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DEDICATION

Resilience in the face of hardships is an important life lesson that has been instilled in me since I
was a child. Struggling to make ends meet amidst a war-torn country, my parents uprooted their
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their immense sacrifice and consistent encouragement, I would not be where I am today. For that,
I dedicate this thesis to them.

ii



ACKNOWLEDGMENTS

In the realm of academia, it has been an immense honor to have been directly mentored by two
luminaries in the field of atomic physics and quantum optics, Professor Alexander Kuzmich and
Professor Paul Berman. Under their guidance, I have gained a broad suite of experimental and
theoretical skills that have shaped me into a well-rounded physicist.

From my first interactions with Prof. Kuzmich in the lab, I was awestruck by his sharp intellect
and intensity for research. Coupled with his impressive intuition for atomic physics, he has a keen
ability for formulating questions that efficiently lead to solutions within the lab. Alex has always
been incredibly generous with both his time and resources. I’ll always cherish fondly the hands-on
teaching moments of aligning optics and locking lasers that he shared with me in my early stages
of my PhD. During that time, he taught me the importance of having a quantitative grasp of all of
the experimental parameters. Without his guidance, I wouldn’t have been able to accomplish any
of the things that I did in his lab, so I want to extend my sincerest gratitude for making my PhD a
fantastic experience.

Prof. Berman has been a continuous and abundant source of knowledge. It is immediately
evident from his unique method of explaining concepts that he has a deep interest in sharing his
skills and expertise with others. He has a distinctive proficiency in breaking difficult theories down
to its core ideas. He always made sure that my understanding of a given topic was his top priority.
His extraordinary genius combined with his humble demeanor and laid back personality made
it easy to approach him with any questions that I had. All of those qualities have made him an
excellent role model for me, and I hope that I can be even half the physicist that he is in the future.

Having come from a single-atom and quantum simulation group in Japan, Dr. Hikaru Tamura
was a blessing to have in the lab. With his guidance, we were able to build up the single-atom
array experiment from scratch. His work in Japan including the development of a suite of Labview
programs, homebuilt SLM software, and electronics are the foundation for which our experiment
was developed. He generously shared his expertise in atomic physics, electronics, alignment of
optical elements, and digital holography. His intense work ethic was contagious, and he always
pushed me to be the best that I could be. I sincerely hope him the best of luck in his future
endeavors and I am excited to see all that he accomplishes.

iii



Dr. Jacob Lampen was a tremendous labmate throughout his time in the lab. He ensured that
the lab was a environment conducive for growth and learning. He taught me the fundamentals of
Rydberg atoms along with the principles of state-insensitive trapping of Rydberg atoms.

I especially want to thank all of the current members of the lab for making the lab an enjoyable
place to be, despite the pandemic. Andrea Londono, Carola Jansohn, Carlos Owens, Brian Yang,
Yin Li and Dr. Yefeng Mei all have grown to become like a family to me. I wish them the very
best of luck in the future, and I’m confident that they will be able to take their experiments to new
heights.

I would like to thank the remainder of the committee: Professor Vanessa Sih, Professor Liuyan
Zhao, and Professor Herbert Winful for their time and effort in reviewing and providing edits to
this thesis.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 3 Light-Matter Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 The two-level atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Inclusion of spontaneous decay - The Lindblad Master Equation . . . . . . . . . 12
3.3 Magneto-Optical Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Optical dipole traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Theory of dipole polarizability . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.2 A classical model to derive the atomic polarizability . . . . . . . . . . . 17
3.4.3 Quantum mechanical model of polarizability . . . . . . . . . . . . . . . 19
3.4.4 Specific application: Lightshift calculation for the line of Rb for a trap-

ping wavelength of 1064 nm . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 4 Apparatus for Single-Atom Trapping . . . . . . . . . . . . . . . . . . . 25

4.1 Scalar-diffraction theory: Huygens-Fresnel, Fresnel, and Fraunhofer diffraction . 26
4.2 Phase modulation using a spatial light modulator . . . . . . . . . . . . . . . . . 27

4.2.1 Gerchberg-Saxton Algorithm . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Wavefront correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.2 Aberration theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Objective lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.1 Homebuilt objective lens housing . . . . . . . . . . . . . . . . . . . . . 36

4.5 Measuring the point spread function . . . . . . . . . . . . . . . . . . . . . . . . 39

Chapter 5 Laser Systems and Optical Layouts . . . . . . . . . . . . . . . . . . . . 45

5.1 Subsystem 0 (EXP): The experimental table . . . . . . . . . . . . . . . . . . . . 46

v



5.1.1 Overview of the 1064 nm optical path. . . . . . . . . . . . . . . . . . . . 46
5.1.2 Magneto-optical trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.3 List of additional specifications for equipment in SS0: . . . . . . . . . . 49

5.2 Subsystem 1 (780 RP): D2 line (780 nm) repumper . . . . . . . . . . . . . . . . 50
5.3 Subsystem 2 (780 AMP): 780 nm optical amplification . . . . . . . . . . . . . . 52

5.3.1 MOPA Alignment procedure: . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Subsystem 3 (MOT/IMG): Optical fields for the magneto-optical trap and reso-

nant fluorescence imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 Subsystem 4 (OP/EXC): D1 Line optical pumping and D2 line excitation . . . . . 53
5.6 Subsystem 5 (420 EXC): 420 nm Rydberg excitation laser . . . . . . . . . . . . 54
5.7 Subsystem 6 (1012 EXC): 1012 nm Rydberg excitation laser . . . . . . . . . . . 56
5.8 Subsystem 7 (CAVITY): High-finesse optical cavity . . . . . . . . . . . . . . . . 56

Chapter 6 Laser Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1 Frequency selection in ECDLs . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Frequency Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3 Pound-Drever Hall Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.2 Matching the cavity mode to the output of a single-mode optical fiber . . 67
6.3.3 Procedure for alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapter 7 Long-Lived Coherence Between Ground and Rydberg Levels in a Magic-
Wavelength Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2.1 Optical Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2.2 Signal at the Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2.3 Final Expression for the Signal . . . . . . . . . . . . . . . . . . . . . . . 79
7.2.4 Value of θn and Reduced Dipole Moment Matrix Elements . . . . . . . . 84

7.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.3.1 Magic wavelengths for the 5s− ns transition . . . . . . . . . . . . . . . 86
7.3.2 Dynamics of the ground-Rydberg coherence . . . . . . . . . . . . . . . 87

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 8 Theory of Coherent Optical Transients With Quantized Atomic Motion 93

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.2 Pulsed Excitation - Transfer Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.2.1 Readout Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.3 Source-Field Expression for the Signal . . . . . . . . . . . . . . . . . . . . . . . 101
8.4 Specific Example: Ground Level - Rydberg Level Coherence in an Optical Lattice 105

8.4.1 State-independent potentials . . . . . . . . . . . . . . . . . . . . . . . . 109
8.4.2 State-dependent potentials . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.5 Specific Example: Raman Coherence - Transit-time Effects . . . . . . . . . . . . 122
8.5.1 Classical Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.5.2 Quantum Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

vi



8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Chapter 9 Differential Nuclear-Spin-Dependent Light Shifts and State Mixing of Ry-
dberg Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.4 Analysis of retrieved signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.6 Theoretical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.6.1 Basis Set and Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.6.2 Optical Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.6.3 Rydberg Level Eigenfrequencies . . . . . . . . . . . . . . . . . . . . . . 151
9.6.4 Excitation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.6.5 Retrieval Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.6.6 Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.6.7 Perturbation Theory Calculation of CV (ρ,X, Ts) . . . . . . . . . . . . . 161

Chapter 10Hanbury Brown-Twiss Correlations for a Driven Super-Atom . . . . . 164

Chapter 11Phase Matching in Lower Dimensions . . . . . . . . . . . . . . . . . . . 171

11.1 Supplementary material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
11.1.1 Scattered field from an atomic array . . . . . . . . . . . . . . . . . . . . 180
11.1.2 Detection mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
11.1.3 Count Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
11.1.4 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
11.1.5 Disorder in atomic position . . . . . . . . . . . . . . . . . . . . . . . . 183
11.1.6 Random Filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Chapter 12Theory of Rydberg Blockade With Multiple Intermediate State Excita-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
12.2 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
12.3 Bare Atom Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

12.3.1 Single Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
12.3.2 N Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

12.4 Dressed Atom Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
12.4.1 Constant Amplitude Dressed States . . . . . . . . . . . . . . . . . . . . 198
12.4.2 Adiabatic Dressed States . . . . . . . . . . . . . . . . . . . . . . . . . . 207

12.5 Effective Hamiltonian and the Holstein-Primakoff Transformation . . . . . . . . 210
12.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
12.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Chapter 13Trapped Alkali-metal Rydberg Qubit . . . . . . . . . . . . . . . . . . . 221

13.1 I. THEORETICAL METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . 229
13.1.1 A. Theoretical model for an effective two-level system . . . . . . . . . . 229

vii



13.1.2 B. Brief review on the theory of magic-wavelength trap . . . . . . . . . . 233
13.2 II. EXPERIMENTAL SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

13.2.1 A. Timing sequence and source efficiency . . . . . . . . . . . . . . . . . 236
13.2.2 B. Calibration for sample size and atom number . . . . . . . . . . . . . 237
13.2.3 C. System stabilization and performance . . . . . . . . . . . . . . . . . 238
13.2.4 D. Witness for the many-body entanglement . . . . . . . . . . . . . . . 241

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

viii



LIST OF FIGURES

FIGURE

1.1 Overview of the various experimental platforms being investigated for quantum con-
trol of qubits in the NISQ era. The inner circle indicates the physical quantum system
used for the qubit, and the outer circle shows the institutions developing the technology. 3

1.2 A network architecture with (left) hybrid atomic array/ensemble quantum processor
nodes, (middle) quantum repeater node consisting of a quantum memory, telecom/
near infrared (NIR) pair generators (PG) and telecom interfaces. (Right) Entangle-
ment between qubits in remote nodes can be achieved by processing of photonic
modes with subsequent joint measurements of photons emitted at these nodes. . . . . . 4

1.3 Several different methods for engineeering the photonic density of states. A common
approach is to utilize artificial dielectric structures such as optical cavities, nanopho-
tonics, and microring resonators such that there is just a single electromagnetic mode
interacting with the qubit. In this thesis, we will explore how the light-matter in-
teraction can be enhanced utilizing interference properties of light as well as strong
Rydberg interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Depiction of the two-level approximation of an atom. When the laser frequency coin-
cides with an atomic transition, the effect of other atomic transitions can be neglected. 11

3.2 (a) Compression as a result of preferential absorption due to Zeeman interactions. (b)
Cooling as a result of preferential absorption due to Doppler shifts. . . . . . . . . . . 15

3.3 Lorentz model for the induced dipole of an atom driven by an electromagnetic field. . 17
3.4 Magnetic sublevel differential lightshifts for the D2 line and a trap depth of 1 mK.

Individual values are tabulated in Table 3.2. . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Flow diagram for the Gerchberg-Saxton algorithm. . . . . . . . . . . . . . . . . . . . 28
4.2 Gallery of traps: Calculated intensity pattern for increasing number of traps in a

ring geometry and corresponding phase holograms in rows 1 and 2 respectively.
Demonstration of arbitrary trap geometry formation by trap geometries spelling out
“KUZMICH” and their respective phase holograms in row 3 and 4 respectively. . . . . 30

4.3 Composition of the hologram to generate an array of traps at the focus of an objective
lens. Additional holograms are necessary for precise positioning of the traps in the
focal plane, and to compensate for optical aberrations. . . . . . . . . . . . . . . . . . 32

4.4 The first 21 Zernike polynomials plotted on the unit disk. . . . . . . . . . . . . . . . 34
4.5 Simplified diagram for analyzing the phase (Shack-Hartmann wavefront sensor) and

intensity of the trapping beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Measured wavefront and phase hologram as a function of the iteration number for

feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

ix



4.7 (a) Five lens objective system design. All measurements are in units of mm. (b) Three-
dimensional drawing of the lens system housing. The material used in the design is
Black Delrin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.8 Zemax simulations for the performance of the homebuilt custom objective. . . . . . . 38
4.9 Zemax simulations for the focusing capabilities of the objective lens at 780 nm. Top:

RMS Wavefront error as a function of the paraxial image height. We can achieve
diffraction limited performance for a field of view of ±180 µm at the focal plane.
Middle: Spot diagram for paraxial heights 0 µm, 50 µm, 100 µm, and 150 µm. The
blue crosses indicate the position of traced rays at the focal plane. The black circle
represents the Airy disk, that is a circle with radius of the Airy Radius 0.954 µm,
performance limited only by diffraction. Bottom: Huygens Point Spread Function
(PSF) cross section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.10 Zemax simulations for the focusing capabilities of the objective lens at 1064 nm. Top:
RMS Wavefront error as a function of the paraxial image height. We can achieve
diffraction limited performance for a field of view of ±210 µm at the focal plane.
Middle: Spot diagram for paraxial heights 0 µm, 50 µm, 100 µm, and 150 µm. The
green crosses indicate the position of traced rays at the focal plane. The black circle
represents the Airy disk, that is a circle with radius of the Airy Radius 1.301 µm,
performance limited only by diffraction. Bottom: Huygens Point Spread Function
(PSF) cross section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.11 Chromatic focal shift (x-axis) as a function of the wavelength (y-axis). There is a focal
shift of ˜4 µm between 780 nm and 1064 nm light. Since these two fields propagate
through different optical paths, the focal positions can be matched by adjusting axial
positions of various optical elements within each path. . . . . . . . . . . . . . . . . . 42

4.12 Simplified optical layout to measure the PSF of optical elements. . . . . . . . . . . . . 44

5.1 YAG output power scaling as a function of pump current set point. . . . . . . . . . . . 47
5.2 Main experimental table where trapping and manipulation of single-atoms takes place. 48
5.3 Optical subsystems 1-3. 780 nm laser preparation for MOT, imaging, and repumper. . 51
5.4 Optical subsystem 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 Optical subsystems 5-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1 Schematic of MOGlabs ECDL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Left: Emission wavelength as a function of the deviation of the diode cavity length.

The tunable range is roughly 0.345 nm which corresponds to 169.925 GHz. Right:
Emission wavelength as a function of the deviation of the external cavity length. The
tunable range of 0.01 nm corresponds to 4.92 GHz. . . . . . . . . . . . . . . . . . . . 58

6.3 Total wavelength dependent gain profiles. Left: Operating near the modehop wave-
length: ∆LD = 0.045 µm, λemission = 780.35 nm, Middle: Operating near the mode-
hop wavelength: ∆LD = 0.046 µm, λemission = 780.00 nm.Right: Tuned to D2 line in
Rb. ∆LD = 0.012 µm , λemission = 780.24 nm . . . . . . . . . . . . . . . . . . . . . 60

6.4 Sources of laser frequency fluctuation, with associated timescales. From toptica Appl-
1012 notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.5 Simplified diagram for PDH locking. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

x



6.6 Simulation of cavity transmission for F = 1 in red, F = 100 green, and F = 10, 000
in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.7 Reflected power for r = 0.99, Ω = 50 MHz, modulation depths of β = 0, 0.5,and
1.08 in blue, green, and red, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 65

6.8 PDH error signal for various phase-shifts. The optimal error signal occurs at ϕ = π/2.
Due to signal delays that occur in the experimental implementation, the optimal phase
needs to be empirically found to match the shape shown in the middle panel. . . . . . 67

6.9 TEM modes of the optical cavity. The fundamental TEM00 matches the Gaussian
output of a single-mode fiber, and will have the largest coupling efficiency. . . . . . . 68

6.10 Simplified diagram of an optical setup to match the output mode of a single-mode
fiber to the intrinsic TEM00 mode of the optical cavity. . . . . . . . . . . . . . . . . . 70

7.1 (Color online) a) A cold sample of 87Rb gas is trapped in a 0.5-µm-period one-
dimensional optical lattice formed by a retro-reflected beam EL. Two nearly counter-
propagating beams, E1 and E2 excite a spin wave between the |5s1/2, F = 2⟩ and
|ns1/2⟩ levels. After a storage time, Ts, a retrieval pulse, ER, is applied, creating an
array of atomic dipoles which give rise to a phase-matched emission from the sam-
ple. The actual geometry used in the experiment differs somewhat from that shown
schematically in the figure. b) Relevant 87Rb energy levels and corresponding fields,
with ∆ = ωL − ωns,6p3/2 and ∆1 = ωE2 − ωns,6p3/2 . c) Schematic diagram indicating
transitions between the ground and excited state motional levels. d) Timing diagram
showing the excitation and retrieval pulse sequence. . . . . . . . . . . . . . . . . . . 73

7.2 (Color online) a) Graphs of the analytic approximation and exact expressions of gnl
(dashed and solid respectively) as a function of storage time Ts for U0/kB = 40 µK
and different sample lengths: blue - L = 1 µm, dark green - L = 50 µm, light green -
L = 100 µm, orange - L = 150 µm, red - L = 500 µm. b) Graphs of gnl for sample
length L = 100 µm and trap depths U0/kB = 5, 10, 20, and 40 µK, represented by
increasing line thickness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 Graphs of gl(Ts) as a function of ω0Ts: red, solid curve - cos2(kLX) potential; black,
dashed curve - harmonic potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4 (Color online) a)-d) Normalized signal η(Ts) at storage time Ts around the first revival
(10 − 12 µs) as a function of lattice detuning ∆ for principal quantum numbers 30,
51, 60, and 65. The solid curves, based on the model described in the text, are used to
extract the values of ∆m,n. The dashed red and solid green vertical lines represent the
theoretically expected and the extracted values of the magic detuning, respectively.
Blue and red bands represent fits using temperatures 20% lower and higher than the
best fit value, respectively. (e) ∆m,n as a function of the principal quantum number n,
with the solid curve based on our theoretical model. (f) Extracted values of the scaled
reduced matrix elements as a function of n. . . . . . . . . . . . . . . . . . . . . . . . 90

xi



7.5 (Color online) Normalized signal η as a function of storage time for several principal
quantum numbers. The solid black curve is based on our theoretical model. Blue and
red bands represent temperatures 20% lower and higher than the best fit value, respec-
tively. The gray curve shows loss attributable to black-body and spontaneous decay
from the Rydberg state. The dashed red curve adds in the contribution of spontaneous
decay from the 6P level. The dashed blue curve additionally includes the dephasing
attributable to the non-lattice potential. Most experimental error bars are smaller than
the shown markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.6 (Color online) Normalized signal η as a function of storage time for n = 40 for 420
nm - 1018 nm (green circles) and 795 nm-475 nm (orange diamonds) excitation, with
the corresponding atomic transitions shown in the inset. The solid curves are the result
of a numerical simulation of atomic motion using the model described in the text. The
black curve is the same as in Fig. 5. Most experimental error bars are smaller than the
shown markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.1 Level schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.2 Plots of |C (T21)|2 as a function of ωT21 for a state-independent, harmonic lattice

potential and for initial number state and Poissonian distributions, with ζ = 0.23 The
solid red and green curves are for initial number state distributions with n = 1 and 15,
respectively. The dashed blue and black curves are for initial Poissonian distributions
with n̄ = 1 and 15, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.3 Plots of |C (T21)|2 as a function of ωT21 for a state-independent, harmonic lattice
potential and for initial coherent state (solid red curve) and squeezed vacuum state
distributions (dashed blue curve - r = 1.5, solid black curve - r = 4), with ζ = 0.23. . 114

8.4 Plots of |C (T21)|2 and |Ccl (T21)|2 as a function of ωT21 for a state-independent, har-
monic lattice potential and for initial thermal distributions, with ζ = 0.23. The solid
red and green curves are the quantum results with β = 0.5 and 10, respectively. The
dashed blue and black curves are the corresponding classical results. . . . . . . . . . . 116

8.5 Plots of |C (T21)|2 and |Ccl (T21)|2 as a function of ωT21 for a state-independent, anhar-
monic lattice potential and for an initial thermal distribution with ζ = 0.23, ζtr = 0.16,
and β = 0.41. The solid red curve is the quantum result, the dashed blue curve is the
classical result, and the dotted black curve is the quantum result for the corresponding
harmonic potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.6 Same as Fig. 8.5, but with β = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.7 Graphs of |C(T21)|2 as a function of ω̃aT21 for a state-dependent, harmonic lattice

potential and for a thermal initial state with ζ = 0.23, β = 3, and s = 1.05 (black,
dotted curve), s =

√
2 (blue, dashed curve) and s = 1.5 (red, solid curve). . . . . . . . 120

8.8 Graphs of |C(T21)|2 as a function of ω̃aT21 for a state-dependent, harmonic lattice
potential and for a thermal initial state with ζ = 0.23, β = 0.41, and s = 1.05 (black,
dotted curve), s =

√
2 (blue, dashed curve) and s = 1.5 (red, solid curve). . . . . . . . 121

8.9 Plots of S̃cl (T21) as a function of ωT21 for a state-independent, transverse harmonic
potential with β = 0.1 and κ = 1 (red and blue curves) ; κ = 5 (black and green
curves). The solid curves are for pulse areas (A1, A2) = (0.1, 0.1) and the dashed
curves for (A1, A2) = (π/2, π/2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xii



8.10 Plots of S̃cl (T21) illustrating transit-time decay as a function of ωT21 for a state-
independent, transverse harmonic potential with β = 0.1 and κ = 3 (red and blue
curves) ; κ = 8 (black and green curves). The solid curves are for pulse areas
(A1, A2) = (0.1, 0.1) and the dashed curves for (A1, A2) = (π/2, π/2). . . . . . . . . 125

8.11 Plots of Scl (T21) and S̃cl (T21) for perturbative fields as a function of ωT21 for β = 0.1
and κ = 5 (red curve) ; κ = 10 (brown curve), and κ = 20 (black curve). The dashed
blue curves are the classical results for the same parameters. . . . . . . . . . . . . . . 128

8.12 Plots of Scl (T21) and S̃cl (T21) for perturbative fields as a function of ωT21 for κ = 1
and β = 1 ( blue curve) ; β = 5 (brown curve), and β = 10 (black curve). The dashed
red curve is the classical result which is the same for all β if κ is held fixed. . . . . . . 129

9.1 (a) Experimental setup. An ultra-cold sample of 87Rb gas is trapped in a “magic” one-
dimensional optical lattice formed by a retro-reflected lattice beam ΩL that is directed
along the x axis and polarized in the y direction. Two excitation beams, Ω1 (420 nm)
and Ω2 (varying between 1013 nm and 1026 nm) counter-propagate along the x axis
and are focused at the position of the atomic sample cloud with ( 1

e2
) waists of 17 and

15 µm, respectively. After a time delay Ts following the excitation pulse, a retrieval
field ΩA generates a phase-matched output signal. The polarization of field Ω2 and
the retrieval field ΩA is fixed in the z-direction, whereas the polarization of field Ω1

has both y and z components that are adjusted to optimize the modulation depth of
the output signal. The output signal has both y- and z- components which are mixed
with a half-wave plate, split by a polarizing beam splitter, and measured by single-
photon detectors D1(2). (b) Atomic level diagram showing the initial (|5s1/2, F =
2,m = 0⟩) state, intermediate (|6p3/2⟩), and Rydberg |ns1/2⟩ sublevels. The final state
manifold consists of two, spectrally resolved Zeeman sub-manifolds, each containing
four levels. Even in the presence of light shifts, mF = mJ + mI remains a good
quantum number. For this excitation scheme, themF = 0,±1 levels in each electronic
Zeeman manifold are populated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.2 Normalized signal η ≡ F (Ts)/F (Ts = 1 µs) as a function of storage time for prin-
cipal quantum number n = 40 with fitted trap depth U0/kB = 31 µK and temper-
ature T = 10 µK for a single excited state (blue) and a triplet of states (red) using
(θi, θd)=(0, 24) and (32, 24) respectively. Solid curves are based on our theoretical
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.3 Normalized signal η utilizing the alternative excitation scheme via the intermediate
|5p1/2⟩ state and (θi, θd) = (32, 24) for themJ = −1/2 electronic Zeeman component
and principal quantum number n = 60. Experimental data with best-fit values of
temperature of 4 µK and trap depths of Uo/kB = 22, 18 and 14 µK are shown as red
circles, green diamonds, and blue squares, respectively, along with color-coded curves
that represent the predictions of a theoretical model that take into account the state-
dependence of the optical potentials. The dashed gray curves correspond to a theory
in which this state dependence is neglected and a single optical potential is used (that
of the mF = 0 sublevel). The solid gray theory curves correspond to an excitation
scheme in which field Ω1 is z-polarized. . . . . . . . . . . . . . . . . . . . . . . . . . 143

xiii
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11.1 Bragg scattering from a one-dimensional atomic chain. (a) A linear chain with
N = 10 atoms separated by d = 7.49µm is aligned along the z axis. An excita-
tion laser with wave vector kexc is directed onto the chain at an angle θexc = 4◦ with
respect to the z axis. The scattered light with wave vector k is detected as a function
of spherical angles (θ, ϕ). (b) Structure factor S(θ, ϕ) for case of equal separation
of atoms, and (c) in the presence of disorder of atomic positions with standard devi-
ations (σx, σy, σz) = (0, 0, 0.3λ), and (d) (σx, σy, σz) = (0.3λ, 2.4λ, 0.3λ). Gray
panels represent the x-z plane in which the excitation laser propagates. To measure
the scattered signal, we use a detector whose axis has polar angles (θdet, 0). . . . . . . 172
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the middle (right) image, the chain is prepared such that θdet ≈ 4◦(8◦). (b) The mea-
sured photocount rate as a function of θdet for N = 4, 8, 12. Each point is an average
of randomly filled chains with a given N . Error bars represent one standard deviation
of the observed photoelectric counting events. The green lines are the numerical re-
sults based on the Monte Carlo simulation with 1,000 runs. The shading on the line
represents the standard deviation of the simulation divided by the square root of the
averaged number of trials in the experiments. (c) The peak count rate as a function
of N . Each point and its error bar represent the observed value at θdet = θ0 = 4◦.
For the single-shot measurement of N = 15, we associate a

√
M Poissonian error for

M photoelectric count events. The solid (dashed) line represents the numerical sim-
ulation with (without) displacement of atomic positions due to imperfect positioning
of the traps and finite temperature effects. The black dotted lines in (b, c) show the
detection background measured without loading atoms. . . . . . . . . . . . . . . . . . 174

11.3 Observation of constructive and destructive Bragg scattering from two chains. (a)
Averaged fluorescence images of two linear chains under three different values of the
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function of L∥ for N = 4, 8, 12. Error bars represent one standard deviation for M
photoelectric counting events. The green lines are the numerical simulation based on
the Monte Carlo simulation with 1,000 runs. The shading on the line represents the
standard deviation of the simulation divided by the square root of the averaged number
of trials in the experiments. The black dotted lines show the detection background
which is measured without loading atoms. (c) The observed scaling of the interference
visibilities V as a function of the total number of atoms N . Each point is obtained by
fitting the observed fringe by a sinusoidal function. Error bars indicate the fitting
errors with 68% confidence intervals. The solid line is the result of the numerical
simulation together with the standard error of the mean (shaded area). . . . . . . . . . 175
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11.5 Angular dependence of the Debye-Waller factors. (a) fi as a function of θ for various
values of disorder σi (i = x, z) for ϕ = 0 and θexc = 4◦ ≈ 0.022π, (b) fi as a function
of ϕ for various values of disorder σi (i = x, y) with θ = θexc. . . . . . . . . . . . . . 183
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11.6 Bragg scattering from a one-dimensional atomic chain with N = 10 atoms. Two
dimensional structure factor S(θ, 0) for (a) case of equal separation of atoms, (b) in
the presence of disorder of atomic positions with standard deviations (σx, σy, σz) =
(0, 0, 0.3λ), and (c) (σx, σy, σz) = (0.3λ, 2.4λ, 0.3λ). They correspond to the emis-
sion patterns in the x-z plane displayed in Fig. 1 (b-d) of the main text. (d) the
structure factor in a single cone S(θexc, ϕ). The solid lines are the results of the Monte
Carlo simulation in which each atomic position is randomly sampled with the stan-
dard deviations (σx, σy, σz). The dashed lines represent the envelope of the maximum
intensity obtained from N + fDWN(N − 1). . . . . . . . . . . . . . . . . . . . . . . 183
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12.9 Graph of
∣∣cNn1(t)∣∣2 as a function of χRN t for χ1 = χ2 = 1, δ1 = −δ2 = 50, N =
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13.1 (a) Experimental setup: an ultracold 87Rb atomic ensemble is prepared in a one-
dimensional state-insensitive lattice trap (SILT) formed by a 1012 nm retro-reflected
beam using atoms that have been transferred from a crossed far-off-resonance dipole
trap (FORT) formed by focused yttrium aluminum-garnet (YAG) laser beams. Ex-
citation fields E1 (780 nm) and E2 (480 nm) drive atoms from |g⟩ to |p⟩ and from
|p⟩ to |r⟩, respectively. A retrieval pulse Er leads to phase-matched emission that
is coupled into a pair of single-mode fibers and subsequently measured by single-
photon counting modules SPCMT and SPCMR. (b) Single atom energy levels for
87Rb: |g⟩ = |5S1/2, F = 2,mF = −2⟩, |p⟩ = |5P3/2, F = 3,mF = −3⟩, and
|r⟩ = |nS1/2,mJ = −1/2⟩. (c) Timing sequence for the ground-Rydberg spin-wave
coherence measurement. (d) Normalized signal η as a function of storage time Ts for
quantum number n = 75. The storage efficiency is normalized to that at 1 µs. Blue
and red bands represent temperatures 40 % lower and higher than the best-fit value,
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13.2 (a) Collective Rabi oscillation as function of the pulse duration Tp for different num-
bers of atoms. Red: N = 109(2); green: N = 326(3); blue: N = 755(3); pur-
ple: N = 930(4). Here, Ω1/2π = 9.2 MHz, Ω2/2π = 10.8 MHz, Ωr/2π = 11.5
MHz. The dashed lines are theoretical results using an effective two-state model.
The error bars represent one standard deviation (

√
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events. (b) probe transmission (orange square) and EIT (blue diamond) measurement
for N = 755(9), consistent with an OD = 3.5. (c) The enhancement of the collective
Rabi frequency ΩN/Ω as a function of number of atomsNa determined by the absorp-
tion measurement. The data are fit with a function ΩN = ΩNk

a with the best-fit value
k = 0.463(5). The error bars represent the standard errors of the respective fits. . . . . 224
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13.3 Collective Rabi oscillation as function of the pulse duration for different Rabi fre-
quency, (a) Ω1/2π = 4.7 MHz, Ω2/2π = 5.4 MHz, N = 797(7). (b) Ω1/2π = 9.2
MHz, Ω2/2π = 10.8 MHz, N = 553(2). The dashed line shows best fit from theory
with dephasing and atom number fluctuations. The dotted line shows the simula-
tion without dephasing, and the dash-dotted line shows the simulation without atom
number fluctuations. The blue hollow circles represent the second-order intensity cor-
relation function at zero delay g(2)(0) , which is below 0.2 within the Rabi oscillations,
suggesting a well-established Rydberg blockade. . . . . . . . . . . . . . . . . . . . . 226

13.4 Ramsey interferometry of the trapped qubit. (a) Schematic and timing sequence. (b)
Evolution of the |1⟩ state versus free evolution time Tf between the two π/2 pulses of
detuning δs/2π = -0.3 MHz and pulse width 0.45 µs. Dashed line represents the sinu-
soidal fit with an exponential decay. The error bars represent one standard deviation
(
√
M ) for M photoelectric counting events. (c) The detuning extracted from the sinu-

soidal fit versus detuning set to ω1. The line represents the fitted result of δe = kδs+ b
with k = 1.022(6) and b = 0.000(6) MHz. The error bar of each point is within the size
of the marker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

13.5 Ramsey interferometry with dressing field light shift. (a) Ramsey interferometry with
(blue circles) and without (red triangles) dressing field of Ω1/2π = 3.9 MHz. (b)
Ramsey interferometry with (blue circles) and without (red triangles) dressing field
of Ω2/2π = 10.8 MHz. The detuning of the π/2 pulses is set to δs/2π = -0.3 MHz.
(c) Light shift ∆E versus dressing field Rabi frequency Ω1 and Ω2. Red squares
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lines represent the theoretical curve of ∆E = ℏ(Ω2
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13.6 Influence of laser phase noise. (a) Numerical simulations for Rabi oscillation in the
presence of white frequency noise. The gray lines are individual realizations for 1000
numerical samples with random processes on ϕ(t) generation. The red line is the
average of the 1000 samples. (b) Comparison of the simulations with different mech-
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ABSTRACT

A principal goal of distributed quantum processing is the ability to generate, manipulate, and
transfer quantum states between distant nodes of a quantum network. These protocols generally
require connecting photonic and material carriers of quantum information. In this thesis, I present
investigations of two experimental realizations of light-matter interfaces that allow for engineered
atom-photon interactions in free-space settings.

First, we utilize reconfigurable arrays of trapped single atoms to study light scattering in low-
dimensional systems. We observe noncollinear phase-matching geometries that have suppressed
sensitivity to particle localization. We show that the scattered radiation can be controllably en-
hanced or diminished as a result of Bragg interference. Such scattering can be used for mapping
collective states within an array of neutral atoms onto propagating light fields and for establishing
quantum links between separated arrays.

Second, we utilize ensembles of trapped Rydberg atoms to study collective many-body phenom-
ena that arise due to strong dipole-dipole interactions. To do so, we employ a magic-wavelength
optical lattice that allows for the simultaneous trapping of both ground and Rydberg levels. Using
the enhanced coherence times enabled by this trapping scheme, we measure the so-called magic
lattice detunings and use them to extract the |6P3/2⟩ − |nS1/2⟩ reduced electric dipole matrix el-
ements. Furthermore, we perform precision measurements of differential nuclear-spin dependent
light shifts in the Paschen-Back regime in order to determine the hyperfine splitting of Rydberg
levels.

We create a quasi-two-level system in a regime of Rydberg excitation blockade for a meso-
scopic ensemble of several hundred atoms. Using this system, we study Hanbury Brown-Twiss
interference between the field radiated by the atoms and an input probe field with a controllable
relative phase. Finally, we demonstrate coherent driving and Ramsey interference measurements
of light shifts, with timescales on the order of ≃ 10 µs. Whereas the coupling producing the Rabi
oscillations is enhanced by a factor of

√
N , there is no corresponding enhancement for the light

shifts. These results may prove useful in applying collective qubits with Rydberg interactions to
scalable quantum networking architectures.

xxi



CHAPTER 1

Introduction

The continued increase of computational power has been one of the main driving forces for a
plethora of technological and economic developments in the past few decades. Behind the expo-
nential growth of processing power described by Moore’s Law, is the ever-shrinking size of elec-
trical components in the integrated circuits. However, transistors are rapidly approaching length
scales in which quantum effects will severely limit their performance. If this exponential growth
is to continue, it is critical that we develop new paradigms of information processing.

Quantum information processing is one of these paradigms. Rather than being limited by quan-
tum effects, it leverages quantum mechanical superposition and entanglement to achieve exponen-
tially faster performance of several classes of computational algorithms. Utilizing such quantum
algorithms, a host of difficult problems that are not tractable using classical computation schemes
may be tackled. Realizing an experimental platform capable of leveraging these unique resources
to achieve a quantum advantage in practical applications has been an ongoing pursuit for the past
few decades.

The term “Noisy Intermediate Scale Quantum” (NISQ), accurately summarizes current state-of-
the-art quantum devices. “Noisy” refers to the fact that the quantum state manipulations necessary
for logical operations are susceptible to errors, while quantum error correction (QEC) has only
been experimentally implemented at a limited capacity. “Intermediate scale” means that these
devices are comprised of up to a few hundred qubits, which is still far from the 10,000-1,000,000
qubits estimated to demonstrate a quantum advantage in algorithms such as unstructured database
searches and integer factorization.

Despite this fact, NISQ-era algorithms implemented on existing quantum devices have taken
results out of the realm of pure scientific interest into the domain for practical use in the industrial
setting. For example, extending beyond Google’s quantum supremacy claim related to random
number generation on their superconducting processor, Quantinuum is now generating quantum
cryptographic keys on their trapped-ion device and distributing them through their QuantumOri-
gin product. Furthermore, generation of entangled Greenberger-Horne-Zeilinger states, quantum

1



phase estimation, and quantum approximate optimization algorithms (QAOA) has been demon-
strated on the ColdQuanta neutral atom processor and have applications in optimization and quan-
tum chemistry. While superconducting, trapped-ions, and neutral atoms are some of the more
established technologies for quantum information processing, there are whole host of unique plat-
forms that are being actively investigated in industry and academic settings. Figure 1.1 shows an
overview of some of the predominant experimental platforms and the institutions at which they are
being developed.

In addition to the technical and engineering complications that need to be overcome to move
beyond the NISQ era, these platforms must also contend with two requirements imposed by the
laws of quantum physics. These requirements seem to be in stark opposition with one another, and
substantiate the difficulty of developing such an experimental platform.

First, preservation of sensitive quantum coherences requires that the qubits interact weakly
with its surroundings, as radiative processes and interactions with its environment can destroy the
fragile quantum coherence. A pristine environment often implies the use of ultra-high vacuum,
cryogenics, and electromagnetic shielding technology. Even more important is a proper choice of
an intrinsically stable quantum-mechanical system to be used as a qubit. The coherence properties
of the qubit are often characterized by the T1, T ′

2 and T ∗
2 coherence times, corresponding to the

longitudinal relaxation, polarization decay, and inhomogenous dephasing rates respectively. Sec-
ond, for high fidelity control, the qubit must interact strongly with its control mechanisms, whether
they be laser pulses, microwaves, or even other qubits. The rate at which at which quantum state
manipulations can be performed must be much faster than the rate at which decoherence results in
loss of quantum information.

2



Figure 1.1: Overview of the various experimental platforms being investigated for quantum control
of qubits in the NISQ era. The inner circle indicates the physical quantum system used for the
qubit, and the outer circle shows the institutions developing the technology.

For these reasons, strong and controllable interactions are a crucial ingredient for qubits in an
high-fidelity quantum processor. This fact is what makes the neutral atom an attractive quantum-
mechanical platform to realize a qubit. Due to charge neutrality, they interact weakly with stray
electric fields and other atoms in their ground state. As a result, they possess excellent coherence
properties, elucidated by the fact that they have been the industry standard for optical clocks,
and underpinning the definition of the second for several decades. When strong interactions are
required for logical operations, a neutral atom can be excited to highly excited Rydberg states. As a
result of the strong van der Waals interaction, atom pairs can experience interactions with a strength
12 orders of magnitude larger than ground state atoms. Utilizing these attributes, high-fidelity
quantum gates have been demonstrated, making them competitive with other leading platforms.

Another benefit to neutral atoms is their innate ability to scale. Neutral atoms can be prepared
in a magneto optical trap, where millions of atoms are gathered into a dense atomic sample before
being transferred into arrays of 100s – 1000s of individually addressable optical tweezers. There
has been consistent progress on scaling the number of qubits in the local quantum devices by
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Figure 1.2: A network architecture with (left) hybrid atomic array/ensemble quantum processor
nodes, (middle) quantum repeater node consisting of a quantum memory, telecom/ near infrared
(NIR) pair generators (PG) and telecom interfaces. (Right) Entanglement between qubits in remote
nodes can be achieved by processing of photonic modes with subsequent joint measurements of
photons emitted at these nodes.

confining atoms in optical lattices, as well as optical tweezer arrays generated by acousto-optic
deflectors, and spatial light modulators.

Beyond fault-tolerant scalable quantum processors, neutral atoms show promise as foundational
ingredients for a large-scale quantum information network. In this model, the existing system of
telecommunication fibers will connect distant quantum processors in this quantum network, and
photons will transmit information between nodes as in classical distributed computing. This will
relax the technical requirements for an individual processor, and the continued addition of nodes
to the network will enable long-term scaling. To utilize the distributed information processing
capabilities of a quantum network, long distance entanglement between quantum processing nodes
is required. One limitation is that attenuation within telecommunication optical fibers results in
an exponential loss of entanglement fidelity. To overcome this restraint, the distance between
two nodes is divided into lengths smaller than the attenuation length and connected by quantum
repeaters. Entangled pairs of photons are sent to adjacent repeater stations and through multiple
iterations of entanglement swapping, will extend entanglement the entire internodal distance.

Due to requirements imposed by the finite propagation speed of light and entanglement-
swapping protocols, quantum repeater nodes must have the following capabilities: storage of quan-
tum information in excess of one second, efficient generation of entangled photons in the telecom
wavelength, interfacing between matter and photonic qubits, and high fidelity local quantum state
manipulations. Our lab, amongst others in the world, have realized long-lived quantum memories,
atom-photon entanglement, and telecommunication conversion capabilities using ultra-cold neu-
tral atoms and their highly excited Rydberg states. Figure 1.2 shows a high-level overview for how
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Figure 1.3: Several different methods for engineeering the photonic density of states. A common
approach is to utilize artificial dielectric structures such as optical cavities, nanophotonics, and
microring resonators such that there is just a single electromagnetic mode interacting with the
qubit. In this thesis, we will explore how the light-matter interaction can be enhanced utilizing
interference properties of light as well as strong Rydberg interactions.

a quantum network based on neutral atom components may be realized.
For many of the aforementioned capabilities to be realized with high efficiency, strong interac-

tion between the material and photonic carriers of quantum information is required. Many research
groups around the world are pursuing different techniques to engineer this light-atom interaction,
some of which are displayed in Figure 1.3. A common approach is by utilizing fabricated dielectric
structures, which allow for the local photonic density of states surrounding the qubit to be manip-
ulated. In the ideal setting, a single electromagnetic mode is dominant, thereby increasing the
atom-light interaction with the qubit. Examples of such platforms include optical cavities, micror-
ing resonators, nanophotonic and nanofiber cavities. For these applications, precise positioning of
optical traps within these dielectric structures is necessary, and dealing with the deleterious effects
that can result from the interactions between the Rydberg atom with the dielectric surfaces is essen-
tial. In the Kuzmich lab, we investigate light matter interfaces in the free-space setting using two
approaches. The first is by employing the inference properties of light in single-atom arrays and
utilizing high numerical aperature (NA) optics. The second is by implementing state-insensitive
optical lattices to confine ensembles of Rydberg atoms and utilizing collective-many body effects
to achieve an enhancement of the atom-light interaction strength.
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CHAPTER 2

Overview

This thesis will present investigations of the fundamental components of these light-matter inter-
faces. In these investigations, I was involved in various experimental design, fabrication, and data
acquisition processes. I also was heavily engaged in the implementation of theoretical models
to process, understand, and extract useful information from the experimental data. This thesis is
divided into three parts, each of which are comprised of multiple chapters.

Part 1 will lay the foundation for the relevant physics discussed in the subsequent sections of the
thesis. Here I will discuss a simple description of the light-matter interaction, and the fundamentals
of optical dipole traps. These notions will be extended to describe how a state-insensitive trap can
be used to equalize the trapping potentials for ground and Rydberg states of Rubidium. I will
provide the theoretical background for understanding Rydberg atoms, their scaling properties, and
explain how collective states of hundreds of atoms can be manipulated and described theoretically
utilizing a Dicke state formalism.

Part 2 will be an overview of the experimental apparatus for generating reconfigurable arrays of
trapped single-atoms. There I will explain how a spatial light modulator can be utilized to generate
arrays of optical tweezers capable of confining single atoms. I will explain methods for improv-
ing the uniformity of traps via wavefront correction and iterative feedback protocols utilizing trap
intensity, atomic fluorescence, and light-shift measurements. I will describe the process of charac-
terizing the performance of high numerical aperature objective lenses. Finally I will describe the
optical layouts and laser systems as well as provide an introduction to laser stabilization.

Part 3 will be a compilation of published works during the time of my PhD career:

• “Long-lived coherence between ground and Rydberg levels in a magic wavelength lat-
tice,” J. Lampen, H. Nguyen, L. Li, P. R. Berman, and A. Kuzmich, Physical Review A 98,
033411 (2018).

By confining atoms in a state-insensitive optical lattice, the lifetime of the ground-state–
Rydberg coherence is increased to ≥ 20 µs, an order of magnitude improvement over previ-
ous experiments using freely diffusing atoms. Using these enhanced lifetimes, we measure
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the so-called magic lattice wavelengths for Rb and use them to extract the 6P3/2 − nS1/2

reduced electric dipole matrix elements. Good agreement is found with values obtained us-
ing an effective one-electron potential for principal quantum numbers n between n = 30

and n = 70. We develop a theoretical model based on quantized motion to map out the
ground-state–Rydberg coherence as a function of time that is in good agreement with the ex-
perimental results. The availability of long coherence times may present new opportunities
for high-resolution spectroscopy and quantum information science.

• “Theory of coherent optical transients with quantized atomic motion,” P. R. Berman, H.
Nguyen, and A. Kuzmich, Physical Review A 99, 013427 (2019).

A theory of coherent transients is developed in which a sequence of optical pulses is incident
on a sample of trapped atoms and gives rise to phase-matched emission from the sample. The
trapping potential for the atoms can be state dependent, necessitating a quantum treatment
of the center-of-mass motion. A source-field approach is followed, modified to account
for the quantized motion of the atoms. The theory is illustrated with two examples, one
involving the creation of ground-Rydberg level coherence in an optical lattice and the second
Raman coherence between two ground-state sublevels of atoms in a dipole trap. For state-
independent potentials, a comparison is made with a theory in which the center-of-mass
motion is treated classically.

• “Differential nuclear-spin-dependent light shifts and state mixing of Rydberg atoms,”
H. Nguyen, J. Lampen, P. R. Berman, and A. Kuzmich, Physical Review A 100, 033412
(2019).

In this paper we present a detailed analysis of the nuclear-spin manifolds associated with the
ns Rydberg levels of 87Rb atoms that interact with both magnetic and optical lattice fields.
Eigenvalues and eigenkets for the Rydberg manifold are obtained and used to study the dy-
namics of phase-matched emission following illumination of an ensemble of cold atoms with
excitation and readout laser pulses. By comparing the measured emission signal to predic-
tions of a model that accounts for the quantized motion of atoms in a one-dimensional optical
lattice potential, we are able to extract the Rydberg hyperfine and light shift contributions to
the observed modulation frequencies. In this way the hyperfine splitting of Rydberg nS lev-
els is measured for n in the range of 30 to 65. Our results should be relevant for realizations
of high-fidelity Rydberg qubits confined in optical potentials.

• “Hanbury Brown–Twiss Correlations for a Driven Superatom,” J. Lampen, A. Dus-
payev, H. Nguyen, H. Tamura, P. R. Berman, and A. Kuzmich, Physical Review Letters
123, 203603 (2019).
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Hanbury Brown–Twiss interference and stimulated emission, two fundamental processes in
atomic physics, have been studied in a wide range of applications in science and technology.
We study interference effects that occur when a weak probe is sent through a gas of two-
level atoms that are prepared in a singly excited collective (Dicke or “superatom”) state
and for atoms prepared in a factorized state. We measure the time-integrated second-order
correlation function g(2) of the output field as a function of the delay τ between the input
probe field and radiation emitted by the atoms and find that, for the Dicke state, g(2) is twice
as large for τ = 0 as it is for γeτ ≫ 1 (γ2 is an excited state decay rate), while for the
product state, this ratio is equal to 3 / 2 . The results agree with those of a theoretical model
in which any effects related to stimulated emission are totally neglected—the coincidence
counts measured in our experiment arise from Hanbury Brown–Twiss interference between
the input field and the field radiated by the atoms.

• “Phase Matching in Lower Dimensions,” H. Tamura, H. Nguyen, P. R. Berman, and A.
Kuzmich, Physical Review Letters 125, 163601 (2020).

Phase matching refers to a process in which atom-field interactions lead to the creation of
an output field that propagates coherently through the interaction volume. By studying light
scattering from arrays of cold atoms, we show that conditions for phase matching change
as the dimensionality of the system decreases. In particular, for a single atomic chain, there
is phase-matched reflective scattering in a cone about the symmetry axis of the array that
scales as the square of the number of atoms in the chain. For two chains of atoms, the phase-
matched reflective scattering can be enhanced or diminished as a result of Bragg scattering.
Such scattering can be used for mapping collective states within an array of neutral atoms
onto propagating light fields and for establishing quantum links between separated arrays.

• “Trapped Alkali-Metal Rydberg Qubit,” Y. Mei, Y. Li, H. Nguyen, P.R. Berman, and A.
Kuzmich, Physical Review Letters. 128, 123601 (2022).

Rydberg interactions of trapped alkali-metal atoms are used widely to facilitate quantum gate
operations in quantum processors and repeaters. In most laboratory realizations using this
protocol, the Rydberg states are repelled by the trapping laser fields, requiring that the fields
be turned off during gate operations. Here we create a quasi-two-level system in a regime
of Rydberg excitation blockade for a mesoscopic Rb ensemble of several hundred atoms
confined in a magic-wavelength optical lattice. We observe many-body Rabi oscillations
between the ground and collective Rydberg state. In addition we use Ramsey interference
techniques to obtain the light shifts of both the lower and upper states of the collective
qubit. Whereas the coupling producing the Rabi oscillations is enhanced by a factor of

√
N

8



, there is no corresponding enhancement for the light shifts. We derive an effective two-
level model which is in good agreement with our observations. Trapped Rydberg qubits
and an effective two-level description are expected to have broad applicability for studies
of quantum simulation and networking using collective encoding in ensembles of neutral
atoms.

• “Theory of the Rydberg blockade with multiple intermediate-state excitations,” P. R.
Berman, H. Nguyen, and A. G. Rojo Phys. Rev. A 105, 043715 (2022).

We present a detailed theory of the Rydberg blockade, including contributions from multiple
intermediate-state excitations. Two fields drive transitions between ground and Rydberg
levels via an off-resonance intermediate state. Assuming a perfect blockade, we calculate
the probability to excite fully symmetric collective states having either zero or one Rydberg
excitation, but an arbitrary number of intermediate-state excitations. Both “bare” state and
“dressed” state approaches are used for (1) constant amplitude driving fields and (2) adiabatic
pulse driving fields. It is shown that a dressed state approach offers distinct advantages
when multiple intermediate-state excitations occur. In the case of fixed amplitude fields, the
multiple intermediate excitations can result in comblike modulated populations of individual
states having one Rydberg excitation and n ≪ N intermediate-state excitations. However,
when summed over all such state populations, most of the modulation disappears and the
system is described to a good approximation by an effective two-level model. In the case
of adiabatic, pulsed fields, there is no such modulation and an effective two-level model (in
the dressed basis), corrected for light shifts, can be used to model the system. In addition
to solving this problem using conventional methods, we show that similar results could be
obtained using a form of the Holstein-Primakoff transformation.
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CHAPTER 3

Light-Matter Interaction

Laser cooling and trapping techniques have served as an enabling technology for the cold-atom
laboratory since their development in the 1980s. These techniques make it possible for efficient
preparation of dense collections of atoms, allowing for atomic transitions to be interrogated
without the effect of broadening. As such, laser cooled atoms are an ideal platform to study
emergent many-body collective dynamics in degenerate states of matter as well as fundamental
quantum optical phenomena.

In this section, I give a brief overview of the subject in the viewpoint of an experimental physicist.
First I will describe the relevant physics associated with the light-matter interaction which is a
cornerstone for all of atomic, molecular, and optical physics. I will then introduce a simple model
to understand optical molasses and it’s role in the formation of magneto optical traps. I will then
describe the notion of Bloch-Siegert shifts (lightshifts) and how they are utilized to form optical
trapping potentials.

3.1 The two-level atom

To understand how lasers can be used to affect atomic motion, we first look at the simplest example
of the interaction between light and matter. First we consider a stationary atom with an incident
monochromatic laser field of frequency ω. While an atom’s energy structure can consist of many
states, the “resonance” or “two-level” approximation can dramatically simplify the situation when
the frequency of the laser field coincides with the natural frequency of an atomic transition.

For a given pair of states |1⟩ and |2⟩ with energiesE1 andE2 respectively, we can define a transition
frequency ω0 such that ω0 =

E2−E1

ℏ . The laser detuning, defined as ∆ = ω − ω0, is the difference
between the laser frequency and the transition frequency. When the laser detuning is much less
than the frequency of the transition, that is |∆| ≪ ω0, we say that the laser is in resonance with the
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Figure 3.1: Depiction of the two-level approximation of an atom. When the laser frequency coin-
cides with an atomic transition, the effect of other atomic transitions can be neglected.

transition. The effect of other atomic transitions on the dynamics of the atom can be neglected if
the laser is sufficiently detuned from other transitions. As a result, the atomic wavefunction can be
written as |ψ(t)⟩ = c1(t)|1⟩ + c2(t)|2⟩. To find the time-dependent solutions for coefficients c1(t)
and c2(t), we must solve the time-dependent Schrödinger equation,

Ĥ|ψ(t)⟩ = iℏ
∂|ψ(t)⟩
∂t

.

The Hamiltonian can be written as a sum of two terms, Ĥ0(r) is the time-independent part associ-
ated with the atomic energy structure, and V̂ (t) is a perturbative term attributed to the light-matter
interaction. The total Hamiltonian is given by

Ĥ = Ĥ0(r) + V̂ (t).

The Schrödinger equation can be solved to find the dynamics of the relevant states in the system,
where the resulting equations of motion are

ċ1(t) = − i

ℏ
(
c1(t)V11 + c2(t)V12e

−iω0t
)
,

ċ2(t) = − i

ℏ
(
c1(t)V21e

iω0t + c2(t)V22
)
.

Where Vij(t) = ⟨i|V̂ |j⟩ =
∫
ψ∗
i V̂ (t)ψjd

3r are matrix elements of the perturbation and |α⟩ are
eigenkets of the unperturbed Hamiltonian. If we consider a classical electric field E⃗(t) associated
with the incident laser, the interaction of the atomic dipole in the electric field is given by V̂ (t) =

er⃗ · E⃗(t). If we arbitrarily choose the polarization of the electric field to be in the x̂ direction, we
have that the matrix elements are given by

Vij(t) = −E0
2

(
eiωt + e−iωt

)
µij,
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where µij are dipole matrix elements defined as

µij = −e
∫
ψ∗
i x̂ψjd

3r = −e⟨i|x̂|j⟩.

An important thing to note is that due to the parity of the position operator, the diagonal elements
of the interaction vanish, that is V11 = V22 = 0. As a result, we can write the equations of motion
for the state amplitudes as

ċ1(t) =
i

2
Ω
(
ei(ω−ω0)t + e−i(ω+ω0)t

)
c2(t), (3.1)

ċ2(t) =
i

2
Ω
(
e−i(ω−ω0)t + ei(ω+ω0)t

)
c1(t),

where Ω is the Rabi frequency, which quantifies the strength of the atom-light interaction and is
defined as

Ω = |µ12E0/ℏ|.

Contained within this seemingly simple set of differential equations, a whole host of physical
phenomena from the Einstein B coefficients in the weak-field limit and Rabi flopping and AC stark
shifts in the strong-field limits respectively can be understood.

3.2 Inclusion of spontaneous decay - The Lindblad Master
Equation

Not included in the previous formulation was the fact that atoms in the excited state can sponta-
neously decay back to the ground state. In order to describe the state of the full quantum system in
the presence of decay, it is necessary to utilize the notion of the density operator. For a two level
system, the density matrix is given by

ρ =

(
ρ11 ρ12

ρ21 ρ22

)
.

For a pure quantum state, this can be written in terms of state amplitude coefficients,

ρ =

(
c1c

∗
1 c1c

∗
2

c2c
∗
1 c2c

∗
2

)
.

For unitary dynamics, like those described in the previous section, the time dependence of the den-
sity matrix is determined by the Hamiltonian, and can be described by the Liouville-Von Neumann
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equation or quantum master equation

∂ρ

∂t
= − i

ℏ
[Ĥ, ρ],

which is equivalent to the Schrödinger formulation for the time evolution of the wavefunction. This
evolution equation for the density matrix can be modified to incorporate spontaneous emission
from the excited state by introducing a relaxation superoperator Lrelax(ρ), with

Lrelax(ρ) = −1

2

∑
m

(C†
mCmρ+ ρC†

mCm) +
∑
m

CmρC
†
m.

Where Cm are collapse operators associated with different dissipation channels. For the two-level
system with spontaneous emission from the excited state, the collapse operator is given as

C1 =
√
Γ|1⟩⟨2|,

where Γ is the spontaneous decay rate of the excited state. As a result, the total differential equation
governing the evolution of the density matrix is given by the so-called Lindblad Master equation,

∂ρ

∂t
= − i

ℏ
[Ĥ, ρ] + Lrelax(ρ).

The effective Hamiltonian in the rotating wave approximation (RWA) for the single atom interact-
ing with the laser field with a real-valued Rabi frequency Ω and detuning ∆ is

H =
ℏΩ
2

(|1⟩⟨2|+ |2⟩⟨1|)− ℏ∆|2⟩⟨2| = ℏ

(
0 Ω

2
Ω
2

−∆

)
.

When we include the relaxation operators into the equation, the resulting set of differential equa-
tions often called the optical Bloch equations (OBE)

˙ρ11(t) = +Γρ22 +
iΩ

2
(ρ21 − ρ12)

˙ρ12(t) = −
(
Γ

2
+ i∆

)
ρ12 +

iΩ

2
(ρ11 − ρ22)

˙ρ21(t) = −
(
Γ

2
− i∆

)
ρ21 +

iΩ

2
(ρ11 − ρ22)

˙ρ22(t) = −Γρ22 +
iΩ

2
(ρ12 − ρ21) .

By solving these equations in steady state, that is by setting the time derivatives equal to zero, we
find equations that relate to the topics of power broadening and saturation. One commonly used
quantity in atomic physics experiments is the scattering rate, which is related to the steady state
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density matrix ρ22(t→ ∞) by
Rsc = Γρ22(t→ ∞).

After solving the density matrix equations outlined above, we arrive at the following expression
for the steady state density matrix element as

ρ22(t→ ∞) =
(Ω/Γ)2

1 + 4(∆/Γ)2 + 2(Ω/Γ)2
.

It is often convenient to define an on-resonance saturation parameter which is defined as

s0 =
2|Ω|2

Γ2
=

I

Is

where I is the intensity of the incident field, and Is is the saturation intensity given by

Is =
cϵ0Γ

2ℏ2

4|⃗ϵ · d⃗|2
.

