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Abstract 

Background: Breast cancer is the most diagnosed cancer and the leading cause of cancer death 

among women worldwide.  In the US, women of African ancestry have significantly worse 

cancer outcomes at every age group, yet the biological basis underlying this disparity is 

unknown. African American communities in the US are disproportionately exposed to 

environmental toxicants. Of these, Bisphenol-A (BPA) and its analogues are of interest due to 

their ability to alter mammary gland morphogenesis and stemness in vivo and in vitro. Together, 

these disparities highlight the need for better methods of precision toxicology to model 

environmental carcinogenesis of mammary cells from genetically diverse women. 

Specific Aims: The goal of this dissertation was to characterize differences in normal breast 

stem cell biology between women of African (AA) and European (EA) ancestry and assess the 

effect of environmental stressors on normal breast stem cells to provide insight into mechanisms 

driving racial disparities in breast cancer through the following aims 1) Establish normal 

mammary cell cultures in the stem cell enriching conditional reprogramming (CR) culture and 

characterize its effects using single cell RNA-sequencing (scRNA-seq) 2) Quantify 

transcriptomic, epigenomic, and genotypic differences between normal mammary stem cells 

from AA and EA women grown in CR culture using scRNA-seq, DNA methylation analysis, and 

SNP genotyping 3) Quantify transcriptomic effects of bisphenol toxicant exposure on normal 

mammary stem cells from genetically diverse women using scRNA-seq. 

Results: Results from Aim 1 indicate that the CR culture retains the epithelial cell lineages of the 

breast, luminal and myoepithelial, as well as inter-individual heterogeneity in gene expression. 

Additionally, CR mammary cells differentially express breast cancer and stem cell associated 

genes, exhibit a more developmentally immature transcriptomic phenotype, and promote the 

emergence of a unique hybrid stem cell population following reprogramming. In Aim 2 we 

identified differentially expressed genes (DEGs) between luminal (n= 639 genes) and 

myoepithelial (n = 483 genes) conditionally reprogrammed AA and EA cells. Of these DEGs, 8 

genes in the luminal subset and 13 genes in the myoepithelial subset significantly overlapped 



xi 
 

with genes which have been previously identified as differentially expressed in tumors from The 

Cancer Genome Atlas. By integrating gene expression data with DNA methylation results, we 

identified differentially methylated CpG sites on DEGs in luminal (n=221 CpGs) and 

myoepithelial (n=55) cells. Integrating genotyping data from our samples and GTEx ALFA 

alleles, we identified ancestry associated eQTLs for a number of differentially expressed genes.  

Analyses from Aim 3 show that Bisphenols (-A, -S, and -F) elicit gene expression changes on 

normal mammary cells across a range of human relevant doses, especially at 25 µM and elicit 

their own distinct gene expression signatures. Genetically diverse individuals display distinct 

gene expression differences in response to bisphenols, potentially indicating inter-individual 

susceptibility.  

Conclusions: Our establishment of samples from diverse donors in stem cell enriching 

conditions provides a novel, ex vivo system for modeling environmental carcinogenesis and 

capturing inter-individual heterogeneity. The integrated use of single-cell transcriptomic 

analyses, epigenomic profiling, and genotyping, provide a systems approach to gain precise 

insights into the molecular biology of normal mammary stem cells and the influences of gene-

environment interactions on stem cell biology. We hope the mechanistic insights gained 

from this study will help to achieve the long-term goals of reducing breast cancer incidence and 

disparities and aid in the development of better targeted therapies. 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

 

 

 

Chapter 1 

Introduction  

 

Breast Cancer as a Global Public Health Issue 

Breast cancer is the most commonly diagnosed cancer in the world, with an estimated 2.3 

million new cases accounting for 11.7% of all global cancer incidence in 2020.1  Global rates of 

incidence have continuously increased in all age groups, and similarly, rates of mortality have 

increased in most age groups and regions.2  These staggering numbers highlight the pressing 

need for public health action now more than ever to alleviate the global burden of breast cancer 

and alter the course of the upward trends in incidence and mortality.  

Breast Cancer Subtypes  

Breast cancer is a vastly heterogenous disease with prevalence of the four major 

molecular subtypes heterogeneously distributed across the globe.  Developed originally from 

microarray gene expression data and clinically identified using immunohistochemistry, the four 

major subtypes are now primarily determined by the 50 gene PAM50 classifier and include 

Luminal A (Lum A), Luminal B (Lum B), HER2 positive, and basal/ triple negative breast 

cancer (TNBC).3,4 The luminal subtypes are characterized by hormone positive expression, 

specifically for estrogen receptor (ER) and progesterone (PR). Lum A accounts for the largest 

proportion of all breast cancer (40%) compared to Lum B (20%), with the major differences 

being higher expression of proliferation and cell cycle genes, lower PR expression, and higher 

tumor grade in Lum B. HER2+ cancers account for approximately 15-20% of breast cancer cases 

and are characterized by expression of the human epidermal growth factor receptor-2 (HER2) 

protein, a proliferative phenotype, and poor prognosis.5,6 Lastly, while not perfectly synonymous, 

basal and TNBC are estimated to account for 15% of breast cancer cases, and are characterized 

as highly aggressive and proliferative tumors with a high rate of metastasis.5 Triple negative 

cancers refer to those classified as lacking ER, PR, and HER2 protein expression through 

immunohistochemical classification.  
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While these classifications have transformed the way breast cancers are diagnosed and 

treated, advances in gene expression profiling and a growing increase in genomic breast cancer 

datasets point to vast heterogeneity even within subtypes, with the TNBC subtype exhibiting the 

greatest genetic diversity and additional subgroups.6 This heterogeneity in gene expression 

across breast tumors highlights the need for continued characterization and profiling of breast 

tumors for better diagnostic and therapeutic gene targets.  

