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ABSTRACT

In this thesis, we give a complete calculation of the coefficients of ordinary equivariant coho-
mology with constant coefficients, graded by the real representation ring of a finite group, where
the group is the dihedral group of order 2p for an odd prime p, and when the group is the quater-
nion group. Another independent topic will be equivariant complex cobordism. We calculate the
coefficient ring of homotopical equivariant complex cobordism for the symmetric group on three
elements. We also study the relation between the coefficient ring of equivariant complex cobordism
and the universal Lazard ring of equivariant formal group laws for finite abelian groups, and prove a
result generalizing classical Quillen’s Theorem.
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CHAPTER I

Introduction

1.1 Overview

Algebraic topology uses algebraic invariants to study topological spaces. By passing from
topological spaces to spectra, we can study stable invariants. With an action by a compact Lie
group G, we can study equivariant invariants as well. Equivariant stable homotopy theory has
proven to be very useful in recent years, with applications in solving the 50-year-old Kervaire
invariant one problem [HHR16]; in computing algebraic K-theory and topological Hochschild
homology [BMS19], [NS18]; and also in chromatic homotopy theory, derived algebraic geometry,
and representation theory.

In equivariant stable homotopy theory, the role of abelian groups is replaced by Mackey functors.
Given a G-Mackey functor M , we can construct the Eilenberg-Mac Lane spectrum HM with
properties analogous to its non-equivariant counterparts [LMM81]. We can suspend an equivariant
spectrum by SV for V ∈ RO(G), the real representation ring of G, and define RO(G)-graded
homology and cohomology theories [HHR16, LMSM86].

Calculation of the RO(G)-graded cohomology of a point for a non-trivial finite group G has
been a fundamental question for equivariant stable homotopy theory. The recent development of the
slice spectral sequence [HHR16], requires such understanding as ingredients. One of the purposes
of the thesis is to present some calculations for nonabelian compact Lie groups.

Another focus of this thesis will be on the homotopical equivariant complex cobordism spectrum
MUG. It is a complex stable theory, so the homotopy groups are Z-graded. We will give a calculation
of the coefficient ring π∗MUG for G is the symmetric group on three elements.

In [Qui69], Quillen proved that the complex cobordism ring MU∗ is isomorphic to the Lazard
ring, the universal ring for 1-dimensional commutative associative formal group laws, and that the
formal group law associated to the complex orientation of MU is the universal one. Let G be an
abelian compact Lie group. An RO(G)-graded multiplicative equivariant generalized cohomology
theory is called complex-oriented if it has a Thom isomorphism with respect to every G-equivariant
complex bundle. Cole, Greenlees and Kriz [CGK00] defined the notion of equivariant formal group
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laws for abelian compact Lie groups. Suppose that EG is a complex-oriented cohomology theory,
then it gives rise to an G-equivariant formal group law. There exists a universal G-equivariant
formal group law defined over the G-equivariant Lazard ring LG, which leads to a map

LG → (MUG)∗.

Greenlees [Gre01] showed that the map is surjective with Euler-torsion and infinitely Euler-divisible
kernel for any finite abelian group, and conjectured that it is an isomorphism for all abelian compact
Lie groups. The conjecture was recently proved for G = Z/2 by Hanke and Wiemeler [HW18]
based on explicit calculations of Strickland [Str01], and then fully proved by Hausmann [Hau22]
using global homotopy theory.

We shall give an alternative method for proving the equivariant analogue of Quillen’s result
when the group G is a finite cyclic group.

1.2 Organization of this thesis

We compute the RO(G)-graded coefficients of ordinary equivariant cohomology with constant
coefficients for G is the dihedral group of order 2p for a prime p > 2 and G is the quaternion group
Q8 in Chapter 2. The main theorems are Theorem 10 and Theorem 19.

We compute the coefficient ring for the equivariant homotopical complex cobordism MUG for
G = Σ3, the symmetric group on three elements, in Chapter 3. The main result is given in Theorem
27. We will also investigate the theory of equivariant formal groups laws, and give a proof of the
equivariant Quillen Theorem for finite cyclic groups. This result is Theorem 29.

In the appendix we will present fundamentals of equivariant stable homotopy theory, which are
the foundations of this thesis.
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CHAPTER II

The RO(G)-graded Stable Homotopy Groups of Equivariant Eilenberg-Mac
Lane Cohomology

In this chapter, we study the RO(G)-graded coefficients of equivariant Eilenberg-Mac Lane
cohomology. Given a G-Mackey functor M , we can construct the Eilenberg-Mac Lane spectrum
HM with properties analogous to its non-equivariant counterparts [LMM81]. We can suspend
an equivariant spectrum by SV for V ∈ RO(G), the real representation ring of G, and define
RO(G)-graded homology and cohomology theories [HHR16, LMSM86].

We will first review the theory of Mackey functors, which will play the role of abelian groups
as “coefficients” in the world of equivariant stable homotopy theory. Next we will go over some
fundamental techniques of such calculations and review the computations for G = Z/p. Finally, we
will fully compute the RO(G)-graded coefficients for HZ in the cases when G = D2p and G = Q8.

No results for a non-abelian group is known until Kriz and the author’s recent work [KL20,
Lu22]. In this thesis, we will recall the computations for G a dihedral group of order 2p, and will
compute the RO(G)-graded coefficients when G = Q8. There are multiple ways to compute, and
the main tools we use ares the G-equivariant cellular structures on representation spheres and the
method of isotropy separation. We will comment on how to induct structures for complex groups
from known structures of known cases.

2.1 Structure of Mackey functors

In the ordinary cohomology, the coefficient is taken to be an abelian group. Mackey functors
are abelian group-valued presheaves on the Burnside category, and they will be the coefficients for
RO(G)-graded cohomology. There are several equivalent definitions of Mackey functors, we will
choose to work with one particularly handy definition for finite groups.

Let G be a finite group. Let GSet be the category of finite left G-sets and equivariant maps
between them. A Mackey functor M consists of two functors M∗ and M∗, where M∗ is a covariant
functor from the category of G-sets to Ab, and M∗ is contravariant GSet → Ab. They need to
satisfy the following conditions:
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(1). They agree on objects, so we could write M(S) for a G-set S.
(2). M(A

∐
B) ∼= M(A)⊕M(B).

(3). Given a pullback
A

α //

β
��

B

γ
��

D δ // C

we have M∗(β)M
∗(α) = M∗(δ)M∗(γ).

It suffices to define a Mackey functor on orbits. With natural transformations as morphisms,
the category of G-Mackey functors is an abelian category. In fact, it is also a symmetric monoidal
category with box products between Mackey functors.

Suppose that H,K are subgroups of G, and f : G/H → G/K is a G-map. Then we call M∗(f)

a restriction map and M∗(f) a transfer map.
We could use the orbit category of G to describe a G-Mackey functor visually, which is called a

Lewis diagram. We will put M(G/G) on the top and M(G/e) on the bottom. Restriction maps are
going downwards and transfer maps are going upwards. For example, a quick look at the subgroups
of the quaternion group Q8 gives the following framework of a Lewis diagram of a Q8-Mackey
functor M :

M(Q8/Q8)

  

ww
M(Q8/⟨i⟩)

77

  

M(Q8/⟨j⟩)

JJ





M(Q8/⟨k⟩)

``

ww
M(Q8/⟨−1⟩)

`` JJ





77

M(Q8/e)

JJ

Example. Constant Mackey functor Z. The restriction maps are identities, and the transfer maps
are indices of subgroup inclusion.
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Z
2

��

2





2

xxZ

1

88

2

��

Z

1

II

2





Z

1

XX

2
xxZ

1

XX

1

II

2





1

88

Z

1

II

Example. Fixed point Mackey functor. Given a left Z[G] module M , the fixed point Mackey
functor M is defined by M(G/H) = MH , restriction given by inclusion of fixed point, and transfer
given by summing over cosets. For example, the fixed point Mackey functor Z[Q8/⟨−1⟩] is given
by

Z
[1,1]

!!

[1,1]



[1,1]uu
Z⊕ Z

(2,2)

44

Ai

!!

Z⊕ Z

(2,2)

II

Aj





Z⊕ Z
(2,2)

aa

Akvv
Z[Q8/⟨−1⟩]

Bi

aa

Bj

JJ

1





Bk

66

Z[Q8/⟨−1⟩]

2

JJ

Here round brackets stand for row vectors while square brackets stand for column vectors. The
matrices are given by choosing the order {1, i, j, k} on the basis, and they are

Ai =


1 0

1 0

0 1

0 1

 , Aj =


1 0

0 1

1 0

0 1

 , Ak =


1 0

0 1

0 1

1 0


and

Bi =

[
1 1 0 0

0 0 1 1

]
, Bj =

[
1 0 1 0

0 1 0 1

]
, Bk =

[
1 0 0 1

0 1 1 0

]
Similar calculations give the explicit structure for other fixed point Mackey functors of other orbits
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of Q8.
In general, if X is a finite G-CW complex, the quotient Xn/Xn−1 is a wedge of spheres

Xn/Xn−1 = Xn+ ∧ Sn

where Xn is a discrete left G-set. We have a chain complex of Mackey functors C∗(X;M) given by

Cn(X;M) = π0(HM ∧Xn+).

It is also true that for any finite left G-set S,

Cn(X;M)(S) = M(S ×Xn).

The category of G-Mackey functors has a symmetric monoidal product called the box product
denoted by □. Given any finite group G we can define the box product of G-Mackey functors
in terms of a double coend or a left Kan extension. The unit for the box product is the Burnside
Mackey functor, and thus the category of G-Mackey functors forms a symmetric monoidal category.

2.2 The case G = Z/2

In this section we will go over the computation of π⋆HZ in the unpublished work of Stong. We
will give two parallel methods of calculations. One by using cellular method, one by using isotropy
separation.

We denote the nontrivial element of Z/2 by σ and denote the nontrivial irreducible representation
by α.
Cellular approach:

We may proceed by finding a cell structure on Snα. There is a cofiber sequence

Z/2+ → S0 → Sα.

Fix n < 0. By dimension axiom, HZ/2
∗ (S0;Z) = Z. By induction, S(n+1)α is obtained from

Snα by adding a cell. We need only to determine the map

HZ/2
n (Sn ∧ Z/2+;Z)→ HZ/2

n (Snα;Z).

For n = 0 it is the transfer map in the Mackey functor Z, hence multiplication by 2. For n > 0, note
that

HZ/2
n (Snα;Z)→ HZ/2

n (Snα/S(n−1)α;Z)
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is an isomorphism. The composite

Sn ∧ Z/2+ → Snα → Snα/S(n−1)α ∼= Sn ∧ Z/2+

is the suspension of the n = 0 case, hence it is also multiplication by 2. The calculations for n ≥ 0

is similar.
Tate diagram approach:

Consider the Tate diagram for HZ:

HZh

��

// HZ

��

// ΦZ/2HZ

��

HZh
// HZh // ĤZ

Lemma 1. The Borel cohomology is

HZh
⋆ = Z[a][u±1]/(2a)

where |a| = −α, |u| = 2− 2α.

Proof. We may choose a filtration of EZ/2+ as

S(α)+ ⊂ S(2α)+ ⊂ ... ⊂ S(∞α)+ = EZ/2+

There is one free Z/2-cell in each degree and this gives the standard 2-periodic resolution

...ZG 1+σ−−→ ZG 1−σ−−→ ZG ϵ−→ Z→ 0.

Then the Borel cohomology spectral sequence collapses at the E2 page and gives the desired
result.

The Tate cohomology is obtained by inverting a, and we have the following calculation for the
geometric fixed points [tD70]. It could also be read off from the fact that both are a-periodic.

Lemma 2. The geometric fixed points are given by

ΦZ/2HZ⋆ = Z/2[a±1, u].

With understanding of the building blocks, the calculation of HZ could be now inferred.
Both methods yield the following result of the RO(Z/2)-graded coefficients for ordinary

equivariant cohomology HZ. This result would also be useful for the calculations in the case for
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G = D2p.

Denote, for ℓ ≥ 0,
Bℓ = H̃D2p

∗ (Sℓα,Z) = H̃Z/2
∗ (Sℓα,Z), (II.1)

Bℓ = H̃∗
D2p

(Sℓα,Z) = H̃∗
Z/2(S

ℓα,Z). (II.2)

Proposition 3. Let n denote the grading. We have

Bℓ,n =


Z n = ℓ even

Z/2 0 ≤ n < ℓ even

0 else,

Bℓ,n =


Z n = ℓ even

Z/2 3 ≤ n ≤ ℓ odd

0 else.

2.3 The case G = D2p

We present G = D2p as

{ζ, τ | ζp = 1, τ 2 = 1, ζτ = τζ−1}.

The group G has two one-dimensional representations: the trivial representation denoted by ϵ

and the sign representation denoted by α. The group G also admits (p − 1)/2 two-dimensional
representations, denoted by γi’s, given by

γi : ζ 7→

[
cos(2πi

p
) − sin(2πi

p
)

sin(2πi
p
) cos(2πi

p
)

]
, τ 7→

[
1 0

0 −1

]
, 1 ≤ i ≤ p− 1

2
.

Let S(mγi) be the unit sphere of the representation mγi. We will subdivide the standard Z/p-
equivariant cells of S(mγi) to obtain a D2p-equivariant CW stucture on S(mγi).

To do this, first identify the non-equivariant underlying spaces of S(mγi) with the unit disk in
Cm. Then ζ ∈ G simply acts by coordinate-wise ζ ip multiplication where ζp = e2πi/p.