As a result, the scattering rate can then be written as

Rsc =

(
Γ

2

)
s0

1 + s0 + (2∆/Γ)2
.

During the process of scattering a photon, momentum from the field is transferred to the atom. As
a result, we can associate an effective force given by

Fsp = ℏkRsc =

(
Γ

2

)
s0ℏk

1 + s0 + (2∆/Γ)2
. (3.2)

This force associated with radiation pressure is an underlying principle for laser cooling and trap-
ping.

3.3 Magneto-Optical Traps

In many cold-atom laboratories, the magneto-optical trap (MOT) serves as a primary step in the
sample preparation process. As the name suggests, the trap employs both optical and magnetic
fields to compress and cool atoms into a dense cloud. A MOT typically is formed via three pairs of
retroreflected beams, and a quadrupole magnetic field. However, in order to get an understanding
of the dissipative mechanisms it is instructive to consider just a one-dimensional system.
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Figure 3.2: (a) Compression as a result of preferential absorption due to Zeeman interactions. (b)
Cooling as a result of preferential absorption due to Doppler shifts.

In this simplified system, we consider two optical fields, denoted E+ and E−. The E+ (E−) field
propagates in the positive (negative) x-direction with σ+(σ−) polarized light. There is a magnetic
field gradient in the x direction such that B(x) = Ax. Due to the magnetic field gradient, the
Zeeman effect results in position-dependent level shifts as shown in Fig 3.2(a). In addition, the
velocity of the atom results in a Doppler shift; the atom observes a different frequency for each of
the fields depending on the direction of motion, as shown in Fig. 3.2(b). The detuning in Eq. 3.2
is modified to take into account these effects,

∆± = ∆∓ k⃗ · v⃗︸︷︷︸
Doppler Shift

± µ′B/ℏ︸ ︷︷ ︸
Zeeman Shift

.

Where µ′ = (geme − ggmg)µB, is an effective magnetic moment for the transition used, ge (gg)
is the Lande g-factor, and me (mg) is the magnetic quantum number associated with the excited
(ground) level. As a result, the total force the atom experience is given by

Ftotal = F+ + F− =

(
Γs0ℏk

2

)[
1

1 + s0 + (2∆+/Γ)2
+

1

1 + s0 + (2∆−/Γ)2

]
.

When the Doppler and Zeeman shifts are smaller than the detuning, the total force can be approx-
imated as

Fx ≈ −βvx − κx.

Looking at this equation of motion, one might notice that it resembles that of a damped harmonic
oscillator, where β can be associated with a damping coefficient corresponding to the optical mo-
lasses portion of the trap, and κ as an spring constant due to the magnetic gradient, defined as

β =
8ℏk2∆s0

Γ(1 + s0 + (2∆/Γ)2)2
,

15



and
κ =

µ′A

ℏk
β.

The magnetic portion of the interaction results in compression of the atomic sample. For a
red-detuned molasses beam, the ∆m = −1 transition is shifted closer to resonance due to the
Zeeman effect. As a result, the atom is more likely to scatter a photon from the σ− beam, and the
radiation pressure will push the atom in the −x direction. Conversely, when the atom is to the left
of the B = 0 position, the atom is more likely to scatter the σ+ beam. Note that if the polarization
of each beam is swapped, radiation pressure will cause the atoms to be repelled from the zero-field
position, rather than be attracted.

The velocity-dependent interaction results in a cooling of the atomic sample. To elaborate, the
positive velocity atoms see a larger frequency for the E− field, which results in a smaller detuning
and a higher probability to scatter a photon from the E− beam. As a consequence, the radiation
pressure opposing the direction of motion causes a decrease in velocity. Conversely, when the
velocity is negative, the atom is more likely to scatter a photon from the E+ beam, again causing a
decrease in the magnitude of the velocity.

3.4 Optical dipole traps

3.4.1 Theory of dipole polarizability

In the previous section, radiation pressure forces are the main mechanism for cooling and condens-
ing in the MOT. Another type of force that can be exerted by light is the dipole force. For spatially
inhomogenous light fields, e.g. optical tweezers, the dipole force can lead to precise localization
of neutral atoms. In order to understand the origin of the trapping potential, we look at the atom-
light interaction for an incident field that is far-detuned from an atomic transition. In this case,
the chance for optical excitation is low, and therefore we can neglect radiation pressure forces. To
begin, we can treat the atom as a classical dipole, and derive the interaction potential. We can then
see how those equations are modified in the quantum mechanical picture of an atomic dipole. First,
we can relate the complex amplitude of the dipole p̃ to the amplitude of the electric field Ẽ .

p̃ = αẼ

The induced dipole can then act again with the driving field to produce a time-averaged interaction
potential given by

Udip(r) = −1

2
⟨pE⟩ = − 1

2ϵ0c
Re(α)I(r). (3.3)

From this expression, we see that the dipole potential is proportional to the real part of the polar-
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Figure 3.3: Lorentz model for the induced dipole of an atom driven by an electromagnetic field.

izability. Conversely, the imaginary component of the polarizability can be related to the absorbed
power from the dipole.

Pabs =
ω

ϵ0c
Im(α)I

We can ultimately relate this to the scattering rate, by taking the power and dividing by the average
energy of each photon, ℏω.

Γsc(r) =
1

ℏϵ0c
Im(α)I(r) (3.4)

3.4.2 A classical model to derive the atomic polarizability

A simple model that does surprisingly well at describing the nature of light-matter interactions
is the Lorentz oscillator model. In this phenomenological model, we treat the electron as bound
to the nucleus with a spring-like force, and with a resonant frequency ω0 corresponding to the
frequency of the atomic transition. In addition, we can include a damping term Γ, which will
describe dissipation of energy out of the system. Similar to damped mass on a spring, we can write
a Newtonian equation of motion governing the motion of the electron,

ẍ+ Γẋ+ ω2
0x = −eE(t)

me

,

where e is the fundamental electronic charge, E(t) is the time-dependent amplitude of the electric
field with frequency ω, and me is the mass of the electron. Upon solving the differential equation
for the position of the electron, x, we can find the classical dipole moment for this system is given
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by

p(ω) = −ex(ω) = e2

me

E
[(ω2

0 − ω2)− iωΓ]
.

When we use the relation between the induced dipole moment and the polarizability, we can iden-
tify that the classical frequency-dependent polarizability is given by

α(ω) =
p(ω)

E
=

e2

me

E
[(ω2

0 − ω2)− iωΓ]

where the damping rate Γ, is given by Larmor formula for the power dissipated by a radiating
dipole.
Now that we have derived an expression for the polarizability, we can use Eqs. 3.3 and 3.4 to
obtain the dipole potential and scattering rate respectively.

Udip(r) = −3πc2

2ω0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r)

Γsc(r) =
3πc2

2ℏω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r)

Even for so-called far off resonance traps, the detuning ∆ = ω − ω0 is much less than the optical
transition frequency, that is, |∆| ≪ ωo. In this case, we can invoke the rotating-wave approxima-
tion (RWA) and we can neglect the second terms, and set ω

ω0
≈ 1. As a result, the expressions for

the dipole potential and scattering rate reduces to

Udip(r) =
3πc2

2ω3
0

Γ

∆
I(r),

Γsc(r) =
3πc2

2ℏω3
0

(
Γ

∆

)2

I(r).

From this expression, we can note a few important details that have practical application in the
realm of optical dipole trapping. The first is that the trapping potential and scattering rate have
different dependencies on the detuning. This means that it is advantageous to choose a trapping
wavelength that is far-off resonance from the relevant optical transition. By reducing the photon
scattering rate for a fixed trap depth, the effects of recoil heating can be reduced, therefore leading
to longer lifetimes of the atom within the trap.

Also note that the trapping potential depends on the sign of the detuning. For a trapping field with
a laser frequency smaller than the resonance frequency of the atom, the detuning is negative, often
denoted as “red-detuned”. In this case, the resulting dipole potential is negative, and therefore
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the maximal potential depth occurs at the maximum of the intensity field. On the contrary, for
“blue-detuned” trapping fields, the atoms will be attracted to the intensity minima. This can be
advantageous as the rate of photon scattering can be further reduced. Utilizing this fact, many
atomic physics groups are actively investigating and implementing clever geometries for single-
atom trapping such as blue-detuned line-grid arrays and optical bottle beam traps.

3.4.3 Quantum mechanical model of polarizability

As we saw in the previous section, the classical model of the bound electron gives a simple frame-
work to understand the origin of the induced dipole. It provides us with expressions that reveal
important aspects of the origin of the dipole potential and polarizability. However in this model,
we neglect two important truths about the atom. The first of which is that the atom at a fundamen-
tal level is a quantum mechanical object. The allowed energies of the electron are not continuous,
rather they are discretized. Another important fact that we neglected is the fact that an atom con-
sists of multiple levels. We now consider how the classical expressions of the polarizability need
to be modified.
To derive the energy correction associated with the incident trapping field, we write the total atom-
field Hamiltonian

H = H0 + EÊ · d,

whereH0 is the atomic Hamiltonian, in the absence of the electric field. If we treat the electric field
amplitude |E| as a perturbative parameter, we know from perturbation theory that the wavefunction
and energy for an atomic state ν can be expressed as

|ψν⟩ = |ψ(0)
ν ⟩+ E|ψν

(1)⟩+ E2|ψν
(2)⟩+ ...

Eν = E(0)
ν + EE(1)

ν + E2E(2)
ν + ...

For now we focus on the energy corrections due to the electric field perturbation. From time-
independent perturbation theory, the first order correction to the energy is given by

E(1)
ν = ⟨ψ(0)

ν |EÊ · d|ψ(0)
ν ⟩,

E(1)
ν = −E · ⟨d⟩.

Since neutral atoms do not have a permanent dipole, this quantity vanishes. The second order

19



correction to the energy from perturbation theory is given by

E(2)
ν =

∑
n̸=k

|⟨ψ(0)
ν |d · E|ψ(0)

k ⟩|2

E
(0)
ν − E

(0)
k

.

Since the energy shift is related to the static electric field by the polarizability by

∆Eν = −1

2
αν |E|2,

we can identify the polarizability of the state as

αν = −2
∑
k ̸=ν

|⟨ψ(0)
ν |d · E|ψ(0)

k ⟩|2

E
(0)
ν − E

(0)
k

.

Here we can see the polarizability has contributions from all dipole-allowed transitions. In order
to take into account an ac field with frequency ω, we simply modify the static polarizability with
the same frequency factor that arose in the classical oscillator case,

αν(ω) = −2
∑
k ̸=ν

|⟨ψ(0)
ν |d · E|ψ(0)

k ⟩|2
[

1

δEν,k + ω
+

1

δEν,k − ω

]
.

Where δEν,k = E
(0)
ν − E

(0)
k is the difference in the unperturbed energies. Furthermore, the polar-

izability depends on the angular momentum j and mj of the atomic state, and therefore we can
further modify the expression as

αν(ω) = α(0)
ν (ω) +Acosθk

mj

j
α(1)
ν (ω) +

{
3cos2θp − 1

2

}
3m2

j − j(j + 1)

j(2j − 1)
α(2)
ν (ω).

The factors A defines the degree of polarization. A = −1, 0, 1 for left-handed, linear, and right-
handed polarization respectively. Here θk represents the angle between the wave vector and the
z-axis. θp is the angle between the polarization of the electric field with respect to the z-axis. Here
α
(0)
ν (ω),α

(1)
ν (ω), and α(2)

ν (ω) represent the scalar, vector, and tensor polarizabilities respectively
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[2], and are defined as

α(0)
ν (ω) =

1

3(2jν + 1)

∑
jk

|⟨ψ(0)
ν ||D||ψ(0)

k ⟩|2
[

1

δEν,k + ω
+

1

δEν,k − ω

]

α(1)
ν (ω) = −

√
6jν

(jν + 1)(2jν + 1)∑
jk

{
jν 1 jν

1 jk 1

}
(−1)jν+jk+1|⟨ψ(0)

ν ||D||ψ(0)
k ⟩|2

[
1

δEv,k + ω
− 1

δEν,k − ω

]

α(2)
ν (ω) = −2

√
5jν(2jν − 1)

6(jν − 1)(2jν + 1)(2jν + 3)∑
jk

{
jν 2 jν

1 jk 1

}
(−1)jν+jk+1|⟨ψ(0)

ν ||D||ψ(0)
k ⟩|2

[
1

δEν,k + ω
− 1

δEν,k − ω

]

Where |⟨ψ(0)
ν ||D||ψ(0)

k ⟩| are reduced dipole matrix elements. These expressions for the polarizabil-
ity show that they can change dramatically near the frequency of an atomic transition. Utilizing
this fact, we can employ near-resonant trapping wavelengths in order to match the polarizabilities
of two atomic levels of interest. The wavelength at which the polarizabilities of two levels are
equal is a so-called “magic wavelength”. In this thesis, we employ a magic wavelength near a
|6P3/2⟩ ↔ |nS1/2⟩ transition to achieve state-insensitive trapping for the ground-Rydberg transi-
tion. In doing so, we minimize the undesirable effect of differential lightshifts and extend lifetimes
of the ground-Rydberg coherence an order of magnitude over those achieved in traditional far-off-
resonance traps (FORTs).

3.4.4 Specific application: Lightshift calculation for the line of Rb for a
trapping wavelength of 1064 nm

For Rubidium, a common wavelength used for FORTs is 1064 nm. This is because the wave-
length is sufficiently far from any atomic transitions and can be generated with high power via
Neodymium doped Yttrium-Aluminum-Garnet (Nd:YAG) lasers. In this section, I describe the
process of calculating differential lightshifts for the D2 line of Rubidium for 1064 nm light. The
Mathematica notebook, “1 LightshiftCalculator”, used for these calculations is available online.
This notebook allows experimentally measured trapping beam powers and waists to be converted
into theoretical predictions of trap depths (light shift of the ground state), and state-dependent light
shifts of the D2 line.
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Polarizability Value in atomic units

α
(0)
5S1/2

687.3

α
(0)
5P1/2

-1226

α
(0)
5P3/2

-1114

α
(2)
5P3/2

551

Table 3.1: Scalar and tensor polarizabilities for 1064nm light used in calculating differential light-
shifts for the D2 transition in Rubidium taken from Ref [1].

The light shifts for the state γ with quantum numbers F and mF are calculated using

∆Eγ,F,mF
= −1

4
αγ,F,mF

E2

where the state-dependent polarizability is defined as

αγ,F,mF
= α(0)

γ + α
(2)
γ,F

3m2
F − F (F + 1)

F (2F + 1)
,

where
α
(2)
γ,F = α(2)

γ

3X(X − 1)− 4F (F + 1)J(J + 1)

(2F + 3)(2F + 2)J(2J − 1)
,

with
X = F (F + 1) + J(J + 1)− I(I + 1).

To perform these calculations, I utilize tabulated values of the scalar (α(0)
γ ) and tensor (α(2)

γ ) polar-
izabilities listed in Ref [1] for 1064 nm, the values of which are detailed in Table 3.1.

A common convention is to utilize Hartree atomic units when calculating quantities for theoretical
atomic physics. In this system of units, fundamental constants i.e., the reduced Planck constant ℏ,
the elementary charge e, the Bohr radius a0, and the electron mass me are set to unity making the
calculations more convenient. To convert the values of polarizability from atomic units to SI units
, we utilize a conversion factor Λ such that

α[au]× Λ = α[SI],

with
Λ = 4πϵ0a

3
0 ≈ 1.648× 10−41.

Energy shifts when calculated are in SI units (Joules), however, it is common to express them in

22



|mF | = 3 |mF | = 2 |mF | = 1 |mF | = 0

F = 3 17.07 33.77 43.80 47.14
F = 2 33.77 33.77 33.77
F = 1 40.45 33.77

Table 3.2: Level shifts in units of MHz, of the D2 line for a 1064 nm trapping wavelength and 1
mK trap depth.

either temperature or frequency units.

∆E[J] = kB (∆E[K]) = h (∆E[Hz])

For example, a 1 mK trap depth corresponds to an energy shift of the ground state of

∆E = kB(1× 10−3K) = 1.38× 10−26J

with a corresponding frequency shift of

kB(1× 10−3K)

h
⇒ 20.84MHz.

The state-dependent differential light shifts are calculated for a 1 mK trap depth which can be
achieved with a 1 µm beam waist and laser power of 10.16 mW or equivalently a trap intensity of
I ≈ 6.47 × 105W/cm2. The results are shown in Figure 3.4, and tabulated in Table 3.2. A few
things to note are that there are no tensor shifts for the ground level, and therefore the trap depth is
independent of quantum numbers F and mF . Also, there are no tensor light shifts for the D1 line,
and therefore all levels are shifted equally with a sensitivity of 37.17 MHz/mK.
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Figure 3.4: Magnetic sublevel differential lightshifts for the D2 line and a trap depth of 1 mK.
Individual values are tabulated in Table 3.2.
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CHAPTER 4

Apparatus for Single-Atom Trapping

While being able to trap, detect, and coherently manipulate the state of a single atom is an achieve-
ment in and of itself, in order to study emergent many-body physical phenomena, it is necessary
to increase the number of quantum constituents within the system. Technological development
along this direction have enabled the generation of multi-dimensional structured arrays of optical
tweezers and is an active area of research. Some of the predominant methods used to scale up the
size of the quantum system include:

A) Acousto-optic deflectors (AODs)
One- and two- dimensional arrays of optical tweezers can be generated by utilizing AODs

driven by multi-tone radiofrequency (RF) sources derived from software define radio (SDR) or
arbitrary waveform generators (AWG). While this scheme allows for a relatively simple method
for generating trap arrays, this method has several limitations. 1) Only rectangular geometries
can be achieved, 2) the number of traps is limited by the total efficiency of all of the first order
diffracted beams and the frequency spacing of RF tones within the bandwidth of the AOD, 3)
nonlinearities within the AOD and RF amplifier can cause frequency intermodulation between the
different frequency tones, which severely limits the achievable trap uniformity.

B) 2D Lattices - Superfluid to Mott insulator transition
A powerful method for realizing deterministic loading of single atoms into a sub-wavelength

square array is by utilizing ultra-cold bosonic gases in two-dimensional optical lattices. A Bose-
Einstein condensate (BEC) within the 2D lattice can undergo a quantum phase transition from the
superfluid to mott-insulator phases via ramping of the lattice depth. As a result of this phase tran-
sition, single-atoms are prepared in each lattice site with a high probability. Some restrictions of
this method is that the geometry of traps is limited, and the process of generating and manipulating
a BEC is technically challenging and time consuming.

C) Holographic methods
By utilizing holographic methods, spatially varying phases can be imprinted on a trapping

beam, resulting in nearly arbitrary patterns of light at the focus of a lens. Traditionally this is
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performed via static phase masks which are comprised of transparent media with spatially varying
refractive indices. With the development of spatial light modulators (SLMs) and digital micromir-
ror devices (DMDs), on-demand reconfiguration of trapping geometries is possible. Due to the
high power utilization factor and flexibility of the approach, this is the method that is used in the
Kuzmich lab.

4.1 Scalar-diffraction theory: Huygens-Fresnel, Fresnel, and
Fraunhofer diffraction

To understand how the phase hologram is computed for the desired intensity pattern, we first turn
to scalar diffraction theory to describe propagation of electric fields between different planes of
interest. This formalism allows us to understand the mathematical relation between the scalar
electric field at two planes separated by a distance z. In this particular example, we are interested
in the electric field at the SLM plane ESLM(x

′, y′) and at the focal plane of the high NA objective
lens, EFocal(x, y). Given that the electric field at the SLM plane is known, we can utilize the
Huygens-Fresnel principle to calculate the electric field at the focal plane such that,

EFocal(x, y) =
z

iλ

∫ ∫ +∞

−∞
ESLM(x

′, y′)
exp(ikr)

r2
dx′dy′, (4.1)

where r is defined as the distance

r =
√
z2 + (x− x′)2 + (y − y′)2.

One can interpret this integral as every point in the SLM plane as a source of outgoing spherical
waves. In general, this integral can be difficult to evaluate. By invoking two approximations, the
expression can be dramatically simplified. First we invoke the Fresnel or paraxial approximation.
In this approximation, we have that the distance z between the planes is much larger than the
transverse extent of the aperture in the SLM plane, that is

z ≫
√

(x− x′)2 + (y − y′)2.
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When this condition is satisfied, we can expand the distance r via a binomial expansion,

r = z

√
1 +

(
x− x′

z

)2

+

(
y − y′

z

)2

,

r ≈ z

[
1 +

(x− x′)2

2z2
+

(y − y′)2

2z2
+ ...

]
.

As a result, we can keep just the first term for the expansion of r in the denominator, however
for values of r in the exponential, we keep the first three terms since variations in the phase on
the order of unity can result in a large deviation of the resulting value. As a result, the diffraction
integral simplifies to

EFocal(x, y) =
eikz

iλz

∫ ∫ +∞

−∞
ESLM(x

′, y′)exp
[
i
k

2z

[
(x− x′)2 + (y − y′)2

]]
dx′dy′.

For a further simplification, we can expand out the phase factor in the integral

[
(x− x′)2 + (y − y′)2

]
= (x2 + y2) + (x′2 + y′2)− (2x′x+ 2y′y)

At this point, we can apply the Fraunhofer approximation, under the condition that z ≫ k(x′2+y′2)
2

is satisfied. Under this assumption, the phase factor eik(x′2+y′2) ≈ 1, over the region of interest and
the diffraction integral simplifies to

EFocal(x, y) =
eikzei

k
2z

(x2+y2)

iλz

∫ ∫ +∞

−∞
ESLM(x

′, y′)exp
[
−i
(
kx

z
x′ +

ky

z
y′
)]

dx′dy′.

This can be identified as a 2D Fourier transform of the field in the reference plane, with spatial
frequencies fx = x

λz
and fy = y

λz
.

To summarize, if one knows the electric field in one plane, the electric field at a different plane in
the far-field can be obtained via a 2D Fourier transform. This means that in principle, an arbitrary
electric field profile EFocal(x, y) can be generated by manipulating the electric field at the SLM
plane to be the inverse FT, ESLM(x

′, y′) = F−1[EFocal(x, y)].

4.2 Phase modulation using a spatial light modulator

4.2.1 Gerchberg-Saxton Algorithm

In reality, simultaneous control over the amplitude and phase of the electric field at the SLM plane
is not feasible, and instead the amplitude is constrained to that of a Gaussian beam. While the
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Figure 4.1: Flow diagram for the Gerchberg-Saxton algorithm.
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exact intensity pattern at the focal plane cannot be achieved, an excellent approximation can be
obtained by an appropriate choice of the phase modulation on the Gaussian beam at the surface
of the SLM. With this amplitude constraint, the direct inverse transform can be no longer used
to obtain the optimal phase hologram, rather a phase retrieval algorithm such as the Gerchberg-
Saxton (GS) algorithm must be used. The GS algorithm is amongst a class of algorithms that
utilize a sequence of forward and inverse discrete Fourier transforms (DFTs) along with amplitude
constraints to obtain convergence on the optimal phase hologram. Figure 4.1 shows a basic flow
diagram for the implementation of the GS algorithm.

Given an input electric field amplitude at the SLM plane ,Ain, and a target amplitude at the focal
plane, AT , we can obtain an optimized phase hologram ϕopt such that

∣∣F [Aine
iϕopt
]∣∣2 ≈ |AT |2 by

performing the following iterative procedure:
1. Initialize each pixel in the discrete grid ϕn(xi, yj) to be a randomly distributed between 0

and 2π.

2. Using the amplitude of the electric field at the SLM plane, Ain, and the phase pattern at the
SLM plane, ϕn, propagate the electric field to the focal plane by DFT, which results in the electric
field amplitude Ãn and phase ϕ̃n.

3. Enforce an amplitude constraint in the focal plane, that is, substitute Ãn with AT.

4. Propagate the resulting field backward to the SLM plane via inverse DFT to obtain the phase
ϕn+1.

5. Check to see if the amplitude error, ϵ = |AT−|F [Aine
iϕn+1 ]||2

|AT |2 , is within the desired tolerance
level. If the error is sufficiently low, the algorithm concludes and ϕn+1 is the optimized phase,
ϕopt. If not, return to step 2.

The program “2 PhaseHologramGenerator”, available via the online repository provides a min-
imal working example of such a procedure. The GS algorithm is implemented for 30 iterations
to generate phase holograms corresponding to a ring geometry consisting of 1-7 traps at the focal
plane. The final intensity profile at the focal plane is shown in the first row of Fig. 4.2, and the cor-
responding phase holograms are displayed in the second row. The phase holograms show patterns
indicative of the dominant spatial frequencies present in the array geometry as well as the increas-
ing degree of symmetry. To further emphasize the flexibility of this approach, the Mathematica
notebook has the capabilities of generating phase holograms for input target amplitudes defined
from an imported bitmap file. This feature is utilized to generate phase holograms for trap arrays
spelling out the letters in “KUZMICH”.
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Figure 4.2: Gallery of traps: Calculated intensity pattern for increasing number of traps in a ring
geometry and corresponding phase holograms in rows 1 and 2 respectively. Demonstration of ar-
bitrary trap geometry formation by trap geometries spelling out “KUZMICH” and their respective
phase holograms in row 3 and 4 respectively.
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Precise positioning of the traps on the focal plane A useful application of digital holography
is the precise positioning of the focal point of optical beams. Transverse displacements ∆x and
∆y in the focal plane can be achieved by introducing a linear phase ramp across the input beam.
As the modulation phase is limited between 0 and 2π , a linear phase modulo 2π, becomes what is
known as a “blazed” grating. The phase required for such a transverse displacement is given by

ϕBlaze(∆x,∆y, x
′, y′) = [Kxx

′ +Kyy
′] mod 2π,

where Kx and Ky are effective wavenumbers at the SLM plane defined as

Kx = k

(
∆x

f

)
,

Ky = k

(
∆y

f

)
.

Where k = 2π
λ

is the wavenumber of the trapping beam, and f is the focal length of the objective
lens. Note that the maximum possible displacement is limited by the size of each pixel (pixel pitch)
of the SLM. An example of a blazed grating is shown in Fig. 4.3. In addition to precise alignment
in the focal plane, a blazed grating allows for the spatial separation of the diffracted beam from the
0th order undiffracted beam, eliminating unwanted trapping potentials in the region of interest.

In addition to transverse displacements, it is possible to move the trap focal position an axial
distance ∆z. To achieve this, the divergence properties of the trapping beam is changed by imprint-
ing a quadratic phase. This quadratic phase modulation is the underlying principle for metasurface
and Fresnel lenses, and is identical to the accumulated phase as a beam propagates through a
lens made of glass. The radial phase ramp can be written in terms of an effective wavenumber
Kz = k

(
∆z

f

)
,such that the Fresnel phase is,

ϕFresnel(∆z, x
′, y′) =

[
Kz

(x′2 + y′2)

2f

]
mod 2π.

In order to detect fluorescence emitted from the array of single-atoms, it is important to match
the focal plane of the imaging system with the focal plane of the trapping beam. Rather than using
a physical translation stage, digital holography allows for a precise control of the focal position via
the Fresnel phase. An example of a Fresnel phase pattern is shown in Fig. 4.3.

In an ideal setup, the phase across the input Gaussian beam is uniform, and therefore the only
phase modulation necessary is that obtained from the GS algorithm and the blazed grating. How-
ever, due to experimental limitations on the quality of the wavefront, there are additional holograms

31



� !!"# �$!%&'%( �)("*% �$"+,-!# �.-/0%'&",1-'

Trap Geometry Shift of focal position Correction of aberrations
(Axial) (Transverse) (Chip flatness) (Optical setup)

Total

�2-,"(

Figure 4.3: Composition of the hologram to generate an array of traps at the focus of an objective
lens. Additional holograms are necessary for precise positioning of the traps in the focal plane,
and to compensate for optical aberrations.

that need to be superimposed in order to compensate for such imperfections. In the subsequent sec-
tions, I will discuss where these limitations arise and how they are taken into account.

4.3 Wavefront correction

4.3.1 Introduction

For applications such as the imaging of distance light sources (astronomy), or microscopic
objects (atomic physics) the quality of a wavefront as it passes through the optical system is of
the utmost importance. In the optimal situation, the wavefronts coming from the light source
are approximately those associated with a plane-wave. Distortions from a planar wavefront
can be the result of variety of sources. In the case of astronomy, these deviations may arise
from changes in the refractive index of the atmosphere due to temperature gradients or turbulent air.

In the optics laboratory setting, these aberrations can occur due imperfect alignment through
an optical system, or due to the intrinsic construction of each optical element. In this section, I
describe the process of utilizing a Shack-Hartmann wavefront sensor and Spatial Light Modulator
as an adaptive optics platform capable of eliminating monochromatic aberrations that occur in our
system. In order to understand that process, we first look at the origin of these aberrations in our
system, and review the formalism of aberration theory in order to characterize and compensate
such aberrations.

4.3.2 Aberration theory

Aberrations can come in the form of two types 1) chromatic and 2) monochromatic aberration.
The former is the result of dispersion and wavelength dependent transmission through an optical
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system. The latter is the result of rays originating from the same point in the image propagating
through different optical paths on it’s way to the imaging plane.

The deviations of the wavefront that result can be described via aberration theory. One method
of quantifying the amount and nature of the aberrations in a wavefront is via an expansion of the
wavefront into Zernike polynomials. Zernike polynomials comprise an orthogonal and complete
basis on the unit disk, and therefore an arbitrary wavefront can be described by a unique set of
Zernike coefficients. The Zernike polynomials can be expressed in polar coordinates in a factorized
form using radial and angular components,

Zm
n (ρ, ϕ) = Rm

n (ρ)cos(mϕ).

Where the radial polynomials are given by

Rm
n (ρ) =

n−m
2∑

k=0

(−1)k(n− k)!

k!
(
n+m
2

− k
)
!
(
n−m
2

− k
)
!
ρn−2k.

These radial functions obey the following orthogonality condition∫ 1

0

√
2n+ 2Rm

n (ρ)
√
2n′ + 2Rm

n′(ρ)ρdρ = δn,n′ .

These polynomials can be tabulated utilizing a single index, of which there are several schemes.
The Waveview software suite utilizes the Wyant index, and therefore is the indexing scheme used
in our wavefront correction protocol. Fig. 4.4 shows the first 21 polynomials ordered vertically by
radial degree n, and horizontal by azimuthal degree m.

The experimental wavefront Eexp(ρ, ϕ) can be expanded into a sum of such Zernike polynomials,
in the form of

Eexp(ρ, ϕ) =
∑
m,n

[amnZ
m
n (ρ, ϕ) + bmnZ

−m
n (ρ, ϕ)]

In order to determine the expansion coefficients, one follows the standard basis expansion recipe
utilizing inner products. The inner product on the unit disk is defined as

⟨F,G⟩ =
∫ 2π

0

∫ 1

0

F (ρ, ϕ)G(ρ, ϕ)ρdρdϕ.

The expansion coefficients of the experimental wavefront can be described in terms of the inner
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Figure 4.4: The first 21 Zernike polynomials plotted on the unit disk.
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Figure 4.5: Simplified diagram for analyzing the phase (Shack-Hartmann wavefront sensor) and
intensity of the trapping beam.

product as

amn =
2n+ 2

ϵmπ
⟨Eexp(ρ, ϕ), Z

m
n (ρ, ϕ)⟩

bmn =
2n+ 2

ϵmπ
⟨Eexp(ρ, ϕ), Z

−m
n (ρ, ϕ)⟩

Compensating for imperfections in the surface of the SLM chip Even in the absence of an
applied phase hologram on the SLM surface, there is a phase modulation across the Gaussian beam.
This phase modulation arises from miniscule deviations of the SLM chip surface that occur during
the manufacturing process. The manufacturing company of the SLM (Hamamatsu) provides us
with a phase pattern that can be used to compensate for such deviation of the chip surface. This
phase pattern, denoted as ϕfactory is displayed in Fig. 4.3.
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Figure 4.6: Measured wavefront and phase hologram as a function of the iteration number for
feedback.

Detecting and correcting aberrations caused by optical elements in the beam path One
method of measuring an optical wavefront is by using a Shack-Hartmann wavefront sensor. This
sensor consists of a microlens array, with lenses of the same focal length, generating focused spots
on a CCD sensor. For an optical beam that uniformly illuminates the microlens array with a perfect
wavefront, all of the spots will be focused at the direct center of each of the microlenses. In the
case where optical aberrations are present, the microlens arrays allows for discrete sampling of the
wavefront at each position on the array. The deviation of the spot focal position is proportional to
the discretized deviation of the wavefront.

For our correction protocol, we utilize a HASO4-FIRST wavefront sensor from ImagineOptic.
The sensor features λ/100 absolute accuracy, λ/200 repeatability, a microlens array consisting of
32×40 lenses, a pupil size of 3.6×4.6 mm2 and allows for wavefront detection between 400-1100
nm. After measuring the wavefront, we perform a Zonal reconstruction to extract the Zernike co-
efficients. Using the coefficients, we generate a phase hologram ϕCompensation that attempts to rectify
the wavefront distortion. An example of such a phase hologram is shown in Fig. 4.3. Due to non-
linearity present in the optical system, multiple iterations of this correction procedure is required
to obtain convergence of the wavefront. Figure 4.6 shows the experimentally reconstructed wave-
front, phase hologram, and RMS difference after multiple iterations of the correction procedure.
As a result of the iterative correction, the RMS deviation of the wavefront is reduced monotonically
from 0.353 um to 0.013 um.

Now after taking into account the different mechanisms that lead to deviations of the wavefront,
the total phase hologram displayed on the SLM is the sum of all phase holograms described in the
previous sections, ϕtotal = ϕArray + ϕFresnel + ϕBlaze + ϕFactory + ϕCompensation.
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4.4 Objective lens

In order to produce tightly focused trapping beams that allow for the collisional blockade mecha-
nism to be operative, we require the use of high-numerical aperture objective lenses. In this section,
I will discuss how we can measure the point spread function (PSF) of an objective lens in order to
experimentally quantify the focusing performance. The Airy disk radius of the PSF of an objective
with a numerical aperture NA can be given asR = 0.61λ

NA , where λ is the wavelength of the trapping
field.

As the objective lens is placed on the outside of a vacuum cell, a long working distance is
required. In the case of our specific application, we require a working distance of approximately 24

mm in order to have a pair of lenses in a confocal configuration surrounding the glass vacuum cell.
The optical design of such objective lens, should properly take into account the 4 mm thick glass
walls of the cell which may alter the focusing performance. Improper compensation of the glass
thickness of the cell can result in spherical aberration, and severely limit the trapping performance.

Lastly, the focal position for the different wavelengths used in the experiment must coincide
with one another, that is, by proper design of the optical elements that comprise the objective lens
system, the effect of chromatic aberration must be minimized. The primary wavelengths that are
utilized in our experiment are 780 nm, 795 nm, 1064 nm, 420 nm and 1012 nm light. This objective
lens must have high transmission for these wavelengths.

Given the above list of specific requirements, the objective lens is a highly customized piece of
optical equipment that needs to be specifically tailored to fit each experimental platform. In this
section, I will discuss two common approaches; the first is to design a composite lens system con-
structed from stock components which can achieve a suitable performance. The second approach
which can be more costly involves purchasing a commercially customized objective set.

4.4.1 Homebuilt objective lens housing

One cost efficient method to creating a custom objective lens is utilizing a combination of stock
lenses and combining them into a composite optical system. We implemented an optical layout
with a five lens system in order to achieve the following requirements for our system.

1) Numerical aperture: NA>0.35 for 780 nm and 1064 nm
2) Working distance: >32 mm
3) High transmission for wavelengths of 780 nm and 1064 nm.
By starting with the base design and the set of lenses, summarized in Table 4.1, we were able to

optimize the design to fit our needs. In order to determine the optimal configuration, one can use
the spot size of one of the beams, or a weighted average of spot sizes for different wavelengths, one
can use the parameters such as the separation of lenses in order to perform optimization. Another
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Figure 4.7: (a) Five lens objective system design. All measurements are in units of mm. (b) Three-
dimensional drawing of the lens system housing. The material used in the design is Black Delrin.

feature allowed by OpticStudio from Zemax is the ability to optimize the geometric parameters of
individual surfaces of lenses. Once the optimal focusing performance is achieved, one can perform
“stock lens” matching in order to determine if there are stock lenses that can replace the custom
lens while maintaining the desired performance.

Once the lens combination and separations are determined, we generated 3D models for the
housing and spacers used to stabilize the lenses at the desired positions. Fig. 4.7 shows the objec-
tive lens layout and 3D housing design. To achieve high transmission properties for the two pri-
mary wavelengths in our experiment, we utilize Thorlabs 2 inch diameter lenses with a broadband
B-coated AR coating suitable for wavelengths between 650-1050 nm. The housing and spacers
were machined out of Black Delrin, which is tough machinable thermoplastic with a high modulus
of elasticity, high strength, and good rigidity. An important thing to note is that the majority of
the costs are attributed to the machining process, which can be dramatically reduced with in-house
machining capabilities.

The performance of the design including the supporting optics was analyzed using OpticsStudio
from Zemax. The results of the simulations are shown in Fig. 4.8. After quantifying the focusing
performance by measuring the PSF, we determined that the measured resolution was in agreement
with the Zemax simulations. However, when monitoring the long-term stability of the focusing
performance, we noticed deviations that would have dramatic implications in the experimental
longevity. We attribute these fluctuations to minute deviations of the spacing between lenses. A
future improvement of the design should include cementing of the spacers after optimizing the PSF
in order to “lock in” the results. It is also necessary to perform tolerance simulations that take into
account thermal deviations of the spacers in order to determine a “chance of success” metric.

Special Optics Commercial Lens Our custom commercially designed objective lens from Spe-
cial Optics / Navitar is designed for diffraction limited performance at 780 nm and 1064 nm with a
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Item Description Price
Lens 1: LC1093-B Plano-concave: f = −100mm $44.65
Lens 2: KBX151AR.16 Bi-convex: f = 88.3mm $95.00
Lens 3: LE1418-B Positive Meniscus: f = 150mm $54.90
Lens 4: LE1076-B Positive Meniscus: f = 100mm $53.79
Lens 5: LE1985-B Positive Meniscus: f = 300mm $50.75
Machine shop (Housing + Spacers) Black Delrin Plastic $1,341.25

Table 4.1: Overview of lenses used in the custom objective design.

Figure 4.8: Zemax simulations for the performance of the homebuilt custom objective.
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numerical aperature of NA=0.50 and working distance of 24 mm. The top panel of Fig. 4.9 shows
the RMS wavefront error as a function of the paraxial image height, (the displacement from the
center in the focal plane) from the optical axis for 780 nm light. The black line indicates diffrac-
tion limited performance (RMS=0.072 waves), and blue line shows RMS error for the simulated
system. Note that the system can achieve diffraction limited performance for axial displacement
in the focal plane of ±180 um, implying a Full Field of View (FFOV) of ˜360 um for 780 nm. The
middle panel of Fig. 4.9 shows the spot diagram, that is the end position of rays (blue crosses)
traced through the optical system for a hexapolar distribution of rays at the entrance plane for cen-
tral paraxial heights of 0 µm, 50 µm, 100 µm, and 150 µm. The bottom panel of Fig. 4.9 shows a
cross-section of the Huygens Point Spread Function (PSF). A similar set of plots is shown in Fig.
4.10 for the wavelength of 1064 nm. The objective lens was designed to reduce the chromatic focal
shifts between the different wavelengths used in the experiment as indicated by Fig.4.11.

4.5 Measuring the point spread function

In order to quantify the focusing performance of an optical element, it is necessary to measure
the point spread function (PSF). The PSF is the response function of an imaging system to a point
source. This is analogous to the Green’s function formalism to calculate the electric field generated
by sources and similar to the Huygens-Fresnel principle. Each point in the object plane is a source
of light which is mapped to the PSF in the image plane. By summing over all points in the object,
we can determine the image formed in the image plane.

In the ideal case, the PSF is a two-dimensional delta function and the light distribution in the
object plane is mapped directly to the image plane with a factor of the magnification in the system.
In practice, the PSF is an Airy function due to the diffraction properties of light. Therefore, in
order to mathematically determine the image that is formed, one must perform a convolution of
the object with the PSF. The main geometric parameter, the Airy disk radius, defined as the location
of the first minima of the intensity is related to the effective numerical aperture of the system. For
a diffraction limited optical system, the Airy disk radius R is given by

R =
0.61λ

NA
.

If we approximate the PSF with a Gaussian intensity profile, then the PSF can be approximated
with a Gaussian waist σ of

σ ≈ r

2.9
.

If the PSF can be measured, we can determine directly the effective numerical aperture of the
optical system. Another way to evaluate diffraction-limited performance is based on the root-
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Figure 4.9: Zemax simulations for the focusing capabilities of the objective lens at 780 nm. Top:
RMS Wavefront error as a function of the paraxial image height. We can achieve diffraction limited
performance for a field of view of ±180 µm at the focal plane. Middle: Spot diagram for paraxial
heights 0 µm, 50 µm, 100 µm, and 150 µm. The blue crosses indicate the position of traced rays
at the focal plane. The black circle represents the Airy disk, that is a circle with radius of the
Airy Radius 0.954 µm, performance limited only by diffraction. Bottom: Huygens Point Spread
Function (PSF) cross section.
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Figure 4.10: Zemax simulations for the focusing capabilities of the objective lens at 1064 nm.
Top: RMS Wavefront error as a function of the paraxial image height. We can achieve diffraction
limited performance for a field of view of ±210 µm at the focal plane. Middle: Spot diagram for
paraxial heights 0 µm, 50 µm, 100 µm, and 150 µm. The green crosses indicate the position of
traced rays at the focal plane. The black circle represents the Airy disk, that is a circle with radius
of the Airy Radius 1.301 µm, performance limited only by diffraction. Bottom: Huygens Point
Spread Function (PSF) cross section.
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Figure 4.11: Chromatic focal shift (x-axis) as a function of the wavelength (y-axis). There is a
focal shift of ˜4 µm between 780 nm and 1064 nm light. Since these two fields propagate through
different optical paths, the focal positions can be matched by adjusting axial positions of various
optical elements within each path.
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mean-squared error (RMSE) of the wavefront. For an RMSE of less than 0.072 waves, the system
is denoted as “diffraction-limited”. This method however is more difficult as it requires a measure-
ment of the wavefront, which is technically more challenging than measurement of intensity. To
measure the PSF of the objective lens, we utilize an optical layout shown in Fig. 4.12. First, a col-
limated TEM00 beam is generated at the output of single mode optical fiber. This beam is directed
towards a precision manufactured resolution target to generate quasi-point sources of light. The
resolution target from Technologie Manufaktur contains 58 line patterns ranging from 7.5 mm to
3300 line pairs per mm. Also there are 5 pinholes ranging from diameters between 0.25-4.0 µm.

The resolution target is mounted onto a three-dimensional translation stage for precise posi-
tioning of the beam onto the target (x,y) and positioning the target with respect to the objective
lens (z). After the target, the point source of light expands rapidly due to diffraction, and passes
through a glass window, with thickness and materials chosen to match those used in the glass cell
on the experimental table. The light is then collimated by the objective lens that is being tested.
Finally, the light is focused onto the Andor sCMOS camera by a final field lens. In this optical sys-
tem, the plane at the resolution target and the plane located at the CCD chip are conjugate planes,
with a magnification factor given by the ratio of focal lengths of the telescope. That is, there is a
magnification factor M

M =
ffield

fobj
.

For a field lens focal length of ffield = 750 mm and fobj = 32 mm, M ≈ 23.43. For the camera
used in our setup, with square pixels of length, 6.5 µm, the magnification means that each pixel will
map to size at the target plane of 0.277 µm. Therefore an Airy disk radius of ˜1.5 µm corresponds
to a spot with a diameter between 10 and 11 pixels. In order to calibrate the size of each pixel
precisely, we can measure various line pair groups and correspond their linewidths to physical
distances. The line pair per mm (lp/mm) can be converted to a linewidth of the line by using the
following conversion.

1000

Resolution[lp/mm]
=Line width[µm]

This means that for our resolution target, 7.5-3300 lp/mm translates to linewidths of 66.66 µm
to 0.15 µm respectively. For the focal lengths of the lenses used in our system, linewidths less than
0.27 µm cannot be resolved due to the magnification factor and pixel size of the CCD camera. For
additional camera resolution, an additional telescope can be placed after the field lens.
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Figure 4.12: Simplified optical layout to measure the PSF of optical elements.
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CHAPTER 5

Laser Systems and Optical Layouts

In this section, I describe the laser systems used in our experiment as well as provide an overview
of optical layouts and details on the relevant elements. In summary, our system is comprised of
eight optical subsystems (SS). Each of these subsystems are indicated and described in brief detail
in Table 5.1.

Subsystem label Brief description

SS0: EXP Prep. of 1064 nm trapping beam, vacuum cell, and MOT formation.

SS1: 780 RP Prep. of D2 repumper. Locking to sat-spec and phase locking.

SS2: 780 AMP Optical amplification of 780 nm light used for SS3.

SS3: MOT / IMG Divert amplified light into different paths for the MOT and imaging.

SS4: OP / EXC D1 optical pumping frequency prep. and D2 exc. prep.

SS5: 420 EXC 420 nm freq. prep for Rydberg excitation.

SS6: 1012 EXC 1012 nm freq. prep for Rydberg excitation.

SS7: CAVITY Frequency locking via PDH and high-finesse optical cavity.

Table 5.1: Overview of optical subsystems.

The optical layouts presented in this section are approximately to scale with each square grid
representing a square inch. To assist future students in developing optical layouts, a Powerpoint
file can be found via the online repository which contains a library of optical element icons which
can be used to track changes and aid in the the layout design process. Single mode fibers (SMFs)
directing light to and from different optical subsystems are labeled with the direction of light
propagation, as well as the subsystems corresponding to the input and output of the fiber. For
example, a fiber labeled “[5/0] 420 EXC” corresponds to a fiber that carries 420 nm excitation light,
with input port located in subsystem 5, and output port located in subsystem 0. Unless explicitly
stated, all SMFs are polarization maintaining. For only the main experimental table layout, the
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beam diameters are indicated via the width of the lines, where relative sizes are approximately to
scale for a given optical path, but relative scales between different paths are not accurate.

5.1 Subsystem 0 (EXP): The experimental table

5.1.1 Overview of the 1064 nm optical path.

Our trapping laser is derived from a Neodymium-doped Yttrium-Aluminum-Garnet (Nd:YAG)
fiber-based amplifier. The input seed laser of ˜5 mW is amplified to produce a coherent, single-
mode output of up to 50 W. The power directly out of the laser head is determined by the pump
current setpoint. Figure 5.1 shows the measured power scaling of the amplifier output as a function
of the pump current setpoint. At the output of the laser, the beam diameter (1/e2 intensity) is 3
mm. The first-order diffracted spot through a 200 MHz AOM is used to modulate the power of
the trapping field, whereas the undiffracted beam is dumped. A portion of the light is picked off
and directed toward a photodiode for intensity stabilization. In order to adapt the beam size to
completely fill the active area (15.8 ×12 mm2) of the spatial light modulator, the beam passes
through two telescopes. The first is formed by a 300 mm and 400 mm lens pair, and the second
telescope pair consists of 100 mm and 300 mm focal length lenses resulting in a total magnification
factor of four. Afterwards the beam is directed to a breadboard above via periscope. The resulting
beam diameter after magnification at the SLM plane is approximately 12 mm.

A spatially varying phase is imprinted on the trapping beam by the spatial light modulator. The
computer generated hologram (CGH) is calculated using a weighted Gerchberg-Saxton algorithm
(WGS), and is projected onto the SLM display via home-built software and communicated via
DVI cable. After diffraction off the SLM, the beam is directed through an additional telescope
consisting of 150 mm and 300 mm lenses. This final telescope is important for two reasons; the
first is to expand the beam diameter to 24 mm before the objective lens. Secondly, the telescope
configuration ensures that off-axis traps are not clipped by the time that they reach the objective
lens. At the focus of the objective lens, the array of traps is formed.

The light is then recollimated by an identical microscope objective placed on the opposite end
of the cell in a confocal configuration. To ensure that the two lenses are aligned parallel to each
other, both objectives are mounted onto a 2-inch cage mount system, and cage rods extend across
the glass cell. The glass cell is manufactured by Japan Cell, made with quartz glass, and is not
anti-reflective coated. The cell thickness is 4 mm, with an inner cell length of 28 mm. The inside
of the cell is pumped down to a vacuum pressure of 10−8 Torr. After being recollimated after the
cell, the majority of the trapping light is dumped. A small fraction of the beam power is picked off
via a glass window, directed toward two instruments for characterization. To monitor the intensity
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Figure 5.1: YAG output power scaling as a function of pump current set point.

profile of the trapping beam, we direct the light towards an Andor Zyla 4.2 sCMOS camera. The
intensity images are used for verifying optimal alignment of the trapping beam through the optics,
as well as used for an iterative trap feedback procedure. Alternatively, the light can be redirected
towards a HASO4-FIRST wavefront sensor by a mirror mounted onto a flip mount. The wavefront
sensor is used to quantify the amount of aberration present in our optical system and generate
compensation holograms. Fig. 5.2 shows a detailed layout of the experimental table.
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Figure 5.2: Main experimental table where trapping and manipulation of single-atoms takes place.

5.1.2 Magneto-optical trap

The magneto-optical trap is loaded from background vapor. The three beams for the magneto-
optical trap are directed from SS3 and are output on the experimental table with a beam diameter
of ≃ 3 mm. Each beam has powers ≃ 3 mW. Each beam is retroreflected using a mirror mounted
with a λ/4 waveplate so that the retroflected beam has orthogonal polarization to the input beam.
To reduce the effects of interference, each mirror mount utilizes piezoelectric transducers (PZTs)
to vibrate the mirror mounts at different frequencies. During a typical experimental sequence, the
MOT is loaded for 100 ms and the YAG trap array is on during the entirety of the MOT loading
process.
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5.1.3 List of additional specifications for equipment in SS0:

Nd:YAG Fiber Amplifier:
Model number: YLR-50-1064-LP-SF
Maximum power: 50 W
Center wavelength: 1064 nm
Output polarization: Linear
Intensity noise: ∆ν > 100 kHz : −110 dB/Hz, ∆ν > 3MHz : −120 dB/Hz
Beam quality:1.05-1.15 M2

Spatial Light Modulator:
Model number: LCOS-SLM X10468-03
Wavelength: 1050±50 nm
Light utilization efficiency: 97% at 1064nm
Number of pixels: 792 × 600 pixels
Pixel pitch: 20 um
Fill factor: 98%
Effective area size: 15.8×12 mm2

Vapor cell:
Manufacturer: Japan Cell
Model number: JPC-4-0933
AR Coating: Without coating
Material: Quartz Glass
Dimensions: Cell thickness of 4 mm and inner cell width of 38 mm

Objective lens:
Manufacturer: Special Optics
Model Number: 54-32-32
Numerical Aperature: 0.5
Effective Focal Length: 32 mm
Design wavelength: 780 nm, 850 nm, and 1064 nm.

R780 = 951.6 nm

R850 = 1037.0 nm

R1064 = 1298.1 nm

Transmission: >95% at each of the specified wavelengths
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Andor EMCCD:
Model: Andor iXon Ultra 897
Sensor type: Back-illuminated 512x512 EMCCD
Pixel Size: 16 um
Readout rate: 17 MHz
Cooling: -80oC Air Cooled
Quantum Efficiency: >90%

Andor sCMOS:
Model: Zyla 4.2 sCMOS
Quantum Efficiency: 82%
Number of pixels: 4.2 Megapixels
Read noise: 0.9e−

Linearity: 99.8%

Wavefront Sensor:
Model: HASO4First
Absolute Accuracy: λ/100 RMS
Acquisition Rate: 100 Hz
Aperture Dimension: 3.6×4.5 mm
Number of microlenses: 32 ×40
Spatial sampling: 100 µm
Interface: USB 3

5.2 Subsystem 1 (780 RP): D2 line (780 nm) repumper

The 780 nm light used to repump atoms from the F=1 hyperfine state to the F=2 hyperfine ground
state of Rb is derived from a Moglabs ECDL. The light is directed to a saturation spectroscopy cell
which is used to generate an error signal and locked to the F=1 ↔ F’=0-1 crossover transition.
The beam is then frequency shifted by 105x2 MHz via a doublepass AOM configuration in order
to be near resonance with the F=1↔ F ′ = 2 freespace transition. A portion of the beam (before
frequency shifting) is directed to a heterodyne module in order to be used as the master laser for
offset phase locking. Fig. 5.3 shows a detailed optical path.
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Figure 5.3: Optical subsystems 1-3. 780 nm laser preparation for MOT, imaging, and repumper.

51



5.3 Subsystem 2 (780 AMP): 780 nm optical amplification

A second ECDL with a central wavelength of 780 nm is used for a variety of purposes:
1. Optical molasses beams for the magneto-optical trap,
2. In-trap fluorescence imaging,
3. State-sensitive radiation pressure pushout beam,
4. Polarization gradient cooling.
In order to have sufficient power for these purposes, we employ optical amplification via a ta-

pered amplifier (TA) in a Master Oscillator Power Amplifier (MOPA) configuration. The TA chip,
TA-0785-2000, from Coherent/DILAS semiconductor is housed in a home-built opto-mechanical
mount in order to achieve high seed mode matching with the TA chip. The mount consists of
two aspheric lenses mounted to XYZ translations stages in order reduce the sensitivity to thermal
fluctuations of the alignment.

The TA chip is fabricated with a c-mount heatsink, which is secured to a copper block in thermal
contact with the thermoelectric cooler (TEC) for active stabilization of the temperature. To channel
heat away from the chip, large fins are attached to the top of the MOPA, and a fan ensures that there
is significant airflow through the fins in order to efficiently dissipate the heat.

A Newport Laser Diode Controller Model 6000 is used to implement the temperature stabiliza-
tion and provide electrical power to the TA. Under typical conditions, we use an operating current
of 2.5 A, which results in an amplification of the 15 mW seed light to roughly 500 mW at the
output of the MOPA. The current setting was chosen as the maximal current that is allowed with-
out feedback. Therefore, even if the seed beam is blocked unintentionally, there will not be any
damage to the TA. Due to the geometry of the TA waveguide and tapered gain region within the
chip, the output mode is rectangular and highly astigmatic. To compensate for the astigmatism, we
use the position of the output lens to collimate the beam in the vertical direction, and an additional
cylindrical lens to collimate the beam in the horizontal direction. To reduce the effect of direct
back-reflections into the MOPA, which can damage the TA, we use AR coated lenses, optical iso-
lators, and slightly skew the angle of the lens directly after the MOPA. The amplified light is then
directed to SS3 and SS4 via polarization maintaining single mode fibers. A detailed optical layout
is shown in Fig. 5.3.

5.3.1 MOPA Alignment procedure:

For the initial alignment of the MOPA, we follow the procedure described below.
1. Set the current of the MOPA to a value much lower than the maximal current without feed-

back, for our TA chip, this is ˜100-300 mA.
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2. Observe a backward propagating beam due to the amplified spontaneous emission (ASE) at
the input of the MOPA.

3. Spatially overlap the seed laser with this backward propagating beam over an extended
distance.

4. While monitoring the output power of the MOPA, block and unblock the seed light. If there
is amplification when the seed light is unblocked, this means that the seed light is roughly coupled
with the TA chip.

5. Maximize the output power of the MOPA using the alignment of the seed beam. Also, the
amplification is polarization dependent, so rotate the polarization using a λ/2 waveplate before the
MOPA.

6. Once the output power is maximized for a given operating current, increase the current in
steps, making sure to see if the alignment is still optimal.

7. Measure the output power using a high-power powermeter (e.g. a thermopile) to see if the
power scaling tracks with the test report.

5.4 Subsystem 3 (MOT/IMG): Optical fields for the magneto-
optical trap and resonant fluorescence imaging

After amplification of 780 nm light in SS2, the light is directed to SS3. The light is split between
two paths to be used for resonant fluorescence imaging and the MOT. The +1st order diffracted
beam of an AOM is split into two horizontal beams and a vertical MOT beam, all of which directed
to the experimental table via separate SMFs. For the imaging path, a portion of light is picked off
via a beam splitter, and used for intensity stabilization. Before being coupled to a SMF, repumper
light from SS1 is spatially overlapped with the imaging beam via a PBS. A detailed optical layout
is shown in Fig. 5.3.

5.5 Subsystem 4 (OP/EXC): D1 Line optical pumping and D2

line excitation

For state preparation into a desired ground hyperfine magnetic sublevel, we utilize optical pumping
(OP) on the D1 line. The 795 nm laser used to address this transition is derived from a Moglabs
ECDL and is locked via sat. spec. to the 2-2’ transition. The light passes through multiple AOMs
in double pass configuration in order for the final frequency at the experimental table to be +80
MHz from the free-space transition, and near resonance with the 2-2’ transition in the presence
of lightshifts. To make alignment of the OP beam on the experimental table easier, we combine a
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designated D2 repumper beam into the same optical fiber via a bandpass filter. A detailed optical
layout is shown in Fig. 5.4.
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Figure 5.4: Optical subsystem 4.

5.6 Subsystem 5 (420 EXC): 420 nm Rydberg excitation laser

Due to the small frequency separations between neighboring Rydberg transitions, we employ PDH
locking with high-finesse optical cavities to achieve narrow linewidth lasers used for excitation.
The 420 nm light used to excite atoms on the |5S1/2⟩ ↔ |6P3/2⟩ transition, is derived from a
Moglabs ECDL. The light is sent to SS7 where a PD measures the cavity reflection spectrum to
be used for generation of the error signal. The photodiode signal is sent to a Toptica PDD110
Pound-Drever-Hall module for error signal generation. The local oscillator signal is derived from
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Parameter Specification
Cavity design Half-symmetric planar concave resonator
Cavity length 100 mm

Free spectral range 1.5 GHz
Concave mirror ROC 50 cm

Table 5.2: Parameters of the high-finesse optical cavity

the PDH module and used to directly modulate the Moglabs laser. The error signal is then sent to
a Toptica Falc110 Fast Analog Linewidth Control module for additional signal conditioning. The
final filtered signal is sent into the back of the Moglabs Laser Diode Controller, where it is split
for the two feedback channels, current modulation for fast feedback, and PZT modulation for slow
feedback. A detailed optical layout is shown in Fig. 5.5.

