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ABSTRACT

Coherent states are special types of wavefunctions that minimize a generalized uncertainty

principle for a suitable pair of operators. Equivalently, they are eigenstates of an appropriate

annihilation operator. Their applications are extensive throughout physics including in

quantum optics, nuclear physics, quantum field theory, path integral formulations, and

quantum information through the study of entanglement and quantum measurement.

This thesis explores two main topics. First, we consider the Schrödinger evolution of a

Gaussian coherent state under a non-Hermitian Hamiltonian. We develop a symbol calculus

and use it to construct an approximate solution to the time-dependent Schrödinger equation.

We find the evolution equations of the center and the Gaussian matrix of the coherent state,

which form a system. This result generalizes the previously-known case where the classical

Hamiltonian is quadratic.

In the second part of the thesis, we apply a quantum version of dimensional reduction

to construct Gaussian coherent states in the Bargmann space of complex projective space.

The semiclassical properties of these reduced states are controlled by a suitable notion of

symbol. Making use of these properties, we provide norm estimates and a propagation result

for Hermitian Hamiltonians. As a special case of these reduced states, we define and examine

spin-squeezed states that live naturally in the Bargmann space of the Riemann sphere.

ix



CHAPTER I

General Introduction

The first discovery of “coherent states” (although they were not called by this name at

the time) was in 1926 by Erwin Schrödinger who aimed to find solutions of the quantum

harmonic oscillator that most closely resembles the oscillating behavior of the classical

harmonic oscillator; or, in other words, the states that minimize the Heisenberg uncertainty

principle [Sch26]. As a result, coherent states are often referred to as minimum uncertainty

states.

The term “coherent states” was introduced in the context of quantum optics by Roy

Glauber in 1963 [Gla63]. Glauber introduced these states as superpositions of Fock states of

the quantized electromagnetic field, that up to a complex factor, are not modified by the

action of photon annihilation operators. His work gave rise to the definition of coherent states

as eigenstates of an annihilation operator. Today, we refer to Glauber’s states as standard

or canonical coherent states. They describe a reservoir with an undetermined number of

photons, which is in a sense “close” to the classical description where the concept of a photon

is nonexistent [Gaz09].

Coherent states are ubiquitous in quantum mechanics and we shall not attempt to give an

exhaustive list of their applications. They appear in nuclear, atomic, and condensed matter

physics, quantum field theory, quantization and de-quantization problems, path integral

formulations and, more recently, quantum information in the analysis of entanglement or

quantum measurement. Some good references on the theory and applications of coherent

states are [KsS85, Per86, ZFG90, Gaz09].
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1.1 Coherent states in L2(Rd)

Most commonly, coherent states are defined in the Hilbert space L2(Rd). We proceed

to describe how they arise in this setting. However, this will not be the preferred Hilbert

space in this thesis. In the following section, we will introduce the Bargmann space of Cd

and present an argument for studying coherent states in this space rather than in L2(Rd).

At the end of this chapter, we will present a definition of Gaussian coherent states in the

Bargmann space of Cd.

For the rest of this section, we will quote freely from Combescure and Robert [CR12].

Let X̂ = (X̂1, . . . , X̂d) where X̂j is the multiplication operator by the coordinate xj

for j = 1, . . . , d. Similarly, define P̂ = (P̂1, . . . , P̂d) be the momentum operator in L2(Rd)

where P̂j = −i~ ∂
∂xj

for j = 1, . . . , d. The operators X̂ and P̂ are self-adjoint and satisfy the

Heisenberg commutation relation

[
X̂j, P̂k

]
= δj,ki~ I .

where δj,k is the Kronecker delta and I is the identity operator. Furthermore, we define the

standard annihilation and creation operators, respectively, as

aj =
1√
2~

(
X̂j + iP̂j

)
, a∗j =

1√
2~

(
X̂j − iP̂j

)

for j = 1, . . . , d. These operators satisfy the canonical commutation relations (CCRs)

[aj, a
∗
k] = δj,k I . (1.1)

The d−dimensional quantum harmonic oscillator of frequency 1 is

Ĥos = 1
2

(
X̂2 + P̂ 2

)

2



or equivalently, in terms of annihilation and creation operators

Ĥos = ~
d∑
j=1

(
a∗jaj +

d

2

)
.

The ground state, or the lowest energy state, of Ĥos is a Gaussian function in L2(Rd)

given by

ϕ0(x) := (π~)−d/4e−~
−1xxT /2.

This is the simplest example of a coherent state that we will see. One may verify that ϕ0

is an eigenstate of the annihilation operator a with eigenvalue 0. According to Proposition

12.10 of [Hal13], the fact that ϕ0 is an eigenstate of a implies that ϕ0 minimizes Heisenberg’s

uncertainty principle. This means we get equality in the product of the uncertainty (standard

deviation) in the measurement of each of the position and momentum operators in the state

ϕ0: (
∆ϕ0X̂j

)(
∆ϕ0P̂j

)
=

~
2
, j = 1, . . . , d . (1.2)

More precisely, the uncertainty in the measurement of each of the operators in the state ϕ0 is

the same: ∆ϕ0X̂j = ∆ϕ0P̂j =
√

~/2.

The Weyl-Heisenberg translation operator is a unitary operator represented by T̂Z whose

action on a state ϕ ∈ L2(Rd) is expressed as

(
T̂Zϕ

)
(x) = e−i~

−1 q pT /2 ei~
−1 x pT ϕ(x− q).

Physically speaking, T̂Z translates the state ϕ by Z = (q, p) in phase space R2d. Hence, we

can apply the translation operator to the state ϕ0 to shift its center from (0, 0) to Z = (q, p).

This results in

ϕZ(x) =
(
T̂Zϕ0

)
(x) = (π~)−d/4 e−i~

−1 q pT /2 ei~
−1 x pT e−~

−1(x−q)(x−q)T /2.

3



The states ϕZ are the standard coherent states introduced by Schrödinger in 1926. Note

that these states are localized in a neighborhood of size
√
~ around the point Z in all of the

position and momentum coordinates.

A natural question arises: is ϕZ also a minimum uncertainty state? The answer is yes;

if we define α = 1√
2
(q + ip), one may check that aϕZ = αϕZ , so ϕZ an eigenstate of the

annihilation operator. Hence, by Proposition 12.10 in [Hal13], ϕZ satisfies (1.2).

A more general class of Gaussian coherent states in L2(Rd) are the so-called squeezed

coherent states. A squeezed state centered at the point (0, 0) ∈ R2d is defined as

ϕΓ
0 (x) = cΓ e

i ~−1 xΓxT /2 (1.3)

where Γ is an d× d complex symmetric matrix and =Γ > 0. This condition ensures that the

state is in L2(Rd) and also controls that “squeezing” behavior of the state. The factor

cΓ = (π~)−d/4 det(=Γ)1/4

is chosen so that the L2−norm of the state is equal to one. Observe that Γ = iId, where Id is

the d−dimensional identity matrix, gives exactly ϕ0, so one may think of squeezed states

as generalizations of the ground state of the harmonic oscillator and the standard coherent

states.

Once again, we may construct squeezed states with center Z = (q, p) in phase space by

applying the translation operator:

ϕΓ
Z(x) =

(
T̂Zϕ

Γ
0

)
(x) = cΓ e

i~−1[− 1
2
qpT+xpT+ 1

2
(x−q)Γ(x−q)T ]. (1.4)

The squeezed coherent states are also minimum uncertainty states, but for a different suitable

pair of operators X̂j and P̂j, respectively, that are linear combinations of the operators X̂j

and P̂j. In that sense, X̂j and P̂j satisfy (1.2) for each j.

4



1.2 Bargmann Space and the Bargmann Transform

While most of the existing literature on coherent states considers them as elements in

L2(Rd), they can also be defined as objects in the Bargmann space1 of Cd as we shall see in

§1.3. In fact, we will be working in Bargmann spaces throughout the rest of this thesis. One

advantage to working in the Bargmann space of Cd is that it is a Hilbert space of functions

on phase space R2d ∼= Cd, the natural setting of Hamiltonian mechanics, rather than on

configuration space Rd. Another reason we favor the Bargmann space of Cd over L2(Rd) is

because the SU(2) states, or spin-squeezed states that we construct in Chapter VII “live”

more naturally in the Bargmann space of the Riemann sphere. In the remaining part of this

section, we present some of the history and important properties of the Bargmann space of

Cd.

The Bargmann space of Cd and its properties were first outlined by Valentine Bargmann

in 1961 [Bar61]. We will quote some results from his paper, but avoid many of the technical

details.

According to Bargmann, in 1928, Fock wanted to find operators that satisfy the canonical

commutation relations for the annihilation and creation operators given in (1.1), but for a

space of holomorphic functions on Cd, i.e., functions that are independent of the coordinates

zj for j = 1, . . . , d. He found that the operators ~ ∂
∂zj

and zj, where the latter represents

multiplication by the coordinate zj, satisfy (1.1). However, this alone does not give a

representation of the CCRs because they require the existence of a Hilbert space and

annihilation and creation operators aBj and a∗j
B that are adjoints of each other and satisfy

[aBj , a
∗
k
B] = δj,k~ I [Hal00]. Hence, Bargmann aimed to find an inner product on the space of

holomorphic functions on Cd such that ~ ∂
∂zj

and zj are adjoints of one another. It turns out

that these operators are precisely the desired annihilation and creation operators, respectively,

1Sometimes this is referred to as the Segal-Bargmann space as in [Hal00], and other authors such as
[CR12] refer to it as the Bargmann-Fock space. We will stick with the shorter name of “Bargmann space.”

5



which we label as:

aBj = ~
∂

∂zj
, a∗j

B = multiplication by zj, j = 1, . . . , d . (1.5)

One can also define “position” and “momentum” operators in this space as

ABj =
1√
2

(
a∗j
B + aj

B) , BBj =
i√
2

(
a∗j
B − ajB

)
, j = 1, . . . , d .

After some calculations to find the appropriate weight function ρ, which an interested reader

may read about in [Bar61], Bargmann defines the inner product on this space as

〈f, g〉 :=

∫
f(z) g(z) ρ(z) dL(z)

where dL(z) denotes the 2d−dimensional Lebesgue measure on Cd and

ρ(z) = (π~)−de−~
−1|z|2 .

Using this information, we can define the Bargmann space of Cd as given in [Hal00].

Definition I.1. The Bargmann space, denoted by B(Cd), is the space of holomorphic functions

f : Cd → C which satisfy the square-integrability condition:

‖f‖2
B(Cd) = (π~)−d

∫
Cd
|f(z)|2 e−~−1|z|2 dL(z) <∞,

provided that dL(z) is the 2d−dimensional Lebesgue measure on Cd.

Bargmann also found a unitary map V : L2(Rd)→ B(Cd) that intertwines the annihilation

and creation operators in L2(Rd) with those in (1.5). This is given by

(V f)(z) =

∫
Rd
A(z, x) f(x) dx (1.6)

6



where the kernel A(z, x) is

A(z, x) = (π~)−d/4 e−~
−1(zzT−2

√
2xzT+xxT )/2 x ∈ Rd, z ∈ Cd .

We also give the map introduced by Bargmann a formal name:

Definition I.2. The unitary map V : L2(Rd) → B(Cd) defined in (1.6) is the Bargmann

transform.

One can further prove that V is an isometry. Hence, we can think of the Bargmann space

of Cd as simply a different, but unitarily equivalent representation of the CCRs.

Next, we will state a few more interesting properties about the Bargmann space. We will

quote results from [Hal00].

Lemma I.3. 1. For all z ∈ Cd, ∃ a constant Cz such that

|f(z)|2 ≤ Cz ‖f‖2
L2(Cd,ρ), ∀f ∈ B(Cd).

2. B(Cd) is a closed subspace of L2(Cd, ρ), and is therefore a Hilbert space.

A detailed proof of this lemma can be found in [Hal00]. The first point tells us that

pointwise evaluation is continuous, meaning that for each z ∈ Cd, the map B(Cd) 3 f 7→ f(z)

is a continuous linear functional on B(Cd). This property for holomorphic function spaces

does not exist for non-holomorphic L2−spaces.

Remark 1. Since we may express a holomorphic function as a power series around the origin,

Bargmann proved that the set of orthonormal basis vectors in Bargmann space is given

by {zn/
√
n!}∞n=0 [Bar61]. Therefore, we may decompose holomorphic functions in terms of

homogeneous polynomials. This will be useful in Chapter V.

A remarkable property of Bargmann space is that it has a reproducing kernel given by

K(z, w) = e~
−1zwT , z, w ∈ Cd. (1.7)

7



Integrating a function in the Bargmann space of Cd against the kernel gives back (reproduces)

the function itself as shown in property (2) of the following theorem.

Theorem I.4. The reproducing kernel in (1.7) has the following properties:

(1) K(z, w) is holomorphic in z and anti-holomorphic in w, and satisfies

K(w, z) = K(z, w).

(2) For each fixed z ∈ Cd, K(z, w) is square-integrable dρ(w). For all f ∈ B(Cd),

f(z) =

∫
Cd
K(z, w)f(w) ρ(w) dL(w).

(3) If f ∈ L2(Cd, ρ), let Πf denote the orthogonal projection of f onto the closed subspace

B(Cd). Then,

Πf(z) =

∫
Cd
K(z, w)f(w)ρ(w) dL(w).

(4) For all z, u ∈ Cd,

K(z, u) =

∫
Cd
K(z, w)K(w, u) ρ(w) dL(w).

(5) For all z ∈ Cd,

|f(z)|2 ≤ K(z, z) ‖f‖2 = e~
−1|z|2‖f‖2

and the constant e~
−1|z|2 is optimal in the sense that for each z ∈ Cd there exists a

non-zero f(z) ∈ B(Cd) for which equality holds.

(6) Given any z ∈ Cd, if ψz(·) ∈ B(Cd) satisfies

f(z) =

∫
Cd
ψz(w) f(w) ρ(w) dL(w).

8



for all f ∈ B(Cd), then ψz(w) = K(z, w).

The requirement that f be a holomorphic function is also important in the definition

of Bargmann space. If f were any square-integrable function, it could be localized into an

arbitrarily small neighborhood of phase space, which would violate the uncertainty principle.

However, since f ∈ B(Cd) is holomorphic and it satisfies the pointwise bound in Property (5)

of Theorem I.4, there is a limit to how concentrated f can be in a neighborhood of any point

in phase space.

Finally, we would like to define coherent states in Bargmann space. From the point of

view of functional analysis, these are the unique elements ψz ∈ B(Cd) such that

f(z) = 〈ψz, f〉B(Cd), ∀f ∈ B(Cd). (1.8)

An alternative way to define the standard coherent states in L2(Rd) as given in [Hal00] is:

Theorem I.5. The ϕz ∈ L2(Rd) are the unique states that satisfy

(V f)(z) = 〈ϕz, f〉L2(Rd)

where V : L2(Rd)→ B(Cd) is the Bargmann transform.

Since the Bargmann transform is unitary,

(V f)(z) = 〈ϕz, f〉L2(Rd) = 〈V ϕz, V f〉B(Cd).

By comparing the above with (1.8), we have that V ϕz = ψz, which means the standard

coherent states in Bargmann space can be obtained by applying the Bargmann transform to

the standard coherent states in L2(Rd). Similarly, we may construct more general Gaussian

states in Bargmann space by applying the Bargmann transform to (1.3), as we shall soon

observe.
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Moreover, recalling Property (6) in Theorem I.4 we see that the standard coherent state

in Bargmann space is the reproducing kernel, i.e., ψz(w) = K(z, w) = K(w, z) = e~
−1zwT .

Using the property in (1.8), we arrive at the interesting fact that the reproducing kernel is

just the inner product of two standard coherent states:

K(z, w) = 〈ψz, ψw〉.

1.3 Gaussian Coherent States in Bargmann Space

For the rest of this thesis, we will use a slightly modified version of Definition I.1 for the

Bargmann space.2 We will include the weight e−~
−1|z|2/2 in the definition of the space and

drop the constant factor (π~)−d.

More precisely, B(Cd) is now the space of functions ψ : Cd → C, ψ(z) = f(z) e−~
−1|z|2/2,

where f is a holomorphic function and the following condition is satisfied:

‖ψ‖2
B(Cd) =

∫
Cd
|f(z)|2 e−~−1|z|2 dL(z) <∞.

Remark 2. In the subsequent chapters, we will often take derivatives with respect to z of

ψ ∈ B(Cd). We will only differentiate f(z) and not the weight e−~
−1|z|2/2 because the resulting

ψ would not be in B(Cd). To avoid being cumbersome, we will not write this out explicitly

every time, but implicitly the calculation we are performing is

e−~
−1|z|2/2 ∂n

∂znj

(
e~
−1|z|2/2 ψ(z)

)
, j = 1, . . . , d .

Before we introduce the Gaussian coherent states in B(Cd), we must define the generalized

2Definition I.1 is more commonly used including in Bargmann’s paper [Bar61] and the work of B. Hall
[Hal00].
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unit disk

Dd = {d× d complex symmetric matrices A such that A∗A < Id}

where Id is the d× d identity matrix.

We also have an analogous version of the translation operator in B(Cd).

Definition I.6. Let ψ = f(z) e−~
−1|z|2/2 ∈ B(Cd) be centered at z = 0 in phase space.3 The

translation operator shifts the center of ψ to z = w in the following manner:

(
T̂wf

)
(z) = e−~

−1|w|2/2 e~
−1zwT f(z − w).

Definition I.7. The Gaussian coherent states in Bargmann space are of the form: ∀A ∈ Dd

and w ∈ Cd, let QA(z) = zAzT (where z ∈ Cd is considered a row vector). The associated

state is

ψA,w(z) := e~
−1QA(z−w)/2 e~

−1zwT e−~
−1|w|2/2 e−~

−1|z|2/2 . (1.9)

ψA,w is the quantum translation of ψA,0 by w, which is called the center of ψA,w.

Remark 3. If A = 0, we will refer to ψw as a standard coherent state in Bargmann space.

Whenever, A 6= 0, we can think of ψA,w as a squeezed coherent state in Bargmann space.

A natural question is how are these states related to the states ϕΓ
Z in (1.4)? We can obtain

ψA,w by taking the Bargmann transform of ϕΓ
Z (up to some constants possibly). It turns out

that (see Proposition 36 in [CR12]) the matrix A ∈ Dd in (1.9) is the Cayley transform of

the matrix Γ in (1.4):

A = −(Γ− iI)−1(Γ + iI) .

3We will typically identity R2d ∼= Cd using zj = 1√
2
(qj − ipj) where qj , pj ∈ R for j = 1, . . . , d.
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1.4 Structure of the Thesis

There are two main parts in this thesis: propagation of coherent states via the Schrödinger

equation (Chapters II–IV) and dimensional reduction of coherent states (Chapters V–VII).

First, we study the propagation of coherent states under the dynamics of the time-dependent

Schrödinger equations for both Hermitian and non-Hermitian quantum Hamiltonians. Al-

though these topics have been studied extensively in the literature for coherent states defined

in L2(Rd), we will present a new approach for constructing approximate semiclassical solutions

using a symbol calculus. These techniques are developed in Chapter II. In Chapter III, we

restrict our attention to evolution with Hermitian Hamiltonians. We construct solutions to

arbitrary order in ~ to Schrödinger’s equation for a more general class of coherent states.

Chapter IV deals with the case of non-Hermitian Hamiltonians. Due to the fact that the

geometry of the dynamics is more complicated than for Hermitian Hamiltonians, we only

consider states that are initially Gaussian in the non-Hermitian case.

In Chapter V, we describe the process of dimensionally reducing the Gaussian coherent

states (1.9) to construct Gaussian states on complex projective spaces. These states have

semiclassical properties governed by a symbol calculus. Chapter VI is where we consolidate

the ideas of reduction and propagation and we demonstrate how the reduced Gaussian states

evolve under Hermitian Hamiltonians. Finally, in Chapter VII we present the special case

of the reduction of squeezed states in B(C2) which correspond to SU(2), or spin-squeezed,

states. This chapter may be of particular interest to physicists.
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CHAPTER II

A Symbol Calculus

In Chapters III and IV we will be concerned with constructing time-dependent wavefunc-

tions ψ, which live in special subspaces of C∞(Cd × R) associated to a smooth curve, such

that ψ is a solution to Schrödinger’s equation to arbitrary order in ~. In Chapter III, we will

consider the case where the quantum Hamiltonian in Schrödinger’s equation is Hermitian.

Then, in Chapter IV, we allow for the quantum Hamiltonian to be non-Hermitian. This

chapter is devoted to defining our special subspaces Imγ and to developing the necessary

symbol calculus needed in later chapters.

2.1 The spaces Imγ

In this section, we construct the spaces of wavefunctions associated to a smooth γ curve

which we will denote by Imγ . First, we present the Schwartz space which appears in our

definition of Imγ .

Definition II.1. The Schwartz space is the topological vector space

S(R2d) :=
{
f ∈ C∞(R2d) ;∀α, β ∈ Nd, ‖f‖α,β <∞

}
where C∞(R2d) is the function space of smooth functions from R2d to C and the semi-norm,

which defines the topology of the space, is

‖f‖α,β = sup
x∈R2d

|xβDαf(x)|.
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Definition II.2. Let γ : t→ w(t) be a smooth curve on Cd. The space Imγ is the space of all

functions of the general form

ψ(z, t, ~) = ~m ei~−1f(t) ei~
−1ω(z,w(t)) ϕ

(
z − w(t)√

~
, t, ~

)
e−~

−1|z−w(t)|2/2, (2.1)

where ω is the standard symplectic form ω = idz ∧ dz, so ω(z, w(t)) = =(zw(t)T ) and the

following conditions hold:

1. f is real-valued,

2. ∀t, ϕ e−~−1|z−w(t)|2/2 ∈ S(R2d),

3. ϕ is holomorphic in z, i.e., ∂ϕ
∂zj

= 0 for j = 1, . . . , d,

4. ϕ has an asymptotic expansion of the form ϕ(ζ, t, ~) ∼
∑∞

j=0 ~j/2ϕj(ζ, t) where ∀t, j,

ϕj(ζ, t) e
−|ζ|2/2 ∈ S(R2d) with estimates locally uniform in t. More precisely, assume

that ∀j,N ∈ N, ∀α, β ∈ Nd and ∀K ⊂ R compact, ∃C such that ∀(ζ, t) ∈ Cd ×K,

∣∣∣∂αζ ∂βt ϕj(ζ, t) e−|ζ|2/2∣∣∣ ≤ C (1 + |ζ|)−N . (2.2)

Furthermore, ∀α, β ∈ Nd, ∀M,N ∈ N and ∀K ⊂ R, ∃C such that ∀(ζ, t) ∈ Cd ×K,

∣∣∣∣∣∂αζ ∂βt e−|ζ|2/2
(
ϕ(ζ, t, ~)−

N∑
j=0

~j/2ϕj(ζ, t)

)∣∣∣∣∣ ≤ C (1 + |ζ|)−M ~(N+1)/2. (2.3)

Moreover, ψ is of order m in Imγ .

Remarks 4. A few comments about the Imγ spaces:

1. The Imγ are vector spaces and they are subspaces of C∞(Cd × R).

2. The functions ψ ∈ Imγ are regarded as functions of both z ∈ Cd and t ∈ R simultaneously.

3. Imγ ⊂ I
m+1/2
γ in the case that the leading order term in ϕ, ϕ0 = 0.
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4. Observe that (3) and (4) in Definition II.2 imply that ∀t, ψ ∈ B(Cd).

Definition II.3. The elements ψ1, ψ2 ∈ Imγ are equal modulo I
m+1/2
γ if ψ1 − ψ2 ∈ Im+1/2

γ .

2.2 Symbols

Definition II.4. The principal symbol of ψ ∈ Imγ as in (2.1) is

σmψ (ζ, t) := ϕ0(ζ, t) e−|ζ|
2/2 . (2.4)

Note that these are ~−independent Schwartz functions.

Example II.5. Choosing ϕ0(ζ, t) = p(ζ, t) eQA(ζ)/2 where p is a polynomial in ζ ∈ Cd and

A ∈ Dd is an example of such a symbol.

Definition II.6. The space of symbols is

S :=
{
σmψ (ζ, t) = ϕ0(ζ, t) e−|ζ|

2/2 ∈ S(R2d) ; ∀t, ϕ0 is holomorphic in ζ
}
.

We make the following observations about symbols:

1. As Schwartz functions, σm~pψ = σmψ for any power p. This fact will be useful later on.

2. One has a short exact sequence

0 ↪−→ Im+1/2
γ ↪−→ Imγ

σm−→ S −→ 0, ∀m

where σm is the symbol map. The symbol map induces a linear bijection

Imγ /Im+1/2
γ

∼= S, ∀m.

3. If ψ ∈ Imγ is such that σm(ψ) = 0 ∈ S, then by the short exact sequence, ψ ∈ Im+1/2
γ .

Thus, σm+1/2(ψ) ∈ S is well-defined.
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The following norm estimate will be useful.

Lemma II.7. Given ψ ∈ Imγ , ∀t ∈ R,

lim
~→0

~−(m+d/2)‖ψ(·, t, ~)‖B(Cd) = ‖σmψ (·, t)‖L2(Cd)

provided σmψ (ζ, t) 6= 0.

Proof. We have

‖ψ(·, t, ~)‖2
B(Cd) =

∫
Cd

∣∣∣∣~m ei~−1f(t) ei~
−1ω(z,w(t))ϕ

(
z − w(t)√

~
, t, ~

)
e−~

−1|z−w(t)|2/2
∣∣∣∣2 dL(z)

= ~2m

∫
Cd

∣∣∣∣ϕ(z − w(t)√
~

, t, ~
)
e−~

−1|z−w(t)|2/2
∣∣∣∣2 dL(z).

Let ζ = (z − w(t))/
√
~, so dL(z) = (

√
~)2d dL(ζ) which leads to

‖ψ(·, t, ~)‖2
B(Cd) = ~2m+d

∫
Cd
|ϕ (ζ, t, ~)|2 e−|ζ|2dL(ζ).