Breast Cancer Disparities  

Disparities in breast cancer have been widely characterized and are attributed to a 

multifactorial mix of biological, socio-economic, lifestyle, environmental, geographic, and 

access factors.7,8 Global trends show a rising increase in breast cancer incidence especially in 

low and middle income countries (LMICs), and mortality rates are also higher in these LMICs.9 

Within the US, African American (AA), Hispanic American, and American Indian women have 

a higher likelihood of being diagnosed with advanced stage breast cancer and have worse 

survival outcomes than European American (EA) women.10,11 TNBC, the most aggressive 

subtype, is a striking example of this. Women of African ancestry are 2-3 times more likely to 

develop TNBC than women of European ancestry and have worse clinical outcomes, yet the 

biological basis underlying this disparity is still unknown.7,12 

 While the biological basis for these disparities is elusive, there are well characterized 

non-biological factors which contribute to these outcomes. Together, the intersection of these 

social determinants of health –race , poverty, socioeconomic, and structural factors – compound 

to significantly inflate disparities. The 40% higher mortality rate observed in AA compared to 

EA women is largely attributed to differences in access to treatment and high quality care linked 

to poverty and socioeconomic status.13 Lack of insurance, transportation, health literacy, and 

ability to take time away from work are just a handful of barriers which influence access to 

treatment and likely cause delays in diagnosis and more advanced stage distribution which 

negatively impact survival outcomes.13,14 Lifestyle factors such as obesity and diet are directly 

tied to poverty and socioeconomic status which have been linked to the rising incidence rates in 

AA women. While breast cancer outcomes are multifactorial and include a mix of non-biological 

and biological differences such as subtype, biological differences likely reflect a combination of 
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genetic influences, lifestyle, and environmental factors, highlighting the need for a more 

integrated and holistic view of breast cancer disparities.8  

An important distinction to note is the use of self-reported race versus genetic ancestry in 

the majority of racial disparity studies in breast cancer. While self-reported AA identity 

correlates closely to African ancestry, this socially constructed category encompasses a vast 

array of genetically diverse individuals with both African ancestry and in some cases substantial 

non-African ancestry.15 Additionally, women with West African ancestry have significantly 

higher prevalence of ER negative and TNBC compared to women with East African 

ancestry.16,17 Due to this, it is likely that using self-reported AA and EA race as monolithic 

comparison groups are not precise enough to capture nuanced differences in ancestry which may 

account for functional differences in breast cancer disparities.   

Stem Cells and Carcinogenesis 

In 1838, German physiologist Johannes Muller described tumors as abnormal 

continuations of embryonic development based on morphological similarities.18 Centuries later, 

an extensive body of experimental evidence has solidified this proposed link between cancer and 

embryonic development. Stem cells are defined by two key characteristics, self-renewal, the 

ability to produce offspring cells with identical potency to themselves, and differentiation 

potential, the ability divide and produce mature cells through differentiation.19 These capabilities 

along with rapid proliferation, invasion, migration, and angiogenesis are crucial in transforming 

a single fertilized embryo into a mature organism composed of numerous cell types and complex 

tissues.20  Cancer cells have been observed to exhibit these same behaviors during progression 

and metastasis, and even more strikingly, oncogenesis and embryonic development have been 

shown to share key regulatory pathways Wnt, Notch, and Hedgehog.19–21 Because of these 

similarities in behavior and regulation, cancer is considered a disease of  “dysregulated 

development”, where cancer stem cells (CSCs), a subset of cancer cells with stem like 

characteristics, have been proposed to drive tumor initiation, progression, and long term 

growth.22,23 Outside of development and cancer, stem cells play a key role in adult tissues, 

differentiating and replacing cells in response  to “wear and tear” and tissue injury.24,25 Adult 

tissue stem cells have been characterized in numerous cell types including the breast, and are 

proposed targets of carcinogenic transformation due to their slow dividing and long-lived nature.  
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Physiology of the Human Breast and Mammary Stem Cells 

