
Low-Power Low-Error Wireless Sensor Network
for Health and Usage Monitoring Systems

by

Farzad Asgarian

A dissertation submitted in partial fulfillment
 of the requirements for the degree of

Doctor of Philosophy
(Electrical and Computer Engineering)

in the University of Michigan
2022

Doctoral Committee:

Professor Khalil Najafi, Chair
Professor Yogesh Gianchandani
Assistant Professor Hun-Seok Kim
Associate Professor Alanson Sample
Pascal Sautier, Hutchinson Research Center

Farzad Asgarian

asgarian@umich.edu

ORCID iD: 0000-0003-1440-6303

© Farzad Asgarian 2022

 ii

Dedication

To my Lovely Wife, Mahshid,

Our Sweet Little Angel, Gandom, who made me father, &

Our next Gift from the Angels, who gave us something to fight for.

 iii

Table of Contents

Dedication ... ii

List of Tables ... vi

List of Figures ... vii

Abstract .. xi

 Introduction ... 1

1.1 Health and Usage Monitoring Systems (HUMS) ... 1

1.2 Helicopter HUMS .. 2

1.2.1 Wired vs Wireless HUMS .. 3

1.2.2 Time Synchronization in Wireless HUMS ... 4

1.3 Wireless Sensor Nodes ... 7

1.4 Research Objective and Contributions ... 8

 BlueSync: Time Synchronization in Bluetooth Low Energy with Energy-Efficient
Calculations... 14

2.1 Introduction .. 14

2.2 Designed Sensor Nodes .. 19

2.3 BlueSync Implementation ... 20

2.3.1 Timestamping ... 21

2.3.2 Frequency-Drift Estimation .. 25

2.3.3 Ticks Adjustments .. 28

2.4 Discrete Adjustments .. 30

2.4.1 One Update per Hundred Runs... 30

 iv

2.4.2 Adjustments with Pre-Calculated Values ... 32

2.5 Duty Cycling Clock Sources .. 33

2.6 Results .. 35

2.6.1 Offset Removal and Software Interrupts .. 36

2.6.2 BlueSync... 37

2.6.3 Discrete Adjustments .. 39

2.6.4 Duty Cycling Clock Sources .. 41

2.6.5 FOM ... 43

2.7 Comparison with Previous Works.. 46

2.8 Summary .. 49

 Low-Power Techniques for Synchronization Protocols ... 52

3.1 Frequency Scaling in Time Synchronization ... 52

3.1.1 Implementation ... 52

3.1.2 Results and Discussion ... 54

3.2 AdaptSync ... 56

3.2.1 Error Sign and Value .. 57

3.2.2 Reversing the Error ... 59

 Wake-up Radio ... 61

4.1 Wake-up Methods .. 62

4.2 WUR Sensitivity .. 66

4.3 WUR Architecture .. 70

4.3.1 Previous Works .. 70

4.3.2 Two-Stage Wake-up Method ... 75

4.3.3 Passive Rectifier ... 79

4.3.4 Base-band Amplifier and Comparator .. 83

 v

4.3.5 Clock and Biasing... 84

4.4 Measurement Results ... 85

 Rotor Tests .. 93

5.1 Rotor Test Bench .. 94

5.2 Bench Tests .. 96

5.3 In-Flight Helicopter Test .. 99

5.3.1 Requirements .. 99

5.3.2 Hardware and Housing ... 101

5.3.3 Software .. 102

5.4 Results with In-Flight Test Requirements .. 103

 Conclusion and Future Works .. 108

Bibliography ... 112

 vi

List of Tables

Table 1.1:Summary of the requirements for the target HUMS application 10

Table 2.1: Comparison of BLE SoCs ... 19

Table 2.2: Required time for calculating drift-estimation parameters (with 8 timestamps) 27

Table 2.3: Required time for calculating ticks adjustments .. 29

Table 2.4: Average time required for ticks adjustment with one update per hundred runs (/100
method) ... 31

Table 2.5: Average time required for ticks adjustment with pre-calculated values (4L method) 32

Table 4.1: Specifications of antennas used in the Friss equation for different frequencies 67

Table 4.2: System power break down with VDD = 0.4 V .. 88

Table 4.3: Comparison with previous passive front-end WURs .. 89

Table 4.4: System power break down with VDD = 0.4 V. ... 89

Table 5.1: Average absolute error between the extracted angles (pitch, flap, and lag) of the
optical sensors as the reference and the wired /wireless systems (bench tests) 98

Table 5.2: Comparison of wired IMU (MT-i 1) and IMU of wireless nodes (ICM-20601) 99

Table 5.3: Average absolute error between the extracted angles (pitch, flap, and lag) of the
optical sensors as the reference and the wired /wireless systems (bench tests with in-flight test
requirements) .. 104

 vii

List of Figures

Figure 1.1: Block Diagram of a Health and Usage Monitoring System (HUMS), drawn based on
the HUMS architecture presented in [1]. .. 2

Figure 1.2: Honeywell HUMS wireless architecture [4]. ... 4

Figure 1.3: Block diagram of a wireless sensor node. .. 7

Figure 1.4: Laminated bearings of the helicopter rotor. ... 9

Figure 2.1: Different stages of the system to perform a task at the same time in all nodes.
Following startup/wakeup, a short timeslot is dedicated to synchronization packets. After this
period, receivers of the nodes are turned off and time synchronization is performed without any
resynchronization during the synchronous task. ... 18

Figure 2.2: Two designed sensor nodes : (a) nRF51 BLE SoC with MPU-6050 (±2000 °/sec
gyroscope and ±16g accelerometer), temperature sensor (TMP112), and 3V 140mAh non-
rechargeable CR1632 battery; (b) nRF52 BLE SoC with ICM-20601 (±4000 °/sec gyroscope
and ±32g accelerometer), and 3.7V 200mAh rechargeable Li-Ion battery (RJD2450). 20

Figure 2.3: Average and standard deviation of timestamping error over 1200 packets on nRF5
SoCs with three methods: using the interrupt handler; PPI with Address Event; and PPI with End
Event. (b) nRF52 BLE SoC with ICM-20601 (±4000 °/sec gyroscope and ±32g accelerometer),
and 3.7V 200mAh rechargeable Li-Ion battery (RJD2450). .. 23

Figure 2.4: BlueSync Protocol with 8 synchronization packets. .. 24

Figure 2.5: Pseudo code of one update per hundred runs (Discrete Adjustments) with tasks
period of 10 ms (i.e., 160000 ticks with 16 MHz clock). ... 31

Figure 2.6: Average measured absolute synchronization error across 10-minute sessions when a)
only offset is removed between the nodes; and b) software interrupts are used for timestamping.
... 37

Figure 2.7: Average measured maximum absolute synchronization error after 10 minutes without
any resynchronization. Single and double precision floating point calculations are shown by S
and D, respectively. (a) Synchronization timeslot smaller than 4 seconds, and (b)
synchronization timeslot between 4-16 seconds. .. 38

 viii

Figure 2.8: Average measured absolute synchronization error across 10-minute sessions with
8(1) configuration with SP operations for (a) AE and AE-4L, and (b) LR2 and LR2/100. 40

Figure 2.9: Histogram and CDF of maximum absolute measured synchronization error after 10
minutes with DP operations for (a) AE-4L-16(1), Average=7.79 µs, σ=4.23 µs, and
CDF(90%)=13.64 µs; (b) LR2/100-16(1), Average=3.67 µs, σ=2.18 µs, and CDF(90%)=6.66 µs.
... 41

Figure 2.10: Average measured maximum absolute synchronization error after 10 minutes with
and without duty cycling the HfClk. All results are for DP calculations. 42

Figure 2.11: Measured synchronization error when three different lengths are considered for
estimating the ratio between the HfClk and LfClk in LR2-32k-16(1). ... 43

Figure 2.12: FOM for AE with DP calculation for 7 different synchronization packet
configurations, plotted for both nRF51 and nRF52. ... 44

Figure 2.13: Comparison of FOM for AE, AE/100, LR2, and LR2/100 with 8(05) configuration,
and both SP and DP calculations on nRF51. .. 45

Figure 2.14: BlueSync comparison with other wireless protocols. .. 47

Figure 3.1: Comparing absolute measured synchronization error during ten minutes with and
without scaling down the timer clock frequency during the task (“16/x MHz” means using the 16
MHz clock for the synchronization timeslot and using the x MHz clock during the synchronous
task). .. 54

Figure 3.2: Histogram and CDF of absolute measured synchronization error after two minutes
with 0.25 MHz timer frequency during the task. Average error is still smaller than clock period.
... 55

Figure 3.3: Average measured maximum absolute synchronization error after 10 minutes without
any resynchronization. FS results are reported for 1 MHz timer frequency during the task. 56

Figure 3.4: Relation between clocks of the two nodes used in tests. .. 59

Figure 3.5: Measured synchronization error between two nodes by using normal synchronization
and AdaptSync. ... 60

Figure 4.1: Lifetime of the nodes with a 200 mAh battery for Scenario A) 4×1-minute long
measurements per day, and Scenario B) 2×1-hour long measurements per week. 63

Figure 4.2: Lifetime of the nodes with a 200 mAh battery for four WUR power consumptions
plotted against different combinations of current and duration of active state per day (Left
figure). Lifetime ratio between WURs with 10x difference in power consumption (Right figure).
... 65

 ix

Figure 4.3: The relation between size and calculated range for the antennas listed in Table 4.1 by
assuming a transmitted power of 10 dBm and receiver sensitivity of -50 dBm. 68

Figure 4.4: Range of the antennas listed in Table 4.1 normalized by their volume. Range is
calculated by assuming a transmitted power of 10 dBm and receiver sensitivity of -50 dBm 68

Figure 4.5: Achievable range based on different receiver sensitivities at three frequencies. 69

Figure 4.6: Relation between power, range, and size of previous works with the passive front-end
architecture. ... 72

Figure 4.7: FOM of previous works with the passive front-end architecture. 73

Figure 4.8: Block diagram of the WUR. ... 74

Figure 4.9: Calculated average system power in sleep mode based on false wake-up rate, for a
WUR power of 20 nW, active time of 15 ms, and active power of 12 mW. 76

Figure 4.10: Probability of <1/h false wake-ups based on the false positive bit rate (FPBR),
plotted for three cases to show the effect of increasing the code length and using the 2-stage
wake-up method. ... 77

Figure 4.11: Two-stage wake-up detection. .. 78

Figure 4.12: N stage CMOS rectifier based on the Dickson Multiplier. 79

Figure 4.13: Simplified circuit of the matching network and rectifier for calculating passive gain.
... 79

Figure 4.14: Matching network gain with Qind =50 at 915 MHz for three different Cin values. .. 80

Figure 4.15: Output voltage of the rectifier including the matching network with Cin=1 pF, CD=1
fF, Qind =50, and input power of Pin= -50 dBm at 915 MHz for four different diode resistance
(RD) values. ... 81

Figure 4.16: PSD of the output noise of the rectifier. ... 82

Figure 4.17: SNR of rectifier output with Cp=1 pF, CD=1 fF, Qind =50, and Pin= -50 dBm at 915
MHz. ... 82

Figure 4.18: SNR of rectifier output with Qind =50, and Pin= -50 dBm at 915 MHz; ignoring CD
and considering two fixed input capacitances of 1 & 1.5 pF. ... 83

Figure 4.19: Two-stage baseband amplifier and double-tail latch dynamic comparator. 84

Figure 4.20: Dual-phase relaxation oscillator merged with the beta-multiplier, and two separate
current sources with 6:1 current ratio to reduce capacitor sizes for low-frequency clocks. 85

Figure 4.21: Die photo and the packaged chip on the test PCB. ... 86

 x

Figure 4.22: Measured buffered amplifier output with -50 dBm (1 mVp) “01” sequence input
(w/o the matching network); gain of ~ 50 dB. .. 86

Figure 4.23: Wake-up (WU1 & WU2) detected for “11010100” address with matching network
at -61 dBm... 87

Figure 4.24: By using the timer and counter values, falling edges with frequencies higher than
2× (data rate) are dismissed with no WU1.. 88

Figure 4.25: Comparison with WURs listed in Table 4.3 in terms of size, power, and range. ... 90

Figure 4.26: Comparison with WURs listed in Table 4.3 in terms of size, power, and normalized
FOM. ... 91

Figure 5.1: Laminated thrust bearing in a mock rotor, and graphic illustration of its connections.
... 94

Figure 5.2: Three angles used to characterize movement of rotor blades: pitch, flap, and lag. .. 95

Figure 5.3: Rotor test bench: smaller rotor with wired IMU and optical sensors. 96

Figure 5.4: Extracted angles from the three systems on the rotor test bench: optical, wired, and
wireless. .. 97

Figure 5.5: Physical placement of the boards for the in-flight test. ... 100

Figure 5.6: 3D printed housing of the nodes with a size of 4×4×2 cm3, and weight of 29 g
including the battery and all the screws. ... 101

Figure 5.7: 3D printed housing of the Master with a size of 12×8.5×2.5 cm3, and weight of 156 g
including the battery, all PCBs, and screws. Battery and voltage regulator are placed below the
PCB. .. 102

Figure 5.8: Rotor test bench used to verify the in-flight hardware and software. 104

Figure 5.9: Extracted angles from the three systems on the rotor test bench: optical, wired, and
wireless (bench tests with in-flight test requirements). .. 105

Figure 5.10: Moving average of the absolute error between the extracted angles of the wired
system and the optical sensors as reference, with averaging window size of 20 s. 106

Figure 5.11: Moving average of the absolute error between the extracted angles of the wireless
nodes and the optical sensors as reference, with averaging window size of 20 s. 106

 xi

Abstract

Condition-based maintenance (CBM) is an information-based just-in-time maintenance

approach that is designed to replace traditional periodically-scheduled inspections to reduce cost

without sacrificing safety/reliability. CBM relies on data collected under actual operating

conditions by a network of sensors in a Health and Usage Monitoring System (HUMS). HUMS is

used in a variety of applications, including aircrafts, built-structure monitoring, or systems whose

maintenance cost is high, or their failure can have life-threatening consequences. The focus of this

research is on a HUMS to wirelessly monitor the condition of laminated bearings linking rotor

blades to the rotor axis in a helicopter. A minimum of two HUMS nodes per blade is required to

collect inertial data synchronously from different locations with timing error <30 µs. This is

needed to accurately extract blades’ angles and predict the bearings’ health. Wireless connectivity

poses challenges in terms of low-error time synchronization and extended operational lifetime.

Battery-powered and BLE (Bluetooth Low Energy)-enabled sensor nodes are custom-

designed for the above application. Low-error and low-power synchronization protocols are

proposed and tested on the developed nodes, including BlueSync, Discrete Adjustments, and

AdaptSync. BlueSync is compatible with the BLE standard and reduces synchronization error to

<1 µs per 60 s of measurement without requiring any wireless resynchronization between

transmitter and receiver. This is the lowest reported synchronization error for BLE, which is

achieved by placing the timestamping step at the end of packet transmissions and reducing the

uncertainty in transmitter timestamping. Discrete Adjustments increases a node’s operational

 xii

lifetime by reducing the overhead of synchronization calculations, which is the time needed for

computing frequency adjustments and is indicative of energy efficiency of calculations.

Calculations and adjustments are applied only when needed. Up to 15x reduction can be achieved

in calculation times. AdpatSync enables both low-power consumption and low synchronization

error for long sessions that could run for as long as one hour by using previous timing information

as training data to estimate the error and apply the appropriate correction on each node, thus

eliminating the need for resynchronizations. It. In a 10-minute recording session, AdaptSync

reduces the error by 7x compared with standard synchronization methods.

To further increase the node lifetime, a 915 MHz, -61 dBm, 2.8 nW wake-up radio (WUR)

is designed in TSMC 65 nm CMOS technology, to listen for wake-up commands when the node

is in the sleep state. With a passive front-end and only two <1.5 mm2 off-chip components for

matching network, it achieves an estimated range of ~150 m, which is enough for many wireless

sensor applications. It has a two-stage wake-up architecture that reduces the probability of false

wake-ups, and consequently the power consumption of the node.

A complete system is developed for in-flight tests and has been evaluated on a rotor test

bench. Nodes with their required IP67 housing (4×4×2 cm3) weigh 29 g and provide a lifetime of

~110 days with 1~2 hours recording per week. Collected accelerometers and gyroscopes data are

used to extract the blades’ angles. Results show angles errors of < 1°, compared with measurements

obtained from an optical reference, which are well within the limit for the fault-detection

algorithms of this application, and validate that the developed wireless system can be reliably used

to monitor the laminated bearings. Integrating the WUR with the nodes could increase their

lifetime to ~6 months.

 1

 Introduction

1.1 Health and Usage Monitoring Systems (HUMS)

Condition-based maintenance (CBM) is an information-based maintenance technique

which is mainly designed to replace the traditional costly method of periodic scheduled inspections

without sacrificing safety and reliability. CBM can be applied to any mechanical

system/components and relies on the data collected by a Health and Usage Monitoring System

(HUMS) from various components under actual operating conditions. HUMS is a network of

sensors that enables CBM by measuring the health and performance of mission-critical

components of any desired system. A general architecture of HUMS [1] is shown in Figure 1.1,

which includes the following four modules:

• Data Acquisition: This module is composed of different sensors and their associated

interface electronics to measure the desired parameters of the critical components.

• Data Manipulation: This stage includes signal processing and conditioning such as

filtering, averaging, and feature extraction.

• Condition Monitoring: This module uses fault-detection algorithms to generate condition

indicators, based on different sensor data collected over time and from multiple locations

on the system/components, indicating the status of the system/components’ health.

• Health Assessment: This module compares the generated condition indicators with

predetermined thresholds. Results can be used to prompt corrective actions.

 2

The output of HUMS is then used along with physical models in a prognostic branch to complete

the CBM concept and estimate the future health of the system. HUMS and CBM are used in a

variety of applications including trains, aircrafts [2], structural monitoring of bridges [3], [4], and

mainly systems that their cost of maintenance is high and/or any failure can have life-threatening

or catastrophic consequences. The application of this work is part of a helicopter HUMS that will

be described in the following sections.

1.2 Helicopter HUMS

Helicopter HUMS automatically monitor the health of mechanical components such as

rotor, engines, airframe, and transmission in helicopter systems by measuring dynamic motion and

vibration at different locations. In addition to health monitoring, HUMS can also be designed to

communicate with the aircraft’s data bus to obtain parametric data for usage and event analysis

[2]. All of the recorded information during the flight are visualized on the HUMS ground station

for evaluation and analysis. This evaluation and analysis is typically not done in real-time and is

performed only later to predict any potential future failure and pre-emptively address any issues.

The intelligence gained from HUMS helps technicians to pinpoint mechanical faults before they

become catastrophic failures, and to make informed maintenance decisions about their aircraft [2].

Figure 1.1: Block Diagram of a Health and Usage Monitoring System (HUMS), drawn based on the HUMS
architecture presented in [1].

 3

Benefits of employing HUMS can be summarized as: enhanced safety, increased availability of

the aircrafts by reducing unplanned downtimes, and reduced costs of periodic scheduled

maintenance and spare parts usage [2], [5]. As an example, a study of HUMS on AH-64 Apaches

helicopters found 30% reduction in mission abort, and 20% reduction in maintenance test flights

[5]. Similarly, a study on 71 CH-47 Chinook helicopters showed 2957 reduction in maintenance

man-hours in 2007-2008 [5].

1.2.1 Wired vs Wireless HUMS

In a helicopter HUMS, a variety of sensors, including accelerometers, gyroscopes,

tachometers, and blade trackers are used to monitor the dynamic behavior of different components.

These sensors are placed at different parts of the helicopter, and their data needs to be transferred

to a central processing unit or base station. Traditionally, the communication between the sensors

and the HUMS station is provided using wired connections. This wiring significantly adds to the

overall weight of the system, and running and securing the wires is a considerable part of system

installation [6]. Moreover, the number of possible physical connections to the sensors can be a

limiting factor in expanding HUMS [6]. Therefore, a wireless HUMS provides significant potential

advantages over a wired one.

In a wireless HUMS architecture, the data acquisition module is typically implemented by

an autonomous Wireless Sensor Network (WSN). Wireless connectivity is essential for measuring

parameters at different locations of the components that are in hard-to-reach locations, e.g., the

rotating blades. The WSN consists of low-power sensor nodes that record different types of data

and must transmit them reliably and securely to a base station. For safe and effective integration

of the WSN on helicopter parts, there are tight physical constraints such as size and weight. Besides

these requirements, one of the crucial challenges of employing a WSN for HUMS is the ability to

 4

provide synchronization between data points from different sensor nodes. This is because some

advanced algorithms used in HUMS, such as synchronous time averaging, for example, rely on

accurately synchronizing speed and vibration measurements [6]. In the following section we

discuss two approaches that have been reported to deal with the challenge of synchronous

measurements in wireless HUMS.

1.2.2 Time Synchronization in Wireless HUMS

To address the issue of synchronization when using a WSN for HUMS, an architecture that

combines the WSN and the wired system is proposed in [6] by Honeywell Aerospace. In this

method, wireless units are placed as close as possible to a group of sensors, and all sensors are

connected to their corresponding unit by wires (Figure 1.2). In this case, while there is still some

local wiring between the sensors and the nodes, the total wiring is much less than connecting all

sensors individually to the HUMS station. In this architecture, synchronization would not be a

problem if the installation allows for all parameters of interest to be collected by the same physical

unit, i.e., only one wireless node. However, if measurements are conducted by different wireless

Figure 1.2: Honeywell HUMS wireless architecture [4].

 5

nodes, synchronization cannot be achieved with this configuration due to clock offset errors and

clock frequency variations between the nodes. The main reason behind developing this architecture

was their conclusion that existing commercial wireless technologies were not capable of providing

the required microsecond-level synchronization for some advanced HUMS algorithms [6].

Therefore, for applications where physical wiring of the sensors to the same node is not

possible, a synchronization mechanism must be designed for the WSN. In [7] a synchronized WSN

is used for monitoring aircraft landing gear loads. The time-synchronized network is explained in

[8]–[10], and consists of wireless nodes and a base station called wireless sensor data aggregator.