We need to bound the above expression from both above and below. By (2.3),

∣∣∣(ϕ (ζ, t, ~)− ϕ0 (ζ, t)) e−|ζ|
2/2
∣∣∣ ≤ C(1 + |ζ|)−M ~1/2. (2.5)

Using the reverse triangle inequality,

∣∣∣(ϕ (ζ, t, ~)− ϕ0 (ζ, t)) e−|ζ|
2/2
∣∣∣ ≥ ∣∣∣|ϕ(ζ, t, ~)| e−|ζ|2/2 − |ϕ0(ζ, t)| e−|ζ|2/2

∣∣∣ ,
so

|ϕ(ζ, t, ~)| e−|ζ|2/2 − |ϕ0(ζ, t)| e−|ζ|2/2 ≤ C(1 + |ζ|)−M ~1/2.

It is clear that

|ϕ(ζ, t, ~)| e−|ζ|2/2 ≤ C(1 + |ζ|)−M ~1/2. (2.6)
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Inequality (2.5) is equivalent to

∣∣∣(ϕ0 (ζ, t, )− ϕ (ζ, t, ~)) e−|ζ|
2/2
∣∣∣ ≤ C(1 + |ζ|)−M ~1/2

and by applying the reverse triangle inequality again, we conclude that

|ϕ0(ζ, t)| e−|ζ|2/2 − |ϕ(ζ, t, ~)| e−|ζ|2/2 ≤ C(1 + |ζ|)−M ~1/2

which implies

|ϕ0(ζ, t)| e−|ζ|2/2 − C(1 + |ζ|)−M ~1/2 ≤ |ϕ(ζ, t, ~)| e−|ζ|2/2. (2.7)

Combining (2.6) and (2.7) we obtain

|ϕ0(ζ, t)| e−|ζ|2/2 − C(1 + |ζ|)−M ~1/2 ≤ |ϕ(ζ, t, ~)| e−|ζ|2/2

≤ |ϕ0(ζ, t)| e−|ζ|2/2 + C(1 + |ζ|)−M ~1/2. (2.8)

Squaring the left side of (2.8) we get

(
|ϕ0(ζ, t)| e−|ζ|2/2 − C(1 + |ζ|)−M ~1/2

)2

= |ϕ0(ζ, t)|2 e−|ζ|2 − 2C ~1/2(1 + |ζ|)−M |ϕ0(ζ, t)| e−|ζ|2/2 + C2 ~ (|1 + |ζ|)−2M .

Then, integrating over Cd, we have

I =

∫
Cd
|ϕ0(ζ, t)|2 e−|ζ|2 dL(ζ) = ‖σmψ (·, t)‖2

L2(Cd),

and

II = 2C ~1/2

∫
Cd

(1 + |ζ|)−M |ϕ0(ζ, t)| e−|ζ|2/2dL(ζ) ≤ K ~1/2

∫
Cd

(1 + |ζ|)−(M+N)dL(ζ)
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for some other constant K since |ϕ0(ζ, t)| e−|ζ|
2/2 ≤ C ′(1 + |ζ|)−N . Provided M + N is

sufficiently large enough, the integral in II is bounded, so II = O(~1/2). By similar reasoning,

III = C2 ~
∫
Cd

(1 + |ζ|)−2M = O(~)

for M large enough, e.g., M > d. The same analysis can be applied to the right side of (2.8).

Then, in the limit as ~→ 0, ~−(2m+d)‖ψ(·, t, ~)‖2
B(Cd)

approaches ‖σmψ (·, t)‖2
L2(Cd)

from both

above and below.

2.3 Action of operators

This section is dedicated to studying the action of operators on elements in the Imγ spaces.

In general, our operators will be the Weyl quantization on z ∈ Cd of functions that satisfy

the following conditions:

Assumption II.8. Let F : Cd × R→ C be a smooth function in (z, t) and let F and all its

partial derivatives have at most polynomial growth at infinity.

In Chapters III and IV, F (z, t) will represent a classical Hamiltonian and its Weyl

quantization on z and will be a quantum operator that is either Hermitian (in the case of a

real-valued F ), or non-Hermitian (if F is complex-valued).

Theorem II.9. Assume F (z, t) satisfies II.8. For each t ∈ R, let F̂ denote the Weyl

quantization on z of F. Then, for any ψ ∈ Imγ , F̂ (ψ) ∈ Imγ .

Remark 5. We will show later on that the principal symbol of F̂ψ as an element in Imγ is

σm
F̂ψ

(ζ, t) = F (w(t), t)σmψ (ζ, t).

Notation 1. In what follows it will be useful for us to rewrite the ψ ∈ Imγ in (2.1) as

ψ(z, t, ~) = ~mei~−1Φ(z,t) e−~
−1|z|2/2 ϕ

(
z − w(t)√

~
, t, ~

)
, (2.9)
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where Φ(z, t) is given by

Φ(z, t) := f(t)− izw(t)T +
i

2
|w(t)|2.

Our main goal in this section is to prove the above theorem, but we will first prove a few

preliminary propositions.

Proposition II.10. For any ψ ∈ Imγ , (zj − wj(t))ψ ∈ I
m+1/2
γ and σ

m+1/2
(zj−wj(t))ψ(ζ, t) =

ζj σ
m
ψ (ζ, t) for j = 1, . . . , d.

Proof. For any ψ ∈ Imγ ,

(zj − wj(t))ψ = ~m ei~−1Φ(z,t) e−~
−1|z|2/2

√
~
[(

zj − wj(t)√
~

)
ϕ

(
z − w(t)√

~
, t, ~

)]
= ~m+1/2 ei~

−1Φ(z,t) e−~
−1|z|2/2 ϕ̃

(
z − w(t)√

~
, t, ~

)
∈ Im+1/2

γ

where ϕ̃ := ~−1/2(zj − wj(t))ϕ.

For the principal symbol, we have that

σ
m+1/2
(zj−wj(t))ψ = σ

m+1/2

~1/2
(
zj−wj(t)√

~

)
ψ

= σ
m+1/2(
zj−wj(t)√

~

)
ψ

since σm~1/2ψ = σmψ for any m. Defining ζj := (zj − wj(t))/
√
~ one obtains the result.

Remark 6. The previous proposition tells us that multiplying an element of Imγ by a factor of

(z − w(t))` is in the same space as multiplying the element by ~`/2 for any ` ∈ N.

Proposition II.11. For any ψ ∈ Imγ ,
(
~ ∂
∂zj
− wj(t)

)
ψ ∈ Im+1/2

γ and

σ
m+1/2

(~ ∂
∂zj
−wj(t))ψ

(ζ, t) =
∂σmψ
∂ζj

(ζ, t)

for j = 1, . . . , d.
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Proof. We first calculate1

~
∂ψ

∂zj
= ~m+1

[
∂

∂zj

(
ei~
−1Φ(z,t)

)
ϕ+ ~−1/2ei~

−1Φ(z,t) ∂ϕ

∂zj

]
e−~

−1|z|2/2

= ~m+1

[
i~−1 ∂Φ

∂zj
ei~
−1Φ(z,t)ϕ+ ~−1/2ei~

−1Φ(z,t) ∂ϕ

∂zj

]
e−~

−1|z|2/2

= i
∂Φ

∂zj
ψ + ~m+1/2 ei~

−1Φ(z,t) ∂ϕ

∂zj
e−~

−1|z|2/2.

Using the fact that ∂Φ
∂zj

(z, t) = −iwj(t), the above simplifies to

(
~
∂

∂zj
− wj(t)

)
ψ = ~m+1/2 ∂ϕ

∂zj

(
z − w(t)√

~
, t, ~

)
ei~
−1Φ(z,t) e−~

−1|z|2/2,

which is in I
m+1/2
γ . To find the principal symbol, we can rewrite the previous result as

(
~
∂

∂zj
− wi(t)

)
ψ = ~m+1/2 ei~

−1f(t) ei~
−1ω(z,w(t)) ∂ϕ

∂zj

(
z − w(t)√

~
, t, ~

)
e−~

−1|z−w(t)|2/2.

Then, substituting ζj := (zj − wj(t))/
√
~ and recalling that σm~1/2ψ = σmψ ,

σ
m+1/2(
~ ∂
∂zj
−wj(t)

)
ψ
(ζ, t) =

∂ϕ0

∂ζj
(ζ, t) e−|ζ|

2/2 =
∂σmψ
∂ζj

(ζ, t).

Now we prove Theorem II.9.

Proof. Without loss of generality, let m = 0 and because F̂ only acts on the z variable we can

also let w(t) = 0. For now we will assume that the ϕ in ψ ∈ I0
γ has a single ~−independent

term denoted by ϕ(z/
√
~, t) satisfying (2.2) rather than an asymptotic expansion. Hence,

ψ(z, t) = ei~
−1f(t) ϕ

(
z√
h
, t

)
e−~

−1|z|2/2 ∈ I0
γ .

1Notice that we don’t differentiate e−~
−1|z|2/2 with respect to z.
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For each t ∈ R, consider a Taylor expansion of F (z, t) about z = 0:

F (z, z, t) = PN(z, z, t) +
∑

|a|+|b|=N

za zbRa,b (z, z, t) (2.10)

where PN is a polynomial of degree N in (z, z) and Ra,b(z, z, t) is a function of the derivatives

of F , so it is also a smooth function with polynomials bounds on its derivatives. We need to

show that

F̂ (ψ) = ei~
−1f(t) µ

(
z√
~
, t, ~

)
e−~

−1|z|2/2 (2.11)

is in I0
γ . In other words, ∃µj(ζ, t) where ζ = z/

√
~ which satisfy (2.2) and

e−|ζ|
2/2

(
µ(ζ, t, ~)−

N∑
j=0

µj(ζ, t)

)

is bounded in the manner of (2.3). Weyl quantizing (2.10) on z and applying it to ψ we have

F̂ (ψ) = P̂N(ψ) +
∑

|a|+|b|=N

za zbRa,b̂(ψ) .

Now

P̂N(ψ)(z, t) = ei~
−1f(t) e−~

−1|z|2/2
∑

|a|+|b|=N

~|b| ca,b za ∂bz ϕ
(

z√
~
, t

)

= ei~
−1f(t) e−~

−1|z|2/2
N∑
j=0

~j/2 µj
(

z√
~
, t

)

because we can apply Propositions II.10 and II.11 repeatedly. Additionally, the µj’s satisfy

(2.2) because they represent monomials multiplied by derivatives in z of ϕ and ϕ itself satisfies
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(2.2). Rearranging the expression, we obtain

e−~
−1|z|2/2

N∑
j=0

~j/2 µj
(

z√
~
, t

)
= e−i~

−1f(t) P̂N(ψ)(z, t) = P̂N

(
ϕ

(
z√
~
, t

)
e−~

−1|z|2/2
)
.

Similarly, we can rearrange (2.11):

e−~
−1|z|2/2 µ

(
z√
~
, t, ~

)
= F̂

(
ϕ

(
z√
~
, t

)
e−~

−1|z|2/2
)
.

Returning to the expression we wish to bound:

e−|ζ|
2/2

(
µ(ζ, t, ~)−

N∑
j=0

~j/2 µj(ζ, t)

)
=
(
F̂ − P̂N

)(
ϕ

(
z√
~
, t

)
e−~

−1|z|2/2
) ∣∣∣∣

z=
√
~ζ

=
∑

|a|+|b|=N

za zbRa,b̂

(
ϕ

(
z√
~
, t

)
e−~

−1|z|2/2
) ∣∣∣∣

z=
√
~ζ
.

Next, we use the formula for Weyl quantization in Bargmann space from [Her97] on the

remainder term. It is sufficient to consider a single term in the expansion:

I1(ζ, t, ~) = za zbRa,b̂

(
ϕ

(
z√
~
, t

)
e−~

−1|z|2/2
) ∣∣∣∣

z=
√
~ζ

=
e−|ζ|

2/2

(π~)d 2|a|

∫
Cd

(u+
√
~ζ)a ubRa,b

(
u+
√
~ζ

2
, u, t

)
ϕ

(
u√
~
, t

)
e~
−1/2ζuT e−~

−1|u|2du du.

We perform a change of variables (u, u) =
√
~(v, v), so that

I1(ζ, t, ~) =
~d e−|ζ|2/2

(π~)d 2|a|

∫
Cd
~|a+b|/2(v + ζ)a vbRa,b

(√
~(v + ζ)

2
,
√
~ v, t

)
ϕ (v, t) eζv

T

e−|v|
2

dv dv

=
~N/2 e−|ζ|2/2

πd 2|a|

∫
Cd

(v + ζ)a vbRa,b

(√
~(v + ζ)

2
,
√
~ v, t

)
ϕ (v, t) eζv

T

e−|v|
2

dv dv .

Let us rewrite the eζv
T

factor slightly. Note that ζvT = ζ · v+ iω(ζ, v) = ζ · v+ iv ·Jζ where ·

represents the real scalar product and J is the standard complex structure. Then, completing
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the square, we have e−|v|
2/2 eζ·v = e−

1
2(|v−ζ|2−|ζ|2) = e−|v−ζ|

2/2 e|ζ|
2/2, so we can rewrite the

integrand as

I1(ζ, t, ~) =
~N/2

πd 2|a|

∫
Cd
eiv·Jζ (v+ζ)a vbRa,b

(√
~(v + ζ)

2
,
√
~ v, t

)
e−|v−ζ|

2/2ϕ (v, t) e−|v|
2/2dv dv.

For each t ∈ R, I1(ζ, t, ~) resembles a Fourier transform evaluated at Jζ in the v variable, but

it is not a true Fourier transform because ζ appears in some of the factors in the integrand.

We proceed to show that I1 is Schwartz.

(1) First, we prove that for any α ∈ Nd, ζα I1(ζ, t, ~) is bounded. For brevity, let

G(v, v, ζ, t, ~) := (v + ζ)a vbRa,b

(√
~(v + ζ)

2
,
√
~ v, t

)
e−|v−ζ|

2/2ϕ (v, t) e−|v|
2/2

and consider

ζα I1(ζ, t, ~) =
~N/2

πd 2|a|

∫
Cd

(
ζαeiv·Jζ

)
G(v, v, ζ, t, ~) dv dv

=
−i−|α| ~N/2

πd 2|a|

∫
Cd
eiv·Jζ [(−J∂v)α]

T
G(v, v, ζ, t, ~) dv dv

where we have integrated by parts. We can calculate [(−J∂v)α]
T
G(v, v, ζ, t, ~) using

Leibniz’s rule, but of course this would be cumbersome and unnecessary for our purposes.

We need to justify that the integral does in fact converge. The function Ra,b and all

its derivatives are bounded by polynomials in ζ, so any derivatives or products by

monomials of Ra,b are also bounded. For each t ∈ R, ϕ(v, t) e−|v|
2/2 ∈ S(R2d), so its

derivatives are also Schwartz. Lastly, ∂αv

(
e−|v−ζ|

2/2
)

is bounded in ζ. Therefore, the

result of [(−J∂v)α]
T
G(v, v, ζ, t, ~) is bounded by polynomials in ζ. Hence, ζα I1(ζ, t, ~)

converges and is bounded by powers of ζ.
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(2) We also need that for any α ∈ Nd, ∂αζ I(ζ, t, ~) is bounded.

∂αζ I1(ζ, t, ~) =
~N/2

πd 2|a|

∫
Cd
∂αζ
(
eiv·Jζ G(v, v, ζ, t, ~)

)
dv dv

=
~N/2

πd 2|a|

∫
Cd
∂αζ (eiv·Jζ)G(v, v, ζ, t, ~) + eiv·Jζ ∂αζ G(v, v, ζ, t, ~) dv dv

=
~N/2

πd 2|a|

∫
Cd
eiv·Jζ

(
(−iJv)α + ∂αζ G(v, v, ζ, t, ~)

)
dv dv

where we have used v ·Jζ = −ζ ·Jv. Once again, the calculation of ∂αζ G is an application

of Leibniz’s rule. Omitting the details, we will get a finite sum in powers of v with

respect to ζ, so the integral converges and is bounded by powers of ζ.

Overall, I1 = O(~N/2).

It remains to prove F̂ (ψ) ∈ Imγ for a ϕ that has an asymptotic expansion ϕ ∼
∑∞

j=0 ~j/2 ϕ(ζ, t).

In this case,

F̂ (ψ) = ei~
−1f(t) ν

(
z√
~
, t, ~

)
e−~

−1|z|2/2

which can be rearranged as

e−~
−1|z|2/2 ν

(
z√
~
, t, ~

)
= F̂

(
ϕ

(
z√
h
, t, ~

)
e−~

−1|z|2/2
)
.

We define

ψN(z, t, ~) := ei~
−1f(t)e−~

−1|z|2/2
N∑
j=0

~j/2 ϕj
(

z√
~
, t

)
.

In a similar manner,

F̂ (ψN) = ei~
−1f(t)

N∑
j=0

~j/2 νj
(

z√
~
, t, ~

)
e−~

−1|z|2/2
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can be rearranged as

e−~
−1|z|2/2

N∑
j=0

~j/2 νj
(

z√
~
, t, ~

)
= F̂

 N∑
j=0

~j/2ϕj
(

z√
~
, t

)
e−~

−1|z|2/2

 .

Then, it is sufficient to prove that the following satisfies (2.3):

I2(ζ, t, ~) = e−|ζ|
2/2

(
ν(ζ, t, ~)−

N∑
j=0

~j/2 νj (ζ, t, ~)

)

= F̂

e−~−1|z|2/2

ϕ( z√
~
, t, ~

)
−

N∑
j=0

~j/2 ϕj
(

z√
~
, t

) ∣∣∣∣∣
z=
√
~ζ

=
e−|ζ|

2/2

(π~)d

∫
Cd
F

(
u+
√
~ζ

2
, u, t

)
RN

(
u√
~
, t, ~

)
e~
−1/2ζuT e−~

−1|u|2 du du

where we have let RN := ϕ−
∑N

j=0 ~j/2 ϕj. Making the same change of variables as before:

(u, u) =
√
~ (v, v), we have

I2(ζ, t, ~) =
e−|ζ|

2/2

πd

∫
Cd
F

(√
~(v + ζ)

2
,
√
~v, t

)
RN(v, t, ~) eζv

T

e−|v|
2

dv dv,

which we can rewrite as

I2(ζ, t, ~) =
1

πd

∫
Cd
eiv·Jζ F

(√
~(v + ζ)

2
,
√
~v, t

)
RN(v, t, ~) e−|v−ζ|

2/2 e−|v|
2/2 dv dv.

Observe that this integral is analogous to I1. Since by our assumption F and all its derivatives

are bounded by polynomials, so we may apply the same analysis as before, to prove that I2

is Schwartz. The powers of ~ result from the fact that
∣∣∣RN(v, t, ~) e−|v|

2/2
∣∣∣ satisfies (2.3) and

I2 = O(~(N+1)/2).

Using Propositions II.10 and II.11, we can prove the following:

Proposition II.12. Assume F (z, t) satisfies II.8. Furthermore, assume that for each t ∈ R,

F (·, t) : Cd → Cd vanishes to order ` on the curve γ. Let F̂ denote the Weyl quantization on
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z of F . Then,

F̂ : Imγ → Im+`/2
γ .

Proof. Assume that ` is such that if F (·, t) vanishes to order j on γ for each t, then

F̂ : Imγ → I
m+j/2
γ , for all j ≤ `. Inductively, we can assume that F (·, t) vanishes to order `+ 1

on γ for each t.

By Taylor-Hadamard’s lemma, we can express F (·, t) as

F (z, z, t) = (z − w(t))F1(z, z, t) + (z − w(t))F2(z, z, t)

where F1(·, t) and F2(·, t) both vanish to order ` on γ.

By Weyl quantization, we have that (z − w(t))̂ ◦ F̂1 = (z − w(t))F1̂ − i~{z − w(t), F1̂}

and (z − w(t))̂ ◦ F̂2 = (z − w(t))F2̂ − i~{z − w(t), F2̂} because z is linear in both position

and momentum. Let ψ ∈ Imγ so that

(z − w(t))F1̂(ψ) = (z − w(t)̂
(
F̂1(ψ)

)
+ i~{z − w(t), F1̂}(ψ).

Now F̂1(ψ) ∈ Im+`/2
γ , so (z − w(t))̂

(
F̂1(ψ)

)
∈ Im+(`+1)/2

γ by Proposition II.10.

Also, {z − w(t), F1̂}(ψ) ∈ Im+(`−1)/2
γ because {z − w(t), F1} vanishes to order `− 1 since

we just have derivatives of F1. Hence, ~ · {z − w(t), F1̂}(ψ) ∈ Im+(`+1)/2
γ , so we have that

(z − w(t))F1̂(ψ) ∈ Im+(`+1)/2
γ .

We can also check that

(z − w(t))F2̂(ψ) = (z − w(t))̂
(
F̂2(ψ)

)
+ i~{z − w(t), F2̂}(ψ) ∈ Im+(`+1)/2

γ

by similar reasoning. Therefore, we have shown that F̂ : Imγ → I
m+(`+1)/2
γ .
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2.4 Calculating Symbols

In Chapters III and IV we will consider the Schrödinger evolution of wavefunctions ψ ∈ Imγ

under Hermitian and non-Hermitian Hamiltonians, respectively. We will look at the principal

symbols in order to obtain transport equations for the parameters in ψ. We now establish

some rules for computing symbols.

First, consider the cases where ` = 0, 1, and 2 in Proposition II.12 and as let us compute

the principal symbols of F̂ψ.

Corollary II.13. Assume F (z, t) satisfies II.8. For each t ∈ R, let F̂ denote the Weyl

quantization on z of F. Then, for any ψ ∈ Imγ ,

1. The principal symbol of F̂ψ as an element in Imγ is

σm
F̂ψ

(ζ, t) = F (w(t), t)σmψ (ζ, t). (2.12)

2. If F vanishes to first order on γ, then the principal symbol of F̂ψ as an element in

I
m+1/2
γ is

σ
m+1/2

F̂ψ
(ζ, t) =

(
∇zF (w(t), t)ζT +∇zF (w(t), t)∇T

ζ

)
σmψ (ζ, t). (2.13)

3. If F vanishes to second order on γ, then the principal symbol of F̂ψ as an element in

Im+1
γ is

σm+1

F̂ψ
(ζ, t) = Q̂(σmψ )(ζ, t). (2.14)

Here Q̂ is the Weyl quantization in ζ of the Hessian of F (ζ, t) with ~ = 1:

Q̂ := 1
2
ζRtζ

T + ζSt∇T
ζ + 1

2
Tr(St) + 1

2
∇ζQt∇T

ζ ,

27



and

Rt := Fzz(w(t), t) St := Fzz(w(t), t) Qt := Fzz(w(t), t).

where Fzz =
(

∂2F
∂zj∂z`

)
, etc.2

Proof. For each t ∈ R, a second order Taylor expansion of F about z = w(t) gives

F2(z, t) = F (0)(z, t) + F (1)(z, t) + F (2)(z, t)

where

F (0)(z, t) = F (w(t), t)

F (1)(z, t) = ∇zF (w(t), t)(z − w(t))T +∇zF (w(t), t)(z − w(t))T

F (2)(z, t) = 1
2
(z − w(t))Rt (z − w(t))T + (z − w(t))St (z − w(t))T + 1

2
(z − w(t))Qt (z − w(t))T .

Then, the Weyl quantization of F on z and applied to ψ is

F̂2(ψ)(z, t, ~) = F̂ (0)ψ + F̂ (1)ψ + F̂ (2)ψ

with

F̂ (0)ψ = F (w(t), t)ψ

F̂ (1)ψ = ∇zF (w(t), t)(z − w(t))Tψ +∇zF (w(t), t) (~∇z − w(t))T ψ

F̂ (2)ψ = 1
2
(z − w(t))Rt(z − w(t))Tψ + (z − w(t))St (~∇z − w(t))T ψ + 1

2
~Tr(St)ψ

+ 1
2

(~∇z − w(t))Qt (~∇z − w(t))T ψ.

Using the calculation from Proposition II.11 and the fact that ∇zΦ(z, t) = −iw(t) we

2 Rt and Qt are symmetric and there is no condition on St.
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calculate3

(~∇z − w(t))Qt (~∇z − w(t))T ψ

=
√
~ (~∇z − w(t))Qt∇T

z ϕ e
i~−1Φ(z,t) e−~

−1|z|2/2

=
[
~3/2∇z

(
Qt∇T

z ϕ e
i~−1Φ(z,t)

)
−
√
~w(t)Qt∇T

z ϕ e
i~−1Φ(z,t)

]
e−~

−1|z|2/2

=
[
~3/2

(
~−1/2∇zQt∇T

z ϕ+ i~−1∇zΦQt∇T
z ϕ
)
−
√
~w(t)Qt∇T

z ϕ
]
ei~
−1Φ(z,t) e−~

−1|z|2/2

=
[
~∇zQt∇T

z ϕ+ i
√
~ (−iw(t))Qt∇T

z ϕ−
√
~w(t)Qt∇T

z ϕ
]
ei~
−1Φ(z,t) e−~

−1|z|2/2

= ~∇zQt∇T
z ϕ e

i~−1Φ(z,t)e−~
−1|z|2/2.

Hence,

F̂ (1)ψ = ∇zF (w(t), t)(z − w(t))T ψ +
√
~∇zF (w(t), t)∇T

z ϕ e
i~−1Φ(z,t) e−~

−1|z|2/2

F̂ (2)ψ =
1

2
(z − w(t))Rt (z − w(t))Tψ +

√
~(z − w(t))St∇T

z ϕ e
i~−1Φ(z,t)e−~

−1|z|2/2

+
~
2

Tr(St)ψ +
~
2
∇zQt∇T

z ϕ e
i~−1Φ(z,t)e−~

−1|z|2/2.

which we can rewrite as

F̂ (1)ψ = ~m
[
∇zF (w(t), t)(z − w(t))T +

√
~∇zF (w(t), t)∇T

z

]
ϕ

(
z − w(t)√

~
, t, ~

)
× ei~−1f(t) ei~

−1ω(z,w(t)) e−~
−1|z−w(t)|2/2

and

F̂ (2)ψ = ~m
[

1
2
(z − w(t))Rt (z − w(t))T +

√
~(z − w(t))St∇T

z + 1
2
~Tr(St)ψ + 1

2
~∇zQt∇T

z

]
× ϕ

(
z − w(t)√

~
, t, ~

)
ei~
−1f(t) ei~

−1ω(z,w(t)) e−~
−1|z−w(t)|2/2.

