

CYTAG: Multi-Source Behavioral Aggregation of Natural Language Cyber Threat Intelligence

by

Olajide D. David

A thesis in partial fulfillment
of the requirements for the degree of

Master of Science
(Cybersecurity and Information Assurance)

in the University of Michigan-Dearborn
2022

Master’s Thesis Committee:

Assistant Professor Birhanu Eshete, Chair
Professor Hafiz Malik
Professor Bruce Maxim

© Olajide D. David
2022

ii

Dedication

I dedicate my thesis work to God almighty for His favor, grace, the wisdom, and strength

granted to me to complete this work. A heart felt gratitude to my loving parents Mr. and Mrs.

David, for making this possible with their unending support and encouragement throughout the

course of my master’s degree program. To my sisters who have always been by my side and are

special. Also, to Tommy for motivating me.

I would also like to recognize Professor Di Ma for her words of encouragement and support,

my program adviser Associate Professor Jinhua Guo and all the other teaching staff of the

department of Cybersecurity and Information Assurance for the unrelenting efforts towards

ensuring I had access to the best possible learning conditions and training.

I also dedicate this thesis to my friends Monica Oriaghe, Arnaud Shyaka, Kunle, and Rand

who have supported me through this journey, this journey would not have been possible without

them. To Mr. Michael Yockey, Mr. David Bankole, Dr Khan just to mention a few, you all have

been amazing, supportive, and amiable. I want to say a very big thank you.

iii

Acknowledgements

Special thanks go to my supervisor Professor Birhanu Eshete for his guidance, support, and

unrelenting efforts towards making this thesis a success throughout the semester.

I would like to thank my wife Temi, who helped me during the tough moments of this thesis both

technically and emotionally.

iv

Table of Contents

Dedication .. ii

Acknowledgements .. iii

List of Tables .. vi

List of Figures .. vii

Abstract ... viii

Chapter 1: Introduction ... 1

Chapter 2: Background and Related Work ... 5

2.1 Background ... 5

2.2 Related Work .. 7

2.2.1 IOC Extraction and Exchange ... 7

2.2.2 Attack Behavior/Narrative Extraction ... 7

Chapter 3: Approach .. 12

3.1 CYTAG Overview ... 12

3.2 CTI Dataset Collection ... 14

3.3 CTI Content Sanitization ... 15

3.4 Attack Behavior Graph Extraction ... 15

3.5 Attack Behavior Graphs Aggregation .. 16

Chapter 4: Evaluation and Results ... 21

v

4.1 Dataset .. 21

4.2 Experimental Setup .. 22

4.3 Results and Discussion .. 24

4.3.1 Comparison of Aggregation Techniques ... 24

4.3.2 Comparison with Closely Related Work ... 25

4.3.3 Cytag runtime overhead ... 27

4.3.4 Overall evaluation summary .. 28

Chapter 5: Conclusion and Future Work ... 30

5.1 Conclusion ... 30

5.2 Future work ... 30

References .. 32

vi

List of Tables

Table 3-1: Notations in graph aggregation. .. 18

Table 4-1: Summary of CTI reports dataset ... 22

Table 4-2: Comparison of aggregation methods I and II .. 25

Table 4-3: Effectiveness of Extractor, CYTAG Graph Generator, and CYTAG 27

vii

List of Figures

Figure 2-1: An illustration of an attack behavior graph structure used in this work 7

Figure 2-2: An example of relation between the IOC token and other content [5]. 8

Figure 3-1: Overview of the CYTAG pipeline. .. 13

Figure 3-2: Intuitive illustration of attack behavior graph aggregation in CYTAG. 17

Figure 4-1: Percentage of CTI reports based on number of unique sources 21

Figure 4-2: Node-type distribution of CTI reports ... 26

Figure 4-3: Distribution of node-types in merged/compiled CTI reports 26

Figure 4-4: CTI reports analyzed with CYTAG to measure runtime overhead 28

Figure 4-5: Average time taken for CYTAG to generate aggregated attack graph 28

viii

Abstract

The current state-of-the-art in extracting machine-readable attack behavior graphs from natural

language cyber threat intelligence (CTI) reports relies on one prominent CTI source such as a high-

profile advanced persistent threat (APT) report. This thesis hypothesizes that multiple CTI sources

offer complementary fragments of attack behavior due to factors such as variation in analysis

details of an attack, polymorphic nature of malicious behavior manifestations, and experience and

resources available to the analyst(s) who produce a CTI report. To test this hypothesis, this work

proposes a systematic attack behavior graph aggregation approach, called CYTAG, that

significantly enhances the fidelity of an attack graph given multiple CTI sources about a given

attack such as an APT. CYTAG achieves this while preserving attack semantics and minimizing

redundancy of nodes and edges in the aggregated attack graph. Evaluation of CYTAG on CTI

reports covering multiple years and comparing its attack graph aggregation results with state-of-

the-art attack behavior extraction approach suggests that CYTAG significantly improves the

detection and forensics arsenal of cyber threat hunters with reasonable aggregation performance

overhead.

1

Chapter 1: Introduction

In the world of cyber threat hunting and security operations, Cyber Threat Intelligence (CTI) is

publicly released as technical reports by practitioners, white papers by security vendors, and

technical security blogs by researchers. CTI reports play a crucial role as invaluable sources of

actionable cyber threat information pertinent to attack vectors such as malware, botnets,

ransomware, and sophisticated cyber-attacks such as Advanced Persistent Threats (APTs). In CTI

reports, attack motives, goals, and technical progressions are narrated with a wealth of Indicators

of compromise (IOCs) and causal links among attack activities.

Prior work: To make the best use of CTI reports for effective cyber threat hunting, attack

detection, and forensic analysis, the cybersecurity community has developed methods focusing on

various priorities. Among the notable directions taken are IOC representation and exchange [1]–

[3], IOC extraction [[4], [5]], attack campaign characterization [6], and automated attack behavior

graph extraction [7]–[9]. All these approaches aim to empower attack detection by reinforcing

cyber defense countermeasures such as Anti-virus software and Intrusion Detection Systems

(IDSs).

Motivation: The focus of this work is on automated extraction of attack behavior graphs from

natural language CTI reports. The current state-of-the-art [8], [9] in automated extraction of

machine-readable attack behavior graphs from CTI reports relies on analyzing one prominent CTI

source such as a high-profile advanced persistent threat (APT) report —hence suffers from the

single CTI source problem. In this work, we observe that multiple CTI sources often capture

complementary fragments of threat behavior, and this observation is attributed to multiple factors.

2

Among the main factors are variations in breadth and depth of analysis of an attack, variations in

how malicious behaviors manifest depending on target environments and triggers, and experience

and resources available to the analyst(s) who examine attacks and produce CTI reports. This work

hypothesizes that, if carefully stitched together, the complementary attack semantics fragments

from multiple CTI sources can potentially result in an attack behavior graph that is even richer in

attack semantics and consequently improves attack detection and forensics capabilities in

enterprise settings.

Approach Overview: To test the aforementioned hypothesis, this work proposes a systematic

attack behavior graph aggregation approach, called CYTAG, that significantly enhances the

fidelity of an attack graph given multiple CTI sources about a given attack such as an APT.

CYTAG achieves this while preserving attack semantics and minimizing redundancy of nodes and

edges in the aggregated attack graph. Given multiple CTI reports about the same attack (e.g., an

APT), CYTAG operates in two phases: (i) attack behavior graph extraction and (ii) attack behavior

graphs aggregation. In phase (i), CYTAG builds on the technique in Extractor [9]and improves it

to extract attack behavior graphs from complex CTI reports. In phase (ii), attack behavior graphs

extracted from multiple sources are systematically aggregated to enrich a single-source attack

behavior graph by adding new nodes and edges. This is done while preserving the overall threat

behavior narrative and eliminating repetitions that result from overlaps among CTI sources. The

key intuition here is that through complementary attack behavior captured across multiple sources,

CYTAG offers improved detection and forensics capabilities when the aggregated attack behavior

graph is used.

