in the set of dictionaries 

needed for identifying the verbs found in the sentences as security reporters have varying 

vocabulary. 

3.5 Attack Behavior Graphs Aggregation 

In this section, we highlight the properties of a graph (G) based on Nodes (V) and Edges(Y) and 

present solutions from [34] to implement on a set of graphs N(G) and generate aggregated attack 

graphs with no overlapping nodes or edges while the attack description (semantics) of the APT 

and likewise improving it in an efficient and effective method. 

Setting: Given a set of graphs (G1,...,Gn) each graph Gi has multiple nodes and edges represented 

as V= (V1,...,Vm), Y= (Y1,...,Yk) respectively, with G1 represented as ) and Gn 

as ( ). Note that n is number of graphs (e.g., n = 3 if we generate attack graphs 

from three distinct CTI sources), m is number of nodes for a given graph, and k is number of edges 

for a given graph. The values of m and k vary depending on the size of the graph at hand. 

In addition, each node has a set of attributes (e.g., node type) represented as AV. Similarly, 

AY represents the set of attributes for edges that determine the relationship (edge label) to form 
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a node pair between the respective nodes. With several Nodes (V) and Edges (Y), the nodes and 

edges have relationships of the form (ni – edge – nj), that connect node ni with node nj to form 

node pairs. 

CYTAG Aggregation Intuition: Before sketching the approach formally, below we give an 

intuitive illustration of how the graph aggregation is done in CYTAG. Suppose we are given three 

sources of an APT report represented as attack graphs G1, G2, and G3. In Figure 3-2, we have G1 

generated from a CTI snippet of the LuckyMouse APT in 2018 from first source (APTNotes [29]). 

Likewise, G2 and G3 are graphs generated from CTI snippets from two other sources of the same 

APT. As defined in Section 2.1, the nodes the graphs are represented as ellipse for 

processes/programs and using box for files. 

 

Figure 3-2: Intuitive illustration of attack behavior graph aggregation in CYTAG. 

Merge result using graph C and G3, note the “zazu.txt” file is merged first before the “LauncherModule” process.

The two nodes (“shikata_ga_nai_encoder” and “code” highlighted in red)  from G1 and G2 
above are merged first, as they have more common set of node and edge type attributes. 

Graph G1 Graph G2 Graph  G3

Graph C, above results from G1 and G2 , with the ellipses (processes) in red showing the nodes that were 
merged first.

Aggregate graph Gagg of the three graphs. This is the final output of the aggregation process.

Graph C

Gagg
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CYTAG Aggregation Method: Algorithm 1 sketches the core of the multisource attack behavior 

aggregation approach in CYTAG. Notations used in the algorithm are defined in Table 3-1. For 

the sake of illustration, the algorithm is demonstrated for three graphs G1, G2, and G3, but in 

principle the idea should work for n graphs generated from n CTI sources of a certain APT. The 

aggregation happens progressively by taking two graphs at a time and using the aggregation of the 

two graphs as a base for the next cycle of aggregation, until no individual graph remains to be 

aggregated. As line 1 shows, G1 and G2 are first taken to find a grouping of nodes from the two 

graphs by based on homogeneous edges using node and edge attributes respectively. Line 2 is the 

iterative part of the algorithm where the process of grouping continues until no further grouping is 

feasible. Line 3 shows what happens within the loop of line 2, where the actual union of two graphs 

at hand is performed to generate a temporary composition C, which will be used as a base graph 

for the next grouping and then union. After each union computation, notice in line 7 that the graph 

structure needs to be updated so as to document the progress of the aggregation. Finally, line 9 

produces the aggregated graph Gagg. 

Table 3-1: Notations in graph aggregation. 

 

 

Notation Description
F The aggregation function performs the merge of two graph inputs.
Gn The number of graph inputs
V Node representation of graphs.
Y Edge representation of graphs
AV Set attributes of node-types such as file, process, etc.
C Initial output obtained from the union of two graphs.
Gagg Aggregated graph output of F
AY Edge-type attribute e.g., write, read, send, execute etc.
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Algorithm 1 Φ (Gn,V,Y,AV , AY , C, Gagg) 

Input: G1, G2, G3: 3 graphs; AV ⊆ A(Gn): a set of node attributes; AY ⊆ A(Gn) : a set of edge 

attributes; 

Output: An aggregate graph, Gagg 

1: Compute the compatible grouping of G1 and G2 by identifying nodes from both graphs alongside 

the edges. 