First observe that the free Z/p-equivariant CW-structure on S(mγi) has equivariant cells freely
generated by the following non-equivariant cells for 1 ≤ k ≤ m:

{(z1, ..., zk, 0, ..., 0) ∈ S(mγi) | zk ∈ [0, 1]}, (II.3)
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{(z1, ..., zk, 0, ..., 0) ∈ S(mγi) | zk ∈ [0, 1] · eλi, (p− 1)π/p ≤ λ ≤ (p+ 1)π/p}. (II.4)

Both (II.3) and (II.4) are stable under the action of τ . However, they are not D2p-cells since τ

acts non-trivially on them. However, noticing that they can be identified with unit disks of the
representations

(k − 1)α + (k − 1)ϵ, kα+ (k − 1)ϵ, (II.5)

respectively, we could combine with the Z/2-equivariant structures described in Section 2.2 to
obtain D2p-equivariant cells. To be precise, we consider the following cells for S(mγi):
Type A.

ak,ℓ, 0 ≤ ℓ ≤ k − 1, 1 ≤ k ≤ m,

generated by

{(z1, ..., zk, 0, ..., 0) ∈ S(mγi) | Im(zℓ) ≥ 0, zℓ+1, ..., zk−1 ∈ [−1, 1], zk ∈ [0, 1]}.

The cell ak,ℓ has dimension k + ℓ− 1 and has isotropy Z/2 for ℓ = 0 and {e} for ℓ > 0.
Type B.

bk,ℓ, 0 ≤ ℓ ≤ k − 1, 1 ≤ k ≤ m,

generated by

{(z1, ..., zk, 0, ..., 0) ∈ S(mγi) | Im(zℓ) ≥ 0, zℓ+1, ..., zk−1 ∈ [−1, 1], zk ∈ [−1, 0]}.

Since it is symmetric to ak,ℓ, the cell bk,ℓ has dimension k + ℓ− 1 and has isotropy Z/2 for ℓ = 0

and {e} for ℓ > 0.
Type C.

ck, 1 ≤ k ≤ m,

generated by

{(z1, ..., zk, 0, ..., 0) ∈ S(mγi) | zk ∈ [0, 1] · eiλ, 0 ≤ λ ≤ π/p}.

The cell ck has dimension 2k − 1 and has isotropy {e}.
The spaces given by the generators are homeomorphic to (closed) disks. The attaching maps

from the boundary of n-cells are equivariant and are mapping to lower dimensional cells. Finally
the open cells form a partition of S(mγi), so it is a regular G-CW complex. The topology is

9



quotient topology and agrees with the induced topology on S(mγi). In other words, these cells give
a D2p-equivariant CW decomposition for each S(mγi), only with different D2p-actions for different
S(mγi)’s.

Based on the equivariant CW-structure, we are ready to write down the differentials. As
being unit sphere in the representations, the CW structure is regular, i.e., the attaching maps
are embeddings, hence the incidence coefficients are either +1 or −1. We orient all cells as
submanifolds (with boundaries) of the complex vector space Cm. The induced orientation of the
boundary of a cell is chosen by the following rule: the induced orientation followed by the outward
normal direction together make up the standard orientation of Cm. For example, the induced
orientation of S1 ⊂ C is going clockwise, hence the incidence number between a2,1 and c1 is −1.

Lemma 4. Given 1 ≤ i ≤ (p − 1)/2, let 1 ≤ j ≤ p − 1 be the multiplicative inverse of i. Let

ζi = ζj . With respect to the CW-structure and orientations described above, the D2p-equivariant

cell chain complex of S(mγi) in the sense of Bredon [Bre67] has differential

da1,0 = 0

db1,0 = 0

dc1 = ζ
p+1
2

i b1,0 − a1,0

da2,1 = −a2,0 − (1 + ζi + ...+ ζ
p−1
2

i )c1 + (ζi + ...+ ζ
p−1
2

i )τc1

db2,1 = −b2,0 − (1 + ζi + ...+ ζ
p−1
2

i )c1 + (ζi + ...+ ζ
p−1
2

i )τc1

dak,0 = ak−1,0 − bk−1,0 k > 1

dbk,0 = ak−1,0 − bk−1,0 k > 1

dak,1 = ak−1,1 − bk−1,1 + (−1)k−1ak,0 k > 2

dbk,1 = ak−1,1 − bk−1,1 + (−1)k−1bk,0 k > 2

For k > 3, 1 < ℓ < k − 1,
dak,ℓ = ak−1,ℓ − bk−1,ℓ + (−1)k−ℓak,ℓ−1 + (−1)k−1τak,ℓ−1

dbk,ℓ = ak−1,ℓ − bk−1,ℓ + (−1)k−ℓbk,ℓ−1 + (−1)k−1τbk,ℓ−1

For k > 2, by abbreviating the action of
∑(p−1)/2

j=1 ζji to σ,
dak,k−1 = −ak,k−2 + (−1)k−1τak,k−2 − (1 + σ)ck−1 + (−1)k−2στck−1

dbk,k−1 = −bk,k−2 + (−1)k−1τbk,k−2 − (1 + σ)ck−1 + (−1)k−2στck−1

Finally, for k > 1,
dck = −ak,k−1 + (−1)kτak,k−1 + ζ

p+1
2

i bk,k−1 + (−1)k−1ζ
p+1
2

i τbk,k−1.

Proof. We present here a computation for the differential of ak,k−1 for k > 2. By equivariance, it
suffices to work on the generator, which is given by

{(z1, ..., zk, 0, ..., 0) ∈ S(mγi) | Im(zk−1) ≥ 0, zk ∈ [0, 1]}.

10



Note that zk is uniquely determined by the values of z1, ..., zk−1, and the dimension of the cell is
2k − 2. Hence we only need to consider cells of dimension 2k − 3 to which ak,k−1 attaches. They
are precisely those cells with zk−1 coordinates lying on the boundary of ak,k−1, namely,

ak,k−2, τak,k−2, ck−1, ζick−1, ..., ζ
(p−1)/2
i ck−1, ζiτck−1, ..., ζ

(p−1)/2
i τck−1.

Here cells in the orbit of ck−1 are those with Im(zk−1) ≥ 0.
It remains to determine the incidence numbers between ak,k−1 and these cells. By the rule set

above, we could use the basis

(e1, ie1, e2, ie2, ..., ek−1, iek−1) (II.6)

to determine the orientation of ak,k−1, and the orientation of τak,k−2 could be described by

(e1,−ie1, e2,−ie2, ..., ek−2,−iek−2, ek−1). (II.7)

On a point of τak,k−2 that ak,k−1 attaches, the induced orientation is given by

(e1, ie1, ..., ek−2, iek−2,−ek−1) (II.8)

since juxtaposing with outward normal direction −iek−1 gives the same orientation as (II.6). It is
straightforward to compare orientations (II.7) and (II.8) and this gives the sign

dak,k−1 = ...+ (−1)k−1τak,k−2 + ...

in the formula. All the other computations follow by direct inspection in a similar way.

Since Smγi is the unreduced suspension of S(mγi), the D2p-equivariant CW structure of Smγi

is easily derived.
We will next prove (Proposition 7 below) that the choice of two-dimensional representation γi

doesn’t matter in the computation of ordinary equivariant cohomology. Hence the cohomology
could be indexed by kϵ+ ℓα +mγ.

Let A denote the Burnside ring Green functor. We will compute the D2p-Mackey functor-valued
chain complex C∗(S

γi ;M) for constant coefficient Z and Burnside coefficient A, we start with
describing some D2p-Mackey functors. Despite the fact that the group D2p is non-abelian, its
conjugacy relations among subgroups are simple and we can depict a D2p-Mackey functor M by a
Lewis diagram of the following form:
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M(D2p/e)

  ww
M(D2p/⟨τ⟩)

77

  

M(D2p/⟨ζ⟩)

``

ww
M(D2p/D2p)

aa 77

Example 5. Constant Mackey functor Z.

Z
p

��2xxZ

1
88

p

��

Z
1

TT

2xxZ
1

TT
1
88

Example 6. Given a Z[G]-module M , we have fixed-point Mackey functor M defined by M(G/H) =

MH , restriction given by inclusion, and transfer given by summing over cosets. For example the

fixed point Mackey functor Z[D2p/⟨τ⟩] is given by

Z[D2p/⟨τ⟩]
(1,1,...,1)

!!Bvvp−1
2
Z⊕ Z

A 66

(2,...,2,1)

!!

Z
[1,1,...,1]

bb

2ssZ[1,1,...,1]

bb 1
33

Here round brackets stand for row vectors while square brackets stand for column vectors, and

A =


0 I1

I p−1
2

0

J p−1
2

0

 , B =

[
0 I p−1

2
J p−1

2

2 0 0

]
.

where In is the n× n identity matrix and Jn is the n× n minor diagonal identity matrix.
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Similarly, the fixed point Mackey functor Z[D2p/e] is given by the following diagram.

Z[D2p/e]
D

""
(Ip,Ip)ttpZ

[Ip,Ip] 55

(1,1,...,1)

""

Z[D2p/⟨ζ⟩]
C

bb

(1,1)ssZ[1,1,...,1]

bb [1,1] 66

where the matrices are represented by

C = ([1, ..., 1, 0, ..., 0], [0, ..., 0, 1, ..., 1]),

D = [(1, ..., 1, 0, ..., 0), (0, ..., 0, 1, ..., 1)].

The matrices above are derived by arranging the order of cells carefully: The basis of Z[D2p/⟨τ⟩]
can be identified with cells generated by a1,0. Recalling that ζi acts by 2π/p-rotation, we put a
geometric counterclockwise order on the cells

a1,0, ζia1,0, ..., ζ
p−1
i a1,0.

We also put an order on the generators of Z[D2p/⟨τ⟩]⟨τ⟩ by

ζia1,0 + ζp−1
i a1,0, ..., ζ

p−1
2

i a1,0 + ζ
p+1
2

i a1,0, a1,0,

and this is why the upper left pair of arrows in the diagram for Z[D2p/⟨τ⟩] has the given matrix
representation.

The basis of Z[D2p/e] can be identified with cells generated by c1. We arrange them in the
following order:

c1, ζic1, ..., ζ
p−1
i c1, τc1, τζic1, ..., τζ

p−1
i c1.

The fixed point submodules are endowed with the induced order of basis.
Now fix M = Z. In this case, by the double coset formula, the associated chain complex of

Mackey functors can be calculated as fixed point Mackey functos. Hence using the examples above,
the Mackey functor-valued D2p-equivariant chain complexes for Sγi is the following:

Z←− Z[D2p/⟨τ⟩]⊕ Z[D2p/⟨τ⟩]←− Z[D2p/e].

The differentials are derived from Lemma 4. Since the differentials are D2p-equivariant, we
immediately see that all chain complexes for the different Sγi’s are isomorphic.

13



However, the isomorphism is not induced by any D2p-equivariant map between the representa-
tion spheres. To prove Proposition 7 we instead want to construct a functor H : Ch≥0(Mack)→
DS pG such that

(1). H M = HM .
(2). H C∗(X;M) ≃ X ∧HM .

Construction:
Let H be the composition of the following functors

Ch≥0(Mack)
K−→ sMack

H−→ sDS pG
|·|−→ DS pG

where K is the functor in Dold-Puppe correspondence which is an equivalence of first two categories;
H is the Eilenberg-Mac Lane functor and | · | is geometric realization functor. The Eilenberg-Mac
Lane construction is functorial; a recent account of this is in [BO15].

As an example we compute the case when X = G/H+. Then C∗(X;M) is concentrated on
degree 0. All the functors are computable, and we have

H C∗(X;M) = HMG/H ≃ HM ∧G/H+.

The last equivalence can be verified by computing the homotopy groups of HM ∧G/H+, and using
the uniqueness of Eilenberg-Mac Lane spectra.

In fact, one could make it into an natural isomorphism. By the projection formula

G⋉H HM ∼= G/H+ ∧HM

and adjunction, it arises from the natural map of H-spectrum HM → HMG/H induced by inclusion
at the coset eH:

M ↪→MG/H .

For any finite G-CW complex X , we realize it as a simplicial G-set and the functor H is
constructed as above. Then Proposition 7 follows directly.

Hence we have proved the following

Proposition 7. Let M be a D2p-Mackey functor. The D2p-stable homotopy type of the HA-module

spectrum HM ∧ Sγi does not depend on the choice of i.

To proceed, we will use the isotropy separation sequence

S(mγ)+ → S0 → Smγ.
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Recall that there is a cellular filtration on S(mγ) by the Z/p-equivariant cells generated by (II.3),
(II.4) of dimension less or equal to s. For k ≥ 1, the filtration degree 2k − 1 part is generated by
cells bk,ℓ, ck and the degree 2k − 2 part is generated by cells ak,ℓ. Using the differentials computed
above, the corresponding homological spectral sequence has the following E1-term:

E1
2k−1,∗ = Bk−1[k − 1], for 1 ≤ k ≤ m

E1
2k,∗ = Bk[k − 1], for 1 ≤ k ≤ m.

The nontrivial differential d1 is also determined by Lemma 4, which is an isomorphism except
for E1

4j,0 → E1
4j−1,0 : Z p−→ Z. On the two vertical edges s = 0, 2m, the terms also survive and

the spectral sequence collapses to the E2 page. In the case of cohomology, one just needs to turn
subscripts into superscripts, mirror the computations by reversing arrows and use restriction maps
of Mackey functors. Thus, we have proved the following

For m > 0, we have

HD2p
∗ (S(mγ),Z) = Z⊕ 0Am ⊕Bm[m− 1],

H∗
D2p

(S(mγ),Z) = Z⊕ 0Am ⊕Bm[m− 1].