Evaluation Overview: Evaluation of CYTAG on diverse CTI reports covering multiple years and

comparing its attack graph aggregation results with state-of-the-art attack behavior extraction

3

approach suggests that CYTAG significantly improves the detection and forensics arsenal of cyber

threat hunters with reasonable aggregation performance overhead. We evaluated CYTAG by

analyzing the node, edge, nodeedge relationship of the attack graph generated from the three other

sources that were collected for each APT report. The APTs analyzed range from currently active

to obsolete exploited threats. We applied CYTAG on 1K+ dataset of CTI reports which resulted

in an improved attack graph extraction rate of an average of 21% more than Extractor [9](current

state-of-the-art approach). Our results show that CYTAG is able to generate IoC-rich aggregated

attack graphs from multiple CTI sources with high accuracy, demonstrating that our system

produces promising directions towards improved arsenal for attack behavior graphs for cyber

threat hunting.

Contributions: In the space of CTI-guided cyber threat hunting, this work makes the following

contributions:

• Enhanced single-source attack graph extraction that improves current state-of-the-art

(Extractor [9]) with enhancements to data collection and improvement of underlying threat

dictionary used to power NLP-based graph extraction.

• A new multi-source attack graph aggregation approach that results in semantically-rich

attack behavior graph.

• An evaluation that spans multiple years (2013 – 2019) of CTI reports and a demonstration

of CYTAG’s superior attack graph extraction capabilities.

Thesis Organization: This rest of this thesis report is organized as follows. In Chapter 2, we cover

the background and related work. In Chapter 3, we present the approach details of CYTAG with

the design on how CYTAG works in more details. In Chapter 4, we evaluate the performance of

4

CYTAG and analyze the effect of the graph aggregation techniques on CTI report datasets. Finally,

we conclude with insights gained from the study and possible gaps in Chapter 5.

5

Chapter 2: Background and Related Work

This chapter first defines terminology and notations (Section 2.1), and then presents related work

relevant to CYTAG (Section 2.2).

2.1 Background

To ease forthcoming discussions, we define important terminology and notations to be used

throughout this thesis.

Indicator of Compromise (IOC). While different variations of the term exist [10], [11] we will

consider the following as the working definition: an artifact observed on a network or in an

operating system that, with high confidence, indicates a computer intrusion/attack. Typical IOCs

include malware signatures, IP addresses/hostnames/URLs associated with malware, botnets, and

command-and-control (C&C) servers, and hash values of malware binaries. Cyber threat hunters

or security operation centers leverage preliminary IOCs to build more concrete indicators such as

unusual inbound and outbound network traffic, unknown programs running within a host, unusual

activities from privileged accounts (e.g., administrators), and abnormally large number of requests

for the same file. Once IOCs are identified, they are typically used for early detection of attack

attempts as part of anti-virus (AV) software and intrusion detection system (IDS).

Advanced Persistent Threat (APT). It is a stealthy threat actor, typically a nation state or state-

sponsored group, which gains unauthorized access to a computer network and remains undetected

for an extended period. Alternatively, the term may also refer to non-state-sponsored groups

conducting large-scale targeted intrusions for specific goals [12]. A typical APT is characterized

6

by the so called “APT kill-chain” which consists of an initial penetration/compromise (e.g., via a

drive-by-download or a spear-phishing attack) reconnaissance, C&C communication, privilege

escalation, lateral movement through a network, ex-filtration of confidential information, and

clean-up of attack footprint [13].

Cyber Threat Intelligence (CTI). It is defined as “evidence-based knowledge, including context,

mechanisms, indicators, implications, and actionable advice, about an existing or emerging

menace or hazard to assets that can be used to inform decisions regarding the subject’s response

to that menace or hazard [14]. CTI is instrumental in enabling an enterprise build insight into the

ever-changing cyber threat landscape to proactively identify and mitigate cyber [15]. With IOCs

as integral parts, CTI often comes in several forms and a natural language CTI is the subject of

this thesis. From now on, when we say, “CTI reports”, we mean CTI written a natural language

such as English, and it contains a technical narrative of how an attack (such as an APT) unfolds.

Attack Behavior Graph (ABG). For the purpose of this work, what we refer to as a ABG is a

directed acyclic graph (DAG) representation where the nodes capture entities such as

programs/processes, files, network sockets etc. Edges represent actions/events such as execution,

write, read, connect, send etc. An illustration of a ABG is shown in Figure 2-1. The edges are

meant to capture information flow/causality among nodes depending on the direction.

Shape Notations: An oval represents a process/program (e.g., bash, sh, /bin/rm). A box refers to

a file (e.g., /tmp/netrecon.log). A diamond represents network socket/IP address (e.g., 0-

128.61.240.66 9999). Edges are directed from active node such as a process to passive node such

as a file/network socket, and edge direction indicates information flow (e.g., write, sendto) or

causality (e.g., clone, execve).

7

Figure 2-1: An illustration of an attack behavior graph structure used in this work

2.2 Related Work

Existing literature on analysis of CTI reports falls into two broad categories: extraction and

exchange of IOCs and attack behavior/narrative extraction. In this chapter, we review related work

in these two categories.

2.2.1 IOC Extraction and Exchange

IOC representation via the OpenIOC standard [1] is among the notable CTI exchange formats.

Based on OpenIOC, several methods for automatically capture of IOCs from unstructured text and

technical publications were developed. These include STIX [16] and MISP [3], with the flexibility

of converting one to another. This is typically done by establishing a relation between the IOC

token and other content in the CTI report, such as the terms “downloads”, “attachment” in Error!

Reference source not found. adapted from [5].

2.2.2 Attack Behavior/Narrative Extraction

iACE [5]: This approach is an NLP-based semantic enrichment of basic IOC tokens leveraging

named entity recognition (NER) and relationship extraction (RE). By employing a novel

application of graph similarity comparison to anchor a phrase with probable IOC tokens and

context terms, the approach quickly validates the validity of these elements using their

relationships. This basic technique has been shown to be extremely effective, far exceeding the

industry’s top-of-the-line IOC analyzer [4] and Named Entity Resolution (NER) tool [17] in terms

bash "/home/theia/script/simple_x64"1: execve

_0-128.61.240.66_99992: sendto

simple_x64

3: clone
4: clone
7: clone

10: clone
11: clone

"/tmp/netrecon"
5: write
6: write

8: execve

"/bin/sh"
12: execve

"/tmp/netrecon.log"9: write

sh
13: clone
15: clone "/bin/rm"

14: execve
16: execve

8

of precision and coverage. Through analysis of over 71,000 security blogs, a substantial number

of IOCs (over 900K) were extracted, and they include attack domains, hash values signatures, and

IP addresses of malicious actors. While iACE is among the early methods to automatically enrich

IOCs from CTI reports, it is limited to a single source (only security blogs) and its semantic

enrichment is limited to sentence (misses intra- and inter-CTI report semantic link).

Figure 2-2: An example of relation between the IOC token and other content [5]

TTPDrill [7]: This work demonstrates the use of threat action ontology [7] and makes use of

reports from technical CTI websites (e.g., Symantec Security Center). These reports are filtered

based on some features such as number of words as articles containing Tactics, techniques, and

procedures (TTPs) which usually have longer words as they help give a description of the attack,

their threats, actions, and targets compared to other articles such as news on the web page and ads

that are considerably shorter [18]. Another feature is securityAction-word density [19] i.e.,

extracting all verbs and calculate the percentage of appearance of verbs in an article compared to

the total number of words in it and securityTarget-word density, i.e., extracting all security nouns,

calculating the percentage of nouns in an article compared to the total number of words in the

article. Each report contains links that are downloaded, some containing irrelevant information to

9

CTI such as ads, contact-us, etc. A document classifier, Support Vector Machine (SVM), is used

to filter out unwanted content. There is a text sanitization process on the scraped texts by

comparing the Document Object Model (DOM) trees to nodes that correlate to web elements such

as images and HyperText Markup Language (HTML) tags to remove them.

