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Abstract— AutoRegressive eXogenous (ARX) models form
one of the most important model classes in control theory,
econometrics, and statistics, but they are yet to be understood in
terms of their finite sample identification analysis. The technical
challenges come from the strong statistical dependency not
only between data samples at different time instances but also
between elements within each individual sample. In this work,
for ARX models with potentially unknown orders, we study
how ordinary least squares (OLS) estimator performs in terms
of identifying model parameters from data collected from either
a single length-T trajectory or N i.i.d. trajectories. Our main
results show that as long as the orders of the model are chosen
optimistically, i.e., we are learning an over-parameterized model
compared to the ground truth ARX, the OLS will converge
with the optimal rate O(1/

√
T ) (or O(1/

√
N)) to the true

(low-order) ARX parameters. This occurs without the aid of
any regularization, thus is referred to as self-regularization. Our
results imply that the oracle knowledge of the true orders and
usage of regularizers are not necessary in learning ARX models
— over-parameterization is all you need.

I. INTRODUCTION

AutoRegressive eXogenous (ARX) models are versatile
in terms of modeling real world signals that have temporal
dependency and affected by external excitations, includ-
ing those emerging in genomics, neuroscience, medicine,
macroeconomics, stock markets, etc. [1]–[6]. Especially in
such domains where physics-based modeling is hard, the
identification of ARX models from input/output data is a
fundamental problem [7]. Existing work on ARX identifica-
tion has generally consisted of new algorithmic techniques,
and asymptotic analysis, where one studies the behavior
of the estimators as the number of data samples goes to
infinity. Asymptotic properties of classical estimators such
as OLS and maximum likelihood estimators for ARX are
studied, e.g., in [8]–[12]. However, practitioners concerned
with safety and risk aversion ask: how many samples are
needed to guarantee at least a certain level of performance?
In the identification context, the result is a probabilistic
bound on error in estimated parameters. This requires non-
asymptotic finite sample analysis, which is crucial in tasks
such as prediction, filtering, and adaptive control [13], [14].

The major challenge in determining finite-sample error
bounds for ARX identification comes from the strong cor-
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relations among the data generated by ARX models. Recent
advances in the understanding of high-dimensional statistics,
random matrix theory, and random processes [15]–[19] have
enabled rapid progress in non-asymptotic result for learning
dynamical models with a single data trajectory [20]–[25].
However, ARX models are more challenging to analyze:
even if we simplify the setting to collecting a single sample
from multiple i.i.d. trajectories, correlation still exists within
individual sample vectors due to outputs regressing onto their
past values. This makes it difficult to lower bound the sample
covariance matrix and obtain an estimation error upper bound
using only quantities depending on model properties.
Contributions: In this work, we study the non-asymptotic
behavior of the ordinary least squares (OLS) estimators for
identifying stable ARX models with potentially unknown
orders. We show that when the orders of ARX model
are chosen optimistically, i.e., we are learning an over-
parameterized model compared to the true one, the OLS
estimator will converge to the true model parameters with
the following rate:

• O(
√
log(T )/T ) — if the data is collected from a single

length-T trajectory,
• O(1/

√
N) — if the data is collected from N i.i.d.

trajectories,

where the latter scheme can also deal with explosive (unsta-
ble) ARX models.

The implication of our work is that, while learning ARX
models, neither knowledge of the exact model orders nor
regularization are mandatory. As long as orders used by the
estimator are larger than the true ones, sufficient amount of
data guarantees that the OLS automatically converges to the
true parameter with correct orders. Particularly, the redundant
parameters estimated by the OLS estimator, i.e., elements
that should be 0 in a naive lifting of the true parameter,
indeed converge to 0. This phenomenon is also known as
the oracle property [26] of estimators. We refer to it as
self-regularization in this work as the explicit regularization
typically required for estimators to satisfy the oracle property
is not needed in our setting.

Furthermore, when the true model orders are used in
the OLS, we obtain the estimation accuracy upper bound
O(

√
n log(T )/T ) and O(

√
n/N), where n is the model

order. Comparing to minimax lower bounds for similar
problems, these upper bounds achieve the optimal (up to
logarithmic factors) rates in terms of the dependency on n
and T (or N ). Perhaps, most relevant to our work is that in
[14], where similar rates for an ℓ2-regularized least squares



estimator for ARX identification with known orders from a
single trajectory are obtained.
Organization: In Section II, we introduce ARX models and
its over-parameterized OLS estimators. Section III uses a
simple example to illustrate and give insight about the self-
regularization phenomenon. Section IV and V provide the
non-asymptotic results for OLS estimators with single and
multiple trajectories respectively. Section VI shows numeri-
cal results that support our theoretical results.

II. PRELIMINARIES

In this paper, boldface uppercase (lowercase) letters denote
matrices (vectors); plain letters mainly denote scalars. For a
matrix E, E(i, :) denotes the ith row of E, and E(i, j:k)
denotes the ith row preserving only the jth to kth elements.
Let σ̄(E) and σ(E) denote the largest and smallest singular
values. λ̄(E) and λ(E) are defined similarly for the eigen-
values of positive semi-definite matrices. Given an arbitrary
square matrix E, let ρ(E) denote its spectral radius. For
any s ∈ N, we let [s] := {1, 2, . . . , s}. For a sequence of
variables X0, X1, . . . , XN , let X0:N := {Xi}Ni=0. Notation
In denotes the n dimensional identity matrix; 0m×n denotes
the m × n dimensional zero matrix; ei denotes the one-hot
vector with the ith element being 1.

For an arbitrary square matrix M ∈ Rmxm and a free
parameter ρ such that ρ ≥ ρ(M), we define

τ(M, ρ) :=

{
supk∈N ∥Mk∥/ρk if ρ(M) > 0,∑m−1

k=0 ∥Mk∥ if ρ(M) = 0.
(1)

This gives ∥Mk∥ ≤ τ(M, ρ)ρk for any k ∈ N. By definition,
(i) when ρ > ρ(M), τ(M, ρ) is finite by Gelfand’s formula;
(ii) when ρ = ρ(M), τ(M, ρ) is finite as long as M is
diagonalizable, a generic property of matrices in Rmxm. In
the latter case, τ ≤ ∥V∥∥V-1∥, where V is a matrix whose
columns span the eigenspace of M.

For a zero-mean random vector x, we let Cov(x) :=
E[xx⊺] denote its covariance matrix. Claims such as “for
all j, with probability 1 − δ, for all i, event Ei,j occurs” is
equivalent to “for all j, P(∩iEi,j) ≥ 1− δ”.

A. ARX Basics

In this work, we seek to learn the following ARX models

yt =

nα∑
i=1

αiyt−i +

nβ∑
i=1

βiut−i + ηt−1, (2)

with unknown model orders nα and nβ . The output yt is
driven by i.i.d. input ut ∼ N (0, σ2

u) and process noise ηt ∼
N (0, σ2

η) for all time t. We assume αnα
and βnβ

are non-
zero, as the orders can be reduced otherwise. The parameters
α1:nα , β1:nβ

are to be learned from the input-output data.
Let n:=max(nα, nβ), and αi=βj=0 for any i > ny ,

j > nu. Define polynomials q(z) := zn − ∑n
i=1 αiz

n−i

and p(z) :=
∑n

i=1 βiz
n−i, and ρ⋆ := maxz:q(z)=0 |z|.

Define A :=

[
01×(n−1) αn...

α1In−1

]
, B := [βn, . . . , β1]

⊺,

C := [0, . . . , 0, 1], and Γ := C⊺. The ARX model (2) has

an equivalent single-input single-output (SISO) state space
representation in the following observable canonical form

xt+1 = Axt +But + Γηt

yt = Cxt

(3)

where xt ∈ Rn denotes the internal state that bridges the
input and output in the ARX model. We can see ρ⋆ is
equal to ρ(A), the spectral radius of A, as its characteristic
polynomial is given by q(z). For k ∈ N, define gxk := CAk,
guk := CAk−1B, gu0 := 0, gηk := CAk−1Γ, gη0 := 0, which
are referred to as Markov parameters. Using the internal state
xt, the ARX model (2) can be further written as:

yt = gxt0xt−t0 +

t0∑
i=1

gui ut−i +

t0∑
i=1

gηi ηt−i (4)

for some starting time index t − t0. Compared to the ARX
model (2), introducing the internal state x eliminates the
dependency of output yt on past y’s.

B. Over-parameterized OLS Estimator for ARX
To make sure the true ARX model (2) with unknown

orders nα and nβ can be learned, one could fit the data
using an ARX model with orders n̄α and n̄β large enough
such that n̄α ≥ nα and n̄β ≥ nβ . We refer to this as over-
parameterization. Let n̄ := n̄α + n̄β and

θ := [α1:nα , 01×(n̄α−nα), β1:nβ
, 01×(n̄β−nβ)]

⊺ ∈ Rn̄ (5)

which embeds the true parameter. Under this over-
parameterization setup, we study the OLS estimator with
data collected from (i) a single trajectory and (ii) multiple
independent trajectories generated by (2) with system starting
from rest at time 1− n̄β , i.e., yt, ut, and ηt are zero for all
t < 1 − n̄α. This initial condition implies that the internal
state xt = 0 for t ≤ 1 − n̄α. The results in this paper hold
similarly for non-zero initial conditions as long as the initial
conditions have finite second-order moment.
Single Trajectory: Consider a single trajectory
{(ut, yt, ηt)

T
t=1−max(n̄β ,n̄α)} of length T . Define

zt := [yt−1, . . . , yt−n̄α , ut−1, . . . , ut−n̄β
]
⊺ ∈ Rn̄,

Z := [z1, z2, . . . , zT ]
⊺ ∈ RT xn̄,

Y := [y1, y2, . . . , yT ]
⊺ ∈ RT ,

E := [η0, η1, . . . , ηT−1]
⊺ ∈ RT ,

(6)

where we allow for potentially negative time indices, e.g.
y1−n̄α

, to ease the exposition.
Multiple Trajectories: Consider N i.i.d. trajectories
{(u(i)

t , y
(i)
t , η

(i)
t )Tt=1}Ni=1 each with length T . Define

z(i) := [y
(i)
T−1, . . . , y

(i)
T−n̄α

, u
(i)
T−1, . . . , u

(i)
T−n̄β

]
⊺ ∈ Rn̄,

Z := [z(1), z(2), . . . , z(N)]
⊺ ∈ RNxn̄,

Y := [y
(1)
T , y

(2)
T , . . . , y

(N)
T ]

⊺ ∈ RN ,

E := [η
(1)
T−1, η

(2)
T−1, . . . , η

(N)
T−1]

⊺ ∈ RN ,

(7)

where only the final portion, i.e., yT−n̄α:T−1 and uT−n̄β :T−1,
of each trajectory is used to ease the analysis, similar to the
setup in [27].



