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ABSTRACT

The term “mobile robot” implies a machine or system that is capable of moving within and
performing purposeful behaviors on the real world. Legged robots are types of mobile robots
with articulated limbs to provide locomotion, and they have the potential to access unstructured
environments, which will eventually enable legged robots to aid in package delivery, terrain
exploration, search and rescue, disaster relief, and one day even become assistants in our homes.
Two-legged robots (i.e., bipedal robots) that are tall and slim can easily adapt to structures built
for humans (narrow staircases or passages). In addition to assisting the elderly or people with
physical disabilities, bipedal robots and their two-legged cousins, exoskeletons, are improving
productivity. Moreover, knowledge acquired about bipedal robots, exoskeletons, prosthetics, and
human biomechanics is transferable and becomes positive reinforcement. It is these characteristics
that have motivated me to work on autonomy of bipedal robots.

The capabilities of bipedal robots have yet to be unleashed in the service of society due to a
number of challenges. One key challenge involves problems in sensor fusion, pose estimation, and
smooth motion planning, as these aspects are critical for a bipedal robot to autonomously walk
toward a distant destination and to smoothly avoid dynamic obstacles detected through various
sensing modalities, while maintaining its stability.

This dissertation seeks to develop a full autonomy system that allows bipedal robots to 1) acquire
multi-modal data from a calibrated perception suite; 2) estimate their poses in textureless environ-
ments; 3) detect and avoid dynamic obstacles; 4) traverse unexplored, unstructured environments
and undulating terrains; and 5) perform point-to-point topometric navigation. All the research
presented in this dissertation focuses on advancing the state of the art in mobile robot autonomy. To
ensure the practicality of our work, we have evaluated all of our algorithms on Cassie Blue.

To allow Cassie to perceive its surroundings, we built a perception suite that includes Light
Detection and Ranging (LiDAR) sensors, cameras, and Inertial Measurement Units (IMUs). To
ensure the obtained measurements are valid and meaningful, sensor fusion and calibration are
required for most modern perception and navigation systems deployed on autonomous robots.
Accordingly, we develop an automatic pipeline for both LiDAR-camera extrinsic calibration and
intrinsic calibration for LiDARs. The resulting calibrated system achieves pixel-level error when
projecting a LiDAR point cloud on the camera’s image plane. Additionally, we propose a unifying
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intrinsic calibration technique for both spinning and solid-state LiDARs. Our method reduces by
48.7% the error in our factory-calibrated LiDAR. The calibrated sensors mounted on the perception
suite enable us to open up an important chapter in Cassie’s autonomy.

Later, we develop the very first fiducial marker system for LiDAR point clouds — LiDARTag —
to estimate a mobile robot’s pose. Because LiDAR sensors are not affected by rapidly changing
ambient lighting, LiDARTags can be used where cameras cannot, and the proposed fiducial marker
can even operate in a completely dark environment. The LiDARTag system achieves millimeter
translation error and a few degrees of rotation error, reaches 99.7% accuracy on decoding, and runs
faster than 100 Hz. However, due to the quantization uncertainty and sparsity of LiDAR returns, the
performance of the pose estimation when using a 32-beam Velodyne LiDAR is degraded when the
target is farther than 12 meters. We therefore propose the concept of target shape optimization for
enhancing pose and vertex estimation from LiDAR point clouds. Specifically, we design a target so
that the edge points induced by LiDAR rings are “highly” sensitive to translation and rotation. This
attenuates the deleterious effects of quantization uncertainty and sparsity of a target’s LiDAR image.
The resulting target shape is naturally asymmetric to reduce pose ambiguity. Moreover, we present
a means that leverages target geometry to estimate the target vertices while globally estimating the
pose. We formulate the pose estimation problem as a semidefinite program and modify a global
convex solver to efficiently compute the target pose. With the enhanced target shape and solver, we
achieve centimeter error in translation and a few degrees of error in rotation even when an occluded
target of width 0.96 meter is placed 30 meters away.

Next, multi-objective or multi-destination path planning is crucial for mobile robotics applica-
tions such as mobility as a service, robotics inspection, and electric vehicle charging for long trips.
We propose an anytime iterative system to concurrently solve the multi-objective path planning
problem and determine the visiting order of destinations. The system is comprised of an anytime
informable multi-objective and multi-directional RRT˚ algorithm to form a simple connected graph,
and a proposed solver that consists of an enhanced cheapest insertion algorithm and a genetic
algorithm to solve the relaxed traveling salesman problem in polynomial time.

Finally, we propose and experimentally demonstrate a reactive planning system for bipedal
robots traversing unexplored, challenging terrains. The system consists of a low-frequency planning
thread (5 Hz) to find an asymptotically optimal path and a high-frequency reactive thread (300 Hz)
to accommodate robot deviation. The planning thread includes: a multi-layer local map to compute
traversability for the robot on the terrain; an anytime omnidirectional Control Lyapunov Function
(CLF) for use with a Rapidly Exploring Random Tree Star (RRT˚) that generates a vector field for
specifying motion between nodes; a sub-goal finder when the final goal is outside of the current
map; and a finite-state machine to handle high-level mission decisions. The system also includes
a reactive thread to obviate the non-smooth motions that arise with traditional RRT˚ algorithms
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when performing path following. The reactive thread copes with robot deviation while eliminating
non-smooth motions via a vector field (defined by a closed-loop feedback policy) that provides
real-time control commands to the robot’s gait controller as a function of instantaneous robot pose.
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CHAPTER 1

Introduction

1.1 Motivation

The term“mobile robot” implies a machine or system that is capable of moving around and
performing purposeful behaviors in the real world. Legged robots are types of mobile robots with
articulated limbs to provide locomotion. Having legs has been a huge advantage of legged robots to
traverse various types of terrains — not accessible to typical wheeled robots. The importance of
legs has been shown in evolutionary history [2]. For example, scorpions, the very first land-dwelling
animals [3], opened a new chapter of history as they transitioned onto land with limbs. Over the
past 440 million years, many land vertebrates including humans have evolved to keep legs to adapt
to undulating and rocky terrains. In addition, such kind of limb morphology has enabled diverse and
advanced motion such as jumping, and stepping over obstacles [4]. In other words, legs can step
over isolated paths while wheels require a continuous path to travel. These capabilities allow legged
robots to potentially assist package delivery, terrain exploration, search-and-rescue, and disaster
relief, and one day even, become assistants in our homes.

Humans are unlike typical tetrapods. We walk bipedally upright with free hands for carrying
and manipulating tools. Most existing factories, warehouses, and apartments are built for humans
and accommodate narrow staircases or passages that are accessible to bipedal robots which are tall
and slim but not to other types of legged robots that are short and wide. Furthermore, advances in
bipedal robot technology can help human rehabilitation, specifically in regaining the ability to walk,
using exoskeletons [5, 6] or powered prosthetics [7, 8]. In addition to assisting the elderly or people
with physical disabilities, bipedal robots and their two-legged cousins, exoskeletons, are improving
productivity. Moreover, knowledge acquired about bipedal robots, exoskeletons, prosthetics, and
human biomechanics is transferable and becomes positive reinforcement. These characteristics have
motivated me to work on autonomy of bipedal robots.

Despite the astounding potential of bipeds, full deployment of the capabilities of bipedal robots
to autonomously accomplish tasks and to serve society has yet to be unleashed. Most bipeds are
confined to controlled environments such as laboratories due to the high DoF, underactuation,
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(a) (b)

Figure 1.1: The left shows Cassie Blue, one of Michigan’s Cassie-series robots. The robot is shown participating in
a controlled burn. It has 20 Degrees of Freedom (DoF), 10 actuators, joint encoders, and an Inertial Measurement
Unit (IMU). The robot’s serial number is 001. When standing up, Cassie is about one meter tall and its total mass is
31 kg. The right shows another bipedal robot, Digit, in our lab. Digit weighted 45 kg is essentially Cassie with an
upper-body and two four-DoF arms. Additionally, Digit is equipped with five cameras and a LiDAR.

and complex dynamics, along with the unstructured environment in which they are instructed to
navigate.

This dissertation seeks to develop a full autonomy system that allows bipedal robots to 1) acquire
multi-modal data from a calibrated perception suite; 2) estimate their poses in textureless environ-
ments; 3) detect and avoid dynamic obstacles; 4) traverse unexplored, unstructured environments
and undulating terrains; and 5) perform point-to-point topometric navigation. All the research
presented in this dissertation focuses on advancing the state of the art in mobile robot autonomy. To
ensure the practicality of our work, we have evaluated all of our algorithms on Cassie Blue (and
eventually a Digit robot), as shown in Fig. 1.1.

1.2 Objectives

A number of challenges need to be solved to develop an autonomy system for mobile robots
such as Cassie Blue, a bipedal robot with 20 DoF. These challenges include problems in controller
design, robot pose estimation, data acquisition, sensor fusion and calibration, mapping, and motion
planning, as shown in Fig. 1.2.

First, to allow a bipedal robot to perceive surroundings, we design a perception suite to rigidly
house different types of sensors such as IMUs, cameras, and LiDARs (see Chapter 2). Sensor
calibration, which can be intrinsic or extrinsic, is an essential step in achieving the measurement
accuracy required for modern perception and navigation systems deployed on autonomous robots.
While determining such a transformation between sensors is not considered glamorous in any sense
of the word, it is nonetheless crucial for modern autonomous systems [9–20]. Indeed, an error of
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Figure 1.2: The proposed autonomy stack for Cassie Blue. This figure illustrates how the various processes in the
overall autonomy system are distributed and their computation frequencies. The larger boxes indicate various modules
such as Data Acquisition, Mapping, Planning, and Control. The smaller boxes are colored according to the processor
that runs them.

a few degrees in rotation or a few percent in translation can lead to 20 cm reprojection errors at a
distance of 5 m when overlaying a LiDAR point cloud on a camera image. The biggest impediments
to determining the transformation accurately are the relative sparsity of LiDAR point clouds and
systematic errors in their distance measurements. In Chapter 3, we propose (1) the use of targets
of known dimension and geometry to ameliorate target pose estimation in face of the quantization
and systematic errors inherent in a LiDAR image of a target, (2) a fitting method for the LiDAR to
monocular camera transformation that avoids the tedious task of target edge extraction from the
point cloud.

During the process of extrinsic calibration, we observe that our LiDAR had a noticeable amount
of systematic errors. We then turn our attention to LiDAR intrinsic calibration [21–29]. Intrinsic
calibration of a sensor is the process of ensuring that obtained measurements are meaningful and
valid. In Chapter 4, we propose a unifying view of calibration for different types of LiDARs (spin-
ning vs. solid-state, for example). Intrinsic calibration models for spinning LiDARs have been
based on hypothesized physical mechanisms, resulting in anywhere from three to ten parameters to
be estimated from data, while no phenomenological models have yet been proposed for solid-state
LiDARs. Instead of going down that road, we propose to abstract away from the physics of a
LiDAR type (spinning vs. solid-state, for example) and focus on the point cloud’s spatial geometry
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generated by the sensor. By modeling the calibration parameters as an element of a matrix Lie
Group, we achieve a unifying view of calibration for different types of LiDARs. We further prove
mathematically that the proposed model is well-constrained (has a unique answer) given four
appropriately orientated targets. The proof provides a guideline for target positioning in the form
of a tetrahedron. Moreover, an existing Semidefinite Programming (SDP) global solver for SEp3q

can be modified to efficiently compute the optimal calibration parameters. For spinning LiDARs,
we show with experimental data that the proposed matrix Lie Group model performs equally well
as physics-based models in terms of reducing the point-to-plane distance while being more robust
to noise. We also demonstrate the proposed method is able to calibrate a solid-state LiDAR and is
robust to noise.

Periodic intrinsic and extrinsic (re-)calibrations are essential for modern perception and naviga-
tion systems deployed on autonomous robots. In Chapter 5, we propose an automatic calibration
pipeline that utilizes synchronized image-based and LiDAR-based fiducial markers to speed up the
calibration process.

Image-based fiducial markers [30–38] are useful in problems such as robot pose estimation,
object tracking in cluttered or textureless environments, camera (and multi-sensor) calibration tasks,
and vision-based Simultaneous Localization and Mapping (SLAM). The State-of-the-Art (SOTA)
fiducial marker detection algorithms rely on the consistency of the ambient lighting. In Chapter 6,
we introduce the very first fiducial marker for LiDARs, called LiDARTag [39, 40]. The proposed
system runs in real-time and can process data at 100 Hz, which is faster than the currently available
LiDAR sensor frequencies. Because LiDAR sensors are not affected by rapidly changing ambient
lighting, LiDARTags can be used where cameras cannot, and the proposed fiducial marker can
even operate in a completely dark environment. In addition, the LiDARTag nicely complements
and is compatible with existing visual fiducial markers, such as AprilTags [30, 31], allowing for
efficient multi-sensor fusion and calibration tasks. We further propose a concept of minimizing a
fitting error between a point cloud and the marker’s template to estimate the marker’s pose. The
proposed method achieves millimeter error in translation and a few degrees in rotation. Due to
the sparsity of LiDAR returns, the point cloud is lifted to a continuous function in a Reproducing
Kernel Hilbert Space (RKHS) where the inner product can be used to determine a marker’s ID. The
experimental results, verified by a motion capture system, confirm that the proposed method can
reliably provide a tag’s pose and unique ID code. The rejection of false positives is validated on the
Google Cartographer [41] indoor dataset and the Honda H3D outdoor dataset [42].

Targets are essential in problems such as object tracking in cluttered or textureless environments,
camera (and multi-sensor) calibration tasks, and SLAM. Target shapes for these tasks typically
are symmetric (square, rectangular, or circular) and work well for structured, dense sensor data
such as pixel arrays (i.e., image). However, symmetric shapes lead to pose ambiguity when using
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sparse sensor data such as LiDAR point clouds and suffer from the quantization uncertainty of
the LiDAR. In Chapter 7, we introduce the concept of optimizing target shape to remove pose
ambiguity for LiDAR point clouds [43]. A target is designed to induce large gradients at edge points
under rotation and translation relative to the LiDAR to ameliorate the quantization uncertainty
associated with point cloud sparseness. Moreover, given a target shape, we present a means that
leverages the target’s geometry to estimate the target’s vertices while globally estimating the pose.
Both the simulation and the experimental results (verified by a motion capture system) confirm that
by using the optimal shape and the global solver, we achieve centimeter error in translation and a
few degrees in rotation even when a partially illuminated target is placed 30 meters away.

Multi-objective or multi-destination path planning is crucial for mobile robotics applications
such as mobility as a service, car-pooling, and electric vehicle charging for long trips. In Chapter 8,
we propose an anytime iterative system to concurrently solve the multi-objective path planning
problem, and determine the visiting order of destinations. The system is comprised of an anytime
informable multi-objective and multi-directional RRT˚ algorithm to form a union of undirected
weighted graph and a weighted-insertion breadth-first search algorithm to solve the relaxed traveling
salesman problem in polynomial time. Moreover, an ordered list of inspection waypoints is often
provided for robotics inspection so that the robot can preferentially examine certain equipment or
area of interests. We show that the proposed system can inherently incorporate such knowledge
and substantially reduce the computation time and the number of explored nodes. The proposed
anytime system is evaluated on various large-complex graphs built for real-world applications.

After the path planner provides a sequence of intermediate goals to reach a distant destination, we
deploy a novel reactive planning system to smoothly approach the intermediate goals. In Chapter 9,
we propose and experimentally demonstrate a reactive planning system [44] for bipedal robots on
unexplored, challenging terrains. The system consists of a low-frequency planning thread (5 Hz) to
find an asymptotically optimal path and a high-frequency reactive thread (300 Hz) to accommodate
robot deviation. The planning thread includes: a multi-layer local map to compute traversability
for the robot on the terrain; an anytime omnidirectional CLF for use with a Rapidly Exploring
Random Tree Star (RRT*) that generates a vector field for specifying motion between nodes; a
sub-goal finder when the final goal is outside of the current map; and a finite-state machine to handle
high-level mission decisions. The system also includes a reactive thread to obviate the non-smooth
motions that arise with traditional RRT* algorithms when performing path following. The reactive
thread copes with robot deviation while eliminating non-smooth motions via a vector field (defined
by a closed-loop feedback policy) that provides real-time control commands to the robot’s gait
controller as a function of instantaneous robot pose. This reactive planning system allows Cassie
Blue to autonomously avoid obstacles, complete high-level missions, and traverse sinusoidally
varying terrains.
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1.3 Dissertation Roadmap

Figure 1.3 shows the roadmap of this dissertation. The first part is comprised of a sensor suite
design (Chapter 2) and sensor calibration techniques (Chapter 3 to Chapter 5). The second part
describes robot pose estimation via LiDAR-based fiducial markers (Chapter 6 and Chapter 7). The
last part explains robotics reactive planning system to guide the robot to a distant goal (Chapter 9).

Figure 1.3: Illustration of the roadmap of the dissertation.
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1.4 Contributions

In summary, this dissertation makes the following contributions:

1. We design a sensor suite [45] that rigidly houses several types of sensors, and the suite enables
autonomy of Cassie Blue (Chapter 2). We conduct several autonomy experiments with the
torso and the videos are uploaded to [46–49].

2. We propose a SOTA algorithm to calibrate LiDARs and cameras (Chapter 3). When evaluated
against a state-of-the-art baseline, the proposed algorithm results in, on average, more than
a 50% reduction in LiDAR-to-camera projection error and a 70% reduction in its variance.
Two other benefits of our method are: (1) it does not require the estimation of a target normal
vector from an inherently noisy point cloud; and (2) it also obviates the identification of edge
points and their association with specific sides of a target.

3. We present a universal method for LiDAR intrinsic calibration (Chapter 4) that abstracts away
the physics of a LiDAR type (spinning head vs. solid-state, for example), and focuses instead
on the spatial geometry of the point cloud generated by the sensor. The calibration parameter
becomes an element of Simp3q, a matrix Lie group. We mathematically prove that given four
targets with appropriate orientations, the proposed model is well-constrained (i.e., a unique
answer exists). We show how to profitably apply efficient, globally convergent algorithms for
SEp3q to determine a solution to our problem in Simp3q. The resulting algorithm is evaluated
in simulation for a solid-state LiDAR and simulation and experiment for a spinning LiDAR.
The P2P distance of the validation scene for the spinning LiDAR is reduced 44.7% and 68.6%
in simulation and experiment, respectively. The P2P distance of the validation scene for
the solid-state LiDAR is reduced by 48.7%. Both simulation and experiments show that the
proposed method can serve as a generic model for intrinsic calibration of both spinning and
solid-state LiDARs.

4. We develop the very first fiducial marker for LiDAR point clouds (Chapter 6). The proposed
fiducial tag system runs in real-time (faster than 100 Hz) while it can handle a full scan of
raw point cloud from the employed 32-Beam Velodyne ULTRA Puck LiDAR (up to 120,000
points per scan). The LiDARTag pose estimation block deploys an L1-inspired cost function.
It achieves millimeter error in translation and a few degrees of error in rotation compared to
ground truth data collected by a motion capture system with 30 motion capture cameras. The
sparse LiDAR returns on a LiDARTag are lifted to a continuous function in a Reproducing
Kernel Hilbert Space (RKHS) where the inner product is used to determine the marker’s ID,
and this method achieves 99.7% accuracy. The presented fiducial marker system can also be
used with cameras and has been successfully used for calibration [9, 21].
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5. We formulate the concept of optimizing target shape to remove pose ambiguity for
LiDAR point clouds (Chapter 7). A target is designed to induce large gradients at edge
points under rotation and translation relative to the LiDAR to ameliorate the quantization
uncertainty associated with point cloud sparseness. The resulting shape is asymmetric to
elude pose ambiguity. Additionally, we propose a means that utilizes target shape to jointly
estimate target vertices and pose. Because the cost function of the proposed method can
be formulated as an SDP, the target’s pose and vertices can be globally estimated with an
open-source solver. In the simulation, we validate that the optimal shape with the global solver
achieves centimeter error in translation and a few degrees of error in rotation when the targets
are at a distance of 30 meters and partially illuminated. In addition, we conduct experimental
evaluations where the ground truth data are provided by a motion capture system, and achieve
results similar to the simulation.

6. We develop an anytime iterative system (Chapter 8) to provide paths between multiple ob-
jectives and to determine the visiting order of destinations; moreover, the system should
be informable meaning it can accommodate prior knowledge of intermediate nodes, if
available. The proposed system consists of two components: 1) an anytime informable
multi-objective and multi-directional RRT˚ (IMOMD-RRT˚) algorithm to form a connected
weighted-undirected graph, and 2) a relaxed TSP solver that consists of an enhanced version
of the cheapest insertion algorithm and a genetic algorithm, which together we call ECI-Gen.
The proposed system is evaluated on large-complex graphs built for real-world driving ap-
plications, such as the OpenStreetMap (OSM) of Chicago containing 866, 089 nodes and
1, 038, 414 edges.

7. We present a novel reactive planning system (Chapter 9) that consists of a 5-Hz planning
thread to guide a robot to a distant goal and a 300-Hz CLF-based reactive thread to cope with
robot deviations. In simulation, we evaluate the reactive planning system on ten challenging
outdoor terrains and cluttered indoor scenes, and perform fully autonomy experiments with
Cassie Blue on sinusoidally varying terrain. The planning thread uses a multi-layer, robot-
centric local map to compute traversability for challenging terrains, a sub-goal finder, and a
finite-state machine to choose a sub-goal location as well as omnidirectional CLF RRT* to find
an asymptotically optimal path for Cassie to walk in a traversable area. The omnidirectional
CLF RRT* utilizes the newly proposed CLF as the steering function and the distance measure
on the CLF manifold in the RRT* algorithm. Both the proposed CLF and the distance measure
have a closed-form solution. The distance measure nicely accounts for the inherent “features”
of Cassie-series robots, such as high-cost for lateral movement. The robot’s motion in the
reactive thread is generated by a vector field depending on a closed-loop feedback policy
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providing control commands to the robot in real-time as a function of instantaneous robot pose.
In this manner, problems typically encountered by waypoint-following and pathway-tracking
strategies when transitioning between waypoints or pathways (unsmooth motion, sudden
turning, and abrupt acceleration) are resolved.

8. We open-source all the CAD models, datasets, and related software, see Chapter 1.5.
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1.5 Open-source Software

This section provides a list of open-source packages released with this dissertation:

1. CAD Model for Perception Suite:
https://github.com/UMich-BipedLab/torso_design_for_cassie

2. Extrinsic Calibration for 3D LiDAR and Camera:
https://github.com/UMich-BipedLab/extrinsic_lidar_camera_calibration

3. Global Unifying LiDAR Intrinsic Calibration:
https://github.com/UMich-BipedLab/LiDAR_intrinsic_calibration

4. Global Solver for Lie Group on Simp3q:
https://github.com/UMich-BipedLab/global_sim3_solver

5. LiDARTag: A Real-Time Fiducial Tag System for Point Clouds:
https://github.com/UMich-BipedLab/LiDARTag

6. LiDARTag Messages for ROS:
https://github.com/UMich-BipedLab/LiDARTag_msgs

7. Global Pose Estimation of Optimal Shape:
https://github.com/UMich-BipedLab/global_pose_estimation_for_optimal_shape

8. Optimal Shape Generation for LiDAR Point Clouds:
https://github.com/UMich-BipedLab/optimal_shape_generation

9. Informable Multi-Objective and Multi-Directional RRT˚ System for Robot Path Planning:
https://github.com/UMich-BipedLab/IMOMD-RRTStar

10. Efficient Anytime CLF Reactive Planning System for a Bipedal Robot on Undulating Terrain:
https://github.com/UMich-BipedLab/CLF_reactive_planning_system

11. Planning Messages for ROS:
https://github.com/UMich-BipedLab/planner_msgs

12. Customized Multi-layer Elevation Map:
https://github.com/UMich-BipedLab/customized_grid_map
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13. LiDAR Simulator in MATLAB:
https://github.com/UMich-BipedLab/lidar_simulator

14. Automatic Extrinsic Calibration for 3D LiDAR and Camera:
https://github.com/UMich-BipedLab/automatic_lidar_camera_calibration

15. AprilTag ROS:
https://github.com/UMich-BipedLab/AprilTag_ROS

16. AprilTag Messages for ROS:
https://github.com/UMich-BipedLab/AprilTag_msgs

17. Synchronization of LiDARTag and AprilTag:
https://github.com/UMich-BipedLab/sync_lidartag_apriltag

18. Synchronized AprilTag Messages and LiDARTag Messages:
https://github.com/UMich-BipedLab/alignment_msgs

19. Useful MATLAB functions:
https://github.com/UMich-BipedLab/matlab_utils
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Part I

Autonomous System for Legged Robots
and Sensor Calibration

CHAPTER 2

Design of Perception Suite for Legged Robots

2.1 Introduction and Sensors

Taking sensor measurements and extracting meaningful information are essential to acquire
knowledge about the robot itself and its environment so that it is able to take proper action. Sensors
can be roughly classified into two categories based on their functionalities. Proprioceptive sensors
such as Inertial Measurement Unit (IMU) or encoders, measure the internal states of the robot
(speed, joint angles, or force) at higher frequencies (100 Hz to 2 kHz). Exteroceptive sensors such as
Global Positioning System (GPS), Light Detection and Ranging (LiDAR), camera, or radar, collect
information from surroundings (distance measurements, position, color, or reflectivity, intensity) at
lower frequencies (5-30 Hz). We briefly introduce a few common sensors below.

An IMU is a multi-axis sensor often composed of gyroscopes, accelerometers, and magnetome-
ters. Gyroscopes and accelerometers measure angular velocity and linear velocity, respectively.
A magnetometer measures magnetic field strength. Therefore, a nine DoF IMU includes 3-axis
gyroscopes, 3-axis accelerometers, and 3-axis magnetometers. All measurements are taken in sensor
or body coordinates. A typical IMU runs at least 400 Hz regardless of robot states or ambient
temperature.

An RGB-camera captures color information as pixel arrays (i.e., an image), and assists the robot
to semantically understand surroundings. However, the quality of an image is sensitive to ambient
lighting. Thus, cameras are not suitable in the dark. A standard RGB-D camera produces images
with dense depth estimated by features extracted from the environment. Typically, the estimated
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depth is not accurate over eight meters and will suffer in textureless or dark environments. Currently,
basic cameras provide many more data points (pixels) for a given surface size at a given distance
than even high-end LiDARs. However, cameras rely on the consistency of the ambient lighting and
provide less accurate depth estimation than LiDARs.

LiDARs, on the other hand, measure accurate and long-range (0.1-200 m) distance by estimating
Time-of-Flight (ToF) of laser beams through a clocking system on a circuit board, resulting in a
sparse but accurate point cloud. Because of the nature of LiDAR sensors, rapidly changing ambient
lighting will not affect measurements of a LiDAR; hence, a LiDAR can facilitate the robot in
perceiving surroundings at night, even in completely dark environments. There are different types
of LiDARs (spinning LiDARs and solid-state LiDARs) coming to the market which we discuss in
Chapter 4.

GPS sensors are receivers with antennas that utilize a satellite-based navigation system consisting
of 24 satellites in orbit around the earth. A GPS is able to compute its location by trilateration if it
receives three or more satellites. In other words, GPS sensors suffer in places with poor satellite
signals such as indoor environments, populated urban cities, or forests. A typical GPS runs at 15
Hz and provides position with accuracy ˘5 meters, velocity, and timing information.

(a) (b)

Figure 2.1: The CAD design of the sensor suite. The left shows the front view of the suite and the right shows its back.
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(a) (b)

Figure 2.2: The left shows the adjustable mount for the camera and the right shows the adjustable mount for the LiDAR.

2.2 Perception Suite

Due to these different inherent properties of various types of sensors in order to enable Cassie
Blue to perceive surroundings under different lighting conditions and environments, we design a
perception suite that consists of two RGB-D cameras with built-in IMUs, and two LiDARs. In
addition, two fans are used to vacillate two Jetson AGX Xaviers with Graphics Processing Units
(GPUs). Furthermore, a router, a USB hub, and an internet switch are utilized for communication
from users and Cassie to the perception suite. Finally, a 12-volt Lithium Polymer (LiPo) battery
powers up all the sensors. Figure 2.1 shows the design of the full sensor suite and the step files are
available at [45].