ChainSmith [6]: This work presents extraction of IOCs from technical security articles by

detecting based on multiple articles and not specific IoCs and categorizing them based on the

malware delivery model as CTI reports contain noise, i.e., information not related to attack. The

dataset used were collected from Symantec’s WINE platform [20] because of the coverage on

large number of hosts and similarity with other security vendors. The sources were selected on

articles likely to contain detailed information about the attack and from diverse sources (blogs,

news websites, etc.). ChainSmith makes use of python NLTK [21] and Stanford coreNLP [22]and

uses word2vec [23] to parse words semantically. To get functional similarity instead of topical

similarity on words, ChainSmith utilizes dependency-based word embedding. To improve the

classification of IOCs by removing irrelevant words, a list of rules with regular expressions to

identifying candidate IOCs are used. With known repetitions found in sentences when describing

the same IOC, ChainSmith trains binary classifiers to identify topic probabilities and defines

features to identify sentence topics that result in a reduced false positive rate.

GapFinder [24]: In this work, the proposed approach checks for semantic inconsistencies in CTI

reporting and analyzes structured relations extracted from CTI sources with over 474K articles. It

identifies technical inconsistencies that arise in the description of open-source malware by

inferring similar terms for different words in unstructured reports. GapFinder derives structured

relation-types and entity-types of the text. In the relation-type a malware dictionary is created to

find sentences that contain malware names using Part of Speech (PoS) tagging and dependency

10

parsing and constructs a malware graph based on the common node which refers to the malware

name.

Extractor [9]: This approach is aimed to generate provenance graphs automatically from CTI

reports, evaluate various threat reports and real-world attacks by extracting graphs that match those

produced manually by security specialists. It solves one of the challenges of extracting IOCs from

complex sentences seen in iACE[5] . Various NLP toolkits (e.g., Spacy [25], deep BiLSTM) are

used on the unstructured texts of the CTI reports to ensure the output contains information relating

to the attacks. Several analyses were done on the text of the CTI reports from text transformation

to shorten long sentences to shorter forms which contain an action per sentence to homogenization

(replacing multiple textual representations of the same concept to a common textual

representation). The success of this paper was the several rounds of text transformations that

enables to convert a highly complex sentence into a simpler form while still having the behavior

of the attack i.e., the action and its context. This thesis builds on Extractor with multi-source

aggregation of attack behavior graphs as the novel contribution. In section 4.3.2, we compare

CYTAG’s aggregated graph results against Extractor’s single-source attack behavior graph

results.

AttacKG [8]: This study proposes automatic extraction of structured attack behavior graphs from

several CTI reports while identifying the adopted attack techniques. The key idea is due to the gap

that exists in individual reports that give a limited description of an attack pattern. It scrapes CTI

reports using NLP-based report parsing [26] to extract attack-relevant entities. In doing so, it

preserves the information of the entities by replacing them with commonly used words to exclude

special characters based on the entity type identified with an open-source IOC recognizer [4].

Similar to GapFinder [24], entities are separated into IOC and non-IOC entities with non-IOC

11

classified into 7 types. With this classification a NER model is adopted to allow for better

extraction and recognition of entities in CTI reports. To extract dependencies, a dependency tree

is constructed using a learning-based natural language processing which parses each sentence as

each entity establishes dependencies with an entity closest to it. Given the attack entities and

dependencies, an attack graph is generated that describes the attack behaviors that appear in a CTI

report using the MITRE template [27].

12

Chapter 3: Approach

This chapter first presents an overview of CYTAG in Section 3.1 and then details of CYTAG in

Sections 3.2 - 3.5.

3.1 CYTAG Overview

The main goal in CYTAG is to enrich an attack behavior graph via systematic aggregation of

individual attack graphs generated from individual CTI reports. As motivated Chapter 1, the key

intuition behind CYTAG is that multiple CTI sources offer complementary IOCs that, if

systematically aggregated, are crucial to result in a richer attack behavior graph that not only covers

more ground but also enables capturing more attack signals when the aggregated graph is used as

a basis for intrusion detection or forensic analysis. Towards this goal, given multiple CTI reports

about the same attack (e.g., an APT), CYTAG operates in two phases: (i) attack behavior graph

extraction and (ii) attack behavior graphs aggregation.

In phase (i), CYTAG learns the relationship between IOCs and the threat actions within a sentence

using NLP techniques. To capture the characteristics of IOCs in CTI reports, of-the-shelf NLP

techniques are not suitable for cybersecurity related domains. To address this limitation, in

CYTAG, we instead rely on analysis of sentences from a dictionary of cybersecurity related words

and adopt the attack behavior graph extraction technique in Extractor [9] to extract attack graphs

from complex sentences containing IOCs.

In phase (ii), attack behavior graphs extracted from multiple sources are systematically aggregated

to enrich a single-source attack behavior graph by adding new nodes and edges. This is done while

13

preserving the overall attack behavior narrative and eliminating repetitions that result from

overlaps among CTI sources.

Figure 3-1 shows an overview of CYTAG with elaborations on phases (i) and (ii). As part of phase

(i), we perform data collection to acquire multiple CTI reports for each widely disclosed attack. In

CTI, due to the unstructured manner of collecting sources, finding a centralized repository that

consists of multiple CTI reports over the years is not easy. To fill this data acquisition gap, we

begin with the CTI reports maintained in the OSINT Framework [28] and the APTnotes corpus

[29] —a repository that contains CTI reports of prominent APTs spanning well over a decade

(2008 – 2022). To augment the APTNotes dataset in a manner that enables us to collect multiple

CTI reports for each APT, we build a web scrapper and filter. To sanitize each CTI report from

non-IOC content, we apply DOM tree analysis to remove content that may lead to false positives

(e.g., IP address/host name of the CTI source). The next step involves the preprocessing of each

sentence to determine Subject-Verb-Object (SVO) triplets in each CTI report to serve as pre-

cursors for extraction of attack behavior attack graphs. At the core of the graph extraction method

is Semantic Role Labeling (SRL), which assigns role-related labels (e.g., subject, object, action)

to enable the extraction of the attack behavior graph.

Figure 3-1: Overview of the CYTAG pipeline.

As part of phase (ii), given multiple attack behavior graphs of the same CTI report, we analyze

the nodes and edges of the generated graphs, and more importantly subgraphs in each graph

that can be stitched together to result in a semantically-rich and comprehensive attack behavior

training
data Training Inference

learned
parameters

input

output
Typical ML
Pipeline

Model
Evasion

Model
Extraction

Membership
Inference

Training Data
Poisoning

ML Attack
Surface

Research Thrusts Education Thrusts

E1: Trustworthy ML Course (Sec. 6.1)
(focus: undergraduate, graduate)

E2: RobustML Competition (Sec. 6.2)
(focus: undergraduate)

E3: RobustML Summer Camp (Sec. 6.3)
(focus: K-12)

R1: ProCapture R2: ProDefend R3: ProTraceback

Adversary

Multi-Faceted Training Provenance
Characterization (Sec. 3.1)

Multi-Faceted Inference Provenance
Characterization (Sec. 3.2)

Training Provenance-Based
Backdoor Detection (Sec. 4.1)

Inference Provenance-Based
Evasion Detection (Sec. 4.2)

Provenance-Guided Poisoning
Root Cause Analysis (Sec. 5.1)

Provenance-Guided Evasion
Root Cause Analysis (Sec. 5.2)

Tracking,
detection, and
forensics suite

(ProCapture,
ProDefend,

ProTraceback, ...)