5.7 Subsystem 6 (1012 EXC): 1012 nm Rydberg excitation
laser

The second Rydberg excitation laser is used to complete the two-photon transition to Rydberg.
Similar to the 420 nm laser, the 1012 nm light is derived from a Moglabs ECDL, and locked to the
same high-finesse optical cavity. Due to the fact that this laser addresses the |6P3/2⟩ ↔ |nS1/2⟩
transition, it is necessary to have a large tuning range so that one can swap to different principal
quantum numbers more easily. To achieve this, the laser light is modulated using an electro-optic
modulator (EOM) rather than direct modulation of the laser current. The PM-0S5-10-PFA-PFA-
1012 EOM from EOspace features a 10 GHz Lithium Niobate Phase modulator with a central
wavelength of 1012 nm. A similar electronics setup is used for the PDH error signal processing
and feedback implementation.

5.8 Subsystem 7 (CAVITY): High-finesse optical cavity

For narrow linewidth lasers, we utilize the reflectance spectrum of a high-finesse optical cavity to
generate a Pound-Drever-Hall locking signal. In order to have multiple fields locked simultane-
ously to the same cavity, we use bandpass filters to spatially overlap fields of different wavelengths.
To ensure that the TEM00 mode is being transmitted through the cavity, the spatial mode of the
transmitted light is analyzed using a CCD camera. Mode matching optics are placed along each
optical path to optimally match the output of the SMF to the resonant cavity mode. The parameters
of the cavity are listed in Table 5.2.
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CHAPTER 6

Laser Stabilization

Figure 6.1: Schematic of MOGlabs ECDL.

In the field of atomic physics, the laser is the laboratory workhorse. Laser fields are often
used for trapping, cooling, and coherent state manipulation of atoms. For the D1 and D2 line
transitions, the energy splittings between hyperfine states are on the order of 100s of MHz to
several GHz. In order to properly address individual levels, it is crucial to have lasers that have
frequency bandwidths less than this separation. Additionally, laser noise can cause dephasing of
quantum coherences. To combat the frequency instability of the laser, active frequency stabilization
protocols can be used.

Frequency stabilization is often performed utilizing some form of a feedback loop. In general,
a feedback loop consists of a few important ingredients. The first requirement is a method of
regulating the target variable to be stabilized, whether that be the frequency or intensity of the
laser. The second requirement is a method for measuring the variable of interest at the output
of the control loop. The final requirement is a stable reference in which the laser will be locked
to. From this reference, we can derive a control signal that can be fed back into the laser. In the
upcoming sections for frequency stabilization, I’ll first describe the basic operating principles of a
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Figure 6.2: Left: Emission wavelength as a function of the deviation of the diode cavity length.
The tunable range is roughly 0.345 nm which corresponds to 169.925 GHz. Right: Emission
wavelength as a function of the deviation of the external cavity length. The tunable range of 0.01
nm corresponds to 4.92 GHz.

main type of laser used in our lab, the external cavity diode laser, and describe the PDH locking
scheme.

6.1 Frequency selection in ECDLs

Here I’ll explain the basic principles of the external cavity diode laser (ECDL), what factors effect
the output wavelength, and with this knowledge, describe how the laser frequency can be modu-
lated and eventually stabilized. The output frequency ν of an ECDL laser depends on the frequency
dependence of the gain and loss factors. For the case of the ECDL, cavities formed by different
reflective surfaces largely determine the structure of the gain factors. The first cavity that we need
to consider is the one formed by the front and rear facets of the laser diode itself. This cavity results
in a transmission function given by

TD =
1

1 + F sin2(δ(ν))
, (6.1)

where F = 4r1r2/(1 − r1r2)
2 is the finesse of the cavity diode with r1,2 being the amplitude

reflection coefficients of the rear and front faces of the diode. Here δ(ν) = 2πnLDν/c is an
acquired phase-shift after one round trip within the cavity where LD is the length of the diode
cavity, n is the refractive index of the semiconductor and ν is the oscillation frequency of the laser.
The second cavity that we need to consider is the one that is formed by the rear facet of the diode,
and in our case, the cateye reflector. We have a similar transmission function Tcavity where now the
length of the cavity Lcavity and the refractive index n is that of free space.
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Finally, most ECDLs feature a wavelength selection element. Sometimes this can come in
the form of a diffraction grating, as for Littman-Metcalf and Littrow type configurations. In the
majority of the lasers that we utilize in the lab, a bandpass filter is placed between the reflecting
surfaces of the external cavity with a transmission function Tfilter. The central wavelength of the
bandpass filter can be tuned based on the angle of incidence with the filter given by

λc(θ) = λ0

√
1−

(
sin(θ)

neff

)2

. (6.2)

Where λ0 is the wavelength at normal incidence, θ is the incident angle, and neff ≈ 2.13 is an
effective refractive index. For the purposes of simulating mode selection within the ECDL, we
treat the transmission function of the bandpass as a generalized Gaussian of the form

Tfilter(θ, λ) = exp

[
−2

(
(λ− λc(θ)

σν

)2m
]

(6.3)

where the typical bandpass filter bandwidth is roughly σλ = 3 nm. Even though the bandpass
filter has a bandwidth of roughly 3 nm, we will see that utilizing the edges of the bandpass gain
profile, it’s possible to realize single-mode operation from the laser. The final factor is the gain
profile of the semiconductor GD, which for our specific application can be approximated as a
Gaussian with FWHM of 10 nm.

GD = exp
[
−2

(λ− λD)
2

σ2
λ

]
(6.4)

here σλ ≈ 8.49 nm. Since this bandwidth is much larger than the other bandwidths in considera-
tion, it’s nearly linear within the range we are considering. The total gain profiles of the laser is
therefore given by

Ttotal = TDTcavityTfilterGD. (6.5)

The dominant lasing mode can be tuned by changing the various parameters associated with
the system. By tuning the angle of incidence for the bandpass filter, the emission wavelength can
be tuned on the order of a few nanometers. This angle however has to be adjusted by hand and
therefore is only used for coarse tuning of the wavelength to the desired value. Next, the laser diode
cavity length can be adjusted, which can be done by varying either the temperature of the diode, or
via the injection current. This will process gives a tuning range of up to a few hundred GHz. While
this process can be controlled through the diode laser controller, the thermal response is slow and
therefore can’t be effectively used to modulate the frequency of the laser on the timescale needed
for feedback. Finally, the external cavity length can be varied.
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For the MOGLABs CEL laser, this is varied by changing the the voltage across a multilayer
piezoelectric stack mounted to the output coupler. The cavity length variation is roughly 20 nm
per volt. For the maximal piezo voltage of 150 V, this corresponds to a external cavity length
displacement of 3 µm. This can result in a tuning range between 5-20 GHz which can be modulated
at a rate of 25 kHz.

In figure 6.2, I plot the emission wavelength, defined as the wavelength that produces that
maximal total gain, as a function of either the diode cavity length or external cavity length. Instead
of a linear response with wavelength as a function of these cavity lengths, there is a periodic
sawtooth graph. The discontinuity in the emission wavelength can be attributed to modehops,
which occur where nearby frequency modes have comparable gain. To demonstrate this, in figure
6.3, I plot the total wavelength dependent gain factors for the parameters described in [3] for
3 different values of the cavity length. First, we can see that even though there are many cavity
modes within the spectral bandwidth defined by the bandpass filter, the laser can operate at a single
frequency, defined by the mode with maximal gain. The first panel shows the lasing condition to
the left of the modehop, that is ∆LD = 0.045 µm. The emission wavelength in this case is
λemission = 780.35 nm. There is a frequency mode with comparable gain at λ =780.00nm. By
varying the cavity length to ∆LD = 0.046 µm, the emission frequency “hops” to λemission =

780.0 nm. From this, we can see that the frequency stability on the output relies critically on the
wavelength selection mechanism.

First, the diode gain, shown in light blue, is a gaussian with a bandwidth of roughly 10 nm, with
a central wavelength of 783 nm results in an approximately linear gain curve in the desired tuning
range around the D2 transition wavelength of 780.24 nm. This means that within our region of
interest, the higher wavelength frequency modes will have a larger gain. On the contrary, the trans-
mission profile of the bandpass filter, shown in pink, makes it such that higher wavelength modes
are diminished. These two mechanisms combined are what allow for the wavelength selectivity
and single-mode frequency operation of the CEL laser. Finally, in the right panel of Fig.6.3, I plot
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Figure 6.4: Sources of laser frequency fluctuation, with associated timescales. From toptica Appl-
1012 notes.

Laser Locking Mechanism
780 nm Repumper Saturated Absorption Spectroscopy

795 nm Optical Pumping Saturated Absorption Spectroscopy
420 nm Rydberg Excitation Cavity Locking - Direct Current Modulation
1012 nm Rydberg Excitation Cavity Locking - EOM Phase Modulation

780 nm Cooling, Imaging, Excitation, Pushout Offset Phase Locking
1012 nm Ti-Sapphire Trapping Laser Wavemeter Locking

Table 6.1: Summary of different locking mechanisms used in the experiment

the gain profile for ∆LD = 0.012 µm, where the emission wavelength is λemission = 780.24 nm ,
the transition wavelength of the D2 line in 87Rb .

6.2 Frequency Stabilization

Without active stabilization of frequency and intensity, lasers exhibit a variety of noise all of which
may have detrimental effects on the experiment. Figure 6.4 shows the main sources of laser fre-
quency fluctuation, and their relevant timescales. In this section, we describe the underlying prin-
ciples and techniques for employing active feedback to our lasers.

In our lab, we utilize several mechanisms for stabilizing the frequency of the laser, some of
which are listed in table 6.1. While the reference source is different in each of the mechanisms,
the underlying principle of applying the derived control signal is similar in each of the approaches.
As such I will describe in detail the principle of PDH locking using the resonance spectrum of a
cavity as an illustrative example.
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6.3 Pound-Drever Hall Technique

6.3.1 Theoretical background

ECDL
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Figure 6.5: Simplified diagram for PDH locking.

Now that we understand one mechanism for modulating the frequency of the laser, we will turn our
attention to the most general strategy for stabilizing the laser. The next ingredient to implement
the feedback is to be able to have a error signal whose amplitude is proportional to the frequency
difference between the laser and the frequency reference. To do this, we will use the example of a
high-finesse optical cavity to derive our error signal. To understand why an optical cavity can act
as a frequency reference, we need to look at the transmission function of the optical cavity. As one
might recall, the optical cavity is simply a pair of mirrors in which light can bounce back and forth
within the cavity. As a result of the boundary conditions, light can only pass through the cavity if
the round-trip path length is equal to an integer number of wavelengths. An important parameter
the defines an optical cavity is the free spectral range ∆νfsr = c/2L,where L is the length of the
cavity, and c is the speed of light. If the frequency of the light is an integer multiple of the free-
spectral range, then the light is said to be tuned to resonance with the cavity. With this fact, we can
use a measurement of either the reflected or transmitted light in order to get a measurement of the
frequency of the laser light. In Fig. 6.6I plot cavity transmissions for a finesse F = 1 (red), which
is the order of those for laser diode cavities, F = 100 (blue) and a high finesse F = 10, 000.
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Figure 6.6: Simulation of cavity transmission for F = 1 in red, F = 100 green, and F = 10, 000
in blue.

One method of stabilizing the laser frequency is to tune the frequency of the laser to the slope
of the transmission function. In this region, as we scan the laser, we can detect the change in the
transmitted light in the cavity. If the transmitted intensity increases as we increase the wavelength
of the laser field, that indicates that we are to the left of the peak. If the transmitted light decreases
as a function of the tuning wavelength, then we are to the right of the peak. With this knowledge,
we can generate an error signal that is proportional to the measured power and the desired power.
This control signal can then be fed back into the laser to stabilize the power, and as a result the
frequency of the incident laser field. This method of frequency locking was used for quite a long
time, however an inherent disadvantage to this technique is that it is not possible to distinguish
fluctuations of the transmitted power due to frequency shifts of the laser, and inherent amplitude
noise present in the laser itself.

One method of decoupling the laser power and frequency fluctuations is to lock the frequency
to the resonance position of the cavity. In order to do that, we require a control signal that is
an asymmetric function around the resonance. The Pound-Drever-Hall (PDH) locking technique
generates such a control signal utilizing phase modulation, measuring the reflected light from the
cavity, and demodulation.
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The incident electric field before phase modulation is given by

Einc = E0e
iωt

The electric field of the reflected beam is given by

Eref = E1e
iωt

The reflection coefficient is which is ratio of these amplitudes is given by

R(ω) =
Eref

Einc
=
r
(

exp
(
i ω
∆νfsr

)
− 1
)

1− r2exp
(
i ω
∆νfsr

)
Now we can incorporate a time-dependent modulation of the phase with a modulation depth β

and modulation frequency Ω. As a result the phase-modulated field is written as

Einc = E0e
i(ωt+βsinΩt)

We can expand this expression using Bessel functions by utilizing the Jacobi-Anger expansion that
states

eizsinθ =
∞∑

n=−∞

Jn(z)e
inθ

For the modulation depths that we consider, the electric field can be approximated by just the
carrier frequency (n = 0) and the two frequency sidebands (n = −1,and n = 1)

Einc ≈ E0[J0(β)e
iωt + J1(β)e

i(ω+Ω)t − J1(β)e
i(ω−Ω)t]

The resulting reflected electric field is given by multiplying the incident electric field by the
reflection coefficient. Each of the terms can be treated independently due to the fact that the
optical cavity is a linear time-invariant system.

Eref = E0

[
R(ω)J0(β)e

iωt +R(ω + Ω)J1(β)e
i(ω+Ω)t −R(ω − Ω)J1(β)e

i(ω−Ω)t
]

As a result, the reflected power is given by

Pref = |Eref|2 = Pc|R(ω)|2 + Ps{|R(ω + Ω)|2 + |R(ω − Ω)|2}

+ 2
√
PcPs{Re[Θ(ω)]cosΩt+ Im[Θ(ω)]sinΩt}+ (2Ω terms)
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where Θ is defined as

Θ = R(ω)R∗(ω + Ω)−R∗(ω)R(ω − Ω)

The time-averaged power is shown in Figure 6.7 for a modulation frequency Ω = 50 MHz,
reflectivity r = 0.99, cavity length L = 100 cm and modulation depths β = 0, 0.5 and 1.08. As
the modulation depth is increased, the amount of power in the red (n = −1) and blue (n = 1)

frequency sidebands is increased.
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Figure 6.7: Reflected power for r = 0.99, Ω = 50 MHz, modulation depths of β = 0, 0.5,and 1.08
in blue, green, and red, respectively.

The quantity of interest that will be used for the control signal is Θ, which is an asymmetric
function about the cavity resonance. In order to extract this signal from the reflected power, we
employ frequency mixing. To do this, we note that the real and imaginary components of the
Θ function oscillates with cosine and sine of the modulation frequency, respectively. We can
consider two regimes, defined by the modulation frequency. For large modulation frequencies,
(Ω ≫ ∆νfsr/F),Θ is purely imaginary and therefore Pref oscillates at with sin(Ωt), whereas for
small modulation frequencies, (Ω ≪ ∆νfsr/F),Θ is purely real and therefore oscillates at cos(Ωt).
Lets just consider the high modulation frequency case, in order to measure the control signal Θ,
we mix the photodiode signal VPD with the a signal that oscillates at Ω′ such that VLO = cos(Ω′t).
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The output port of the mixer simply gives the product of the two inputs, that is

Vmix ∝ VPDVLO

Vmix ∝ Im[Θ(ω)]sin(Ωt)cos(Ω′t)

Utilizing the trignometric identity

sin(Ωt)cos(Ω′t) =
1

2
{sin[(Ω− Ω′)t]− sin[(Ω + Ω′)t]}

If we utilize a signal that oscillates at the same frequency as the modulation frequency, that is
Ω′ = Ω, then there will have

Vmix ∝
Im[Θ(ω)]

2
[sin(2Ωt)]

As one can notice, the signal oscillates at twice the modulation frequency, which is not partic-
ularly useful when trying to implement as a feedback signal. Instead, if we consider that mixing
signal is π/2 out of phase with the modulation source, or is a sin function, then we have

Vmix ∝ Im[Θ(ω)]sin(Ωt)sin(Ω′t)

utilizing the trigonometric identity,

sin(Ωt)sin(Ω′t) =
1

2
{cos[(Ω− Ω′)t]− cos[(Ω + Ω′)t]}

the resulting mixed signal at the output when (Ω′ = Ω) is given by

Vmix ∝
Im[Θ(ω)]

2
[1 + cos(2Ωt)]

we can now note that there are two frequency components, one that is a DC signal (non-
oscillatory) and one that oscillates at 2Ω. To isolate the DC signal to use for implementing the
frequency feedback, we can filter the signal using a low-pass filter with a cutoff that is lower than
2Ω. The only difference between having a DC error signal and a vanishing one is a phase shift
of π/2. In addition, there could be additional phase shifts that could be induced by unequal path
lengths between the local oscillator and the modulation source. Therefore it is necessary to have a
arbitrary phase-shifter of the local oscillator source.

VLO = cos(Ω′t+ ϕ)
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With the arbitrary phase-shift, the output of the mixer is given by

Vmix ∝ Re[Θ(ω)]cos(ϕ) + Im[Θ(ω)]sin(ϕ)

The resulting measured error signal is shown in Figure 6.8 for varying values of the phase. The
optimal phase occurs when ϕ = π/2, as the slope used for feedback is the largest near resonance.
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Figure 6.8: PDH error signal for various phase-shifts. The optimal error signal occurs at ϕ = π/2.
Due to signal delays that occur in the experimental implementation, the optimal phase needs to be
empirically found to match the shape shown in the middle panel.

6.3.2 Matching the cavity mode to the output of a single-mode optical fiber

In order to ensure that that the reflection dip is maximized, we need to optimize the input mode
into the optical cavity. That is, we need to match the principal mode of the optical cavity. Due
to the boundary conditions imposed by the mirrors that form the cavity, the fundamental standing
wave modes are given by Hermite-Gaussian Modes. Their electric field profile is given by

Enm(x, y, z) = E0
w0

w(z)
Hn

(√
2

x

w(z)

)
exp

(
− x2

w(z)2

)
Hm

(√
2

y

w(z)

)
exp

(
− y2

w(z)2

)
exp

(
−i
[
kz − (1 + n+m)arctan

(
z

zR

)
+
k(x2 + y2)

2R(z)

])
Where Hn is the Hermite polynomial. In Figure 6.9 I show the transverse intensity profiles

of the first 9 Hermite-Gaussian modes at the focus, that is z = 0. One thing to note is that the
lowest order mode, the TEM 00 mode is simply that of a Gaussian mode, the intrinsic mode that
propagates through single-mode optical fibers. Using this fact, we only need to match the intrinsic
beam waist and divergence of the cavity.
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Figure 6.9: TEM modes of the optical cavity. The fundamental TEM00 matches the Gaussian
output of a single-mode fiber, and will have the largest coupling efficiency.

To do so, it’s important to note that our cavity is a half-symmetric planar concave cavity, and
therefore have stable standing-wave modes with waist that are located at the planar mirror. To
determine the waists w1 and w2 at the planar and curved mirror surfaces respectively, we utilize
the following equations
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w2
1 =

Lλ

π

√
g

1− g
,

w2
2 =

Lλ

π

√
1

g(1− g)
,

where L is the length of the cavity, λ is the wavelength of the light, and g is related to the
geometry of the mirror and defined as

g = 1− L

R2

where R2 is the radius of curvature of the mirror. For the parameters L = 10 cm , R2 = 50 cm,
and λ = 420 nm, we get

w1 = 163.5 µm

w2 = 182.8 µm

Now the beam divergence is given by

θ =
λ

πnw1

= 0.818 mrad.

To match this divergence, we can choose the focal length of the lense before the cavity and the
input beam size. Based on our optical setup, a 50cm lens was the most convenient, and therefore
the the input beam waist can be given by

wi = fcavityθ ≈ 408.8 µm

To achieve this beam waist at the position of the 50 cm lense, we can choose the appropriate
fiber collimation lens by

fcoll =
wi

θfiber

where θi is the angular divergence out of the fiber. For the majority of the fibers used in the
lab, θfiber = 0.12 rad. This gives us an optimal collimation lens of fcoll ≈ 3.4 mm. The closest
available match comes from a molded glass aspheric lens (N414TM-A) from Thorlabs with an
effective focal length of 3.3 mm.
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Figure 6.10: Simplified diagram of an optical setup to match the output mode of a single-mode
fiber to the intrinsic TEM00 mode of the optical cavity.

6.3.3 Procedure for alignment

After choosing the proper choice of the mode-matching optics, the next step is to align the input
beam into the optical cavity. To do this, perform the following steps:

1. Make sure that the reflected light is perfectly retroreflected and centered at the opening
aperature of the cavity enclosure.

2. Monitor the reflectance spectrum via a photodiode and oscilliscope.
3. Set the frequency scan range of the laser to maximum.
4. Walk the two mirrors in the optical setup until a dip is observed in the cavity reflectance

spectrum.
5. There may be multiple dips observed. Continue walking the mirrors to optimize the dip size.

You may notice that there is a dip that is much larger than the rest. This may be the TEM00 mode.
6. To check if this in fact the TEM00 mode, position a CCD camera at the opposite end of the

cavity to detect the spatial mode of the transmitted beam.
7. Reduce the frequency span of the laser such that the dip in question is at the center.
8. Check the spatial mode of the transmitted light. If the output mode is gaussian, then you

have identified the TEM00 mode. If it is a higher order mode, return to step 5.
9. If it is the TEM00 mode, then continue optimizing the alignment as well as the output fiber

coupler.
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CHAPTER 7

Long-Lived Coherence Between Ground and
Rydberg Levels in a Magic-Wavelength Lattice

7.1 Introduction

Ground-Rydberg state coherence in ensembles of ultra-cold atoms plays a critical role in many
quantum information, quantum communication, and precision metrology protocols [4, 5, 6, 7, 8, 9,
10, 11]. Single-photon generation [12], photon anti-bunching [13], many-body Rabi oscillations
[14], creation of entanglement of light and atomic excitations [15], single-photon optical switches
and interaction-induced phase shifts [16, 17, 18, 19, 20] have been demonstrated based on coupling
of ensembles of neutral atoms with propagating quantum light fields. Significant progress has also
been made in employing Rydberg interactions for entanglement [21, 22, 23], many-body interfer-
ometry [24], and quantum simulation in arrays of neutral atoms [25]. All these experiments have
relied on quantum coherence between the ground and Rydberg states. Prolonging this coherence
lifetime is therefore crucial to further advances in increasing the size and complexity of quantum
algorithms and the precision of atomic measurements.

Several physical processes contribute to ground-Rydberg decoherence, including spontaneous
decay, black-body radiation, and coupling to stray electric fields [4]. In the majority of experiments
to date, however, the loss of coherence can be attributed mainly to motional dephasing, limiting
the coherence lifetime to a few microseconds [12, 14, 21, 22, 23, 25]. Motional dephasing can be
reduced by tightly confining the atoms in an optical dipole trap. Unfortunately, while typical off-
resonant dipole traps are attractive for ground state atoms, they are repulsive for atoms in Rydberg
levels. This results in fast decoherence owing to position-dependent differential energy shifts,
making it necessary to turn off the trapping fields for the duration of the Rydberg excitation period.
To overcome this problem, the trapping fields can be tuned to a so-called “magic” wavelength
[26, 27] that results in identical energy shifts for the ground and Rydberg state [15, 28]. The magic
wavelength is close to that of the Rydberg level |ns1/2⟩ - intermediate level |6p⟩ transition.
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In this work we exploit the use of the magic wavelength to obtain a significant enhance-
ment of ground-Rydberg atomic coherence lifetimes over a range of principal quantum numbers
n = 30 . . . 70. This is achieved by confining the atomic sample in a one-dimensional, state-
insensitive optical lattice along the axis of propagation of the excitation light fields. We observe
damped oscillations of the collective ground-Rydberg atomic coherence in the lattice potential.
The anharmonicity of the potential leads to a damping of the visibility of the oscillations, whereas
the radiative decay and black-body radiation-driven depopulation of the Rydberg state lead to a
damping of the overall signal.

A second component of this paper is the formulation of a theory that can be used to explain
the overall features of the experimental data. A first principles calculation of the signal presents
considerable challenges, even when interactions between Rydberg atoms can be neglected. The
reason for this is that standard methods [29] involving the use of the Maxwell-Bloch equations
or a source-field approach are no longer applicable when the atoms undergo quantized motion in
the trap potentials. Moreover, if the trap potentials differ for the Rydberg and ground state po-
tentials, any approach assuming classical motion in the potentials fails if the signal depends on
the coherence between these levels. There have been theories of phased-matched emission from
trapped atoms that have been developed in the context of atom interferometry [30], but the for-
malisms used in those approaches differ somewhat from what is needed in our problem involving
excitation of Rydberg levels. More closely related to our calculations are those of Zhao et al. [31]
and Jenkins et al. [32] who considered phase-matched emission from trapped atoms using Raman
transitions. Jenkins et al. [32] used a model in which the atoms undergo classical motion in a
lattice potential. In contrast to these authors, we present a theory that treats the atomic motion
in the lattice quantum-mechanically and allows for different Rydberg and ground state potentials.
We first present a theoretical formalism that can be used to model our system and then describe its
experimental implementation.

7.2 Theory

There are essentially three ingredients needed to calculate the signal. First the ground and Rydberg
state potentials produced by the trap fields must be obtained. Second, the contribution to the signal
at the detector produced by a single atom needs to be derived. Finally, a weighted sum over the
contributions from atoms at different points in the trap potential and an average over the thermal
distribution in the sample must be carried out. Each atom is modeled as a three-level system with
level 1 corresponding to the ground state, level 2 to the 6p3/2 state, and level 3 to the ns state, as
shown in Fig. 7.1. The atom interacts with both a classical two-photon pulse at time t = 0 and a
classical readout pulse at time Ts. The applied pulses propagate in the ±X direction. The first pulse
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Figure 7.1: (Color online) a) A cold sample of 87Rb gas is trapped in a 0.5-µm-period one-
dimensional optical lattice formed by a retro-reflected beam EL. Two nearly counter-propagating
beams, E1 and E2 excite a spin wave between the |5s1/2, F = 2⟩ and |ns1/2⟩ levels. After a
storage time, Ts, a retrieval pulse, ER, is applied, creating an array of atomic dipoles which give
rise to a phase-matched emission from the sample. The actual geometry used in the experiment
differs somewhat from that shown schematically in the figure. b) Relevant 87Rb energy levels and
corresponding fields, with ∆ = ωL − ωns,6p3/2 and ∆1 = ωE2 − ωns,6p3/2 . c) Schematic diagram
indicating transitions between the ground and excited state motional levels. d) Timing diagram
showing the excitation and retrieval pulse sequence.

has effective k vector (kE1 − kE2)ux and effective two-photon frequency ωE31 = ωE1+ωE2 , while
the readout pulse has k vector −kRux and frequency ωR ≈ ωE2 . As a result of these interactions
and the interaction with the vacuum field, a phase-matched signal is generated from the sample.
There is a trap potential formed by fields counterpropagating in the X direction having wavelength
λL = 2π/kL = 2πc/ωL. The detuning of the trap field frequency from the ns − 6p3/2 transition
frequency is denoted by ∆. The motion of the atoms in the potential wells in the longitudinal
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direction is treated quantum-mechanically, while the motion in the transverse trap potential is
treated classically. It is assumed that all the atoms are trapped - transitions to continuum states
are not taken into account. Moreover, we neglect any modifications of the signal resulting form
Rydberg atom - Rydberg atom interactions.

7.2.1 Optical Potentials

We need not consider the optical potential associated with state |2⟩ since it drops out of the calcu-
lation of the phase-matched signal. To arrive at expressions for the optical potentials for states |1⟩
and |3⟩, we write the y−polarized trap electric field amplitude as

E(R, t) =
1

4

[
A+(ρ,X)eikLX + A−(ρ,X)e−ikLX

]
e−iωLt

+c.c., (7.1)

where
A±(ρ,X) = E±,0

w±,0

w±(X)
e−ρ2/w2

±(X), (7.2)

ρ is the coordinate transverse to X , E±,0 are the field amplitudes for the fields propagating in the
±X directions that constitute the trap, w±,0 are the waist radii of these fields,

w±(X) = w±,0

√
1 +

(X −X±,0)2

X2
±,r

, (7.3)

X±,r, = πw2
±,0/λL are Rayleigh lengths, and X±,0 are the positions of the foci of the ± beams. We

have allowed for unbalanced beams, that is, the beams propagating in the ±X directions can have
different waists and be centered at different positions.

The time-average field intensity is proportional to

∣∣Ē(R)
∣∣2 = 1

8

[
4A+A− cos2 (kLX) + (A+ − A−)

2]
and results in both a transverse (“non-lattice”) trap potential that is independent of X and a longi-
tudinal (“lattice”) cos2 (kLX) trap potential. The non-lattice potential, which trap the atoms trans-
versely, also results in a spatially dependent light shift that limits the coherence time of the signal.
The position of the Rydberg electron in a single atom can be taken as R+ r, where R = (ρ,X) is
the center-of-mass position vector of the atom and r its relative electronic coordinate.
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The ground state optical potential, calculated in dipole approximation, is

Ug ≈ −1

2
αg

∣∣Ē(R)
∣∣2

= − 1

16
αg

[
4A+A− cos2 (kLX) + (A+ − A−)

2] ,
(7.4)

where αg is the ground state polarizability.
To find the optical potential associated with an atom in the Rydberg state ns, we break up

the interaction potential into a term representing the A · p contribution and one representing the
A2 contribution, where p is the momentum operator associated with the Rydberg electron and
A = A(R, t)uy is the vector potential (which has the same polarization as the electric field) given
by

A(R, t) =
ie−iωLt

4ωL

[
A+(ρ,X)eikLX + A−(ρ,X)e−ikLX

]
+c.c..

For the A · p term can we use the dipole approximation since the major contribution to the sum
that determines this contribution originates from the 6p intermediate states; however, for the A2

term we do not make the dipole approximation and set

θn = ⟨cos (2kLx)⟩ns (7.5)

and ⟨sin (2kLx)⟩ns = 0, where the average is over electronic coordinates in the ns state. The total
optical potential in the ns state can then be written as [33]

Un ≈ − 1

16

[
4A+(ρ,X)A−(ρ,X) cos2 (kLX)

+ (A+ − A−)
2

]

×e
2

ℏ
∑
m̸=n

2 |ymn|2 ωmn

ω2
mn − ω2

L

(
ωmn

ωL

)2

+
|αf |
16

[
4θnA+A− cos2 (kLX) + (A+ − A−)

2

+2A+A− (1− θn)

]
,

(7.6)

where the first term is the A · p contribution and second the A2 contribution. The quantity αf =

−e2/mω2
L is the free electron polarizability. For the detunings ∆/2π ≲ 4.5 GHz used in our

experiment, the dominant contribution to the summation appearing in Eq. (7.6) originates from
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the intermediate 6p3/2 levels (the 6p3/2 − 6p1/2 transition frequency is about 2.3 THz). As a
consequence, we can approximate

e2

ℏ
∑
m̸=n

2 |ymn|2 ωmn

ω2
mn − ω2

L

(
ωmn

ωL

)2

≈ D2
n

6ℏ∆
, (7.7)

where
Dn =

∣∣∣⟨ns||d̂||6p3/2⟩∣∣∣ (7.8)

is a reduced matrix element of the dipole moment operator d̂.
From Eqs. (7.4) and (7.6), it then follows that the lattice potentials for levels 1 and 3 are

U
(l)
1 (ρ,X) ≈ −1

4
αgA+(ρ,X)A−(ρ,X) cos2 (kLX) ; (7.9a)

U
(l)
3 (ρ,X) = −1

4
A+(ρ,X)A−(ρ,X) cos2 (kLX)

×
[
D2

n

6ℏ∆
− |αf | θn

]
; (7.9b)

and the non-lattice potentials are

U
(nl)
1 = −αg

16
(A+ − A−)

2 ; (7.10a)

U
(nl)
3 = − D2

n

96ℏ∆
(A+ − A−)

2

+
|αf |
16

[
2A+A− (1− θn) + (A+ − A−)

2] . (7.10b)

Experimentally, the detuning ∆ can be chosen to equate the lattice potentials of the ground and
Rydberg levels; that is, ωL is adjusted such that

D2
n

6ℏ∆m,n

= αg + |αf | θn, (7.11)

where ∆m,n is the so-called magic detuning for the ns Rydberg level. In this limit, the difference
between the Rydberg and ground state non-lattice potentials is

U
(nl)
d = U

(nl)
3 − U

(nl)
1 =

|αf |
16

(1− θn)
(
A2

+ + A2
−
)
. (7.12)

As we shall see, the non-lattice potential leads to a dephasing of the signal.
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The amplitudes E0± can be related to the power P± in each of the beams via

E0± =

√
16cµ0P±

πw2
±,0

, (7.13)

obtained by integrating the time-averaged Poynting vector in theX = X±,0 planes. It is convenient
to define

U0 =
1

4
αg

16cµ0P

π

1

w+(0)w−(0)
, (7.14)

where X = 0 denotes the position of the atomic cloud center, determined by the position of the
MOT, and

P =
√
P+P−. (7.15)

For matched ground and Rydberg lattice potentials, the ground and Rydberg state lattice poten-
tials can be written in terms of U0 as

U (l)
g (ρ,X) ≈ −U0

w+(0)w−(0)

w+(X)w−(X)

×e−ρ2/w2
+(X)e−ρ2/w2

−(X) cos2 (kLX) (7.16)

and the differential shift resulting from the non-lattice potential as

U
(nl)
d (ρ,X) = ℏωd(ρ,X) =

|αf |U0

2αg

(1− θn) I(ρ,X), (7.17)

where

I(ρ,X) =
w+(0)w−(0)

2

×

[√
1

ξ

e−2ρ2/w2
+(X)

w2
+(X)

+
√
ξ
e−2ρ2/w2

−(X)

w2
−(X)

]
(7.18)

and ξ = P−/P+ is the ratio of reflected to incident power. For different ground and Rydberg
potentials, Eqs. (7.9) and (7.10) must be used for the lattice and non-lattice potentials, respectively.

In our experiment, the atomic cloud is centered at X = 0 and

w+,0 = 33 µm; w−,0 = 68 µm;

X+,0 = 7.9 mm; X−,0 = 23.9 mm;

X+,r = 3.35 mm; X−,r = 14.2 mm;

λL ≈ 1.02 µm; ξ = 0.73. (7.19)
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7.2.2 Signal at the Detector

The signal recorded at a detector located at position Rd centered at a position along the positive
X−axis is proportional to the time-integral of the Poynting vector of the phase-matched emission
from the sample. The signal S is given roughly by

S = 2ϵ0cR
2
d

∫
dt

∫
dΩd ⟨E+(Rd) · E−(Rd)⟩ , (7.20)

where the integral is over the solid angle Ωd subtended by the detector and E±(Rd) are the positive
and negative frequency components of the electric field operator at the detector. The electric field
arises from contributions from all the atoms.

To evaluate S, we must calculate the effects of the excitation field pulse, the retrieval (readout)
field pulse, and the vacuum field on each atom and then sum the contribution from all atoms.
A weak, two-photon excitation pulse creates an atomic coherence for atom j characterized by a
density matrix element ρ(j)31 at time t = 0. As a result of atomic motion and the non-lattice potential,
this coherence undergoes dephasing. At time t = Ts, the retrieval pulse, taken as a square pulse
that is in resonance with the 3− 2 transition frequency, is applied to create the coherence ρ(j)21 . The
duration of the retrieval pulse is much longer than the lifetime τ2 = 1/γ2 of level 2. The phase-
matched signal emitted by the sample, which results from the interaction of the vacuum field with
the atoms, is dependent on the value of ρ(j)21 created by the excitation and retrieval fields. If the Rabi
frequency of the retrieval field is greater than γ2, the signal is emitted in a time of order τ2, which
is assumed to be sufficiently short to neglect any dephasing while the signal is being emitted.

Using a calculation based on a source-field approach modified to allow for quantized motion of
the atoms in the optical potentials, we find

S(Ts) = 2ϵ0cΩd

(
ω2
21µ21

4πϵ0c2

)2 ∫ ∞

0

dτ

×

∣∣∣∣∣∣
∑

j

∑qmax

q,q′,q′′

(
A

(j)
31 /2

)
Q̃(j) (τ) e−iω

(j)
d Tsρ1q′′,1q′(0)

×M (j)
1q′;3q (−kux)M

(j)
3q;1q′′ (kux) e

i
(
ω
(j1)

q′ −ω
(j3)
q

)
Ts

∣∣∣∣∣∣
2

,

(7.21)

where k = (kE1 − kE2), µ21 is a dipole moment matrix element (it is assumed that the excitation
and retrieval pulses are z−polarized - the dipole moments that enter are also in the z−direction),
A

(j)
31 =

∫∞
−∞Ω

(j)
31 (t)dt is the pulse area of the excitation pulse whose two-photon Rabi frequency

is denoted by Ω
(j)
31 (t) = Ω

(j)
E1
(t)Ω

(j)
E2
(t)/(2∆1), ρqq′(0) is an initial density matrix element for the
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motional lattice trap states, ω(j)
d is given by

ω
(j)
d =

[
U

(nl)(j)
3 − U

(nl)(j)
1

]
/ℏ, (7.22)

Q̃(j) (τ) =
Ω

(j)
32√

Ω
(j)2
32 − γ2

e−γτ/2 sin


√

Ω
(j)2
32 − γ2

2
τ

 , (7.23)

M
(j)
3q;1q′(k) =

∫
dXj [ψ3q (Xj)]

∗ eik·Rjψ1q′ (Xj)

= [M1q′;3q(−k)]∗ , (7.24)

Ω
(j)
32 = Ω

(j)
R is the Rabi frequency of the retrieval pulse, ψαq (Rj) is an eigenfunction and ℏω(jα)

q

an eigenvalue for atom j moving in the potential U (j)
α (X) (α = 1, 3) given in Eqs. (7.9), U (nl)(j)

3

(α = 1, 3) are the non-lattice potentials given in Eqs. (7.10), and all field strengths and frequencies
now include the variation of field strength with location in the sample, indicated by the superscript
(j). The sums over q, q′, q′′ are restricted to (quasibound) states; that is, qmax is the number of
bound states in the potential.

7.2.3 Final Expression for the Signal

The numerical calculation of S(Ts) is time-consuming, since the sum over j in Eq. (7.21) must
be carried out for each τ , the result squared, and then integrated over τ . To simplify matters, we
assume that Q̃(j) (τ) can be approximated as a function of τ times Ω(j)

32 . We have verified that such
an an assumption lead to errors of at most 10% in the non-lattice potential contributions to S(Ts)
for times Ts ≲ 40. µs. With this assumption, the signal at time Ts normalized to that at Ts = 1 µs,
can be written as

η(Ts) = G(Ts)/G(Ts = 1µs); (7.25)

where

G(Ts) =

∣∣∣∣∫ ∞

−∞
dX

∫ ∞

0

ρdρf(ρ,X)N (ρ,X)C(ρ,X, Ts)

∣∣∣∣2
×e−Ts/τeff , (7.26)
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C(X, ρ, Ts) =

qmax∑
q,q′,q′′

e−iωd(ρ,X)Tsρ1q′′,1q′(0)

×M1q′;3q [−kux]M3q;1q′′ [kux] e
i
(
ω
(1)

q′ −ω
(3)
q

)
Ts , (7.27)

where N (ρ,X) and τeff are the atomic density distribution and the effective lifetime of the Ryd-
berg level, respectively. The frequencies ω(1)

q′ and ω(3)
q are implicit functions of ρ and X . The sum

over j has been converted to a spatial integral over the sample.
The distribution f(ρ,X) appearing in Eq. (7.26) is equal to the product of the spatially depen-

dent envelopes of the excitation and retrieval electric field amplitudes, namely

f (ρ,X) =

(
wE1,0

wE1(X)

)
exp

[
− ρ2

w2
E1
(X)

]
×
{(

wE2,0

wE2(X)

)
exp

[
− ρ2

w2
E2
(X)

]}2

, (7.28)

where wi,0 are the transverse waists of the beams at the foci, wi(X) = wi,0

√
1 +

(
X
Xri

)2
, and Xri

is the Rayleigh length for beam i (we have taken equal Rayleigh lengths for fields E2 and ER). In
our experiment,

wE1,0 = 17 µm; wE2,0 = 15 µm. (7.29)

To obtain the Boltzmann factor for the transverse confinement, we need to evaluate the trans-
verse trap potential. The transverse trap potential is actually different for the ground and Rydberg
levels. We shall assume that the transverse density distribution is determined by the spatially aver-
aged [that is, with cos2 (kLX) → 1/2] ground state optical potential given in Eq. (7.4),

Ug (ρ,X) ≈ − 1

16
αg

[
2A+A− + (A+ − A−)

2]
= −U0I(ρ,X)

2
, (7.30)

where I(ρ,X) is given in Eq. (7.18). Moreover, the θ ≈ 5◦ angle between the excitation beams
and the X−axis results in an effective length L in the X-direction of the atomic sample that we
model using a Gaussian distribution. The transverse and longitudinal effects combine to produce
an atomic density profile given by

N (ρ,X) = exp

[
U0

2kBT
I(ρ,X)

]
exp

[
−X

2

L2

]
. (7.31)

The factorC(X, ρ, Ts) in Eq. (7.27) is the product of a non-lattice contribution, e−iωd(ρ,X)Ts , and
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a lattice contribution corresponding to motional dephasing. In principle the motional dephasing
term contains ρ and X dependence owing to the spatial dependence of the frequencies ω(1)

q′ and
ω
(3)
q . However for the Rayleigh lengths and waists of the trap fields used in our experiment, it is an

excellent approximation to evaluate these frequencies at the center of the sample, ρ = 0, X = 0.
With this approximation the signal factors and can be written as

G(Ts) = Gnl(Ts)Gl(Ts)e
−Ts/τeff , (7.32)

where

Gnl(Ts) =

∣∣∣∣∫ ∞

−∞
dX

∫ ∞

0

ρdρf(ρ,X)N (ρ,X)e−iωd(ρ,X)Ts

∣∣∣∣2 , (7.33)

Gl(Ts) =

∣∣∣∣∣
∑qmax

q,q′,q′′ ρ1q′′,1q′(0)M1q′;3q (−kux)

×M3q;1q′′ (kux) e
i
(
ω
(1)

q′ −ω
(3)
q

)
Ts

∣∣∣∣∣
2

, (7.34)

and the frequencies ω(1)
q′ and ω(3)

q are obtained as eigenvalues of the potentials

U
(l)
1 (X) = −U0 cos

2 (kLX) ; (7.35a)

U
(l)
3 (X) = −U0

αg

cos2 (kLX)

×
[
D2

n

6ℏ∆
− |αf | θn

]
, (7.35b)

respectively.
The non-lattice contribution to the signal given in Eq. (7.33) is evaluated numerically. Owing

to the fact that ωd is a function of ρ and X , there is an inhomogeneous broadening in the sample
that results in a decrease of Gnl(Ts) with increasing Ts. To see the effect of the sample length on
Gnl(Ts), we plot in Fig. 7.3 (a)

gnl(Ts) = Gnl(Ts)/Gnl(0)

for U0/kB = 32 µK (U0/h = 0.666 MHz), U0/kBT = 2.75, |αf | /αg = 0.628, and L = 1 µm,
50 µm, 100 µm, 150 µm, and 500 µm. The integral over ρ leads to a decay of gnl(Ts), even for
L = 0, owing to radial inhomogenities in the non-lattice phase. With increasing L there is an
additional contribution to the dephasing from the integral over X . It is evident from the figure that
this contribution to the dephasing becomes important for L ≳ 50 µm.

If the Rayleigh lengths for all the fields are much greater than L and if w±(0) ≫ wE1,2,0, it
is possible to get an analytic expression for gnl(Ts) that is in excellent agreement with the result
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obtained using numerical integration. To do so, we expand

I(ρ,X) ≈ I(0, 0) + aX + bρ2, (7.36)

where

a =
dI(0, X)

dX

∣∣∣∣
X=0

; (7.37a)

b =
1

2

d2I(ρ, 0)
dρ2

∣∣∣∣
ρ=0

, (7.37b)

and set f (ρ,X) ≈ f (ρ, 0). With these approximations the integrals in Eq. (7.33) can be calculated
analytically. In this manner, we find

gnl(Ts) ≈ e−2T 2
s /τ

2
X

1

1 + T 2
s

τ2ρ

, (7.38)

where

τX =
2

|αf |U0

2αg
(1− θn) aL

; (7.39a)

τρ =
1

|αf |U0

2αg
(1− θn) b

×

(
1

w2
E1,0

+
2

w2
E2,0

− bU0

2kBT

)
. (7.39b)

The Gaussian factor in Eq. (7.38) results from the longitudinal integration and the Lorentzian factor
from the transverse integration. Equation (7.38) for gnl(Ts), plotted as the dashed curves in Fig.
7.2(a), is in very good agreement with the values of gnl(Ts) obtained from numerical integration
of Eq. (7.33).

From Eqs. (7.39), it follows that the lifetimes decrease with increasing U0. This feature is
seen in Fig. 7.2(b) where gnl(Ts) is plotted for L = 100 µm, |αf | /αg = 0.628, and U0/kB =

5, 10, 20, 40 µK, with the ratio U0/(kBT ) = 2.75 kept fixed.
The motional dephasing contribution to the signal given in Eq. (7.34) is summed using a thermal

ground state distribution

ρ1q,1q′(0) =
exp

[
−ℏω(1)

q

kBT

]
δq,q′∑qmax

q=0 exp
[
−ℏω(1)

q

kBT

] , (7.40)
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where δq,q′ is a Kronecker delta. The ω(1)
q are obtained by solving the appropriate Mathieu’s equa-

tion for the potentials given in Eqs. (7.35), limited to quasi-bound state energies. The matrix
elements needed in Eq. (7.34) have been calculated using the corresponding Mathieu wave func-
tions. The values of θn used in fitting the data, calculated using a method to be described in the
following subsection, are θn = 0.909, 0.705, 0.334, 0.082, 0.059, −0.013, −0.016 for n = 30, 40,

51, 59, 60, 65, 70.
In Fig. 7.3 we plot

gl(Ts) = Gl(Ts)/Gl(0) (7.41)

as a function of ω0Ts for U0/kB = 32 µK and U0/kBT = 2.75. The frequency ω0 is defined by

U0 =
1

2

Mω2
0

k2L
, (7.42)

such that, for large ratios of U0/kBT and small values of the trap Lamb-Dicke parameter ηLD =

kL
√

ℏ/2Mω0, the potentials should approximate those of an oscillator. Superimposed on the graph
is a plot of gl(Ts) for oscillator potentials characterized by the same value of ω0. It can be seen that
the anharmonicity both damps the signal and reduces the fringe visibility that which is obtained
for harmonic potentials.

The expression for Gl(Ts) can be cast in a suggestive form when the ground and Rydberg
potentials are identical. In that limit, Eq. (7.27) reduces to

Gl(Ts) =
∣∣∣〈e−ikX̂(Ts)eikX̂(0)

〉∣∣∣2 , (7.43)

where X̂(Ts) and X̂(0) are Heisenberg operators and the average is over the quantized motional
states of an atom located at cloud center. We can take a classical limit of Eq. (7.43) by ignoring the
commutator of X̂(Ts) and X̂(0) and replacing the operators by their classical counterparts, X(Ts)

and X(0), to arrive at
Cl ∼

〈
e−ik[X(Ts)−X(0)]

〉
, (7.44)

where the average is now a classical average over the initial conditions. For our experimental
parameters, the classical and quantum results do not differ by more than 10%.

We include three dissipative mechanisms that affect the ground-Rydberg coherence lifetime.
The effective population decay lifetime is given by

1

τeff
=

1

τ6p,n
+

1

τ
(0)
n

+
1

τ
(bb)
n

, (7.45)

where τ6p,n, τ (0)n , and τ (bb)n are the contributions from the lattice-induced population decay of the
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6p3/2 level, Rydberg level decay at zero temperature, and blackbody induced transitions, respec-
tively. Explicitly

τ6p,n =
h∆m,n

U0

τ6p,0;

τ (0)n = τ (0)(n∗)2.94;

τ (bb)n =
3ℏ(n∗)2

4α3
FSkBT

,

where τ6p,0 = 125 ns, τ (0) = 1.43 ns, T = 293 K,

n∗ = n− 3.13 (7.46)

is the effective electronic quantum number, and αFS is the fine structure constant. At low n,

the lifetime is limited mainly by spontaneous decay and blackbody transitions. With n ≳ 40,
the dephasing produced by the non-lattice potential begins to reduce the lifetime, an effect that
saturates for n ≳ 60. For still higher values of n, the lattice induced population of the 6p3/2 begins
to play an important role in limiting the coherence lifetime. The reason for this is that the magic
detuning ∆m,n decreases with increasing n.

The data has been fit using Eqs. (7.25), (7.32)-(7.34), (7.40), and (7.45) with L = 100µm. The
potential depth is used as a free parameter to match the oscillation periods of the signals, while the
temperature is chosen to match the fringe visibility.

7.2.4 Value of θn and Reduced Dipole Moment Matrix Elements

7.2.4.1 Value of θn

The polarizability of the Rydberg level is affected by a breakdown of the electric dipole approxima-
tion due to the finite size of the Rydberg electron orbital. This landscape factor [33] is calculated
by finding the expectation value of the periodic portion of the trap potential θn = ⟨cos(2kLx)⟩,
where kL is the wave number of the lattice field, and x is the longitudinal position of the electron.
To calculate θn we perform an expansion of cos(2kLx) in spherical Bessel functions to obtain

θn = (2l + 1)
∑

l′=even

(2l′l
′/2−mz

(
l l′ l

−mz 0 mz

)

×

(
l l′ l

0 0 0

)∫ ∞

0

dreP
2
nl(re)jl′(2kLre),
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where the jl′(2kLre) are spherical Bessel functions of the first kind and Pnl(re) are the Rydberg ra-
dial wave functions calculated via Numerov integration of the Schrödinger equation using quantum
defect potentials. We only consider the l = 0 term which simplifies the expression to

θn =

∫ ∞

0

dreP
2
n,0(re)j0(2kre).

7.2.4.2 Reduced dipole moment matrix elements

Using Eqs. (7.9), (7.10), and (7.11), we can write the lattice potentials approximately as

U
(l)
1 (X) = −U0 cos

2 (kLX) ; (7.47a)

U
(l)
3 (X) = −U0

αg

cos2 (kLX)

×
[
(αg + |αf | θn)

∆m,n

∆
− |αf | θn

]
(7.47b)

and the non-lattice potential difference as

ℏωd(ρ,X) =
[
U

(nl)
3 − U

(nl)
1

]
=

|αf |U0

2αg

(1− θn) I(ρ,X)

−U0

4
w+(0)w−(0)

(
1 +

|αf | θn
αg

)(
∆m,n

∆
− 1

)
×
(
ξ−1/4 1

w+(X)
e−ρ2/w2

+(X)
+ − ξ1/4

1

w−(X)
e−ρ2/w2

−(X)

)2

, (7.48)

where ∆m,n is the magic detuning for state ns. Owing to the anharmonicity of the potentials and
the presence of a non-lattice potential, the local maxima of the signals do not necessarily occur
exactly at ∆ = ∆m,n. To extract values for Dn, we find the value of ∆m,n that gives the best fit to
the experimental curves of signal strength versus ∆ and then use

1

6

D2
n

ℏ∆m,n

= αg + |αf | θn. (7.49)

to find Dn. The value of Dn is compared with the corresponding value calculated using wave
functions obtained using the “Alkali Rydberg Calculator” (ARC) Python package [34]. The ground
state polarizability was taken from the paper of Ref. [26].
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7.3 Experimental results

The experimental geometry and measurement sequence are shown in Fig. 7.1(a). An optical lattice
is formed by a y-polarized, retro-reflected laser field propagating along the x-axis having power
P+ ≈ 0.8 W. The trap field is generated by a Titanium-Sapphire laser tunable in the 850 nm to
1050 nm range, frequency-locked to an optical cavity. The laser wavelength is measured with a
wavemeter calibrated to 10 MHz accuracy using a diode laser locked to Rb 780 nm line. The trap
field is detuned from ωns,6p3/2 by ∆.

Atoms are loaded into the lattice using a magneto-optical trap. The maximum depth of the
optical dipole potential at the atoms is U0/kB ≈ 40 µK, with the corresponding axial and radial
oscillation frequencies {νρ, νx} = {0.3, 86} kHz. The resulting cloud, which has temperature of
T ≈ 10 µK, consists of ∼ 105 87Rb atoms having radial and axial waists of σρ ≈ 50 µm and
σX ≈ 0.2 mm respectively. The atoms are optically pumped to the |5S1/2, F = 2,mF = 0⟩ state
in a magnetic bias field B0 = 0.5 mT.

Two nearly counter-propagating, z-polarized fields, E1 and E2 excite a spin wave between the
|5s1/2, F = 2⟩ and |ns1/2⟩ levels. The fields imprint a spatial phase coherence between the ground
and Rydberg states varying as ∝ ei(k⃗1+k⃗2)·R⃗, where k⃗1 and k⃗2 are the wave-vectors for the fields E1

and E2 respectively. Field E1 has wavelength 420 nm, while field E2, produced by a laser diode,
is tunable in the 1012 nm to the 1026 nm wavelength range to excite Rydberg states with principal
quantum numbers n ≥ 30. Field E2 is detuned from ωns,6p3/2 by ∆1 ≈ 12 MHz. The E1 and E2

fields are focused onto the atoms with beam waists wE1,0 ≈ 17 µm and wE2,0 ≈ 15 µm and Rabi
frequencies ΩE1/2π ≃ 0.2 MHz and ΩE2/2π ≃ 5 MHz, respectively. The spin wave is stored
for a period Ts varied between 1 and 70 µs. At time Ts the atoms are coherently driven on the
|ns1/2⟩ ↔ |6p3/2⟩ transition by a (z-polarized) retrieval field ER of Rabi frequency ΩR ≈ ΩE2 ,
creating an array of atomic dipoles which give rise to a phase-matched emission from the sample.
The emitted light is collected into a single-mode optical fiber coupled to a single-photon detector.
To avoid damaging the detectors by the ΩE1 field, a gating acousto-optical modulator is used.
The photon transmission and detection efficiency ηtd is given by ηtd = ηcηoηfηd = 0.13, where
ηc = 0.89, ηo = 0.39, ηf = 0.66 and ηd = 0.55 are vacuum cell transmission efficiency, optics
transmission efficiency (including the gating AOM), fiber coupling efficiency and single photon
detection efficiency, respectively. The arrival times of detected photons are recorded, and the
number of detected photons per excitation and retrieval cycle is used as our signal.

7.3.1 Magic wavelengths for the 5s− ns transition

The normalized retrieval signal η(Ts), given by Eq. (7.25), is plotted in Fig. 7.4(a-d) as a function
of ∆, along with the experimental data points. The solid green vertical lines represent the values
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of the magic detunings ∆m,n extracted from the fit of the theoretical curves to the data while the
dashed red vertical lines represent the values of ∆m,n obtained using Eq. (7.49) and the ARC values
of the dipole matrix elements. The extracted values of ∆m,n are plotted in Fig. 7.4(e). Consistent
with the scaling of dipole matrix elements, ∆m,n varies approximately as (n∗)−3. The values of
Dn(n

∗)3/2 obtained from Eq. (7.49) using the extracted values of ∆m,n are shown in Fig. 7.4(f),
superimposed on the expected values of the matrix elements computed using the ARC values [34].
The 3% standard deviation band is based on comparing our computed values of |⟨15s1/2||d̂||np⟩|
reduced matrix elements with the values for these matrix elements given in Ref. [26].

7.3.2 Dynamics of the ground-Rydberg coherence

The signal as a function of Ts serves as a measure of the dynamics of the stored spin wave. With
∆ = ∆m,n, the signal as a function of storage time Ts, normalized to its value at Ts = 1µs,
is plotted in Fig. 7.5, along with the theoretical curves. The oscillations result from the nearly
periodic motion of the atoms along the optical lattice. The oscillation visibility decreases with
time owing to the anharmonic nature of the potential. Moreover the anharmonicity adds a small
damping component to the signal and its contribution becoming more pronounced with increasing
temperature.

In Fig. 7.6 we compare the n = 40 signal with its counterpart obtained by exciting the atoms
with 795 nm and 475 nm fields via the |5p1/2, F = 1⟩ intermediate level. The effective two-
photon excitation wavelength for the latter λ2ph = 1.2 µm, longer than λ2ph = 0.72 µm for the
420 nm-1018 nm excitation. As one would expect, the 795 nm-475 nm excitation exhibits lower
visibility of oscillations as a result of decreased motional dephasing for the longer-wavelength
spin-wave. The role of trap anharmonicity also decreases with longer spin-wave period, whereas
the non-lattice contribution to the dephasing contribution is unaffected by it.