(a) (b)

Figure 2.3: The frame of the sensor suite is made of 1/8 5052 sheet metal (black) to firmly support the weights of the
sensors and the sensor mounts are made of 2024 aluminium (silver).
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Remark 1. The four sensors are placed and oriented differently to gather information around the
robot. Additionally, we design adjustable mounts for the cameras and the tilted LiDAR, as shown in
Fig. 2.2 and are still able to screw-lock in place.

The frame of the suite is made of 1/8 5052 sheet metal (black) to firmly support the weights of
the sensors, and the sensor mounts are made of 2024 aluminium (silver), as shown in Fig. 2.3. The
weight of the suite without sensors is about 7 kilograms. We use an industrial graded router and an
industrial graded internet switch to ensure stable connections among sensors1. To fully utilize all
the sensors, sensor calibrations have to be done.

Sensor calibration, which can be intrinsic or extrinsic, is an essential step to achieve the measure-
ment accuracy required for modern perception and navigation systems deployed on autonomous
robots. Extrinsic calibration is a process of obtaining rigid-body transformations between sensors
(see Chapter 3). Intrinsic calibration of a sensor, on the other hand, is the process of ensuring that
obtained measurements are meaningful and valid (see Chapter 4).

1We previously used commercial routers and switches, but the connections between sensors often broke due to the
large roll motion of Cassie Blue while walking or the extreme heat in summer.

(a) (b)

Figure 2.4: The left shows the sensor suite with different sensors, and the right shows the suite mounted on Cassie Blue.
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CHAPTER 3

Improvements to Target-Based 3D LiDAR to Camera Calibration

3.1 Introduction and Related Work

The desire to produce 3D-semantic maps [50] with our Cassie-series bipedal robot [51] has
motivated us to fuse 3D-LiDAR and RGB-D monocular camera data for autonomous navigation [46].
Indeed, by mapping spatial LiDAR points onto a segmented and labeled camera image, one can
associate the label of a pixel (or a region about it) to the LiDAR point as shown in Fig. 3.1. An error
of a few degrees in rotation or a few percent in translation in the estimated rigid-body transformation
between LiDAR and camera can lead to 20 cm reprojection errors at a distance of 5 m when
overlaying a LiDAR point cloud on a camera image. Such errors will lead to navigation errors.

In this chapter, we assume that the intrinsic calibration of the two sensors has already been
done [22] and focus on obtaining the rigid-body transformation, i.e., rotation matrix and translation,
between a LiDAR and camera. This is a well studied problem with a rich literature that can be
roughly divided into methods that do not require targets: [52–57] and those that do: [12–20, 58, 59].
While many of the existing target-based methods may work well, in practice, they require many
manual steps, such as carefully measuring different parts of the targets, parsing edge-points, and
edge-points pairing inspection. Our method avoids these manual steps and is applicable to planar
polygonal targets, such as checkerboards, triangles, and diamonds.

In target-based methods, one seeks to estimate a set of target features (e.g., edge lines, normal
vectors, vertices) in the LiDAR’s point cloud and the camera’s image plane. If “enough” independent
correspondences can be made, the LiDAR to camera transformation can be found by Perspective-n-
Point (PnP) as in [60], that is, through an optimization problem of the form

pRL˚
C
, TL˚

C
q “ arg min

pR,T q

ÿ

i

distpP pHC

L
pXiqq, Yiq, (3.1)

where Xi are the (homogeneous) coordinates of the LiDAR features, Yi are the coordinates of the
camera features, P is the often-called “projection map”, HC

L
is the (homogeneous representation of)

the LiDAR-frame to camera-frame transformation with rotation matrix RL

C
and translation TL

C
, and
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Figure 3.1: Building a semantic map for autonomous navigation. Once the transformation from LiDAR to camera
is known, it is possible to fuse the LiDAR and RGB-camera information to build a 3D-map that is annotated with
semantic information. The lower right shows a single camera image; its segmentation with semantic labels is shown in
the upper right. Synchronized LiDAR points are mapped onto the camera image, associated to a semantic label, and
then re-projected to a local frame [61] along with the semantic labels to create a 3D semantically-labeled map [50],
shown in the upper left. The sidewalk is marked in white, the grass in yellow-green, and trees in dark green. In the
lower left, Cassie is using the map to plan a path around the North Campus Wave Field, while staying on the sidewalk.

dist is a distance or error measure.

3.1.1 Rough Overview of the Most Common Target-based Approaches

The works closest to ours are [10,11]. Each of these works has noted that rotating a square target
so that it presents itself as a diamond can help to remove pose ambiguity due to the spacing of the
ring lines; in particular, see Fig. 2 in [10] and Fig. 1 in [11]. More generally, we recommend the
literature overview in [10] for a recent, succinct survey of LiDAR to camera calibration.

The two most common sets of features in the area of target-based calibration are (a) the 3D-
coordinates of the vertices of a rectangular or triangular planar target, and (b) the normal vector to
the plane of the target and the lines connecting the vertices in the plane of the target. Mathematically,
these two sets of data are equivalent: knowing one of them allows the determination of the other. In
practice, focusing on (b) leads to use of the SVD to find the normal vector and more broadly to least
squares line fitting problems [11], while (a) opens up other perspectives, as highlighted in [10].

Figure 3.2(a) shows a 3D view of 25 scans from a factory-calibrated 32-Beam Velodyne ULTRA
Puck LiDAR on a diamond shaped planar target. The zoom provided in Fig. 3.2(b) shows that
some of the rings are poorly calibrated, with a “noise level” that is three times higher than the
manufacturer’s specification. On average, the rings are close to the specification (˘ five cm at less
than 50 m) of the LiDAR, which means a maximum ten centimeters difference between points on
the same ring.

Systematic errors in the distance (or depth) measurement affect the estimation of the target’s
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(a) (b) (c)

(d)
(e) (f)

Figure 3.2: Units are meters. (a) Twenty five LiDAR scans of a planar target. The point cloud is roughly 7 cm thick.
(b) The “noise” in the point cloud is not random. A zoom for four of the rings (13, 15, 17, 19) is typical and shows
systematic errors in distance. (c) LiDAR points orthogonally projected to the plane defined by the normal. (d) Example
edge points selected to regress a line via Random Sample Consensus (RANSAC). (e) Target reference frame and real
point cloud data. The dotted blue square is the reference target; its vertices are denoted tX̄iu4i“1. (f) A side-px´zq-view
highlighting the non-zero thickness of a typical point cloud. These figures and all others in the chapter are of sufficient
resolution that they can be blown up to see detail.

centroid, which is commonly used to determine the translation of the target with respect to the
LiDAR, and the target’s normal vector, which is used to define the plane of the target, as shown
in Fig. 3.2(c). Subsequently, the point cloud is orthogonally projected to this plane and the line
boundaries of the target are found by performing RANSAC on the appropriate set of ring edges; see
Fig. 3.2(d). The lines along the target’s boundaries then define its vertices in the plane, which for
later reference, we note are not constrained to be compatible with the target’s geometry.

Once the vertices in the plane of the target have been determined, then knowledge of the target’s
normal vector allows the vertices to be lifted back to the coordinates of the point cloud. This process
may be repeated for multiple scans of a target, aggregates of multiple scans of a target, or several
targets, leading to a list of target vertices tXiu

4n

i“1
, where n is the number of target poses.

The target is typically designed so that the vertices are easily distinguishable in the camera
image. Denoting their corresponding coordinates in the image plane by tYiu

4n

i“1
completes the data

required for the conceptual fitting problem in (3.1). While the cost to be minimized is nonlinear and
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non-convex, this is typically not a problem because CAD data can provide an adequate initial guess
for local solvers, such as Levenberg-Marquardt; see [11] for example.

3.1.2 Our Contributions

Our contributions can be summarized as follows.

(a) We introduce a novel method for estimating the rigid-body transform from target to LiDAR,
HL

T
. For the point cloud pulled back to the origin of the LiDAR frame via the current

estimate of the transformation, the cost is defined as the sum of the distance of a point to a
3D-reference target of known geometry1 in the LiDAR frame, for those points landing outside
of the reference target, and zero otherwise. We use an L1-inspired norm in this work to define
distance. Consistent with [10], we find that this is less sensitive to outliers than L2-line fitting
to edge points2 using RANSAC [11].

(b) In the above, by using the entire target point cloud when estimating the vertices, we avoid all
together the delicate task of identifying the edge points and parsing them into individual edges
of the target, where small numbers of points on some of the edges accentuate the quantization
effects due to sparsity in a LiDAR point cloud.

(c) We provide a round-robin validation study to compare our approach to a state-of-the-art
method, namely [11]. A novel feature of our validation study is the use of the camera
image as a proxy for ground truth; in the context of 3D semantic mapping, this makes
sense. In addition to a standard PnP method [60] for estimating the rigid-body transformation
from LiDAR to camera, we also investigate maximizing IoU to estimate the rigid-body
transformation. Our algorithms are validated on various numbers of targets.

(d) Code for our method, our implementation of the baseline, and all the data sets used in this
chapter are released as open source; see [62].

3.2 Finding the LiDAR Target Vertices

We assume that each target is planar, square, and rotated in the frame of the LiDAR by roughly
45˝ to form a diamond as in Fig. 3.2(a). As indicated in [10, 11], placing the targets so that the rings
of the LiDAR run parallel to its edges leads to ambiguity in the vertical position due to the spacing

1It has been given non-zero volume.
2Defined as the left-right end points of each LiDAR ring landing on the target.
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(a) (b)

Figure 3.3: (a) shows that a calibration result is not usable if it has a few degrees of rotation error and a few percent of
translation error. (b) shows good alignment of a LiDAR point cloud projected onto a camera image.

of the rings. We assume that standard methods have been used to automatically isolate the target’s
point cloud [39] and speak no further about it.

We take as a target’s features its four vertices, with their coordinates in the LiDAR frame denoted
tXiu

4

i“1
; when useful, we abuse notation and pass from ordinary coordinates to homogeneous

coordinates without noting the distinction. The vertices tXiu
4

i“1
are of course not directly observable

in the point cloud. This section will provide a new method for estimating their coordinates in the
frame of the LiDAR using an L1-like norm.

3.2.1 Remarks on LiDAR Point Clouds

LiDARs have dense regions and sparse regions along the z-axis, as shown in Fig. 3.2(c). For
a 32-beam Velodyne Ultra Puck, we estimate the resolution along the z-axis is 0.33˝ and 1.36˝

in the dense and sparse regions, respectively. A point’s distance resolution along the y-axis is
roughly 0.1˝. The quantization error could be roughly computed from: d sin ✓ when a point is at
d meter away. As a result, the quantization error could get quite large if one place the tag at a far
distance. Figure 3.3(a) shows that a 1˝ of rotation error on each axis and 5% error in translation can
significantly degrade a calibration result. As noted in [10, 11], it is essential to place a target at an
appropriate angle so that known geometry can mitigate quantization error in the y- and z-axes.
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Figure 3.4: This conceptual figure illustrates the proposed method to estimate LiDAR vertices. The target’s reference
in the LiDAR frame is defined by (X̄1, ¨ ¨ ¨ , X̄4) with depth ✏. The rigid-body transformation H

L
T (black arrow) pulls

back the target’s PC to a target reference about the LiDAR origin. The actual vertices (X1, ¨ ¨ ¨ , X4) of the target are
estimated by (3.5), using the inverse transformation H

T
L (green arrow).

3.2.2 New Method for Determining Target Vertices

Let PC denote the LiDAR point cloud of the target and let the collection of 3D points be Xi so
that PC “ tXiu

N

i“1
, where N is the number of points on the target. For the extrinsic calibration

problem, we need to estimate the target vertices in the LiDAR frame. As in Fig. 3.4, let HT

L
be the

rigid-body transformation from a reference target in the LiDAR frame with vertices tX̄iu
4

i“1
, onto

the point cloud. We use the inverse transform HL

T
:“ pHT

L
q

´1 to pull back the target’s point cloud
to the origin of the LiDAR and measure the error there.

For a • 0 and � P R, define

cp�, aq :“

$
&

%
mint|� ´ a|, |� ` a|u if |�| ° a

0 otherwise
; (3.2)

see also the “soft L1 norm” in [10]. Let tX̃iu
N

i“1
:“ HL

T
pPCq :“ tHL

T
pXiqu

N

i“1
denote the pullback

of the point cloud by HL

T
, and denote a point’s Cartesian coordinates by px̃i, ỹi, z̃iq. The cost is

defined as

CpHL

T
pPCqq :“

Nÿ

i“1

cpx̃i, ✏q ` cpỹi, d{2q ` cpz̃i, d{2q, (3.3)
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where d is determined by the size of the (square) target, and the only tuning parameter is ✏ ° 0, the
thickness of the ideal target. The value of ✏ is based on the standard deviation of a target’s return
points to account for the noise level of the depth measurement; see Fig. 3.2(f).

We propose to determine the optimal rigid-body transformation, with rotation matrix RL

T
and

translation vector TL

T
, by

HL
˚

T
:“ argmin

R
L
T ,T

L
T

CpHL

T
pPCqq, (3.4)

and to define the estimated target vertices by

X˚
i
:“ HT

˚
L

pX̄iq, 1 § i § 4. (3.5)

Remark 2. It is emphasized that the target vertices are being determined without extraction of edge
points and their assignment to a side of the target. The correspondences of the estimated vertices
with the physical top, bottom, and left or right sides of the target are not needed at this point.

Remark 3. The cost in (3.3) treats the target as a rectangular volume. To be clear, what we
seek is a “best estimate” of the target vertices in the LiDAR frame and not the transformation
itself. Our method is indirect because from the point cloud, we estimate a “best” LiDAR to target
transformation, HT

˚
L

, and use it to define the vertices by (3.5).

3.3 Image Plane Corners and Correspondences with the LiDAR Vertices

For a given camera image of a LiDAR target, let t
C
Yiu

4

i“1
denote the corners of the camera

image. We assume that these have been obtained through the user’s preferred method, such as corner
detection [63–65], edge detection [66–68], or even manual selection. The resulting camera corners
are used in both the proposed method and the baseline. This is not the hard part of the calibration
problem. To achieve simple correspondences Xi Ø

C
Yi, the order of the indices of tXiu

4

i“1
may

need to be permuted; we use the vertical and horizontal positions to sort them; see [62].
Once we have the correspondences, the next step is to project the vertices of the LiDAR target,”

xi yi zi 1

ıT
“ Xi, into the image coordinates. The standard relations are [69, 70]

»

—–
u1

v1

w1

fi

�fl “

»

—–
fx s cx

0 fy cy

0 0 1

fi

�fl

«
13ˆ3

01ˆ3

�T «
RC

L
TC

L

01ˆ3 1

�
»

————–

xi

yi

zi

1

fi

����fl
(3.6)

L
Yi “

”
u v 1

ıT
“

”
u

1
w1

v
1

w1 1

ıT
, (3.7)
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where (3.6) includes the camera’s intrinsic parameters and the extrinsic parameters pRC

L
, TC

L
q that

we seek.
For later use, we combine (3.6) and (3.7) to define

⇧
`
Xi;R

C

L
, TC

L

˘
:“

L
Yi, (3.8)

the projection map from LiDAR coordinates to image coordinates. Note that it is a function of both
the extrinsic variables and the LiDAR vertices.

3.4 Extrinsic Transformation Optimization

This section assumes the vertices of the target in the LiDAR frame and in the camera’s image
plane have been determined, along with their correspondences. The optimization for the extrinsic
transformation can be formulated in a standard PnP problem: minimize Euclidean distance of
the corresponding corners. We also propose maximizing the IoU of the corresponding projected
polygons.

3.4.1 Euclidean distance

The standard PnP formulation is

´
RC

L

˚
, TC

L

˚¯
:“ argmin

R,T

4nÿ

i“1

k⇧ pXi;R, T q ´
C
Yik

2

2

“ argmin
R,T

4nÿ

i“1

k
L
Yi ´

C
Yik

2

2
, (3.9)

where
C
Yi P R2 are the camera corners,

L
Yi P R2 are defined in (3.8), and n is the number of target

poses.

3.4.2 IoU optimization

For a given polygon, let V :“ tYi|Yi “: pxi, yiqu
N

i“1
be the coordinates of the N vertices,

ordered counterclockwise. The area of the polygon is computed via the Shoelace algorithm [71, eq.
(3.1)] [72],

ApVq “ ApY1, ¨ ¨ ¨ , YNq “
1

2

ˇ̌
ˇ̌
ˇ

Nÿ

i“1

det

«
xi xi`1

yi yi`1

�ˇ̌
ˇ̌
ˇ , (3.10)

where xN`1 :“ x1 and yN`1 :“ y1. If V is empty, the area is taken as zero. We now apply this basic
area formula to propose an IoU-based cost function for extrinsic calibration.
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(a) (b)

Figure 3.5: Two polygons in an image plane. (a) The red polygon LV “ tLYiu4i“1 represents the estimated vertices
projected from the LiDAR frame to the image plane, while the blue polygon CV “ tCYiu4i“1 represents the vertices
of the actual camera image of the target. (b) shows the intersection (marked in green) of the two polygons, with the
vertices labeled as IV “ tIYiu8i“1.

Let
L
V :“ t

L
Yiu

4n

i“1
be the vertices of the estimated target polygons projected from the

LiDAR frame to the camera frame as in (3.8), and let
C
V :“ t

C
Yiu

4n

i“1
be the vertices of the

corresponding camera images of the targets, as in Fig. 3.5(a). If their intersection is nonempty, we
define it as a polygon with known coordinates3, denoted as

I
V :“ t

I
Yiu

M

i“1
, where M • 0 is the

number of intersection points; see Fig. 3.5(b). We sort the three sets of vertices of the polygons
counterclockwise using Graham’s scan algorithm, a method to find the convex hull of a finite set of
points in a plane [73, 74]. The IoU of the two polygons is then

IoUp
L
V ,

C
V ,

I
Vq “

Ap
I
Vq

Ap
L
Vq ` Ap

C
Vq ´ Ap

I
Vq

. (3.11)

The resulting optimization problem is

´
RC

L

˚
, TC

L

˚¯
:“ argmax

R,T

IoUp
L
V ,

C
Vq (3.12)

“ argmax
R,T

IoUp⇧
`
tXiu

4n

i“1
;R, T

˘
,
C
Vq,

where (3.8) has been used to make the dependence on the rigid-body transformation explicit.
3The vertices of the polygon consist of the 2D corners and the 2D line intersections and thus can be computed

efficiently; see Fig. 3.5(b)
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3.5 Experimental Results

In this section, we extensively evaluate our proposed method on seven different scenes through
a form of “cross-validation”: in a round-robin fashion, we estimate an extrinsic transformation
using data from one or more scenes and then evaluate it on the remaining scenes. The quantitative
evaluation consists of computing pixel error per corner, where we take the image corners as ground
truth. We also show qualitative validation results by projecting the LiDAR scans onto camera
images; we include here as many as space allows, with more scenes and larger images available
at [62].

3.5.1 Data Collection

The scenes include both outdoor and indoor settings. Each scene includes two targets, one
approximately 80.5 cm square and the other approximately 15.8 cm square, with the smaller target
placed closer to the camera-LiDAR pair. We use an Intel RealSense Depth Camera D435 and a
32-Beam Velodyne ULTRA Puck LiDAR, mounted on an in-house designed torso for a Cassie-series
bipedal robot [46]. From the CAD file, the camera is roughly 20 cm below the LiDAR and 10 cm
in front of it. The angle of the camera is adjustable. Here, its “pitch”, in the LiDAR frame, is
approximately zero.

A scan consists of the points collected in one revolution of the LiDAR’s 32 beams. The data
corresponding to a single beam is also called a ring. For each scene, we collect approximately 10 s
of synchronized data, resulting in approximately 100 pairs of scans and images.

For each target, five consecutive pairs of LiDAR scans and camera images are selected as a data
set. For each data set, we apply two methods to estimate the vertices of the targets, a baseline and
the method in Sec. 3.2.2. We then apply both PnP and IoU optimizations to find the rigid-body
transformation, see Sec. 3.4.

3.5.2 Baseline Implementation for LiDAR Vertices

As a baseline, we use the method in [11]. Because an open-source implementation was not
released, we built our own, attempting to be as faithful as possible to the described method.

For each scan, the large and small targets are individually extracted from background [39]. For
each target and group of five scans, we compute the extracted point cloud’s centroid and center the
point cloud about the origin. Singular Value Decomposition (SVD) is then used to find the target’s
normal and to orthogonally project the point cloud onto the plane defined by the normal and the
centroid. For each scan, and for each ring hitting the target, the left and right end points of the
ring are selected and then associated with one of the four edges of the target. Lines are fitted to
each collection of edge points using least-squares and RANSAC. The vertices are obtained as the
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(a)

lab8-closer-cleaner.bag

(b)

Figure 3.6: (a) shows the result of edge detection. (b) shows the interior pixels (marked in green) of a bounding box
given two clicked corners. The edge points and the edge line (as found by RANSAC) are marked in magenta and cyan,
respectively. The corners are defined by the intersections of the resulting lines.

intersections of the lines in the plane defined by the target’s normal and centroid. The four vertices
are then re-projected to 3D space, as in Fig. 3.2(d).

3.5.3 Camera Corners and Associations

The process of determining the target corners begins by clicking near them in the image. This is
the only manual intervention required in the chapter and even this process will soon be automated.
As shown in Fig. 3.6(a), between any given two clicked points, i.e., an edge of the target, a bounding
box is drawn around the two points. Once we have roughly located the corners of the target, we
process the image with Canny edge detection4 to detect the edge points within the bounding box. A
line is then fit through each edge using RANSAC, and the intersections of the resulting lines define
the target’s corners, as shown in Fig. 3.6(b). A video and an implementation of this process is
released along with the code.

3.5.4 Extrinsic Calibration

On the basis of the associated target vertices and camera-image corners, both the PnP and IoU
methods are used to find the rigid-body transformation from LiDAR to camera. Because the results
are similar, we report only the PnP method in Table 3.1 and then include both in the summary table
(Table 3.2). SVD and RANSAC were computed using their corresponding MATLAB commands,
while the optimizations in (3.4), (3.9) and (3.12) were done with fmincon.

4We use the edge command in MATLAB with the ‘Canny’ option.
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Table 3.1: Fitting and validation data. The gray boxes denote the fitting set and the white boxes contain validation
data. The numbers are the RMS errors of the LiDAR vertices projected to the image plane, measured in units of pixels
per corner; see (3.13). For two targets, a complete round-robin study was done. For more targets, the number of
combinations became prohibitive. S1 through S7 denote scene (experiment) number. The mean and standard deviation
of each row—excluding the fitting set—are given in the last two columns.

Fitting\Validation Method # Tag S1 S2 S3 S4 S5 S6 S7 mean std
RN 2 2.6618 8.7363 4.4712 7.3851 4.1269 7.1884 11.9767 7.3141 2.8991S1 GL1 2 0.7728 2.3303 2.3230 1.6318 1.3694 1.9637 2.7427 2.0602 0.5055
RN 2 3.3213 7.6645 4.9169 5.2951 4.0811 4.4345 7.7397 4.9648 1.5215S2 GL1 2 2.1368 1.5181 3.2027 3.2589 2.4480 4.1563 4.4254 3.2713 0.9039
RN 2 4.9909 9.5620 3.6271 8.7533 4.6421 10.1308 15.7764 8.9759 4.0654S3 GL1 2 4.6720 5.9350 1.8469 6.9331 4.4352 8.9493 15.3862 7.7185 4.1029
RN 2 21.2271 22.1641 17.5779 2.9452 15.9909 8.8797 15.3636 16.8672 4.7833S4 GL1 2 4.3681 4.7176 4.4804 0.4986 3.9004 3.3891 3.7440 4.0999 0.5040
RN 2 3.4621 8.3131 4.8500 7.6217 3.5197 7.4838 12.4364 7.3612 3.1066S5 GL1 2 2.0590 2.9541 3.0224 3.5483 0.7392 3.1386 6.0885 3.4685 1.3733
RN 2 29.4400 27.5404 27.9955 9.7005 20.6511 1.4253 9.5050 20.8054 9.1941S6 GL1 2 5.1207 5.0574 5.3537 2.0539 4.1739 1.0012 2.4194 4.0298 1.4503
RN 2 7.7991 9.9647 7.6857 4.1640 6.1619 2.3398 2.3708 6.3525 2.7512S7 GL1 2 2.1563 2.7837 3.1058 1.3234 2.4537 2.0838 1.5389 2.3178 0.6207
RN 4 6.9426 9.6281 6.9136 3.9650 5.6420 2.2399 2.2399 6.6183 2.0764S6-S7 GL1 4 2.2409 2.5607 2.9773 1.8215 2.1995 0.3417 0.3417 2.3600 0.4334
RN 4 4.2476 8.5054 4.6712 2.8686 4.3311 2.8686 2.8748 4.9260 2.1153S4-S6 GL1 4 1.0746 1.8871 2.3619 0.2341 1.5350 0.2341 2.6191 1.8955 0.6215
RN 4 2.9309 8.0801 4.1196 3.4985 3.1519 3.1519 3.2204 4.3699 2.1201S5-S6 GL1 4 1.1541 2.1026 2.5017 1.4267 0.3291 0.3291 2.5693 1.9509 0.6361
RN 4 3.1991 6.0812 4.7311 5.4558 6.0812 4.8344 8.6576 5.3756 2.0139S2-S5 GL1 4 0.9538 0.4803 2.3810 1.4556 0.4803 1.1592 2.5277 1.6955 0.7172
RN 4 2.8820 6.2167 6.2167 4.4672 3.9536 3.7802 6.2324 4.2631 1.2406S2-S3 GL1 4 1.0896 0.4826 0.4826 1.5349 1.5938 1.5597 2.7543 1.7065 0.6209
RN 4 2.8595 8.2471 4.3297 3.7712 4.1023 2.4679 2.8595 4.5836 2.1710S1-S7 GL1 4 1.3542 1.9973 2.3987 1.5926 1.4978 1.6130 1.3542 1.8199 0.3757
RN 4 2.5633 8.0573 4.1762 3.6859 3.8973 2.5633 3.2569 4.6147 1.9535S1-S6 GL1 4 0.9753 1.9154 2.3361 1.2906 1.2827 0.9753 2.3205 1.8291 0.5231
RN 6 2.9824 8.0943 4.1273 3.2821 3.2821 3.2821 3.0841 4.5720 2.4045S4-S5-S6 GL1 6 0.9713 1.9887 2.4395 0.3288 0.3288 0.3288 2.4369 1.9591 0.6918
RN 6 2.7816 5.5382 5.5382 4.5817 5.5382 3.8262 6.6229 4.4531 1.6239S2-S3-S5 GL1 6 1.0022 0.4712 0.4712 1.4755 0.4712 1.1722 2.7791 1.6073 0.8054
RN 6 3.3906 8.1677 3.3906 3.6688 3.9558 2.2913 3.3906 4.5209 2.5374S1-S3-S7 GL1 6 1.7666 1.9994 1.7666 1.5854 1.4754 1.5124 1.7666 1.6432 0.2419
RN 6 2.9428 5.5357 5.5357 5.5357 3.8913 2.4828 3.7673 3.2711 0.6733S2-S3-S4 GL1 6 0.9523 1.8195 1.8195 1.8195 1.5275 1.3631 2.4347 1.5694 0.6255
RN 6 5.3281 5.3281 5.3281 4.5086 3.8577 3.7165 6.4413 4.6310 1.2552S1-S2-S3 GL1 6 1.7755 1.7755 1.7755 1.3698 1.4807 1.3422 2.3156 1.6271 0.4629
RN 6 3.2743 8.2067 4.2628 3.5584 3.0628 3.0628 3.0628 4.8256 2.2921S5-S6-S7 GL1 6 0.9594 2.0149 2.3877 1.3754 1.4905 1.4905 1.4905 1.6843 0.6390
RN 8 3.5316 8.1362 3.5316 3.4616 3.5316 2.2642 3.5316 4.6207 3.1029S1-S3-S5-S7 GL1 8 1.6904 1.9886 1.6904 1.4743 1.6904 1.4136 1.6904 1.6255 0.3159
RN 8 4.9240 4.9240 4.2049 3.6159 4.9240 2.2928 4.9240 3.3712 0.9793S1-S2-S5-S7 GL1 8 1.5269 1.5269 2.4070 1.4788 1.5269 1.4650 1.5269 1.7836 0.5399
RN 8 3.6113 8.0593 3.6113 3.6113 3.6113 2.4532 3.8397 4.7841 2.9199S1-S3-S4-S5 GL1 8 1.4986 2.0563 1.4986 1.4986 1.4986 1.2256 2.6797 1.9872 0.7295
RN 8 3.0803 5.0057 4.1893 5.0057 5.0057 2.3307 5.0057 3.2001 0.9351S2-S4-S5-S7 GL1 8 0.9530 1.5921 2.4280 1.5921 1.5921 1.4865 1.5921 1.6225 0.7469
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Table 3.2: A summary of validation data in Table 3.1. This table compares mean and standard deviation for baseline
and our approach as a function of the number of targets used in fitting. Units are pixel per corner.