Now we need to suspend with representation spheres Sℓα. It is worth noting that our D2p-CW
structure is designed in a way such that the subsequent quotients of Sℓα suspension have a nice
form, given by

F2k+1/F2k
∼= D2p ⋉Z/2 S

k+(k+1)α, F2k+2/F2k+1
∼= D2p ⋉Z/2 S

(k+1)+(k+1)α.

The corresponding spectral sequence has differential d1 given by Sℓα-suspension of the connect-
ing map F2k+2/F2k+1 → ΣF2k+1/F2k of the triad

(F2k+2, F2k+1, F2k)

which stably does not depend on ℓ.
To determine this map, note that it is a stable D2p-equivariant map

D2p/(Z/2)+ → D2p/(Z/2)+
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By adjunction, it is equivalent to a Z/2-equivariant stable map

S0 → D2p/(Z/2)+

which is classified by an element in

A(Z/2)⊕ Z⊕(p−1)/2 (II.9)

by the Wirthmüller isomorphism (see Appendix A.2). Now we see that that Z/2-equivariantly, the
orbit D2p/(Z/2) is the wedge sum of one fixed point G/G+ and (p− 1)/2 free orbits G/e+. Now
the connecting map could be read off from the attaching maps from ak+1,k to ck, namely from

dak,k−1 = −ak,k−2 + (−1)k−1τak,k−2 − (1 + σ)ck−1 + (−1)k−2στck−1.

This shows that the connecting map does not depend on k, and is in (II.9) represented by the element

(1, 1, . . . , 1).

In the case of constant Mackey functor Z, it corresponds to multiplication by p.
Therefore the spectral sequence of Σℓ+ℓαS(mγ)+, whose E1 page is a shift of the conjunction

of both cohomology and homology E1 page for S(mγ), and it also collapses at the E2-page.
Define sAt and sAt to be

(sAt)n =

{
Z/p when 2s < n < 2t− 1, n ≡ 3 mod 4,

0 else,
(II.10)

(sAt)n =

{
Z/p when 2s < n < 2t− 1, n ≡ 0 mod 4,

0 else.
(II.11)

We obtain the following result:

Proposition 8. For m > 0, we have

HD2p
∗ (ΣℓαS(mγ)+,Z) = Bℓ ⊕Bℓ+m[m− 1]⊕ ℓAℓ+m[−ℓ],

H∗
D2p

(ΣℓαS(mγ)+,Z) = Bℓ ⊕Bℓ+m[m− 1]⊕ ℓAℓ+m[−ℓ].
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Example 9. As an example, we illustrate how to compute

HD2p
∗ (Σ−4αS(5γ)+,Z).

First we compute the D2p-equivariant homology and cohomology of S(5γ). The following is the
E1 page of the homological spectral sequence for HD2p

∗ (S(5γ),Z).

E1 page for HD2p
∗ (S(5γ),Z)

0 1 2 3 4 5 6 7 8 9

−5

−4

−3

−2

−1

0 Z 0 0 Z Z 0 0 Z Z 0

Z/2 Z/2 Z/2 Z/2 Z/2

Z/2 Z/2 Z/2 Z/2

Z/2 Z/2 Z/2

Z/2 Z/2

Z/2

pp pp

The differential d1 is a multiplication by p when there is a Z in the target (which is supported by
ck, k even). The exception is filtration degree 2m− 1 = 9, where there is no differential with that
target, and filtration degree 0, where there is no differential with that source. There is no room for
higher differentials for dimensional reasons. Hence the spectral sequence collapses to the E2 page.
The two vertical edges and the t = 0 line give the three summands in Proposition 2.3.

The following is the E1 page of the cohomological spectral sequence.
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E1 page for H∗
D2p

(S(5γ),Z)

0 1 2 3 4 5 6 7 8 9

−2

−1

0 Z 0 0 Z Z Z/2 Z/2 Z Z Z/2

Z/2 Z/2

Z/2

pp pp

Now let us suspend by −4− 4α. Since the filtration on S(5γ) is given by

S0, Sα, S1+α, ..., S4+4α, S4+5α,

the filtered quotients are given by

S−4−4α, S−4−3α, S−3−3α, ..., S−1, S0, Sα.

The following is the E1 page, which is a shift of a juxtaposition of the dual of a truncation (at
filtration degree 7) of the cohomological E1 page and a truncation (at filtration degree 1) of the
homological E1 page.

E1 page for H̃D2p
∗ (Σ−4−4αS(5γ)+,Z)

0 1 2 3 4 5 6 7 8 9

−1

0

1

0ZZZ/2 0 ZZ 0

Z/2

Z/2Z

Z/2
pppp

E2 page for H̃D2p
∗ (Σ−4−4αS(5γ)+,Z)

0 1 2 3 4 5 6 7 8 9

−1

0

1

00Z/p0 0 0Z/p 0

Z/2

0Z

Z/2

The full calculational result now follows by the long exact sequence from the cofiber sequence.
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Theorem 10. For m > 0, we have

HD2p
∗ (Smγ+ℓα,Z) = ℓ−1Aℓ+m[−ℓ+ 1]⊕Bℓ+m[m], (II.12)

H∗
D2p

(Smγ+ℓα,Z) = ℓAℓ+m[−ℓ+ 1]⊕Bℓ+m[m]. (II.13)

Proof. We use the cofiber sequence

ΣℓαS(mγ)+ → Sℓα → Sℓα+mγ

to finish our computation. Looking at the long exact sequence in homology, the morphism Bℓ → Bℓ

is the transfer map p, which is an isomorphism except in the top dimension when ℓ is even, and this
gives an extra Z/p. Besides, all the other components are shifted up by 1. Hence we have proved
that

HD2p
∗ (Sℓα+mγ,Z) = Bℓ+m[m]⊕ ℓ−1Aℓ+m[−ℓ+ 1].

In cohomology the restriction maps always give isomorphisms, hence

H∗
D2p

(Sℓα+mγ,Z) = Bℓ+m[m]⊕ ℓAℓ+m[−ℓ+ 1].

2.4 The case G = Q8

We will write the generators of the quaternion group G = Q8 with i, j satisfying relations

{i, j | i4, i2j−2, ijij−1}.

The quaternion group G has four one-dimensional real representations, given by scalar action of
generators i and j:

i 7→ ±1, j 7→ ±1.

We will denote the trivial representation by 1 and the other three representations by α, β, γ, whose
kernels are respectively ⟨i⟩, ⟨j⟩, ⟨ij⟩.

The group G also has a four-dimensional irreducible real representation, where G acts by left
multiplication, and we will denote this representation by ρ. This representation is of quaternionic
type.

Hence the representations 1, α, β, γ, ρ form an additive basis for RO(Q8), and the grading could
be denoted as ∗+ kα+ ℓβ +mγ + nρ, where ∗ represents the Z-grading.
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In fact, we could do more on the reduction of the RO(Q8)-grading: The representations α, β, γ
are symmetric up to automoprhisms of Q8, hence without loss of generality we may assume that k, ℓ
have the same sign. Furthermore, by universal coefficient theorem and Spanier-Whitehead duality, if
we flip all the signs in the grading, i.e., changing ∗+kα+ℓβ+mγ+nρ to−∗−kα−ℓβ−mγ−nρ,
there is an isomorphism

HZQ8

∗+kα+ℓβ+mγ+nρ
∼= HZ−∗−kα−ℓβ−mγ−nρ

Q8

so we may further restrict to k ≥ ℓ ≥ 0. Therefore, we reduce to the calculations of Z-graded
homology and cohomology of

Σkα+ℓβ+mγ+nρHZ

for k ≥ ℓ ≥ 0.

The representation ρ is free, and its matrix representation is given by even permutations of signs.
For example, the generator i acts by the following matrix:

0 −1 0 0

1 0 0 0

0 0 0 −1
0 0 1 0


For n > 0, let S(nρ) be the unit sphere in the representation nρ. Observe that S(∞ρ) is a model
for the universal classifying space EQ8. The freeness, together with symmetry, gives us a guide for
how to subdivide the representation spheres to obtain an equivariant CW structure.

By identifying the non-equivariant underlying space of S(nρ) as a subspace of R4n, we will
index the Euclidean coordinates as

(x1, y1, z1, w1, ..., xn, yn, zn, wn) ∈ R4n

For clarity we will also use Xr as an abbreviation for (xr, yr, zr, wr), and let D be the open unit
disk in R4. Let 1 ≤ r ≤ n, consider the following cells for S(nρ):

Type A.
Cells ar,1 generated by

{(X1, ..., Xr−1, xr, 0, 0, 0, 0, ..., 0} ∈ S(nρ) |xr ∈ [0, 1]}.

The cell ar,1 has dimension 4r − 4. It is Q8-free.

Type B.
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Cells br,1, br,2, br,3 generated respectively by

{(X1, ..., Xr−1, xr, yr, 0, 0, 0, ..., 0} ∈ S(nρ) |xr, yr ∈ [0, 1]},

{(X1, ..., Xr−1, xr, 0, zr, 0, 0, ..., 0} ∈ S(nρ) |xr, zr ∈ [0, 1]},

{(X1, ..., Xr−1, xr, 0, 0, wr, 0, ..., 0} ∈ S(nρ) |xr, wr ∈ [0, 1]}.

The cells br,1, br,2, br,3 have dimension 4r − 3. They are Q8-free.

Type C.
Cells cr,1, cr,2, cr,3, cr,4 generated respectively by

{(X1, ..., Xr−1, xr, yr, zr, 0, 0, ..., 0} ∈ S(nρ) |xr, yr, zr ∈ [0, 1]},

{(X1, ..., Xr−1, xr, yr, 0, wr, 0, ..., 0} ∈ S(nρ) |xr, yr, wr ∈ [0, 1]},

{(X1, ..., Xr−1, xr, 0, zr, wr, 0, ..., 0} ∈ S(nρ) |xr, zr, wr ∈ [0, 1]},

{(X1, ..., Xr−1, 0, yr, zr, wr, 0, ..., 0} ∈ S(nρ) | yr, zr, wr ∈ [0, 1]}.

The cells cr,1, cr,2, cr,3, cr,4 have dimension 4r − 2. They are Q8-free.

Type D.
Cells dr,1, dr,2 generated by

{(X1, ..., Xr−1, xr, yr, zr, wr, 0, ..., 0} ∈ S(nρ) |xr, yr, zr, wr ∈ [0, 1]},

{(X1, ..., Xr−1, xr, yr, zr, wr, 0, ..., 0} ∈ S(nρ)|xr, yr, zr,−wr ∈ [0, 1]}.

The cells dr,1, dr,2 have dimension 4r − 1. They are Q8-free.
Similarly it is straightforward to check that these cells give a Q8-equivariant CW decomposition

for S(nρ). By identifying R4n with C2n, we use the rule as in the G = D2p case to determine
induced orientation of the boundary: the induced orientation followed by the outward normal
direction should make up together the standard orientation of C2n. With this rule we derive the
following differentials:

Lemma 11. With respect to the CW-structure and orientations described above, the Q8-equivariant

cell chain complex of S(nρ) in the sense of Bredon [Bre67] has differentials

da1,0 = 0

For 1 < r ≤ n,
dar>1,0 = (1 + i+ j + ij + (−1) + (−i) + (−j) + (−ij))(dr,1 − dr,2)

21



In the rest, for 1 ≤ r ≤ n,
dbr,1 = iar,1 − ar,1

dbr,2 = jar,1 − ar,1

dbr,3 = (ij)ar,1 − ar,1

dcr,1 = br,1 − br,2 − jbr,3

dcr,2 = br,1 − br,3 + ibr,2

dcr,3 = br,2 − br,3 − (ij)br,1

dcr,4 = −(j)br,3 − (ij)br,1 − (i)br,2

ddr,1 = cr,1 − cr,2 + cr,3 − cr,4

ddr,2 = cr,1 − jcr,2 + (−ij)cr,3 − (−i)cr,4.

Proof. This is done by the same method as the previous Lemma 4. We again give an example
on how to determining the incidence coefficients: we look at the cell cr,1 for some r ≥ 1. The
generating cell of cr,1 is given by

{(X1, ..., Xr−1, xr, yr, zr, 0, 0, ..., 0} ∈ S(nρ) |xr, yr, zr ∈ [0, 1]} (II.14)

The cell is of dimension 4r − 2 and we consider cells of dimension 4r − 3 to which cr,1 attaches,
and they are br,1, br,2 and br,3. It remains to determine the incidence numbers between cr,1 and these
cells. Consider the equivariant cell br,3 generated by

{(X1, ..., Xr−1, xr, 0, 0, wr, 0, ..., 0} ∈ S(nρ) |xr, wr ∈ [0, 1]}.

Since xr, yr, zr ∈ [0, 1] in the generator of cr,1, it is only attached to the j-orbit of br,3. This orbit is
given by

{(jX1, ..., jXr−1, 0, wr, xr, 0, 0, ..., 0} ∈ S(nρ) |xr, wr ∈ [0, 1]}

since j(xr + wr(ij)) = (wri+ xrj).

We could use the basis

(e1, ie1, ..., e2r−2, ie2r−2, e2r−1, ie2r−1) (II.15)

to determine the orientation of the generator of cr,1 (identify it by an orientation preserving homeo-
morphism with the unit disk in C2r−1 since zr is determined by X1, ..., Xr−1, xr, yr).