2: while there are node and edge grouping, set respective attributes types AV, AY  

   do 

3: Compute the union on G1 and G2, generate C 

4: Initialize the graph structures 

5:  With C and G3, begin node and edge grouping and assign attributes based on node, edge 

relationship 

6: Compute the union of C and G3 

7: Update the graph structures 

8: end while 

9: Form the aggregate graph Gagg 

10: return Gagg 
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Baseline aggregation alternative: In the evaluation in Section 4.3.1, we will compare the 

aggregation in Algorithm 1 (which we call “Aggregation Method I”) with a baseline aggregation 

which we call “Aggregation Method II”. In the baseline approach, instead of systematically 

performing the aggregation as in Algorithm 1, we take a rather simplistic approach of merging the 

sanitized text representation of each CTI source of an APT into one file and feed it to the enhanced 

Extractor pipeline. Intuitively, the graph generated from the merger of multiple sources needs to 

capture a good chunk of the threat semantics. However, it is also likely to result in redundant nodes 

and edges and is potentially error-prone because it is a naive merging of the CTI text from different 

sources.
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Chapter 4: Evaluation and Results 

This chapter presents the dataset, experimental setup, and evaluation results of CYTAG. The 

evaluation is guided by the following research questions: 

• RQ1: How do the two aggregation methods compare? 

• RQ2: How effective is the aggregation of multiple threat behavior graphs in CYTAG 

compared to state-of-the-art graph attack generation? 

• RQ3: What is the runtime overhead of CYTAG graph aggregation? 

4.1 Dataset 

 

Figure 4-1: Percentage of CTI reports based on number of unique sources 

To evaluate CYTAG, we collected CTI reports summarized in Table 4-1. The CTI reports are 

categorized into years from 2010 to 2021. These reports cover several APTs spanning diverse 

threat vectors such as malware, ransomware, botnets, and spyware attacks. The source of the 

dataset is the OSINT used by previous works [3] for IOC analysis and graph generation. In total, 
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we collect 1456 reports with at least 2 sources per APT report. Figure 4-1 shows the distribution 

of number of distinct CTI sources. About 70% of APT reports have 4 distinct CTI sources while 

about 20% have 3 distinct sources. The remaining 10% have 2 sources as can be seen from the 

Figure. From the APTNotes dataset [29], we collected the individual PDF versions of the APTs 

and then expanded each with APT reports from other CTI sources. To do so, we employ the data 

collection enhancement described in Section 3.2 which takes advantage of a web scrapping, 

headless browsing, and automated search. 

Table 4-1: Summary of CTI reports dataset 

 

4.2 Experimental Setup 

CYTAG is implemented in Python reusing graph extraction components from Extractor [9]. Next, 

we describe our experimental setup. 

Year
# of CTI 
Reports 

from [28]

# of Multi-
sources Total

2010 10 23 33
2011 15 33 48
2012 25 62 87
2013 44 100 144
2014 90 186 276
2015 65 180 245
2016 52 108 160
2017 80 172 252
2018 21 52 73
2019 18 45 63
2020 4 10 14
2021 15 46 61
Total 439 1017 1456
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• Comparison of aggregation techniques: We generated attack graphs using both compiled 

CTI report input and individual CTI report input fed into CYTAG to compare the node and 

edge comparison of the respective outputs. 

• Comparison with related work: We compare CYTAG with the original and enhanced 

Extractor [9]. The enhanced Extractor comes with extraction of IOCs from images in CTI 

reports and expansion of the verbs in the action dictionary used in the graph extraction 

pipeline. 

Comparison of Aggregation Techniques: In this experiment, we compare the output of the 

aggregation-by-aggregation approach I and II. For approach I, we extract the attack graphs of each 

CTI source of each APT and save them with their APT title as [A(G1),....,A(Gn)]. The output of the 

graph extraction is saved in three formats: PDF (for visual inspection of attack progression), DOT 

(for automated analysis during aggregation), and JSON (to ease feeding an attack graph to IDSs). 

In approach II, we take a single CTI report compiled from multiple sources of each APT as the 

input to Extractor and generate an attack graph. The new aggregated attack graph with the 

compiled source A(Gc) is produced in PDF and DOT format. For each APT, the respective DOT 

files of approaches I and II are then analyzed to compare their effectiveness based on the difference 

in nodes and edges between the two approaches. 

Comparison with Related Work: In this experiment, we evaluate CYTAG and Extractor [9] (by 

reproducing the public source code 1) CTI reports used by the authors of Extractor. Specifically, 

we first analyze the differences in the nodes and edges of the respective graphs determining which 

has more information about the attack in question. 