Method # Tag 2 4 6 8
Baseline-RN mean 10.3773 4.9645 4.3789 3.9940

GL1-PnP mean 3.8523 1.8939 1.6817 1.7547
GL1-IoU mean 4.9019 2.2442 1.7631 1.7837

Baseline-RN std 7.0887 1.9532 1.7771 2.0467
GL1-PnP std 2.4155 0.5609 0.5516 0.5419
GL1-IoU std 2.5060 0.7162 0.5070 0.4566

3.5.5 Computation Performance

The calibration is done offline. The round-robin cross-validation study given in Table 3.1 was
generated in MATLAB in less than an hour. Each dataset (including the baseline and the proposed
method) takes about 1.5 minutes in MATLAB.

3.5.6 Quantitative Results and Round-robin Analysis

In Table 3.1, we present the Root-Mean-Square (RMS) error of the LiDAR vertices projected
into the camera’s image plane for the baseline5, labeled RANSAC-normal (RN), and our method in
(3.3) and (3.4), labeled geometry-L1 (GL1). In the case of two targets, a full round-robin study is
performed: the rigid-body transformation from LiDAR to camera is “fit” to the combined set of
eight vertices from both targets and then “validated” on the eight vertices of each of the remaining
six scenes.

A complete round-robin study for four targets from two scenes would require 21 validations,
while for six and eight targets, 35 validations each would be required. For space reasons, we report
only a subset of these possibilities.

To be clear, we are reporting in units of pixel per corner

b
1

4n

∞
4n

i“1
k
L
Yi ´

C
Yik

2

2
, (3.13)

where 4n is the total number of target corners. In the case of two targets and one scene, n “ 2. In
the case of six targets from three scenes, n “ 6. Figure 3.7 illustrates several point clouds projected
to the corresponding camera images. Summary data is presented in Table 3.2.

5SVD to extract the normal and RANSAC for individual line fitting, with the vertices obtained as the intersections of
the lines.
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Figure 3.7: Visual depiction of the validation data in the last row of Table 3.1. For the method GL1, five sets of
estimated LiDAR vertices for each target have been projected into the image plane and marked in green, while the
target’s point cloud has been marked in red. Blowing up an image allows the numbers reported in the table to be
visualized. The vertices are key.

Figure 3.8: Qualitative validation results. Using the extrinsic transformation obtained by the method GL1 applied to S1,
the LiDAR point cloud has been projected into the image plane for the other data sets and marked in green. The red
circles highlight various poles, door edges, desk legs, monitors, and sidewalk curbs where the quality of the alignment
can be best judged. The reader may find other areas of interest. Enlarge in your browser for best viewing.

3.6 Qualitative Results and Discussion

In LiDAR to camera calibration, due to the lack of ground truth, it is common to show projections
of LiDAR point clouds onto camera images. Often it is unclear if one is viewing fitting data or
validation data. In Figure 3.8, we show a set of projections of LiDAR point clouds onto camera
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images for validation data. An additional set of images can be found in [62]. All of them show
that the key geometric features in the image and point cloud are well aligned. The quality of the
alignment has allowed our laboratory to build a high-quality (real-time) 3D semantic map with our
bipedal robot Cassie Blue [50]. The map fuses LiDAR, camera, and IMU data; with the addition of
a simple planner, it led to autonomous navigation [75].

Tables 3.1 and 3.2 show that GL1 outperforms the baseline: on average, there is more than a
50% reduction in projection error and a 70% reduction in its variance. As for the sources of this
improvement, we highlight the following points:

(a) Least-squares-based methods estimate a normal vector for the target’s point cloud. As shown
in Fig. 3.2(a) and Fig. 3.2(b), even though the target is flat and has a well-defined normal, the
returns in the LiDAR point cloud do not lie on a plane. Hence, a global normal vector does
not exist.

(b) Least-squares-based methods extract the target edge points from the point cloud for use in line
fitting. The line fitting must be done in the plane defined by the estimated normal because, in
3D, non-parallel lines do not necessarily intersect to define a vertex.

(c) GL1 explicitly uses the target geometry in formulating the cost function. By assigning zero
cost to interior points in the “ideal target volume” and non-zero otherwise, the optimization
problem is focused on orienting the boundary of the target volume within the 3D point cloud.
This perspective seems not to have been used before.

(d) Hence, our approach does not require the (tedious and error-prone) explicit extraction and
assignment of points to target edges. The determination of boundary points in 3D is implicitly
being done with the cost function.

At the present time, our extrinsic calibration method is not “automatic”. The one manual
intervention, namely clicking on the approximate target corners in the camera image, will be
automated soon.

We have not conducted a study on how to place the targets. This is an interesting piece of future
work because of the nonlinear operation required when projecting LiDAR points to the camera
plane; see (3.6) and (3.7).

3.7 Conclusions

We proposed a new method to determine the extrinsic calibration of a LiDAR camera pair. When
evaluated against a state-of-the-art baseline, it resulted in, on average, more than a 50% reduction
in LiDAR-to-camera projection error and a 70% reduction in its variance. These results were
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established through a round-robin validation study when two targets are used in fitting, and further
buttressed with results for fitting on four, six, and eight targets.

Two other benefits of our L1-based method are: (1) it does not require the estimation of a target
normal vector from an inherently noisy point cloud; and (2) it also obviates the identification of edge
points and their association with specific sides of a target. In combination with lower RMS error
and variance, we believe our results may provide an attractive alternative to current target-based
methods for extrinsic calibration.
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CHAPTER 4

Global Unifying Intrinsic Calibration on Lie Group
for Spinning LiDAR and Solid-state LiDAR

4.1 Introduction

Camera and LiDARsensors and supporting software are common system elements in current
robotic and autonomous systems. For real-world operation, such systems’ performance depends
on the quality of intrinsic and extrinsic calibration parameters. Intrinsic calibration of a sensor is
the process of ensuring that obtained measurements are meaningful and valid. Intrinsic calibration
of cameras is relatively mature [76–78] and many open-source packages are available [79–81].
Similarly, intrinsic calibration is also required for LiDARs; otherwise, the obtained point clouds are
potentially inaccurate. However, even though spinning LiDARs have been on the market for over ten
years, no publication supported by open-source calibration software is currently available, forcing
academic researchers to either spend time developing their own solutions or to ignore concerns
about the accuracy of their LiDAR point clouds.

Recently, another type of LiDAR, solid-state LiDAR, is being brought to the market. Industry
is turning to solid-state LiDARs because they are small, quiet and produce less vibration. Due to
their small size, they can be nicely integrated with headlights or carried by mobile robots such
as drones. Moreover, solid-state LiDARs are more reliable especially for automotive applications
due to the absence of the rotating mechanism. Because spinning LiDARs have a relatively simple
working mechanism, it has been possible to propose physics-based calibration models [22–29], see
Sec. 4.2.1. For solid-state LiDARs, however, multiple types and design options are being proposed
(see Sec. 4.2.2), and thus it is going to be difficult to hand-craft a calibration model for each design
of a solid-state LiDAR. We ask, is it necessary to do this? Are type-specific calibration models even
the right way to approach the problem?

In this work, we propose a unifying view of calibration for different types of LiDARs, as
shown in Fig. 4.1: we tie the calibration process to the data produced by the sensor, and not the
sensor itself, by applying shape-preserving transformations to a LiDAR’s point cloud. Additionally,
we prove mathematically that the proposed calibration model is well-constrained (i.e., a unique
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Figure 4.1: Is it possible to calibrate a LiDAR without modeling the physical mechanism itself? This chapter says YES
it is and it allows a unifying means to calibrate LiDARs of all types. Top left: shows a simple physics-based calibration
model for a spinning LiDAR. Top right: shows a similar model with more parameters, also for a spinning LiDAR. In
the literature, the number of parameters can vary from three to ten. Bottom left and bottom right show, respectively, an
optical phased array solid-state LiDAR and a Micro-Electro-Mechanical System (MEMS)-based solid-state LiDAR.
There are many design options and many manufacturing steps to fabricate these LiDARs. This chapter moves the
attention to the geometry of the LiDAR’s point cloud and proposes that calibration can be achieved via shape-preserving
transformations.

answer exists), whereas existing physics-based calibration models do not guarantee a unique set
of calibration parameters. The uniqueness proof for the proposed method provides a guideline for
target positioning. In addition, uniqueness of the parameters is necessary if one is to investigate a
globally convergent parameter solver.

4.1.1 Our Contributions

1. We propose a model for intrinsic LiDAR calibration that is independent of the underlying
technology. The new error model is based on shape-preserving transformations1, which is a
rigid body transformation plus a scale factor. Currently, intrinsic calibration models have been
published for spinning LiDARs, while for solid-state LiDARs, the calibration models used
by manufacturers have not found their way into the published literature. Current calibration
models are tied to postulated physical mechanisms for how a LiDAR functions, resulting
in anywhere from three to ten parameters to be estimated from data. Instead, we abstract

1Called similarity transformations in projective geometry.
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away from the physics of a LiDAR type (spinning head vs. solid-state, for example) and focus
on the spatial geometry of the point cloud generated by the sensor. This leads to a unifying
view of calibration and results in an error model that can be represented as the action of the
seven-dimensional matrix Lie group, Simp3q, on subsets of the measurements returned by the
LiDAR.

2. One may suspect that our proposed model is over parameterized. We, therefore, mathe-
matically prove that given four targets with appropriate orientations, the proposed model
is well-constrained (i.e., only one answer exists). The proof provides a guideline for target
placement, which is an oriented tetrahedron.

3. We give a globally convergent means to determine the calibration parameters. It utilizes
an alternating optimization technique to solve the calibration problem, where the scaling
parameter is determined by the bisection method, and the rest of the parameters (SEp3q) are
formulated as a Quadratically Constrained Quadratic Program (QCQP) where the Lagrangian
dual relaxation is used. The relaxed problem on SEp3q becomes a Semidefinite Programming
(SDP) and convex [1, 82–84]. Therefore, the calibration problem can be solved globally and
efficiently by off-the-shelf solvers [85].

4. We provide a MATLAB-based simulator for intrinsic LiDAR calibration and validation that
allows one to study the effects of target placement and the effectiveness of various calibration
methods.

5. In simulations, we validate that positioning the four targets as a tetrahedron can calibrate
equally well a spinning LiDAR and a solid-state LiDAR. In experiments on a spinning
LiDAR, we show that the proposed method works as well as two physics-based models
in terms of P2P distance, while it is more robust when we induce systematic errors to the
experimental measurements. We also show that the proposed methods is able to calibrate a
solid-state LiDAR and is robust to noise.

6. We open-source all of the related software for intrinsic calibration, including implementations
of the baseline methods, the simulator, the data sets and the solver; see [86–88].

4.2 Related Work

This section overviews related work on spinning and solid-state LiDARs.
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4.2.1 Spinning LiDAR

A spinning LiDAR as used in this chapter consists of K laser emitter-receiver pairs mounted
at various positions and elevation angles on a rotating head, as shown in Fig. 4.1. The lasers are
pulsed at a fixed frequency. Each revolution of the rotating head sweeps out a cone in space, called
a LiDAR scan, composed of discrete return points traced out by each pulsed emitter-receiver. The
points associated with a single laser beam are called a ring.

The measurements are typically viewed as being made in a spherical coordinate system. The
range measurement is made by estimating ToF through a clocking system on a circuit board, the
azimuth is estimated from the position of the rotating head, and the elevation angle of a beam is
determined by its mounting angle on the rotating head.

Existing error models for LiDARs are phenomenological in nature, that is, they are tied to
physical explanations of a sensor’s design and/or operation [22–29]. Broadly speaking, two
common sources of uncertainty considered in spinning LiDAR models are (1) errors in the clocking
systems, (one for ToF and one for pulsing the lasers) and (2) mechanical errors associated with
positioning of the beams on the spinning LiDAR. Less commonly considered are affects are due
to ambient temperature or target size. Some authors overlook that the measurements are actually
made in a local coordinate frame for each emitter-receiver pair, and are then transformed to a single
“global” frame for the LiDAR unit, resulting in models with three to six parameters [23, 24, 28],
while others take this into account and use as many as ten parameters [29]. Moreover, none of these
models provides a guideline for target placement so that the calibration model is well-constrained
(i.e., a unique solution exists), see Sec. 4.3.3.

4.2.2 Solid-State LiDAR

In comparison to spinning LiDARs, solid-state LiDARs are smaller, quieter, lower-cost, and
produce less vibration. Several types of solid-state LiDAR are coming to the market, including
those based on (1) Optical Phased Array (OPA) [89–91], and (2) MEMS mirrors2 [92–97].

OPA-based solid-state LiDARs function similarly to a phased array in antenna theory. A single
OPA contains a significant number of emitters patterned on a chip. By varying the phase shift (i.e.,
time delay) of each emitter, the direction of the resulting wave-front or the spread angle can be
adjusted. In particular, the sensor is able to zoom in or out of an object on command. On the other
hand, MEMS-based solid-state LiDARs use only one or a few emitters, with the beams guided by a
mirror system regulated by a sophisticated controller. The controller seeks to steer the beam (or
beams) in a scanning pattern, such as a zig-zag [92].

2Some authors argue MEMS-based solid-state LiDARs are not truly solid-state devices due to the movable mirrors;
the mirrors, however, are tiny compared to a spinning LiDAR.
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To perfectly align OPA emitters or MEMS mirrors is challenging. It is also hard to maintain
high accuracy under different temperatures and weather conditions. Thus, how to properly calibrate
a solid-state LiDAR is a critical problem.

The variety of solid-state LiDARs raises the question: is it necessary, or even possible, to
design/create parameterized models for every type of solid-state LiDAR? This chapter seeks to
present a unifying view of LiDAR calibration by abstracting away from the physics of a LiDAR type
(spinning vs solid state, for example), and focusing instead on the spatial geometry of the point
cloud generated by the sensor. This leads to a unifying view of calibration.

4.3 Proposed LiDAR Intrinsic Model and Analysis

The proposed calibration parameters are modeled as an element of the similarity Lie group
Simp3q, which can be applied to both spinning LiDARs and solid-state LiDARs. An element of the
group is an isometry composed with an additional isotropic scaling, i.e., a rigid-body transformation
with scaling. We note that this is the most general form of of a shape-preserving transformation
in 3D space (i.e. preserves ratios of lengths and angles). We also note that (4.8) and (4.9) are not
shape preserving. It will be important to see in real data if our assumption of shape preservation is
general enough to provide useful calibrations.

An element of the group is given by

H “

«
sR v
0 1

�
P Simp3q, (4.1)

where R P SOp3q is the 3D rotation matrix, v P R3 is the translation vector, and s P R` is the scale
parameter. In particular, an element has seven degrees of freedom and the action of Simp3q on R3 is
H ¨ x “ sRx ` v, where x P R3 and where H ¨ x uses homogeneous coordinates while sRx ` v
uses Cartesian coordinates. From hereon, wherever convenient, we abuse notation by passing from
regular coordinates to homogeneous coordinates without noting the distinction.

4.3.1 Point-to-Plane Distance

Let n
t

be a unit normal vector of a planar target and let p
0,t

be a fixed point on the target. Let
X “ tx

i
|i “ 1, . . . ,M and x

i
P R3

u denote a collection of LiDAR returns on the target, and M be
the number of points in the collection. Given the collection of LiDAR returns X , the cost of the
intrinsic calibration problem is commonly defined by the P2P distance:

Jt :“
Mÿ

i“1

Jipx
i
, n

t
, p

0,t
q :“

Mÿ

i“1

`
nT
t

`
x
i

´ p
0,t

˘˘2
, (4.2)

36



where nT
t

`
x
i

´ p
0,t

˘
is the orthogonal projection of the measurement onto the normal vector. Then

the calibration problem can be formulated as follows

Problem 1. For a given collection of points Xt “ tx
i
u
Mt
i“1

, possibly from multiple targets t P

t1, . . . , T u, we seek a similarity transformation H
‹ that solves

min
HPSimp3q

Tÿ

t“1

Mtÿ

i“1

`
n
T
t

`
H ¨ x

i
´ p

0,t

˘˘2
. (4.3)

Remark 4. The transformation H applies to the entire collection of points X . How to define the
collection is addressed in Sec. 4.3.4.

In practice, each target’s normal vector and a point on the target must be estimated from data.
For completeness, we briefly summarize how to do this; see [9, 40] for details. Given a collection of
LiDAR returns on a planer target and a template of the target with vertices located at the origin of
the LiDAR and aligned with the y-z plane, we seek a rigid-body transformation from the template
to the target, HT

L
P SEp3q, that “best fits” the template onto the LiDAR returns of the target. The

normal vector of the LiDAR returns can be computed from transformed vertices of the template.
Furthermore, in the raw data, the rings are mis-calibrated (by assumption). Because the target planes
are estimated using data corresponding to mis-calibrated rings, the estimated normal vectors are
inaccurate. We therefore propose a refinement of the normal vectors conditioned on the current
estimate of the similarity transformation Simp3q, that is, based on the current estimate of the
intrinsic parameters ps,R, vq. Once the normal vectors are updated, new estimates for ps,R, vq can
be obtained, resulting in an alternating two-step process.

4.3.2 Overfitting, Underfitting, and Model Mismatch

We first point out that the proposed calibration model can suffer from overfitting (i.e., a unique
H˚ does not exist) if less than four targets are used to calibrate a LiDAR. In particular, for a single
planar target, the rotation about the target normal n

t
, two components of the translation vector v

(translation in the plane of the target), and the scale s are unconstrained. For two planar targets,
translation along the line orthogonal to the targets’ normal vectors and scale are unconstrained.
Therefore, understanding how target positioning constrains the calibration model is essential. As
mentioned above, underfitting could occur if the data is parsed into rings, but say one of the rings
has distance errors that vary with rotation angle. In this case, splitting each ring into different arcs
will eliminate the underfitting.

Our calibration model is not a phenomenological model. The existing published models postulate
how a LiDAR works and hence are phenomenological models. These postulated models result in
different numbers of parameters, ranging from three to eight. Our “calibration model” abstracts
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Figure 4.2: Illustration of the basis’ of a ring plane, where L is the LiDAR origin, P is the ring plane, tViu4i“1 are four
targets, and pij :“ P X Vi X Vj are the unique points under Assumption N.

away from the physical device and focuses on transforming the point cloud so that the px, y, zq

values are well calibrated.

4.3.3 Target Placement Guideline

Theorem 1 given below provides practically realizable conditions under which a unique answer
exists to Problem 1. The proof is given in A.1. We further propose a method to globally compute
the unique solution, see Sec. 4.5.

For a subset S Ä R3, let rSs and rSs
K denote its span and its orthogonal complement, respec-

tively. Let te
1
, e

2
, e

3
u be the canonical basis for R3. We also denote P Ä R3 a set traced out by a

single ring (i.e., a ring plane) of a perfectly calibrated spinning LiDAR. Without loss of generality,
we assume P “ re

3
s

K.
Consider four targets with unit normal vectors n

i
and let p

0,i
be a point on the i-th target. For

1 § i § 4, the plane defined by the i-th target is

V
i
:“ p

0,i
` rn

i
s

K

:“ p
0,i

` tv P R3
| nJ

i
v “ 0u,

the plane formed by the set of vectors orthogonal to the normal vector n
i
, and subsequently translated

by p
0,i

.

Assumption N (Normal Vectors)
All sets of three distinct vectors from tn

1
, n

2
, n

3
, n

4
, e

3
u are linearly independent.

Under Assumption N, for each i ‰ j P t1, 2, 3, 4u, there exist unique points p
ij
:“ P X V

i
X V

j
.

All total, there are
`
4

2

˘
“ 6 such intersection points.
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Figure 4.3: An oriented tetrahedron (black) and a ring plane (blue) for target positioning that satisfies the conditions of
Theorem 1.

Assumption B (Basis Vectors)
Each of the following sets of vectors is a basis of the ring plane:

(a) tp
12
, p

13
u, tp

13
, p

14
u, tp

14
, p

12
u,

(b) tp
12
, p

23
u, tp

23
, p

24
u, tp

24
, p

12
u,

(c) tp
13
, p

23
u, tp

23
, p

34
u, tp

34
, p

13
u,

(d) tp
14
, p

24
u, tp

24
, p

34
u, tp

34
, p

14
u,

(e) tp
14
, p

23
u

We note that for a perfectly calibrated LiDAR, if H is the identity element of SEp3q, then for all
i ‰ j P t1, 2, 3, 4u, it must be true that H ¨ p

ij
P V

i
X V

j
. The following shows that the converse is

true when the targets are appropriately positioned and oriented.

Remark 5. In fact, there are
`
6

2

˘
“ 15 possible pairs of vectors, of which we use 13 in Assump-

tion B to establish uniqueness of the proposed calibration model. In Fig. 4.2, we illustrate (a)

in Assumption B, where L is the LiDAR origin, P is the ring plane, tV
i
u
4

i“1
are four targets, and

p
ij
:“ P X V

i
X V

j
are the unique points under Assumption N.

Theorem 1. Assume that Assumptions N and B hold and let H P Simp3q. If for each i ‰ j P

t1, 2, 3, 4u, H ¨ p
ij

P V
i

X V
j
, then

H “

«
I 0

0 1

�
. (4.4)
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Figure 4.4: Illustration of a degenerate case. The black squares are different planes with the normal vectors being
linearly independent. The dotted green lines indicate the intersection of two planes. The magenta circle shows the
LiDAR ring passing through q0 (red center bullet) in (4.5). The thick blue, cyan and black lines are the intersections
of the ring planes and the targets. The P2P cost of the intersections are therefore zero. The red lines show the results

of applying a transformation H “
„
sI p1 ´ sqq0

0 1

⇢
to the intersection lines. The cost remains zero because the

transformed lines stay on the targets.

Proof: See A.1.
An immediate Corollary of Theorem 1 is the uniqueness of the transformation, as stated below.
Corollary. Let rH P Simp3q and define rp

ij
:“ rHpp

ij
q. Then under Assumptions N and B, the only

element G P Simp3q satisfying Gprp
ij

q P V
ij

all i ‰ j is G “ rH´1.

Assumption N assumes linear independence (
`
5

3

˘
“ 10) for any three of the target normal

vectors, but does not directly address their “degree of independence,” that is, their condition number.
Similarly, Assumption B only involves linear independence. In practice, one wonders if it is
important to position the targets so that the two sets of vectors are well conditioned? We will later
show that the normal vectors are most important. In Fig. 4.3, we show an oriented tetrahedron3

where the normal vector of each face4 satisfies Assumption N and the orientation of the tetrahedron
intersecting with the ring plane fulfills Assumption B.

3Each of the four planar targets defines an infinite plane. The infinite planes create a tetrahedron.
4Faces of the tetrahedron are extended planes of the targets. Therefore, normal vectors of faces are normal vectors

of targets.
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Remark 6. The plane defined by the i-th target is Vi :“ p
0,i

` n
K
i

. If we were to only use three
targets, there would exist a unique point q

0
P R3 defined by

q
0
:“

3£

i“1

Vi. (4.5)

When (4.5) holds, the scale factor, s, is not unique; see Fig. 4.4. In other words, a ring plane passing
through the point q

0
leads to the scale factor s being unconstrained and therefore a unique answer

does not exist. Therefore, it was critical to analyze target placement for the proposed method. A
similar analysis seems to be missing for the baseline methods.

4.3.4 Parsing Points on a Target to Collections of Points

Each cluster of points is assigned its own calibration parameters. To ensure uniqueness of the
calibration parameters, a cluster must contain returns from multiple target planes that are oriented
so as to meet an “independence” condition. We establish conditions on the relative geometry of
the target planes to achieve uniqueness of the calibration parameters. This geometry can even be
achieved by rotating a LiDAR with respect to a single fixed target as it is the relative geometry that
matters.

The specific method for parsing a target’s point cloud and the number of calibration transfor-
mations depends on the nature of the sensor. For a spinning LiDAR, the points PC on a target
are typically separated by beam number so each beam has its own optimization problem (4.3).
For example, for a K-beam spinning LiDAR (shown in Fig. 4.5), a natural choice for the set of
calibration parameters is tH

k
|k “ 1, . . . , K and H

k
P Simp3qu, where Hk is the similarity transform

for the k-th ring. Similarly, one could also split each ring into quarter circles (90˝ arcs), which
would lead to 4K calibration parameters. On the one hand, for an OPA-based solid-state LiDAR,
we propose to form an m ˆ n grid over the planar target and then parse the point cloud based on
each point’s projection onto the target along the normal of each grid. This way, the set of calibration
parameters becomes tH

k
|k “ 1, . . . ,m ˆ n and H

k
P Simp3qu. On the other hand, one may wish

to stick with parsing via “rows or columns”. In the end, it’s a choice that has to be made by the
calibrator.
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Figure 4.5: Illustration of collections of LiDAR returns of the target from a spinning LiDAR. Different colors stand for
different collections.

4.4 Baseline Intrinsic Calibration Methods

There are two standard calibration models for spinning LiDARs. They are based on spherical
coordinates p⇢, ✓,�q, referred to as range, elevation and azimuth,

»

—–
x

y

z

fi

�fl “ fp⇢, ✓,�q “

»

—–
⇢ cos ✓ sin�

⇢ cos ✓ cos�

⇢ sin ✓

fi

�fl , (4.6)

and the inverse function,

»

—–
⇢

✓

�

fi

�fl “ f´1
px, y, zq “

»

——–

a
x2 ` y2 ` z2

sin
´1

p
z?

x2`y2`z2
q

atan2px, yq

fi

��fl . (4.7)

4.4.1 3-Parameter Model

The most basic model [23] assumes the LiDAR measurements are made in spherical coordinates,
p⇢, ✓,�q. Corrections to a measurement are given by a collection of offsets ↵ :“ p�⇢, �✓, ��q.
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Expressing the calibrated measurement in Cartesian coordinates gives

�↵p⇢, ✓,�q :“

»

—–
p⇢ ` �⇢q cosp�✓q sinp� ´ ��q

p⇢ ` �⇢q cosp�✓q cosp� ´ ��q

p⇢ ` �⇢q sinp�✓q

fi

�fl (4.8)

Remark 7. (a) The nominal elevation for each ring is taken as zero;, i.e., ✓ “ 0. (b) While it is
not necessarily a drawback, most LiDAR interfaces only return a Cartesian representation of a
measured point. For example, the ROS driver from Velodyne only provides the Cartesian coordinate
and the intensity of a point. Hence, the user must assure the transformation to spherical coordinates,
make the measurement correction coming from the calibration, and then transform back to Cartesian
coordinates.

4.4.2 6-Parameter Model

This model [24, 25] also works in spherical coordinates. In addition to the three offsets above,
it includes s, a scale factor of ⇢, h, a horizontal offset of the origin, and v, a vertical offset for the
origin. The correction model becomes

�̄↵ :“

»

—–
ps⇢ ` �⇢q cos �✓ sinp� ´ ��q ´ h cosp� ´ ��q

ps⇢ ` �⇢q cos �✓ cosp� ´ ��q ` h sinp� ´ ��q

ps⇢ ` �⇢q sin �✓ ` v

fi

�fl , (4.9)

and therefore ↵ :“ p�⇢, �✓, ��, s, h, vq.