Input Layer Ouput LayerHidden Layers

x2

x3

x

y1

...

yk

x1

y

Notation:
d: number of features
k: number of labels
h: number of units of
hidden 1st hidden layer
m: number of units of 2nd

hidden layer
x = {x1,x2, ..., xd}: input
y = {y1, ..., yk}: output
LiNj: ith layer j th node
wi: weight of i th node

.

.

.

.

.

.

xd

w1
w2

...

L1N1

L1N2

L1Nh

L2N1

L2N2

L2Nm

Web scrapper

Web Filter

DOM Tree
Analyzer

Text Cleaner

Normalization

Resolution

System Entity
Extraction

Semantic
Role Labeling

CTI Sources

Node
Analyzer

Edge
Analyzer

Subgraph
Analyzer

Attack Behavior
Graphs

Aggregation
Builder

Aggregated Attack
Behavior Graph

Phase (i): Attack Behavior Graph
Extraction

Phase (ii): Attack Behavior Graph
Aggregation

Content SanitizationData Collection Graph Extraction

14

graph. The main intuition here is that by systematically aggregating complementary attack

behavior captured across multiple sources, CYTAG offers improved detection and forensics

capabilities when the aggregated attack behavior graph is used. It is noteworthy that in order to

enrich the aggregated graph with threat-relevant graph elements we use a varying range of CTI

sources that involve diverse threat actors such as malware, botnets, and ransomware. After the

graph aggregation, the effectiveness is evaluated by comparing the aggregated graph against

the individual graphs generated by Extractor [9] and graphs generated by AttacKG[8] —a

recent work that builds on Extractor.

In the rest of this chapter, we expand our discussion on the different components of CYTAG.

3.2 CTI Dataset Collection

The common problem faced in CTI information gathering is that CTI reports are come in

heterogeneous forms such as white-papers, technical reports, and blog posts.

Moreover, they come as a mix of structured (e.g., CSVs) and mostly unstructured (e.g., natural

language text). Although there exists an inventory of CTI reports via the centralized OSINT

Framework which provides APTnotes [28], there are several other CTI reports that are not

accounted for because of reasons such as authors naming of the CTI title differently, reports

coming much later than the first CTI report, or simply overlooked by the maintainers of OSINT

and APTNotes.

Enhancement to CTI Data Collection: To acquire a more comprehensive CTI dataset for

CYTAG, we scale up the data collection through a combination of headless browsing, web

scrapping, file format conversion, and automated search. Leveraging the popular headless

browser automation engine, Selenium [30], we automate the process of visiting and rendering

a CTI source URL. Using the Beautiful Soup [31]web scrapping engine, we parse the web pages

of CTI reports rendered by Selenium and extract data to a text format and use it as a universal

15

intermediate representation for processing CTI reports. Using PDFMiner [32], we convert CTI

reports in PDF to text format. We leverage automated search APIs where we submit as search

query the title of a CTI report or name of a high-profile APT (e.g., one of the names from

APTNotes) and focus on URLs of the top search results from search engines such as Google

and Bing.

3.3 CTI Content Sanitization

After the dataset collection step, to avoid including content like website name that do not pertain

to the attack, the dataset is cleaned to remove details about the site such as promotions, contact

details, login pages etc. This is done by analyzing the DOM tree of each website to understand the

common HTML tags to be included in the scrapped data. Furthermore, an NLP-based text cleaner

is designed to remove white spaces from the saved text files by analyzing each sentence in the text

file and reducing the length. Doing so further reduces the graph generation time as the system goes

through each sentence in the text file.

3.4 Attack Behavior Graph Extraction

To achieve extraction of graphs from the sanitized text of CTI reports, we build on the state-of-

the-art approach in Extractor [9]. The design of Extractor is powered by NLP techniques such as

normalization, resolution, summarization, and semantic role labeling, all of which are tailored for

CTI report analysis.

The first round of transformation that simplifies long sentences to a canonical form by breaking

them into shorter sentences is Normalization, while resolution handles text ambiguity. Then,

summarization removes text in the sentences that are not related to the attack behavior i.e., do not

contribute to the semantics of the attack narrative. The output of the summarized texts are in the

16

form of Subject, Verb, and Object (SVO). Finally, the graph extraction uses semantic Role

labelling (SRL) to discover the roles of words in sentences, grouping them into arguments and a

set of dictionaries (system call dictionary and CTI noun dictionary) to properly represent the verbs

and actions in the sentences.

Enhancement to Extractor: This thesis improves the extraction accuracy of Extractor [9] in two

ways. First, since Extractor does not support extraction of IOCs from images embedded in CTI

reports, we add this feature to enrich the scope of the analysis. We do so by leveraging the tesseract

library for text extraction from images [33]. Second, we add more words in the set of dictionaries

needed for identifying the verbs found in the sentences as security reporters have varying

vocabulary.

3.5 Attack Behavior Graphs Aggregation

In this section, we highlight the properties of a graph (G) based on Nodes (V) and Edges(Y) and

present solutions from [34] to implement on a set of graphs N(G) and generate aggregated attack

graphs with no overlapping nodes or edges while the attack description (semantics) of the APT

and likewise improving it in an efficient and effective method.

Setting: Given a set of graphs (G1,...,Gn) each graph Gi has multiple nodes and edges represented

as V= (V1,...,Vm), Y= (Y1,...,Yk) respectively, with G1 represented as) and Gn

as (). Note that n is number of graphs (e.g., n = 3 if we generate attack graphs

from three distinct CTI sources), m is number of nodes for a given graph, and k is number of edges

for a given graph. The values of m and k vary depending on the size of the graph at hand.

In addition, each node has a set of attributes (e.g., node type) represented as AV. Similarly,

AY represents the set of attributes for edges that determine the relationship (edge label) to form

17

a node pair between the respective nodes. With several Nodes (V) and Edges (Y), the nodes and

edges have relationships of the form (ni – edge – nj), that connect node ni with node nj to form

node pairs.

CYTAG Aggregation Intuition: Before sketching the approach formally, below we give an

intuitive illustration of how the graph aggregation is done in CYTAG. Suppose we are given three

sources of an APT report represented as attack graphs G1, G2, and G3. In Figure 3-2, we have G1

generated from a CTI snippet of the LuckyMouse APT in 2018 from first source (APTNotes [29]).

Likewise, G2 and G3 are graphs generated from CTI snippets from two other sources of the same

APT. As defined in Section 2.1, the nodes the graphs are represented as ellipse for

processes/programs and using box for files.

Figure 3-2: Intuitive illustration of attack behavior graph aggregation in CYTAG.

Merge result using graph C and G3, note the “zazu.txt” file is merged first before the “LauncherModule” process.

The two nodes (“shikata_ga_nai_encoder” and “code” highlighted in red) from G1 and G2
above are merged first, as they have more common set of node and edge type attributes.

Graph G1 Graph G2 Graph G3

Graph C, above results from G1 and G2 , with the ellipses (processes) in red showing the nodes that were
merged first.

Aggregate graph Gagg of the three graphs. This is the final output of the aggregation process.