3Note: ∇zQt∇zϕ =
∑d

j,`=1Qj,`(t)
∂2ϕ

∂zj∂z`
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Making the change of variables ζ = (z − w(t))/
√
~, we find that

σm
F̂ψ

(ζ, t) = σm
F̂ (0)ψ

(ζ, t) = F (w(t), t)σmψ (ζ, t).

Now if F (·, t) vanishes to first order on γ, then F̂ψ is an element of I
m+1/2
γ and its principal

symbol is given by

σ
m+1/2

F̂ψ
(ζ, t) = σ

m+1/2

F̂ (1)ψ
(ζ, t) =

(
∇zF (w(t), t)ζT +∇zF (w(t), t)∇T

ζ

)
σmψ (ζ, t).

Lastly, if F (·, t) vanishes to second order on γ, then F̂ψ is an element of Im+1
γ and its symbol

is

σm+1

F̂ψ
(ζ, t) = σm+1

F̂ (2)ψ
(ζ, t) = Q̂(σmψ )(ζ, t).

Recall that Schrödinger’s equation is i~∂ψ
∂t

= F̂ψ. We have computed symbols for the

right side of the equation, so let us also calculate symbols for the left side.

Lemma II.14. For any ψ ∈ Imγ , for each t ∈ R, ~∂ψ
∂t
∈ Imγ .

1. The principal symbol of i~∂ψ
∂t

as an element in Imγ is

σm
i~ ∂ψ
∂t

(ζ, t) = −
(
ḟ(t) + =(ẇ(t)w(t)T )

)
σmψ (ζ, t) . (2.15)

2. If σm
i~ ∂ψ
∂t

(ζ, t) = 0, then the principal symbol of i~∂ψ
∂t

as an element in I
m+1/2
γ is

σ
m+1/2

i~ ∂ψ
∂t

(ζ, t) = i
(
ẇ(t)ζT − ẇ(t)∇T

ζ

)
σmψ (ζ, t). (2.16)

3. If σm
i~ ∂ψ
∂t

(ζ, t) = σ
m+1/2

i~ ∂ψ
∂t

(ζ, t) = 0, then the principal symbol of i~∂ψ
∂t

as an element in

Im+1
γ is

σm+1

i~ ∂ψ
∂t

(ζ, t) = i
∂σmψ
∂t

(ζ, t). (2.17)
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Proof. First, we calculate that

i~
∂ψ

∂t
=

(
−~m∂Φ

∂t
(z, t)ϕ− i~m+1/2ẇ(t)∇zϕ+ i~m+1∂ϕ

∂t

)
ei~
−1Φ(z,t) e−~

−1|z|2/2

= hm
(
∂Φ

∂t
(z, t)ϕ− i~1/2ẇ(t)∇zϕ+ i~

∂ϕ

∂t

)
ei~
−1f(t) ei~

−1ω(z,w(t)) e−~
−1|z−w(t)|2/2

= hm
((
−ḟ(t)−=(ẇ(t)w(t)T ) + i(z − w(t))ẇ(t)T

)
ϕ− i~1/2ẇ(t)∇zϕ+ i~

∂ϕ

∂t

)
× ei~−1f(t) ei~

−1ω(z,w(t)) e−~
−1|z−w(t)|2/2 (2.18)

where we have calculated and substituted

∂Φ

∂t
(z, t) = ḟ(t)− izẇ(t)T +

i

2

(
w(t)ẇ(t)T + ẇ(t)w(t)T

)
= ḟ(t)− izẇ(t)T +

i

2
w(t)ẇ(t)T +

i

2
w(t)ẇ(t)T − i

2
w(t)ẇ(t)T +

i

2
ẇ(t)w(t)T

= ḟ(t)− izẇ(t) + iw(t)ẇ(t)T +
i

2

(
ẇ(t)w(t)T − w(t)ẇ(t)T

)
= ḟ(t) + =(ẇ(t)w(t)T )− i(z − w(t))ẇ(t)T .

Next, consider the terms by their order in ~. Recall from Proposition II.10 that multiplying

by a factor of (z − w(t)) is of the same order as multiplying by
√
~.

O(~m) : ~mei~−1f(t) ei~
−1ω(z,w(t))

(
−ḟ(t)−=(ẇ(t)w(t)T

)
ϕ

(
z − w(t)√

~
, t, ~

)
e−~

−1|z−w(t)|2/2

O(~m+1/2) : ~m ei~−1f(t) ei~
−1ω(z,w(t))

(
i(z − w(t))ẇ(t)Tϕ

(
z − w(t)√

~
, t, ~

)
−i~1/2ẇ(t)∇T

z ϕ

(
z − w(t)√

~
, t, ~

))
e−~

−1|z−w(t)|2/2

O(~m+1) : ~m+1 ei~
−1f(t) ei~

−1ω(z,w(t)) i
∂ϕ

∂t

(
z − w(t)√

~
, t, ~

)
e−~

−1|z−w(t)|2/2

Now make the substitution ζ = (z − w(t))/
√
~ in each of the expressions above. The symbol
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of i~∂ψ
∂t

as an element in Imγ , is

σm
i~ ∂ψ
∂t

(ζ, t) = −
(
ḟ(t) + =(ẇ(t)w(t)T )

)
σmψ (ζ, t).

If σm
i~ ∂ψ
∂t

(ζ, t) = 0, then the principal symbol of i~∂ψ
∂t

as an element in I
m+1/2
γ is given by

σ
m+1/2

i~ ∂ψ
∂t

(ζ, t) = i
(
ẇ(t)ζT − ẇ(t)∇T

ζ

)
σmψ (ζ, t).

Finally, if σm
i~ ∂ψ
∂t

(ζ, t) = σ
m+1/2

i~ ∂ψ
∂t

(ζ, t) = 0, then the principal symbol of i~∂ψ
∂t

as an element in

Im+1
γ is given by

σm+1

i~ ∂ψ
∂t

(ζ, t) = i
∂σmψ
∂t

(ζ, t).

We finish this section with a result that applies to propagation under both Hermitian and

non-Hermitian Hamiltonians.

Definition II.15. Define the time-dependent Schrödinger operator �̃ which acts on functions

of (z, t) as

�̃ := i~
∂

∂t
− F̂

where F̂ is the Weyl quantization on z of F (z, t) with the assumptions in II.8.

Theorem II.16. For ψ ∈ Imγ , �̃ψ ∈ Imγ and its principal symbol is

σm
�̃ψ

(ζ, t) = −
(
ḟ(t) + =(ẇ(t)w(t)T ) + F (w(t), t)

)
σmψ (ζ, t) . (2.19)

Proof. By linearity,

σm
�̃ψ

(ζ, t) = σm
i~ ∂ψ
∂t

(ζ, t)− σm
F̂ψ

(ζ, t).

The result follows after substituting equations (2.15) and (2.12).

The equation for f(t) can easily be obtained from the previous theorem:

Corollary II.17. If ḟ(t) = −F (w(t), t)−=
(
ẇ(t)w(t)T

)
for each t ∈ R, then �̃ψ ∈ Im+1/2

γ .

32



Proof. Setting σm
�̃ψ

(ζ, t) = 0 in (2.19) gives the equation for ḟ(t) and implies that

�̃ψ ∈ Im+1/2
γ .

Remark 7. From this corollary, we see that since f is real-valued by assumption, in order for

�̃ψ to be an element in I
m+1/2
γ , F must be a real-valued function. In Chapter IV, we will see

a modification of �̃ to accommodate the case where F is allowed to be complex-valued.

At this point one may wonder if we can obtain a condition(s) for which �̃ψ ∈ Im+`/2
γ ,

for ` = 1, 2, . . . for some ψ ∈ Imγ . The answer is yes, but the cases where F (z, t) is strictly

real-valued and where it is allowed to be complex-valued must be treated separately due the

different behavior of the trajectory of w(t).
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CHAPTER III

Propagation of Coherent States under Hermitian Hamiltonians

In this chapter, we impose the condition that the classical Hamiltonian be a real-valued

function. In turn, its quantum counterpart will be a Hermitian Hamiltonian. This is a

standard axiom of quantum mechanics because the Hermiticity guarantees that the energy

spectrum is real and the time evolution under the Schrödinger equation is unitary, and hence

norm-preserving.

The Schrödinger evolution under Hermitian quantum Hamiltonians of Gaussian coherent

states in L2(Rd) as defined in (1.4) has been studied quite extensively in the literature.

Restricting the classical Hamiltonian to be at most a quadratic function in (x, p) ∈ Rd,

leads to an exact solution, and the resulting coherent state is another Gaussian state whose

center moves along the Hamilton trajectory and the parameter Γ(t) that appears in (1.4)

evolves according to a matrix Riccati equation. Relaxing the assumption that the classical

Hamiltonian is at most quadratic presents a naturally more difficult problem. The general

case can be approximated semiclassically as a non-trivial perturbation of the quadratic case.

One can prove that up to leading order in ~, the evolved state resembles the solution in the

quadratic case. A thorough summary of these results is given in [CR12].

In what follows, we employ a novel method using the symbol calculus developed in the

previous chapter to show that analogous results for propagation by Hermitian Hamiltonians

hold for elements defined in the Bargmann space of Cd, both for a more general class of

coherent states, and for the Gaussian states we defined in (1.9).
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3.1 Main Results

Throughout this chapter, assume that F (z, t) has the same smoothness conditions as in

II.8 but we require that it is strictly real-valued. Let F̂ be the Weyl quantization on z of

F . Let U(t) be the quantum evolution operator as a fundamental solution of Schrödinger’s

equation

i~
∂

∂t
U(t) = F̂U(t), U(0) = I.

For any given initial coherent state, ψ0, U(t)ψ0 is a solution to Schrödinger’s equation.

Furthermore, U(t) has the following properties:

1. U(t, s) = U(s, t) where U(t, s) = U(t)U−1(s),

2. U(t, s)U(s, t′) = U(t, t′).

Theorem III.1. Let w ∈ Cd and let γ be the Hamilton trajectory of F (z, t) starting at w.

Assume that f(t) satisfies the condition in Corollary II.17 and that the initial coherent state

is of the form

ψw(z) = ei~
−1ω(z,w) ϕ

(
z − w√

~
, ~
)
e−~

−1|z−w|2/2.

Then, ∀N ∈ N, ∃ψN ∈ I0
γ such that

i~
∂ψN
∂t
− F̂ (ψN) ∈ I(N+3)/2

γ , ψN |t=0 = ψw

and ∀T ∈ (0,∞), ∃CT,N <∞ such that for every t ∈ [−T, T ],

‖U(t)ψw − ψN(t)‖B(Cd) ≤ ~(N+1+d)/2 |t| CT,N .

Remark 8. Although the initial state ψw is not in I0
γ because it is time-independent, it is still

natural to define its symbol as

σψw(ζ) = ϕ0(ζ) e−|ζ|
2/2
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using the usual substitution ζ = (z−w(t))/
√
~ where ϕ0 is the leading term in the asymptotic

expansion of ϕ. Let us consider how this symbol evolves.

We know from the existing theory1 [CR12] that if F is at most a quadratic function in

the z variable, the solution to the Schrödinger problem

i~
∂ψN
∂t
− F̂ (ψN) = 0, ψN |t=0 = ψw (3.1)

is exact, and the propagator U(t) is a metaplectic operator that is associated with the

Jacobian of the linear flow φt : Cd → Cd at w where {φt} is the Hamilton flow of F :

ψN = Mp(Jac(φt)w) (ψw).

where Mp is the metaplectic representation2 in the Bargmann space of Cd. At the level of

symbols, we have

σψN (ζ, t) = Mp(d(φt)w) (σψw) (ζ). (3.2)

Finally, we know from the literature [CR12] that the solution to (3.1) in the case where

F is a general real-valued function is approximated by the quadratic case, so the principal

symbol is still given by (3.2).

3.2 Intermediate Results

Making use of the results in Chapter II we may prove:

Proposition III.2. If f(t) satisfies (II.17) and if γ : t→ w(t) is a Hamilton trajectory of

F , then for any ψ ∈ Imγ , we have �̃ψ ∈ Im+1
γ . Furthermore, the principal symbol of �̃ψ as

1Although the theory is outlined for coherent states in L2(Rd), via the Bargmann transform, it holds in
our setting.

2More on the metaplectic representation is provided in §6.3.1.
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an element of Im+1
γ is given by

σm+1

�̃ψ
(ζ, t) =

(
i
∂ϕ0

∂t
(ζ, t)− Q̂H(ϕ0)(ζ, t)

)
e−|ζ|

2/2. (3.3)

Here Q̂H is the Weyl quantization in ζ of the Hessian of F (ζ, t) with ~ = 1:

Q̂H := 1
2
ζRtζ

T + ζSt∇T
ζ + 1

2
Tr(St) + 1

2
∇ζRt∇T

ζ ,

where RT
t = Rt and S

T

t = St.

Proof. Recall that Corollary II.17 ensures �̃ψ ∈ Im+1/2
γ . To prove that �̃ψ ∈ Im+1

γ , we must

show that σ
m+1/2

�̃ψ
(ζ, t) = 0. Using equations (2.13) and (2.16), we calculate

σ
m+1/2

�̃ψ
(ζ, t) = σ

m+1/2

i~ ∂ψ
∂t

(ζ, t)− σm+1/2

F̂ψ
(ζ, t)

= i
(
ẇ(t)ζT − ẇ(t)∇T

ζ

)
σmψ (ζ, t)−

(
∇zF (w(t), t)ζT +∇zF (w(t), t)∇T

ζ

)
σmψ (ζ, t)

=
(
iẇ(t)−∇zF (w(t), t)

)
ζTσmψ (ζ, t)− (iẇ(t) +∇zF (w(t), t))∇T

ζ σ
m
ψ (ζ, t).

Since γ is a Hamiltonian trajectory, we have Hamilton’s equations:

ẇ(t) = i∇zF (w(t), t) and ẇ(t) = −i∇zF (w(t), t)

which allow us to simplify the above expression to:

σ
m+1/2

�̃ψ
(ζ, t) = (∇zF (w(t), t)−∇zF (w(t), t)) ζTσmψ (ζ, t)

− (−∇zF (w(t), t) +∇zF (w(t), t))∇T
ζ σ

m
ψ (ζ, t) = 0.

Therefore, �̃ψ ∈ Im+1
γ . Lastly, to find the principal symbol of �̃ψ as an element in Im+1

γ , we
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make use of equations (2.14) and (2.17):

σm+1

�̃ψ
(ζ, t) = σm+1

i~ ∂ψ
∂t

(ζ, t)− σm+1

F̂ψ
(ζ, t) = i

∂σmψ
∂t

(ζ, t)− Q̂H(σmψ )(ζ, t) .

Note that since F̂ is Hermitian we must require that Qt := Rt and St
T

= St in the quadratic

operator Q̂ in (2.14), so we have re-labeled this new operator as Q̂H . Using the fact that

σmψ (ζ, t) = ϕ0(ζ, t) e−|ζ|
2/2, we obtain the desired equation.

Proposition III.3. �̃ψ ∈ Im+3/2
γ provided σmψ (ζ, t) satisfies the transport equation

i
∂σmψ
∂t

(ζ, t) = Q̂H(σmψ )(ζ, t), σmψ (ζ, t)|t=0 = ϕ0(ζ, 0) e−|ζ|
2/2. (3.4)

Proof. We have �̃ψ ∈ Im+3/2
γ provided that the principal symbol of �̃ψ as an element in

Im+1
γ is zero. Setting (3.3) equal to zero leads to (3.4).

Lemma III.4. For each t ∈ R, (3.4) has a unique solution σmψ (ζ, t) ∈ S(R2d).

Proof. Equation (3.4) is Schrödinger’s equation with ~ = 1. Since Q̂H is a quadratic operator,

the propagator U(t) = e−itQ̂
H

is a metaplectic operator that is well-defined and unitary accord-

ing to Corollary 11 in Chapter 3 of [CR12]. Therefore, the solution is σmψ (ζ, t) = U(t)σmψ (ζ, 0).

This solution is in S(R2d) because metaplectic operators map Schwartz functions to Schwartz

functions. See the proof of this fact in Appendix A.

Assuming that for each t ∈ R, �̃ψ ∈ Im+3/2
γ , we would like to show that �̃ψ can be made

even smaller on the order of ~. To accomplish this, we systematically add correction terms in

the following manner:

Proposition III.5. Let ψ ∈ Imγ be as in (2.1). Assume that ḟ(t) satisfies (II.17), γ : t→ w(t)

is a Hamilton trajectory of F (z, t), and equation (3.4) also holds. Then, for any N ∈ N,

∃ρ1, . . . , ρN with ρj ∈ Imγ such that if we define

ψN = ψ + ~1/2ρ1 + ~ρ2 + h3/2ρ3 + · · ·+ hN/2ρN , (3.5)
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then

�̃ψN ∈ Im+(N+3)/2
γ , ψN

∣∣
t=0

= ψ
∣∣
t=0
.

Proof. We proceed by induction on N . Assume that �̃ψN−1 ∈ Im+N/2+1
γ . Let

ψN = ψN−1 + ~N/2ρN

for ρN ∈ Imγ . We would like to choose ρN so that �̃ψN ∈ Im+(N+3)/2
γ . By Proposition III.2,

�̃ρN ∈ Im+1
γ , so ~N/2 �̃ρN ∈ Im+N/2+1

γ . This gives �̃ψN ∈ Im+N/2+1
γ .

Let βN−1(ζ, t) := σ
m+N/2+1

�̃ψN−1
(ζ, t) be the principal symbol of �̃ψN−1 as an element in

I
m+N/2+1
γ . We will show below that ∃ρN such that

σm+1

�̃ρN
(ζ, t) = −βN−1(ζ, t), σ�̃ρN (ζ, t)|t=0 = 0 . (3.6)

This choice of ρN gives us that σ
m+N/2+1

�̃ψN
(ζ, t) = 0 which implies �̃ψN ∈ Im+(N+3)/2

γ .

Lemma III.6. For each t ∈ R, the IVP (3.6) has a unique solution that is a Schwartz

function in ζ ∈ Cd.

Proof. The initial-value problem (3.6) can be rewritten slightly. Recall that

σm+1

�̃ρN
(ζ, t) = i

∂σmρN
∂t

(ζ, t)− Q̂H(σmρN )(ζ, t),

so rearranging the terms gives

i
∂σmρN
∂t

(ζ, t) = Q̂H(σmρN )(ζ, t)− βN−1(ζ, t), i
∂σmρN
∂t

(ζ, 0)− Q̂H(σmρN )(ζ, 0) = 0. (3.7)

Therefore, the transport equation in (3.7) is just the non-homogeneous version of the equation

in (3.4) for t ∈ [−T, T ] with T ∈ (0,∞). Thus, we can apply Duhamel’s principle to solve for
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σmρN (ζ, t):

σmρN (ζ, t) = U(t)σmρN (ζ, 0) + i

∫ t

0

U(t− s) βN−1(ζ, s) ds

where U(t) = e−itQ̂
H

.

3.3 Proof of Theorem III.1

Proof. The remainder term is

RN(z, t, ~) := i~
∂

∂t
ψN(z, t, ~)− F̂ψN(z, t, ~) = �̃ψN(z, t, ~)

where ψN is as in (3.5). Using the fact that �̃ψN ∈ Im+(N+3)/2
γ from Proposition III.5 and

the norm estimate from Lemma II.7, we conclude that

sup
t∈[−T,T ]

∥∥�̃ψN(·, t, ~)
∥∥
B(Cd)

≤ ~m+(N+3+d)/2 CT,N .

Then, by Duhamel’s principle,

U(t)ψw − ψN(t) =
i

~

∫ t

0

U(t, s)RN(s) ds.

Taking the norm in Bargmann space and using the fact that U(t, s) is a unitary operator,

∥∥U(t)ψw − ψN(t)
∥∥
B(Cd)

≤ ~−1

∫ t

0

∥∥U(t, s)RN(s)
∥∥
B(Cd)

ds

= ~−1

∫ t

0

∥∥RN(s)
∥∥
B(Cd)

ds

≤ ~−1

∫ t

0

sup
s∈[0,t]

∥∥RN(s)
∥∥
B(Cd)

ds

≤ ~−1~m+(N+3+d)/2

∫ t

0

CT,N ds

= ~m+(N+1+d)/2 |t| CT,N .
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3.4 Special Case: Propagation of Gaussian States

The problem:

�̃ψA(t),w(t) = 0, ψA(t),w(t)

∣∣
t=0

= ψA,w

where ψA,w ∈ B(Cd) is as in (1.9) was solved in [RU21] using methods from [CR12]. It turns

out that we can obtain the same equation for A(t) as in [RU21] using our symbol calculus.

Let the ansatz be

ψA(t),w(t)(z, t, ~) = ei~
−1f(t) ei~

−1ω(z,w(t)) eiχ(t) e~
−1QA(t)(z−w(t))/2 e−~

−1|z−w(t)|2/2. (3.8)

where χ(t) solves χ̇(t) = −1
2
Tr(RtAt + St) with initial condition χ(0) = 0. This requirement

is necessary to cancel out trace terms that would otherwise appear in the symbols. We may

also write (3.8) in form of (2.9) with only one term in the expansion of ϕ:

ϕ0

(
z − w(t)√

~
, t, ~

)
= eiχ(t) e~

−1QA(t)(z−w(t))/2.

Remark 9. The symbol of (3.8) as an element of I0
γ is σ0

ψA(t),w(t)
(ζ, t) = eiχ(t) eQA(t)(ζ)/2 e−|ζ|

2/2.

The following is analogous to Corollary A.5 in [RU21], but the proof follows the method

of 3.2.

Theorem III.7. Assume that ḟ(t) satisfies (II.17) and γ : t→ w(t) is a Hamilton trajectory

of F (z, t). Then, for each t, �̃ψA(t),w(t) ∈ I
3/2
γ provided A(t) satisfies the matrix Riccati

equation

iȦt = Rt + (StAt + AtS
T
t ) + AtRtAt, A(0) = A .

Proof. Since ḟ(t) satisfies (II.17) and Hamilton’s equations hold, σ0
�̃ψA(t),w(t)

(ζ, t) =

σ
1/2

�̃ψA(t),w(t)
(ζ, t) = 0, so �̃ψA(t),w(t) ∈ I1

γ . Setting σ1
�̃ψA(t),w(t)

(ζ, t) = 0 and using (3.4) gives the

equation for Ȧ(t).

41



CHAPTER IV

Propagation of Coherent States under Non-Hermitian

Hamiltonians

We now relax the assumption that the classical Hamiltonian be real-valued and allow it

to take on complex values. Hence, the quantum Hamiltonian is a non-Hermitian operator.

Non-Hermitian operators can have complex eigenvalues and the Schrödinger time evolution

is no longer guaranteed to be unitary. This makes the analysis of non-Hermitian systems

intrinsically much more challenging, as we shall see in this chapter.

The appearance of non-Hermitian Hamiltonians in the study of various phenomena is

not uncommon. From a purely mathematical perspective, the study of the pseudo-spectra

of non-Hermitian operators has received much attention in recent years, for example, see

[TE20]. In quantum mechanics, states that correspond to “resonance” peaks are associated

with the eigenvectors of a non-Hermitian Hamiltonian which decay in time [ROM10, Moi11].

In the context of nuclear physics, the optical model, which is used for describing the elastic

and inelastic scattering in nucleon-nucleus interactions, contains a complex-valued potential

whose imaginary part describes the absorption processes that occur via compound nucleus

formation and subsequent decay [ROM10]. Furthermore, in open quantum systems, non-

Hermitian Hamiltonians have been used to study quantum dissipation, i.e., energy loss with

the environment [ROM10, WQM+21].

More recently, a special class of non-Hermitian Hamiltonians, which remain invariant

under parity inversion (reflection of the spatial coordinates) (P) and time reversal (T ) have

been considered. Typically, referred to as PT –symmetric Hamiltonians, these operators,
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pioneered by [BB98] in 1998, possess real spectra and are norm-preserving. However, in 2002,

Mostafazadeh [Mos02] argued that PT symmetry is not a necessary and sufficient condition

for non-Hermitian systems to have real eigenvalues. He proposed that PT –symmetric

Hamiltonians were a special case of pseudo-Hermitian Hamiltonians whose energy spectrum is

either real (PT symmetry is exact/unbroken) or appears in conjugate complex number pairs

(PT symmetry is broken). He defined these pseudo-Hermitian operators, here denoted by F̂ ,

as having the property: F̂ † = η̂ F̂ η̂−1 where η̂ is a Hermitian linear automorphism on some

inner product space. Note that taking η̂ to be the identity operator reduces to the Hermitian

case. As an example, these pseudo-Hermitian operators appear in quantum cosmology,

particularly in the Wheeler-DeWitt equation for a Freedman-Robertson-Walker (FRW) model

coupled to a massive real scalar field which can be re-formulated as the Schrödinger equation

in the two-component representation [Mos02, Mos98]. Since the work of Mostafazadeh, there

has been a greater interest in time-dependent pseudo-Hermitian Hamiltonians using Dyson

maps (see [LdPM20], [dMFF06], and [Fri22]).