4.4.3 Can the models be expressed by elements of Simp3q?

The short answer is no. When viewed in Cartesian coordinates, the calibration model (4.9) is
fundamentally nonlinear and can be expressed as R

1
pR

2
t
1

` t
2
q, where R

1
,R

2
, t

1
and t

2
depend on

the measured point,
xT

“ rx, y, zs
f

´1

››Ñ p⇢, ✓,�q,

R
1

“

»

—–
sinp� ´ ��q ´ cosp� ´ ��q 0

cosp� ´ ��q sinp� ´ ��q 0

0 0 1

fi

�fl , (4.10)

R
2
t
1

` t
2

“

»

—–
cosp�✓q 0 ´ sinp�✓q

0 1 0

sinp�✓q 0 cosp�✓q

fi

�fl

»

—–
s⇢ ` �⇢

0

0

fi

�fl `

»

—–
0

h

v

fi

�fl .
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The calibration first applies a corrected elevation angle to a range value that has been offset and
scaled. Next, the py, zq position of the origin is offset, and lastly, a corrected rotation about the
z-axis is applied.

4.4.4 Cost function for baseline models

For a given collection of points PC, possibly from multiple targets t P t1, . . . , T u, we seek
calibration parameters that solve

min
↵

Tÿ

t“1

Mtÿ

i“1

|nT
t

`
F px

i
,↵q ´ p

0,t

˘
|, (4.11)

where

1. for baseline model BL1 [23] in (4.8), ↵ “ p�⇢, �✓, ��q and

F px,↵q :“ �↵ ˝ f´1
pxq;

2. for baseline model BL2 [24, 25] in (4.9), ↵ “ p�⇢, �✓, ��, s, h, vq and

F px,↵q :“ �̄↵ ˝ f´1
pxq.

Remark 8. For the 3-parameter model BL1, a single planar target is sufficient to uniquely determine
a calibration. For the 6-parameter model BL2, non-uniqueness can occur as outlined in Theorem 1
and Fig. 4.4.

4.5 Global Optimization: from Min to Min-Min

Theorem 1 states that a unique answer exists. In this section, we propose a method to find it. In
particular, we show a globally convergent algorithm to determine the element of the Lie Group that
globally minimizes the cost function (4.2). This is done by converting the minimization problem
in (4.3) to a Min-Min problem. The inner minimization problem has an efficient global solution by
results in [1, 84]. The outer minimization is scalar, and it is easy to limit the range of interest to a
compact set.
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Algorithm 1: Proposed Global Optimizer for Simp3q

Input: Collections of points (Xt) and corresponding targets (n
t
, p

0,t
)

Output: Global optimum H˚
P Simp3q

Initialization: Arbitrary initialization is allowable. We use R “ I, v “ 0, and s P r0.8, 1.2s

1 while k † MAX_ITER do
// Scale the collections of points

2 U

k
X

s

t
–

U

k
s ¨ Xt, L

k
X

s

t
–

L

k
s ¨ Xt

// Compute the optimum R,v given the scaled points

3 L

k
R –

L

k
X

s

t
and (42) in [21], L

k
v –

L

k
R and (36) in [21]

4 U

k
R –

U

k
X

s

t
and (42) in [21], U

k
v –

U

k
R and (36) in [21]

// Compute the P2P by current R,v
5 L

k
J – (13) in [21], U

k
J – (13) in [21]

// Update U
k`1s and L

k`1

6 L

k`1
s – (21) in [21], U

k`1
s – (21) in [21]

7 return s˚,R˚, v˚

4.5.1 Problem Statement and Compact Sets

The intrinsic calibration problem is defined in (4.3):

min
s,R,v

Jps,R, v;Xt, n
t
, p

0,t
q, (4.12)

where the cost is defined as

Jps,R, vq :“

Tÿ

t“1

Mtÿ

i“1

|nT
t

`
sR ¨ x

i
` v ´ p

0,t

˘
|
2. (4.13)

It is straightforward to show that J is a continuous function on Simp3q. As a set, we write
Simp3q “ R`

ˆ SOp3q ˆ R3, where R`
:“ R ° 0. Note that SOp3q is compact. To guarantee that a

minimum exists, we consider compact subsets of s P R` and v P R3 and define (4.12):

J˚
:“ min

s,R,v
Jps,R, vq

s˚,R˚, v˚
:“ argmin

s,R,v
Jps,R, vq.

(4.14)

4.5.2 From Min to Min-Min

We use again the fact that Simp3q “ R`
ˆ SOp3q ˆ R3 to redefine (4.12) as a Min-Min problem.
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Proposition 1.
min
s,R,v

Jps,R, vq “ min
s

min
R,v

Jps,R, vq, (4.15)

where the minimums are taken over the same compact sets used in (4.14).

Proof: From (4.14), we have that

J˚
“ Jps˚,R˚, v˚

q. (4.16)

We further introduce
hpsq :“ min

R,v
Jps,R, vq

h˚
:“ min

s

hpsq

(4.17)

and note that by definition, we have
J˚

§ h˚. (4.18)

To show h˚
§ J˚, we use that minimizing values of J exist and hence

h˚
§ hps˚

q :“ min
R,v

Jps˚,R, vq § Jps˚,R˚, v˚
q “ J˚. (4.19)

Equations (4.18) and (4.19) conclude the equivalency of (4.15).
⌅

From Proposition 1, we can define the intrinsic calibration problem as

fpsq :“ min
R,v

Jps,R, v;Xt, n
t
, p

0,t
q (4.20)

J˚
“ min

s

fpsq. (4.21)

4.5.3 Determining the Calibration Parameters

Because we can bound the scaling s to a compact set, a minimizing value can be found by dense
search. In the A.3, we discuss a heuristic to speed up the algorithm if one feels the need.

At the pk ` 1q-th iteration, the scaling parameter is determined and the remaining parameters
correspond to SEp3q. To solve for them, we adopt techniques that were used to solve 3D registration
or 3D SLAM [1, 82–84] where the problem is formulated as a QCQP, and the Lagrangian dual
relaxation is used. The relaxed problem becomes a SDP and convex. The problem can thus be
solved globally and efficiently by off-the-shelf specialized solvers [85]. This process is summarized
in A.2. As shown in [84], the dual relaxation is empirically always tight (the duality gap is zero).
We also use the same simulation and experimental data set in [1, 84] to verify that the proposed
algorithm is able to converge globally, see A.3 for more visual results.
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Figure 4.6: P2P cost improvement is insensitive to condition number of the basis. A condition number is always greater
or equal to 1. Its reciprocal is a numerical measure of independence. The smaller the condition number, the better
(greater) the independence of the target planes. The figure illustrates validation results for ten thousand orientations of
four targets arranged as a tetrahedron. Each orientation is a calibration scene from which a set of calibration parameters
is obtained. The calibration parameters are then applied to another complex scene for validation. This figure shows that
regardless of the orientation of the tetrahedron, we are able to reduce the P2P cost by 44.7% on average.

Remark 9. One may argue that the above is a standard optimization problem in that other solvers,
such as Google ceres or g2o, can easily solve it. However, they are local solvers and will suffer if a
good initial guess is not provided.

4.6 Simulation and Experimental Results

This section first presents a simulation study of the intrinsic calibration problem that will show
the importance of Theorem 1 for eliminating over parameterization of the proposed model. Results
here will then be used to inform the experimental work. All experiments are conducted with a
32-Beam Velodyne ULTRA Puck LiDAR, mounted on an in-house designed torso for a Cassie-series
bipedal robot [46]. All the optimizations related to the proposed methods are solved via the proposed
algorithm (see Algorithm 1). As for the two baselines, we implemented them and solved via the
fmincon function in MATLAB. All the methods, simulator, solver, and datasets are open-sourced.
All the methods, simulator, solver, and datasets are open-sourced: [86–88].

4.6.1 Simulated LiDAR Environment

Due to lack of ground truth, we built a LiDAR simulator to compare our calibration method
against the two baselines and to illustrate the role of target positioning. Our simulator can model
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Figure 4.7: Four targets are placed to form a tetrahedron. The left shows the top-down view (X-Y plane) of a single
scan of the point cloud from the calibration scene and the right shows the side view (X-Z plane) of the scene. Different
colors stand for different targets.

LiDAR sensors of different working principles (spinning vs solid-state). With our simulator, it is easy
to control sources of uncertainty, including both mechanical model uncertainty and measurement
noise. Targets are assumed to be planar and polygonal.

To simulate 3D points on a planar target, we generate rays from the LiDAR sensor, and define
a “target” point as the point at which the ray intersects the target. The simulator has an option to
account for shadowing or not. After locating the exact LiDAR returns on the target, based on the
LiDAR type, we then add two types of uncertainty to the returns and report them as measured data.

Remark 10. The simulator first finds all intersection points with the (infinite) plane defined by
the target. To determine if a point on the plane is within the boundary of the target polygon is a
well-known problem in computer graphics, called the Point-In-Polygon (PIP) problem [98,99]. The
Winding Number algorithm [100] is implemented in this simulator. If the winding number of a point
is not zero, the point lies inside the boundary; otherwise it is outside.

48



Figure 4.8: On the left shows a factory-calibrated 32-Beam Velodyne ULTRA Puck LiDAR measuring on a planar target
placed at 0.7 meter. The measurements are not consistent and lead to a thickness of 6.2 cm point cloud with 1.4 cm P2P
distance. On the right shows the calibration results of the calibration parameters globally optimized over the tetrahedron
calibration scene in Fig. 4.7 and then the parameters of each ring are applied to this dataset as validation. The thickness
and P2P distance after calibration are 4.4 cm and 0.47 cm.

4.6.2 Intrinsic Calibration of Spinning LiDARs

4.6.2.1 Illustration of Theorem 1 in simulation

We randomly create 32 deterministic noise sequences (of length appropriate for each ring) and
apply them to the ideal measurements of each ring in the LiDAR simulator. As a calibration scene,
we arrange four targets around the LiDAR in the shape of a regular tetrahedron and then minimize
the cost function in (4.3). For validation, we collect simulated data from a complex scene with 24
targets at various orientations and distances, using the same uncalibrated LiDAR corrupted by the
same deterministic noise. We then applied the calibration parameters to the perturbed uncalibrated
LiDAR measurements and reduced the P2P distance of the validation scene by 45.43% compared to
the uncalibrated P2P distance. Additionally, to study the influence of different condition numbers in
Assumption B on the calibration results, we rotate the tetrahedron with various orientations (ten
thousand different orientations in total, yielding ten thousand different bases). We observe that the
P2P cost improvement is insensitive to the condition number of the basis. In Fig. 4.6, the simulation
results show that by using the tetrahedron (regardless of the orientation) to calibrate the LiDAR, the
P2P distance was reduced by 44.7% on average.
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Figure 4.9: A solid-state LiDAR is (hypothetically) built on a warped wafer and measures a planar target (black). The
un-calibrated measurements and calibrated measurements are marked in red and blue, respectively. The left image
shows a top-down view and the right image shows a side view of a target. The proposed method reduces the P2P
distance by 48.7%.

4.6.2.2 Illustration of Theorem 1 in experiments

Informed by the simulation study, two scenes (calibration and validation) of data from a 32-
Beam Velodyne ULTRA Puck LiDAR were collected using the LiDARTag package [39, 40, 101]. In
Fig. 4.7, the calibration scene contains four targets5 arranged as an oriented tetrahedron as stated in
Theorem 1. The targets’ normal vectors are estimated using the L1-inspired method in [9].

Figure 4.8 shows the experimental result of applying the calibration parameters to another set of
targets (validation scene) placed at 0.7 meter. The proposed alternating method reduces the P2P
distance by 68.6% with respect to the factory-calibrated LiDAR. Additionally, we induce varying
levels of systematic errors (from 1 cm to 7 cm, corresponding to level 1 to level 7) to the experiment
data to ensure the robustness of the proposed method, as shown in Table 4.1. We observe that our
proposed method is insensitive to systematic error. In addition, Table 4.2 shows the consistency
of the proposed method as we accumulate different numbers of scans with different noise levels.
It is seen that with higher levels of induced deterministic noise, the performance of the proposed
method is invariant to the number of accumulated scans, while with lower levels of deterministic
noise, the more scans included, the better is the performance. Both of these properties are desirable.
The number of collections K is an important hyperparameter, mentioned in Sec. 4.3.4. We group
consecutive n rings into a clutter, where n “ t1, 2, 4, 8u and the results are shown in Table 4.3.

Remark 11. There are two ways to orient the targets to form a tetrahedron: 1) put the targets
5The targets were placed a distance of 0.7 meter so that most of the rings would lie on the targets.
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Table 4.1: Validation data for various calibration methods on a 32-Beam Velodyne ULTRA Puck LiDAR. The numbers
are the average P2P distance in meters. For each column, the LiDAR’s calibration parameters are optimized on a
common set of four targets arranged as a tetrahedron and validated on a common set of three targets arranged in
different orientations and at different distances. What varies in each column is the level of systematic noise added to the
raw data, as reflected in the P2P error reported in the row for Factory Calibration. Noise 0 is the raw signal from the
factory-calibrated LiDAR, while Noise 1 to Noise 7 have increasing levels of systematic error. Our proposed method is
insensitive to systematic error.

Methods Noise 0 Noise 1 Noise 2 Noise 3 Noise 4 Noise 5 Noise 6 Noise 7

P2P

Factory Calibration 0.0140 0.0196 0.0309 0.0408 0.0486 0.0581 0.0669 0.0772
Baseline1 (3 parameters) 0.0052 0.0054 0.0064 0.0085 0.0111 0.0135 0.0154 0.0164
Baseline2 (6 parameters) 0.0042 0.0059 0.0070 0.0100 0.0121 0.0148 0.0165 0.0181

Our Method 0.0047 0.0042 0.0040 0.0041 0.0043 0.0041 0.0039 0.0040

Point Clouds
Thickness

Factory Calibration 0.0626 0.0777 0.1182 0.1579 0.1981 0.2379 0.2788 0.3211
Baseline1 (3 parameters) 0.0439 0.0463 0.0634 0.0817 0.0998 0.1177 0.1347 0.1501
Baseline2 (6 parameters) 0.0457 0.0535 0.0719 0.1005 0.1110 0.1308 0.1440 0.1694

Our Method 0.0476 0.0475 0.0476 0.0582 0.0531 0.0464 0.0449 0.0450

around the LiDAR and keep the LiDAR pose fixed; 2) keep the target poses fixed and rotate the
LiDAR. The latter method will allow the targets to form a tetrahedron even if the LiDAR does not
have a 360

˝ field of view.

Remark 12. To decide if the P2P distance of a ring to a target is random noise or systematic errors,
we first compute the standard deviation of the LiDAR returns on the target and consider a P2P
distance greater than 3� as systematic error.

Remark 13. The induced mechanical error is translational so that each of the calibration models
is able to correct the error, specifically, ⇢ in the 3-parameter model, s, ⇢, h, v in the 6-parameter
model, and s, v in the proposed method. Translational errors can appear in practice if the clocking
system on a LiDAR (both spinning and solid-state types) is not accurate.

4.6.3 Intrinsic Calibration of Solid-State LiDARs

Experiments: One set each of calibration and validation of data were collected from an Intel
RealSense L515. The calibration scene consists of four targets arranged as an oriented tetrahedron.
The scan resolution of the Intel L515 point cloud is fixed (480 ˆ 640), similar to an image. We
treat each row of points as a “ring” to be calibrated. Therefore, we have 480 sets of calibration
parameters. The calibration parameters are solved by the proposed alternating method. Similar to
the experimental results for a spinning LiDAR, we also induce from 2 cm to 7 cm of systematic
translational error in the experiment data to assess the robustness of the proposed calibration method,
as shown in Table 4.4. As indicated in Remark 13, the induced translational error can appear in
practice if the clocking system on the LiDAR is not accurate. The proposed unifying model slightly
improves the original P2P distance and is robust to large noise.
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Table 4.2: Consistency of the proposed methods. The numbers are the average P2P distance in meters and improvement
of average P2P distance in percentage. The columns show the numbers of accumulated scans. It is seen that with higher
levels of induced deterministic noise, the performance of the proposed method is invariant to the number of accumulated
scans, while with lower levels of deterministic noise, the more scans included, the better is the performance. Both of
these properties are desirable.

Noise Level 1 scan 2 scans 4 scans 6 scans 8 scans 10 scans 12 scans
Original P2P

0
0.013998 0.013998 0.014616 0.014593 0.0144 0.01439 0.01439

Calibrated P2P 0.0047046 0.0047046 0.0040949 0.0040496 0.0040546 0.0040675 0.0040675
Improvement [%] 0.6639 0.6639 0.71983 0.7225 0.71844 0.71735 0.71735

Original P2P
2

0.030888 0.030861 0.029893 0.02983 0.029812 0.031767 0.031783
Calibrated P2P 0.0040332 0.0040739 0.0040189 0.0039899 0.0039737 0.0040665 0.0040417

Improvement [%] 0.86942 0.86799 0.86556 0.86625 0.86671 0.87199 0.87284
Original P2P

4
0.048608 0.047194 0.048691 0.050308 0.050269 0.050251 0.050254

Calibrated P2P 0.004301 0.0044295 0.004129 0.0040814 0.0040991 0.0040807 0.004067
Improvement [%] 0.91152 0.90614 0.9152 0.91887 0.91846 0.91879 0.91907

Original P2P
6

0.066834 0.066892 0.066869 0.06685 0.066823 0.066818 0.066838
Calibrated P2P 0.0043101 0.0044868 0.0044289 0.0044279 0.0044585 0.0044699 0.0044777

Improvement [%] 0.93551 0.93293 0.93377 0.93376 0.93328 0.9331 0.93301

Table 4.3: The number of cluster K is an important hyperparameter, mentioned in Sec. 4.3.4. We analyze the effect of
K of the spinning LiDAR.

Number of clusters Noise 0 Noise 1 Noise 2 Noise 3 Noise 4 Noise 5 Noise 6 Noise 7

P2P

Factory Calibration 0.0140 0.0196 0.0309 0.0408 0.0486 0.0581 0.0669 0.0772
Our Method (K = 1) 0.0047 0.0042 0.0040 0.0041 0.0043 0.0041 0.0039 0.0040
Our Method (K = 2) 0.0061 0.0055 0.0058 0.0057 0.0056 0.0057 0.0061 0.0067
Our Method (K = 4) 0.0068 0.0066 0.0073 0.0073 0.0183 0.0157 0.0182 0.0177
Our Method (K = 8) 0.0071 0.0076 0.0099 0.0126 0.0163 0.0176 0.0185 0.0202

Simulation of a Warped Wafer: OPA solid-state LiDARs are fabricated on a planar wafer with
a large number of emitters; see Sec. 4.1. For such a LiDAR, we induce geometric uncertainty into a
simulation of the system by assuming the plane of the wafer is slightly warped. In the simulator, the
OPA solid-state LiDAR has 20 ˆ 20 emitters with 160

˝
ˆ 40

˝ (horizontal, vertical) field of view.
We place four targets of the same size in the simulator.

Theorem 1 requires a ring plane, as mentioned in Sec. 4.3.3. We therefore parse the LiDAR re-
turns into 20 ˆ 4 uniform grids over the planar targets, with each grid containing five points. Each
grid plays the role of a ring plane in Theorem 1, resulting in a total of 80 calibration models. We use
Weighted Least Squares to estimate the plane of the target. The calibrated sensor is then validated
on four other scenes that have different angles and distances. The mean P2P cost of (4.3) improves
by 48.7%; the result is visualized in Fig. 4.9.

Remark 14. The solid-state LiDAR is used to measure the same target four times with different
orientations. The four target planes form a tetrahedron. Therefore, the same five points can scan
the four planes and result in a ring plane. Instead of five points, we can group a row/column of
points, as mentioned in Sec. 4.3.4.
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Table 4.4: Experimental results of a solid-state LiDAR. Noise 0 is the raw signal from the calibrated LiDAR, while
Noise 1 to Noise 3 have increasing levels of systematic translational error.

Noise 0 Noise 1 Noise 2 Noise 3

P2P
Original 0.00094934 0.024259 0.048401 0.07235

Calibrated 0.00093824 0.00099253 0.00088164 0.00092039
Improvement [%] 1.1693 95.909 98.178 98.728

Point Cloud
Thickness

Original 0.007217 0.05306 0.10642 0.16318
Calibrated 0.0066223 0.006313 0.0063051 0.0063316

Improvement [%] 8.2401 88.102 94.075 96.12

4.7 Conclusions

We proposed a universal method for LiDAR intrinsic calibration that abstracts away the physics
of a LiDAR type (spinning head vs. solid-state, for example) and focuses instead on the spatial
geometry of the point cloud generated by the sensor. The calibration parameter becomes an element
of Simp3q, a matrix Lie group. We mathematically prove that given four targets with appropriate
orientations, the proposed model is well-constrained (i.e., a unique answer exists). Because Simp3q

is closely related to SEp3q, we showed how to profitably apply efficient, globally convergent
algorithms for SEp3q to determine a solution to our problem in Simp3q. The resulting algorithm
was evaluated in simulation for a solid-state LiDAR and simulation and experiment for a spinning
LiDAR. The P2P distance of the validation scene for the spinning LiDAR was reduced 44.7% and
68.6% in simulation and experiment, respectively. The point cloud thickness of the validation scene
for the solid-state LiDAR was reduced 8.2% in experiment. The P2P distance of the validation
scene for a warped wafer was reduced by 48.7% in simulation. Both simulation and experiments
showed that the proposed method can serve as a generic model for intrinsic calibration of both
spinning and solid-state LiDARs, and also is robust to different levels of systematic bias.
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CHAPTER 5

Automatic Calibration Pipeline

5.1 Automatic Calibration System

Target-based LiDAR-camera extrinsic calibration methods or sensor intrinsic calibration often
suffer from manual target extraction and feature association. The only manual process in our
previous software release [9], determining the image corners, has now been made automatic.
Because experimentally comparing and validating the intrinsic calibration methods of Sec. 4.3 and
Sec. 4.4 would require significant data collection, we decided to create a fully automatic pipeline
for both intrinsic and extrinsic calibration, as shown in Fig 5.1.

Figure 5.1: A system diagram for automatic intrinsic and extrinsic calibration. The top shows the front-end of
the pipeline. Its input is raw camera and LiDAR data, which are subsequently synchronized. The AprilTag and
LiDARTag packages are used to extract the target information, which is then examined to remove outliers and ensure
that targets are still properly synchronized. Each run of the front-end saves all related information into a Robot Operating
System (ROS) bagfile, which can then be sent to the back-end for further processing. The back-end takes in (possibly
many) ROS bagfiles and does the following: (i) refines the image corners; and (ii) extracts vertices of the LiDAR targets.
The correspondences are established between corners and vertices and an extrinsic transformation is determined PnP as
in [60]. For intrinsic calibration, the resulting vertices of the LiDAR targets are used to extract normal vectors and a
point on the plane. The calibration parameters are determined to minimize the P2P distance from the plane to the target
points provided by the LiDARTag package.
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5.1.1 Front-End

Fiducial markers are widely used in camera-based perception tasks because they can be easily
identified and automatically extracted from the background. We introduce a similar concept for
LiDAR point clouds, called a LiDARTag (See Chapter 6), consisting of a payload and a pattern that
makes each marker uniquely distinguishable and identifiable in real-time by both a LiDAR and a
camera [39]. An open-source package for processing LiDARTags is available [101], while AprilTag3
is available as a ROS package [102].

As LiDAR and camera data streams arrive, they are synchronized, examined for fiducial markers,
and checked for false positives. For LiDAR-camera extrinsic calibration, we use target vertices and
image corners as features. The relevant data (images, AprilTag corners, points on LiDARTags) are
saved as ROS bagfiles for processing in MATLAB. Technical details and software are available
at [103].

5.1.2 Back-End

The back-end begins by estimating the LiDARTag vertices, which are not directly observable
due to the sparsity of the LiDAR point cloud. We use the method developed in Sec. 3.2 to determine
the vertices of a diamond-shaped target. A rigid-body transformation is determined that “best fits”
the target’s LiDAR points to the target’s known geometry. Best fit is defined in an L1 sense.

From the vertices, the target normal n
t

and point on the target, p
0,t

, can easily be determined for
evaluating the P2P cost function (4.3) for intrinsic calibration, while the vertices in combination
with the camera corners are used to determine the extrinsic calibration via a PnP problem.

The corners obtained from the AprilTag package are automatically refined using a process
detailed in Sec. 3.3. Given the camera corners, denoted (tYiu

4

i“1
), and LiDAR vertices, denoted

tXiu
4

i“1
, we use the vertical and horizontal positions in their own coordinates to sort them and

establish the correspondences.

5.1.3 Extrinsic and Intrinsic Calibration

For extrinsic calibration, the rigid body transformation between LiDAR to camera is found by
solving a PnP problem as in [60], namely

pRC˚
L
, tC˚

L
q “ argmin

pR,tq
distpP pRXi ` tq, Yiq, (5.1)

where Xi are coordinates of the LiDAR vertices, Yi are the coordinates of the camera corners, and
P is the standard 3DÑ2D camera “projection map”, based on its intrinsic parameters. Furthermore,
RC

L
, tC

L
is the LiDAR-frame to camera-frame rigid body transformation, and dist is a distance or
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error measure (typically L2). For example results, see Sec. 3.5.
With the method in Sec. 3.2, the target vertices are automatically co-planar and hence uniquely

define a unit normal vector and a point on the target. The P2P distance is minimized for each of
the three calibration models as mentioned in Sec. 4.4, BL1, BL2, and Simp3q, for a collection of
targets, yielding ↵˚ (for BL1 and BL2) and H˚ for Simp3q.
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Part II

Perception for Pose Estimation with Global Solution

CHAPTER 6

LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

6.1 Introduction

Artificial landmark systems, referred to as fiducial markers, have been designed for automatic
detection via specific type of sensors such as cameras [30–35]. The marker usually consists of a
payload, that is, a pattern that makes individual markers uniquely distinguishable, and a boundary
surrounding the payload that is designed to assist with isolating the payload from its background.
Their supporting algorithms typically consist of modules to detect the marker, decode its payload,
and estimate the pose. Such artificial landmarks have been successfully used in computer vision,
Augmented Reality (AR) [32] and SLAM [104].

Images are sensitive to lighting variations, and therefore, visual fiducial markers rely heavily on
the assumption of illumination consistency. As such, when lighting changes rapidly throughout a
scene, the detection of visual markers can fail. Alternatively, LiDARs are robust to illumination
changes due to the active nature of the sensor. In particular, rapid changes in the ambient lighting
do not affect the detection of features in point clouds returned by a LiDAR. Unfortunately, however
LiDARs cannot detect the fiducial markers designed for cameras. Hence, to utilize the advantages
of both sensor modalities, a new type of fiducial marker that can be perceived by both LiDARs and
cameras is required. Such a new marker can enable applications such as multi-sensor fusion
and calibration tasks involving visual and LiDAR data [9]. Designing such fiducial markers is
challenging due to inherent LiDAR properties such as sparsity, lack of structure and the varying
number of points in a scan. In particular, the fact that an individual LiDAR return has no fixed
spatial relation to neighboring returns makes it difficult to isolate a fiducial marker within a point
cloud.
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Figure 6.1: LiDAR-based markers can be used in tandem with camera-based markers to address the issue of images
being sensitive to ambient lighting. This figure shows a visualization of LiDARTags of two different sizes in a full point
cloud scan.

In this chapter, we propose a novel and flexible design of a fiducial tag system, called LiDARTag,
as shown in Figure 6.1. A system is further developed to detect LiDARTags with various sizes
and to estimate their poses. Point clouds are represented as functions in an RKHS [105] to decode
their IDs. The whole system can run in real-time (over 100 Hz), which is even faster than currently
available data rates of LiDAR sensors. The proposed LiDARTag can be perceived by both RGB-
cameras and point clouds. In [9, 62], the authors used LiDARTags in a LiDAR-camera calibration
pipeline as a means to extract the LiDAR returns on the tag. The LiDARTag system was not used
to decode a payload nor to estimate pose. LiDARTags have been successfully used for LiDAR-
camera calibration [9, 62]. It can be further applied to SLAM systems for robot state estimation and
loop closures. Additionally, it can help improve human-robot interaction, allowing humans to give
commands to a robot by showing an appropriate LiDARTag. However, the proposed system utilizes
the intensity measurement of a LiDARTag to decode its ID. Therefore, LiDARs with stable (good)
intensity readings are required. In particular, the present work has the following contributions:

1. We propose a novel and flexible fiducial marker for point clouds, LiDARTag, that is compatible
with existing image-based fiducial marker systems, such as AprilTag.