Broadcasting a wireless beacon packet in the 2.4 GHz license-free ISM band, combined with

precision timekeepers on each node in the system, is employed to synchronize the nodes [7]. In

this method, the base station transmits a beacon signal every second. All the wireless nodes then

synchronize their sampling times with this beacon signal. A high-precision clock (±3 ~ 5 ppm) is

used in the nodes to maintain time between the beacon broadcasts. The maximum timing error of

receiving this beacon in different nodes is reported to be ±4 µs [8]. Synchronized sampling within

±30 ~ 50 µs is achieved by using the beacon packet every 10 s, instead of every second.

The process of resetting the error in the nodes by receiving a beacon packet from the base

station is called resynchronization. The main problem of this approach is that to reduce the

synchronization error the radio has to be used frequently (every few seconds) for

resynchronization; no other synchronization mechanism is incorporated in the nodes. Using the

radio with this short few second intervals not only increases the average power consumption of

the node and decreases its lifetime, but also requires the power supply to provide short duration

pulse currents with amplitudes that can be as high as 100 mA for the above system. These high-

amplitude pulse currents can degrade the performance and capacity of the limited power source(s)

 6

of the nodes and result in an even shorter lifetime. Shorter lifetime also means more frequent

maintenance calls, which we are trying to minimize by implementing a HUMS in the first place.

Therefore, to extend the lifetime of the nodes, we are interested in synchronization methods

that can provide the desired timing accuracy with minimum resynchronizations. To achieve this

goal, a synchronization protocol must be able to first estimate the difference between the clock of

the node and the base station (frequency-drift estimation), and then correct for this error between

the resynchronization packets (frequency adjustment). Errors related to the frequency-drift

estimation and frequency adjustments are two key factors that contribute to the overall

synchronization error and should be minimized. Section 1.4 provides an overview of the intended

HUMS application of this thesis, its synchronization requirements, and the synchronization

protocols proposed to address the above challenges.

In summary, besides the size and weight constraints, the following attributes should be

considered in the design of a WSN for HUMS/CBM applications [11]:

• Energy-efficient electronics for all tasks of the WSN including processing, sensing,

harvesting, and communications. The main point here is that all electronics should be

designed by considering the available power source(s) and required lifetime for that

specific hardware.

• Energy-efficient local processing algorithms to reduce data rate. The key point here is to

investigate to what extent performing some processing locally can result in reducing the

energy consumption of the nodes. Because, while communication typically requires more

power compared with processing, having complex algorithms can also result in more

resources and higher power requirements.

 7

• Communication protocols for both reliable data transfer and synchronized measurements.

Synchronization becomes critical when cross-correlation calculations are required for data

recorded by different nodes. The accuracy of synchronization depends on the internal clock

of the nodes and the implemented synchronization protocol. Both, a low-error and a low-

power synchronization protocol is desired to minimize overhead on the power consumption

and, consequently, increase the node lifetime.

1.3 Wireless Sensor Nodes

Figure 1.3 shows a general block diagram of a wireless sensor node. A node might have

all or some of the shown building blocks. As an example, all nodes need a battery or some type of

energy storage device, but they might have a charging interface and/or a harvester module based

on a given application.

Nowadays, wireless transceivers are mostly available as system-on-chip (SoC) and blocks

like the sensor interface, power management, and synchronization protocols can be implemented

on the same platform, i.e., Microcontroller Unit (MCU). In helicopter HUMS, the measurements

Figure 1.3: Block diagram of a wireless sensor node.

 8

are performed during flights or for a short period of time on the ground, and for the rest of the time

the nodes can be turned off (sleep state) to save power. This scenario is also valid for many other

HUMS applications. In this case an additional feature known as wake-up should be added to the

nodes so they can be powered down and only activate when they are needed to perform a

measurement. We can consider three methods for waking up the nodes:

• Wake-up Sensor(s): These sensors are typically targeting a very specific application and

can generate a wake-up signal based on changes in the parameter(s) that they are sensing.

An example is an accelerometer programmed to interrupt the MCU whenever the

acceleration exceeds a predefined threshold on one axis.

• Wake-up Circuits: These are generally low-power internal timers of the SoC or external

timing units that can be: (a) programmed to wake up the node at predefined intervals; or

(b) used for duty-cycling a higher power module responsible for the wake-up task, e.g., the

transceiver or even the wake-up sensor(s). We refer to duty cycling the main transceiver

for receiving wake-up command as Wake On Radio (WOR).

• Wake-up Radio (WUR): This is an ultra-low-power receiver designed to be always ON and

ready for receiving wake-up commands, sent typically from the base station of the WSN.

Clearly, regardless of the wake-up method, the goal is to achieve a power consumption much lower

than the normal power consumption of the node if it were to be ON all the time. Otherwise, the

use of this module is not justified as it potentially occupies additional space on the node.

1.4 Research Objective and Contributions

The target HUMS application in this work is monitoring the condition of the laminated

bearings on the rotor of helicopters (Figure 1.4). To monitor these bearings, a WSN with a

 9

minimum of two nodes per blade is required to measure the dynamic motion of rotating blades that

are attached to the rotor by these bearings. Each node must have a 6-axis Inertial Measurement

Unit (IMU) and consisting of accelerometers and gyroscopes. The preferred full range for the

accelerometers is ±32 g, and for gyroscopes is ±4000 °/s. The nodes on the same blade must collect

data synchronously, i.e., sample at the same time. The goal is to keep the synchronization error

between sampling time by different nodes on the same blade below 30 µs without any

resynchronization (i.e., use of the radio) in a 10-minute recording session. The collected data from

accelerometers and gyroscopes are reported to a base station. In addition to bench tests on a mock

rotor, the complete system including nodes and the base station(s) should have the capability of

recording data autonomously during a test flight for approximately two hours. For this purpose, all

the components added to the helicopter must have a housing with IP671 rating. For each node that

will be installed on the blades a total weight of < 100 grams, including the housing and fixtures, is

preferred. However, as the base station does not necessarily need to be on the blades and can be

1 IP code or Ingress Protection Code provides a guideline to the degree of protection provided by mechanical casings
and electrical enclosures. The “6” as the first digit indicates “complete protection against dust over extended time”,
and the “7” as the second digit means “water immersion protection as deep as 1 m for up to 30 minutes”.

Figure 1.4: Laminated bearings of the helicopter rotor.

 10

installed on the rotor, its total weight can be < 200 grams. Similarly, the base station size can be

larger up to 12×10×3 cm3, whereas for the nodes a size of 4×4×3 cm3 (including housing) is

acceptable. With the above weight and size constraints and considering 1~2 hours of recordings

per week, continuous operation for 90 days without changing the battery is set as an initial target.

To achieve the target lifetime, as discussed in the previous section, a wake-up mechanism is needed

in order to be able to put the nodes in the sleep state and save power between measurements. From

the wake-up methods explained in Section 1.3, the WOR method and a custom-designed WUR are

employed in this research. While the WOR is implemented for the target application on the

commercial SoC of the nodes, the WUR is a separate ultra-low-power receiver that can be used

and integrated in any wireless sensor node. A summary of the requirements for the discussed

HUMS application are listed in Table 1.1.

The following contributions by this work enabled us to achieve the above-mentioned goals:

• BlueSync: A novel low-power synchronization protocol for significantly reducing

synchronization error between nodes and compatible with the Bluetooth Low Energy

(BLE) standard and commercial SoCs is proposed. Reducing the timestamping error in

both transmitter (base station) and receiver (nodes) is the key factor in reducing the

synchronization error. One of the main contributors to the synchronization error in standard

communication protocols is the uncertainty in transmitter timestamps, which is reduced in

this work by placing the timestamping step at the end of packet transmissions (versus

Accelerometer
Range

Synchronization
Error Lifetime Housing Weight Size

Nodes Base Station Nodes Base Station
±32 g < 30 µs 90 days* IP67 < 100 g < 200 g 4×4×3 cm3 12×10×3 cm3

* assuming 1~2 hours of recroding per week

Table 1.1:Summary of the requirements for the target HUMS application

 11

timestamping just before starting the transmission). Although this method is applied to

BLE as a standard protocol, it is also compatible with any other wireless protocol. BlueSync

can achieve average synchronization errors < 1 µs per 60 s without any resynchronization.

This is the lowest reported error for BLE, improving timestamping error by 18x and

synchronization error by 100x for equal resynchronization periods.

• Discrete Adjustments: Two new techniques are proposed to increase node lifetime by

reducing the overhead of synchronization calculations. This overhead is the time needed

for computing and applying frequency adjustments during a synchronous task and is

indicative of energy efficiency of the calculations, which has not been studied before. The

main concept here is to calculate and apply corrections only when they are needed. Up to

15x reduction can be achieved in calculation times. Results show that if error and energy

efficiency are equally important, Discreet Adjustments provide a better tradeoff by 3~6x.

• AdaptSync: This novel approach enables low synchronization errors without using

resynchronization packets from the base station in long recording sessions (i.e., > 1 min

and as long as one hour). AdpatSync uses previous timing information as training data to

estimate the error and apply the appropriate correction on each node. By eliminating the

need for receiving wireless packets, this method enables both low power consumption and

low synchronization error at the same time for long sessions that could run for as long as

one hour. In a 10-minute recording session and without using resynchronization,

AdaptSync reduces the error by 7x compared with standard synchronization methods.

• Hardware, software, and housing for a complete system consisting of BLE-enabled sensor

nodes and base stations have been custom-designed and fabricated for the helicopter

HUMS application. The system is used to validate the proposed synchronization

 12

algorithms, and meets all the requirements of an in-flight test with the nodes attached to

the bearings and blades. The wake-up feature for these tests is implemented by duty

cycling the BLE receiver with the low-power timer of the SoC. To the extent possible, the

different parts of the system were tested successfully with a mock rotor in conditions

similar to those of an in-flight test.

• A new 915 MHz -61 dBm 2.8 nW wake-up radio (WUR) has been designed and fabricated

in TSMC 65 nm CMOS technology to increase the lifetime of the nodes during their sleep

state. The WUR has a passive front-end architecture and a 2-stage address detection block.

It requires only two small (<1.5 mm2) off-chip components for its matching network and

achieves a range of ~ 150 m with commercially available antennas. This range is enough

for helicopter HUMS and many other WSN applications. The 2-stage wake-up architecture

helps reduce the power consumption of the node by reducing the probability of false wake-

ups. False wake-ups increase the power consumption of the node in the sleep state, as they

falsely turn on the main radio of the node with orders of magnitude higher power

consumption.

This thesis is organized as follows. Chapter 2 describes the developed BLE-enabled sensor

nodes, and detailed implementation of the BlueSync synchronization protocol and the Discreet

Adjustments technique. Measurement results of the proposed protocols using the developed sensor

nodes are also presented in this chapter. In Chapter 3 two low-power approaches, including

AdaptSync, are explained for synchronization protocols. Different wake-up methods, and the

design of the WUR along with its measurement results are covered in Chapter 4. Chapter 5 presents

the results of testing the developed system consisting of the sensor nodes and a base station on a

 13

rotor test bench. The details of a similar system prepared for in-flight tests are also provided in

this chapter. Finally, conclusion and future works are presented in Chapter 6.

 14

 BlueSync: Time Synchronization in Bluetooth Low Energy with Energy-

Efficient Calculations

2.1 Introduction

In wireless sensor networks (WSN) providing a common time reference is one of the basic

services on which many other services depend [12]. These WSN are widely used in many

applications such as structural health monitoring systems [13], and body-area sensor networks

(BSN) [14] for rehabilitation and sport medicine. Different techniques have been reported for time

synchronization in wireless networks [12], [15]–[22] that are generally based on message passing.

One of the first synchronization protocols developed for WSN is the Reference Broadcast

Synchronization (RBS) [15]. In this method after timestamping (i.e., recording the timer value) a

reference broadcast from the master, the nodes exchange their recorded times (i.e., timer values)

with each other. The goal in RBS is to synchronize receivers (i.e., nodes) and one of its main

features is that it eliminates the non-deterministic delays associated with the transmitter (i.e., the

master). In the Timing-Sync Protocol for Sensor Networks (TPSN) the authors argue that instead

of synchronizing a set of receivers, it is better to use the classical approach of doing a handshake

between two nodes [16]. By taking advantage of two-way message exchange and performing

timestamping at the Medium Access Control (MAC) layer1, TPSN roughly achieves 2x better

performance than RBS [16]. To reduce communication overhead of RBS and TPSN, the Flooding

Time Synchronization Protocol (FTSP) was proposed based on one-way message exchange [12].

1 MAC layer is the layer that controls the hardware responsible for interaction with the wireless transmission
medium. In other words, it controls the transmission of data packets over the wireless link.

 15

In FTSP, synchronization between the master and multiple receivers is realized by timestamping

a single radio message at both the sender and receiver sides. Combining MAC-layer timestamping

and frequency-drift estimation in FTSP results in lower synchronization error (1.5 µs), compared

to RBS and TPSN. Frequency-drift estimation means that each receiver or node uses the values of

received master timestamp and its own timestamp for a number of radio messages to estimate a

relation between the master time and its own time. FTSP has become the de-facto standard for

time synchronization [17], and many of its concepts and techniques are utilized in other works.

Nowadays, with the emergence of Internet of Things (IoT), wireless nodes are becoming

more resource constrained, which makes implementation of a common time service more

challenging. Wireless protocols are also moving towards adding features suitable for sensor-based

systems. Bluetooth Low Energy (BLE) is one of these protocols that has been modified for low-

power WSN and IoT applications. Moreover, availability in many consumer electronics has drawn

a lot of attention to BLE recently. Compared to the classic Bluetooth, different broadcast

advertising modes, known as beacons, have been added to the BLE standard. The simplest and

most energy efficient advertising mode is the non-connectable undirected option

(ADV_NONCONN_IND), in which after advertising the desired data, the BLE device does not

scan for any packets from other devices. In this mode data can be transferred between the nodes

without needing to enter a bonded connection (i.e., pairing). However, there is no time

synchronization service in the BLE protocol, and limited works have addressed this issue.

In [22] BLE is used for synchronization of a collaborative brain-computer-interface. The

approach is similar to RBS, and as they timestamp in the application layer, their synchronization

error of 37.78 ms is relatively large. Ref. [23] discusses how random transmission delays of BLE

affect timestamping in synchronization algorithms. In their setup, when two nodes are connected

 16

by BLE, the delay between the transmitter and receiver timestamps has a standard deviation of

2.32 ms. They propose two principles to reduce this time. First, they consider the time difference

between receiving and acknowledging a message, while two nodes are connected [23]. This time

difference is not affected by the BLE random delays, and has a standard deviation of 0.41 ms. In

the second principle, the connected event is used and the nodes need to connect and then disconnect

for each timestamp. This method decreases the standard deviation to 14.91 µs. However, both

approaches require the nodes to make a BLE connection, which increases the communication

overhead. This will also affect the scalability of the network as all the nodes in the network must

make a connection with a reference node for timestamping. When the number of nodes increases,

the time needed for BLE connections will make the approach impractical.

Ref. [24] proposes generating timestamps by adding a few components to the nodes and

monitoring the power consumption of a BLE System-on-Chip (SoC). The idea is that during BLE

transmission and scanning, the power consumption of the SoC is dominated by the radio.

Therefore, by utilizing the internal comparator of the chip, whenever the monitored power passes

a configurable threshold, an interrupt is generated to capture the timer value. They implemented

this technique on the same BLE SoC that we use in our study, and achieved a standard deviation

of 900 ns between timestamps in two nodes. The same concept has been implemented in [25]–[27]

with similar results. In [20], [21] a common time service named Cheepsync is reported to

synchronize BLE advertisers and smartphones as receivers. In Cheepsync a general purpose 2.4

GHz transceiver has been modified to work with the BLE standard and serve as advertisers. As

also mentioned in [24], modifying a custom radio to work with BLE has helped them remove some

of the non-deterministic delays available in BLE chips. With resynchronizing every 100 ms, the

timing error of this method is 10 µs, which is relatively high compared to synchronizations on

 17

other wireless protocols [12], [15]–[19]. However, it should be noted that the main goal of

Cheepsync is synchronizing smartphones that use the nodes; therefore, its applications and

constraints are different from other synchronization protocols.

In Section 2.3, we present BlueSync [28], a time synchronization service using BLE

beacons that is implemented on two commercial SoCs and is compatible with BLE software stacks

accompanying the chips. We explain our techniques to overcome the challenges of BLE

synchronization including single-channel scan, random BLE delays, and low-error timestamping.

Results indicate that by combining our techniques with the concept of flooding proposed in FTSP

(i.e., one-way message exchange), BlueSync can provide a sub-microsecond timing error (per 60

seconds). To the best of our knowledge this is the lowest synchronization error reported for BLE.

Comparing only the timestamping error with the lowest one reported in [24] shows more than 18x

improvement on the same hardware.

In previous synchronization protocols, besides frequency-drift estimation, typically

frequent resynchronization (or updates) is used to keep the synchronization error low. However,

as the reported update intervals are small (from hundreds of milliseconds to few seconds), this

approach results in excessive use of radio and consequently high power consumption, which are

not practical for emerging low-power applications. Also, it would be more difficult to investigate

the effect of drift-estimation techniques on the synchronization error when the update intervals are

small. This is because at each resynchronization point: a) the accumulated error resets to the

timestamping error; and b) one extra pair of master/slave timestamps is added for estimation.

The main goal in this work is to keep the synchronization error low with minimum radio

activity possible in order to consume the least power while achieving low timing error. Target

applications are one-hop systems where nodes either wake-up or are turned ON to do a

 18

measurement synchronously, and then go back to sleep or are turned OFF to reduce power

dissipation and extend battery lifetime. In these applications synchronization speed becomes

important too. Therefore, we consider two stages for the proposed system: synchronization

timeslot and synchronous task (Figure 2.1). In the synchronization timeslot which is only a few

seconds, the nodes receive timing information from the master. During the synchronous task, no

resynchronization is performed, and the error is monitored for 10 minutes. We test BlueSync with

different synchronization packet configurations in the synchronization timeslot. The resulting

datasets are used to investigate the tradeoff between synchronization speed and error. We also

show how different implementations of frequency-drift management methods can affect both error

and energy efficiency. By optimizing calculations, they can be executed up to 5x faster with almost

the same error. This translates to energy savings and is especially useful for slower hardware

architectures and applications where the lowest error is not necessarily important.

In Section 2.4, a technique called Discrete Adjustments is proposed to further reduce the

overhead of synchronization calculations, and consequently the energy used for these calculations.

Figure 2.1: Different stages of the system to perform a task at the same time in all nodes. Following
startup/wakeup, a short timeslot is dedicated to synchronization packets. After this period, receivers
of the nodes are turned off and time synchronization is performed without any resynchronization
during the synchronous task.

 19

Two implementations of Discrete Adjustments are discussed and tested with BlueSync, which

reduce energy consumption up to 15x. This method is not specific to BLE and can be combined

with other wireless protocols.

2.2 Designed Sensor Nodes

Among different commercially available BLE SoCs, we selected the nRF5 series from

Nordic Semiconductor, which includes nRF51 and nRF52 families. The nRF51 family features a

16 MHz ARM Cortex-M0 processor [29], whereas nRF52 is based on a 64 MHz ARM Cortex-M4

processor [30] and includes versions that are fully compatible with BLE 5. Table 2.1 shows a

comparison of two microcontrollers used in this project. One of the benefits of nRF5 series is that

without major changes in software/hardware we are able to simulate and test different conditions

such as processor speeds and timer widths that are close to some other SoCs. For example,

DA14585 from Dialog Semiconductor [31], which is the smallest and lowest power in their BLE

family, still runs on Cortex-M0 and has only 16-bit timers (similar to nRF51). Examples of

microcontrollers with higher clock speeds and 32-bit timers are Texas Instrument’s C2650

(Cortex-M3, 48 MHz) [32] and Silicon Labs EFR32BG13 (Cortex-M4, 40 MHz) [33], which are

closer to nRF52 specifications.

The two wireless nodes used in the experiments are custom-designed sensor nodes

consisting of a 6-axis inertial sensor (MPU-6050 [34] or ICM-20601 [35]), and either nRF1 or

nRF52 as the Bluetooth controller (Figure 2.2). Based on the selected nRF5 family for the nodes,

SoC Processor Processor
Clock

Timer
Width

Timer
Clock

Tx
Current

Rx
Current

nRF51 Cortex-M0 16 MHz 16 bit 16 MHz 10 mA 13 mA
nRF52 Cortex-M4 64 MHz 32 bit 16 MHz 6 mA 6 mA

Table 2.1: Comparison of BLE SoCs

 20

the master role is assigned to the corresponding development kit (DK). We should emphasize that

the master/slave terms used throughout this thesis should be viewed from a synchronization

standpoint and do not mean that two devices need to be paired in BLE to form a master/slave

relation.

For Bluetooth communication, an accurate high frequency crystal is required in all boards.

The nRF51 DK contains a 16 MHz ±15 ppm crystal, whereas the nRF52 DK incorporates a 32

MHz ±10 ppm crystal. To be consistent with the masters, crystals with the same frequency

tolerance are employed in the nodes. Although, nRF52 operates with a 32 MHz crystal, for both

SoCs the maximum the clock frequency available for timers and timestamping is 16 MHz.

2.3 BlueSync Implementation

This section is divided into three parts: 1) Timestamping, 2) Frequency-Drift Estimation,

and 3) Ticks Adjustment. In each part, both challenges and the proposed solutions are explained.

(a) (b)

Figure 2.2: Two designed sensor nodes : (a) nRF51 BLE SoC with MPU-6050 (±2000 °/sec gyroscope and ±16g
accelerometer), temperature sensor (TMP112), and 3V 140mAh non-rechargeable CR1632 battery;
(b) nRF52 BLE SoC with ICM-20601 (±4000 °/sec gyroscope and ±32g accelerometer), and 3.7V
200mAh rechargeable Li-Ion battery (RJD2450).

 21

In Part 1, three main factors that affect timestamping accuracy in BLE are discussed. These

are: single-channel scan, hardware events vs software interrupts, and BLE random delay (0-10 ms)

for advertising packets.

In Part 2, two methods for frequency-drift estimation are compared: Linear Regression and

Average Error. We discuss how different computation requirements for each method such as 64-

bit operation and floating-point precision affects calculation time, which eventually translates to

energy. By implementing both methods on nRF51 and nRF52, we also show the effect of processor

type and clock frequency on these calculation times (Table 2.2). Synchronization error of these

different configurations are later compared in the results section (Section 2.6).

