
CHAPTER 9

Efficient Anytime CLF Reactive Planning System for a Bipedal Robot on
Undulating Terrain

9.1 Introduction

Motion planning as a central component for autonomous navigation has been extensively studied
over the last few decades. Algorithms such as RRT˚, A˚, and their variants focus on finding
an (asymptotically) optimal path as computationally efficiently as possible [193–195, 219–224].
The application of these algorithms relies on designing a control policy to track the planned path,
resulting in waypoint following or pathway tracking. In turn, the tracking of path segments (between
waypoints) leads to non-smooth motion of the actual robot, due to abrupt acceleration or heading
changes when transitioning between waypoints/pathways.

This chapter seeks to develop a reactive planning system for bipedal robots on unexplored,
unmapped, challenging terrains and to provide high-rate (directional) velocity and heading com-
mands to be realized by the robot’s low-level feedback-control gait-generation algorithm. For
this application, the non-smooth aspects of the planned motions arising from waypoints/pathways
transitions are detrimental to stability of the overall system.

Several approaches have been developed to address the non-smooth aspects of paths produced
by motion planning, such as reactive motion planning [225–233] and feedback motion planning
[234–236]. Fundamentally, these approaches replace paths to be followed with smooth vector fields
whose solutions guide the robot’s evolution in its configuration space.

We are inspired by the work of [235,236], which proposes a CLF to realize reactive planning for
a non-holonomic differential-drive wheeled robot. A CLF is Lyapunov function for a closed-loop
system where at any given time instant, there exists a control input that renders negative definite
the derivative of the Lyapunov function along the system dynamics. Hence, a CLF is associated
with asymptotically approaching a goal; see Sec. 9.3.1. While their underlying model designed for
differential robots is not applicable to a Cassie bipedal robot due to different dynamics and control
laws, their basic concept is applicable; see Sec. 9.3.2 for detailed discussion and its deficiency. As
part of our work, we design an appropriate CLF for robots capable of walking in any direction with
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Figure 9.1: In the top figure, Cassie Blue autonomously traverses the Wave Field via the proposed reactive planning
system, comprised of a planning thread and a reactive thread. The planning thread involves a multi-layer local map to
compute traversability, a sub-goal finder, and an omnidirectional Control Lyapunov Function (CLF)RRT˚. Instead of a
common waypoint-following or path-tracking strategy, the reactive thread copes with robot deviation while eliminating
non-smooth motions via a vector field (defined by a closed-loop feedback policy) that provides real-time control
commands to the robot’s gait controller as a function of instantaneous robot pose. The bottom figure is the elevation
map built online. The red peaks are from the experimenters walking alongside Cassie.

any orientation. Moreover, we take into account features specific to bipeds, such as the limited
lateral leg motion that renders lateral walking more laborious than sagittal plane walking.

The feedback motion planning algorithm in [235, 236] has not yet been evaluated on hardware.
In general, there is a significant chasm between a planning algorithm and autonomous navigation
on real robots. Most planning algorithms assume not only that a fully-explored, noise-free, perfect
map is given but also that the robot’s destination will always lie within this map. Moreover, the
algorithms also assume a perfect robot pose and a perfect robot with ideal actuators that can execute
an arbitrary trajectory. These assumptions are not practical. Therefore, utilizing a planning algorithm
for autonomous navigation with real robots remains challenging. We propose and demonstrate
experimentally an autonomous navigation system for a Cassie bipedal robot that is able to handle a
noisy map in real-time, a distant goal that may not be in the initial map when the user decides where
to send the robot, and importantly, a means to smoothly handle robot deviation. Additionally, a
rudimentary finite-state machine is integrated to handle actions such as where to turn at intersections.

9.2 Related Work and Contributions

Motion planning, an essential component of robot autonomy, has been an active area of research
for multiple decades with an accompanying rich literature. In this section, we review several types
of planning algorithms and summarize our main contributions.
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9.2.1 Sampling-Based Motion Planning

RRT [193] stands out for its low complexity and high efficiency in exploring unknown configu-
ration spaces. Its asymptotically optimal version — RRT˚ [220] — has also gained much attention
and has contributed greatly to the spread of the RRT family. RRT, RRT˚, and variations on the basic
algorithms, generate a collision-free path comprised of piece-wise linear paths between discrete
poses of the robot [193–195, 219–224, 237, 238]. However, abrupt (non-differentiable) transitions
between waypoints/pathways are an inherent issue with this family of planning algorithms and in
addition, the generated trajectories do not account for control constraints. Therefore, to ensure the
produced trajectories are feasible, additional expensive computations such as trajectory smoothing
or optimization are often involved. A great deal of attention has been directed to this area, resulting
in versions of RRT˚ [239–244] that utilize different smoothing techniques or steering functions.

Trajectory smoothing (B-spines, Dubins, or other parametric curves) is often designed indepen-
dently of robot dynamics [245–247], which can lead to unbounded turning rate, acceleration, or
jerk. Therefore, additional computations are necessary to validate the resulting smoothed trajectory.
Furthermore, these methods are often ambiguous about how they treat robot deviations about the
planned path and in the end provide open-loop control laws for tracking.

9.2.2 Optimization-based Planning and DARPA Subterranean Challenge

Point-wise in time optimization- and model-based algorithms, such as Control Lyapunov Func-
tions (CLFs) paired with Quadratic Programs (QPs), (CLF-QP), or, when integrated with Control
Barrier Functions (CBFs), (CLF-CBF-QP) [248–251] have been developed to provide low-level
control for safety and object avoidance. Data-driven planning and control algorithms algorithms for
safety-critical systems are combining machine-learning [252,253], Model Predictive Control (MPC),
reinforcement learning [254], or belief-space learning [255].

Uncertainty-aware planning through Networked Belief-aware Perceptual Autonomy (NeBula)
[256] from the DARPA Subterranean Challenge (DARPA SubT) [257] probabilistically fuses
various sensing modalities to allow the robot to create belief-aware local maps. Reference [258]
presents a quadruped with higher levels of autonomy to explore a tunnel environment in the 2019
DARPA SubT. To achieve autonomous exploration, MARBLE [259] proposes graph and frontier-
based path planning algorithms on four-wheeled and tracked ground robots complimented with
multi-rotor platforms. The GBPlanner proposed in [260] builds and uses a real-time topological
map during subterranean exploration. An overview of ground robotics systems for underground
environments is provided in [261]. The research challenges faced in such robotics exploration
missions span the domains of communications, perception, SLAM, planning, and control.
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9.2.3 Reactive Planning

Reactive planning contributes another significant concept to the motion planning literature
[225–233], namely potential fields. In other words, the reactive planning replaces the concept of
trajectory with that of a vector field arising as the gradient of a potential function. The method of
potential fields seems to address all the issues raised in Sec. 9.2.1 for sampling-based methods.
However, most of the experimental work has been carried out on flat ground and it is unclear how
extensions to undulating terrain can be performed.

The concept of combining sampling-based algorithms with reactive planning was developed
in [234–236], which not only provides a feasible path to follow from RRT˚, but also a smooth
feedback control law that instantaneously replans a path to the next goal as the robot deviates due
to imperfections in the robot model in the robot’s hardware or terrain. The feedback laws greatly
ameliorates the issue of non-smooth paths. The feedback motion planning in [234] is based on a
family of CLFs designed via linearization of the robot’s model around a sufficiently large set of
points in the robot’s state space, Linear Quadratic Regulator (LQR), and Sum of Squares (SoS),
whereas the feedback motion planning of [235, 236] uses a single CLF and varies the associated
equilibrium to set sub-goal poses.

The feedback motion planning of [235,236] is the starting point for the work in this chapter. Park
and Kuipers provide a novel form of RRT˚ for differential-drive wheeled robots, where a CLF is
utilized as the steering function in the RRT˚ algorithm to evaluate the cost between nodes in the trees
associated with RRT˚, and it replaces the waypoints that are typically used in planning algorithms.
Together, these innovations result in a system where robot control and motion planning are tightly
coupled. As explained in Sec. 9.3.2, the CLF in [235,236] is designed for differential-drive wheeled
robots which must respect nonholonomic constraints associated with wheels. In Sec. 9.3.2 we
propose a new goal-centric coordinate system and CLF that are appropriate for bipedal robots that
are omnidirectional. While bipedal robots are omnidirectional, they typically have limited agility in
the lateral direction. We show how to account for the relative ease of walking forward and backward,
sideways, and turning as a function of distance from goal. In Sec 9.4, we take these features of
bipedal robots into account when connecting, exploring, and rewiring the trees in RRT˚. In addition,
we show how to take terrain features, such as friction and elevation changes, into account; see
Sec. 9.5.2. This allows our Cassie robot to navigate undulating terrain.

We note that sampling-based approaches exist that are more efficient than RRT˚, such as bi-
directional RRT˚, informed RRT˚ [262, 263], and RRT˚-AB [264, 265]. We choose RRT˚ because
the CLF used in the growing, pruning and rewiring of the tree is asymmetric, meaning the cost from
node i to j is not equal to the cost from node j to node i. Therefore, the cost in growing the tree
forward and backward are not the same. Search-based planners, such as A˚ [185], Bi-directional
A˚ [183], or ANA˚ [184], are not efficient for growing a tree in SEp2q.
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9.2.4 Contributions

In particular, the present work has the following contributions:

1. We propose a novel 2D smooth Control Lyapunov Function (CLF) with a closed-form solution
to the feedback controller for omnidirectional robots. The 2D CLF is designed such that
when a goal is far from the robot position, the CLF controls the robot orientation to align
with the goal while moving toward the goal. On the other hand, the robot walks to the goal
disregarding its orientation if the goal is close. Additionally, we study the behaviors of the
CLF under different initial conditions and parameters.

2. We define a closed-form distance measure from a pose (position and orientation) to a target
position for omnidirectional robots under a pose-centric polar coordinate. This distance metric
nicely captures inherent features of Cassie-series robots, such as the low-cost of longitudinal
movement and high-cost of lateral movement.

3. We utilize the proposed CLF and the distance measure to form a new variation of RRT˚ (omni-
directional CLF-RRT˚) to tackle undulating terrains, in which both distance and traversability
are included in the cost to solve the optimal path problem. Moreover, as in [235], the optimal
path is realized as a sequence of subgoals that are connected by integral curves of a set of
vector fields, thereby providing reactive planning: in response to a disturbance, each vector
field associated with the optimal path automatically guides the robot to a subgoal along a new
integral curve of the vector field.

4. We integrate all the above components together as a reactive planning system for challenging
terrains/cluttered indoor environments. It contains a planning thread to guide Cassie to walk
in highly traversable areas toward a distant goal on the basis of a multi-layer map being built
in real-time and a reactive thread to handle robot deviation via a closed-loop feedback control
instead of a commonly used waypoint-following or path-tracking strategy.

We evaluate the reactive planning system by performing three types of experiments: 1) A
simplified biped pendulum model (inputs are piece-wise constant, similar to Cassie-series robots)
navigates various synthetic, noisy, challenging outdoor terrains and cluttered indoor scenes. The
system guides the robot to its goals in various scenes, both indoors and outdoors, with or without
obstacles. The system also guides the robot to completion of several high-level missions, such
as turning left at every intersection. 2) To verify that the outputs of the control commands are
feasible for Cassie-series robots, the system gives commands to a Cassie whole-body dynamic
simulator [266], which simulates 20 DoF of Cassie in Matlab Simmechanics on a 3D terrain. 3)
Lastly, the reactive planning system successfully allows Cassie Blue to complete several indoor and
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Figure 9.2: The plots show paths in 2D generated by the CLF of [235, 236] for Dubins cars. At each point, the tangent
to a path (t1 and t2 in the blowup) is the heading angle for the robot. These paths clearly fail to account for a biped’s
ability to move laterally. Moreover, in practice, an underactuated robot such as Cassie Blue would experience chattering
in the heading angle when approaching the goal (red arrow). Moreover, if the robot overshoots the goal, it would have
to walk along a circle to return to the goal. For these reasons, a new CLF is needed.

outdoor missions: a) walking in corridors and avoiding furniture in the Ford Robotics Building (FRB)
at the University of Michigan; b) turning left when detected intersections of corridors and return to
its initial position in FRB; and c) traversing parts of the Wave Field on the North campus of the
University of Michigan, as shown in Fig 9.1.