Graph C

Gagg

18

CYTAG Aggregation Method: Algorithm 1 sketches the core of the multisource attack behavior

aggregation approach in CYTAG. Notations used in the algorithm are defined in Table 3-1. For

the sake of illustration, the algorithm is demonstrated for three graphs G1, G2, and G3, but in

principle the idea should work for n graphs generated from n CTI sources of a certain APT. The

aggregation happens progressively by taking two graphs at a time and using the aggregation of the

two graphs as a base for the next cycle of aggregation, until no individual graph remains to be

aggregated. As line 1 shows, G1 and G2 are first taken to find a grouping of nodes from the two

graphs by based on homogeneous edges using node and edge attributes respectively. Line 2 is the

iterative part of the algorithm where the process of grouping continues until no further grouping is

feasible. Line 3 shows what happens within the loop of line 2, where the actual union of two graphs

at hand is performed to generate a temporary composition C, which will be used as a base graph

for the next grouping and then union. After each union computation, notice in line 7 that the graph

structure needs to be updated so as to document the progress of the aggregation. Finally, line 9

produces the aggregated graph Gagg.

Table 3-1: Notations in graph aggregation.

Notation Description
F The aggregation function performs the merge of two graph inputs.
Gn The number of graph inputs
V Node representation of graphs.
Y Edge representation of graphs
AV Set attributes of node-types such as file, process, etc.
C Initial output obtained from the union of two graphs.
Gagg Aggregated graph output of F
AY Edge-type attribute e.g., write, read, send, execute etc.

19

Algorithm 1 Φ (Gn,V,Y,AV , AY , C, Gagg)

Input: G1, G2, G3: 3 graphs; AV ⊆ A(Gn): a set of node attributes; AY ⊆ A(Gn) : a set of edge

attributes;

Output: An aggregate graph, Gagg

1: Compute the compatible grouping of G1 and G2 by identifying nodes from both graphs alongside

the edges.

2: while there are node and edge grouping, set respective attributes types AV, AY

 do

3: Compute the union on G1 and G2, generate C

4: Initialize the graph structures

5: With C and G3, begin node and edge grouping and assign attributes based on node, edge

relationship

6: Compute the union of C and G3

7: Update the graph structures

8: end while

9: Form the aggregate graph Gagg

10: return Gagg

20

Baseline aggregation alternative: In the evaluation in Section 4.3.1, we will compare the

aggregation in Algorithm 1 (which we call “Aggregation Method I”) with a baseline aggregation

which we call “Aggregation Method II”. In the baseline approach, instead of systematically

performing the aggregation as in Algorithm 1, we take a rather simplistic approach of merging the

sanitized text representation of each CTI source of an APT into one file and feed it to the enhanced

Extractor pipeline. Intuitively, the graph generated from the merger of multiple sources needs to

capture a good chunk of the threat semantics. However, it is also likely to result in redundant nodes

and edges and is potentially error-prone because it is a naive merging of the CTI text from different

sources.

21

Chapter 4: Evaluation and Results

This chapter presents the dataset, experimental setup, and evaluation results of CYTAG. The

evaluation is guided by the following research questions:

• RQ1: How do the two aggregation methods compare?

• RQ2: How effective is the aggregation of multiple threat behavior graphs in CYTAG

compared to state-of-the-art graph attack generation?

• RQ3: What is the runtime overhead of CYTAG graph aggregation?

4.1 Dataset

Figure 4-1: Percentage of CTI reports based on number of unique sources

To evaluate CYTAG, we collected CTI reports summarized in Table 4-1. The CTI reports are

categorized into years from 2010 to 2021. These reports cover several APTs spanning diverse

threat vectors such as malware, ransomware, botnets, and spyware attacks. The source of the

dataset is the OSINT used by previous works [3] for IOC analysis and graph generation. In total,

APT Notes Distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

2+ Sources 3+ Sources 4+ Sources

Pe
rc

en
ta

ge

No of sources

% of APT Notes

2+ Sources 3+ Sources 4+ Sources

22

we collect 1456 reports with at least 2 sources per APT report. Figure 4-1 shows the distribution

of number of distinct CTI sources. About 70% of APT reports have 4 distinct CTI sources while

about 20% have 3 distinct sources. The remaining 10% have 2 sources as can be seen from the

Figure. From the APTNotes dataset [29], we collected the individual PDF versions of the APTs

and then expanded each with APT reports from other CTI sources. To do so, we employ the data

collection enhancement described in Section 3.2 which takes advantage of a web scrapping,

headless browsing, and automated search.

Table 4-1: Summary of CTI reports dataset

4.2 Experimental Setup

CYTAG is implemented in Python reusing graph extraction components from Extractor [9]. Next,

we describe our experimental setup.

Year
of CTI
Reports

from [28]

of Multi-
sources Total

2010 10 23 33
2011 15 33 48
2012 25 62 87
2013 44 100 144
2014 90 186 276
2015 65 180 245
2016 52 108 160
2017 80 172 252
2018 21 52 73
2019 18 45 63
2020 4 10 14
2021 15 46 61
Total 439 1017 1456

23

• Comparison of aggregation techniques: We generated attack graphs using both compiled

CTI report input and individual CTI report input fed into CYTAG to compare the node and

edge comparison of the respective outputs.

• Comparison with related work: We compare CYTAG with the original and enhanced

Extractor [9]. The enhanced Extractor comes with extraction of IOCs from images in CTI

reports and expansion of the verbs in the action dictionary used in the graph extraction

pipeline.

Comparison of Aggregation Techniques: In this experiment, we compare the output of the

aggregation-by-aggregation approach I and II. For approach I, we extract the attack graphs of each

CTI source of each APT and save them with their APT title as [A(G1),....,A(Gn)]. The output of the

graph extraction is saved in three formats: PDF (for visual inspection of attack progression), DOT

(for automated analysis during aggregation), and JSON (to ease feeding an attack graph to IDSs).

In approach II, we take a single CTI report compiled from multiple sources of each APT as the

input to Extractor and generate an attack graph. The new aggregated attack graph with the

compiled source A(Gc) is produced in PDF and DOT format. For each APT, the respective DOT

files of approaches I and II are then analyzed to compare their effectiveness based on the difference

in nodes and edges between the two approaches.

Comparison with Related Work: In this experiment, we evaluate CYTAG and Extractor [9] (by

reproducing the public source code 1) CTI reports used by the authors of Extractor. Specifically,

we first analyze the differences in the nodes and edges of the respective graphs determining which

has more information about the attack in question.

1 https://github.com/ksatvat/Extractor

24

Runtime Overhead Measurement: In this thesis, we ran the implementation of CYTAG to gather

the datasets, pre-process CTI reports, generate the attack graphs, and perform the aggregation on

an 8-core CPU, 8-core GPU 16-core Neural Engine Apple M1 chip and 16GB of memory. To

measure the performance overhead 12 of the 16GB memory was used.

4.3 Results and Discussion

This section presents the results of the experiments described above. Firstly, we show the

comparison results of the aggregation approaches I and II. Second, we compare the performance

of CYTAG with Extractor. Lastly, we report on runtime overhead of CYTAG.

4.3.1 Comparison of Aggregation Techniques

To test the effectiveness of the aggregation methods on the dataset from Table 4-1 we ran

approach I, which takes each extracted graphs from multiple CTI reports and systematically

analyses the attributes of the graphs to generate the aggregated graph in a manner that prevents

overlapping edges and repeated nodes. In the results shown in Table 4-2, although approach II

produces a larger graph output with an increased number of nodes and edges. Further analysis

of the graph output by approach II, however, suggests that there are node repetitions in the DOT

file. While the larger graph seems appealing on the surface, we note that such redundancy of

nodes and edges could potentially slow-down searching/traversal by an IDS or performing

forensics after attack detection. The conclusion is that the naive approach is not only less precise

but also more expensive computationally.

Take-away: With respect to RQ1, our conclusion of the comparison between approach I and II

suggests that although the output of approach II showed more node output by an average of 5%

across the CTI reports, this difference was because of the repetitive entities and edges present in

the result which would make the use of approach II in practice less feasible.