For both single- and multiple-trajectory cases, we have
Zθ+E = Y, and the OLS estimator is given by

θ̂ := (Z
⊺
Z)-1Z

⊺
Y. (8)

For an explosive (ρ⋆ > 1) ARX model, the output yt can
grow exponentially over time. Generating a single trajectory
for learning may not be safe or practically feasible, and even
if an experiment can be run, the collected data can lead to
numerical issues. For such models, using multiple trajectories
with small trajectory length T could be a better choice.

C. Model Ambiguity in Over-parameterization

Over-parameterization increases model capacity but also
induces model ambiguity. For all i = 1, . . . ,min(n̄α −
nα, n̄β − nβ), let

vi := [01×i−1, −1, α1:nα
, 01×(n̄α−nα−i),

01×i, β1:nβ
, 01×(n̄β−nβ−i)]

⊺ ∈ Rn̄. (9)

Then, for θ̃ := θ +
∑

i civi for any ci ∈ R, with some
algebra, one can see the model

yt =

n̄α∑
i=1

θ̃iyt−i+

n̄β∑
i=1

θ̃n̄α+iut−i+ηt−1+
∑
i

ciηt−1−i (10)

is equivalent to the true ARX model (2). We use the “true
parameter” set Θ := {θ̃ : θ̃ = θ +

∑
i civi, ci ∈ R}

to denote all θ̃ such that the over-parameterized model
is equivalent to the true ARX model (2). Note that the
ambiguity carried by vi’s and Θ essentially translates to
multiplying both q(z) and p(z) by a monic polynomial∏

i(zi − ξi) for some {ξi}i. Hence, the transfer function,
p(z)/q(z), is unchanged due to the cancellation.

In Section III and IV, we numerically and theoretically
show that even though the true parameter set Θ has infinitely
many elements, θ̂ converges to θ, the one with the smallest
order and the original α1:nα and β1:nβ

in model (2).

III. A SIMPLE ILLUSTRATIVE EXAMPLE

In this section, we show how self-regularization emerges
through a numerical experiment, followed by high-level
insight into the cause of such phenomenon.

We consider a simple ARX model

yt = −0.3yt−1 + 0.4yt−2 + ut−1 + ηt−1 (11)

with nα = 2, nβ = 1 and σu = ση = 1. The OLS over-
parameterization orders are chosen as n̄α = 4, n̄β = 2,
which gives θ = [−0.3, 0.4, 0, 0, 1, 0]⊺. By definition, the
true parameter set is given by Θ = {θ+ c1v1 : c1 ∈ R} for
v1 := [−1,−0.3, 0.4, 0, 0, 1].

Fig. 1 numerically shows the convergence of the over-
parameterized single-trajectory OLS. We can see that as the
trajectory length T increases, the range of θ̂ shrinks to θ.
Specifically, the exact-parameterized part, i.e., [α̂1, α̂2, β̂1]
converges to the true model parameter [−0.3, 0.4, 1], while
the over-parameterized part, i.e., [α̂3, α̂4, β̂2], converges to 0.
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-0.5

0

0.5

1

1.5

Fig. 1. True θ vs. OLS estimator θ̂ computed using single-trajectory.
For 500 i.i.d. experiments per trajectory length T , the plot shows the range
(maximum and minimum values) of each element in θ̂ with varying T ,
where α̂1:4 := θ̂1:4 and β̂1:2 := θ̂5:6. Observe that as T increases,
the redundant parameters (i.e. α̂3, α̂4, and β̂2) converge to zero, and the
remaining parameters converge to their corresponding true value.

For any θ̃ ∈ Θ, the prediction error at time t with respect
to the regressor zt := [yt−1, yt−2, yt−3, yt−4, ut−1, ut−2]

⊺

and output yt is given by

E[(yt − θ̃
⊺
zt)

2] = E[(ηt−1 + cηt−2)
2] = (1 + c2)σ2

η, (12)

which achieves the minimum when c = 0, i.e. θ̃ = θ. This
implies that as long as there is noise, ση ̸= 0, among the
infinitely many true parameters θ̃ the one with the smallest
order, θ, uniquely minimizes the prediction error. Since OLS
minimizes the empirical prediction error that converges to
the expectation in (12), it is reasonable to conjecture that
θ̂ would converge to θ. In what follows, we prove this
conjecture through finite-sample analysis.

IV. SINGLE-TRAJECTORY CASE

We first present a few assumptions and notations to be
used in our theoretical analysis. As a key assumption in the
single-trajectory analysis, we require the ARX models to be
stable as stated next.

Assumption 1: The ARX model has ρ⋆ < 1.
Under this Assumption, the output yt will be non-explosive.
Recall that ρ⋆ is also the spectral radius of matrix A defined
in the state space representation (3). For matrix A in (3) and
for any free parameter ρ such that ρ ≥ ρ⋆, τ(A, ρ) defined
in (1) will be used to bound the growth of A’s powers, as
in [28]. We drop the arguments of τ(A, ρ) and use τ as a
shorthand notation. This gives ∥Ak∥ ≤ τρk for any k ∈ N.

With the Markov parameters guk and gηk in SectionII-A, we
define the following two Toeplitz matrices: for h ≥ n̄α, let

Gu(h):=


gu1 gu2 · · · guh

gu1 · · · guh−1

. . .
...

gu1 · · · guh−n̄α+1

∈Rn̄αxh

Gη(h):=


gη1 gη2 · · · gηh

gη1 · · · gηh−1

. . .
...

gη1 · · · gηh−n̄α+1

∈Rn̄αxh

(13)



From the representation (4), one can see Gu(h) and
Gη(h) correspondingly map ut−2:t−h−1 and ηt−2:t−h−1, to
yt−1:t−n̄α . Note yt−1:t−n̄α is the first part of the regressor
vector zt defined in (6).

Table I summarizes some notation that is used in the
statements of the main results. In this table δ ∈ (0, 1). Note
that some of the defined variables such as L and T 1 depend
on T , δ, the free parameter ρ, and its corresponding τ .

TABLE I
NOTATIONS — SINGLE TRAJECTORY

L ⌈ log(T )
log(1/ρ)

⌉+ 2n̄− 1

σu,η

√
σ2
u∥B∥2 + σ2

η

G0

[
0n̄α×1 Gu(max(n̄α, n̄β − 1)) Gη(n̄α)

In̄β · · · 0 · · ·

]

G1

[
0n̄α×1 Gu(n̄+ n)

In̄β · · · 0 · · ·

]

G2

[
Gη(n̄α)

0n̄βxn̄α

]
λ0 max

(
σ(G0)2 min(σ2

u, σ
2
η) ,

σ(G1)2σ2
u + σ(G2)2σ2

η

)
Co 192max(σ2

u,η , σ
2
u)/λ0

T 1 4L log(8L/δ) + 2L

Tλ,1

(
640n̄τ2 max(σ2

u,η,σu,ησu) log(8T/δ)

(1−ρ)2λ0

)2

Tλ,2 16 log(4L/δ)L+
32n̄τ2 max(σ2

u,η,σ2
u)L

(1−ρ)2λ0

Theorem 1 (OLS Convergence — Single Trajectory):
Suppose Assumption 1 holds, and the OLS orders satisfy
n̄α ≥ nα, n̄β ≥ nβ . Then, for any ρ ∈ [ρ⋆, 1) and its
corresponding τ , as long as T ≥ max(T 1, Tλ,1, Tλ,2), with
probability at least 1− δ,

∥θ̂− θ∥ ≤ Coτ

1−ρ
· ση

σu

√
n̄ log(T/ρ2n̄)

T log(1/ρ)
log

(36T
δ

)
. (14)

According to Theorem 1, with rate O(
√

log(T )/T ), the OLS
estimator θ̂ converges to θ = [α1:nα , 01×(n̄α−nα), β1:nβ

,
01×(n̄β−nβ)]

⊺, the true parameter with orders nα and nβ , and
the original α1:nα

, β1:nβ
in model (2). Thus, if the true orders

nβ and nα are unknown, using over-parameterization orders
n̄α and n̄β guarantees the parameter with the smallest order
and the most trailing zeros can be recovered, with sufficient
data. Similar observations have been in the literature for ℓ2-
regularized and [29] ℓ1-regularized [30] least squares where
it is shown that even when an over-parameterized model
is used in estimation, the estimate converges to the true
parameter, i.e., oracle property [26] exists. Since this sparse
parameter is obtained without any explicit regularizer in our
work, we refer to this phenomenon as self-regularization.

When the over-parameterization order n̄, spectral radius
ρ⋆, and noise to signal ratio ση/σu are larger, the upper
bound on ∥θ̂− θ∥ become looser, and the conditions on the
trajectory length T for the analysis to hold become more
stringent.

Of course, Theorem 1 also shows the convergence for
the identification setup where the true orders nα and

nβ are assumed to be known and used in the identi-
fication. In this case, Theorem 1 yields upper bounds
O(

√
(nα + nβ) log(T )/T ). Compared with minimax lower

bound for time series parameter estimation error [20] and
prediction error [31], our developed upper bound almost (up
to log(T ) term) meets the lower bound in terms of the order
dependency on the model order and trajectory length.

Note that in Theorem 1, the coefficient Co has de-
nominator λ0 := max

(
σ(G0)

2 min(σ2
u, σ

2
η), σ(G1)

2σ2
u +

σ(G2)
2σ2

η

)
. λ0 helps to lower bound the sample covariance

matrix Z⊺Z from 0, i.e. λ(Z⊺Z) > 0, so that θ̂ :=
(Z⊺Z)-1Z⊺Y exists. The following proposition guarantees
that λ0 ̸= 0 so that both Co and the OLS estimator θ̂ are
well-defined.

Proposition 1: In the definition of λ0, matrices G0,G2,
and G1 satisfy the following:

• G0 ∈ Rn̄x max(n̄,2n̄α+1) has full row rank.
• G2 ∈ Rn̄xn̄α has full row rank as long as n̄β = 0.
• G1 ∈ Rn̄x(n̄+n+1) has full row rank as long as (i) q(z)

and p(z) have no common roots, and (ii) n̄α = nα or
n̄β = nβ .