The videos of the autonomy experiments can be found at [49]. All of the simulated environments,
the experimental data, and the C++ implementations for the reactive planning system are made
available at https://github.com/UMich-BipedLab/CLF_reactive_planning_system [267].

The remainder of this chapter is organized as follows. Section 9.3 constructs the new CLF
for bipeds and omnidirectional robots. The omnidirectional CLF-RRT˚ is introduced in Sec. 9.4.
Section 9.5 integrates all the above components as a reactive planning system. Simulated and
experimental evaluations of the proposed reactive system is presented in Sec. 9.6. Finally, Sec. 9.7
concludes the chapter and provides suggestions for future work.

9.3 Construction of a Control Lyapunov Function

This section first provides an introduction to CLFs and then describes the reasons for creating a
new CLF function, the construction of the CLF, and an analysis of its parameters.
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Figure 9.3: Illustration of the robot pose-centric polar representation ps “ pr, �qq for robot pose pxr, yr, ✓q and target
position G “ pxt, ytq. Here, r is the radial distance to the target and � is the angle between the heading angle ✓ of the
robot and the line of sight from the robot to the goal. The longitudinal velocity, lateral velocity, and angular velocity are
vx, vy and !, respectively.

9.3.1 Lyapunov and Control-Lyapunov Functions

In this chapter, our goals and pseudo-goals are chosen to be equilibrium points of the center of
mass dynamics of Cassie. A candidate Lyapunov function is a (locally) positive definite function
that vanishes at an equilibrium point of a given dynamical system. If at each point of its definition,
there exists a control input such that the derivative of the candidate Lyapunov function along the
dynamics is negative definite, then it is called a Control Lyapunov Function (CLF), or CLF for short.
Hence, CLFs provide a means to specify a goal as well as a family of trajectories that converge
to the goal from “arbitrary” points (sufficiently near) the goal. The trajectories are the solutions
of the underlying dynamic model that are compatible with the Lyapunov function monotonically
decreasing.

We refer the reader to [268] for the formal definition. Consider O an open set about the origin of
Rn, and

9x “ fpx, uq, (9.1)

a control system with x P Rn is system state and u P Rm control commands. The differentiable
function V : O Ñ r0,8q is a CLF if (i) V pxq “ 0 ùñ x “ 0 and for each 0 ‰ x P O, there exists
u P Rm such that rV pxqfpx, uq † 0. Any feedback law u “ ↵pxq such that rV pxqfpx,↵pxqq † 0

then renders the origin asymptotically stable.
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(a)
(b)

Figure 9.4: This figure explains the signs in (9.3). On the left, � increases when the robot moves parallel to the x-axis.
Therefore, vx

r sin � is positive. Similarly, vy
r cos � is negated because � decreases when the robot moves toward the

y-axis.

In [235], the output of their planner is a feedback function u “ ↵pxq rendering a particular
CLF negative definite. When the CLF is associated with a goal or pseudo-goal of the planner, this
becomes a particularly astute means for the planner to communicate its intentions to a low-level
controller: the CLF specifies how the planner wants the robot to approach the goal from an entire
open set of current states of the robot. This allows the immediate reaction to disturbances. We adopt
this means in this chapter as well.

9.3.2 Redesign of CLF Proposed in the Literature

The 2D CLF planner of [235,236] has been designed for differentially driven non-holonomically
constrained robots, whose dynamics and control laws are inappropriate for bipedal robots. Like
most robot models, the work [235] assumes that the robot is able to continuously change its velocity
and heading. However, this is not possible for underactuated bipeds such as Cassie Blue. According
to the Angular Linear Inverted Pendulum (ALIP) model used for low-level feedback control of
Cassie Blue [216, 269–272], the heading angle and the longitudinal and lateral velocity commands
can only be updated at the initiation of a step and not within a step. In particular, the low-level
controller on a bipedal robot during the swing phase is controlling body posture and regulating
foot placement at the end of the current step so that the center of mass can achieve velocity and
orientation goals over the next step or next few steps. Only minor instantaneous corrections to
body velocity can be achieved during a given step of the robot. In other words, bipedal robots such
as Cassie are not able to implement changes in velocity control commands during the current swing
phase, but will instead execute the received control commands during the following swing phase.
When piece-wise constant commands are applied to the existing 2D CLF of [235, 236], built around

126



a Dubins car model, the closed-loop system will oscillate about the discrete heading directions as
the robot approaches the goal pose, as explained in Fig. 9.2. This oscillation is undesirable as it can
affect the robot’s balance.

With a Dubins car model as used in [235, 236], the linear velocity is always aligned with the
heading angle of the vehicle, and hence this is also true as the vehicle approaches an equilibrium
pose. Consequently, a CLF for a target position must also include a target heading, therefore, a
target pose. The vehicle must steer and align itself as it approaches the target. Cassie Blue, on the
other hand, similar to an omnidirectional robot, is able to move laterally with zero forward velocity,
which allows the robot to start with an arbitrary pose and arrive at a goal position with an arbitrary
heading (i.e., start with a pose and end with a position). Lateral walking, however, requires more
effort due to the limited workspace of the lateral hip joints on the robot and this should be taken
into account when designing a CLF.

To avoid undesirable oscillating movement and account for lateral walking, a new candidate
CLF is designed on the basis of an appropriate kinematics model for underactuated bipeds and other
omnidirectional robots.

9.3.3 State Representation

As mentioned in Sec. 9.3, Cassie Blue is able to walk in any direction. Therefore, we model
Cassie Blue as an omnidirectional robot and reduce it to a directional point mass. We will account
for the increased effort required to walk laterally when we design the CLF.

Denote P “ pxr, yr, ✓q the robot pose and G “ pxt, ytq the goal position in the world frame. Let
s be the state of an omnidirectional robot represented in a robot pose-centric polar coordinate:

s “ tpr, �q|r P R, and � P p´⇡, ⇡su, (9.2)

where p´⇡, ⇡s is open on the left, r “

a
pxt ´ xrq

2 ` pyt ´ yrq2, and � is the angle between the
heading angle of the robot p✓q and the line of sight from the robot to the goal, as shown in Fig. 9.3.

Remark 31. References [235, 236] used target pose-centric polar coordinates because the
wheelchair robot needed to arrive at a target position with a target heading angle. In our case, we
can use robot pose-centric coordinates because we have the freedom to arrive at the target position
with any heading angle. For bipeds, turning in place is easy, and thus, if orientation at the goal is
critical, it can be handled as a final maneuver.
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9.3.4 Construction of Control Lyapunov Function

The kinematics of an omnidirectional robot is defined as
«

9r
9�

�
“

«
´ cosp�q ´ sinp�q

1

r
sinp�q ´

1

r
cosp�q

� «
vx

vy

�
`

«
0

!

�
. (9.3)

In the above expression, we view vx, vy and ! as control variables. Because the matrix

«
´ cosp�q ´ sinp�q

1

r
sinp�q ´

1

r
cosp�q

�

is negative definite (and hence invertible) for all r ° 0, the model (9.3) is over actuated for r ° 0.

Remark 32. Observe that � † �1 when the robot moves along the x-axis, as shown in Fig. 9.4(a).
Therefore, vx

r
sinp�q is positive. Similarly, vy

r
cosp�q is negated because � † �1 when the robot moves

toward the y-axis, as shown in Fig. 9.4(b).

We next note that the change of control variables
«
vr

v�

�
:“

«
cosp�q sinp�q

sinp�q
r

´
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r

� «
vx

vy

�
`

«
0

!

�
,

allows us to feedback linearize the model to a pair of integrators.

«
9r
9�

�
“

«
´vr

v�

�
.

We note that for this model, any positive definite quadratic function is automatically a CLF. For
later use, we note that for all r ° 0,

«
vx

vy

�
:“

«
cosp�q r sinp�q

sinp�q ´r cosp�q

� «
vr

v� ´ !

�
. (9.4)

As mentioned in Sec. 9.3, lateral walking is more expensive than longitudinal walking because
movement in the lateral hip joint is limited. A candidate control Lyapunov function1 `, in terms of
the robot’s current pose and target (end) position, is defined as

` “
r2 ` �2

sin
2
p��q

2
, (9.5)

1In polar coordinate, the function ` is positive definite in the sense that ` “ 0 ùñ r “ 0, and when r “ 0, the
angle � is arbitrary or undefined.
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where � is a weight on the orientation and the role of � ° 0 will be described later. We next check
that ` is a Control-Lyapunov function. The derivative of ` is

9̀ “ r 9r `
��2

2
sin p2 � �q 9�

“ rp´vrq `
��2

2
sinp2��qv�.

(9.6)

The feedback
vr “ kr1

r

kr2 ` r

v� “ ´
2

�
k�1

r

k�2 ` r
sinp2��q

(9.7)

results in
9̀ “ ´

kr1
kr2 ` r

r2 ´ k�1�
2

r

k�2 ` r
sin

2
p2��q, (9.8)

which is negative for all r ° 0, � ° 0, kr1 ° 0, kr2 ° 0, k�1 ° 0, and k�2 ° 0.
It is emphasized that the proposed CLF under the robot-centric coordinate system is 2D. Later,

the cost function for the RRT˚-based planner will be 3D; see Sec. 9.4.2. Work in [269, 273, 274]
shows how to adapt the local model to the terrain in such a way that the model (7) is always valid
and hence the 2D CLF is applicable.

Remark 33. From (9.7), it follows that 9� “ v� “ 0 for 2�� P t0,˘⇡u. Therefore, the manifolds

M� :“ tpr, �q | r • 0, � P t0,
⇡

�
,˘

⇡

2�
uu

are invariant for the closed-loop system. From (9.8), the manifold M� is locally attractive for
� P t0, ⇡

�
u and repulsive for � “ ˘

⇡

2�
. By selecting � ° 0, the repulsive invariant manifold can be

placed outside the Field of View (FoV) of Cassie, as shown in Fig. 9.6. In practice, a Finite-State
Machine (FSM) is needed so that the robot will initially turn in place so that it starts with the goal
located within the FoV of its sensor suite.

The next step is to set up an optimization such that the control variables pvx, vy,!q satisfy (9.7)
and take into account that walking sideways takes more effort than walking forward, for Cassie.
Because the camera faces forward, walking backward is only selected if the robot is localized into
an already built portion of the map.
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Table 9.1: The default values of parameters.
↵ � � kr1 kr2 k�1 k�2
10 1.2 1 1 5 0.1 10

9.3.5 Closed-form Solution

Taking (9.4) as a constraint, we propose to select ! so as to keep vy small (limit lateral walking)
by optimizing

J “ min
vy ,!

pvyq
2

` ↵!2. (9.9)

The parameter ↵ ° 0 allows us to penalize aggressive yaw motions !, as will be illustrated in
Sec. 9.3.6. Plugging in the constraint (9.4), (9.9) leads to

J “ min
!

trsinp�qvr ´ r cosp�qpv� ´ !qs
2

` ↵!2
u

“ min
!

tpsinp�qvrq
2

` rr cosp�qpv� ´ !qs
2

´ 2 sinp�qvrpr cosp�qpv� ´ !qq ` ↵!2
u.