25

Table 4-2: Comparison of aggregation methods I and II

CTI Source
Aggregation Method I Aggregation Method II

|V| |Y| |V| |Y|
OceanLotus
[35]–[37] 415 261 453 386

GhostDuke
[38]–[40] 342 220 400 283

SeaTurtle [41]–
[43] 257 196 266 250

Tortoiseshell
[44]–[46] 202 285 251 334

Waterbug [47]–
[49] 329 214 352 304

4.3.2 Comparison with Closely Related Work

Our comparison results are summarized in Table 4-3. The first column is the name of the CTI

report as publicly documented. Note that, for fair comparison, we focus on five CTI reports that

are also used by Extractor. The next six columns are the number of nodes V(G) and edges Y(G)

of graphs extracted with original Extractor, CYTAG Graph Generator, and the nodes and edges of

the aggregated graph generated with CYTAG. The “CYTAG Sources” column indicates the two

additional CTI sources considered in addition to the one from APTNotes (shown in first column)

—making it uniformly 3 CTI sources across the board. The last column shows the year of the two

additional CTI sources respectively, overall covering 2013, 2015, 2016, and 2019.

As can be seen from the Table 4-3, the number of nodes and edges increased after improving the

graph extraction process of this approach. On average there was an increment of about 12% and

32% in the nodes and edges of the graphs generated. The enhanced graph extraction process helped

26

in getting better result with CYTAG, after generating the respective graphs of the sources Gn for

the aggregation process F(Gn).

In Table 4-3, we can see that the number of Edges (Y) and Nodes (V) have increased significantly,

which enhances the attack semantics. We observed a high node and edge addition with the

aggregation of the graphs. The increased number of nodes and edges in the attack graph are a result

of the improved source input that offers complementary attack narrative. Figure 4-2 and Figure

4-3 demonstrate the various APTs and show the increase in Nodes and Edges for CYTAG.

Figure 4-2: Node-type distribution of CTI reports

Figure 4-3: Distribution of node-types in merged/compiled CTI reports

27

 Table 4-3: Effectiveness of Extractor, CYTAG Graph Generator, and CYTAG

Take-away: With respect to RQ2, as can be seen from the results in Table 4-3, the number of

nodes and edges in the threat behavior graph generated by CYTAG is on average more than double

of the results of Extractor, which speaks to the overall effectiveness of the CYTAG aggregation

approach.

4.3.3 Cytag runtime overhead

To answer RQ3, we ran CYTAG on dataset from selected years (2013, 2015, 2018, 2019) shown

in Figure 4-4. The goal is to measure the average time it takes to aggregate attack graphs across

the datasets. These years were used to show the efficiency of CYTAG on current APT attacks and

previous ones. From the result shown in Figure 4-5, the time it takes for a year is dependent not

only on the number of CTI reports, but also the content of the attack description. On average, it

took approximately 1101 seconds to complete the aggregation of about over 131 CTI sources with

2-4 sources per an aggregation. The per-aggregation average compute time to generate the

aggregated graph for CTI reports in 2013, 2015, 2018, and 2019 were 1582, 2240, 318, and 264 in

seconds, respectively.

CTI Source Extractor CYTAG Graph
Generator

 CYTA
G

 CYTAG Sources CTI Report
Year

 ∥V | ∥Y
|

∥V | ∥Y
|

∥V | ∥Y |

Carbanak [50] 22 31 42 99 64 113 [51], [52] 2019,2019
Deputy Dog

[53]
11 12 16 24 27 49 [54], [55] 2013,2013

Dusty Sky [56] 12 21 30 58 178 344 [57], [58] 2016,2015
njRAT [59] 32 32 43 67 85 193 [60], [61] 2013,2019

Uroburos [62] 19 23 26 33 97 178 [63], [64] 2015,2015

28

Figure 4-4: CTI reports analyzed with CYTAG to measure runtime overhead

Figure 4-5: Average time taken for CYTAG to generate aggregated attack graph

4.3.4 Overall evaluation summary

Our evaluation suggests that CYTAG (a) outperforms the current state-of-the-art attack graph

extraction, (b) enriches attack graphs through aggregation of graphs generated from multiple

complementary CTI reports, and (c) incurs reasonable runtime overhead for a one-time (once in a

0

50

100

150

200

250

300

2013 2015 2018 2019

No
 o

f C
TI

 R
ep

or
ts

Years

CTI Reports

Time taken in seconds to generate graph aggregate of
datasets for each year in Figure above

0

500

1000

1500

2000

2500

2013 2015 2018 2019

Ti
m
e(
se
co
nd

s)

Years

Datasets

29

while in the worst case) aggregation of attack graphs. Overall, CYTAG proved that systematically

aggregating attack graphs from multiple CTI reports improves the semantic utility of a threat

behavior graph towards improved detection and forensics of sophisticated attack campaigns that

target enterprises or nation-states.

30

Chapter 5: Conclusion and Future Work

5.1 Conclusion

This thesis presented CYTAG, a new contribution for multi-source aggregation of attack behavior

graphs to improve cyber threat hunting capabilities using natural language cyber threat

intelligence. CYTAG significantly enhances the fidelity of an attack graph given multiple CTI

sources about a given attack such as an APT and achieves this while preserving attack semantics

and minimizing redundancy of nodes and edges in the aggregated attack graph.

By evaluating CYTAG on diverse CTI reports covering multiple years and comparing its attack

graph aggregation results with state-of-the-art attack behavior extraction approach, we

demonstrate that CYTAG significantly improves the detection and forensics arsenal of cyber threat

hunters with reasonable aggregation performance overhead. We applied CYTAG on 1K+ dataset

of CTI reports which resulted in an improved attack graph extraction rate of an average of 21%

more than Extractor [9] (current state-of-the-art attack behavior graph extraction approach).

5.2 Future work

Our study shows that CYTAG is able to generate aggregated attack graphs containing enhanced

attack semantics from multiple sources, well beyond the state-of-the-art techniques can achieve.

However, still our technique is not operating at a scalable performance for real-time detection.

These problems in our study come from the limitation of underlying tools and techniques we use.

Specifically, in the aggregation phase the use of a Graph Neural Network (GNN) with deep

learning to further analyze graph structural data could improve the aggregation time significantly.

31

Also, as CYTAG uses some graph structure attributes for the grouping, adding more attributes for

the grouping of nodes and edges in graphs can improve the aggregation. Another interesting

observation as seen from the results is that an improved dictionary resulted in better graph

generation ---which entails the need to continuously update the dictionary. Furthermore, in the

data collection phase, our technique can be improved further by firstly finding more repositories

of CTI reports to use the titles to perform the web scrapping. Secondly, during the web scrapping,

the search result scraped should include more than the first page. For example, during the manual

search of some CTI titles, some useful articles were found on the second page of the search result

output. In addition, an initial cleaning of articles selected for the graph aggregation because of

large number of inconsistent articles might lead to false discoveries. Future efforts are still required

to tackle these issues.

In summary, while CYTAG produces aggregated attack behavior graphs from multiple CTI

sources, and the aggregated graphs carry enhanced attack semantics and forensic evidence, we

identify the following avenues to further enhance CYTAG:

• Using CYTAG aggregated attack behavior graphs, testing its effectiveness on a

real/simulated intrusion detection system to filed-test its attack detection effectiveness.

• Further reduction of the aggregation time to enable scalable performance of CTI analysis

in a real-time scenario.

• Experiment on signature detection and attack patterns from bad actors for novel attack

behavior discovery.

32

References

[1] FireEye, “The OpenIOC Framework.” https://fireeye.market/apps/211404
(accessed Aug. 07, 2022).

[2] B. Jordan, R. Piazza, and T. Darley, “STIX - Structured Threat Information
Expression (Archive) | STIX Project Documentation.” https://stixproject.github.io/
(accessed Aug. 07, 2022).