Now that we have presented a brief history on non-Hermitian Hamiltonians, let us return

our attention to how coherent states propagate under the Schrödinger evolution with a

non-Hermitian quantum Hamiltonian. In our analysis, we place minimal assumptions on

the Hamiltonian and do not require any form of symmetry or pseudo-Hermiticity. This

problem has been analyzed in the case of quadratic non-Hermitian quantum Hamiltonians

for the states ϕΓ
Z ∈ L2(Rd) that we described in §1.1 by [LST18, GS12]. Graefe and Shubert

[GS12] work with single coherent states, whereas Lasser et al. [LST18] and Troppman [Tro17]

propagate Hagedorn wave-packets and also consider the evolution of excited states. In these

works, the authors show that the solution is exact, consistent with the Hermitian case. Arnaiz

[Arn21], extends the work of these authors to construct small-time approximate solutions

to Schrödinger’s equation of Hagedorn wave-packets with a more general non-Hermitian

Hamiltonian. The author assumes certain geometric control conditions on the Hamiltonian

that ensure the energies decay exponentially.
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We will use the work of these authors to guide our own analysis of the propagation of

elements in our spaces Imγ under general non-Hermitian Hamiltonians. We will only develop

the theory for Gaussian states rather than for more general elements in Imγ due to the fact

that the underlying geometry is much more complicated than in case of propagation with

Hermitian Hamiltonians. Our approach will be different from that of the authors whose work

we mentioned because we will employ the symbol calculus developed in Chapter II and we

will avoid the use of excited states.

In particular, given the assumption on F in II.8, the system we would like to solve is

�̃ψ̃ =

(
i~
∂

∂t
− F̂

)
ψ̃ = 0, ψ̃|t=0 = ψA,w . (4.1)

where w(0) = w and A(0) = A and ψA,w is given in (1.9).

The main goals of this chapter are:

1. Find the transport equations for w(t) and A(t) in (4.1).

2. In the case where F is not at most a quadratic in z, construct an approximate solution

that solves (4.1) to arbitrary order in ~.

4.1 Main Results

Theorem IV.1. Let F = H + iΓ where H and Γ are real-valued. Assume the smoothness

conditions in II.8 hold for F and let F̂ be its Weyl quantization on z.

(1) Given w(0) = x(0) + iy(0) ∈ Cd and A(0) ∈ Dd, there exists T ∈ (0,∞) and a curve

γ : t→ w(t) and A(t) ∈ Dd such that for t ∈ [−T, T ] the system

(ẋ(t), ẏ(t)) = ΞH(w(t), t) + JA(t) (ΞΓ(w(t), t)) (4.2)

iȦt = Rt + 2StAt + AtQtAt (4.3)

is satisfied.
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Here ΞH := 1
2

(−∇yH,∇xH) and ΞΓ := 1
2

(−∇yΓ,∇xΓ) denote the real Hamilton vector

fields of H and Γ, respectively, and Rt = Fzz(w(t), t), St = Fzz(w(t), t) and

Qt = Fzz(w(t), t). Also, for each t, JA(t) is a linear complex structure on R2d associated

to A(t). More precisely, the matrix form of JA(t) is given in (C.1).

Moreover, if ψ̃ is

ψ̃(z, t, ~) = e~
−1
∫ t
0 Γ(w(s),s) ds ei~

−1f(t) ei~
−1ω(z,w(t)) eiχ(t) e~

−1QA(t)(z−w(t))/2 e−~
−1|z−w(t)|2/2

where f(t) satisfies ḟ(t) = −H(w(t), t)−=(ẇ(t)w(t)T ) and χ(t) solves

χ̇(t) = −1
2
Tr(QtAt + St), then

i~
∂ψ̃

∂t
= F̂ (ψ̃) + e~

−1
∫ t
0 Γ(w(s),s) ds η

where η ∈ I3/2
γ .

(2) If ΞΓ(w(t), t) 6= 0 for all t ∈ [−T, T ], then ∀N ∈ N, ∃ψN ∈ I0
γ such that

ψ̃ = e~
−1
∫ t
0 Γ(w(s),s) dsψN

satisfies

i~
∂ψ̃

∂t
= F̂ (ψ̃) + e~

−1
∫ t
0 Γ(w(s),s) ds ηN

where ηN ∈ I(N+3)/2
γ .

Remarks 10. Some observations on the previous statements:

1. Observe that the remainder in part (2) in small compared to ψ̃: ∀t ∈ [−T, T ], using

Lemma II.7, we have

‖e~−1
∫ t
0 Γ(w(s),s) ds ηN‖B(Cd)

‖ψ̃‖B(Cd)

=
‖ηN‖B(Cd)

‖ψN‖B(Cd)

≤ CT ~(N+3)/2
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for some constant CT .

2. For each t ∈ [−T, T ], w(t) is the center of a generalized state ψ.

3. In the case where Γ = 0, the system given by equations (4.2) and (4.3) decouples.

The problem simplifies to the Hermitian case and trajectory for w(t) in (4.2) follows

Hamilton’s equations.

4. A remarkable fact is that when Γ(z, t) 6= 0 for all t ∈ [−T, T ], the trajectory of the

center of the coherent state depends on the initial squeezing parameter A(0).

5. The condition on the gradient of Γ in part (2) is necessary in order to solve transport

equations that arise in the construction of ψN .

6. Equation (4.2) is consistent with the equations found in [GS12] and [BBLU22].

7. Without referencing JA(t), equation (4.2) can be written as

i(ẇ(t)T − Atẇ(t)T ) = ∇T
z F (w(t), t) + At∇T

z F (w(t), t) .

There is some very interesting geometry behind equation (4.2). In the next section, we

will consider an example with a simple non-Hermitian Hamiltonian that can be solved exactly

as a motivation for this geometry.

4.2 A Simple Case

It has been known for a while in the field of mathematical physics that the center of a

quantum state leaves classical phase space when we propagate the state by the Schrödinger

equation with a non-Hermitian Hamiltonian. To elaborate, the solutions for the center of the

coherent state formally continue to follow Hamilton’s equations, but the classical center is

not in Cd. Therefore, in order to study the evolution of coherent states under non-Hermitian

quantum Hamiltonians further, on the classical side we need to “complexify” phase space.
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On the quantum side, this requires that the Gaussian states have a center that is a point in

Cd × Cd rather than in Cd. As an illustration of this phenomenon, we present the following

example.

Example IV.2. Let F (z, t) = 1
2
z2 for z ∈ C. The quantum operator is F̂ = 1

2
ẑ2, where ẑ is

multiplication by z. Let the ansatz be

ψA(t),(W (t),Z(t))(z, t, ~) = ei~
−1f(t) e~

−1A(t)(z−W (t))2/2 e~
−1zZ(t) e−~

−1W (t)Z(t)/2 e−~
−1|z|2/2

where the center of this state is (W (t), Z(t)) ∈ Cd × Cd and Z(t) 6= W (t) except at t = 0.

Our goal is to solve

�̃ψA(t),(W (t),Z(t)) = 0, ψA(t),(W (t),Z(t))

∣∣
t=0

= e~
−1zW (0) e−~

−1|W (0)|2/2 e−~
−1|z|2/2 . (4.4)

In this case, Hamilton’s equations are

Ẇ (t) = i
∂F

∂z
(Z(t)) = 0

Ż(t) = −i∂F
∂z

(W (t)) = −iW (t)

and solving them we have

W (t) = W (0)

Z(t) = −itW (0) + Z(0) = −itW (0) +W (0) .

From these equations, we can clearly see that for t 6= 0, Z(t) is not the complex conjugate of

W (t) which means that the center of the coherent state leaves classical phase space. Next,
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we calculate that

i~
∂

∂t
ψA(t),(W (t),Z(t)) =

[
−ḟ(t) +

i

2

(
Ȧ(t)(z −W (t))2 − 2A(t)(z −W (t)) Ẇ (t) + 2zŻ(t)

−Ẇ (t)Z(t)−W (t)Ż(t)
)]
ψA(t),(W (t),Z(t))

and after substituting Hamilton’s equations we are left with

i~
∂

∂t
ψA(t),(W (t),Z(t)) =

[
−ḟ(t) +

i

2
Ȧ(t)(z −W (t))2 + zW (t)− 1

2
W (t)2

]
ψA(t),(W (t),Z(t)) .

Therefore,

�̃ψA(t),(W (t),Z(t)) = i~
∂

∂t
ψA(t),(W (t),Z(t)) − 1

2
z2ψA(t),(W (t),Z(t))

=

[
−ḟ(t) +

i

2
Ȧ(t)(z −W (t))2 + zW (t)− 1

2
W (t)2 − 1

2
z2

]
ψA(t),(W (t),Z(t))

=
[
−ḟ(t) + 1

2

(
iȦ(t)− 1

)
(z −W (t))2

]
ψA(t),(W (t),Z(t)) .

Setting �̃ψA(t),(W (t),Z(t)) = 0 and matching powers of (z − W (t)) gives two initial value

problems:

(1) ḟ(t) = 0, f(0) = 0

(2) iȦ(t) = 1, A(0) = 0

which evaluate to f(t) = 0 and A(t) = −it. Plugging in the equations for f(t), W (t), Z(t),

and A(t), the solution to (4.4) is

ψA(t),(W (t),Z(t))(z, t, ~) = e−i~
−1t (z−W (0))2/2 e~

−1z(W (0)−itW (0)) e−~
−1W (0)(W (0)−itW (0))/2 e−~

−1|z|2/2
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which simplifies to

ψA(t),(W (t),Z(t))(z, t, ~) = e−i~
−1t z2/2 e~

−1zW (0) e−~
−1|W (0)|2/2 e−~

−1|z|2/2 . (4.5)

On the other hand, Theorem IV.1 says that the solution to (4.4) is a standard Gaussian

state, i.e.,

ψA(t),w(t)(z, t, ~) = e−i~
−1t(z−w(t))2/2 e~

−1zw(t) e−~
−1w(t)w(t)/2 e−~

−1|z|2/2

with a center in classical phase space that we now compute. Let z = x+ iy, so

F (x, y) = 1
2
z2 = 1

2
(x2 − y2 + ixy).

Then, set w(t) = x(t) + iy(t), so that the real Hamiltonian fields are

ΞH(w(t), t) = 1
2
(y(t), x(t)), ΞΓ(w(t), t) = 1

2
(−x(t), y(t)).

Using the matrix expression for JA(t) in equation (C.1), we find

J−it =

−t 1

1 −t


−1−1 t

−t 1

 =
1

t2 − 1

 2t −(t2 + 1)

t2 + 1 −2t

 .

Hence,

ẋ(t)

ẏ(t)

 =
1

2

y(t)

x(t)

+
1

t2 − 1

 2t −(t2 + 1)

t2 + 1 −2t

 · 1

2

−x(t)

y(t)

 =
1

1− t2

tx+ y

x+ ty

 .

Solving the system gives

x(t) =
x(0) + y(0) t

1− t2
, y(t) =

x(0) t+ y(0)

1− t2
.
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Therefore, as a point in Cd, the center is

w(t) =
1

1− t2
(w(0) + itw(0)) .

Observe that the trajectory of w(t) tends to infinity for t = ±1, so this solution exists for

|t| < 1 which is consistent with the condition that |A(t)| < 1. For |t| > 1, the solution still

exists, but it is not square-integrable, i.e., ‖ψA(t),w(t)‖B(Cd) tends to infinity.

Plugging in the solution for w(t) into ψA(t),w(t) and simplifying results in

ψA(t),w(t)(z, t, ~) = e−i~
−1tz2/2 e~

−1zw(0) e−~
−1(|w(0)|2+itw(0)2)/(2(1−t2)) e−~

−1|z|2/2 . (4.6)

It is a nontrivial computation to show that up to a z−independent constant, the solution in

(4.6) is equal to (4.5):

ψA(t),(W (t),Z(t)) = α~ ψA(t),w(t)

where

α~ := e~
−1(t2|w(0)|2+itw(0)2)/(2(1−t2)) .

In general, we will need a way to project the complex center back onto classical phase

space. In the following section, we use the work of [GS12] and [LST18] as motivation for how

to set up the underlying geometry.

4.3 Complexification of Classical Phase Space

To “complexify” Cd we embed it in Cd × Cd:

Cd ↪→ Cd × Cd

w 7−→ (w,w).

Generally, we will call the new variables (W,Z) ∈ Cd × Cd where Z is not necessarily
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equal to W . We give a special name to the set of points where this is true.

Definition IV.3. The real locus is the set

R = {(W,Z) ∈ Cd × Cd | Z = W}.

Recall that a Gaussian state in B(Cd) centered at w ∈ Cd is given by

ψA,w(z) = e~
−1QA(z−w)/2 e~

−1zwT e−~
−1|w|2/2e−~

−1|z|2/2

for A ∈ Dd and z ∈ Cd. The phase of the above state may be re-written as

1
2

(
QA(z − w)− |z|2 − |w|2

)
+ zwT = 1

2

(
QA(z)− |z|2

)
+ z(wT − AwT ) + 1

2

(
QA(w)− wwT

)
.

Writing the phase in this manner allows us to make the following observation:

Lemma IV.4. Let w ∈ Cd. Then, if W,Z ∈ Cd are such that

ZT − AW T = wT − AwT (4.7)

then ∀~,

ψA,w(z) = C~ ψA,(W,Z)(z) (4.8)

where

ψA,(W,Z)(z) = e~
−1QA(z−W )/2 e~

−1zZT e−~
−1WZT /2 e−~

−1|z|2/2, (4.9)

and

C~ = e~
−1(QA(w)−QA(W )−wwT+WZT )/2.

From (4.8) we see that up to a constant, the state ψA,(W,Z) with a center in complex

phase space is physically the same as the state ψA,w whose center is in real phase space! This

generalizes our observations in Example IV.2.
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As a consequence of Lemma IV.4, we introduce the following definition:

Definition IV.5. Given A ∈ Dd and w ∈ Cd, define the set

ΛA,w := {(W,Z) | ZT − AW T = wT − AwT} (4.10)

to be the space of complex centers (W,Z) ∈ Cd × Cd of states (4.9) which are physically

equivalent to ψA,w.

Remark 11. For all w ∈ Cd, ψA,w = ψA,(W=w,Z=w) is the state on the real locus.

4.3.1 Lagrangian subspaces

In this section we study of the geometry of ΛA,w. We can immediately show that each

ΛA,w intersects the real locus at a single point.

Lemma IV.6. ΛA,w ∩ R = {(w,w); w ∈ Cd}.

Proof. We choose (W,Z) ∈ ΛA,w ∩ (W,W ). Then, ZT − AW T = wT − AwT and Z = W

together imply that W
T − AW T = wT − AwT which means W

T − wT = A(W T − wT ) and

W T − wT = Ā(W
T − wT ) . Hence,

W T − wT = ĀA(W T − wT ) = A∗A(W T − wT ),

since Ā = A∗ because A = AT . However, one is not an eigenvalue of A∗A because A ∈ Dd, so

W = w.

For fixed A ∈ Dd and w ∈ Cd, ΛA,w has a special structure that will be important for our

purposes in that it is a positive Lagrangian subspace. Before we can prove this, we must state

some relevant definitions.

First of all, in our embedding of Cd into Cd×Cd, complex conjugation takes on a different

definition.
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Definition IV.7. The Bargmann conjugation is the complex conjugation on Cd×Cd defined

as

(W,Z)
B

= (Z,W ).

We will distinguish this conjugation from the “standard conjugation”: (W,Z) = (W,Z).

The standard conjugation holds true on the real locus R.

Let

Ω =

 0 Id

−Id 0


where Id is the d× d identity matrix and note that Ω2 = −I2d.

Using the Bargmann conjugation and Ω, we may define what it means for a subspace to

be (positive) Lagrangian under our complexification.

Definition IV.8. A linear subspace of Λ ⊂ Cd × Cd is called Lagrangian if Ω|Λ = 0 and

dim Λ = d. If in addition, the quadratic form

hBΛ(z, z′) =
i

2
zΩ(z′

B
)T

is positive on Λ, i.e., hBΛ(z, z) > 0 for all z ∈ Λ, then Λ is a positive Lagrangian.

Lemma IV.9. The subspace ΛA,0 := {(W,WA) ;W ∈ Cd} is a positive Lagrangian subspace.

Proof. First, dim ΛA,0 = d, so we need to show that Ω|ΛA,0 = 0.

Let z = (W,WA) ∈ ΛA,0 and z′ = (W ′,W ′A) ∈ ΛA,0. Then,

1
2
zΩ(z′)T = −1

2
(W,WA)

−(W ′A)T

(W ′)T


= −1

2

(
−W (W ′A)T +WA(W ′)T

)
= 1

2
W (A− AT )(W ′)T = 0
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because A = AT . Next, we need to show hBΛA,0(z, z) > 0, ∀z ∈ ΛA,0.

hBΛA,0(z, z) = −1
2
(W,WA)

 −W T

(W A)T


= −1

2

(
−WW

T
+WA(W A)T

)
= 1

2
W (Id − AA∗)W

T
> 0

because AA∗ < Id. Therefore, ΛA,0 is a positive Lagrangian subspace.

The subspace ΛA,0 is precisely the graph of A. All of the other subspaces ΛA,w, as defined

in equation (4.10), are translations of ΛA,0, so by the previous lemma they are also positive

Lagrangian subspaces.

For a fixed A ∈ Dd, as we vary w on Cd, the positive Lagrangian subspaces ΛA,w partition

complex phase space Cd × Cd. We will refer to this partition of complex phase space by

Lagrangian subspaces as a Lagrangian foliation. The blue lines in Figure 4.1 represent a

foliation for fixed A ∈ Dd. A single blue line in Figure 4.1 represents a leaf ; that is, a ΛA,w

for fixed A and w. In this way, we may think of a coherent state ψA,(W,Z) as an object that is

centered at a point on the leaf. Of course, varying A ∈ Dd gives rise to a different foliation.

4.3.2 Projection

Since complex phase space can be partitioned by Lagrangian subspaces, every point in

Cd × Cd is exactly in one of the Lagrangians of the foliation for a given A ∈ Dd. Also, by

Lemma IV.6, each Lagrangian subspace intersects the real locus at exactly one point. These

two facts allow us to define a projection from a point in Cd × Cd onto the real locus.

Definition IV.10. Let (W,Z) ∈ Cd × Cd and fix A ∈ Dd. Then, the projection map

ΠA : Cd × Cd → R is given by

ΠA(W,Z) = w ∈ Cd s.t. ZT − AW T = wT − AwT . (4.11)
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Remark 12. We could, in theory, have defined the projection onto w ∈ R, but we find that

projecting onto the w coordinate is suitable for our purposes.

Figure 4.1 provides a visualization of the projection.

Figure 4.1: The red dot represents the center (W,Z) ∈ Cd × Cd of a coherent state and the
green dot is the projection of the red dot onto the real locus. Hence, the green dot represents
the “real center” of a coherent state. By Lemma IV.4 the two dots correspond to centers of
states that are physically equivalent.

Lemma IV.11. The projection ΠA may also be expressed as

ΠA(W,Z) =
[
Z + (Z −W −WA)Ā

]
(I − AĀ)−1 = w ∈ Cd.

Proof. From (4.11) we have that

1. w − wA = Z −WA =⇒ w = Z −WA+ wA

2. w − wĀ = Z −WĀ.
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Substituting (1) into (2), we have

z −WĀ = w − (Z −WA+ wA)Ā

z −WĀ = w(Id − AĀ)− ZA+WAĀ

w =
[
Z + (Z −W −WA)Ā

]
(Id − AĀ)−1.

Remark 13. ΠA has the following properties:

1. If A = 0, then (4.11) is satisfied if w = Z which implies

ΠA=0(W,Z) = Z = w ∈ Cd

and the projection is holomorphic (commutes with −i).

2. ΛA,0 = ker ΠA

3. ΠA is the identity on the real locus:

ΠA(W,W ) = [W + (W −W −WA)Ā](I − AĀ)−1 = W (I − AĀ)(I − AĀ)−1 = W.

4. ΠA is R−linear.

4.3.3 Complex structure

According to [BBLU22], there exists a complex structure that is related to the projection.

Proposition IV.12. For A ∈ Dd, there exists an R−linear map JA: R→ R such that

∀v ∈ Cd × Cd, ΠA(iv) = JA (ΠA(v)) . (4.12)

Moreover, J2
A = −I.
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Proof. Define: ∀m ∈ R, JA(m) := ΠA(im). This definition is imposed on us by the desired

(4.12). We now check that JA has the desired properties:

1. R−linearity: If m1,m2 ∈ R and r ∈ R, then

JA(m1 + rm2) = ΠA(im1 + irm2) = ΠA(im1) + rΠA(im2) = JA(m1) + rJA(m2)

where we have used the R−linearity of ΠA in the next-to-last step.

2. Let v ∈ Cd ×Cd, and define m = ΠA(v). Since ΠA(m) = m = ΠA(v), v −m ∈ ker(ΠA).

Now using that ker(ΠA) is a C−linear subspace iv − im ∈ ker(ΠA) which implies

ΠA(iv) = ΠA(im) = JA(m) = JA (ΠA(v)) .

This proves (4.12).

3. Next, we show that J2
A = −I. Let m ∈ R. Observe, that

ΠA(i2m) = ΠA (i(im)) = JA(ΠA(im)) = J2
A(m)

but also,

ΠA(i2m) = ΠA(−m) = −ΠA(m) = −m

which implies J2
A(m) = −m.

From the definition of JA in (4.12) we have that

ΠA(iZ, iZ) = JA(Z), ∀Z ∈ Cd

and from the definition of ΠA in (4.11), we can conclude that

iZ − iZA = JA(Z)− JA(Z)A, ∀Z ∈ Cd. (4.13)
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The above identity will be important in the equations of motion.

Remarks 14. A couple of comments about JA:

1. If A = 0, J0 is the multiplication by −i operator on Cd.

2. JA cannot have i as an eigenvalue.

Proof. If ∃Z ∈ Cd such that JA(Z) = iZ, then by (4.13):

−iZ − iZA = −iZ̄ − iZA =⇒ −iZ = −iZ,

which is only true if Z = 0.

This fact will be useful at the end of this chapter in solving an important ODE.

4.4 A Modified Equation

We will now study the dynamics of the Gaussian state ψA,w as given in (1.9) under the

Schrödinger equation. Let the evolved state be ψ̃, and recall that the system we want to

solve is

�̃ψ̃ =

(
i~
∂

∂t
− F̂

)
ψ̃ = 0, ψ̃|t=0 = ψA,w

with w(0) = w and A(0) = A.

From the existing literature on the case where F (z, t) is assumed to be at most quadratic

in z [GS12, LST18], we know that the solution ψ̃ will not be in our spaces Imγ because the

Bargmann norm of ψ̃(·, t, ~) for each t ∈ R does not have a fixed order in ~. However, an

inspection of the exact solution to �̃ψ = 0 in the case where F (z, t) is at most a quadratic

function in z, shows that the solution is of the form

ψ̃ = e−~
−1g(t)ψ, ψ ∈ Imγ
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where g(t) is a real-valued function that satisfies ġ(t) = −Γ(w(t), t) and w(t) is the solution

to (4.2). Next, we find the equation that ψ solves. Observe that

i~
∂ψ

∂t
= iġ(t) e~

−1g(t)ψ̃ + e~
−1g(t)

(
i~
∂ψ̃

∂t

)
.

Since by assumption �̃ψ̃ = 0,

�̃ψ = i~
∂ψ

∂t
− F̂ψ = iġ(t) e~

−1g(t)ψ̃ + e~
−1g(t)

(
i~
∂ψ̃

∂t

)
− F̂ψ

= e~
−1g(t)

[
iġ(t) ψ̃ + i~

∂ψ̃

∂t
− F̂ ψ̃

]

= e~
−1g(t)

[
iġ(t) ψ̃ + �̃ψ̃

]
= e~

−1g(t)iġ(t) ψ̃ = iġ(t)ψ.

Hence, the equation for ψ is (�̃− iġ(t))ψ = 0.

For brevity of notation, let us define a new operator:

Definition IV.13. Let � := �̃ + iΓ(w(t), t).

Finally, the IVP we will construct a solution for is

�ψ = 0, ψ
∣∣
t=0

= ψA,w.

4.5 Symbol Calculations Revisited

Throughout the rest of this chapter, we will be working with a subset of elements in

Imγ where the function ϕ is a polynomial times a Gaussian function, rather than a general

Schwartz function, namely,

ρ(z, t, ~) = q

(
z − w(t)√

~
, t

)
ψ(z, t, ~)

= ~mq
(
z − w(t)√

~
, t

)
ei~
−1Φ(z,t) eiχ(t) e~

−1QA(t)(z−w(t))/2 e−~
−1|z|2/2 (4.14)
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where q is a polynomial.

Remark 15. The principal symbol of ρ as an element in Imγ is

σmρ (ζ, t) = q(ζ, t)σmψ (ζ, t) = q(ζ, t) eiχ(t) eQA(t)(ζ)/2 e−|ζ|
2/2.

We now revisit some of the symbol calculus that we developed in Chapter II. Since we

are now working with a class of functions of the form (4.14), we can obtain more explicit

equations for the dynamics of w(t) and A(t).

Lemma IV.14. For ρ ∈ Imγ of the form in (4.14), for each t ∈ R,

1. The principal symbol of i~∂ρ
∂t

as an element in Imγ is

σm
i~ ∂ρ
∂t

(ζ, t) = −
(
ḟ(t)−=(ẇ(t)w(t)T )

)
σmρ (ζ, t).

2. If σm
i~ ∂ρ
∂t

(ζ, t) = 0, then the principal symbol of i~∂ρ
∂t

as an element in I
m+1/2
γ is

σ
m+1/2

i~ ∂ρ
∂t

(ζ, t) = i
(
ẇ(t)− ẇ(t)A(t)

)
ζTσmρ (ζ, t)− iẇ(t)∇T

ζ q(ζ, t)σ
m
ψ (ζ, t).