2. We develop a robust real-time method to estimate the pose of a LiDARTag. The optimal
pose estimate minimizes an L1-inspired fitting error between the point cloud and the marker’s
template of known geometry.

3. To address the sparsity of LiDAR returns, we lift a point cloud to a continuous function in an
RKHS and use the inner product structure to determine a marker’s ID among a pre-computed
function dictionary.

4. We present performance evaluations of the LiDARTag where ground truth data are provided
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by a motion capture system. We also extensively analyze each step in the system with
spacious outdoor and cluttered indoor environments. Additionally, we report the rate of false
positives validated on the indoor Google Cartographer [41] dataset and the outdoor Honda
H3D dataset [42].

5. We provide open-source implementations for the physical design of the proposed Li-
DARTag and all of the associated software for using them, in C++ and ROS [81]; see
https://github.com/UMich-BipedLab/LiDARTag [101].

The remainder of this chapter is organized as follows. Section 6.2 presents a summary of the
related work. Section 6.3 explains the tag design. Tag detection and pose estimation are discussed
in Section 6.4 and Section 6.5. The construction of continuous functions and ID decoding are
introduced in Section 6.6. Experimental evaluations of the proposed LiDARTags are presented in
Section 6.7. Finally, Section 6.8 concludes the chapter and provides suggestions for future work.

6.2 Related Work

Fiducial marker systems were originally developed and used for augmented reality applica-
tions [32,33] and have been widely used for object detection and tracking and pose estimation [106].
Due to their uniqueness and fast detection rate, they are also often used to improve SLAM sys-
tems [104]. Because of automatic detection, the camera-based markers are often used to extract
features for cameras in target-based LiDAR-camera calibration [9, 107, 108], and the proposed
algorithm can provide a means to extract features for LiDARs. To the best of our knowledge, there
are no existing fiducial markers for point clouds. Among the many popular camera-based fiducial
markers are ARToolKit [32], ARTag [33], AprilTag 1-3 [30, 31, 34], and CALTag [36].

In the following, we review some recent and well-known fiducial markers for cameras. ARTag
[33] [37] uses a 2D barcode to make decoding easier. AprilTag 1-3 [30,31,34] introduced a lexicode-
based [109] tag generation method in order to reduce false positive detection. ChromaTag [35]
proposes color gradients to speed up the detection process. RuneTag [110] uses rings of dots to
improve occlusion robustness and more accurate camera pose estimation. CCTag [111] adopts a set
of rings to enhance blur robustness. More recently, LFTag [38] has taken advantage of topological
markers, a kind of uncommon topological pattern, to improve longer detection range. This also
enables the decoding of markers with high distortion, and these markers can be flexibly laid down.
While there are some fiducial markers using deep learning technique [112, 113], to date, all of those
detectors, still only work on cameras.

There are several deep-learning-based object detection architectures for LiDAR point cloud.
Most of the methods for 3D object detection deploy a voxel grid representation [114–116]. Recently,
[115, 117, 118] have sought to improve feature representation with 3D convolution networks, which
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require expensive computation. Similar to proposed methods for 2D objects [119–123], the proposed
methods for 3D objects generate a set of 3D boxes in order to cover most of the objects in 3D space.
However, most detectors are limited to specific categories and none of these detectors or proposed
methods has adequately addressed rotation, perspective transformations, or domain adoption.

Remark 15. As mentioned above, there exist several deep-learning-based object detectors trained
on large-scale LiDAR datasets [124–126]. These detectors are trained on limited categories in a
specific dataset, and if the training and testing data are not consistent, the inference process could
fail. They would have to be retrained on new data in order to be viable for our LiDARTag. Another
option could be to design our own detector and train on our own datasets rather than using existing
detectors. However, there is no guarantee that the resulting detector would work for varied scenes
spanning from a cluttered laboratory to spacious outdoor environments. Additionally, the existing
detectors rely on powerful GPUs and they are thus not suitable for lightweight mobile robots. On
the other hand, the detector proposed in this chapter is robust to general scenarios and achieves
satisfactory results in practice. Deep-learning-based methods, however, are interesting future work
and are discussed in Sec. 6.8.

6.3 Tag Design and LiDAR Characteristics

This section describes some essential points to consider when designing and using a LiDAR-
based tag system. In particular, this section addresses how the unstructured point cloud from a
LiDAR results in different considerations in the selection of a marker versus those used with a
camera.

6.3.1 LiDAR Point Clouds vs Camera Images

Pixel arrays (i.e., an image) from standard RGB-cameras of different resolutions are very
structured, with the pixels arranged in a uniform (planar) grid, and each image having a fixed
number of data points. A LiDAR returns px, y, zq coordinates of 3D points lying on the surface of
objects as well as the intensity, which relies on the reflectivity/material of the object. The reflectivity
is measured at the wavelength used by the LiDAR. Some LiDARs also provide beam numbers. The
resulting 3D point clouds are typically referred to as “unstructured” because:

• The number of returned points varies for each scan and for each beam. In particular, LiDAR re-
turns are not uniformly distributed in angle or distance1.

1Some LiDARs have different ring density at different elevation angles. For example, 32-Beam Velodyne ULTRA
Puck LiDAR has dense ring density between ´5

˝ and 3
˝, and has sparse ring density from ´25

˝ to ´5
˝ and from 3

˝ to
15

˝ [127]. Therefore, in a sparse region, a target may be only partially illuminated/observed.
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Figure 6.2: This figure illustrates the unstructured nature of a LiDAR-point-cloud return (left) for a planar surface
with black and white squares (right). On the left, the black and white dots are lower reflectivity and higher reflectivity,
respectively. The sparse region of the LiDAR is indicated in light yellow and the dense region is marked in light
blue. The returns are more irregular at the black-white transitions. Red circles indicate missing returns and green bars
highlight larger gaps between returned points.

• As shown in Fig. 6.2, high contrast between adjacent regions of a target’s surface can result
in missing returns and in varying spaces between returns.

• When used outdoors, the number of returned points is also influenced by environmental
factors such as weather, especially temperature.

Consequently, as opposed to an image, there is no fixed geometric relationship between the index
numbers of returns from two different beams in a multi-beam LiDAR. A further difference is the
density of the collected data; currently, basic cameras provide many more data points for a given
surface size at a given distance than even high-end LiDARs. These summarized differences have an
impact on how one approaches the design of a LiDAR-based tag system vs. a camera-based tag
system.

6.3.2 Tag Placement and Design

As mentioned in Sec. 6.3.1, a return from a typical LiDAR consists of an px, y, zq measurement,
an intensity value i, and a beam number (often called ring number, r). In this chapter, we propose
exploiting the relative accuracy of a LiDAR’s distance measurement to determine “features” when
seeking to isolate a LiDARTag in a 3D point cloud (see Sec. 6.4) and associating the isolated
LiDARTag points with a continuous function to decode the marker’s payload (see Sec. 6.6).
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(a) (b)

(c) (d)

Figure 6.3: (a) illustrates a LiDARTag consisting of two parts: a 3D object with a rigidly attached, planar fiducial
marker where t and h are the marker size and height of the object respectively. (b) shows the marker should be placed
inside the yellow region and (c) illustrates an example of AprilTag being used as a LiDARTag. (d) is the sensor setup
consisting of a LiDAR, a camera and several motion capture markers.

6.3.2.1 Tag design

A LiDARTag is assumed to consist of a planar fiducial marker rigidly attached to a 3D object, as
shown in Fig. 6.3(a). In particular, the marker shows different intensity values when illuminated by
a LiDAR. As indicated in Sec. 6.3.1, intensity relies on how a LiDAR measures the reflectivity of
an object. Most types of fiducial markers for camera-based systems could be adapted for use in
LiDAR-based systems as long as the payload is composed of differing reflectivities and is placed
inside the region highlighted in yellow in Fig. 6.3(b). Figure 6.3(c) shows an example of an
AprilTag used as a LiDARTag. In our experiments, we print the tags from a regular printer and a
poster machine. Because fiducial markers are usually printed from a printer, however, markers with
two colors such as AprilTag 1-3 [30,31,34], ARTag [33,37], InterSense [128], CyberCode [129], or
CALTag [36] can be most easily adapted for use in our LiDARTag system, while Cho et.al [130]
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Figure 6.4: The system contains three parts: tag detection, pose estimation, and tag decoding. The detection step takes
an entire LiDAR scan (up to 120,000 points from a 32-Beam Velodyne ULTRA Puck LiDAR) and outputs collections of
likely payload points of the LiDARTags. Next, a tag’s optimal pose minimizes the L1-inspired cost in (6.8), though the
rotation of the tag about a normal vector to the tag may be off by ˘90

˝ or 180˝ and will be resolved in the decoding
process. The tag’s ID is decoded with a function library inspired by [105, 131]. The decoded tag removes the rotation
ambiguity about the normal.

with multi-color cannot.
For this initial study, we employ AprilTag3 as our fiducial markers. Furthermore, within the

AprilTag3 family of markers, we select tag16h6c5, that is, a tag encoding 16 bits (i.e., 16 black or
white squares), with a minimum Hamming distance of 6, and a complexity of 5. The Hamming
distance measures the minimum number of bit changes (e.g., bit errors) required to transform one
string of bits into the other. For example, the length-7 strings “1011111” and “1001011” have a
Hamming distance of 2, whereas “1011111” and “1001010” have a Hamming distance of 3. The
significance is that a lexicode with a minimum Hamming distance h can detect h{2 bit errors and
correct up to tph ´ 1q{2u bit errors [109]. The complexity of an AprilTag is defined as the number
of rectangles required to generate the tag’s 2D pattern. For example, a solid pattern requires just
one rectangle, whereas, a white-black-white stripe would need two rectangles (first draw a large
white rectangle; then draw a smaller black rectangle). For further details, we refer the reader to the
coding discussion in Olson [30].

Remark 16. One may argue that other members of the AprilTags3 family, such as tag49h15c15,
tag36h11c10, tag36h10c10, and tag25h10c8, would be more appropriate. For example, including
more bits tends to increase the number of distinct tags in a family, while a larger Hamming distance
reduces false positives. However, for tags of the same physical size and the same distance from the
sensor, more bits means fewer returns per square and a higher error rate for individual squares.

6.3.2.2 Tag placement

In Fig. 6.3(a), let t be the tag size and h be the thickness of the 3D object. The 3D object is
assumed to have t

?

2{4 clearance around it, and the first LiDAR ring hitting at a LiDARTag is
above 3{4 of the LiDARTag, see Sec. 6.4.2. In particular, the fiducial marker can be attached to a
wall as long as the condition, h ° t

?

2{4, in Fig. 6.3(a) is met. Finally, it is not recommended to
orient the marker like a square due to the quantization error inherited in LiDAR sensors, see [9, Sec.
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(a) (b)

(c) (d)

Figure 6.5: Intermediate steps of the LiDARTag system. The system takes a full scan point cloud and applies feature
detection as defined in (6.1) and associates the features into clusters (magenta spheres), as shown in (a). Using the
features, the clusters are filled from the original scan (different color dots stand for different intensity values) as shown
in (b). Later, boundary points (indicated by boxes) are detected. After validating all the clusters, (d) shows the result of
the point cloud of a LiDARTag pulled back to the LiDAR origin by H

L
T , which is a rigid-body transformation from the

tag to the LiDAR that minimizes an L1-inspired fitting error (6.8). The green box is the template of the fiducial marker.

II].

6.4 Tag Detection

This section provides the individual steps for detecting potential markers and examining their
validity. The overall pipeline is shown in Fig. 6.4. To localize potential LiDARTags within the point
cloud, the first step is to find features. The features are then grouped into distinct clusters2. Most of

2Clustering features instead of clustering directly on a LiDAR scan is critical to achieve real-time applications.
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these clusters will not contain tags. Therefore, it is essential to validate whether a cluster contains a
LiDARTag or not.

6.4.1 Feature Detection

As mentioned in Sec. 6.3.1, images are very structured in that the vertical and horizontal pixel-
pixel correspondences are known. Consequently, various kinds of 2D kernels [66] can be applied
for edge detection. However, unlike images, raw LiDAR point clouds are unstructured in that
even if we have the indices of all points in each beam, we do not know the vertical point-point
correspondences.

Therefore, to find a feature in a point cloud, an edge point is defined as discontinuities in distance.
Inspired by the point selection method in LeGO-LOAM [132], a point is defined as a feature if
it is an edge point, and its consecutive n points are not edge points (similar to plane features in
LeGO-LOAM). Given consecutive n ` 1 points, we choose to use a 1D kernel to compute spatial
gradients at each point to find edge points. Let pi,m be the ith point in the mth beam so that the
gradient of distance rDppi,mq can be defined as

rDppi,mq “ }pi`l,m ´ pi,m}2 ´ }pi´l,m ´ pi,m}2, (6.1)

where ` is a design choice (here, ` “ 1). If rDppi,mq at a point exceeds a threshold ⇣, we then
consider pi,m as a possible edge point. Using distance gradients requires a LiDARTag being ⇣ away
from the background. For speed in real time application, we do not apply further noise smoothing,
edge enhancement, nor edge localization. Finally, if there is only one edge point in the consecutive
n ` 1 points (n “ 2 in this chapter), then the edge point is considered as a feature.

6.4.2 Feature Clustering

After determining the features in the current point cloud, we group them into clusters using
the single-linkage agglomerative hierarchical clustering algorithm3 [133, 134]. As indicated in
Sec. 6.3.1, LiDAR returns are not uniformly distributed in angles or distance. The linkage criteria,
therefore, considers the x-y axes and the z-axis differently: signed Manhattan distance is chosen
for the x-y axes, and ring numbers are selected for the z-axis. Similarly, boundaries of a cluster
are defined by the four center points of a cuboid’s faces and maximum/minimum ring numbers, as
shown in Fig. 6.6. The algorithm loops over each feature, either linking it to an existing cluster and
updating its boundaries, or creating a new cluster.

3We chose this clustering algorithm because the number of LiDARTags is unknown. Therefore, algorithms like
K-Means Clustering cannot be used.
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Remark 17. LiDAR rings are determined by the elevation angle of an emitter. Most existing
LiDARs provide not only px, y, z, iq values, but also a ring number of a data point. If ring numbers
are not available and there exists only one rotation axis in the LiDAR, a ring number can be
simply regressed against elevation angle by taking the LiDAR’s ring numbers as a discrete set of
corresponding elevation angles, in which the number of elevation angles is the same as the number
of beams of the LiDAR. The elevation angle of a data point can be computed as

arctan

˜
za

x2 ` y2

¸
.

We use this method to regress ring numbers for the Google Cartographer dataset. For more detail,
see our implementation on GitHub [101].

The boundaries pb1, ¨ ¨ ¨ , b4, rmax, rminq of a cluster are the maximum/minimum x, maxi-
mum/minimum y and maximum/minimum ring numbers among all features in the cluster. When
a new cluster is created from a feature pk “ px, y, z, i, rq, the four center points of the faces are
defined as px ˘ ⌧, y ˘ ⌧q, with ⌧ “ t

?

2{4 for the pb1, ¨ ¨ ¨ , b4q. The rmax and rmin are defined in
terms of the ring numbers r, as shown in Fig. 6.6. The linkage criteria Lppk, cjq between a feature
pk and a cluster cj is

$
&

%
minpbk

i
´ ⌧q § pk § maxpbk

i
` ⌧q, @i “ 1, ¨ ¨ ¨ , 4

rmin ´ 1 § r § rmax ` 1,
(6.2)

where the first line is the signed Manhattan distance for the x-y axes and the second is the ring num-
ber for the z-axis. If both conditions are met, the feature is linked to the cluster. The corresponding
boundaries are updated, if necessary. Due to this linkage criteria, a LiDARTag requires ⌧ “ t

?

2{4

clearance around it to avoid false linkage, and based on preliminary testing, we also impose that the
topmost beam on the LiDARTag should be above 3{4 of the target, as indicated by the red region in
Fig. 6.7(b).

Remark 18. We chose not to use a k-d tree structure [135] because the number of features and the
resulting clusters are not large enough to benefit from the data structure. The construction time of
the tree could overtake the querying time.

6.4.3 Cluster Validation

At this point, we have grouped the features into clusters as shown in Fig 6.5(a). In practice, few
(possibly none) of the clusters will contain a valid tag and thus it is important to be able to eliminate
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Figure 6.6: This figure shows the initial state of a cluster, in which has only single one feature. A cluster is defined
as a cuboid in R3. When a feature fails at linkage, a cluster will be created and centered at itself px, y, zq with four
boundaries px˘ ⌧, y ˘ ⌧, zq for the x-y axes, where ⌧ is t

?
2{4, as well as the maximum ring number and the minimum

ring number for the z-axis.

clusters that are clearly invalid. To do so, we first used the point cloud data to fill in LiDAR returns
between the features of a cluster, as shown in Fig. 6.5(b).

Inspired by AprilTag [30, 31], tag-family-based heuristics are used to validate a cluster: number
of points ⌘ and number of features  in the cluster. Another geometry-based heuristic is also
deployed: the outlier percentage pq of a plane fitting process. To save computation time, if any of
the above processes fails, the cluster is marked as invalid and does not proceed to the next stage
of validation. The first two values are determined by what type of tag family is chosen. Shown in
Fig. 6.3(c) is a tag family which contains 16 bits.

A lower bound on the number of points in a cluster is determined by how many bits are contained
in the fiducial marker. If the payload is dˆd, the LiDARTag including boundaries is pd`4qˆpd`4q.
If we assume a minimum of five returns for each bit in the tag, then the minimum number points in
a valid cluster is

⌘ • 5pd ` 4q
2. (6.3)

On the other hand, an upper bound is determined by the distance from the LiDAR to the marker
and its size t. Given a tag at distance D, the maximum number of returns on the marker happens
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(a) (b)

Figure 6.7: (a) describes the coordinate system of the fiducial marker. (b) indicates that the first beam hitting the
LiDARTag should be at least 3{4 above target, outlined as the red region.

when it directly faces to the LiDAR and can be computed as:

M
t
?

2

D sin ✓
, (6.4)

where ✓ is the horizontal resolution of the LiDAR, M is the number of rings hitting on the tag, and
t
?

2 is the diagonal length of the tag, as shown in Fig. 6.7(b).
The boundaries of the payload can be detected by an intensity gradient,

rIppi,mq “ |pI
i``,m ´ pI

i,m
| ´ |pI

i´`,m ´ pI
i,m

|, (6.5)

where ` is also a design choice (here, taken as one), and pI
i,m

is the intensity value of the ith point on
the mth ring. An example of detected boundary points is shown in Fig. 6.5(c). If rIppi,mq exceeds
a threshold, then pi,m is a payload edge point. To successfully decode a tag, we will need at least
one ring on each row of the payload. Hence, the minimum number of payload edge points is

 • 2pd ` 2q. (6.6)

Finally, we apply a plane fitting process to the remaining clusters. If the percentage of outliers of
the plane fitting is more than  (chosen as 0.05), the cluster is considered invalid.

The above heuristics allow us to extract a potential fiducial marker from the LiDARTag through
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Figure 6.8: This conceptual figure illustrates the proposed method to estimate a LiDARTag’s pose. The target’s
coordinate frame is defined as the mean of the four vertices pX1, ¨ ¨ ¨ , X4q and the template of known geometry is
defined by pX̄1, ¨ ¨ ¨ , X̄4q with depth ✏ at the LiDAR origin. The rigid-body transformation H

L
T (black arrow) projects

the target’s point cloud to the template. The actual pose of the LiDARTag is estimated by (6.9) using the inverse
transformation H

L
T (green arrow).

features in both cluttered indoor and spacious outdoor environments. The next step is to estimate
the pose of the marker.

6.5 Pose Estimation and Initialization

The pose of a LiDARTag is defined as HT

L
, a rigid-body transformation from the LiDAR frame

to the LiDARTag frame, as shown in Fig. 6.8. To estimate the pose, we employ the L1-inspired
method proposed in [9]. The pose estimation is formulated into an optimization problem (6.9) in
Sec. 6.5.1. Due to SEp3q being non-convex and the requirement for a fast estimate, initial guesses to
initialize the optimization problem and the gradient of the cost function are necessary, see Sec. 6.5.2.

6.5.1 LiDARTag Pose Estimation

Define the target point cloud T P :“ tXiu
M

i“1
as the collection of LiDAR returns from a Li-

DARTag, where M is the number of points. Given the target geometry, we define a template with
vertices tX̄iu

4

i“1
located at the origin of the LiDAR and aligned with the y-z plane as defined in

Fig. 6.8. We therefore seek a rigid-body transformation from LiDAR to the tag, HT

L
P SEp3q, that

“best fits” the template onto the LiDAR returns of the target. In practice, it is actually easier to
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project the target point cloud T P back to the origin of the LiDAR through the inverse of the current
estimate of transformation HL

T
:“ pHT

L
q

´1 and measure the error there. The action of H P SEp3q

on R3 is H ¨ Xi “ RXi ` p, where R P SOp3q and p P R3. For a • 0 and � P R, an L1-inspired
cost is defined as

cp�, aq :“

$
&

%
mint|� ´ a|, |� ` a|u if |�| ° a

0 otherwise
. (6.7)

Let tX̄iu
N

i“1
:“ HL

T
pT Pq :“ tHL

T
¨ Xiu

N

i“1
denote the projected point cloud by HL

T
, and denote a

point’s px, y, zq-entries by px̄i, ȳi, z̄iq. The total fitting error of the point cloud is defined as

CpHL

T
pT Pqq :“

Mÿ

i“1

cpx̄i, ✏q ` cpȳi, d{2q ` cpz̄i, d{2q, (6.8)

where ✏ • 0 is a parameter to account for uncertainty in the depth measurement of the planar target
and the principal axis with the smallest variance is used, see Sec. 6.5.2. The optimization problem
becomes

HL
˚

T
:“ argmin

R
L
T ,p

L
T

CpHL

T
pT Pqq. (6.9)

Finally, the pose of a LiDARTag is HT

L
“ HL

˚
T

; see [9] for more details. To solve this optimization
problem, we leverage a gradient-based solver in the NLopt library [136] and the closed form of the
gradient, which is provided on our GitHub [101].

Figure 6.5(d) shows the projected returns of a LiDARTag being inside the green box (aligned
with the y-z plane) at the LiDAR origin. In addition, we further compute the 2D convex hull within
the y-z plane of the pullback of point cloud and utilize the surveyor’s formula [72] to calculate the
area of the convex hull. Our assumption on where first ring hits the marker results in at least 75% of
the marker’s area being illuminated. Therefore, if the estimated area is less than 75% of the marker
size, the cluster is considered invalid.

Remark 19. Equation (6.9) provides an estimated rigid-body transformation from the LiDAR to
the tag, and importantly, due to the symmetric of the target, the rotation of the tag about a normal
vector to the tag may be off by ˘90

˝ or 180˝. In particular, the four rotations in Fig. 6.9 are not
determined. This ambiguity will be removed after decoding the tag, see Sec. 6.6.

6.5.2 Optimization Initialization

The corners of the LiDARTags, pX1, ¨ ¨ ¨ , X4q, are estimated from T P . The initial guess of a
rigid-body transformation is chosen to minimize the distance from the points pX̄1, ¨ ¨ ¨ , X̄4q and
pX1, ¨ ¨ ¨ , X4q. This will be reduced to a (constrained orthogonal) procrustes problem [137], namely
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a problem of the form:
⇥ “ argmin

⌦: ⌦
T
⌦“I

||⌦A ´ B||F , (6.10)

where for us, ⌦ will be a to-be-determined rotation matrix and k¨kF is the Frobenius norm.
Without loss of generality, X̄0 is assumed to be the origin, p0, 0, 0q and X0 is the mean of T P

4.
The translation p is thus given by

X̄0 “ RX0 ` p, X̄0 “ r0, 0, 0s
T

p “ ´RX0. (6.11)

The rest of the problem can be formulated as:

››HL

T
Xi ´ X̄i

››2
2

“

›››››

«
R p

0 1

� «
Xi

1

�
´

«
X̄i

1

�›››››

2

2

(6.12)

“

››RXi ` p ´ X̄i

››2
2

“

››RXi

1
´ X̄i

››2
2
,

4ÿ

i“1

››HL

T
Xi ´ X̄i

››2
2

“

4ÿ

i“1

››RXi

1
´ X̄i

››2
2

“

››››pRX1
1
´ X̄1q

... ¨ ¨ ¨
...pRX4

1
´ X̄4q

››››
2

F

“

››RX ´ X̄
››2
F
, (6.13)

where Xi

1
“ Xi ´ X0, X “

”
X1

1 X2
1 X3

1 X4
1
ı

and X̄ “

”
X̄1 X̄2 X̄3 X̄4

ı
. The problem

is then

R˚
“ argmin

R: R
T
R“I

››RX ´ X̄
››2
F
. (6.14)

By the procrustes optimization problem [137], we have a closed form solution:

M “ X̄XT
“ U⌃V T (6.15)

R˚
“ UV T. (6.16)

Remark 20. To estimate X, we project the target point cloud T P along a principal axis of a
Principal Components Analysis (PCA) [138]. Using the 2D projected point cloud, we use RANSAC
to regress lines to determine target edges and solve for the intersections of the lines, to obtain an

4In practice, this produces an good initial guess of translation for (6.9)
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(a) (b) (c) (d)

Figure 6.9: Before decoding, the estimated rotation about the normal axis is only known modulo 90
˝, which means (a)

to (d) yield the same normal vector. Accounting for the three possible rotations of p˘90
˝
, 180

˝q, results in 4 possible
continuous functions in the function dictionary. When computing the inner product to the correct id of a LiDARTag,
only one of the four functions ‘zis correct. From the correct function, the modulo 90

˝ ambiguity is removed.

initialization of the vertices. The smallest variance of the principal axis is then used for the ✏ in
(6.8). If the number of edge points is less than three, or any of edges fails when regressing a line,
the cluster is marked as invalid.

6.6 Function Construction and Tag Decoding

In Sec. 6.5.1, we defined a template at the LiDAR origin, estimated HL

T
, and we thus have the

projected point cloud. Specifically, the projected point cloud is located at the LiDAR origin inside
the template on the y-z plane with the thickness being the sensor noise on the x-axis. Due to the
sparsity of the point cloud, we construct a continuous function in an inner product space (RKHS)
for the projected point cloud [105]. For each LiDARTag in the tag family, we pre-compute four
continuous functions to account for four possible rotations, as shown in Fig. 6.9, consequently,
resulting in a function dictionary. Each function is constructed by converting each pixel of the tag
image to a point in R3, see [101] for implementation detail. Finally, we compute the inner product
of the estimated function and each function in the dictionary. The largest inner product is the ID of
the LiDARTag, and the ambiguity of rotation in Sec. 6.5.1 is removed.

Let rX :“ tprpi, `prpiqq|rpi P R3 and `prpiq P Iu
M

i“1
be a collection of projected points, where M is

the number of points. In this work, we use the intensity as our information inner product space as
I “ R and the inner product, x¨, ¨yI , is just the scalar product of intensity values. Therefore, the
labels are simply the intensity values. The continuous function of rX is defined as

fp¨q “

Mÿ

i“1

`prpiqkp¨, rpiq, (6.17)

where k : R3
ˆ R3

Ñ R is the kernel of an RKHS [105].
Given another continuous function g of point cloud rZ :“ tp rpj, `p rpjqq| rpj P R3 and `p rpjq P Iu

N

j“1
,
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where N is the number of points. The inner product of f and g is

xf, gy “

Mÿ

i“1

Nÿ

j“1

x`prpiq, `p rpjqyIkprpi, rpjq. (6.18)

The kernel k is modeled as the squared exponential kernel [139, Chapter 4]:

kprpi, rpjq “ �2exp
ˆ

´
1

2
prpi ´ rpjqT⇤prpi ´ rpjq

˙
, (6.19)

where �2 is the signal variance (set to 1e5) and ⇤ is an isotropic diagonal length-scale matrix with
its diagonal entry set to the inverse of squared half of the bit size of a LiDARTag: 1{pt{p2pd ` 4qqq

2.
Let t be the LiDARTag size, and the d-bit tag family is used (d ` 4 bits, including its boundaries).
Then the bit size is t{pd ` 4q.