7.4 Conclusion

We have demonstrated ground-Rydberg atomic coherence lifetimes in excess of 20 µs using a state
insensitive optical lattice. A theory has been developed to account for the quantized motion of
atoms in the trap potentials. The theoretical line shapes that are derived are in good agreement
with the experimental results and can be used to extract values for the ns - 6p3/2 reduced electric
dipole matrix elements. Our approach should be of use for precision measurements and quantum
information studies involving atomic Rydberg states.
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Figure 7.2: (Color online) a) Graphs of the analytic approximation and exact expressions of gnl
(dashed and solid respectively) as a function of storage time Ts for U0/kB = 40 µK and different
sample lengths: blue - L = 1 µm, dark green - L = 50 µm, light green - L = 100 µm, orange -
L = 150 µm, red - L = 500 µm. b) Graphs of gnl for sample length L = 100 µm and trap depths
U0/kB = 5, 10, 20, and 40 µK, represented by increasing line thickness.
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Figure 7.3: Graphs of gl(Ts) as a function of ω0Ts: red, solid curve - cos2(kLX) potential; black,
dashed curve - harmonic potential.
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Figure 7.4: (Color online) a)-d) Normalized signal η(Ts) at storage time Ts around the first revival
(10− 12 µs) as a function of lattice detuning ∆ for principal quantum numbers 30, 51, 60, and 65.
The solid curves, based on the model described in the text, are used to extract the values of ∆m,n.
The dashed red and solid green vertical lines represent the theoretically expected and the extracted
values of the magic detuning, respectively. Blue and red bands represent fits using temperatures
20% lower and higher than the best fit value, respectively. (e) ∆m,n as a function of the principal
quantum number n, with the solid curve based on our theoretical model. (f) Extracted values of
the scaled reduced matrix elements as a function of n.
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Ts

Figure 7.5: (Color online) Normalized signal η as a function of storage time for several principal
quantum numbers. The solid black curve is based on our theoretical model. Blue and red bands
represent temperatures 20% lower and higher than the best fit value, respectively. The gray curve
shows loss attributable to black-body and spontaneous decay from the Rydberg state. The dashed
red curve adds in the contribution of spontaneous decay from the 6P level. The dashed blue curve
additionally includes the dephasing attributable to the non-lattice potential. Most experimental
error bars are smaller than the shown markers.
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Figure 7.6: (Color online) Normalized signal η as a function of storage time for n = 40 for
420 nm - 1018 nm (green circles) and 795 nm-475 nm (orange diamonds) excitation, with the
corresponding atomic transitions shown in the inset. The solid curves are the result of a numerical
simulation of atomic motion using the model described in the text. The black curve is the same as
in Fig. 5. Most experimental error bars are smaller than the shown markers.
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CHAPTER 8

Theory of Coherent Optical Transients With
Quantized Atomic Motion

8.1 Introduction

Coherent transients provide an important probe of atomic and molecular systems. Historically,
the field of coherent transients was developed within the context of nuclear magnetic resonance
(NMR). In NMR a series of radio frequency pulses is applied to a spin system [35]. In response to
the applied pulses, the sample emits a coherent signal that can be used to measure spin relaxation
rates. With the development of laser sources, the coherent transient technique was extended to the
optical domain [29]. A series of optical pulses is applied to an atomic or molecular sample, result-
ing in phase-matched, coherent emission from the sample. Such coherent optical transients (COT)
can be used to measure the relaxation rates of the various atomic coherences that are produced by
the incident pulses. In both NMR and COT, inhomogeneous variations in the transition frequen-
cies of the spins or atoms can result in significant damping of the generated signals. In NMR, stray
magnetic fields modify the separation between spin magnetic sublevels while in COT the Doppler
shift associated with atomic motion leads to the inhomogeneities. Spin echoes and photon echoes
represent coherent transient techniques that can be used to suppress the effects of magnetic field or
Doppler dephasing.

A somewhat more direct way of eliminating Doppler dephasing is to cool atoms. However,
even at temperatures of tens of microKelvins that can be achieved using standard laser cooling
techniques, Doppler dephasing can still be the dominant factor that limits the lifetimes of long-
lived atomic coherences. To further reduce any effects of motional or Doppler dephasing, atoms
can be trapped in optical potentials that confine the atoms to distances that are much smaller than
the relevant optical wavelengths [36]. This is akin to Dicke narrowing [37], where collisions
of atoms with a background buffer gas effectively restrict the atoms to a small volume for the
duration of a given experiment. To observe Dicke narrowing, there is a subtle effect that enters.
If the collision interaction between the buffer gas and the atoms is state-dependent, that is, if the
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collision interaction differs for the two atomic states of an optical transition, then the mechanism
responsible for Dicke narrowing can be totally suppressed [29]. In such cases, the atomic center-
of-mass motion must be quantized. The same can be said for trapping by optical potentials. If
phase-matched emission results from coherence between two atomic levels for which the optical
potentials are different, the atomic motion in the trapping potentials must be treated using a fully
quantum theory.

Light-matter interfaces and quantum memories based on Raman scattering [38, 39] or excitation
to Rydberg levels [5, 40] in atomic ensembles are well-known applications of COT. Such systems
have been studied intensely in the past two decades. Much of the experimental and theoretical
work in this area was focused on situations in which atoms are not subjected to external forces. On
the other hand, there are experiments aimed at achieving long-term (≥ 1 s) quantum state storage
that make use of atomic confinement, typically employing far-detuned optical fields [41, 42, 43].
The atomic state dynamics is then governed by the periodic motion in the confining potentials, with
a corresponding modulation of the strength of atom-light coupling and memory storage/retrieval
efficiencies.

Although there have been numerous papers written related to the interaction of optical fields
with trapped atoms in the context of laser cooling [44], light scattering [45], fluorescence [46], and
wave packet oscillations [47], there have been only a few articles that addressed phase-matched
emission from trapped atoms. Zhao et al. [31] and Jenkins et al.[32] calculated the phase-matched
emission from an ensemble of trapped atoms following a Raman excitation pulse and a readout
pulse. Recently, Lampen et al. [48] presented both theoretical and experimental results for phase-
matched emission from an ensemble of trapped atoms using pulsed, two-photon excitation of a
Rydberg level pulse followed by a readout pulse. There are also related calculations carried out
within the context of atom interferometry [30]. However, to our knowledge, a general theory of
optical coherent transients from trapped atoms based on a source-field approach [29] that includes
the effects of quantized motion in state-dependent trapping potentials has not yet been developed.

In this paper, we formulate a general theory of coherent transient spectroscopy that incorporates
a quantum description of the atomic center-of-mass motion. In Sec. II, we calculate the change in
atomic density matrix elements produced by an optical pulse acting on a generic two-level atomic
system. The transfer matrix associated with such a process is the building-block solution from
which the more general response of the atoms to a number of pulses can be calculated. In Sec.
III, source-field theory [29], modified to include quantized center-of-mass motion for the atoms,
is used to calculate the phase-matched coherent transient signal emitted by a sample of atoms. In
Secs. IV and V, we present two examples to illustrate the theory. The first involves the creation
and probing of ground-Rydberg level coherence in an optical lattice and the second the effect of
transit-time loss on Raman coherence between ground state sublevels. For state-dependent optical
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potentials, a quantized treatment of the center-of-mass motion is needed. However, under suitable
initial conditions, a classical description of the center-of-mass motion can be used, provided the
optical potentials are identical for the relevant atomic levels. In this limit, closed form expressions
for the radiated signal are obtained with and without the assumption of classical center-of-mass
motion. The results are summarized in Sec. VI. The atomic density is assumed to be sufficiently
low to neglect all atom-atom interactions.

8.2 Pulsed Excitation - Transfer Matrix

The atoms are subjected to a series of classical optical pulses. In this section, we calculate the
response of a generic ”two-level” atom (lower level a, upper level c, transition frequency ωca) to
the n-th pulse in this series. The incident fields are assumed to propagate in the X direction and be
polarized in the z direction. In a paraxial wave approximation, the electric field of the n−th pulse
in the sample is given by

En(R, t) =
1

2
uzEn(t)fn(R)ei(knX−ωnt) + c.c., (8.1)

where En(t) is the pulse amplitude at the center of the sample, fn(R) is the (real) spatial profile of
the field in the sample, uz is a unit vector in the z direction, kn = ωn/c is a propagation constant,
and “c.c.” stands for “complex conjugate.” The pulse duration Tn is assumed to be sufficiently
large to insure that the spatial extent of the pulse is much larger than the sample length L. As a
consequence the pulse amplitude En(t) reaches its maximum at approximately the same time for
all atoms in the sample - this time is denoted by tn. In other words, it is assumed that the spatial
profile of the pulses can be taken to be constant during the atom-field interaction.

In addition to their interaction with the applied field pulses, the atoms are continuously sub-
jected to optical trap fields that result in state-dependent optical potentials. The optical potentials
associated with levels a and c are denoted by Va(R) and Vc(R), respectively. The eigenenergies
associated with the potential Vα(R) (α = a, c) are denoted by ℏω̃αq, the eigenkets by |αq⟩ and the
eigenfunctions by ψαq (R), where q labels all the quantum numbers associated with the potential
Vα(R). The eigenfunctions ψaq (R) and ψcq′ (R) are not orthogonal for q ̸= q′ if the potential is
state-dependent.

In the rotating-wave approximation (RWA), the Hamiltonian is taken as

Hn = ℏωa |a⟩ ⟨a|+ ℏωc |c⟩ ⟨c|+ ℏω̃aq |aq⟩ ⟨aq|

+ℏω̃cp |cp⟩ ⟨cp|+
ℏΩ(n)

ca (t)

2
fn(Rj)

[
eiknXje−iωntσ

(j)
ca

+e−iknXjeiωntσ
(j)
ac

]
, (8.2)
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where Ω(n)
ca (t) = −µcaEn(t)/ℏ (assumed real) is a Rabi frequency associated with the a− c transi-

tion , µca is an electric dipole transition matrix element, σ(j)
ca

(
σ
(j)
ac

)
is a raising (lowering) operator

for atom j, and a summation convention is adopted, in which repeated indices are summed if they
do not appear on both sides of an equation. It is important to recognize that Xj is an operator - it
is the X−component of the position operator of atom j. The field is taken to be resonant with the
atomic transition, ωn = ωca.

Our goal is to calculate the change in density matrix elements of atom j resulting from the
applied pulse. In this section, we drop the j and n labels, but it is to be understood that all quantities
refer to the time evolution of atom j during the n−th pulse [for example fn(Rj) → f(R), kn → k,
etc.] - these labels will be restored in the Section III. In the Schrödinger representation, density
matrix elements obey the time evolution equation

ρ̇αq;α′q′ =
1

iℏ
[H, ρ]αq;α′q′ . (8.3)

Defining an interaction representation by

ραq;α′q′ = ρIαq;α′q′ exp [−iωαα′t− iωαq,α′q′t] , (8.4)

where
ωαα′ = ωα − ωα′; ωαq,α′q′ = ω̃αq − ω̃α′q′ , (8.5)

we find time-evolution equations

ρ̇Iaq;cp = −iΩca(t)

2

[
eiωaq,cp′ tB†

aq,cp′ (k) ρ
I
cp′;cp

−eiωaq′,cptρIaq;aq′B
†
aq′,cp (k)

]
;

(8.6a)

ρ̇Icp;aq = −iΩca(t)

2

[
eiωcp,aq′ tBcp,aq′ (k) ρ

I
aq′;aq

−eiωcp′,aqtρIcp;cp′Bcp′,aq (k)

]
;

(8.6b)

ρ̇Icp;cp′ = −iΩca(t)

2

[
eiωcp,aqtBcp,aq (k) ρ

I
aq;cp′

−e−iωcp′,aqtρIcp;aqB
†
aq,cp′ (k)

]
;

(8.6c)

ρ̇Iaq;aq′ = −iΩca(t)

2

[
eiωaq,cptB†

aq,cp (k) ρ
I
cp;aq′

−e−iωaq′,cptρIaq;cpBcp,aq′ (k)

]
,

(8.6d)
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where k = kux and

Bcp,aq (k) =

∫
dR [ψcp (R)]∗ f(R)eik·Rψaq (R) ; (8.7a)

B†
aq,cp (k) =

∫
dR [ψaq (R)]∗ f(R)e−ik·Rψcp (R) . (8.7b)

If we define an operator

Mca (R,k, t) = fn(R)eiVc(R)t/ℏeik·Re−iVa(R)t/ℏ, (8.8)

then Eqs. (8.6) can be written in matrix form as

ρ̇Iac = −iΩca(t)

2

[
Mca (k, t)

† ρIcc − ρIaaMca (k, t)
†
]
; (8.9a)

ρ̇Ica = −iΩca(t)

2

[
Mca (k, t) ρ

I
aa − ρIccMca (k, t)

]
; (8.9b)

ρ̇Icc = −iΩca(t)

2

[
Mca (k, t) ρ

I
ac − ρIcaMca (k, t)

†
]
; (8.9c)

ρ̇Iaa = −iΩca(t)

2

[
Mca (k, t)

† ρIca − ρIacMca (k, t)
]
, (8.9d)

where each element ρIαα′ is now a matrix having matrix elements ⟨αq| ρIαα′ |α′q′⟩. There is no sum
over a or c on the right hand side of these equations - both Mca and ρIαβ are themselves matrices in
the center-of-mass basis state, e.g.

[Mca (k, t)]αq;βq′ = ⟨αq|Mca (R,k, t) |βq′⟩ , (8.10)

for α, β equal to a or c. The pulse duration is sufficiently short to neglect any decay during the
pulse. Note that Mca (R,k, t) is not a unitary operator owing to the factor f(R), but that the
operator

Uca (R,k, t) = eiVc(R)t/ℏeik·Re−iVa(R)t/ℏ, (8.11)

is unitary.
In principle, Eqs. (8.9) could be solved numerically as coupled equations for all the matrix

elements. However if the pulse duration T is sufficiently short such that |ωaq,cpT | ≪ 1 for all
relevant q and p (this corresponds to the atomic motion being frozen during the pulse), then the
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matrix Mca (k, t) can be evaluated at t = tn and Eqs. (8.9) reduce to

ρ̇Iac = −iΩca(t)

2

[
Mca (k,tn)

† ρIcc − ρIaaMca (k,tn)
†
]
; (8.12a)

ρ̇Ica = −iΩca(t)

2

[
Mca (k,tn) ρ

I
aa − ρIccMca (k,tn)

]
; (8.12b)

ρ̇Icc = −iΩca(t)

2

[
Mca (k,tn) ρ

I
ac − ρIcaMca (k,tn)

†
]
; (8.12c)

ρ̇Iaa = −iΩca(t)

2

[
Mca (k,tn)

† ρIca − ρIacMca (k,tn)
]
. (8.12d)

Unfortunately, even though Mca (k,tn) and Mca (k,tn)
† are time-independent in these equations,

there is no simple solution owing to the fact that Mca (k, tn) is not a unitary matrix. In effect, Eqs.
(8.9) must be solved numerically to obtain the ρIαq;βq′ (t

+
n ) in terms of ρIαq,βq′ (t

−
n ).

There are two limiting cases where a relatively simple solution can be obtained. If the applied
field spatial profile is constant over the sample [f (R) = 1 and Mca (k,tn) = Uca (k,tn)], then we
can set

ρ̃ac (k, t, tn) = ρIac (t)Uca (k,tn) ; (8.13a)

ρ̃ca (k, t, tn) = Uca (k, tn)
† ρIca (t) ; (8.13b)

ρ̃aa (k, t, tn) = ρIaa (t) ; (8.13c)

ρ̃cc (k, t, tn) = Uca (k, tn)
† ρIcc (t)Uca (k, tn) , (8.13d)

which transforms Eqs. (8.12) into

dρ̃ac
dt

= −iΩca(t)

2
[ρ̃cc − ρ̃aa] ; (8.14a)

dρ̃ca
dt

= −iΩca(t)

2
[ρ̃aa − ρ̃cc] ; (8.14b)

dρ̃cc
dt

= −iΩca(t)

2
[ρ̃ac − ρ̃ca] ; (8.14c)

dρ̃aa
dt

= −iΩca(t)

2
[ρ̃ca − ρ̃ac] . (8.14d)
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The solution of these equations is straightforward [29],
ρ̃ac (t

+
n )

ρ̃ca (t
+
n )

ρ̃aa (t
+
n )

ρ̃cc (t
+
n )

 =


cos2

(
A
2

)
sin2

(
A
2

)
i sinA

2
−i sinA

2

sin2
(
A
2

)
cos2

(
A
2

)
−i sinA

2
i sinA

2

i sinA
2

−i sinA
2

cos2
(
A
2

)
sin2

(
A
2

)
−i sinA

2
i sinA

2
sin2

(
A
2

)
cos2

(
A
2

)



×


ρ̃ac (t

−
n )

ρ̃ca (t
−
n )

ρ̃aa (t
−
n )

ρ̃cc (t
−
n )

 , (8.15)

where t±n are times just before and after the application of the pulse and

A =

∫ tn+

t−n

dtΩca(t) (8.16)

is a pulse area. Equations (8.15) and (8.13) can be used to calculate the change in the atomic
density matrix elements in the interaction representation.

The second case where a simple solution is possible is one in which there is a lattice trap
potential varying as −V0 cos2(ktrX) superimposed on a much more slowly varying trap potential.
If the temperature is sufficiently low to insure that all atomic motion can be neglected on the
time scale of an experiment except that associated with motion in the lattice potential, but is still
sufficiently large to insure that motion in the slowly varying trap potential can be treated classically,
then f (R) can be replaced a classical function fcl (R) and the resulting signal averaged over the
classical Boltzmann distribution associated with the slowly varying trap potential. In this limit
Eqs. (8.13) and (8.15) remain valid, provided that the area A appearing in Eq. (8.15) is replaced
by

A (R) = fcl (R)

∫ t+n

t−n

dtΩca(t). (8.17)

Although we have taken the a − c transition to be dipole allowed, the formalism can still be
used when levels a and c have the same parity and are driven by two-photon excitation. The only
change that need be made is to replace Ωca(t) by some effective two-photon Rabi frequency that
depends on the product of the amplitudes of each of the fields involved in the transition.

8.2.1 Readout Pulse

In some cases, it is necessary to apply a readout pulse to generate the phase-matched signal. For
example, consider the level schemes shown in Fig. 8.1. In both cases it is assumed that some
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Figure 8.1: Level schemes.

initial two-photon pulse has created a long-lived atomic coherence between levels a and c, both
of which have the same parity. In Fig. 8.1 (a), the coherence is between a ground and Rydberg
level and, in Fig. 8.1 (b), it is between two-ground state sublevels. To read out the coherence, a
pulse is applied that is resonant with the c − b transition and results in phase-matched emission
on the a − b transition. We shall assume that the Rabi frequency Ωout

bc associated with the readout
pulse is greater than the decay rate Γb = 2γb of level b. The duration Tout of the readout pulse
may be greater than Γ−1

b ; it is assumed, however, that all motion is frozen on a time scale of
min

(
γ−1
b , Tout

)
.

The calculation proceeds in exactly the same manner as that for the excitation pulse, except it is
necessary to use density matrix equations for a three-level lambda scheme [29] with a single field
acting on the c− b transition. We find that, for the level scheme of 8.1 (a) and f (R) = 1,

dρ̃ca
dt

= −iΩ
out
cb (t)

2
ρ̃ba; (8.18a)

dρ̃ba
dt

= −iΩ
out
cb (t)

2
ρ̃ca − γbρ̃ba, (8.18b)

where

ρ̃ca (kn, t, tout) = Ucb (kout, tout)
† ρIca (t) ; (8.19a)

ρ̃ba (kn, t, tout) = ρIba (t) , (8.19b)

kout is the propagation vector of the readout pulse, and tout is the time the readout pulse is applied.
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For the level scheme of 8.1 (b) and f (R) = 1,

dρ̃ca
dt

= −iΩ
out
bc (t)

2
ρ̃ba; (8.20a)

dρ̃ba
dt

= −iΩ
out
bc (t)

2
ρ̃ca − γbρ̃ba, (8.20b)

where

ρ̃ca (kn, t, tout) = Ucb (kout, tout) ρ
I
ca (t) ; (8.21a)

ρ̃ba (kn, t, tout) = ρIba (t) . (8.21b)

It is a simple matter to solve Eqs. (8.18) or (8.20) numerically (or analytically for a square pulse)
and then use Eqs. (8.19) or (8.21) to obtain matrix elements of ρIca (t), matrix elements that will be
needed in the evaluation of the phase-matched signal. If, instead of taking f (R) = 1, we consider
the second limiting case discussed following Eq. (8.12), then Ωout

bc (t) is replaced by Ωout
bc (t)fcl (R)

in Eqs. (8.18) and (8.20).

8.3 Source-Field Expression for the Signal

The signal recorded at time t at a point detector located at position Rd is proportional to a quantity
S defined by

S = R2
d ⟨E−(Rd, t) · E+(Rd, t)⟩ , (8.22)

where

E+(R, t) = i

(
ℏωk

2ϵ0V

)1/2

eik·Rakλ
(t)ϵ

(λ)
k , (8.23)

is the positive frequency component of the electric field operator at position Rd, E−(Rd, t) =

[E+(R, t)]
†, ωk = kc,

ϵ
(1)
k = cos θk cosϕkux + cos θk sinϕkuy − sin θkuz; (8.24a)

ϵ
(2)
k = − sinϕkux + cosϕkuy, (8.24b)

are the field polarization vectors, and V is the quantization volume. A sum over all field modes and
polarizations is implicit in Eq. (8.23), owing to our summation convention. The field operators
are written in the Heisenberg representation, but could have equally well been written as time-
independent operators in the Schrödinger representation. We will return to this point shortly.

In the problem under consideration a number of classical field pulses give rise to the creation

101



of previously unoccupied vacuum field modes. In situations such as this, a powerful method for
obtaining an expression for E+(Rd, t) is afforded by the so-called source-field approach [29]. In
that approach the creation and annihilation operators are written in terms of their initial values and
their dependence on atomic operators. For example, consider emission on transitions from level b
to a having transition frequency ωba in an ensemble of atoms whose center-of-mass coordinates are
fixed. Level b is taken to be the m = 0 sublevel of a J = 1 angular momentum state, while level a
is taken to be a J = 0 angular momentum state. In that case, for an electric dipole interaction of
the form

Vaf (R, t) = −µ̂(t) · [E+(R, t) + E−(R, t)] , (8.25)

where µ̂(t) is the atomic dipole moment operator, the Hamiltonian in the RWA is given by

H = ℏωa |a⟩ ⟨a|+ ℏωb |b⟩ ⟨b|

+
[
ℏgkλ

eik·Rje−iωktσ
(j)
ba + ℏg∗kλ

e−ik·Rjeiωktσ
(j)
ab

]
, (8.26)

where

gkλ
= −iµba

(
ωk

2ℏϵ0V

)1/2

sin θkδλ,1, (8.27)

σ
(j)
ab (t

′) [σ(j)
ba (t

′)] is a lowering [raising] operator for atom j located at position Rj , µba is the
z−component of the dipole moment matrix element (assumed real) between states b and a, and
δλ,1 is a Kronecker delta. The annihilation operator at time t can be expressed as

akλ
(t) = akλ

(0)e−iωkt

− ig∗kλ
e−ik·Rj

∫ t

0

dt′σ
(j)
ab (t

′)e−iωk(t−t′). (8.28)

The second term in Eq. (8.28) is the contribution to the field operator that can be traced to
the atoms - the so-called source-field term. Including only the source-field contribution in Eq.
(8.23), it is straightforward to show that the field operator can be written in a form that mirrors the
classical expression for the electric field produced by an ensemble of electric dipoles. In particular,
assuming that the detector is located in the radiation zone of the atomic dipoles, one finds [29]

E+(Rd, t) = −
(

ω2
ba

4πϵ0c2Rd

)
µba sin θdσ

(j)
ab (t

(j)
r )uθd , (8.29)

where θd is the polar angle of the detector, uθd is a unit vector in the direction of increasing θd and

t(j)r = t− |Rd−Rj|
c

(8.30)
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is a retarded time.
If the center-of-mass motion of the atoms can be treated classically, it is a simple matter to

extend the source-field result to include the effects of atomic motion. Equation (8.29) remains
valid provided that t(j)r is defined as the solution of

t(j)r = t−

∣∣∣Rd−Rj

(
t
(j)
r

)∣∣∣
c

(8.31)

where Rj (t) is the position of atom j at time t. On the other hand, if the center-of-mass motion of
the atoms is quantized, Rj (t) becomes a Heisenberg operator and there is no obvious manner in
which to generalize Eq. (8.29).

To make some progress in the case where the center-of-mass motion is quantized, we can still
use the Heisenberg representation, but it is necessary to delay the sum over field modes that lead
to the final source-field expression. In other words, we use Eq. (8.28) to write the source field
contribution to the signal as

S = R2
d ⟨E−(Rd, t) · E+(Rd, t)⟩

= R2
d

(
ℏωk′

2ϵ0V

)1/2( ℏωk

2ϵ0V

)1/2

ei(k−k′)·Rd

×
〈
a†k′

λ′
(t)akλ

(t)
〉
ϵ
(λ′)
k′ · ϵ(λ)k

= µ2
baR

2
d

(
ℏωk′

2ϵ0V

)(
ℏωk

2ϵ0V

)
× sin θk sin θk′e

i(k−k′)·Rdϵ
(1)
k′ · ϵ(1)k

×
∫ t

0

dt′
∫ t

0

dt′′
〈
eik

′·R̂j′ (t
′′)σ

(j′)
ba (t′′)σ

(j)
ab (t

′)e−ik·R̂j(t
′)
〉

× eiωk′ (t−t′)e−iωk(t−t′), (8.32)

where R̂j(t) is a Heisenberg operator. Note that
[
R̂j(t), σ

(j)
αβ(t)

]
= 0, but that

[
R̂j(t), σ

(j)
αβ(t

′)
]
̸=

0, in general.
Qualitatively, there are two types of terms that enter the double summation over j and j′ in Eq.

(8.32). Terms with j = j′ are difficult to calculate using this approach, but such terms contribute
negligibly to the phase-matched signal. For completeness, a method for treating the j = j′ terms
is discussed in the Appendix. The remaining terms involve products of operators corresponding to
different atoms, implying that the average of the product is equal to the product of the averages. In
other words, for such terms we can write Eq. (8.32) as

S = |G(Rd, t)|2 , (8.33)
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where

G(Rd, t) = µbaRd

(
ℏωk

2ϵ0V

)
×
∫ t

0

dt′
〈
σ
(j)
ab (t

′)e−ik·R̂j(t
′)
〉
e−iωk(t−t′). (8.34)

Written in this form, the signal contains extra terms since terms with j = j′ are not excluded;
however for a large number of atoms N in the sample, the j = j′ terms can be neglected since they
scale as N , whereas the phase-matched signal scales as N2.

The average in Eq. (8.34) can be written as

Fj =
〈
σ
(j)
ab (t

′)e−ik·R̂j(t
′)
〉
= Tr

[
ρ(0)σ

(j)
ab (t

′)e−ik·R̂j(t
′)
]

= Tr
[
ρ(j)(t′) |a⟩ ⟨b| e−ik·R̂j

]
, (8.35)

where ρ(j)(t) is the density matrix for atom j at time t and the trace is over motional states. The
trace is very difficult to carry out using Heisenberg operators, but relatively simple to evaluate
using Schrödinger operators. Explicitly we find

Fj = ρ
(j)
bq;aq′(t

′) ⟨aq′| e−ik·R̂j |bq⟩

= ρ
I(j)
bq;aq′(t

′) ⟨aq′| e−ik·R̂j |bq⟩ e−iωbq;aq′ t
′
e−iωbat

′

=

∫
dRj [ψaq′ (Rj)]

∗ e−ik·Rjψbq (Rj) ρ
I(j)
bq;aq′(t

′)

×e−iωbq;aq′ t
′
e−iωbat

′
. (8.36)

The key point is that the Rj appearing in Eq. (8.36) is no longer an operator. As a conse-
quence,when this expression is substituted back into Eq. (8.34), the sum over field modes can
be carried out as in normal source field theory. In this manner, we find

G(Rd, t) = −µba

(
ω2
ba sin θd
4πϵ0c2

)∫
dRj [ψaq′ (Rj)]

∗

×ρI(j)bq;aq′

(
t− |Rd−Rj|

c

)
× exp

[
−iωbq;aq′

(
t− |Rd−Rj|

c

)]
× exp

[
−iωba

(
t− |Rd−Rj|

c

)]
ψbq (Rj) . (8.37)

Since Rd ≫ Rj we can set |Rd−Rj| = Rd except in the exponential containing ωba, since ωba
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corresponds to an optical frequency. In that term, we set

|Rd−Rj| ≈ Rd −
Rd ·Rj

Rd

(8.38)

and Eq. (8.37) reduces to

G(Rd, t) = −µba

(
ω2
ba sin θd
4πϵ0c2

)
eikbaRde−iωbatρ

I(j)
bq;aq′ (tr)

×
∫
dRj [ψaq′ (Rj)]

∗ e−iωbq;aq′ tre−ikba·Rjψbq (Rj) , (8.39)

where
kba =

ωba

c

Rd

Rd

(8.40)

and
tr = t−Rd/c. (8.41)

Equation (8.39) can be written in the more compact form as

G(Rd, t) = −µba

(
ω2
ba sin θd
4πϵ0c2

)
eikbaRde−iωbat

Tr
[
ρ
I(j)
ba (tr)Uba (kba, tr)

†
]
, (8.42)

where both ρI(j)ba (tr) and Uba (k, tr)
† are matrices in the motional states. Recall that Uba (k, tr) is

defined in Eq. (8.11). The trace in Eq. (8.42) is over center-of-mass states.
In principle, the calculation is now complete. One calculates ρI(j)ba (tr) by piecing together the

various transfer matrices calculated using the method outlined in Sec. II and then carries out the
trace needed in Eq. (8.42). As specific examples, we now calculate the signal associated with the
level schemes of Fig. 8.1.

8.4 Specific Example: Ground Level - Rydberg Level Coher-
ence in an Optical Lattice

We consider first the level scheme of Fig. 8.1 (a) in which level a is a J = 0 ground state, level
c is a J = 0 Rydberg level, and level b is a J = 1 excited state. Trap fields, counter-propagating
in the X−direction and polarized in the y−direction, confine the atoms in the transverse direction
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and provide attractive lattice potentials

Vα(X) = −Vα cos2 (ktrX) ; α = a, c (8.43)

in the longitudinal (X) direction for levels a and c. Any additional contributions to the trap po-
tentials, such as those associated with a breakdown of the dipole approximation in calculating the
Rydberg potentials [33], are ignored. The trap fields can also give rise to a repulsive potential for
level b, but we will see that the potential for level b is unimportant for the pulse sequence under
consideration. At t = 0, a two-photon pulse resonantly excites atomic coherences ρ(j)ca . As a result
of atomic motion, these coherences undergoes dephasing. At time t = T21, a readout pulse that is
resonant with the c− b transition frequency is applied and creates the coherences ρ(j)ba . The phase-
matched signal emitted by the sample, which results from the interaction of the vacuum field with
the atoms, is dependent on the value of ρ(j)ba created by the excitation and readout fields.

The excitation and readout pulses are all z−polarized and propagate in the ±X direction. The
two-photon excitation pulse consists of two fields having propagation vectors k1 = k1ux and
k2 = −k2ux. The excitation pulse has an effective propagation vector ke = k12 = k12ux, where

k12 = k1 − k2, (8.44)

an effective two-photon frequency ωe = (|k1|+ |k2|) c = ωca, and an effective two-photon Rabi
frequency Ωca(t), while the readout pulse has propagation vector kout, frequency ωout = ωcb, and
Rabi frequency Ωcb(t). The waists of the excitation and readout pulses are centered at the center of
the atomic cloud at times t = 0 and t = T21, respectively. The trap fields are also centered at the
center of the atomic cloud. It is assumed that the radial extent of the excitation field is much smaller
than that of the trap fields. As a consequence, the trap fields can be taken to be constant over the
excitation volume. Moreover, we assume that the atoms are sufficiently cold that any transverse

motion can be neglected on a time scale equal to T21. For example, if the atoms are cooled to 10
µK, they move a distance of order 1.8 µm in 40 µsec. For T21 of order 40 µsec, the transverse
motion can be neglected if the waist of the excitation pulse is much greater than 1.8 µm. The pulse
durations are sufficiently short to neglect all motion during the pulses. With these simplifying
assumptions, the atomic density can taken to be constant over the excitation volume and the spatial
profiles of the excitation and readout pulses, fe (Rj) and fout (Rj) can be considered as classical

functions of atomic position.
The problem effectively reduces to a one-dimensional problem for quantized motion in poten-
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tials

Vα(X) = −Vα cos2 (ktrX) = −Vα + Vα sin
2 (ktrX) ;

α = a, c. (8.45)

It proves convenient to set

Vα =
1

2

Mω̃2
α

k2tr
; α = a, c, (8.46)

where M is the mass of the atoms - with this definition the motion near the bottom of the wells is
approximately harmonic with frequency ω̃α. We assume that all the atoms in the excitation volume
are trapped in the lattice wells - transitions out of the wells are not included. As such the motional
quantum numbers are simply those associated with the bound (or quais-bound) states of the lattice
potential. It is now a simple matter to piece together the signal.

Using Eq. (8.15), we find that the excitation pulse results in a density matrix

ρ̃(j)ca

(
0+
)
= −isin [Ae (Rj)]

2
ρ̃(j)aa

(
0−
)
, (8.47)

where

Ae (Rj) = fe (Rj)

∫ 0+

0−
dtΩca(t) (8.48)

and fe (R) is the (classical) spatial profile of the excitation pulse. From Eqs. (8.13b,8.13c), it then
follows that

ρI(j)ca

(
0+
)
= Uca(k12ux, 0)ρ̃

(j)
ca

(
0+
)
. (8.49)

Between t = 0 and t = T21 this coherence decays as a result of loss of population from level c with
rate Γc, such that

ρI(j)ca

(
T−
21

)
= e−γcT21ρI(j)ca

(
0+
)
, (8.50)

where γc = Γc/2. At time tout = T21 the readout pulse transforms the c− a coherence into a b− a

coherence which can be calculated using Eqs. (8.15) and (8.19) as

ρ
I(j)
ba

(
T+
21

)
= ρ̃

(j)
ba

(
T+
21

)
= −isin [Aout (Rj)]

2
ρ̃(j)ca

(
T−
21

)
= −isin [Aout (Rj)]

2
Ucb (−k2ux, T21)

† ρI(j)ca

(
T−
21

)
(8.51)

where

Aout (Rj) = fout (Rj)

∫ T+
21

T−
21

dtΩcb(t). (8.52)
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and fout (R) is the spatial profile of the readout pulse. For times t > T+
21,

ρ
I(j)
ba (t) = e−γb(t−T21)ρ

I(j)
ba

(
T+
21

)
, (8.53)

where γb = Γb/2 and Γb is the rate at which the level b population decays.
The detector is located at position Rd = Rdux, which is in the direction of phase-matched

emission. As a consequence, the vector kba appearing in Eq. (8.39) is

kba = (ωba/c)ux = k1ux. (8.54)

To achieve phase-matching, it is necessary that |k2 − kout|L ≪ 1, as is assumed. By combining
Eqs. (8.33), (8.42), (8.47)-(8.54), we find that the phase-matched signal emitted on the b − a

transition at a time τ = t− T21 following the readout pulse is given by

S (T21, τ) = e−ΓcT21e−ΓbτrJ2Θ(τr) |C(T21)|2 (8.55)

where
J =

µba

4

(
ω2
ba

4πϵ0c2

)∫
dR sin [Ae (R)] sin [Aout (R)] , (8.56)

τr = τ − Rd

c
= t− T21 −

Rd

c
, (8.57)

Θ is a Heaviside function, and

C(T21) = Tr
[
Uba (k1ux, T21)

† ρIba
(
T+
21

)]
= Tr

[
Uba (k1ux, T21)

† Ucb (−k2ux, T21)
†

×Uca [k12ux, 0] ρaa (0)

]
= Tr

[
Uca (k12ux, T21)

† Uca (k12ux, 0) ρaa (0)
]

= e−iωcq′;aqT21B†
aq;cq′ (k12ux)Bcq′;aq′′ (k12ux) ρq′′q (0) . (8.58)

The matrices B and B† are defined in Eqs. (8.7). The matrix Uba (kba, tr)
† appearing in Eq. (8.42)

has been evaluated at tr = T21, based on the assumptions that the atomic center-of-mass motion is
frozen during the readout pulse and that |ωbq;aq′ |Rd/c ≪ 1. Note that state b has dropped out of
the calculation. Equation (8.58) can be evaluated for various trap potentials. A normalized signal
that depends only on T21 and the nature of the lattice potentials can be defined by

S̃ (T21) =
S (T21, τ)

S (0, τ)
= e−ΓcT21 |C(T21)|2 . (8.59)

108



8.4.1 State-independent potentials

In general, Eq. (8.58) must be used to calculate C(T21), with matrix elements given by Eqs.
(8.7). However, for state-independent potentials, the internal state does not have to be specified in
calculating the matrix elements. In that case,

C(T21) = ⟨q| eiVaT21/ℏe−ik12Xe−iVcT21/ℏeik12X |q′⟩ ρq′q (0)

=
〈
e−ik12X̂(T21)eik12X̂(0)

〉
(8.60)

where X̂(Ts) and X̂(0) are Heisenberg operators. Of course, Eq. (8.60) is all but impossible to
evaluate except for free atoms or for atoms moving in a harmonic potential. For our specific choice
of potentials, we have

Va(X) = Vc(X) = V (X) = −V0 + V0 sin
2 (ktrX) , (8.61)

with
V0 =

1

2

Mω2

k2tr
. (8.62)

8.4.1.1 Harmonic potential

In the harmonic approximation, that is, when the level a and c potentials are replaced by

V (X) ∼ −V0 +
1

2
Mω2X2, (8.63)

it is possible to evaluate Eq. (8.60) directly, without reverting to Eq. (8.58). For Eq. (8.63) to be a
good approximation, a necessary condition is

V0
ℏω

=
1

2

Mω2

ℏωk2tr
=

1

4ζ2tr
≫ 1, (8.64)

where

ζtr = ktr

√
ℏ

2Mω
(8.65)

is the trap field Lamb-Dicke parameter.
In the harmonic approximation

k12X̂(T21) = k12

[
X̂(0) cos (ωT21) +

P̂ (0)

Mω
sin (ωT21)

]
= ζ

[
ae−iωT21 + a†eiωT21

]
, (8.66)
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where

ζ = k12

√
ℏ

2Mω
(8.67)

is the effective Lamb-Dicke parameter for the excitation field,

a =
ξ̂ + iν̂√

2
; (8.68a)

a† =
ξ̂ − iν̂√

2
, (8.68b)

ξ̂ =

√
Mω

ℏ
X̂(0); (8.69a)

ν̂ =
1√
ℏMω

P̂ (0), (8.69b)

such that

C(T21) =
〈
e−iζ[ae−iωT21+a†eiωT21 ]eiζ[a+a†]

〉
= e−iζ2 sin(ωT21)

〈
eσ(T21)a†−σ(T21)

∗a
〉
. (8.70)

with
σ (T21) = iζ

[
1− eiωT21

]
. (8.71)

The evaluation of the characteristic function〈
eσ(T21)a†−σ(T21)

∗a
〉

for various initial states can be found in standard texts [49].
For atoms prepared in a coherent state |α⟩,

C(T21) = e−iζ2 sin(ωT21)e−|σ(T21)|2/2eσ(T21)α∗−σ(T21)
∗α, (8.72)

and
|C(T21)| = e−|σ(T21)|2/2, (8.73)

with
|σ (T21)|2 = 2ζ2 [1− cos (ωT21)] . (8.74)

There is minimal dephasing for a small Lamb-Dicke parameter. This dephasing is a pure quantum
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effect, which vanishes in the limit that ℏ → 0. In the analogous classical problem, |C(T21)| = 1,
since all atoms have the same initial conditions.

If the atoms are prepared in a state having density matrix elements that are diagonal in the
number representation,

ρnn′(0) = Pnδn,n′ , (8.75)

then

C(T21) = Pne
−iζ2 sin(ωT21) ⟨n| eσ(T21)a†−σ(T21)∗a |n⟩

= e−iζ2 sin(ωT21)e−|σ(T21)|2/2Pn

×⟨n|
[
σ(T21)a

†]q [−σ(T21)∗a]p
q!p!

|n⟩ . (8.76)

Only terms with p = q enter the sum; moreover

ap |n⟩ =


√

n!
(n−p)!

|n− p⟩ p ≤ n

0 p > n
, (8.77)

such that

C(T21) = e−iζ2 sin(ωT21)e−|σ(T21)|2/2

×
∞∑
n=0

Pn

n∑
q=0

n!

(n− q)!

(−1)q |σ(T21)|2q

(q!)2

= e−iζ2 sin(ωT21)e−|σ(T21)|2/2
∞∑
n=0

PnLn

(
|σ(T21)|2

)
, (8.78)

where Ln (z) is a Laguerre polynomial.
If the atoms are prepared in a number state, Pq = δq,n

|C(T21)| = e−|σ(T21)|2/2Ln

(
|σ(T21)|2

)
. (8.79)

The value of C(T21) is identical for an initial coherent state and an initial vacuum state since the
spatial widths of both packets are identical and do not change in time. For a thermal state with

Pn =
(
1− e−β

)
e−nβ; β =

ℏω
kBT

, (8.80)
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|C(T21)| = e−|σ(T21)|2/2
(
1− e−β

) ∞∑
n=0

e−nβLn

(
|σ(T21)|2

)
= e−

1
2
|σ(T21)|2 coth(β/2) = e−ζ2[1−cos(ωT21)] coth(β/2). (8.81)

For a Poissonian distribution,
Pn = e−n̄ n̄

n

n!
, (8.82)

|C(T21)| = e−|σ(T21)|2/2e−n̄

∞∑
n=0

n̄n

n!
Ln

(
|σ(T21)|2

)
, (8.83)

which must be evaluated numerically. For large n̄, the result is similar to the result for a number
state having n = n̄. For a squeezed vacuum with squeeze parameter z = reiθ,

|C(T21)| =
∣∣∣⟨0| eg(T21)a†−g(T21)

∗a |0⟩
∣∣∣ = e−|g(T21)|2/2, (8.84)

where
g (T21) = σ(T21) cosh r + σ∗(T21)e

iθ sinh r (8.85)

For a squeezing parameter r ≫ 1, |C(T21)| ≪ 1, in general. Of course, C(T21) = 1 at the revival
times when ωT21 is an integral multiple of 2π. However, there is an additional time during each
period when there is a complete revival, occurring when ωT21 = θ ± (2n+ 1) π. For example,
when θ equals zero, additional revivals occur for values ωT21 that are odd integral multiples of π.
In this case, from Eq. (8.66),

k12

[
X̂(T21 = π/ω)

]
= −k12X̂(0). (8.86)

Since the momentum operator no longer appears, the signal can be optimized by squeezing the
spatial distribution. For values ωT21 = θ ± (2n+ 1) π, it is some combination of the momentum
and coordinate distributions that is squeezed.

In Fig. 8.2, we plot |C(T21)|2 as a function of ωT21 for initial pure number state and Poissonian
distributions, with ζ = 0.23. It is seen that if n̄ of the Poissonian distribution equals n of the number
state distribution, the two results do not differ by much. In Fig. 8.3, we plot |C(T21)|2 as a function
of ωT21 for initial coherent state (solid red curve) and squeezed vacuum state distributions (dashed
blue and solid black curves), with ζ = 0.23. The dashed blue curve is for squeezing parameters
r = 1.5, θ = 0 and the solid black for r = 4, θ = 0. The extra peaks at ωT21 = (2n+ 1) π are
a clear signature of the quantum nature of the initial motional state associated with the squeezed
vacuum.
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Figure 8.2: Plots of |C (T21)|2 as a function of ωT21 for a state-independent, harmonic lattice
potential and for initial number state and Poissonian distributions, with ζ = 0.23 The solid red and
green curves are for initial number state distributions with n = 1 and 15, respectively. The dashed
blue and black curves are for initial Poissonian distributions with n̄ = 1 and 15, respectively.
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Figure 8.3: Plots of |C (T21)|2 as a function of ωT21 for a state-independent, harmonic lattice
potential and for initial coherent state (solid red curve) and squeezed vacuum state distributions
(dashed blue curve - r = 1.5, solid black curve - r = 4), with ζ = 0.23.
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Classical limit We can take a classical limit of Eq. (8.60) by ignoring the commutator of X̂(Ts)

and X̂(0) and replacing the operators by their classical counterparts to arrive at

Ccl(T21) ∼
〈
e−ik12[X(T21)−X(0)]

〉
=
〈
e−ik12[X0[cos(ωT21)−1]+(v0/ω) sin(ωT21)]

〉
, (8.87)

where the average is now a classical average over the distribution of initial conditions. For a
thermal distribution,

W0 (X0, v0) =
Mω

2πkBT
exp

[
−1

2

Mv20 +Mω2X2
0

kBT

]
, (8.88)

we find

|Ccl(T21)| = e−2ζ2[1−cos(ωT21)]/β

= exp

[
−kBT

2V0

k212
k2tr

[1− cos (ωT21)]

]
, (8.89)

independent of ℏ. The classical [Eq. (8.89)] and quantum [Eq. (8.81)] results agree for β ≪ 1 (high
temperature limit). Somewhat remarkably, even for β = 1, the difference between the classical
and quantum predictions is small if the Lamb-Dicke parameter is less than or of order unity. For
β ≫ 1 (low temperature limit), |Ccl(T21)| ∼ 1, whereas |C(T21)| ∼ e−

1
2
|σ(T21)|2 . A comparison

of the classical and quantum results is shown in Fig. 8.4, with ζ = 0.23. The solid curves are the
quantum results and the dashed curves the classical results. It is seen that, even for β = 0.5, the
two results practically overlap. On the other hand, for very cold atoms, β = 10, the classical result
is almost equal to unity, whereas the quantum result still exhibits dephasing owing to the spread of
momentum in the ground state wave function.

8.4.1.2 Anharmonic motion

If the potential is not sufficiently deep for the harmonic approximation to be valid, it is necessary to
use the eigenfunctions and eigenenergies for a potential that varies as V0 sin2 (ktrX0) (the −V0 part
of the potential can be dropped since it plays no role in this calculation). The periodic eigenfunc-
tions and eigenvalues for a sin2 (ktrX0) potential are the so-called An and Bn+1 Mathieu functions
[50]. As long as the potential is sufficiently deep and the temperature sufficiently low, the only
eigenfunctions of importance are those associated with the quasi-bound states of the potentials for
which the An and Bn+1 Mathieu functions are nearly identical, as are the eigenenergies associated
with these eigenfunctions. This is the only limit we will consider.

The calculation of Eq. (8.58) must now be carried out numerically. For ζ = 0.23 and ζtr = 0.16,
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Figure 8.4: Plots of |C (T21)|2 and |Ccl (T21)|2 as a function of ωT21 for a state-independent, har-
monic lattice potential and for initial thermal distributions, with ζ = 0.23. The solid red and green
curves are the quantum results with β = 0.5 and 10, respectively. The dashed blue and black
curves are the corresponding classical results.
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Figure 8.5: Plots of |C (T21)|2 and |Ccl (T21)|2 as a function of ωT21 for a state-independent, an-
harmonic lattice potential and for an initial thermal distribution with ζ = 0.23, ζtr = 0.16, and
β = 0.41. The solid red curve is the quantum result, the dashed blue curve is the classical result,
and the dotted black curve is the quantum result for the corresponding harmonic potential.

results are shown in Figs. 8.5 and 8.6 as the solid red curves for β = 0.41 and β = 3, respectively.
The anharmonicity leads to a reduction of the amplitude of oscillation, as well as a decay of the
signal, owing to the continuous range of frequencies present in the response. For comparison the
results for the corresponding harmonic potential are shown as the dotted black curves in the figures.
Even in the case of cold atoms, β = 3, when the harmonic approximation is expected to be good,
the anharmonic and harmonic results begin to diverge at longer times, owing to the fact that small
changes in frequency can still lead to significant phase shifts for sufficiently long times.

Classical limit The fact that the classical and quantum results for a harmonic potential are nearly
identical for β ≲ 1 when ζ < 1 suggests that the quantum and classical results for a potential that
varies as V0 sin2 (ktrX) might also be nearly identical. The total energy associated with the center-
of-mass motion of an atom can be written as

E =
1

2

[
M

(
dX

dt

)2

+
Mω2

k2tr
sin2 (ktrX)

]
(8.90)
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Figure 8.6: Same as Fig. 8.5, but with β = 3.

where ω is defined by Eq. (8.62), and X and dX/dt are the position and velocity of the atom.
Setting ktrX = z and ωt = τ, and using Eqs. (8.67) and (8.80), we can rewrite the energy as

E =
βkBT

4ζ2tr

(
ż2 + sin2 z

)
, (8.91)

where the dot signifies differentiation with respect to τ .
The equation of motion for an atom moving in this potential is

z̈ = −sin z

2
. (8.92)

The solution of this equation can be written as

z(τ) = JacobiAmplitude

[
EllipticFunctionF

(
z0;

1
ϵ

)
+
√
ϵτ, 1

ϵ

]
, (8.93)

where
ϵ =

(
ż20 + sin2 z0

)
, (8.94)

z0 = z(0), and ż0 = ż(0), and JacobiAmplitude and EllipticFunctionF are built in functions in
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Mathematica. It then follows that, for a thermal distribution with E given by Eq. (8.91),

|Ccl (T21)|2 =

∫ π/2

−π/2
dz0
∫√1−sin2 z0

−
√

1−sin2 z0
dż0

×e
− β

4ζ2tr
(ż20+sin2 z0)−i[z(ωT21)−z0]

∫ π/2

−π/2
dz0
∫√1−sin2 z0

−
√

1−sin2 z0
dż0

×e
− β

4ζ2tr
(ż20+sin2 z0)

, (8.95)

where the integrals have been restricted to bound state motion. The integrals can be evaluated
numerically. In Figs. 8.5 and 8.6, |Ccl (T21)|2 is plotted as the dashed blue curves for β = 0.41 and
β = 3, respectively. As can be seen, the classical and quantum results are in good agreement for
β = 0.41, but differ somewhat for cold atoms, β = 3, when the classical picture is expected to fail.

8.4.2 State-dependent potentials

When the potentials are state-dependent, it is necessary to revert to Eq. (8.58). We consider only
harmonic potentials. From Eq. (8.58), it is seen that, for incommensurable frequencies ω̃a and ω̃c

of the motional states of the level a and c potentials defined in Eq. (8.46), there are no complete
revivals of the signal. On the other hand, if ω̃c = (m/n) ω̃a, where both m and n are integers and
n is the least common denominator, then revivals occur at integral multiples of ω̃aT21 = 2nπ. In
Figs. 8.7 and 8.8, we plot |C(T21)|2 as a function of ω̃aT21 for a thermal initial state with ζ = 0.23,
β = 3 or 0.41, and several values of s = ω̃c/ω̃a.

For cold atoms, β = 3, most of the initial population is in the ground state and only the fre-
quencies associated with the lowest transitions in both wells appear in the signal (Fig. 8.7). For
s = 1.05, these frequencies are not resolved and we see a slight damping of the signal. For s = 1.5

and s =
√
2, both frequencies are evident, as is the complete revival of the signal at ω̃aT21 = 4π

for s = 1.5. For s = 1.05 there is a complete revival (not shown) at ω̃aT21 = 40π.
The situation changes for hotter atoms, β = 0.41, since many transitions contribute to the

signal and tend to wash out the signal, as shown in Fig. 8.8. For s = 1.05, the signal is damped
- a complete revival would occur at ω̃aT21 = 40π. For s = 1.5, the complete revival is seen at
ω̃aT21 = 4π. Somewhat surprisingly, there is a partial revival for incommensurate frequencies,
s =

√
2. It is not difficult to understand why this occurs. If we write s = 1 + σ and insert

this into Eq. (8.58), we see that, for times ω̃aT21 = 2nπ/σ, the expression reduces to that for
a state-independent harmonic potential having frequency ω̃a. The value of |C(T21)|2 for a state-
independent potential is calculated using Eq. (8.81) as exp {−2ζ2 [1− cos (ω̃aT21)] coth(β/2)}.
For β = 0.41 and ζ = 0.23, |C(T21)|2 ≥ 0.35 so a partial revival is seen at integral multiples of
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Figure 8.7: Graphs of |C(T21)|2 as a function of ω̃aT21 for a state-dependent, harmonic lattice
potential and for a thermal initial state with ζ = 0.23, β = 3, and s = 1.05 (black, dotted curve),
s =

√
2 (blue, dashed curve) and s = 1.5 (red, solid curve).
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Figure 8.8: Graphs of |C(T21)|2 as a function of ω̃aT21 for a state-dependent, harmonic lattice
potential and for a thermal initial state with ζ = 0.23, β = 0.41, and s = 1.05 (black, dotted
curve), s =

√
2 (blue, dashed curve) and s = 1.5 (red, solid curve).
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ω̃aT21 = 2π/σ.
An additional effect enters the calculation that is not present for state-independent potentials.

Owing to the difference in the values of Vα the energy levels in the harmonic potentials are dis-
placed by different amounts. In other words, we have set

Vα(R) ≈ −Vα +
1

2
Mω̃2

αX
2; α = a, c, (8.96)

and have assumed that both ω̃α and Vα are independent of the transverse coordinate ρ. If
this assumption is not valid for Vα, C(T21) must be multiplied by an additional factor,
exp {−i [Vc(ρ)− Va(ρ)]T21/ℏ} and included in the average over the excitation field spatial pro-
files. This would result in a damping of the signal with increasing T21, making it difficult to observe
the revivals when the potentials differ significantly.

8.5 Specific Example: Raman Coherence - Transit-time Effects

We now turn our attention to the level scheme if Fig. 8.1 (b) and assume co-propagating excitation
fields with k1 ≈ k2. In this limit we can ignore the spatial phase factors in Eqs. (8.7). We
assume that we need only take into account transverse effects. As such, the only net effect that
we study in this section is one of transit-time loss and revival. The excitation fields carve out an
excitation volume, but atomic motion takes atoms out of this volume, an effect that is monitored
by the readout pulse. In essence, this is a quantum treatment of transit-time effects, which can
be compared with the classical results for free atoms [51] or atoms in traps. We consider only
harmonic traps and state-independent, harmonic potentials having characteristic frequency ω. The
readout field and two fields comprising the excitation field are assumed to have the same waist, we.

8.5.1 Classical Limit

We consider first the classical limit, for which the normalized signal can be written as

S̃ (T21) =
S (T21, τ)

S (0, τ)
= S̃cl (T21) , (8.97)

where

S̃cl (T21) =

∣∣∣∣Ccl (T21)

Ccl (0)

∣∣∣∣2 , (8.98)
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Ccl (T21)=
1

4

〈
sin
[
Aee

−2ρ(0)2/w2
e

]
× sin

[
Aoute

−ρ(T21)
2/w2

e

]〉
, (8.99)

ρ(0) = ρ0; (8.100a)

ρ(t) = ρ0 cos (ωt) +
v0

ω
sin (ωt) , (8.100b)

and the average is taken with the classical Maxwell-Boltzmann distribution given in Eq. (8.88).
With a change of variables to dimensionless coordinates, we find

Ccl (T21) =
1

16π2

∫ ∞

−∞
dy

∫ ∞

−∞
dvy

∫ ∞

−∞
dz

∫ ∞

−∞
dvz

×e−(y2+v2y)/2e−(z2+v2z)/2 sin
(
Aee

−κ2(y2+z2)
)

× sin

Aout exp

−κ
2

2

 (y2 + z2) cos2 (ωT21)

+
(
v2y + v2z

)
sin2 (ωT21)

+ (yvy + zvz) sin (2ωT21)



 ,

(8.101)

where

κ =

√
2kBT

Mω2w2
e

=
wth

we

, (8.102)

and

wth =

√
2kBT

Mω2
(8.103)

is the spatial width associated with the classical Boltzmann distribution at temperature T .
If the sin functions are expanded, all the integrals can be evaluated analytically and the result

expressed as

Ccl (T21) =
1

4

∞∑
n,m=0

(−1)n+mA
(2n+1)
e A

(2m+1)
out

(2n+ 1)! (2m+ 1)!

× 1

1 + κ2 (3 + 2m+ 4n)+2κ4 (2n+ 1) (2m+ 1) sin2 (ωT21)
. (8.104)
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Figure 8.9: Plots of S̃cl (T21) as a function of ωT21 for a state-independent, transverse harmonic
potential with β = 0.1 and κ = 1 (red and blue curves) ; κ = 5 (black and green curves). The solid
curves are for pulse areas (A1, A2) = (0.1, 0.1) and the dashed curves for (A1, A2) = (π/2, π/2).

In the perturbation theory limit, Ae, Aout ≪ 1,

Ccl (T21) ∼
AeAout/4

1 + 3κ2 + 2κ4 sin2 (ωT21)
(8.105)

and

S̃cl (T21) ∼
[
1 +

2κ4 sin2 (ωT21)

1 + 3κ2

]−2

. (8.106)

In Fig. 8.9, S̃cl (T21) is plotted as a function of ωT21 for β = 0.1, κ = 1, 5 and (A1, A2) =

(0.1, 0.1) , (π/2, π/2). The signal decays owing to transit time effects, but eventually revives for
ωT21 = nπ; that is, any atoms that leave the excitation volume return to it after each half-period of
oscillation. There is not much difference in the normalized signal for weak pulses and (optimal)
π/2 pulses. The transit time regime is shown in Fig. 8.10 for κ = 3, 8 and (A1, A2) = (0.1, 0.1) ,

(π/2, π/2). To a good approximation the perturbation theory result for κ2 ≫ 1 and ωT21 ≪ 1 is
the square of a Lorentzian,
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Figure 8.10: Plots of S̃cl (T21) illustrating transit-time decay as a function of ωT21 for a state-
independent, transverse harmonic potential with β = 0.1 and κ = 3 (red and blue curves) ; κ = 8
(black and green curves). The solid curves are for pulse areas (A1, A2) = (0.1, 0.1) and the dashed
curves for (A1, A2) = (π/2, π/2).
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S̃cl (T21) ∼
1[

1 + 2κ2(ωT21)
2

3

]2 , (8.107)

having half width

ωT21 =

√
3
(√

2− 1
)
/2

κ
. (8.108)

The classical results can be given a simple interpretation. In this picture involving classical
center-of-mass motion, any atom j that is in the initial excitation volume has a coherence ρ(j)ac

created by the excitation field. When probed by the readout field, atom j will contribute to the
phase matched signal, provided it is still in the excitation volume at the time of the readout pulse.
The time it takes an atom to leave the excitation volume is of order tcl = we/uth, where

uth =

√
2kBT

M
(8.109)

is the velocity width associated with the classical Boltzmann distribution at temperature T . There-
fore, we would expect a transit time width of order

ωtcl = ωwe/uth = 1/κ, (8.110)

which is what we found. Of course, at half-integral multiples of the trap period, any atom that was
excited initially is back in the excitation volume.