The mammary gland is a unique and dynamic organ which fully matures after birth and 

undergoes structural changes over the life course during in utero development, puberty, 

pregnancy, lactation, and involution.26 A tubular, bi-layered structure, the mammary gland is 

composed primarily of two cell types distinct in morphology and function— luminal and 

basal/myoepithelial cells.27 The luminal epithelium is composed of cells that form ducts and 

secretory alveoli and is encased by the myoepithelium which contracts during lactation, 

squeezing milk from alveolar cells.27 Due to the fact that the mammary gland undergoes major 

structural remodeling during distinct developmental time points, these periods are often 

considered “windows of susceptibility”, where exposure to environmental stressors may prove to 

be especially deleterious.28  

Mammary stem cells (MSCs) play a crucial role in the functional remodeling during 

these developmental windows due to their plasticity and differentiation potential.29 Seminal 

rodent studies demonstrated the differential potential of MSCs, showing that an entire mammary 

gland can be reconstituted in vivo from mammary epithelial fragments and even from a single 

stem cell.30,31  Additionally, serial transplantation of clonal outgrowths in these studies confirmed 

the self-renewal capabilities of these MSCs. The discovery of MSC markers has been crucial to 

their isolation and characterization. In studies of bipotent MSCs and progenitors, these 

populations have been characterized as expressing CD44+/CD24- and CD49f+/EpCAM+ surface 

marker phenotypes and studies of normal MSCs and progenitors have found high expression of 

enzymatic marker aldehyde dehydrogenase 1 (ALDH1).32–34  

Recent studies have found compelling ancestry-specific differences in gene expression 

and behavior of normal and cancerous mammary cells, strengthening the possibility that there is 

an inherited genetic component to breast cancer disparities between AA and EA women.35 In 

addition to being a putative marker of both normal and malignant stem cells, ALDH1 expression 

has been associated with aggressive, high grade tumors and poor clinical outcomes.36 In a study 

of benign and cancerous breast tissue from Ghanaian women, immunohistochemical analysis 

revealed that a significantly higher proportion of individuals with benign breast conditions 

(n=40, 58%) had tissues expressing stromal ALDH1 expression relative to individuals with 

stromal ALDH1 expressing cancerous tissue (n=44, 42.3%; p=0.043).35Additionally, when 
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malignant tumors were grouped by subtype, expression of ALDH1 was highest in TNBCs.  

Considering the high incidence of aggressive TNBCs among western sub-Saharan African 

women and the known association of ALDH1 with tumor aggressiveness and future breast 

cancer risk, stromal ALDH1 expression of benign tissue may be predictive of cells most at risk 

for oncogenic transformation to TNBCs.   

Breast Cancer, Mammary Stem Cells, and the Environment  

While approximately 10% of breast cancer diagnoses are attributable to known 

hereditable risk factors, such as BRCA mutations, the vast majority (70-90%) of cases occur in 

women with no family history, suggesting that extrinsic factors are primarily responsible for 

lifetime cancer risk.37–39 The implications of this for public health intervention are hopeful—

environmental factors are characterizable and modifiable, and thus present tangible targets for 

breast cancer prevention. African American communities in the US are disproportionately 

exposed to toxic environmental chemicals and focusing prevention efforts on environmental 

factors has potential to reduce racial disparities in breast cancer. Understanding the relationship 

between environmental factors, genetics, and breast cancer risk has proven extremely complex.  

There are a vast number of exposures and mixtures in the environment and heterogeneity in these 

exposures by individual, however, there is a lack of human relevant model systems that capture 

inter-individual heterogeneity available to assess these exposures.  Mammary stem cells present 

a promising means to study gene-environment interactions due to their implicated role in 

carcinogenesis, the ability to identify and experimentally culture them, and emerging evidence 

that shows stem cell proportions in normal tissue to be highly variable by individual.40,41  

Epigenetics, defined as heritable changes in gene function that do not entail a change in 

DNA sequence, is a key regulatory mechanism involved in cancer and development and a 

promising means for characterizing gene-environment interactions in mammary stem cells.42 

During prenatal development, puberty, pregnancy, lactation, and menopause, mammary stem 

cells sense environmental signals which trigger epigenetic alterations that drive the structural and 

functional remodeling of the breast.43,44 Due to the rapid proliferation, major restructuring, and 

hormone signaling during these windows, it is hypothesized that mammary stem cells are 

particularly susceptible to environmental insult during these periods. Therefore, it is crucial to 

characterize if and how environmental exposures alter the epigenome of mammary stem cells.  
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Although we are exposed to an overwhelming number of environmental exposures daily, 

population level studies such as the National Health and Nutrition Examination Survey 

(NHANES) of the US population are a valuable resource for prioritizing exposures for 

experimental assessment. NHANES biomonitoring data has measured endocrine disrupting 

chemicals (EDCs), defined as chemicals that interfere with hormone function, ubiquitously 

across the US population and at disproportionately high levels in Non-Hispanic black and low 

income individuals.45,46 Of these, bisphenol-A (BPA) and its analogues, are of particular interest 

in relation to breast cancer due to their classification as xenoestrogens and ability to alter 

mammary gland morphogenesis and stemness in vivo and in vitro.  