A few algebraic calculations and the dropping of “constant terms” lead to

!˚
“ argmin

!

tr2 cos2p�q pv� ´ !q
2

`

2rvr sinp�q cosp�q! ` ↵!2
u,

which implies that

`
↵ ` r2 cos2p�q

˘
!˚

` r cosp�q rvr sinp�q ´ rv� cosp�qs “ 0. (9.10)

The final result is
!˚

“
r cosp�q rrv� cosp�q ´ vr sinp�qs

↵ ` r2 cos2p�q
, (9.11)

and then
v˚
y

“
↵ pvr sin p�q ´ r v� cos p�qq

r2 cos p�q
2

` ↵

v˚
x

“
vr cos p�q r2 ` ↵ v� sin p�q r ` ↵ vr cos p�q

r2 cos p�q
2

` ↵
.

(9.12)
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Figure 9.5: The distance to the target and the penalty on yaw motion in (9.9) both affect closed-loop behavior arising
from the CLF. The arrows indicate the robot’s absolute heading. In each solution of the closed-loop system, the robot’s
heading relative to the target is initialized at 60˝. When the robot is distant from the goal and the heading does not
point toward the goal, it will align its relative heading to the target while approaching the goal. The level of alignment
depends on the yaw motion penalty, ↵. On the other hand, when the robot is close to the goal, the closed-loop controller
no longer adjusts the heading angle and employs a lateral motion to reach the goal.

9.3.6 Qualitative Analysis of the Closed-loop Trajectories

The default parameters applied in this analysis are shown in Table. 9.1. Figure 9.5 shows how
the closed-loop trajectories vary as a function of heavy, medium, and light penalties on yaw motion,
and three different initial distances from the target, with �, the robot’s heading relative to the target,
fixed at 60˝. We observe that with r “ 2

?

2, the robot walks laterally to achieve the goal for all
values of the penalty on yaw motion. With r “ 15

?

2 and ↵ “ 10, the robot aligns its heading to
the target while walking to reduce its lateral movement, whereas with ↵ “ 100, it maintains its
heading and combines lateral and longitudinal motion as needed to reach the goal.

Figure 9.6 shows how the closed-loop trajectories vary as a function the initial relative heading
to the target, when starting at a fixed distance of r “ 15 m, and ↵ “ 10. As indicated in Table 9.1,
we are using � “ 1.2, which yields FoV of ˘75

˝. For relative heading “errors” less than 40
˝, the

robot aligns quickly to the target and longitudinal walking dominates. If quicker zeroing of the
heading error is desired, a smaller value of ↵ could be used or the robot could turn in place before
starting a new segment.
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Figure 9.6: This figure illustrated how the closed-loop trajectories generated by the CLF in (9.5) vary as a function the
initial relative heading to the target, when starting at a fixed distance of r “ 15 m, and ↵ “ 10. The arrows indicate the
robot’s heading. As shown in Table 9.1, we are using � “ 1.2, which yields an FoV of ˘75

˝. For relative heading
“errors” less than 40

˝, the robot aligns quickly to the target and longitudinal walking dominates. These motions should
be compared to those in Fig. 9.5

9.4 Omnidirectional CLF-RRT˚

This section integrates the CLF proposed in Sec. 9.3 into the original RRT˚ algorithm. The
resulting omnidirectional CLF RRT˚ provides feasible paths for (9.3) while (i) accounting for
relative heading, (ii) the asymmetry in roles of target position and current pose induced by the CLF,
and (iii) the fact that walking laterally is more challenging than walking in the longitudinal direction
for robots such as Cassie.

9.4.1 Standard RRT˚ Algorithm

The original RRT˚ [194] is a sampling-based, incremental planner with guaranteed asymptotic
optimality. In configuration space, RRT˚ grows a tree where leaves are states connected by edges
of linear path segments with the minimal cost. Additionally, RRT˚ considers nearby nodes of a
sample to choose the best parent node and to rewire the graph if shorter path is possible to guarantee
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asymptotic optimality.

9.4.2 Omnidirectional CLF-RRT˚ Algorithm

The omnidirectional CLF-RRT˚ differs from the original RRT˚ in four aspects. First, the distance
between two nodes is defined by the CLF in (9.5), which takes relative heading into account. Second,
the steering/extending functions use the closed-loop trajectories generated by (9.12) to define paths
between nodes. Third, because the cost (9.5) between two nodes i and j is not symmetric (i.e,
a different cost is assigned if node i is the origin versus it is the target), a distinction must be
made between near-to nodes and near-from nodes. The above three aspects are common to the
CLF-RRT˚ variant introduced in [235, 236]. Finally, when connecting, exploring, and rewiring the
tree, additional terms are added to the cost (9.5) to account for the relative ease or difficulty of
traversing the path.

Our proposed RRT˚ modification is summarized below with notation that generally follows [195].
Let X “ tpx, y, ✓q | x, y P R and ✓ P p´⇡, ⇡su be the configuration space and let Xobs denote
the obstacle region, which together define the free region for walking Xfree “ X zXobs. The
omnidirectional CLF RRT˚ solves the optimal path planning problem by growing a tree T “ pV,Eq,
where V P Xfree is a vertex set of poses connected by edges E of feasible path segments. Briefly
speaking, the proposed RRT˚ (Algorithm 2) explores the configuration space by random sampling
and extending nodes to grow the tree (explore the configuration space), just as in the classic
RRT [193]. Considering nearby nodes of a sample to choose the best parent node and rewiring
the graph guarantee asymptotic optimality (Algorithm 3 and 4), as with the classic algorithm. As
emphasized previously, a key difference lies in how the paths between vertices are generated.

9.4.2.1 Sampling

This step randomly samples a pose nrand “ px, y, ✓q P Xfree. To facilitate faster convergence and
to find better paths, we use several techniques such as sampling with a goal bias, limited search
space, and Gaussian sampling. Specifically, given a sub-goal and a degree of goal biasing, we bias
samples to be from a Gaussian distribution centered about the sub-goal; see Sec. 9.5.2. Furthermore,
we limit the sampling space to a sector in front of the robot.

9.4.2.2 Distance

To account for the asymmetry in lateral vs longitudinal motions, as discussed in Sec. 9.3.2,
the distance dpni, nkq from node ni to node nk in the tree T is defined by (9.5). Note that when
computing the distance, ni is a pose pxi, yi, ✓iq and the heading of nk is ignored, meaning only its
pxk, ykq values are used.
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Algorithm 2: T “ pV,Eq – Omnidirectional CLF RRT˚

1 T – InitializeTree();
2 T – InsertNode(H, ninit, T );
3 for i=1 to N do
4 nrand – Sample(i)
5 nnearest – Nearest(T , nrand)
6 pnnew,T 1

q – Extend(nnearest, nrand,)
7 if ObstacleFree(T 1) then
8 NT – NearTo(T , nnew, |V |)
9 nmin – ChooseParent(NT , nnearest, nnew)

10 T – InsertNode(nmin, nnew, T )
11 NF – NearFrom(T , nnew, |V |)
12 T – ReWire(T ,NF , nmin, nnew)

13 return T

Remark 34. As mentioned in Sec. 9.3.4, the robot will rotate in place if the target point is outside
the FoV. If rotating in place is laborious, one can also consider the following distance function:

dpni, nkq “ ` ` k� max p|�| ´ |U |, 0q, (9.13)

where ` is defined in (9.5), k� is a positive constant, and U corresponds to a repulsive point (i.e.,
˘

⇡

2�
) in Remark 33.

9.4.2.3 Traversability of a path

Let P “ pxr, yr, zr, ✓q be the current robot pose and denote T pP , ni, njq the path2 connecting
ni and nj . Finally, let TpP ,T q be the cost of the path traversability, defined as a running cost along
the trajectory of the robot, namely

TpP ,T q “

ÿ

@xt,ytPT

Cpxt, yt, zrq (9.14)

where pxt, ytq is the location of the robot at time t, Cpxt, yt, zrq can depend upon elevation change
with respect to the robot’s current elevation, zr, ground slope, friction coefficient, or other terrain
characteristics provided by the mapping software [50, 217, 218].

Remark 35. The planning system is designed so that any traversability index [275, 276] can be
leveraged in the cost function on the local map to indicate the relative ease, difficulty, or safety of

2The path is generated from the CLF in Sec. 9.3.

134



traversing a section of terrain. Therefore, the system can be readily adapted to different types of
terrain.

9.4.2.4 Cost between Nodes

Let cpni, nkq be the cost from ni to nk in the tree T , defined as

cpni, nkq “ dpni, nkq ` ktTpP ,T q, (9.15)

where kt trades terrain traversability versus distance. It sets how much more distance the overall
mission is allowed to detour for a better traversable path. For all experiments conducted in the
chapter, kt “ 1.

9.4.2.5 Nearby Nodes

Due to the use of the CLF function, the distinction between near-to nodes NT and near-from
nodes NF is necessary.

NT pni, T ,M,mq :“ tn P V | dpn, niq § Lpmq &

|Tpn,Pq ´ Tpni,Pq| § Tku,
(9.16)

where |¨| is the absolute value, m is the number of nodes in the tree T , and Lpmq “ ⌘ plogpnq{nq
p1{⇠q

with the constant ⌘ and dimension of space ⇠ (3 in our case) [221] and Tk is a positive constant.
Similarly, the near-from nodes NF are determined by

NF pni, T ,M,mq :“ tn P V | dpni, nq § Lpmq &

|Tpn,Pq ´ Tpni,Pq| § Tku.
(9.17)

9.4.2.6 Nearest Node

Given a node ni P X , the tree T , and the local map M, the nearest node is any node n˚ P T in
the tree where the cost from n˚ to ni is minimum.

9.4.2.7 Steering and Extending

The steering function generates a path segment T that starts from ni and ends exactly at nk. The
extending function extends the path from ni toward nk until nk is reached or the distance traveled is
 in which case it returns a new sample nnew at the end of the extension.
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Algorithm 3: nparent – ChooseParent(NT , nnearest, nnew)

1 nparent – nnearest

2 cparent – Cost(nnearest) ` cpnnearest, nnewq

3 for nnear P NT do
4 T 1

–Steerpnnear, nnewq

5 if ObstacleFree(T 1) then
6 c1

“ Costpnnearq ` cpnnear, nnewq

7 if c1
† Costpnnewq and c1

† cparent then
8 nparent – nnear

9 cparent – c1

10 return nparent

Algorithm 4: T – ReWirepT ,NF , nmin, nnewq

1 for nnear P NF ztnminu do
2 T 1

–Steerpnnew, nnearq

3 if ObstacleFree(T 1) and
4 Cost(nnew) ` c(nnew, nnear) † Cost(nnear) then
5 T – Re-Connect(nnew, nnear, T )

6 return T

9.4.2.8 Parent Choosing and Graph Rewiring

Choosing the best parent node (Algorithm 3) and rewiring the graph (Algorithm 4) guarantee
asymptotic optimality. Let Costpniq be the cost from the root of the tree T to the node ni. The
parent nparent of a node nnew is determined by finding a node ni P NT with smallest cost from the
root to the node:

nparent “ argmin
nnearPNT

Costpnnearq ` cpnnear, nnewq. (9.18)

After a parent node is chosen, nearby nodes NF are rewired if shorter paths are found. In our
experiments, we used the extending function for exploration, and the steering function to find the
best parent node and to rewire the graph.

9.4.2.9 Collision Check

This step verifies whether a path T lies within the obstacle-free region of the configuration
space. Note that additional constraints, such as curvature bounds and minimum clearance, can also
be examined in this step.
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Figure 9.7: This figure summarizes the proposed reactive planning system. The planning thread is built around
RRT˚ and an omnidirectional CLF that is used to assign distances, define locally optimal path segments, search radius,
and linking conditions for re-wiring and choosing a parent. In addition, the planning thread contains a multi-layer,
robot-centric local map for computing traversability, a sub-goal finder, and a Finite-State Machine (FSM) to choose
sub-goal locations guiding the robot to a distant goal. The terrain information extracted from the multi-layer local map
can be shared with a terrain-aware controller, such as [273]. Instead of a common waypoint-following or path-tracking
strategy, the reactive thread copes with robot deviation while eliminating non-smooth motions via a vector field (defined
by a closed-loop feedback policy arising from the CLF). The vector field provides real-time control commands to the
robot’s gait controller as a function of instantaneous robot pose.