The quantity wth is the width of the Boltzmann distribution. For κ2 ≪ 1, the excitation field
width we is much larger than wth; as a consequence almost all the atoms are excited by the field.
The Maxwellian velocity distribution results in some loss of population from the excitation volume
as time progresses, but this is a minimal loss since very few atoms move outside this large excitation
volume in a trap period, implying that S̃cl (T21) ∼ 1. For 1 < κ2 ≪ 10, about a half to a quarter of
the atoms are excited by the first pulse. The velocity distribution of the chosen atoms is still given
by the initial Maxwellian distribution since there is no velocity selection in the excitation process.
Between the revival times a significant percentage of this population migrates out of the excitation
region, leading to a signal loss that depends on T21. For κ2 ≫ 10 only a very small fraction of the
atoms are excited and they quickly migrate out of the excitation volume. The signal in this case
is a series of spikes of unit amplitude at the revival times, with virtually no signal between those
times.
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8.5.2 Quantum Calculation

We want to derive the corresponding results for a quantum thermal distribution. We expect that
a quantum description is needed if either of two conditions are not met. First, when β ≫ 1,
most of the initial state population is in the quantum ground state, which introduces quantum
corrections. That is, the quantum and classical results will differ whenever β ≫ 1, even though
these differences may be small in an absolute sense if κ ≪ 1. The second condition can be
inferred from Eq. (8.81), where, even for β ≪ 1, there are quantum corrections of order βζ2. In
the transit-time calculation, ζ is replaced by ζe =

√
ℏ/2Mωw2

e and

βζ2 → βζ2e = β2κ2/4. (8.111)

Thus we can expect quantum corrections to contribute when βκ > 1, even if β ≪ 1. This is related
to the fact that the narrow spatial distribution that is excited when κ ≫ 1 can lead to uncertainties
in the momentum distribution (owing to the uncertainty principle) that are larger than those already
present in the thermal momentum distribution.

Since the normalized signal does not depend strongly on the pulse areas, it suffices to calculate
S (T21) in the quantum case assuming pulse areas much less than unity. The normalized signal,
written using dimensionless coordinates, factors into equal contributions from each of the trans-
verse coordinates. As a consequence, we can write

S̃ (T21) =

∣∣∣∣C (T21)

C (0)

∣∣∣∣4 (8.112)

where

C (T21) = e−iωcq′;aqT21 ⟨q| e−βκ2ξ2 |q′⟩ ⟨q′| e−βκ2ξ2/2 |q′′⟩

× ρaq′′;aq (0) , (8.113)

ξ is a dimensionless coordinate and the q’s are quantum numbers of a one-dimensional oscillator
potential. Transit time effects enter implicitly through the exponential time factors. The needed
matrix elements can be evaluated explicitly using

⟨q| e−g2ξ2 |q′⟩ =
(−2g2)

q+q′
2 Γ

(
1+q+q′

2

)
√
πq!q′! (1 + g2)

1+q+q′
2

× 2F1

(
−q,−q′, 1− q − q′

2
,
1 + g2

2g2

)
, (8.114)
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Figure 8.11: Plots of Scl (T21) and S̃cl (T21) for perturbative fields as a function of ωT21 for β = 0.1
and κ = 5 (red curve) ; κ = 10 (brown curve), and κ = 20 (black curve). The dashed blue curves
are the classical results for the same parameters.

where Γ is the gamma function and 2F1 is a hypergeometric function.
In the initial density matrix is diagonal,

ρqq′(0) = Pqδq,q′ , (8.115)

then
C (T21) = Pqe

−i(q′−q)ωT21 ⟨q| e−βκ2ξ2 |q′⟩ ⟨q′| e−βκ2ξ2/2 |q⟩ . (8.116)

For a thermal state with Pq =
(
1− e−β

)
e−qβ (β = ℏω/kBT ), Eq. (8.116) is evaluated numerically

using Eq. (8.114) for different values of β and κ2.
In Fig. 8.11, S̃ (T21) is plotted as a function of ωT21 for β = 0.1 and κ = 5; (βκ = 0.5),

κ = 10; (βκ = 1), and κ = 20 (βκ = 2), along with the classical result, S̃cl (T21). With increasing
values of βκ, the classical and quantum results begin to deviate.

In Fig. 8.12, S̃ (T21) is plotted as a function of ωT21 for κ = 1 and β = 1, 5, 10, along with
the classical result, S̃cl (T21). With increasing β, the signal deviates significantly from the classical
result. We can estimate the signal for β ≫ 1. In the limit of large β, Pq ≈ δq,0 and the sum in Eq.
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Figure 8.12: Plots of Scl (T21) and S̃cl (T21) for perturbative fields as a function of ωT21 for κ = 1
and β = 1 ( blue curve) ; β = 5 (brown curve), and β = 10 (black curve). The dashed red curve is
the classical result which is the same for all β if κ is held fixed.
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(8.116) can be carried out analytically. Using Eqs. (8.112)-(8.116), we find

S̃ (T21) ∼
1

1 + 4 sin2(ωT21)(β4κ8+3β3κ6+2β2κ4)

(2+3βκ2)2

. (8.117)

The result depends only on powers of βκ2, whereas the classical result, Eq. (8.112), depends only
on powers of κ. If κ ≥ 1, β ≫ 1 and ωT21 ≪ 1,

S̃ (T21) ∼
1

1 + 4(ωT21)
2β2κ4

9

(8.118)

which is a Lorentzian having half-width 3/ (2βκ2).

8.6 Summary

We have presented a theory of coherent transients in which a sequence of optical pulses is incident
on a sample of trapped atoms and gives rise to phase-matched emission from the sample. The
trapping potential for the atoms is state-dependent, in general, necessitating a quantum treatment of
the center-of-mass motion. To carry out the calculation we used a source-field approach, modified
to account for the quantized motion of the atoms. In the simplest version of the theory, all atomic
motion is frozen during the excitation pulses and during the time in which the signal is emitted. For
state-independent potentials, a comparison was made with a theory in which the motion is treated
classically.

Coherent transients from trapped atoms differ in a fundamental way from those for free atoms.
In the case of free atoms, the Doppler phase accumulated by the various coherences in the problem
are linear functions of time. As a result it is possible to use echo techniques to effectively eliminate
effects related to inhomogeneous broadening. With trapped atoms, no such methods can be used
since the motional phases are not linear in time. As such, the general use of coherent transients
in trapped atoms is to establish a long-lived coherence between two atomic levels that is only
marginally affected by the motion in the trapping potentials. In this manner, quantum coherence
can be stored in the sample and read out at a later time. Any deterioration of the signal resulting
from motional effects can be calculated using the techniques developed in this paper.

Two examples were given. In the first, a long-lived coherence was established between a ground
and Rydberg level for atoms trapped in a lattice potential. Phase-matched emission is produced
with the use of a readout pulse. The coherence loss produced by harmonic, anharmonic, and
state-dependent potentials was investigated. In the second example, a long-lived coherence was
established between two, ground state sublevels for atoms in a dipole trap, and also probed by a
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readout pulse. The dynamics of transit-time loss was probed in this example.
This work was supported by the ARL Center for Distributed Quantum Information, AFOSR,

and the National Science Foundation.

Appendix

We would like to return to the non-phase matched contribution to the signal give with j = j′ in Eq.
(8.32). This term can be written as

Snpm = R2
d ⟨E−(Rd, t) · E+(Rd, t)⟩

= Nµ2
baR

2
d

(
ℏωk′

2ϵ0V

)(
ℏωk

2ϵ0V

)
× sin θk sin θk′e

i(k−k′)·Rdϵ
(1)
k′ · ϵ(1)k

×
∫ t

0

dt′
∫ t

0

dt′′
〈
eik

′·R̂(t′′)σba(t
′′)σab(t

′)e−ik·R̂(t′)
〉

×eiωk′ (t−t′)e−iωk(t−t′), (8.119)

where N is the number of atoms. We have dropped the label j since all atoms contribute equally
to the signal - R̂(t′′) and σba(t′′) and Heisenberg operators of a given atom. It is not simple to
evaluate this expression in the Heisenberg representation if quantized motion must be taken into
account. In fact, the best method for evaluating this term is to use a Schrödinger equation approach
[29].

Going back one step in the calculation, we write

Snpm = NR2
d

(
ℏωk

2ϵ0V

)1/2( ℏωk′

2ϵ0V

)1/2

× ϵ
(1)
k · ϵ(1)k′

〈
a†kak′

〉
e−i(k−k′)·Rd . (8.120)

We have anticipated the fact that only the λ = 1 polarization enters the calculation for the
z−polarized excitation and readout pulses we are using. Only states that are diagonal in the atomic
quantum numbers contribute to the average value of

〈
a†kak′

〉
; moreover, in the RWA, the only non-

vanishing terms involve the ground internal states,〈
a†kak′

〉
≡ ρaq,k;aq,k′(t)e−iωkk′ t ≡ ρIaq,k;aq,k′(t)e−iωkk′ t, (8.121a)

where ωkk′ = ωk − ωk′ .
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The Hamiltonian is

H = ℏωa |a⟩ ⟨a|+ ℏωb |b⟩ ⟨b|

+ ℏωaq |aq⟩ ⟨aq|+ ℏωbp |bp⟩ ⟨bp|

+
[
ℏfkeik·Re−iωktσbaak + ℏf ∗

ke
−ik·Rjeiωkta†kσab

]
, (8.122)

where

fk = −iµba

(
ωk

2ℏϵ0V

)1/2

sin θk. (8.123)

From Schrödinger’s equation, it then follows that[29]

ρ̇Iaq,k;aq,k′ = ifk′Ubp;aq (k
′) ei(ω0−ωk′ )teiωbp;aqtρIaq,k;bp,0

− if ∗
kU

†
aq,bp (k) e

−i(ω0−ωk)teiωaq;bptρIbp,0;aq,k′ ; (8.124a)

ρ̇Ibp,0;aq,k′ = −γbρIbp,0;aq,k′ + ifk′Ubp′,aq (k
′)

× ei(ω0−ωk′ )teiωbp′;aqtρIbp,0;bp′,0, (8.124b)

along with the complex conjugates of these equations. In these equations, the zero subscript stands
for the vacuum state of the field, ω0 is the b− a transition frequency, and

Ubp,aq (k) =

∫
dR [ψbp (R)]∗ eik·Rψaq (R) ; (8.125a)

U †
aq,bp (k) =

∫
dR [ψaq (R)]∗ e−ik·Rψbp (R) , (8.125b)

such that
Ubp,aq (k)U

†
aq,bp′ (k) = U †

bp,aq (k)Uaq,bp′ (k) = δp,p′ . (8.126)

Equations (8.124) are in a form that is identical to the equations in Ref. [29] and can be solved
iteratively and substituted back into Eq. (8.120) as in that paper. The only difference is that the
matrix elements of U must be left in the form of Eqs. (8.125). In this manner, we obtain [see Eqs.
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(22), (23a), and (25) of Ref. [29]],

Snpm = N

(
µbaω

2
0 sin θ

4πϵ0c2

)2

Θ(τ)

×
∫
dR

∫
dR′ [ψbp′ (R)]∗ ψaq (R)

× [ψaq (R
′)]

∗
ψbp (R

′) e−γb(tR′−tR)

× eiω0tReiωbp′;aqtRρIbp,0;bp′,0 (tR) e
−iω0tR′eiωaq;bptR′

+ c.c., (8.127)

where

tR = t− tout −
|Rd−R|

c
≈ τ +

Rd·R
Rdc

; (8.128)

tR′ = t− tout −
|Rd−R′|

c
≈ τ +

Rd·R′

Rdc
; (8.129)

τ = t− tout −
Rd

c
(8.130)

When these equations are substituted into Eq. (8.127) and the terms involving the dot products are
retained only in the exponential terms containing ω0, we obtain

Snpm = 2N

(
µbaω

2
0 sin θ

4πϵ0c2

)2

Θ(τ)

×Ubp′;aq (kd, τ)U
†
aq;bp (kd, τ) e

i(ωbp′−ωbp)τρIbp,0;bp′,0 (τ) , (8.131)

where
kd = ω0Rd/c (8.132)

and

Ubp′;aq (kd, τ) = ⟨bp′| eiVb(R)τ/ℏeikd·Re−iVa(R)τ/ℏ |aq⟩ ; (8.133)

U †
aq;bp (kd, τ) = ⟨aq| eiVa(R)τ/ℏe−ikd·Re−iVb(R)τ/ℏ |bp⟩ . (8.134)

Finally, using Eq. (8.126), we arrive at

Snpm = 2N

(
µbaω

2
0 sin θ

4πϵ0c2

)2

ρbb (τ)Θ (τ) , (8.135)

where ρbb (τ) is the total population of level b at the retarded time. Equation (8.135) is a somewhat
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intuitive result - since the atomic motion is constrained to distances that are much less than Rd,
any retardation effects related to different motional states are not important and the non-phased
matched signal arises only from the total population in level b at time τ . Although this result is
intuitive, we have not found a way to derive it using the Heisenberg representation.
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CHAPTER 9

Differential Nuclear-Spin-Dependent Light Shifts
and State Mixing of Rydberg Atoms

9.1 Introduction

A promising platform for quantum information processing is based on the excitation of ultra-cold
atoms to Rydberg states [5]. Achieving long-lived ground-Rydberg atomic coherence is one of the
cornerstones of this approach. To suppress the effects of motional dephasing on this coherence,
the atoms can be confined in optical potentials that are identical for the ground and Rydberg states
[26, 27, 52, 53, 15, 28, 48]. However, in addition to confining the atoms, the optical trap fields also
mix and shift the Rydberg energy levels. As a consequence, the energy level spacing within a given
Rydberg manifold results from a complicated combination of optical field potentials, hyperfine
interactions, and interactions of the atoms with any external magnetic bias fields. A complete
understanding of this level structure is needed to maximize the fidelities for quantum information
protocols using trapped Rydberg atoms.

In this paper we present a theoretical and experimental study of 87Rb Rydberg atoms confined in
an optical lattice potential and subjected to an external magnetic field. For a given n, the frequency
of the lattice fields is chosen so as to match the light shift potentials for the ground and ns Rydberg
levels [15, 48]. Actually, it is not possible to match the ground state lattice potential to that of
all the hyperfine sublevels in a given ns level. For example, an ns level of 87Rb contains eight
sublevels. In general, the trapping potential differs for each of these levels and must be accounted
for in a complete analysis. Moreover, since the atoms are trapped in these potentials, it becomes
necessary to use a fully quantum theory for the atomic motion.

The trapped atoms are subjected to a two-photon pulse that excites the atoms to a targeted
Rydberg level, followed by a time-delayed readout pulse that leads to phase-matched emission
from the sample. By a proper choice of excitation field polarization, the output signal, measured
as a function of the time delay, contains components that oscillate at the frequency separations of
the ns Rydberg sublevels.
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Figure 9.1: (a) Experimental setup. An ultra-cold sample of 87Rb gas is trapped in a “magic”
one-dimensional optical lattice formed by a retro-reflected lattice beam ΩL that is directed along
the x axis and polarized in the y direction. Two excitation beams, Ω1 (420 nm) and Ω2 (varying
between 1013 nm and 1026 nm) counter-propagate along the x axis and are focused at the position
of the atomic sample cloud with ( 1

e2
) waists of 17 and 15 µm, respectively. After a time delay Ts

following the excitation pulse, a retrieval field ΩA generates a phase-matched output signal. The
polarization of field Ω2 and the retrieval field ΩA is fixed in the z-direction, whereas the polarization
of field Ω1 has both y and z components that are adjusted to optimize the modulation depth of the
output signal. The output signal has both y- and z- components which are mixed with a half-
wave plate, split by a polarizing beam splitter, and measured by single-photon detectors D1(2). (b)
Atomic level diagram showing the initial (|5s1/2, F = 2,m = 0⟩) state, intermediate (|6p3/2⟩), and
Rydberg |ns1/2⟩ sublevels. The final state manifold consists of two, spectrally resolved Zeeman
sub-manifolds, each containing four levels. Even in the presence of light shifts, mF = mJ +mI

remains a good quantum number. For this excitation scheme, the mF = 0,±1 levels in each
electronic Zeeman manifold are populated.

These frequency separations contain contributions arising from the magnetic field interaction,
hyperfine interaction and light shift potentials. To isolate these effects, we calculate the eigenkets
and eigenenergies of the Rydberg levels in the absence of light shifts and then determine to what
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extent the light shifts modify them. The light shifts themselves are composed of near-resonance
and ponderomotive contributions. The ponderomotive contribution, which includes effects related
to the breakdown of the dipole approximation [53], is a function of n, but for a given n, is the same
for all the sublevels. The near-resonance contribution both shifts and couples the sublevels. Rather
remarkably, we find that coupling of hyperfine – magnetic field eigenkets is almost negligible for
the range of our experimental parameters, although there was no a priori reason to believe that this
should be the case when the lattice field polarization is orthogonal to the magnetic field. As a result,
the only effect of the optical potential is to provide a differential shift for the Rydberg sublevels.
We are able to assess the role played by these differential light shifts and to determine what effect,
if any, they have on the atomic motion. In this way we determine the hyperfine constant A from
the measured frequency intervals for n ranging from 30 to 65. Previously, A values were measured
for low values of n using direct optical spectroscopy [54, 55]. In these experiments, residual
Doppler broadening resulted in a spectral resolution to about 100 kHz, limiting the method to
n ≤ 27. Millimeter-wave spectroscopy has been used for high-n states of atomic Cs, with kHz-
level resolution achieved using ultra-cold atoms [56]. In this work we achieve a resolution as low
as several kHz.

9.2 Experiment

The experimental setup and level diagram for one of our excitation schemes are shown in Fig. 1.
For the most part, the experimental setup is identical to the one used in our previous work Ref.[48].
The major difference is that the polarization of the field Ω1 in the current experiment has both y
and z components whereas it was z-polarized in the previous experiment. An ultra-cold sample of
Rb atoms is loaded into a one-dimensional optical lattice formed by counter-propagating optical
fields polarized along the y-axis. The measurements are made using a magnetic field B = 5

Gauss for which the electronic Zeeman splitting is much greater than the hyperfine separations of
the ns levels being studied, the so-called hyperfine Paschen-Back regime. In this case the ns1/2
Rydberg level splits into two manifolds, characterized by mJ = ±1/2, separated in frequency
by ≈ 14 MHz, with each manifold consisting of four mI-components. The ∼ 1 MHz two-photon
excitation bandwidth δν is much smaller than the frequency separation between the two manifolds.
The lattice wavelength λ ≃ 1012− 1027 nm is tuned to near-resonance with the |6p3/2⟩ ↔ |ns1/2⟩
atomic transition, the specific value chosen to match the optical potentials for the ground state and
the mF = mJ +mI = 0 component of the Rydberg Zeeman manifold.

The ensemble is driven resonantly to the Rydberg state |ns1/2⟩ using counter-propagating, Te =
1 µs-long, pulses of a 420 nm field Ω1 and a (nominally) 1012 nm field Ω2. The polarization
of Ω1, controlled by half-wave plate oriented at an angle θi/2 with respect to z-axis, is a linear
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combination of the y- and z-polarizations, while Ω2 is purely z-polarized. In this way three mI-
components in a given electronic Zeeman manifold of |ns⟩ are excited. After a storage period Ts,
the atoms are coherently driven by a (z-polarized) 10 µs-long retrieval field ΩA whose frequency
is resonant with the |ns⟩ ↔ |6p3/2⟩ transition . The ensuing cooperative emission on the |6p3/2⟩ ↔
|5s1/2⟩ transition is directed through a half-wave plate and polarizing beam splitter. Each of the
output polarization modes is collected into a single-mode fiber and directed onto a single-photon
detector.

9.3 Theory

The theoretical analysis is carried out in two stages. First we calculate the energy of the sublevels
of an ns Rydberg state of 87Rb subjected to a magnetic field B along z and a y-polarized optical
trap field whose frequency is nearly resonant with the |ns⟩ ↔ |6p3/2⟩ transition frequency. We then
use this result to obtain an expression for the phase-matched signal as a function of delay between
excitation and retrieval pulses. The details of the calculation are presented in the Appendix. Here
we summarize some of the results.

In the absence of all but the Coulomb interaction, there are 8 degenerate states in an nsmanifold
that can be labeled as |nLSJIFmF ⟩ with S = 1/2 and I = 3/2. The energy levels in a given
Rydberg ns manifold are determined by the hyperfine interaction, the magnetic field interaction,
and the optical potentials produced by the trap field. In a given basis, these interactions result in
a shift and coupling of the various Rydberg sublevels. In principle, it is necessary to diagonalize
the Hamiltonian associated with a given ns manifold to obtain the eigenenergies and eigenkets.
For our experimental parameters, however, the eigenkets that are obtained are approximately those
in which the optical potentials are set equal to zero. As such, mF = mJ +mI corresponds to an
approximate constant of the motion. We denote the zero field hyperfine separation of the ns state by
hνhfs (the n label is suppressed). It is a simple matter to obtain the eigenkets and eigenfrequencies
ωnsmF

of the ns levels in the absence of the trap field.
The optical potentials produced by the trap field can be broken down into two contributions.

First there is the ponderomotive potential associated with the A2 (A is the vector potential of the
trap field) contribution to the Hamiltonian and is the same for all the levels in the ns Rydberg
manifold. In addition, there is also the A · p contribution. Although the trap field is in near-
resonance with the |ns⟩ ↔ |6p3/2⟩ transition, the detuning of the trap field frequency from the
|ns⟩ ↔ |6p3/2⟩ transition frequency is not sufficiently large to justify the neglect of the hyperfine
splitting of the 6p3/2 sublevels. This results in optical potentials that are dependent on the mF

values of the ns Rydberg sublevels.
For magic wavelength lattices, one matches the ground and excited state trap potentials by a
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proper choice of the trap field detuning. In our case. it is not possible to simultaneously match the
potentials for all the Rydberg sublevels. With an external magnetic field strength of about 5 Gauss,
an ns manifold consists of two Zeeman sub-manifolds (corresponding to ms = ±1/2) separated
by about 14 MHz, each containing four of the eight sublevels of the ns Rydberg levels. As such,
the excitation fields can be chosen to excite only one of these Zeeman sub-manifolds (see Fig. 1).
For a given Zeeman sub-manifold, we match the mF = 0 potential to the ground state potential.
The trap potential for the other Zeeman sublevels will then differ from the ground state potential.

Both the near-resonant and ponderomotive components of the Rydberg optical potentials, as
well as the ground state optical potential, contain both lattice and non-lattice contributions. The
lattice contributions are responsible for trapping the atoms longitudinally in the wells of the poten-
tial. The remaining non-lattice contributions to the optical potentials trap the atoms in the trans-
verse direction and give rise to a spatially inhomogeneous shift of the levels owing the transverse
spatial dependence of the trap fields. The lattice potentials determine the center-of-mass motion
of the atoms. Since these potentials are state-dependent, the motion must be treated quantum me-
chanically. The spatial dependence of the non-lattice potentials results in a dephasing that degrades
the output signal with increasing time delay between the excitation and retrieval pulses.

The atoms are optically pumped into a single magnetic sublevel having angular momentum
F = 2 and magnetic quantum number mF = 0. Pulsed, counter-propagating fields incident along
the x−direction drive a two-photon transition from this ground state to the Zeeman manifolds of
an ns Rydberg level. The first excitation field propagates in the ux direction, has polarization given
by cos θiuz + sin θiuy, and is nearly resonant (but still far enough from resonance to neglect any
saturation effects) with the transition from the ground state to a single hyperfine state of either
the 6p3/2 or 5p1/2 manifolds (manifolds specified by the symbol pJ ), depending on the excitation
scheme. The detuning ∆ in Figure 1(b) is of order ∆/2π ≈ 12 MHz and the frequency spacing
of adjacent 6p3/2(F = 3) magnetic sublevels is ≈ 4.7 MHz. The second, counter-propagating
field couples each intermediate state magnetic sublevel labeled by mF to a single level in either the
upper (mJ = 1/2) or lower (mJ = −1/2) Zeeman sub-manifold having the same value of mF .

The excitation pulses create coherence between the F = 2, mF = 0 ground level and the
Rydberg sublevels. To monitor this coherence, a retrieval pulse, polarized in the z direction and
propagating in the −ux direction is applied at a time Ts following the excitation pulses. The field
is resonant with the same Rydberg - intermediate state transition used in the excitation process.
The excitation, readout, and vacuum fields combine to produce a phase-matched output field in
the ux direction that has both y and z polarization components. These components are mixed on a
half-wave plate to produce new vertical and horizontal components which are then separated by a
polarizing beam splitter and measured in two detectors.

It is shown in the Appendix that the signal at time Ts normalized to that at Ts = 1 µs, the
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vertical signal component can be written as

ηV (Ts) = SV (Ts)/SV (Ts = 1µs); (9.1)

where

SV (T s) =

∣∣∣∣∫ ∞

−∞
dX

∫ ∞

0

ρdρΛ(ρ,X)N (ρ,X)CV (ρ,X, T s)

∣∣∣∣2
×e−ΓnsTs , (9.2)

CV (ρ,X, Ts) =
2∑

mF=−1

qmax∑
q,q′

e−iωnsmF
TsQ(V )

pJnsmF

×e−2πiD̃
(j)
nsmF

(ρ,X)TsMgq;nsmF q′ (−k)

×MnsmF q′;gq (k) e
i
(
ω
(g)
q −ω

(nsmF )

q′

)
Tsρ1q,1q(0),

(9.3)

Λ(ρ,X) is proportional to the product of the spatially dependent Rabi frequencies of the excitation
and retrieval pulses and N (ρ,X) is the atomic density distribution. A loss factor, e−ΓnsTs/2, has
been added to allow for decay between the excitation and retrieval pulses owing to spontaneous
emission, black-body radiation, and decay from the intermediate state.

The factor CV (ρ,X, Ts) reflects the contributions to the signal from different initial motional
states in the ground state lattice potential, represented by density matrix elements ρ1q,1q(0). Here
ωnsmF

are eigenfrequencies of the Hamiltonian that account for differential light shifts, in addition
to the magnetic and hyperfine interactions. The frequencies ω(g)

q and ω(nsmF )
q′ are those associated

with the ground and nsmF lattice potentials, respectively, while D̃(j)
nsmF (ρ,X) is the spatially de-

pendent difference in non-lattice potentials between nsmF and ground state levels. The matrix
elements MnsmF q′;gq (k) represent the coupling between the ground and Rydberg motional states,
while the function Q(V )

pJnsmF incorporates all the excitation and retrieval dynamics. The sums over
q, q′, q′′ are restricted to (quasibound) states; that is, qmax is the number of bound states in the
potential.

9.4 Analysis of retrieved signal

Let us first consider the data for n = 40. As a function of delay time Ts between the excitation and
readout pulses, the overall signal decays, primarily as a result of blackbody-induced transitions and
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Figure 9.2: Normalized signal η ≡ F (Ts)/F (Ts = 1 µs) as a function of storage time for principal
quantum number n = 40 with fitted trap depth U0/kB = 31 µK and temperature T = 10 µK for
a single excited state (blue) and a triplet of states (red) using (θi, θd)=(0°, 24°) and (32°, 24°)
respectively. Solid curves are based on our theoretical model.

spontaneous decay. In addition to the overall decay, the signal exhibits an oscillatory behavior. If
the trap potentials are purely harmonic characterized by frequency ω and if the ground and Rydberg
potentials are matched, for a ground state thermal distribution,

ρ1q,1q(0) =
(
1− e−β

)
e−qβ; β =

ℏω
kBT

, (9.4)

the quantity CV in Eq. (9.3) can be written in the form [57]

|CV (T21)| ≈ e−2ζ2[1−cos(ωTs)]/β

×
∣∣1 +Q1e

−iω10Ts +Q−1e
−iω−10Ts

∣∣ , (9.5)

where

ζ = k12

√
ℏ

2Mω
(9.6)

is the Lamb-Dicke parameter for the excitation field (k12 is the effective propagation constant for
the two-photon excitation field and M is the atomic mass) and ωm0 (m = −1, 1) is the frequency
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difference between the Zeeman Rydberg sublevel having total magnetic quantum number m from
the level having m = 0. For n = 40, the quantity ωm0 results primarily from the hyperfine and
Zeeman interactions. For n = 40 the light shifts for the Rydberg sublevels can be neglected as
they have an insignificant effect on the signal. The frequency ω is determined by the depth of the
trap potential U0.

To fit our data we need to know the value of the trap depth U0 and the temperature T . We
obtain values for these quantities by fitting our data with the half-wave plate angle controlling the
polarization of the first excitation field to θi = 0. In this case, both the fields that constitute the
two-photon excitation scheme are z-polarized, and Q±1 = 0 in Eq. (9.5). The retrieved signal in
this case, displayed as blue diamonds in Fig. 9.2 exhibits the oscillatory behavior predicted by the
exponential term in Eq. (9.5), which can be attributed to the center-of-mass motion of the atom
within the optical lattice trap potential. In fitting the data to theory, however, we allow for trap
anharmonicity [see Eq. (9.3)] and extract values for U0 and T from the frequency and visibility
of the oscillations, respectively. A theoretical curve using the best-fit value of U0/kB = 31 µK

and T = 10 µK is displayed in the figure as a solid blue curve. If the potential were purely
harmonic, the signal would rephase at integral multiples of the trap frequency; however owing to
the trap anharmonicity, the oscillations are no longer purely periodic. Trap anharmonicity also
adds slightly to the decay of the signal.

Having obtained values of U0 and T , we switch the half-wave plate angle to an angle θi ̸= 0.
In that case the signal oscillates at the beat frequency between the different Rydberg sublevels.
Fitting the signal to the full theoretical expression given in Eq. (9.3) using the best-fit values
of U0 and T found previously allows us to extract the hyperfine splitting νhfs, treated as a free
parameter. The quantities Q(V )

nsmF appearing in Eq. (9.3) are also treated as adjustable parameters
in the fitting procedure to account for the uncertainties in the bandwidths, detunings and strengths
of the excitation and retrieval pulses. A representative output signal in one of the detectors is shown
in Fig. 9.2 with experimental data points displayed as red circles and theory as the solid red curve.
We find agreement between the experimental data and the best-fit models obtained via Markov
Chain Monte Carlo fitting. The input and output polarization angles θi = 32◦ and θi = 24◦ were
empirically chosen to maximize the visibility of the Rydberg Zeeman beat frequency oscillations.

We have also used an alternative excitation scheme with a smaller value of k12 that leads to
a diminished amplitude of the oscillations attributed to motion in the traps (see the dashed gray
curves in Figure 3). In this scheme atoms are optically pumped into the

∣∣5s1/2, F = 2,mF = 2
〉

ground state and using the 5p1/2 level as the intermediate state for two-photon excitation with fields
Ω1 and Ω1 having wavelengths of 795 nm and 475 nm. The signal in this case is shown in Fig. 3
for T = 4 µK and trap depths U0/kB = 22, 18, and 14 µK.

For n = 40, the light shifts do not significantly contribute to the separation between the three
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Figure 9.3: Normalized signal η utilizing the alternative excitation scheme via the intermediate
|5p1/2⟩ state and (θi, θd) = (32°, 24°) for the mJ = −1/2 electronic Zeeman component and
principal quantum number n = 60. Experimental data with best-fit values of temperature of 4 µK
and trap depths of Uo/kB = 22, 18 and 14 µK are shown as red circles, green diamonds, and blue
squares, respectively, along with color-coded curves that represent the predictions of a theoretical
model that take into account the state-dependence of the optical potentials. The dashed gray curves
correspond to a theory in which this state dependence is neglected and a single optical potential
is used (that of the mF = 0 sublevel). The solid gray theory curves correspond to an excitation
scheme in which field Ω1 is z-polarized.
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mF Rydberg sublevels that are excited. Moreover, the differential optical potentials for the three
states are sufficiently small to result in approximately the same motional states for the three levels.
This is no longer the case for higher values of n. For example, the theoretical curves shown in
Fig. 3 for n = 60, exhibit differences between the models assuming a single state independent
potential (that associated with the mF = mJ + mI = 0 level) and the true state-dependent po-
tentials. In addition, for higher values of n, effects of spontaneous decay from the

∣∣6p3/2〉 state,
which is coupled to the Rydberg levels by the trap fields adds to the signal decay rate. Moreover,
the dephasing associated with the breakdown of the dipole approximation in calculating the con-
tributions of the ponderomotive potential to the light shifts also increases the decay of the signal
[53]. Experimental data for n = 60 shown in Fig. 3 do not allow us to distinguish definitively
between the state-independent and state-dependent potential models.
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Figure 9.4: Average frequency separation between adjacent nuclear-spin states within the samemJ

manifold for the n = 60 Rydberg level as a function of trap depth for the upper (mJ = 1
2
), blue

circles) and lower (mJ = −1
2
, blue circles) electronic Zeeman manifold.

The measured frequency intervals as a function of trap depths are displayed in Fig. 9.4 for
the two electronic Zeeman components of the |60s1/2⟩ level, together with linear fits based on
Eqs. (9.12,9.32). The two intervals differ by the nuclear Zeeman interaction. The intervals in
the absence of the trapping potential are determined by the intercepts of the fits with the ordinate.
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Using Eq. (9.12) the value of the hyperfine splitting νhfs = 193 ± 5 kHz for the n = 60 Rydberg
state is determined.

For other values of n, fits similiar to those in Fig. 9.2 are made for a single value of the trap
depth. Each value of νhfs constitutes a weighted average of values obtained over up to three runs
using data recorded by the two detectors. The mean value νhfs is computed as a weighted average
of ν(i)hfs, with the weights being their inverse variances extracted from the individual fits.

The two main sources of uncertainty for νhfs are 1) the statistical which is evaluated as weighted
sum of the individual values, and 2) the uncertainty in the determination of the trap depth which
translates into an error of the inferred differential light shifts for the hyperfine Paschen-Back states.
The νhfs ∼ n−3, while differential light shifts scale as ∼ n3. As a result, the statistical uncertainty
is the dominant one for n = 30 and 40, whereas the error due to the uncertainty of the trap depth
is the larger one for states of n ≥ 51. The data are shown in Figure 5(a) along with a fit using
νhfs = C(n − 3.13)−3 with C as an adjustable parameter. In the inset to Figure 5 we plot the
scaled hyperfine constant Ans ≡ νhfs(n− 3.13)3. The weighted average Ans = 35.71± 0.18 GHz
is plotted as a dashed line together with a corresponding 95% confidence region. Also shown are
the results of prior measurements of Ans [58, 54, 55, 59, 60].

9.5 Conclusions

In summary, we have analyzed nuclear-spin manifolds associated with the ns Rydberg levels of
87Rb atoms placed in magnetic and optical lattice fields. Using the eigenvalues and eigenkets for
the Rydberg manifold, we have investigated the dynamics of phase-matched emission following
illumination of an ensemble of cold atoms with excitation and readout laser pulses. In this way,
Rydberg state-dependent light shifts and hyperfine splittings for principal quantum numbers be-
tween n = 30 and n = 65 have been determined. Our results have relevance to implementations
of optically-trapped Rydberg qubits allowing for high-fidelity quantum gates.

This work was supported by the ARL Center for Distributed Quantum Information, AFOSR,
and the National Science Foundation.

9.6 Theoretical Details

9.6.1 Basis Set and Hamiltonian

We consider an ns Rydberg level of 87Rb subjected to a magnetic field B along z and a y-polarized
optical trap field nearly resonant with the |ns⟩ ↔ |6p3/2⟩ transition frequency, as shown in Fig. 1.
The trap fields counter-propagate in the x direction. The atom-field detuning between the trap field
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Figure 9.5: Hyperfine frequency νhfs as a function of principal quantum number n. The inset
depicts the same data after removing the (n − 3.13)−3 dependence. The red band represents a
95% confidence interval for our fitted value. Gray intervals are data from Corney 2010 (green),
Tauschinsky et al. 2013 (purple), Li et al. 2003 (orange), and Meschede 1987(blue).

frequency and the |ns⟩ ↔ |6p3/2⟩ transition frequency is much larger than the Zeeman splitting of
the 6p3/2 or ns sublevels. We use the |nLSJIFmF ⟩ basis throughout with S = 1/2 and I = 3/2.

To simplify the notation we write the state kets for the ns states as |nFmF ⟩, since L = 0 and
J = 1/2 for these states. We denote the zero field hyperfine separation of the ns state by hνhfs
(the n label is suppressed).

In the absence of all but the Coulomb interaction, there are 8 degenerate levels in an ns man-
ifold, each having energy E(0)

n = ℏωns - we neglect this contribution to the Hamiltonian since it
is the same for all the levels. Next there is the contribution to the Hamiltonian from the hyper-
fine interaction, denoted by Hhf . In the |nFmF ⟩ basis, this contribution is diagonal and given in
frequency units by

⟨nF ′m′
F |Hhf |nFmF ⟩

h
= νhfs

{
3
8
δF,2

−5
8
δF,1

δF,F ′δmF ,m′
F
, (9.7)

146



where δa,b is a Kronecker delta. Finally, there is the magnetic field interaction contribution,

HB = −β0B
ℏ

(
gsSz + gI

me

mp

Iz

)
, (9.8)

where β0 is the Bohr magneton and gI = −0.995×10−3 [61] is the nuclear g−factor. In frequency
units,

HB

h
=

β0B

h

(
2Sz + gI

me

mp

Iz

)
/ℏ

= 1.40(MHz)B(Gauss)
(
2
Sz

ℏ
+ 0.995× 10−3 Iz

ℏ

)
.

(9.9)

The interaction Hamiltonian HB is not diagonal in the |nFmF ⟩ basis, with matrix elements given
by

⟨nF ′m′
F |HB |nFmF ⟩ /h = νB

∑
ms,mI

[
1
2

3
2

F ′

ms mI mF

]
(9.10)

×

[
1
2

3
2

F

ms mI mF

] (
2ms + 0.995× 10−3mI

)
δmF ,m′

F
,

(9.11)

where νB = β0B/h is the Larmor frequency in Hz and the quantity in square brackets is a Clebsch-

Gordan coefficient. The modification to the eigenvalues from the nuclear term must be included
because of the sensitivity of the experiment to the shift produced by this term, but the eigenkets
can be calculated neglecting this contribution.

It is simple to diagonalize Hhf +HB since it is block-diagonal. The eigenfrequencies are equal
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to

νn8 =
3νhfs
8

+ νB mF= 2

νn7,n1 =
−νhfs ± 4

√
ν2hfs + 2νhfsνB + 4ν2B

8
mF= 1

νn6,n2 =
−νhfs ± 4

√
ν2hfs + 4ν2B

8
mF= 0

νn5,n3 =
−νhfs ± 4

√
ν2hfs − 2νhfsνB + 4ν2B

8
mF= −1

νn4 =
3νhfs
8

− νB mF= −2 (9.12)

and the eigenkets can be written as |nνnimF ⟩, where i labels the frequency νni of each level (these
eigenkets are not written explicitly). In the limit that νB ≫ νhfs, approximately satisfied in our
experiment (Pashen-Back region), one recovers the |msmI⟩ eigenkets with associated energy levels
±hνB, corrected by hνhfsmsmI/2 (spacing about hνhfs/4). In the upper Zeeman sub-manifold the
energy order (from highest to lowest) is mF = 2, 1, 0,−1 and in the lower Zeeman sub-manifold
it is mF = −2,−1, 0, 1.

9.6.2 Optical Potentials

We now need to calculate the contributions to the Hamiltonian arising from the trap field. In a
paraxial approximation, the trap electric field, E(R, t) = E(R, t)uy, is taken as

E(R, t) =
1

4

[
E+(ρ,X)eikLX + E−(ρ,X)e−ikLX

]
e−iωLt

+c.c., (9.13)

where
E±(ρ,X) = E±,0

w±,0

w±(X)
e−ρ2/w2

±(X), (9.14)

ρ is the coordinate transverse to X , E±,0 are the field amplitudes for the trap fields propagating to
the right and left, w±,0 are the waist radii of these fields,

w±(X) = w±,0

√
1 +

(X −X±,0)
2

X2
±,r

, (9.15)

X±,r = πw2
±,0/λL are Rayleigh lengths, X±,0 are the positions of the foci of the beams, and λL =

2π/kL = 2πc/ωL is the wavelength of the trap beam. We have allowed for unbalanced beams,
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that is, the beams propagating in the ±X directions can have different waists and be centered at
different positions.

The detuning of the trap field frequency from all the ground to excited state transition frequen-
cies is sufficiently large to insure that the optical potential is the same for all ground state sublevels.
The ground state optical potential is

Ug = −1

2
αg

∣∣Ē(R)
∣∣2 (9.16)

where ∣∣Ē(R)
∣∣2 = 1

8

[
4E+(ρ,X)E−(ρ,X) cos2 (kLX)

+ [E+(ρ,X)− E−(ρ,X)]2

]
(9.17)

and αg is the ground state polarizabilty. The trap depth U0(ρ,X) of the ground state optical poten-
tial is given by

U0(ρ,X) = hŨ0(ρ,X) =
1

4
αgE+(ρ,X)E−(ρ,X), (9.18)

where
Ũ0(ρ,X) =

1

4h
αgE+(ρ,X)E−(ρ,X) (9.19)

is the trap depth in frequency units. Therefore we can write

Ũg(ρ,X) = Ug(ρ,X)/h

= −Ũ0(ρ,X)

[
cos2 (kLX) +

[E+(ρ,X)− E−(ρ,X)]2

4E+(ρ,X)E−(ρ,X)

]
. (9.20)

The optical potential associated with an ns Rydberg level has been calculated previously [48,
57] and consists of two parts. First there is the ponderomotive potential associated with the A2 (A
is the vector potential of the trap field) contribution to the Hamiltonian and is the same for all the
levels in the ns Rydberg manifold. Explicitly the ponderomotive potential is given by

Upon
n (ρ,X) = −|αf |

16

 4θnE+(ρ,X)E−(ρ,X) cos2 (kLX)

+
[
E+(ρ,X)− E−(ρ,X)

]2
+2E+(ρ,X)E−(ρ,X) (1− θn)

 (9.21)

where
αf =

(
− e2

meω2
L

)
(9.22)

is the free electron polarizability, and θn is a ”landscape” factor [53].
In addition to the ponderomotive contribution to the Hamiltonian, there is also the A · p contri-

bution. Although the A · p contribution contains a sum over all intermediate states, the trap field
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is in near-resonance with the |ns⟩ ↔ |6p3/2⟩ transition and we can restrict the the sum to only
the hyperfine states in the 6p3/2 manifold. In that limit it makes no difference whether we use the
A · p or E · r form of the interaction potential. However, the detuning of the trap field frequency
from the |ns⟩ ↔ |6p3/2⟩ transition frequency is not sufficiently large to justify the neglect of the
hyperfine splitting of the 6p3/2 sublevels. This results in optical potentials that are dependent on
the mF values of the ns Rydberg sublevels.

The interaction Hamiltonian associated with this nearly resonant contribution is denoted by Hr,
having matrix elements in frequency units given by [62]

⟨nF ′m′
F |Hr |nFmF ⟩
h

=
∑
K,Q

SF ′F (K)

[
F ′ K F

m′
F Q mF

]
εKQ , (9.23)

where

SF ′F (K) =
∑
H

(−1)F
′+H+K χ+

H;nF (ρ,X)χ−∗
H;nF ′(ρ,X)

2π∆ns,H

× [(2K + 1) / (2F + 1)]1/2
{
F F ′ K

1 1 H

}

×

[
cos2 (kLX) +

[E+(ρ,X)− E−(ρ,X)]2

4E+(ρ,X)E−(ρ,X)

]
,

(9.24)

χ±
H;nF (ρ,X) = −µH;nFE±(ρ,X)/2ℏ, (9.25)

µHF is the reduced matrix element of the dipole moment operator between hyperfine states H of
the 6p3/2 level and the nsF Rydberg level, the quantity in braces is a 6-J symbol,

∆ns,H = ωL − ωns,H (9.26)

is an atom-field detuning for the transition between hyperfine states H of the 6p3/2 level and the
Rydberg level ns,

εKQ =
∑
q,q′

(−1)q
′
ϵq (ϵ−q′)

∗

[
1 1 K

q q′ Q

]
, (9.27)

eq are spherical components of the polarization ϵ, and

ϵ±1 = ∓ϵx ± iϵy√
2

; ϵ0 = ϵz. (9.28)
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Note that the sum over H consists of the 4 hyperfine levels of the 6p3/2 state (H = 0, 1, 2, 3). For
a y- polarized field (ϵx = ϵz = 0; ϵy = 1) ,

ϵ±1 = − i√
2

; ϵ0 = 0, (9.29)

and

ϵKQ (y)= − 1√
3
δK,0δQ,0

− δK,2

[
1√
6
δQ,0 +

1

2
(δQ,2 + δQ,−2)

]
. (9.30)

The reduced Rabi frequency χH;nF can be written in terms of that in the J basis as

χH;nF = χ6p3/2,ns1/2(−1)F+1
√
(2F + 1) (2H + 1)

×

{
3
2

1 1
2

F 3
2

H

}
, (9.31)

implying that the optical potential for each sublevel is proportional to

χ+
6p3/2,ns1/2

(ρ,X)χ−∗
6p3/2,ns1/2

(ρ,X).

9.6.3 Rydberg Level Eigenfrequencies

In principle, we should now diagonalize the entire ns subspace. It turns out, however, that the
effects of the optical potential can be treated using first order perturbation theory if the basis eigen-
kets associated with the eigenvalues given in Eq. (9.12) are used. That is when we transform the
optical potential to this basis, it is effectively diagonal for our experimental parameters. Using
such a procedure we can write the near-resonant contribution to the energy of each level νni of the
manifold as

U r
νni

(ρ,X) ≈ −hbνni
(ρ,X)

×

[
cos2 (kLX) +

[E+(ρ,X)− E−(ρ,X)]2

4E+(ρ,X)E−(ρ,X)

]
, (9.32)

where bνni
is in frequency units. The values of bνni

are the diagonal elements of theHr contribution
to the Hamiltonian, when the |nFmF ⟩ eigenkets are expanded in terms of the |nνnimF ⟩ eigenkets
associated with the eigenfrequencies given in Eq. (9.12). The bνni

values depend on the detuning
of the of the trap fields from each of the hyperfine levels of the 6p3/2 manifold as well as the matrix
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elements connecting these hyperfine levels to the ground and Rydberg levels - as a consequence
of the different matrix elements, the bνni

are different for each of the Rydberg sublevels. The
ponderomotive contribution to the energy is given in Eq. (9.21).

Both the near-resonant and ponderomotive components of the Rydberg optical potentials, as
well as the ground state optical potential, contain both lattice [terms proportional to cos2 (kLX)]
and non-lattice contributions. The lattice potentials can result in a differential level shift for the
Rydberg levels, owing to the fact that the trap depth differs for the different Rydberg sublevels. To
account for this differential shift, we write cos2 (kLX) = 1− sin2 (kLX). The resulting terms that
are proportional to sin2 (kLX) constitute the lattice potential and “1” contributes to the non-lattice
potential.

For our magnetic field strength of about 5 Gauss, the two Zeeman sub-manifolds, each contain-
ing four of the eight sublevels of the ns Rydberg level, are separated by about 14 MHz. As such,
the excitation fields can be chosen to excite only one of the Zeeman sub-manifolds. Thus we need
consider only the optical potentials of four levels at a time. For magic wavelength lattices, one
matches the ground and excited state trap potentials by a proper choice of the trap field detuning.
In our case. it is not possible to simultaneously match the potentials for all the Rydberg sublevels.
For a given Zeeman sub-manifold, we match the mF = 0 potential. Using Eqs. (9.20), (9.21), and
(9.32), we find the matching condition is

bns,mF=0(ρ,X) = Ũ0(ρ,X)

(
1 +

|αf |
αg

θn

)
, (9.33)

where the mF value now uniquely labels the energy of a level in each Zeeman sub-manifold. Then
the differences in the non-lattice part of excited and ground state potentials, written in frequency
units, are

D̃nsmF
(ρ,X) = ŨnsmF

(ρ,X)− Ũg(ρ,X)

= Ũ0(ρ,X)
|αf |
2αg

(1− θn) [1 + 2r(ρ,X)]

− [bnsmF
(ρ,X)− bns,mF=0(ρ,X)] [r(ρ,X) + 1] , (9.34)

where

r =
(E+ − E−)

2

4E+E−
. (9.35)

The spatial variations of Ũ0(ρ,X) at the different atomic positions lead to a dephasing which
degrades the output signal.
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The ground and excited state lattice potentials are approximated by

Ũg(ρ,X) = Ũns0(X) ≈ Ũ0(0, 0) sin
2 (kLX) ;

(9.36a)

ŨnsmF
(X) ≈ bnsmF

(0, 0)

bns,mF=0(0, 0)
Ũ0(0, 0) sin

2 (kLX).

(9.36b)

The lattice potentials determine the center-of-mass motion of the atoms. Since these potentials are
state-dependent, the motion must be treated quantum mechanically. The spatial dependence of Ũ0

is neglected in calculating the motional states - that is, Ũ0 is evaluated at the center of the atomic
cloud. The justification for this approximation is traced to the fact that the transverse width of
the excitation fields is much less than that of the trap fields - the trap potential is approximately
constant over the excitation volume. Even though Ũ0 does not vary that much over the excitation
volume, it still can have an effect when it appears in phases for sufficiently long times - that is why
such effects must be included in D̃nsmF

.

9.6.4 Excitation Scheme

The atoms are optically pumped into a single magnetic sublevel having angular momentum quan-
tum number G and magnetic quantum number mG. Counter-propagating fields incident along the
x−direction drive a two-photon transition from this ground state to the Zeeman manifolds of an
ns Rydberg level. We consider only transitions into the four levels of the upper Zeeman manifold
(mJ = 1/2). These are spectrally isolated from the lower Zeeman manifold. Transitions to the
lower manifold can be treated by the same formalism. The two-photon transition is via one of
the hyperfine levels (labeled by its angular momentum quantum number H) of an intermediate np
state. The first of the excitation fields is nearly resonant (but still far enough from resonance to
neglect any saturation effects) with the ground to intermediate state transition and has polarization
given by cos θiuz + sin θiuy. The second field completes the transition to the Rydberg sublevels
and is polarized in the z direction. At this point in the calculation, we neglect any motion of the
atoms; that is we assume the atoms are at fixed positions. The expressions to be derived will then
be generalized to account for the motion of the atoms in the trap potentials.

9.6.4.1 First step

In perturbation theory and in an interaction representation, the intermediate state amplitudes evolve
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approximately as

cpJHmH
=

Ω1(ρ,X)f1(t)e
−i∆mH,mG

t

2
√
2H + 1∆mH ,mG

P (mG,mH , θi),

(9.37)

where

P (mG,mH , θ) =



cos θ

[
G 1 H

mG 0 mH

]

+ i sin θ√
2

[
G 1 H

mG 1 mH

]

+ i sin θ√
2

[
G 1 H

mG −1 mH

]


, (9.38)

Ω1(ρ,X) = −E1(ρ,X)

ℏ
⟨pJH∥µ ∥G⟩ , (9.39)

∆mH ,mG
= ωL1 − ωmH ,mG

(9.40)

⟨pjH||µ||G⟩ is a reduced matrix element, pJ is a label for the intermediate state, ωmH ,mG
is the

frequency difference between the mH hyperfine level and the mG ground state level, ωL1 is the
frequency of the first excitation field, E1(ρ,X) its amplitude, and f1(t) is its envelope function. It
is assumed that the field is in near resonance with a single hyperfine level H of either the pJ = 6p

or pJ = 5p manifolds, depending on the excitation scheme. Although in near-resonance, the
detunings ∆mH ,mG

satisfy ∆mH ,mG
Tpe ≫ 1 and γH/ (2∆mH ,mG

) ≪ 1, where Tpe is the excitation
pulse duration and γH is the decay rate of the intermediate state; as a consequence of the first
inequality, the intermediate state amplitude adiabatically follows the field amplitude. Note that
∆0,mG

corresponds to ∆ in Figure 1(b). In our experiment, ∆/2π ≈ 12 MHz, Tpe ≈ 1.0 µs, and
the frequency spacing between the adjacent 6p3/2(H = 3) magnetic sublevels is ≈ 4.7 MHz.

9.6.4.2 Second Step

The second excitation field, which is applied simultaneously with the first, couples each interme-
diate state magnetic sublevel labeled by mH to a single level in the upper Zeeman (mJ = 1/2)
sub-manifold having the same value, mF = mH , which remains a good quantum number. Since
the final states are approximate eigenstates of Iz and Jz (Paschen-Back region), it is convenient to
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use the mJmI basis for these final excited states. Thus, we write

ċns,1/2,mI
=
iE2(ρ,X)f2(t)

2ℏ
cpJHmH

(t)

×
∑
mH

e−i∆mJmI,HmH
t ⟨ns,mJ = 1/2,mI |µz |pJHmH⟩ ,

(9.41)

where
∆mJmI ,mH

= ωL2 − ωmJmI ,mH
, (9.42)

ωmJmI ,mH
is the frequency difference between the nsmJmI Rydberg level and the mH hyperfine

level, ωL2 is the frequency of the second excitation field, E2(ρ,X) its amplitude, and f2(t) is its
envelope function. The kets |pJHmH⟩ are expanded as

|pJHmH⟩ =
∑

m′
I ,m

′
J

[
Jp 3/2 H

m′
J m′

I mH

]
|pJ ,m′

J ,m
′
I⟩ . (9.43)

and substituted into Eq. (9.41). In the resulting expression, only those matrix elements having
m′

J = mJ = 1/2 and m′
I = mI contribute in Eq. (9.41); as a consequence, we find

ċns,1/2,mI
= −iΩ2(ρ,X)Ω1(ρ,X)f1(t)f2(t)

4
√
2pJ + 1

√
2H + 1

×e−i∆mJmI,mG
t
∑
mH

P (mG,mH , θi)

∆mH ,mG

×

[
Jp 1 1/2

1/2 0 1/2

][
Jp 3/2 H

1/2 mI mH

]
,

(9.44)

where Jp is the angular momentum of the intermediate p state,

Ω2(ρ,X) = −E2(ρ,X)

ℏ
〈
ns1/2

∥∥µ ∥pJ⟩ , (9.45)

∆mJmI ,mG
= ωL1 + ωL2 − ωmJmI ,mG

, (9.46)
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ωmJmI ,mG
is the frequency difference between the nsmJmI Rydberg level and the mG ground

level, and we have used Eq. (9.37). If we define

K (mG,mH ,mJ ,mI) =
P (mG,mH , θi)

∆mH ,mG

×
∫ ∞

−∞
dtf1(t)f2(t)e

−i∆mJmI,mG
t, (9.47)

then

c1/2,mI
(0+) = − iΩ2(ρ,X)Ω1(ρ,X)

4
√
2H + 1

√
2Jp + 1

×
∑
mH

K (mG,mH , 1/2,mI)

[
Jp 1 1/2

1/2 0 1/2

][
Jp 3/2 H

1/2 mI mH

]
, (9.48)

where 0+ is a time immediately following the excitation pulses. Only a single term, one having
mH = 1/2 +mI enters the sum - that is, each intermediate state is coupled only to a single final
state in the upper Zeeman manifold having the same value of mF . A specific example is given
below in Sec. 9.6.7.

9.6.5 Retrieval Pulse

The excitation pulses create coherence ρGmG,nsmJmI
between the ground GmG level and the

nsmJmI Rydberg sublevels. The relative values of ρGmG;nsmJmI
for differentmJmI is determined

by the polarization of the excitation fields. To monitor this coherence, a retrieval pulse, polarized
in the z direction and propagating in the same direction as the second excitation field is applied
at a time Ts following the excitation pulses. The field is resonant with the the same Rydberg -
intermediate state transition used in the excitation process . The retrieval pulse creates coherences
ρGmG;pJHmH

which lead to phase matched emission on the ground to intermediate state transition
in the same direction as the first excitation field. In general, this emission will have polarization
components in both the y and z directions

The retrieval pulse drives transitions between states having the same value of mF . The appro-
priate equations of motion are

ċpJHmH
= −γH

2
cpJHmH

+
iEr(ρ,X)fr(t− Ts)

2ℏ
e
i∆r

mH ;1/2,mI
t

×⟨pJHmH |µz |nsmJmI⟩ cmJmI
, (9.49)
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where
∆r

mH ,mJmI
= ωLr − ωmJmI ,mH

. (9.50)

ωLr is the frequency of the of the retrieval pulse, Er(ρ,X) its amplitude, and fr(t − Ts) is its
envelope function. The field frequency can be chosen to insure that ∆r

mH ,mJmI
= 0 for a given

value of mH but, owing to the Zeeman splitting in the intermediate state, it cannot be equal to zero
for all values of mH .

Following the same procedure we used for the excitation field, we find

ċpJHmH
= −γH

2
cpJHmH

−i Ωr(ρ,X)

2
√

2Jp + 1
fr(t− Ts)e

i∆r
mH ;1/2,mH−1/2

t

×

[
Jp 1 1/2

1/2 0 1/2

][
Jp 3/2 H

1/2 mH−1/2 mH

]
cns,1/2,mH−1/2, (9.51)

where
Ωr(ρ,X) = −Er(ρ,X)

ℏ
⟨pJ∥µ

∥∥ns1/2〉 . (9.52)

In contrast to the excitation pulse, the duration of retrieval pulse is greater than γ−1
H ; moreover, its

Rabi frequency is typically larger than γH so as to collect the output signal on a time scale of order
γ−1
H . As such a perturbation treatment is no longer valid and Eq. (9.51) must be solved numerically

along with the corresponding equation for ċnsmJmI
. This solution provides values for cpJHmH

(t) in
terms of cnsmJmI

(0+), which can be used to calculate the radiated signal. Since we are considering
only a single Zeeman sub-manifold with mJ = 1/2 and a single value of H , there is no sum in Eq.
(9.51). Only a single value of H and mI = mH − 1/2 are present in the equation. If we write

∆r
mH ;1/2,mH−1/2t = ∆r

mH ;1/2,mH−1/2Ts

+∆r
mH ;1/2,mH−1/2 (t− Ts) , (9.53)

then the formal solution of Eq. (9.51) is given by

cpJHmH
(t) = RpJHmH ;nsmJmI

(t− Ts)

×ei∆
r
mH ;1/2,mH−1/2

Ts

×cnsmJmI
(0+)δmJ ,1/2δmI ,mH−1/2. (9.54)

In all but the perturbation theory limit, RpJHmH ;nsmJmI
(t− Ts) is a nonlinear function of Ωr. The
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interaction representation density matrix element,

ρIpJHmH ;GmG
(t) ≈ cpJHmH

(t), (9.55)

since the initial state amplitude is unchanged in lowest order perturbation theory.
So far the calculations have been carried out for an atom located at X = 0. To generalize Eq.