The computed drift-estimation parameters are used in scheduling a periodic synchronous

task like reading from a sensor. In other words, we need to adjust the timer ticks based on the

estimated drift. In Part 3, we explain the techniques to avoid conversion loss during ticks

adjustment. Similar to Part 2, the required time for ticks adjustment are compared for different

hardware resources and both drift-estimation methods (Table 2.3).

2.3.1 Timestamping

Non-connectable BLE beacons are generally broadcast in three advertising channels that

are hundreds of microseconds apart from each other. Similarly, the receivers are scanning in all

three channels and might receive the data in any of these channels. This uncertainty in channel

number results in a large timestamping error and can degrade the performance of any BLE

synchronization method compared to previously reported protocols. Thus, the first step is to

transmit and more importantly scan in a single channel. In nRF5 series, advertising channels can

be selected through a register. But, single-channel scanning can only be achieved by a feature

called timeslot API (Application Programming Interface), which allows to directly control the

 22

radio during scan periods (see [36] for sample source code). This method is compatible with the

BLE software stack provided for nRF5 series and can be modified to scan in any of the desired

three channels.

All the experiments in this work are based on BLE v4.2. However, it is worth mentioning

that in the recently released BLE 5, scanning in one channel may be performed by taking advantage

of the extended advertising mode. In this newly added feature, after advertising in the three

traditional channels (named as primary advertising channels in BLE 5), transmitters may continue

advertising in any of the 37 data channels (also known as secondary advertising channels in BLE

5). The first advertisement packet contains information about timing and the channel number of

future packets. To make this feature work, receivers must also be able to switch to that specific

channel for scanning. Therefore, we can say that all BLE 5 compatible devices should be capable

of single-channel scanning as part of the extended advertising mode.

Another important factor in timestamping accuracy is the method by which timer values

are recorded. The simplest way is to capture times in the radio interrupt handler, which suffers

from software delays and is dependent on the processor speed. A more accurate approach (in nRF5

series) is to employ a feature called Programmable Peripheral Interconnect (PPI), in which a

desired task can be triggered by an event without using the processor. In case of timestamping,

timer capture and reset are the tasks, whereas the event can be any radio event such as Address or

End Event. Figure 2.3 shows the timestamping errors, when two nodes toggle one of their output

pins whenever the timer value is captured using the above explained methods. The average

timestamping error with the interrupt handler approach is around 4x larger in nRF51 compared to

nRF52. This is in line with the fact that the processor clock in nRF52 is 4x faster than that in

nRF51. On the other hand, independent of the processor speed, both PPI techniques (i.e, with

 23

Address or End Event) achieve average timestamping errors and standard deviations of less than

50 ns and 40 ns, respectively. Moreover, these errors are 25x (nRF51) and 5x (nRF52) smaller

than the software interrupt method. In BlueSync, PPI is used along with the End Event due to its

slightly smaller average error and standard deviation (in comparison with the Address Event).

Finally, with the BLE software stack in the transmitter side, i.e., master node, there is

always a pseudo-random delay of 0-10 ms at the start of every advertising packet. Moreover, the

content of advertising packets cannot be changed exactly before a broadcast. This means that the

most recent timer value cannot be sent in the current packet. In the nRF5 series, a radio notification

interrupt may be set for a minimum distance of 800 µs from the start of radio activity to update the

advertising data. However, as it is not possible to use this interrupt with the PPI feature, it would

suffer from software delays in capturing the timer value. To explain how this uncertainty in master

timestamps is addressed in BlueSync, we use Figure 2.4. In this figure, horizontal lines represent

time, and three timelines are shown for a master, and two nodes. The first timeline is for the radio,

Figure 2.3: Average and standard deviation of timestamping error over 1200 packets on nRF5 SoCs with three
methods: using the interrupt handler; PPI with Address Event; and PPI with End Event.

Software Interrupt Address Event End Event

PPI with Radio Events
Average < 50 ns

Standard Deviation < 40 ns

Ave: 25x
Std: 55x

Ave: 5x
Std: 6x

Reduction by using PPI

 24

and it is showing the contents of the wireless packet for the master, and the status of the radio for

the two nodes. The second timeline is for the timer and is showing the LSB of the timer that is

toggling with the timer clock frequency. The third timeline is for the CPU and shows the value of

the timer that is read by the CPU. The dashed vertical red line divides these timelines to two

different parts. On the left side of this dashed line, we have the synchronization timeslot, and on

the right side we have the synchronous task. To explain our proposed method for reducing

uncertainty in master timestamps, we now only focus on the radio and CPU timelines of the master.

As shown in Figure 2.4, after startup or wakeup, the first packet rests the timers, i.e., the CPU

timeline is showing a 0. Then either 8 or 16 packets are sent with intervals of TInterval. The master

timestamps collected after the radio event (shown on the CPU timeline) are transmitted in the next

advertisement packet (shown in the radio timeline). With this delayed transmission, there is no

need to update the advertisement packet close to the broadcast, and the timestamps are also

Figure 2.4: BlueSync Protocol with 8 synchronization packets.

t = 3Tt = T t = 2T

0 M2M1reset

CPU

Timer

Radio

M7 M8…

×

t = 0…

…

×

t = 2T… t = 0 t = 3Tt = T

M8M3M2M10

n28n23n22n210

…

×

… n18n13n12n110

N
od

e
2

CPU

Timer

Radio

CPU

Timer

Radio

M
as

te
r

N
od

e
1

Tinterval tLast ≥ 20 mSec

Sync TimeSlot

x tData x in Tx Packet

Radio in Rx Mode

Radio Inactive
Interrupt

Capture
Timer Value t

Timer
Interrupt

Calc1 – Drift Estimation

Calc2 (Timer Ticks Update)

Synchronization Error

Sync Error

t = 0

× Timer Stopped

T = Synchronous Task Period

= 8×Tinterval + tLast ≈ 8×Tinterval

Synchronous Task +

 25

collected when the packet has been actually sent, i.e., the random BLE delay is included in

timestamping. The last packet in the synchronization timeslot is used to reset timers in master and

all the nodes. As this packet is not part of the timestamping for frequency error estimation, it can

be sent within 20 ms of the previous broadcast (tLast in Figure 2.4). Considering that packet

intervals (TInterval) studied here are in the range of 0.1-1 seconds, the last packet has a very low

impact on duration of synchronization timeslot and consequently the synchronization speed.

2.3.2 Frequency-Drift Estimation

Resetting the nodes’ timers with the first synchronization packet is only enough to remove

the offset between the nodes. In this case, the frequency drift between the crystals in nodes results

in a fast-increasing synchronization error. To reduce this effect, typically more synchronization

packets are sent from the master in a known interval. These timestamped packets are helpful in

two ways. First, a number of them at the beginning are used to estimate the frequency error

between the nodes and the master. This estimation may also be updated upon reception of more

timestamps. Second, they can be used for what is called resynchronization. In resynchronization,

timers of all nodes are updated with a unique master timestamp or simply the received packet may

trigger a timer reset. In both scenarios, the synchronization error at that point goes down to a value

close to the timestamping error between the nodes.

In this research, as one of the goals is to reduce radio activity, only a limited number of

packets are transmitted in the synchronization timeslot and no resynchronization is performed

afterwards. As explained before and illustrated in Figure 2.4, after startup or wakeup, the first

packet resets the timers. Then master timestamps are sent with packet intervals of TInterval, and the

last packet initiates the execution of the desired synchronous task. In Figure 2.4, the start of the

synchronous task is exactly on the right-hand side of the dashed vertical red line, where t=0 is

 26

shown in the CPU timeline of both nodes. At this point, each node must estimate the frequency

error relative to the master based on the captured and received timestamps. This calculation is

called drift estimation and is shown with green lines inside a rectangle in the CPU timeline of the

nodes (Figure 2.4). After this estimation, each node schedules its timer to generate interrupts

(vertical black arrows) with the synchronous task period T. The required clock ticks for this period

T are different for each node, as they have different errors relative to the master. At each interrupt,

besides performing the desired task, nodes also need to update the ticks required for the next

interrupt considering the estimated drift parameters. This is called timer ticks update and is shown

with purple lines inside a rectangle in the CPU timeline of the nodes (Figure 2.4). Ticks

adjustments is explained in the next section 2.3.3. Here, we compare two methods for drift

estimation: Linear Regression (LR) and Average Error (AE).

Linear regression has been widely used in previous works and outputs a slope and an offset

computed as

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛∑ 𝑀𝑀𝑖𝑖
𝑛𝑛
𝑖𝑖=1 −∑ 𝑀𝑀𝑖𝑖𝑖𝑖 ∑ 𝑆𝑆𝑖𝑖𝑖𝑖

𝑛𝑛 ∑ 𝑀𝑀𝑖𝑖
2

𝑖𝑖 −(∑ 𝑀𝑀𝑖𝑖)𝑖𝑖
2 , 𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜 = ∑ 𝑆𝑆𝑖𝑖𝑖𝑖 ∑ 𝑀𝑀𝑖𝑖

2
𝑖𝑖 −∑ 𝑀𝑀𝑖𝑖𝑖𝑖 ∑ 𝑀𝑀𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖

𝑛𝑛 ∑ 𝑀𝑀𝑖𝑖
2

𝑖𝑖 −(∑ 𝑀𝑀𝑖𝑖)𝑖𝑖
2 , Equation 1

where n is the number of timestamps, and Mi/Si are master/slave timestamps captured at the time

of packet i. In AE an error coefficient is calculated by averaging the relative error during each

packet interval:

𝐶𝐶𝐴𝐴𝐴𝐴 = 1
𝑛𝑛
∑ (𝑆𝑆𝑖𝑖−𝑆𝑆𝑖𝑖−1)−(𝑀𝑀𝑖𝑖−𝑀𝑀𝑖𝑖−1)

𝑀𝑀𝑖𝑖−𝑀𝑀𝑖𝑖−1
 , 𝑆𝑆0 = 𝑀𝑀0 = 0𝑛𝑛

𝑖𝑖=1 . Equation 2

With a 16 MHz clock, 16-bit timers only count to around 4.095 ms. Thus, in devices with

only 16-bit timers like nRF51, an additional 16-bit counter should be used to form a 32-bit value.

Incrementing the counter in nRF5 series can be done through PPI to avoid software delays.

 27

Furthermore, as each second is equal to 16 million ticks, 64-bit integer computations are needed

for terms like ∑M2 and ∑M×∑S in LR method. Similarly, for the floating-point division in slope,

both nominator and denominator values exceed 24 bits, which is the maximum number that can

be stored without loss in single-precision (SP) floating point format. Any loss in the conversion

causes inaccuracy in the results and ultimately increases the synchronization error. Therefore, both

slope and offset must be calculated in double-precision (DP) floating point format. Unlike LR, in

AE approach and with maximum packet intervals of 1 second, all terms in the equation are within

the range of SP floating point and 32-bit integer formats.

Table 2.2 summarizes the required time for each of these methods, when implemented on

nRF5 SoCs for eight timestamps. The impact of the different configurations on synchronization

error is discussed in the results sections. For LR, SP results include computing in DP (to avoid

large error) and then converting to SP for future ticks adjustments. Hence, SP versions are slightly

longer due to this conversion at the end. In nRF51, AE is around 5x and 1.5x faster than LR with

SP and DP calculations, respectively. In nRF52, on the contrary, LR runs 1.25x faster with SP and

4x faster with DP operations.

One way to explain these results is to consider that both floating point and 64-bit

calculations are executed slower than other integer arithmetic. Floating point operations can slow

 Method Timer
Width

Time (µs)
Single Precision Double Precision

nRF51

AE 16 317.832 987.506
LR 16 1513.993 1486.18
AE 32 310.623 975.229
LR 32 1506.868 1481.904

nRF52

AE 16 51.375 154.146
LR 16 41.922 36.562
AE 32 50.008 153.267
LR 32 41.484 36.219

Table 2.2: Required time for calculating drift-estimation parameters (with 8 timestamps)

 28

down AE, whereas in LR 64-bit operations are dominant. It turns out higher CPU clock and the

advanced architecture of nRF52 improves 64-bit calculations more than floating point. It is also

clear in Table 2.2 that by switching to nRF52, regardless of floating-point precision, AE times

improve 6x while LR benefits from more than 30x improvement. These results may be especially

helpful in applications where drift estimation parameters need to be updated as part of the periodic

resynchronizations. Also, capturing 32-bit timestamps compared to storing two 16-bit timers can

save a few extra shifts in calculations. But, as shown in Table 2.2, it has a negligible effect on

timings. Note that nRF51 does not have a 32-bit timer and the values in the table are just for

comparison.

2.3.3 Ticks Adjustments

Generally, two concepts can be considered for time synchronization. In one approach,

nodes store the estimation parameters and whenever an event of interest happens, they mark it with

their local clock. Then the captured value is converted to the global clock and might be shared

within the network or used for further processing. In another approach studied in this paper, similar

to Figure 2.4, nodes need to periodically perform a desired task at the same time, e.g., read from a

sensor. In this case, each time the task is carried out, the time of the next execution must be

calculated with the frequency drift taken into account. This is achieved by applying AE or LR

methods to the total ticks required for the next point in time. The floating-point outcome is then

converted to integer and is set as the timer interrupt.

The timer may either increment continuously (without being cleared) or start from zero at

the beginning of each task interval. Resetting the timer can be especially useful in devices with

16-bit timers, where another counter/register has to be used for intervals more than 4.095 ms. The

reason is that in this setting when the lower 16-bits of the interrupt value is very small, its interrupt

 29

will happen very close to the counter interrupt responsible for the higher 16-bits. This situation

may delay execution of the task and lead to larger synchronization errors. However, when the timer

is restarted each time, the total ticks for the task interval can be divided in a way that the interrupt

does not happen at very small numbers. For example, a 10 ms interval (160000 ticks) used in the

experiments here, may be divided to two 64000 and one 32000 ticks for the last interrupt/reset.

Furthermore, similar to slope/offset calculations, adjustments with SP floating points may

suffer from conversion loss for ticks larger than 24 bits. To avoid this, instead of directly

computing total adjusted ticks, the ticks difference from the last point should be estimated. In AE,

the error coefficient provides this and in LR, slope must be replaced by slope-1. By using this

technique, even with 100 ppm variation between the clocks, the ticks difference would be less than

24 bits for more than two hours.

Table 2.3 shows duration of ticks adjustment operations for both AE and LR methods with

a task interval of 10 ms. Generally, when using 16-bit timers, there are some additional instructions

to program/handle the extra resets (see nRF51 results in Table 2.3). Moreover, SP computations

are more than 3x and 2x faster in nRF51 and nRF52, respectively. Adjustments are also between

10-25% faster with AE compared to LR (depending on the settings). Considering the repetition of

 Method Timer
Width

Reset
Timer

Time (µs)
Single

Precision
Double

Precision

nRF51

AE 16 16.92 71.461
LR 16 21.892 82.325
AE 16 × 18.776 72.523
LR 16 × 23.483 81.031

nRF52

AE 16 3.208 7.295
LR 16 3.92 9.094
AE 16 × 3.892 8.01
LR 16 × 4.63 9.099
AE 32 × 2.934 7.121
LR 32 × 3.683 8.606

Table 2.3: Required time for calculating ticks adjustments

 30

these adjustments, reducing the CPU time dedicated to them can be beneficial to energy efficiency

of the nodes. In the next section, we describe two methods to further reduce the total time spent on

ticks adjustments.

2.4 Discrete Adjustments

Typically, adjustments are recalculated each time the task is carried out. But we should

note that the updated timer interrupt is a conversion of the adjusted ticks in floating point to integer.

This implies that depending on the value of the first decimal fraction, it might take up to ten

additional task periods for that digit to affect the timer value. Furthermore, as the clock period is

only 62.5 ns, the error caused by not immediately including decimal fractions will not be

significant, especially for tasks that are planned to run more than a minute. Therefore, in contrast

to continuously recalculating the adjustments, we propose Discrete Adjustments with the following

two implementations.

2.4.1 One Update per Hundred Runs

In this method, updates are performed after every one hundred task executions, thus

reducing the number of calculations by one hundred times. In between the updates, an adjusted

value of the task period is used as the timer interrupt. To avoid adding this period to the timer value

every time, the timer is periodically restarted (with the same interrupt value). When computing

new adjustments, we must exclude the ticks differences already included in the previous updates

and the 99 adjusted periods from the past update.

Figure 2.5 shows the pseudo code of this method, and Table 2.4 includes average times

needed to run this method after each timer interrupt. These values are composed of a) a fixed time

for checking the count register and updating the interrupt registers; b) adjustment calculation time,

 31

which is divided by 100 for comparison with Table 2.2 and Table 2.3. It is clear that with this

approach, SP cases for both AE and LR are 3-5x faster than the typical implementations. This

improvement increases to more than 15x (nRF51) and 8x (nRF52) for DP ones. Furthermore, in

this method and in both nRF5 SoCs, SP and DP times are a lot closer to each other. For simplicity,

we refer to this technique as /100, and its combination with AE and LR is indicated by /100 at the

end.

Figure 2.5: Pseudo code of one update per hundred runs (Discrete Adjustments) with tasks period of 10 ms (i.e.,
160000 ticks with 16 MHz clock).

 Method Timer

Width
Time (µs)

Single Precision Double Precision

nRF51

AE 16 3.971 4.519
LR 16 4.022 4.618
AE 32 3.033 3.580
LR 32 3.082 3.679

nRF52

AE 16 1.092 1.133
LR 16 1.100 1.150
AE 32 0.764 0.805
LR 32 0.772 0.822

Table 2.4: Average time required for ticks adjustment with one update per hundred runs (/100 method)

 32

2.4.2 Adjustments with Pre-Calculated Values

Similar to the previous implementation, the timer is periodically restarted with an adjusted

value of the task period. The decimal fraction of this adjusted period is then multiplied by 100,

1000, 5000, and 10000 to get integer values for ticks adjustments at these times or levels. Again,

similar to the /100 method, final timer values at these four levels are modified by deducting the

ticks differences already included in the previous updates. All calculations are done only once at

the beginning of the synchronous task. The outcomes are an adjusted task period and four values

to adjust the timer at four levels. After reaching any of these levels, the corresponding value is just

loaded to the timer for one period to correct for the errors. Therefore, no extra calculation is

required in the time interrupt handler, and we only need to keep track of the task executions in a

count register. This register is reset after 10000 interrupts, and the adjustments restart from level

one.

Table 2.5 shows the average time that is needed to run this code in the timer interrupt

handler. Besides updating the counter at each level, the code includes a few compare and increment

commands. Thus, the times are independent of the drift estimation method and floating-point

precision. By employing this approach, ticks adjustments can be another 25-40% faster, compared

to the /100 technique. For simplicity, we refer to this method as 4L.

 Method Timer
Width

Time (µs)
Single & Double Precision

nRF51 AE &
LR

16 2.095
32 2.078

nRF52 AE &
LR

16 0.816
32 0.490

Table 2.5: Average time required for ticks adjustment with pre-calculated values (4L method)

 33

2.5 Duty Cycling Clock Sources

Ref. [17] proposes an approach called Virtual High-Resolution Time (VHT) for low-power

time synchronization, which is based on duty cycling the high frequency clock (HfClk). In this

method, in addition to the HfClk, a low-frequency clock (LfClk) is considered for the system

(typically 32 KHz). An always-on counter is clocked by the LfClk, whereas the HfClk is only used

for timestamping. A ratio between the HfClk and LfClk is estimated to convert the time of any

synchronization event to a high-resolution value. The duty cycle of the HfClk plays an important

role in achieving low-power operation. With a resynchronization period of 10 s, the system

reported in [17] can have power saving only when the duty cycle is below 10%.

While the goal in [17] is to reduce power consumption between resynchronization packets,

the same concept can be applied to scheduling a synchronous task. However, to evaluate the

effectiveness of this approach, a few points should be taken into account in estimating the duty

cycle value. The HfClk is used by the processor, and as a result during task executions (e.g., sensor

readings) and computing ticks adjustments (Table 2.3) it cannot be turned off. Similarly, the HfClk

is needed for BLE operation, and must be active for any potential data exchange in the intervals.

Considering that the intervals here are in the range of few milliseconds or even hundreds of

microseconds, all of these times can increase the duty cycle. Table 2.3 is helpful for the times

needed for ticks adjustments, but task executions and radio communications highly depend on the

application. Another important factor in this method is the ratio of the power consumption of the

HfClk and of the LfClk, which is dictated by the hardware platform.

Here, we briefly explain the implementation of BlueSync with duty cycling the HfClk. In

nRF5 series, the LfClk is 32 KHz, and is only connected to the real-time counter (RTC). As we do

not have any resynchronization, the HfClk is always active in the short synchronization timeslot.

 34

This means that all the timestamping and drift estimations are only based on the HfClk. The clocks

ratio estimation is also performed during the synchronization timeslot. The idea is that after the

last synchronization packet, RTC starts and runs for most of the task period, and the timer with

HfClk only turns on close to the end to provide high accuracy. This is achieved by dividing the

adjusted ticks (based on HfClk) by the clocks ratio and using the integer part of the quotient as the

RTC interrupt value. The RTC triggers the timer, whose interrupt value is the remainder of the

adjusted ticks.

One problem with using the RTC in nRF5 series (and potentially other chips) is that its

start/restart task has a delay between 15-45 µs. This uncertainty can cause large errors between the

nodes. Therefore, synchronization is implemented without resetting the RTC, and the delay of

starting it with the last packet should be compensated by one of the following techniques: a) If we

start the RTC and timer together, by having the clocks ratio and the timer value after a few LfClk

cycles, we can estimate the delay; b) Before the last packet, the RTC is started, and at R0 ticks it

triggers the timer. Then, the timer value T0 is captured upon receiving the synchronization packet.

Finally, T0 is added to the adjusted ticks (similar to an offset in LR), and R0 is added to the RTC

interrupt value. Results show that the estimation in the first method is not as accurate as adding

offsets to the calculations. Thus, the second approach is employed in BlueSync. It is important to

note that the Discrete Adjustments method can help in decreasing the HfClk duty cycle by reducing

the calculation times. However, as it requires to restart the RTC periodically, it would be subject

to high errors. Clearly, if a hardware platform provides RTC operation with negligible delays,

combining Discrete Adjustments and HfClk duty cycling can increase the likelihood of power

saving in a larger number of applications. The combination of this method with AE and LR is

indicated by 32k at the end.