Similarly the induced orientation of jbr,3 as subspace is

(e2,−ie2,−e1, ie1, ..., e2r−2,−ie2r−2,−e2r−3, ie2r−3,−ie2r−1) (II.16)
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On a point of jbr,3 that cr,1 attaches, by the rules set above, the induced oritentation is given by

(e1, ie1, ..., e2r−2, ie2r−2, ie2r−1) (II.17)

since juxtaposing with outward normal direction −e2r−1 (since in (II.14) we have xr ≥ 0) gives the
same orientation as in (II.14). Comparing orientations (II.16) and (II.17) gives that the incidence
number between cr,1 and jbr,3 is −1, i.e.,

dcr,1 = ...− jbr,3 + ...

Other incidence numbers are computed by the same method.

With this, we can calculate the Q8-equivariant homology and cohomology of S(nρ) with
coefficient Z. As an example we explicitly compute the homology here. Order the cells in the order
as listed above (br,2 comes after br,1 for example), by Lemma 11, the chain complex is

Z2 d3−→ Z→ ...→ Z3 d1−→ Z d4−→ Z2 d3−→ Z4 d2−→ Z3 d1−→ Z→ 0.

where the differentials are given by the following matrices:

d1 = 0, d2 =

 1 1 −1 −1
−1 1 1 −1
−1 −1 −1 −1

 , d3 =


1 1

−1 −1
1 1

−1 −1

 , d4 =

[
8

−8

]
.

Taking homology we get 4-periodic result

HQ8
q (S(nρ),Z) =


Z q = 0

Z/2⊕ Z/2 0 < q < 4n− 1, q ≡ 1 mod 4
Z/8 0 < q < 4n− 1, q ≡ 3 mod 4
0 q > 0 even

When n→∞, we recover the group homology of Q8 with coefficient in Z.
Since Borel (co)homology is complex stable, when suspended by Skα1+ℓα2+mα3 , we may

assume that k, ℓ,m = 0, 1. We may use the Borel (co)homology spectral sequence to compute the
(co)homology of these spaces.

Hp(Q8, H̃q(X))⇒ H̃Q8
p+q(EG+ ∧X).

By a symmetry up to automorphisms of Q8, it suffices to consider three cases: suspension by
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X = Sα1 , Sα1+α2 , Sα1+α2+α3 . By looking at the top homology class, which represents orientations,
the action of Q8 on H̃∗(X) ∼= Z is either a trivial action which corresponds to X = Sα1+α2+α3 , or
to a twisted action which corresponds to X = Sα1 or X = Sα1+α2 . Therefore, the spectral sequence
collapses, and the computations reduces to calculate the group (co)homology of Q8 with twisted
coefficients.

To do this, one may either compute directly, using the universal space S(∞γ)+, then determine
the top class, or suspending by Sα1 and calculate directly. Using the first method for homology, we
get the following chain complex after tensor with twisted coefficients over G:

...→ Z3 d′1−→ Z
d′4−→ Z2 d′3−→ Z4 d′2−→ Z3 d′1−→ Z→ 0.

The twisted coefficients Z here has a nontrivial action by j, ij,−j,−ij ∈ Q8, so the differentials
are

d′1 =
[
0 −2 −2

]
, d′2 =

 1 1 1 1

−1 1 1 −1
1 −1 −1 1

 , d′3 =


1 1

−1 1

1 −1
−1 −1

 , d′4 =

[
0

0

]

Hence we conclude that

H̃Q8
n (S(mγ)+ ∧ Sα1 ,Z) =

{
Z/2 0 ≤ n ≤ 4m, n ≡ 1, 2, 3 mod 4
0 0 ≤ n ≤ 4m, n ≡ 0 mod 4

H̃Q8
n (S(mγ)+ ∧ Sα1+α2 ,Z) =

{
Z/2 0 ≤ n ≤ 4m+ 1, n ≡ 0, 2, 3 mod 4
0 0 ≤ n ≤ 4m+ 1, n ≡ 1 mod 4

H̃Q8
n (S(mγ)+ ∧ Sα1+α2+α3 ,Z) =


Z n = 3

Z/2⊕ Z/2 0 < n ≤ 4m+ 2, n ≡ 1 mod 4
Z/8 2 < n < 4m+ 2, n ≡ 3 mod 4
0 n even

Remark 12. All these results could be more concisely summarized as the following:

H∗(Q8,Z+) : Z, 0,Z/2⊕ Z/2, 0,Z/8, 0,Z/2⊕ Z/2, 0,Z/8, ...

H∗(Q8,Z+) : Z,Z/2⊕ Z/2, 0,Z/8, 0,Z/2⊕ Z/2, 0,Z/8, 0, ...

H∗(Q8,Z−) : 0,Z/2,Z/2,Z/2, 0,Z/2,Z/2,Z/2, ...
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H∗(Q8,Z−) : Z/2,Z/2,Z/2, 0,Z/2,Z/2,Z/2, 0, ...

With these we may read off the edge maps in the Lyndon-Hochschild-Serre spectral sequences

for the central extension

0→ Z/2→ Q8 → Z/2⊕ Z/2→ 0.

For example, for

Hp(Z/2⊕ Z/2;Hq(Z/2,Z+))⇒ Hp+q(Q8,Z+),

we have the following E2 page

E2 page for H∗(Q8,Z+)

0 1 2 3 4 5 6

0

1

2

3

4

Z 0 (Z/2)2 Z/2 (Z/2)3 (Z/2)2 (Z/2)4

0 0 0 0 0 0

Z/2 (Z/2)2 (Z/2)3 (Z/2)4 (Z/2)5

0 0 0 0

Z/2 (Z/2)2 (Z/2)3

Clearly there is no room for any d2. And d3 will wipe out H0(Z/2⊕ Z/2, H2(Z/2,Z+)), and

two Z/2 summands in E4,0
3 (since the answer is a Z/8).

In conclusion, the edge map

H∗(Z/2⊕ Z/2,Z+)→ H∗(Q8,Z+)

is given by

Z[u2, v2, w]/(2u2, 2v2, 2w, u4v2 + u2v4 = w2)→

Z[u2, v2, π]/(2u2, 2v2, 8π, u4, v4, u2v2 = 4π)

u 7→ u, v 7→ v, w 7→ 0.

To obtain a full computation of the RO(G)-graded coefficients, we will need to smash the
sequence

S(nρ)+ → S0 → Snρ
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with Σkα+ℓβ+mγHZ for k, ℓ,m ∈ Z. Recall that we have assumed k ≥ ℓ ≥ 0, the map

S(nρ)+ → S0

induces map on the level of Z/4-fixed points of chains. When m = 0, it is

C∗(Σ
kα+ℓβS(nρ)+,Z)Z/4 → C∗(S

kα+ℓβ;Z)Z/2, (II.18)

since the center acts trivially on the target.
The main strategy to deal with suspensions by Smγ is to take Z/4-fixed points of the chain

complexes so that the mγ-suspension becomes an operation on the level of Z/2-equivariant chain
complexes.

Let n ≥ 0. We take the Z/4 = ⟨ij⟩-fixed points

C∗(S(nρ)+,Z)Z/4,

C∗(S(nρ)+,Z−)Z/4.

Let the generator of the quotient C ′ := Q8/⟨ij⟩ be σ. With Lemma 11, it is again routine to calculate
the following differentials in the Z case for 1 ≤ r ≤ n:

dbr,1 = 0

dbr,2 = (σ − 1)ar,1

dbr,3 = (σ − 1)ar,0

dcr,1 = br,1 − br,2 − σbr,3

dcr,2 = br,1 + br,2 − br,3

dcr,3 = −σbr,1 + br,2 − br,3

dcr,4 = −σbr,1 − br,2 − σbr,3

ddr,1 = cr,1 − cr,2 + cr,3 − cr,4

ddr,2 = cr,1 − σcr,2 + σcr,3 − cr,4

dar+1,1 = (4 + 4σ)(dr,1 − dr,2)

Define C(r) for 1 ≤ r ≤ n− 1 to be the following chain complex:

0→ Z[C ′]
1+σ−−→ Z[C ′]

1−σ−−→ Z[C ′]
4+4σ−−−→ Z[C ′]

1−σ−−→ Z[C ′]
1+σ−−→ Z[C ′]→ 0,

where the free Z[C ′]-modules are generated by

cr+1,2, br+1,2,−ar,1, dr,2, cr,2 − cr,3, br,2 − br,3.
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Define
C(n) : 0→ [dn,2]

1−σ−−→ [cn,2 − cn,3]
1+σ−−→ [bn,2 − bn,3]→ 0,

and
C(0) : 0→ [c1,2]

1+σ−−→ [b1,2]
1−σ−−→ [−a1,1]→ 0.

(Note that all the bottom Z[C ′]’s are at degree 0).

These complexes are connected by chain maps fr (in fact, they are also differentials in the chain
complex) for 1 ≤ r ≤ n− 1:

fr : C(r)[−5]→ C(r + 1), [cr+1,2]
1−σ−−→ [br+1,2 − br+1,3],

and the chain map
f0 : C(0)[−2]→ C(1), [c1,2]

1−σ−−→ [b1,2 − b1,3].

If we quotient out, for each 1 ≤ r ≤ n, two acyclic complexes

0→ cr,1 → br,1 − br,2 − σbr,3 → 0

0→ dr,1 → cr,1 − cr,2 + cr,3 − cr,4 → 0

in C∗(S(nρ)+,Z)Z/4 and then take the cokernel, the result could be written a totalization of the
following double complex:

Θ+
n,0 := Tot(C(0)

f0[2]−−→ C(1)[2]
f1[7]−−→ C(2)[7]→ ...→ C(n)[5n− 3]).

With Z− coefficient, similar calculations define

Θ−
n,0 := Tot(C−(0)

f−
0 [2]
−−−→ C−(1)[2]

f−
1 [7]
−−−→ C−(2)[7]→ ...→ C−(n)[5n− 3]),

where the C− chains and f− chain maps are differed from their counterparts by changing signs of σ
in all differentials (note that the chain maps fr’s were noted as differentials). As an example,

C−(0) : 0→ [c1,2]
1−σ−−→ [b1,2]

1+σ−−→ [−a1,1]→ 0.

For example, when n = 2, the chain complex Θ+
2,0 could be visualized as
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◦ 1−σ // ◦ 1+σ // ◦

◦ 1+σ //

1−σ
??

◦ 1−σ // ◦ 4+4σ // ◦ 1−σ // ◦ 1+σ // ◦

◦ 1+σ //

1−σ
??

◦ 1−σ // ◦

where each circle represents a Z[C ′].

Let γ′ be the sign representation of C ′, it is useful to also introduce the following notations for
m ≥ 0:

A+
s = C∗(S

sγ′
),

A−
s = C∗(S

sγ′
/Sγ′

)[−1].

These chain complexes are given explicitly by

A+
s : Z[C ′]

1+(−1)s−1σ−−−−−−−→ Z[C ′]→ ...→ Z[C ′]
1−σ−−→ Z[C ′]

aug−→ Z

A−
s : Z[C ′]

1+(−1)sσ−−−−−→ Z[C ′]→ ...→ Z[C ′]
1+σ−−→ Z[C ′]

aug−→ Z−.

We have the following decomposition:

Lemma 13. If k ≥ ℓ ≥ 0, then

C∗(S
kα+ℓβ;Z)Z/2 =

k⊕
s=ℓ

A
(−1)s

ℓ [s]⊕
ℓ−1⊕
s=0

(A(−1)s

s [s]⊕ A(−1)s+1

s [s+ 1]).

Proof. Smashing Skα, Sℓβ together, we have the standard CW structure of Skα+ℓβ. Choose a
generator of the top cohomology class, and map it by differentials of the chain complex, until it hits
a cell which is not free (coming from Sℓβ given k ≤ ℓ), then take the cokernel of this subcomplex,
which turns out to be a direct sum. Then the result follows by induction.

As an illustration, when k = 7, ℓ = 5, the (kerγ)-fixed point is decomposed as the direct sum of
the blobs in Figure II.1. A square represents a copy of Z.

To get the result, we compute the cofiber of the map (II.18), then smash the chain complex with
the chain complex of Smγ , and finally take (co)homology. For this purpose, let A+

s (m), A−
s (m)

respectively be the result of smashing A+
s , A

−
s with Smγ. Then we have

A±
s (m) =

{
A±

s+m s+m ≥ 0

(A±
−m−s)

∨ s+m < 0
(II.19)
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Figure II.1: C∗(S
kα+ℓβ;Z)Z/2 when k = 7, ℓ = 5

The homology of the Z/2-fixed points of these chain complexes are given in the following
proposition.

Proposition 14. Taking homology of the Z/2-fixed points, we have

Hq(A
+
s )

Z/2 =


Z q = s, s even

Z/2 0 ≤ q < s, q even

0 else

Hq((A
+
s )

∨)Z/2 =


Z q = −s, s even

Z/2 −s ≤ q ≤ 0, q odd

0 else

Hq(A
−
s )

Z/2 =


Z q = s, s odd

Z/2 0 ≤ q < s, q odd

0 else

Hq((A
−
s )

∨)Z/2 =


Z q = −s, s odd

Z/2 −s ≤ q ≤ −2, q even

0 else

Proof. See [Lew88] and [?].

Now let Θ+
n,m and Θ−

n,m respectively be the result of smashing Θ+
n,0,Θ

−
n,0 with Smγ . When

m ≤ 2, Θ+
n,m is the totalization of the following double chain complex:

C(0)m
f0[2−m]−−−−→ C(1)[2−m]

f1[7−m]−−−−→ C(2)[7−m]→ ...→ C(n)[5n−m− 3],
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where C(0)m is

0→ Z[C ′]
1+(−1)0σ−−−−−→ Z[C ′]

1+(−1)1σ−−−−−→ Z[C ′]→ ...
1+(−1)1−mα−−−−−−−→ Z[C ′]→ 0.