(9.55) for an atom located at X = Xj , we set

ρ
I(j)
pJHmH ;GmG

(t) ≈ cpJHmH
(t)eik0Xj , (9.56)

where k0 = ωHG/c = ωLr/c.

9.6.6 Signal

The excitation, readout, and vacuum fields combine to produce a phase-matched emission in the
ux direction. The output electric field in the phase-matched direction has both y and z polarization
components. These components are mixed on a half-wave plate oriented at an angle θd/2 from the
z axis to produce new vertical and horizontal components given by

EV = Ez cos θd + Ey sin θd;

EH = Ey cos θd − Ez sin θd, (9.57)

which are then separated by a polarizing beam splitter and measured in two detectors. We discuss
only the vertical component signal - the horizontal component signal can be obtained by inter-
changing cos θd with − sin θd and sin θd with cos θd in the final result.

The time-integrated phase-matched signal recorded at the vertical detector is proportional to a
quantity SV defined by

SV (Ts) = X2
d

∫
dt ⟨EV+(Xd, t)EV−(Xd, t)⟩ , (9.58)

where EV±(Xd, t) are the positive and negative frequency components of the vertical component
of the electric field operator evaluated at some arbitrary point Xd in the radiation zone to the right
of the half-wave plate. Using source-field theory [29], it then follows that

SV (Ts) =

∫ ∞

0

dt |GV (Xd, t)|2 (9.59)
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where

GV (Xd, t) =
ω2
0

4πϵ0c2

∑
mH

e−iωmHmG
(t−Xd/c)

×⟨GmG| (µz cos θd + µy sin θd) |pJHmH⟩

×
N∑
j=1

ρ
I(j)
pJHmH ,GmG

(t−Xd/c) e
−ik0Xj

=

(
ω2
0

4πϵ0c2

)
⟨pJH∥µ ∥G⟩∗√

2H + 1

×
3/2∑

mI=−3/2

ei(ωLr−ω1/2,mI ;mG)TsP (mG,mI+1/2, θd)

×
N∑
j=1

R
(j)
pJHmI+1/2;ns,1/2,mI

(t− Ts −Xd/c)

×e−iωH,mI+1/2;GmG
(t−Ts−Xd/c)c

(j)
ns,1/2,mI

(0+), (9.60)

and Eqs. (9.54) and (9.56) have been used. The spatial phase factors of the excitation fields have
been accounted for in Eq. (9.56), so that the only spatial dependence of c(j)ns,1/2,mI

(0+) on j is
related to the fact that the excitation field envelopes, E1,2(ρ,X) are a function of position in the
atomic cloud. By combining the numerical solution leading to Eq. (9.54) with Eq. (9.48), it is the
possible to calculate GV (Xd, t) and SV (Ts).

9.6.6.1 Modifications resulting from the trap potentials

The trap potentials lead to a number of qualitatively different effects that modify the signal inten-
sity. Of primary concern to us is the motional dephasing that occurs between the excitation and
readout pulses. By using matched trap potentials for both the ground and Rydberg levels, the mo-
tional dephasing can be reduced significantly from a case in which the atoms undergo force-free
motion. Since it is not possible to match all the Rydberg sublevel potentials to the ground state
potential, there is some slight dephasing that results from the potential differences as a result of the
spatial dependence of the fields in the atomic cloud. This is in addition to a similar dephasing that
occurs for high n Rydberg levels associated with the ponderomotive potential.

To generalize the result to include the effects of the trap potentials, we make a number of
simplifying assumptions. First, we assume that atomic motion is frozen during the excitation and
retrieval pulses. For our trap depths and temperatures, this is generally a very good approximation.
Second, we approximate the energy levels in each potential as those associated with the quasibound
states of the corresponding Mathieu equation problem [50]. Although we use the Mathieu equation

159



quasibound eigenenergies (since they appear in phases), we calculate transition matrix elements
using harmonic oscillator wave functions, assuming the atoms are sufficiently cold to be localized
near the bottom of the wells. As was already mentioned, we neglect any spatial variations of the
field in calculating the quasibound states in the potentials - all fields are evaluated at cloud center,
but we include the spatial variations of the fields insofar as they affect light shifts of the Rydberg
levels relative to those of the ground state.

With these approximations and assuming an initial density matrix that is diagonal with respect
to the motional states, we find [48, 57] that GV (Xd, t) can be written as

GV (Xd, t) = ei(ωLr+ωGmG)Tse−ΓnsTs/2Θ(t− Tp −Xd/c)

×
2∑

mF=−1

qmax∑
q,q′

N∑
j=1

Q
(V )(j)
pJHmH=mF ;nsmF

(t− Tp −Xd/c)

×e−2πiD̃
(j)
nsmF

TsMgq;nsmF q′ (−k)

×MnsmF q′;gq (k) e
i
(
ω
(g)
q −ω

(nsmF )

q′

)
Tsρ1q,1q(0),

(9.61)

where

MnsmF q;gq′(k) =

∫
dX [ψnsmF q (X)]∗ eikXψgq′ (X)

= [Mgq′;nsmF q(−k)]∗ , (9.62)

ψαq (X) is a ground state eigenfunction and ω(g)
q an eigenfrequency for an atom moving in the po-

tential Ug(0, 0), ψnsmF q (X) is an eigenfunction and ω(nsmF )
q an eigenfrequency for an atom mov-

ing in the potential UnsmF
(0, 0), and D̃(j)

nsmF is given by Eq. (9.34). The function Q(V )(j)
pJHmH ;nsmF

(t)

incorporates all the excitation and retrieval dynamics. The sums over q, q′, q′′ are restricted to
(quasibound) states; that is, qmax is the number of bound states in the potential. A loss factor,
e−ΓnsTs/2, has been added to allow for decay between the excitation and retrieval pulses owing to
spontaneous emission, black-body radiation, and decay from the intermediate state. The sum over
j actually corresponds to an integral over X and ρ, taking into account the spatial dependence of
the excitation and retrieval fields, weighted with the atomic density distribution.

For the polarizations of our excitation fields, the sum over mF consists of at most three terms,
mF = mG,mG±1. Experimentally, we optically pump the initial state into mG = 0, so only
Rydberg levels having mF = 0,±1 are populated.

The numerical calculation of SV (Ts) is time-consuming, since the sum over j in Eq. (9.59)
must be carried out for each τ = t−Tp−Xd/c, the result squared and then integrated over τ from
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zero to infinity. To simplify matters, we assume that

Q
(V )(j)
pJHmH=mF ;nsmF

(τ) ≈ Q(V )
pJnsmF

g(τ)Λ(ρ,X), (9.63)

where g(τ) is a state independent function of τ and

Λ(ρ,X) = Ωr(ρ,X)Ω2(ρ,X)Ω1(ρ,X). (9.64)

While this approximation is not justified in general, it should not seriously affect the dependence
of the normalized signal on Ts. With this assumption, the signal at time Ts normalized to that at
Ts = 1 µs, can be written in the form given in Eqs. (9.1)-(9.3). In those expressions, the sum over
j has been converted to a spatial integral over the sample.

For example, if G = 2 and mG = 0, the basic structure consists of the absolute square of the
sum of three terms oscillating at the frequencies of the mF = 0,±1 Rydberg levels. The signal
then oscillates at the difference frequencies of these levels. With our knowledge of the potential,
we are then able to extract the hyperfine constant from the signal.

9.6.7 Perturbation Theory Calculation of CV (ρ,X, Ts)

In this section, we give perturbation theory expressions for cmJmI
(0+), cpJHmH

(t), and
CV (ρ,X, Ts) when G = 2, mG = 0, Jp = 3/2, mJ = 1/2, and H = 3 (values appropriate
to one of the excitation schemes in our experiment). For these values, it follows from Eqs. (9.48)
and (9.66) that

c1/2,1/2(0
+) = −Ω2(ρ,X)Ω1(ρ,X)

40
√
7

×K (1/2) sin θi

c1/2,−1/2(0
+) =

3iΩ2(ρ,X)Ω1(ρ,X)

80
√
7

×K (−1/2) cos θi

c1/2,−3/2(0
+) = −Ω2(ρ,X)Ω1(ρ,X)

40
√
21

×K (−3/2) sin θi, (9.65)

where

K (mI) =

∫∞
−∞ dtf1(t)f2(t)e

−i∆1/2,mI ;0
t

∆mI+1/2,0

. (9.66)

If all the K ′s were equal [which would be the case if the Zeeman splitting of the intermediates
state is much larger than the detuning ∆mH ,0 and if

∣∣∆1/2,mI ;0Tpe
∣∣≪ 1, as it is for most of the n in

161



our experiment] then

c1/2,−3/2(0
+) = c1/2,1/2(0

+)/
√
3;

c1/2,−1/2(0
+) = −3i cot θic1/2,1/2(0

+)/2. (9.67)

Note that the relative coherence between the c1/2,−3/2 and c1/2,−1/2 is important since it leads to the
y-polarized signal in the phase-matched direction.

We next solve Eq. (9.51) using perturbation theory for a square envelope retrieval pulse for
which

fr(τ) =

{
0 τ < 0 and τ > Tpr

1 0 < τ < Tpr
, (9.68)

assuming that γHTpr ≫ 1 (Tpr is the retrieval pulse duration), to obtain

cpJHmH
(t) ≈ −iΩr(ρ,X)

4

e
i∆r

pJHmH ;ns,1/2.mH−1/2
Ts

γH
2
+ i∆r

pJHmH ;ns,1/2.mH−1/2

×

[
3/2 1 1/2

1/2 0 1/2

][
3/2 3/2 3

1/2 mH−1/2 mH

]
cns,1/2,mH−1/2(0

+).

(9.69)

Using Eqs. (9.59)-(9.64), we then find that the normalized signal, as defined in Eq. (9.1), is given
by Eq. (9.2) with

CV (ρ,X, Ts) =
1∑

mF=−1

qmax∑
q,q′

e−iωnsmF
TsQ(V )

pJnsmF

×e−2πiD̃
(j)
nsmF

(ρ,X)TsMgq;nsmF q′ (−k)

×MnsmF q′;gq (k) e
i
(
ω
(g)
q −ω

(nsmF )

q′

)
Tsρ1q,1q(0),

(9.70)

and

Q(V )
pJnsmF

=
K(mF − 1/2)

γH
2
+ i∆r

pJHmH ;nsmF

×

 sin θi sin θdδmF ,1

−9 cos θi cos θd
4

δmF ,0

+ sin θi sin θd
3

δmF ,−1

 . (9.71)

Note that, owing to the definition given in Eq. (9.1), we were able to remove any spatially inde-

162



pendent common factors in writing the expression for Q(V )
pjnsmF .
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CHAPTER 10

Hanbury Brown-Twiss Correlations for a Driven
Super-Atom

In his 1917 paper [63], Einstein introduced his famous A and B coefficients, with the A coefficient
associated with spontaneous emission and theB coefficient to either absorption or stimulated emis-
sion (both referred to as changes of state due to irradiation by Einstein). While there may not be a
universal definition as to what constitutes stimulated emission, any definition describes processes
in which atom-field interactions lead to an increase in the intensity of an input field. There have
been a number of both theoretical analyses and experimental implementations involving paramet-
ric down-conversion (e.g., Refs. [64, 65, 66, 67, 68, 69]) which have been interpreted in terms of
stimulated emission and/or amplification. In all of these cases, coincidence counts involving both
signal and idler modes are measured when a single-photon or a weak coherent probe pulse is sent
into a crystal, so that it propagates collinearly with the signal mode. A two-fold increase in the
time-integrated coincidence counts occurs for overlapping probe and signal field pulses, compared
to the case of non-overlapping pulses. The increase in coincidence counts was interpreted in terms
of probe-induced stimulated emission in the crystal. The analyses supporting this assertion are
based on a perturbative calculation of the evolution of the state vector associated with an effective
Hamiltonian involving third-order nonlinear susceptibilities.

We have carried out an experiment that, in some ways, is analogous to the down-conversion
experiments. Instead of a nonlinear crystal, our active medium consists of a gas of cold rubid-
ium atoms, Figure 1(a). Following their release from an optical trap, the atoms are subjected to
an excitation/de-excitation pulse sequence, leading to phase-matched emission in the x direction
having central frequency ωA. A weak probe pulse having central frequency ωP is also sent into the
sample in the x direction and can be delayed relative to the phase-matched emission pulse. The
output field, containing contributions from both the input field and the field radiated by the atoms,
is sent to a beam splitter and coincidence counts are recorded as a function of the delay time. As
in the down-conversion experiments, we can observe an increase in coincidence counts by a factor
of two when the probe field overlaps with the field radiated by the atoms.
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Figure 10.1: Outline of the experiment. (a) Experimental setup: ultracold atomic gas is prepared
in a crossed pair of focused YAG laser beams. A pair of lenses focuses E1 and E2 laser fields
to drive a two-photon transition from the ground state |g⟩ to the Rydberg state |r⟩. A retrieval
laser pulse ER leads to emission of atomic field which is split on a beam-splitter and directed onto
photodetectors D1 and D2. A probe laser field with controllable frequency and delay is aligned
into the spatial mode of the atomic emission. (b) Three main steps of the protocol: (i) an atomic
ensemble is excited into a Rydberg atomic state |r⟩; (ii) after a delay Ts, the atoms are driven into
intermediate state |e⟩, leading to emission on the |e⟩ ↔ |g⟩ transition, with propagation direction
determined by the phase-matching condition; (iii) an incoming probe field and atomic emission
fields, with controllable delay between the two fields, are directed towards HBT measurement.

What is the origin of this increase in coincidence counts? Can it be traced to stimulated emis-
sion as is claimed in down-conversion experiments, or are there other mechanisms at play here? To
help answer these questions, we prepare our atomic ensemble in two distinct fashions, one involv-
ing a single excitation (“super-atom” or Dicke [70] state) and the other a factorized initial state.
We are able to do this by choosing different Rydberg states in the excitation schemes. The results
are analyzed using source-field theory [71]. In the case of the Dicke state preparation, there is a
single excitation shared byN atoms and the incoming probe pulse can drive a stimulated transition
between the Dicke state and the ground state. The coupling strength between the two collective
states is enhanced by a factor

√
N . As a consequence, one might associate the increased coinci-

dence counts with stimulated emission. On the other hand, for a factorized initial atomic state,
such an interpretation is no longer tenable since the incident probe field is actually absorbed by
the medium. In both cases however an increase in coincidence counts is observed. We present
experimental results and a theoretical analysis that leads us to conclude that stimulated emission is
not responsible for the increase in coincidence counts. Instead, the increase in coincidence counts
can be attributed to Hanbury Brown and Twiss (HBT) interference [72], which we claim is also
responsible for the increase in coincidence counts measured in the down-conversion experiments,
see Supplementary Material.

To illustrate the underlying physics, we consider first a single-photon probe pulse incident on
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a two-level atom (lower level g and excited level e) that is prepared in its excited state at time
t = 0. The wave front of the probe pulse, which has cross-sectional area A greater than the
pulse’s central wavelength λ, arrives at the atom at time τ ≥ 0. In source-field theory [29], the
positive frequency component of the field operator for this system can be written as E+(R, t) =

E
(0)
+ (R, t)+E

(S)
+ (R, t), whereE(0)

+ (R, t) is the free-field operator andE(S)
+ (R, t) is the source field

operator associated with the field radiated by the atoms in the sample. Two types of measurements
can be envisioned. Either (1) the integrated field intensity is measured or (2) the time-integrated
number of coincidence counts is recorded as a function of τ after the field is sent through a beam
splitter. The detection volume is restricted to a small angle in the forward direction.

For A > λ, a weak coupling approximation can be made - the interaction between
the atoms and the input pulse can be neglected to lowest order, owing to the fact that
max [Ωp/γe ≪ 1,ΩpTp ≪ 1], where Ωp is the probe Rabi frequency, Tp is the probe pulse du-
ration, and γe is the excited state decay rate. It is then rather easy to analyze the two measurement
scenarios, which are sensitive to different physical processes. The total field can be viewed as a
sum of the collimated input field, the spherical wave spontaneously emitted field from the atom,
and the field scattered by the atom.

The integrated field intensity is sensitive to the amplitudes of the three contributions to the total
field. Stimulated emission or absorption is associated with the interference of the scattered field
with the (unperturbed) input field [73]. Whether stimulated emission or absorption occurs depends
on both the spectral width of the input pulse and the time delay τ . In contrast, the time-integrated
number of coincidence counts Nc is insensitive to the relative phase of the input and source fields
- it depends only on field intensities. Moreover, in the weak coupling approximation, the scattered
field has a negligible effect on the value of Nc. When measured as a function of τ , Nc exhibits
a “bump” for τ = 0 that can then be interpreted as HBT interference between the input field
and the field spontaneously emitted from the atoms, in exact analogy with the HBT increase in
the second order correlation function for two independent light sources. In other words, although
both stimulated emission and HBT interference can both be described in terms of interference,
they correspond to fundamentally different physical processes. The HBT coincidence count bump
is not linked to stimulated emission - it occurs even if the input field is attenuated. Moreover,
in the weak coupling approximation, any absorption or stimulated emission of the input pulse is
negligibly small - the output field intensity is approximately equal to the sum of the input and
atomic field intensities, considered as independent sources.

The same formalism can be used to model our experiment involving phase-matched emis-
sion from an ensemble of atoms, Figure 1(b). The three-level atoms (ground state |g⟩ =

|5S1/2, F = 2,mF = 2⟩, intermediate state |e⟩ = |5P3/2, F = 3,mF = 3⟩, and Rydberg state
|r⟩ = |nS1/2,mJ = 1/2⟩) are prepared in a phase-matched superposition of ground and Rydberg
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Figure 10.2: Probing a collective (super-atom) state. (a) Probability of photoelectric detection
event per trial P as a function of two-photon detuning ∆2 = ωrg − (ωE1 + ωE2) for the Rydberg
state |r⟩ = |87S1/2⟩. The solid curve is a Lorentzian fit. The 0.8 MHz (FWHM) width of the peak
is determined by the 1 µs excitation pulse duration; (b) P as a function of the collective Rabi angle
θ displaying a period of a many-body (super-atom) Rabi oscillation. Solid curve is a theory curve
for a collective Rabi oscillation with Ω2/2π = 1.5 MHz and Ω1/2π varied between 2 and 20 MHz.
The best fit between theory and the data occurs for the number of atoms N = 234; (c) Normalized
photocounts M̃ as a function of time t for the probe pulse (red) and the atomic emission (blue).
The error bars represent ± one standard deviation (

√
M ) for M photoelectric counting events.

states using an excitation pulse of duration TE = 1 µs, consisting of two counter-propagating laser
pulses E1 and E2 having central wavelengths 780 nm and 480 nm, respectively. Field E1 drives
the |g⟩ ↔ |e⟩ transition with Rabi frequency Ω1 and field E2 drives the |e⟩ ↔ |r⟩ transition with
Rabi frequency Ω2. Field E1 is detuned by an amount δ = −2π × 90 MHz from ωeg. For a high-
n Rydberg state [4], excitation of more than one atom into the Rydberg state can be suppressed,
with the atomic ensemble being coherently driven between the collective ground state |G⟩ and a
singly-excited (so-called super-atom) collective state |R⟩ at a frequency ΩN =

√
NΩ1Ω2/(2δ)

[74, 75, 14, 21, 76, 22]. After a delay Ts ≈ 0.5 µs following the excitation pulse, a readout pulse
ER, centered at 480 nm is applied that is resonant with the |r⟩ ↔ |e⟩ transition frequency and leads
to phase-matched emission with ωA = ωeg.

Figure 2(a) displays the probability of photoelectric detection P as a function of two-photon
detuning ∆2 between (ωE1 + ωE2) and ωrg. The maximum probability of a photoelectric detection
per trial is Pmax ≈ 2.5 × 10−2 for a chosen value of θ ≡ ΩNTE ≃ π. Figure 2(b) shows P as a
function of θ. Accounting for a factor of ζ = 0.27 transmission and detection efficiency, there is a
maximum probability pf ≈ 0.09 for a single-photon to be emitted into the spatial mode defined by
the single-mode fiber used for collection. A probe pulse whose temporal profile matches that of the
phase-matched emission and whose spatial mode corresponds to the detector acceptance mode, is
also sent into the medium. In the absence of any Rydberg excitation, the transmission coefficient
for the probe pulse is 0.45±0.01. Figure 2(c) shows measured intensity profiles (normalized photo-
counts M̃ vs time t) for the probe pulse and the phase-matched atomic emission. The profiles are
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Figure 10.3: Two-photon statistics for the upper atomic state |r⟩ = |87S1/2⟩. (a) Coincidences in
a 2-ns window Nc(t21) as a function of t21 for detuning ∆/2π = −80 MHz between the probe
field and the field emitted by the atoms. (b) Normalized integrated coincidences Nc as a function
of the detuning ∆ between the probe pulse and the pulse from the ensemble. (c) Nc as a function
of the delay τ between the probe pulse and the pulse from the ensemble. Solid curves in (a)-(c) are
obtained using our theoretical model.

matched by adjusting both the readout and probe pulses, with their overlap integral being 0.97 for
a 0.5 µs integration window and greater than 0.98 for a 0.1 µs integration window centered on
their peak values. The value of the time-integrated second-order correlation function for atomic
emission in the absence of the probe pulse is g(2)A = 0.04. The probe pulse can be delayed by a
time τ relative to the phase-matched emission and the probe frequency ωP can be detuned by an
amount ∆ from ωA.

The total output field is sent into a beam splitter and detectors in the output mode of the beam
splitter record coincidence counts. In the weak coupling approximation, any contribution to coin-
cidence counts due to stimulated emission constitutes a small effect, of order 1/ (Nk20A) ≃ 10−6,
where k0 = ω21/c and A is the cross-sectional area of the probe pulse. In fact, instead of being
amplified by the medium, the output field intensity in the presence of Rydberg excitation is actually
decreased by ≃ 10−2.

The probe pulse is a weak, coherent state pulse having energy less than or of order ℏωeg. The
atoms are prepared either into (1) a state consisting of a single phase-matched excitation by choos-
ing an upper atomic state |r⟩ = |87S1/2⟩ with strong interactions [12, 13, 15], or (2) an upper
atomic state |r⟩ = |50S1/2⟩, which leads to a factorized atomic state having on average Nr ≈ 1.5

Rydberg excitations in the sample. In case (1), assuming that the spatial profiles of the probe and
phase-matched emission pulses are identical, the number of photo-counts separated in time by t21
is given by

Nc(t21) =

∫ ∞

−∞
dt Ĩ(t)Ĩ(t+ t21) [1 + V1(K) cos (∆t21)] , (10.1)

where Ĩ(t) is proportional to the intensity profile of the probe field, K is the ratio of integrated
intensities for the input probe pulse and phase-matched emission, and V1(K) = 2K/(K2 + 2K +
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g
(2)
A ) is the fringe visibility, allowing for a non-zero value of g(2)A . As was the case for a two-level

atom, Eq. (10.1) is derived assuming that atom-field interactions are negligibly small, that is no
effects related to stimulated emission are included. In Figure 3(a), we plot measured values of
Nc(t21) for K = 0.21. The theory curve is obtained assuming a Gaussian profile for Ĩ(t) and an
expected value of V1(0.21) = 0.83.

The normalized time-integrated coincidence counts are given by

Nc = 1 + 2K|J |2/[K2 + 2K + g
(2)
A ], (10.2)

where S(t) and f(t) are the (real) scaled amplitudes of the phase-matched field and the probe pulse,
respectively, normalized such that

∫∞
−∞ dt S2(t) = 1,

∫∞
−∞ dt f 2(t) = 1, J ≡

∫∞
−∞ e−i∆tS(t −

τ)f(t)dt is the overlap integral of the two fields. In this case we allow for a slight difference
between the intensity profiles of the probe field and atomic emission. If the intensity envelopes are
identical and if K ≪ 1 and g(2)A ≪ 1, the time-integrated coincidence counts are doubled provided
∆ = 0 and τ = 0, from the case where |∆| /γe ≫ 1 or γeτ ≫ 1.

In Fig. 3(b), Nc is plotted as a function of ∆ for τ = 0 and Nc is plotted as a function of τ
for ∆ = 0 in Fig. 3(c). The Eq.(10.2) is strictly valid only under an assumption of an optically
thin medium in which the fraction of energy radiated by the atoms in the phase-matched direction
pf ≪ 1. Including corrections of order pf ≈ 0.06 we estimate the value of Nc ≃ 1 + 2(1 −
pf )K|J |2/(K2 + 2K + g

(2)
A ). In Figs. 3(b) and 3(c), the theoretical curves are drawn using

{K = 0.46, |J |2 = 0.98} [Nc(∆ = 0) = 1.72] and {K = 0.35, |J |2 = 0.94} [Nc(τ = 0) = 1.72],
respectively.

When a Rydberg blockade is operative, the problem can be reduced to an effective two-level
problem involving transitions between the Dicke state and the ground state. As such, it is possible
to envision a situation in which there is total inversion of the system. Although the probe field
can produce stimulated emission on the inverted system, the observed factor of two increase in
coincidence counts is not a consequence of stimulated emission. Rather, it is an indication of both
the non-classical nature of the atomic Dicke state and HBT interference.

As further evidence of the fact that the increase in coincidence counts results from HBT inter-
ference and not stimulated emission, we next consider a factorized initial atomic state for which
g(2) = 1 and there is no inversion. Assuming that there is no temporal coherence between the input
pulse and the phase-matched emission and that f(t) = S(t), Nc(t21) is given by

Nc(t21) =

∫ ∞

−∞
dt Ĩ(t)Ĩ(t+ t21) [1 + V2(K) cos (∆t21)] ,

where V2(K) = 2K/(1 + K)2 is the fringe visibility. In Figure 4(a), we plot values of Nc(t21)
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Figure 10.4: Data and curves analogous to those shown in Fig. 3, but for the upper atomic state
|r⟩ = |50S1/2⟩.

for the Rydberg state |r⟩ = |50S1/2⟩ and with K = 0.98. The solid curve is theory, with
fringe visibility V2(0.98) ≈ 0.50. The fringe visibility of 1/2 is consistent with HBT interfer-
ence between two coherent-state pulses, a situation that is mirrored by our choice of a factorized
atomic state and a coherent-state probe pulse. For K = 1, the normalized time-integrated coin-
cidence counts are given by Nc = 1 + 1

2
|J |2. It is seen that in this case, for f(t) = S(t), the

time-integrated coincidence rates are increased by a factor of 3/2 provided ∆ = 0 and τ = 0,
from the case where |∆| /γe ≫ 1 or γeτ ≫ 1. Figures 4(b,c) show Nc as a function of pulse
detuning and delay respectively, together with theory curves for which the enhancement factor
Nc ≃ 1+ 2(1− pf )|J |2K/(1+K)2. In Figs. 4(b) and 4(c), the theoretical curves are drawn using
{K = 0.90, |J |2 = 0.97} [Nc(∆ = 0) = 1.46] and {K = 1.00, |J |2 = 0.93} [Nc(τ = 0) = 1.44],
respectively. Again, although stimulated emission is absent, there is an enhancement in coinci-
dence counts when the probe pulse overlaps with the phase-matched atomic emission.

In conclusion, the interaction between the incident probe field with the atoms experiments such
as ours and in Refs. [64, 65, 66, 67, 68, 69] can be treated in a weak coupling approximation.
In that limit the increase in coincidence counts can be fully described by HBT-type interference
between the incident field and the field radiated by the medium. There is no direct connection with
stimulated emission.

This work was supported by the ARL Center for Distributed Quantum Information, Air Force
Office of Scientific Research, and the National Science Foundation.
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CHAPTER 11

Phase Matching in Lower Dimensions

Beginning with the pioneering demonstrations of second-harmonic generation [77, 78] and photon
echoes [79], phase-matching has played a critical role in nonlinear and quantum optics. When
N atoms are excited in free-space, collective emission can result in a number of ways, some of
which are discussed by Dicke [70] in his seminal paper. One type of collective emission, which we
refer to as superradiance, is produced when two-level atoms are prepared in a completely inverted
or phase-matched initial state in an ensemble for which the so-called cooperativity parameter is
greater than or of order unity. A second type of collective emission, on which we focus here, is
simply phase-matched emission from an array of non-interacting atoms, that is, a limiting case
where the field radiated be a given atom has a negligible effect on the dynamics of the other atoms.
This is the type of interference effect typically encountered in optical coherent transients [29]. Yet
a third type of collective emission is somewhat of a hybrid of the first two. Atoms are prepared in
a collective, phased single-excitation state using a single-photon pulse [38, 80, 81]. The atoms do
not acquire a dipole moment, but the emission pattern can mirror that of phase-matched emission.
In this and related schemes in which the dimensions of the excitation volume are large compared
with the wavelength of the excitation field(s), the k-vector of the phase-matched emission satisfies
a momentum conservation condition involving the k-vectors of the excitation fields. For example,
in a four-wave mixing process with incident field k-vectors k1, k2, and k3, a possible phase-
matched outgoing field propagates in the ks = k1 − k2 + k3 direction. The signal results from
an average over the distribution of positions of individual atomic emitters and does not require a
specific spatial arrangement of the atoms in the sample, in contrast to Bragg scattering.

In an experimental situation involving a single cw excitation field incident on a low density
atomic vapor, collective scattering still occurs, but its signature is very different from that in the
4-wave mixing experiment. The collectively scattered light is phase-matched only in the direction
of the input field and it interferes with the incident light to diminish the incident field’s intensity. In
order to get constructive interference in other directions, a specific atomic array is needed, rather
than a disordered vapor. This type of collective emission is nothing more than Bragg scattering and
it has been demonstrated using chains of trapped ions [82, 83, 84], two-dimensional Mott insulators
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a b c d(b)(a) (c) (d)

Figure 11.1: Bragg scattering from a one-dimensional atomic chain. (a) A linear chain with N =
10 atoms separated by d = 7.49µm is aligned along the z axis. An excitation laser with wave
vector kexc is directed onto the chain at an angle θexc = 4◦ with respect to the z axis. The scattered
light with wave vector k is detected as a function of spherical angles (θ, ϕ). (b) Structure factor
S(θ, ϕ) for case of equal separation of atoms, and (c) in the presence of disorder of atomic positions
with standard deviations (σx, σy, σz) = (0, 0, 0.3λ), and (d) (σx, σy, σz) = (0.3λ, 2.4λ, 0.3λ).
Gray panels represent the x-z plane in which the excitation laser propagates. To measure the
scattered signal, we use a detector whose axis has polar angles (θdet, 0).

[85], and ensembles of atoms in 1D and 3D lattices [86, 87]. In Bragg scattering, it is necessary
to localize each emitter to well within the wavelength of the incident radiation. Deviations from
perfect localization wash out any constructive interference and reduce the fidelity of associated
quantum protocols.

Diverse applications of quantum information require interconnected quantum nodes that are
capable of local processing and error correction. Integration of local processing and memory
enhances performance of quantum repeaters over lossy channels, enables distributed quantum pro-
cessing and sensing, and allows for entanglement resources to be shared within the network. In
prior work with a single atomic qubit per node, entanglement between an atomic qubit and a
photon [39, 88, 89, 15] and entanglement between remote atomic qubits [90, 91, 92] have been re-
alized. High-fidelity one-qubit gates [93, 94] and pairwise entanglement of neighboring and next-
to-nearest neighbor sites [95, 96] in 1-D and 2-D arrays have also been demonstrated. However,
the integration of communication and processing capabilities remains an outstanding challenge.
High-quality interference for light emitted from a reconfigurable array of trapped neutral atoms is
essential for using such arrays in a way that combines processing and mapping between atomic
and photonic states [97].

In this work we propose and demonstrate non-collinear phase-matching geometries that have
suppressed sensitivity to particle localization. In the first geometry, there is a single atomic chain
whose axis makes a small angle θexc with the propagation vector of the incident field [Fig. 1(a)]. In
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the second geometry, two atomic chains are used to observe interference fringes having near-unity
visibility. The ability to obtain high-quality phase-matched scattering from an array of individually
controllable atoms represents an important step toward the realization of scalable atom-photon
interfaces.

The central idea for achieving this goal is the observation that, as the dimensionality of the sys-
tem decreases, new directions for phase matching appear even for a disordered atomic array. The
origin of this effect can be understood by considering a structure factor S(θ, ϕ) =

∑N
j,j′=1 e

−iΦjj′

for scattering of off-resonant radiation from independent atoms. The scattered intensity is propor-
tional to S, with

Φjj′ = kXjj′ (sin θ cosϕ+ sin θexc) + kYjj′ sin θ sinϕ

+kZjj′ (cos θ − cos θexc) ,

being an overall phase for the scattering, kexc = k (− sin θexcx̂+ cos θexcẑ) the incident field prop-
agation vector, (θ, ϕ) polar and azimuthal scattering angles, Rj = Xjx̂ + Yjŷ + Zj ẑ the position
vector for atom j, and Rjj′ = Rj −Rj′ . For phase-matching from a disordered atomic array, the
phase Φjj′ must vanish for all Rjj′ . In three-dimensions, phase matching is possible only in the
direction of the incident field, (θ = θexc, ϕ = π). However, if the atoms are confined to the y − z

plane, there is perfect reflective phase matching in the plane of incidence provided θ = θexc and
ϕ = 0. If the dimensionality is further reduced to a chain of atoms along the z−axis, there is phase
matching in a cone with polar angle θexc. Deviations from perfect phase-matching arising from
excursions out of the plane or chain can be reduced by taking θexc ≪ 1.

We first consider an ideal situation in whichN atoms are confined to a one-dimensional chain in
the z - direction with fixed spacing d between the atoms. In this limit, as illustrated in Fig. 1(b) for
our experimental parameters (d ≈ 7.49µm, λ ≈ 780.24 nm, θexc ≈ 4◦), there is constructive con-
ical collective scattering for several values of θ satisfying the Bragg condition. In our experiment,
the confinement and separation of the trapped atoms is somewhat disordered, owing to imperfect
positioning of the traps, finite atomic temperature, and random filling of trap sites. When effects
of atom position deviations along the z axis are included, the number of Bragg scattering cones
diminishes, Fig. 1(c). Non-zero values of Xj and Yj further restrict the emission pattern to a single
cone about the symmetry axis having maxima at ϕ = 0, ϕ = π, Fig. 1(d) and Supplementary
Material.

We use cold 87Rb atoms confined in an array formed by holographic optical microtraps. Once
N atoms are prepared in an array containing Nt traps, we image these atoms to determine the
number of traps that are filled. We then apply a magnetic field of B ≈ 2.0G along the ex-
citation laser axis and employ a gated probing-cooling sequence. During this sequence, the
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Figure 11.2: Phase-matched emission from a single chain. (a) Averaged atomic fluorescence im-
ages of a linear chain containing Nt = 20 traps. The left image shows a configuration in which the
atoms are aligned along with the detection mode axis, i.e. θdet = 0◦. For the middle (right) image,
the chain is prepared such that θdet ≈ 4◦(8◦). (b) The measured photocount rate as a function of
θdet forN = 4, 8, 12. Each point is an average of randomly filled chains with a givenN . Error bars
represent one standard deviation of the observed photoelectric counting events. The green lines are
the numerical results based on the Monte Carlo simulation with 1,000 runs. The shading on the
line represents the standard deviation of the simulation divided by the square root of the averaged
number of trials in the experiments. (c) The peak count rate as a function of N . Each point and
its error bar represent the observed value at θdet = θ0 = 4◦. For the single-shot measurement
of N = 15, we associate a

√
M Poissonian error for M photoelectric count events. The solid

(dashed) line represents the numerical simulation with (without) displacement of atomic positions
due to imperfect positioning of the traps and finite temperature effects. The black dotted lines in
(b, c) show the detection background measured without loading atoms.

excitation laser and cooling beams are switched on and off in an alternating manner with du-
rations of 0.9ms and 2.2ms, respectively. The scattered light is detected with an avalanche
photodiode (APD) gated on only during the excitation period. The excitation laser, propagat-
ing along the magnetic field, is σ+-polarized and red-detuned by δ/(2π) ≈ 62MHz from the
|g⟩ =

∣∣5S1/2, F = 2, mF = 2
〉
↔ |e⟩ =

∣∣5P3/2, F
′ = 3, mF ′ = 3

〉
transition. The beam waist of

the excitation laser is ∼ 0.1mm. The scattered light is collected by an achromatic doublets lens
with focal length f = 150 mm and coupled into a single-mode fiber directed toward the APD.
The detector axis has polar angles (θdet, 0), see Figure 1 (a). The detection mode has a waist of
≈ 13.3µm. After a total of 1,200 cycles of the gated probing-cooling sequence with repetition rate
of ≈ 300Hz, an additional imaging of the traps is taken to determine the final number of atoms
Nf in the array. For the data analysis, only experimental samples with Nf = N are post-selected
to remove atom loss effects. We repeat this entire sequence in determining a photon count rate
averaged over atomic configurations in the array for a given N .

In the first geometry, we use a linear chain with Nt = 20 traps separated by d ≈ 7.49µm.
To experimentally find a reflective phase-matching condition, both θdet and θexc are varied by
rotating the chain axis with θ0 = (θdet + θexc)/2 kept fixed at ≈ 4◦. Figure 11.2(a) displays
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Figure 11.3: Observation of constructive and destructive Bragg scattering from two chains. (a) Av-
eraged fluorescence images of two linear chains under three different values of the chain separation
L = L∥ sin θ0 + L⊥ cos θ0. (b) Measured photon count rate as a function of L∥ for N = 4, 8, 12.
Error bars represent one standard deviation for M photoelectric counting events. The green lines
are the numerical simulation based on the Monte Carlo simulation with 1,000 runs. The shading
on the line represents the standard deviation of the simulation divided by the square root of the av-
eraged number of trials in the experiments. The black dotted lines show the detection background
which is measured without loading atoms. (c) The observed scaling of the interference visibilities
V as a function of the total number of atoms N . Each point is obtained by fitting the observed
fringe by a sinusoidal function. Error bars indicate the fitting errors with 68% confidence intervals.
The solid line is the result of the numerical simulation together with the standard error of the mean
(shaded area).

averaged fluorescence images of the chain for three different θdet. For θdet = 0◦ (left image) the
chain is oriented along the detection mode, while for θdet = 2θ0 ≈ 8◦ (right image) the chain is
aligned along the axis of the excitation field. Reflective phase-matching is expected to appear when
θdet = θ0 ≈ 4◦ (middle image). The measured photon count rates as a function of θdet for various
N are shown in Fig. 11.2(b), where the horizontal axis is zeroed within the calibration error of
±0.11◦. We observe an enhanced photon count rate, attributed to the reflective phase-matching
emission, for each N at around the expected value of θdet.

The experimental data is offset from the background signal [represented by the black dotted
lines in Fig. 2(b)]. The origin of this offset can be traced to (1) deviations from perfect periodicity
of the trap potentials, (2) temperature effects, (3) random filling of the traps, and (4) inelastic
scattering of the incident field [98].

For our experimental conditions, the theoretical expression for the scattered light intensity in
steady-state can be written as

I(r) ∝ |Fsc(r)|2
(

N∑
j

ρ(j)ee +
N∑

j ̸=j′

ρ(j)ge ρ
(j′)
eg e

−iΦjj′

)
, (11.1)

where Fsc is a σ+ dipole radiation field amplitude, ρ(j)ee is an excited state population, and ρ
(j)
ge
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denotes the single atom coherence between |g⟩ and |e⟩. Both ρ(j)ee and ρ(j)ge are obtained as a function
of Ω, δ from the solution of the steady-state optical Bloch equations. We do not measure the
intensity per se, rather we measure the absolute square of the scattered field amplitude projected
onto the detection mode (see Supplementary Information). To include the effects of disorder, we
compute a signal averaged over different atomic configurations. For each atomic configuration,
traps for a given N atoms are randomly chosen from a chain with Nt traps. The displacement of
position of atom j originates from imperfect positioning of the traps and from the finite temperature
T . In these simulation the Rabi frequency and θ0 are taken to be free parameters to fit the data for
2 ≤ N ≤ 15. We obtain Ω/(2π) = 3.24(4)MHz and θ0 = 4.19(2)◦ without the calibration
error. The results of the numerical simulations displayed as solid lines in Fig. 11.2(b) successfully
reproduce the entire shape of the observed signal.

Under conditions of phase-matching, the relative phase Φjj′ is insensitive to position disorder
along the y and z axes, that is ∂Φjj′/∂Yjj′ = ∂Φjj′/∂Zjj′ = 0. Therefore, random filling of the
traps by the atoms does not affect the peak signal. However, there is a small sensitivity of the peak
signal to displacements along the x axis, since ∂Φjj′/∂Xjj′ = 2k sin θ0 ≡ qx. Therefore, even for
fully coherent scattering, averaging of the peak signal with a Boltzmann distribution of positions
in the x direction reduces the structure factor from N2 to fDWN

2 + (1 − fDW)N , where fDW is
a Debye-Waller factor [99] given by

〈
e−iΦjj′

〉
≈ e−q2xσ

2
x and ⟨· · ·⟩ denotes the average over the

Boltzmann distributions. In Fig. 11.2(c) the observed peak count rate (red points) is displayed
together with a theoretical curve for an equally spaced chain without any position disorder (dashed
line). The fact that the curves almost overlap is consistent with the Debye-Waller factor of fDW ≈
0.93. The maximum scattered intensity is also diminished by an N independent factor of about
10% resulting from the projection onto the detector mode.

In the second geometry, we extend the system to two chains, each composed of Nt/2 = 20

equally spaced traps. The chain axes are chosen to satisfy the reflective phase-matched condition
θdet = θexc = θ0 measured in the first geometry. The two chains are separated by a distance
L⊥ in the direction orthogonal to the detection axis that is chosen equal to the spacing d between
the adjacent traps [left image in Fig. 3(a)]. To observe interference of reflective phase-matched
emissions from the two chains, each chain is displaced by L∥/2 in the direction away from each
other along the detection axis [middle and right images in Fig. 11.3(a)]. Therefore, the shortest
distance between the two chains can be written by L = L∥ sin θ0 + L⊥ cos θ0.

Figure 3(b) displays the measured photon count rates as a function of the chain separation
L∥ for N = 8, 12, and 16. These results show constructive and destructive Bragg scattering,
and they are analyzed using sinusoidal fits. These interference fringes provide information about
geometrical parameters of the experimental setup. According to Bragg’s Law: 2L sin θ0 = mλ, the
expected interference period is ∆L∥ = λ/(2 sin2 θ0) and m-th order constructive emission appears
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at L(m)
∥ = m∆L∥−L⊥ cot θ0. Taking into account the observed period and 2nd order peak position

(∆L∥, L
(2)
∥ ) = (10.56(5), 6.92(2))d averaged over 5 ≤ N ≤ 23, we obtain d = 7.49(11)µm and

θ0 = 4.01(4)◦.The solid lines in Fig. 11.3(b) are the results of the numerical simulations with the
obtained values of d, θ0.

In Figure 11.3(c) we show the measured interference visibility V = (Imax−Imin)/(Imax+Imin)

as a function of the total number of atoms N . When averaged over the range 20 ≤ N ≤ 23,
the background-subtracted V we obtain is 0.97(2), significantly higher than that reported in prior
studies of multi-atom Bragg scattering [82, 83, 84, 85, 86, 87]. The clear reduction in visibility
for smaller numbers of atoms N is due mostly to an increased imbalance in the atom number
between the two chains. It can be understood as follows: for constructive interference, the relative
phase Φjj′ is zero for any two atoms in the same chain and a multiple of 2π for any two atoms
in different chains. Therefore the maximum fringe intensity Imax is insensitive to an imbalance
in the number of atoms between the individual chains and scales as ∼ N2. On the other hand,
for complete destructive interference, the relative phase between atoms in different chains must
be a odd multiple of π and the number of atoms in each chain must be the same. For unequal
numbers of atoms in the two chains, destructive interference cannot be complete. The solid line
in Figure 11.3(c) is based on our numerical simulations which include random filling of traps,
inelastic scattering, and atomic position disorder, see Supplementary Material.

It is well-known that restricting the dimensionality of a quantum system can radically alter its
global properties, as well as inter-particle interactions and, in doing so, allow for new applications
that do not occur in higher dimensions. Frequently in such settings, many-body effects play a crit-
ical role. In contrast, our work demonstrates that the reduced dimensionality of a quantum system
can be important in a situation with no strong inter-particle correlations. Specifically, we have
demonstrated phase-matched coherent scattering for 1- and 2-dimensional geometries of a single-
atom qubit array suitable for storage and processing of quantum information. High-visibility inter-
ference fringes are observed for two atomic chains as a function of their separation. Atom arrays
connected to photonic channels can provide a technology foundation for future quantum networks
with efficient multi-partite scaling. Networks using such arrays as quantum nodes would offer a
variety of schemes to encode, transfer, and manipulate quantum information within and between
the nodes of the network for distributed quantum computation, communication, and sensing [97].
A logical extension of this work could involve the creation of multi-atom entangled states in a
setting where the atoms can be individually addressed and their various combinations chosen for
entangled state generation.
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11.1 Supplementary material

We use cold 87Rb atoms confined in an array formed by holographic optical microtraps. The
trapping beam is generated by a 1064 nm fiber-based amplifier seeded by a single-mode fiber laser.
The trap field intensity is stabilized by measurement and feedback via an acousto-optic modulator.
The resulting beam is diffracted by a spatial light modulator (SLM) that imprints a phase on the
trapping beam, as shown in Fig. S11.4 (a). The diffracted beam passes through a 2 : 3 telescope
and is then strongly focused by a high-numerical-aperture (NA) objective lens (NA ≈ 0.55) into
an ultra-high vacuum (UHV) glass cell to form an array of optical microtraps centered on what
we define as our z axis. Each trap has a waist of ≈ 1.7µm, a depth U0/kB ≈ 2.3mK, and trap
frequencies (ωx, ωy, ωz) ≈ 2π × (91.2, 13.0, 91.2) kHz.

To load atoms into an array of microtraps, the array is spatially overlapped with a magneto-
optical trap (MOT) which is loaded from a background Rb vapor in the UHV glass cell. After
the loading phase, we turn off the magnetic field gradient of the MOT and then shine an imaging
beam onto the trapped atoms. The imaging beam contains two laser beams, one is red-detuned by
about 20MHz from the in-trap D2 F = 2 ↔ F ′ = 3 transition and the other is a repumper beam
resonant with the in-trap D2 F = 1 ↔ F ′ = 2 transition. The imaging beam is retro-reflected
in a one-dimensional lin⊥lin configuration which provides a Sisyphus cooling mechanism. The
fluorescence from the trapped atoms is collected by the objective lens and directed onto a cooled
electron-multiplying CCD (EMCCD) camera by a dichroic mirror (DM). To count the number of
atoms, the detected photon statistics is analyzed for each trap. The statistics exhibit bimodal struc-
ture which indicates the trap has either zero or one atom due to a collisional blockade mechanism
[100]. The total number of atomsN in an array withNt traps is varied in a range ofN/Nt ≲ 0.5 by
changing the duration of the loading phase. The atomic temperature is T ≈ 248µK which yields
disorder of atomic positions with standard deviations of σx = σz ≈ 0.3λ, σy ≈ 2.4λ.

Figure S11.4 (b) shows the geometry used in this work. An excitation laser propagating along
the magnetic field direction results in scattering from the atoms. The scattered light is collected
by a lens whose aperture is much larger than that of the detection mode λ/(πwd, 0) ≈ 1.07◦,
where wd, 0 ≈ 13.3µm is the spot size of the detection mode and λ = 780.24 nm is wavelength
of the scattered light. The lens axis coincides with the detector axis. The collected light passes
two optical band-pass filters having a central wavelength of 780 nm to suppress stray light, and
is then coupled into a single-mode fiber directed to an avalanche photodetector (APD). The total
transmission efficiency of the UHV glass cell, the lens, and the filters is ηT ≈ 0.88 and the quantum
efficiency of the APD is ηAPD ≈ 0.56. The excitation laser is detuned by δ/(2π) ≈ 62MHz from
the |g⟩ =

∣∣5S1/2, F = 2, mF = 2
〉
↔ |e⟩ =

∣∣5P3/2, F
′ = 3, mF ′ = 3

〉
transition of atoms located

at the center of a trap. The light shift induced by the π-polarized trapping beam is extracted by
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Figure 11.4: Experimental layout for holographic arrays of optical microtraps (a) and an excitation
laser and a detection mode (b).

measuring atomic loss as a function of detuning of the excitation laser from the resonance in free-
space. The value of the light shift averaged over all sites is 89MHz, with the standard deviation
σLS/(2π) ≈ 6.5MHz resulting in a σLS/δ ≈ 0.10 fractional variation in the detuning. To reduce
heating loss of trapped atoms during measurements of scattered light, a gated probing-cooling
sequence is applied (see the main text), where the imaging beam is used as the cooling beam. The
survival probability after 1200 cycles of the gated probing-cooling sequence with repetition rate of
≈ 300Hz is about 95% per atom which is mainly limited by finite lifetime of trapped atoms. To
extract experimental samples in which there is no atomic loss, we use post-selection to compare
the number of atoms recorded before and after the gated-probing sequence. To measure the angle
θdet between the detection axis and the trap chain, we direct a laser field having wavelength 810 nm

backwards through the detector mode volume into the interaction volume. This field forms a far-
off-resonance optical trap (FORT). The angle θdet is calibrated by analyzing fluorescence images
of atoms trapped in the microtrap chain and the FORT. The calibration error is ±0.11 degrees
limited by the EMCCD resolution and capture range.

Theoretical methods

In general, the total electric field Etot(R) at any position in space is a superposition of the excitation
field Eexc(R) and the field scattered by the atoms Esc(R),

Etot(R) = Eexc(R) + Esc(R). (11.2)

There are three axes defined in our experiment (see Fig. 1 (a) of main text). The z axis is taken
along the atomic chain(s). The propagation vector of the excitation field lies in the x-z plane and
defines a second axis that makes an angle θexc with the negative z axis. This field is circularly
polarized with respect to its own axis. Finally, there is the detector axis, having polar angles
(θdet, 0). A collection lens having a diameter of 1” is centered on this axis at a distance R ≈ 150

mm from the origin. The plane of the lens lies roughly in the θ direction, having some extent in
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both the θ and ϕ directions. The spatial mode of the single-mode fiber used to measure the signal
is also centered on the detection axis. In our experiment, the angular separation 2θ0 ≈ 8◦ between
the detection and excitation axes is kept fixed as the direction of the atomic chains is varied. There
is never any overlap of the excitation and scattered fields in our measurements, so we restrict our
discussion to the scattered field.

11.1.1 Scattered field from an atomic array

It is easiest to write an expression for the scattered field using polar angles (θe, ϕe) relative to the
excitation axis. Relative to this axis, it follows from source-field theory that the positive frequency
component of the electric field operator can be written as

Ê+
sc(R, θe, ϕe; θ, ϕ; t) = Fsc(R, θe, ϕe)e

−iωt

√
ℏωγe
2ϵ0c

×
N∑
j

e−i(k−kexc)·Rj Ŝ
(j)
− , (11.3)

where Ŝ(j)
− = |gj⟩ ⟨ej| (Ŝ(j)

+ = |ej⟩ ⟨gj|) is the lowering (raising) for an atom at position Rj , γe is
the excited state decay rate,

k = sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ; (11.4a)

kexc = − sin θexc x̂+ cos θexc ẑ (11.4b)

and

Fsc(R, θe, ϕe) = −e
ikR

R
eiϕe

√
3

8π

(
cos θeθ̂e + iϕ̂e√

2

)
(11.5)

is a function that gives the radiation pattern of a single atom, normalized such that

R2

∫
∥Fsc(R, θe, ϕe)∥2 dΩe = 1. (11.6)

We note that the angles (θe, ϕe) are implicit functions of (θ, ϕ, θexc).

11.1.2 Detection mode

The detection mode corresponds to a circularly polarized TEM00 relative to the detection axis that
is focused to a waist having radiuswd, 0 ≈ 13.3 µm at the center of the atomic array. We specify the
spherical angles relative to the detector axis by (θd, ϕd). For our experimental parameters, θd ≪ 1
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and the Rayleigh length zR = πw2
d,0/λ ≈ 712 µm is much less than R, enabling us to write the

incoming vector spatial mode pattern on a spherical surface intersecting the collection lens as

Fdet(R, θd, ϕd) ≈

(
cos θdθ̂d − iϕ̂d√

2

)
e−iϕd

√
kzR
π

e−ikR

R

×e−kzRθ2d/2e−ikRθ4d/8, (11.7)

which, for kzR ≫ 1, is normalized such that

R2

∫
∥Fdet(R, θd, ϕd)∥2 dΩd = 1. (11.8)

We note that the angles (θd, ϕd) are implicit functions of (θ, ϕ, θdet).

11.1.3 Count Rate

With the adopted normalization, the photoelectric count rate is given by

CN = Iη + C0, (11.9)

where η = ηT ηAPD, C0 is the experimentally determined background count rate, and

I =
2ϵ0cR

4

ℏω

〈∫
Ê−

sc · F∗
det dΩlens

∫
Ê+

sc · Fdet dΩlens

〉
(11.10)

is the intensity projected onto the fiber mode. The angular integrals can be restricted to the solid
angle of the lens since the detection mode acts as a spatial filter whose acceptance angle

√
2/kzR =

λ/ (πwd, 0) ≈ 0.019 radians is much less than the angular acceptance of the lens, which is 0.084
radians. In acting as a spatial filter, the detection mode increases the visibility of the interference
fringes observed with two chains of atoms as a function of the separation of the chains.

When Eq. (11.3) is substituted into Eq. (11.10), we find that I can be expressed in terms of
density matrix elements as

I =
N∑
j

[
ρ(j)ee −

∣∣ρ(j)eg

∣∣2] ∣∣∣∣∫ Fsc · Fdet e
−iΦjdΩlens

∣∣∣∣2

+

∣∣∣∣∣
N∑
j=1

ρ(j)ge

∫
Fsc · Fdet e

−iΦjdΩlens

∣∣∣∣∣
2

,

(11.11)
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where
Φj (θ, ϕ) = (k− kexc) ·Rj, (11.12)

ρ(j)ee =
sj

2(1 + sj)
, ρ(j)eg =

iΩj

2(γe/2− iδj)(1 + sj)
, (11.13)

and

sj =
Ω2

j/2

δ2j + γ2e/4
. (11.14)

is the saturation parameter associated with the jth atom - field interaction. The saturation parameter
is a function of the Rabi frequency Ωj and the detuning δj .

11.1.4 Numerical simulation

We account for (a) disorder in atomic positions resulting from temperature and from imperfect trap
positioning, (b) random filling of Nt trap sites by N atoms, and (c) the effects of an inhomogenous
distribution of trap depths, by using Monte Carlo simulations to average over these effects. The
photoelectric count rate CN from an array consisting of N atoms is calculated using the following
procedure:

1. The coordinates for each of the Nt traps in the absence of experimental imperfections are
defined using the geometric parameters d, L∥ and L⊥ (see Fig. 2 (a) of main text).

2. Each site in the array is randomly assigned a deviation from the ideal trap position to account
for irregularities arising from the finite spatial resolution of the SLM. The distribution is assumed
as a normal distribution with the measured standard deviation of ≈ 0.10 µm.

3. A value of in-trap detuning is randomly assigned to each site in the array to account for
the nonuniform distribution of trap depths. The values of detuning follow a normal distribution
centered at δ with a standard deviation σLS.

4. To model the stochastic loading process associated with the collisional blockade mechanism,
N of the Nt the traps are randomly chosen to be filled.

5. Due to finite atomic temperature, atomic positions Rj are randomly sampled from Gaussian
Boltzmann distributions in each dimension having spatial waists σi =

√
kBT/(mω2

i ), where m
is the atomic mass. Atomic temperature T and trap frequencies ωi are measured by release and
recapture techniques [101, 102]. The temperature remains approximately constant during the ex-
citation process due to our gated probing-cooling sequence, allowing us to neglect any motional
effects and any changes in the resonant frequency resulting from recoil heating.

6. The count rate for the particular configuration of atomic positions, Rabi frequency, and
in-trap detuning is calculated using Eq. (11.9).

To match the theory to the experimental data, we perform simultaneous fits of peak count rates
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(a) (b)

Figure 11.5: Angular dependence of the Debye-Waller factors. (a) fi as a function of θ for various
values of disorder σi (i = x, z) for ϕ = 0 and θexc = 4◦ ≈ 0.022π, (b) fi as a function of ϕ for
various values of disorder σi (i = x, y) with θ = θexc.

(a) (b) (c) (d)

Figure 11.6: Bragg scattering from a one-dimensional atomic chain with N = 10 atoms. Two
dimensional structure factor S(θ, 0) for (a) case of equal separation of atoms, (b) in the pres-
ence of disorder of atomic positions with standard deviations (σx, σy, σz) = (0, 0, 0.3λ), and (c)
(σx, σy, σz) = (0.3λ, 2.4λ, 0.3λ). They correspond to the emission patterns in the x-z plane dis-
played in Fig. 1 (b-d) of the main text. (d) the structure factor in a single cone S(θexc, ϕ). The
solid lines are the results of the Monte Carlo simulation in which each atomic position is randomly
sampled with the standard deviations (σx, σy, σz). The dashed lines represent the envelope of the
maximum intensity obtained from N + fDWN(N − 1).

for all values of N , using the Rabi frequency Ω as an adjustable parameter. The measurements
at the value of θdet = 4◦ (L∥ ≈ 50 µm) serve as representative points for the single (double)
chain geometry. To generate the theoretical curves shown in Figures 2 and 3 of the main text, we
average over 1000 realizations of the Monte Carlo simulation using the best fit values of Ω/2π =

3.24(4) MHz and Ω/2π = 5.05(8) MHz respectively.