 
1 https://github.com/ksatvat/Extractor 
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Runtime Overhead Measurement: In this thesis, we ran the implementation of CYTAG to gather 

the datasets, pre-process CTI reports, generate the attack graphs, and perform the aggregation on 

an 8-core CPU, 8-core GPU 16-core Neural Engine Apple M1 chip and 16GB of memory. To 

measure the performance overhead 12 of the 16GB memory was used. 

4.3 Results and Discussion 

This section presents the results of the experiments described above. Firstly, we show the 

comparison results of the aggregation approaches I and II. Second, we compare the performance 

of CYTAG with Extractor. Lastly, we report on runtime overhead of CYTAG. 

4.3.1 Comparison of Aggregation Techniques 

To test the effectiveness of the aggregation methods on the dataset from Table 4-1 we ran 

approach I, which takes each extracted graphs from multiple CTI reports and systematically 

analyses the attributes of the graphs to generate the aggregated graph in a manner that prevents 

overlapping edges and repeated nodes. In the results shown in Table 4-2, although approach II 

produces a larger graph output with an increased number of nodes and edges. Further analysis 

of the graph output by approach II, however, suggests that there are node repetitions in the DOT 

file. While the larger graph seems appealing on the surface, we note that such redundancy of 

nodes and edges could potentially slow-down searching/traversal by an IDS or performing 

forensics after attack detection. The conclusion is that the naive approach is not only less precise 

but also more expensive computationally. 

Take-away: With respect to RQ1, our conclusion of the comparison between approach I and II 

suggests that although the output of approach II showed more node output by an average of 5% 

across the CTI reports, this difference was because of the repetitive entities and edges present in 

the result which would make the use of approach II in practice less feasible. 
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Table 4-2: Comparison of aggregation methods I and II 

CTI Source 
Aggregation Method I Aggregation Method II 

|V| |Y| |V| |Y| 
OceanLotus 
[35]–[37] 415 261 453 386 

GhostDuke 
[38]–[40] 342 220 400 283 

SeaTurtle [41]–
[43] 257 196 266 250 

Tortoiseshell 
[44]–[46] 202 285 251 334 

Waterbug [47]–
[49] 329 214 352 304 

 

4.3.2 Comparison with Closely Related Work 

Our comparison results are summarized in Table 4-3. The first column is the name of the CTI 

report as publicly documented. Note that, for fair comparison, we focus on five CTI reports that 

are also used by Extractor. The next six columns are the number of nodes V(G) and edges Y(G) 

of graphs extracted with original Extractor, CYTAG Graph Generator, and the nodes and edges of 

the aggregated graph generated with CYTAG. The “CYTAG Sources” column indicates the two 

additional CTI sources considered in addition to the one from APTNotes (shown in first column) 

—making it uniformly 3 CTI sources across the board. The last column shows the year of the two 

additional CTI sources respectively, overall covering 2013, 2015, 2016, and 2019. 

As can be seen from the Table 4-3, the number of nodes and edges increased after improving the 

graph extraction process of this approach. On average there was an increment of about 12% and 

32% in the nodes and edges of the graphs generated. The enhanced graph extraction process helped 
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in getting better result with CYTAG, after generating the respective graphs of the sources Gn for 

the aggregation process F(Gn). 

In Table 4-3, we can see that the number of Edges (Y) and Nodes (V) have increased significantly, 

which enhances the attack semantics. We observed a high node and edge addition with the 

aggregation of the graphs. The increased number of nodes and edges in the attack graph are a result 

of the improved source input that offers complementary attack narrative. Figure 4-2 and Figure 

4-3 demonstrate the various APTs and show the increase in Nodes and Edges for CYTAG. 

 

Figure 4-2: Node-type distribution of CTI reports 

 

Figure 4-3: Distribution of node-types in merged/compiled CTI reports 



 

27 

 Table 4-3: Effectiveness of Extractor, CYTAG Graph Generator, and CYTAG 

 

Take-away: With respect to RQ2, as can be seen from the results in Table 4-3, the number of 

nodes and edges in the threat behavior graph generated by CYTAG is on average more than double 

of the results of Extractor, which speaks to the overall effectiveness of the CYTAG aggregation 

approach. 

4.3.3 Cytag runtime overhead 

To answer RQ3, we ran CYTAG on dataset from selected years (2013, 2015, 2018, 2019) shown 

in Figure 4-4. The goal is to measure the average time it takes to aggregate attack graphs across 

the datasets. These years were used to show the efficiency of CYTAG on current APT attacks and 

previous ones. From the result shown in Figure 4-5, the time it takes for a year is dependent not 

only on the number of CTI reports, but also the content of the attack description. On average, it 

took approximately 1101 seconds to complete the aggregation of about over 131 CTI sources with 

2-4 sources per an aggregation. The per-aggregation average compute time to generate the 

aggregated graph for CTI reports in 2013, 2015, 2018, and 2019 were 1582, 2240, 318, and 264 in 

seconds, respectively. 