 35

2.6 Results

In all experiments, one DK serves as the master and two of the wireless nodes designed for

nRF5 series are used as slaves. Again, we should note that master/slave terms should be viewed

from a synchronization standpoint and do not mean that two devices need to be paired in BLE.

Generally, the BlueSync protocol with AE is programmed on nRF51 nodes, whereas nRF52 nodes

run the LR version. To investigate the effect of synchronization speed on average error, different

configurations are tested for the synchronization timeslot. For simplicity we name these

configurations as x(y), where x is either 8 or 16 representing the number of timestamps/packets,

and y is the packet interval in seconds, in which a decimal point must be considered after any zero.

As an example, 16(01) means 16 packets with 0.1 s interval. If not stated all error reports are for

the 8(1) configuration. As mentioned before, after synchronization timeslot there is no further radio

activity (for synchronization purposes) and the nodes start to adjust their interrupts for a 10-

minute-long task with a period of 10 ms. To measure the error, the nodes toggle one of their output

pins every 10 ms. The distance between transitions in two nodes is treated as the synchronization

error. To collect more datasets, the nodes automatically restart after 10 minutes and the same

experiment is repeated for at least one hundred times.

Results are presented in five parts. Part 1 shows synchronization error for both nRF51 and

nRF52 nodes in two conditions: when only offset is removed between the nodes; and when

software interrupts are used for timestamping (Figure 2.6). These results can be treated as starting

points before we apply our proposed techniques and BlueSync to the system.

In Part 2, maximum synchronization error is plotted in Figure 2.7 for AE, LR, and Discrete

Adjustments methods (for both SP and DP calculations) against 7 different packet configurations,

which represent synchronization speed as explained above. Figure 2.7 shows the error for 91

 36

possible settings in a heat map style and is a good reference for comparing different setups. Parts

3 and 4 provide a more detailed comparison for the two Discrete Adjustments methods (explained

in Section 2.4) and duty cycling clock sources (covered in Section 2.5), respectively. It is worth

mentioning that similar to previous works, average absolute error is used to compare different

synchronization protocols, and due to the large number of different settings tested (>100), it is not

practical to plot the histogram and cumulative distribution function (CDF) of the error for all of

them. Therefore, these two plots are only depicted for the two proposed Discrete Adjustments

methods. The main reason of choosing Discrete Adjustments is that by using them the error

fluctuates, and the histogram and CDF are provided to give a better understanding of the error

distribution.

Finally, instead of comparing synchronization methods just based on synchronization error,

a figure of merit (FOM) is defined in Part 5 to add synchronization speed and calculation times

(energy efficiency) to the equation. This enables us to have a better comparison of different

methods. In Figure 2.12, drift estimation method is fixed and FOM is plotted to show the trade-off

between synchronization speed and accuracy. In Figure 2.13, synchronization timeslot/speed is

fixed and FOM is plotted to compare methods with different calculation approaches.

2.6.1 Offset Removal and Software Interrupts

Initially, for studying the impact of frequency-drift estimation and timestamping with PPI,

two tests are conducted as follows. First, only the offset is removed by sending a single packet

without any timestamp information. Nodes restart their timers upon reception of this packet with

a PPI task (to reduce software delays) and generate interrupts without any adjustments. The result

is then a representation of the frequency error between crystals employed in the nodes. In the

second setup, AE and LR are used, but timestamping is performed by software interrupts. Figure

 37

2.6 illustrates the absolute synchronization error measured every 10 ms and averaged over all

recorded sessions. In the first test, the average maximum error is 451 µs and 257 µs for nRF51 and

nRF52, respectively. The second test shows that even by using less accurate interrupt

timestamping, these errors can be reduced by 2.3x (193 µs) in nRF51 and 3.1x (82 µs) in nRF52.

Lower error reduction in nRF51 can be justified by its higher timestamping error with software

interrupts (Figure 2.3).

2.6.2 BlueSync

For BlueSync experiments, at first we considered two slightly different versions for LR. In

LR1, nodes’ timers do not restart with the last packet, and the first interrupt is calculated by adding

a pre-defined constant value to the last master timestamp. On the other hand, LR2 is implemented

similar to AE and starts from zero at the beginning of the task (Figure 2.4). The idea behind LR1

is that the timestamps used in computing slope/offset were captured by a timer that was restarted

with the first packet. As each reset may have a different delay, the concern was that applying the

Figure 2.6: Average measured absolute synchronization error across 10-minute sessions when a) only offset is
removed between the nodes; and b) software interrupts are used for timestamping.

 38

same estimation results after the second restart might cause a small error that gets accumulated

over time.

Average maximum synchronization errors (during 10-minute sessions) for BlueSync and

Discrete Adjustments method are summarized in Figure 2.7. The results are divided into two

(a)

(b)

Figure 2.7: Average measured maximum absolute synchronization error after 10 minutes without any
resynchronization. Single and double precision floating point calculations are shown by S and D,
respectively. (a) Synchronization timeslot smaller than 4 seconds, and (b) synchronization timeslot
between 4-16 seconds.

8(
0.

1)
8(

0.
2)

16
(0

.1
)

Sy
nc

 E
rro

r a
fte

r 1
0

m
in

ut
es

 (µ
Se

c)

Drift Estimation Method

Sy
nc

 T
im

es
lo

t =
#P

ac
ke

ts
×

(In
te

rv
al

)
8(

0.
5)

16
(0

.5
)

Sy
nc

 E
rro

r a
fte

r 1
0

m
in

ut
es

 (µ
Se

c)

Sy
nc

 T
im

es
lo

t =
#P

ac
ke

ts
×

(In
te

rv
al

)
8(

1)
16

(1
)

Drift Estimation Method

 39

groups based on the synchronization speed. Fast synchronizations (synchronization timeslots

smaller than 2 seconds) are tested with 8(01), 8(02), and 16(01) configurations. In the second

group, four configurations are considered as 8(05), 8(1), 16(05) and 16(1) for synchronization

timeslots between 4-16 seconds. Single and double precision calculations are identified as S and

D, respectively. By analyzing the results, there is no significant difference between LR1 and LR2

methods. Therefore, LR2 is chosen to be combined with the Discrete Adjustments concept.

As discussed before, in LR both slope and offset need to be computed in DP, and we can

only do ticks adjustments in SP. In the 4L method, there are only four calculations for ticks

adjustments. Hence, we do all of them in DP, and in Figure 2.7 there is no data reported for LR2-

4L in SP. Comparing the errors with PPI timestamping (Figure 2.7) and their interrupt-based

counterparts (Figure 2.6) shows around 24x (nRF51) and 10x (nRF52) improvements for 8(1)

configurations. Also, by using the PPI feature, errors are in the same range for both nRF5 SoCs.

2.6.3 Discrete Adjustments

To better evaluate the proposed Discrete Adjustments approach, the average absolute errors

of AE-4L and LR2/100 are plotted against AE and LR in Figure 2.8. It is clear that in both AE-4L

and LR2/100 results, synchronization error fluctuates more. As it can be seen in the zoomed insets,

these fluctuations can cause some spikes in the error within the first minute. However, when the

average error increases above one minute, the impact of fluctuations would become less

significant, and as shown in Figure 2.7, in 10-minute sessions average maximum errors are still

comparable with AE and LR2. Similar trend is present in AE/100 and LR2-4L results.

Furthermore, histogram and cumulative distribution function (CDF) are plotted in Figure 2.9 for

AE-4L-16(1) and LR2/100-16(1) methods with DP operations.

 40

The spikes in error for the 4L method (Figure 2.8(a)) are around 2x larger than the spikes

for the /100 method (Figure 2.8(b)). This is more clear in the zoomed insets, and immediately after

starting the task in the 0~0.2 minute time window. If we use one update per two-hundred runs

compared to the /100 technique, the expectation is that the spikes amplitude would double and

would be around the same value of the 4L method. However, it should be noted that the time

needed to run the 4L method is the minimum time possible, as it does not include any calculations

and is composed of updating the time, and a few compare and increment commands (Section

(a)

(b)

Figure 2.8: Average measured absolute synchronization error across 10-minute sessions with 8(1) configuration
with SP operations for (a) AE and AE-4L, and (b) LR2 and LR2/100.

 41

2.4.2). In other words, we can use the /100 method if we are interested in lower spikes in the error.

But, if having ~2x higher spikes is acceptable, then the 4L method provides a better tradeoff

between the error and ticks adjustment time.

2.6.4 Duty Cycling Clock Sources

Average maximum synchronization errors of BlueSync (after 10 minutes) with and without

using two clock sources are reported in Figure 2.10. The results validate that without degrading

(a)

(b)

Figure 2.9: Histogram and CDF of maximum absolute measured synchronization error after 10 minutes with
DP operations for (a) AE-4L-16(1), Average=7.79 µs, σ=4.23 µs, and CDF(90%)=13.64 µs;
(b) LR2/100-16(1), Average=3.67 µs, σ=2.18 µs, and CDF(90%)=6.66 µs.

AE-4L-16(1)

LR2/100-16(1)

 42

performance, we can utilize the idea of duty cycling the HfClk in scheduling synchronous tasks.

One important point in this case is that besides drift compensation, estimation of the ratio of the

clocks affects the timing accuracy. This ratio is calculated by running both a timer (clocked by the

HfClk) and a RTC (clocked by the LfClk) for a fixed number of RTC ticks (Rf), and capturing the

number of timer ticks at Rf. Depending on the time considered for the estimation, this test can be

repeated a few times to calculate an average ratio. To show its effect on the synchronization error,

we tested LR2-32k-8(1) with three different estimation lengths of 1, 2, and 8 seconds. As shown

in Figure 2.11, 1- and 2- second durations have, respectively, 6x and 2x larger errors, compared to

the estimation length of 8 s. In all experiments (Figure 2.10) duration of clock ratio estimation is

equal to the synchronization timeslot. Consequently, this estimation affects the accuracy of fast

synchronizations more.

Figure 2.10: Average measured maximum absolute synchronization error after 10 minutes with and without
duty cycling the HfClk. All results are for DP calculations.

Sy
nc

 E
rro

r a
fte

r 1
0

m
in

ut
es

 (µ
s)

Sync Timeslot = #Packets×(Interval)

 43

2.6.5 FOM

Comparing methods based on the average error is only useful when the goal is achieving

the best possible accuracy. In this comparison factors like speed and synchronization overhead (or

energy efficiency) are left out. Therefore, we define a FOM as:

𝐹𝐹𝐹𝐹𝑀𝑀 = 𝑡𝑡
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

× 1
𝑛𝑛𝑇𝑇𝑃𝑃

× 1
𝑇𝑇1+𝑁𝑁×𝑇𝑇2

 ,𝑁𝑁 = 𝑡𝑡
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

 , Equation 3

where error is average maximum synchronization error after t seconds, n represents number of

synchronization packets with interval TP, TTask is the synchronous-task period, N is number of

interrupts during t, and T1/T2 are times required for error estimation / ticks adjustments. In this

FOM, we are basically removing the effect of resynchronization on error, and adding

synchronization speed and calculations overhead to the cost function. Consequently, the FOM has

the following three main parts:

Figure 2.11: Measured synchronization error when three different lengths are considered for estimating the
ratio between the HfClk and LfClk in LR2-32k-16(1).

 44

1. Synchronization Error: error is normalized to the duration of the test, in which no

resynchronization is performed (error/t).

2. Synchronization Speed: shows how much time is required before the nodes can start the

task. We use n packets with TP intervals for synchronization. So, the synchronization

timeslot is n×TP.

3. Calculation Overhead: we have calculations for drift estimation at the beginning, which is

T1 (Table 2.2). Then, after each interrupt, we need to adjust the timer ticks, which the

required time is T2 (Table 2.3-Table 2.5). So, for N interrupts during the whole test session

the overhead is T1+N×T2.

Obviously, we are interested in a larger FOM, which means lower error during a longer

period with faster synchronization speed and lower calculation times. First, we study the impact

of synchronization speed on synchronization accuracy. For this purpose, we can plot the FOM of

each method for the seven different packet configurations. Although Figure 2.12 is for AE with

Figure 2.12: FOM for AE with DP calculation for 7 different synchronization packet configurations, plotted for
both nRF51 and nRF52.

 45

DP operations, we observed a similar trend in all other methods. The results indicate that if in a

system speed and accuracy are equally important, fast synchronizations like 8(01) and 16(01) can

provide a better performance. Moreover, 8(05) is somewhere in between in terms of both speed

and accuracy. The FOM values of nRF52 are higher than nRF51 because of its smaller T1 and T2

times (Table 2.2 and Table 2.3), which are due to a faster processor and more advanced

architecture.

Second, we compare the FOM of different methods for one specific packet configuration.

Again, Figure 2.13 is plotted for 8(05), but other configurations follow the same trend. In both AE

and LR2, SP computations have around 2.5x larger FOM. With the FOM scale in Figure 2.13,

traces for the /100 and 4L implementations would be close to each other. Therefore, only the points

of the /100 approach are illustrated to make the plot readable. The Discrete Adjustments method

increases the FOM by 3.3x and 6.9x for SP and DP operations, respectively. Its results are also

less sensitive to the floating type used. Additionally, it is clear from Figure 2.12 and Figure 2.13

that the FOM values of AE/100 on nRF51 are even slightly higher, compared to AE

Figure 2.13: Comparison of FOM for AE, AE/100, LR2, and LR2/100 with 8(05) configuration, and both SP
and DP calculations on nRF51.

 46

implementation on nRF52. Considering that nRF51 has a slower processor, this comparison is

another way to demonstrate that the Discrete Adjustments approach can improve the performance

of synchronization algorithms.

2.7 Comparison with Previous Works

In this section, first, we compare BlueSync with other BLE implementations, and then with

some prominent synchronization methods reported for other wireless protocols. In [22], due to low

accuracy of timestamping in application layer, the synchronization error is 37.78 ms. In BlueSync,

even by using software interrupts for timestamping (Figure 2.6), the error is three orders of

magnitude lower than [22]. In [23] and [24], three techniques are proposed in total to improve the

precision of timestamping in BLE. Among them, [24] has the lowest standard deviation of 900 ns,

which is based on the implementation of their approach on nRF51. As shown in Figure 2.3, by

utilizing the PPI feature in both nRF51 and nRF52, we can get 18x lower standard deviation, i.e.,

under 50 ns. BLE beacons were also used in Cheepsync [20]-[21], where they achieved a

synchronization error of 10 µs with 100 ms resynchronization period. In BlueSync even with 8(05),

the error after 100 ms is around 75 ns (100x smaller) and after 10 minutes is still under 10 µs.

Larger error in Cheepsync can be justified by the fact that is not designed for traditional WSN

applications, and cell phones are part of their system as receivers.

Regarding other wireless protocols, the way synchronization errors are measured and

reported in previous studies makes it hard to have a fair comparison. Typically, errors are reported

for a specific and small period, which varies between papers. Data are rarely provided for long

sessions (i.e., few minutes) without any resynchronization. Therefore, we try to measure BlueSync

errors in conditions as close as possible to each of the following works. Furthermore, to

compensate for different clock frequencies in each study, we divide (normalize) all errors by the

 47

clock period. Also, some of the following methods use timestamping to calculate the

synchronization errors. Actual error when using timestamps can be higher by up to one clock

period, compared to toggling a pin in each node and measuring the distance between the edges

(used in BlueSync). Hence, we adjust for this additional error by considering an extra 0.5 clock

period (on average) for all reported values.

Figure 2.14 summarizes the comparison with other wireless protocols explained below. It

is worth mentioning that in all the data reported here and in other previous works, no temperature

variation is considered between the nodes, and different synchronization protocols are compared

without implementing any compensation for the temperature. In Chapter 6, we will discuss

potential solutions for applications where large temperature difference across nodes is expected.

In FTSP [12], an average error of 1.48 µs was measured for 30-second resynchronization

period and data polling every 18 seconds. With this polling period, after five measurements the

polling time will be the same as a resynchronization point (which can be treated as time zero). As

Figure 2.14: BlueSync comparison with other wireless protocols.

 48

there is no resynchronization in BlueSync, we use the value of these five points relative to 30

seconds and average our results on these times (i.e., 18, 6, 24, 12, and 30 seconds). In FTSP an 8

MHz clock was used. As a result, FTSP error would be 11.84+0.5=12.34 clock periods, whereas

LR2-16(1) (with SP operations) in BlueSync can achieve 1.24 clock periods. Moreover, even if we

consider LR2/100-16(1), this error will be 2.72 (SP) and 1.34 (DP), which are still 4x and 8x

smaller than FTPS, respectively.

In VHT [17], nodes are resynchronized every 10 s, and a beacon is sent every 2 s, which

the nodes timestamp. These timestamps are collected through a wire to calculate the

synchronization error. As also pointed out in [19], VHT accuracies are reported as mean signed

deviation, which typically results in lower values, compared to mean absolute error. With these

conditions, VHT achieves an accuracy of one clock period, which is adjusted to 1.5 clock period

for comparison. By averaging the results of LR2-32k-16(1) method at 2, 4, 6, and 8 seconds, we

get an error of 65.37 ms or 1.05 clock period. This value is 30% less than the adjusted error of

VHT, and basically shows that duty cycling the HfClk can be used with high precision in both

BlueSync and scheduling a synchronous task.

Another well-known synchronization protocol is Glossy [18]. Glossy takes advantage of

concurrent transmission to implement fast network flooding and time synchronization with a re-

synchronization interval of 1 s. In [18], the radio clock frequency is 8 MHz, and error is measured

as the time difference between activation of output pins. From 3-8 hops, error is almost constant

around 400 ns (3.2 clock period) based on mean signed deviation and without drift compensation.

In another work [19] from the same group, Glossy is tested again with six nodes that can be up to

six hops away from each other in the network. The average absolute error by timestamping the

signal from a GPS receiver attached to the nodes is 720 ns with a 13 MHz clock, i.e., 9.35 clock

 49

period. Considering that there is an error of 20 ns between the GPS receivers, we do not add the

0.5 clock period (i.e., 38.5 ns) to the reported values in [19]. From a graph for Glossy results [19],

the node in the first hop has an accuracy of around 250 ns that translates to 3.25 clock periods. We

use this value for comparison, as its measurement conditions are closer to BlueSync. Ref. [19] also

presents another method called Time-of-flight Aware Time Synchronization (TATS), which uses

both fast flooding and propagation delay compensation. With 13 MHz clock frequency, re-

synchronization period of 1 s, drift compensation, and using the same six nodes in a six-hop

network, TATS achieves an error of 240 ns or 3.12 clock periods. Note that this error is for a multi-

hop setup, and no data was provided for single hop performance. In BlueSync, after 1 s even with

8(01) configuration (fast synchronization) and SP operations, the errors of AE and LR are 1.28

and 1.48 clock periods, respectively. Although these results show that Glossy and TATS have

lower accuracies, it should be noted that the main idea behind these two methods is to reduce the

error in large hops, and they do an excellent job to keep the error low in these networks. This can

also justify the fast resynchronization periods of 1 s. Therefore, even with the one-hop error, we

still need to consider the applications that Glossy and TATS are designed for. Improving error in

multi-hop networks is not the topic of this study. The reason that we included this comparison is

that these designs are two of the notable works in the field that have sub-microsecond accuracies.

2.8 Summary

The presented BlueSync is a time synchronization protocol for BLE sensor networks and

is compatible with commercial SoCs. By improving timestamping in BLE and using frequency-

drift compensation, BlueSync achieves average timing accuracies of <1µs per 60 s. To the best of

our knowledge, this is the lowest synchronization error reported for BLE. The challenges for

synchronization over BLE, along with features in BLE chips and the new BLE 5 standards that

 50

help address them, are explained in detail. The discussion can be used as a guideline for

implementation in other BLE hardware platforms.

Besides BLE specific techniques, with the goal of reducing the synchronization overhead,

we investigated two methods for drift estimation and ticks adjustments (AE and LR) for scheduling

synchronous tasks. Results show that just by choosing the appropriate technique based on the

processor specifications (including clock frequency, timer width, and processor architecture), up

to 5x improvement can be achieved in time/energy spent on calculations (independent of the

wireless protocol).

In contrast with many of the previous studies that the re-synchronization interval is only a

few seconds, the goal here is not to perform any re-synchronization for many minutes (after a short

synchronization timeslot at the beginning). The Discrete Adjustments approach with two

implementations is proposed to further reduce the computation overhead in these lengthy

synchronous tasks. It may be used with both AE and LR, and can reduce the calculation time for

ticks adjustments up to 15x. This method is especially effective in processors with lower clock

frequencies. We also demonstrated that the concept of duty cycling the HfClk can be applied to

scheduling synchronous tasks. Practical implementation in BlueSync and discussion on how

potential power savings are dependent to the target application were provided.

All of the presented methods are experimentally tested in 10-minute long sessions with

error measurements every 10 ms, and by considering 7 different configurations for synchronization

packets. The synchronization timeslot affects frequency estimation, and consequently the

synchronization error. However, the tradeoff between these two has not been well studied in

previous works. Results show that when speed and accuracy are both equally important, fast

synchronizations (<2 s) perform better. The dataset reported here can give insight to researches in

 51

selecting the appropriate synchronization speed and method, based on their own specific

application and constraints on error.

 52

 Low-Power Techniques for Synchronization Protocols

Two methods for reducing the power consumption of running a synchronous task are

discussed in this chapter. First, frequency scaling is used to reduce the power consumption during

scheduling a synchronous task, without significant increase in the synchronization error [37].

Second, a protocol called AdaptSync [38] is proposed to replace frequent resynchronization

packets, which are sent to reset the error in the nodes. Both methods are especially effective in

reducing power consumption in long synchronous tasks (>1 min). While the implementation here

is based on BlueSync as the main synchronization protocol, these concepts can also be applied to

any other synchronization protocol.

3.1 Frequency Scaling in Time Synchronization

The idea here is to apply the concept of frequency scaling (FS) to the two different stages

of operation shown in Figure 2.1: synchronization timeslot and synchronous task. In FS the goal

is to dynamically change the clock frequency to lower the power consumption of the processor

and its peripherals. Basically, as the synchronization timeslot is short and includes timestamping

for drift estimation, it should run on a high frequency clock, whereas the synchronous task may be

scheduled with lower frequency clocks.