After applying the kernel trick to (6.18), we get [131]

xf, gy “

Mÿ

i“1

Nÿ

j“1

kIp`prpiq, `p rpjqq ¨ kprpi, rpjq, (6.20)

where
kIprpi, rpjq “ exp

ˆ
´

p`prpiq ´ `p rpjqq
2

2l2I

˙
, (6.21)

and the length-scale lI is set to 10 (0 § `prpiq § 255).

Remark 21. To fully utilize the projected point cloud of LiDARTag returns, we extend the planar
LiDARTag to a 3D LiDARTag based on the intensity value of each point in the point cloud. The
linear transformation is defined as:

rpi “

»

—–
rxi

ryi
rzi

fi

�fl “

»

—–
1 0 0

t

2pd`4qImax

0 1 0 0

0 0 1 0

fi

�fl

»

————–

x̄i

ȳi

z̄i

īi

fi

����fl
, (6.22)

where Imax is the maximum intensity of the point cloud and t{pd ` 4q is the bit size.

Remark 22. If the fitting error (6.8) in Sec. 6.5.1 is greater than 10% of the number of points in the
cluster or it is not able to decode the potential cluster in Sec. 6.6, this cluster is marked as invalid.

Remark 23. Reproducing Kernel Hilbert Spaces (RKHS’) have been widely used in the Representer
Theorem [140–142] for various regularization problems, such as function estimation, classification
and Support Vector Machines (SVMs). These are typically high- or infinite-dimensional problems
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that while mathematically feasible, often appear to be not practically computable. With the help
of RKHS and the Representer Theorem, the solutions to these problems can be formulated in
lower-dimensional subspaces spanned by the “representers” of the data.

6.7 Experimental Results

We now present experimental evaluations of the proposed LiDARTag. In this work, we choose
an easel as our 3D object to support the tag. Additionally, fiducial markers from the tag16h6 family
of AprilTag3 are used, with sizes of 1.2, 0.8, 0.61 meters, as shown in Fig. 6.3. We do not compare
the proposed LiDARTag system with camera-based tag systems because it is unfair to compare
depth estimation from a LiDAR with depth estimation from a monocular camera. All experiments
are conducted with a 32-Beam Velodyne ULTRA Puck LiDAR and an Intel RealSense camera rigidly
attached to the torso of a Cassie-series bipedal robot as shown in Fig. 6.3(d). We use the ROS [81]
to communicate and synchronize between sensors. The LiDARTag system runs faster than 100
Hz on a laptop equipped with Intel® CoreTM i7-9750H CPU @ 2.60 GHz, which is similar to the
processor on a robot coming to the market.

Datasets are collected in a cluttered laboratory to evaluate detection performance and a spacious
outdoor facility, M-Air [143], equipped with a motion capture system to validate pose estimation
and ID decoding. Additionally, false positives are evaluated on the Google Cartographer indoor
dataset [41] and the outdoor Honda H3D datasets [42].

6.7.1 Pose Evaluation and Decoding Accuracy

A motion capture system developed by Qualisys is used as a proxy for ground truth poses. The
setup consists of 30 motion capture cameras with markers attached to tags, a LiDAR and a camera,
as shown in Fig. 6.3(d). Datasets are collected at various distances and angles. Each of the datasets

Table 6.1: Decoding accuracy of the RKHS method and pose accuracy of the fitting method. The ground truth is
provided by a motion capture system with 30 motion capture cameras. The distance is in meters. The translation error
is in millimeters and rotation error is the misalignment angle, (6.23), in degrees.

Face-on to LiDAR Rotated at 45 degrees
Distance No. Scans No. Wrong ID Translation Error Rotation Error Distance No. Scans No. Wrong ID Translation Error Rotation Error

2.15 73 0 14.03 0.44 2.13 74 0 0.27 0.05
4.29 72 0 10.13 0.67 3.95 134 0 0.52 0.34
5.90 81 0 16.23 0.44 5.93 137 0 0.36 0.05
7.97 78 0 1.32 0.21 7.92 126 0 0.26 0.32

10.12 87 0 1.64 0.40 10.38 130 0 4.91 1.03
12.14 69 0 2.07 0.36 12.12 71 0 5.78 0.39
13.87 35 1 2.81 10.48 14.08 49 2 1.98 15.92

Summary No. Scans Wrong ID Ratio Translation Error Rotation Error Summary No. Scans Wrong ID Ratio Translation Error Rotation Error
mean 70 0.202 % 6.891 2.149 mean 103 0.276 % 1.744 2.586

std 16.88 – 6.418 4.577 std 37.25 – 2.076 5.888
median 73 – 2.81 0.44 median 126 – 0.52 0.34
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(a) (b)

(c) (d)

Figure 6.10: (a) and (c) are images of the tag placed at 2 and 14 meters away from a Cassie-series robot. (b) and (d)
describe the results of projecting the template (green box) from the LiDAR origin to the tag’s returns by the poses of
LiDARTag at 2 and 16 meters, respectively. While (d) shows much sparser LiDAR returns than (b) due to the farther
distance, we are still able to accurately estimate the pose and its ID. Compared to ground truth provided by 30 motion
capture cameras, the resulting poses are a few millimeters off in translation and a few degrees off in rotation.

contains images (20 Hz) and scans of point clouds (10 Hz). The 1.2-meter target is placed at
distances from 2 to 14 meters in 2 meter increments. At each distance, data is collected with a target
face-on to the LiDAR and another dataset with the target rotated by 45 degrees. More results and
videos are on GitHub, see [101].

The optimization problem in (6.9) is solved with the Method of Moving Asymptotes (MMA)
algorithm [144, 145] provided in NLopt library [136]. We use the optimized LiDARTag pose to
project the template at the LiDAR origin onto the LiDARTag’s returns to show the qualitative results
of pose estimation. Figure 6.10(b) and Figure 6.10(d) show the pose of a tag at 2 meter and 16 meter,

75



Table 6.2: This table averages all the datasets we collected and describes computation time of each step for indoors and
outdoors.

Outdoor
No. Points No. Features No. Clusters Total Computation

51717 2179 271 114.86 Hz
PoI Clustering Fill In Clusters Point Check Plane Fitting

2.63 ms 0.3 ms 0.00 ms 0.27 ms
Line Fitting PCA Pose Optimization Tag Decoding

0.01 ms 0.03 ms 0.48 ms 3.34 ms
Indoor

No. Point Cloud No. Features No. Clusters Total Computation
54277 1820 225 102.41 Hz

PoI Clustering Fill In Clusters Point Check Plane Fitting
3.28 ms 0.22 ms 0.00 ms 0.15 ms

Line Fitting PCA Pose Optimization Tag Decoding
0.01 ms 0.01 ms 0.42 ms 2.47 ms

respectively. Even though the farther marker has much sparser LiDAR returns, by lifting the returns
to an RKHS space, we are capable of correctly identifying its ID. In particular, a 1.2-meter target
placed at 16 meters and rotated by 45 degrees is the detection limit of our 32-Beam Velodyne ULTRA
Puck LiDAR. However, for a LiDAR with a different number of beams or points, the detection
limit is subject to change. The more beams or points, the greater is the detection range. Using our
LiDAR, the detectable angle is a little smaller than camera-based marker due to the sparse point
clouds. Table 6.1 compares quantitatively the pose estimation between the proposed LiDARTag and
ground truth. The translation error is reported in millimeters, and rotation error ⇠ is represented as
geodesic distance 5 in degrees [146]:

⇠ “ }LogpR̄rRT
q}, (6.23)

where k¨k is the Euclidean norm, R̄ and rR are the ground truth and estimated rotation matrices,
respectively, and Logp¨q is the logarithm map in the Lie group SOp3q.

6.7.2 LiDARTag System and Speed Analysis

The computation time and cluster analysis of each step of the pipeline is shown in Table 6.2.
Indoors, we have fewer clusters because detected features are closer to each other resulting in many
of them being clustered together. The computation time in an outdoor environment is faster than
indoors because more clusters are rejected in the early stage due to the sparsity of the clusters, see
Table 6.3. In both environments, the system achieves real-time performance (at least 100 Hz).

5The shortest path between two points on the SOp3q group.
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Table 6.3: This table takes into account all the data we collected and shows numbers of rejected clusters in each step in
different scenes.

Outdoor
No. Min. Return No. Max. Return No. Plane Fitting

247.72 3.41 14.71
No. Boundary Points No. Pose Estimation No. Decoding Failure

4.10 0.48 0.00
Indoor

No. Min. Return No. Max. Return No. Plane Fitting
76.44 1.12 0.00

No. Boundary Points No. Pose Estimation No. Decoding Failure
8.14 1.80 1.16

Indoor Cartographer Dataset
No. Min. Return No. Max. Return No. Plane Fitting

65.76 0 1.90
No. Boundary Points No. Pose Estimation No. Decoding Failure

0.35 0 0
Outdoor H3D Dataset

No. Min. Return No. Max. Return No. Plane Fitting
713.35 8.72 44.41

No. Boundary Points No. Pose Estimation No. Decoding Failure
2.74 0.38 0

Table 6.4: The original double sum in (6.18) is too slow to achieve a real-time application. This table compares
different methods to compute the double sum, in which the TBB stands for Threading Building Blocks library from
Intel. Additionally, we also apply a k-d tree data structure to speed up the querying process; the k-d tree, however, does
not produce fast enough results. The unit in the table is milliseconds.

Original Double Sum Matrix Form Vector From
144.18 67.11 8.51

TBB Original Form TBB Vector Form TBB k-d tree
35.68 2.40 5.73

The original double sum in (6.18) takes over 140 milliseconds for each decoding process. To
speed up the process, the inner sum of the double sum is transformed to a matrix and then to a
vector form. For more details, see our implementation [101]. These two modifications boost the
speed to 8.5 ms. However, this is still not fast enough because for each remaining cluster, (6.18)
needs to be computed with all the tags in the function dictionary. Threading Building Blocks
library (TBB) [147] is therefore used to further speed up this process to 2.4 ms. All together,
the whole process was sped up by a factor of 60, from 144 ms to 2.4 ms. Furthermore, we also
investigated the speed performance of employing a k-d tree data structure [148]. A summary
Table 6.4 is presented, showing that use of a k-d tree did not improve performance.
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(a) (b)

(c) (d)

Figure 6.11: (a) and (c) image a 0.8 and a 0.6 meter tag placed in a cluttered indoor laboratory and a spacious outdoor
environment. (b) and (d) show the algorithm successfully detects the two markers of different sizes indicated by cyan
boxes.

6.7.3 False Positive Analysis

We have chosen some public datasets containing no ARTag features (i.e., no LiDARTags) so that
there cannot be any false negatives and any detection of a LiDARTagin the datasets is consequently
a false positive. To better verify the proposed LiDARTag algorithm, cluttered indoor scenes and
crowded outdoor scenes are both necessary. The Google Cartographer indoor dataset [41] and
Honda H3D outdoor dataset [42] were therefore used to validate the false positive rate of the
proposed system. The Cartographer was collected with two Velodyne VLP-16 LiDARs in the
Deutsches Museum. We took the longest three sequences consisting of more than 350 thousand
LiDAR scans. Each scan contains about 30,000 points. We used the same algorithm with the same
parameters and the full function dictionary that was used to detect the two tags in Fig. 6.11 (true
positives were detected), and no false positives (i.e., no LiDARTags) were detected in the three
sequences.

The Honda H3D dataset was collected by a 64-beam Velodyne LiDAR and consists of 160
crowded and highly interactive traffic scenes in the San Francisco Bay Area. We evaluated on all
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Table 6.5: This table shows the numbers of false positive rejection of the proposed algorithm. We validated the rejection
rate on the indoor Google Cartographer dataset and the outdoor Honda H3D datasets. The former has two VLP-16
Velodyne LiDAR and the latter has one 64-beam Velodyne LiDAR.

Google Cartographer Honda H3D
Scene Indoor Museum Crowed Driving Scenes

Duration 150 minutes 48 minutes
No. Scans 350 thousand 29 thousand

No. False Positives 0 0

sequences, resulting in 29 thousand LiDAR scans. Each scan consists of more than 130 thousand
points. Zero targets were extracted by the detector. The results are shown in Table 6.5. Additionally,
false positives removed by each step are provided in Table 6.3. Last but not the least, Fig. 6.11
shows that the detector is able to detect markers of different sizes both in a cluttered indoor scene
and a spacious outdoor scene.

6.8 Conclusion and Future Work

We presented a novel and flexible fiducial marker system specifically for point clouds. The
developed fiducial tag system runs in real-time (faster than 100 Hz) while it can handle a full scan
of raw point cloud from the employed 32-Beam Velodyne ULTRA Puck LiDAR (up to 120,000
points per scan). Each step of the proposed system was extensively analyzed and evaluated in both
cluttered indoor as well as spacious outdoor environments. Furthermore, the system can be operated
in a completely dark environment.

The LiDARTag pose estimation block deploys an L1-inspired cost function. It achieved mil-
limeter accuracy in translation and a few degrees of error in rotation compared to ground truth data
collected by a motion capture system with 30 motion capture cameras. The sparse LiDAR returns
on a LiDARTag are lifted to a continuous function in a reproducing kernel Hilbert space where the
inner product is used to determine the marker’s ID, and this method achieved 99.7% accuracy. The
rejection of false positives was evaluated on the Google Cartographer indoor dataset and the Honda
H3D outdoor dataset. No false positives were detected in over 379 thousand LiDAR scans.

The presented fiducial marker system can also be used with cameras and has been successfully
used for LiDAR-camera calibration in [9] and [62]. Additionally, the system is able to detect
various marker sizes, whereas camera-based fiducial markers support one marker size at a time.
In the future, we shall use the developed LiDARTag within SLAM systems to provide robot state
estimation and loop closures. Because of different inherent properties of LiDARs and cameras, it
would also be interesting to fuse a camera-based tag system and the proposed LiDARTag system.
Currently, the proposed algorithm assumes the point cloud has been motion compensated; how to
adopt motion distortion into the algorithm is an interesting direction for future work. Furthermore,
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if a dataset has been collected and labeled, a deep-learning architecture can replace the process of
LiDARTag detection, thus offering another interesting area for future research.
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CHAPTER 7

Optimal Shape Design for LiDAR Pose Estimation and Global Solver

7.1 Introduction

Targets have been widely employed as fiducial markers [30, 32, 33, 35–40] and for target-based
sensor calibration [9–17, 19–21]. Fiducial markers (artificial landmarks or targets) help robots
estimate their pose by estimating the target pose and are applied to simultaneous localization
and mapping (SLAM) systems for robot state estimation and loop closures. Additionally, it can
facilitate human-robot interaction, allowing humans to give commands to a robot by showing an
appropriate marker. Extrinsic target-based calibration between sensors (cameras, Light Detection
and Ranging (LiDAR) sensors, Inertial Measurement Unit (IMU), etc) is crucial for modern
autonomous navigation [44]. Particularly in target-based LiDAR-camera calibration, one seeks to
estimate a set of corresponding features of a target (e.g., edge lines, normal vectors, vertices, or
plane equations) in the LiDAR’s point cloud and the camera’s image plane.

The targets applied in these critical tasks are typically symmetric (square, diamond, rectangle, or
circle). A single symmetric target, such as a square [30, 39], leads to an ambiguous pose. This can
be solved by adding an observable pattern to the target or by assuring that several asymmetrically-
placed symmetric targets can be observed in a single scene. Furthermore, estimating the pose
or features of a target of injudicious design suffers from the quantization uncertainty of a sensor,
especially for LiDAR sensors. A high-end LiDAR, such as 32-Beam Velodyne ULTRA Puck LiDAR,
still has roughly six centimeters of quantization error at 10 meters, and 18 centimeters at 30 meters.
The quantization uncertainty in the LiDAR point cloud leads to rotation errors greater than 15
degrees for targets farther away than 15 meters.

In this chapter, we propose the concept of optimizing target shape to ameliorate problems caused
by quantization uncertainty and sparsity of the LiDAR image of a target. Specifically, we propose
that a “good target shape” is one that possesses large gradients at edge points when the target
undergoes rotations or translations. Moreover, we present a means that exploits target geometry to
extract target vertices while estimating pose. The pose estimation problem is formulated so that an
existing Semidefinite Programming (SDP) global solver can be modified to globally and efficiently
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Figure 7.1: Illustration of the vertex and pose estimation using the proposed optimal target shape placed 30 meters
away from a LiDAR in the atrium of the Ford Robotics Building at the University of Michigan. The red frame is the
proposed optimal shape that induces large gradients at edge points under translation and rotation. The pose and vertices
of the target are jointly estimated by a global solver that uses known target geometry. The bottom two figures show the
front view and a side view of the fitting results, respectively. The blue and the green dots are the LiDAR returns on the
target. Only the blue dots are used for pose estimation while to demonstrate robustness of the approach, the green dots
are considered missing. If one were to apply RANSAC — a commonly used method — to regress the target boundaries
and subsequently estimate the vertices by line intersections, the method would fail due to the sparsity of inliers.

compute the target’s pose. Figure 7.1 shows the obtained pose estimation of a partially illuminated
target placed 30 meters away and having only nine returns (blue dots) from a 32-Beam Velodyne
ULTRA Puck LiDAR, and three LiDAR rings on the target after the green dots are considered
missing.

7.1.1 Contributions

In particular, this work presents the following contributions:

1. We propose the concept of target shape optimization for estimating pose and vertices from
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LiDAR point clouds. Specifically, we design a target so that its edge points induced by
LiDAR rings are “highly” sensitive to translation and rotation. This attenuates the effects
of quantization uncertainty and sparsity of a target’s LiDAR image. The resulting shape is
asymmetric to remove pose ambiguity.

2. We present a means that uses target shape to jointly estimate target vertices and pose. Because
the cost function of the proposed method can be formulated as an SDP, the target’s pose and
vertices can be globally estimated with an open-source solver [84].

3. We utilize an open-source LiDAR simulator [87] to provide ground truth of the poses and
vertices. In the simulation, we validate that the optimal shape with the global solver achieves
centimeter error in translation and a few degrees of error in rotation when the targets are
at a distance of 30 meters and partially illuminated. In addition, we conduct experimental
evaluations where the ground truth data are provided by a motion capture system, and achieve
results similar to the simulation.

4. We open-source all the related software for this work, including the generation of the optimal
shape, our means for pose estimation, and the simulated/experimental datasets; see [149,150].

7.2 Related Work

To the best of our knowledge, there is no existing work on target shape design for LiDAR point
clouds. The closet publication on target shape design is [151], which evaluated the relative range
error of dense terrestrial laser scanners using a plate, a sphere, and a novel dual-sphere-plate target.
We therefore review instead some techniques to improve the pose estimation of fiducial markers
and to assist in extracting features of calibration targets.

7.2.1 Fiducial Markers

Fiducial markers for cameras were originally developed and used for augmented reality applica-
tions [32,33] and have been widely used for object detection and tracking, and pose estimation [106].
Due to their uniqueness and fast detection rate, they are also often used to improve Simultaneous
Localization And Mapping (SLAM) systems [104]. CCTag [111] adopts a set of rings (circular
target) to enhance pose estimation from blurry images. ChromaTag [35] proposes color gradients on
a squared target to speed up the detection process and obtain more accurate pose estimation. More
recently, LFTag [38] has taken advantage of topological markers, a kind of uncommon topological
pattern, on a squared target to improve pose estimation at a longer distance. However, all the
mentioned fiducial markers only work on cameras.
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In our prior work on LiDAR [39], we proposed the first fiducial marker for LiDAR point clouds,
which can be perceived by both LiDARs and cameras. We achieved millimeter error in translation
and a few degrees in rotation. However, due to the quantization error of the LiDAR, the performance
of the pose estimation (especially in-plane rotation) was noticeably degraded when the target was
farther than 12 meters. Thus, this work proposes the concept of target shape design to specifically
address the quantization uncertainty present in LiDAR returns and push the range of pose estimation
to more than 30 meters. In passing, we note that symmetric targets, such as a square or hexagon,
suffer from rotational ambiguity. Hence, our designed target will not be symmetric.

7.2.2 Target-Based LiDAR-Camera Calibration

LiDAR-camera calibration [9–17,19,20] requires feature correspondences from the image pixels
and the LiDAR point cloud. However, the representations and inherent properties of camera images
and LiDAR point clouds are distinct. An image (pixel arrays) is dense and very structured, with the
pixels arranged in a uniform (planar) grid, and each image has a fixed number of data points. On
the other hand, each scan of a LiDAR returns a 3D point cloud consisting of a sparse set of px, y, zq

coordinates with associated intensities. In particular, LiDAR returns are not uniformly distributed in
angle or distance [40, III-A]. Target-based LiDAR-camera calibration utilizes targets to identify and
estimate the corresponding features, such as vertices, 2D/3D edge lines, normal vectors, or the plane
equations of the targets. References [9–11, 21] have noted that placing the targets so that the rings
of the LiDAR ran parallel to its edges led to ambiguity in the vertical position due to the spacing
of the rings and thus was detrimental to vertex or feature estimation. References [14, 19] utilize
RANSAC [152] and plane fitting to remove the outliers of the LiDAR returns, while [11] proposes
a “denoising process” for LiDAR returns around the target boundaries before applying RANSAC to
extract features. When estimating the target vertices, the later references separate the edge points
into groups and then apply the RANSAC algorithm. However, regressing the line equation of edge
points will fail when there are not enough edge points or inliers, as shown in Fig. 7.1. Additionally,
no target geometry information is used while estimating the features.

The remainder of this chapter is organized as follows. Section 7.3 formulates the design of an
optimal target shape for LiDAR point clouds. The extraction of the target vertices while globally
estimating the pose is discussed in Sec. 7.5. The simulation and experimental results are presented
in Sec. 7.6 and Sec. 7.7. Finally, Sec. 7.8 concludes the chapter and provides suggestions for further
work.
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Figure 7.2: Optimization process for determining an optimal target shape. Projective transformations applied to a
nominal quadrilateral generate candidate convex quadrilaterals (targets). Edge points are intersections of LiDAR rings
with the target boundaries. The objective is to maximize the gradient of edge points under actions of SEp2q applied to
the target. To enhance robustness, the gradients are computed for n-discrete rotations of the quadrilateral under partial
illumination, and the score is the worst case.

7.3 Optimal Shape For Sparse LiDAR Point Clouds

In this section, we propose a mathematical formulation of target shape design. The main idea
is for target translation and rotation to result in large gradients at edge points defined by the
LiDAR returns. Fig. 7.2 summarizes a high-level optimization process.

7.3.1 Convex Shape Generation

We apply projective transformations on a nominal convex quadrilateral in 3D to generate planar
candidate targets. We will see that applying a projective transformation rather than working with a
collection of vertices makes it easier to ensure convexity of the target and to generate a cost function
that is invariant under scaling and translations.

Let V :“ tXi|Xi :“ pxi, yi, 1q|xi, yi P Ru
4

i“1
denote the 3D vertices Xi of a nominal convex

quadrilateral, such as a square. Given P, a projective transformation defined by a non-singular 3ˆ 3

matrix [69, p.33], let ÄXi denote the new vertices transformed by P:

ÄXi “

»

—–
x1
i

y1
i

�1
i

fi

�fl “ PXi “

»

—–
p11 p12 p13

p21 p22 p23

p31 p32 �

fi

�fl

»

—–
xi

yi

1

fi

�fl . (7.1)

The resulting vertices rV :“ tÄXiu
4

i“1
lie in the projective space P2 [69, p.26]. Let V 1 be the

corresponding transformed vertices in the Cartesian space pR2
q [69, p.27] and ⇧ : P2

Ñ R2 be the
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mapping function

⇧prVq :“ ⇧pPpVqqq :“

"
X 1

i

ˇ̌
ˇ̌X 1

i
:“

ˆ
x1
i

�1
i

,
y1
i

�1
i

˙*4

i“1

. (7.2)

To summarize, given a nominal convex quadrilateral, V , and a projective transformation, P, we
construct a new quadrilateral via

V fi›Ñ PV “: rV and V
1
:“ ⇧prVq. (7.3)

Remark 24. From here on, we will abuse notation and pass from Cartesian coordinates to homoge-
neous coordinates without noting the distinction.

It is important to note that for any desired quadrilateral, there exists a projective transformation
yielding V

1 from V . Hence, our procedure for generating candidate targets is without loss of
generality.

Theorem 2 ([153, p.274]). There exists a unique projective transformation that maps any four
points, no three of which are collinear, to any four points, no three of which are collinear.

While Theorem 2 can be used to construct an arbitrary quadrilateral, convexity need not be
conserved as shown in Fig. 7.3. We need the following condition to ensure that the resulting polygon
is convex:

Theorem 3 ([154, p.39]). Let ⌦ : R3
Ñ R2 by ⌦px, y,�q “ px{�, y{�q. If dom⌦ “ R2

ˆ R``,

where R`` “ tx P R|x ° 0u and the set C Ñ dom⌦ is convex, then its image

⌦pCq “ t⌦pxq|x P Cu (7.4)

is also convex.

For the domain of our projective transformation to be R2
ˆ R``, and hence for the candidate

target to be automatically convex, the following linear inequality should be imposed in (7.1),

p31xi ` p32yi ` � ° 0. (7.5)

Because we consider two candidate targets to be equivalent if one can be obtained from the
other by translation and scaling, we are led to decompose the projective transformation as follows
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(a) (b)

Figure 7.3: Equation (7.5) versus convexity. The red indicates the resulting shapes transformed by projective transfor-
mations from the same nominal shape (black). The left shows a case where (7.5) is satisfied and thus the transformed
shape is convex; otherwise, it is non-convex, as shown on the right, where p31x3 ` p32y3 ` � “ ´0.5.

[155, 156],

P “ H
S

H
SH

H
SC

H
E

“

«
sR t

0
J

1

� »

—–
1 k 0

0 1 0

0 0 1

fi

�fl

»

—–
� 0 0

0 1{� 0

0 0 1

fi

�fl

«
I 0

v
J �

�
, (7.6)

where H
S
,H

SH
,H

SC
,H

E
are similarity, shearing, scaling and elation transformations, respectively;

see [155] for more details. By setting s “ 1, t “ p0, 0q in (7.6), the DoF of the projective
transformation drops from eight to five. Our family of candidate targets is now given by (7.2) with
P satisfying (7.5) and (7.6).

In summary, we can describe candidate convex target shapes via projective transformations while
reducing the number of degrees of freedom to five.

Remark 25. The same design process could be run with an N -gon, for N • 3. If N is too large,
the target will have at least one very short edge which will be impossible to discern in a point cloud.
In between, it’s a tradeoff between having adequate area to collect LiDAR returns, non-parallel
edges to minimize pose ambiguity, and long enough edges to pick them out of a point cloud. We used
a 4-gon as a reasonable starting point. Investigating N equals 3 and 5 would be interesting as well.
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Figure 7.4: The pink dots are the edge points determined by a LiDAR ring (orange line) intersecting with the edge line
connecting two vertices (Xi and Xi`1). The distance between the two edge points on the same LiDAR ring is di. The
height and width of the shape is w and h, respectively.

7.3.2 Edge Points Determination

As mentioned in (7.2), V 1 are the 2D vertices of a candidate target. An edge point Ei is defined
by the intersection point of a LiDAR ring and the line connecting two vertices of the polygon as
shown in Fig. 7.4. If we let S be the boundary of the quadrilateral with vertices V 1, the collection
of edge points detected by the LiDAR is the set EP :“ tEiu

M

i“1
, where M is the number of edge

points and is given by the intersection of S with the LiDAR rings LR, i.e.

S “ BconvpV
1
q, tEiu

M

i“1
“ S X LR. (7.7)

When the LiDAR rings are horizontal py “ yrq, an edge point Ei “ pqxi, qyiq can always be computed
in closed form,

qxi “ xi `
xi`1 ´ xi

yi`1 ´ yi
pyr ´ yiq and qyi “ yr. (7.8)

7.3.3 Shape Sensitivity

From experience gained in LiDARTag [39], we observed that the pose estimation suffers the
most from in-plane rotation. Therefore, we compute the shape sensitivity in SEp2q. The sensitivity
of a polygon is defined as the gradient of the edge points with respect to rigid-body transformations
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of the polygon, with the LiDAR rings held constant, as shown in Fig. 7.5. Hence, the sensitivity
captures the horizontal movement of an edge point after the shape is rotated and translated.