3. If σm
i~ ∂ρ
∂t

(ζ, t) = σ
m+1/2

i~ ∂ρ
∂t

(ζ, t) = 0, then the principal symbol of i~∂ψ
∂t

as an element in

Im+1
γ is

σm+1

i~ ∂ρ
∂t

(ζ, t) = 1
2

(
iζȦtζ

T + Tr(QtAt + St)
)
σmρ (ζ, t) + i

∂q

∂t
(ζ, t)σmψ (ζ, t).

Proof. First, we calculate

i~
∂ρ

∂t
= i~q

∂ψ

∂t
+ i~

(
−~−1/2ẇ(t)∇T

z q +
∂q

∂t

)
ψ = −i

√
~ ẇ(t)∇T

z q ψ + i~
∂q

∂t
ψ + i~

∂ψ

∂t
q,
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but we already know i~∂ψ
∂t

from (2.18), so

i~
∂ρ

∂t
= −i

√
~ẇ(t)∇T

z q ψ + i~
∂q

∂t
ψ − ḟ(t)ρ−=(ẇ(t)w(t)T )ρ

+ i(z − w(t))
(
ẇ(t)T − A(t)ẇ(t)T

)
ρ+

i

2
(z − w(t))Ȧt(z − w(t))Tρ+

~
2

Tr(QtAt + St)ρ.

Now we group the terms by their order in ~:

O(~m) : −
(
ḟ(t) + =(ẇ(t)w(t)T )

)
ρ(z, t, ~)

O(~m+1/2) : i(z − w(t))
(
ẇ(t)T − A(t)ẇ(t)T

)
ρ(z, t, ~)− i

√
~ ẇ(t)∇T

z q

(
z − w(t)√

~
, t

)
ψ(z, t, ~)

O(~m+1) : 1
2

(
i(z − w(t))Ȧt(z − w(t))T + ~Tr(QtAt + St)

)
ρ(z, t, ~)

+ i~
∂q

∂t

(
z − w(t)√

~
, t

)
ψ(z, t, ~)

Note that factors of ~ are part of the ρ and the ψ.

To find the symbols of i~∂ρ
∂t

as an element of Imγ , I
m+1/2
γ and Im+1

γ , we consider the O(~m),

O(~m+1/2) and O(~m+1) terms respectively, and make the substitution ζ = (z − w(t))/
√
~.

Remember that σm~pρ = σmρ for any power p and any m. Then, the symbol of i~∂ρ
∂t
∈ Imγ , is

σm
i~ ∂ρ
∂t

(ζ, t) = −
(
ḟ(t) + =(ẇ(t)w(t)T )

)
σmρ (ζ, t).

If σm
i~ ∂ρ
∂t

(ζ, t) = 0, then the principal symbol of i~∂ρ
∂t

is an element in I
m+1/2
γ given by

σ
m+1/2

i~ ∂ρ
∂t

(ζ, t) = i
(
ẇ(t)− ẇ(t)A(t)

)
ζTσmρ (ζ, t)− iẇ(t)∇T

ζ q(ζ, t)σ
m
ψ (ζ, t).

Finally, if σm
i~ ∂ρ
∂t

(ζ, t) = σ
m+1/2

i~ ∂ρ
∂t

(ζ, t) = 0, then the principal symbol is an element in Im+1
γ

given by

σm+1

i~ ∂ρ
∂t

(ζ, t) = 1
2

(
iζȦtζ

T + Tr(QtAt + St)
)
σmρ (ζ, t) + i

∂q

∂t
(ζ, t)σmψ (ζ, t).
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Lemma IV.15. Assume F (z, t) satisfies II.8. For each t ∈ R, let F̂ be the Weyl quantization

on z of F . Then, for ρ ∈ Imγ of the form in (4.14),

1. The principal symbol of F̂ ρ as an element in Imγ is

σm
F̂ρ

(ζ, t) = (F (w(t), t)σmρ (ζ, t) = (H(w(t), t) + iΓ(w(t), t)) σmρ (ζ, t)

2. If F̂ vanishes to first order on γ, then the principal symbol of F̂ ρ as an element of

I
m+1/2
γ is

σ
m+1/2

F̂ ρ
(ζ, t) = (∇zF (w(t), t) +∇zF (w(t), t)At) ζ

Tσmρ (ζ, t)

+∇zF (w(t), t)∇T
ζ (q(ζ, t))σmψ (ζ, t)

3. If F̂ ρ vanishes to second order on γ, then the principal symbol of F̂ ρ as an element of

Im+1
γ is

σm+1

F̂ ρ
(ζ, t) = 1

2

[
ζ(Rt + 2StAt + AtQtAt)ζ

T + Tr(QtAt + St)
]
σmρ (ζ, t)

+
(
ζ St∇T

ζ + 1
2
∇ζ Qt∇T

ζ

)
(q(ζ, t))σmψ (ζ, t).

Proof. Consider a second order expansion of F (z, t) about z = w(t). The Weyl quantization

of F on z and applied to ρ is F̂2(ρ)(z, t, ~) = F̂ (0)ρ+ F̂ (1)ρ+ F̂ (2)ρ with

F̂ (0)ρ = F (w(t), t)ρ = H(w(t), t)ρ+ iΓ(w(t), t)ρ

F̂ (1)ρ = ∇zF (w(t), t)(z − w(t))Tρ+∇zF (w(t), t) (~∇z − w(t))T ρ

F̂ (2)ρ = 1
2
(z − w(t))Rt(z − w(t))Tρ+ (z − w(t))St (~∇z − w(t))T ρ+ 1

2
~Tr(St)ρ

+ 1
2

(~∇z − w(t))Qt (~∇z − w(t))T ρ.

where Rt, St, and Qt are the previously defined Hessian matrices. Now we compute some
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derivatives. First,

~∇zρ = ~∇z

[
q

(
z − w(t)√

~
, t

)
ψ

]
= ~

(
~−1/2ψ∇zq + q∇zψ

)
= (z − w(t))At ρ+ w(t)ρ+

√
~∇zq ψ . (4.15)

which implies

(~∇z − w(t)) ρ = (z − w(t))At ρ+
√
~∇zq ψ

Then,

(~∇z − w(t))Qt (~∇z − w(t))T ρ = (~∇z − w(t))
(
QtAt(z − w(t))Tρ+

√
~Qt∇T

z q · ψ
)

= (~∇z − w(t))QtAt(z − w(t))Tρ+
√
~ (~∇z − w(t))Qt∇T

z q · ψ

= ~∇z

(
QtAt(z − w(t))Tρ

)︸ ︷︷ ︸
I

− w(t)QtAt(z − w(t))Tρ

+ ~3/2∇z

(
Qt∇T

z q · ψ
)︸ ︷︷ ︸

II

−
√
~w(t)Qt∇T

z q · ψ

Using (4.15):

I = ~∇z

(
QtAtz

Tρ
)
− ~∇z(QtAtw(t)Tρ)

= ~∇zρQtAtz
T + ~∇z(QtAtz

T )ρ− ~∇zρQtAtw(t)T

= (z − w(t))AtQtAtz
Tρ+ w(t)QtAtz

Tρ+ ~∇zq QtAtz
Tψ − ~Tr(QtAt)ρ

− (z − w(t))AtQtAtw(t)Tρ− w(t)QtAtw(t)Tρ− ~∇zq QtAtw(t)Tψ

= (z − w(t))AtQtAt(z − w(t))Tρ+ (z − w(t))AtQtw(t)Tρ

−
√
~(z − w(t))AtQt∇T

z q · ψ + ~Tr(QtAt)
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II = ~3/2∇zψQt∇T
z q + ~3/2~−1/2∇zQt∇T

z q · ψ

=
√
~(z − w(t))AtQt∇T

z q · ψ +
√
~w(t)Qt∇T

z q · ψ + ~∇zQt∇T
z q · ψ.

Hence,

(~∇z − w(t))Qt (~∇z − w(t))T ρ = (z − w(t))AtQtAt(z − w(t))Tρ

+ ~Tr(QtAt) ρ+ ~∇zQt∇T
z q · ψ.

Putting everything together we have,

F̂ (1)ρ = (z − w(t))
[
∇T
z F (w(t), t) + At∇T

z F (w(t), t)
]
ρ+
√
~∇zq∇T

z F (w(t), t)ψ

F̂ (2)ρ = 1
2
(z − w(t))(Rt + 2StAt + AtQtAt)(z − w(t))Tρ+

√
~(z − w(t))St∇T

z q · ψ

+ 1
2
~∇zQt∇T

z q · ψ + 1
2
~Tr(St +QtAt)ρ.

From (2.12), we already know that the principal symbol of F̂ ρ is σm
F̂ρ

(ζ, t) = F (w(t), t)σm
F̂ρ

(ζ, t).

If F (·, t) vanishes to first order on γ, the principal symbol of F̂ψ is an element of I
m+1/2
γ

given by

σ
m+1/2

F̂ψ
(ζ, t) = σ

m+1/2

F̂ (1)ψ
(ζ, t) = (∇zF (w(t), t) +∇zF (w(t), t)At) ζ

Tσmρ (ζ, t)

+∇zF (w(t), t)∇T
ζ (q(ζ, t))σmψ (ζ, t)

Lastly, if F (·, t) vanishes to second order on γ, the principal symbol of F̂ψ is an element of

Im+1
γ given by

σm+1

F̂ψ
(ζ, t) = σm+1

F̂ (2)ψ
(ζ, t) = 1

2

[
ζ(Rt + 2StAt + AtQtAt)ζ

T + Tr(QtAt + St)
]
σmρ (ζ, t)

+
(
ζ St∇T

ζ + 1
2
∇ζ Qt∇T

ζ

)
(q(ζ, t))σmψ (ζ, t).
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4.6 Propagation under the Modified Equation

Using the results from the previous section, we now look at how the operator � acts on

the elements ρ ∈ Imγ given in (4.14). In the language of symbol calculus:

Proposition IV.16. For ρ ∈ Imγ as in (4.14), if f(t) satisfies

ḟ(t) = −H(w(t), t)−=(ẇ(t)w(t)T ) (4.16)

where H(w(t), t) = <(F (w(t), t)), then �ρ ∈ Im+1/2
γ .

Proof. We must show that σm�ρ(ζ, t) = 0. By linearity,

σm�ρ(ζ, t) = σm
�̃ρ

(ζ, t) + σmiΓ(w(t),t) ρ(ζ, t)

= σm
i~ ∂ρ
∂t

(ζ, t)− σm
F̂ρ

(ζ, t) + σmiΓ(w(t),t) ρ(ζ, t)

= −
(
ḟ(t) + =(ẇ(t)w(t)T ) + F (w(t), t)

)
σmρ (ζ, t) + iΓ(w(t), t)σmρ (ζ, t)

=
(
−ḟ(t)−=(ẇ(t)w(t)T )−H(w(t), t)− iΓ(w(t), t) + iΓ(w(t), t)

)
σmρ (ζ, t)

=
(
−ḟ(t)−=(ẇ(t)w(t)T )−H(w(t), t)

)
σmρ (ζ, t)

after applying the results from Lemmas IV.14 and IV.15. From the last expression, we can

see that setting ḟ(t) = −H(w(t), t)−=(ẇ(t)w(t)T ) gives σm�ρ(ζ, t) = 0.

4.6.1 Propagation of Gaussian States

For now assume that the polynomial q(ζ, t) = 1 in (4.14), so ρ = ψ.

Remark 16. The principal symbol of such a ψ is

σmψ (ζ, t) = eiχ(t) eQA(t)(ζ)/2 e−|ζ|
2/2. (4.17)

Proposition IV.17. Let ψ be as in (4.14) and suppose that f(t) satisfies (4.16). If the
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system

i(ẇ(t)T − Atẇ(t)T ) = ∇T
z F (w(t), t) + At∇T

z F (w(t), t) (4.18)

iȦt = Rt + 2StAt + AtQtAt (4.19)

is also satisfied, then �ψ ∈ Im+3/2
γ .

Proof. Since f(t) satisfies (4.16), then by Proposition IV.16, we know that σm�ψ(ζ, t) = 0, so

�ψ ∈ Im+1/2
γ . Using Lemmas IV.14 and IV.15, we have

σ
m+1/2
�ψ (ζ, t) = σ

m+1/2

i~ ∂ψ
∂t

(ζ, t)− σm+1/2

F̂ψ
(ζ, t)

= i
(
ẇ(t)− ẇ(t)A(t)

)
ζTσmψ (ζ, t)− (∇zF (w(t), t) +∇zF (w(t), t)At) ζ

Tσmψ (ζ, t)

=
((
ẇ(t)− ẇ(t)A(t)

)
ζT − (∇zF (w(t), t) +∇zF (w(t), t)At)

)
ζTσmψ (ζ, t)

since ∇T
ζ q(ζ, t) = 0 and ∂q

∂t
(ζ, t) = 0. Setting σ

m+1/2
�ψ (ζ, t) = 0 gives equation (4.18). Then,

consider

σm+1
�ψ (ζ, t) = σm+1

i~ ∂ψ
∂t

(ζ, t)− σm+1

F̂ψ
(ζ, t)

= 1
2

(
iζȦtζ

T + Tr(QtAt + St)
)
σmψ (ζ, t)

− 1
2

[
ζ(Rt + 2StAt + AtQtAt)ζ

T + Tr(QtAt + St)
]
σmψ (ζ, t)

= 1
2
ζ
(
iȦt − (Rt + 2StAt + AtQtAt)

)
ζTσmψ (ζ, t).

If we set σm+1
�ψ (ζ, t) = 0 we obtain (4.19) and hence �ψ ∈ Im+3/2

γ .

Remark 17. The system of equations is coupled because the matrices Rt, St, and Qt depend

on w(t). If F is at most quadratic in z, then Rt, St, and Qt will only depend on t and not

w(t).
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4.6.2 Equations of Motion of the Center

The equation in (4.18) is consistent with the equation of motion of the real center of ψ in

the following sense:

Proposition IV.18. Let w(t) = x(t) + iy(t) for x, y ∈ Rd. Then,

(ẋ(t), ẏ(t)) = ΞH(w(t), t) + JA(t) (ΞΓ(w(t), t))

implies

i(ẇ(t)− ẇ(t)At) = ∇zF (w(t), t) +∇zF (w(t), t)At.

Proof. If z = x+ iy, then ∇z = 1
2

(∇x − i∇y), so ΞH = 1
2
(−∇yH,∇xH) for any real-valued

Hamiltonian H. Therefore, in terms of complex notation, we can write

ẇ(t) = i∇zH(w(t), t) + JA(t) (i∇zΓ(w(t), t)) . (4.20)

By (4.13),

i(ẇ(t)− ẇ(t)At) = i
[
−i∇zH(w(t), t) + JA(t)(i∇zΓ(w(t), t))

−i∇zH(w(t), t)At − JA(t)(i∇zΓ(w(t), t))At
]

= ∇zH(w(t), t) +∇zH(w(t), t)At

+ i
[
JA(t)(i∇zΓ(w(t), t))− JA(t)(i∇zΓ(w(t), t))At

]
.

Again, by (4.13), if Z = i∇zΓ(w(t), t), then

i∇zΓ(w(t), t) + i∇zΓ(w(t), t)At = i
[
JA(t)(i∇zΓ(w(t), t))− JA(t)(i∇zΓ(w(t), t))At

]
,
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which leads to

i(ẇ(t)− ẇ(t)At) = ∇zH(w(t), t) +∇zH(w(t), t)At + i∇zΓ(w(t), t) + i∇zΓ(w(t), t)At

= ∇zF (w(t), t) +∇zF (w(t), t)At .

For the rest of this chapter, let ψ be given by

ψ(z, t, ~) = ei~
−1f(t) ei~

−1ω(z,w(t)) eiχ(t) e~
−1QA(t)(z−w(t))/2 e−~

−1|z−w(t)|2/2

where f(t) satisfies ḟ(t) = −H(w(t), t) − =(ẇ(t)w(t)T ) and w(t) = x(t) + iy(t) and A(t)

satisfy the the following system

(ẋ(t), ẏ(t)) = ΞH(w(t), t) + JA(t) (ΞΓ(w(t), t))

iȦt = Rt + 2StAt + AtQtAt.

(4.21)

Lemma IV.19. A solution to the system (4.21) exists.

Proof. Consider u = (w(t), A(t)) and reformulate the system as a Cauchy problem: Then,

since F is analytic, by the Cauchy-Kowalevski Theorem (1.25 in [Fol95]) there exists a unique

analytic solution u to the problem.

4.6.3 Adding Corrections

We will eventually show that we can construct a ψN ∈ Imγ such that �ψN is arbitrarily

small in ~. We will employ the same technique of adding correction terms as in solving the

Schrödinger equation for a Hermitian F̂ .

However, there are two modifications we must make in the case of a non-Hermitian F̂ :

1. The ansatz for the correction terms needs to be more general; namely, let each correction

term ρj ∈ Imγ , j = 1, . . . , N be of the form (4.14).

2. An important distinction from the Hermitian case is that in this setting the first
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correction term ρ1 is preceded by an extra one-half power of ~ :

ψN = ψ + ~ ρ1 + ~3/2ρ2 + · · ·+ ~(N+1)/2ρN , ψ, ρj ∈ Imγ .

This is due to that fact that in the non-Hermitian case, Hamilton’s equations do not

hold, so we will only be able to prove that �ρ1 ∈ Im+1/2
γ rather than �ρ1 ∈ Im+1

γ .

Lemma IV.20. The principal symbol of �ρ as an element of I
m+1/2
γ is

σ
m+1/2
�ρ (ζ, t) = L(q(ζ, t))σmψ (ζ, t)

where

L :=
[
JA(t) (∇zΓ(w(t), t))− i∇zΓ(w(t), t)

]
∇T
ζ

and σmψ (ζ, t) is given in (4.17).

Proof. By linearity,

σ
m+1/2
�ρ (ζ, t) = σ

m+1/2

�̃ρ
(ζ, t) = σ

m+1/2

i~ ∂ρ
∂t

(ζ, t)− σm+1/2

F̂ ρ
(ζ, t)

= i
(
ẇ(t)− ẇ(t)A(t)

)
ζTσmρ (ζ, t)− iẇ(t)∇T

ζ q(ζ, t)σ
m
ψ (ζ, t)

−
(
∇ζF (w(t), t) +∇ζF (w(t), t)At

)
ζTσmρ (ζ, t)−∇ζF (w(t), t)∇T

ζ (q(ζ, t))σmψ (ζ, t)

=
[
i
(
ẇ(t)− ẇ(t)A(t)

)
−
(
∇ζF (w(t), t) +∇ζF (w(t), t)At

)]
ζT σmρ (ζ, t)

+
(
−iẇ(t)−∇ζF (w(t), t)

)
∇T
ζ (q(ζ, t))σmψ (ζ, t) .

where we have applied Lemmas IV.14 and IV.15. After substituting equation (4.18), the

above reduces to

σ
m+1/2
�ρ (ζ, t) = (−iẇ(t)−∇zF (w(t), t))∇T

ζ (q(ζ, t))σmψ (ζ, t) .
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Now substituting (4.20) for ẇ(t):

(−iẇ(t)−∇zF (w(t), t)) = −i
(
i∇zH(w(t), t) + JA(t) (i∇zΓ(w(t), t))

)
−∇zF (w(t), t)

= ∇zH(w(t), t) + JA(t) (∇zΓ(w(t), t))−∇zH(w(t), t)− i∇zΓ(w(t), t)

= JA(t) (∇zΓ(w(t), t))− i∇zΓ(w(t), t) .

Thus,

σ
m+1/2
�ρ (ζ, t) =

[
JA(t) (∇zΓ(w(t), t))− i∇zΓ(w(t), t)

]
∇T
ζ (q(ζ, t))σmψ (ζ, t) .

Remarks 18. Some remarks on the operator L:

1. L is an operator that acts on q(ζ, t) and σmψ (ζ, t) can be thought of as the “weight” in

some other space.

2. Recall that if A = 0, then J0 = −i, so L = −2i∇zΓ(w(t), t)∇T
ζ .

3. Also, recall from Remark 14 that i is not an eigenvalue of JA(t), therefore

JA(t) (∇zΓ(w(t), t))− i∇zΓ(w(t), t) 6= 0

for any t ∈ R as long as ∇zΓ(w(t), t) 6= 0.

Proposition IV.21. Let ψ ∈ Imγ be given by

ψ(z, t, ~) = ~m ei~−1Φ(z,t) eiχ(t) e~
−1QA(t)(z−w(t))/2 e−~

−1|z|2/2.

Assume that ḟ(t) satisfies (4.16), and ẇ(t) and Ȧ(t) satisfy the coupled system (4.21).

Therefore, for all N ∈ N, ∃ ρ1, . . . , ρN ∈ Imγ of the form

ρj(z, t, ~) = qj

(
z − w(t)√

~
, t

)
ψ(z, t, ~)
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where the qj are polynomials. If we define ψN in the following manner:

ψN = ψ + ~ρ1 + ~3/2ρ2 + · · ·+ ~(N+1)/2ρN , (4.22)

then,

�ψN ∈ Im+(N+3)/2
γ , ψN |t=0 = ψ|t=0 = ψA,w

where ψA,w ∈ B(Cd) as given in (1.9).

Proof. The proof is analogous to the proof of Proposition III.5. The main difference is in the

type of equation that the correction terms ρj must satisfy. Nevertheless, we re-construct the

proof to show where this difference arises.

By induction on N , assume that �ψN−1 ∈ Im+N/2+1
γ . Let ψN = ψN−1 +~(N+1)/2ρN for ρN

of the form (4.22). By Lemma IV.20, �ρN ∈ Im+1/2 which implies ~(N+1)/2 ρN ∈ Im+N/2+1
γ .

Therefore, �ψN ∈ Im+N/2+1
γ .

Let βN−1(ζ, t) := σ
m+N/2+1
�ψN−1

(ζ, t) be the principal symbol of �ψN−1 as an element in

I
m+N/2+1
γ . In the next lemma, we show that ∃ρN such that σ

m+1/2
�ρN

(ζ, t) = −βN−1(ζ, t) for

each t, i.e.,

L(qN(ζ, t))σmψ (ζ, t) = −βN−1(ζ, t), σ
m+1/2
�ρN

∣∣
t=0

= 0 . (4.23)

This ensures that σ
m+N/2+1
�ψN

(ζ, t) = 0, and therefore, �ψ ∈ Im+(N+3)/2
γ .

Lemma IV.22. Assume that ∇zΓ(w(t), t) 6= 01 for all t ∈ [−T, T ]. Then for each t ∈ [−T, T ],

the system (4.23) has a solution for qN(ζ, t).

Proof. First, we need the following result:

Claim: As a symbol, βN−1(ζ, t) = σ
m+N/2+1
�ψN−1

(ζ, t) is of the form βN−1(ζ, t) = p(ζ, t)σmψ (ζ, t)

where p(ζ, t) is a polynomial and σmψ (ζ, t) is given by (4.17).

1This is equivalent to the condition ΞΓ(w(t), t) 6= 0.
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Proof of the Claim: By linearity,

σ
m+N/2+1
�ψN−1

(ζ, t) = σ
m+N/2+1

i~ ∂
∂t
ψN−1

(ζ, t)− σm+N/2+1

F̂ (ψN−1)
(ζ, t) + σ

m+N/2+1
iΓ(w(t),t)ψN−1

(ζ, t)

= σ
m+N/2+1

i~ ∂
∂t
ψN−1

(ζ, t)− σm+N/2+1

F̂ (ψN−1)
(ζ, t) + iΓ(w(t), t) σ

m+N/2+1
ψN−1

(ζ, t).

Now let us consider each term separately. Rewriting ψN−1 in (4.22):

ψN−1(z, t, ~) =

(
1 +

N−1∑
j=1

~(j+1)/2 qj

(
z − w(t)√

~
, t

))
ψ(z, t, ~) . (4.24)

There are no O(~m+N/2+1) terms in ψN−1 by construction, so considering ψN−1 as an element

in I
m+N/2+1
γ , its symbol σ

m+N/2+1
ψN−1

(ζ, t) must be zero.

Computing σ
m+N/2+1

i~ ∂
∂t
ψN−1

(ζ, t) involves differentiating (4.24) with respect to t but the result

will be another polynomial times ψ since ψ is Gaussian. Then, considering the terms that

are O(~m+N/2+1) and changing variables to ζ = (z − w(t))/
√
~, we get that σ

m+N/2+1

i~ ∂
∂t
ψN−1

(ζ, t) is

some polynomial multiplied by σmψ (ζ, t).

Lastly, to compute σ
m+N/2+1

F̂ (ψN−1)
(ζ, t), take the (N + 2)−order Taylor expansion of F (z, t)

about z = w(t). Weyl quantize this expansion on z and apply it to ψN−1. The resulting

expression will involve a sum of partial derivatives in z of ψN−1 multiplied by powers of

(z − w(t)) all multiplying ψ itself. Hence, when we consider the terms that are O(~m+N/2+1)

and change variables to ζ = (z − w(t))/
√
~, we get that σ

m+N/2+1

F̂ (ψN−1)
(ζ, t) is also a polynomial

times σmψ (ζ, t).

Combining everything we get ψN−1(z, t, ~) = p(ζ, t)σmψ (ζ, t) for some polynomial p.

Applying the claim, (4.23) simplifies to

L(qN(ζ, t)) = p(ζ, t). (4.25)

By our assumption, ∇zΓ(w(t), t) 6= 0 for all t ∈ [−T, T ] and by Remark 18, L is never zero
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for any t. Hence, by a suitable linear change of coordinates in (4.25), L = ∂
∂ζ1

. Integrating

the right side of (4.25) with respect to ζ1 gives a solution for qN(ζ, t).

4.7 The Quadratic Case

Assume that F (z, t) : Cd × R→ C is at most a quadratic function in z and let F̂ be its

Weyl quantization on the z coordinate. In this case, the solution to

�ψ = 0, ψ
∣∣
t=0

= ψA,w

is exact and the solutions for w(t) = x(t) + iy(t) and A(t) are given by the system in (4.21).

Given that F is at most quadratic, the Hessian matrices Rt, St, and Qt are independent of

w(t). Hence, we may solve equation for A(t) first and use that solution to obtain w(t).