3.1.1 Implementation

The nRF51 SoC used in the designed sensor nodes requires a ±20 ppm 16 MHz crystal for

BLE operation. Two 16-bit timers run on clock signals generated from this crystal. The system

 53

supplies a 1 MHz and a 16 MHz clock source for peripherals. The timer frequency is set by a 4-

bit prescaler as 16 MHz/2PRESCALER, and whenever it is equal to or smaller than 1 MHz, the clock

controller selects the 1 MHz peripheral clock for reduced power consumption. Using the 1 MHz

clock almost halves the run current of the crystal oscillator (from 470 µA to 250 µA) and lowers

timer current by 7.5x (from 30 µA to 4 µA). Therefore, in our sensor nodes we need to reduce the

timer clock frequency to 1 MHz or lower to benefit from any power savings.

In synchronization timeslot, the radio needs the 16 MHz clock, and the timer should also

run on this frequency to timestamp the synchronization packets with high precision. Then, both

AE and LR methods (Section 2.3.2) can be used for frequency-drift estimation. Before the last

synchronization packet from the master that triggers the start of the desired task, the nodes stop

their timers and change their clock frequency to 1 MHz (or lower). Finally, each node employs its

own estimated drift values to schedule a task with 10 ms period for ten minutes. To measure the

synchronization error, after each interrupt the nodes toggle one of their output pins, which are

recorded by a logic analyzer.

It should be noted that in commercial processors, the conditions to achieve reduced power

consumption, and the value of this power saving depend on the features provided to the user. As

an example, in our case with nRF51, any clock frequency above 1 MHz does not save power, and

also with all clock signals below 1 MHz the reduction in power consumption is the same as the 1

MHz clock. On the other hand, custom designed processors are more flexible in this case, and

potentially future ultra-low-power SoCs would include more modes of operation based on clock

frequencies.

 54

3.1.2 Results and Discussion

To demonstrate the impact of FS on synchronization error, first we consider the case where

the 16 MHz clock is used for both synchronization timeslot and scheduling the task. We repeat the

same test with the 1 MHz clock. Then we compare the results with two implementations of FS

approach, in which the nodes switch the clock frequency to 1 MHz, and 0.5 MHz after running

from the 16 MHz clock in the synchronization timeslot. All tests are for 8(1) packet configuration

with AE (Section 2.6), and are repeated at least one hundred times for 10-minute long sessions. As

shown in Figure 3.1 after ten minutes the 1 MHz FS technique has more than 5x lower

synchronization error compared to the 1 MHz results, and also above one minute its error is

comparable with the 16 MHz method. This implies that using a high frequency clock in the short

synchronization timeslot has a much higher impact on synchronization error, compared to using it

Figure 3.1: Comparing absolute measured synchronization error during ten minutes with and without scaling
down the timer clock frequency during the task (“16/x MHz” means using the 16 MHz clock for the
synchronization timeslot and using the x MHz clock during the synchronous task).

0 0.2 0.4 0.6 0.8 1
0

1

2

3

 55

during the synchronous task. Moreover, even the 0.5 MHz FS results are more than 4x better than

1 MHz ones and are still within the same range of 16 MHz errors after ten minutes.

When scheduling the task with 0.5 MHz and 1 MHz clocks, it is expected to have higher

errors at the beginning due to lower adjustment resolution. However, the important point about FS

approach is that after starting with a higher error, its error oscillates around the same value for tens

of seconds and does not increase immediately in contrast to the 1 MHz results. This point is clear

in the zoomed part of Figure 3.1, and is also verified by plotting the histogram and cumulative

distribution function (CDF) of the absolute synchronization error after two minutes for 0.25 MHz

FS technique (Figure 3.2). These plots show that even after two minutes, the average

synchronization error (CDF of 50%) is below one clock tick. Figure 3.3 summarizes the results of

the 1 MHz FS approach with different packet configurations for both AE and LR methods, and

compares them with the normal BlueSync error values.

It is worth mentioning that the presented FS technique has the following differences with

the VHT service [17]. First, in VHT the system needs to switch between two different crystals:

one low frequency (around 32 KHz) and one high frequency (few MHz). Moreover, each node

Figure 3.2: Histogram and CDF of absolute measured synchronization error after two minutes with 0.25 MHz
timer frequency during the task. Average error is still smaller than clock period.

Clock
Period

 56

must estimate a ratio of its two different crystals. However, in the discussed FS method, all clocks

are generated from a single crystal, and only the frequency is changed between different stages of

operation. Second, in VHT the assumption is that the processor is idle most of the time and can go

to sleep mode with its high frequency clock turned off. To achieve power savings, the duty cycle

of this clock must be smaller than a limit, which depends on the processor. In contrast, the idea

behind FS is that depending on the workload, the processor itself can also run on a much lower

clock frequency. Results here show that if the hardware platform provides such a feature, FS does

not cause significant decrease in synchronization performance when frequency drift is estimated

with high frequency clocks. Clearly, best practice in each network depends on the application,

target hardware, and task requirements.

3.2 AdaptSync

As discussed in Section 2.1, synchronization protocols are mostly based on the flooding

technique [12]. In this method, the master node sends a number of packets containing its timing

information at a fixed rate. Other nodes timestamp these packets and estimate the frequency drift

Figure 3.3: Average measured maximum absolute synchronization error after 10 minutes without any
resynchronization. FS results are reported for 1 MHz timer frequency during the task.

 57

of their clock during the synchronization timeslot. Mostly, linear regression is used for estimation,

which results in a slope and offset. The nodes then use these values to schedule a synchronous task,

e.g., measuring acceleration every 10 ms. If the nodes reset their timers with the first

synchronization packet, offset would be very small. Slope values are dependent on crystal

oscillators used in nodes as clock sources. Due to this hardware difference even with frequency-

drift estimation, the timing error between the nodes starts increasing after a few seconds. In

previous works generally the master sends resynchronization packets periodically (e.g., every 30

s) to reset the error. This method requires frequent use of the radio, which typically consumers the

most power in a wireless sensor node. Therefore, reducing the error with minimum radio usage is

desirable, especially when the duration of the synchronous task is more than few minutes. In

AdaptSync we show that by using the estimated slope values in nodes and relative timing error

after a short period of time, we can reduce the error during the rest of the task with minimum

resynchronization packets.

The basic idea is that if after drift management, the synchronization error between two

nodes increases in one direction (either positive or negative slope), by reversing that direction, the

error can be reduced. To implement this idea, we need to find: 1) the sign and value of the error,

and 2) a way to temporarily force the error to the opposite direction untill the accumulated error is

lowered.

3.2.1 Error Sign and Value

First, we investigate the effect of synchronization speed on the error direction. Two nodes

are synchronized using BlueSync with three different synchronization timeslots: 1.6 s (16 packets,

0.1 s interval), 8 s (8 packets, 1 s interval), and 16 s (16 packets, 1 s interval). After

synchronization, nodes toggle one of their I/O pins every 10 ms for 5 minutes based on their

 58

adjusted clock. This test is repeated more than one hundred times for each timeslot value. Error is

calculated as the time difference between edges of the two I/O signals. Then, at each point of time

we count the number of test sessions with positive error. For 16 s timeslot after 30 s, 100% of

sessions have positive error, whereas in the 8 s and 1.6 s timeslots this value is around 85% and

50% during the whole 5 minutes, respectively. This indicates that with lower synchronization

speeds, the probability of increasing the error in one direction is higher. Lower synchronization

speed also results in lower synchronization error as shown in Figure 2.7. The problem is that

different pairs of nodes do not necessarily have a 0% and 100% distribution for the error sign. In

a real application, we want to have low error in every run of the system. So, even if 80% of sessions

show positive error for two nodes, we cannot risk changing the error direction to negative values,

as it will generate large negative errors if the other 20% happens. Therefore, we propose to use a

short time at the beginning of the synchronous task to find the error between the nodes wirelessly.

In this setup, nodes are synchronized normally during the synchronization timeslot. After

60 s, the master sends a beacon, and all nodes timestamp this packet. The 60 s time can be changed

based on the hardware and maximum acceptable error. Each node then uses its slope and offset

values from linear regression to estimate the time at master:

𝑜𝑜𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑒𝑒𝑒𝑒 = 𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 −𝑒𝑒𝑜𝑜𝑜𝑜𝑀𝑀𝑒𝑒𝑡𝑡
𝑀𝑀𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒

 . Equation 4

All nodes then transmit their slope and the estimated tMaster back to the master. Synchronization

error between any two nodes is equal to the difference of their estimations of the master time. This

approach was tested with three pairs of boards. To verify its accuracy, nodes were also toggling a

pin every 10 ms based on their adjusted ticks. Comparing the time difference between pin toggles

and the synchronization error calculated in the master shows up to 10% error, which is acceptable

for our purpose.

 59

3.2.2 Reversing the Error

Now that the master has the sign/value of the error between each pair of nodes, the final

step is implementing a mechanism to reverse the error direction and send the parameters values to

the nodes. To explain this method, we define Slope Difference (SD) which is equal to (slope -1)

and shows how much faster (SD>0) or slower (SD<0) a node is (compared to the master). For

simplicity, we multiply SD by 106 and express it in PPM (should not be mistaken with crystal

tolerance). The amount of error variation between any two nodes can be computed as

𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸 𝑉𝑉𝑉𝑉𝐸𝐸𝑉𝑉𝑉𝑉𝑜𝑜𝑉𝑉𝑠𝑠𝑉𝑉 (𝜇𝜇𝑠𝑠) = (𝛽𝛽1𝑆𝑆𝑆𝑆1 − 𝛽𝛽2𝑆𝑆𝑆𝑆2)𝑃𝑃𝑃𝑃𝑀𝑀 × 𝑉𝑉
𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴� , Equation 5

where fAdj is the frequency of adjusting the nodes clock, n is number of adjustments, and βi is a

coefficient for node i that besides contributing to the error value allows moving the error to any

point of time during adjustments.

To clarify this approach, consider the two nodes in Figure 3.4 where SD1 = -15.5 PPM and

SD2 = +3.7 PPM. Having SDs with opposite signs is one of the situations that resulted in 100%

error increase in one direction in our tests. Using normal synchronization (Figure 3.5), the average

Figure 3.4: Relation between clocks of the two nodes used in tests.

 60

maximum error is -5.15 µs after 60 s. As we adjust the clock every 10 ms, fAdj is 100 Hz. To reverse

the error +5.15 µs, we assume β1 = 0 and β2 = -2 (Figure 3.4), which gives n ≈ 69 based on Equation

5. Zero value of β1 means that node 1 continues doing normal synchronization, whereas node 2

injects 2×3.7 PPM error for (69×10 ms) every 60 s. By injecting error we mean that it is moving

the clock away from node 1, and this is because the nodes were over-corrected with the drift

management in normal synchronization. After the 69 adjustments are finished, node 2 goes back

to normal synchronization for the remainder of the 60 s. Considering the absolute values of errors

for AdaptSync in Figure 3.5, there is 7x improvement in average error for a 10-minute recording

session. The improvement can be more for longer sessions, as in normal synchronization, error is

continuously increasing, while in AdaptSync it is oscillating and increasing relatively slowly.

Figure 3.5: Measured synchronization error between two nodes by using normal synchronization and
AdaptSync.

 61

 Wake-up Radio

In Chapter 2 and Chapter 3, both low-error and low-power synchronization protocols that

are related to the active state of the nodes, i.e., when they are ON and are recording data from the

sensors, were presented. Consequently, the power savings only apply to the active state. As

discussed in Section 1.3, in many HUMS applications, the active time of the nodes is very small

compared to the time they are idle. Clearly, to save power between measurement sessions, nodes

must be put in a low-power mode, which is typically known as the sleep state. When a node is put

in the sleep state, a wake-up mechanism should be utilized to bring back the node to the active

state. The power consumption of this wake-up mechanism then dominates the power consumption

of the node during the sleep state, and it should be orders of magnitude smaller than the active

power consumption. In most cases, it is not possible to plan for the wake-up in advance, i.e., time

of the wake-up cannot be programmed, and wake-up is triggered by an external event or a wake-

up command.

In this chapter, first, we discuss two methods called wake on radio (WOR) and wake-up

radio (WUR), that can be used to externally wake-up the nodes, i.e., by sending a command from

another node or a base station. In Section 4.1 the focus is on power requirements of these methods,

and how they affect the overall lifetime of the nodes. Then, as the sensitivity of a WUR sets its

maximum range, in Section 4.2 the effect of using different frequency bands on the sensitivity and

the size of the nodes is investigated. Section 4.3 reviews previous works and explains the

architecture of the proposed WUR. Measurement results are provided in Section 4.4.

 62

4.1 Wake-up Methods

To trigger the wake-up externally by sending a command from another node or a base

station, we consider the following two methods:

• Wake On Radio (WOR): In this method, the main transceiver (e.g., the BLE used here) is

duty-cycled by a low-power timer. The nRF5 family have a Real-Time Counter (RTC) that

runs from the low-frequency clock source of the system (32 KHz). When used to wake-up

the node, the SoC consumes 1.9 µA (excluding the BLE receiver). One of the advantages

of this method is that it does not add any additional component to the system. However, as

the current consumption of the BLE receiver is around 13 mA for nRF51 and 6 mA for

nRF52, the duty cycle value should be very low to take advantage of any power savings.

This means putting the node in the sleep state for a longer time, which translates to a larger

wake-up latency (i.e., larger duty cycle period).

• Wake-up Radio (WUR): In contrast to WOR, a WUR is always ON and ready to receive

wake-up commands. Therefore, it must have orders of magnitude lower power

consumption than the main transceiver, and it should be custom designed as an ASIC to

achieve better performance. Wake-up commands are mainly a simple address to be able to

wake-up different nodes in a network selectively. One of the design challenges in WURs

is the trade-off between power consumption and sensitivity that sets the maximum range

of the WUR.

When deciding to use a of WOR or a WUR, we should also take into account the

measurement conditions of the system. When the nodes are in active state and making

measurements using on-board sensors, the inertial sensor dominates the power consumption of the

 63

nodes by drawing more than 3 mA continuously (compared to < 0.5 mA for the rest of the modules

on the nodes). Therefore, the number and duration of each required measurement cycle play an

important role in determining the total power usage, and thus the lifetime, of the nodes. We

consider two measurement scenarios:

• Scenario A: Four measurements, each 1-minute long during a day. This is similar to the

condition for HUMS used in trains.

• Scenario B: Two measurements, each 1-hour long during a week. This is similar to the

condition of HUMS for helicopter rotor.

In Figure 4.1, the lifetime of a node with a 200 mAh battery is plotted against the node

wake-up latency for the above two scenarios, when the nRF5 BLE receivers are duty cycled with

an ON time of 25 ms. The lifetime is also plotted for three different power consumptions of 1, 10,

and 100 µW for the WUR. The node wake-up latency is the duty cycle period in the WOR

approach. For the WUR, the node wake-up latency is the time that the node needs to process the

received address, which depends on the address length and data rate. The black dotted line in the

Figure 4.1: Lifetime of the nodes with a 200 mAh battery for Scenario A) 4×1-minute long measurements per
day, and Scenario B) 2×1-hour long measurements per week.

 64

two plots represents the maximum achievable lifetime of the node for each scenario, which is

calculated by using only the power consumption when in the active state and considering a sleep

state power of zero. All calculations include the required power for synchronization at the

beginning of measurements with 8 packets and 0.5 s intervals.

With 10 s latency, lifetime of the duty-cycled nRF5x and the 100-µW WUR are almost the

same in both scenarios. When looking at the 1-µW WUR, this lifetime is increased by 3.8x (extra

418 days) and 1.7x (extra 71 days) for scenario A and B, respectively. At 1 s latency for the duty-

cycled nRF5x, which is easy to achieve in WURs, the increase in lifetime by having a 1-µW WUR

jumps to 22x (extra 541 days) and 6x (extra 145 days) for scenario A and B, respectively. As

expected, the increase in lifetime by moving to a lower-power WUR is more significant in scenario

A compared to scenario B due to the lower total measurement time, i.e., active time. Moreover,

the 1-µW WUR achieves 97% and 98% of maximum possible lifetime in scenario A and B,

respectively. Therefore, we can consider sub-µw power consumption as one of the design

parameters for the WUR in the explained applications.

As discussed in Section 1.4 for the laminated bearing of the rotor (similar to scenario B),

continuous operation for 90 days with 1~2 hours recording per week is required. With a 1-µW

WUR and the 200 mAh battery of the nodes, a lifetime of more than 170 days is expected.

Moreover, with the WOR method and a wake-up latency of 10 s, the lifetime is more than 110

days by using the nRF52. So, both methods satisfy the lifetime requirement of the target

application. At the time of preparing for the in-flight test, the WUR chip was not completed.

Therefore, for the in-flight test discussed in Chapter 5 the WOR method is used with nRF52 and

latencies of more than 10 s.

 65

To better observe the effect of the measurement cycle on the node lifetime, we consider

the product of average required current during active time (in mA) and time in active state (in

minutes) as I×t. Assuming a fixed supply voltage for all modules of the node, this I×t represents

the energy required during the measurements. In Figure 4.2, first, the lifetime of the node is plotted

against I×t for four different WUR power consumptions of 100, 10, 1, and 0.1 µW. Then, the ratio

between lifetime of two WUR power consumptions is calculated when the power of the WUR is

decreased by 10x starting from 100 µw. It can be seen that with I×t = 10 mA×min, by going from

a 100-µW to a 10-µW WUR, we can achieve a lifetime gain of 3.9x. Decreasing the WUR power

from 10 µW to 1 µW results in 1.4x increase in lifetime. However, a node with a 0.1-µW WUR

increases the lifetime by only 4% compared with a 1-µW WUR. When considering a lower value

of 2 mA×min for I×t, the three above lifetime ratios increase to 7.3 (100/10 µW), 2.7 (10/1 µW),

and 1.2 (1/0.1 µW). These plots demonstrate that not necessarily all applications will benefit

significantly from having a sub-100 nW WUR, and the lifetime gain also depends on the total

energy of the active state. As discussed above, for the target application of monitoring the bearings

of the helicopter rotor, the nodes can achieve 98% of their maximum lifetime with a sub-µW WUR.

Figure 4.2: Lifetime of the nodes with a 200 mAh battery for four WUR power consumptions plotted against
different combinations of current and duration of active state per day (Left figure). Lifetime ratio
between WURs with 10x difference in power consumption (Right figure).

 66

However, in this work the goal is to design a WUR with <100 nW power consumption, which can

be used in a broader range of ultra-low-power applications.

4.2 WUR Sensitivity

One of the important parameters of a wireless receiver is its sensitivity, which sets the

maximum range of communication. To have an estimate of the required sensitivity for the WUR

we use the Friis transmission formula

𝑃𝑃𝑅𝑅 = 𝑃𝑃𝑇𝑇 𝐺𝐺𝑇𝑇 𝐺𝐺𝑅𝑅 𝑐𝑐2

(4𝜋𝜋𝑅𝑅𝑜𝑜)2
 Equation 6

where PR is the received power, PT is transmitted power, GR is receiver antenna gain, GT is

transmitter antenna gain, R is the distance between transmitter and receiver, f is the frequency of

operation, and c is the speed of light. It should be noted that the Friis transmission formula gives

the received power under idealized conditions, including correct alignment of the antennas, and an

unobstructed free space between antennas with no multipath propagation. Therefore, the maximum

range calculated for a specific sensitivity by this formula and the actual achievable range in

practice can be different and dependent to the test setup. As an example, the nRF52 has a sensitivity

of -97 dBm and by considering a transmitted power of 0 dBm and antenna gains of 0 dBi, its

maximum range by using the Friis formula is around 710 m. In outdoor space and when there is a

direct line of sight between the nRF52 transmitter and the receiver, ranges up to 650 m have been

reported for this chip [39]. However, in an indoor space the measured range goes down to ~ 50 m

[40]. This is mainly due to the obstacles and interference and other factors that affect

communication between the transmitter and receiver in indoors, such as people, walls, and

furniture.

 67

For fixed transmitter power and antenna gains, the received power is lower for higher

frequencies at a fixed distance. However, when the size of the nodes is important, we need to

consider the effect of lower frequencies on the antenna size. In Table 4.1, the gain and size of

different commercial antennas in four frequencies of 100 MHz, 915 MHz, and 2.4 GHz are listed.

These are the frequencies that have been used in most of the recent published WUR works. By

assuming a fixed receiver sensitivity of -50 dBm and transmitted power of 10 dBm, the gain of

these antennas is used in Equation 6 to calculate the theoretical range, i.e., maximum distance

between the transmitter and receiver. These calculated ranges are plotted against the volume of

their corresponding antenna in Figure 4.3. Then the range is normalized by the volume of the

antenna, i.e., range/volume, and the results are shown in Figure 4.4. It is clear that the 100 MHz

antenna has the largest size, the lowest gain of -25 dBi, and consequently the lowest normalized

Frequency Maximum
Gain

Dimensions
(mm) Series

1 78-108 MHz -25 dBi 32 × 11 × 1.6 FracFM

2 902-928 MHz 2.1 dBi 12 × 3.0 × 2.4 RUN mXTEND
3 902-928 MHz 1.7 dBi 18 × 7.3 × 0.8 EZConnect
4 824-960 MHz 1.5 dBi 10 × 3.2 × 3.2 BAR mXTEND
5 698-960 MHz 2.3 dBi 24 × 12 × 2.0 ALL mXTEND
6 698-960 MHz 1.1 dBi 30 × 3.0 × 1.0 TRIO mXTEND
7 824-894 MHz 1.9 dBi 7.0 × 3.0 × 1.0 ONE mXTEND
8 880-960 MHz 1.3 dBi 7.0 × 3.0 × 1.0 ONE mXTEND
9 2.4-2.5 GHz 4.2 dBi 12 × 3.0 × 2.4 RUN mXTEND

10 2.4-2.5 GHz 1.7 dBi 7.0 × 3.0 × 2.0 COMPACT Xtend
11 2.4-2.5 GHz 1.3 dBi 6.7 × 6.7 × 0.8 REACH Xtend
12 2.4-2.5 GHz 1.1 dBi 7.0 × 3.0 × 0.9 SLIM Xtend
13 2.4-2.5 GHz 0.2 dBi 4.1 × 2.0 × 1.0 MICRO Xtend
14 2.4-2.5 GHz 2.4 dBi 3.0 × 2.0 × 0.8 NANO mXTEND
15 2.4-2.5 GHz 1.8 dBi 7.0 × 3.0 × 2.0 DUO mXTEND
16 1.71-2.69 GHz 3.0 dBi 10 × 3.2 × 3.2 BAR mXTEND
17 1.71-2.69 GHz 3.1 dBi 24 × 12 × 2.0 ALL mXTEND
18 1.71-2.69 GHz 2.4 dBi 30 × 3.0 × 1.0 TRIO mXTEND
19 1.71-2.17 GHz 1.7 dBi 7.0 × 3.0 × 1.0 ONE mXTEND
20 1.85-2.17 GHz 1.8 dBi 7.0 × 3.0 × 1.0 ONE mXTEND

Table 4.1: Specifications of antennas used in the Friss equation for different frequencies

 68

range. One of the 2.4 GHz antennas (#14 in Table 4.1) has the highest normalized range, mainly

because of its lowest volume. However, all the 2.4 GHz antennas achieve shorter ranges compared

with the 915 MHz ones. The 915 MHz antennas, in addition to having the longest ranges, are

around the same size as of the 2.4 GHz antennas and have similar normalized ranges.