When m > 2, Θ+
n,m is the totalization of the following double chain complex:

C(0)m[2−m]
f̃0[2−m]−−−−→ C(1)[2−m]

f1[7−m]−−−−→ ...→ C(n)[5n−m− 3],

where C(0)m is

0→ Z[C ′]
1+(−1)m−3σ−−−−−−−→ Z[C ′]

1+(−1)m−4σ−−−−−−−→ ...
1+(−1)0σ−−−−−→ Z[C ′]→ 0

and f̃0 : C(0)m → C(1) is given by 1− σ at the bottom degree of the both chain complexes.
As an example, the chain complex Θ+

2,−2 could be presented as

◦ 1−σ // ◦ 1+σ // ◦

◦ 1+σ //

1−σ
??

◦ 1−σ // ◦ 4+4σ // ◦ 1−σ // ◦ 1+σ // ◦

◦ 1+σ //

1−σ
??

◦ 1−σ // ◦ 1+σ // ◦ // □

(II.20)

Similarly, when m ≤ 2, Θ−
n,m is the totalization of the following double chain complex:

C−(0)m
f−
0 [2−m]
−−−−−→ C−(1)[2−m]

f−
1 [7−m]
−−−−−→ C(2)[7−m]→ ...→ C−(n)[5n−m− 3],

where C−(0)m is

0→ Z[C ′]
1−(−1)0σ−−−−−→ Z[C ′]

1−(−1)1σ−−−−−→ Z[C ′]→ ...
1−(−1)1−mα−−−−−−−→ Z[C ′]→ 0.

When m > 2, Θ−
n,m is the totalization of the following double chain complex:

C−(0)m[2−m]
f̃−
0 [2−m]
−−−−−→ C−(1)[2−m]

f−
1 [7−m]
−−−−−→ ...→ C−(n)[5n−m− 3],

where C−(0)m is

0→ Z[C ′]
1−(−1)m−3σ−−−−−−−→ Z[C ′]

1−(−1)m−4σ−−−−−−−→ ...
1−(−1)0σ−−−−−→ Z[C ′]→ 0
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and f̃−
0 : C−(0)m → C−(1) is given by 1 + σ at the bottom degree of the both chain complexes.

As an example, the chain complex Θ−
2,5 could be presented as

◦ 1−σ // ◦ 1+σ // ◦

◦ 1+σ //

1−σ
>>

◦ 1−σ // ◦ 4+4σ // ◦ 1−σ // ◦ 1+σ // ◦

□
1+σ // ◦ 1−σ // ◦ 1+σ // ◦

1−σ
??

Proposition 15. When m ≤ 0, we have

Hq((Θ
+
n,m)

Z/2) =



Z q = 0 and m even

Z/2 0 ≤ q ≤ −m, q ≡ m+ 1 mod 2

Z/2⊕ Z/2 −m ≤ q ≤ 4n−m− 1, q ≡ −m+ 1 mod 4

Z/8 −m ≤ q ≤ 4n−m− 1, q ≡ −m+ 3 mod 4

0 else

When m > 0, we have

Hq((Θ
+
n,m)

Z/2) =



Z q = 0 and m even

Z/2 q = m− 2, or

0 ≤ q ≤ 3−m and q ≡ −m+ 3 mod 2

Z/2⊕ Z/2 m+ 2− 4n ≤ q ≤ m− 6, q ≡ m− 2 mod 4

Z/8 m− 4n ≤ q ≤ m− 4, q ≡ m mod 4

0 else

And when m ≤ 0, we have

Hq((Θ
−
n,m)

Z/2) =


Z q = 0 and m odd

Z/2 0 ≤ q ≤ −m, q ≡ m mod 2, or

−m ≤ q ≤ 4n−m− 1, q +m ≡ 0, 1, 2 mod 4

0 else

Finally, when m > 0, we present the homology of (Θ−
n,m)

Z/2) as a sum of two chain complexes

H∗((Θ
−
n,m)

Z/2) ∼= H∗((Θ
−
n,2)

Z/2)[2−m]⊕H∗(C
−(0)m[2−m])Z/2
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where

Hq((Θ
−
n,2)

Z/2) =

{
Z/2 −1 ≤ q ≤ 4n− 3, q ≡ 0, 2, 3 mod 4,

0 else

and

Hq(C
−(0)m[2−m])Z/2 =


Z q = 0 and m odd

Z/2 −1 ≤ q ≤ 2−m, q ≡ m+ 1 mod 2,

0 else

Proof. As seen from the above definition, the chain complexes in these have fewer than three
copies of Z in each dimension, also the differentials are simple. Thus we can proceed by direct
computation.

With all the ingredient described, we may write down the first case of the main result.

Theorem 16. For k ≥ ℓ ≥ 0 and n ≥ 0, as a Z/2-equivariant chain complex,

CQ8
∗ (Skα+ℓβ+mγ+nρ)Z/4 =

k−1⊕
s=ℓ

A
(−1)s

ℓ (m)[s]⊕
ℓ−1⊕
s=0

A(−1)s

s (m)[s]

⊕ A(−1)s+1

s (m)[s+ 1])⊕Θ
(−1)(k+1)(ℓ+1)

n,−ℓ−m [ℓ].

The homology of all the chain complexes involved, are computed in Proposition 14 and Proposition

15.

By Spanier-Whitehead duality, it suffices to furthermore consider the case n < 0. Essentially,
this means n and k, ℓ have different signs. If, say, k, ℓ < 0 and n,m > 0, we can flip all the signs
and compute the cohomology instead.

So here we assume k ≥ ℓ ≥ 0, and n < 0. The cofiber sequence now looks like

S(−nρ)+ → S0 → S−nρ.

Take the dual of this sequence, we have

Snρ → S0 → DS(−nρ)+.

The dual of S(−nρ)+ is Σnρ+1S(−nρ)+, hence

Snρ → S0 → Σnρ+1S(−nρ)+.
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Define now for n < 0:
Θ±

n,m := Hom(Θ±
−n,m,Z),

so that Θ+
n,m and Θ−

n,m are still results of smashing Θ+
n,0,Θ

−
n,0 with Smγ . Their homology is recorded

in the following proposition whose proof is analogous to Proposition 15.

Proposition 17. Let n < 0. When m ≤ 0, we have

Hq((Θ
+
n,m)

Z/2) =



Z q = 0 and m even

Z/2 m− 1 ≤ q ≤ −1, q ≡ m mod 2

Z/2⊕ Z/2 m+ 4n ≤ q ≤ m− 1, q ≡ m− 2 mod 4

Z/8 m+ 4n ≤ q ≤ m− 1, q ≡ m mod 4

0 else

When m > 0, we have

Hq((Θ
+
n,m)

Z/2) =



Z q = 0 and m even

Z/2 q = −m+ 1, or

−m+ 2 ≤ q ≤ −1 and q ≡ m mod 2

Z/2⊕ Z/2 5−m ≤ q ≤ −4n−m− 3, q ≡ −m+ 1 mod 4

Z/8 3−m ≤ q ≤ −4n−m− 1, q ≡ −m+ 3 mod 4

0 else

And when m ≤ 0, we have

Hq((Θ
−
n,m)

Z/2) =


Z q = 0 and m odd

Z/2 m− 1 ≤ q ≤ 1, q ≡ m+ 1 mod 2, or

m+ 4n ≤ q ≤ m− 1, q −m ≡ 1, 2, 3 mod 4

0 else

Finally, when m > 0, we present the homology of (Θ−
n,m)

Z/2 as a sum of two chain complexes

H∗((Θ
−
n,m)

Z/2) ∼= H∗((Θ
−
n,2)

Z/2)[2−m]⊕H∗(C
−(0)m[2−m])Z/2

where

Hq((Θ
−
n,2)

Z/2) =

{
Z/2 4n+ 2 ≤ q ≤ 0, q ≡ 0, 1, 3 mod 4,

0 else
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and

Hq(C
−(0)m[2−m])Z/2 =


Z q = 0 and m odd

Z/2 m− 3 ≤ q ≤ 0, q ≡ m mod 2,

0 else

Suspend by Skα+ℓβ , the connecting map connects at the top degree, and after taking the cofiber,
we obtain the next case of our main result:

Theorem 18. For k ≥ ℓ ≥ 0 and n < 0, as a Z/2-equivariant chain complex,

CQ8
∗ (Skα+ℓβ+mγ+nρ)Z/4 =

k−1⊕
s=ℓ

A
(−1)s

ℓ (m)[s]⊕
ℓ−1⊕
s=0

A(−1)s

s (m)[s]

⊕ A(−1)s+1

s (m)[s+ 1])⊕Θ
(−1)(k+1)(ℓ+1)

n,ℓ−m [ℓ].

The homology of all the chain complexes involved, are computed in Proposition 14 and Proposition

17.

Finally, we complete our discussion by adding the cohomology results. The cohomology of
duals of the chain complexes Θ’s and A’s are easily derived from Proposition 14, 15 and 17 using
universal coefficients theorem. What is new is the decomposition of cochain complexes. The answer
is the follows:

Theorem 19. For k ≥ ℓ ≥ 0 and n ≥ 0, as a Z/2-equivariant chain complex,

C∗
Q8
(Skα+ℓβ+mγ+nρ)Z/4 =

k−1⊕
s=ℓ

(A
(−1)s

ℓ (m)[s])∨ ⊕
ℓ−1⊕
s=0

(A(−1)s

s (m)[s])∨

⊕ (A(−1)s+1

s (m)[s+ 1])∨ ⊕Θ
(−1)(k+1)(ℓ+1)

−n,−ℓ−m [ℓ].

For k ≥ ℓ ≥ 0 and n < 0, as a Z/2-equivariant chain complex,

C∗
Q8
(Skα+ℓβ+mγ+nρ)Z/4 =

k−1⊕
s=ℓ

(A
(−1)s

ℓ (m)[s])∨ ⊕
ℓ−1⊕
s=0

(A(−1)s

s (m)[s])∨

⊕ (A(−1)s+1

s (m)[s+ 1])∨ ⊕Θ
(−1)(k+1)(ℓ+1)

−n,ℓ−m [ℓ].
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CHAPTER III

Equivariant Complex Cobordism and Formal Group Laws

3.1 Homotopical Equivariant Complex Cobordism MUG

Let M be a smooth manifold of even dimension. An almost complex structure on a smooth real
manifold M of even dimension is a complex structure on its tangent bundle TM . A smooth real
manifold M has a stable almost complex structure if there is a k ≥ 0 such that M ⊕ Rk admits a
almost complex structure.

Let MU(n) be the Thom space of the universal bundle γn : EU(n)→ BU(n). They assemble
to complex cobordism spectrum MU , with structure maps given by classifying maps for γn ⊕ C.

The complex cobordism MU is a well-studied generalized cohomology theory. By the works
of Quillen [Qui69], MU is the universal theory for complex oriented cohomology theories, and it
supports a universal formal group law. Based on the calculations of π∗MU by Milnor and Novikov
[Mil60, Nov62], Brown and Peterson [BP66] constructed the p-local Brown Peterson spectrum BP

for a prime p and proved analogous results to [Qui69] where one replaces MU by the p-local BP

and 1-dimensional formal group laws by 1-dimensional p-typical formal group laws. Furthermore,
we can produce Morava E-theories and Morava K-theories, which are some main interests of study
in chromatic homotopy theory.

Hill, Hopkins and Ravenel’s solution for the Kervaire invariant one problem [HHR16] uses the
Real cobordism theory MUR. There is an equivariant version MUG of complex cobordism, which
is first defined by tom Dieck [tD70]. Fix a complete universe U . Let BUG(n) be the Grassmanian
of complex n-dimensional linear subspaces of U . Let γG

n denote the tautological complex n-plane
bundle over BUG(n). For a real representation V , define T (V ) be the Thom space of γG

|V |, where |V |
is the real dimension of V . Apply spectrification functor, the result is the homotopical equivariant
complex cobordism MUG.

Because of transversality issues, the coefficient rings of MUG’s are different from the natural
cobordism rings of weakly stably complex G-manifolds. The homotopy cobordism rings are of
much more fundamental homotopy-theoretical interest. We expect MUG to play the same key role
in equivariant stable homotopy theory.
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The coefficient ring (MUG)∗ for G = Z/p is described in [Kri99]. The explicit calculation with
generators and relations is first given by [Str01] for G = Z/2, and later generalized in [Hu21] for
primary cyclic groups. The case when G is finite is studied in [AK15], and the case when G = S1

is studied in [Sin01]. However, the picture for nonabelian groups is still largely unknown.
Another aspect of complex cobordism concerns the evenness and freeness properties of the

coefficient ring. However, recently both the geometric and the homotopical evenness conjectures
are proven to be false, respectively in [Sam22] and [Kri21b].

3.2 The case G = Σ3

We will use α to denote the sign representation of Σ3, and γ for the two dimensional irreducible
representation. For simplicity, when there is no confusion we will abbreviate MUΣ3 as MU .

3.2.1 The coefficients of S∞α ∧MU .

By the Tate diagram, there is a “Tate square”

MU

��

// S∞γ ∧MU

��
F (S(∞γ)+,MU) // S∞γ ∧ F (S(∞γ)+,MU)

for MUG. Smash the square with S∞α = ˜EF (Z/3) we see that S∞α ∧MUΣ3 is the homotopy
pullback of the diagram

ẼF [Σ3] ∧MU

��

S∞α ∧ F (S(∞γ)+,MU) // ẼF [Σ3] ∧ F (S(∞γ)+,MU)

(III.1)

The upper right corner is the geometric fixed point, and is calculated by tom Dieck [tD70] as

(ẼF [Σ3] ∧MU)∗ = ΦΣ3MU∗ = MU∗[uα, u
−1
α , uγ, u

−1
γ , bαi , b

γ
i ]. (III.2)

Here the generator bαi has degree 2(i− 1), and bγi has dimension 2(i− 2) for i ∈ N = {1, 2, . . . }.
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Note that S(∞γ) is the homotopy pushout of

Σ3 ×Z/2 EZ/2

��

// EΣ3

Σ3/(Z/2).