Let us explain the evolution of a Gaussian state under at most a quadratic non-Hermitian

Hamiltonian in the context of the geometry of Lagrangian manifolds. Figure 4.2 provides a

visualization of these mechanics.

(1) The initial state ψA,w has with center w on the real locus R. The center of this state is

represented by the green dot as the intersection of the leaf ΛA,w (blue line) and the real

locus R. Then, evolve ψA,w by Schrödinger’s equation using a non-Hermitian quantum

Hamiltonian for some time t > 0. As the state evolves, the parameter A varies with

t, so we get a different foliation of Lagrangian subspaces ΛA(t),w(t) represented by the

yellow lines. Meanwhile, the center of the state (green dot) moves away from the real

locus onto one of the leaves of the foliation ΛA(t),w(t).

(2) Project the center of the evolved state (which corresponds to the green dot on the yellow

line) back onto the real locus. The purple dot represents the center of the final state.

Note by Lemma IV.4, these two states are physically equivalent. The equation that we

found for w(t) in terms of the complex structure JA(t) in the system 4.21 corresponds

to the purple dot.
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Figure 4.2: Dynamics of the evolution a Gaussian state by a non-Hermitian Hamiltonian

We are using the term “lines” broadly here. Under the evolution of a non-Hermitian

quadratic Hamiltonian, the leaves of the foliation ΛA(t),w(t) will be “lines,” but for general

non-Hermitian Hamiltonians, these will be more complicated submanifolds. This is described

in [BBLU22].
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CHAPTER V

Reduction of Coherent States

We now turn our attention to the second part of this thesis. In this chapter, we will

describe the procedure for a quantum version of dimensional reduction which allows us to

reduce the states ψA,w ∈ B(Cd) defined in (1.9) to construct a family of Gaussian coherent

states on complex projective spaces. Of special interest, are the states in the Bargmann

space of CP1, that is, squeezed SU(2) coherent states which we will discuss in Chapter VII.

This reduction procedure holds more generally for Kähler manifolds (see [RU21] for more

information), but we will explain it in the context of the coherent states that we are interested

in. In particular, we will study the semiclassical properties of the reduction of ψA,w.

5.1 Dimensional Reduction of Gaussian Coherent States

We proceed to describe the notion of quantum reduction.

Notation 2. For the rest of this thesis, unless otherwise noted, we will set k = ~−1.

Generally, the Bargmann space of Cd may be split up as

B(Cd) =
∞⊕
`=0

W(k)
`

where

W(k)
` = {f(z)e−k|z|

2/2 ; f is a homogeneous polynomial of degree `}.

and the W(k)
` are mutually orthogonal.1 Equivalently, the W(k)

` are the eigenspaces with

1See Remark 1 for why this is justified.
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eigenvalue ~` of the number operator in Bargmann space, namely,

N̂ = ~
d∑
j=1

zj
∂

∂zj
. (5.1)

The W(k)
` are invariant under the angular momentum operators in Bargmann space given

by

L̂1 =
1

2

(
z1

∂

∂z2

+ z2
∂

∂z1

)
, L̂2 = − i

2

(
z1

∂

∂z2

− z2
∂

∂z1

)
, L̂3 =

1

2

(
z1

∂

∂z1

− z2
∂

∂z2

)
.

(5.2)

These operators also satisfy the commutation relations [L̂1, L̂2] = iL̂3 and cyclic permuta-

tions. Since the spectrum of L̂3 ranges from (half)-integers −`/2 to `/2, one may think of

W(k)
` as the Hilbert space of spin `/2.

Example V.1. In the case where d = 2, if ` = 1, then

W(k)
1 = span{z1 e

−k|z|2/2, z2 e
−k|z|2/2}

and we can think of one of the elements corresponding to spin 1
2

and the other to spin −1
2
.

For ` = 2, the elements in W(k)
2 are quadratic polynomials corresponding to spin −1, 0, and 1:

W(k)
2 = span{z2

1 e
−k|z|2/2, z1 z2 e

−k|z|2/2, z2
2 e
−k|z|2/2}.

Observe that the total dimension of W(k)
` is `+ 1.

Remark 19. This is an example of geometric quantization which is a way of associating

Hilbert spaces with symplectic manifolds and when applied to CPd−1 gives the spaces W(k)
`

[Woo97].

Let Pk : B(Cd)→W(k)
k be the orthogonal projection. Note that we are choosing ` = k

which corresponds to reducing at energy |z|2 = 1.2 Quantum mechanically, |z|2 = 1 becomes

2|z|2 is the classical harmonic oscillator in the Bargmann space of Cd.
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~` = 1 because ~` is an eigenvalue of the the number operator given in (5.1). This gives

` = k with our definition ~ = 1/k.

The “reduced” space is

B(CPd−1) :=
{

restrictions to S2d−1 of homogeneous polynomials of degree k
}
,

with the Hilbert space structure of L2(S2d−1).

The procedure for reducing B(Cd) to B(CPd−1) is presented in the following definition.

Definition V.2. The quantum reduction operator Rk is the composition

Rk := Rk ◦ Pk : B(Cd)→ B(CPd−1)

where Rk :W(k)
k → B(CPd−1) is the restriction to S2d−1 operator.

We have an integral expression for the (normalized) reduction operator:

∀ψ ∈ B(Cd), ∀z ∈ S2d−1 Rk(ψ)(z) =
1

2π

∫ 2π

0

e−ikt ψ(eitz) dt.

One may check that Rk(ψ) is a homogeneous polynomial of degree k in z, and therefore, it is

an element in B(CPd−1).

5.2 Main Results

In order to state our main results more generally, we introduce a coordinate-free version

of the generalized unit disk Dd that we defined in §1.3.

Definition V.3. Let H be a complex vector space with a Hermitian inner product, and let

G : H → R be the standard Gaussian, G(v) = e−‖v‖
2/2. Let us then define

D(H) =
{

quadratic forms Q : H → C such that eQ/2 G ∈ L2(H)
}
.
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One can then show that Q ∈ D(Cd) iff the symmetric matrix A associated with Q in the

usual sense is in Dd.

We now define our main objects of study for the rest of this thesis.

Definition V.4. The reduced squeezed states are given by

ΨA,w := Rk(ψA,w), w ∈ S2d−1. (5.3)

Remark 20. Note when A = 0 this corresponds to the standard or “non-squeezed” coherent

states. By making use of Stirling’s formula3 we can compute

∀z ∈ S2N−1 Ψ0,w(z) =
e−k

2π

∫ 2π

0

e−ikt eke
itzwT dt =

e−k kk

k!
(zwT )k ∼ 1√

2πk
(zwT )k.

Our main results are summarized in the following theorem.

Theorem V.5. Let A ∈ Dd and w ∈ Cd be such that |w| = 1. Then ΨA,w = Rk (ψA,w) has

the following properties:

(1) Its micro-support (or semiclassical wave-front set) as k →∞ consists of the S1 orbit

of w, that is, {eitw ; t ∈ [0, 2π]}. On CPd−1, it is a single point

$ := π(w) ∈ CPd−1

where π is the (general) Hopf fibration, i.e., the projection

π : S2d−1 → CPd−1.

(2) If η ∈ Hw := (Cw)⊥ (the Hermitian orthogonal space to the complex line spanned by

3Stirling’s formula is an approximation for factorials given by: k! ∼
√

2πk
(
k
e

)k
.
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w), one has

σA(η) := lim
k→∞

√
kΨA,w

(
w + η

√
k
)

=
1

2π
e−|η|

2/2

∫ ∞
−∞

eQA(isw+η)/2 e−s
2/2 ds. (5.4)

and moreover,

σA(η) =
1√
2π

1√
QA(w) + 1

eQρw(A)(η)/2 e−|η|
2/2 (5.5)

for some Qρw(A) ∈ D(Hw).

(3) For all A, B ∈ Dd one has

〈ΨA,w,ΨB,w〉B(CPd−1) =
2π

kd

∫
Hw

σA(η)σB(η) dL(η) +O(k−d−1) (5.6)

where dL stands for Lebesgue measure.

Remarks 21. Some comments on the previous theorem:

1. Since A ∈ Dd and |w| = 1, <(QA(w) + 1) > 0. The branch of the square root in (5.5)

is the natural analytic extension to the right half of the complex plane.

2. The space Hw is in fact a subspace of TwS
2d−1; it is the horizontal subspace at w of

the natural connection on the Hopf fibration π : S2d−1 → CPd−1. The differential dπw

induces an isometry Hw
∼= T$CPd−1, where the latter space is given the Fubini-Study

metric. We will tacitly use this identification in what follows.

3. In case w = (1,~0)4 (the general case can be reduced to this by the action of a unitary

matrix), one has that ρw(A) is the lower (d− 1)× (d− 1) principal minor of

A− AwTwA

wAwT + 1
.

4The notation ~0 signifies d− 1 zeros.
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The derivation of this is provided in Lemma V.23.

4. Theorem V.15 gives the asymptotic behavior of (5.3) at $.

From (5.6), we obtain the norm of a reduced state as an asymptotic expansion:

‖ΨA,w‖2
B(CPd−1) =

2π

kd

∫
Hw
|σA(η)|2 dL(η) +O(k−d−1), (5.7)

and as a corollary we obtain:

Corollary V.6. If A,B ∈ Dd are such that σA = σB, then

‖ΨA,w −ΨB,w‖2
B(CPd−1) = O(k−d−1).

Proof. Expanding the norm and substituting (5.6) and (5.7) we get

‖ΨA,w −ΨB,w‖2
B(CPd−1) = ‖ΨA,w‖2

B(CPd−1) + ‖ΨB,w‖2
B(CPd−1) − 2<〈ΨA,w,ΨB,w〉B(CPd−1)

=
2π

kd

∫
Hw

(
|σA(η)|2 + |σA(η)|2 − 2< (σA(η)σB(η))

)
dL(η) +O(k−d−1)

=
2π

kd

∫
Hw
|σA(η)− σB(η)|2 dL(η) +O(k−d−1)

= O(k−d−1).

5.2.1 Symbols of the Reduced States

The concept of (principal) symbol played a significant role in Chapters II - IV in studying

the Schrödinger evolution by both Hermitian and non-Hermitian Hamiltonians of coherent

states. In fact, symbols are also a central part of the analysis on the reduction of coherent

states.

In Chapter II, we defined the principal symbol of an element in Imγ as a Schwartz function

in ζ that also depends on t ∈ R. In this chapter, the states ψA,w ∈ B(Cd) have a t-independent
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symbol which is analogous to Definition II.4 and is given by

σψA,w(ζ) = eQA(ζ)/2 e−|ζ|
2/2 (5.8)

where we have rescaled the variable: ζ = (z − w)/
√
~.

The reduced states ΨA,w also have symbols. Observe that the function σA characterizes

ΨA,w to leading order in k. It is a k−independent function which is also Schwartz and so we

can think of it as the (principal) symbol of ΨA,w. Formally,

Definition V.7. The function σA : Hw → C given by the expressions (5.4) and (5.5) will be

considered as a function of the Bargmann space of the tangent space T$CPd−1 (with ~ = 1),

and will be called the symbol of (5.3).

Remark 22. The symbol of a standard spin coherent state is simply σA=0(η) = 1√
2π
e−|η|

2/2.

As we’ll see below, we can obtain any Gaussian as the symbol of the reduction of a ψA,w for

a suitable A ∈ Dd.

Remark 23. It is very convenient to extend by linearity the definition of symbols of reduced

states at the same center w ∈ S2d−1. We will also agree that multiplying ΨA,w by a power of

k results in a function having the same symbol as ΨA,w. This is in line with our observations

in §2.2.

So what is the geometric meaning of the symbol? Intuitively, the symbol captures the

asymptotic behavior of the coherent state in a neighborhood of size O(1/
√
k) of its center. As

a mathematical object, the symbol is a Schwartz function on the tangent space at the center

of the state. Roughly speaking, it arises by performing the rescaling z = w + η√
k

in suitable

coordinates, where w is the center of the state, and taking the leading term as k → ∞.

That is, generally speaking, what is happening when we go from the behavior described by

Theorem V.15 and part (2) of Theorems V.5. The result is a function of η. An example is of

course (5.4), where it is crucial that η is in the horizontal subspace Hw. More details on the

geometry of the symbol in the context of Kähler quantization are given in §3 of [RU21].
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5.2.2 On the Reduction of Excited States

Lasser et al. [LST18] and Arnaiz [Arn21] discuss the construction of excited coherent

states in L(Rd) via the repeated application of appropriate creation operators to ground

states of the form (1.4). The excited states are of the form a polynomial times the ground

state. By the Bargmann transform, we expect that a similar notion exists for states in defined

the Bargmann space of Cd. Associated to A ∈ Dd, there is a sequence of annihilation and

creation operators. Considering ψA,w ∈ B(Cd) (1.9) as ground states, we can repeatedly

apply these particular creation operators to obtain excited states which are again of the form

a polynomial times ψA,w. A natural question to ask is can we reduce excited states? The

answer, perhaps not surprisingly, is yes!

Let p̃(z) be a k-independent polynomial and define

ΦA,w := Rk (pw · ψA,w)

with pw(z) = p̃(
√
k(z − w)).

As an extension of part (2) of Theorem V.5, we have

ςA(η) := lim
k→∞

√
kΦA,w

(
w + η

√
k
)

=
1

2π
e−|η|

2/2

∫ ∞
−∞

p̃(isw + η) eQA(isw+η)/2 e−s
2/2 ds (5.9)

for η ∈ Hw. The function ςA is the symbol of the reduced excited state ΦA,w and has the

same properties as σA.

In §5.5 we prove (5.9). In the case where p̃(z) = 1, the result simplifies to part (2) of

Theorem V.5. In the remaining parts of this thesis, however, we will be concerned with the

reduction of the ground states ψA,w, namely, ΨA,w.
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5.3 An Algebraic Formula

One can compute an exact algebraic expression for the reduced states (5.3), which will be

useful for the numerical computations that we present in Chapter VII.

Proposition V.8. For all z, w ∈ S2d−1 one has:

ΨA,w(z) = e−k ekQA(w)/2

k∑
`≥k/2

k`

(k − `)!(2`− k)!

(
1

2
QA(z)

)k−` (
z(wT − AwT )

)2`−k
. (5.10)

Proof. Since

QA(z − w) = QA(z)− 2zAwT +QA(w),

we can re-write

ψA,w(z) = e−k ekQA(w)/2 ekQA(z)/2 ekz(w
T−AwT )

Therefore

ψA,w(eitz) = e−k ekQA(w)/2

∞∑
`=0

k`

`!

(
e2itQA(z)/2 + eitz(wT − AwT )

)`
.

Now apply the binomial theorem to the `-th term of the series:

(
e2itQA(z)/2 + eitz(wT − 2AwT )

)`
=
∑̀
j=0

(
`

j

)
eit(j+`) (QA(z)/2)j

(
z(wT − AwT )

)`−j
.

When we multiply by e−ikt and integrate over t ∈ [0, 2π] only the terms with j+ ` = k survive.

For each `, there exists exactly one such term precisely when 0 ≤ k − ` ≤ `. This gives the

range k/2 ≤ ` ≤ k, and the expression (5.10) follows.

Remark 24. Note that the case A = 0 (standard coherent states in the Bargmann space of

Cd), up to a multiplicative constant, the reduced state is indeed just the standard SU(d)

state (zw)k.
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Remark 25. The previous expression is exact but is “redundant to leading order” because

the mapping

Dd 3 A 7→ ρw(A) ∈ Dd−1

is not injective, and the symbol controls the reduced state to leading order.

In Chapter VII we will make explicit choices of A when d = 2 to avoid this redundancy.

After some normalizations we will propose a non-redundant expression for SU(2) squeezed

coherent states (see Definition VII.4 and (7.3)).

5.4 Estimates

5.4.1 Estimates on Gaussian States

We begin by establishing some fundamental estimates on Gaussian states ψA,w.

Lemma V.9. Let A ∈ Dd. Then

∃κ ∈ [0, 1) ∀z ∈ Cd |QA(z)| ≤ κ|z|2. (5.11)

Proof. Let A ∈ Dd. By the Autonne-Takagi factorization, there exists a unitary matrix U

and a diagonal matrix D such that A = UDUT , and D is diagonal with entries κj(A) ≥ 0,

j = 1, . . . , d, the square roots of the eigenvalues of A∗A. Let z ∈ Cd and γ = zU . Then

|QA(z)| = |QD(γ)| =

∣∣∣∣∣
d∑
j=1

γ2
jκj

∣∣∣∣∣ ≤ κ|γ|2 = κ|z|2,

where κ = maxj κj. The assumption that A ∈ Dd is equivalent to κ < 1.

In particular < (QA(z)) ≤ κ|z|2 . On the other hand,

ψA,w(z) = ekQA(z−w)/2 e−k|z−w|
2/2 eik=(zwT ),
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where ω is the symplectic usual form

ω(z, w) = =(zwT ).

Therefore, the Husimi function of ψA,w is equal to

|ψA,w|2(z) = ek[<(QA(z−w))−|z−w|2] ≤ e−k[(1−κ)|z−w|2]. (5.12)

Since κ < 1, the phase in (5.12) is non-positive and is zero precisely at z = w. Away from w

the Husimi function is exponentially decreasing. From this it follows that the semi-classical

microsupport of ψA,w is {w}.

The proof of the previous lemma can easily be modified to show the equivalence of the

two definitions of Dd and D(Cd).

As another observation, we note that coherent states with different center don’t “overlap”

in the semiclassical limit.

Lemma V.10. Given A, B ∈ Dd and v, w ∈ Cd, then

v 6= w ⇒ 〈ψA,w, ψB,v〉 = O(k−∞).

Proof. Let us write 〈ψA,w, ψB,v〉 =
∫
Cd e

ϕ(z,z) dL(z) where

ϕ = QA(z − w)/2 +QB(z − v)/2 + zwT + zvT − |v|2/2− |w|2/2− |z|2.

Let us look for critical points of the phase. Note that

∂ϕ

∂z
= (z − w)A+ w − z, and (5.13)

∂ϕ

∂z
= (z − v)B + v − z. (5.14)
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Claim: If A ∈ Dd, the mapping Cd 3 z 7→ zA− z ∈ Cd is bijective.

Proof of the claim. Since the map is R-linear, it is enough to prove that its kernel is zero.

Note that

zA = z ⇒ zA = z ⇒ zAA = z.

Since A is symmetric this means that zAA∗ = z. Since A ∈ Dd, 1 is not an eigenvalue of

AA∗, and therefore z = 0.

Since (5.13) being equal to zero is equivalent to zA− z = wA− w, we see that ∂ϕ
∂z

= 0

iff z = w. Similarly, ∂ϕ
∂z

= 0 iff z = v. So if v 6= w the phase ϕ does not have any critical

points.

5.4.1.1 Covariance

We find that the Gaussian states in the Bargmann space of Cd have the following useful

covariance property. The group U(d) acts on Cd on the right (since we are working with row

vectors), which induces an action (representation) on B(Cd) given by

∀g ∈ U(d), ψ ∈ B(Cd) (g · ψ)(z) := ψ(zg).

The following is straightforward, and is very useful:

Lemma V.11. One has

g · ψA,w = ψgAgT ,wg−1 . (5.15)

Remark 26. The covariance property (5.15) justifies simplifying to the case where w = (1,~0)

in certain contexts later on. Even if our state ψA,w is not initially centered at w = (1,~0), we

can always rotate the center to that point via a unitary rotation. The rotation will in effect

change the squeezing parameter A. It would have greatly simplified our analysis if we could

find a rotation which both moves the center to w = (1,~0) and diagonalizes A, but in general

that is not possible!
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5.4.2 Pointwise Estimates of the Reduced States

Let A ∈ Dd and w ∈ S2d−1. We now obtain a point-wise estimate of ΨA,w.

From the definition (after a short calculation),

∀z ∈ S2d−1 ΨA,w(z) =
1

2π

∫ 2π

0

ekϕ(z,t) dt (5.16)

where the phase is

ϕ(z, t) := eitzwT +
1

2
(eitz − w)A(eitz − w)T − it− 1

2
(|z|2 + |w|2). (5.17)

Lemma V.12. The phase satisfies <(ϕ) ≤ 0. Moreover, its critical points (with respect to t)

satisfying <(ϕ) = 0 are precisely the solutions of eitz = w.

Proof. We already know from (5.11) that <(ϕ) = 0 iff eitz = w. On the other hand, the

critical points of the phase are solutions of

eitzwT + (eitz − w)AzT = 1.

This is indeed satisfied if eitz = w.

As a corollary of the previous Lemma,

Corollary V.13. If z 6= e−itw for some t ∈ R, then ΨA,w(z) = O(k−∞).

This means that ΨA,w concentrates on the circle {e−itw ; t ∈ [0, 2π]}. The previous

conclusions naturally lead to the (general) Hopf fibration given by the projection

π : S2d−1 → CPd−1

because for fixed w, every z that is in the same Hopf fiber (circle) is also a critical point of

(5.17).
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Definition V.14. We will denote “center” of the reduced state ΨA,w by

$ := π(w) = {e−itw ; t ∈ [0, 2π]}.

The previous results tell us that ΨA,w and all its derivatives are rapidly decreasing away

from $. To evaluate ΨA,w asymptotically at $, let us apply the method of stationary phase

(Theorem 7.7.5 in [Hör90]) to (5.16). Thus, assume that eit0z = w for some t0. The second

derivative of the phase at t = t0 is equal to i(1 + wAwT ). This implies:

Theorem V.15. With the previous notation,

ΨA,w(e−it0w) =
1√
2πk

e−ikt0√
wAwT + 1

+O(k−3/2) as k →∞.

Remark 27. From the previous theorem we can observe that if w 7→ eiθw

ΨA,eiθw(z) = Ψe2iθA,w(e−iθz) = e−ikθ Ψe2iθA,w(z)

for some θ ∈ [0, 2π) where the last step follows from the fact that ΨA,w is homogeneous in z

of degree k. Hence, rotating the center of the state before reducing results in an additional

phase factor multiplying the reduced state.

The result of Theorem V.15 is not very illustrative of the behavior of ψA,w for z near the

critical points because it gives us this “all-or-nothing” behavior. Let’s see why by considering

a simple example in dimension d = 1.

Example V.16. Let w = 0 ∈ C, so ψA,0 = ekAz
2/2 e−k|z|

2/2. Then, consider

|ψA,0(z)|2 =
∣∣∣ekA2/2

∣∣∣ · e−k|z|2 .
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Fixing z, as k →∞,

|ψA,0(z)|2 ∼


0 if z 6= 0 since |A| < 1

1 if z = 0.

However, if we rescale the coordinate as z = ξ/
√
k, then as k →∞, z → 0, so

|ψA,0(ξ)|2 =
∣∣∣eAξ2/2∣∣∣2 · e−k|z|2 .

Hence, by “zooming in” at the center of the state, we get a Gaussian state with no k

dependence.

This example motivates the need to do local scaling asymptotics where we magnify the

geometry at the center of the state using the change of coordinates z = w + η/
√
k. This

serves as the motivation for part (2) of Theorem V.5.

5.5 Proof of Part (2) of Theorem V.5

We will now prove (5.9) for the reasons discussed in §5.2.2. Recall that the result simplifies

to part (2) of Theorem V.5 when p̃(z) = 1.

Proof. Fix w ∈ S2d−1 and η ∈ Hw, and introduce the notation

ΥA(η, k) := ΦA,w

[
w +

η√
k

]
. (5.18)

We need to show that

√
kΥA(η, k) =

1

2π
e−|η|

2/2

∫ ∞
−∞

p̃(isw + η) eQA(isw+η)/2 e−s
2/2 ds+O(1/

√
k). (5.19)

Note that

ΥA(η, k) =
1

2π

∫ π

−π
p̃
(√

k
(
eit(w + η/

√
k)− w

))
ψA,w

(
eit(w + η/

√
k)
)
e−iktdt.
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For each k we split the domain of integration into three parts,

ΥA(η, k) =
1

2π

∫ −ak
−π

+
1

2π

∫ ak

−ak
+

1

2π

∫ π

ak

=: I1 + I2 + I3,

respectively, where (ak) is a sequence of positive numbers tending to zero that we will specify

later. In particular, we will choose this sequence so that I1 and I3 are negligible with respect

to I2.

First let us estimate I3. Recall that |ψA,w(z)| ≤ e−Ck|z−w|
2

with C = (1− κ)/2 ∈ (0, 1/2],

where κ is the largest eigenvalue of A∗A (see (5.12)). Therefore,

∣∣∣∣ψA,w (eit(w + η/
√
k)
)
e−ikt

∣∣∣∣ ≤ e−Ck|e
it(w+η/

√
k)−w|2 = e−Ck(|eit−1|2|w|2+|η|2/k) ≤ e−Ck|e

it−1|2

since e−C|η|
2 ≤ 1.

Also, since p is a polynomial, p̃(z) =
∑α
|m|=0 cmz

m for z ∈ Cd with m ∈ Nd
0 and

∣∣∣p̃(√k (eit(w + η/
√
k)− w

))∣∣∣ ≤ α∑
|m|=0

k|m|/2 |cm|
(∣∣eit − 1

∣∣2 +
|η|2

k

)|m|/2
.

Note that we have used that η · w = 0 and |w|2 = 1 in the previous two calculations.

Hence,

|I3| ≤
1

2π

∫ π

ak

α∑
|m|=0

k|m|/2 |cm|
(∣∣eit − 1

∣∣2 +
|η|2

k

)|m|/2
e−Ck|e

it−1|2dt

=
1

2π

α∑
|m|=0

k|m|/2 |cm|
∫ π

ak

(∣∣eit − 1
∣∣2 +

|η|2

k

)|m|/2
e−Ck|e

it−1|2dt

≤ 1

2π

α∑
|m|=0

k|m|/2 |cm|
(

4 +
|η|2

k

)|m|/2 ∫ π

ak

e−Ck|e
it−1|2dt

≤ D(η, k) max
t∈[ak,π]

e−Ck|e
it−1|2 = D(η, k) e−Ck|e

iak−1|2 .
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where

D(η, k) :=
1

2π

α∑
|m|=0

k|m|/2 |cm| (4 + |η|2/k)|m|/2 ≤ C1(η) kα/2

for some C1(η).