An in vitro study of MCF-7 ER-positive cancer cells found that compared to the vehicle 

control, cells exposed to 10nM BPA showed increased mRNA and protein expression of 

ALDH1, and SOX2, known to be involved in pluripotency and self-renewal.47 Additionally, the 

authors exposed mammospheres derived from MCF-7 cells, patient-derived xenografts, and 

normal mammary mouse cells to 10nM BPA and found an increase in mammosphere size in all 

three cell types.  The increased expression of ALDH1 and SOX2 and the increase in 

mammosphere size due to BPA exposure led the authors to conclude that 10nM BPA enhances 

stem cell populations in vitro. In an in vivo study, the offspring of pregnant CD-1 mice injected 

with 25μg/kg BPA during E8.5-E18.5 were found to have significant mammary defects 

compared to those dosed with a sesame oil vehicle control.48 Furthermore, the most severe 

defects were observed during E12.5-16.5, the critical time in development when the ER 

negative mammary bud is completely surround by the ER positive stroma. These observations 

indicate that timing of exposure and stromal interactions influence severity of BPA induced 

mammary defects.  A study of second trimester pregnant women in northern and central 

California measured urinary levels of BPA and its analytes and found total BPA measures 

ranging from 0.37μg/g to 1348 μg/g.49 This range encompasses the dose of 25μg/kg BPA found 

to have toxic effects in CD-1 mice, implicating that human exposure to BPA may be significant 

enough to cause in utero alterations in mammary gland morphogenesis. In utero exposure of CD-

1 mice to bisphenol analogues bisphenol-AF(BPAF) or bisphenol-S (BPS) during gestation days 

10-17  resulted in significant alterations mammary gland development at doses 0.05,0.5, and 

5mg/kg for both chemicals.50 Epigenetic alterations to bisphenol exposure have also been 

characterized, as observed in MCF-7 breast cancer cells, where BPS was found to alter DNA 
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methylation in the promoter region of breast cancer related genes CDH1, SFN, and TNFRSF10C, 

as well as in transposons.51 Additionally, exposure to low dose BPA (4nM) was found to 

hypermethylated the LAMP3 gene in both MCF-7 cells and primary tumor cells.52 

The ability of BPA and its analogues to alter mammary gland morphogenesis and 

stemness in vivo and in vitro makes them promising candidates for experimentation to assess the 

relationship between environmental exposures and mammary stem cells. 

Models of Precision Toxicology for Assessment of Environmental Exposures 

Understanding the relationship between environmental exposures, genetics, and normal 

mammary stem cell biology requires a relevant model system, and the conditional 

reprogramming (CR) culture developed by Liu and colleagues is a promising method for this.53 

While animal and cell line models are widely used to characterize effects of environmental 

toxicants, they are unable to capture the genetic diversity and inter-individual heterogeneity of 

primary tissue. Primary tissue is challenging to culture due to the fact that normal tissue samples 

obtained from healthy donors, such as from core biopsies, are usually limited both in size and 

expansion capacity in culture.  The CR culture is a co-culture of human epithelial cells and 

irradiated mouse fibroblasts in the presence of the Rho kinase inhibitor (Y-27632) resulting in 

rapid expansion and de-differentiation of primary cells. CR culture enriches for a stem-like 

phenotype, maintains the cellular heterogeneity of the parent tissue, and retains the ability for CR 

cells to differentiate into the tissue of origin once removed from CR conditions.53 For these 

reasons, and the ability to indefinitely expand normal mammary epithelial populations, CR 

culture is a promising model for precision toxicology and an advantageous system for 

characterizing gene-environment influences on mammary stem cells from diverse individuals.   

Leveraging Multi-omics, Big Data, and Cutting Edge Technology to Address Breast Cancer 

Disparities 

While novel in vitro models such as CR culture show immense promise, the era of big 

data and -omics is upon us, and as these cutting edge computational and experimental techniques 

evolve in parallel, the integration of the two provides even more immense potential to inform our 

understanding of mammary stem cells and the environment.  
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Advances in single-cell RNA-sequencing (scRNA-seq) approaches have made it an 

increasingly versatile and informative tool. A variety of studies thus far have demonstrated the 

utility of unbiased single-cell transcriptome profiling for the discovery of new cell states, 

profiling heterogenous cell and tissue mixtures, regulatory relationships between cells, mapping 

developmental trajectories, and more.54–56 A study performing scRNA-seq of normal mammary 

cells identified clusters with expression profiles consistent with epithelial and mesenchymal 

populations found in the normal breast as well as an interesting hybrid epithelial/mesenchymal 

population with high expression of genes overexpressed in TNBC.41 The growing number of 

publicly available single-cell datasets also provides great opportunity for dataset integration and 

comparison which is especially useful in cases where physically generating an appropriate 

dataset is challenging. Giraddi and colleagues have generated a transcriptome atlas of the mouse 

mammary gland sampled at varying stages of development spanning embryonic day 16 to 

adult.54 Although an equivalent dataset does not exist for the human mammary gland, 

computational alignment of normal mammary cells to the mouse transcriptome atlas can provide 

insight into the developmental maturity of normal mammary cells.  For these reasons, single-cell 

transcriptomic profiling provides a versatile and promising way to analyze how the molecular 

profiles of human mammary cells differ by ancestry and provide insight into biological factors 

underlying cancer disparities.  