(III.3)

Apply the functor F (−,MUΣ3), taking fixed point after smashing with S∞α, we see that S∞α ∧
F (S(∞γ)+,MU) is the homotopy pullback of the following diagram

(S∞α ∧ F ((EΣ3)+,MU))Σ3

��

ΦZ/2MU // M̂UZ/2

(III.4)

Proposition 20. The vertical arrow of (III.4) induces isomorphism on coefficients.

Proof. The bottom right corner M̂UZ/2 is the Z/2-fixed point of the Tate cohomology. Consider
the commutative diagram

Z/3

◁
��

ν

⊂
// S1

λ
��

ι // S1 × S1

µ

��
Σ3

γR

⊂
// O(2) κ // U(2)

(III.5)

where κ is the complexification, λ, µ is the inclusion of maximal torus, and ι(z) = (z, z−1).
Taking the MU -cohomology of classifying spaces, first we have

MU∗(B(S1 × S1)) = MU∗[[u+, u−]]

where u+, u− ∈MU2(CP∞) are the Euler classes of the two factors. In these terms, µ∗ is injective,
and its image has generators

uα = u+ +F u−, uγ = u+u−.

One can of course instead of uα also use u+ + u−, but the advantage of this notation is that uγ can
be considered as the Euler class of the identity representation γ, while uα is the Euler class of the
determinant representation α.

Wilson [Wil84] proved that κ∗ is onto, and computed

MU∗(BO(2)) = MU∗[[uα, uγ]]/([2]uα, uγ − ũγ).
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In the image of µ∗, we have
ũγ = i(u+)i(u−)

where i denotes the formal inverse. Since uγ − ũgamma restricts trivially to S1 via µ ◦ ι, the class
is divisible by uαuγ in MU∗BU(2). This can also be verified directly algebraically, since it is equal
in MU∗[[u+, u−]] to

u+(u− − i(u+)) + (u+ − i(u−))i(u+).

When restricting to Σ3, we additionally have the relation

0 = {3}uγ := [2]u+[2]u− − u+u−, (III.6)

since the inclusion Σ3 ⊂ U(2) factors through Z/2 ≀ Z/3, where [3]u+ = [3]u− = 0. On the other
hand, it is important to know that despite the notation, the series {3}uγ defined in (III.6) is a power
series in both uα, uγ .

We have
H∗(BΣ3;Z) = Z[uα, uγ]/(2uα, 3uγ), (III.7)

so the Atiyah-Hirzebruch spectral sequence collapses to E2. Since the right hand side maps to
MU∗BΣ3 by γ∗

R, and on the level of associated graded objects with respect to the Atiyah-Hirzebruch
filtration, it induces an isomorphism, we conclude that

MU∗BΣ3 = MU∗[[uα, uγ]]/([2]uα, {3}uγ). (III.8)

Observe that
[2]uα ≡ 2uα mod (u2

α),

{3}uγ ≡ 3uγ mod (u2
γ, uγuα).

Thus,
({3}uγ)uα − ([2]uα)uγ ≡ uαuγ mod (u2

αuγ, uαu
2
γ),

and thus, the relations of (III.8) imply
uαuγ = 0. (III.9)

In particular, the relations (III.8) imply the relation

uγ − ũγ = 0.

As a result, smashing with S∞α kills the uα part, and the vertical map induces isomorphism on
homotopy groups.
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Now by diagram (III.4), the fixed points of the lower left corner of (III.1) are just ΦZ/2MUZ/2,
whose coefficients, by [tD70], are

(ΦZ/2MU)∗ = MU∗[uα, u
−1
α , bαi , i ∈ N].

Now the coefficients of the lower right corner of (III.1) are obtained from the coefficients of (III.4)
by inverting uγ , thus, by inverting uγ in the coefficients of the lower left corner of (III.4), which
gives 0. In other words, the coefficients of the lower right corner of (III.1) are 0, and we obtain

Theorem 21. We have an isomorphism of rings

(S∞α ∧MUΣ3)∗
∼= (ΦZ/2MU)∗× (ΦΣ3MU)∗. (III.10)

3.2.2 The coefficients of F (S(∞α)+,MU).

The spectrum F (S(∞α)+,MU)Σ3 is the homotopy pullback of the diagram

F (EZ/2+,ΦZ/3MU)Z/2

��

F ((BΣ3)+,MU) // F (EZ/2+, M̂UZ/3)
Z/2

(III.11)

(which arises from the “Tate square”

MU

��

// S∞γ ∧MU

��
F (S(∞γ)+,MU) // S∞γ ∧ F (S(∞γ)+,MU)

by applying F (S(∞α)+,−) and taking Σ3-fixed points.)
We first calculate the top right corner of (III.11). We notice that Z/2 acts on (ΦZ/3MU)∗ by a

permutation representation, with

Ĥ0(Z/2, (ΦZ/3MU)∗) = MU∗[uγ, u
−1
γ , bγ2i]/2.

In this situation, it is formal that the MU -Borel cohomology spectral sequence collapses, and we
have:
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The coefficient ring (F (EZ/2+,ΦZ/3MU)Z/2)∗ is the pullback of rings

MU∗[uγ, u
−1
γ , bγ2i][[uα]]/[2]uα

����
((ΦZ/3MU)∗)

Z/2 //MU∗[uγ, u
−1
γ , bγ2i]/2

where uα 7→ 0 by the vertical arrow. (Note that the lower left corner of this diagram means the
algebraic fixed points in the category of rings.)

Now in the coefficients of the lower right corner of (III.11), (III.9) is in effect, so we obtain

F (EZ/2+, M̂UZ/3)∗ = ((M̂UZ/3)∗)
Z/2. (III.12)

For the same reason, F (BΣ3,MU)∗ = F (EZ/2+, F (EZ/3+,MU)Z/3)∗ can be rewritten as the
(algebraic) pullback of rings

(MU∗BZ/3)Z/2

res
����

MU∗BZ/2 res // //MU∗.

(III.13)

(Also note that at the upper right corner, we have algebraic fixed points in the category of rings.)
But now by commutation of limits, the pullback of rings

((ΦZ/3MU)∗)
Z/2

��

(MU∗BZ/3)Z/2 // ((M̂UZ/3)∗)
Z/2

(III.14)

is
((MUZ/3)∗)

Z/2. (III.15)

(Again, this means algebraic fixed points in the category of rings.) Thus, we obtain
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Theorem 22. The coefficient ring F (S(∞α)+,MUΣ3)∗ is the limit of the diagram of rings

MU∗[uγ, u
−1
γ , bγ2i][[uα]]/[2]uα

����
((MUZ/3)∗)

Z/2 //

res
����

MU∗[uγ, u
−1
γ , bγ2i]/2

MU∗BZ/2 res // //MU∗

(III.16)

It is worth pointing out that by [Kri99, Str01, Hu21], the ring (MUZ/3)∗ is now completely
known, and the action of Z/2 is explicit:

Theorem 23. [Hu21] Let p be a prime. For 1 ≤ α ≤ p − 1, let α−1 be the inverse of α in

(Z/p)×. (Namely, we choose the representative in Z such that 1 ≤ α−1 ≤ p − 1.) In Z, write

α · α−1 = 1 + kαp.

The ring (MUZ/p)∗ is isomorphic to

MU∗[u, b
(α)
i,j , λα, qj | α ∈ (Z/p)×, i, j ≥ 0]/ ∼

where the relations are:

b
(1)
0,0 = u, b

(1)
0,1 = 1, b

(1)
0,j = 0

for j ≥ 2,

b
(α)
i,j − a

(α)
i,j = ub

(α)
i,j+1

where a
(α)
i,j is the coefficient of xiuj in x+F [α]u,

q0 = 0, qj − rj = uqj+1

where rj is the coefficient of uj in [p]u, and

λ1 = 1, λαb
α
0,1 = 1 + kαq1.

Note that the relations imply that λαuα = u (where uα = b
(α)
0,0 ).

One can, in fact, be more explicit about (III.15). In [Hu21], Theorem 23 is derived from [Kri99]
analogously as the result of [Str01]. The algebra, however, is substantially more complicated. One
major difference between the presentations of [Str01] and [Hu21] in the case of p = 2, which helps
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with the generalization, is that the elements qj in [Hu21] (and Theorem 23) are chosen in such a
way that their relations do not involve the elements b(α)i,j .

3.2.3 The coefficients of MUΣ3 .

Now MUΣ3 is the homotopy pullback of the diagram

S∞α ∧MU

��
F (S(∞α)+,MU) // S∞α ∧ F (S(∞α)+,MU).

(III.17)

The coefficients of the upper right and lower left corners are known by Theorem 21 and Theorem 22.
The coefficients of the lower right corner are obtained by inverting uα in (III.16). We see, however,
that after inverting uα, the middle row of (III.16) becomes an isomorphism.

Also, we can consider an analogous diagram to (III.17) using just the lower leftmost term of
(III.16):

(S∞α ∧MU)
Z/2
∗

��

F (BZ/2+,MU)∗ // M̂U
Z/2
∗ .

This produces (MUZ/2)∗ by [Kri99], which is used in [Str01] and Theorem 23 for p = 2.
Thus, we need to calculate the algebraic pullback of rings corresponding to the uppermost right

corner of (III.16) with the corresponding parts of diagram (III.17). This diagram has the form

MU∗[uγ, u
−1
γ , uα, u

−1
α , bαi , b

γ
i ]

��
MU∗[uγ, u

−1
γ , bγ2i][[uα]]/[2]uα

// u−1
α MU∗[uγ, u

−1
γ , bγ2i][[uα]]/[2]uα.

(III.18)

In particular, we need to calculate the vertical map (III.18). As in [Kri99], we have

bαi 7→ coeffxi(x+F uα). (III.19)

Thus, we need to determine where the elements bγ2i+1 map. To this end, we consider the MU∗-
cohomology of BZ/2 ≀ S1. Writing

MU∗(S1 × S1) = MU∗[[u+, u−]],

the Serre spectral sequence collapses to E2. Denoting the Euler class of the map Z/2 ≀ S1 → Z/2
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by w, we need a relation of the form

0 = w(u+ + u− +HOT ).

The relation can be detected by inflation associated with the map

(Z/2⋉ S1)× S1 → Z/2 ≀ S1 (III.20)

where on the left hand side, an element α of the first copy of S1 maps to (α, α−1), and an element β
of the second copy of S1 maps to (β, β).

Lemma 24. This inflation in MU∗-cohomology is injective (and also remains injective when

inverting the Euler class w of the projection to Z/2).

Proof. Restricting to the S1 × S1-subgroups, the inflation on MU∗-cohomology can be written as

MU∗[[u, v]]→MU∗[[x, z]] (III.21)

where
u 7→ x+F z, v 7→ i(x) +F z

where i(x) is the formal inverse. Clearly, this is injective. To deduce the statement of the Lemma,
by the Serre spectral sequence (which collapses both in the source and the target), it suffices to
show that (III.21) induces an injection on the Z/2-Tate cohomology H̃Z/2. However, explicitly, on
H̃Z/2, we get the map

MU∗[[uv]] 7→MU∗[[xi(x), z]]

where
uv 7→ (x+F z)(i(x) +F z),

which is injective.

Now we know the cohomology of the classifying space of the source of (III.20). Explicitly,
since the first factor is O(2), we can write

MU∗B((Z/2⋉ S1)× S1) = MU∗[[uα, uγ, z]]/([2]uα, uγ − ũγ).

The inflation map is
w 7→ uα, u+ 7→ u+ +F z, u− 7→ u− +F z.
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Further, in the target of the inflation, we have the relation

(u+ +F z)(u− +F z)− (i(u+) +F z)(i(u−) +F z).

Thus, in MU∗B(Z/2 ≀ S1), we obtain the relation

u+u− − (u+ +F w)(u− +F w), (III.22)

which is of the required form. Thus, we have proved

Theorem 25. The ring MU∗B(Z/2 ≀ S1) is isomorphic to the quotient of

MU∗[[uα, uγ, w]]/[2]w

by the relation (III.22) (where, as usual, we write uα = u+ +F u−, uγ = u+u−).

To see what this has to do with the elements bγ2i+1 in (III.18), we note that we have

MU∗[uγ, u
−1
γ , uα, u

−1
α , bαi , b

γ
i ] = ΦZ/2(MU ∧ (BU ×BU)+)[uγ, u

−1
γ ]

where Z/2 acts by interchanging the BU coordinates. By the same method as in [Kri99], we then
obtain a map from this ring to MU∗B(Z/2 ≀ S1) given by

uα 7→ w, bαi 7→ coeffxi(x+F w), uγ 7→ uγ, b
γ
i 7→ coeffxi(x+F u+)(x+F u−). (III.23)

In more detail, start with the composition

MU ∧BU → (ΦS1

MU)S
1 → (M̂US1)S

1

(III.24)

where we work over the universe containing only the trivial and standard representation of S1,
and the first map (III.24) comes from the tom Dieck calculation [tD70]. Smashing two copies of
(III.24), we obtain a (naively) Z/2-equivariant map, and taking its homotopy fixed points gives the
required map (III.23). (To be even more precise, in the target, we have to compose with another
map, completing, on the level of Borel cohomology, the smash product, and then inverting the Euler
classes.)

Lemma 26. The map (III.23) is injective.