For a transformation in the Special Euclidean group H P SEp2q, let E 1
i
, denote the transformed

edge point by

E 1
i
:“ H ˝ Ei “

»

—–
cos ✓ ´ sin ✓ tx

sin ✓ cos ✓ ty

0 0 1

fi

�fl

»

—–
qxi

qyi
1

fi

�fl , (7.9)

where ✓, tx, ty are the rotation angle, the translation on x-axis, and the translation on y-axis,
respectively. Denote Expp,!, u, vq as the exponential map that maps from the Lie algebra sep2q

to the continuous Lie group SEp2q,

Expp,!, u, vq “ expm

¨

˚̋


»

—–
0 ´! u

! 0 v

0 0 0

fi

�fl

˛

‹‚

“

»

—–
cosp!q ´ sinp!q

1

!
pv cosp!q ` u sinp!q ´ vq

sinp!q cosp!q
1

!
pv sinp!q ´ u cosp!q ` uq

0 0 1

fi

�fl , (7.10)

where p!, u, vq parameterize the unit sphere S2
Ä R3, expm is the usual matrix exponential, and 

is a dummy variable for differentiation. Comparing H in (7.9) and (7.10) leads to
$
’’’&

’’’%

✓ “ !

tx “
1

!
pv cosp!q ` u sinp!q ´ vq

ty “
1

!
pv sinp!q ´ u cosp!q ` uq.

(7.11)

For each triple of values p!, u, vq, the action of (7.10) on a candidate target quadrilateral results a
path pipq :“ pipExpp!,u,vqq being traced out by the edge points along a LiDAR ring. Using
(7.11) to differentiate the path pi at the identity of SEp2q produces an action of se2,

vip!, u, vq :“
d

dt

ˇ̌
ˇ̌
“0

pipExpp!,u,vqq, p!, u, vq P se2. (7.12)

From (7.8), (7.10), (7.11), and (7.12), the gradient of the edge point with respect to the LiDAR ring
is

vix “!

ˆ
pxi ´ xi`1qpxiyi`1 ´ yixi`1 ` xi`1yr ´ xiyrq

pyi ´ yi`1q
2

´ yr

˙

` u `

ˆ
xi`1 ´ xi

yi`1 ´ yi

˙
v.

(7.13)
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Figure 7.5: Shape sensitivity under rotation. The sensitivity of a shape is defined by the gradient (vix) of each edge point
as it moves along the ring lines (orange) under rotations and translations of the shape. The green dots are the original
edge points and the pink dots are the edge points on the rotated shape. The same process can be done for translation.
The left shows a gradient vix of a square where the dotted square has been rotated from the nominal positioned square.
The right shows that the gradient of an edge point on a circle is zero under rotation about its center. The gradient would
be non-zero for translations.

Notice that viy “ 0 because the y-coordinates of HpV
1
q X LR remain fixed.

Finally, we define the sensitivity M of the polygon

MpV ,LR,!, u, vq :“
1

h

Mÿ

i“1

v2
ix
, (7.14)

where M is the number of edge points, and h, defined in Fig. 7.4 is included because gradients in
(7.13) scale with vertical height.

7.3.4 Initial Cost Function

The candidate target’s sensitivity defined in (7.14) does not take into account the discrete nature
of the LiDAR returns on a given ring. Let di denote the distance between two edge points on the i-th
LiDAR ring. We want to encourage targets that have di larger than the spatial quantization of the
LiDAR returns. We can do this in two ways, by scaling (7.14) by w and by including a term in the
cost of the form

∞
K

i“1
di (di is larger for wider targets). The resulting score of shape ( ) becomes

 “ wM ` µ
Kÿ

i“1

di, (7.15)
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where w is the width of the polygon, K is the number of rings illuminating the polygon, and µ is a
weight trading off the two terms in the cost function.

7.4 Robust Shape for Real LiDAR Sensors

In previous section (Sec. 7.3.4), we added an extra term to (7.15) to account for the discrete
measurements in azimuth direction of the LiDAR. Additionally, LiDARs have different ring
densities at different elevation angles. For example, 32-Beam Velodyne ULTRA Puck LiDAR has
dense ring density between ´5

˝ and 3
˝, and has sparse ring density from ´25

˝ to ´5
˝ and from 3

˝

to 15
˝ [127]. A target could be partially illuminated in the sparse region, as shown in Fig. 7.6(a).

Therefore, assuming edge points are uniformly distributed is not practical and using a distribution of
edge points that is similar to reality is critical while maximizing (7.15). Additionally, LiDAR rings
from mobile robots are not always parallel to the ground plane. We account for non-horizontal
LiDAR rings by rotating the candidate target.

7.4.1 Partial Illumination of Target

To have the shape being robust to illuminated area and the angle of the rings with respect to
the target, we first rotate the generated polygon n times, and then divide the rotated polygon into
m areas. Only one area is illuminated by LiDAR rings at a time to determine edge points and to
compute the score (7.15),  ij , for 1 § i § n and 1 § j § m. Figure 7.6(b) shows the edge points
being determined for a partially illuminated target. Equation (7.15) is consequently evaluated nˆm

times for illumination of the target and the lowest among the n ˆ m scores is the final score of the
candidate target shape.

7.4.2 Optimization for the Optimal Shape

To summarize, the resulting optimization problem depends on the projective transformation
parameters that are used to generate a convex polygon, edge points illuminated by horizontal
LiDAR rings lied on the rotated quadrilateral, the transformation of the edge points in se2, and
distances between two edge points on the corresponding LiDAR rings. Thus, the optimization
problem is defined as:

P˚
“ argmin

P
min
!,u,v

max
i,j

t´ iju. (7.16)

The optimization problem (7.16) was (locally) solved by fmincon in MATLAB, after the
optimization parameters were randomly initialized. We rotated the generated polygon six times.
Each rotated polygon was divided into five areas, and four LiDAR rings were used to illuminate
one area at a time. The unit sphere of unit vectors in sep2q, mentioned in Sec. 7.3.3, was discretized
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(a) (b)

Figure 7.6: The left shows a partially illuminated candidate shape. Because we also rotate the target when computing a
score, we can without loss of generality use horizontal strips to partially occlude the target. The right shows that the
target is divided into m-areas of partial illumination, and that for each of n-rotations of the candidate target, a score is
assigned to each subarea based on (7.15). The final score of the shape is the lowest among the n ˆ m scores.

into 25 ˆ 25 faces (by normalizing the vectors to have unit length, we can reduce the dimension
from three to two). Once the generated polygon was rotated and illuminated, the sensitivity of the
resulting edges points were evaluated at each face on the unit sphere. The resulting optimal shape is
shown in Fig. 7.7. One can observe that the resulting shape satisfies: 1) it has sufficient area so as to
collect LiDAR returns; 2) the length of the shortest side is still long enough to be identified through
edge points; 3) its asymmetric shape avoids the issue of pose ambiguity.

Remark 26. The main point of this chapter is that target shape can be used to enhance the
estimation of target vertices and relative pose between a target and a LiDAR. We have proposed
one algorithmic means to produce an “optimal target shape”. Different notions of cost will result in
different shapes.

7.5 Global Pose and Feature Estimation

In this section, we propose a means to use known target geometry to extract target vertices while
globally estimating relative pose between target and LiDAR. For a collection of LiDAR returns
T P :“ tXiu

N

i“i
, let EP :“ tEiu

M

i“1
P T P be the M target edge points. Given the target geometry,

we define a template with vertices tX̄iu
4

i“1
located at the origin of the LiDAR and aligned with

the y-z plane as defined in Fig. 7.8. We also denote L :“ t`iu4i“1
as the line equations of the

adjacent vertices of the template. We seek a rigid-body transformation from the template to the
target, HT

L
P SEp3q, that “best fits” the template onto the edge points. In practice, it is actually easier

to project the edge points EP back to the origin of the LiDAR through the inverse of the current
estimate of transformation HL

T
:“

`
HT

L

˘
1́ and measure the error there. The action of H P SEp3q on

R3 is H ¨ Xi “ RXi ` t, where R P SOp3q and t P R3.
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Figure 7.7: The resulting optimal shape from (7.16) in arbitrary units.

The cost ji of edge point Ei P EP is defined as the point-to-line distance,

jipEi;Lq “ min
`iPL

}Ei ´ `i}
2

2
(7.17)

where L is the set of line equations for the target. Let tĒiu
M

i“1
:“ HL

T
pEPq “ tHL

T
¨ Eiu

M

i“1
denote

the projected points by HL

T
. The total fitting error is defined as

JpHL

T
pEPqq :“

Mÿ

i“1

jipĒiq (7.18)

To minimize (7.18), we adopt techniques that were used to globally solve 3D registration or 3D
SLAM [1, 82–84] where the problem is formulated as a QCQP, and the Lagrangian dual relaxation
is used. The relaxed problem becomes a SDP and convex. The problem can thus be solved globally
and efficiently by off-the-shelf specialized solvers [85]. As shown in [84], the dual relaxation is
empirically always tight (the duality gap is zero).

Once we (globally) obtain HL

T
, the pose of the target is HT

L
“ pHL

T
q

1́, and the estimated vertices
are tÄXiu

4

i“i
:“ tHT

L
¨ X̄iu

4

i“1
. The edge-line equations, the normal vector, and the plane equation of

the target can be readily obtained from the vertices.

7.6 Simulation Results

Before carrying out experiments with the new target shape, we used a MATLAB-based
LiDAR simulator introduced in [21] to extensively evaluate the pose and vertex estimation of
the optimal shape. Both quantitative and qualitative results are provided. We do not compare against
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Figure 7.8: Pose definition and illustration of template fitting. A coordinate frame for the template (target shown in
black) is defined by aligning the plane of the template with the y-z plane of the LiDAR frame and also aligning the
mean of its vertices with the origin of the LiDAR. Let HL

T (blue arrow) be an estimate of the rigid-body transformation
from target to LiDAR, projecting the edge points of the target back to the template. The estimated pose of the target is
then given by the inverse transformation, HT

L (green arrow). The optimal HL
T is obtained by minimizing (7.18) (based

on point-to-line distance). This figure also shows a fitting result of a target at 2 meters in the Ford Robotics Building.
The red frame is the template re-projected onto the LiDAR point cloud by H

T
L .

Figure 7.9: Simulation results of the noise-free dataset of the pose estimation at various distances (10, 20, 30, 40 m).
LiDAR returns (blue dots) on the target are provided by the LiDAR simulator. Black indicates the ground truth pose
from the simulator, and red is the estimated pose and vertices. The top and bottom show the front view and a side view
of the fitting results, respectively.
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Figure 7.10: Simulation results with a target placed at distances from 2 to 40 meters in 2 m increments in the
LiDAR simulator. At each distance, the simulation data are collected with the target face-on to the LiDAR as an easy
case (solid line), and for the other, the target is rotated by the Euler angle (roll = 20

˝, pitch = 30
˝, yaw = 30

˝) as a
challenging case (dashed line). In addition, we induce two different levels of noises to each dataset, as indicated by the
different colors.

standard targets, such as unpatterned rectangles, diamonds, or circles, because their symmetry
properties result in pose ambiguity. At large distances, a pattern would not be discernible.

We simulate a 32-Beam Velodyne ULTRA Puck LiDAR, whose data sheet can be found at [127].
A target is placed at distances from 2 to 40 meters in 2 m increments. At each distance, simulation
data is collected with a target face-on to the LiDAR as an easy case, and another dataset with the
target rotated by the Euler angles (roll = 20

˝, pitch = 30
˝, yaw = 30

˝) under the XY Z convention as
a challenging case. In addition, we induce two different levels of noise to each dataset to examine
the robustness of the algorithm.

The results of vertex estimation are reported as the Root-Mean-Square-Error (RMSE):

RMSE “

gffe1

4

4ÿ

i“1

}ÄXi ´ Xi}
2

2
, (7.19)

where ÄXi is the estimated vertex and Xi is the ground truth vertex from the simulator. The pose on
SEp3q is evaluated on translation et in R3 and rotation er on SOp3q, separately. In particular, et and
er are computed by

et :“ }t ´ rt} and er :“ }LogpR rRT
q}, (7.20)
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where } ¨ } is the Euclidean norm, r̈ is the estimated quantity, R and t are the ground truth rotation
and translation, respectively, and Logp¨q is the logarithm map in the Lie group SOp3q. Additionally,
we also report the percentage of the RMSE and translation error, which are computed by each
quantity divided by the centroid of the target. The quantization error eq is the distance between two
adjacent points on the same ring and can be approximated by the azimuth resolution (0.4˝) of the
LiDAR times the target distance.

Qualitative results are shown in Figure 7.9. The complete quantitative results of the distances
and noise levels are shown as line charts in Fig. 7.10. Table 7.1 shows a subset of quantitative
results of the pose and vertex estimation using the noise-free dataset. For vertex estimation, we
achieve less than 1% error in most cases. The translation errors are less than the quantization error
eq. We also achieve a few degrees of rotation errors. It can be seen that the estimation limit of the
optimal target of width 0.96 meter with our 32-Beam Velodyne ULTRA Puck LiDAR optimal is 30
meters. However, for a LiDAR with a different number of beams or points, the estimation limit
may be different. Based on these results, we were motivated to build the target and run physical
experiments.

7.7 Experimental Results

We now present experimental evaluations of the pose and vertex estimation of the optimal shape.
All the experiments are conducted with a 32-Beam Velodyne ULTRA Puck LiDAR and an Intel
RealSense camera rigidly attached to the torso of a Cassie-series bipedal robot, as shown in Fig. 7.11.
We use the ROS [81] to communicate and synchronize between the sensors. Datasets are collected
in the atrium of the Ford Robotics Building at the University of Michigan, and a spacious outdoor
facility, M-Air [143], equipped with a motion capture system.

7.7.1 Quantitative Experimental Results in M-Air

The Qualisys motion capture system in M-Air is used as a proxy for ground truth poses and
vertices. The setup consists of 33 motion capture cameras with passive markers attached to the
target, the LiDAR and the camera, as shown in Fig. 7.11 and Fig. 7.12. Datasets are collected at
various distances and angles. Each of the datasets contains images (20 Hz) and scans of point clouds
(10 Hz). Similar to the simulation environment, the optimal-shape target is placed at distances
from 2 to 16 meters (maximum possible in M-Air) in 2 meter increments. At each distance, data is
collected with a target face-on to the LiDAR and another dataset with the target roughly rotated
by the Euler angles (roll = 20

˝, pitch = 30
˝, yaw = 30

˝) as a challenging case. The results are
shown in Table 7.2. As expected, the results are slightly worse (approximately one degree) than the
simulator’s due to the white noise of the LiDAR and many missing returns on the targets, as shown
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Figure 7.11: The sensor suite consists of a LiDAR, a camera and several motion capture markers.

in Fig 7.13.

Remark 27. A Velodyne LiDAR return consists of the point’s Cartesian coordinates, intensity, and
ring number. For each ring, the first and the last point are the edge points of the ring. Since we
define a template at the LiDAR origin, we first center the target points by subtracting its centroid.
Each centered edge point is associated with the closest edge. Given the current association, we
estimate the pose and then redo edge-point-to-edge-line association. Therefore, the optimization
process is an alternating process. The optimization is terminated if }LogpHk´1Hkq} is smaller than
1e´5, where Logp¨q is the logarithm map.

7.7.2 Qualitative Experimental Results and Target Partial Illumination

For distances beyond 16 meters (the distance limit in M-Air), we present qualitative results from
the atrium in Fig. 7.13 to support the simulation-based analysis. The blue dots are LiDAR measure-
ments, and the red frame is the fitting result. Figure 7.14 illustrates a partially illuminated target
(the green dots are assumed missing and only blue dots are used for pose estimation); the resulting
fitting results are the red frame.

7.8 Conclusion

We presented the concept of optimizing target shape to enhance pose estimation for LiDAR point
clouds. We formulated the problem in terms of choosing a target shape that induces large gradients
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Figure 7.12: The Experimental setup. The left shows passive markers are attached to the four corners of the optimized
target shape and the right shows a LiDAR scan in M-Air.

Figure 7.13: Fitting results of the optimal shape at various distances (20, 24, 28, 32 meters) in the atrium of the Ford
Robotics Building at the University of Michigan. The blue dots are the LiDAR returns on the target and the red frame
are the fitting results. The top and bottom show the front view and a side view of the results, respectively.

at edge points under translation and rotation so as to mitigate the effects of quantization uncertainty
associated with point cloud sparseness. For additional robustness, the cost function or score for a
candidate target was defined to be the minimum score under a set of relative rotations of the edge
points; this had the effect of breaking symmetry in the candidate target, which also removes pose
ambiguity.
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Table 7.1: Pose and vertex accuracy of the simulation results at various distances. The vertex estimation is computed by
(7.19). The quantization error eq is the distance between two adjacent points on the same ring. The translation error et
in meters and rotation error er in degrees are computed by (7.20).

Face-on LiDAR
Distance

[m]
No.

Points
eq

[m]
RMSE

[m]
RMSE

[%]
et

[m]
et

[%]
er

[deg]
2.00 2530 0.01 0.01 0.49 0.002 0.11 0.71
4.00 1015 0.03 0.03 0.83 0.005 0.12 2.45
6.00 548 0.04 0.02 0.40 0.01 0.12 1.77
8.00 338 0.06 0.02 0.28 0.01 0.15 1.58

16.00 96 0.11 0.04 0.22 0.03 0.21 0.68
30.00 28 0.21 0.03 0.10 0.03 0.08 1.09
32.00 26 0.22 0.06 0.17 0.05 0.17 1.20

Extreme Angle (20, 30, 30)
Distance

[m]
No.

Points
eq

[m]
RMSE

[m]
RMSE

[%]
et

[m]
et

[%]
er

[deg]
1.94 1734 0.01 0.01 0.62 0.01 0.37 0.71
3.93 716 0.03 0.03 0.71 0.03 0.64 0.95
7.93 258 0.06 0.04 0.46 0.03 0.44 0.96

15.93 70 0.11 0.05 0.31 0.05 0.29 1.37
29.93 21 0.21 0.12 0.39 0.09 0.30 5.65
31.93 17 0.22 0.47 1.46 0.06 0.18 34.72

Figure 7.14: Fitting results of the partially illuminated target at various distances (4, 10, 22, 30 meters) in the atrium of
the Ford Robotics Building at the University of Michigan. The selected distances are different from Fig. 7.13 to show
more results. The red frames are the fitting results. The blue dots are the LiDAR returns on the targets while the green
dots are considered missing. The top and bottom show the front view and a side view of the fitting results, respectively.

For a given target, we used the target’s geometry to jointly estimate the target’s pose and its
vertices. The estimation problem was formulated so that an existing semi-definite programming
global solver could be modified to globally and efficiently compute the pose and vertices of the
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Table 7.2: Pose and vertex accuracy of the experimental results. The ground truth is provided by a motion capture
system with 33 cameras. The quantization error eq is the distance between two adjacent points on the same ring. The
translation error et in meters and rotation error er in degrees are computed by (7.20).

Face-on LiDAR
Distance

[m]
No.

Points
eq

[m]
RMSE

[m]
RMSE

[%]
et

[m]
et

[%]
er

[deg]
2.1487 3009 0.015 0.026 1.193 0.024 1.133 0.619
4.0363 1120 0.028 0.029 0.718 0.024 0.603 1.906
6.0877 527 0.042 0.033 0.544 0.03 0.5 1.426
7.9145 589 0.055 0.033 0.413 0.03 0.384 1.765
10.093 197 0.07 0.034 0.334 0.03 0.294 1.846
12.016 136 0.084 0.035 0.288 0.03 0.247 2.081
13.987 192 0.098 0.03 0.216 0.028 0.201 1.737
15.981 155 0.112 0.03 0.187 0.028 0.176 1.237
17.971 119 0.125 0.031 0.173 0.028 0.156 1.387

Extreme Angle (20, 30, 30)
Distance

[m]
No.

Points
eq

[m]
RMSE

[m]
RMSE

[%]
et

[m]
et

[%]
er

[deg]
2.0448 2708 0.014 0.048 2.364 0.027 1.304 4.577
4.1225 898 0.029 0.04 0.971 0.034 0.835 2.641
5.966 504 0.042 0.033 0.549 0.029 0.486 1.826

7.9452 276 0.055 0.052 0.656 0.031 0.395 4.633
9.9484 155 0.069 0.041 0.412 0.034 0.345 3.52
12.006 105 0.084 0.06 0.498 0.036 0.299 6.064
14.106 75 0.098 0.051 0.364 0.045 0.318 2.714
16.05 54 0.112 0.057 0.355 0.041 0.253 4.634

18.087 48 0.126 0.055 0.305 0.044 0.241 3.593

target. A LiDAR simulator generated synthetic ground truth of the target pose and vertices. We
validated that the combination of the optimal shape with the global solver achieved centimeter
error in vertex estimation, centimeter error in translation, and a few degrees off in rotation in
pose estimation when a partially illuminated target was placed 30 meters from the LiDAR . In
experiments, when compared to ground truth data collected by a motion capture system with 33
cameras, we achieved results similar to those of the simulations.

In the future, we shall establish a system to automatically detect the shape in both images
and LiDAR point clouds. If a dataset has been collected and labeled, automatic detection using
deep-learning architectures is also an exciting future direction. Currently, the proposed algorithm
assumes the point cloud has been motion compensated; how to adopt motion distortion into the
algorithm is another direction for future work. Applying it as a fiducial marker system or as an
automatic calibration system also offers another interesting area for further research. Furthermore,
applying the proposed algorithm to 3D target shape fitting and generating shapes with more sides
provide interesting research directions.
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Part III

Motion Planning System for Legged Robots

CHAPTER 8

Informable Multi-Objective and Multi-Directional RRT˚ System for Robot
Path Planning

8.1 Introduction and Contributions

Multi-objective or multi-destination path planning is a key enabler of applications such as data
collection [157–161], traditional TSP [162, 163], and electric vehicle charging for long trips. More
recently, autonomous “Mobility as a Service” (e.g., autonomous shuttles or other local transport
between user-selected points) has become another important application of multi-objective planning
such as car-pooling [164–172] Therefore, being able to efficiently find paths connecting multiple
destinations and to determine the visiting order of the destinations (essentially, a relaxed TSP) is
critical for modern navigation systems deployed by autonomous vehicles and robots. This chapter
seeks to solve these two problems by developing a system composed of a sampling-based anytime
path planning algorithm and a relaxed-TSP solver.

Another application of multi-objective path planning is robotics inspection, where a list of
inspection waypoints is often provided so that the robot can preferentially examine certain equipment
or areas of interest or avoid certain areas in a factory, for example. The pre-defined waypoints can
be considered as prior knowledge for the overall inspection path the robot needs to construct for
task completion. We show that the proposed system can inherently incorporate such knowledge.

To represent multiple destinations, graphs composed of nodes and edges stand out for their
sparse representations. In particular, graphs are a popular representation of topological landscape
features, such as terrain contour, lane markers, or intersections [173]. Topological features do not
change often; thus, they are maintainable and suitable for long-term support compared to High-
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(a) (b)

(c) (d)

Figure 8.1: Illustration of the proposed informable multi-objective and multi-directional RRT˚ (IMOMD-RRT˚)
system evaluated on OpenStreetMap of Chicago, containing 866, 089 nodes and 1, 038, 414 edges. The green, red, and
orange dots are the source, target, and objectives, respectively. (a) shows the initial stage of the tree expansion of each
destination. (b) shows the trees from each destination form a connected graph. (c) shows the first path and visiting order
from the IMOMD-RRT˚. Given more computation time, (d) shows that IMOMD-RRT˚ returns a better path and order.

Definition (HD) maps. Graph-based maps such as OpenStreetMap [173] have been developed over
the past two decades to describe topological features and are readily available worldwide. Therefore,
we concentrate on developing the proposed informable multi-objective and multi-directional Rapidly
Exploring Random Trees (RRTs) (RRT˚) system for path planning on large and complex graphs.

A multi-objective path planning system is charged with two tasks: 1) find weighted paths (i.e.,
paths and traversal costs), if they exist, that connect the various destinations. This operation results
in an undirected and weighted graph where nodes and edges correspond to destinations and paths
connecting destinations, respectively. 2) determine the visiting order of destinations that minimizes
total travel cost. The second task, called relaxed TSP, differs from standard TSP in that we are
allowed to (or sometimes have to) visit a node multiple times; see Sec. 8.2.3 for a detailed discussion.
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Figure 8.2: Illustration of the proposed IMOMD-RRT˚ system. It consists of an anytime informable multi-objective
and multi-directional RRT˚ (IMOMD-RRT˚) algorithm to construct a connected weighted-undirected graph, and a
polynomial-time solver to solve the relaxed TSP. The solver consists of an enhanced version of the cheapest insertion
algorithm [178] and a genetic algorithm [179–181], called ECI-Gen solver. The full system (the blue box) will continue
to run to further improve the solution over time.

Several approaches [174–177] have been developed to solve each of these tasks separately, assuming
either the visiting order of the destinations is given, or a cyclic/complete graph is constructed and
the weights of edges are provided. However, in real-time applications, the connectivity of the
destinations and the weights of the paths between destinations (task 1) as well as the visiting order
of the destinations (task 2) are often unknown. It is crucial that we are able to solve these two
tasks concurrently in an anytime manner, meaning that the system can provide suboptimal but
monotonically improving solutions at any time throughout the path cost minimization process.

In this chapter, we seek to develop an anytime iterative system to provide paths between multiple
objectives and to determine the visiting order of destinations; moreover, the system should be
informable meaning it can accommodate prior knowledge of intermediate nodes, if available.
The proposed system consists of two components: 1) an anytime informable multi-objective
and multi-directional RRT˚ (IMOMD-RRT˚) algorithm to form a connected weighted-undirected
graph, and 2) a relaxed TSP solver that consists of an enhanced version of the cheapest insertion
algorithm [178] and a genetic algorithm [179–182], which together we call ECI-Gen. The proposed
system is evaluated on large-complex graphs built for real-world driving applications, such as
the OpenStreetMap of Chicago containing 866, 089 nodes and 1, 038, 414 edges that is shown in
Fig. 8.1.

The overall system is shown in Fig. 8.2 includes the following contributions:
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1. An anytime informable multi-objective and multi-directional RRT˚ (IMOMD-RRT˚) system
that functions on large-complex graphs. The anytime features means that the system quickly
constructs a path on a large-scale undirected weighted graph that meets the existence constraint
(the solution path must passes by all the objectives at least once), and the order constraint
(with fixed starting point and end point). Therefore, the resulting weighted reduced graph
containing the objectives, source, and target is connected.

2. The problem of determining the visiting order of destinations of the connected graph is
a relaxed TSP (R-TSP) with fixed start and end nodes, though intermediate nodes can
be (or sometimes must be) visited more than once. We introduce the ECI-Gen solver,
which is based on an enhancement of the cheapest insertion algorithm [178] and a genetic
algorithm [179–182] to solve the R-TSP in polynomial time.

3. We show that prior knowledge (such as a reference path) for robotics inspection of a pipe
or factory can be readily and inherently integrated into the IMOMD-RRT˚. In addition,
providing the prior knowledge to the planner can help navigate through challenging topology.

4. We evaluate the system comprised of IMOMD-RRT˚ and the ECI-Gen solver on large-scale
graphs built for real world driving applications, where the large number of intermediate
destinations precludes solving the ordering by brute force. We show that the proposed
IMOMD-RRT˚ outperforms bi-directional A˚ [183] and ANA˚ [184] in terms of speed and
memory usage in large and complex graphs. We also demonstrate by providing a reference
path, the IMOMD-RRT˚ escapes from bug traps (e.g., single entry neighborhoods) in complex
graphs.

5. We open-source the multi-threaded C++ implementation of the system at
https://github.com/UMich-BipedLab/IMOMD-RRTStar.

The remainder of this chapter is organized as follows. Section 9.2 summarizes the related work.
Section 8.3 explains the proposed anytime informable multi-objective and multi-directional RRT˚ to
construct a simple connected graph. The ECI-Gen solver to determine the ordering of destinations
in the connected graph is discussed in Sec. 8.4. Experimental evaluations of the proposed system on
large-complex graphs are presented in Sec. 8.5. Finally, Sec. 8.6 concludes the chapter and provides
suggestions for future work.