While transcriptomic profiling may reveal differences in gene expression between AA 

and EA women, epigenetic profiling offers insight into the mechanisms responsible for these 

transcriptomic differences.  Of the epigenetic regulators, DNA methylation has been the most 

utilized to understand the relationship between environmental exposures and epigenetic 

reprogramming.  Numerous studies using a wide range of common environmental toxicants such 

as air pollution, heavy metals, polycyclic aromatic hydrocarbons, BPA, and more, have shown 

that environmental exposures heavily influence epigenetic reprogramming.57   Of these, BPA has 

been shown to epigenetically reprogram MCF-7 breast cancer cells, repressing the LAMP3 locus 

through an estrogenic pathway.52 Epigenetic reprogramming plays a key role in mammary gland 

development, extensively regulating gene expression of stem cells in order for functional 

differentiation to occur, after which differing mammary epithelial cell types exhibit distinct DNA 

methylation landscapes.58 Similarly, genome wide hypomethylation has been commonly 

observed in breast cancers as well as hypermethylation in over 100 promoter genes, indicating 
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that epigenetic reprogramming is a highly involved mechanism in carcinogenesis. Thus, 

characterizing epigenetic patterns of mammary stem cells may be a key link in understanding 

mechanisms through which environmental exposures influence breast cancer disparities  

Knowledge Gap and Rationale of Thesis  

The overall goal of this dissertation is to characterize differences in normal breast stem 

cell biology between women of African and European ancestry and assess the effect of 

environmental stressors on normal breast stem cells from these women to provide insight into 

biological mechanisms driving racial disparities in breast cancer (Figure 1.1). This dissertation 

integrates a novel ex vivo culture of normal mammary cells, cutting edge multi-omic techniques, 

and an example of this model system for precision toxicology to address this knowledge gap. To 

date, studies using normal breast tissue, especially from primary core biopsies are limited, thus 

our proposed culture of normal breast tissue from epidemiologically well characterized AA and 

EA women collected from the Komen Normal Tissue Bank in stem cell enriching conditions is 

novel. Together, these advanced methods create a promising interdisciplinary strategy to tackle 

the complex relationship between gene-environment interactions and their influence on 

mammary stem cell biology and breast cancer outcomes.  
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Figure 1.1 Graphical abstract of study overview and motivation.   
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Chapter 2 

Characterizing the Transcriptomic Effects of Conditional Reprogramming Culture on 

Normal Mammary Cells 

Introduction 

As the field of cancer biology has evolved, a growing body of work has reinforced the 

critical role of stem-like cells in cancer.  Due to long-observed similarities between embryonic 

development and oncogenesis, cancer is often considered a disease of “dysregulated 

development”.19,20 A characteristic shared by stem cells and cancer cells is cellular plasticity – 

the ability to transition and adopt alternative cell fates in response to environmental signals and 

stressors.59 Plasticity is crucial for stem cells during embryonic development, for example during 

gastrulation when epiblast cells undergo the epithelial to mesenchymal transition (EMT) to form 

mesoderm which gives rise to the mesenchyme.60 In adult stem cells, plasticity plays an 

important role in homeostasis and wound repair. This is demonstrated by adult tissue stem cells 

in the liver and intestinal epithelium which have been shown to de-differentiate or even trans-

differentiate into cell types of a different lineage in order to replace damaged cells.61 For cancer 

cells in tumors of epithelial origin, EMT plasticity and its reverse MET, are crucial for primary 

tumors to be able to adopt mesenchymal characteristics in order to disseminate, metastasize, and 

re-epithelialize at the metastatic site.62  

Emerging evidence now suggests that these transitions occur along a continuum rather 

than as discrete switches in cell state. Transitioning hybrid cells exhibiting phenotypic markers 

of multiple cell states (epithelial/mesenchymal and luminal/basal) have been identified by us and 

others in both normal and carcinogenic breast tissue.41,63,64 These cellular states are defined by 

the co-expression of known marker genes, for example the epithelial marker EPCAM and the 

mesenchymal marker VIM or the luminal marker KRT18 and the basal/myoepithelial marker 

KRT14. Additionally, recent evidence shows that these hybrid cells exist in metastable states, not 

just as transient hybrids.65 These hybrid populations are of particular interest due to their 

implicated role in promotion of tumorigenesis, metastasis, and aggressiveness of breast cancer.63 
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There are a limited number of studies which have observed these hybrid populations in the 

normal breast, and of these, the low proportions of hybrid cells identified have made them 

challenging to characterize.   

In this study, we integrate multiple single-cell RNA sequencing datasets from the human 

and mouse in order to characterize the cell state distributions of the normal mammary (NM) 

gland throughout the life course, as well as after being perturbed into an enriched stem cell state 

following in vitro culture using the conditional reprogramming (CR) method.53  Through an 

integrated analysis of single cell RNA-seq data with bulk human breast cancer transcriptomics 

from the Cancer Genome Atlas (TCGA), we investigate mammary stem cell populations and 

hybrid cell states, elucidating roles for these cells in mammary gland development and cancer. 