Proof. The proof proceeds in the same way as the proof of Lemma 24, once we prove that the map
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induced by (III.24) on coefficients is injective. This map is

bi 7→ coeffxi(x+F u) ∈MU∗[[u]].

We must show that the images of the bi’s are algebraically independent. To this end, note that for
i ≥ 1, the lowest term of the power series in u to which bi maps is a1,iu. If there is an algebraic
relation between these elements, it must remain valid after dividing by u. But if those elements
are algebraically dependent, they are also algebraically dependent modulo u, which means that the
a1,i’s are algebraically dependent over MU∗. This is well known not to be the case. (In fact, the
coefficients of the series ∫ x

0

dt∑
i≥0

ai1t
i

are the coefficients of the universal logarithm, which are algebraically independent by Lazard’s
theorem.)

To see what happens to the bαi ’s, we can enhance the relation (III.22) by adding formally another
formal variable t, thus obtaining

(u+ +F t)(u− +F t)− (u+ +F w +F t)(u− +F w +F t). (III.25)

Note that by the Serre spectral sequence, this relation must in fact follow from (III.22), but it is
more convenient for our purposes. In effect, translating back via (III.23), we obtain∑

j≥1

bγj t
j =

∑
j≥1

bγj (uα +F t)j, (III.26)

valid in the bottom right term of (III.18). Note that examining the tj−1 coefficient of (III.26), and
using [2]uα = 0, for j odd, we obtain an expression containing a summand of bγjuα and possibly
bγkuα with some additional coefficients for k < j, modulo higher powers of uα. Working by
induction on j, we can eliminate the summands bγkuα with k odd modulo higher powers of uα, and
then repeat the procedure, ultimately expressing bγjuα as a power series in uα (in powers≥ 2) whose
coefficients are polynomials in the bi’s with i even. In particular, this gives recursive relations in the
lower right corner of (III.18) of the form

bγ2i+1 =
∑
j≥1

cju
j
α, (III.27)

where cj are polynomials with coefficients in the bγ2k’s.
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For example, we have

bγ1 = −bγ2uα − 2x1b
γ
2u

2
α

+(−6x2
1b

γ
2 − 3x2b

γ
2 + 5bγ4)u

3
α+

(−40x3
1b

γ
2 + x1x2b

γ
2 − 43x3b

γ
2 + 54x1b

γ
4)u

4
α + ...,

also
bγ3 = 2x1b

γ
2 + (6x2

1b
γ
2 + 3x2b

γ
2 − 6bγ4)uα

+(42x3
1b

γ
2 − 3x1x2b

γ
2 − 33x3b

γ
2 − 58x1b

γ
4)u

2
α + ...,

and
bγ5 = −2x3

1b
γ
2 + 2x1x2b

γ
2 + 4x3b

γ
2 + 4x1b

γ
4 + ... .

This lets us calculate the pullback of rings (III.18) by the same method as in [Hu21, Str01]. The
answer is the ring

R = MU∗[uγ, u
−1
γ , uα, b

α
i,j, qj, b

γ
2i, b

γ
2i+1,j]/

(bαi,j − aij = bαi,j+1uα, q0uα, qj − rj = qj+1uα, b
γ
2i+1,j − cj = bγ2i+1,j+1uα)

(III.28)

Note that this maps canonically to MU∗[uγ, u
−1
γ , bγ2i]/2 by mapping via the vertical arrow in (III.18)

(which we determined explicitly), and taking the constant term of the applicable uα-series. In
summary, we have our main result:

Theorem 27. The ring (MUΣ3)∗ is the limit of the diagram of rings

R

����
((MUZ/3)∗)

Z/2 //

res
����

MU∗[uγ, u
−1
γ , bγ2i]/2

(MUZ/2)∗
res // //MU∗

(III.29)

where the rightmost vertical arrow is described above.

3.3 Connections to equivariant formal group laws

An RO(G)-graded equivariant cohomology theory for a compact Lie group G is called complex
oriented if it satisfies the Thom isomorphism with respect to all G-equivariant complex bundles. For
an abelian compact Lie grouip A, the theory of A-equivariant formal group laws is established. It

46



was conjectured by Greenlees that the Lazard ring for A-equivariant formal group laws is isomorphic
to the stable equivariant cobordism ring MUG

∗ . This was recently proved for G = Z/2 by Hanke
and Wiemeler, and in full generality by Hausmann. In this chapter we give another proof of this
conjecture for finite cyclic groups.

If A is an abelian compact Lie group, an A-equivariant formal group law over a commutative
ring k is

(1). a complete topological Hopf k-algebra R with
(2). a homomorphism θ : R→ kA∗ of topological Hopf k-algebras so that the topology on R is

defined by the finite intersections of kernels of its components θα : R→ k for α ∈ A∗.
(3). an element x(ϵ) ∈ R which is (i) regular and (ii) generates the kernel of the ϵth component

of θ; equivalently, x(ϵ) gives an exact sequence

0→ R
x(ϵ)−−→ R→ k → 0.

If A is finite, axiom (2) shows that the topology on R is defined by the single ideal ker β. Since
θ is a map of Hopf algebras it follows that θϵ is the counit of R.

The element xϵ is called the coordinate of the formal group law, since in geometric terms it is a
function whose vanishing defines the identity of the group. If the coordinate is not specified, the
resulting structure represents an equivariant formal group. Indeed, by axiom 1, R may be viewed as
the ring of functions on a group object G in the category of formal schemes over k.

The k-module structure of every equivariant formal group law is topologically free, and we
may therefore express the structure maps of R in terms of the basis. There is an action of A∗ on
R via ℓα(r) = (θα−1 ⊗ 1)∆(r). Thus the element x(ϵ) determines elements x(α) for α ∈ A∗ by
the formula x(α) = ℓα(x(ϵ)). A complex complete A-universe is a countably infinite dimensional
complex representation of A in which every simple representation occurs infinitely often. Then we
have the following result:

Theorem 28. If we choose a complete A flag F = V1 ⊂ V2 ⊂ V3 ⊂ ... in a complete universe, then

an equivariant formal group law R has an additive topological k-basis 1, x(V1), x(V2), ... where

x(V n) = x(α1)...x(αn) if Vn = α1 ⊕ ...⊕ αn.

Note that if A is the trivial group, the definition reduces to the usual concept of a (non-equivariant,
commutative, one dimensional) formal group law.

Note that the set of A-equivariant formal group laws over k is a functor of the ring k. This
functor is represented by a ring LA, the equivariant Lazard ring for A-equivariant formal group
laws. The ring LA may be constructed by giving generators for each of the structure constants, and
imposing relations to ensure that the axioms of definition hold. The A-equivariant formal group
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law over k corresponding to a ring homomorphism f : LA → k is the one with structure constants
given by the image of the corresponding generators of LA.

A G-equivariant cohomology theory E is complex stable if there are suspension isomorphisms

σV : Ẽn(X)
∼=−→ Ẽn+|V |(ΣVX)

for all complex representations V , where |V | is the real dimension of V .
Given an A-equivariant formal group law we may define the Euler class of a one dimensional

representation α by
uα = θϵ(x(α)).

The Euler class uα is the value of the coordinate x(α) at the identity. Note that by definition we
have uϵ = 0.

We also have
uk = ϵ(α−ℓ)(xαℓ−k),

u0 = 0.

Thus, inductively we can compute,

uk = ϵ(α−k)(x) = (ϵ(α−1)⊗ ϵ(α1−k))(∆(x))

= uk−1 + u · (
k−1∑
i=0

a1,i(
i−1∏
j=0

uk−1−j)).
(III.30)

Thus, referring to (III.30), we obtain a relation among the elements u, ai,j ∈ A given by

un = 0 (III.31)

which has the form
nu mod (u2). (III.32)

We will also need the following result: let p be a prime factor of n, and define m = n/p. Similar
computation gives

ukm = ϵ(α−km)(x) = (ϵ(α−m)⊗ ϵ(αm−km))(∆(x))

= (ϵ(α−m)⊗ ϵ(αm−km))(
∑
i,j≥0

ai,jxi ⊗ xj)

= um + u(k−1)m +
m∑
i=1

(k−1)m∑
j=1

ai,j(
i−1∏
s=0

um−s)(

j−1∏
t=0

u(k−1)m−t).

(III.33)

48



The relation (III.31) therefore has an alternative form

pum mod (u2
m). (III.34)

Another set of relations is obtained as follows. If (A,R,∆, ϵ, xL) is a Z/n-equivariant formal
group law, then R∧

(x) = A[[x]] (since x is regular, R/(x) = A implies R/(xn) ∼= A[x]/(xn)). Thus,
applying the completion map

R→ A[[x]],

the coproduct ∆ maps to a non-equivariant formal group law on A. By Lazard’s theorem, we obtain
an expression of the coefficients ai,j as polynomials of ai,j and u. Note also that, by the definition
of ai,j , with this identification, we have

ai.j ≡ ai,j mod (u) (III.35)

(since xL ≡ x mod (u)). Thus, the relations

r(ai,j) (III.36)

in the Lazard ring give, by substitution, a set of relations among the ai,j’s and u. (Recall that modulo
decomposables, the relations among the ai.j’s say that they are all multiples of the Lazard generators
xi+j , which in turn, modulo indecomposables, is a linear combination of the ai,j’s with coefficients
in Z.)

Now we state the main result:

Theorem 29. (1) There exists a Z/n-equivariant formal group law

(A,R,∆, ϵ, xL)

where A is the quotient ring of Z[u, ai,j] modulo the relations (III.31), (III.36). Furthermore, this

Z/n-equivariant formal group law is universal in the sense that for any Z/n-equivariant formal

group law (A′, R′,∆′, ϵ′, x′
L), there exists unique ring homomorphisms A → A′, R → R′, which

carries ∆ to ∆′, ϵ to ϵ′, and xL to x′
L.

(2) There is an isomorphism A ∼= (MUZ/n)∗.

The theorem will be proved by induction. For clarity we will sometimes write An for the ring A

in the statement above. Throughout we use the complete flag {Vi}i≥0 defined above.

Proof. First, we observe that if we have a homomorphism of rings f : A→ A′, there exists at most
one equivariant formal group law (A′, R′,∆′, ϵ′, x′

L) over A′ such that the coproduct formula holds
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with ai,j replaced by f(ai,j), and other notations replaced. Applying f to the coefficients of the
computations of the coproduct formula, we get formulas for all euler classes u′

k ∈ A′ in terms of
the images of ai,j’s. Now

ϵ′(α−1)(xk) =
k∏

i=1

u′
i ∈ A′.

Therefore,

ϵ′(α−ℓ)(xk) =
k∏

i=1

u′
i+ℓ.

This determines ϵ′ by linear extension. Since

∆′(x′) =
∑
i,j

f(ai,j)x
′
i ⊗ x′

j,

the following formula determines elements

x′
L = (ϵ′(L)⊗ 1)∆′(x1).

For example when p = 2, L = α this gives

x′
α = u′ + x′

1 + u′f(a1,1)x
′
1 + u′f(a1,2)x

′
2 + ...).

It holds a priori that
x′
αx

′
1 = x′

2,

x′
α2x′

2 = x′
3,

...

To calculate x′
αℓx

′
k for any ℓ ∈ Z/n and k ≥ 1, the recipe is to rotate the above formula for x′

αℓ−k

by αk. This gives x′
αℓ in terms of a new basis

{Vk+i/Vk}i≥1 = {αkVi}i≥1.

Now since x′
k corresponds to Vk and

(Vk+i/Vk)⊕ Vk
∼= Vk+i,

we have x′
αℓx

′
k in original basis {Vi}i≥1.

Similarly, we can compute x′
αℓx

′
m for any ℓ, m. Thus, by induction, the product in R′ is
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determined.
Now by Axiom (2),

∆′(x′
αℓ) = ∆′(ϵ′(αℓ)⊗ Id) ◦∆′(x′))

= ((ϵ′(αℓ)⊗ Id) ◦∆′)⊗ (ϵ′)⊗ Id) ◦∆′) ◦∆′(x′)

=
∑
i,j

f(ai,j)
i∏

k=1

x′
αℓ+k−1 ⊗ x′

j,

(since (ϵ′(αℓ)⊗ Id) ◦∆′(x′
i) =

∏i
k=1 x

′
αℓ+k−1). Thus ∆′ is also determined.

Note that we do not yet know that A actually supports a Z/n-equivariant formal group law.
However, we have the following

Lemma 30. The ring AZ/n has um-torsion of order less or equal to 1, i.e. for every z ∈ AZ/n, if

u2
mz = 0, then umz = 0.

Proof. It will be convenient to introduce the polynomial generators xk of the (non-equivariant)
Lazard ring L. We also join another formal generator um to A. Then we can write

A = Z[ai,j, xk, u, um]/(ri,j, um = [m]u, [p]um)

where the relations
ri,j = ai,j − qi,j(xk)

are given by thinking of ai,j as a polynomial in the ai′,j′’s, and

[p]um, um = [m]u

are results from computations (III.30), and

[p]um

is (III.34) of form
pum mod u2

m.

Suppose
u2
m | Q = c · [p]um +

∑
ci,jri,j + d · [m]u

for some ci,j, c, d ∈ Z[ai,j, xk, u, um]. Then, factoring out um and considering non-equivariant
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formal group law theory (namely the algebraic independence of the relations ri,j), we conclude that

um | ci,j, um | d

for all i, j. Thus, we may write

coeffum(Q) = cp+
∑ ci,j

um

ri,j +
d

um

. (III.37)

Then assuming um ∤ c, factoring out um, (III.37) would again contradict the algebraic independence
of the relations ri,j of the classical (non-equivariant) Lazard ring. Therefore, um | c, and therefore
the relation Q can be divided by um, as claimed.