9.4.2.10 Node Insertion

Given the current tree T “ pV,Eq and a node v P V , this step inserts the node n to V and creates
an edge env from n to v.

9.5 Reactive Planning System

The previous section provides a sparse set of paths from a robot’s initial location to a goal. The
degree of optimality depends on how long the planning algorithm is run. A typical update rate may
be 5 Hz for real-time applications. When the robot is perturbed off the nominal path, one is left with
deciding how to reach the goal, say by tracking the nominal path with a PID controller. Important
alternatives to this, called a high-frequency reactive planner or a feedback motion planner, were
introduced in [225–234]. A version based on the work of [235, 236] will be incorporated into our
overall planning system. In addition, we take into account features in a local map.
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(a) (b)

Figure 9.8: The elevation map (colored by height) was built online while Cassie was autonomously traversing the Wave
Field on the North Campus of the University of Michigan. The highlighted area is the smoothed, robot-centric local
map. The blue arc and the green arrow (pointing from the red line to the white line) are the sub-goal finder and the
chosen sub-goal for the omnidirectional CLF RRT˚, respectively. The red shows the locally optimal path.

9.5.1 Elements of the Overall Planning System

The overall objective of the planner system is to replace the commonly used waypoint-following
or path-tracking strategies with a family of closed-loop feedback control laws that steer the robot
along a sequence of collision-free sub-goals leading to the final goal. In simple terms, as in
[234–236], we populate the configuration space with a discrete set of feedback control laws that
steer the robot from local chart about a sub-goal to the sub-goal itself. The collision free property
is handled by the low-frequency planner at the current time. Others have used Control Barrier
Functions (CBFs) for this purpose [248–251, 277,278]. A Finite-State Machine (FSM) is integrated
into the low-frequency planner to handle high-level mission requirements such as turning left at
every intersection. The planning system is implemented with multi-threading in C++ based on the
ROS library [81]. One thread is for the planning and the other is for the reactive thread, as illustrated
in Fig. 9.7.

The planner assumes the initial robot pose, a final goal, and real-time map building are provided.
It is assumed that the initial robot pose and final goal are initialized in an otherwise featureless
metric map, with the robot’s initial pose as the origin. The featureless map is filled in by the
real-time mapping package [50, 217, 218] based on collected LiDAR and/or camera data.

9.5.2 Planning Thread

The planning thread deals with short-range planning (less than 20 meters) at a frequency of
5 to 10 Hz. It includes a robot-centric local map, our omnidirectional CLF-RRT˚ algorithm of
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(a) (b) (c)

(d) (e) (f)

Figure 9.9: Simulated scenes and results obtained with the proposed reactive planning system. On the left are cluttered
indoor scenes with obstacles and holes, in the middle are noisy undulating outdoor terrains, and on the right, are
high-level missions. Each grid in a map is 1 ˆ 1 meter. The simulated robot is based on the ALIP model and accepts
piece-wise constant inputs at the beginning of each step, is used in all simulation. The robot’s initial pose and position
of the final goal were hand selected. The highlighted areas show the local maps being provided to the robot 8ˆ8 for left
and middle columns and 9 ˆ 9 for the right column. In each case, the planner guided the robot to the goal. Animations
of the simulations are available at [267]. All the figures are vector graphics, so one can enlarge in the browser for best
viewing.

Section 9.3, cost computation, a sub-goal finder, and a finite-state machine.

9.5.2.1 Robot-centric Local Map and Cost Computation

Figure 9.8(a) shows the robot-centric multi-layer local map (highlighted area), which crops a
sub-map centered around the robot’s current position from the global map provided by the mapping
algorithm. The local map computes additional useful information such as terrain slope (local
gradient) which is useful for assigning cost. Moreover, other necessary operations for different
experiment scenes such as applying the Bresenham algorithm [279] to remove walkable area behind
glass walls can be computed in this step, see Sec. 9.6.5. Additionally, terrain information such as
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Figure 9.10: A simulation of a C++-implementation of the reactive planner on full-dynamic model of Cassie, which
accounts for all 20 degrees of freedom of the robot in Matlab-SimMechanics and includes a 3D terrain model. The
reactive planning system receives the pose of the simulated Cassie via User Datagram Protocol (UDP). Cassie’s
simulator receives and executes the resulting control commands via UDP. The planning system successfully takes the
simulated Cassie to the goal without falling. An animation is available at [267].

slopes, frictions, or staircase detection can be sent to a terrain-aware low-level controller [273]. The
computations with the local map are efficient compared to processing the full map.

Remark 36. In the experiment videos, it can be seen that we covered many of the glass walls
with paper to prevent LiDAR penetration and the labeling of the space behind the glass walls as
walkable. However, some LiDAR measurements still penetrate the glass (such as the bottom part of
Fig. 17) and resulting in unwanted walkable regions behind the glass; these are removed by the
Bresenham algorithm [279].

9.5.2.2 Anytime Omnidirectional CLF-RRT˚ Planner

The anytime feature is a direct result of using RRT˚ as a planner. The algorithm can be queried
at anytime to provide a suboptimal path comprised of wayposes, which the CLF (9.5) turns into
real-time feedback laws for anytime replanning.

9.5.2.3 Sub-goal Finder and Finite-State Machine

Ideally, a global planner [280–282] is present to guide the robot to a distant goal, which may not
be viewable at the time of mission start [281]. In relatively simple situations such as that shown
in Fig. 9.8 and Fig. 9.9, it is sufficient to complete many of short-term missions by positioning a
sub-goal (green arrow) at the lowest cost (cost-to-come + cost-to-goal) on an arc (blue arrows) to
guide the robot to the final goal. This sub-goal finder is also used as a finite-state machine to handle
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(a) (b)

Figure 9.11: The CAD of the sensor suite. The left shows the front view of the sensor suite and the right shows the
back.

high-level missions such as making turn selections at intersections, or determining if there is an
intersection; see Sec. 9.6.5. It is emphasized that the final path is connected by several sub-goals
determined locally by the sub-goal finder. In the future, the sub-goal finder will be replaced with a
global planner to achieve globally optimal paths.

Remark 37. A sub-goal is essentially an intermediate goal with the lowest cost (cost-to-come and
cost-to-goal) in the local map and is determined by the FSM. It is emphasized that the local map
contains all the available information at that specific timestamp. Therefore, the sub-goal is always
observable because it is within the local map. Sub-goals are needed for planning systems to reach
a final goal, which might be not observable by the sensors on the robot from its current position
and orientation. Piecing together trajectories from one sub-goal to another results in a trajectory
from the initial position to the final destination. It is emphasized again that the sub-goals are
determined by the FSM based on the current available information in the local map and therefore
the overall trajectory may not be globally optimal. To achieve a globally optimal path, the FSM
should eventually be replaced by a global path planner [280–282].

Remark 38. Although each vector field associated to a CLF is continuous (even smooth), switching
among CLFs can induce discontinuity. It is important to keep unchanged the way-pose and CLF
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(a) (b)

Figure 9.12: The left shows the sensor suite with different sensors, and the right shows the sensor suite mounted on
Cassie Blue.

combination the robot is currently targeting so as to ensure continuity. Updates can be made to
further way-pose and CLF pairs in the path, but not the current ones; see Sec. 9.6.6 for more details.

9.5.3 Reactive Thread

The work in [225–233] provided a significant alternative to the standard path tracking. Their
high frequency reactive planners create a vector field on the configuration space whose integrals
curves (i.e., solutions of the vector field) provide alternative paths to the goal. When the robot is
perturbed, it immediately starts following the new path specified by the vector field, instead trying
to asymptotically rejoin the original path. The vector field is in essence an instantaneous re-planner.

In the reactive planner of [226, 228], the vector field arises from the gradient of a potential
function defined on the configuration space. Here, we use the solutions of the closed-loop system
associated with the CLF in (9.5) to define alternative paths in the configuration space. In essence,
our feedback functions (9.12) and (9.11) provide instantaneous re-planning of the control commands
for the omnidirectional model (9.3). This reactive planner can be run at 300 Hz in real-time.

The reactive thread is a reactive planner, in which the motion of the robot is generated by a
vector field that relies on a closed-loop feedback policy giving controller commands in real-time as
a function of the instantaneous robot pose. In other words, the reactive planner utilizes the proposed

142



Figure 9.13: Illustration of how the various processes in the overall autonomy system are distributed and their
computation frequencies. The larger boxes indicate various modules such as Data Acquisition, Planning, and Control.
The smaller boxes are colored according to the processor that runs them.

CLF described in Sec. 9.3 to adjust controller commands automatically when the robot deviates
from the optimal path. This thread steers the robot to the optimal path at 300 Hz.

Remark 39. The “timing” of Cassie’s foot placement is inherently event-driven and stochastic.
Even though a step cycle may be planned for 300 ms, variations in the terrain and deviations of the
robot’s joints from nominal conditions result in foot-ground contact being a random variable, with
a mean of roughly 300 ms. Running the reactive planner at anything over 100 Hz essentially allows
that Cassie’s gait controller, which runs at 2 kHz, is accepting the most up-to-date commands from
the planner, even if a every other messages is lost over UDP transmission.

9.6 Simulation and Experimental Results

The proposed reactive planning system integrates a local map, the omnidirectional CLF-RRT˚,
and fast replanning from the reactive thread. We performed three types of evaluation of the reactive
planning system.
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Figure 9.14: Experimental results on the Wave Field. The top-left shows the experiment terrain, the Wave Field, on the
North Campus of the University of Michigan. The top-right shows a bird’s-eye view of the resulting trajectory from the
reactive planning system. The bottom-left shows a back-view of the trajectory produced by the planning system as
Cassie Blue walks in a valley (highly traversable area) of the Wave Field. The bottom-right demonstrates the planning
system avoiding areas of higher cost. The red peaks are from the experimenters walking alongside Cassie.

9.6.1 Angular Linear Inverted Pendulum (ALIP) Robot with Simulated Challenging Out-
door Terrains and Indoor Cluttered Scenes

We first ran the reactive planning system on several synthetic environments, in which an ALIP
robot model [216, 269] navigated several simulated noisy, patchy, challenging outdoor terrains as
well as cluttered indoor scenes. The ALIP robot successfully reached all the goals in different
scenes. We tested the system on more than 10 different environments, both indoor and outdoor
with and without obstacles. Due to space limitations, we only show the results of six simulations in
Fig 9.9; see our GitHub [267] for videos and more results.

Remark 40. The ALIP robot [216,269] takes piece-wise constant inputs from the reactive planning
system. Let g,H, ⌧ be the gravity, the robot’s center of mass height, and the time interval of a swing
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Figure 9.15: Control commands sent to Cassie Blue. UDP packet drops show up as vertical lines. When these occur,
the controller uses the previous value.

phase, respectively. The motion of an ALIP robot on the x-axis is defined as
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where xk and 9xk are the contact position and the contact velocity of the swing foot on the x-axis,
px is the Center of Mass (CoM) on the x-axis of the robot, ⇠ “ ⇢⌧ and ⇢ “

a
g{H . Similarly, the

motion of the robot on the y-axis can be defined.

Remark 41. Even though a full global map is given in each simulation environment, only the
information in the local map is given to the planning system at each timestamp. The path generated
from omnidirectional RRT˚ is asymptotically optimal within the local map, for the given time
window. It is emphasized that no global information is provided to the planner which is why the
resulting trajectory from the initial point to the goal may not be the shortest path.