Materials and Methods 

Human tissue procurement 

Tissue procurement was approved by the University of Michigan Institutional Review 

Board (HUM00042409). Normal mammary (NM) tissue was obtained from voluntary reduction 

mammoplasties performed at the University of Michigan hospital. Samples were processed 

following the protocol of Dontu et al. by enzymatic and mechanical digestion into single cell 

suspensions, as previously described. 66,67 

Conditional reprogramming 

NM cells isolated from mammoplasty dissociation were co-cultured with irradiated 3T3 J2 

mouse fibroblasts (Kerafast) using F-media in adherent conditions according to the protocol of 

Liu et al.53,68 In order to establish an effective feeder layer, irradiated J2 fibroblasts were plated 

at a density of 12,000 cells per cm2.53  Once plated, the co-cultured cells were incubated in a 

humidified incubator at 37˚C/5% CO2. Conditionally reprogrammed (CR) cells were allowed to 

grow up to 80% confluence and 0.05% trypsin/EDTA (Gibco, cat. no. 25300054), was used to 

differentially trypsinize cells from the adherent culture dishes.  Differential trypsinization 

detaches irradiated J2s first, leaving behind an enriched population of CR mammary cells to be 

used for experimentation or cryopreservation.   
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To culture and irradiate J2 fibroblasts, cells were plated with J2 media in T-150 flasks 

(250,000-500,000 cells) and allowed to grow up to 80% confluence.  J2s were carefully cultured 

to not exceed 90% confluence.  Once confluent, J2s were trypsinized using 0.05% 

trypsin/EDTA, resuspended in J2 media, and placed on ice to be transported for irradiation. J2s 

were irradiated at 30 greys for 6 minutes, viability was assessed via acridine orange/propoidium 

iodide staining, and cryopreserved at 300,000-500,000 cells per vial in recovery cell culture 

freezing medium (Gibco, cat. no. 12648010). Following irradiation, 100,000 irradiated J2s and 

non-irradiated controls were plated for comparisons in order to ensure success of irradiation.  

J2 media was prepared by combining 500 mL DMEM (Gibco, cat. no. 11965-092), 50 mL 

bovine calf serum (ATCC cat. no. 30-2030), 5.5 mL 200mM L-glutamine (Gibco, cat. no. 

25030081), and 5.5 mL 100X Pen-Strep (Gibco, cat. no. 15140122).F-media was made by 

combining 623.83 µL of 12mM Rho-associated kinase (ROCK) inhibitor Y-27632 (Cayman 

Chemical, cat. no. 10005583), 194.48 µL of 96µg/mL hydrocortisone (STEMCELL 

Technologies, cat. no. 07925), 8.98 µL of 10 µg/mL epidermal growth factor (STEMCELL 

Technologies, cat. no. 78006.1), 935 µL of 4mg/mL insulin (Invitrogen-LifeTechnologies, cat. 

no. 12585014), and 62.83 µL of 1.2 µM cholera toxin (Sigma-Aldrich, cat. no. C8052) and 561 

mL of complete DMEM (500 mL DMEM (Gibco, cat. no. 11965-092), 50 mL heat inactivated 

fetal bovine serum (Sigma-Aldrich cat. No F4135), 5.5 mL 200mM L-glutamine (Gibco, cat. no. 

25030081), 5.5 mL 100X Pen-Strep (Gibco, cat. no. 15140122)).  

Single cell RNA-sequencing  

NM cells and their CR counterparts (n=3 pairs) were removed from liquid nitrogen 

storage and individually thawed, centrifuged, and counted.  Cell mixtures were diluted with 

0.01%FBS+PBS solution to achieve a final concentration of 100 cells/uL for each 5 mL sample 

(500,000 cells/sample). Samples were placed on ice and transferred for drop-seq analysis 

according to the protocol of Macosko et al.69  

The drop-seq microfluidic device was assembled and calibrated to dispense oil droplets 

(Bio-Rad cat # 186-4006), cells, and Barcoded Bead SeqB (Chemgenes) beads at optimal 

velocity. NM and CR samples were loaded into the apparatus and the cell and microbead 

containing droplets were collected in 50 mL conical tubes (Falcon). Following droplet collection, 

https://www.thermofisher.com/order/catalog/product/12648010
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a series of wash, transfer, and centrifuge steps were performed in order to prepare the 

microbeads for sequencing.   

After bead purification the following workflow was performed in order to generate DNA 

for sequencing. To generate cDNA strands from RNA hybridized to bead primers, RT mix was 

added to the microbeads and incubated.  Following incubation, microbeads were rinsed and 

resuspended in exonuclease mix to remove excess bead primers that did not capture any RNA, 

rinsed, and then prepped for PCR.  A 13 cycle PCR program was run to amplify cDNA and the 

generated cDNA library was then purified and analyzed on a BioAnalyzer High Sensitivity Chip. 

The purified cDNA was then tagmented using Nextera XT, PCR amplified, analyzed again using 

the BioAnalyzer. Following these steps, the library was ready for sequencing on the NextSeq 

500.  