Since |eit − 1|2 = t2 + t4R(t) for some function R(t) bounded in a neighborhood of zero,

we conclude that for each η ∈ Hw

|I3| ≤ C1(η) kα/2 e−Cka
2
k(1+a2kR(ak))

and similarly for I1. We now pick

ak =

(
log(kα/2+1)

Ck

)1/2

with C the above constant. Therefore,

I3 = O (1/k) and similarly for I1. (5.20)

We now turn to I2 = 1
2π

∫ ak
−ak

p̃
(√

k
(
eit(w + η/

√
k)− w

))
ψA,w

(
eit(w + η/

√
k)
)
e−iktdt.

After some algebra, one finds that this integral has the following form:

I2 =
1

2π

∫ ak

−ak
p̃
(√

k
(
eit(w + η/

√
k)− w

))
ekφ(t)+

√
kψ(t)+%(t)dt

where

φ(t) =
1

2
QA(w)(1− 2eit + e2it) + eit − it− 1

ψ(t) = (e2it − eit)ηAwT

%(t) =
1

2
(e2itQA(η)− |η|2).

The only critical point of the phase is at t = 0. After a Taylor expansion at zero of the phase,
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one obtains:

Lemma V.17. The integral I2 is of the form

I2 =
e[QA(η)−|η|2]/2

2π

∫ ak

−ak
p̃
(√

k
(
eit(w + η/

√
k)− w

))
efk(t)+gk(t) dt (5.21)

with

fk(t) = −k(QA(w) + 1)t2/2 + it
√
k η AwT

and

gk(t) = it3kG(t) + t2
√
kH(t) + itF (t),

where F, G, H are smooth k-independent functions (in particular bounded in a neighborhood

of zero).

Proof. We would like to expand eit and e2it in powers ot t. We make use of the following

formulae obtained using the Hadamard Lemma:

ex = 1 + xf(x), f(x) :=

∫ 1

0

euxdx

ex = 1 + x+ x2g(x), g(x) :=

∫ 1

0

∫ 1

0

ueuvxdvdu

ex = 1 + x+
1

2
x2 + x3h(x), h(x) :=

∫ 1

0

∫ 1

0

∫ 1

0

u2veuvwxdwdvdu.

Then, after rearranging the terms in the exponent of the integrand of (5.21), we get

kφ(t) +
√
kψ(t) + %(t) = −k

2
(QA(w) + 1)t2 +

√
kηAwT it+

1

2
QA(η)− 1

2
|η|2

= −k
2

(QA(w) + 1)t2 +
√
kηAwT it+

1

2
QA(η)− 1

2
|η|2

+ kit3H(t) +
√
kt2G(t) + itF (t) .
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We have defined

F (t) := QA(η)f(2it)

G(t) := ηAwT (g(it)− 4g(2it))

H(t) = QA(w)(h(it)− 4h(2it))− h(it).

where QA(w), ηAwT , and QA(η) are complex constants for fixed η and w.

We now make the change of variables t = s/
√
k in (5.21), to obtain

I2 =
e[QA(η)−|η|2]/2

2π
√
k

∫ ∞
−∞

p̃
(√

k(eis/
√
k − 1)w + eis/

√
kη
)
e−(QA(w)+1)s2/2+is η AwT egk(s/

√
k)

× χ
(

s√
k ak

)
ds

where χ is the characteristic function of [−1, 1]. We claim that

egk(s/
√
k) χ

(
s√
k ak

)
is uniformly bounded and converges to one ∀s ∈ R. (5.22)

To see this, observe first that the support of χ
(

s√
k ak

)
is equal to the set of s such that

|s| ≤ C−1/2 log(k)1/2, (5.23)

which inequality implies that |s|
j
√
k
≤ log(k)j/2√

k
for j = 0, 1 . . ., since C < 1. Then, since

gk(s/
√
k) =

[
is3G(s/

√
k) + s2H(s/

√
k) + isF (s/

√
k)
] 1√

k
, (5.24)

for all s in the support of χ
(

s√
k ak

)
gk(s/

√
k) is uniformly bounded by a constant times

log(k)3/2√
k

, which tends to zero.

By (5.22) and the Lebesgue dominated convergence theorem,
√
kI2 converges to the

right-hand side of (5.19). It remains to estimate the rate of convergence. Let us define
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E(s, k) := egk(s/
√
k) − 1 for s satisfying (5.23) and zero otherwise, so that

egk(s/
√
k)χ

(
s√
k ak

)
= χ

(
s√
k ak

)
[1 + E(s, k)] .

Applying Taylor’s theorem to |E|2 near s = 0, for each k, one gets

|E(s, k)|2 =
2s√
k
<
[
g′k(b/

√
k)
(
egk(b/

√
k) − 1

)]
≤ 2|s|√

k

∣∣∣g′k(b/√k)
(
egk(b/

√
k) − 1

)∣∣∣
for |s| < C−1 log(k)1/2 and where b = b(s) is between zero and s, and therefore |b(s)| ≤

C−1 log(k)1/2. From this and (5.24) it follows that

∣∣∣g′k(b/√k)
∣∣∣ ≤ C1√

k
and

∣∣∣egk(b/
√
k) − 1

∣∣∣ ≤ C2

for some constants Cj > 0, for each s satisfying (5.23). Therefore ∃C3 > 0 such that

|E(s, k)|χ
(

s√
k ak

)
≤ C3√

k
(5.25)

for all s ∈ R and for all k ∈ N.

Substituting back into I2, we get that I2 = J1 + J2 where

J1 :=
e[QA(η)−|η|2]/2

2π
√
k

∫ ∞
−∞

p̃
(√

k(eis/
√
k − 1)w + eis/

√
kη
)
e−(QA(w)+1)s2/2+is η AwT χ

(
s√
k ak

)
ds

and

J2 :=
e[QA(η)−|η|2]/2

2π
√
k

∫ ∞
−∞

p̃
(√

k(eis/
√
k − 1)w + eis/

√
kη
)
e−(QA(w)+1)s2/2+is η AwT E(s, k)

× χ
(

s√
k ak

)
ds.

94



We now use the classic estimate 1√
π

∫ x
−x e

−s2 ds = 1− e−x
2

x
√
π

+O( e
−x2

x2
) to conclude that

J1 =
e[QA(η)−|η|2]/2

2π
√
k

∫ ∞
−∞

p̃
(√

k(eis/
√
k − 1)w + eis/

√
kη
)
e−(QA(w)+1)s2/2+is η AwT ds

+O(1/k1/C log(k)1/2)

and, using (5.25), that |J2| ≤ D
k

where D is a constant that depends on η. Given that C < 1

we can conclude that

I2 =
1

2π
√
k
e−|η|

2/2

∫ ∞
−∞

p̃(isw + η) eQA(isw+η)/2 e−s
2/2 ds+O(1/k).

In view of (5.20)

ΥA(η, k) =
1

2π
√
k
e−|η|

2/2

∫ ∞
−∞

p̃(isw + η) eQA(isw+η)/2 e−s
2/2 ds+O(1/k),

and the proof is complete.

5.6 Inner Product estimates

In this section we prove part (3) of Theorem V.5, namely, we compute the inner product

estimate in (5.6):

Let A,B ∈ Dd, w ∈ S2d−1 and η ∈ Hw, then

〈ΨA,w,ΨB,w〉B(CPd−1) =
2π

kd

∫
Hw

σA(η)σB(η) dL(η) +O(k−d−1). (5.6)

Proof. By equivariance, without loss of generality we can take w = (1,~0). (See Remark 26.)

We introduce a standard parametrization of a dense open set U ∈ CPd−1, containing the

point $ = π(w), namely, the set U which is the complement to the hyperplane {z1 = 0}.
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One identifies U ∼= Cd−1
ζ by the coordinates

ζj =
zj+1

z1

, j = 1, . . . , d− 1.

Define next a section of π : S2d−1 → CPd−1 over U by

S$ : Cd−1 → S2d−1, S$(ζ) =
1√

1 + |ζ|2
(1, ζ).

Note that $ corresponds to the origin ζ = 0, and S$(0) = w.

The left-hand side of (5.6) is an integral over S2d−1 of a function that is S1 invariant.

Therefore, we can compute it (up to a factor of 2π) by pulling it back by the section S$ and

integrating with respect to the appropriate measure on Cd−1. A calculation shows that

〈ΨA,w,ΨB,w〉B(CPd−1) = 2π

∫
Cd−1

ΨA,w(S$(ζ)) ΨB,w(S$(ζ))
dL(ζ)

(1 + |ζ|2)d
= I + II

where I =
∫
|ζ|≤1

ΨA,w(S$(ζ)) ΨB,w(S$(ζ)) dL(ζ)
(1+|ζ|2)d

and II is the integral of the same integrand

over |ζ| > 1.

We will show that II is rapidly decreasing. We first find a bound for |ΨA,w(S$(ζ))|. To

begin with,

|ΨA,w(S$(ζ))| ≤ 1

2π

∫ 2π

0

∣∣ψA,w(eitS$(ζ))
∣∣ dt

=
1

2π

∫ 2π

0

∣∣∣ekQA(eitS$(ζ)−w)/2e−k|e
itS$(ζ)−w|2/2eikω(eitS$(ζ),w)/2

∣∣∣ dt
=

1

2π

∫ 2π

0

ek<[QA(eitS$(ζ)−w)/2]e−k|e
itS$(ζ)−w|2/2 dt

=
1

2π

∫ 2π

0

e−kQ̃A(eitS$(ζ)−w)/2 dt

where Q̃A(z) := −<(QA(z)) + |z|2 is a real positive definite quadratic form. Denote by cA > 0

96



the smallest eigenvalue of QA. Then ∀z, Q̃A(z) ≥ cA|z|2. Hence

|ΨA,w(S$(ζ))| ≤ 1

2π

∫ 2π

0

e−kcA|e
itS$(ζ)−w|2/2 dt =

1

2π

∫ 2π

0

e−kcA|S$(ζ)−e−itw|2/2 dt

≤ max
t∈[0,2π]

e−kcA|S$(ζ)−e−itw|2/2 = e−kcA mint∈[0,2π] |S$(ζ)−e−itw|2/2 = e−kcA(1−ρ(ζ)).

where ρ(ζ) = (1 + |ζ|2)−1/2. This last step results from the fact that

|S$(ζ)− e−itw|2 = |(ρ− e−it, ρζ)|2 = |ρ− e−it|2 + ρ2|ζ|2

which is minimized at t = 0, and |ρ−1|2 +ρ2|ζ|2 = ρ2(1+ |ζ|2)+1−2ρ = 1+1−2ρ = 2(1−ρ).

All in all, we have |ΨA,w(S$(ζ))| ≤ e−kcA(1−ρ(ζ)) and by similar analysis, we obtain

|ΨB,w(S$(ζ))| ≤ e−kcB(1−ρ(ζ)) for some cB > 0. Therefore,

|II| ≤ 2π

∫
|ζ|>1

|ΨA,w(S$(ζ))| |ΨB,w(S$(ζ))| dL(ζ)

(1 + |ζ|2)d
≤ 2π

∫
|ζ|>1

e−k(c(1−ρ(ζ)) dL(ζ)

(1 + |ζ|2)d

where c := cA+cB. If we change to polar coordinates, then r = |ζ| and 1−ρ(ζ) = 1−(1+r2)−1/2,

so

|II| ≤ 2π · (2π)d−1

∫ ∞
r=1

e
−kc

(
1− 1√

1+r2

)
r2d−3 dr

(1 + r2)d
≤ Ce

−kc
(

1− 1√
2

)

where C > 0, and thus II tends to zero rapidly as k →∞.

Now let’s consider the integral I. We change variables to ζ = η/
√
k, so that |η| ≤

√
k

provided |ζ| < 1. Thus,

|I| ≤ 2π

kd−1

∫
Cd−1

∣∣∣ΨA,w(S$(η/
√
k))
∣∣∣ ∣∣∣ΨB,w(S$(η/

√
k))
∣∣∣χ(|η|/

√
k)

dL(η)

(1 + |η|2/k)d

=
2π

kd−1

∫
Cd−1

|ΥA(η, k)| |ΥB(n, k)|χ(|η|/
√
k)

dL(η)

(1 + |η|2/k)d
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where χ is a cutoff function. We define

fk(η) := |ΥA(η, k)| |ΥB(n, k)| χ(|η|/
√
k)

(1 + |η|2/k)d
.

Now fk(η) > 0 is a sequence in L1(Cd−1, dL) and ∃ c, C > 0 such that fk(η) is dominated

by Ce−c|η|
2
, ∀k, η such that |η| ≤

√
k. Moreover, fk(η) converges to |ΥA(η, k)||ΥB(η, k)|

pointwise as k →∞, so by the Dominated Convergence Theorem and by part 2 of Theorem

1.3,

〈ΨA,w,ΨB,w〉B(k)
CPd−1

=
2π

kd

∫
Cd−1

σA(η)σB(η) dL(η) +O(k−d−1).

(The additional factor of 1/k comes from the definition lim
k→∞

ΥA(η, k) = σA(η)/
√
k, and

similarly for ΥB(η, k).)

5.7 Reduction of Symbols

In this section we will prove that the “symbol of the reduction is the reduction of the

symbol”. We will define a “new” reduction operator that acts directly on the symbol of the

state ψA,w ∈ B(Cd) and maps it to the symbol of the reduced state ΨA,w (Lemma V.22). The

reduction operator will be useful to prove the propagation theorem of Chapter VI. First, we

set the framework. Throughout this section note that ~ = k = 1, and we work entirely in the

category of symplectic vector spaces.

5.7.1 More General Bargmann Spaces

Let (E,ω, J) be a Kähler vector space. We take the sign convention that the associated

positive definite metric is g(u, v) = ω(u, Jv). A nice reference for the material in this section

is [Dau80]. We will quote freely from that article.

Definition V.18. Let

B(E) =
{
ψ : E → C ; ψ(v) = f(v) e−‖v‖

2/2 where ∂̄f = 0 and ψ ∈ L2(E)
}
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be the Bargmann space of E. Here ∂ is the d-bar operator associated with J and

‖v‖2 = g(v, v).

Remark 28. In our applications, E is the tangent space at a point in a Kähler manifold. In

the case of the squeezed states ψA,w ∈ B(Cd), E = TwS
2d−1 and the symbol of a squeezed

state, σψA,w as given in (5.8), is an element of B(TwS
2d−1).

The Heisenberg group of E is unitarily represented in B(E), as follows. If a ∈ E, define

the operator ρ(a) : B → B by ρ(a)(ψ)(v) = eiω(a,v)ψ(v− a). Then ρ(a) ◦ ρ(b) = eiω(a,b)ρ(a+ b),

so these operators form part of the Heisenberg representation of the Heisenberg group of

E. Recall that ψ ∈ B is said to be a smooth vector if and only if for all φ ∈ B the function

a 7→ 〈ρ(a)(ψ), φ〉 is smooth (this is the analogue of Schwartz functions in Bargmann space).

Definition V.19. We will denote by

B∞(E) ⊂ B(E)

the subspace of smooth vectors for this representation.

5.7.2 Reduction

If S ⊂ E is a subspace, we denote by S◦ and S⊥ its symplectic annihilator and orthogonal

complement, respectively. Note that

J(S◦) = S⊥. (5.26)

From now on we fix a co-isotropic subspace C ⊂ E (this means that C◦ ⊂ C). Let us define

H := C ∩ J(C), the maximal complex subspace of C.

Note that automatically H is a Kähler (in particular, symplectic) subspace of E.
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Lemma V.20. One has:

C ∩ (C◦)⊥ = H, (5.27)

and therefore the projection π : C → C/C◦ =: F identifies the reduction, F , of C with the

maximal complex subspace of C. Under this identification the symplectic structures of H and

F agree.

Proof. By (5.26), J(C) = (C◦)⊥ and (5.27) follows, which implies that π restricted to H is a

bijection. The rest follows from the usual characterization of the symplectic structure of a

reduction.

By the previous discussion, the reduction F = C/C◦ of C inherits the structure of a Kähler

vector space. Let B(F ) denote its Bargmann space, and B∞F ⊂ BF the subspace of smooth

vectors. Our objective is to introduce a natural “reduction” operator

R : B∞(E)→ B∞(F ) (5.28)

associated with C. Here “natural” is with respect to symplectic linear transformations. There

is an obvious map, namely, restriction to H followed by the identification H ∼= F , but this is

not the right one for our purposes.

Definition V.21. We define R : B∞(E) → B∞(F ) to be the operator of restriction to C

followed by integration over C◦, with respect to the measure induced by the Euclidean inner

product.

The point of this definition is that it describes the abstract way to construct the symbol

of a reduced state from the symbol of a Gaussian state in Bargmann space:

Lemma V.22. In the context of Theorem V.5, one has:

σA(η) =
1

2π
R(σψA,w)(η),
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where E = Cd, C = TwS
2d−1 and σψA,w(z) = eQA(z)/2−|z|2/2 is the symbol of ψA,w.

Proof. Simply note that iw is a unitary basis of C◦ and η ∈ Hw. Therefore

e−|η|
2/2

∫ ∞
−∞

eQA(isw+η)/2 e−s
2/2 ds

is exactly the definition of R(σψA,w)(η).

Remark 29. The space F = T$CPd−1, so the symbol of the reduced state ΨA,w, σA, is a

Schwartz function in the Bargmann space of (T$CPd−1).

We now explicitly compute σA in a special case:

Lemma V.23. If w = (1,~0), then (see (5.5))

σA(η) =
1√
2π

1√
QA(w) + 1

eQρw(A)(η)/2 e−|η|
2/2

where ρw(A) ∈ Dd−1 is the lower (d− 1)× (d− 1) principal minor of

A− AwTwA

wAwT + 1
.

Proof. Since

QA(isw + η) = i2s2wAwT + 2isηAwT + ηAηT = −s2QA(w) + 2isηAwT +QA(η)

equation (5.4) may be re-written as

σA(η) =
1

2π
e−|η|

2/2 eQA(η)/2

∫ ∞
−∞

e−s
2(QA(w)+1)/2 esiηAw

T

ds

=
1

2π
e−|η|

2/2 eQA(η)/2

∫ ∞
−∞

e−b
2s2/2 ecs ds

where b2 := QA(w) + 1 with b in the right side of the complex plane and c := iηAwT . Now
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<(b2) = <(QA(w) + 1) > 0 since A ∈ Dd and |w| = 1, so then we can evaluate the integral,

σA(η) =
1

2π
e−|η|

2/2 eQA(η)/2

√
2π

b
e(c/b)2/2

=
1√
2π

1√
QA(w) + 1

eQA(η)/2 e−(ηAwT )2/(2(QA(w)+1)) e−|η|
2/2.

Since η ∈ H(1,~0), our choice of w forces the first coordinate of η to be zero, so we take

η = (0, η1, . . . , ηd−1) and write

1

2

[
QA(η)− (ηAwT )2

QA(w) + 1

]
=

1

2
η

[
A− AwTwA

wAwT + 1

]
ηT .

Therefore the matrix ρw(A) is the lower (d− 1)× (d− 1) principal minor of the matrix

A− AwTwA

wAwT + 1
.

Remark 30. Recall from Remark 25 that the mapping Dd 3 A 7→∈ ρw(A) ∈ Dd−1 is not

injective, so multiple matrices in Dd can given rise to the principal minor above.

Corollary V.24. The symbol of the ΨA,w for any w ∈ S2d−1 is given by equation (5.5):

σA(η) =
1√
2π

1√
QA(w) + 1

eQρw(A)(η)/2 e−|η|
2/2

for a suitable Qρw(A) ∈ D(Hw).

Proof. By equivariance of the construction under the action of U(d), we can assume without

loss of generality that w = (1,~0). But that case was settled in Lemma V.23.
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CHAPTER VI

Propagation of Reduced States under Hermitian Hamiltonians

Given that the first part of this thesis was devoted to studying the Schrödinger evolution

of coherent states, it is natural to inquire about the dynamics of the reduced states ΨA,w

of the previous chapter. Recall from §3.4 that under the evolution of a general Hermitian

Hamiltonian, a state that is initially Gaussian remains approximately a Gaussian state. The

center of ψA(t),w(t) follows the solutions to Hamilton’s equations and the squeezing parameter

A(t) is governed by a Riccati equation. We will show that the same phenomenon occurs

for ΨA,w, i.e., in the semiclassical limit k →∞, the reduced state remains a reduced state.

Additionally, we consider the dynamics of its symbol σA.

6.1 Preliminaries

We begin with classical dynamics. Let h : CPd−1 → R be a smooth function that denotes

the classical Hamiltonian on complex projective space. Furthermore, we must require that h

is the projection π : S2d−1 → CPd−1 of a smooth time-independent Hamiltonian H : R2d → R

that commutes with the circle action. Formally speaking, we will refer to H as the canonical

lift of h as in:

Definition VI.1. The canonical lift of h is

H : Cd \ {0} → R, H(z) := |z|2h
(
π

[
z

|z|

])
, (6.1)

where, recall, π : S2d−1 → CPd−1 is the (general) Hopf fibration.
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Clearly, H is positive-homogeneous of degree two and S1 invariant, in the following sense:

∀λ ∈ C∗, z ∈ Cd \ {0} H(λz) = |λ|2H(z).

Conversely, any H : Cd \ {0} → R with this property is related to a smooth function h on

CPd−1 by (6.1).

Now if H is the canonical lift of h, then by construction the Weyl quantization in z of

H, denoted by Ĥ, commutes with the number operator in Bargmann space (5.1), so we can

define the operator

ĥ : B(CPd−1)→ B(CPd−1)

by restricting Ĥ to B(CPd−1) to be the quantum Hamiltonian on CPd−1.

Recall that we described the propagation of a Gaussian coherent state in B(Cd) by a

Hermitian Hamiltonian in Theorem III.7. For convenience, we recall the results here.

Let H : R2d → R be a smooth Hamiltonian which agrees with the canonical lift of a

smooth h : CPd−1 → R outside a small neighborhood of the origin, Ĥ : B(Cd)→ B(Cd) be

its quantization in Bargmann space and U(t) be the fundamental solution of the Schrödinger

equation i~ ∂
∂t
U = ĤU . Also, let w ∈ Cd, t 7→ w(t) be the trajectory of H through w. For

each t ∈ R, let

St := Hzz(w(t)) and Rt := Hzz(w(t))

with Hzz =

(
∂2H
∂zjzl

)
etc. Then, for t ∈ [−T, T ] with T ∈ (0,∞):

U(t)(ψA,w) = eikf(t) eiχ(t) ψA(t),w(t)

(
1 +O(k−1/2)

)
(6.2)
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where f(t), A(t) and χ(t) solve

ḟ(t) = −H(w)−=(ẇ(t)w(t)T )

iȦt = Rt + (StAt + AtS
T
t ) + AtRtAt

χ̇(t) = −1
2
Tr(RtAt + St)

(6.3)

with A(0) = 0 and χ(0) = 0.

From (3.2), the symbol of ψA,w moves according to:

eiχ(t) σψA(t),w(t)
= Mp(d(φt)w)

(
σψA,w

)
where Mp is the metaplectic representation of B(Cd) and φt : Cd → Cd is the Hamilton flow

of H. We make the assumption that we can identify the tangent spaces TwCd ∼= Tw(t)Cd

using translations. However, no such identification exists among tangent spaces of CPd−1,

which complicates the description of the symbol of a propagated reduced state, although,

under certain conditions, we may obtain an analogous result.

6.2 Main Results

We will denote the quantum propagator on the Bargmann space of the projective space as

V (t) = e−iktĥ : B(CPd−1)→ B(CPd−1).

This is the fundamental solution of Schrödinger’s equation: i~ ∂
∂t
V (t) = ĥV (t).

The following theorem states, that up to leading order in k, the propagation of a reduced

squeezed state remains a squeezed state.

Theorem VI.2. Let t ∈ [−T, T ] with T ∈ (0,∞). The evolution V (t)(ΨA,w) of a reduced
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Gaussian state is of the form

V (t)(ΨA,w) = eikf(t) eiχ(t) ΨA(t),w(t)

(
1 +O(k−1/2)

)
(6.4)

where f(t), A(t), and χ(t) are as in (6.3) with H the canonical lift of h.

Next we address the problem of computing the symbol of V (t)(ΨA,w) for each t. Recall

that this symbol is an element of the ~ = 1 Bargmann space of Tπ(w(t))CPd−1. We can

certainly combine (6.4) with Corollary V.24 to obtain the symbol of V (t)(ΨA,w), which we

denote by σA(t). However, in general this symbol lives in a different space than the symbol

σA of ΨA,w. It is true that, since the entire construction of reduction is covariant with respect

to the U(d) action which is transitive on the projective space, for a given t, we can apply an

element of U(d) and rotate w(t) back to the initial w. However, this element in U(d) is not

unique.

To avoid this problem, we examine the special case when the point $ ∈ CPd−1 is fixed:

$ = π(w) is a critical point of h, and h($) = 0. (6.5)

As we will see in Lemma VI.9, these assumptions in particular imply that w is a critical point

of H : Cd → R, so w(t) = w. Therefore, the symbol stays on the same tangent space when

we propagate the state. The flow is governed by the Hessian of h at $.

By our construction, we have an analogous result as (5.5) for the symbol of the reduced

states.

Theorem VI.3. Under the assumption (6.5), for each t ∈ R, the symbol of V (t)(ΨA,w) is

equal to Mp(ϕt)(σA), where σA is the symbol of ΨA,w, ϕt : T$CPd−1 → T$CPd−1 is the flow

of the Hessian of h at $, and Mp is the metaplectic representation in the Bargmann space of

T$CPd−1.
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6.3 Intermediate Results

6.3.1 The Metaplectic Representation and Reduction

In this section we will prove that “reduction commutes with propagation” on the level of

symbols. This result is needed to prove how the symbol of a reduced state propagates.