9.6.2 Validation of Control Command Feasibility via a Whole-body Cassie Simulator

To ensure the control commands from the reactive planning system are feasible for Cassie-series
bipedal robots, we sent the commands via UDP from ROS [81] C++ to Matlab-Simmechanics,
which simulates a 20 DoF of Cassie, using footfalls on the specified terrain. The simulator then
sent back the pose of the simulated Cassie robot to the planning system to plan for the optimal path
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Figure 9.16: The resulting trajectories on the first floor of the Ford Robotics Building. The map colored by height was
built online while Cassie was guided by the planning system. The green lines are the resulting trajectories and green
patches in the map are tables and furniture considered obstacles.

via UDP. The planner system successfully took the simulated Cassie to the goal without falling, as
shown in Fig. 9.10.

9.6.3 Perception Suite Design and Hardware System Integration

To allow the robot to perceive its surroundings under different lighting conditions and environ-
ments, we designed a perception suite that consists of an RGB-D camera (Intel RealSense™ D435)
and a 32-Beam Velodyne ULTRA Puck LiDAR. Two fans cool a Jetson AGX Xavier with GPU.
A router, a USB hub, and an internet switch are utilized for communication from users and the
robot to the perception suite. Finally, a 12-volt Lithium Polymer battery powers up all the sensors.
Figure 9.11 shows the design of the full sensor suite and the step files are available at [45].

The weight of the sensor suite, with batteries and everything included, is 8.5 kilograms. We use
an industrial-grade router and internet switch to ensure stable connections among the sensors, GPU,
and the secondary computer on the Cassie robot. Figure 9.12 shows all the sensors mounted on the
perception suite.

9.6.4 Software System Integration for Real-time Deployment

System integration is critical for real-time use. Figure 9.13 shows the integrated system,
distribution, and frequency of each computation. In particular, the sensor calibrations are per-
formed via [9, 21, 39, 40, 62, 86, 101, 211–213]. The Invariant Extended Kalman Filter (InEKF)
[61, 214] is used to estimate the state of Cassie Blue at 2 kHz. Images are segmented via Mo-
bileNets [283] and a LiDAR point cloud is projected back to the segmented image to produce a
3D segmented point cloud. The resulting point clouds are then utilized to build a Multi-Layer
Map (MLM) [50, 217, 218, 284, 285]. The reactive planning system then crops the MLM around the
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Figure 9.17: Experimental results on the second floor of the Ford Robotics Building. The top shows glass walls, which
lead to refection of LiDAR lasers and creating walkable area behind the wall. The bottom illustrates the resulting (200
meter) trajectory produced by the planning system as Cassie Blue walks. It is remarked that the plot is based on pure
odometry so no loop closure is performed [214].

robot position to create a local map and performs several operations to acquire extra information, as
described in Sec. 9.5.2. Additionally, the reactive planner receives the robot poses from the InEKF
at 300 Hz to adjust the control commands that guide the robot to the nominal sub-poses via the
proposed CLF; see Sec. 9.3 and Sec. 9.5.3. The control commands are then sent to Cassie Blue’s
gait controller [51, 215, 216] via UDP.

9.6.5 Full Autonomy Experiments with Cassie Blue

We conducted several indoor and outdoor full autonomy experiments with Cassie Blue. The
running cost in (9.14) was selected as

Cpxt, yt, zrq :“ Cepxt, ytq ` 0.5Cspxt, ytq ` 0.3pCepxt, ytq ´ zrq, (9.20)

where Cepxt, ytq, Cspxt, ytq are the elevation and the magnitude of the gradient at a point pxt, ytq,
respectively.

9.6.5.1 The Wave Field

We achieved full autonomy with Cassie Blue on the Wave Field, located on the North campus
of the University of Michigan, an earthen sculpture designed by Maya Lin [286]; see Fig. 9.14(a).
The Wave Field consists of sinusoidal humps with a depth of approximately 1.5 m from the bottom
of the valleys to the crest of the humps; there is a second sinusoidal pattern running orthogonal
to the main pattern, which adds 25 cm ripples peak-to-peak even in the valleys. Figure 9.14(b)
shows the top-view of the resulting trajectory of the reactive planning system. The planning system

147



guided Cassie Blue to walk in the valley (the more traversable area), as shown in Fig. 9.14(c).
The planning system navigated Cassie Blue around a hump that protrudes into one of the valleys,
as shown in Fig. 9.14(d). Figure 9.15 shows the control commands sent to Cassie Blue. This
experiment was presented in the Legged Robots Workshop at IEEE International Conference on
Robotics and Automation (ICRA) 2021; the video can be viewed at [287]. The video of the Wave
Field experiment is uploaded and can be found at [49] and [267].

Remark 42. We conducted most of the experiments at night because there are fewer people walking
around. Because of the intrinsic properties of LiDAR sensors, ambient lighting does not affect their
measurements; see [39] for more details about LiDAR properties.

9.6.5.2 Turn left at detected intersections of corridors and avoid obstacles

We conducted two experiments of this type on the first floor of the FRB at the University of
Michigan. The experiments’ scenes consist of corridors and an open area cluttered with tables and
couches, which are considered as obstacles (height greater than 30 cm from the mapping package),
as shown in Fig. 9.16. To detect the intersections of the corridors, we group walkable segments
within a ring around Cassie Blue. Each walkable segment either links with an existing cluster or
creates a new cluster via the single-linkage agglomerative hierarchical clustering algorithm3 [133],
where the linkage criteria is the Euclidean distance. If there are more than two clusters of walkable
segments, we consider there exists an intersection. Subsequently, Cassie Blue makes a left turn at
the detected intersection. After exiting the corridors, the robot reaches an open area cluttered with
furniture and performs obstacle avoidance. Under the proposed reactive planning system, Cassie
Blue completed the experiments without falling or colliding with obstacles. The total distance
traveled was about 80 meters. The experiment videos can be viewed at [288] and [267].

9.6.5.3 Turn right at detected intersections of corridors and return to the initial position

This experiment was conducted on the second floor of the FRB and the experiment scene contains
four long corridors with glass walls. Some of the LiDAR beams penetrated glass a certain points
along the corridors, causing the mapping algorithm to consider area behind the glass walls as free
and walkable. We applied the Bresenham line algorithm [279] to remove the walkable area behind
the glass walls. The computation of the Bresenham algorithm is not expensive because it is only
applied within the local map, mentioned in Sec. 9.5.2. The proposed reactive planning system
successfully guided Cassie Blue back to its initial position, as shown in Fig. 9.17. The total distance
traveled was about 200 meters. The experiment videos can be viewed at [289] and [267].

3We chose this clustering algorithm because the number of clusters is unknown. Therefore, algorithms like K-Means
Clustering [134] cannot be used.
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9.6.6 Experiment Discussion

In the two indoor experiments, Cassie exhibited a walk-and-stop motion. Where does it come
from? As mentioned in Sec. 9.5, the planning threading runs at 5 Hz. At the k-th update, there will
be an optimal path Pk, comprised of a number of way-poses connected by CLFs. Although each
vector field associated to a CLF is continuous (even smooth), switching among CLFs can induce
discontinuity. This discontinuity induces Cassie’s walk-and-stop motion seen in the videos of the
indoor experiments. How? At each planning update, the entire tree was being discarded and a new
one constructed. In particular, the closest way-pose to Cassie was being re-set every 200 ms, and
thus the robot was never allowed to evolve along the integral curves of the vector field.

The solution is straightforward: at the pk 1̀q-st planning update, we leave the first unreached
way-pose fixed in the path Pk to ensure continuity. Additionally, to fully utilize the optimal path
from the previous update, we keep the current optimal path Pk as a branch and prune all the samples
from the k-th update. This provides a warm start for the pk 1̀q-st update, as long as the path Pk

is still valid and collision-free. If a dynamic obstacle has invalidated the path between the robot’s
current position and the first unreached way-pose, then the entire tree is discarded, as before. With
these changes made, we conducted several additional experiments to confirm that it resolves the
walk-and-stop movement. The experiments can be viewed at [290] and [267].

9.7 Conclusion and Future Work

We presented a novel reactive planning system that consists of a 5-Hz planning thread to guide
a robot to a distant goal and a 300-Hz CLF-based reactive thread to cope with robot deviations.
In simulation, we evaluated the reactive planning system on ten challenging outdoor terrains and
cluttered indoor scenes. In experiments on Cassie Blue, a bipedal robot with 20 DoF, we performed
fully autonomous navigation outdoors on sinusoidally varying terrain and indoors in cluttered
hallways and an atrium.

The planning thread uses a multi-layer, robot-centric local map to compute traversability for
challenging terrains, a sub-goal finder, and a finite-state machine to choose a sub-goal location as
well as omnidirectional CLF-RRT˚ to find an asymptotically optimal path for Cassie to walk in a
traversable area. The omnidirectional CLF-RRT˚ utilizes the newly proposed Control Lyapunov
Function (CLF) as the steering function and the distance measure on the CLF manifold in the
RRT˚ algorithm. Both the proposed CLF and the distance measure have a closed-form solution.
The distance measure nicely accounts for the inherent “features” of Cassie-series robots, such as
high-cost for lateral movement. The robot’s motion in the reactive thread is generated by a vector
field depending on a closed-loop feedback policy providing control commands to the robot in
real-time as a function of instantaneous robot pose. In this manner, problems typically encountered
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by waypoint-following and pathway-tracking strategies when transitioning between waypoints or
pathways (unsmooth motion, sudden turning, and abrupt acceleration) are resolved.

In the future, we shall combine control barrier functions [248–251, 277, 278] with the CLF in
the reactive thread to handle dynamic obstacles. Additionally, the current local map is a 2.5D,
multi-layer grid map with fixed resolution; it is also interesting to see how to efficiently represent
a continuous local map. An obstacle in the local map is assigned simply by height that the robot
cannot step over; how to robustly determine an object is an obstacle or not is also an interesting
research. Furthermore, how to extend the CLF to 3D is another interesting area for future research.
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Part IV

Conclusion and Future Directions

CHAPTER 10

Conclusion and Contributions

10.1 Summary of Dissertation and Contributions

In this dissertation, we have presented an autonomy system for bipedal robots. In brief, the
proposed system enables the robot to

1. perceive surrounding information via the intrinsically and extrinsically calibrated sensor suite
(Chapter 2-5),

2. estimate their poses in textureless and completely dark environments through LiDAR-based
fiducial markers (Chapter 6),

3. leverage the optimal target shape and a global solver to estimate their poses when the target is
30 meters away (Chapter 7),

4. plan routes to multiple destinations and determine the visiting order of multiple destinations
in large-complex graph-based maps (Chapter 8),

5. traverse through unexplored, unstructured environments and undulating terrains (Chapter 9).

We first introduce various types of sensors and the perception suite in Chapter 2. The extrinsic
calibration algorithm to estimate the LiDAR to camera transformation is proposed in Chapter 3. The
algorithm avoids all together the delicate task of identifying the edge points and parsing them into
individual edges of the target. Chapter 4 introduces the global unifying LiDAR intrinsic calibration
framework for both spinning LiDARs and solid-state LiDARs. The LiDAR intrinsic parameters
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are represented as the action of the seven-dimensional matrix Lie group, Simp3q and formulated
as a QCQP where Lagrangian duality relaxation is used. We mathematically prove that given four
targets with appropriate orientations, the proposed model is well-constrained (i.e., a unique answer
exists). We then show how to profitably apply efficient, globally convergent algorithms for SEp3q to
determine a solution to our problem in Simp3q. The automatic calibration system is introduce in
Chapter 5.