8.2 Related Work

Path planning is an essential component of robot autonomy. In this section, we review several
types of path planning algorithms and techniques to improve their efficiency. Furthermore, we
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compare the proposed system with existing literature on car-pooling/ride-sharing and the traveling
salesman problem.

8.2.1 Common Path Planners

Path planners are algorithms to find the shortest path from a single source to a single target.
Graph-based and sampling-based algorithms are the two prominent categories.

Graph-based algorithms [183–192] such as Dijkstra [186] and A˚ [185] discretize a continuous
space to an undirected graph composed of nodes and weighted edges. They are popular for their
efficiency on low-dimensional configuration spaces and small graphs. There are many techniques
[183, 184, 187–189] to improve their computation efficiency on large graphs. Inflating the heuristic
value makes the A˚ algorithm likely to expand the nodes that are close to the goal and results
in sacrificing the quality of solution. Anytime Repairing A˚ (ARA˚) [188] utilizes weighted
A˚ and keeps decreasing the weight parameter at each iteration, and therefore leads to a better
solution. Anytime Non-parametric A˚ (ANA˚) [184] is as efficient as ARA˚ and spends less time
between solution improvements. R˚ [187] is a randomized version of A˚ to improve performance.
Algorithms such as Jumping Point Search [189] to improve exploration efficiency only work for grid
maps. However, graph-based algorithms inherently suffer from bug traps, whereas sampling-based
methods can overcome bug traps more easily via informed sampling; see Sec. 8.5 for a detailed
discussion.

Sampling-based algorithms such as Rapidly Exploring Random Tree (RRT) [193] stand out for
their low complexity and high efficiency in exploring higher-dimensional, continuous configuration
spaces. Its asymptotically optimal version – RRT˚ [44, 194, 195] – has also gained much attention
and has contributed to the spread of the RRT family. More recently, sampling-based algorithms
on discrete spaces such as RRLT and d-RRT˚ have been applied to multi-robot motion planning
[196–199]. We seek to leverage RRT˚ to construct a simple connected graph that contains multiple
destinations from a large-complex map, as well as to accommodate prior knowledge of a reference
path.

8.2.2 Car-Pooling and Ride-Sharing

Problems such as car-pooling, ride-sharing, food delivery, or combining public transportation
and car-pooling handle different types of constraints such as maximum seats, time window, battery
charge, number of served requests along with multiple destinations [164–172, 200–203]. These
problems are usually solved by Genetic Algorithms [164], Ant Colony Optimization [167, 203],
Dynamic Programming (DP) [172, 200] or reinforcement learning [166, 202]. These methods
assume, however, that weighted paths between destinations in the graph are already known [164,

105



(a) (b)

Figure 8.3: (a) shows a simple connected graph where the objectives have to be visited twice to visit all destinations.
(b) shows the case where revisiting the source vs allows a shorter path when triangular inequality does not hold.

166–168, 171, 200, 203], while in practice, the connecting paths and their weights are unknown and
must be constructed.

8.2.3 Multi-objective Path Planners and Traveling Salesman Problem

Determining the travel order of nodes in an undirected graph with known edge weights is referred
to as a Traveling Salesman Problem (TSP). The TSP is a classic NP-hard problem about finding a
shortest possible cycle that visits every node exactly once and returns to the start node [162, 163].
Another variant of TSP, called the shortest Hamiltonian path problem [162], is to find the shortest
path that visits all nodes exactly once between a fixed starting node (vs) and a fixed terminating
node (vt). The problem can be solved as a standard TSP problem by assigning sufficiently large
negative cost to the edge between vs and vt [162, 163].

We are inspired by the work of [174, 176], where the authors propose to solve the problem
through a single-phase algorithm in simulated continuous configuration spaces. They first leverage
multiple random trees to solve the multi-goal path planning problem and then solve the TSP via
an open-source solver. In particular, they assume that the paths between nodes in the continuous
spaces can be constructed in single pass and that the resulting graph can always form a cycle in
their simulation environment. Thus, the problem can then be solved by a traditional TSP solver. In
practice, however, the graph might not form a cycle (e.g., an acyclic graph or a forest) as shown in
Fig. 8.3(a), and even if the graph is cyclic or there exists a Hamiltonian path, there is no guarantee
the path is the shortest. In Fig. 8.3(b), the Hamiltonian path simply is vs Ñ o1 Ñ vt, and the
traversed distance is 12. However, another shorter path exists if we are allowed to traverse a node
(vs in this case) more than once: vs Ñ o1 Ñ vs Ñ vt and the distance is 7. We therefore propose a
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polynomial-time solver for this relaxed TSP problem; see Sec. 8.4 for further discussion.

8.3 Informable Multi-Objecticve and Multi-Directional RRT˚

This section introduces an anytime informable multi-objective and multi-directional Rapidly-
exploring Random Tree˚ (IMOMD-RRT˚) algorithm as a real-time means to quickly construct
from a large-scale map a weighted undirected graph that meets the existence constraint (the solution
trajectory must pass by all the objectives at least once), and the order constraint (with fixed
starting point and end point). In other words, the IMOMD-RRT˚ forms a simple1 connected graph
containing the objectives, source, and target.

8.3.1 Standard RRT˚ Algorithm

The original RRT˚ [194] is a sampling-based planner with guaranteed asymptotic optimality
in continuous configuration spaces. In general, RRT˚ grows a tree where nodes are connected by
edges of linear path segments. Additionally, RRT˚ considers nearby nodes of a newly extended
node when choosing the best parent node and when rewiring the graph to find shorter paths for
asymptotic optimality.

8.3.2 Multi-objective and Multi-directional RRT˚ on Graphs

In this chapter, we use map to refer to the input graph, which might contain millions of nodes,
and use graph to refer to the graph composed of only the destinations including the source and target
node. The proposed IMOMD-RRT˚ differs from the original RRT˚ in six aspects when growing
a tree. First, the sampling is performed by picking a random vrand in the map, and not from an
underlying continuous space. The goal bias is not only applied to the target but also the source
and all the objectives. Second, a steering function directly finds the closest expandable node as
vnew to the random node vrand, without finding the nearest node in the tree, as shown in Fig. 8.4(a).
Note that instead of directly sampling from the set of expandable nodes, sampling from the map
ameliorates the bias of sampling on the explored area. Third, the parent node is chosen from the
nodes connected with the new node vnew, called the neighbor nodes. Among the neighbor nodes,
the node that yields the lowest path cost from the root becomes the new node’s parent. Fourth,
the jumping point search algorithm [189] is also leveraged to speed up tree exploration. Fifth, the
IMOMD-RRT˚ rewires the neighborhood nodes to minimize the accumulated cost from the root of
a tree to vnew, as shown in Fig. 8.4(b). Lastly, if vnew belongs to more than one tree, this node is
considered a connection node, which connects the path between destinations, as shown in Fig. 8.5.

1A simple graph, also called a strict graph, is an unweighted and undirected graph that contains no graph loops or
multiple edges between two nodes [204].
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Figure 8.4: Illustration of tree expansion and connection nodes of a tree. The unexplored paths in the graph and the
spanning tree are represented by the gray and yellow lines, respectively. The green-dashed circles are the expandable
nodes. (a) shows the tree Ti extends to the vrand by growing a node vnew to the closest expandable node. (b) shows the
updated set Xi of expandable nodes and the tree is rewired around the vnew. The rewired nodes vnear are represented as
the blue dots.

Our proposed graph-based RRT˚ modification is summarized below with notation that generally
follows graph theory [204]. A graph G is an ordered triple pVpGq, EpGq,�Gq, where VpGq “ tv P ⇣u

is a set of nodes in the robot state space ⇣, EpGq is a set of edges (disjoint from VpGq), and an
indication function �G that associates each edge of G with an unordered pair (not necessarily
distinct) of nodes of G.

Given a set of destinations D “ tdi|di P tvs, vtu Y Ou
m`2

i“1
, where vs P VpGq is the source node,

vt P VpGq is the target node, and O Ñ VpGq is the set of m objectives, the IMOMD-RRT˚ solves
the multi-objective planning problem by growing a tree Ti “ pV,Eq, where V Ñ VpGq is a set of
nodes connected by edges E Ñ EpGq, at each of the destinations di P D. Thus, it leads to a family
of trees T “ tT1, ¨ ¨ ¨ , Tm, Tm`1, Tm`2u.

The proposed IMOMD-RRT˚ explores the graph G by random sampling from VpGq and extend-
ing nodes to grow each tree. We explain a few important functions of IMOMD-RRT˚ below.

8.3.2.1 Tree Expansion

Let N pvq be the set of nodes directly connected with a node, i.e., the neighborhood of a node
v [204]. A node is expandable if there exists at least one unvisited node connected and at least one
node of the tree connected, shown as the dashed-green circles in Fig 8.4(a). Let Xi be the set of
expandable nodes of the tree Ti. A random node vrand is sampled from the nodes of the graph VpGq.
Next, find the nearest node vnew in the set of expandable nodes Xi:

vnew “ argmin
vPXi

Distpv, vrandq, (8.1)
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Figure 8.5: Illustration of better connection nodes resulting in a better path. Two trees rooted at di and dk are marked
in yellow and green, respectively. The highlighted purple line shows the shortest path between di and dk. The newly
extended node vnew (dashed-red circles) is added to a set of connection nodes Cik. The element of the distance matrix,
Aik, and the connection node c

˚
ik that generates the shortest path between the destination di and dk are updated as a

shorter path is found.

where Distp¨, ¨q is the distance between two states. Next, the jumping point search algorithm [189]
is utilized to speed up the tree expansion. If the current vnew has only one neighbor that is not
already in the tree, vnew is added to the tree and that one neighbor is selected as the new vnew. This
process continues until vnew has at least two neighbors that are not in tree, or it reaches vrand.

8.3.2.2 Parent Selection

Let the set Nipvnewq be the neighborhood of the vnew in the tree Ti. The node vnear in Nipvnewq

that results in the smallest cost-to-come, Costp¨, ¨q, is the parent of the vnew and is determined by:

vparent “ argmin
vnearPNipvnewq

tCostpTi, vnearq ` Distpvnear, vnewqu. (8.2)

Next, all the unvisted nodes in Nipvnewq are added to the set of expandable nodes Xi.

8.3.2.3 Tree Rewiring

After the parent node is chosen, the nearby nodes are rewired if a shorter path reaching the
node through the vnew is found, as shown in Fig. 8.4(b). The rewiring step guarantees asymptotic
optimality, as with the classic algorithm.

8.3.2.4 Update of Tree Connection

A node is a connection node if it belongs to more than one tree. Let Cik be the set of connection
nodes between Ti and Tk, and let c˚

ik
denote the node that connects Ti and Tk with the shortest
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Figure 8.6: Illustration of the rewired path of pseudo-destinations. d1 ´ d4 are the destinations and marked in different
colors. The dashed-red circles are the connection nodes between two trees. The thick purple line is the final path.
(a) shows the resulting path as if d1 ´ d4 are “true” destinations, and (b) is the resulting path as if d2 ´ d3 are
“pseudo” destinations. The real destinations have to be visited as shown in (a), whereas pseudo destinations are artificial
destinations to help form a connected graph, and might no longer be visited after rewiring

distance
c˚
ik

“ argmin
cPCik

tCostpTi, cq ` CostpTk, cqu. (8.3)

Let Apm`2qˆpm`2q be a distance matrix that represents pairwise distances between the destina-
tions, where m is the number of objectives. The element Ai,k indicates the shortest path between
destinations di and dk, as shown in Fig. 8.5(b). Ai,k is computed as

Ai,k “ CostpTi, c
˚
ik

q ` CostpTk, c
˚
ik

q. (8.4)

8.3.3 Discussion of Informability

As mentioned in Sec. 8.1, applications such as robotic inspection or vehicle routing might
consider prior knowledge of the path, so that the robot can examine certain equipment or area
of interests or avoid certain areas in a factory. The prior knowledge can be naturally provided
as a number of “pseudo destinations” or samples in the IMOMD-RRT˚. A pseudo destination is
an artificial destination to help IMOMD-RRT˚ to form a connected graph. However, unlike true
destinations that will always be visited, a pseudo destination might not be visited after rewiring, as
shown in Fig. 8.6. Prior knowledge through pseudo destinations can also be leveraged to traverse
challenging topology, such as bug-traps; see Sec. 8.5.

Remark 28. One can decide if the order of the pseudo destinations should be fixed or even the
pseudo destinations should be objectives (i.e., they will not be removed in the rewiring process.).
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8.4 Enhanced Cheapest Insertion and Genetic Algorithm

This section introduces a polynomial-time solver for the Relaxed Traveling Salesman Problem
(R-TSP).

8.4.1 Relaxed Traveling Salesman Problem

The R-TSP differs from standard TSP [162, 163, 205] in two perspectives. First, nodes are
allowed to be visited more than once, as mentioned in Sec. 8.2.3. Second, we have a source node
where we start and a target node where we end. Therefore, the R-TSP can also be considered a
relaxed Hamiltonian path problem [162, 205]. We propose the ECI-Gen solver, which consists of an
enhanced version of the cheapest insertion algorithm [178] and a genetic algorithm [179–181] to
solve the R-TSP. The complexity of the proposed solver is OpN3

q, where N is the cardinality of
the destination set D.

8.4.2 Graph Definitions and Connectivity

In graph theory [204, 206], a graph is simple or strict if it has no loops and no two edges join
the same pair of nodes. In addition, a path is a sequence of nodes in the graph, where consecutive
nodes in the sequence are adjacent, and no node appears more than once in the sequence. A graph is
connected if and only if there is a path between each pair of destinations. Once all the destinations
form a simple-connected graph, there exists at least one path ⇡ that passes all destinations D. We
can then consider the problem as an R-TSP (see Sec. 8.4.1), where we have a source and target
node as well as several objectives to be visited. Therefore, we impose the graph connectivity and
simplicity as sufficient conditions to solve the R-TSP. The disjoint-set data structure [207, 208] is
implemented to verify the connectivity of a graph.

8.4.3 Enhanced Cheapest Insertion Algorithm

The regular cheapest insertion algorithm [178] provides an efficient means to find a sub-optimal
sequence that guarantees less than twice the optimal sequence cost. However, it does not handle the
case where revisiting the same node makes a shorter sequence. Therefore, we propose an enhanced
version of the cheapest insertion algorithm, which comprises of a set of actions: 1) in-sequence
insertion, �in-sequence, which is the regular cheapest insertion; 2) in-place insertion, �in-place, to allow
the algorithm to revisit existing nodes; and 3) swapping insertion, �swapping, which is inspired by
genetic algorithms. Finally, sequence refinement is performed at the end of the algorithm.

Let the current sequence be Scurrent “ tvs, s1, ¨ ¨ ¨ , si, si`1, ¨ ¨ ¨ , sn, vtu to indicate the visiting
order of destinations, where st¨u P D and pn ` 2q is the number of destinations in the sequence.
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Figure 8.7: Illustration of the insertion cost. (a) shows the in-place insertion and the resulting sequence contains
duplicated si. (b) shows the in-sequence insertion without a duplicated element.

The travel cost ✓p¨, ¨q is the path distance between two destinations provided by the IMOMD-RRT˚.
The Scurrent is constructed by Dijkstra’s algorithm on the graph.

Remark 29. Scurrent possibly contains duplicated elements and si is not necessary di. Therefore,
the number of destinations in the sequence n may be larger than the actual number of destinations
m. Fig. 8.7(a) shows the duplicated case with Scurrent “ tvs, s1, ¨ ¨ ¨ , si, dk, si, si`1, ¨ ¨ ¨ , sn, vtu,
where si is duplicated. Figure 8.7(b) illustrates an unduplicated case where Scurrent “

tvs, s1, ¨ ¨ ¨ , si, dk, si`1,

¨ ¨ ¨ , sn, vtu.

Let K denote the set of destinations to be inserted, and let the to-be-inserted destination be dk

and its ancestor be si, where dk P K and si P Scurrent. Given a current sequence Scurrent, the location
to insert s˚, and the action of insertion �˚ are determined by

�˚, s˚
“ argmin

�jP⇤
siPScurrent

�jpsi, dkq, (8.5)

where ⇤ “ t�in-sequence,�in-place,�swappingu is the set of the insertion actions.

8.4.3.1 In-place Insertion �in-place

This step detours from si to dk, and the resulting sequence is
Smodified “ tvs, s1 ¨ ¨ ¨ , si, dk, si, si`1, ¨ ¨ ¨ , sn, vtu, as shown in Fig. 8.7(a). The insertion distance is

�in-placepsi, dkq “ 2✓psi, dkq. (8.6)
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8.4.3.2 In-sequence Insertion �in-sequence

This step inserts dk between si and si`1 (@si P tScurrent{pvtqu), and the resulting sequence is
Smodified “ tvs, s1, ¨ ¨ ¨ , si, dk, si`1, ¨ ¨ ¨ , sn, vtu, as shown in Fig. 8.7(b). The insertion distance is

�in-sequencepsi, dkq “ ✓psi, dkq ` ✓pdk, si`1q ´ ✓psi, si`1q. (8.7)

8.4.3.3 Swapping Insertion �swapping

The swapping insertion changes the order of nodes right next to the newly inserted node. There
are three cases in swapping insertion: swapping left, right, or both. For the case of swapping left,
the modified sequence is Smodified “ tvs, s1 ¨ ¨ ¨ , si´2, si, si´1, dk, si`1, ¨ ¨ ¨ , sn,

vtu by inserting dk between si and si`1 (@si P tScurrent{pvs, s1qu), and then swapping si and si´1.
The insertion distance of swapping left is

�swapping (left)psi, dkq “ ✓pdk, si`1q ´ ✓psi, si`1q

` ✓psi´1, dkq ` ✓psi´2, siq

´ ✓psi´2, si´1q.

(8.8)

The right swap is a similar operation except that it swaps si`1 and si`2 instead. Lastly, the case
of swapping both does a left swap (si and si`1) and then a right swap (si`1 and si`2).

8.4.3.4 Sequence Refinement

In-place insertion occurs when the graph is not cyclic or the triangular inequality does not hold
on the graph. The in-place insertion could generate redundant revisited nodes in the final result and
lead to a longer sequence. We further refine the sequence by skipping revisited destination when the
previous destination and the next destination are connected. The refined sequence of destinations,
SECI, with cardinality r § n is the input to the genetic algorithm.

8.4.4 Genetic Algorithm

We further leverage a genetic algorithm [179–181] to refine the sequence from the enhanced
cheapest insertion algorithm. The genetic algorithm selects a parent2 sequence and then generates a
new offspring sequence from it by either a mutation or crossover process.

In brief, we first take the ordered sequence SECI from the enhanced cheapest insertion as our first
and only parent for the mutation process, which produces multiple offspring. Only the offspring

2Note that the parent in the genetic algorithm is a different concept from the parent node in the RRT˚ tree, mentioned
in Sec. 8.3.2. The terminology is kept so that it follows the literature consistently.
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(a) Mutation (b) Crossover

Figure 8.8: Illustration of the mutation and crossover in the Genetic Algorithm. (a) In mutation, the sequence is
randomly cut into five segments and each segment is randomly reversed except Segment A and Segment E. In this case,
Segment B and C are reversed and D does not. Finally, the modified segments are spliced in random order and resulting
an offspring ACDBE. (b) In crossover, two sequences (Parent A and Parent B) are picked from the offspring from the
mutation process. A sub-sequence of one of the two sequences is randomly selected (Sub-sequence A in this case).
Next, random inversion is performed on Sub-sequence A and the resulting segment is randomly placed inside an empty
sequence of the offspring. Lastly, the remaining elements of the offspring are filled by the order of the other sequence
(Parent B) except the elements that are already in the offspring sequence.

with a lower cost than the parent are considered the parents for the crossover process.
1) Mutation: There are three steps for each mutation process, as described in Fig. 8.8(a). First,

the ordered sequence SECI from the enhanced cheapest insertion is randomly divided into k segments.
Second, random inversion3 is executed for each segment except the first and last segments, which
contain the source and the target. Lastly, the segments in the middle are randomly reordered and
spliced together. Let the resulting offspring sequence be  “ tvs, p1, p2, ¨ ¨ ¨ , pr, vtu, where vs is
the source node, vt is the target node, pr ` 2q is the number of destinations in the sequence (the
same cardinality of SECI), and tpiuri“1

is the re-ordered destinations, which could possibly contain
the start and end. The cost ⇥ of the offspring is computed as

⇥ “ ✓pvs, p1q `

rÿ

i“1

✓ppi, pi`1q ` ✓ppn, vtq, (8.9)

where ✓p¨, ¨q is the path distance between two destinations provided by the IMOMD-RRT˚.
We perform the mutation process thousands of times, resulting in thousands of offspring. Note

that only the offspring with a lower cost than the cost of the parent are kept for the crossover process.
2) Crossover: Let the set of mutated sequences from the mutation process be  “ t iu

h

i“1
,

where h is the number of offspring kept after the mutation process. For each generation, the
crossover process is performed thousands of times and only the offspring with a lower cost than the
previous generation are kept. Each crossover process combines sub-sequences of any two sequences
( i, j P  ) to generate a new offspring, as described in Fig.8.8(b). The probability of a sequence

3A random inversion of a segment is reversing the order of destinations in the segment.
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 i being picked is defined as:

P p “  iq “
⇢i∞
w

i“1
⇢i
, ⇢i “

1

⇥i

, (8.10)

where w is the number of the remaining offspring from each generation after the pi´ 1q
th generation

and ⇢i is the fitness of the sequence  i.
Given the two selected sequences and an empty to-be-filled offspring, a segment of one of the two

sequences is randomly selected, and random inversion is performed on the segment. The resulting
segment is randomly placed inside the empty sequence of the offspring. Lastly, the remaining
elements of the offspring are filled by the order of the other sequence except the elements that are
already in the offspring sequence. After a few generations, the offspring with the lowest cost,  ˚, is
the final sequence SECI-Gen of the destinations.

Remark 30. Whenever the IMOMD-RRT˚ provides a better path (due to its asymptotic optimality),
the ECI-Gen solver will be executed to solve for a better visiting order of the destinations. Therefore,
the full system provides paths with monotonically improving path cost in an anytime fashion.

8.4.5 Discussion of Time Complexity

As mentioned in Sec. 8.4.3, the first sequence Scurrent is constructed by Dijkstra’s algorithm,
which is an OpN2

q process, where N is the cardinality of the destination set D. We then pass
the sequence to the enhanced cheapest insertion algorithm, whose time complexity is OpN3

q, to
generate a set of parents for the genetic algorithm, which is also an OpN3

q process. Therefore, the
overall time complexity of the proposed ECI-Gen solver is OpN3

q, and indeed a polynomial solver.
The benchmark of the proposed solver is presented in Appendix B.1.

8.5 Experimental Results

This section presents extensive evaluations of the IMOMD-RRT˚ system applied to two complex
vehicle routing scenarios. The robot state ⇣ is defined as latitude and longitude. The distance
between robot states Distp¨, ¨q in (8.1) is defined as the haversine distance [209]. We imple-
mented the bi-directional A˚ [183] and ANA˚ [184] as our baselines to compare the speed and
memory usage (the number of explored nodes). We evaluate the IMOMD-RRT˚ system (IMOMD-
RRT˚ and the ECI-Gen solver) on a large and complex map of Seattle, USA. The map contains
1, 054, 372 nodes and 1, 173, 514 edges, and is downloaded from OSM, which is a public map
service built for real applications4. We then place 25 destinations in the map. We demonstrate that

4Apple Map® actually uses OpenStreetMap (OSM) as their foundation.

115



Table 8.1: Quantitative results of the proposed IMOMD-RRT˚ system on two large maps (both graphs contain more
than one million nodes and edges) built for real robotics and vehicle applications. The proposed system outperforms
bi-A˚ and ANA˚.

Initial Solution Time
[seconds]

Initial Path Cost
[kilometers]

Final Memory Usage
[# explored nodes]

Seattle
IMOMD-RRT˚ 0.44 501,342 49,768

Bi-A˚ 4.40 808,416 3,240,515
ANA˚ 1.70 1,089,873 234,457

San Francisco
IMOMD-RRT˚ 1.10 156,807 61,785

Bi-A˚ 9.93 315,061 3,640,863
ANA˚ Failed Failed Failed

the IMOMD-RRT˚ system is able to concurrently find paths connecting destinations and determine
the order of destinations. We also show that the system escapes from a bug trap by inherently
receiving prior knowledge. The algorithm runs on a laptop equipped with Intel® CoreTM i7-1185G7
CPU @ 3.00 GHz.

To show the performance and ability of multi-objective and determining the visiting order, we
randomly set 25 destinations in the Seattle map. There are 25! possible combinations of visiting
orders and therefore it is intractable to solve the visiting order by brute force. The results are shown
in Fig. 8.9, where IMOMD-RRT˚ finds the first path faster than both Bi-A˚ and ANA˚ with a lower
cost and then also spends less time between solution improvements. Additionally, the memory
usage of IMOMD-RRT˚ is less than ANA* and much less than bi-A˚. As shown in Table 8.1, the
proposed system provides the first solution 10 times faster than bi-A˚ and four time faster than
ANA˚. In addition, the proposed system also consumes 65 times less memory than bi-A˚ and 4.7
times less memory usage than ANA˚.

Prior knowledge through pseudo destinations can also be leveraged to traverse challenging
topology, such as bug-traps [210]. This problem is commonly seen in man-made environments
such as a neighborhood with a single entry or cities separated by a body of water, as in Fig. 8.10.
As mentioned in Remark 8.3.3, prior knowledge is provided as a number of pseudo destinations
in the IMOMD-RRT˚ as a prior collision-free path in the graph for robotics inspection or vehicle
routing. Next, the prior path is then being rewired by the IMOMD-RRT˚ to improve the path. We
demonstrate this feature by providing the prior knowledge to escape the bug trap in San Francisco,
as shown in Fig. 8.10. The map contains 1, 277, 702 nodes and 1, 437, 713 edges. As shown in
Table 8.1, the proposed system escapes from the trap nine times faster than bi-A˚, whereas ANA˚

failed to provide a path within the given time frame. The proposed system also consumes 58.9 times
less memory than bi-A˚.

In summary, we developed an anytime iterative system to provide paths between multiple
objectives by the IMOMD-RRT˚ and to determine the visiting order of the objectives by the ECI-

116



Figure 8.9: Quantitative and qualitative results for an OSM of Seattle, where we have 25 destinations to be visited. The
proposed IMOMD-RRT˚ outperforms Bi-A˚ and ANA˚ in term of speed and memory usage (the number of explored
nodes).

Figure 8.10: Providing prior knowledge to the proposed IMOMD-RRT˚ system to avoid bug traps. The left and the
right are the qualitative and quantitative results for a bug trap in San Francisco, respectively. We have eight pseudo
destinations to help escape the challenging topology, where the source and target are separated by a body of water. Note
that ANA˚ failed to provide a solution in the given time.

Gen solver solver in polynomial time. We also demonstrate that the proposed system is able to
inherently accommodate prior information to escape from challenging topology.

8.6 Conclusion and Future Work

We presented an anytime iterative system on large-complex graphs to solve the multi-objective
path planning problem, to decide the visiting order of the objectives, and to incorporate prior
knowledge of the potential trajectory. The system is comprised of an anytime informable multi-
objective and multi-directional RRT˚ to connect the destinations to form a connected graph and
the ECI-Gen solver to determine the visiting order (via a relaxed Traveling Salesman Problem) in
polynomial time.

The system was extensively evaluated on OpenStreetMap (OSM), built for autonomous vehicles
and robots in practice. In particular, the system solved a path planning problem and the visiting
order with 25 destinations (25! possible combinations of visiting orders) on an OSM of Seattle,
containing more than a million nodes and edges, in 0.44 seconds. In addition, we demonstrated
the system is able to leverage a reference path (prior knowledge) to navigate challenging topology
for robotics inspection or vehicle routing applications. All the evaluations show that our proposed
method outperforms the Bi-A˚ and ANA˚ algorithm in terms of speed and memory usage.
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In the future, we shall use the developed system within autonomy systems [9, 21, 39, 43, 44, 51,
61,211–216] on a robot to perform point-to-point tomometric navigation in graph-based maps while
locally avoiding obstacles and uneven terrain. It would also be interesting to deploy the system with
multi-layered graphs and maps [50, 217, 218] to incorporate different types of information.
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