CTI Source Extractor  CYTAG Graph 
Generator 

 CYTA
G 

 CYTAG Sources CTI Report 
Year 

 ∥V | ∥Y 
| 

∥V | ∥Y 
| 

∥V | ∥Y |   

Carbanak [50] 22 31 42 99 64 113 [51], [52] 2019,2019 
Deputy Dog 

[53] 
11 12 16 24 27 49 [54], [55] 2013,2013 

Dusty Sky [56] 12 21 30 58 178 344 [57], [58] 2016,2015 
njRAT [59] 32 32 43 67 85 193 [60], [61] 2013,2019 

Uroburos [62] 19 23 26 33 97 178 [63], [64] 2015,2015 
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Figure 4-4: CTI reports analyzed with CYTAG to measure runtime overhead 

 

Figure 4-5: Average time taken for CYTAG to generate aggregated attack graph 

4.3.4 Overall evaluation summary 

Our evaluation suggests that CYTAG (a) outperforms the current state-of-the-art attack graph 

extraction, (b) enriches attack graphs through aggregation of graphs generated from multiple 

complementary CTI reports, and (c) incurs reasonable runtime overhead for a one-time (once in a 
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while in the worst case) aggregation of attack graphs. Overall, CYTAG proved that systematically 

aggregating attack graphs from multiple CTI reports improves the semantic utility of a threat 

behavior graph towards improved detection and forensics of sophisticated attack campaigns that 

target enterprises or nation-states. 
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Chapter 5: Conclusion and Future Work 

5.1 Conclusion 

This thesis presented CYTAG, a new contribution for multi-source aggregation of attack behavior 

graphs to improve cyber threat hunting capabilities using natural language cyber threat 

intelligence. CYTAG significantly enhances the fidelity of an attack graph given multiple CTI 

sources about a given attack such as an APT and achieves this while preserving attack semantics 

and minimizing redundancy of nodes and edges in the aggregated attack graph. 

By evaluating CYTAG on diverse CTI reports covering multiple years and comparing its attack 

graph aggregation results with state-of-the-art attack behavior extraction approach, we 

demonstrate that CYTAG significantly improves the detection and forensics arsenal of cyber threat 

hunters with reasonable aggregation performance overhead. We applied CYTAG on 1K+ dataset 

of CTI reports which resulted in an improved attack graph extraction rate of an average of 21% 

more than Extractor [9] (current state-of-the-art attack behavior graph extraction approach). 

5.2 Future work 

Our study shows that CYTAG is able to generate aggregated attack graphs containing enhanced 

attack semantics from multiple sources, well beyond the state-of-the-art techniques can achieve. 

However, still our technique is not operating at a scalable performance for real-time detection. 

These problems in our study come from the limitation of underlying tools and techniques we use. 

Specifically, in the aggregation phase the use of a Graph Neural Network (GNN) with deep 

learning to further analyze graph structural data could improve the aggregation time significantly. 
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Also, as CYTAG uses some graph structure attributes for the grouping, adding more attributes for 

the grouping of nodes and edges in graphs can improve the aggregation. Another interesting 

observation as seen from the results is that an improved dictionary resulted in better graph 

generation ---which entails the need to continuously update the dictionary. Furthermore, in the 

data collection phase, our technique can be improved further by firstly finding more repositories 

of CTI reports to use the titles to perform the web scrapping. Secondly, during the web scrapping, 

the search result scraped should include more than the first page. For example, during the manual 

search of some CTI titles, some useful articles were found on the second page of the search result 

output. In addition, an initial cleaning of articles selected for the graph aggregation because of 

large number of inconsistent articles might lead to false discoveries. Future efforts are still required 

to tackle these issues. 

In summary, while CYTAG produces aggregated attack behavior graphs from multiple CTI 

sources, and the aggregated graphs carry enhanced attack semantics and forensic evidence, we 

identify the following avenues to further enhance CYTAG: 

• Using CYTAG aggregated attack behavior graphs, testing its effectiveness on a 

real/simulated intrusion detection system to filed-test its attack detection effectiveness. 

• Further reduction of the aggregation time to enable scalable performance of CTI analysis 

in a real-time scenario. 

• Experiment on signature detection and attack patterns from bad actors for novel attack 

behavior discovery.
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