[3] C. Wagner, A. Dulaunoy, Wagener Gérard, and A. Iklody, “MISP Open Source
Threat Intelligence Platform & Open Standards For Threat Information
Sharing.” https://www.misp-project.org/ (accessed Aug. 07, 2022).

[4] A. Buescher, “armbues/ioc_parser: Tool to extract indicators of compromise from
security reports in PDF format.” https://github.com/armbues/ioc_parser (accessed
Aug. 07, 2022).

[5] X. Liao, K. Yuan, X. Wang, Z. Li, L. Xing, and R. Beyah, “Acing the IOC game:
Toward automatic discovery and analysis of open-source cyber threat
intelligence,” in Proceedings of the ACM Conference on Computer and
Communications Security, Oct. 2016, vol. 24-28-October-2016, pp. 755–766. doi:
10.1145/2976749.2978315.

[6] Z. Zhu and T. Dumitras, “ChainSmith: Automatically Learning the Semantics of
Malicious Campaigns by Mining Threat Intelligence Reports,” in Proceedings -
3rd IEEE European Symposium on Security and Privacy, EURO S and P 2018,
Jul. 2018, pp. 458–472. doi: 10.1109/EuroSP.2018.00039.

[7] G. Husari, E. Al-Shaer, M. Ahmed, B. Chu, and X. Niu, “TTPDrill: Automatic and
accurate extraction of threat actions from unstructured text of CTI Sources,” in
ACM International Conference Proceeding Series, Dec. 2017, vol. Part F132521,
pp. 103–115. doi: 10.1145/3134600.3134646.

[8] Z. Li, J. Zeng, Y. Chen, and Z. Liang, “AttacKG: Constructing Technique
Knowledge Graph from Cyber Threat Intelligence Reports,” Nov. 2021, [Online].
Available: http://arxiv.org/abs/2111.07093

[9] K. Satvat, R. Gjomemo, and V. N. Venkatakrishnan, “EXTRACTOR: Extracting
Attack Behavior from Threat Reports,” Apr. 2021, [Online]. Available:
http://arxiv.org/abs/2104.08618

33

[10] O. Catakoglu, M. Balduzzi, and D. Balzarotti, “Automatic extraction of indicators
of compromise for web applications,” 25th International World Wide Web
Conference, WWW 2016, pp. 333–343, 2016, doi: 10.1145/2872427.2883056.

[11] S. M. Milajerdi, R. Gjomemo, B. Eshete, and V. N. Venkatakrishnan, “Poirot:
Aligning attack behavior with kernel audit records for cyber threat hunting,”
Proceedings of the ACM Conference on Computer and Communications Security,
pp. 1795–1812, Nov. 2019, doi: 10.1145/3319535.3363217.

[12] Wikipedia, “Advanced persistent threat - Wikipedia.”
https://en.wikipedia.org/wiki/Advanced_persistent_threat (accessed Aug. 07,
2022).

[13] S. Momeni Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. N.
Venkatakrishnan, “HOLMES: Real-time APT detection through correlation of
suspicious information flows,” Proceedings - IEEE Symposium on Security and
Privacy, vol. 2019-May, pp. 1137–1152, May 2019, doi: 10.1109/SP.2019.00026.

[14] R. McMillan, “Definition: Threat Intelligence.”
https://www.gartner.com/en/documents/2487216 (accessed Aug. 07, 2022).

[15] L. Obrst, P. Chase, R. Markeloff, and B. Bedford, “Developing an Ontology of the
Cyber Security Domain”.

[16] R. M. Czekster, R. Metere, and C. Morisset, “cyberaCTIve: a STIX-based Tool for
Cyber Threat Intelligence in Complex Models,” Apr. 2022, doi:
10.48550/arxiv.2204.03676.

[17] D. Nadeau and S. Sekine, “A survey of named entity recognition and
classification”, Accessed: Aug. 07, 2022. [Online]. Available:
http://projects.ldc.upenn.edu/gale/

[18] V. M. Igure and R. D. Williams, “Taxonomies of attacks and vulnerabilities in
computer systems,” IEEE Communications Surveys and Tutorials, vol. 10, no. 1,
pp. 6–19, Mar. 2008, doi: 10.1109/COMST.2008.4483667.

[19] M.-C. de Marneffe and C. D. Manning, “The Stanford typed dependencies
representation”, Accessed: Aug. 07, 2022. [Online]. Available:
http://www.w3.org/RDF/

[20] T. Dumitras and D. Shou, “Toward a standard benchmark for computer security
research: The worldwide intelligence network environment (WINE),” Proceedings
of the 1st Workshop on Building Analysis Datasets and Gathering Experience
Returns for Security, BADGERS 2011, pp. 89–96, 2011, doi:
10.1145/1978672.1978683.

[21] E. Loper and S. Bird, “NLTK: The Natural Language Toolkit,” COLING/ACL
2006 - 21st International Conference on Computational Linguistics and 44th

34

Annual Meeting of the Association for Computational Linguistics, Proceedings of
the Interactive Presentation Sessions, pp. 69–72, May 2002, doi:
10.48550/arxiv.cs/0205028.

[22] Stanford NLP Group, “stanfordnlp/CoreNLP: Stanford CoreNLP: A Java suite of
core NLP tools.” https://github.com/stanfordnlp/CoreNLP (accessed Aug. 07,
2022).

[23] T. Mikolov, I. Sutskever, K. Chen, Greg S. Corrado, and J. Dean, “Distributed
Representations of Words and Phrases and their Compositionality.”
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce9
01b-Abstract.html (accessed Aug. 07, 2022).

[24] H. Jo, J. Kim, P. Porras, V. Yegneswaran, and S. Shin, “GapFinder: Finding
Inconsistency of Security Information from Unstructured Text,” IEEE
Transactions on Information Forensics and Security, vol. 16, pp. 86–99, 2021, doi:
10.1109/TIFS.2020.3003570.

[25] M. Honnibal et al., “explosion/spaCy: v2.1.0: New models, ULMFit/BERT/Elmo-
like pretraining, faster tokenization, better Matcher, bug fixes & more.”
Zenodo, 2019. doi: 10.5281/ZENODO.2597447.

[26] S. Bird, E. Klein, E. Loper, and W. Wagner, “Steven Bird, Ewan Klein and
Edward Loper: Natural Language Processing with Python, Analyzing Text with
the Natural Language Toolkit,” Language Resources and Evaluation 2010 44:4,
vol. 44, no. 4, pp. 421–424, May 2010, doi: 10.1007/S10579-010-9124-X.

[27] The MITRE Corporation, “MITRE ATT&CK®.” https://attack.mitre.org/
(accessed Aug. 07, 2022).

[28] s0lray, mrpnkt, R. Romanov, and J. Nordine, “lockfale/OSINT-Framework:
OSINT Framework.” https://github.com/lockfale/osint-framework (accessed Aug.
07, 2022).

[29] K. Bandla and S. Castro, “aptnotes/data: APTnotes data.”
https://github.com/aptnotes/data (accessed Aug. 07, 2022).

[30] Selenium Open Source community, “WebDriver | Selenium.”
https://www.selenium.dev/documentation/webdriver/ (accessed Aug. 07, 2022).

[31] L. Richardson, “Beautiful Soup Documentation Release 4.4.0,” 2019.

[32] Y. Shinyama, “pdfminer · PyPI.” https://pypi.org/project/pdfminer/ (accessed Aug.
07, 2022).

[33] Matthias A Lee, “madmaze/pytesseract: A Python wrapper for Google Tesseract.”
https://github.com/madmaze/pytesseract (accessed Aug. 07, 2022).