While Figure 4.3 and Figure 4.4 are plotted for a fixed receiver sensitivity, another way to

compare different frequency bands is to calculate the range for different receiver sensitivities.

Figure 4.3: The relation between size and calculated range for the antennas listed in Table 4.1 by assuming a
transmitted power of 10 dBm and receiver sensitivity of -50 dBm.

Figure 4.4: Range of the antennas listed in Table 4.1 normalized by their volume. Range is calculated by
assuming a transmitted power of 10 dBm and receiver sensitivity of -50 dBm

 69

Therefore, the gain of the three antennas listed in Table 4.1 (#1, 2, and 9) are used to plot the

theoretical range against the receiver sensitivity at 100 MHz, 915 MHz, and 2.4 GHz (Figure 4.5).

The assumption is that the same antenna is used in both transmitter and receiver, and PT = 10 dBm

(10 mW). It is clear that for a specific sensitivity, the 915 MHz receiver achieves a longer range.

In other words, to cover a specific range, the 915 MHz receiver can have a lower sensitivity

(requiring a lower sensitivity for the same distance means the received power is higher, and it is a

positive point).

For the HUMS applications discussed here and many other WSN applications, a 50 to 100

m range is adequate. It should be noted that we are using this range to estimate the required

sensitivity for the WUR based on the Friis transmission formula. As discussed earlier in this

section, the Friis formula gives the sensitivity under idealized conditions and with an unobstructed

free space between antennas. Therefore, considering a 50~100 m range does not mean that we

want exactly such a range for the HUMS applications, e.g., master and nodes installed on a

Figure 4.5: Achievable range based on different receiver sensitivities at three frequencies.

 70

helicopter rotor. Obviously, the maximum distance between the master and nodes in a helicopter

is only a few meters and is much smaller than 50 m. But, considering the simplifications assumed

in the Friis transmission formula, we need to over design for the range and consequently sensitivity

to guarantee achieving the desired performance in the real setup.

The 50~100 m range translates to -50 to -55 dBm sensitivity at 915 MHz and -55 to -60

dBm sensitivity at 2.4 GHz. For the 100 MHz frequency, due to the low antenna gain of -25 dBi,

the range is below 10 m even with a -70 dBm sensitivity. Therefore, both 915 MHz and 2.4 GHz

receivers can provide the required range. The only difference is that the 2.4 GHz receivers must

have a few dBm higher sensitivity to achieve the same range as the 915 MHz receivers. The

difference of ~5 dBm obtained from Figure 4.5 between the 915 MHz and 2.4 GHz receivers (for

a specific range) is affected by the specific antennas used for calculation (#2 and #9 in Table 4.1

with the same size) and can be different for another set of antennas. On the other hand, as shown

in Figure 4.3, the smallest size antennas are for the 2.4 GHz band and wherever size is the limiting

factor, they can have advantages over the 915 MHz antennas. In this work, we choose the 915

MHz band because of longer range and lower receiver sensitivity requirements.

4.3 WUR Architecture

4.3.1 Previous Works

To achieve sub-µW and even nanowatt power consumptions, typically the WUR is

designed based on a passive front-end architecture. In this architecture, the first module in the path

of the received signal is a passive RF rectifier, and no active RF amplification is implemented to

save power. Generally, On-Off Keying (OOK) modulation is used, and if the output voltage of

the rectifier is above a certain threshold, it will be detected as a data bit “1”. A comparator is used

to perform this comparison. Depending on the design, there might be a baseband (BB) amplifier

 71

between the output of the rectifier and the comparator. A wake-up code or address is assigned to

each node to be able to wake-up nodes selectively. Therefore, a digital block is required after the

comparator to search for a match between the received data and the node’s address. This block is

typically implemented by digital correlators and generates the final wake-up signal.

The initial sub-10nW WURs had bulky off-chip transformers (9 cm2) [41] and matching

networks (2.3 cm2) [42] to achieve more than 25 dB passive gain in the 100-433 MHz frequency

range. While in [43] designing the transformer at 9 GHz helped reduce its size, but its -64 dBm

sensitivity results in a range equal to a WUR with 20 dBm lower sensitivity at 915 MHz. Moreover,

its designed patch antenna for an extra -5 dBm sensitivity was still 4 cm2. As explained in Section

4.2, the sensitivity of the WUR is an important factor to calculate its range. However, the range is

also affected by the frequency band and antenna size, and comparing only the sensitivity of

different works, does not give us a clear picture of their relative ranges. Therefore, instead of

sensitivity we use range for comparison, and include the dimension of antenna in the overall system

size.

In Figure 4.6 the relation between power, range, and size is plotted for prominent WUR

designs with the passive front-end architecture (note that the plots are color coded for the frequency

of operation). These designs are again used at the end of this chapter (Section 4.4) for comparison

with our work, and their detailed specifications are listed in Table 4.3. From the sub-10 nW works,

[41] and [42] (green bars) have, respectively, 16x and 8x larger sizes compared to the 2.4 GHz

works (blue bars), mainly due to their off-chip components and antenna size at 100-200 MHz.

Their ranges are also <13 m, which is 5-25x lower than the 2.4 GHz WURs. In the 9 GHz design

[43], size is ~ 20% lower than the 2.4 GHz works, but its range is also 2-5x lower. The WUR in

[44] is for a standard communication protocol, i.e., BLE, with a power consumption of 236 nW

 72

for 8.192 kbps data rate, and requires an external 32 KHz crystal oscillator. The WUR in [45] is

based on an antenna-rectifier co-design for passive gain, and the reported performance is for using

the specific designed antenna with an area of 1.23 cm2. In the reported WUR designs, employing

a lower data rate is one the techniques to lower the power consumption. Compared to [44] with

8.192 kbps and [45] with 2.5 kbps, all other four designs [41]–[43], [46] have data rates <300 bps,

with 33.3 bps being the lowest in [43]. The data rate and number of bits in the node’s address set

the wake-up latency. For many applications, including HUMS, a latency of <1 s is acceptable,

which justifies using 100-300 bps data rates for 8-32 bit addresses.

Figure 4.6: Relation between power, range, and size of previous works with the passive front-end architecture.

 73

To include all important WUR parameters in comparing different designs, we can define a

𝐹𝐹𝐹𝐹𝑀𝑀 = (𝑅𝑅𝑉𝑉𝑉𝑉𝑅𝑅𝑠𝑠 × 𝑆𝑆𝑉𝑉𝑜𝑜𝑉𝑉𝑅𝑅𝑉𝑉𝑜𝑜𝑠𝑠) (𝑃𝑃𝑠𝑠𝑃𝑃𝑠𝑠𝐸𝐸 × 𝑆𝑆𝑉𝑉𝑆𝑆𝑠𝑠)⁄ . This FOM is calculated and then normalized

to the lowest value for the discussed WURs above (Figure 4.7). As expected, [41] and [42] have

the two lowest FOMs of 1 and 1.9, respectively, which is due to their bulky off-chip components.

Although [44] consumes 236 nW power at 2.4 GHz, it has the second highest FOM of 88, because

of its high data rate and relatively small size. The highest FOM is 146 and for the WUR reported

in [46], which operates at 2.2 GHz with a reduce data rate of 250 bps. While the 9 GHz design

[43] has the lowest size, its FOM is only 10 due its low data rate (33.3 bps) and low range (30 m).

Figure 4.7: FOM of previous works with the passive front-end architecture.

 74

Figure 4.8 shows the block diagram of the passive front-end architecture that is used in our

design. An off-chip matching network provides a passive voltage boost to the RF signal with OOK

modulation, and it requires only two small SMD components (0.0128 cm2 each). The goal is to

lower the power consumption and achieve the desired range and without significantly increasing

the system size.

The first on-chip block is the passive RF rectifier, which is implemented with diode-

connected transistors and is followed by a gain stage in baseband (BB) to increase sensitivity. The

amplified OOK signal is then compared with a reference voltage to generate the digital bit stream.

A dynamic comparator with 2x oversampling is used, and its clock is generated from an on-chip

oscillator. The detected data is then passed to the signature detection block for comparison with a

pre-defined pattern, i.e., node address. The signature detector is composed of an early detection

and an address detection block, forming a 2-stage wake-up mechanism. In the following

subsections, we first explain the proposed 2-stage wake-up architecture and discuss its advantages.

Then, the design and circuitry of other building blocks are presented. The chip is designed in the

Figure 4.8: Block diagram of the WUR.

 75

TSMC 65 nm CMOS-LP technology with a 0.4 V power supply and target data rate of 100 bps at

915 MHz.

4.3.2 Two-Stage Wake-up Method

The concept of the 2-stage wake-up is mainly based on adding patterns that are easy to

detect before the transmitted address, and continuously check for them in the first stage of the

signature detection block, while the second stage is in standby. Whenever the pattern is detected,

a wake-up 1 (WU1) signal is generated by the early detection block that turns on the address

detection block, i.e., the second stage, which is consisted of shift registers and correlators. After

WU1 is activated, the oversampled received data are clocked into the second stage shift registers,

and the number of total bits matched with a programmable address is calculated after every shift.

Whenever this number is higher than a programmable threshold, wake-up 2 (WU2) signal is

generated. Previous architectures did not have the first stage used here, and the shift registers and

correlators were continuously active, calculating the correlation with the coded address with every

clock. One way to explain the advantage of a 2-stage wake-up is by considering the false wake-up

rate.

False wake-ups can be triggered by circuit noise in steady state and interference from other

nodes. They should be minimized as they add to the average power consumption of the node in

the sleep state. In Figure 4.9, the average power of a node is plotted against false wake-up rate for

a WUR power of 20 nW, active time of 15 ms, and active power of 12 mW. The active time is the

time that the main transceiver of the node is ON after wake-up and searches for a confirmation of

the wake-up. If no confirmation is received, which is the case for false wake-ups, the node goes

back to sleep with only the WUR being active. Based on Figure 4.9, a false wake-up rate of <1/h

is a reasonable assumption.

 76

The false wake-up rate can be simulated by considering the false positive bit rate (FPBR),

which represents the cases when a “1” is detected instead of “0” in the received data. One way to

lower false wake-ups is to increase the length of address codes. Figure 4.10 shows the probability

of having <1/h false wake-up for 2x oversampled 8-bit and 16-bit codes with 3 (out of 16) and 6

(out of 32) bits error tolerance, respectively (bit error tolerance is the maximum number of bits

that can be detected falsely, but still result in an address match by the correlators in the address

detection block). The maximum possible FPBR is 1.6% for the 8-bit code and 5.4% for the 16-bit

code, showing around 3x improvement for the longer code. However, in longer codes, we should

consider that the maximum frequency error between the actual sampling rate (i.e., oscillator

frequency) and the nominal sampling rate is equal to ±1/Nc, where Nc is number of correlator bits

[43] and is equal to the code length multiplied by the oversampling rate. This means that long

addresses require a more accurate clock, which becomes harder to achieve in nanowatt power

levels.

Figure 4.9: Calculated average system power in sleep mode based on false wake-up rate, for a WUR power of
20 nW, active time of 15 ms, and active power of 12 mW.

 77

In the 2-stage approach here, a “1010101010” sequence is transmitted before the desired

address, and in the first stage we are looking for 4 to 6 falling edges in 10 bit-time (Tb=1/data rate).

This is achieved by enabling a 5-bit timer to keep track of Tb counts, and a 4-bit counter sensitive

to falling edges of data (Figure 4.11). If WU1is not activated in 10Tb, the timer and counter are

disabled until the next bit “1” is detected. Counting more than 4 falling edges in 4Tb resets the

detection, filtering out toggling bits with frequencies higher than 2x the data rate. Based on the

data rate of other transmitters in the channel, similar filters can be implemented by using different

combinations of timer and counter values. Considering the above configuration for the first stage

of an 8-bit code, the probability of <1/h false wake-up is also plotted in Figure 4.10 resulting in a

maximum FPBR of 6.7%. This value is more than 4x larger than the FPBR of the normal (1-stage)

8-bit code and slightly (~ 20%) larger than the FPBR of the normal 16-bit code. Therefore, the 2-

stage architecture can help reduce false wake-ups without increasing the address bits that impose

lower frequency error requirements for the oscillator frequency. This is due to the fact that the

configuration used in the first stage does not affect the accuracy of the oscillator frequency, but it

Figure 4.10: Probability of <1/h false wake-ups based on the false positive bit rate (FPBR), plotted for three
cases to show the effect of increasing the code length and using the 2-stage wake-up method.

 78

contributes to lowering the probability of false wake-ups. Note that by frequency error

requirement, we mean the maximum error between the oscillator frequency and the nominal

sampling rate. This error as discussed before is inversely proportional to number of the address

bits.

Another advantage of the 2-stage approach is that in previous architectures, before the

received address is completely clocked into the shift register, the window of calculating the

correlation includes previous random detected bits in the channel, and out of position address bits.

Both can increase the probability of false wake-ups. Therefore, the address codes and the threshold

should be chosen carefully to have a balance between false and missed wake-ups. As a result, some

codes might be excluded from potential addresses, due to their high chance of causing false wake-

Figure 4.11: The proposed two-stage wake-up detection.

 79

ups. All of these become more challenging in short length addresses, as the range of change for

the threshold and number of possible address codes are smaller. With the 2-stage method, after

WU1 is detected: a) WU2 can only change state after the full address is clocked in, preventing any

high number of matched bits during the shift to cause a wake-up; and b) all register bits can be

initialized to predefined values, eliminating any uncertainty.

4.3.3 Passive Rectifier

 The passive CMOS rectifier is implemented using the Dickson multiplier ([47], [48]),

which operates in the sub-threshold region (Figure 4.12). The number of stages, transistor type,

and transistor size are the design variables for the rectifier [48]. In energy detector receivers,

similar to the architecture used here, the noise from the energy detector (i.e., passive rectifier) is

dominant for setting the receivers sensitivity [49]. Therefore, we consider the simplified circuit in

Figure 4.13 to calculate the SNR at the output of the rectifier (SNRout). In this circuit Vs and Rs are

Figure 4.12: N stage CMOS rectifier based on the Dickson Multiplier.

Figure 4.13: Simplified circuit of the matching network and rectifier for calculating passive gain.

 80

the antenna voltage and its impedance; Cs and Lp form the matching network with RLp showing the

parasitic resistance of the inductor; Cin and Rin are the capacitance and resistance seen at the input

of the chip. The input capacitance Cin is a combination of the rectifier input capacitance, and

parasitic capacitances from the inductor, package, bond-wire and pad. The rectifier input

capacitance is a function of the number of stages and capacitance of each diode (CD), which is in

the range of 1 fF. All other parasitic capacitances are represented by CP, which can be around 1-

1.5 pF and dominates the Cin value.

The passive gain of the matching network depends on the loading condition of the matching

network (Rin and Cin) and is calculated by

𝑉𝑉𝑖𝑖𝑛𝑛
𝑉𝑉𝑇𝑇

= 1
2
�
𝑅𝑅𝑖𝑖𝑛𝑛 ∥ 𝑅𝑅𝐿𝐿𝐿𝐿

𝑅𝑅𝑇𝑇
 Equation 7

where RLp = ꞷLp Qind and assuming that Lp ≈ 1/ꞷ2Cin, RLp can be related to Cin by RLp = Q/ꞷCin.

Figure 4.14 shows the matching network gain for different Rin and three Cin values with Qind = 50

at 915 MHz. As expected from Equation 7 and RLp formula, larger Cin values reduce gain and

Figure 4.14: Matching network gain with Qind =50 at 915 MHz for three different Cin values.

 81

should be minimized. The output voltage of the rectifier (Vout) in the sub-threshold region is given

by [48]

𝑉𝑉𝑒𝑒𝑜𝑜𝑡𝑡 = 2𝑁𝑁 ⋅ 𝑉𝑉𝑇𝑇 ⋅ 𝑠𝑠𝑉𝑉 �𝐼𝐼0 �
𝑉𝑉𝑖𝑖𝑛𝑛

𝑉𝑉𝑇𝑇� �� Equation 8

where N is number of stages, VT is the thermal voltage ≈ 26 mV, and I0 is the zero-th order modified

Bessel f unction of the first kind. By replacing Vin from Equation 7, Vout is plotted in Figure 4.15

for four different diode resistance (RD) values with Cp = 1 pF, CD = 1 fF, Qind = 50, and input

power of Pin = -50 dBm. Similarly, and with the same above parameters, the power spectral density

(PSD) of the rectifier output noise can be estimated by PSDout = 4KB T Rout, where KB is

Boltzmann’s constant, T is absolute temperature, and Rout is 2N×RD (Figure 4.16).

As both Vout and PSDout increase at different rates with N, it is expected that an optimum

point can be found for the SNRout. Figure 4.17 shows the changes in SNRout (left y-axis) and Rin

(right y-axis) for varying number of stages N. When increasing N up to the optimum N, the rate of

change for the gain is higher than the output noise, but after that while the gain is still increasing,

the rate of increase for the output noise becomes higher and the SNRout drops. The slight difference

Figure 4.15: Output voltage of the rectifier including the matching network with Cin=1 pF, CD=1 fF, Qind =50,
and input power of Pin= -50 dBm at 915 MHz for four different diode resistance (RD) values.

 82

in maximum SNRout for different RD values is due to the small difference in Cin as a result of

different N values. Remember that Cin is dominated by the parasitic capacitance of 1-1.5 pF and

CD has small effect on the Cin value. By ignoring the effect of CD, SNRout and N are plotted this

time against varying Rin in the left and right y-axis of Figure 4.18, respectively. It can be seen that

the SNRout plot is the same for all four RD values, and they have only different N values to achieve

Figure 4.17: SNR of rectifier output with Cp=1 pF, CD=1 fF, Qind =50, and Pin= -50 dBm at 915 MHz.

Figure 4.16: PSD of the output noise of the rectifier.

 83

the optimum Rin. On the other hand, SNRout decreases when Cin is increased from 1 pF to 1.5 pF,

which is expected considering the effect of Cin on the matching network gain.

In this work, by considering the SNRout and Vout plots, a 50-stage Dickson multiplier is

implemented with zero-voltage-threshold (ZVT) transistors that are sized to provide the optimum

required Rin. Moreover, the coupling capacitors are 62 fF MOM (metal-oxide-metal) capacitors,

which is the lowest capacitance available in the design kit.

4.3.4 Base-band Amplifier and Comparator

The rectifier output is amplified with a baseband two-stage amplifier working in the

subthreshold region and with an active mirror as the first stage (Figure 4.19). The amplifier is

designed to provide more than 40 dB gain with a cut-off frequency of 100 Hz. The Large gain of

the amplifier help relax the requirements for setting the trip point of the comparator. A dynamic

comparator based on a double-tail latch [50] and with 2x oversampling is used to save static power.

Figure 4.18: SNR of rectifier output with Qind =50, and Pin= -50 dBm at 915 MHz; ignoring CD and considering
two fixed input capacitances of 1 & 1.5 pF.

 84

As shown in Figure 4.19, nodes A/B are connected to a fixed 250 fF MOM capacitor to reduce the

comparator noise. Three programmable and binary weighted capacitors (LSB=30 fF) are also

included in nodes A/B to compensate for the input offset and fine tuning the trip point. The

reference voltage of the comparator is provided by a resistive ladder implemented with 32 diode-

connected transistors and 5-bit multiplexer to achieve a 12.5 mV step size.

4.3.5 Clock and Biasing

A dual-phase relaxation oscillator architecture [51] is used with some modifications to

generate the required system clock of fs = 2 × (data rate) = 200 Hz. First, its reference branch is

merged with the beta-multiplier of the chip (Figure 4.20). This helps to save an extra branch of

copied current and save the area of an additional on-chip reference resistor, which occupies 160

µm x 94 µm for a programmable 15-29 MΩ resistance, implemented by a combination of P+

diffusion and poly resistors. Moreover, even with currents smaller than 1 nA for the beta-

multiplier, generating a few hundred Hz clocks require large capacitors. To reduce the size/area of

the capacitors needed, the top current sources of the oscillator are sized 6x smaller than the beta-

multiplier PMOS transistors. This results in around 100 pA current for the oscillator, and as the

leakage of the switch in the off branch can affect the charging current, two separate current sources

Figure 4.19: Two-stage baseband amplifier and double-tail latch dynamic comparator.

 85

are considered for each branch. The bias resistor of the beta-multiplier has a fixed 15.5 MΩ (8

units) resistance and a programmable 3-bit part with LSB=1.94 MΩ. The priority of adjustment

for this resistor is to set the biasing point of the amplifier, and the oscillation frequency is mainly

adjusted with 6 binary-weighted MIM (metal-insulator-metal) capacitors on each branch with

LSB=125 fF. Simulations performed in different corner cases confirm that after adjusting the bias

resistors to a fixed valued for the amplifier bias, a combination of the capacitors of the oscillator

exists that can provide the required 200 Hz clock for the system.

4.4 Measurement Results

The chip was fabricated in the TSMC 65nm CMOS-LP technology and the die photo is

shown in Figure 4.21. The WUR blocks occupy an area of 0.604 mm × 0.764 mm = 0.462 mm2

excluding the pads. The die is packaged in a QFN32-5×5 package to test the WUR with the

designed test PCB (Figure 4.21).

Figure 4.20: Dual-phase relaxation oscillator merged with the beta-multiplier, and two separate current
sources with 6:1 current ratio to reduce capacitor sizes for low-frequency clocks.