Once again, let (E,ω, J) be a Kähler vector space. Denote by PE : L2(E)→ B(E) the

orthogonal projector (it turns out that B(E) is closed in L2(E)). If Φ : E → E is a symplectic

transformation, then one can form the unitary operator UΦ : L2(E)→ L2(E) which is simply

UΦ(ψ) = ψ ◦ Φ−1.

One of the main results of [Dau80] is the following:

Theorem VI.4. ([Dau80] §6) Let Sp(E) denote the group of symplectic transformations of

E. The assignment

Sp(E) 3 Φ 7→ W(Φ) := ηJ,Φ PE ◦ UΦ : B(E)→ B(E)

where

ηJ,Φ = 2−N (det [(I − iJ) + Φ(1 + iJ)])1/2 (6.6)

is the metaplectic representation.

Our goal here is to prove that the metaplectic representation is natural with respect to

symplectic quotients, in the following sense.

Assumption VI.5. Let C ⊂ E be a co-isotropic subspace, as above, and let Φ : E → E a

linear symplectic isomorphism satisfying Φ(C) = C. From this it follows that Φ maps C◦ onto

itself.
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Assumption VI.6. The restriction of Φ to H◦ = C◦+J(C◦) is the identity: Φ|H◦ : H◦ → H◦.

Denote by F = C/C◦ the reduction of C, and by φ : F → F the reduction of Φ:

∀v ∈ C φ([v]) = [Φ(v)],

where [v] ∈ F denotes the projection of v. φ itself is a symplectomorphism.

Proposition VI.7. Under the previous assumptions VI.5 and VI.6, the following diagram

commutes,

B(E)
W(Φ)−−−→ B(E)

↓ ↓

B(F )
W(φ)−−−→ B(F )

where the vertical arrows are the reduction operator R.

The proof of the previous statement is given in Proposition 4.7 of [RU21].

6.3.2 Classical Dynamics

The next lemma follows from Definition VI.1.

Lemma VI.8. The trajectories of the Hamilton flow of the canonical lift of h on S2d−1 project

onto trajectories of the Hamilton flow of h.

The next lemma is needed to prove Theorem VI.3.

Lemma VI.9. Consider h ∈ C∞(CPd−1) and $ ∈ CPd−1 a critical point. Let w ∈ π−1($)

and H ⊂ TwS
2d−1 be the horizontal space at w, which we identify with T$CPd−1.

If, in addition, h($) = 0 then w is a critical point of the canonical lift, H, of h, and with

respect to the decomposition TwCd = H⊕H◦ the Hessian of H at w has the block form

∗ 0

0 0
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where ∗ is the Hessian of h at $.

The proof of the previous result is given in Lemma 5.2 in [RU21].

Remark 31. If $ is a critical point of h but h($) is not necessarily zero, then we can apply

the previous lemma to h̃ = h− h($). Clearly the canonical lifts of these functions are related

by H̃ = H − h($)|z|2, and since {H, |z|2} = 0 the Hamilton flow of H restricted to the unit

sphere agrees with that of H̃ up to a the action of eith($) ∈ S1.

6.3.3 Quantum Propagation

A first observation is:

Proposition VI.10. One has:

ĥ(ΨA,w) = h((π(w))ΨA,w

(
1 +O(k−1/2)

)
.

Proof. The analogous result for the action of Ĥ on Gaussian coherent states in L2(Rd) is

well-known. Since [Ĥ,R] = 0 with R being the reduction operator in (5.28), the result follows

immediately.

Proof of Theorem VI.2:

Proof. Let U(t) = exp
[
−iktĤ

]
. Simply notice that [U,R] = 0, as Ĥ and the number

operator commute and R is a normalized spectral projector of the latter, and then apply the

result on propagation of squeezed states in B(Cd) (6.2).

Proof of Theorem VI.3:

Proof. We will apply Proposition VI.7, with E = TwCd, C = TwS
2d−1 and Φ : E → E equal

to the differential at w of the time t map of the Hamilton flow of H, Φ = d(φt)w. Let us

identify the various relevant subspaces of E. One has

C◦ = {siw ; s ∈ R} and J(C◦) = {sw ; s ∈ R},
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and H is the horizontal subspace H = (Cw)⊥, where the orthogonal is with respect to the

standard Hermitian form on Cd. The reduction C/C◦ is naturally identified with W and with

T$CPd−1. Finally, observe that H◦ = Cw.

We need to verify that the hypotheses (1) and (2) of Proposition VI.7 are satisfied. This

follows by Lemma VI.9, because Φ is the time t map of the Hamilton flow of the Hessian of

H at w. Therefore Proposition VI.7 applies to the present situation, which concludes the

proof in view of Theorem VI.2.
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CHAPTER VII

Application: Spin-Squeezed States

In this chapter, we examine the reduction of squeezed states in Bargmann space of complex

dimension d = 2. The reduced states correspond to SU(2), or spin-squeezed coherent states

naturally in the Bargmann space of CP1 (which is also known as the Riemann sphere or

the Bloch sphere in physics). We will provide formulas for the spin-squeezed states in the

standard orthonormal basis of B(CP1) and look at an example of propagating one of these

states by a simple Hermitian quantum Hamiltonian.

Definition VII.1. A standard orthonormal basis of B(CP1) is

|n〉 =
1

π

√
k + 1

2

√(
k

n

)
zn1 z

k−n
2 , 0 ≤ n ≤ k. (7.1)

This is a basis of eigenvectors of the operator L̂3 in (5.2) corresponding to

σ3 =
1

2

1 0

0 −1

 ,

the eigenvalue associated with |n〉 being n− k
2
.

Recall that (5.10) gave us an exact algebraic expression for the reduced states ΨA,w. We

now present an expression that agrees asymptotically with (5.10) and only involves a single

parameter µ ∈ D1. By equivariance of the construction under the action of SU(2), it suffices

to write the approximation in the case w = (1, 0).
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Proposition VII.2. Let µ ∈ C, |µ| < 1 and [µ] :=

0 0

0 µ

 . Then

Ψ[µ],(1,0) = πkke−k

√
2

(k + 1)!

∑
0≤`≤k/2

(
1

2k

)`
1√

(k − 2`)!

√(
2`

`

)
µ` |k − 2`〉. (7.2)

Furthermore, for any A =

a c

c b

 ∈ D2, if we let

µ = ρ(1,0)(A) = b− c2

1 + a
,

then |µ| < 1 and one has

ΨA,w(z) = Ψ[µ],(1,0)(1 +O(1/
√
k)),

where the error estimate is in norm.

Proof. (7.2) is a straightforward calculation, starting with (5.10). If µ = ρ(1,0)(A), then |0, µ〉

and ΨA,w have the same symbol, and the proposition follows from Corollary V.6.

With the goal of obtaining the simplest expression for spin squeezed states (asymptotically),

we now normalize (7.2) and simplify it.

Lemma VII.3. The wave function

|o, µ〉 :=
∑

0≤`≤k/2

(
1

2k

)`
(2`)!

`!

√(
k

2`

)
µ` |k − 2`〉 (7.3)

agrees to leading order with k√
π
Ψ[µ],(1,0), and its norm satisfies

〈o, µ||o, µ〉 = (1− |µ|2)−1/2 +O(1/k). (7.4)
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(Here o = π(1, 0) ∈ CP1.)

Proof. Identifying H(1,0) with the z2 complex plane one finds that

σ[µ](z2) =
1√
2π
eµz

2
2/2 e−|z2|

2/2

and therefore, by (5.7), after some calculations we obtain

‖Ψ[µ],(1,0)‖ ∼
√
π

k
(1− |µ|2)−1/4. (7.5)

If we multiply Ψ[µ],(1,0) by k/
√
π, by (7.5) the result has a norm squared that asymptotically

is given by (7.4). We then apply Stirling’s formula to k/
√
πΨ[µ],(1,0) and simplify to obtain

(7.3).

For future reference, note that the symbol of |o, µ〉 (see Remark 23) is

1√
2 π

eµz
2
2/2 e−|z2|

2/2.

We have plotted the magnitudes of the components of the `2−normalized |o, µ〉 for µ = 3/4

and k = 30 in Figure 7.1.

We now let SU(2) act on the kets |0, µ〉:

Definition VII.4. Let Sk : SU(2)→ U (B(CP1)) be the natural representation of SU(2) in

B(CP1). For any p ∈ CP1, let g ∈ SU(2) be such that p = g · o. If µ ∈ D1, let

|p, µ〉 = Sk(g)(|o, µ〉). (7.6)

We call any such state a squeezed SU(2) Gaussian state with center p and parameter µ.

We note that the notation (7.6) is ambiguous, since g is not unique for a given p, but the

ambiguity is a unitary factor (the squeezed coherent states are properly labeled by points on

S3).
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Figure 7.1: Plot of the components of the `2−normalized kets (7.3) for k = 30 and µ = 1
2
(1−i).

Observe that the magnitudes decay as k decreases. The decay is faster the closer |µ| is to
zero.

It is worthwhile to give another description of |o, µ〉, based on another common realization

of the Hilbert space of CP1. Using a trivialization of the Hopf fibration S3 → CP1, one can

identify the Bargmann space of CP1 with the space

B(CP1) ∼=
{

Ψ(ζ) =
f(ζ)

(1 + |ζ|2)k/2
| ∂f = 0

}
∩ L2(C, dm) where dm =

2π

i

dζ ∂̄ζ

(1 + |ζ|2)2
. (7.7)

One can check that, in the above, f must be a polynomial of degree at most k in the complex

variable ζ. The identification is simply by pulling back elements in B(CP1) by the section

S$ : C→ S3 given by

S$(ζ) =
1√

1 + |ζ|2
(1, ζ).

The pull-back of the basis kets is

S∗$|n〉 =
1

π

1

(1 + |ζ|2)k/2

√
k + 1

2

√(
k

n

)
ζk−n (7.8)
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and this allows us to find the pull-back of the squeezed states

S∗$|o, µ〉 =
1

π

k!

(1 + |ζ|2)k/2

√
k + 1

2

∑
0≤`≤k/2

(
1

2k

)`
1

`!(k − 2`)!
µ` ζ2`. (7.9)

Figure 7.2 shows the Husimi function |S∗$|o, µ〉|
2 of the ket |o, µ〉 and its level sets as a

function of ζ, for a choice of µ and k. Notice that the Husimi function is always nonnegative,

so it can be thought of as the phase space probability density function for the state. Yet

another motivation for using the Bargmann space is that it is a natural home for the Husimi

function.

-0.5 0.0 0.5

-0.5

0.0

0.5

Re ζ

Im
ζ

Figure 7.2: Plot of |S∗$|o, µ〉|
2 and its levels sets for k = 10 and µ = 1

2
(1− i).

7.1 Example: Propagation with a Hermitian Hamiltonian

Let the classical angular momentum operators in Bargmann space Lj : C2 → R be given

by

L1 = <(z1z2) =
1

2
(q1q2 + p1p2),

L2 = =(z1z2) =
1

2
(q1p2 − p1q2),

L3 =
1

2

(
|z1|2 − |z2|2

)
=

1

4
(q2

1 + p2
1 − q2

2 − p2
2)
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where we have let zj = 1√
2
(qj − ipj). Then {L1, L2} = L3 and cyclic permutations. Observe

that these are the classical analogues of the operators in (5.2):

L̂1 =
1

2

(
z1

∂

∂z2

+ z2
∂

∂z1

)
, L̂2 = − i

2

(
z1

∂

∂z2

− z2
∂

∂z1

)
, L̂3 =

1

2

(
z1

∂

∂z1

− z2
∂

∂z2

)
.

These functions are the components of the moment map of the SU(2) action on C2 with

respect to the standard Pauli matrices, and they all commute with the circle action. Therefore

they descend to smooth functions

`j : CP1 → R

which are the components of the SU(2) Hamiltonian action on the complex projective line.

Since the Lj are quadratic, they are the canonical lift of the `j.

Using the coordinate ζ = z2/z1 and writing ζ = x+ iy, the `j’s are defined as

`1 := < ζ

1 + |ζ|2
, `2 := = ζ

1 + |ζ|2
, `3 :=

1

2

|ζ|2 − 1

|ζ|2 + 1
.

Each `j has two critical points. Since the SU(2) action is an isometry, the Hessian of `j at

any fixed point $ generates a unitary transformation of T$CP1, which is simply a rotation.

Under the quantum propagation of ˆ̀
j a squeezed state at $ simply rotates, and so does its

symbol.

Let

h = a2`2
1 − b2`2

2, a, b ≥ 0

be a classical Hamiltonian on CP1. The point $ = π(1, 0) is a critical point of h, and

h($) = 0. To apply Theorem VI.3 we need to identify the Hessian of h at $.

Using the approximation 1
1+|ζ|2 ∼ 1− |ζ|2, one readily checks that the Taylor expansion

of h at the origin begins with

h(ζ) ∼ (a2 + b2)

4
(ζ2 + ζ

2
) +

a2 − b2

2
ζζ.
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Let us now choose a = b = 1/
√

2 so that h(ζ) ∼ 1
4
(ζ2 + ζ

2
). If z is a complex coordinate

on T$CP1, the symbol σ(z, t) = f(z, t)e−|z|
2/2 of a propagated squeezed state centered at the

origin solves the Schrödinger equation1

i
∂f(z, t)

∂t
=

1

4

(
z2 +

d2

dz2

)
f(z, t).

We choose the time-evolved ansatz to be f(z, t) = ν(t) eµ(t)z2/2. We can now apply 6.2 and

(6.3) (which now gives an exact solution) with Rt = 1/4 and St = 0, and conclude that ν and

µ satisfy

µ̇ =
1

2i
(1 + µ2) and ν̇ = − i

4
µ ν.

Let us impose the initial conditions µ(0) = 0 and ν(0) = 1/(π
√

2), which correspond to the

symbol of the standard SU(2) coherent state at the origin. We find that the solutions to

these ODEs are

µ(t) = −i tanh(t/2), ν(t) =
1

π
√

2

1√
cosh(t/2)

,

and therefore

σ(z, t) =
1

π
√

2

1√
cosh(t/2)

e−i tanh(t/2)z2/2 e−|z|
2/2.

In terms of the standard squeezed states (7.3) with µ(0) = 0 in this case, we can conclude

that the evolved state is given by

e−iktĥ|o, 0〉 = ν(t)|o, µ(t)〉
(

1 +O(1/
√
k)
)

(7.10)

where the functions ν(t) and µ(t) and the Hamiltonian ĥ are as above.

Figure 7.3 compares numerically the left-hand-side and right-hand-side of (7.10) for k = 30

and t = 2. In order to compute the left-hand-side of (7.10), we have written the quantum

1Note that ~ = 1 here.
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Hamiltonian ĥ as

ĥ = a2L̂1 − b2L̂2

where, as matrices in the basis of B(CP1) (7.1), L̂1 and L̂2 are given by

L̂1|n〉 =
1

2k

[√
n(k − n+ 1) |n− 1〉+

√
(k − n)(n+ 1) |n+ 1〉

]
L̂2|n〉 =

i

2k

[√
n(k − n+ 1) |n− 1〉 −

√
(k − n)(n+ 1) |n+ 1〉

]

for n = 0, . . . , k. Notice that these matrices only have nonzero entries along the sub-diagonal

and the super-diagonal. These matrices can be found using the operators in Lemma 3.2 and

Lemma 3.4 in [BGPU03].
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Figure 7.3: Plot of the magnitudes of the components of the normalized vectors on both sides
of (7.10) for k = 20 and t = 1.3. The difference in the `2−norm is |LHS−RHS| ≈ 2.58×10−2.
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APPENDIX A

Metaplectic Operators acting on Schwartz Functions

We prove that metaplectic operators map Schwartz functions to Schwartz functions which

is used in the proof of Lemma III.4.

Let H2d be the Heisenberg group of R2d and let UB(Cd) denote unitary operators in B(Cd).

Denote the Heisenberg representation by ρ : H2d → UB(Cd).

Definition A.1. An element ψ ∈ B(Cd) is a smooth vector if and only if ∀φ ∈ B(Cd) the

map µ : H2d → C given by

µ(g) = 〈ρ(g)(ψ), φ〉

is smooth.

The next lemma follows from equation (12) in [How80].

Lemma A.2. The space of smooth vectors in B(Cd) is B(Cd) ∩ S(R2d).

The following result from Chapter 4 in [Fol95] states that the metaplectic operators

intertwine the Heisenberg representation.

Lemma A.3. Let W be a metaplectic operator associated with a group isomorphism

G : H2d → H2d. Then,

ρ (G(g)) = W ◦ ρ(g) ◦W−1, g ∈ H2d.

Proposition A.4. Let W be a metaplectic operator associated with the group isomorphism

G : H2d → H2d. Then, W : S(R2d)→ S(R2d).
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Proof. Let ψ ∈ B(Cd) ∩ S(R2d) and choose φ ∈ B(Cd). By Lemma A.2, ψ is a smooth vector

in Bargmann space. Hence, using the definition of smooth vector, consider the function

µ(g) = 〈ρ(g)(W (ψ)), φ〉 for g ∈ H2d. We need to show that µ(g) is smooth. Observe that

µ(g) = 〈ρ(g)(W (ψ)), φ〉 = 〈W−1ρ(g)(W (ψ)), W−1φ〉 = 〈ρ(G−1(g))(ψ),W−1φ〉

where we have used the fact that W−1 is unitary in the first step and Lemma A.3 in the

second step. Let µ = ν ◦G−1 where ν(f) := 〈ρ(f)ψ,W−1 φ〉 for each f ∈ H2d. Now ν is a

smooth because ψ is a smooth vector which implies that µ is also smooth.
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APPENDIX B

Borel Summation

The following proposition follows from Proposition III.5. It shows that we can find a

wavefunction that solves the Schrödinger problem to all orders in ~.

Proposition B.1. Given an initial condition,

ψ
∣∣
t=0

= ~m ei~−1Φ(z,0) e−~
−1|z|2/2 ϕ

(
z − w(0)

~
, 0, ~

)
,

for each t, ∃ψ(z, t) ∈ Imγ s.t. for each N, T , ∃CN,T s.t.

sup
z∈Cd
|�̃ψ| ≤ CN,T ~m+(N+1)/2, ∀|t| ≤ T.

Remark 32. Note that ψ
∣∣
t=0

is not actually in Imγ because it has no t dependence.

Proof. Let ρ0 := ψ in our expansion in (3.5). Without loss of generality, let m = 0. Then,

ψN =
N∑
j=0

~j/2ρj, ρj ∈ I0
γ .

Choose a C∞ function χ such that 0 ≤ χ ≤ 1, χ ≡ 1 on [0, 1] and χ ≡ 0 on [2,∞). We define

ψ :=
∞∑
j=0

~j/2ρj χ(λj~) (B.1)

where the sequence λj → ∞ remains to be chosen. Since λj → ∞, there are for each
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~ > 0 at most finitely many nonzero terms in the sum (B.1). We have

ψ − ψN = ψ −
N∑
j=0

~j/2ρj =
∞∑

j=N+1

~j/2χ(λj~) ρj +
N∑
j=0

~j/2 (χ(λj~)− 1) ρj.

For each j, |�̃ρj| ≤ ~Cj for some constant Cj by Proposition (III.2) and using the fact that

ρj is Schwartz, so ∣∣∣χ(λj~) �̃ρj
∣∣∣ ≤ ~Cjχ(λj~).

If we choose the λj so that λj ≥ 2j+1Cj, then

~Cjχ(λj~) = ~Cj
λj~
λj~

χ(λj~) =
Cj
λj

(λj~)χ(λj~) ≤ 2
Cj
λj
≤ 2 · 2j−1 = 2−j (B.2)

because (λj~)χ(λj~) ≤ 2. We will also assume that λj ≤ λj+1.

Since �̃ is a linear operator and χ is a piece-wise constant function,

�̃(ψ − ψN) = �̃ψ − �̃ψN =
∞∑

j=N+1

~j/2χ(λj~) �̃ρj +
N∑
j=0

~j/2 (χ(λj~)− 1) �̃ρj.

Then,

∣∣∣�̃(ψ − ψN)
∣∣∣ ≤ ∞∑

j=N+1

hj/2
∣∣∣χ(λj~) �̃ρj

∣∣∣+
N∑
j=0

~j/2
∣∣∣(χ(λj~)− 1) �̃ρj

∣∣∣
=

∞∑
j=N+1

hj/2
∣∣∣χ(λj~) �̃ρj

∣∣∣+
N∑
j=0

~j/2
∣∣∣(1− (χ(λj~)) �̃ρj

∣∣∣
=

∞∑
j=N+1

hj/2χ(λj~)
∣∣∣�̃ρj∣∣∣+

N∑
j=0

~j/2(1− (χ(λj~))
∣∣∣�̃ρj∣∣∣

=: I + II
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Using the estimate in (B.2),

I ≤
∞∑

j=N+1

~j/2+1Cj χ(λj~) ≤
∞∑

j=N+1

~j/2

2j
≤ ~(N+1)/2.

Furthermore,

II ≤
N∑
j=0

~j/2+1Cj(1− χ(λj~)).

Since χ ≡ 1 on [0, 1], II = 0 if 0 < ~ ≤ λ−1
N because λN ≥ λj, ∀j, so λ−1

N ≤ λ−1
j .

Otherwise, if λ−1
N ≤ ~ ≤ 1, then 1 ≤ λN~, so

II ≤
N∑
j=0

~Cj ≤
N∑
j=0

~ (λN~)(N−1)/2Cj = ~ ~(N−1)/2 λ
(N−1)/2
N

N∑
j=0

Cj = C̃N ~(N+1)/2

where C̃N := λ
(N−1)/2
N

∑N
j=0Cj.

1

Therefore, for any N , |�̃(ψ − ψN)| ≤ CN~(N+1)/2.

1The choice of (λN~)(N−1)/2 is not unique; this sum can be made arbitrarily small. The restriction on the
bound comes from the sum in I.
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APPENDIX C

The Complex Structure JA(t) as a Matrix

In this appendix, we derive a matrix version of the complex structure JA(t) that is found

in equation (4.2) which may be more useful for computations. Assume that we are working

with column vectors.

We begin with (4.18), which we reproduce below for convenience:

i(ẇ(t)− At ẇ(t)) = ∇zF (w(t), t) + At∇zF (w(t), t).

Recall that w(t) = x(t) + iy(t) and ∇z = 1
2
(∇x − i∇y). Let At = Bt + iDt where Bt and Dt

real-symmetric matrices which denote the real and imaginary parts of At, respectively. Then,

on the left-hand side we have

i(ẇ(t)− At ẇ(t)) = i [ẋ(t)− iẏ(t)− (Bt + iDt)(ẋ(t) + iẏ(t))]

= i [ẋ(t)− iẏ(t)− (Bt ẋ(t)−Dt ẏ(t))− i(Dt ẋ(t) +Bt ẏ(t))]

= i [(Id −Bt) ẋ(t) +Dt ẏ(t)− i [Dt ẋ(t) + (Id +Bt) ẏ(t)]]

= Dt ẋ(t) + (Id +Bt) ẏ(t) + i [(Id −Bt) ẋ(t) +Dt ẏ(t)] .
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Furthermore,

∇zF (w(t), t) + At∇zF (w(t), t) = 1
2
(∇xF − i∇yF ) + 1

2
(Bt + iDt)(∇xF + i∇yF )

= 1
2

[∇x(H + iΓ)− i∇y(H + iΓ)] + 1
2
(Bt + iDt)∇x(H + iΓ) + 1

2
i(Bt + iDt)∇y(H + iΓ)

= 1
2

(∇xH + i∇xΓ− i∇yH +∇yΓ +Bt∇xH + iDt∇Hx)

+ 1
2

(iBt∇xΓ−Dt∇xΓ + iBt∇yH −Dt∇yH −Bt∇yΓ− iDt∇yΓ)

= 1
2

(∇xH +∇yΓ +Bt∇xH −Dt∇xΓ−Dt∇yH −Bt∇yΓ)

+ 1
2
i (∇xΓ−∇yH +Dt∇xH +Bt∇xΓ +Bt∇yH −Dt∇yΓ)

= 1
2

[(Id +Bt)∇xH −Dt∇yH −Dt∇xΓ + (Id −Bt)∇yΓ]

+ 1
2
i [Dt∇xH − (Id −Bt)∇yH + (Id +Bt)∇xΓ−Dt∇yΓ] .

Finally, in matrix form i(ẇ(t)− Atẇ(t)) = ∇zF (w(t), t) + At∇zF (w(t), t) is

Dt ẋ(t) + (Id +Bt) ẏ(t)

(Id −Bt) ẋ(t) +Dt ẏ(t)

 =
1

2

(Id +Bt)∇xH −Dt∇yH

Dt∇xH − (Id −Bt)∇yH

+
1

2

−Dt∇xΓ + (Id −Bt)∇yΓ

(Id +Bt)∇xΓ−Dt∇yΓ



 Dt Id +Bt

Id −Bt Dt


ẋ(t)

ẏ(t)

 =

 Dt Id +Bt

Id −Bt Dt

 · 1

2

−∇yH(w(t), t)

∇xH(w(t), t)


+

−(Id −Bt) −Dt

Dt Id +Bt

 · 1

2

−∇yΓ(w(t), t)

∇xΓ(w(t), t)



ẋ(t)

ẏ(t)

 = ΞH(w(t), t) +

 Dt Id +Bt

Id −Bt Dt


−1−(Id −Bt) −Dt

Dt Id +Bt

ΞΓ(w(t), t) .
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Therefore, as a 2d× 2d matrix,

JA(t) =

 =(At) Id + <(At)

Id −<(At) =(At)


−1−(Id −<(At)) −=(At)

=(At) Id + <(At)

 . (C.1)
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