The first two bullets can be proved simply by the structures of
block matrices. The third one also utilizes basic properties of
controllability and observability of the true order state space
model (3). Note that both controllability and observability
can be guaranteed when q(z) and p(z) have no common
roots. This proposition shows σ(G0), σ(G1), and σ(G1) can
be non-zero, even under special cases such as nβ = n̄β = 0
or ση = 0, which, by definition, further guarantees λ0 ̸=
0. More discussions on those special cases are in the next
section.

A. Special Cases

Theorem 1 is proved for the general ARX models, but it
also accounts for several special cases such as Autoregressive
(AR) models and noise-free cases. These cases not only serve
as sanity checks for our theoretical results but also enjoy
tighter guarantees.
AR Case: When the ARX model is not driven by exogenous
input, i.e., the order nβ = 0, it reduces to an AR model. In
this case, only the outputs are used to compute the OLS
estimator θ̂. To obtain the theoretical guarantees, one only
needs to set nβ = n̄β = 0, n̄ = n̄α, and σu = 0 in Theorem
1. Correspondingly, certain parameters have more concise
and informative expressions. To list a few, in Table I, we
have σu,η = ση , λ0 = σ(G2)

2σ2
η , and Co = 192/σ(G2)

2.
Note that λ0 ̸= 0 according to Proposition 1. We mention
two recent works related to this special case. Finite sample
analysis of OLS estimator for AR models with known order
appeared in [32], where the parameter error in terms of ℓ∞-
norm is analyzed as opposed to the ℓ2-norm error in our
case. Non-asymptotic results for using lasso estimator to
learn AR models appeared in [33], which requires mixing
time and a slightly different excitation condition, which can
be less interpretable for control audience than system-related
properties in our work.



FIR Case: When there is no autoregressive part in the ARX
model, i.e., α1:nα = 0, yt depends only on past ut−1:t−nβ

,
which is an FIR model. In this case, the data matrix Z
is constructed with the inputs only. Thus, the dependency
between the data (rows) in Z are greatly reduced compared
to general ARX models. For example, according to the
definitions in (6), for any t and any t′ > t + n̄β , the rows
zt and zt′ in Z are completely independent. Therefore, the
estimation error ∥θ̂− θ∥ can be more easily analyzed, and
one may expect the guarantees to be tighter as well. On the
other hand, one can directly adapt the result in Theorem 1
to this case by setting ρ⋆ = 0, nα = n̄α = 0, n̄ = n̄β .
Matrices G0, G1, and G2 will be left only with the lower
blocks. It is worth noticing that in the upper bound (14), the
order term

√
log(T/ρ2n̄)
T log(1/ρ) reduces to

√
2n̄α/T when choosing

ρ = ρ⋆ = 0, which is indeed tighter than the general case.
Noise-free Case: The last special case we consider is the
noise-free case, i.e. ση = 0, and the ARX model is driven
by the input only. In this ideal case, it is tempting to believe
in the following seemingly true statement: as long as certain
amount of data is collected, the estimation error would
become exactly 0. It is easy to see this statement when (i)
polynomials q(z) and p(z) have no common roots, and (ii)
n̄α = nα and n̄β = nβ , i.e. the ground truth orders are used
to parameterize the OLS estimator θ̂. Note that condition
(i) guarantees that there does not exist an equivalent ARX
model with smaller orders.

However, it is not necessarily true when n̄α ≥ nα and
n̄β ≥ nβ , i.e., the over-parameterization scenario. This is
because with Gaussian input ut and condition (i), one can
show the covariance matrix Z⊺Z ∈ R(n̄α+n̄β)x(n̄α+n̄β) has
rank nα + nβ + max(n̄α − nα, n̄β − nβ) almost surely. If
both n̄α > nα and n̄β > nβ , it gives rank-deficient Z⊺Z

thus the OLS estimator θ̂ := (Z⊺Z)-1Z⊺Y is ill-defined.
But the pseudo inverse estimator θ̂pinv := Z†Y still exists.
Since any θ̃ in the true parameter set Θ fits the data perfectly,
θ̂pinv ends up becoming the one with the minimum norm
in Θ, i.e., θ̂pinv = argminθ̃∈Θ ∥θ̃∥. On the bright side, if
either n̄α = nα or n̄β = nβ , we see Z⊺Z has full rank, and
θ̂ not only exists but also has θ̂ = θ.

These can be explained by Theorem 1 as well: ση = 0
gives λ0 = σ(G1)

2σ2
u, Co = 192max(1, ∥B∥2)/σ(G1)

2,
and ∥θ̂− θ∥ ≤ O(

ση

σ(G1)2σu

√
log(T/ρ2n̄)
T log(1/ρ) ). This upper bound

is automatically 0 when σ(G1) ̸= 0, which can be satisfied,
according to Proposition 1, when q(z) and p(z) have no
common roots and either n̄α = nα or n̄β = nβ is satisfied.

Recall that under the noise-free case, q(z) and p(z) having
common roots implies that there exists an equivalent ARX
model with orders strictly smaller than nα and nβ . This
means that even if the true orders n̄α = nα and n̄β = nβ

are used in the identification, one may end up with this
reduced order model. This ambiguity led by reduced orders
can be otherwise eliminated, as long as there exists noise:
by Theorem 2, when ση ̸= 0, ∥θ̂− θ∥ always has a valid
error upper bound with decay rate O(log(T )/

√
T ). In other

words, θ̂ converges to θ that embeds the true orders nα and

nβ , even if q(z) and p(z) have common roots. In this sense,
the existence of noise helps the identification.

B. Proof Sketch of Theorem 1

We highlight here the key proof steps and leave the
derivation details in the appendix. The main challenge in
the analysis is the strong dependency among the rows in the
data matrix Z. To reduce the dependency in the analysis, we
use the idea of sub-sampling and decoupling [34]–[36]: if we
sub-sample the trajectory with large enough sampling period,
the sub-sampled data has much weaker dependency; then,
by ignoring the dependent factors among the sub-sampled
data, we construct decoupled “data” that are completely
independent. We refer to this as decoupling. The decoupled
data is for analysis purpose only and the overall data in the
OLS problem can be written as a sum of these decoupled
terms plus some residuals. The upper bound on ∥θ̂− θ∥ will
mainly come from analyzing these decoupled data, while the
impact of the ignored dependent factors can be guaranteed
to be small with large sampling period.

For L defined in Table I, it is easy to see ρ
L
2 ≤ 1/

√
T . We

will use L as the sampling period, and to ease the analysis,
we assume the trajectory length T is a multiple of L, i.e.,
K := T/L ∈ N. Similar results can be established for
general T .
Sub-trajectory: For all l ∈ [L], k ∈ [K], define notation
(l,k) := l + (k − 1)L. Similar to (6) that defines zt,Z, and
E, we define

z(l,k) := [y(l,k)−1, . . . , y(l,k)−n̄α
, u(l,k)−1, . . . , u(l,k)−n̄β

]
⊺

Z(l) := [z(l,1), z(l,2), . . . , z(l,K)]
⊺

E(l) := [η(l,1)−1, η(l,2)−1, . . . , η(l,K)−1]
⊺
.

These can be viewed as the variables associated with the lth
sub-trajectory. Hence, we have a total of L sub-trajectories
each with length K, and (l,k) indexes the kth data in the lth
sub-trajectory. These notations also give the relations Z⊺Z =∑L

l=1 Z
⊺
(l)Z(l) and Z⊺E =

∑L
l=1 Z

⊺
(l)E(l).

Decoupling: First note that in z(l,k), each output element
y(l,k)−i can be decomposed as follows using the representa-
tion in (4): for all j ∈ [n̄α],

y(l,k)−j = gxL−jx(l,k)−L +

L−j∑
i=1

(
gui u(l,k)−j−i + gηi η(l,k)−j−i

)
.

We define the decoupled output and sub-trajectories, which
do not include the initial state terms x(l,k)−L:

ȳ(l,k)−j :=

L−j∑
i=1

(
gui u(l,k)−j−i + gηi η(l,k)−j−i

)
z̄(l,k) := [ȳ(l,k)−1, . . . , ȳ(l,k)−n̄α

, u(l,k)−1, . . . , u(l,k)−n̄β
]
⊺

Z̄(l) := [z̄(l,1), z̄(l,2), . . . , z̄(l,K)]
⊺
.

In matrix Z̄(l), by definition, row z̄⊺(l,k) depends only on
u(l,k)−1:(l,k)−L and η(l,k)−2:(l,k)−L while z̄⊺(l,k+1) depends
only on u(l,k+1)−1:(l,k+1)−L and η(l,k+1)−2:(l,k+1)−L. Since
z̄(l,k) and z̄(l,k+1) do not depend on any common u and η
terms, and the mapping relations from their respective u and



η terms to z̄(l,k) and z̄(l,k+1) are the same, we see z̄(l,k) and
z̄(l,k+1) are i.i.d.. This shows that the originally dependent
rows in matrix Z(l) are completely decoupled in the newly
constructed matrix Z̄(l), whose rows are i.i.d.. We refer
to Z̄(l) as the decoupled sub-trajectory. Similarly, we see
each row z̄⊺(l,k) in Z̄(l) is independent of the corresponding
element η(l,k)−1 in matrix E(l).
Bounding ∥θ̂− θ∥: It is easy to verify that the estimation
error is given by θ̂−θ = (Z⊺Z)-1Z⊺E, which further gives
∥θ̂− θ∥ ≤ ∥Z⊺

E∥
λ(Z⊺Z) . We can bound these factors in terms of

sub-trajectories and their decoupled counterparts:

∥Z⊺
E∥ ≤

∑
l

∥Z⊺
(l)E(l)∥

≤
∑
l

(
∥Z̄⊺

(l)E(l)∥+ ∥(Z(l) − Z̄(l))
⊺
E(l)∥

)
(15)

λ(Z
⊺
Z) ≥

∑
l

λ(Z
⊺
(l)Z(l))

≥
∑
l

(
λ(Z̄

⊺
(l)Z̄(l))− ∥Z⊺

(l)Z(l) − Z̄
⊺
(l)Z̄(l)∥

)
. (16)

Hence, to bound ∥θ̂− θ∥, it suffices to lower bound
λ(Z̄⊺

(l)Z̄(l)) and upper bound ∥Z⊺
(l)Z(l) − Z̄⊺

(l)Z̄(l)∥,
∥Z̄⊺

(l)E(l)∥, and ∥(Z(l) − Z̄(l))
⊺E(l)∥.