 86

First, the WUR is tested without the matching network, and a sensitivity of -52 dBm at 915

MHz and 100 bps data rate is measured at 10-3 BER. As the output of the amplifier is pinned out

for monitoring, this setup is useful to see the combined gain of the rectifier and the amplifier. When

an RF input of -50 dBm (1 mVp) is applied to the chip, the buffered amplifier output changes ~250

mV, indicating a gain of ~50 dB (Figure 4.22). The clock frequency can also be adjusted between

70-500 Hz using the 8 control bits of the oscillator capacitor bank. By adding a 30 nH (Coilcraft

Figure 4.21: Die photo and the packaged chip on the test PCB.

Figure 4.22: Measured buffered amplifier output with -50 dBm (1 mVp) “01” sequence input (w/o the
matching network); gain of ~ 50 dB.

 87

0603DC) inductor and a 6.8 pF capacitor as the matching network, receiver sensitivity goes to -61

dBm. Both of these external components have a size of only 1.6 mm × 0.8 mm. Figure 4.23 shows

successful WU1 activation with the “1010101010” sequence, followed by a successful WU2

detection with the “11010100” address that is programmed as the node address.

As discussed in Section 4.3.2, if the early detection block detects more than four falling

edges when only half of the expected WU1 sequence is received, it resets its timer and counter,

and does not generate a WU1 signal. This feature basically filters transitions with frequencies

higher than 2 × (data rate) and prevents them from activating WU1. This is verified in Figure 4.22

by sending the “10” sequence at the frequency of 2 × (data rate) to have 12 back-to-back falling

edges. It is clear that while the output of the comparator shows the sequence correctly, no WU1 is

generated.

Table 4.2 shows the power breakdown of the WUR, which is measured with continuous

data toggling to capture both active and standby mode of the second stage. Comparison with

previous passive front-end WURs is summarized in Table 4.3. Considering the discussion in

Figure 4.23: Wake-up (WU1 & WU2) detected for “11010100” address with matching network at -61 dBm.

 88

Section 4.3.1, the power, size, and range of the designed WUR is added to the 3D plot for better

comparison (Figure 4.25). The work presented here provides a balance between important

parameters of a WUR. It has the lowest power consumption of 2.8 nW, while achieving a

sensitivity of -61 dBm at 915 MHz. This sensitivity is measured with only two external

components <0.015 cm2 as the matching network, which makes it possible to keep the node size

small. Its size including the antenna and the matching network is the second lowest after the 9 GHz

WUR [43], while it has 5x more range compared with [43]. With the 100 bps data rate and the 18-

bit wake-up signature (10 bit for the first stage sequence and 8-bit address) its latency is <200 ms,

which is still lower than the assumed limit of 1 s.

The calculated normalized FOMs of all these works are plotted in Figure 4.26. As

explained before, normalized FOM is FOM divided by the minimum FOM of all works, and

 Bias &
Oscillator

Amp &
Comparator Digital Reference

Voltage
I (nA) 1.8 3 1.8 0.4
P (nW) 0.72 1.2 0.72 0.16

Table 4.2: System power break down with VDD = 0.4 V

Figure 4.24: By using the timer and counter values, falling edges with frequencies higher than 2× (data rate)
are dismissed with no WU1.

 89

𝐹𝐹𝐹𝐹𝑀𝑀 = (𝑅𝑅𝑉𝑉𝑉𝑉𝑅𝑅𝑠𝑠 × 𝑆𝑆𝑉𝑉𝑜𝑜𝑉𝑉𝑅𝑅𝑉𝑉𝑜𝑜𝑠𝑠) (𝑃𝑃𝑠𝑠𝑃𝑃𝑠𝑠𝐸𝐸 × 𝑆𝑆𝑉𝑉𝑆𝑆𝑠𝑠)⁄ . The lowest FOM is for [41] due to its 9 cm2

off-chip transformer and despite its power consumption of 4.5 nW. This work has the highest

normalized FOM of 262, which is 1.75x better than the second highest one for the WUR in [46].

Comparing with [46], both designs have similar ranges and sizes, however, in this work power

 This
Work

JSSC18
[41]

JSSC19
[42]

JSSC20
[43]

TMTT20
[46]

RFIC17
[45]

ISSCC16
[44]

Frequency (MHz) 915 113 151/433 9000 2200 2400 2400

Power (nW) 2.8 4.5 7.4 7.3 11.3 365 236

Data Rate (bps) 100 300 200 33.3 250 2500 8192

Energy per bit (pJ) 28 15 37 219.2 45.2 146 28.8

External
Component

2 (1.6mm ×
0.8mm) MN

2cm × 4.5cm
transformer

1.7cm ×
1.4cm MN

0.02 cm2
transformer MN * - XTAL +

MN

Sensitivity (dBm) -61 -69 -76/-71 -64 -65 -61.5 -56.5

Range (m) *** 150 6 12 30 147 64 55

Bulky Component
Gain (dB) - 25 27/33 - - - -

Special Antenna - - - 4.5 cm2 - 1.23 cm2 -

Osc Freq (Hz) 200 600 200 66.6 1 K 20 K 32 K

Osc Requirements - External
Resistor

External
Tuning
Voltage

-
Tuning
Supply
Voltage

- External
XTAL

Address bits 8 16 8 18 64 32 31

VDD (V) 0.4 0.4 0.6/1 0.4 0.5/1 0.1/0.5/0.8 0.5/1

CMOS Technology 65 nm 180 nm 130 nm 65/180 nm 65 nm 65 nm 65 nm

Die Area (mm2) 0.462** 6 1.95 14 3.9 1.1** 2.25**

Normalized FOM 262 1 1.9 10 149 14 88

* MN: Matching Network ** active area
*** Assuming PTX = 10 dBm, and antenna gain of G100M= -25 dB, G900M= 2.1 dB, G2.4G= 4.2 dB, and G9G= 3.6 dB

to have almost the same antenna size in all frequency bands
 Excluding temperatue compensation blocks
 Patch antenna to get 5.5 dB more gain
 Rectifier-antenna co-design for passive gain; antenna diameter is D = 1.25 cm
 Normalized FOM = FOM / minimum (FOM), where FOM = (Range × DataRate) / (Power × Size)

Table 4.3: Comparison with previous passive front-end WURs

 90

consumption is ~ 4x lower, which with the data rate of 100 bps results in 1.6x lower energy per

bit. Moreover, setting the desired clock frequency in [46] requires adjusting an external supply

voltage from 0.3~0.8 V. The designed chip here, however, operates from a single supply voltage

(0.4 V), and adjusting its clock frequency is through programming the capacitor bank of the

oscillator, without needing any external voltages or external components.

As a summary, in this chapter, we first compared lifetime of the nodes by using WURs

with different power consumptions and by implementing the WOR method on the designed nodes.

Results indicate that for 2 hours inertial data recording (acceleration and rotation rates) per week,

the nodes’ lifetime with the WOR method and a wake-up latency of 10 s is ~110 days. This lifetime

is equal to using a 100-µW WUR. A 1-µW WUR increases lifetime to more than 170 days, which

is 98% of the maximum possible lifetime with the 200 mAh battery of the nodes. Considering the

Figure 4.25: Comparison with WURs listed in Table 4.3 in terms of size, power, and range.

 91

90 days continuous operation required for monitoring the laminated bearing of the helicopter rotor

(Section 1.4), both a WOR with 10 s latency and a sub-µW WUR can achieve a lifetime more than

the desired requirements.

For the WUR, our target is not only the HUMS applications discussed, and we are targeting

ultra-low-power applications with very low energy consumption during their active state. Lower

energy consumption means that the nodes either have a lower power sensor or are measuring for

shorter period of times (or a combination of both). As a result, our goal for the WUR was power

consumptions <100 nW to enable longer lifetime in a broader range of ultra-low-power

applications. A WUR with passive front-end architecture and a 2-stage address detection block

was designed and fabricated in TSMC 65 nm LP CMOS technology. It consumes 2.8 nW from a

single supply voltage of 0.4 V and has a sensitivity of -61 dBm at 915 MHz based on measurements

Figure 4.26: Comparison with WURs listed in Table 4.3 in terms of size, power, and normalized FOM.

 92

results. This sensitivity is achieved by using only two small (<1.5 mm2) off-chip components as

the matching network and translates to a range of ~150 m (estimated by using the Friis transmission

formula) with commercially available antennas. The 2-stage wake-up architecture also helps

reduce power consumption of the node by reducing probability of false wake-ups.

In the next chapter, rotor bench tests and an in-flight test of the developed system including

nodes and the master are discussed. As the WUR was not completed at the time of preparation for

the in-flight test, the WOR method is used with latencies of more than 10 s.

 93

 Rotor Tests

In Chapter 2, we presented the design of a wireless sensing system consisting of wireless

sensor nodes, and a Master (baste station) for data acquisition and synchronizing the nodes.

Different synchronization algorithms were proposed in Chapters Chapter 2 and Chapter 3, which

were implemented and tested on the designed wireless system. Those tests were mainly designed

to characterize the synchronization error of the proposed algorithms and were conducted in a

laboratory with I/O pins of the nodes connected to an oscilloscope to monitor the error between

them. In this chapter we will be using a rotor test bench (Section 5.1) on which our system is

installed, and will collect data. The test bench has wired and optical sensors that allows us to

compare the acquired data from different systems. Only the nodes are attached to the blades of the

test bench, and the Master is connected to a laptop. The result of this test is reported in Section

5.2. Then, with an in-flight test being the target, the hardware and software requirements of an in-

flight test are discussed in Section 5.3. Since the actual date of the in-flight test is unknown and is

dependent on arrangements between our project sponsor and an aviation company, we prepared

all the components, including housings, software and hardware modifications, and tested the

system on the ground on the rotor bench test. In this test, a Master board is added for user interface,

and another Master board is installed for data acquisition on the rotor. The user interface board is

portable and is only used by the operator on ground and is not required for in-flight recordings.

Details and results of this test are discussed in Section 5.4.

 94

5.1 Rotor Test Bench

Figure 5.1 shows the laminated thrust bearing, and its position relative to the rotor and

blades in a graphic illustration and a mock rotor setup. The bearing is linked to the rotor axis from

one end and to the blade from the other end. The blades are helicopter are heavy and they create a

lot of centrifugal loads on the rotor and blade attachments [52]. Even for a small two to four

passenger helicopter the centrifugal loads can be from 6 to 12 tons and can go as high as 40 tons

for large helicopters [52]. The thrust bearings must support all that centrifugal force, and also allow

the blades to have the desired angles for moving the helicopter. To monitor the health of this part,

HUMS algorithms rely on dynamic inertial data acquired from different parts of the blade and used

Figure 5.1: Laminated thrust bearing in a mock rotor, and graphic illustration of its connections.

 95

to extract three angles called pitch, flap, and lag, which are shown in Figure 5.2. The time duration

that these angles stay over a certain threshold can be used to estimate the lifetime of the part. As

discussed before, in order to extract these angles, inertial data must be collected synchronously.

The maximum acceptable time synchronization error depends on the angle reconstruction methods

and fault-detection algorithms, which are implemented by our sponsor. For these tests, the target

is a synchronization error of 30 µs. To test the system developed in this work, a smaller rotor and

blades fixed in a metallic structure are used in our sponsor’s laboratory in France. As shown in

Figure 5.3, this setup is also equipped with wired IMUs (MTi-1 IMU from Xsens [53]) and optical

sensors that act as a reference for measuring the angles. Different speeds and patterns of rotation

can be set for the rotor through its user interface. We refer to this setup as the rotor test bench.

Figure 5.2: Three angles used to characterize movement of rotor blades: pitch, flap, and lag.

 96

5.2 Bench Tests

In the first set of tests, two wireless sensor nodes and a Master board connected to a laptop

are used to validate the feasibility of using wireless nodes for this application. The nodes are the

ones with nRF52 SoC and ICM-20601[35] as the IMU (explained in Section 2.2 and shown in

Figure 2.2 (b)) and for this test are installed directly on the blade besides the wired IMUs (Figure

5.3). The Master is also the nRF52-DK as discussed in Section 2.2. BlueSync with LR2-8(05)

method is used as the synchronization protocol. Synchronized data with a sampling rate of 100 Hz

were successfully collected by the Master for a test duration of around 200 s. The extracted angles

based on the wireless system (i.e., nodes developed in this work), the wired IMUs, and the optical

sensors are plotted in Figure 5.4. The extraction of the angles is performed as part of a fault-

detection algorithm developed by our sponsor, and an accuracy of 1° compared with the optical

reference is considered acceptable. Table 5.1 shows the average absolute error between the optical

data as the reference, and the extracted angles of the wired and wireless systems. This average

absolute error between A and B with n samples is calculated by ∑ |𝐴𝐴𝑖𝑖−𝐵𝐵𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
. For both wired and

Figure 5.3: Rotor test bench: smaller rotor with wired IMU and optical sensors.

 97

wireless data, results show errors smaller than 1° for the flap and smaller than 0.4° for pitch and

lag angles, which are within the accuracy required by the fault-detection algorithms, and confirms

the usefulness of the wireless system.

Figure 5.4: Extracted angles from the three systems on the rotor test bench: optical, wired, and wireless.

 98

It is worth noting that the current rotor test bench does not have any means of changing the

flap angle, and we expect to have flap = 0°. The flap angle of around -1° measured by the optical

sensor and seen throughout the test is due to the installation of the bench and its metallic frames.

As shown in Figure 5.4 and Table 5.1, both wired and wireless systems have also larger errors for

the flap angle, which is acceptable considering the small value of the angle itself, and the fact that

their errors are still below 1° on average. When comparing the results of the wired and wireless

systems for all the three angles, we noticed some differences between them. These differences can

be explained by considering two important points. First, the mechanical position, i.e., the point

where the sensors are installed on the blade, affects the final value of the extracted angles. Because

the wired and the wireless nodes are placed at different positions from the rotor blasé axis, any

error in measuring their exact location can show up as error in the extracted angles. Moreover, due

to the different positions of the sensors, they will be measuring slightly different acceleration and

rotation rates. Second, the IMUs used in the wired and wireless system are not the same and have

different specifications. The wired IMU is MTi-1 from Xsense with ±16 g and ±2000 °/s full scale

ranges [53], respectively for the accelerometers and gyroscopes, whereas the wireless nodes use

ICM-20601 from Invensense with full scale ranges of ±32 g and ±4000 °/s [35]. Table 5.2 provides

a comparison of these two IMUs. Considering the above two points and the synchronization error

measurements presented in Section 2.6, the differences between the wired and wireless results are

sufficiently small and not caused by the wireless nodes and their synchronization algorithms.

 Pitch Flap Lag

 Wired Wireless Wired Wireless Wired Wireless

Optical 0.11° 0.33° 0.41° 0.54° 0.12° 0.18°

Table 5.1: Average absolute error between the extracted angles (pitch, flap, and lag) of the optical sensors as
the reference and the wired /wireless systems (bench tests)

 99

As mentioned, these wireless nodes are to be eventually tested in an in-flight test with

nodes installed on actual helicopter rotor to measure different flight conditions in a two-hour flight.

Because the exact date of receiving approval for the flight and possible access to the helicopter

before the flight is unknown, this thesis does not have access to this data. In preparation for these

in-flight tests, we have prepared a complete system for the in-flight test, and for evaluation on the

ground using the rotor test bench. In the following sections we describe the requirements of the in-

flight test, how they have been addressed, and the results of the rotor bench tests.

5.3 In-Flight Helicopter Test

5.3.1 Requirements

Due to regulations, an IP67 housing must be designed for all the nodes and boards that will

be installed on the helicopter. The time between the installation of the system and the actual 2-

hour flight is unknown and might be days or weeks. Also, the nodes and the Master board(s) in

charge of synchronization and data acquisition are installed in hard-to-reach areas and will have

to be turned ON at the time of installation. Therefore, a third User Interface (UI) board and wake-

up feature are needed to initiate the test before the flight. Figure 5.5 shows the physical placement

of the boards relative to each other. Compared with the bench tests, the following changes are

required:

 Accelerometer Gyroscope
 MT-i 1 ICM-20601 MT-i 1 ICM-20601

Stadard Full Range ±16 g ±32 g ±2000 °/s ±4000 °/s
Nonlinearity 0.5 % 0.5 % 0.1 % 0.3 %
Noise Density 70 µg/√Hz 390 µg/√Hz 0.013 °/s/√Hz 0.003 °/s/√Hz
3 dB Bandwidth 230 Hz 5~218 Hz 230 Hz 5~250 Hz

Table 5.2: Comparison of wired IMU (MT-i 1) and IMU of wireless nodes (ICM-20601)

 100

• A portable UI board that will be used by an operator on the ground to wake-up the Master(s)

and start/stop the test. It will also provide feedback about the status of the system to the

operator.

• The Master(s) need to store data on a SD card and act as a bridge between the UI board

and the nodes. After receiving the wake-up command from the UI board, they send another

wake-up signal to the nodes and wait for a confirmation of wake-up from all the nodes. A

similar process is repeated for synchronization, and the status of the system at each stage

is reported back to the portable UI board.

• Wake-up is implemented by duty cycling the nRF52 receiver with latencies of >10 s.

• The operator does not have any control over the system other than starting and stopping

the recordings. Therefore, a high-level module called test session management must be

added to the nodes and Master(s) so that the system can recover from any potential error,

especially during the recordings.

Figure 5.5: Physical placement of the boards for the in-flight test.

 101

5.3.2 Hardware and Housing

The nodes do not need any additional hardware and just a housing is designed for them.

Figure 5.6 shows the 3D printed housing for the nodes, which weighs 29 g with a 200 mAh battery

and has a flexible membrane window to enable access to the power switch.

The nRF52-DK is used for both the UI board and the Master(s). The UI board does not

need any special housing and power source, and it can be used with a laptop. The main additional

hardware is for the Master, which include a rechargeable 1000 mAh Li-ion battery, voltage

regulator, an IP67 switch for turning the board ON after installation, and a SD card shield. The

battery and voltage regulator, and the wires connecting them to the IP67 switch are placed at the

bottom of the housing and below the nRF52-DK (Figure 5.7). The SD card shield is 35 mm × 55

mm and connects to the top side of the PCB. In the current rotor test bench, one of the nodes is

placed on top of the Master. Therefore, one node housing is attached to the top cover. The complete

Master, including all PCBs and batteries, weighs 156 g.

Figure 5.6: 3D printed housing of the nodes with a size of 4×4×2 cm3, and weight of 29 g including the
battery and all the screws.

 102

5.3.3 Software

After installation, both Master(s) and the nodes are turned ON. However, they enter a low-

power sleep mode, where they turn on their receiver for a window of 250 ms every 30 s. This is

the WOR method discussed in Section 4.1. On the day of the in-flight test (which can be weeks

apart from the installation), the user can send the wake-up command to the Master by pressing

Button 1 on the UI board (buttons are shown in Figure 5.7 as the UI board and the Master use the

same hardware). The Master then relays this command to the nodes and waits for their

confirmation. The Master continues advertising the wake-up command until confirmation is

received from all the nodes. Then, it advertises the wake-up status, which can be received by the

UI board and displayed to the user.

At this point, the assumption is that the test might be cancelled or might be carried out in

a few hours. Therefore, the Master and the nodes are still put in the sleep mode, but the frequency

Figure 5.7: 3D printed housing of the Master with a size of 12×8.5×2.5 cm3, and weight of 156 g including
the battery, all PCBs, and screws. Battery and voltage regulator are placed below the PCB.

 103

of scan is increased to every 10 s to have lower latencies in response to commands. The user can

send a cancel code at any time to reset the Master and the nodes. Whenever it is confirmed that the

flight will happen, the user should start the synchronization timeslot by pushing Button 2 (Figure

5.7) on the UI board. From this stage, everything is automated, and the UI board is just used to

show the system status to the user.

Whenever the Master receives the synchronization command, it informs the nodes of the

time that it will start sending synchronization packets by including an incrementing counter value

in the payload. By having a predefined duration for this stage, the nodes can estimate the start of

the synchronization timeslot by using the received counter value. After the synchronization packets

are sent, the Master scans for packets from the nodes that indicate the result of synchronization for

that node. This result is advertised by the Master for both the UI board and the nodes. With

successful synchronization, the nodes start recording and sending data and the Master saves the

received data on the SD card. If synchronization fails, the Master and the nodes repeat the above

process. Note that no user interaction is needed, and the system automatically recovers from any

missed wake-up, failed synchronization, and even lost connection during recording.

5.4 Results with In-Flight Test Requirements

 Figure 5.8 shows the placement of the Master and the nodes on the rotor test bench. The

same sequence that is expected on the day of the in-flight test was used, and the experiment was

repeated multiple times. No packet loss was detected for the wireless system in any of the tests. It

was verified that when some synchronization packets were not received by one of the nodes the

UI board showed the correct feedback, and the Master and the nodes repeated the synchronization

routine. The rotor was controlled with a 200-second-long pattern. Three extracted angles for the

three used systems (optical, wired, and wireless) are plotted in Figure 5.9. Table 5.3 shows the

 104

average absolute error between the angles obtained from the optical sensors and the ones extracted

from the wired and wireless data.

In both wired and wireless system, the average absolute error for pitch and lag is smaller

than 0.4°, whereas the flap error is smaller than 0.6°. All errors are within the acceptable range of

the HUMS fault-detection algorithms (< 1°). Figure 5.10 and Figure 5.11 show the moving average

of the absolute error with a window size of 20 s for the wired and wireless system, respectively.

When calculating the moving average of an array A, each mean is calculated over a sliding window

of length k across neighboring elements of A. The window is centered about the element in the

current position; result is an array with the same size as A. Here array A is the absolute error with

Figure 5.8: Rotor test bench used to verify the in-flight hardware and software.

 Pitch Flap Lag

 Wired Wireless Wired Wireless Wired Wireless

Optical 0.20° 0.34° 0.33 0.50 0.22 0.25°

Table 5.3: Average absolute error between the extracted angles (pitch, flap, and lag) of the optical sensors as
the reference and the wired /wireless systems (bench tests with in-flight test requirements)

 105

reference to angles from the optical data, window size is 20 s, and the size of A is 200 s (test

duration). The difference between the wired and wireless results is explained by the same points

Figure 5.9: Extracted angles from the three systems on the rotor test bench: optical, wired, and wireless
(bench tests with in-flight test requirements).

 106

we presented in Section 5.2. Specifically, one of the nodes in this setup is placed on top of the

Master box and is elevated from the blade.

As a summary, these results validate that the designed system along with the implemented

low-error synchronization protocols enable wirelessly monitoring the bearing of the helicopter

Figure 5.10: Moving average of the absolute error between the extracted angles of the wired system and the
optical sensors as reference, with averaging window size of 20 s.