35

[34] A. Hagberg, P. Swart, and D. Chult, “(PDF) Exploring Network Structure,
Dynamics, and Function Using NetworkX.”
https://www.researchgate.net/publication/236407765_Exploring_Network_Structu
re_Dynamics_and_Function_Using_NetworkX (accessed Aug. 07, 2022).

[35] BALAJI N, “OceanLotus Group Using Steganography Techniques to Deliver
Malware.” https://gbhackers.com/oceanlotus-apt-hackers-group-steganography/
(accessed Aug. 07, 2022).

[36] Cylance, “OceanLotus Steganography Malware Analysis White Paper |
GoVanguard Threat Center.” https://govanguard.com/threat-
center/2019/04/05/oceanlotus-steganography-malware-analysis-white-paper/
(accessed Aug. 07, 2022).

[37] P. Paganini, “OceanLotus leverages a steganography-based loader to deliver
backdoors.” https://securityaffairs.co/wordpress/83246/breaking-news/oceanlotus-
steganography-backdoors.html (accessed Aug. 07, 2022).

[38] M. Faou, M. Tartare, and T. Dupuy, “OPERATION GHOST The Dukes aren’t
back-they never left,” 2019.

[39] ESET Research, “Operation Ghost II: The Dukes aren’t back – they never left |
WeLiveSecurity.” https://www.welivesecurity.com/2019/10/17/operation-ghost-
dukes-never-left/ (accessed Aug. 07, 2022).

[40] Cyware Hacker News, “Operation Ghost: Research Finds Dukes Group Never
Stopped Espionage Activities | Cyware Alerts - Hacker News.” Accessed: Aug. 07,
2022. [Online]. Available: https://cyware.com/news/operation-ghost-research-
finds-dukes-group-never-stopped-espionage-activities-5bc12ea

[41] D. Adamitis and P. Rascagneres, “Cisco Talos Intelligence Group -
Comprehensive Threat Intelligence: Sea Turtle keeps on swimming, finds new
victims, DNS hijacking techniques.”
https://blog.talosintelligence.com/2019/07/sea-turtle-keeps-on-swimming.html
(accessed Aug. 07, 2022).

[42] CTM360, “Dns hijacking abuses trust in core internet service.”
https://www.ctm360.com/ (accessed Aug. 07, 2022).

[43] W. Mercer and P. Rascagnères, “VB2019 paper: DNS on fire.”
https://www.virusbulletin.com/virusbulletin/2019/11/vb2019-paper-dns-fire/
(accessed Aug. 07, 2022).

[44] Fahmida Y. Rashid, “Tortoiseshell Targets IT Providers in Supply Chain Attack.”
https://duo.com/decipher/tortoiseshell-targets-it-providers-in-supply-chain-attack
(accessed Aug. 07, 2022).

36

[45] P. Paganini, “TortoiseShell Group targets IT Providers in supply chain attacks.”
https://securityaffairs.co/wordpress/91611/apt/tortoiseshell-supply-chain-
attacks.html (accessed Aug. 07, 2022).

[46] Threat Hunter Team Symantec, “Tortoiseshell Group Targets IT Providers in
Saudi Arabia in Probable Supply Chain Attacks.” https://symantec-enterprise-
blogs.security.com/blogs/threat-intelligence/tortoiseshell-apt-supply-chain
(accessed Aug. 07, 2022).

[47] Eduard Kovacs, “Waterbug Threat Group Targeted Systems in Over 100
Countries.” https://www.securltyweek.com/waterbug-threat-group-targeted-
systems-over-100-countries-symantec (accessed Aug. 07, 2022).

[48] Symantec DeepSight Adversary Intelligence Team, “Waterbug: Espionage Group
Rolls Out Brand-New Toolset in Attacks Against Governments.”
https://www.cyberreport.io/news/waterbug-espionage-group-rolls-out-brand-new-
toolset-in-attacks-against-governments?article=2449 (accessed Aug. 07, 2022).

[49] Network Protection Security Labs, “Waterbug: Espionage Group Rolls Out Brand-
New Toolset in Attacks Against Governments | Broadcom Software Blogs.”
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/waterbug-
espionage-governments (accessed Aug. 07, 2022).

[50] K. Goncharov, “The Great Bank Robbery: Carbanak APT | Kaspersky official
blog.” https://www.kaspersky.com/blog/the-great-bank-robbery-carbanak-
apt/3598/ (accessed Aug. 07, 2022).

[51] M. Bailey and James T. Bennett, “CARBANAK Week Part Two: Continuing the
CARBANAK Source Code Analysis | Mandiant.”
https://www.mandiant.com/resources/carbanak-week-part-two-continuing-
carbanak-source-code-analysis (accessed Aug. 07, 2022).

[52] FireEye, “CARBANAK-Week-3-Behind-CARBANAK-Backdoor.”
https://app.box.com/s/rel5slouyleepdl3u7xilbmzsuk091n3 (accessed Aug. 07,
2022).

[53] P. Paganini, “FireEye revealed APT Operation DeputyDog against Japanes
entities.” https://securityaffairs.co/wordpress/17975/hacking/fireeye-operation-
deputydog-japan.html (accessed Aug. 07, 2022).

[54] D. Caselden, “Operation DeputyDog Part 2: Zero-Day Exploit Analysis (CVE-
2013-3893) | LaptrinhX.” https://laptrinhx.com/operation-deputydog-part-2-zero-
day-exploit-analysis-cve-2013-3893-3911306784/ (accessed Aug. 07, 2022).

[55] FireEye, “Operation DeputyDog Part 2: Zero-Day Exploit Analysis (CVE-2013-
3893).” https://www.fireeye.fr/blog/threat-research/2013/09/operation-deputydog-
part-2-zero-day-exploit-analysis-cve-2013-3893.html (accessed Aug. 08, 2022).

37

[56] S. Ginty, “Operation DustySky Notes | RiskIQ.”
https://www.riskiq.com/blog/analyst/operation-dustysky-notes/ (accessed Aug. 08,
2022).

[57] Cybereason, “Operation Dustysky.” https://www.cybereason.com/blog/what-is-
operation-dustysky (accessed Aug. 07, 2022).

[58] ClearSky Research Team, “Operation DustySky Part 2 ClearSky Cybersecurity,”
2016, Accessed: Aug. 07, 2022. [Online]. Available:
www.clearskysec.com/dustysky2

[59] Fidelis Cybersecurity Solutions, “njrat-uncovered.”
https://app.box.com/s/vdg51zbfvap52w60zj0is3l1dmyya0n4 (accessed Aug. 07,
2022).

[60] Fidelis Cybersecurity Solutions, “njRAT-The-Saga-Continues.”
https://github.com/jack8daniels2/threat-INTel/blob/master/2013/FTA-1010-
njRAT-The-Saga-Continues.pdf (accessed Aug. 07, 2022).

[61] E. Yosef, “nJRAT Report: Bladabindi - Cynet.” https://www.cynet.com/attack-
techniques-hands-on/njrat-report-bladabindi/ (accessed Aug. 07, 2022).

[62] G Data Blog, “The Uroburos case: new sophisticated RAT identified.”
https://www.gdatasoftware.com/blog/2014/11/23937-the-uroburos-case-new-
sophisticated-rat-identified (accessed Aug. 07, 2022).

[63] A. Allievi, “Snake Campaign: A few words about the Uroburos Rootkit.”
https://blog.talosintelligence.com/2014/04/snake-campaign-few-words-about-
uroburos.html (accessed Aug. 07, 2022).

[64] deresz and tecamac, “Uroburos: the snake rootkit,” 2014, Accessed: Aug. 07,
2022. [Online]. Available: https://media.kasperskycontenthub.com/wp-
content/uploads/sites/43/2014/08/20082358/uroburos.pdf