Recall that we choose p | n and let m = n/p. Let F = F (Z/m) be the family of subgroups
contained in Z/m. Denote the universal space for this family by EZ/p (since EZ/p is a model
for EF (Z/m)) and consider the cofiber EZ̃/p of EZ/p+ → S0, we have a pullback square for
equivariant complex cobordism

MUZ/n

��

// EZ̃/p ∧MUZ/n

��

F (EZ/p+,MUZ/n) // EZ̃/p ∧ F (EZ/p+,MUZ/n).

(III.38)

On the other hand, by [Str01], we have a pullback square for A = AZ/n

A

��

// u−1
m A

��
A∧

um
// u−1

m A∧
um

.

(III.39)

The coefficient of the square (III.38) is

(MUZ/n)∗

��

// u−1
m (MUZ/n)∗

��
(MUZ/n)

∧
∗um

// u−1
m (MUZ/n)

∧
∗um

.

(III.40)

Now we shall argue that the top row and the left hand column actually define Z/n-equivariant
formal group laws on the respective target rings, and the rings are isomorphic to the corresponding
coefficients in the square (III.40).

In the case of the bottom left corner, we start with the case when n is a prime. This is due to the
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fact that if we are allowed to sum infinite power series in u, then the ai,j’s can also be expressed
as power series in the ai,j’s (rather than just vice versa). Under this correspondence, the relation
(III.31) just becomes [p]u = 0. Thus,

A∧
(u)
∼= L[[u]]/[p]u

where L is the non-equivariant Lazard ring.
In the general case, use induction assumption we have

AZ/n/um
∼= AZ/m ∼= (MUZ/m)∗ ∼= (MUZ/n)∗/um

(the first isomorphism follows from our definition and the last isomorphism comes computations for
equivariant complex cobordism). We can use Borel cohomology spectral sequence to compute the
associated graded ring of ((MUZ/n)∗)

∧
um

Es,t
2 = Hs(Z/p, πt(MUZ/n))⇒ π∗F (EZ/p+,MUZ/n).

It collapses since the coefficient concentrates in even degrees and there are no p-torsions, and gives
the associated graded ring as

(MUZ/m)∗[[um]]/[p]um.

Denote (MUZ/n)∗ by S and denote um by ω:

ωrS/ωr+1S ∼= ωrS∧
ω/ω

r+1S∧
ω
∼= S/(ω, p).

Compare the short exact sequence

0→ pS/ωS → S/ωS → S/(ω, p) ∼= ωrS/ωr+1S → 0

with
0→ ker q → A/ωA

q−→ ωrA/ωr+1A→ 0

and [p]ω/ω ∈ ker q maps to p ∈ pS/ωS, hence the map

ker q → pS/ωS

is surjective and
ωrA/ωr+1A→ ωrS/ωr+1S
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is an isomorphism for all r ≥ 1. Thus,

A∧
um
∼= ((MUZ/n)∗)

∧
um

.

On u−1
m A, we are inverting a certain collection of euler classes, namely those of representations

αk’s for k | m. We know by the Chinese Remainder Theorem that we must put

R =
∏

α∈Ĝ,uα inverted

A[[xα]].

Now the relations (III.36) give an x-completed coproduct on A[[x]], which we denote by F (y, z)

(i.e. we really have y = x⊗ 1, z = 1⊗ x). The equivariant formal group laws axioms (2) and (3)
imply that the coproduct on xα must be ∏

β+γ=α

∆(yβ, zγ)

where yα = xα ⊗ 1, zα = 1 ⊗ xα. The relation (III.31) implies that this Z/n-equivariant formal
group laws definition is consistent, as well.

Moreover, since the Z/n-equivariant formal group laws just defined on the corners of the
diagram (III.39) are both induced from maps from the pullback A, they coincided when pushed
forward to u−1

, (A∧
(um)).

By general universal algebra, the compatible Z/n-equivariant formal group laws on the three
remaining corners of (III.39) define a Z/n-equivariant formal group law on A, which is induced, in
the above sense, by Id : A→ A. It follows from the similar formal argument the Z/n-equivariant
formal group law on A is universal.

Additionally, by the explicit computation just performed, the limit diagram (III.39) (and hence
the pullback) coincide with the corresponding terms of [Kri99], and thus, AZ/n ∼= (MUZ/n)∗.

3.4 Conclusion

By some algebraic tools, the structure of (MUΣ3)∗ in Theorem 27 can be calculated explicitly.
More details could be found in the appendix of [HKL21].

There are no satisfactory definitions for equivariant formal group laws for nonabelian groups yet,
due to the reason that representations are not necessarily 1-dimensional. Hence we need to consider
all the equivariant classifying spaces BUG(n) for n > 0, with structure maps induced by direct sum
and tensor product of vector bundles. Schwede’s splitting [Sch22] suggests it might be sufficient to
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model the E-cohomology of BUG, which is the 0-connected component of the infinite loop space of
G-equivariant K-theory KUG. However, it is still conjectured that, with suitable definitions, there
should be an isomorphism between (MUG)∗ and the Lazard ring LG. Such calculations may give
an idea for giving a suitable definition.

On the other hand, nonabelian groups also arise naturally in many questions. In chromatic
homotopy theory, the groups Q8 arises as Sylow 2-subgroup for the Morava stabilizer group at prime
2, which is a fundamental object of the subject. The recent study on triangulation conjecture of
manifolds also involves Q8-actions. In [Man16], Manolescu looked at Pin(2)-equivariant Seiberg-
Witten Floer homology. The group Pin(2) contains Q8 as a finite subgroup. It is the author’s hope
to apply these calculations to study other questions.
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APPENDIX A

Equivariant Stable Homotopy Theory

1.1 The Category of G-Spectra

Let G be an arbitrary finite group, which we fix throughout this appendix. Furthermore, we will
restrict to compactly generated weak Hausdorff topological spaces.

A G-space is a space X together with a continuous left action of the group G. A G-equivariant
map (or simply equivariant map) f : X → Y of G-spaces commutes with the G-actions on X and
Y . A pointed G-space is equipped with a G-fixed basepoint, and a pointed map between pointed
G-spaces should respect basepoints.

Now, we define the category TopG to have G-spaces as objects and equivariant maps as mor-
phisms. Similarly, we define the category TopG∗ to have pointed G-spaces as objects and pointed
equivariant maps as morphisms. However, we define the category TG

∗ to have pointed G-spaces
as its objects but continuous maps as its morphisms. Both TopG∗ and TG

∗ are closed symmetric
monoidal categories under smash product with the 0-sphere S0 as the unit object. The group acts
diagonally on the smash product and the adjunction reads as

TopG∗ (X ∧ Y, Z) ∼= TopG∗ (X,F (Y, Z))

where F (X, Y ) denotes the pointed space of based maps from Y to Z.
An orthogonal G-spectrum X consists of the following data:

• pointed spaces Xn for n ≥ 0, with a continuous left action by O(n)×G, where O(n) is the
orthogonal group of Rn.

• based structure maps σn : Xn ∧ S1 → Xn+1 that are G-equivariant with respect to the trivial
action on S1.

• the iterated structure map σm : Xn ∧ Sm → Xn+m is O(n)×O(m)-equivariant.

We will usually abbreviate the notion as G-spectra. A morphism f : X → Y between two
G-spectra is a collection of O(n)×G-equivariant based maps fn : Xn → Yn, which are compatible
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with the structure maps in the sense that fn+1 ◦ σn = σn ◦ (fn ∧ S1) for n ≥ 0. Hence we have a
category SpG of orthogonal G-spectra.

Example 31. Suspension spectra. Every pointed G-space A gives rise to a suspension spectrum

Σ∞A via

(Σ∞A)n = A ∧ Sn.

The orthogonal group acts through the action on Sn, the group G acts through the action on A, and

the structure maps are the canonical homeomorphism

(A ∧ Sn) ∧ S1 ∼= A ∧ Sn+1.

For example, the sphere spectrum S is isomorphic to the suspension spectrum Σ∞S0 (where G

necessarily acts trivially on S0 ).

There are other definitions of G-spectra. They are not the same, however they give equivalent
categories. Hence it is one’s favor to use different models. One of the other models is the theory of
Lewis-May spectra, which we will also use in the calculations. The lecture notes [Sch16] gives a
detailed account of orthogonal spectra. For treatment of Lewis-May spectra, we refer to [LMSM86].

1.2 Equivariant Homotopy Groups

Let X be a G-spectrum and V a representation of G. The loop spectrum ΩVX is defined by

(ΩVX)n = ΩV (Xn) = map(SV , Xn).

Here map(−,−) denotes the based mapping space of non-equivariant based maps. The group
O(n) acts through its action on Xn and G acts by conjugation. The structure map is given by the
composition

map(SV , Xn) ∧ S1 → map(SV , Xn ∧ S1)→ map(SV , Xn+1)

where the first map sends φ ∧ t to v 7→ φ(v) ∧ t.
The suspension spectrum SV ∧X is defined similarly by

(SV ∧X)n = SV ∧Xn

The group O(n) acts on Xn and G acts diagonally. The structure map is the composite

(SV ∧X)n ∧ S1 = SV ∧Xn ∧ S1 → SV ∧Xn+1
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Let ρG be the regular representation of G. The 0-th equivariant homotopy group πG
0 (X) of an

orthogonal G-spectra is defined as

πG
0 (X) = colimn[S

nρG , X(nρG)]
G

where [−,−]G means the homotopy class of based G-maps. The colimit is taken along stabilization
at regular representations.

We can define general homotopy groups: if k is a positive integer, we define

πG
k (X) = πG

0 (Ω
kX)

if k is negative, we define
πG
k (X) = πG

0 (X ∧ S−k)

It is not hard to see that they are indeed abelian groups, as there are trivial representations in
nρG’s.

A morphism f : X → Y is a π∗-isomorphism if the induced map πH
k (f) : πH

k (X) → πH
k (Y )

is an isomorphism for all integers k and all subgroups H of G. We define the G-equivariant
stable homotopy category Ho(SpG) as the category obtained from SpG via formally inverting all
π∗-isomorphisms.

As a rough summary, the category SpG, together with the stable category Ho(SpG), enjoys the
following nice properties [HHR16]:

• The functor Σ∞ admits a right adjoint Ω∞. And they induce adjoint functors RΩ∞ ⊢ LΣ∞

passing to homotopy categories:

LΣ∞ : Ho(TopG∗ )→ Ho(SpG)

RΩ∞ : Ho(SpG)→ Ho(TopG∗ )

• Both SpG and Ho(SpG) are closed symmetric monoidal categories under smash product. The
unit object is the sphere spectrum S. And the functor LΣ∞ is symmetric monoidal.

• The functor LΣ∞ extends to a fully faithful, symmetric monoidal embedding of the Spanier-
Whitehead category into Ho(SpG).

• The objects SV are invertible in Ho(SpG) under the smash product.

• Arbitrary coproducts exist in Ho(SpG) and can be computed by levelwise wedges.
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• (homotopy presentation) Up to weak equivalence every object X is presentable in SpG as a
homotopy colimit

...S−Vn ∧XVn → S−Vn+1 ∧XVn+1 → ...

in which {Vn} is a fixed increasing sequence of representations eventually containing every
finite dimensional representation of G, and each XVn is weakly equivalent to a suspension
spectrum of a G-CW complex.

1.3 Change of groups and the Wirthmüller Isomorphism

Suppose that H is a subgroup of G, the restriction functor resGH : SpG → SpH simply pulls back
G-action to H-action. This restriction functor has both left adjoint and right adjoint, respectively
called induced spectrum functor and coinduced spectrum functor.

Suppose that Y is an H-orthogonal spectrum. The induced G-spectrum, denoted by G⋉H Y , is
defined by

(G⋉H Y )n = G⋉H Yn,

with induced action by the orthogonal group and induced structure maps. The coinduced G-spectrum,
denoted by mapH(G, Y ), is defined by

(mapH(G, Y ))n = mapH(G, Yn)

with induced action by the orthogonal group and induced structure maps.
At each level, we can define a G-map G⋉H Yn → mapH(G, Yn) by

ΨYn(g ⋉ y)(γ) =

{
γgy if γg ∈ H

∗ if γg /∈ H

They assemble to a morphism of orthogonal G-spectrum ΨY : G⋉HY → mapH(G, Y ). Wirthmüller
Theorem states that for finite group G, it is a π∗-isomorphism of spectra.

Theorem 32. (Wirthmüller) Let H be a subgroup of a finite group G, and Y an orthogonal

H-spectrum. Then the morphism

ΨY : G⋉H Y → mapH(G, Y )

is a π∗-isomorphism.
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1.4 The Tate Square

A family F of subgroups of a finite group G is a collection of subgroups which is closed under
subgroups and conjugations. Given a family F , there is a universal space EF characterized by

EFH ≃

{
∗ when H ∈ F

∅ else

If the family F = {e}, then EF is the universal space EG.
We can form a cofiber sequence

EF+ → S0 → ẼF .

Hence ẼF is characterized by

ẼF
H
≃

{
∗ when H ∈ F

S0 else

Let X be a genuine G-spectrum. Smashing X with the cofiber sequence above, as well as
applying the functor F (EF ,−), we obtain the Tate diagram

EF+ ∧X

��

// X

��

// ẼF ∧X

��

EF+ ∧ F (EF+, X) // F (EF+, X) // ẼF ∧ F (EF+, X)

The left vertical map is an equivalence. As a result the Tate square (the square on the right) is a
homotopy pullback, and it would be a homotopy pullback of rings if X is a ring spectrum.
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