Since all K rows in matrix Z̄(l) are i.i.d., bounding
λ(Z̄⊺

(l)Z̄(l)) and ∥Z̄⊺
(l)E(l)∥ is no different from assuming

the rows in Z̄(l) are generated by K i.i.d. trajectories with
zero initial conditions. Therefore, following the ideas in [37,
Sec 2.2], we can show

λ(Z̄
⊺
(l)Z̄(l)) ≥ O(K), ∥Z̄⊺

(l)E(l)∥ ≤ O(
√
n̄K). (17)

Now we consider the residual terms ∥Z⊺
(l)Z(l) − Z̄⊺

(l)Z̄(l)∥
and ∥(Z(l) − Z̄(l))

⊺E(l)∥ that capture the dependencies that
are removed in the decoupling. Expressing matrix multiplica-
tions as the summation of outer products and using triangle
inequality give

∥Z⊺
(l)Z(l) − Z̄

⊺
(l)Z̄(l)∥ ≤

K∑
k=1

2∥z̄(l,k)∥∥z(l,k) − z̄(l,k)∥+ ∥z(l,k) − z̄(l,k)∥2

∥(Z(l) − Z̄(l))
⊺
E(l)∥ ≤

K∑
k=1

∥z(l,k) − z̄(l,k)∥|η(l,k)−1|.

Thus, it suffices to bound (i) the error in ignoring state in the
decoupling ∥z(l,k) − z̄(l,k)∥, (ii) the decoupled data ∥z̄(l,k)∥,
and (iii) the noise term |η(l,k)−1|.

Since the ARX process is stable, i.e. ρ⋆ < 1, the decoupled
data z̄(l,k) is essentially Gaussian with bounded covariance.
Hence, (i) ∥z̄(l,k)∥ and (ii) |η(l,k)−1| can be bounded with
high probability, i.e. ∥z̄(l,k)∥, |η(l,k)−1| ≤ O(1).

Finally, we can again exploit stability to bound (iii)
∥z(l,k) − z̄(l,k)∥. By definition,

z(l,k) − z̄(l,k) = [(gxL−1)
⊺
, . . . , (gxL−n̄α

)
⊺
]
⊺ · x(l,k)−L

= [(CAL−1)
⊺
, . . . , (CAL−n̄α)

⊺
]
⊺ · x(l,k)−L.

Since ∥Ak∥ ≤ O(ρk) and ∥x(l,k)−L∥ < O(1) by stability,
we can show ∥z(l,k) − z̄(l,k)∥ ≤ O(ρ

L
2 ). Note that the choice

of sub-sampling period L guarantees ρ
L
2 ≤ 1/

√
T , thus

∥z(l,k) − z̄(l,k)∥ ≤ O(1/
√
T ).

Combining the bounds for (i-iii), we obtain

∥Z⊺
(l)Z(l) − Z̄

⊺
(l)Z̄(l)∥ ≤ O(K/

√
T ) (18)

∥(Z(l) − Z̄(l))
⊺
E(l)∥ ≤ O(K/

√
T ). (19)

Finally, plugging (17), (18) (19) into (15) (16) gives

∥Z⊺
E∥ ≤ O(

√
n̄K) λ(Z

⊺
Z) ≥ O(K). (20)

Therefore, ∥θ̂− θ∥ ≤ λ(Z⊺Z)-1∥Z⊺E∥ ≤ O(
√
n̄/K) =

O(
√
n̄L/T ) = O(

√
n̄ log(T )/T ).

V. MULTIPLE-TRAJECTORY CASE

In this section, we present results for the OLS estimator
θ̂ computed from N i.i.d. trajectories. Consider the random
vector z of regressors in (7), defined by

z := [yT−1, . . . , yT−n̄α
, uT−1, . . . , uT−n̄β

]
⊺ ∈ Rn̄. (21)

Note that z is a zero-mean Gaussian random vector, and
the vectors z(i) in (7) for all i ∈ [N ] are realizations of z.
Denote the covariance of z by Σz. The OLS estimator θ̂ :=

(Z⊺Z)-1Z⊺Y is well-defined when Z⊺Z =
∑

i z
(i)z(i)

⊺
is

invertible, which is true only if Σz is positive definite. This
is guaranteed by the following proposition.

Proposition 2: The covariance matrix Σz is positive def-
inite if the trajectory length T ≥ max(n̄α, n̄β) + 1 and the
standard deviations satisfy ση > 0 and σu > 0.

Proof: Since it is assumed in Section II that the system
starts from rest, we have yt =

∑t
i=1 g

u
i ut−i +

∑t
i=1 g

η
i ηt−i

according to (4). Using this relation, the vector z in (21)
can be expressed as the product of a matrix G ∈ Rn̄x(2T−1)

constructed with the Markov parameters gui ’s and gηi ’s, and
the vector [u0, . . . , uT−1, η0, . . . , ηT−2]

⊺. One can verify that
G is given by

G:=

[
0n̄α×1 Gu(T − 1) Gη(T − 1)

In̄β
0n̄βx(2T−1−n̄β)

]
, (22)

where Gu(T − 1) and Gη(T − 1) are as in (13). Thus, the
covariance matrix Σz is equal to

Σz = E[zz⊺] = G

[
σ2
uIT 0
0 σ2

ηIT−1

]
G

⊺
. (23)

From the special structure of G, one can see it has full row
rank when T ≥ max(n̄α, n̄β) + 1. It follows that matrix Σz

is positive definite since σu, ση > 0.
With Σz ≻ 0, using concentration results of Gaussian
matrices, e.g. [19, Theorem 6.1], we can show Z⊺Z is
invertible with high probability, which indicates θ̂ is well-
defined. The analysis for special cases ση = 0 or σu = 0 is
similar to the single-trajectory case, thus left to the readers
to fill in. We then have the following result regarding the
convergence of multiple-trajectory OLS. Its proof can be
found in the appendix.



Theorem 2 (OLS Convergence — Multiple Trajectories):
Suppose T ≥ max(n̄α, n̄β) + 1, ση > 0, and σu > 0. If the
sample size N satisfies that

N ≥ max
(
n̄, 4

(√
tr(Σz)/σ(Σz) +

√
2 log(1/δ)

)2)
, (24)

with probability at least 1− δ,

∥θ̂− θ∥ ≤ 16ση

√
(1 + n̄)∥Σz∥ log(18/δ)

σ(Σz)
√
N

. (25)

By Theorem 2, the OLS estimator θ̂ converges to
θ with rate O(1/

√
N), which improves upon the rate

O(
√
log(T )/T ) in the single-trajectory case since i.i.d.

trajectories are used. Furthermore, the analysis here no longer
requires the system to be stable, i.e., the result holds for
arbitrary ρ⋆.

The presence of terms involving the covariance matrix Σz,
i.e., ∥Σz∥, tr(Σz), and σ(Σz), in Theorem 2 can make the
bound hard to evaluate. However, more explicit bounds can
be obtained by relaxing those terms with more informative
quantities. From (23), we can obtain

∥Σz∥ ≤∥G∥2 max(σ2
u, σ

2
η),

tr(Σz) ≤σ2
u(n̄β + ∥Gu(T − 1)∥2F) + σ2

η∥Gη(T − 1)∥2F,
σ(Σz) ≥σ2(G)min(σ2

u, σ
2
η). (26)

By replacing ∥Σz∥, tr(Σz), and σ(Σz) in (24) and (25)
with their corresponding bounds in (26), we obtain sample
complexity results that explicitly depend on σu, ση , and the
matrices G.

VI. EXPERIMENTS

In this section, we present the experimental results on the
OLS estimator and compare those results with our theoretical
findings.

We evaluate the estimation error ∥θ̂− θ∥ by averaging
over 50 Monte Carlo runs. In each run, an ARX model is
generated randomly1 with order n = nα = nβ and spectral
radius ρ⋆. We set n = 10, ρ⋆ = 0.85, and σ2

u = σ2
η = 1

unless otherwise specified. In the multiple-trajectory case,
we fix the trajectory length T = 50. Fig. 2 (resp. Fig. 3)
shows the averaged estimation error against the trajectory
length T in the single-trajectory case (resp. the number of
trajectories N in the multiple-trajectory case).

Let us first analyze Fig. 2. In Fig. 2a, we vary the
over-parameterization order n̄α = n̄β . We see θ̂ under
over-parameterization converges to the true θ, and the per-
formance degrades when n̄α = n̄β increases, i.e., more
redundancy in the parameters. These manifest the self-
regularization property and agree with Theorem 1. Since the
y-axis has logarithmic scale, the almost-constant distances
between the three lines imply that the performance degrada-
tion caused by large over-parameterization can be overcome

1The parameters β1:nβ
are generated by i.i.d. standard Gaussian samples.

To generate α1:nα , we first sample nα roots of q(z) following i.i.d.
standard Gaussian, followed by uniform scaling so that the largest root
has magnitude ρ⋆; then the coefficients of q(z) are extracted and taken as
α1:nα .
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Fig. 2. Single-trajectory OLS estimation error vs trajectory length vs (a)
over-parameterization order n̄α, n̄β ; (b) true order n; (c) ρ⋆; (d) noise level
ση . In (b-d), true orders are used, i.e., n̄α = nα, n̄β = nβ .
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Fig. 3. Multiple-trajectory OLS estimation error vs number of trajectories
vs (a) over-parameterization order n̄α, n̄β ; (b) true order n; (c) ρ⋆; (d)
noise level ση . In (b-d), true orders are used, i.e., n̄α = nα, n̄β = nβ .

quickly with sufficient amount of data. We also see in Fig.
2b-2d that estimation is harder with larger ground truth order
n, ρ⋆, and noise level ση , which all agree with Theorem 1.

In Fig. 3, we repeat similar experiments for learning from
multiple trajectories, showing estimation error trends follow
the upper bound in Theorem 2. In Theorem 2 we do not
require the underlying model to be stable, which is reflected
in Fig. 3c where learning is still possible with ρ⋆ = 1.5.

VII. CONCLUSIONS AND FUTURE WORKS

In this work, we provide a non-asymptotic analysis for
using OLS to learn ARX models. A side product of our



analysis is that even if the OLS is applied to learn an
over-parameterized model with orders larger than the true
ones, it still converges to the true parameters, which also
reveals the true orders. Since our method does not require
any regularization, there are no hyper-parameters to be tuned
either.