Next, the very first LiDAR-based fiducial marker system – LiDARTag is developed in Chapter 6.
The LiDARTag system detects different sizes of targets in a full point cloud scan at 100 Hz.
Furthermore, the system can be operated in a completely dark environment. In Chapter 7, we
propose the concept of optimizing target shape to ameliorate problems caused by quantization
uncertainty and sparsity of the LiDAR image of a target. The pose estimation problem is formulated
so that an existing SDP global solver can be modified to globally and efficiently compute the target’s
pose. The optimal shape with the global solver achieves centimeter error in translation and a few
degrees of error in rotation when the targets are at a distance of 30 meters and partially illuminated.

Later, we present informable multi-objective and multi-directional RRT˚ (IMOMD-RRT˚) in
Chapter 8. The system is an anytime iterative algorithm to concurrently solve the multi-objective
path planning problem and determine the visiting order of destinations. The system is comprised
of an anytime informable multi-objective and multi-directional RRT˚ algorithm to form a simple
connected graph, and a proposed solver that consists of an enhanced cheapest insertion algorithm
and a genetic algorithm to solve the Relaxed Traveling Salesman Problem (R-TSP) in polynomial
time.

Finally, we propose a novel reactive planning system to smoothly approach the intermediate
goals in Chapter 9. The reactive planning system consists of a 5-Hz planning thread to guide a robot
to a distant goal and a 300-Hz Control-Lyapunov-Function-based (CLF-based) reactive thread to
cope with robot deviations. This reactive planning system allows Cassie to autonomously avoid
obstacles, complete high-level missions, and traverse sinusoidally varying terrains.
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CHAPTER 11

Future Work

11.1 Extension of Autonomy System

This chapter outlines several ideas to extend the current autonomy stack and provides some
preliminary results. In particular, we suggest the following:

1. In Chapter 3, we solve the extrinsic parameters via a local solver. Even though we achieve
pixel-level reprojection error, it still has some limitation where a good initial guess has to be
provided. We suggest leveraging the global solver mentioned in Chapter 4.5 to avoid incorrect
local minimums due to a poor initial guess.

2. In Chapter 8, we develop an IMOMD-RRT˚ system for high-level robotics path planning
on OpenStreetMap (OSM). However, an OSM is not available indoor. As a future work, we
propose a light-weight graph-based topological map for robotics indoor navigation.

3. Using the graph-based topological map mentioned above, we suggest the robot localizing into
the map and executing for high-level planning as a part of the future work.

4. We develop a CLF-based terrain planner in Chapter 9. The map and obstacles are updated at a
lower rate (1-0.1 Hz), whereas the reactive threading is running at 300 Hz. It is an interesting
future direction to represent obstacles via Control Barrier Functions (CBFs), and combine the
CBFs with the CLF in the reactive thread to cope with dynamic obstacles at a higher rate.

11.2 Global Solver for Extrinsic Calibration of LiDAR and Camera

In this chapter, we leverage the global solver mentioned in Chapter 4.5.3 to avoid incorrect local
minimums due to poor initial guess. We first build a LiDAR and camera simulator. Next, we adopt
two approaches to re-project 2D camera corners to 3D camera vertices in the camera frame so that
3D point-to-point correspondences can be formed. Finally, we utilize the global solver to estimate
extrinsic parameters. We demonstrate preliminary results to show the potential of this idea.
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11.2.1 LiDAR and Camera Simulators

To simulate 3D points on a planar target, we generate rays from the simulated LiDAR sensor,
and define a “target” point as the point at which the ray intersects the target. After locating the exact
LiDAR returns on the target, based on the LiDAR type, we then add uncertainty to the returns and
report them as measured data, as shown in Fig. 11.1.

The camera is modeled as a pin-hole camera. The camera simulator takes 3D points measured
in the world frame and projects the points onto the 2D image plane. Figure 11.2(a) shows the
configuration of a LiDAR and a camera. The camera image of the target is shown in Fig. 11.2(b).

Remark 43. The LiDAR simulator first finds all intersection points with the (infinite) plane defined
by the target. To determine if a point on the plane is within the boundary of the target polygon is a
well-known problem in computer graphics, called the PIP problem [98, 99, 291–295]. The Winding
Number algorithm [100] is implemented in this simulator. If the winding number of a point is not
zero, the point lies inside the boundary; otherwise it is outside.

Figure 11.1: Illustration of the LiDAR simulator in the scene with planar objects. The outer boundary is the LiDAR mea-
surements on the walls.
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(a) (b)

Figure 11.2: (a) shows the configuration of a LiDAR-camera pair. (b) demonstrates the image of the target.

11.2.2 3D Points Triangulation from 2D Image Features with Geometry Constraints

This section provides two methods to compute 3D target vertices from 2D image corners in the
image coordinate.

11.2.2.1 Direct Solution by Grunert Algorithm

To estimate the 3D target vertices CXi from the 2D image corners CYi, we implemented the
direct solution by the Grunert Algorithm [296]. Let K be the intrinsic matrix of the camera [155]
defined as

K “

»

—–
fx s cx

0 fy cy

0 0 1

fi

�fl . (11.1)

Let V “ tviu4i“1
be the set of vectors that emanate from the camera origin O to CXi, as shown in

Fig. 11.3. We can then compute vi by

vi “ K
´1

CY
1
i
; (11.2)

see [70, Eq. (1.14)] for more details. By the law of cosines, we also have

d2 “ s2
1

` s2
2

´ 2s1s2
v1 ¨ v2

kv1kkv2k

d2 “ s2
2

` s2
3

´ 2s2s3
v2 ¨ v3

kv2kkv3k

d2 “ s2
3

` s2
4

´ 2s3s4
v3 ¨ v4

kv3kkv4k

d2 “ s2
4

` s2
1

´ 2s4s1
v4 ¨ v1

kv4kkv1k

, (11.3)
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Figure 11.3: The geometry of the four target points and camera origin.

where si are unknown depth values and d is the target size. From (11.2) and (11.3), we can determine
tsiu4i“1

. Finally, the target vertices CXi in the camera coordinate system are determined by

CXi “ si
vi
kvik

. (11.4)

However, the Grunert Algorithm [296] does not consider geometry constraints where the target
dimension and the target planar geometry are known. In particular, the noise in the intrinsic matrix
K will lead to non-planar target vertices CXi in the camera frame. We propose an optimization
problem that takes geometry constraints into account while estimating the target vertices in the next
section.

11.2.2.2 Optimization for Target Vertices with Geometry Constraints

We employ the L1-inspired method, mentioned in Chapter 3.2.2. Similarly, let HT

C
be the

rigid-body transformation from the template in the camera frame with vertices tCX iu
4

i“1
, onto the

actual camera vertices tC
rX iu

4

i“1
, namely,

C
rX i “

»

—–
rxi

ryi
rzi

fi

�fl “ HC

T
X i, 1 § i § 4. (11.5)
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Figure 11.4: Illustration of the distance between rays and estimated target vertices parallel to the image plane.

The optimization problem is defined as

H
C

T

˚
:“ argmin

R
C
T ,t

C
T

4nÿ

i“1

d2
xy

pvi,H
C

T
X̄

1
iq

“ argmin
R

C
T ,t

C
T

4ÿ

i“1

����z̃i
vi

kvik
´C X̃i

����
2

,

(11.6)

where vi are rays emanating from the camera origin O, defined in (11.2), and dxy is the distance
between rays and target vertices parallel to the image plane, as shown in Fig. 11.4. Finally, the
estimated target vertices CX˚

i
in the camera frame is determined by

CX
˚
i

“ H
C

T

˚
X̄i, 1 § i § 4. (11.7)

11.2.3 Globally Optimal Solution of Extrinsic Parameters via Point-to-Point Correspon-
dences

Given the correspondences of the camera vertices and LiDAR vertices, we seek the transforma-
tion HL

C
that minimizes the point-to-point distance:

jipH
L

C
; CX i,L X iq “ }HL

C
˝ CX i ´ LX i}

2

2
. (11.8)
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(a) (b)

(c) (d)

Figure 11.5: (a) shows the result of vertices estimation with perfect intrinsic parameters. (b) and (c) show the results
of target vertices estimation determined by Grunert method with imperfect intrinsic parameters(˘1.0% of noise). (d)
shows the result of our optimization method with the same imperfect intrinsic parameters. The black indicates the
ground truth, the red is estimation from the Grunert algorithm, and the green is estimation results from the L1-inspired
method.

The total fitting error is defined as

JpHL

C
; CX i, LX iq “ argmin

R
C
L ,t

C
L

Nÿ

i“1

jipH
L

C
; CX i,L X iq, (11.9)

where N is the number of correspondences.
To minimize (11.9), we adopt techniques that were used to globally solve 3D registration or 3D

SLAM [1, 82–84] where the problem is formulated as a QCQP, and the Lagrangian dual relaxation
is used. The relaxed problem becomes a SDP and convex. The problem can thus be solved globally
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(a) (b)

(c) (d)

Figure 11.6: The translation and rotation error are computed from (11.10). (a) and (b) are the estimation results with
˘1% noise applied to the ground truth intrinsic parameters. (c) and (d) are the estimation results with ˘0.5% noise
applied to the ground truth intrinsic parameters.

and efficiently by off-the-shelf specialized solvers [85]. As shown in [84], the dual relaxation is
empirically always tight (the duality gap is zero). Therefore, the transformation HL

C
between the

camera and the LiDAR can be globally obtain.

11.2.4 Simulation Results

The result of vertex estimation is evaluated on translation et in R3 and rotation er on SOp3q,
separately. In particular, et and er are computed by

et :“ }t ´ rt} and er :“ }LogpR rRT
q}, (11.10)

where } ¨ } is the Euclidean norm, r̈ is the estimated quantity, R and t are the ground truth rotation
and translation, respectively, and Logp¨q is the logarithm map in the Lie group SOp3q.
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11.2.4.1 3D Camera Vertices from Grunert Algorithm and L1-inspired Optimization

We first apply random noise (˘1%) to the ground truth intrinsic camera parameters. Figure 11.5
shows qualitative results of the estimation from Grunert algorithm and the proposed L1-inspired
optimization. The quantitative results are shown in Fig. 11.6.

11.3 Light-Weight Topological Map and Localization for Robotics Navigation

In Chapter 8, we develop an IMOMD-RRT˚ system for high-level robotics path planning on
OpenStreetMap (OSM) [173]. However, OSM is not available indoor. Therefore, building such
a topological (topometric) map for indoor environments is critical for robot to localize into the
topometric map and perform autonomous navigation. We demonstrate preliminary results in this
chapter.

11.3.1 Construction of Topological Map via Voronoi Graph

The proposed algorithm takes an occupancy grid map converted from an elevation map to
construct a Voronoi graph and then to build a topological map. A grid in the elevation map is
considered as an obstacle if the height difference between the grid and the nearest robot pose is
larger than a certain threshold. After an occupancy map is built, the proposed algorithm uses it to
construct a Voronoi graph. Next, the topological map is built from the Voronoi graph.

The construction of discretized Voronoi diagram from an occupancy map is inspired from [297].
If a free cell in the occupancy map has more than one nearest occupied cell, it is called a Voronoi
point. The distance between a Voronoi point and its corresponding obstacle cells is defined as
clearance. Next, topological regions in the graph is divided by connecting Voronoi points that have
local minimum clearance. For each topological region ri, a convex hull is constructed hi. If ri is
connected with rj , the potential new region by merging ri and rj is ri,j . The score of merging the
two topological regions ri and rj is defined as

si,j :“
areapri,jq

areaphi,jq
. (11.11)

Each time, the pair with the minimum score is merged until the minimum merging score is larger
than a threshold. To represent the safe paths, the Voronoi point with the largest clearance in a region
will be connected with the Voronoi points used to divide the region. To represent the obstacles, the
obstacle boundary with only one or two connections are merged until the least square error is larger
than the threshold. Algorithm 5 summarizes the overall process. The resulting Voronoi graph and
topological map of the second floor of FRB is illustrated in Fig. 11.7 and Fig. 11.8, respectively.
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Figure 11.7: Voronoi graph of second floor of FRB. The green and the red indicates the Voronoi points and obstacles,
respectively. The pink is free area.