Single-cell data analyses 

Raw data processing: The “Drop-seqAlignmentCookbookv1.2Jan2016” software was used to 

transform raw sequencing data into gene expression measurements for each individual cell.   The 

paired end reads were aligned to a mixed human (hg19) and mouse (mm10) reference genome 

and then grouped by cell according to the cell bar code. Next, a digital expression matrix was 

generated from the unique molecular identifier (UMI) counts for each gene in each cell.  We 

performed quality control (QC) filtering on the raw data, filtering out cells with greater than 5% 

of mitochondrial genes and fewer than 200 total genes.  Following QC filtration, we performed 

global log-normalization, scaling by percent mitochondrial genes, detection of highly variable 

genes, and principal component analysis dimension reduction. QC and downstream data 

processing were performed using the Seurat R package v3 unless specified otherwise.70 

Unbiased clustering and cell type identification: Graph based unbiased clustering and PCA based 

tSNE dimension reduction were performed on NM, CR, and pooled NM and CR samples at a 

resolution of 0.5. Cell type identification was performed by identifying marker genes for 

individual clusters (Supplemental Table 1 and 2) as well as assessing expression of a pre-selected 

a panel of cell type marker genes. Cluster markers were identified using the FindMarkers 

function in Seurat and marker gene expression was assessed using the FeaturePlot and VlnPlot 

functions. Due to the differences in numbers of cells captured and analyzed between the NM and 

CR samples, we performed a normalized analysis by randomly down-sampling each individual 

http://mccarrolllab.com/wp-content/uploads/2016/03/Drop-seqAlignmentCookbookv1.2Jan2016.pdf
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sample to 200 cells and performing the same clustering and marker gene assessment as 

performed on the full dataset.  

Differential gene expression analysis: In order to isolate epithelial subsets of NM and CR cells 

for direct comparison, we filtered out stromal and immune cells from NM samples, and mouse 

cells were filtered out from CR samples. We performed differential expression analysis between 

pooled epithelial CR and NM samples with PQLseq, which uses a penalized quasilikelihood and 

a heredity correlation matrix.71 The hereditary matrix was designed with the hierarchical data 

structure in mind in order to account for random effects of individual samples.  Doing so 

prevents any one individual with a large number of cells relative to any other to dominate the 

analysis, and provides a more powerful analysis compared to a naïve approach. Differential gene 

expression between the NM and CR cells within each individual was performed using the 

FindMarkers function in Seurat. DEGs between NM and CR for each individual were plotted by 

average log2FC and correlation coefficients were calculated for each comparison.  

Embryonic stem cell score: To estimate the similarities of the gene expression pattern of each 

cell to an embryonic stem cell, we calculated an “embryonic stem cell gene expression score.” 

The proportion of total reads which belong to genes in the Embryonic Stem Cell Core set from 

the Gene Set Enrichment Analysis (GSEA) were calculated on a per cell basis.72 A higher stem 

cell score can be interpreted as a greater proportion of reads for a given cell being derived from 

embryonic stem cell-associated genes.  

Transcription factor and enrichment analyses: The top 1000 DEGs in CR compared to NM by 

log2FC were uploaded to the Enrichr web server to identify ENCODE and ChEA transcription 

factors enrichment.73 To characterize the enrichment of the mammary stem cell and luminal 

progenitor gene sets reported by Lim et. al (2009)74 and ROCK pathway gene signatures, each of 

these gene sets was overlapped with CR DEGs. The overlapped genes were then plotted by CR 

vs NM log2FC to visualize gene signature enrichment.  

Identification of hybrid populations: Hybrid populations were identified in using expression of 

KRT14, KRT18, VIM, and EPCAM. Cells expressing marker genes at the 50th percentile or 

greater were deemed “high expressors.” High expressors for the KRT14/KRT18 or EPCAM/VIM 

marker combinations were identified as “double positive” hybrids, and high expressors for all 

four marker genes were identified as “quadruple positive” hybrids. Differential gene expression 
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analysis between quadruple hybrids and all other NM and CR epithelial cells was performed 

using FindMarkers in Seurat. Differentially expressed genes upregulated in quadruple hybrid 

cells were intersected with the MSigDB Hallmark Epithelial Mesenchymal Transition gene set 

(n=200) in order identify EMT related genes expressed in quadruple hybrids.  

Integration and alignment of NM, CR, Bach, Nguyen, and the Cancer Genome Atlas (TCGA) 

breast cancer RNA-seq samples to the Giraddi mouse mammary transcriptome atlas  

Dataset Descriptions: To contextualize our findings in NM and CR cells, we also performed an 

integrated analysis with three other single cell RNA-seq mammary gland datasets generated from 

mice and humans, as well as a comparative analysis using bulk breast cancer RNA-seq data from 

TCGA. The “Bach” dataset derives from single cell RNA-seq profiling of mouse mammary 

gland from four developmental stages: nulliparous, mid gestation, lactation, and post 

involution.75 The “Nguyen” dataset is comprising of single cell RNA-seq profiling of human 

mammary gland generated from adult voluntary reduction mammoplasty patients.76 The 