There are a few interesting future directions: (i) One can
generalize this analysis framework to vector ARX mod-
els. Indeed, linear time-invariant systems in full-observation
setting would be a special case of vector ARX model
with order one. (ii) It is worth investigating if the self-
regularization property holds for estimators other than the
OLS. (iii) It would be interesting to extend this analysis to the
more general Auto-Regressive Moving Average eXogenous
(ARMAX) models, with the main challenge being that the
OLS is known to be inconsistent for this class of models.

REFERENCES
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APPENDIX I
SUPPORTING RESULTS

In this appendix, we provide several results to be used later.
Lemma 1 ( [38, Proposition 1.1] — Gaussian vector norm bound): Suppose z ∼ N (0,Σ) where Σ ∈ Rdxd, then with

probability at least 1− δ,

∥z∥ ≤ 2
√
d∥Σ∥ 1

2

(√
log

(1
δ

)
+ 1

)
(27)

∥z∥ ≤ 2
√

tr(Σ)

(√
log

(1
δ

)
+ 1

)
(28)

Proof: By [38, Proposition 1.1], we have with probability at least 1 − δ, ∥z∥2 ≤ tr(Σ) + 2
√

tr(Σ2) log(1/δ) +
2∥Σ∥ log(1/δ). Using tr(Σ) ≤ d∥Σ∥ and tr(Σ2) ≤ d∥Σ∥2, we have ∥z∥2 ≤ d∥Σ∥+2∥Σ∥

√
d log(1/δ)+2∥Σ∥ log(1/δ) ≤

∥Σ∥(d+ 2
√
d+ 4

√
d log(1/δ)). Taking square roots of both sides shows (27). On the other hand, using ∥Σ∥ ≤ tr(Σ), we

can show (28).
Lemma 2 ( [19, Theorem 6.1] — Gaussian matrix lower bound): Consider matrix Z ∈ RNxd with z⊺i being the ith row.

Suppose zi
i.i.d.∼ N (0,Σ) for all i. Then,

• when N ≥ 16 log( 1δ ) + 8d σ̄(Σ)
σ(Σ) , with probability at least 1− δ, σ(Z) ≥

√
N ·σ(Σ)

2 ;
• when N ≥ 4 log( 1δ ) + 2

√
d, with probability at least 1− δ, σ̄(Z) ≤ 2

√
Nσ̄(Σ).

Proof: From [19, Theorem 6.1 (6.9)], we know with probability at least 1−δ, σ(Z) ≥
√
Nσ(Σ)−

√
2σ(Σ) log(1/δ)−√

dσ̄(Σ). When N ≥ 4(
√
2 log(1/δ)+

√
dσ̄(Σ)/σ(Σ))2, we see the first bullet holds. Using From [19, Theorem 6.1 (6.10)],

we can similarly show the second bullet.
Lemma 3 ( [37, Lemma 1] — Gaussian matrix product concentration): Let zi ∈ Rdz and yi ∈ Rdy be independent

random vectors with zi ∼ N (0,Σz) and yi ∼ N (0,Σy) for all i ∈ [N ]. Then, when N ≥ 2 log(1/δ), with probability at
least 1− δ,

∥
N∑
i=1

ziy
⊺
i ∥ ≤ 4

√
N
√
∥Σz∥∥Σy∥(dz + dy) log(9/δ). (29)

Lemma 4 (Bound for Toeplitz Representation): Consider arbitrary state space dynamics G: xt+1 = Axt+But, yt = Cxt

where xt ∈ Rn,ut ∈ Rm. Suppose ρ(A) < 1. For any ρ ∈ [ρ(A), 1), let τ := τ(A, ρ). Denote the Markov parameters by
gk := CAk−1B for k = 1, 2, . . . . Denote the Toeplitz representation of the system by the infinite block Toeplitz matrix G

such that G:=

g1 g2 · · ·
g1 · · ·

. . .

. Then, ∥G∥ = ∥G∥H∞ ≤ τ∥C∥∥B∥
1−ρ .

Proof: Note that ∥G∥H∞ := supz=ejω,ω∈[0,2π] ∥C(zI−A)-1B∥. Since ρ < 1, for complex z on the unit disk,
we have (zI − A)-1 = z-1

∑∞
k=0(z

-1A)k. This further gives ∥(zI−A)-1∥ ≤ ∑∞
k=0 ∥Ak∥ ≤ τ

1−ρ . It then follows that
∥G∥H∞ ≤ τ∥C∥∥B∥

1−ρ . Finally, from [39], we know ∥G∥ = ∥G∥H∞ .
Lemma 5 (State bound for LTI state space model): Given dynamics xt+1 = Axt + But + ηt with xt ∈ Rn and x0 =

0. Suppose for t < T0, ut
i.i.d.∼ N (0,Σu) and ηt

i.i.d.∼ N (0,Ση); for T ≥ T0, ut = 0 and ηt = 0. Let σu,η :=√
∥Σu∥∥B∥2 + ∥Ση∥. Suppose ρ(A) < 1. For any ρ ∈ [ρ(A), 1), let τ := τ(A, ρ). For any t ≥ T0 + n and q ∈ N, define

x̃t := [x⊺
t+q,x

⊺
t+q−1, . . . ,x

⊺
t ]

⊺. Then, with probability at least 1− δ,

∥x̃t∥ ≤ 2
√
nτρt−T0σu,η

1− ρ2

(√
log

(1
δ

)
+ 1

)
. (30)

Proof: Define Ã :=

[
At−T0+q

...

At−T0

· · ·
· · ·

At−1+q
...

At−1

]
and z̃ :=

[
BuT0−1 + ηT0−1...

Bu0 + η0

]
. Then it is easy to see x̃t = Ãz̃ and z̃ ∼

N (0,Cov(z̃)) with Cov(z̃) = IT0
⊗(BΣuB

⊺+Ση). This further gives x̃t ∼ N (0,Cov(x̃t)) where Cov(x̃t) = ÃCov(z̃)Ã⊺.
Note that tr(Ã⊺Ã) = ∥Ã∥2F =

∑q
i=0

∑t−1
j=t−T0

∥Ai+j∥2F ≤ n
∑q

i=0

∑t−1
j=t−T0

∥Ai+j∥2. By definition, we know for k ≥ n,

∥Ak∥ ≤ τρk. Hence, tr(Ã⊺Ã) ≤ nτ2ρ2(t−T0)
∑q

i=0 ρ
2i
∑T0−1

j=0 ρ2j ≤ nτ2ρ2(t−T0)

(1−ρ2)2 . Then,
√

tr(Cov(x̃t)) ≤
√

∥Cov(z̃)∥ ·√
tr(Ã⊺Ã) ≤

√
nτρt−T0σu,η

1−ρ2 . Using Lemma 1, with probability at least 1− δ, ∥x̃t∥ ≤ 2
√
nτρt−T0σu,η

1−ρ2

(√
log

(
1
δ

)
+ 1

)
.

APPENDIX II
SINGLE TRAJECTORY CASE

For L := ⌈ log(T )
log(1/ρ)⌉ + 2n̄ − 1 defined in Table I, it is easy to check ρ

L
2 ≤ 1/

√
T . To ease the analysis, we assume the

trajectory length T is a multiple of L, i.e., K := T/L ∈ N. Similar results can be established for general T .



Sub-trajectory: Now we consider L sub-trajectories obtained by sub-sampling the original trajectory with sampling period
L. As a result, the length of each sub-trajectory is K. Specifically, for all l = 1, . . . , L, k = 1, . . . ,K, define notation
(l,k) := l + (k − 1)L and

z(l,k) := [y(l,k)−1, . . . , y(l,k)−n̄α
, u(l,k)−1, . . . , u(l,k)−n̄β

]
⊺ ∈ Rn̄

Z(l) := [z(l,1), z(l,2), . . . , z(l,K)]
⊺ ∈ RKxn̄

Y(l) := [y(l,1), y(l,2), . . . , y(l,K)]
⊺ ∈ RK

E(l) := [η(l,1)−1, η(l,2)−1, . . . , η(l,K)−1]
⊺ ∈ RK .

(31)

These can be viewed as the variables associated with the lth sub-trajectory, and (l,k) indexes the kth data in the lth sub-
trajectory. It is easy to see for all l, Z(l)θ+ E(l) = Y(l). Comparing to the corresponding definitions in (6) for the whole
trajectory, we see Z⊺Z =

∑L
l=1 Z

⊺
(l)Z(l) and Z⊺E =

∑L
l=1 Z

⊺
(l)E(l). For each sub-trajectory, we introduce the following

“decoupled” output and sub-trajectories.
Decoupling: In z(l,k), each output element y(l,k)−i can be decomposed as follows using (4).

y(l,k)−1 = gxL−1x(l,k)−L

y(l,k)−2 = gxL−2x(l,k)−L

y(l,k)−n̄α
= gxL−n̄α

x(l,k)−L

+ gu1u(l,k)−2 + · · · · · · · · · · · · + guL−1u(l,k)−L

+ gη1η(l,k)−2 + · · · · · · · · · · · · + gηL−1η(l,k)−L

+ gu1u(l,k)−3 + · · · · · · · · · + guL−2u(l,k)−L

+ gη1η(l,k)−3 + · · · · · · · · · + gηL−2η(l,k)−L

...
+ gu1u(l,k)−n̄α−1 + · · ·+ guL−n̄α

u(l,k)−L

+ gη1η(l,k)−n̄α−1 + · · ·+ gηL−n̄α
η(l,k)−L

(32)

Since L ≥ max(n̄β , n̄α + 1), we see using (32) that z(l,k) = [y(l,k)−1, . . . , y(l,k)−n̄α
, u(l,k)−1, . . . , u(l,k)−n̄β

]⊺ depends
only on x(l,k)−L, u(l,k)−1, . . . , u(l,k)−L, and η(l,k)−2, . . . , η(l,k)−L. This further implies that, for any two data z(l,k1) and
z(l,k2) within the same sub-trajectory, they depend on each other only through the initial states x(l,k1)−L and x(l,k2)−L. To
decouple their dependency, we define the following decoupled output and sub-trajectory by ignoring the initial states: for
all i = 1, . . . , n̄α, define

ȳ(l,k)−i := gu1u(l,k)−i−1 + · · ·+ guL−iu(l,k)−L + gη1η(l,k)−i−1 + · · ·+ gηL−iη(l,k)−L. (33)

and
z̄(l,k) := [ȳ(l,k)−1, . . . , ȳ(l,k)−n̄α

, u(l,k)−1, . . . , u(l,k)−n̄β
]
⊺ ∈ Rn̄

Z̄(l) := [z̄(l,1), z̄(l,2), . . . , z̄(l,K)]
⊺ ∈ RKxn̄

(34)

From earlier discussions, we see this decoupling induces independency within each sub-trajectory, which is summarized in
the following proposition.