The size of the resulting map is reduced from a 10 GB ROS bagfile to 16 KB ( 200 doubles) text file.
Additionally, the proposed algorithm takes 25 seconds to build the topological map from a 10-min
ROS bagfile on a typical modern laptop.

11.3.2 Localization into Topological Map

As mentioned in the last section, we introduce a means to build a light-weight topometric map
via Voronoi graphs. Another type of topometric map is OpenStreetMap (OSM). Both types are
graph-based representation containing vertices and edges. Edges connecting vertices are topological
line boundaries such as walls or road curbs. These line features could be readily obtained from

Algorithm 5: Voronoi Graph Construction
1 for n in free grids do
2 nnearest – Nearest(n)
3 dclearence – dist(n, nnearest)
4 O – Obstacle(n, dclearence, dclearence `

?

2)
5 nbasis – RemoveTightlyConnect(O)
6 if size(nbasis)° 1 then
7 V .append(n)

8 G – DivideGroups(V )
9 C – Localminimum(G)

10 C – MergeCells(C)
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(a) (b)

Figure 11.8: (a) shows the topological built from Fig. 11.7. (b) shows the topological map after merging. The black,
blue, and white lines are walls, walkable routes, and region boundaries, respectively.

LiDAR sensors or camera images. We have two sets of line features, one from the topological
maps and the other from the sensor measurements. Lines can also be parameterized as two points.
Therefore, we have two sets of point clouds.

We propose to leverage the particle filter [298] for localization where each particle is a potential
location of the robot. The weight of a particle is computed via Reproducing Kernel Hilbert
Space (RKHS) mentioned in Chapter 6.6. We construct a continuous function in an inner product
space for a set of point clouds [105]. Finally, we compute the inner product of the two estimated
continuous functions. The largest inner product is the pose of the robot location.
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APPENDIX A

Global Unifying Intrinsic Calibration on Lie Group for Spinning LiDAR
and Solid-state LiDAR

A.1 Proof of Uniqueness of Similarity Transformation

This proof provides a guideline to place targets such that an answer to the optimization problem
is unique. In particular, under Assumption N and Assumption B, the optimization problem has only
one unique answer. As stated in Sec. 4.3, the intrinsic calibration parameters are modeled as an
element of the similarity Lie group (Simp3q). An element of this group in matrix from is

H “

«
sR t
0 1

�
P Simp3q, (A.1)

where R P SOp3q, t P R3 and s P R`.

A.1.1 Mathematical Definitions and Preliminaries

Let rSs and rSs
K be the span and its orthogonal complement of S Ä R3, respectively1. We

denote the union of intersection of K spans as prS1s ` rS2s ` ¨ ¨ ¨ ` rSKsq “ X
K

i“1
rSis. Let P Ä R3

be a plane. P modeled the set traced out by a single ring of a perfectly calibrated spinning
LiDAR. Let te

1
, e

2
, e

3
u denote the canonical basis for R3. Without loss of generality, we assume

P “ re
3
s

K
“ te

1
, e

2
u. Therefore, @s ° 0,R P SOp3q,

psR ´ IqpPq “ 0 ñ s “ 1,R “ I.2

A.1.2 Assumptions

Consider four targets with unit normal vectors n
i

and let p
0,i

be a point on the i-th target.

17 S Ä R3, rSs “ R3 ñ rSsK “ 0
2psR ´ IqpPq “ rpsR ´ Iqe1s ` rpsR ´ Iqe2qs
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Assumption N (Normal Vectors)
All sets of three distinct vectors from tn

1
, n

2
, n

3
, n

4
, e

3
u are linearly independent.

For 1 § i § 4, the plane defined by the i-th target is V
i
:“ p

0,i
` rn

i
s

K. Under Assumption N,
some facts are listed below without proofs:

(a) For each i ‰ j P t1, 2, 3, 4u, p
ij
:“ P X V

i
X V

j
exists and is unique. There are

`
4

2

˘
intersection

points.

(b) V
i

X V
j

“ p
ij

` rn
i
, n

j
s

K.

(c) H ¨ p
ij

P V
i

X V
j

if, and only if,

psR ´ Iqp
ij

` t P rn
i
, n

j
s

K.

(d) Because dimrn
i
, n

j
s

K
“ 1, psR ´ Iqp

ij
` t ‰ 0 if, and only if, rpsR ´ Iqp

ij
` ts “ rn

i
, n

j
s

K.

(e) Let tp
a
, p

b
u be a basis for P. Then psR ´ IqpPq “ 0 if, and only if, psR ´ Iqpp

a
q “ 0 and

psR ´ Iqpp
b
q “ 0.

Assumption B (Basis Vectors)
Given the six intersection points, any two form a set of basis for the ring plane. There are

`
6

2

˘
sets

of basis. Subsets of the basis’ are linearly independent.

(a) tp
12
, p

13
u, tp

13
, p

14
u, tp

14
, p

12
u,

(b) tp
12
, p

23
u, tp

23
, p

24
u, tp

24
, p

12
u,

(c) tp
13
, p

23
u, tp

23
, p

34
u, tp

34
, p

13
u,

(d) tp
14
, p

24
u, tp

24
, p

34
u, tp

34
, p

14
u,

(e) tp
14
, p

23
u

A.1.3 A Complete Proof

Theorem 1. Assume that Assumptions N and B hold and let H P Simp3q. If for each i ‰ j P

t1, 2, 3, 4u, H ¨ p
ij

P V
i

X V
j
, then

H “

«
I 0

0 1

�
. (A.2)
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Proof. The proof is by exhaustion on the dimension of psR ´ IqpPq. We noticed that H ¨ p
ij

“

sRp
ij

` t, and therefore

H ¨ p
ij

P V
i

X V
j

ñ psR ´ Iqp
ij

` t P rn
i
, n

j
s

K. (A.3)

• Case 1: dimpsR ´ IqpPq “ 0.

Then t P rn
i
, n

j
s

K for all i ‰ j. Hence, t P rn
1
, n

2
s

K
Xrn

2
, n

3
s

K
“ 0, which implies that t “ 0.

Therefore, by Simple Fact 1, we have finished. We next show that dimpsR ´ IqpPq ° 0 and
H ¨ p

ij
P V

i
X V

j
for all i ‰ j lead to contradictions.

• Case 2: dimpsR ´ IqpPq “ 1

(a) Suppose t R psR ´ IqpPq. Then, for any p
ij

, psR ´ Iqp
ij

` t ‰ 0. Hence,

rn
1
, n

2
s

K
“ rpsR ´ Iqpp

12
q ` ts

rn
2
, n

3
s

K
“ rpsR ´ Iqpp

23
q ` ts

rn
3
, n

4
s

K
“ rpsR ´ Iqpp

34
q ` ts.

Because rn
1
, n

2
sXrn

2
, n

3
sXrn

3
, n

4
s “ 0, we know that rn

1
, n

2
s

K
`rn

2
, n

3
s

K
`rn

3
, n

4
s

K
“ R3.

We deduce that dimpsR ´ IqpPq “ 2, which is a contradiction.

(b) Suppose t P psR ´ IqpPq and thus there exists p
t

P P such that t “ psR ´ Iqpp
t
q. The

condition (A.3) can therefore be written as

H ¨ p
ij

P V
i

X V
j

ñ psR ´ Iqpp
ij

` p
t
q K tn

i
, n

j
u. (A.4)

Because tp
12
, p

13
u, tp

13
, p

14
u, tp

14
, p

12
u are bases for P, we conclude that

rp
12

` p
t
, p

13
` p

t
, p

14
` p

t
s “ P. (A.5)

Applying (A.4) to this set of vectors, we deduce that

psR ´ IqpPq K n
1
.

Applying the same reasoning to tp
12
, p

23
u, tp

23
, p

24
u, tp

24
, p

12
u , we deduce that psR ´

IqpPq K n
2
. Similarly, we have psR ´ IqpPq K n

3
and thus dimpsR ´ IqpPq “ 0.

• Case 3: dimpsR ´ IqpPq “ 2
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We rewrite (A.3) as

H ¨ p
ij

P V
i

X V
j

ñ ´t P psR ´ Iqp
ij

` rn
i
, n

j
s

K. (A.6)

Hence, if for all i ‰ j P t1, 2, 3, 4u, H ¨ p
ij

P V
i
X V

j
, then the lines psR ´ Iqp

ij
` rn

i
, n

j
s

K

in R3 must have a common point of intersection, namely ´t and hence

£

i‰jPt1,2,3,4u
tpsR ´ Iqp

ij
` rn

i
, n

j
s

K
u ‰ H. (A.7)

Remark 44. When psR ´ IqpPq “ 0, the intersections in (A.7) are non-empty; indeed, the
equation reduces to

£

i‰jPt1,2,3,4u
rn

i
, n

j
s

K
“

˜
ÿ

i‰j

rn
i
, n

j
s

¸K

“ pR3
q

K
“ 0,

and hence t “ 0.

In the remainder of the proof, we show that when the intersection is non-empty, it contradicts
dim psR ´ IqpPq “ 2. We do this by examining the intersections in (A.7) pairwise to arrive
at a set of necessary conditions for H ¨ p

ij
P V

i
X V

j
for i ‰ j, and then use the necessary

conditions to complete the proof. We note that for ij ‰ kl,

tpsR ´ Iqp
ij

` rn
i
, n

j
s

K
u X tpsR ´ Iqp

kl
` rn

k
, n

l
s

K
u ‰ H

ñ psR ´ Iqpp
ij

´ p
kl

q P rn
i
, n

j
s

K
` rn

k
, n

l
s

K.

The indices are a bit easier to keep track of if we set

q
1
:“ psR ´ Iqpp
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where tU
k
|k “ 1, ¨ ¨ ¨ , 4u denote the indicated one-dimensional subspaces. Then, for each

i ‰ j P t1, 2, 3, 4u, U
i

X U
j

“ 0, and we have U
1

‘ U
2

‘ U
3

“ R3. Let u
i

be a basis for U
i
,

so that U
i

“ ru
i
s, and write

u
4

“ ↵u
1

` �u
2

` �u
3
.
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Claim 1
Each of the coefficients ↵, �, � is non-zero.

Proof. Suppose ↵ “ 0. Then U
4

Ä U
2

` U
3
, that is,

rn
2
, n

3
s

K
Ä rn

1
, n

3
s

K
` rn

1
, n

4
s

K

But this is equivalent to

rn
1
s “ rn

1
, n

3
s X rn

1
, n

4
s Ä rn

2
, n

3
s,

and hence tn
1
, n

2
, n

3
u is not linearly independent, contradicting Assumption N. The same

argument holds for the other coefficients. ⌅

Claim 2
A necessary condition for

4£

i“1

tq
i

` U
i
u ‰ H (A.8)

is that there exist real numbers c1, c2, c3, c4 such that

�q
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:“ q
1
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“ c1u
1

` c2u2

�q
13
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1

´ q
3
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�q
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` c4u4

�q
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´ q
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“ c3u
3
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�q
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:“ q
2

´ q
4

“ c4u
4

´ c2u2

�q
34

:“ q
3

´ q
4

“ c3u
3

´ c4u4

(A.9)

Proof. Each row of (A.9) corresponds to a condition of the form q
i

´ q
j

P U
i

‘ U
j
. The

proof proceeds by expressing each of the six rows in (A.9) with distinct coefficients (12 in
total), and then writing down three necessary compatibility conditions,

�q
12

´ �q
13

` �q
23

“ 0

�q
12

´ �q
14

` �q
24

“ 0

�q
14

´ �q
13

` �q
34

“ 0.