11.1.5 Disorder in atomic position

In this section we want to see how thermal averaging of position affects Bragg scattering from an
equally spaced single atomic chain, with one atom per site. The atoms are aligned along the z axis
and the excitation beam makes an angle θexc = 4◦ ≈ 0.07 radians with the z axis. The detector
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axis can be placed at any θdet = θ. For this geometry and with a saturation parameter much less
than unity, the scattered signal is proportional to the structure factor S =

〈∑N
j, j′=1 e

−iΦjj′
〉

, where
Φjj′ = Φj − Φj′ and the brackets denote a thermal average. The structure factor can be written as

S = N (1− fDW) + fDW
sin2 [Nkd(cos θ − cos θexc)/2]

sin2 [kd(cos θ − cos θexc)/2]
(11.15)

where d is the chain spacing and

fDW =
∣∣〈e−i(k−kexc)·Rj

〉∣∣2 (11.16)

is a Debye-Waller factor. The average is over the thermal Boltzmann distribution associated with
atom j. Disorder of atomic positions results in a reduction of the peak height of Bragg scattering
and an offset of the Bragg minima from zero. It can also wash out Bragg diffraction peaks. For
atoms confined in harmonic potentials, fDW ≈ fxfyfz, with

fx = exp[−k2(sin θ cosϕ+ sin θexc)
2 σ2

x]

fy = exp[−k2(sin θ sinϕ)2 σ2
y] (11.17)

fz = exp[−k2(cos θ − cos θexc)
2 σ2

z ].

In Fig. S11.5 (a), fx and fz are plotted as a function of θ for ϕ = 0, θexc = 4◦ and several values
of σx/λ and σz/λ. It is seen that disorder reduces the range of θ for which phase matching can
occur. In Fig. S11.5 (b), fx and fy are plotted as a function of ϕ for θ = θexc = 4◦ and several
values of σx/λ and σy/λ. The product of fx and fy is equal to unity at ϕ = 0, π, and is reduced
somewhat for other values of ϕ. Regardless of disorder, phase matching is always perfect in the
direction of the excitation beam, θ = θexc, ϕ = π.

To see how disorder reduces the number of Bragg peaks, first consider the case when all the
σi = 0. In that case the structure factor equals N2 whenever kd(cos θ − cos θexc) = nπ. For
λ = 780.24 nm and d = 7.49 µm, kd = 60.3, Bragg peaks occur for 20 values of θ. Since
the Bragg condition is independent of ϕ, each value of θ gives rise to a cone of phase-matched
emission, resulting in the 20 cones seen in Fig. 1 (b) of the main text. Figure S11.6 represents a
cross section of these cones in the x-z plane (ϕ = 0, ±π/2). In the presence of disorder in the
z direction alone with σz = 0.3λ, conical emission at angles other than θ = θexc are reduced by
a factor fz [Fig. S11.6 (b)]. From Fig. S11.5 (a), you can deduce that fz < 0.01 for θ > π/2.
As a consequence the number of phase-matched cones is reduced to 6 for σz = 0.3λ. When
disorder along the x and y directions is also included [σx = 0.3λ, σy = 2.4λ], Bragg scattering is
reduced primarily to a single cone having θ = θexc [Fig. S11.6 (c)]. Moreover, the disorder in the
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y direction results in a ϕ dependence that is a maximum at ϕ = π (forward scattering along the
negative x axis) and has a secondary maximum at ϕ = 0 (reflective scattering along the positive x
axis) [Fig. S11.6 (d)].

11.1.6 Random Filling

To isolate the effects of random filling on the signal, we neglect any effects of disorder. In this
case, for a single chain with spacing d, the structure factor is given by

S = N + 2
N∑

j, j′=1; j′<j

cos [(j − j′)α] , (11.18)

where
α = kd [cos (2θ0 − θ)− cos θ] (11.19)

and we must place the N atoms at random in Nt traps, with at most one atom in each trap. In
turns out that it is possible to get an analytic expression for ⟨S⟩, where the average is now over all
possible configurations. Explicitly, [103]

S̄ (α) =
⟨S⟩
N2

=
1

N
+

2

N2
(
Nt

N

) Nt−1∑
m=1

W (m) cos(mα);

W (m) =
N−1∑
i=1

N∑
j=i+1

Nt−N+j−m∑
q=1

(
q − 1

i− 1

)
×
(

m− 1

j − i− 1

)(
Nt − q −m

N − j

)
. (11.20)

The quantity W (m) gives the number of configurations for which atom j and atom i (j > i) are
separated by md = (j − i)d. In Fig. S11.7, S̄ is plotted as a function of θ for θ0 = 4◦, kd = 60.3,
Nt = 20, and N = 4, 8, 12. As can be seen, the main effect of random filling is to produce an
offset in the signal, which becomes less important with increasing N .

For two chains the normalized structure factor is

S̄ =
1

N2

〈
N∑

j,j′=1

eiqzZjj′+iqxXjj′

〉
, (11.21)
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Figure 11.7: Effect of random filling for a single chain. The normalized structure factor is plotted
as a function of θ for 20 traps and N = 4, 8, 12 atoms.

where

Zj = jdΘ(Nt/2− j)

+ (j −Nt/2) dΘ(j −Nt/2− 1) ; (11.22a)

Xj = X0Θ(j −Nt/2− 1) , (11.22b)

qz = k [cos (2θ0 − θ)− cos θ] ; (11.23a)

qx = k [sin (2θ0 − θ)+ sin θ cosϕ] , (11.23b)

and Θ(x) is the Heaviside function defined by Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0. In
other words, there are now two chains of particles separated by X0 in the x direction and an even
number Nt of traps, with half the traps in each chain. Again, there is no more than one atom per
trap, but it is possible to end up with all the atoms in one chain if N < Nt/2. That is, there is no
restriction that forces the number of atoms in each chain to be the same - indeed, N can be odd. In
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Figure 11.8: Effect of random filling on the visibility for two chains as a function ofN for 40 traps.

this case, when θ = θ0/2 = θexc and ϕ = 0,

S̄ (β) =
1

N
+

2

N2
(
Nt

N

) Nt−1∑
m=Nt/2

W (m) cos β

+
2

N2
(
Nt

N

) Nt/2−1∑
m=1

m

(
Nt − 2

N − 2

)
(cos β − 1) +W (m), (11.24)

where β = 2kX0 sin θexc. In Fig. S11.8, the fringe visibility,

V =
S̄ (0)− S̄ (π)

S̄ (0) + S̄ (π)
=

1− S̄ (π)

1 + S̄ (π)
, (11.25)

is plotted as a function of N for Nt = 40. As can be seen, the main effect of random filling is to
reduce the fringe visibility, an effect which becomes less important with increasing N .
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CHAPTER 12

Theory of Rydberg Blockade With Multiple
Intermediate State Excitations

12.1 Introduction

As a consequence of the dipole-dipole interaction between highly excited Rydberg atoms, it is
possible to suppress multiple Rydberg excitations in an atomic ensemble when the atoms are driven
by optical fields. The suppression mechanism produces a ”dipole or Rydberg blockade” that can
be used to entangle a large number of atoms. As proposed originally by Lukin et al [6], such
a Rydberg blockade can be used as an important element in quantum computing and quantum
information protocols. Experimental confirmation of the Rydberg blockade has been reported for
both two-atom [104] and many-atom [105] systems.

In the simplest theoretical modeling of the Rydberg blockade, the ensemble of atoms is taken
to consist of two collective states, the ground state and a fully symmetric state involving a single
Rydberg excitation. Excitation of the collective Rydberg state is often accomplished via two-
photon excitation via an off-resonant intermediate state. In the two-level model, the intermediate
state does not appear explicitly in the formalism, having been adiabatically eliminated in some
fashion. In such treatments, it is not clear whether or not there are multiple collective excitations
of the intermediate state and to what extent off-resonant excitation of the intermediate states results
in light shifts. The light shifts can modify the resonance condition for excitation of the blockade.
In this paper, we fully account for multiple intermediate state excitations.

The collective states that are excited in the Rydberg blockade can be related to Dicke states
[70]. There is a vast literature on both Dicke states and the Rydberg blockade. In a comprehensive
article containing many references, Shammah et al [106] reviewed the Dicke state dynamics for an
ensemble of non-interacting two-level atoms. If the atoms are non-interacting, the Dicke formal-
ism, while interesting, simply makes a theoretical analysis of the problem much more complex,
since the expectation value of any physical observable for non-interacting atoms is simply N times
that of a single atom. On the other hand, when the blockade is operational, the Dicke formalism
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offers distinct advantages, especially if decay is negligible and the field amplitudes are constant
over the atomic ensemble. In that limit, the state vector describing the atomic ensemble is restricted
to a limited subspace, namely the fully symmetric Dicke states. Although there are many papers
devoted to the state dynamics of the symmetric states in the Rydberg blockade [107], far fewer
consider the role intermediate state excitations [108]. Moreover these papers often focus on the
role of spontaneous decay rather than the modifications of the Rydberg dynamics in the absence of
decay.

The goals of this paper are several-fold: (1) to provide formal justification for the use of the
two-level approximation in the theory of the dipole blockade, (2) to examine the changes in the
blockade that occur when there are multiple intermediate state excitations, (3) to develop a dressed
state theory of the blockade that can be used for both constant amplitude and adiabatic input pulses,
(4) to underline the advantages of the dressed state approach, (5) to calculate the probability of the
collective Rydberg population produced in the blockade as a function of pulse duration, (6) to
compare this response for both constant amplitude and adiabatic input pulses, and, finally, (7) to
connect our results with those that can be obtained using a form of the Holstein-Primakoff trans-
formation [109]. We shall see that multiple intermediate state excitations can lead to an overall
modulation of the Rydberg state population for constant amplitude fields that is absent when adia-
batic pulses are used.

The paper is organized as follows: In Sec. II, the basic model is presented. A theory based on
”bare” states is developed in Sec. III, allowing us to calculate the probability for excitation of the
collective Rydberg state as a function of pulse duration. The analogous theory using a dressed-state
basis is developed in Sec. IV for constant amplitude and adiabatic pulses. In Sec. V, a form of the
Holstein-Primakoff transformation is used to reproduce the results that were obtained for adiabatic
pulse excitation of the blockade.

12.2 General Considerations

Each atom is modeled as a three-level atom with lower state 1 (ground state), intermediate state
2, and upper state 3 (Rydberg level), as shown in Fig. 12.1. The atoms are assumed to be cold -
motion of the atoms is neglected. There are two fields present,

E1(R, t) =
1

2
E1(t)ϵ1e

ik1·R−iω1t + c.c., (12.1a)

E2(R, t) =
1

2
E2(t)ϵ2e

ik2·R−iω2t + c.c., (12.1b)
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Figure 12.1: Level scheme. The detuning δ2 = ω32 − ω2 is not indicated explicitly in the figure.

where c.c. stands for ”complex conjugate.” Field E1(R, t) [E2(R, t)] has propagation vector k1

[k2], frequency ω1 = k1c [ω2 = k2c], and polarization ϵ1 [ϵ2]. We define detunings

δ1 = ω21 − ω1; δ2 = ω32 − ω2, (12.2)

where ω21 is the intermediate state to ground state frequency and ω32 is the Rydberg state to inter-
mediate state frequency. It is assumed that |δ1| ≫ |δ1 + δ2|. In drawing the figures in this paper,
we assume that δ1 > 0. Field E1(R, t) drives the 1 − 2 transition and field E2(R, t) drives the
2− 3 transition with associated Rabi frequencies

Ω1(t) = 2χ1(t) = −µ12 · ϵ1E1(t)

ℏ
, (12.3a)

Ω2(t) = 2χ2(t) = −µ23 · ϵ2E2(t)

ℏ
, (12.3b)

where µ12 and µ23 are dipole matrix elements. It is assumed that both χ1(t) and χ2(t) are real and
positive.

Two pulse amplitude envelopes are considered, square profiles having duration T for which

χ1,2(t) = χ1,2Θ(t)Θ (T − t) , (12.4)

where Θ(t) is a Heaviside function, and Gaussian profiles,

χ1,2(t) = χ1,2e
−t2/T 2

p , (12.5)
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with
Tp = T/

√
π, (12.6)

chosen such that the pulse areas of the square and Gaussian pulses are equal. For the most part, it
is assumed that the detunings satisfy

χ2
1

δ21
≪ 1;

χ2
2

δ21
,
χ2
2

δ22
≪ 1, (12.7)

and that
|δ1|Tp ≈ |δ2|Tp ≫ 1. (12.8)

Condition (12.7) guarantees that the intermediate state population of a single atom is much less
than unity while condition (12.8) insures that the Gaussian pulses are adiabatic.

It is assumed that the Rydberg blockade is totally functional. That is, in an ensemble of N
atoms, there is at most one collective Rydberg excitation in the sample. On the other hand, there
can be several collective intermediate state excitations. The average number of level 2 excitations
is of order

n2 =
NΩ2

1

δ21
≪ N. (12.9)

Decay of levels 2 and 3 is neglected, based on the assumptions that

(χ2
1 + χ2

2)

δ21
γ2T ≪ 1, (12.10a)

γ3T ≪ 1 (12.10b)

where γj is the decay rate of state j [110]. Although decay is neglected, the light shifts, which are
of order χ2

1/δ1, χ
2
2/δ1, can modify the atomic response to the applied fields if

χ2
1T

|δ1|
≳ 1 or

χ2
2T

|δ1|
≳ 1. (12.11)

The ensemble will undergo enhanced Rabi oscillations between the ground and collective Ryd-
berg state with rate

χRN =
√
N
χ1χ2

|δ1|
≡ ΩRN

2
. (12.12)

To observe m Rabi oscillations, it is necessary that χRNT > mπ. On this time scale, the light
shifts will be negligible provided that

χ1mπ

χ2

√
N

≪ 1;
χ2mπ

χ1

√
N

≪ 1. (12.13)
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We assume that N ≫ 1.

12.3 Bare Atom Basis

12.3.1 Single Atom

For a single atom, the wave function in a field interaction representation [29] can be written as

|ψ(t)⟩ = a1 |1⟩+ a2 |2⟩ eik1·R1−iω1t + a3 |3⟩ eik1·R1−iω1teik2·R1−iω2t, (12.14)

where R1 is the position of the atom. The state amplitudes evolve as

ȧ1 = −iχ1(t)a2, (12.15a)

ȧ2 = −iχ1(t)a1 − iχ2(t)a3 − iδ1a2, (12.15b)

ȧ3 = −iχ2(t)a2 − i (δ1 + δ2) a3, (12.15c)

with initial condition, a1(0) = 1. It is straightforward to solve these equations numerically. For
square pulses the solution for the vector a(t) = (a1(t), a2(t), a3(t)) is

a(t) = exp (−iHt/ℏ)a(0) (12.16)

where

H = ℏ

 0 χ1 0

χ1 δ1 χ2

0 χ2 δ1 + δ2

 (12.17)

is the effective Hamiltonian in a field interaction representation.
For adiabatic Gaussian pulses, it is possible to eliminate the intermediate state using

a2(t) ≈ − [χ1(t)a1(t) + χ2(t)a3(t)]

δ1
(12.18)

to arrive at

ȧ1 ≈ i
χ1(t)χ2(t)

δ1
a3 + i

[χ1(t)]
2

δ1
a1 (12.19a)

ȧ3 ≈ i
χ1(t)χ2(t)

δ1
a1 + i

[χ2(t)]
2

δ1
a3 − i (δ1 + δ2) a3 (12.19b)

Even though there is a very small probability for the atom to be in level 2 following the pulse, these
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equations give the sum of level 1 and level 3 populations equal to unity. In other words, adiabatic
elimination leads to an error that is exponentially small in the parameter |δ1|Tp. This is true of any
asymptotic expansion - it misses only exponentially small corrections.

There is an effective net detuning from two-photon resonance given by

∆(t) = δ1 + δ2 −
[χ2(t)]

2

δ1
+

[χ1(t)]
2

δ1
(12.20)

which implies that the light shifts can be larger than or comparable with the two-photon coupling
rate

χ(t) =
χ1(t)χ2(t)

δ1
. (12.21)

The light shifts can be somewhat compensated by taking a non-zero two-photon detuning, but it is
impossible to compensate for the light shifts at all times.

12.3.2 N Atoms

Once the dipole-dipole interaction between different atoms in Rydberg level 3 is included, the
calculation becomes very difficult. Even if the blockade is fully functional, as we assume, there
can be several level 2 excitations. There is no obvious simple way to eliminate the intermediate
states, in general. In other words, there is no formal justification for considering the problem as an
effective 2-level problem involving the ground and collective Rydberg states.

A more formal justification begins with the neglect of Rydberg-Rydberg interactions. We as-
sume the field amplitude is constant over the sample. Then the ensemble wave function is given
simply by

|ψ(t)⟩ =
N∏
j=1

(
a1 |1⟩j + a2 |2⟩j e

ik1·Rj−iω1t + a3 |3⟩j e
ik1·Rj−iω1teik2·Rj−iω2t

)
. (12.22)

where Rj is the position of the atom j. When expanded, this gives a state vector that can be written
as the sum of fully symmetric orthonormal phased basis kets |N ;n, q⟩ that have n excitations of
level 2 and q excitations of level 3; that is

|N ;n, q⟩ = 1√
CN

n C
N−n
q

∣∣SN
nq

〉
, (12.23)
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where the
∣∣SN

nq

〉
are fully symmetric, unnormalized phased states. In other words,

|ψ(t)⟩ =
∑
n,q

aN−n−q
1 an2a

q
3

∣∣SN
nq

〉
=
∑
n,q

cNnq(t) |N ;n, q⟩ , (12.24)

where n and q can vary from 0 to N with n+ q ≤ N . It then follows immediately that

cNnq =
√
CN

n C
N−n
q aN−n−q

1 an2a
q
3. (12.25)

The |N ;n, 0⟩ are not Dicke states [70], but can be related to the Dicke states if we set n = mDicke+

N/2 and N = 2JDicke. Using Eqs. (12.25) and (12.15), we obtain the evolution equations

ċNnq = −i [nδ1 + q (δ1 + δ2)] c
N
nq − iχ1(t)

√
n (N − n− q + 1)cNn−1,q

− iχ1(t)
√

(n+ 1) (N − n− q)cNn+1,q − iχ2(t)
√
n (q + 1)cNn−1,q+1

− iχ2(t)
√
q(n+ 1)cNn+1,q−1, (12.26)

subject to the initial conditions
cNnq(0) = δn,0δq,0, (12.27)

where δi,j is a Kronecker delta. Of course, for our factorized state, if you want to calculate any
physical observable’s expectation value, it will simply be N times the single atom expectation
value.

To go from a factorized state to the blockade, we limit the values of q to be 0 or 1. Then there
are two ladders of levels, the first of which has N +1 steps (q = 0 and 0 ≤ n ≤ N) and the second
N steps (q = 1 and 0 ≤ n ≤ N − 1). These ladders are represented schematically in Fig. 12.2 for
the case when δ1 + δ2 = 0. The equations for the state amplitudes in these two chains are

ċNn0 = −inδ1cNn0 − iχ1(t)
√
n (N − n+ 1)cNn−1,0

− iχ1(t)
√

(n+ 1) (N − n)cNn+1,0 − iχ2(t)
√
ncNn−1,1, (12.28a)

ċNn1 = −i [nδ1 + (δ1 + δ2)] c
N
n1 − iχ1(t)

√
n (N − n)cNn−1,1

− iχ1(t)
√

(n+ 1) (N − n− 1)cNn+1,1 − iχ2(t)
√

(n+ 1)cNn+1,0.

(12.28b)

Field 1 produces strong coupling up and down each ladder when N is large, as is assumed.
There is coupling between adjacent ladder states for n differing by one with a coupling constant√

(n+ 1)χ2. The maximum population in each ladder occurs for n ≈ n2/2, where n2 is given by
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Figure 12.2: Fully-symmetric collective bare states. The left ladder consists of states |N ;n, 0⟩
containing zero Rydberg excitations and up to n = N level 2 excitations. The right ladder consists
of states |N ;n, 1⟩ containing one Rydberg excitation and up to n = (N − 1) level 2 excitations.
Coupling strengths are shown. Initially the atoms are in the ground state |N ; 0, 0⟩. The ladders are
drawn for δ1 + δ2 = 0.

Eq. (12.9), and approximately n2 states are populated significantly. Thus, only the lower states of
the ladders get populated in the limit that Ω2

1/δ
2
1 ≪ 1. In the case of square pulses, the solution of

Eqs. (12.28) at time t = T can be expressed formally as

cNnq(t) = e−iHbaret/ℏcNnq(0), (12.29)

where Hbare is a (2N + 1) × (2N + 1) matrix and cNnq is a (2N + 1) column vector. The matrix
exponential function needs to be calculated numerically, in general. For time-dependent Rabi
frequencies (pulsed fields), Eqs. (12.28) must be solved numerically.

If n2 = NΩ2
1/δ

2
1 ≪ 1, it is a good approximation to include only the two lowest states of each

ladder (at least two steps must be included since the lowest states of each ladder are not coupled in
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this bare state calculation). The truncated equations with n ≤ 1 and q ≤ 1 are

ċN00 = −iχ1(t)
√
NcN10, (12.30a)

ċN10 = −iδ1cN10 − iχ1(t)
√
NcN00 − iχ2(t)c

N
01, (12.30b)

ċN01 = −i (δ1 + δ2) c
N
01 − iχ2(t)c

N
10 − iχ1(t)

√
N − 1cN11, (12.30c)

ċN11 = −i (2δ1 + δ2) c
N
11 − iχ1(t)

√
N − 1cN01,

≈ −iδ1cN11 − iχ1(t)
√
N − 1cN01. (12.30d)

For adiabatic pulses [111]

cN10(t) ≈ −χ1(t)
√
NcN00(t) + χ2(t)c

N
01(t)

δ1
, (12.31a)

cN11(t) ≈ −χ1(t)
√
N − 1

δ1
cN01(t), (12.31b)

which, when substituted into the original equations, yields

ċN00 ≈
iN [χ1(t)]

2

δ1
cN00 +

i
√
Nχ1(t)χ2(t)

δ1
cN01, (12.32a)

ċN01 ≈ −i (δ1 + δ2) c
N
01 +

i [χ2(t)]
2

δ1
cN01

+
i (N − 1) [χ1(t)]

2

δ1
cN01 +

i
√
Nχ1(t)χ2(t)

δ1
cN00. (12.32b)

If we let

cN00 = c̃N00 exp

[
i
N

δ1

∫ t

−∞
[χ1(t

′)]
2
dt′
]
, (12.33a)

cN01 = c̃N01 exp

[
i
N

δ1

∫ t

−∞
[χ1(t

′)]
2
dt′
]
, (12.33b)

then

dc̃N00/dt =
i
√
Nχ1(t)χ2(t)

δ1
c̃N01, (12.34a)

dc̃N01/dt =
i
√
Nχ1(t)χ2(t)

δ1
c̃N00 − i∆(t)c̃N01, (12.34b)

which are the effective two-level equations, including the light shifts, with ∆(t) defined by Eq.
(12.20).

For constant amplitude pulses and n2 ≪ 1, Eqs. (12.34) can still provide a very good approx-
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Figure 12.3: Population of the lowest state of the Rydberg ladder as a function of χRN t for χ1 = 1,
χ2 = 10, δ1 = −δ2 = 1000, and N = 500. The solid red curve is the exact result and the dashed
blue curve is the two-level result given by Eq. (12.35a). For these parameters the two curves
overlap.

imation to the exact result provided that χ2/δ1 ≪ 1. The solution of Eqs. (12.34) with constant
amplitude fields is

∣∣cN01(t)∣∣2 = 4χ2
RN

∆2 + 4χ2
RN

sin2

[√
∆2 + 4χ2

RN t/2

]
, (12.35a)∣∣cN00(t)∣∣2 = 1−

∣∣cN01(t)∣∣2 , (12.35b)

where ∆ is given by Eq. (12.20) and χRN by Eq. (12.12). With increasing χ2/δ1, Eqs. (12.34) may
fail to reproduce the nonadiabatic effects associated with the sudden turn-on of the fields. In Figs.
12.3 and 12.4, we plot

∣∣cN01(t)∣∣2 as a function of χRN t with values of χ1, χ2, δ1, and δ2 given in
arbitrary units. The values chosen are χ1 = 1, δ1 = 1000, N = 500, and {χ2 = 10, δ2 = −1000}
(Fig. 12.3) or {χ2 = 500, δ2 = −890} (Fig. 12.4). For χ2/δ1 = 0.01, the exact [obtained from Eq.
(12.29)] and ”adiabatic” results are in good agreement, but for χ2/δ1 = 0.5,

∣∣cN01(t)∣∣2 is modulated
at frequency δ1, even though the two-level approximation remains valid. We shall see that this
nonadiabatic behavior persists for the total Rydberg population when the two-level approximation
is no longer valid. The oscillation frequency in Fig. 12.4 is much larger than the collective Rabi
frequency owing to the large light shift associated with field 2.
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Figure 12.4: Population of the lowest state of the Rydberg ladder as a function of χRN t for χ1 = 1,
χ2 = 500, δ1 = 1000, δ2 = −890, and N = 500. The solid red curve is the exact result and the
dashed blue curve is the two-level result given by Eq. (12.35a).

12.4 Dressed Atom Basis

12.4.1 Constant Amplitude Dressed States

It turns out there can be some significant advantages if (semiclassical) dressed states are used [29].
In this subsection we consider constant amplitude fields, but it turns out that adiabatic dressed
states, to be discussed in the following subsection, may be more useful. The equations of motion
for the bare state amplitudes in the absence of field 2 are

ȧ1 = −iχ1a2 (12.36a)

ȧ2 = −iχ1a1 − iδ1a2, (12.36b)

which implies an effective Hamiltonian

H2 = ℏ

(
0 χ1

χ1 δ1

)
. (12.37)

We diagonalize this Hamiltonian and obtain eigenvalues

EI,II = ℏωI,II = ℏ
[
δ1
2
∓ Ω

2

]
, (12.38)
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where
Ω =

√
δ21 + 4χ2

1. (12.39)

The corresponding eigenkets are

|I⟩ = cos θ |1⟩+ sin θ |2⟩ , (12.40a)

|II⟩ = cos θ |2⟩ − sin θ |1⟩ , (12.40b)

with

cos θ =
χ1√
χ2
1 + ω2

I

, (12.41a)

sin θ =
ωI√
χ2
1 + ω2

I

. (12.41b)

Note that for χ2
1/δ

2
1 ≪ 1,

cos θ ≈ 1− χ2
1

2δ21
, (12.42a)

sin θ ≈ −χ1

δ1
, (12.42b)

ωI ≈ −χ
2
1

δ1
. (12.42c)

The bare and dressed state amplitudes are related by

aI = cos θa1 + sin θa2, (12.43a)

aII = cos θa2 − sin θa1, (12.43b)

a1 = cos θaI − sin θaII , (12.43c)

a2 = cos θaII + sin θaI , (12.43d)

and the initial condition for the dressed state amplitudes is

aI(0) = cos θ; aII(0) = − sin θ. (12.44)

It is now possible to introduce symmetric collective states as before. The ensemble wave func-
tion is given simply by

|ψ(t)⟩ =
N∏
j=1

(
aI |I⟩j + aII |II⟩j e

ik1·Rj−iω1t + a3 |3⟩j e
ik1·Rj−iω1teik2·Rj−iω2t

)
, (12.45)
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where

|I⟩j = cos θ |1⟩j + sin θ |2⟩j , (12.46a)

|II⟩j = cos θ |2⟩j − sin θ |1⟩j . (12.46b)

When expanded, this gives a state vector that can be written as the sum of fully symmetric or-
thonormal dressed basis kets ˜|N ;n, q⟩ that have n excitations of state II and q excitations of level
3; that is

˜|N ;n, q⟩ = 1√
CN

n C
N−n
q

∣̃∣SN
nq

〉
(12.47)

where the
∣̃∣SN

nq

〉
are the fully symmetric, unnormalized states. In other words,

|ψ(t)⟩ =
∑
n,q

aN−n−q
I anIIa

q
3

∣̃∣SN
nq

〉
=
∑
n,q

cNd
nq (t)

˜|N ;n, q⟩, (12.48)

where n and q can vary from 0 to N with n+ q ≤ N . It then follows immediately that

cNd
nq =

√
CN

n C
N−n
q aN−n−q

I anIIa
q
3. (12.49)

Using Eqs. (12.43) and (12.15), one can show that the single atom dressed state amplitudes obey
the evolution equations

ȧI = −iωIaI − iχ2 sin θa3, (12.50a)

ȧII = −iωIIaII − iχ2 cos θa3, (12.50b)

ȧ3 = −i (δ1 + δ2) a3 − iχ2 cos θaII − iχ2 sin θaI , (12.50c)

from which it follows that the collective state amplitudes obey

ċNd
nq = −i [(N − q)ωI + nΩ + q (δ1 + δ2)] c

Nd
nq − iχ2 sin θ

√
(q + 1) (N − n− q)cNd

n,q+1

− iχ2 sin θ
√
q (N − n− q + 1)cNd

n,q−1 − iχ2 cos θ
√
n (q + 1)cNd

n−1,q+1

− iχ2 cos θ
√
q(n+ 1)cNd

n+1,q−1, (12.51)

where we have used the relation ωII − ωI = Ω.
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Redefining the zero of energy by setting

cNd
nq (t) = bNd

nq (t)e
−iNωI te−inΩt, (12.52)

we find, for a perfect blockade, that the needed equations are

ḃNd
n0 = −iχ2 sin θ

√
(N − n)bNd

n1 − iχ2e
iΩt cos θ

√
nbNd

n−1,1, (12.53a)

ḃNd
n1 = −i (δ1 + δ2 − ωI) b

Nd
n1

− iχ2 sin θ
√
N − nbNd

n0 − iχ2 cos θe
−iΩt

√
n+ 1bNd

n+1,0. (12.53b)

The situation has changed dramatically from the bare basis (see Fig. 12.5, drawn for δ1 + δ2 =

0). Having used a dressed basis, there is no longer any direct coupling up and down each of the
ladders. Most of the coupling is between adjacent states of the two ladders having the same n

and this coupling is enhanced by a factor of
√
N for low lying states if N ≫ 1. Note that the

energy of state ˜|N ;n, 0⟩ is lower than that of state ˜|N ;n, 1⟩ by −ℏωI , which is the ground state

light shift associated with the first field (recall that −ωI ≈ χ2
1/δ1 > 0). In other words the dressed

states automatically include this light shift. In addition there is coupling of order χ2

√
n between

states in different ladders differing in n by one. Since these states are separated in frequency by
Ω ≈ δ1 ≫ χ2, this coupling leads to contributions to state amplitudes of order χ2

√
n/Ω.

If the χ2 coupling between states differing in n by one is neglected, the problem reduces to a
number of independent two state problems between different ladder states having the same n. In
this limit, and in the limit that

|σ| = |δ1 + δ2 − ωI | ≪ χ2 |sin θ|
√

(N − n), (12.54)

the approximate solution of Eqs. (12.53) is

[
bNd
n0 (t)

](0)
= bNd

n0 (0) cos
[
χ2t sin θ

√
(N − n)

]
, (12.55a)[

bNd
n1 (t)

](0)
= −ibNd

n0 (0) sin
[
χ2t sin θ

√
(N − n)

]
, (12.55b)

where

bNd
nq (0) =

√
CN

n a
N−n
I (0)anII(0)δq,0

=
√
CN

n cosN−n θ [− sin θ]n δq,0. (12.56)

For θ ≪ 1 and N ≫ n,
∣∣bNd

n0 (0)
∣∣2 approaches a Poisson distribution having average value ⟨n⟩ =

Nχ2
1/δ

2
1 = n2/4. Good convergence is achieved if a maximum of n2/2 steps in each ladder is
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Figure 12.5: Fully-symmetric collective dressed states for constant amplitude fields when δ1 +
δ2 = 0. In contrast to the bare state ladders, there is no longer any direct coupling up and down
the ladders. However, initially there is now population in each of the states in the left ladder
(represented by the shaded circles), with the relative populations determined from Eq. (12.56).
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included. We have reduced the number of states from what was needed in the bare state basis by a
factor of 2; moreover, we now have an approximate analytic solution.

We can improve upon this solution by using a truncated subspace for the amplitudes

bNd
n = [bNd

n0 , b
Nd
n1 , b̃

Nd
n+1,0, b̃

Nd
n+1,1, b̃

Nd
n−1,0, b̃

Nd
n−1,1].

As is shown in the appendix, whenever the inequalities

χ2
1

δ21
≪ 1;

χ2

δ1
≪ 1; N ≫ n, χRN ≫

∣∣∣∣δ1 + δ2 +
χ2
1

δ1

∣∣∣∣ , (12.57)

hold, approximate solutions for the dressed state amplitudes are

bNd
n0 (t) ≈ bNd

n0 (0)e
−ist cos (χRN t) , (12.58a)

bNd
n1 (t) ≈ ibNd

n0 (0)e
−ist sin (χRN t) , (12.58b)

where
s =

χ2
1

2δ1
− χ2

2

2δ1
+
δ1 + δ2

2
=

∆

2
. (12.59)

To this order, the solution depends on n only through the initial conditions. A somewhat improved
approximation can be obtained by using the exact solution for the truncated subspace given by
Eq. (12.95) in the appendix. There are no collective light shifts, proportional to N , that enter the
solution.

Some illustrative plots are given for Im bNd
01 as a function of χRN t for δ1 = −δ2. In Fig. 12.6,

χ1 = χ2 = 1, δ1 = 100, N = 10, 000, and n = 0. For these parameters, n2 = 4 and only the
first 2 steps in each dressed state ladder are populated significantly. Moreover, s = 0, such that
Re bNd

01 ≈ 0. The solid red curve is the exact solution and the dashed blue curve, which virtually
coincides with the exact solution, is the approximate solution given by Eq. (12.58b). Modifications
of the transition amplitude introduced by light shifts can be seen in Fig. 12.7, in which χ1 = 2,
χ2 = 1, δ1 = 50, N = 100, and n = 0. For these parameters, s = 0.03 and the light shifts
lead to a modulation of the collective Rabi oscillations, but the exact and approximate solutions for
both Im bNd

01 and Re bNd
01 (not shown) still are in excellent agreement. For larger values of χ2/δ1,

the approximate expression given by Eq. (12.58b) begins to breakdown for two reasons. There
are corrections within the truncated subspace of order χ2/δ1 and there is coupling between the
truncated subspaces as well. This feature is illustrated in Fig. 12.8, in which χ1 = 2, χ2 = 30,

δ1 = 50, N = 100, and n = 0. The dotted black curve is an improved approximation for Im bNd
01

in the truncated subspace given by Eq. (12.95) of the appendix.
Having derived approximate expressions for the dressed state amplitudes, we can use these
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Figure 12.6: Imaginary part of the amplitude associated with the lowest level of the Rydberg ladder
as a function of χRN t for χ1 = χ2 = 1, δ1 = −δ2 = 100, N = 10, 000. The exact (solid red curve)
and approximate solution given by Eq. (12.58b) (dashed blue curve) overlap.

Figure 12.7: Imaginary part of the amplitude associated with the lowest level of the Rydberg ladder
as a function of χRN t for χ1 = 2, χ2 = 1, δ1 = −δ2 = 50, N = 100. The exact (solid red curve)
and approximate solution given by Eq. (12.58b) (dashed blue curve) begin to deviate from one
another for large times.

204



Figure 12.8: Imaginary part of the amplitude associated with the lowest level of the Rydberg ladder
as a function of χRN t for χ1 = 2, χ2 = 30, δ1 = −δ2 = 50, N = 100. The exact (solid red curve)
and approximate solution given by Eq. (12.58b) (dashed blue curve) no longer agree. The black
dotted solution is an approximate solution in the truncated subspace described in the appendix.

results to obtain approximate expressions for the bare state amplitudes. From Eqs. (12.25), (12.43),
and (12.49), it follows that the bare state amplitudes cNn0(t) and cNn1(t) can be expressed in terms of
the dressed state solutions as

cNn0(t) =
N−n∑
µ=0

n∑
ν=0

√
CN

n

CN
n+µ−ν

CN−n
µ Cn

ν (−1)µ (cos θ)N−µ−ν (sin θ)µ+ν

× e−i(n+µ−ν)Ωte−iNωI tbNd
n+µ−ν,0(t), (12.60a)

cNn1(t) =
N−n−1∑
µ=0

n∑
ν=0

√
N − n

N − n− µ+ ν

√
CN

n

CN
n+µ−ν

CN−1−n
µ Cn

ν (−1)µ e−iNωI t

× (cos θ)N−1−µ−ν (sin θ)µ+ν e−i(n+µ−ν)ΩtbNd
n+µ−ν,1(t). (12.60b)

In the limit of largeN , Eqs. (12.60), (12.58), and (12.56) can be combined to give the approximate
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solutions

cNn0(t) ≈
√
CN

n

(
1− eiΩt

)n
(−1)n e−inΩt cosn θ sinn θe−iNωI t

×
(
cos2 θ + e−iΩt sin2 θ

)N−n
e−ist cos

[
χ2t sin θ

√
N
]
, (12.61a)

cNn1(t) ≈ −i
√
CN

n

(
1− eiΩt

)n
(−1)n e−inΩt cosn+1 θ sinn θe−iNωI t

×
(
cos2 θ + e−iΩt sin2 θ

)N−1−n
e−ist sin

[
χ2t sin θ

√
N
]
. (12.61b)

If θ ≪ 1, we find

∣∣cNn0(t)∣∣2 ≈ CN
n

(
2χ2

1

δ21

)n

[1− cos (δ1t)]
n exp

[
−2 (N − n)

χ2
1

δ21
[1− cos (δ1t)]

]
cos2 (χRN t) ,

(12.62a)∣∣cNn1(t)∣∣2 ≈ CN
n

(
2χ2

1

δ21

)n

[1− cos (δ1t)]
n exp

[
−2 (N − n− 1)

χ2
1

δ21
[1− cos (δ1t)]

]
sin2 (χRN t) .

(12.62b)

For 2Nχ2
1/δ

2
1 > 1, the probabilities consist of a number of spikes under the envelope of the

collective Rabi oscillations. For n ≪ 2Nχ2
1/δ

2
1 , the spikes are centered near δ1t = 2mπ, for

integer m, but for n ≫ 2Nχ2
1/δ

2
1 , they are centered at δ1t = (2m+ 1) π. This feature is seen

in Fig. 12.9 where
∣∣cNn1∣∣2 is plotted as a function of χRN t for χ1 = χ2 = 1, δ1 = −δ2 = 50,

N = 10000, and n = 0, 16.
In a typical experiment there is a read-out pulse following the excitation pulses applied at a time

where all intermediate state populations have decayed. For large N , it is a fairly good approxima-
tion to assume that all the decay is confined to the fully symmetric states, provided the number of
excited states n2 ≪ N [112]. In that limit, the observed signal is proportional to the total Rydberg
population PR following the excitation pulse given by

PR =
N−1∑
n=0

∣∣cNn1(t)∣∣2 ≈ sin2 (χRN t) . (12.63)

In some sense, this is a justification for the two-level approximation that is used to model this
system. However, Eq. (12.63) is valid only when inequalities (12.57) hold. In the appendix, it is
shown that an approximate solution giving first order corrections in χ2/δ1 is [113]

PR ≈ sin2 (χRN t)−
χRN

δ1
sin (δ1t) sin (2χRN t) , (12.64)

assuming that δ1 ≫ χRN . Most of the modulation seen in Fig. 12.9 is now gone, but there remains
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Figure 12.9: Graph of
∣∣cNn1(t)∣∣2 as a function of χRN t for χ1 = χ2 = 1, δ1 = −δ2 = 50,

N = 10000, and n = 0 (large red spikes) and n = 16 (smaller blue peaks).

a small component of the signal which is modulated at frequency δ1. This modulation can be seen
in Fig. 12.10.

12.4.2 Adiabatic Dressed States

As long as |δ1Tp| ≫ 1 for the Gaussian pulse envelope of Eq. (12.5), we can use time-dependent
adiabatic dressed states defined as in Eqs. (12.43), but with time-dependent θ(t). The evolution
equations will be given by Eq. (12.51), if Ω, θ, and χ2 are replaced by their time-dependent values,
provided terms of order θ̇(t) ≈ |δ1Tp| ≪ 1 can be neglected. The use of adiabatic dressed states
changes things dramatically since the only adiabatic dressed state that is occupied at t = −∞
is the n = q = 0 state (see Fig. 12.11). As time evolves the ensemble stays mainly in the
lowest state of each ladder, with a contribution to the light shifts from the first excited state of
each ladder. Thus, we get an excellent approximation to the exact result by considering only the
two lowest states of each ladder (or even just the lowest states, with the second states adiabatically
eliminated). Moreover following the pulse, all amplitudes except cNd

00 and cNd
01 go to zero. The

adiabatic solution is generally valid for smooth pulses, provided

Ω(t)Tp =

√
δ21 + [χ1(t)]

2Tp ≫ 1; (12.65)

that is, it is not restricted to values [χ1(t)]
2 /δ21 ≪ 1. Considering only the lowest two states [and
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Figure 12.10: Graph of the total Rydberg population PR(t) as a function of χRN t for χ1 = χ2 = 1,
δ1 = −δ2 = 50, and N = 10000. The exact (solid red curve) and approximate solution from Eq.
(12.64) (dashed blue curve) are shown.

subtracting out an energy as in Eqs. (12.33)], we adiabatically eliminate the second state in the
first ladder using

c̃Nd
10 (t) = −χ2(t) cos [θ(t)] c̃

Nd
01 (t)

Ω(t)
, (12.66)

leading to evolution equations for the lower state amplitudes [114]

dc̃Nd
00 /dt = −i

√
N sin [θ(t)]χ2(t)c̃

Nd
01 , (12.67a)

dc̃Nd
01 dt = −i

√
N sin [θ(t)]χ2(t)c̃

Nd
00

− i

[
(δ1 + δ2)− ωI(t) +

[χ2(t) cos [θ(t)]]
2

Ω(t)

]
c̃Nd
01 . (12.67b)

Equations (12.67) lead to results that agree with the exact results when |δ1Tp| ≫ 1. This is true
even when the inequalities (12.7) are violated. There is no modulation at frequency δ1 in the
adiabatic result. For the Gaussian pulse envelope of Eq. (12.5), in Fig. 12.12, we plot

∣∣cN01 (∞)
∣∣2 =∣∣c̃Nd

01 (∞)
∣∣2 as a function of χRNT/

√
2 for χ1 = 30, χ2 = 2, δ1 = −δ2 = 50, N = 100, and

compare it with the exact solution. The blue, dashed curve is the adiabatic solution and the red
solid curve is the exact solution - as can be seen, they agree perfectly, even though χ1/δ1 = 0.6.
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Figure 12.11: Fully-symmetric collective dressed state levels for adiabatic, time-dependent fields
when δ1 + δ2 = 0. In contrast to the constant amplitude dressed ladders, the only state populated
initially is the ˜|N ; 0, 0⟩ state and the only final states populated are ˜|N ; 0, 0⟩ and ˜|N ; 0, 1⟩. Although
not indicated explicitly, χ1, χ2, Ω, and θ are functions of time.
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Figure 12.12: Graph of
∣∣cN01 (∞)

∣∣2 as a function of χRNT/
√
2 for χ1 = 30, χ2 = 2, δ1 = −δ2 = 50,

and N = 100. The blue, dashed curve is the adiabatic solution and the red solid curve is the exact
solution.

12.5 Effective Hamiltonian and the Holstein-Primakoff Trans-
formation

The Hamiltonian that gives rise to the evolution Eqs. (12.26) is

H = ℏ
∑
n,q

[nδ1 + q (δ1 + δ2)] |N ;n, q⟩ ⟨N ;n, q|

+ ℏχ1(t)

N−q+1∑
n=0

√
n (N − n− q + 1) |N ;n, q⟩ ⟨N ;n− 1, q|

+ ℏχ1(t)

N−q∑
n=0

√
(n+ 1) (N − n− q) |N ;n, q⟩ ⟨N ;n+ 1, q|

+ ℏχ2(t)
N−n∑
q=0

√
n (q + 1) |N ;n, q⟩ ⟨N ;n− 1, q + 1|

+ ℏχ2(t)
N−n∑
q=0

√
q (n+ 1) |N ;n, q⟩ ⟨N ;n+ 1, q − 1| (12.68)
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and is exact. However in the limit that N ≫ n, q, 1, it reduces to

H ≈ −ℏ
∑
n,q

[nδ1 + q (δ1 + δ2)] |N ;n, q⟩ ⟨N ;n, q|

+ ℏχ1(t)
√
N
∑
n

(√
n |N ;n, q⟩ ⟨N, n− 1, q|+

√
(n+ 1) |N ;n, q⟩ ⟨N ;n+ 1, q|

)
+ ℏχ2(t)

∑
q

( √
n (q + 1) |N ;n, q⟩ ⟨N ;n− 1, q + 1|

+
√
q (n+ 1) |N ;n, q⟩ ⟨N ;n+ 1, q − 1|

)
. (12.69)

This a Hamiltonian for coupled oscillators, in which one of the oscillators is driven by an incident
field. That is, if the ladder operators for each oscillator are denoted by a and b, then

H ≈ ℏ
[
δ1a

†a+ (δ1 + δ2) b
†b
]

+ ℏχ1(t)
√
N
(
a+ a†

)
+ ℏχ2(t)

(
a†b+ b†a

)
. (12.70)

Since these correspond to linear oscillators, there can be no nonlinear effects. To simulate the
blockade we must truncate the b oscillator. That is we replace b by σ− = |1⟩ ⟨3|, b† by σ+ = |3⟩ ⟨1|,
and b†b by σ+σ− = |3⟩ ⟨3| = σ33, yielding

H ≈ ℏ
[
δ1a

†a+ (δ1 + δ2)σ33
]

+ ℏχ1(t)
√
N
(
a+ a†

)
+ ℏχ2(t)

(
a†σ− + σ+a

)
, (12.71)

which corresponds to an oscillator driven by an off-resonant field that is coupled to a two-level
atom. The excited state of the ”two-level” atom is actually the collective Rydberg state.

The equation of motion for a is

ȧ = −iδ1a− iχ1(t)
√
N − iχ2(t)σ−. (12.72)

The adiabatic solution of this equation is

a = −χ1(t)
√
N + χ2(t)σ−
δ1

. (12.73)

Note that the adiabatic solution might fail when [χ1(t)]
2T

δ1
> 1.
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The equations for the atomic operators are

σ̇11 = iχ2(t)
[
σ+a− a†σ−

]
, (12.74a)

σ̇33 = −iχ2(t)
[
σ+a− a†σ−

]
, (12.74b)

σ̇+ = i (δ1 + δ2)σ+ − iχ2(t)a
† [σ33 − σ11] , (12.74c)

σ̇− = −i (δ1 + δ2)σ− + iχ2(t) [σ33 − σ11] a, (12.74d)

where σ11 = σ−σ+ = |1⟩ ⟨1|. If we insert the solution (12.73) for a in these equations, we find

σ̇11 = −iχ2(t)χ1(t)
√
N

δ1
[σ+ − σ−] , (12.75a)

σ̇33 = i
χ2(t)χ1(t)

√
N

δ1
[σ+ − σ−] , (12.75b)

σ̇+ = i (δ1 + δ2)σ+ + i
χ2(t)χ1(t)

√
N

δ1
[σ33 − σ11]− i

[χ2(t)]
2

δ1
σ+, (12.75c)

σ̇− = (σ̇+)
† . (12.75d)

These equations suggest that there is no level shift associated with the field χ1, but this can be
traced to the neglect of q in going from Eq. (12.68) to (12.69), under the assumption that N ≫ q

(see below).
Suppose we want to find corrections to the excited state population resulting from multiple level

2 excitations. If we want to estimate corrections, we can look only at terms in the Hamiltonian
related to the χ1 field and drop the q terms in the Hamiltonian. In this limit

H = ℏ
∑
n

nδ1 |N ;n⟩ ⟨N ;n|

+ ℏχ1(t)

N−q+1∑
n=0

√
n (N − n+ 1) |N ;n⟩ ⟨N ;n− 1|

+ ℏχ1(t)

N−q∑
n=0

√
(n+ 1) (N − n) |N ;n⟩ ⟨N ;n+ 1| . (12.76)

We convert this to operators by replacing n by a†a to arrive at

H ≈ ℏδ1a†a+ ℏχ1(t)
√
N

(√(
1− a†a

N

)
a+ a†

√(
1− a†a

N

))
, (12.77)

where we have neglected terms of order 1/N . This result has essentially the same form as the
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Holstein-Primakoff (HP) transformation [109]. If we expand to lowest order, then

H ∼ ℏδ1a†a+ ℏχ1(t)
√
N
(
a+ a†

)
− ℏχ1(t)

1

2
√
N

(
a†aa+ a†a†a

)
(12.78)

Including the interaction with the second field

H ≈ ℏδ1a†a+ ℏχ1(t)
√
N
(
a+ a†

)
− ℏχ1(t)

1

2
√
N

(
a†aa+ a†a†a

)
+ ℏχ2(t)

(
a†σ− + σ+a

)
. (12.79)

The equation for ȧ is

ȧ = −iδ1a− iχ1(t)
√
N + iχ1(t)

1

2
√
N

(
a2 + 2a†a

)
− iχ2(t)σ−. (12.80)

One possibility is to put the adiabatic solution

a = −χ1(t)
√
N + χ2(t)σ−
δ1

. (12.81)

in the third term and neglect the χ2(t)σ− term. Then

ȧ ≈ −iδ1a− iχ1(t)
√
N

(
1− 3

2

χ2
1(t)

δ21

)
− iχ2(t)σ−, (12.82)

such that

a ≈ −
χ1(t)

√
N
(
1− 3

2

χ2
1(t)

δ21

)
+ χ2(t)σ−

δ1
. (12.83)

As a consequence, the coupling is modified as

√
N
χ2(t)χ1(t)

δ1
→

√
N
χ2(t)χ1(t)

δ1

(
1− 3

2

[χ1(t)]
2

δ21

)
, (12.84)

consistent with the lowest order correction to the coupling in the adiabatic model given in Eq.
(12.67).

The use of the HP approximation does not simplify the calculation. However, if the light shifts
are negligible, it does provide a simple justification for the two-level model. The Hamiltonian of
Eq. (12.71) can be viewed as the lowest order approximation to the HP transformation. Equation
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(12.71) led to Eqs. (12.75). If the light shifts are neglected in Eqs. (12.75) and expectation values
are taken, one arrives at density matrix equations consistent with the two-level approximation. In
other words, the Heisenberg operator approach of the HP transformation allows one to arrive at
expressions for the total Rydberg population without regard to the individual state populations of
the ladder states.

12.5.0.1 How to include the light shift from the first field

Even with corrections, the Hamiltonian given by Eq. (12.79) does not contain the light shifts
produced by field 1. The reason for this is clear. In the dressed basis, there are two ladders and
the q = 1 ladder is shifted slightly from the q = 0 ladder. There is no analogous term in HP since
we have assumed that N ≫ q;, in effect, we treat q = 0 and q = 1 in the same manner. Thus to
include the light shift in HP, we must somehow account for the q dependence. To do so we expand

√
n (N − n− q + 1) ≈

√
nN − q

√
n

2
√
N

(12.85)

As a consequence, the effective Hamiltonian given in Eq. (12.79) is replaced by

H ≈ ℏ

[
δ1a

†a+

(
δ1 + δ2 −

χ1(t)
(
a+ a†

)
2
√
N

)
b†b

]
+ ℏχ1(t)

√
N
(
a+ a†

)
+ ℏχ2(t)

(
a†b+ b†a

)
. (12.86)

If, in lowest approximation for large N , we replace
(
a+ a†

)
in the frequency term by

(
a+ a†

)
≈ −2χ1(t)

√
N

δ1
, (12.87)

then the effective Hamiltonian becomes

H ≈ ℏ

[
δ1a

†a+

(
δ1 + δ2 +

[χ1(t)]
2

δ1

)
b†b

]
+ ℏχ1(t)

√
N
(
a+ a†

)
+ ℏχ2(t)

(
a†b+ b†a

)
. (12.88)
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We then proceed as before, so that the effective equations for the atomic operators are

σ̇11 = −iχ2(t)χ1(t)

δ1

√
N [σ+ − σ−] (12.89a)

σ̇33 = iχ2(t) [σ+ − σ−] (12.89b)

σ̇+ = i

(
δ1 + δ2 +

[χ1(t)]
2

δ1

)
σ+ + iχ2(t) [σ33 − σ11]− i

[χ2(t)]
2

δ1
σ+ (12.89c)

σ̇− = (σ̇+)
† . (12.89d)

Now the light shifts from both fields are included. Moreover, if we also include the corrections
to the coupling term given by Eq. (12.84), the HP and dressed state approaches are in excellent
agreement in the limit that inequalities (12.7) hold.

12.6 Conclusions

We have presented a detailed theory of the Rydberg blockade, including contributions from mul-
tiple intermediate state excitations. It has been shown that a dressed state approach offers distinct
advantages when multiple intermediate state excitations occur. In the case of fixed amplitude
fields, the multiple intermediate excitations can result in comb-like modulated populations of indi-

vidual states having one Rydberg excitation and n ≪ N intermediate state excitations. However,
when summed over all such state populations, most of the modulation disappears and the system
is described to a good approximation by an effective two-level model. In the case of adiabatic,
pulsed fields, there is no such modulation and an effective two-level model (in the dressed basis),
corrected for light shifts, can be used to model the system. The calculation has been restricted to
fully symmetric (phased) states containing at most one Rydberg excitation. Spontaneous decay
from the intermediate state will couple these states to states outside the symmetric subspace, but
such effects are expected to provide only small corrections provided the number of excited states
n≪ N and (χ2

1/δ
2
1) γ2T ≪ 1. In other words, as was the case for the light shifts, there are no col-

lective decay rates proportional to N that contribute to the signal [115]. In addition to solving this
problem using conventional methods, we have shown that similar results could be obtained using
a form of the Holstein-Primakoff transformation. Given the state of the art of current experiments
involving atoms in lattices, it may be possible to test some of our predictions concerning the role
of multiple intermediate excitations.

We would like to thank A. Kuzmich for helpful discussions. This research of PRB and HN is
supported by the Air Force Office of Scientific Research and the National Science Foundation.
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12.7 Appendix

We can improve upon the lowest order solution for the dressed state amplitudes by expanding the
subspace for n excitations from two to six levels. That is, we look at a truncated subspace for
dressed state amplitudes

bNd
n = [bNd

n0 , b
Nd
n1 , b̃

Nd
n+1,0, b̃

Nd
n+1,1, b̃

Nd
n−1,0, b̃

Nd
n−1,1] (12.90)

with

b̃Nd
n+1,0 = e−iΩtbNd

n+1,0, b̃Nd
n+1,1 = e−iΩtbNd

n+1,1, (12.91a)

b̃Nd
n−1,0 = eiΩtbNd

n−1,0, b̃Nd
n−1,1 = eiΩtbNd

n−1,1. (12.91b)

We truncate the space by considering only these amplitudes, which obey the matrix equation

iℏḃNd
n = Hnb

Nd
n , (12.92)

subject to the initial conditions bNd
n (0) = [bNd

n0 (0),0,bNd
n+1,0(0), 0, b

Nd
n−1,0(0), 0] with

Hn=ℏ



0 χ(n,N) 0 0 0 χ(n)

χ(n,N) σ χ(n+ 1) 0 0 0

0 χ(n+ 1) Ω χ(n+ 1, N) 0 0

0 0 χ(n+ 1, N) Ω + σ 0 0

0 0 0 0 −Ω χ(n− 1, N)

χ(n) 0 0 0 χ(n− 1, N) −Ω + σ


,

(12.93)

where

χ(n,N) = χ2 sin θ
√

(N − n),

χ(n) =
√
nχ2 cos θ,

and
σ = δ1 + δ2 − ωI (12.94)

The formal solution of Eq. (12.92) is

bNd
n (t) = e−iHnt/ℏbNd

n (0) (12.95)
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which can be evaluated numerically. In this truncated subspace the resulting solution is valid only

for bNd
n0 (t) and bNd

n1 (t) and this solution provides an excellent approximation to the exact solution
provided

χ2

δ1
n ≈ Ω2

1χ2

δ31
N ≪ 1. (12.96)

In fact, when this inequality holds, a first approximation can be obtained by considering only the
[bNd

n0 ,bNd
n1 ] subspace. For N ≫ n, the analytic solution of Eq. (12.92) in this limited subspace is

bNd
n0 (t) = bNd

n0 (0)e
−iσt/2 cos

(√
4χ2

RN + σ2

2
t

)

+ ibNd
n0 (0)e

−iσt/2 σ√
4χ2

RN + σ2
sin

(√
4χ2

RN + σ2

2
t

)
, (12.97a)

bNd
n1 (t) = ibNd

n0 (0)e
−iσt/2 2χRN√

4χ2
RN + σ2

sin

(√
4χ2

RN + σ2

2
t

)
. (12.97b)

In this approximation, the total population PR in the Rydberg ladder is equal to

PR =
N−1∑
n=0

∣∣bNd
n1 (t)

∣∣2 ≈ N∑
n=0

∣∣bNd
n1 (t)

∣∣2 = 4χ2
RN

4χ2
RN + σ2

sin

(√
4χ2

RN + σ2

2
t

)
(12.98)

and does not exhibit modulation at frequency δ1.
In order to see if PR can exhibit modulation at frequency δ1, we must obtain corrections of order

χ2/δ1. An approximate analytic solution to Eq. (12.92) can be obtained in the limit that

χ2
1

δ21
≪ 1; |σ| ≈

∣∣∣∣δ1 + δ2 +
χ2
1

δ21

∣∣∣∣≪ χRN ; N ≫ n, (12.99)

for which

Hn ≈ ℏ



0 −χRN 0 0 0
√
nχ2

−χRN σ
√
n+ 1χ2 0 0 0

0
√
n+ 1χ2 δ1 −χRN 0 0

0 0 −χRN δ1 + σ 0 0

0 0 0 0 −δ1 −χRN√
nχ2 0 0 0 −χRN −δ1 + σ


.