Proposition 3 (Independency within Decoupled Sub-trajectory): Consider the rows z̄⊺(l,1), . . . , z̄
⊺
(l,K) in Z̄(l) and the

elements η(l,1)−1, . . . , η(l,K)−1 in matrix E(l). Then, (i) z̄(l,1), . . . , z̄(l,K) are i.i.d. random vectors; (ii) z̄(l,k) is independent
of η(l,k)−1 for all k.

Proof: Let G :=

[
0n̄α×1 Gu(L− 1) Gη(L− 1)

In̄β
0n̄βx(2L−1−n̄β)

]
. Then, by the definition of z̄(l,k) in (34), we see for any k

and k + 1, we have

z̄(l,k) =G · [u(l,k)−1, u(l,k)−2, . . . , u(l,k)−L, η(l,k)−2, . . . , η(l,k)−L]
⊺

z̄(l,k+1) =G · [u(l,k+1)−1, u(l,k+1)k−2, . . . , u(l,k+1)−L, η(l,k+1)−2, . . . , η(l,k+1)−L]
⊺

=G · [u(l,k)−1+L, u(l,k)−2+L, . . . , u(l,k), η(l,k)−2+L, . . . , η(l,k)]
⊺
.

(35)

From the RHS, we see z̄(l,k) and z̄(l,k+1) do not share any u or η, thus they are i.i.d., which proves the first claim. The
second claim follows similarly by noticing that z̄(l,k) does not depend on η(l,k)−1.

It is easy to verify that the estimation error is given by θ̂− θ = (Z⊺Z)-1Z⊺E, which further gives ∥θ̂− θ∥ ≤ ∥Z⊺
E∥

λ(Z⊺Z) .
Using the decoupled sub-trajectories we just defined, we further have

∥Z⊺
E∥ ≤

∑
l

∥Z⊺
(l)E(l)∥ ≤

∑
l

(
∥Z̄⊺

(l)E(l)∥+ ∥(Z(l) − Z̄(l))
⊺
E(l)∥

)
(36)

λ(Z
⊺
Z) ≥

∑
l

λ(Z
⊺
(l)Z(l)) ≥

∑
l

(
λ(Z̄

⊺
(l)Z̄(l))− ∥Z⊺

(l)Z(l) − Z̄
⊺
(l)Z̄(l)∥

)
(37)



To bound ∥θ̂− θ∥, it suffices to lower bound λ(Z̄⊺
(l)Z̄(l)) and upper bound ∥Z⊺

(l)Z(l) − Z̄⊺
(l)Z̄(l)∥, ∥Z̄⊺

(l)E(l)∥,
∥(Z(l) − Z̄(l))

⊺E(l)∥ individually and then combine them together. Because of the independency introduced by the decoupled
sub-trajectories, bounding λ(Z̄⊺

(l)Z̄(l)) and ∥Z̄⊺
(l)E(l)∥ is no different from the OLS analysis for i.i.d. data. The residual

terms ∥Z⊺
(l)Z(l) − Z̄⊺

(l)Z̄(l)∥, ∥(Z(l) − Z̄(l))
⊺E(l)∥ that capture the dependency are mainly determined by the initial states,

e.g. gxL−1x(l,k)−L = CAL−1x(l,k)−L, which can be small by making L large enough. The rest of the proof proceeds as
follows

• Upper and lower bounding Cov(z̄(l,k)) (Appendix II-A): its lower bound allows one to show λ(Z̄⊺
(l)Z̄(l)) > 0, while

its upper bound bounds helps to bound ∥z̄(l,k)∥ from above.
• Upper bounding ∥z̄(l,k)∥ and ∥z̄(l,k) − z(l,k)∥ (Appendix II-B): these results will be helpful to bound
∥Z⊺

(l)Z(l) − Z̄⊺
(l)Z̄(l)∥, ∥Z̄⊺

(l)E(l)∥, and ∥(Z(l) − Z̄(l))
⊺E(l)∥.

• Upper Bounding ∥θ̂− θ∥ (Appendix II-C): we show
– λ(Z̄⊺

(l)Z̄(l)) ≥ O(T/L) (Lemma 8)
– ∥Z⊺

(l)Z(l) − Z̄⊺
(l)Z̄(l)∥ ≤ O(

√
T/L) (Lemma 9)

– ∥Z̄⊺
(l)E(l)∥ ≤ O(

√
T/L) (Lemma 10)

– ∥(Z(l) − Z̄(l))
⊺E(l)∥ ≤ O(

√
T/L) (Lemma 11)

Combining these gives ∥θ̂− θ∥ ≤ O(1/
√
T ) and proves Theorem 1.

A. Bounding Cov(z̄(l,k))

Lemma 6 (Upper and lower bounding Cov(z̄(l,k))): Let σu,η :=
√
σ2
u∥B∥2 + σ2

η , λ0 := max
(
σ(G0)

2 min(σ2
u, σ

2
η),

σ(G1)
2σ2

u + σ(G2)
2σ2

η

)
as defined in Table I. For z̄(l,k) defined in (34), its covariance is upper and lower bounded

as follows:

• Under Assumption 1, we have the follow upper bound:

Cov(z̄(l,k)) ⪯
4τ2

(1− ρ)2
max(σ2

u,η, σ
2
u)I. (38)

• We always have the following lower bound:
Cov(z̄(l,k)) ⪰ λ0I. (39)

Proof: Recall in (35), we have z̄(l,k) = G · [u(l,k)−1, u(l,k)−2, . . . , u(l,k)−L, η(l,k)−2, . . . , η(l,k)−L]
⊺ with

G :=

[
0n̄α×1 Gu(L− 1) Gη(L− 1)

In̄β
0n̄βx(2L−1−n̄β)

]
. Partitioning G with G̃u :=

[
0n̄α×1 Gu(L− 1)

In̄β
0

]
and G̃η :=[

Gη(L− 1)
0

]
allows us to decompose Cov(z̄(l,k)) as follows.

Cov(z̄(l,k)) =G

[
σ2
uIL

σ2
ηIL−1

]
G

⊺

=G̃u(G̃u)
⊺ · σ2

u + G̃η(G̃η)
⊺ · σ2

η.

(40)

Taking norm and using triangle inequality gives

∥Cov(z̄(l,k))∥ ≤ ∥G̃u∥2σ2
u + ∥G̃η∥2σ2

η ≤ 2(1 + ∥Gu(L− 1)∥2)σ2
u + ∥Gη(L− 1)∥2σ2

η. (41)

It can be observed that Gu(L − 1) and Gη(L − 1) are submatrices of the infinite Toeplitz matrices in Lemma 4, hence
under Assumption 1, Lemma 4 gives ∥Gu(L− 1)∥ ≤ τ∥B∥

1−ρ and ∥Gη(L− 1)∥ ≤ τ
1−ρ . Plugging these results into (41), we

have

∥Cov(z̄(l,k))∥ ≤ 2σ2
u +

2τ2

(1− ρ)2
(σ2

u∥B∥2 + σ2
η) ≤

4τ2

(1− ρ)2
max(σ2

u,η, σ
2
u), (42)

which shows the upper bound in (38). Note that G0 is constructed by a subset of columns of G, thus the first line of (40)
gives

Cov(z̄(l,k)) ⪰ GG
⊺
min(σ2

u, σ
2
η) ⪰ G0G

⊺
0 min(σ2

u, σ
2
η) ⪰ σ(G0)

2 min(σ2
u, σ

2
η)I, (43)

Similarly, since G1 is the first n̄+ n+ 1 columns of G̃u, the second line of (40) gives another lower bound:

Cov(z̄(l,k)) = G̃u(G̃u)
⊺
σ2
u + G̃η(G̃η)

⊺ · σ2
η ⪰ G1G

⊺
1σ

2
u +G2G

⊺
2σ

2
η ⪰ (σ(G1)

2σ2
u + σ(G2)

2σ2
η)I. (44)

Finally, combining the two lower bounds in (43) and (44) shows (39) and concludes the proof.



B. Bounding ∥z̄(l,k)∥ and ∥z̄(l,k) − z(l,k)∥
Lemma 7: Suppose Assumption 1 holds, and the trajectory length T ≥ 3 . Let σu,η :=

√
σ2
u∥B∥2 + σ2

η . Then,

• with probability at least 1− δ, for all l = 1, . . . , L, all k = 1, . . . ,K,

∥z̄(l,k)∥ ≤8
√
n̄τ

1− ρ
max(σu,η, σu)

√
log

(T
δ

)
. (45)

• with probability at least 1− δ, for all l = 1, . . . , L, all k = 1, . . . ,K,

∥z̄(l,k) − z(l,k)∥ ≤
√

1

T
· 4

√
nτσu,η

1− ρ

√
log

(T
δ

)
(46)

Proof: Note that z̄(l,k) ∼ N (0,Cov(z̄(l,k))). The covariance upper bound in Lemma 6 gives ∥Cov(z̄(l,k))∥
1
2 ≤

2τ
1−ρ max(σu,η, σu). Then, using the Gaussian vector concentration result in Lemma 1 followed by the union bound over all
l and k, we have, with probability at least 1− δ, for all l and k,

∥z̄(l,k)∥ ≤2
√
n̄α + n̄β∥Cov(z̄(l,k))∥

1
2

(√
log

(T
δ

)
+ 1

)
≤8

√
n̄τ

1− ρ
max(σu,η, σu)

√
log

(T
δ

)
,

(47)

where the last line used 1 ≤
√

log
(
T
δ

)
that can be obtained from the premise condition T ≥ 3. Now (45) is shown.