Figure 5.11: Moving average of the absolute error between the extracted angles of the wireless nodes and the
optical sensors as reference, with averaging window size of 20 s.

 107

rotor. As discussed, wireless operation for parts like the bearings and hard to reach areas are

essential, but it comes with the challenges of time synchronization and lifetime of the system. The

proposed system provides both requirements of synchronization error <30 µs and continuous

operation for 110 days (target was 90 days, refer to Section 4.1 for more details). Low-error

synchronization is achieved without frequent resynchronization (i.e., use of radio) and/or sampling

with rates much higher than the required sampling rate, which all of them result in higher power

consumption and a shorter lifetime. At the time of preparing for these tests, the WUR chip was not

completed, and the WOR method was implemented. By integrating the WUR into the nodes, as

explained in Section 4.1, the lifetime of the node is estimated to be increased by an additional 60

days, making it possible to use the system for ~ 6 months without any battery change.

 108

 Conclusion and Future Works

In this work, battery powered and BLE-enabled nodes with 6-axis inertial sensors have

been custom-designed to monitor the condition of the laminated bearings of rotor blades as part of

a helicopter HUMS. Nodes need to be placed on rotating blades to measure their dynamic motion

and report the data to a base station. Synchronized measurements is one of the key requirements

of fault-detection algorithms that use these data to extract the three angles related to the blades

(i.e., pitch, flap, and lag). Therefore, while wireless connectivity is essential for these systems, it

comes with the challenges of node lifetime and time synchronization. A synchronization error of

<30 µs and continuous operation of 90 days with 1~2 hours recording per week are considered as

the target requirements.

Different synchronization protocols were proposed including BlueSync, Discrete

Adjustments, and AdaptSync, that can provide the required synchronization in a low-power fashion.

BlueSync is a BLE compatible synchronization protocol that archives average synchronization

error of <1 µs per 60 s without resynchronization and has the lowest reported error for BLE. The

two methods presented in Discrete Adjustments can improve the energy efficiency of calculations

by up to 15x and extend the lifetime. In long recording sessions of >1 min and as long as one hour,

AdaptSync enables reducing the error by using the previous timing information and without the

need to use resynchronization packets for resetting the error. All of these techniques were

experimentally tested and verified with the developed sensor nodes.

A system composed of two sensor nodes and a base station was custom-designed, built,

and installed on a rotor test bench. Real-time wireless data was recorded during different patterns

 109

of blade rotations. The test bench also has a wired recording system and optical sensors that act as

the reference for the extracted angles. The angles extracted with our wireless system were

compared with those acquired from the wired system and optical sensors. Results show angles

errors of < 1°, compared to the optical reference, which is well within the limit for the fault-

detection algorithms of this application, and validate that the developed wireless system can be

reliably used to monitor the laminated bearings.

To use the system in an in-flight test, additional hardware, software, and housing for the

system were designed. Since the actual date of the flight is unknown, the prepared system was

tested on the ground and on the rotor test bench. The WOR method with latencies >10 s was used

as the wake-up mechanism to provide ~ 110 days of continuous operation. Different stages of the

system, including wake-up, synchronization, lossless data acquisition, and auto recovery from any

errors during these stages without user interaction were successfully tested.

 To further improve the lifetime of the nodes, a 915 MHz WUR was also designed and

fabricated in TSMC 65nm CMOS technology. The WUR is based on a passive front-end

architecture, consumes 2.8 nW at 0.4 V, has a sensitivity of -61 dBm and with only two external

components as the matching network and commercially available chip antennas can achieve a

range of ~ 150 m. It also has a 2-stage wake-up architecture that reduces the power consumption

of the node by reducing the probability of false wake-ups during the sleep state. By using this

WUR in the nodes, their lifetime can be increased by 60 days, which enable monitoring the

bearings for ~ 6 months without needing any battery change. As the WUR was not ready at the

time of the preparation for the in-flight test, it was not included in that design.

For future works in the synchronization part, we believe that the proposed timestamping

method in BlueSync for removing uncertainty in the transmitter timestamps is a promising

 110

technique that can be used with other standard wireless protocols. By using this method, the only

delay between timestamping in the transmitter and receiver is the propagation delay. As discussed

before, with synchronization protocols we are just trying to reduce the speed of timing-error

accumulation, and error increase with time is inevitable. Therefore, especially for long recording

sessions or when a very low-error synchronization is required, we must have a mechanism to reset

the error. With the proposed AdaptSync protocol we showed that to increase lifetime of the nodes

this error reset can be done without using radio packets. The protocol was tested with up to four

nodes and 10 minutes recordings, and error corrections for the nodes were calculated manually.

Automating the calculation of the error corrections, and then increasing the number of nodes and

recording times can be the next steps.

Moreover, it is worth noting that just like many other synchronization protocols, in all the

protocols discussed here we did not compensate for any temperature difference between the nodes.

The assumption is that there is no significant temperature change between the nodes, which is valid

in many applications where the nodes are placed relatively close to each other (e.g., monitoring

the blades of the helicopter). However, for applications where large temperature difference across

nodes is expected, one option is to use a temperature-compensated crystal, if power requirements

and the size of the system permits. Another option is to use either the temperature sensor embedded

in most wireless SoCs or add a temperature sensor to the nodes, and then use it in an additional

ticks adjustment block based on the temperature change. For this purpose, the temperature at the

time of synchronization timeslot should be recorded, and then whenever this temperature changes

above a certain threshold, the additional ticks adjustment operation should start to work. Clearly,

as temperature typically does not change very fast, there is no need to read the temperature very

frequently. The frequency of reading and the change threshold are application dependent.

 111

As for the WUR, future works can involve making it more robust for real-world

applications. This can be done by adding an automatic threshold and offset control loop, and

temperature compensation. For the system-level part, testing the system in an actual helicopter and

during a flight is the next step. Based on the results of this test, modifications might be needed to

the nodes. Integrating the WUR and potentially wireless charging capability or a type of energy

harvester into the nodes can help in increasing lifetime of the nodes.

 112

Bibliography

[1] A. A. Hood, “Title of dissertation: Fault Detection on a Full-Scale OH-58 A/C Helicopter

Transmission,” 2010.
[2] US Joint Helicopter Safety Implementation Team, “Health and Usage Monitoring Systems

Toolkit,” 2013. [Online]. Available: https://ihsf.aero/Toolkits/Toolkit_HUMS.pdf
[3] J. P. Lynch and K. J. Loh, “A summary review of wireless sensors and sensor networks

for structural health monitoring,” Shock Vib. Dig., vol. 38, no. 2, pp. 91–130, 2006.
[4] A. Sabato, “Pedestrian bridge vibration monitoring using a wireless MEMS accelerometer

board,” in 2015 IEEE 19th International Conference on Computer Supported Cooperative
Work in Design (CSCWD), 2015, pp. 437–442. doi: 10.1109/CSCWD.2015.7230999.

[5] “Honeywell Health and Usage Monitoring Systems Infographic.”
https://aerospace.honeywell.com/content/dam/aerobt/en/documents/learn/products/health-
and-usage-monitoring/infographics/HUMS-ig.pdf (accessed Jul. 22, 2022).

[6] J. Beran, R. Kalmar, and A. Vechart, “Wireless Sensor Units for HUMS Data
Acquisition,” 9th DSTO Int. Conf. Heal. Usage Monit., pp. 1–6, 2015, [Online].
Available: http://bit.ly/2tHA9Vj

[7] S. W. Arms et al., “Synchronized wireless sensor network for landing gear loads
monitoring,” Proc. 6th Eur. Work. - Struct. Heal. Monit. 2012, EWSHM 2012, vol. 1, pp.
439–445, 2012.

[8] S. W. Arms, C. P. Townsend, J. H. Galbreath, D. L. Churchill, and N. Phan,
“Synchronized system for wireless sensing, RFID, data aggregation, & remote reporting,”
in Annual Forum Proceedings - AHS International, 2009, vol. 2, pp. 939–945.

[9] S. DiStasi, C. P. Townsend, J. Galbreath, and S. W. Arms, “Scalable, synchronized,
energy harvesting wireless sensor networks,” in 2010 Prognostics and System Health
Management Conference, 2010, pp. 1–5. doi: 10.1109/PHM.2010.5413550.

[10] S. J. Distasi, C. P. Townsend, J. R. Bessette, and P. Richard, “Scalable , Synchronized
Network of Lossless Wireless Sensors for Rotorcraft Monitoring,” 15th Aust. Int. Aerosp.
Congr., 2013.

[11] A. Sanchez Ramirez, K. Das, R. Loendersloot, T. Tinga, and P. Havinga, “Wireless
Sensor Network for Helicopter Rotor Blade Vibration Monitoring: Requirements
Definition and Technological Aspects,” Key Eng. Mater., vol. 569–570, pp. 775–782,
2013, doi: 10.4028/www.scientific.net/KEM.569-570.775.

 113

[12] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi, “The Flooding Time Synchronization
Protocol,” in Proceedings of the 2nd International Conference on Embedded Networked
Sensor Systems, 2004, pp. 39–49. doi: 10.1145/1031495.1031501.

[13] A. S. Ramirez, R. Loendersloot, T. Tinga, F. L. M. Dos Santos, and B. Peeters,
“Helicopter rotor blade monitoring using autonomous Wireless Sensor Network,” in 10th
International Conference on Condition Monitoring and Machinery Failure Prevention
Technologies 2013, CM 2013 and MFPT 2013, 2013, vol. 1, pp. 504–514.

[14] S. Bosch, M. Shoaib, S. Geerlings, L. Buit, N. Meratnia, and P. Havinga, “Analysis of
Indoor Rowing Motion Using Wearable Inertial Sensors,” in Proceedings of the 10th EAI
International Conference on Body Area Networks, 2015, pp. 233–239. doi:
10.4108/eai.28-9-2015.2261465.

[15] J. Elson, L. Girod, and D. Estrin, “Fine-Grained Network Time Synchronization Using
Reference Broadcasts,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 147–163, Dec. 2003,
doi: 10.1145/844128.844143.

[16] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol for sensor
networks,” in SenSys’03: Proceedings of the First International Conference on Embedded
Networked Sensor Systems, 2003, pp. 138–149. doi: 10.1145/958507.958508.

[17] T. Schmid, P. Dutta, and M. B. Srivastava, “High-resolution, low-power time
synchronization an oxymoron no more,” in Proceedings of the 9th ACM/IEEE
International Conference on Information Processing in Sensor Networks, IPSN ’10, 2010,
pp. 151–161. doi: 10.1145/1791212.1791231.

[18] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network flooding and time
synchronization with Glossy,” in Proceedings of the 10th ACM/IEEE International
Conference on Information Processing in Sensor Networks, IPSN’11, 2011, pp. 73–84.

[19] R. Lim, B. Maag, and L. Thiele, “Time-of-Flight Aware Time Synchronization for
Wireless Embedded Systems,” in Proceedings of the 2016 International Conference on
Embedded Wireless Systems and Networks, 2016, pp. 149–158.

[20] S. Sridhar, P. Misra, and J. Warrior, “CheepSync: A time synchronization service for
resource constrained Bluetooth Low Energy advertisers,” in IPSN 2015 - Proceedings of
the 14th International Symposium on Information Processing in Sensor Networks (Part of
CPS Week), Apr. 2015, pp. 364–365. doi: 10.1145/2737095.2742925.

[21] S. Sridhar, P. Misra, G. S. Gill, and J. Warrior, “Cheepsync: A time synchronization
service for resource constrained bluetooth le advertisers,” IEEE Commun. Mag., vol. 54,
no. 1, pp. 136–143, Jan. 2016, doi: 10.1109/MCOM.2016.7378439.

[22] U. Ghoshdastider, R. Viga, and M. Kraft, “Wireless time synchronization of a
collaborative brain-computer-interface using bluetooth low energy,” in Proceedings of
IEEE Sensors, Nov. 2014, vol. 2014-Decem, no. December, pp. 2250–2254. doi:
10.1109/ICSENS.2014.6985489.

[23] A. Bideaux, B. Zimmermann, S. Hey, and W. Stork, “Synchronization in wireless
biomedical-sensor networks with Bluetooth Low Energy,” Curr. Dir. Biomed. Eng., vol.
1, no. 1, pp. 73–76, Sep. 2015, doi: 10.1515/cdbme-2015-0019.

 114

[24] C. C. Rheinländer and N. Wehn, “Precise synchronization time stamp generation for
Bluetooth low energy,” in 2016 IEEE SENSORS, 2016, pp. 1–3. doi:
10.1109/ICSENS.2016.7808812.

[25] A. Yousefi, K. Somaratne, and F. J. Dian, “Analysis of time synchronization based on
current measurement for Bluetooth Low Energy (BLE),” in 2017 8th IEEE Annual
Information Technology, Electronics and Mobile Communication Conference, IEMCON
2017, Oct. 2017, pp. 602–607. doi: 10.1109/IEMCON.2017.8117157.

[26] F. John Dian, A. Yousefi, and K. Somaratne, “Performance evaluation of time
synchronization using current consumption pattern of BLE devices,” in 2018 IEEE 8th
Annual Computing and Communication Workshop and Conference, CCWC 2018, Jan.
2018, vol. 2018-Janua, pp. 906–910. doi: 10.1109/CCWC.2018.8301666.

[27] K. Somaratne, F. J. Dian, and A. Yousefi, “Accuracy analysis of time synchronization
using current consumption pattern of BLE devices,” in 2018 IEEE 8th Annual Computing
and Communication Workshop and Conference (CCWC), 2018, pp. 841–844. doi:
10.1109/CCWC.2018.8301624.

[28] F. Asgarian and K. Najafi, “Time synchronization in a network of bluetooth low energy
beacons,” in SIGCOMM Posters and Demos 2017 - Proceedings of the 2017 SIGCOMM
Posters and Demos, Part of SIGCOMM 2017, Aug. 2017, pp. 119–120. doi:
10.1145/3123878.3132007.

[29] Nordic Semiconductor, “nRF51822 Product Specification v3.1,” 2015.
https://infocenter.nordicsemi.com/pdf/nRF51822_PS_v3.1.pdf (accessed Jul. 23, 2021).

[30] Nordic Semiconductor, “nRF52832 Product Specification v1.1.”
https://infocenter.nordicsemi.com/pdf/nRF52832_PS_v1.1.pdf (accessed Aug. 01, 2021).

[31] Dialog Semiconductor, “SmartBondTM DA14585.” https://www.dialog-
semiconductor.com/products/bluetooth-low-energy/da14585-and-da14586 (accessed Aug.
01, 2021).

[32] Texas Instruments, “CC2640R2F SimpleLink Bluetooth low energy Wireless MCU.”
https://www.ti.com/lit/ds/symlink/cc2640r2f.pdf (accessed Aug. 01, 2021).

[33] Silicon Labs, “EFR32BG13 Blue Gecko Bluetooth Low Energy SoC Family Data Sheet.”
https://www.silabs.com/documents/public/data-sheets/efr32bg13-datasheet.pdf (accessed
Aug. 01, 2021).

[34] “MPU-6050.” https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/
(accessed Aug. 01, 2021).

[35] “ICM-20601.” https://invensense.tdk.com/download-pdf/icm-20601-datasheet/ (accessed
Aug. 01, 2021).

[36] “Timeslot Advertiser-Observer.” https://github.com/NordicPlayground/nRF51-multi-role-
conn-observer-advertiser (accessed Aug. 01, 2021).

[37] F. Asgarian and K. Najafi, “Poster: Frequency Scaling in Time Synchronization for
Wireless Sensor Networks,” in 2018 14th International Conference on Distributed
Computing in Sensor Systems (DCOSS), 2018, pp. 113–114. doi:
10.1109/DCOSS.2018.00023.

 115

[38] F. Asgarian and K. Najafi, “Reducing Synchronization Error in Wireless Sensor Nodes by
Using Previous Timing Information as Training Data: Poster Abstract,” in Proceedings of
the 17th Conference on Embedded Networked Sensor Systems, 2019, pp. 432–433. doi:
10.1145/3356250.3361967.

[39] “nRF52 Outdoor Range Test.” https://devzone.nordicsemi.com/nordic/nordic-
blog/b/blog/posts/testing-long-range-coded-phy-with-nordic-solution-it-simply-works-
922075585 (accessed Nov. 08, 2022).

[40] “nRF52 Indoor Range Test.” https://www.nordicsemi.com/News/2019/04/Bluetooth-5-
range-put-to-the-test (accessed Nov. 08, 2022).

[41] P. H. P. Wang et al., “A Near-Zero-Power Wake-Up Receiver Achieving -69-dBm
Sensitivity,” IEEE J. Solid-State Circuits, vol. 53, no. 6, pp. 1640–1652, 2018, doi:
10.1109/JSSC.2018.2815658.

[42] J. Moody et al., “Interference Robust Detector-First Near-Zero Power Wake-Up
Receiver,” IEEE J. Solid-State Circuits, vol. 54, no. 8, pp. 2149–2162, 2019, doi:
10.1109/JSSC.2019.2912710.

[43] H. Jiang et al., “A 22.3-nW, 4.55 cm2 Temperature-Robust Wake-Up Receiver Achieving
a Sensitivity of -69.5 dBm at 9 GHz,” IEEE J. Solid-State Circuits, vol. 55, no. 6, pp.
1530–1541, 2020, doi: 10.1109/JSSC.2019.2948812.

[44] N. E. Roberts et al., “A 236nW -56.5dBm-sensitivity bluetooth low-energy wakeup
receiver with energy harvesting in 65nm CMOS,” Dig. Tech. Pap. - IEEE Int. Solid-State
Circuits Conf., vol. 59, pp. 450–451, 2016, doi: 10.1109/ISSCC.2016.7418101.

[45] K. R. Sadagopan, J. Kang, S. Jain, Y. Ramadass, and A. Natarajan, “A 365nW −61.5 dBm
sensitivity, 1.875 cm 2 2.4 GHz wake-up receiver with rectifier-antenna co-design for
passive gain,” in 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
Jun. 2017, pp. 180–183. doi: 10.1109/RFIC.2017.7969047.

[46] P. Bassirian et al., “Design of an S-Band Nanowatt-Level Wakeup Receiver with
Envelope Detector-First Architecture,” IEEE Trans. Microw. Theory Tech., vol. 68, no. 9,
pp. 3920–3929, 2020, doi: 10.1109/TMTT.2020.2987786.

[47] J. Yi, W.-H. Ki, and C.-Y. Tsui, “Analysis and Design Strategy of UHF Micro-Power
CMOS Rectifiers for Micro-Sensor and RFID Applications,” IEEE Trans. Circuits Syst. I
Regul. Pap., vol. 54, no. 1, pp. 153–166, 2007, doi: 10.1109/TCSI.2006.887974.

[48] S. Oh and D. D. Wentzloff, “A -32dBm sensitivity RF power harvester in 130nm CMOS,”
Digest of Papers - IEEE Radio Frequency Integrated Circuits Symposium. pp. 483–486,
2012. doi: 10.1109/RFIC.2012.6242327.

[49] V. Mangal and P. R. Kinget, “A wake-up receiver with a multi-stage self-mixer and with
enhanced sensitivity when using an interferer as local oscillator,” IEEE J. Solid-State
Circuits, vol. 54, no. 3, pp. 808–820, 2019, doi: 10.1109/JSSC.2018.2884919.

[50] M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise self-calibrating
dynamic comparator for high-speed ADCs,” in 2008 IEEE Asian Solid-State Circuits
Conference, 2008, pp. 269–272. doi: 10.1109/ASSCC.2008.4708780.

[51] S. Dai and J. K. Rosenstein, “A 14.4nW 122KHz dual-phase current-mode relaxation

 116

oscillator for near-zero-power sensors,” in 2015 IEEE Custom Integrated Circuits
Conference (CICC), 2015, pp. 1–4. doi: 10.1109/CICC.2015.7338396.

[52] “Centrifugal Force.” http://www.copters.com/aero/centrifugal_force.html (accessed Jul.
25, 2022).

[53] “Xsens MTi-1 IMU.” https://www.xsens.com/mti-1-imu (accessed Jul. 21, 2022).

	Dedication
	List of Tables
	List of Figures
	Abstract
	Chapter 1 Introduction
	1.1 Health and Usage Monitoring Systems (HUMS)
	1.2 Helicopter HUMS
	1.2.1 Wired vs Wireless HUMS
	1.2.2 Time Synchronization in Wireless HUMS

	1.3 Wireless Sensor Nodes
	1.4 Research Objective and Contributions

	Chapter 2 BlueSync: Time Synchronization in Bluetooth Low Energy with Energy-Efficient Calculations
	2.1 Introduction
	2.2 Designed Sensor Nodes
	2.3 BlueSync Implementation
	2.3.1 Timestamping
	2.3.2 Frequency-Drift Estimation
	2.3.3 Ticks Adjustments

	2.4 Discrete Adjustments
	2.4.1 One Update per Hundred Runs
	2.4.2 Adjustments with Pre-Calculated Values

	2.5 Duty Cycling Clock Sources
	2.6 Results
	2.6.1 Offset Removal and Software Interrupts
	2.6.2 BlueSync
	2.6.3 Discrete Adjustments
	2.6.4 Duty Cycling Clock Sources
	2.6.5 FOM

	2.7 Comparison with Previous Works
	2.8 Summary

	Chapter 3 Low-Power Techniques for Synchronization Protocols
	3.1 Frequency Scaling in Time Synchronization
	3.1.1 Implementation
	3.1.2 Results and Discussion

	3.2 AdaptSync
	3.2.1 Error Sign and Value
	3.2.2 Reversing the Error

	Chapter 4 Wake-up Radio
	4.1 Wake-up Methods
	4.2 WUR Sensitivity
	4.3 WUR Architecture
	4.3.1 Previous Works
	4.3.2 Two-Stage Wake-up Method
	4.3.3 Passive Rectifier
	4.3.4 Base-band Amplifier and Comparator
	4.3.5 Clock and Biasing

	4.4 Measurement Results

	Chapter 5 Rotor Tests
	5.1 Rotor Test Bench
	5.2 Bench Tests
	5.3 In-Flight Helicopter Test
	5.3.1 Requirements
	5.3.2 Hardware and Housing
	5.3.3 Software

	5.4 Results with In-Flight Test Requirements

	Chapter 6 Conclusion and Future Works
	Bibliography