(A.10)

Because ´t is in the intersection of the lines in (A.8), the resulting linear equations must have
a solution, and indeed direct computation shows that the set of solutions can be parameterized
as given in the claim. ⌅
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The next step is to note that r�q
12
, ¨ ¨ ¨ ,�q

34
s Ä psR ´ IqpPq, and hence its dimension must

be less than three. Additional straightforward calculations show that

dim r�q
12
,�q

13
,�q

34
s “ rank

»

—–
c1 c1 ´↵c4

c2 0 c2 ´ �c4

0 c3 ´�c4

fi

�fl .

In light of Claim 1, the rank is less than three if, and only if, any two coefficients of
tc1, c2, c3, c4u are zero. But if this is the case, then at least one row of (A.9) must be zero.
Each row of (A.9), however, has the form psR ´ Iqpp

a
´ p

b
q, where tp

a
, p

b
u is a basis for P,

and thus it cannot be the case that dimpsR ´ IqpPq “ 2. This completes the proof.

⌅
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A.2 Lagrangian Duality Relaxation for P2P Distance on SEp3q

At the k-th iteration, the scaling parameter is determined (see Sec. 4.5) and the rest of the
parameters are SEp3q. To solve the remaining parameters, we adopt techniques that were used to
solve 3D registration or 3D SLAM [1, 82–84]. We summarize below for completeness. The action
of SEp3q on R3 can be rewritten as:

H ¨ x “ Rx ` v “

”
xJ

b I3 I3
ı «

vecpRq

v

�

loooomoooon
⌧

, (A.11)

where b and vecp¨q are the Kronecker product [299] and the vectorization operation [300], respec-
tively.

A.2.1 P2P Distance Reformulation and Quadratic Formulation

The P2P distance (4.2) can be equivalently reformulated into a quadratic form:

Mÿ

i“1

Ji :“
Mÿ
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0,t

q
J
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nJ
t
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Mÿ
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1

�J

NJ
i

pn
t
nJ
t

qNi

«
⌧

1

�
“ ⌧̃JWt⌧̃, (A.12)

where Ni “

”
x
i

b I3| ´ p
0,t

ı
and Wt “

∞
M

i
NJ

i
pn

t
nJ
t

qNi. After rearranging (A.12), the resulting
problem in (4.3) becomes
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HPSEp3q
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�fl
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v
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r̃JW̃r̃,r̃ r̃ ` 2vJW̃v,r̃ r̃ ` vJWv,vv (A.13)

where r̃ “

”
vecpRq

J
1

ıJ
. We introduce the Lagrangian multipliers. Due to R P SOp3q constraints,

the derivative with respect to v is zero: BLpH,�q{Bv “ 0, which leads to

v˚
“ ´pWv,vq

1́W̃v,r̃ r̃. (A.14)
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By substituting (A.14) into (A.13), we have

min
RPSOp3q

r̃JQ̃r̃, (A.15)

where Q̃ is the Schur complement of W̃t and equal to W̃r̃,r̃ ´ W̃r̃,vW´1

v,v W̃v,r̃ .

A.2.2 Primal Problem and Its Dual

From [82–84], we re-define (A.15) to an equivalent, homogeneous, strengthened primal problem:

min
R

fpq̃q “ min
R

q̃JQ̃q̃, q̃ “

”
vecpRq

J y
ıJ

(A.16)

s.t. RJR “ y2I3

RRJ
“ y2I3

Rpiq
ˆ Rpjq

“ yRpkq, i, j, k “ permutet1, 2, 3u

y2 “ 1.

The primal problem (A.16) is a QCQP and the corresponding dual problem is defined as

Lpq̃,�q “ � ` q̃J
pQ̃ ` P̃p�qqq̃ “ � ` q̃JZq̃, (A.17)

where P is the penalization matrix [84]. The Lagrangian relaxation is an unconstrained problem
and has a closed-form solution:

gp�q “ min
q̃

Lpq̃,�q “ min
q̃

� ` q̃JZq̃ (A.18)

“

$
&

%
�, if Z © 0

´8, otherwise.
(A.19)

Therefore, the maximization of the dual problem (A.18) is a SDP:

g˚
“ max

�
�, s.t. Zp�q © 0 (A.20)

This problem is convex and can be solved globally by off-the-shelf specialized solvers [85]. It is
shown in [84] that the relaxation is empirically always tight (the duality gap is zero).

170



A.3 Observations on Global Convergence and Convexity

In this section, we provide numerical results that suggest the proposed method is also applicable to
3D registration problems and may achieve global convergence. Furthermore, we provide additional
figures concerning about the potential convexity of (4.20).

A.3.1 Toward Global Convergence of the Proposed Method

We show that the proposed method in the experimental data collected by the 32-Beam Velodyne
ULTRA Puck LiDAR reduces the P2P distance by 68.6%, as shown in Fig. 4.8. In addition, we
illustrate the proposed algorithm can be used in 3D registration problems (point-to-point, point-
to-line, point-to-plane) by scaling the simulation (named Random) and experimental data (named
RubikCube and SpaceStation) in [1, 84]. The experiment setup from [1] is shown in Fig. A.1 and
the results of the registration problems are shown in Fig. A.2.

Figure A.1: This figure is taken from [1] to illustrate the experimental setup.

A.3.2 Potential Convexity of fpsq and Bisection Method

Theoretically, a dense search on the scaling s should be performed on a range of interest. How-
ever, we have empirically observed that (4.20) is convex for all of our data sets. Figure A.3(a)
shows fpsq is convex for all the sets of the calibration parameters for our LiDAR intrinsic cali-
bration datasets. Similarly, Fig. A.3(b) shows the convex property of fpsq for the simulation and
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(a) (b) (c)

(d) (e) (f)

Figure A.2: This figure shows the proposed method that can be used in 3D registration problems. The correspondences
are point-to-point (marked in blue and red), point-to-line (marked in blue and black), and point-to-plane (not shown to
keep the figure readable). The top and bottom row show the initial status and the results of the registration problems,
respectively. The simulation (Random) with five point-to-point and two point-to-line correspondences are shown
in the left column. The result of the experimental data (RubikCube) with three point-to-point and two point-to-
plane correspondences are shown in the second column. The last column shows the results of the experimental data
(SpaceStation) with ten point-to-point and 12 point-to-line correspondences.

experimental data in [1, 84]. We, therefore, utilize the bisection method to determine the scaling s.
It is emphasized that the convexity of (4.20) is unknown at this time.

Let L

k
s and U

k
s be the lower and upper bounds of the scaling parameters at the k-th iteration. Let

k`1
s “ p

U

k
s `

L

k
sq{2 be the update for pk ` 1q-th iteration. The updates of the scaling parameters

are defined as:

L

k`1
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%
k`1

s, if rfp
k`1

sq † ´✏

L

k
s, otherwise

U

k`1
s “

$
&

%
k`1

s, if rfp
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sq ° ✏

U

k
s, otherwise

,

(A.21)
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where the symmetric difference is used to approximate rfp
k`1

sq:

rfp
k`1

sq «
fp

k`1
s ` hq ´ fp

k`1
s ´ hq

2h
, (A.22)

where h ° 0 is a small value (taken as 10´3).

Remark 45. To obtain more accurate results, Rp
k`1

s`hq, vp
k`1

s`hq, Rp
k`1

s´hq and vp
k`1

s´hq

should be computed separately.

(a) (b)

Figure A.3: This figure shows f vs s for the calibration parameters. The left figure shows the calibration parameters
for all the rings, for f defined in (4.20). The right figure shows f for the 3D registration problems (point-to-point,
point-to-line, point-to-plane). We suspect that the convex shape seen in the plot is in general true. Ongoing work is
seeking a proof.
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APPENDIX B

Informable Multi-Objective and Multi-Directional RRT* System for Robot
Path Planning

B.1 ECI-Gen TSP Solver Benchmarking

The proposed ECI-Gen TSP solver is an enhanced version of the cheapest insertion algorithm
[178], which comprises of a set of actions: 1) in-sequence insertion, �in-sequence, which is the regular
cheapest insertion; 2) in-place insertion, �in-place, to allow the algorithm to revisit existing nodes;
and 3) swapping insertion, �swapping, which is inspired by genetic algorithms. Finally, sequence
refinement is performed at the end of the algorithm. The ECI-Gen solver is able solve graphs that
are complete or incomplete, and graphs with or without triangularity constraints.

To benchmark the ECI-Gen solver, we randomly generated 1000 complete and incomplete graphs
with order of 5 to 30 1. For each graph, the edge connecting two vertices is either a straight line or a
random distance larger than the Euclidean distance. Consequently, the former obeys the triangular
inequality whereas the latter does not.

For a complete graph consisting of K vertices (graph order of K), there are K! possible
combinations of orders. A brute force algorithm [207] that permutes all the possible solutions is
implemented as a baseline for graph order K § 13. Solving the graph size of 14 takes about an
hour (1000 hours for 1000 graphs) on a modern computer and therefore it is intractable to solve the
order of large graphs by brute force. The brute force algorithm guarantees the optimal path for each
graph. For graph orders larger than 14, we compare the results to OR-Tools [301], an open source
TSP solver developed by Google.

For each Korder of graphs, we evaluate the EGI-Gen TSP solver by the following metrics:
average path cost ⇥̄method, elapsed time, ratio of better solution ⇢Kbetter, and ratio of feasible solutions
⇢Kfeasible. For graph order K § 13, we have optimal solutions provided by the brute force algorithm;
we further compute ratio of path cost ⇢Kmean, ratio of optimal solutions ⇢Koptimal, ratio of path cost of
worst case ⇢Kworst, and standard deviation of inverse of path cost ratio ⇢Kstd. In particular, they are
computed as

1The order of a graph is the cardinality of its vertex set.
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i
⇥method, (B.1)
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⇢Kworst “ max
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i
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i⇥Optimal
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i“1

˙
, (B.6)

⇢Kstd “ stdp
1

⇢Kmean
q “ stdp

i
⇥method

i⇥Optimal
q, (B.7)

where }F} is the cardinality of the set of feasible solutions F , N is the number of graphs (N “ 1000),
K is the order of graphs, and I is the indicator function returning one if the condition holds;
otherwise zero.

Figure B.1 and B.2 show the solver evaluated on complete graphs with triangularity constraints.
The results of complete graphs without triangularity constraints are shown in Fig. B.3 and B.4. The
OR-Tools failed to solve incomplete graphs with triangularity constraints as shown in Fig. B.5 and
B.6. Finally, we show the OR-Tools also failed to solve incomplete graphs without triangularity
constraints in Fig. B.7 and B.8. We demonstrate that the proposed ECI-Gen TSP solver is able to
solve broader sets of problems and provide better solutions with comparable computation speed.
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Figure B.1: The validation of the ECI-Gen solver on small complete graphs (5 § K § 13) with triangular inequality
constraints.

Figure B.2: The validation of the ECI-Gen solver on large complete graphs (14 § K § 30) with triangular inequality
constraints.
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Figure B.3: The validation of the ECI-Gen TSP solver on small complete graphs (5 § K § 13) without triangular
inequality constraints.

Figure B.4: The validation of the ECI-Gen TSP solver on large complete graphs (14 § K § 30) without triangular
inequality constraints.
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Figure B.5: The validation of the ECI-Gen TSP solver on small incomplete graphs (5 § K § 13) with triangular
inequality constraints.

Figure B.6: The validation of the ECI-Gen TSP solver on large incomplete graphs (14 § K § 30) with triangular
inequality constraints.
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Figure B.7: The validation of the ECI-Gen TSP solver on small incomplete graphs (5 § K § 13) without triangular
inequality constraints.

Figure B.8: The validation of the ECI-Gen TSP solver on large incomplete graphs (14 § K § 30) without triangular
inequality constraints.
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