By the definitions of z(l,k) in (31) and z̄(l,k) in (34), we have

∥z̄(l,k) − z(l,k)∥ ≤∥


gxL−1x(l,k)−L

gxL−2x(l,k)−L

...
gxL−n̄α

x(l,k)−L

∥ ≤ ∥


CAL−1

CAL−2

...
CAL−n̄α

x(l,k)−L∥ ≤ ∥


AL−1x(l,k)−L

AL−2x(l,k)−L

...
AL−n̄αx(l,k)−L

∥. (48)

Then, with Assumption 1 and the fact that L − n̄α ≥ n, we know by Lemma 5 that ∥z̄(l,k) − z(l,k)∥ ≤
2
√
nτρL−n̄ασu,η

1−ρ

(√
log

(
1
δ

)
+ 1

)
. The definition of L gives ρL−n̄α ≤ ρ

L
2 ≤ 1/

√
T . Hence, ∥z̄(l,k) − z(l,k)∥ ≤√

1
T

2
√
nτσu,η

1−ρ

(√
log

(
1
δ

)
+ 1

)
. Finally applying the union bound to all l and k and noticing that 1 ≤

√
log

(
T
δ

)
due

to T ≥ 3, we can show ∥z̄(l,k) − z(l,k)∥ ≤
√

1
T

4
√
nτσu,η

1−ρ

√
log

(
T
δ

)
.

C. Bounding ∥θ̂− θ∥
Lemma 8 (Lower bounding λ(Z̄⊺

(l)Z̄(l))): Let σu,η :=
√
σ2
u∥B∥2 + σ2

η , λ0 := max
(
σ(G0)

2 min(σ2
u, σ

2
η), σ(G1)

2σ2
u +

σ(G2)
2σ2

η

)
as provided in Table I. Under Assumption 1, matrix Z̄⊺

(l)Z̄(l) can be lower bounded as follows: as long as

T ≥ 16 log(L/δ)L+
32n̄τ2 max(σ2

u,η,σ
2
u)L

(1−ρ)2λ0
, with probability at least 1− δ, for all l = 1, . . . , L

λ(Z̄
⊺
(l)Z̄(l)) ≥

T

4L
λ0. (49)

Proof: The ith row z̄⊺(l,k) in Z̄(l) has distribution z̄(l,k) ∼ N (0,Cov(z̄(l,k))). By Lemma 6, we know

σ̄(Cov(z̄(l,k))) ≤
4τ2

(1− ρ)2
max(σ2

u,η, σ
2
u) (50)

σ(Cov(z̄(l,k))) ≥ λ0 (51)

By Proposition 3, we know the rows z̄(l,k) in Z̄(l) are i.i.d, which allows us to use the Gaussian matrix lower bound in
Lemma 2 to bound λ(Z̄⊺

(l)Z̄(l)). Doing so and further taking union bound over all l, we know when

K :=
T

L
≥ 16 log(

L

δ
) + 8n̄

σ̄(Cov(z̄(l,k)))
σ(Cov(z̄(l,k)))

, (52)

then, with probability 1− δ, for all l,

λ(Z̄
⊺
(l)Z̄(l)) = σ(Z̄(l))

2 ≥ K

4
σ(Cov(z̄(l,k))) = σ(Z̄(l))

2 ≥ T

4L
σ(Cov(z̄(l,k))). (53)

Finally, plugging in (50), (51) into (52) and (53) shows (49) and concludes the proof.



Lemma 9 (Upper bounding ∥Z⊺
(l)Z(l) − Z̄⊺

(l)Z̄(l)∥): Let σu,η :=
√
σ2
u∥B∥2 + σ2

η as provided in Table I. Suppose
Assumption 1 holds, and the trajectory length T ≥ 3. Then, with probability at least 1− δ, for all l = 1, . . . , L,

∥Z⊺
(l)Z(l) − Z̄

⊺
(l)Z̄(l)∥ ≤ 80n̄

√
T

L

( τ

1− ρ

)2
max(σ2

u,η, σu,ησu) log(
2T

δ
). (54)

Proof: Note that by the definitions of Z(l) in (31) and Z̄(l) in (34), we have Z⊺
(l)Z(l) − Z̄⊺

(l)Z̄(l) =
∑K

k=1 z(l,k)z
⊺
(l,k) −

z̄(l,k)z̄
⊺
(l,k) =

∑K
k=1 z̄(l,k)(z(l,k) − z̄(l,k))

⊺ + (z(l,k) − z̄(l,k))z̄
⊺
(l,k) + (z(l,k) − z̄(l,k))(z(l,k) − z̄(l,k))

⊺. Taking norm of both
sides and using triangle inequality, we then have

∥Z⊺
(l)Z(l) − Z̄

⊺
(l)Z̄(l)∥ ≤

K∑
k=1

2∥z̄(l,k)∥∥z(l,k) − z̄(l,k)∥+ ∥z(l,k) − z̄(l,k)∥2. (55)

By Lemma 7, with probability at least 1− δ, for all l and k,

∥z̄(l,k)∥ ≤ 8
√
n̄τ

1− ρ
max(σu,η, σu)

√
log

(2T
δ

)
and ∥z̄(l,k) − z(l,k)∥ ≤

√
1

T
· 4

√
nτσu,η

1− ρ

√
log

(T
δ

)
.

(56)

Plugging (56) into (55) and with moderate relaxation of the terms, we have with probability at least 1− δ, for all l

∥Z⊺
(l)Z(l) − Z̄

⊺
(l)Z̄(l)∥ ≤ K

80n̄√
T
(

τ

1− ρ
)2 max(σ2

u,η, σ
2
u) log

(2T
δ

)
. (57)

Finally, one can see (54) by noticing that K = T/L.
Lemma 10 (Upper bounding ∥Z̄⊺

(l)E(l)∥): Let σu,η :=
√

σ2
u∥B∥2 + σ2

η as provided in Table I. Suppose Assumption 1
holds, and the trajectory length T ≥ 2L log(L/δ). Then, with probability at least 1− δ, for all l = 1, . . . , L,

∥Z̄⊺
(l)E(l)∥ ≤16

√
T

L

√
n̄τ

1− ρ
max(σu,η, σu)ση

√
log

(9L
δ

)
. (58)

Proof: From the definitions of Z̄(l) in (34) and E(l) in (31), we have Z̄⊺
(l)E(l) =

∑K
k=1 z̄(l,k)η(l,k)−1. By Proposition

3, we know z̄(l,1), . . . , z̄(l,K) and η(l,1)−1, . . . , η(l,K)−1 are mutually independent. Lemma 6 provides the upper bound that
∥Cov(z̄(l,k))∥

1
2 ≤ 2τ

1−ρ max(σu,η, σu). By the results on Gaussian matrix product in Lemma 3, we obtain that for all l, with
probability 1− δ,

∥Z̄⊺
(l)E(l)∥ ≤8

√
K∥Cov(z̄(l,k))∥0.5ση

√
n̄

√
log

(9
δ

)
≤16

√
T

L

√
n̄τ

1− ρ
max(σu,η, σu)ση

√
log

(9
δ

)
.

(59)

Finally, taking the union bound over all l, we can show (58).
Lemma 11 (Upper bounding ∥(Z(l) − Z̄(l))

⊺E(l)∥): Let σu,η :=
√

σ2
u∥B∥2 + σ2

η as provided in Table I. Suppose
Assumption 1 holds, and the trajectory length T ≥ 4L log(2L/δ) + 2L. Then, with probability at least 1 − δ, for all
l = 1, . . . , L,

∥(Z(l) − Z̄(l))
⊺
E(l)∥ ≤ 8

√
T

L

√
nτσu,ηση

1− ρ

√
log

(2T
δ

)
. (60)

Proof: By Lemma 7, we know with probability at least 1 − δ/2, for all l and k, ∥z̄(l,k) − z(l,k)∥ ≤
1√
T

4
√
nτ

1−ρ σu,η

√
log

(
2T
δ

)
, which further gives ∥Z(l) − Z̄(l)∥ ≤

√
K
T

4
√
nτ

1−ρ σu,η

√
log

(
2T
δ

)
. By the Gaussian matrix norm

bound in Lemma 2, we know when T/L = K ≥ 4 log(2L/δ)+2, with probability at least 1−δ/2, for all l, ∥E(l)∥ ≤ 2
√
Kση .

Combining these results, we have, with probability 1−δ, for all l, ∥(Z(l) − Z̄(l))
⊺E(l)∥ ≤ ∑K

k=1 ∥z(l,k) − z̄(l,k)∥|η(l,k)−1| ≤
K 8√

T

√
nτσu,ηση

1−ρ

√
log( 2Tδ ). Finally, plugging in K = T/L concludes the proof.

Proof for Theorem 1:
The estimation error θ̂ − θ = (Z⊺Z)-1Z⊺E gives ∥θ̂− θ∥ ≤ ∥Z⊺

E∥
λ(Z⊺Z) . We will bound the numerator and denominator

separately before combining them.
The denominator, according to (37), has relaxation λ(Z⊺Z) ≥ ∑

l λ(Z̄
⊺
(l)Z̄(l)) − ∥Z⊺

(l)Z(l) − Z̄⊺
(l)Z̄(l)∥. Recall Tλ,2 :=

16 log(4L/δ)L +
32n̄τ2 max(σ2

u,η,σ
2
u)L

(1−ρ)2λ0
as provided in Table I. To lower bound λ(Z⊺Z), we first apply the union bound to



Lemma 8 and Lemma 9: as long as T ≥ Tλ,2, with probability at least 1− δ/2, for all l,

λ(Z̄
⊺
(l)Z̄(l)) ≥

T

4L
λ0 (61)

and ∥Z⊺
(l)Z(l) − Z̄

⊺
(l)Z̄(l)∥ ≤80n̄

√
T

L

( τ

1− ρ

)2
max(σ2

u,η, σu,ησu) log(
8T

δ
). (62)

It is easy to see that when T ≥ Tλ,1 :=
(

640n̄τ2 max(σ2
u,η,σu,ησu) log(8T/δ)

(1−ρ)2λ0

)2

, we have RHS of (62) ≤ 1
2 RHS of (61).