(12.100)

To obtain the state amplitudes in this limit, we first use degenerate perturbation theory to diagonal-
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ize the (nearly) degenerate
{
bNd
n0 , b

Nd
n1

}
sub-block. If χRN ≫ |σ|, the eigenvectors are then given

approximately by

|µ0⟩′ ≈ 1√
2
(|µ0⟩+ |µ1⟩) , (12.101a)

|µ1⟩′ ≈ 1√
2
(|µ0⟩ − |µ1⟩) , (12.101b)

(µ = n, n± 1) and the transformed matrix by

H
′′

n ≈ ℏ



σ
2
− χRN 0

√
n+ 1χ2

2

√
n+ 1χ2

2

√
nχ2

2
−
√
nχ2

2

0 σ
2
+ χRN −

√
n+ 1χ2

2
−
√
n+ 1χ2

2

√
nχ2

2
−
√
nχ2

2√
n+ 1χ2

2
−
√
n+ 1χ2

2
σ
2
+ δ1 − χRN 0 0 0

√
n+ 1χ2

2
−
√
n+ 1χ2

2
0 σ

2
+ δ1 + χRN 0 0

√
nχ2

2

√
nχ2

2
0 0 σ

2
− δ1 − χRN 0

−
√
nχ2

2
−
√
nχ2

2
0 0 0 σ

2
− δ1 + χRN


(12.102)

We now use non-degenerate perturbation theory, assuming that δ1 ≫ χRN , to obtain the
eigenenergies,

E
′′

1 ≈ ℏ (−χRN + s) ; E
′′

2 ≈ ℏ (χRN + s) , (12.103a)

E
′′

3n ≈ ℏ
(
s+ δ1 − χRN +

(n+ 2)χ2
2

δ1

)
, (12.103b)

E
′′

4n ≈ ℏ
(
s+ δ1 + χRN +

(n+ 2)χ2
2

δ1

)
, (12.103c)

E
′′

5n ≈ ℏ
(
s− δ1 − χRN − (n− 1)χ2

2

δ1

)
, (12.103d)

E
′′

6n ≈ ℏ
(
s− δ1 + χRN − (n− 1)χ2

2

δ1

)
, (12.103e)

where
s =

χ2
1

2δ1
− χ2

2

2δ1
+
δ1 + δ2

2
. (12.104)
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The eigenkets associated with these eigenenergies are given approximately by [113]

|n0⟩
′′
≈ |n0⟩′ ≈ 1√

2
(|n0⟩+ |n1⟩) , (12.105a)

|n1⟩′′ ≈ |n1⟩′ ≈ 1√
2
(|n0⟩ − |n1⟩) , (12.105b)

|n+ 1, 0⟩′′ ≈ |n+ 1, 0⟩′ +
√
n+ 1

χ2

2δ1

(
|n0⟩′ − |n1⟩′

)
=

1√
2
(|n+ 1, 0⟩+ |n+ 1, 1⟩) +

√
n+ 1

χ2√
2δ1

|n1⟩ , (12.105c)

|n+ 1, 1⟩′′ ≈ |n+ 1, 1⟩′ +
√
n+ 1

χ2

2δ1

(
|n0⟩′ − |n1⟩′

)
=

1√
2
(|n+ 1, 0⟩ − |n+ 1, 1⟩) +

√
n+ 1

χ2√
2δ1

|n1⟩ , (12.105d)

|n− 1, 0⟩′′ ≈ |n− 1, 0⟩′ −
√
n
χ2

2δ1

(
|n0⟩′ + |n1⟩′

)
=

1√
2
(|n− 1, 0⟩+ |n− 1, 1⟩)−

√
n
χ2√
2δ1

|n0⟩ , (12.105e)

|n− 1, 1⟩′′ ≈ |n− 1, 1⟩′ +
√
n
χ2

2δ1

(
|n0⟩′ + |n1⟩′

)
=

1√
2
(|n− 1, 0⟩ − |n− 1, 1⟩) +

√
n
χ2√
2δ1

|n0⟩ (12.105f)

The state vector |ψ(t)⟩ in this subspace is expanded as

|ψ(t)⟩ =
[
bNd
n0 (0)

]′′
eiχRN te−ist |n0⟩′′ +

[
bNd
n1 (0)

]′′
e−iχRN te−ist |n1⟩′′

+
[
bNd
n+1,0(0)

]′′
e−iδ1t |n+ 1, 0⟩′′ +

[
bNd
n+1,1(0)

]′′
e−iδ1t |n+ 1, 1⟩′′

+
[
bNd
n−1,0(0)

]′′
eiδ1t |n− 1, 0⟩′′ +

[
bNd
n−1,1(0)

]′′
eiδ1t |n− 1, 1⟩′′ (12.106)

Using the fact that

[
bNd
n0 (0)

]′′ ≈ 1√
2
bNd
n0 (0)−

√
n+ 1

χ2√
2δ1

bNd
n+1,0(0), (12.107a)[

bNd
nn (0)

]′′ ≈ 1√
2
bNd
n0 (0) +

√
n+ 1

χ2√
2δ1

bNd
n+1,0(0), (12.107b)[

bNd
n+1,0(0)

]′′ ≈ 1√
2
bNd
n+1,0(0);

[
bNd
n+1,1(0)

]′′ ≈ 1√
2
bNd
n+1,0(0), (12.107c)[

bNd
n−1,0(0)

]′′ ≈ 1√
2
bNd
n−1,0(0);

[
bNd
n−1,1(0)

]′′ ≈ 1√
2
bNd
n−1,0(0), (12.107d)
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we find the state amplitudes

bNd
n0 (t) ≈ bNd

n0 (0)e
−ist cos (χRN t)− ibNd

n+1,0(0)e
−istχ2

δ1

√
n+ 1 sin (χRN t) ,

− ibNd
n−1,0(0)

χ2

δ1

√
neiδ1te−ist sin (χRN t) , (12.108a)

bNd
n1 (t) ≈ ibNd

n0 (0)e
−ist sin (χRN t)

+ bNd
n+1,0(0)

χ2

δ1

√
n+ 1

(
e−iδ1t − 1

)
e−ist cos (χRN t) . (12.108b)

In writing these equations, we have neglected contributions from the light shifts of field 2 in the
correction terms of order χ2/δ1. It then follows that the total Rydberg population,

PR ≈
N∑

n=0

∣∣bNd
n1 (t)

∣∣2 ≈ sin2 (χRN t)

− χ2

δ1
sin (δ1t) sin (2χRN t)

N∑
n=0

√
n+ 1bNd

n0 (0)b
Nd
n+1,0(0), (12.109)

exhibits modulation at frequency δ1, with a modulation depth of order χ2/δ1. For (χ1/δ1)
2 ≪ 1

and N ≫ 1,
N∑

n=0

√
n+ 1bNd

n0 (0)b
Nd
n+1,0(0) ≈ 2

χ1

δ1

√
N. (12.110)
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CHAPTER 13

Trapped Alkali-metal Rydberg Qubit

Quantum technologies offer transformative advances in storage, processing, and communication
of information compared to established classical approaches. The recipe for combining distant
quantum processors into a single quantum network involves three key ingredients: qubits, quantum
logic for entanglement generation and correction, and interaction interfaces [116, 117]. Neutral
atomic ensembles are a strong candidate to serve as a basis for scalable quantum networks [39, 80,
118, 119]. Collective qubits based on atomic hyperfine ground states can be converted, on-demand,
into single photons [120], making them well-suited for scalable quantum network-type protocols
over telecom-wavelength optical fibers [41, 121]. Notably, collective atomic qubit states between
ground and Rydberg states can be deterministically created and coherently manipulated in the
regime of the excitation blockade [122, 123, 21, 12, 14, 40, 5, 124, 125], allowing for dramatically
faster remote entanglement generation compared with probabilistic approaches [10, 11].

In order to use the Rydberg blockade in quantum information processing, the (optical) ground-
Rydberg atomic coherence must be preserved. Ideally, this is achieved if the atoms are confined in
a potential U(r) that is identical for the ground and the Rydberg levels. However, in a regular far-
off-resonance optical dipole trap, e.g., based on a 1064 nm laser for Rubidium atoms, the spatially
inhomogeneous energy shifts U(r) are entirely different for the ground and Rydberg states. For
(trapped) ground-level atoms, the dynamic polarizability in a (red-detuned) light field is positive,
whereas Rydberg electrons are nearly free, and their polarizability is approximately equal to that of
a free electron, which is negative. This means that atoms in Rydberg states are anti-trapped since
they are pushed out of the laser field intensity maxima. This problem leads to the necessity of
shutting off the trap fields for the duration of quantum operations. The repeated process of turning
the trap fields on and off heats the atoms and dramatically shortens their lifetime to µs, limiting its
utility [126, 127].

In a state-insensitive (or “magic-wavelength”) trap proposal of Refs. [26, 27], the frequency
of an optical lattice is tuned to the blue side of an atomic resonance from the Rydberg level to an
intermediate level, creating positive polarizability of the Rydberg level. For example, if the (1012
nm) lattice field is detuned by ≃ (52/n)3 GHz from the |nS1/2⟩ ↔ |6P3/2⟩ transition in atomic
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Rb, the depth of the trapping potentials for the ground- and Rydberg-level atoms are approximately
equal. This method has been demonstrated by our group [40, 48, 128] and by Goldschmidt et al.
[28]. More recently, trapped single-atom Rydberg qubits have been demonstrated in alkaline-earth
atoms [129].

Here we report observations of dynamics of a Rydberg qubit encoded in an ensemble of ∼ 103

atoms that are confined in a state-insensitive optical lattice trap. We observe coherent driving and
Ramsey interference measurements of light shifts induced on either the lower or the upper qubit
state, on timescales of order ∼ 10 µs. The dynamics of the trapped qubit and the light shifts are
well-described by an effective two-level model with possible dephasing factors included, i.e. laser
phase noise, atom number fluctuation, and so on. The experimental setup is shown in Fig. 13.1(a).
87Rb atoms are collected in a magneto-optical trap (MOT) and are subsequently loaded into a far-
off resonance (YAG, 1064nm) cross-dipole trap. The longitudinal extent of the atomic cloud is
∼ 10 µm along the excitation field direction. Next, the atoms are transferred from the cross-dipole
trap to a state-insensitive optical lattice. The lattice is formed by a horizontally-polarized and retro-
reflected laser field, which is detuned from the |6P3/2⟩ ↔ |75S1/2⟩ transition by ∆m/2π ≃ 367

MHz - the so-called “magic” value of the detuning for which the potential depths for the ground and
the Rydberg atomic states are equal. After the transfer, the lattice depth is adiabatically lowered.

The atoms are driven by laser fields E1 (780 nm, σ−) and E2 (480 nm, σ+) from the ground
state |g⟩ = |5S1/2, F = 2,mF = −2⟩ to the Rydberg state |r⟩ = |75S1/2,mJ = −1/2⟩ with a
detuning of ∆/2π = 480 MHz from the intermediate state |p⟩ = |5P3/2, F = 3,mF = −3⟩,
with respective Rabi frequencies Ω1 and Ω2, Fig. 13.1(b). In the Rydberg excitation blockade
regime, ideally, the atoms will undergo an oscillation between two collective (Dicke) atomic states,
|0⟩ =

∏N
i=1 |gi⟩ and |1⟩ = 1√

N

∑N
i=1 e

i(k1+k2)·ri−i(ω1+ω2)t|g1 . . . ri . . . gN⟩, where N is the total
number of atoms participating in the many-body blockade. After a controllable delay, Ts, following
the excitation pulse, a readout pulse Er (with Rabi frequency Ωr) that is resonant with the |r⟩ to
|p⟩ transition frequency is applied and leads to phase-matched emission having frequency ωe (see
the Supplementary Material for experimental details).

We model our system as an effective two-level system with a closed-transition between the
states |0⟩ and |1⟩. The collective Rabi frequency of this two-state model is ΩN =

√
NΩ,

where Ω = Ω1Ω2

2∆
is the effective two-photon, single-atom Rabi frequency. With the two-

photon detuning δ set equal to zero, the population of the many-body Rydberg state |1⟩ is
ρ11 = 1

2
(1 − e−

γ1
2
t cos

√
NΩTp), where Tp is the pulse duration of a constant amplitude pulse

whose pulse area is equal to that of the actual pulse. We have incorporated dephasing from relax-
ation processes such as that produced by laser frequency noise into our model by assuming that
the coherence ρ01 decays at rate γ1, which agrees well with the measured laser linewidth in our
system. The intensity of the retrieved signal is proportional to this population.
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Figure 13.1: (a) Experimental setup: an ultracold 87Rb atomic ensemble is prepared in a one-
dimensional state-insensitive lattice trap (SILT) formed by a 1012 nm retro-reflected beam using
atoms that have been transferred from a crossed far-off-resonance dipole trap (FORT) formed
by focused yttrium aluminum-garnet (YAG) laser beams. Excitation fields E1 (780 nm) and
E2 (480 nm) drive atoms from |g⟩ to |p⟩ and from |p⟩ to |r⟩, respectively. A retrieval pulse
Er leads to phase-matched emission that is coupled into a pair of single-mode fibers and sub-
sequently measured by single-photon counting modules SPCMT and SPCMR. (b) Single atom
energy levels for 87Rb: |g⟩ = |5S1/2, F = 2,mF = −2⟩, |p⟩ = |5P3/2, F = 3,mF = −3⟩,
and |r⟩ = |nS1/2,mJ = −1/2⟩. (c) Timing sequence for the ground-Rydberg spin-wave coher-
ence measurement. (d) Normalized signal η as a function of storage time Ts for quantum number
n = 75. The storage efficiency is normalized to that at 1 µs. Blue and red bands represent temper-
atures 40 % lower and higher than the best-fit value, respectively.
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Figure 13.2: (a) Collective Rabi oscillation as function of the pulse duration Tp for different num-
bers of atoms. Red: N = 109(2); green: N = 326(3); blue: N = 755(3); purple: N = 930(4).
Here, Ω1/2π = 9.2 MHz, Ω2/2π = 10.8 MHz, Ωr/2π = 11.5 MHz. The dashed lines are theo-
retical results using an effective two-state model. The error bars represent one standard deviation
(
√
M ) for M photoelectric counting events. (b) probe transmission (orange square) and EIT (blue

diamond) measurement for N = 755(9), consistent with an OD = 3.5. (c) The enhancement of the
collective Rabi frequency ΩN/Ω as a function of number of atomsNa determined by the absorption
measurement. The data are fit with a function ΩN = ΩNk

a with the best-fit value k = 0.463(5).
The error bars represent the standard errors of the respective fits.

To describe combined effects of spin-wave dephasing and loss of the Rydberg state compo-
nent, we include an overall exponential damping of the retrieved signal ∼ e−αt. We account for
fluctuations in atomic number by weighting the retrieved signal with the probability distribution
f(k,N) to have k atoms in the interaction, volume when the average number in the volume is N .
On averaging over k for the Poisson distribution f(k) = Nke−N

k!
, we find that the oscillation ampli-

tude is damped by a factor exp(−t2/τ 21 ), where τ1 = 2
√
2/Ω, and that the photoelectric detection

probability per trial p1 for the retrieved signal is given by

p1 ≃
1

2
ξe−αTp(1− e−

γ1
2
Tpe−T 2

p /τ
2
1 cos

√
NΩTp), (13.1)

where ξ is the overall retrieval and detection efficiency. Intensity fluctuations of the driving fields
would also damp the oscillation visibility, but these effects are negligible in our experiment.

224



The normalized storage efficiency η [48] is plotted as a function of storage period Ts for a trap
depth of ≃ 40 µK in Fig. 13.1(c), showing that the coherence lifetime for the ground-Rydberg
coherence can be extended up to ≃ 20 µs, which is an order of magnitude improvement over that
achieve with atomic ensembles in free space [12, 14, 21, 76, 15]. The longer lifetime allows us
to vary the excitation pulse duration to tens of µs, instead of varying the excitation field strength
as we did previously [14]. As a result, the light shifts caused by the excitation laser fields can be
kept constant over the extent of the measurement. The methods we employ to control laser phase
noise and intensity fluctuations, to reduce electric field shifts, to minimize atom number variation
or loss, and to suppress the effects of atomic thermal motion are outlined.

The population of the upper qubit state is measured by mapping it into a phase-matched re-
trieved field. The associated photoelectric detection probability per trial p1 are recorded as a func-
tion of the excitation pulse duration time Tp, while the storage period Ts = 1 µs is kept constant.
In Fig. 13.2, the resulting collective Rabi oscillations are shown for a lattice trap depth of 60 µK
for varying atomic density, controlled by altering the YAG power. As expected, the oscillation
frequency increases with the atomic density, but all the signals vanish within 5 µs, due to the lim-
itation of τ1 ≈ 4.3 µs. The dashed curves are theory fits based on Eq. 13.1. As the YAG power
is raised up from 6 W to 35 W, the fitted value for the number of atoms N increases from ≃ 102

to ≃ 103. The fit value for the global dephasing factor γ1/2π ≃ 40 kHz is consistent with the
laser linewidth estimated from the excitation spectra. The best fit for α for all four sets of data is
α/2π ≈ 0.008 MHz, which agrees with the coherence time of 20 µs shown in Fig. 13.1(c).

For an independent determination of the atom number and single-atom Rabi frequency, we
measure the atomic density using absorption of a transmitted probe field, both with and without
a control-EIT (electromagnetic-induced transparency) field. For example, the measured optical
depth (OD) of ≃ 3.5 for a YAG power of 20 W that can be extracted from the transmission curves
shown in Fig. 13.2(b) corresponds to an atomic density having peak value of 2.9 × 1011cm−3. In
Fig. 13.2(c) we plot the normalized collective Rabi frequency ΩN/Ω as a function of the number of
atoms Na in the interaction volume. We confirm the collective Rabi frequency ΩN is enhanced by
a factor

√
N with respect to the single-atom value, by fitting the function ΩN = ΩNk

a and finding a
best-fit value k = 0.463(5). The discrepancy for low atom numbers results from a relatively large
error of OD fit value when the absorption is small.

We confirm that the Rydberg blockade is fully operational in our system by measuring the
second-order autocorrelation function g(2)(0) < 0.2 within the time interval of Rabi oscillations
[Fig. 13.3] and demonstrate the multi-particle entanglement [130, 131, 132] of the W−state |1⟩
within the ensemble. To investigate the main contributions to the damping of the Rabi oscillations,
we vary the Rabi frequency and the atom number in a shallower trap depth of 40 µK to minimize
the effects of atomic thermal motion and collisions. In Fig. 13.3 (a), the signal exhibits 9 oscillation
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Figure 13.3: Collective Rabi oscillation as function of the pulse duration for different Rabi fre-
quency, (a) Ω1/2π = 4.7 MHz, Ω2/2π = 5.4 MHz, N = 797(7). (b) Ω1/2π = 9.2 MHz,
Ω2/2π = 10.8 MHz, N = 553(2). The dashed line shows best fit from theory with dephasing
and atom number fluctuations. The dotted line shows the simulation without dephasing, and the
dash-dotted line shows the simulation without atom number fluctuations. The blue hollow circles
represent the second-order intensity correlation function at zero delay g(2)(0) , which is below 0.2
within the Rabi oscillations, suggesting a well-established Rydberg blockade.
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(a)

(c)

(b)

Figure 13.4: Ramsey interferometry of the trapped qubit. (a) Schematic and timing sequence. (b)
Evolution of the |1⟩ state versus free evolution time Tf between the two π/2 pulses of detuning
δs/2π = -0.3 MHz and pulse width 0.45 µs. Dashed line represents the sinusoidal fit with an
exponential decay. The error bars represent one standard deviation (

√
M ) for M photoelectric

counting events. (c) The detuning extracted from the sinusoidal fit versus detuning set to ω1. The
line represents the fitted result of δe = kδs + b with k = 1.022(6) and b = 0.000(6) MHz. The error
bar of each point is within the size of the marker.

cycles within 12 µs are shown for a smaller Rabi frequency Ω. Approximately four times higher
Rabi frequency, but fewer atoms in the blockade volume are used for data in Fig. 13.3(b). In
this limit, 13 oscillation cycles are damped within ≃ 6 µs. These results indicate that for in the
case of Fig. 13.3 (a), the dephasing is due mainly to the dephasing parameter γ1 term. If this
parameter is set equal to zero [resulting in the dotted line in Fig. 13.3 (a)], the oscillations damp
more slowly than the data, while the atom number fluctuations has little impact on the visibility
damping [resulting in the dash-dotted line in Fig. 13.3 (a)]. In the case of Fig. 13.3 (b), the damping
of the oscillations can be ascribed chiefly to the Poisson distribution of number of atoms, Ne, that
limits the visible number of the oscillation periods. If atom number fluctuations are neglected
[resulting in the dash-dotted line in Fig. 13.3 (b)], the oscillations persist for a time longer than the
experimental observation period. However, the oscillations damping is similar to the data when
we eliminate the dephasing γ1 [resulting in the dotted line in Fig. 13.3 (b)]. These results indicate
that a combination of a narrower (e.g., 1 kHz) laser linewidth and a sub-Poisson atom-number
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Figure 13.5: Ramsey interferometry with dressing field light shift. (a) Ramsey interferometry
with (blue circles) and without (red triangles) dressing field of Ω1/2π = 3.9 MHz. (b) Ramsey
interferometry with (blue circles) and without (red triangles) dressing field of Ω2/2π = 10.8 MHz.
The detuning of the π/2 pulses is set to δs/2π = -0.3 MHz. (c) Light shift ∆E versus dressing field
Rabi frequency Ω1 and Ω2. Red squares represent varying the Ω1 field and blue circles represent
varying the Ω2 field. Black lines represent the theoretical curve of ∆E = ℏ(Ω2

1 − Ω2
2)/(4∆).

distribution [133, 134] may be able to prolong the lifetime of the collective Rabi oscillation to
tens of micro-seconds. Notably, with a large intermediate state detuning and a shallow lattice trap
depth, spontaneous decay from the Rydberg level and the influence of blackbody radiation can be
neglected in our system.

To further investigate the nature of the collective state, we perform Ramsey interferometry.
First, we apply two off-resonance π/2 pulses separated by a variable free evolution time Tf , fol-
lowed by a phase-matched retrieval of the |1⟩ state population. Using this protocol, we obtain
the oscillation of the retrieved signal as a function of Tf shown in Figure 13.4 (a). In order to
explore different Ramsey scenarios, we change the two photon detuning by varying the detuning
δs of the ω1 field. We extract the measured detuning δe from the oscillation period in the Ramsey
interferometry by the fitting equation p1/p1(0) = 1

2
(1 + exp (−γTf ) cos (δeTf + ϕ)). The decay

time constant 1/γ for the Ramsey interferometry in Figure 13.4 (a) is 6.89 ± 1.3 µs. The phase
offset ϕ/2π = 0.14 is due to the finite (0.45 µs) duration of π/2 pulses. We fit our results using
δe = kδs + b, with k = 1.022(6) and b = 2π × 0.000(6) MHz [Figure 13.4 (b)].

To determine whether or not there are any collective light shifts, we add a dressing field E1

or E2 during the Tf period. With the presence of the dressing field, the oscillation frequency of
the Ramsey interferometry will be changed from δe to δe + ∆E/ℏ, where ∆E is the light shift
produced by the two excitation fields. It is expected that ∆E = ℏ(Ω2

1 − Ω2
2)/(4∆), with no

enhancement from collective effects. We measure the dependence of ∆E on Ω1,2 by changing the
power of the dressing field and observing the change in frequency of the Ramsey interferometry
signal. We observe either an increase or a decrease in oscillation frequency as we increase Ω1 and
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Ω2 respectively, as shown in Figure 13.5 (a) and (b). Figs. 13.5 (c) shows the light shift induced
by different Ω1 and Ω2 as well as theory curves, confirming that there is no relative collective light
shift between the two levels.

In summary, we have demonstrated long-lived Rabi oscillations and measured light shifts for
a collective Rydberg qubit held in an optical lattice that is state-insensitive for the ground and
Rydberg levels. Whereas the coupling producing the Rabi oscillations is enhanced by a factor
of

√
N , there is no corresponding enhancement for the light shifts. These results provide new

evidence that collective Rydberg qubits can be used to create high-fidelity photon-photon gates [5],
deterministic single photons [120], and multiple qubits [135] for scalable quantum networking.

13.1 I. THEORETICAL METHODS

13.1.1 A. Theoretical model for an effective two-level system

We adopt a simplified theoretical description in which the blockade is fully operational. Each
atom is modeled as a three-level atom with lower state |g⟩ (ground state), intermediate state |p⟩,
and upper state |r⟩ (Rydberg level). There are two fields present

E1(R, t) =
1

2
E1f(t)ϵ1e

ik1·R−iω1t + c.c.; (13.2a)

E2(R, t) =
1

2
E2f(t)ϵ2e

ik2·R−iω2t + c.c. (13.2b)

Field E1(R, t) [E2(R, t)] has propagation vector k1 [k2], frequency ω1 = k1c [ω2 = k2c], and
polarization ϵ1 [ϵ2]. We define detunings

∆1 = ω1 − ωpg; ∆2 = ω2 − ωrp, (13.3)

where ωpg is the intermediate state to ground state frequency and ωrp is the Rydberg state to in-
termediate state frequency. It is assumed that |∆1| ≫ |∆1 +∆2|. The function f(t) is a smooth
function having temporal with T satisfying |∆1|T ≫ 1, where T is some effective pulse width.
Decay is neglected. Field E1(R, t) drives the |g⟩ ↔ |p⟩ transition and field E2(R, t) drives the
|p⟩ ↔ |r⟩ transition with associated (assumed real) Rabi frequencies Ω1 = 2χ1 and Ω2 = 2χ2,
respectively.

We first neglect any Rydberg-Rydberg interactions and assume that the field amplitudes are
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constant over the sample. Then the ensemble wave function is given simply by the factorized state

|ψ(t)⟩ =
N∏
j=1

(
ag(t) |g⟩j + ap(t) |p⟩j eik1·Rj−iω1t + ar(t) |r⟩j eik1·Rj−iω1teik2·Rj−iω2t

)
, (13.4)

whereN is the number of atoms, Rj is the position of atom j and the an(t) are the state amplitudes
for a single atom that obey the equations of motion

ȧg = −iχ1f(t)ap, (13.5a)

ȧp = −iχ1f(t)ag − iχ2f(t)ar + i∆1ap, (13.5b)

ȧr = −iχ2f(t)ap + i (∆1 +∆2) ar. (13.5c)

When expanded, the state vector |ψ(t)⟩ can be written as a sum of fully symmetric orthonormal
phased basis kets |N ;n, q⟩ that have n excitations of level |p⟩ and q excitations of level |r⟩; that is

|N ;n, q⟩ = 1√
CN

n C
N−n
q

∣∣SN
nq

〉
, (13.6)

where the
∣∣SN

nq

〉
are fully symmetric, unnormalized phased states and CN

n is a binomial coefficient.
In other words,

|ψ(t)⟩ =
∑
n,q

aN−n−q
g anpa

q
r

∣∣SN
nq

〉
=
∑
n,q

cNnq(t) |N ;n, q⟩ , (13.7)

where n and q can vary from 0 toN with n+q ≤ N . It then follows immediately that the collective
state amplitudes cNnq(t) are related to the individual atom state amplitudes via

cNnq =
√
CN

n C
N−n
q aN−n−q

g anpa
q
r, (13.8)

When used with Eqs. (12.15), this leads to the evolution equations

ċNnq = −iχ1f(t)
√
n (N − n− q + 1)cNn−1,q − iχ1f(t)

√
(n+ 1) (N − n− q)cNn+1,q

−iχ2f(t)
√
n (q + 1)cNn−1,q+1 − iχ2f(t)

√
q(n+ 1)cNn+1,q−1

+i [n∆1 + q (∆1 +∆2)] c
N
nq (13.9)

subject to the initial condition cNnq (−∞) = δn,0δq,0, where δn,m is a Kronecker delta. We introduce
the blockade by assuming that cNnq = 0 for q > 1.

Equation (12.26) can be solved numerically. For our experimental conditions, however, the
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inequalities
Nχ2

1

∆2
1

≪ 1;

√
Nχ1χ2

∆2
1

≪ 1 (13.10)

hold. This means that there is at most one (collective) intermediate state excitation. Moreover these
conditions are sufficient for adiabatically eliminating intermediate states. The truncated equations
with n ≤ 1 and q ≤ 1 are

ċN00 = −iχ1f(t)
√
NcN10, (13.11a)

ċN10 = i∆1c
N
10 − iχ1f(t)

√
NcN00 − iχ2f(t)c

N
01, (13.11b)

ċN01 = i (∆1 +∆2) c
N
01 − iχ2f(t)c

N
10 − iχ1f(t)

√
N − 1cN11, (13.11c)

ċN11 = i (2∆1 +∆2) c
N
11 − iχ1f(t)

√
N − 1cN01 (13.11d)

Adiabatically eliminating cN10 and cN11, we find

cN10 ≈ χ1f(t)
√
NcN00 + χ2f(t)c

N
01

∆1

, (13.12a)

cN11 ≈ χ1f(t)
√
N − 1

∆1

cN01, (13.12b)

which, when substituted into the original equations, yield

ċN00 = −iNχ
2
1f

2(t)

∆1

cN00 −
i
√
Nχ1χ2f

2(t)

∆1

cN01, (13.13a)

ċN01 = i (∆1 +∆2) c
N
01 −

iχ2
2f

2(t)

∆1

cN01

−i (N − 1)χ2
1f

2(t)

∆1

cN01 −
i
√
Nχ1χ2f

2(t)

∆1

cN00. (13.13b)

If we let

cN00 = c̃N00 exp

[
−iNχ

2
1

∆1

∫ t

−∞
f 2(t′)dt′

]
cN01 = c̃N01 exp

[
−iNχ

2
1

∆1

∫ t

−∞
f 2(t′)dt′

]
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then

dc̃N00/dt = −i
√
Nχ1χ2f

2(t)

∆1

c̃N01, (13.14a)

dc̃N01/dt = −i
√
Nχ1χ2f

2(t)

∆1

c̃N00 + i (∆1 +∆2) c̃
N
01

−i (χ
2
2 − χ2

1) f
2(t)

∆1

c̃N01, (13.14b)

which are the effective two-level equations. Although there is a collective light shift for each of
these amplitudes, there is no relative collective light shift between the two levels.

The phase matched signal varies as

N∑
j,j′=1

〈
σ
(j)
21 σ

(j′)
12

〉
,

where σ(j)
21

[
σ
(j)
12

]
is a raising [lowering] operator for atom j.The blockade creates a final state after

the two-photon excitation of

|ψ(t)⟩ = cN00(t) |N ; 0, 0⟩+ cN01(t) |N ; 0, 1⟩ . (13.15)

In calculating ∑
j,j′

〈
σ
(j)
21 σ

(j′)
12

〉
.

following the readout pulse, only matrix elements between ⟨N ; 0, 1| and |N ; 0, 1⟩ are nonvanishing;
that is, the signal varies as

∣∣cN01(T+)
∣∣2, where T+ is the time following the two-photon excitation

pulse.
We relabel state amplitude c̃N00 as c0 and c̃N01 as c1, set ∆1 = ∆, define

Ω =
Ω1Ω2

2∆
=

2χ1χ2

∆
, (13.16a)

ΩN =
√
NΩ, (13.16b)

δ = ∆1 +∆2 +
(Ω2

1 − Ω2
2) f

2(t)

4∆1

(13.16c)

and replace the pulsed fields with constant amplitude fields having pulse duration Tp (such an
assumption does not affect the overall nature of the solutions). Moreover, to account for relaxation
processes such as those produced by laser frequency noise, we go over to density matrix equations
and introduce a dephasing rate γ1 for the off-diagonal matrix elements, leading to optical Bloch
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equations of the form:

ρ̇00 = − i

2
(ΩNρ01 − Ω∗

Nρ10) , (13.17a)

ρ̇11 =
i

2
(ΩNρ01 − Ω∗

Nρ10) , (13.17b)

ρ̇01 = − (γ1 − iδ) ρ01 −
iΩ∗

N

2
(ρ00 − ρ11) , (13.17c)

ρ̇10 = − (γ1 + iδ) ρ10 +
iΩN

2
(ρ00 − ρ11) , (13.17d)

where we have generalized the equations to allow for complex ΩN .
By solving the above equations in the conditions of δ = 0 and γ1 ≪

√
N |Ω|, we obtain the

population of the many-body Rydberg state |1⟩ as

ρ11 =
1

2
(1− e−

γ1
2
Tp cos

√
N |Ω| Tp). (13.18)

It has been shown that when laser linewidth is modelled as white frequency noise (Markovian
approximation), it provides a contribution to the decay of the relevant atomic coherence [136, 137].
Our numerical simulations along the lines of Ref. [138] confirm that the impact of the white laser
frequency noise on the Rabi oscillations is equivalent to using a decay rate γ1 for the atomic
coherence. A time-dependent Rabi frequency Ω(t) = Ω0 exp[i ϕ(t)] is used in the optical Bloch
equations 13.17, with ϕ(t) being the time trace of the phase noise gener ated from the spectral noise
density Sϕ(f) [139]. For white noise, the spectral density Sϕ(f) = h0/f

2, where the coefficient h0
can be related to the laser linewidth with a Lorentzian shape by γ1 = 2π2h0 [140, 141]. With the
laser locking servo bump suppressed in our system, the use of a Lorentzian laser frequency profile
with linewidth γ1 is a reasonable approximation. After obtaining the time series of the phase
ϕ(t), we numerically simulate the time-dependent optical Bloch equations using the Runge-Kutta
method. In Fig. 13.6(a), we show one thousand individual samples (gray lines) and their average
(red line) for a white frequency noise spectrum with h0 = 0.08 MHz, assuming no other damping
process, and observe a slow damping of the oscillation. Comparison of this result with the solution
to the master equations [Eq. 13.17] without phase noise but with a dephasing γ1 = 2π×0.04 MHz,
as well as the analytical solution in Eq. 13.18, indicates that all three Rabi oscillation traces agree
well with each other, as shown in Fig. 13.6(b).

13.1.2 B. Brief review on the theory of magic-wavelength trap

We briefly review the theory of the magic-wavelength lattice trap along the lines of our prior
study [48]. Assuming all the atoms are confined in the state-insensitive lattice trap and neglecting
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Figure 13.6: Influence of laser phase noise. (a) Numerical simulations for Rabi oscillation in the
presence of white frequency noise. The gray lines are individual realizations for 1000 numerical
samples with random processes on ϕ(t) generation. The red line is the average of the 1000 samples.
(b) Comparison of the simulations with different mechanisms. The red solid line is from the
solution to the optical Bloch equations only with the white noise phase, same as in (a). The blue
dashed line is from the solution to the master equations [Eq. 13.17] only with a dephasing rate
γ1. The orange dotted line is from the analytical function in Eq. 13.18 with a dephasing rate γ1.
Atom number N = 100, the single-atom Rabi frequency Ω/2π = 0.1 MHz, h0 = 0.08 MHz, the
dephasing rate γ1/2π = 0.04 MHz.

Rydberg-Rydberg interactions, we find that the phase-matched retrieval signal at time Ts normal-
ized to that at Ts = 1 µs, can be written as

η(Ts) = G(Ts)/G(Ts = 1µs); (13.19)

with

G(Ts) =

∣∣∣∣∫ ∞

−∞
dX

∫ ∞

0

ρdρf(ρ,X)N (ρ,X)C(ρ,X, Ts)

∣∣∣∣2 × e−Ts/τeff , (13.20)

The transverse and longitudinal effects combine to produce an atomic density profile N (ρ,X)

given by

N (ρ,X) = exp

[
U0

2kBT
I(ρ,X)

]
exp

[
−X

2

L2

]
. (13.21)

The distribution f(ρ,X) appearing in Eq. (13.20) is equal to the product of the spatially depen-
dent envelopes of the excitation and retrieval electric field amplitudes, namely

f (ρ,X) =

(
wE1,0

wE1(X)

)
exp

[
− ρ2

w2
E1
(X)

]
×
{(

wE2,0

wE2(X)

)
exp

[
− ρ2

w2
E2
(X)

]}2

, (13.22)
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where wi,0 are the transverse waists of the beams at the foci, wi(X) = wi,0

√
1 +

(
X
Xri

)2
, and Xri

is the Rayleigh length for beam i. In our experiment, wE1,0 = 6 µm, wE2/r,0 = 15 µm.
The factor C(X, ρ, Ts) is the product of a non-lattice contribution, e−iωd(ρ,X)Ts , and a lattice

contribution corresponding to motional dephasing, given by

C(X, ρ, Ts) =

qmax∑
q,q′,q′′

e−iωd(ρ,X)Tsρ1q′′,1q′(0)×M1q′;3q [−kux]M3q;1q′′ [kux] e
i
(
ω
(1)

q′ −ω
(3)
q

)
Ts . (13.23)

where the frequencies ω(1)
q′ and ω(3)

q are obtained as eigenvalues of the potentials

U
(l)
1 (X) = −U0 cos

2 (kLX) ; (13.24a)

U
(l)
3 (X) = −U0

αg

cos2 (kLX)×
[
D2

n

6ℏ∆
− |αf | θn

]
, (13.24b)

respectively.
We include three dissipative mechanisms that affect the ground-Rydberg coherence lifetime.

The effective population decay lifetime is given by

1

τeff
=

1

τ6p,n
+

1

τ
(0)
n

+
1

τ
(bb)
n

, (13.25)

where τ6p,n, τ (0)n , and τ (bb)n are the contributions from the lattice-induced population decay of the
6p3/2 level, Rydberg level decay at zero temperature, and blackbody induced transitions, respec-
tively. Explicitly

τ6p,n =
h∆m,n

U0

τ6p,0; (13.26a)

τ (0)n = τ (0)(n∗)2.94; (13.26b)

τ (bb)n =
3ℏ(n∗)2

4α3
FSkBT

, (13.26c)

where τ6p,0 = 125 ns, τ (0) = 1.43 ns, T = 293 K, and n∗ = n − 3.13 is the effective electronic
quantum number, αFS is the fine structure constant. At low n, the lifetime is limited mainly
by spontaneous decay and blackbody transitions. With n ≳ 40, the dephasing produced by the
non-lattice potential begins to reduce the lifetime, an effect that saturates for n ≳ 60. For still
higher values of n, the lattice induced population of the 6p3/2 begins to play an important role in
limiting the coherence lifetime. The reason for this is that the magic detuning ∆m,n decreases with
increasing n. In our system, the principal quantum number is n = 75, and the lattice trap depth is
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40−60 µK, hence the blackbody radiation time constant is τ (bb)75 = 267 µs, the Rydberg level decay
constant at zero temperature is τ (0)75 = 411 µs, but the lattice-induced population decay constant is
τ6p,75 ≈ 54− 36 µs, which mainly limits the ground-Rydberg coherence lifetime in our system.

13.2 II. EXPERIMENTAL SETUP

13.2.1 A. Timing sequence and source efficiency

In our experiment, to realize a small and dense atomic ensemble, we initially prepare the atoms
in a magneto optical trap (MOT), transfer into a far-off-resonance crossed dipole trap (FORT),
and finally load into a state-insensitive lattice trap (SILT), as shown in Fig. 13.7(a). The transfer
efficiency is about 70%.

After every atom loading process, we first apply an optical pumping (OP, 795 nm, F=2 to F’=2,
σ−) and a repumper optical pumping (RP OP, 780 nm, F=1 to F’=2, π) to prepare all the atoms to
|G⟩, and then run 10 excitation and retrieval experimental trials as a loop, as shown in Fig. 13.7(b).
For each loading period, we discard the first 100 loops to make sure that all atoms are in the ground
state with the correct magnetic sublevel, and then we repeat the loop for 50 times to get efficient
photon generation rate. The excitation and retrieval pulses have approximately rectangular shapes
with rising and falling edges of ≲50 ns extent. The emitted light is gated by an acousto-optic
modulator (AOM) (not shown in Fig. 1(a)), then split by a beam splitter and directed into two
single-mode optical fibers (SMFs), coupled to the single-photon counting modules (SPCMs).

Therefore, the photoelectric detection probability per trial p1 (in Figs. 2 and 3 in the main text)
is obtained by photon counts per atom loading (Fig. 13.9 as an example) divided by 500 trials. To
suppress the measurement uncertainty, for each point in Figs. 2 and 3, we repeat the atom loading
sequence for 16 times, which is 8000 trials and then get the total photon counts to calculate the
photoelectric detection probability per trial p1.

The photon transmission and detection efficiency ηtd is given by ηtd = ηcηoηfηd = 0.16 , where
ηc = 0.95, ηo = 0.55, ηf = 0.55, ηd = 0.55 are the vacuum cell transmission, optics transmission
(including an AOM gate), fiber coupling, and single-photon detection efficiencies, respectively.

For the storage and retrieval protocol, we follow the procedures in Ref. [14] to measure the
storage and retrieval efficiency. We first obtain the storage efficiency ηs through the measurement
of the transmitted fraction of Ω1 with and without Ω2. To protect the SPCM but have a measurable
absorption, we use a much weaker 780 pulse but a smaller intermediate state detuning of 40 MHz,
and obtain ηs = 0.028(3). Afterwards, we apply the retrieval field Ωr at Ts = 1 µs, and obtain
ηsηr = 0.0066(3), resulting in ηr = 0.23(3), which is similar to the value reported in Ref. [14].
The conditions here are the same as those in Fig. 3 of the main text. The retrieval efficiency will
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vary with different atomic density or positions [120]. We notice that the definition of the retrieval
efficiency in our system is the photon generation probability in Ref. [120], which is a product of
the writing, storage and retrieval efficiencies and is estimated to be 0.40(4) in their system.

The main limiting factor for the source efficiency in our system is the retrieval process, which
can be optimized by increasing the optical depth [120]. In addition, the optical transmission and
detection efficiency can be improved with better mirrors, gated AOM and single-photon detec-
tors. In principle, we may achieve one order of magnitude improvement for the photon generation
efficiency.

RP OP

× 10

OP

× 50

,

FORT

SILT

(a)

(b)

Figure 13.7: (a) Timing sequence of atomic cloud forming process. (b) Timing sequence of
Rydberg excitation, retrieval, and optical pumping process.

13.2.2 B. Calibration for sample size and atom number

We first determine the longitudinal size of our atomic ensemble by measurement of the interaction-
induced dephasing dynamics [142, 143, 144], and obtain Lz = 2σz ≈ 10 µm for a Gaussian
distribution of λ(z) = az exp−|z|2/σ2

z . The excitation beams are focused onto the atoms with
beam waists wE1,0 = 6 µm and wE2,0 = 15 µm. From the fluorescence image, we confirm that
the excitation beam size is much smaller than that of the atomic ensemble in the trap, so that
the transverse dimension is determined by the excitation Gaussian beam of E1 field with a waist
wE1,0 = 6 µm. The minimum blockade radius in our system is estimated to beRb = (C6/ℏΩ)1/6 =
16.3 µm by using C6/(2π) ≈ −ℏ · 1, 948 GHz·µm6 for n = 75 [34], therefore entirely covering
the excited ensemble, as one should expect in order to observe the many-body Rabi oscillations
and the single-photon generation. The effectiveness of Rydberg-level interactions in creating a
blockade is also demonstrated by measuring the second-order intensity correlation function at zero
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delay, g(2)(0), as a function of pulse duration for many-body Rabi oscillation. g(2)(0) is calculated
using g(2)(0) = PTRPG/(PTPR), where PT and PR represent the photon counts in each SPCM,
PTR is the coincidence counts between the two SPCMs, and PG records the total trial gates. We
achieve g(2) < 0.2 within the time interval of Rabi oscillations in Fig. 3 in the main text.

Afterwards, for an independent determination of the atom number, we measure the optical depth
(OD) by absorption of a transmitted probe field, both with and without a control-EIT field. As an
example, in Fig. 2(b) in the main text, the measured OD is ≃ 3.5 for YAG power 20 W. The atomic
density can be determined from the optical depth by using the relationship OD = σ

∫∞
−∞ λ(z)dz,

where σ = 2.9× 10−13m−2 is the absorption cross section. This results in the value of peak atom
density az = 2.9× 1011cm−3. We can also calibrate the relationship between the effective single-
atom Rabi frequencies of Ω1,2 and their intensities through the two-level absorption and three-level
EIT measurement.

Hence, the number of atoms in the blockade volume is given byNa =
∫∫∫

V
n(x, y, z)dV , where

V is the excitation volume of the ensemble. Therefore, we confirm the collective Rabi frequency
ΩN is enhanced by a factor

√
N with respect to the single-atom result, by fitting the function

ΩN = ΩNk
a with the best-fit value k = 0.463(5). The discrepancy for low atom numbers results

from a relatively large error of OD fit value when the absorption is small.

13.2.3 C. System stabilization and performance

To achieve a long-lived Rydberg qubit, we implement a variety of techniques to stabilize our system
of cold Rydberg atomic ensembles:

Narrowing laser linewidth. The two lasers (780 nm and 960 nm external-cavity diode lasers
from MOGLabs) are frequency stabilized by a standard Pound–Drever–Hall (PDH) technique to
an ultra-low expansion (ULE) high finesse cavity of finesse F ≃ 2 × 103 and free-spectral-range
FSR ≃ 1.5 GHz. The PDH locking suppresses frequency noise of the lasers, resulting in a narrow
linewidth of ≈ 20− 40 kHz. However, high frequency noise cannot be suppressed using the PDH
locking due to the finite feedback bandwidth, which could result in servo bump several MHz away
from the locking position. We use the high finesse cavity as a spectral filter for servo bumps and
then phase lock our excitation lasers to the cavity transmitted light by a fast servo (Vescent D2-
135). The linewidth of the beat signal after phase-locking is within 1 kHz. The 480 nm laser is
frequency doubled from the 960 nm laser by a Toptica SHG.

With laser linewidth narrowed to tens of kHz, we measure the excitation spectrum with weak
driving powers, as shown in Fig. 13.8, for different pulse duration times. As can be seen, for longer
pulse duration, the bandwidth of the excitation spectrum decreases accordingly. The data are fit
with the function of f(δ) = a/(δ2 + σ2)|sinc(δ Tp)|2 + z, where the sinc function results from the
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Figure 13.8: The excitation spectra for different pulse durations. (a)-(d): 1 µs, 5 µs, 10 µs, 20
µs, respectively. The dashed lines are the fitting curves with the function of f(δ) = a/(δ2 +
σ2)|sinc(δ Tp)|2 + z. The best-fit value for all the excitation spectra is σ/2π = 40(4) kHz.

Fourier transformation of the rectangular pulse shape of the excitation light, and the uncertainty
σ represents the laser linewidth. In our system, the best-fit value for all the excitation spectra is
σ/2π = 40(4) kHz, which reflects the HWHM of the effective overall laser line shape, as well as
the dephasing γ1.

Stabilizing laser intensity. Each excitation beam intensity is stabilized to ∼ 0.14% by a pho-
todiode and an AOM, which is also used for controlling the pulse duration of the Rabi oscillation
excitation. We use a sample-and-hold method to pause the intensity feedback during the Rydberg
pulses to avoid introducing additional intensity noise due to the limited bandwidth of our locking
module New Focus LB-1005. Therefore, in our system, after intensity stabilization, the fluctuation
percentage is β ≈ 0.2%. Allowing for intensity fluctuations I ∼ I0 exp(−(I − I0)

2/(βI0)
2), the

visibility damping of the Rabi oscillations will have an additional decay factor exp(−t2/τ 22 ), where
τ2 =

√
2/(β

√
NΩ) ≫ τ1 (the Gaussian decay time constant from atom number fluctuation), so

the time constant for the Gaussian decay in Eq. 1 of the main text is 1/τ 2 = 1/τ 21 + 1/τ 22 ≈ 1/τ 21 .
Reducing electric field fluctuation. We observe slow drifts in the resonant frequency of the

|6 = 5P3/2⟩ ↔ |75S1/2⟩ transition on the scale of several MHz, which is probably due to fluctua-
tion in electric field induced by Rb ion build-up on the cell wall. By placing eight 1 W ultraviolet
LEDs of wavelength 365 nm on the glass cell, we are able to stabilize the Rydberg resonance fre-
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quency within tens of kilohertz. The most stable configuration is reached by applying the UV light
at the end of the experimental sequence; it is turned on for 800 ms after the Rydberg excitation
period and turned off before the MOT preparation.

Suppressing atomic thermal motion. We utilize a magic-wavelength optical lattice to trap
the excited Rydberg atoms and adiabatically lower the trap depth to eliminate the atomic thermal
motion dephasing. Without switching on and off the optical trap, the heating effect from the trap
blinking can also be reduced.

In Fig.2 of the main text, to achieve higher atom number, we use a deeper lattice trap of 60 µK,
while in Fig. 3 of the main text, we adopt a lower trap depth of 40 µK to minimize atomic thermal
motion and collisions, so that we would expect longer coherence time of the collective qubit, which
will be mainly limited by the laser linewidth or the atom number distribution.

Minimizing atom number variation or loss. To have the consistent atom number in each atom
loading, we stabilize the MOT laser power, as well as the YAG and lattice power to < 1% fluctu-
ation. Furthermore, we minimize the variation of atom numbers between different measurement
trials by discarding the first 100 loops to make sure that all atoms are in the ground state with the
correct magnetic sublevel, and then we repeat the loop for 50 times to have more flat collection
counts, which means the atom number remains similar for different loops in this condition. The
photon counts follow a Poisson distribution and do not fluctuate with time, as shown in Fig. 13.9.
We measured the generated photon counts for 200 atom loading sequences. The moving average
of every 5 atom loading remains around the overall average of 15.6, and the distribution agrees
well with the Poissonian one with rate of 15.6 and a corresponding uncertainty of 3.9.

With limited excitation loops, we can also reduce an atom loss mechanism produced by the
excitation lasers and optical pumping. By measuring the absorption of 780 nm probe light, coupled
to the ground |G⟩ state to the intermediate |P ⟩ state, after our Rydberg excitation sequence to
calibrate the ground state population, we observe both the optical depth (OD) and the fluorescence
image drops to 80% for 10 µs of Rydberg excitation. We expect the number of atoms in our system
to decay with a time constant of 40 µs.

After all these stabilization efforts, the possible dephasing sources for a collective qubit in an
atomic ensemble that remain are:

• Atomic thermal motion: the spin-wave coherence time is about 20 µs in our system [Fig.
1(c) in the main text], including contributions from the lattice-induced population decay of
the 6p3/2 level, Rydberg level decay at zero temperature, and blackbody induced transitions.

• Poisson distribution on atom numbers: τ1 = 2
√
2/Ω, which depends on the single-atom

Rabi frequency.
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Figure 13.9: The photon counts per atom loading (3.5 s) are measured for 200 atom loading
sequences, which shows the Poisson distribution. The lattice trap depth is 60 µK, and the pulse
duration is 900 ns.

• Laser phase noise: 1/(γ1/2) ≈ 8 µs, which is limited by the laser linewidth.

• Laser intensity fluctuation: τ2 =
√
2/(β

√
NΩ) ≪ τ1, where the fluctuation percentage

β ≈ 0.2% after intensity stabilization.

13.2.4 D. Witness for the many-body entanglement

We follow the M-separability witness for the many-particle entanglement in Ref [130] and give
some details for the derivation of a lower bound of P2 given P1. Since we are concerned with at
most a single excitation in the Rydberg blockade, it is sufficient to work with pure states of the
form

|Ψ⟩ = |ϕ1⟩ ⊗ ...⊗ |ϕM⟩ = ⊗M
i=1(ai|0⟩+ bi|1⟩), (13.27)

where a2i + b2i = 1. We can get the one-photon and two-photon probability to be
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P1 = |⟨1|Ψ⟩|2 = |A|2

M

∣∣∣∣∣∑
i

bi
ai

∣∣∣∣∣
2

(13.28)

P2 = |⟨2|Ψ⟩|2 = 2|A|2

M2

∣∣∣∣∣∑
i<j

bibj
aiaj

∣∣∣∣∣
2

(13.29)

with A =
∏M

i=1 ai, and |2⟩ =
∑

i<j |G . . . Ri . . . Rj . . . G⟩ is the doubly excited state.
To find the lowest bound of P2 given any P1, we use the Lagrange multiplier method, which is

suitable for constrained minimization problems. In our case, we consider

L = P2 + λ(P1 − C). (13.30)

For M = 2 and a given P1, if we set a1 = 1, b1 = 0, a2 =
√
1− 2P1, b2 =

√
2P1, we can get

P2 = 0 for any P1. We can also infer a upper boundary for P1 that is P1 = 0.5, as depicted in
Fig. 13.10. For the case M = 3, we performed a Monte-Carlo simulation on ai and bi to explore
all possible ⟨1|Ψ⟩ and ⟨2|Ψ⟩ combinations. The simulation result is shown in Fig. 13.10 where the
gray dots represent the Monte Carlo results for M = 3, and the orange line describes the contour
for the simulation result. Notice that the orange line gets ragged for low P2 value due to the limited
number of points.

Using the g(2)(0) data in Fig. 3 in the main text, we extract one photon and two photon collection
rates, p1 and p2 respectively. p1 and p2 are transformed into ⟨1|Ψ⟩ and ⟨2|Ψ⟩ by ⟨1|Ψ⟩ = P1 =

p1/ηtot and ⟨2|Ψ⟩ = P2 = p2/η
2
tot, where ηtot = ηrηtd = 0.0368(48) with the retrieval efficiency

ηr = 0.23(3) and the photon transmission and detection efficiency ηtd = 0.16, as mentioned before.
The red triangles and purple circles represent data points in Fig. 3(a) and (b), respectively. The
two points of Rabi angle

√
NΩt = π fall into the range of M = 1 but not M = 2, therefore, we

can conclude that we have at most 1 excitation blockade site and the entanglement depth is at least
K = N/M ≥ 800. The rest of the points are at least falling in the range of M = 3, but due to the
decrease of the storage efficiency for the long pulse duration, it is difficult to confirm the subgroup
number M . All the data shows the non-separable properties of our Rydberg atomic ensemble. We
may use this method to perform a deterministic single photon generation with even lower Rydberg
states and weak laser excitations, or to realize some multi-particle entanglement applications.
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Figure 13.10: Many-body entanglement. The data are the peaks of Rabi oscillations in Fig. 3 in
main text. The blue lines is M = 2 and the orange line is M = 3. The gray dots are Monte Carlo
simulations for M = 3. The red triangles and purple circles are the peaks of

√
NΩt = mπ. The

first peaks of the many-body Rabi oscillations in Fig. 3(a) and (b) of the main text lie in the right
side of the M = 1, indicating the entanglement depth in our system is at least K = N/M ≥ 800.
The error bars include the one standard deviation of photon counts and one standard error of total
photon source efficiency.
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APPENDIX A

List of Programs:

The online repository for the below programs can be accessed via
Google Drive:

https://drive.google.com/drive/folders/1EPKIrka23wtUX1jVoAxqhDTz4DcZGfEs?usp=sharing
GitHub:

https://github.com/HNNguyen92/Thesis
Email:

HuyNNguyen92@gmail.com

1. Lightshift calculator: Calculate level shifts for the D2 line with a 1064 nm trapping field.

2. Hologram generation : Calculate phase holograms utilizing the Gerchberg Saxton algorithm.

3. ECDL mode selection : Model the frequency mode selection process as a function of cavity
lengths and filter angle.

4. PDH error signal : Model the PDH error signal for different mixing phase and cavity param-
eters.

5. Radiation pattern from Rydberg Array: Calculate the radiative patterns utilizing a two-
photon scheme and an array of atoms.

6. Many Body Rabi Oscillations : Calculate the dynamics associated with many body Rabi
oscillations utilizing a collective basis.
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[22] D. Barredo, S. Ravets, H. Labuhn, L. Béguin, A. Vernier, F. Nogrette, T. Lahaye, and
A. Browaeys. Demonstration of a strong rydberg blockade in three-atom systems with
anisotropic interactions. Physical Review Letters, 112(18), May 2014.

[23] Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann. Entangling
atomic spins with a rydberg-dressed spin-flip blockade. Nature Physics, 12(1):71–74, Oc-
tober 2015.

[24] Johannes Zeiher, Rick van Bijnen, Peter Schauß, Sebastian Hild, Jae yoon Choi, Thomas
Pohl, Immanuel Bloch, and Christian Gross. Many-body interferometry of a rydberg-
dressed spin lattice. Nature Physics, 12(12):1095–1099, August 2016.

[25] Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran,
Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner,
Vladan Vuletic, and Mikhail D. Lukin. Probing many-body dynamics on a 51-atom quantum
simulator. Nature, 551(7682):579–584, November 2017.

246



[26] M. S. Safronova, Carl J. Williams, and Charles W. Clark. Optimizing the fast rydberg
quantum gate. Physical Review A, 67(4), April 2003.

[27] M. Saffman and T. G. Walker. Analysis of a quantum logic device based on dipole-dipole
interactions of optizzcally trapped rydberg atoms. Physical Review A, 72(2), August 2005.

[28] E. A. Goldschmidt, D. G. Norris, S. B. Koller, R. Wyllie, R. C. Brown, J. V. Porto, U. I.
Safronova, and M. S. Safronova. Magic wavelengths for the 5s-18s transition in rubidium.
Physical Review A, 91(3), March 2015.

[29] P. R. Berman and Vladimir Malinovsky. Principles of laser spectroscopy and quantum
optics. Princeton University Press, 2011.

[30] R. H. Leonard and C. A. Sackett. Effect of trap anharmonicity on a free-oscillation atom
interferometer. Physical Review A, 86(4), October 2012.

[31] R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy,
and A. Kuzmich. Long-lived quantum memory. Nature Physics, 5(2):100–104, December
2008.

[32] S D Jenkins, T Zhang, and T A B Kennedy. Motional dephasing of atomic clock spin
waves in an optical lattice. Journal of Physics B: Atomic, Molecular and Optical Physics,
45(12):124005, jun 2012.

[33] Turker Topcu and Andrei Derevianko. Intensity landscape and the possibility of magic
trapping of alkali-metal rydberg atoms in infrared optical lattices. Physical Review A, 88(4),
October 2013.
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[140] X. Jiang, M. Friesen, J. Scott, and M. Saffman, “The effect of laser noise on Rabi oscillation
fidelity”, Bulletin of the American Physical Society (2021).
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