Combining these results so far, we have: when T ≥ max
(
Tλ,1, Tλ,2

)
, with probability at least 1− δ/2,

λ(Z
⊺
Z) ≥

L∑
l=1

λ(Z̄
⊺
(l)Z̄(l))− ∥Z⊺

(l)Z(l) − Z̄
⊺
(l)Z̄(l)∥ ≥ T

8
λ0. (63)

Next, we seek to bound the denominator ∥Z⊺E∥, which, by (37), has relaxation ∥Z⊺E∥ ≤ ∑
l ∥Z̄

⊺
(l)E(l)∥ +

∥(Z(l) − Z̄(l))
⊺E(l)∥. Recall T 1 := 4L log(8L/δ) + 2L as provided in Table I. By Lemma 10, Lemma 11, and the union

bound, we have, as long as T ≥ T 1, with probability at least 1− δ/2, for all l,

∥Z̄⊺
(l)E(l)∥ ≤16

√
T

L

√
n̄τ

1− ρ
max(σu,η, σu)ση log

(36L
δ

)
(64)

and ∥(Z(l) − Z̄(l))
⊺
E(l)∥ ≤16

√
T

L

√
nτσu,ηση

1− ρ
log

(8T
δ

)
. (65)

Combining these two results with moderate relaxation, we have when T ≥ T 1, with probability at least 1− δ/2,

∥Z⊺
E∥ ≤

∑
l

∥Z̄⊺
(l)E(l)∥+ ∥(Z(l) − Z̄(l))

⊺
E(l)∥

≤24
√
TL

√
n̄τ

1− ρ
max(σu,η, σu)ση log

(36T
δ

)
.

(66)

Finally, combining the upper bound of ∥Z⊺E∥ in (66) and the lower bound of λ(Z⊺Z) in (63), we have: when T ≥
max

(
T 1, Tλ,1, Tλ,2

)
, with probability at least 1− δ,

∥θ̂− θ∥ ≤ ∥Z⊺E∥
λ(Z⊺Z)

≤192

√
n̄τ max(σu,η, σu)ση

λ0(1− ρ)

√
log(T/ρ2n̄)

T log(1/ρ)
log

(36T
δ

)
≤192

√
n̄τ max(σ2

u,η, σ
2
u)ση

λ0(1− ρ)σu

√
log(T/ρ2n̄)

T log(1/ρ)
log

(36T
δ

)
≤Co

√
n̄τ

1− ρ

ση

σu

√
log(T/ρ2n̄)

T log(1/ρ)
log

(36T
δ

)
,

(67)

where the second line follows from L := ⌈ log(T )
log(1/ρ)⌉ + 2n̄ − 1 ≤ log(T )

log(1/ρ) + 2n̄ = log(T/ρ2n̄)
log(1/ρ) ; and the last line uses the

definition Co := 192
max(σ2

u,η,σ
2
u)

λ0
in Table I. This shows the error upper bound in (14) and concludes the proof.

APPENDIX III
FULL ROW RANK OF TOEPLITZ MATRICES

In this appendix, we provide the proof for Proposition 1. We first list the following supporting result.
Lemma 12 (Basics of Markov Parameters): Consider α := [αn, αn−1, . . . , α1]

⊺ ∈ Rn and β := [βn, βn−1, . . . , β1]
⊺ ∈

Rn with αnα , βnβ
̸= 0 and α(nα+1):n = 0, β(nβ+1):n = 0. Define A :=

[
01×(n−1) αn...

α1In−1

]
, B := [βn, . . . , β1]

⊺, C :=

[0, . . . , 0, 1]. Define Markov parameters guk := CAk−1B for all k ∈ N, and gu0 = 0.
(L1) These Markov parameters have the following relations:

• gu1 = β1

• For all k = 1, . . . , n− 1, −(αkg
u
1 + · · ·+ α1g

u
k ) + guk+1 = βk+1.

• For all k ≥ n, −(αng
u
k−n+1 + · · ·+ α1g

u
k ) + guk+1 = 0.



Define polynomials q(z) := zn − ∑n
i=1 αiz

n−i and p(z) :=
∑n

i=1 βiz
n−i. Suppose there are no common roots between

q(z) and p(z). Define Toeplitz matrix T
(m)
(i) ∈ Rmxn constructed as T

(m)
(i) :=

[
gui+m

...
gui+1

· · · gui+m+n−1
...

gui+n
· · ·

]
. Then, T(m)

(i) has

full row rank in the following cases.

(L2) For all 0 ≤ i ≤ n− nα, rank(T(n−i)
(i) ) = n− i.

(L3) For all i ≥ n− nα, rank(T(nα)
(i) ) = nα.

Proof: For (L1), the first two bullets can be derived via induction, and the last bullet can be seen from Cayley-Hamilton

Theorem. For (L2) and (L3), we first define O(m)
(i) =

[
CAi+m−1

CAi+m−2
...

CAi

]
∈ Rmxn, and C = [B,AB, · · · ,An−1B] ∈ Rnxn,

then we see T
(m)
(i) = O(m)

(i) C. Since rank(C) = n, it suffices to show

• For all 0 ≤ i ≤ n− nα, rank(O(n−i)
(i) ) = n− i.

• For all i ≥ n− nα, rank(O(nα)
(i) ) = nα.

When 0 ≤ i ≤ n − nα, note that O(n−i)
(i) = [Ui | · · · ] where Ui ∈ R(n−i)x(n−i) is an upper-triangular matrix with 1’s on

the main diagonal, thus rank(O(n−i)
(i) ) = n− i.

For i ≥ n− nα, we will show by induction. Suppose rank(O(nα)
(i) ) = nα. Note that Cayley-Hamilton theorem gives that

An = α1A
n−1 + · · ·+ αnα

An−nα . Multiplying both sides by Ai+nα−n gives Ai+nα = α1A
i+nα−1 + · · ·+ αnα

Ai. Let

P :=

[
α1, · · · , αnα−1 αnα

Inα−1 0(nα−1)×1

]
. Then rank(P) = nα since αm ̸= 0, and O(nα)

(i+1) = PO(nα)
(i) , which further gives

rank(O(nα)
(i+1)) = nα. Since earlier we showed rank(O(nα)

(n−nα)) = nα, this completes the induction and the proof.
First we present the proof for Proposition 1 that guarantees that Cov(z̄(l,k)) has a non-zero lower bound.

Proof for Proposition 1: First we show rank(G0) = n̄. Note that in its definition

G0 :=

[
0n̄α×1 Gu(max(n̄α, n̄β − 1)) Gη(n̄α)

In̄β
0n̄βx max(2n̄α+1−n̄β ,n̄α)

]
, (68)

the upper right sub-matrix Gη(n̄α) is an n̄α × n̄α upper-triangular matrix with gη1 = 1 on the main diagonal. This implies
rank(Gη(n̄α)) = n̄α. This together with the lower left identity matrix In̄β

in G0 give rank(G0) = n̄α + n̄β = n̄, i.e., full
row rank.

Next, we show rank(G1) = n̄. Recall its definition,

G1:=

[
0n̄α×1 Gu(n̄+ n)

In̄β
0n̄βx(n̄+n+1−n̄β)

]
, (69)

We first consider the case when n̄α = nα. In this case, we can partition G1 such that G1 =

[
· · · · · · G1,1

In̄β
0

]
where

G1,1 ∈ Rnαxn. Matrix G1,1 has the following structure:

G1,1 =

 gun̄+1 · · · gun̄+n
...

. . .
...

gun̄−nα+2 · · · gun̄+n−nα+1

 , (70)

which has full row rank, i.e., rank(G1,1) = nα by Lemma 12-(L2) and (L3). This further shows rank(G1) = nα + n̄β

because of the lower left identity matrix In̄β
.

Finally, when n̄β = nβ , we will show rank(G1) = n̄ by splitting into two cases: (i) n̄α ≤ nβ and (ii) n̄α ≥ nβ + 1.

(i) (n̄α ≤ nβ): In this case, we can partition G1 such that G1 =

[
· · · G1,1 · · ·
Inβ

0 0

]
where G1,1 ∈ Rn̄αxn. Matrix

G1,1 has the following structure:

G1,1 =

 gunβ
· · · gunβ+n−1

...
. . .

...
gunβ−n̄α+1 · · · gunβ+n−n̄α

 =

 gun · · · gu2n−1
...

. . .
...

gun−n̄α+1 · · · gu2n−n̄α

 = T
(n̄α)
(n−n̄α) (71)

where the second equality follows from n := max(nα, nβ) = nβ , and the third equality simply follows from the
notion in Lemma 12. According to Lemma 12-(L2), rank(G1,1) = n̄α, i.e., G1,1 has full row rank. This further shows
rank(G1) has full row rank because of the lower left identity matrix In̄β

in rank(G1).



(ii) (n̄α ≥ nβ + 1): In this case, we can partition G1 such that G1 =

[
· · · G1,1

Inβ
0

]
where G1,1 ∈ Rn̄αx(n̄α+n+1).

Define A ∈ Rn̄αxn̄α such that

A :=



1 −αn · · · −α1

1 −αn · · · −α1

. . . . . .
1 −αn · · · −α1

1
1

. . .
1


(72)

Using Lemma 12-(L1), we see the product AG1,1 has the following structure AG1,1 =

[
G1,2 0

· · · T
(n)
(0)

]
, where

T
(n)
(0) is defined in Lemma 12 and G1,2 ∈ R(n̄α−n)x(n̄α+1) has structure

G1,2 =


βnβ

· · · βn−1 βn

. . . . . . . . . . . .

. . . . . . βnβ
· · · βn−1 βn

 . (73)

This structure tells that G1,2 has full row rank n̄α − n. And Lemma 12-(L2) gives that T(n)
(0) has full row rank n, we

know the product AG1,1 has full row rank n̄α. Since the square matrix A has full rank n̄α, matrix G1,1 has full
row rank n̄α. From the structure of G1, it further implies G1 has full row rank n̄α + nβ .

APPENDIX IV
MULTIPLE-TRAJECTORY CASE

Proof of Theorem 2: Since the true model parameter θ satisfies Y = Zθ+E, we have

θ̂− θ =
(
ZTZ

)−1
Z

⊺
E. (74)

We first bound the norm ∥(Z⊺Z)
−1∥ = σ(Z)−2. Since each row of Z is a realization of the random vector z in (21), by

[19, Theorem 6.1], if N ≥ max
(
n̄, 4

(√
tr(Σz)/σ(Σz) +

√
2 log(1/δ)

)2)
, with probability 1− δ,

σ(Z) >
1

2

√
Nσ(Σz). (75)

Next, by Lemma 3, for any δ ∈ (0, 1) and N ≥ 2 log(1/δ), with probability at least 1− δ,

∥Z⊺
E∥ ≤4

√
Nση

√
∥Σz∥(1 + n̄) log(9/δ). (76)

Thus, when N ≥ max
(
n̄, 4

(√
tr(Σz)/σ(Σz) +

√
2 log(1/δ)

)2)
, we have

∥θ̂− θ∥ <
16ση

√
∥Σz∥ (1 + n̄) log(18/δ)√

Nσ(Σz)
. (77)