“Giraddi” dataset is comprised of single cell RNA-seq data from multiple timepoints during the 

lifecourse: embryonic day 16, embryonic day 18, postnatal day 0, postnatal day 4, and adult.54 

Bulk RNA-seq counts of TCGA breast tumors were obtained from the National Cancer 

Institute’s genomic data commons portal using the TCGAbiolinks R package.77 

Data pre-processing: The raw counts data of NM, CR, Bach, and Nguyen cells were normalized 

using either the “multiBatchNorm” or the “normalize” function in the R package scran. For gene 

filtering, a modified version of the CORGI algorithm was used on the Nguyen and Giraddi 

datasets, hereinafter referred to as “CORGI genes.”54,76 The CORGI  gene filtering algorithm 

works by randomly sampling subsets of genes and scoring the subsets based on the 

structuredness of the data.78 Genes that lead to more structured data are encouraged and vice 

versa. The TCGA dataset was pre-processed in the same way as the single-cell samples.  

Down-sampling and cell selection: To generate the Giraddi reference dataset used for alignment, 

the full mouse mammary dataset was randomly down-sampled to 1000 cells spanning the 4 

developmental stages (embryonic day 16, embryonic day 18, gestational day 4, and adult). 

Proportions of cells in the generated reference dataset reflect the proportions of cells from each 

developmental stage in the original dataset. The Bach mouse dataset was down-sampled by 

randomly selecting 250 cells from each of the 4 adult developmental stages (nulliparous, mid-
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gestation, lactation, and post-involution) for a total of 1000 cells. NM, CR, and Nguyen datasets 

were also randomly down-sampled to 1000 cells each.   

Batch correction: For batch correction, the “mnnCorrect” function in scran was used with default 

parameters on the logcounts on CORGI genes. The Giraddi dataset was input into the 

mnnCorrect as the first argument, i.e., as the reference atlas. Subsequently, the NM, CR, Bach, 

Nguyen, and TCGA samples were then projected onto the Giraddi developmental trajectory for 

comparative analysis. 

Pseudotime analysis: In order to place the various datasets onto a developmental timeline, we 

leveraged the Giraddi mouse atlas as a reference. Pseudotime is computed directly onto the two-

dimensional PCA plots by taking the dot product with an “arrow-of-time” vector that 

differentiates between the adult and embryonic cell populations in the Giraddi dataset. The same 

arrow-of-time vector was then applied to the NM, CR, Bach, Nguyen, and TCGA samples.  A 

generalized linear model was used to determine significantly different pseudotime means 

between TCGA subtypes.  

Dataset availability: The drop-seq data for the NM and CR samples are available on the Gene 

Expression Omnibus (GSE146792). 

Results 

Normal Mammary Cells Contain a Mixture of Stromal and Epithelial Cells and Cluster By 

Subtype  

As a first step towards characterizing the distribution of phenotypic states of epithelial 

cells in the human mammary gland, we performed unbiased clustering of NM scRNA-seq data to 

determine the cell types and proportions present in the samples. Samples were analyzed from 

three individuals, here termed “NM11”, “NM15”, and “NM23”. tSNE visualization revealed that 

the majority of clusters contained cells from each of the individuals (Figure 2.A1).  To 

determine the identity of the 6 clusters (Figure 2.1B), a panel of known cell type and stem cell 

marker genes (Figure 2.1C) along with the top marker genes for each cluster identified by Seurat 

were used to characterize the clusters. The two major epithelial subtypes of the breast were 

identified by KRT18 (luminal) and KRT14 (myoepithelial) expression (Figure 2.1C).79,80 

Clusters 0 and 2  (Figure 2.1B) represent two distinct luminal populations which both highly 
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express epithelial marker EPCAM but differentially express stem cell marker ALDH1A3, which 

is preferentially expressed in cluster 0.81,82  Mammary stem cell markers ITGA6 and CD44 also 

exhibited varying expression by cluster, with ITGA6 showing low expression in clusters 0-3 and 

CD44 exhibiting moderate to high expression across all clusters.83 The myoepithelial Cluster 3 

was almost entirely composed of cells from one individual (NM15), indicating variation in cell 

type proportions by individual.  We identified cluster 4 identified as fibroblasts (DCN), cluster 1 

as endothelial cells (SERPINE1, AKAP12), and cluster 5 as a small population of immune cells 

(PTPRC). Thus, prior to CR, normal mammary cells are composed of a mixture of stromal, 

immune, and epithelial cells and cluster primarily by cell type. 

Conditionally reprogrammed mammary cells cluster by CR status and by individual  

Marker analysis of the CR samples revealed that samples were depleted of fibroblasts, 

endothelial cells, and immune cells, but retained luminal and myoepithelial populations (Figure 

2.A1.A and B). We identified two clusters (7 and 8) of mouse fibroblasts, using the mouse gene 

Gapdh as a marker, which we excluded in downstream analyses (Figure 2.A1B). To characterize 

CR alterations specifically in epithelial cells, we grouped NM and CR epithelial cells together 

for analysis.  Unbiased clustering of the NM and CR cells revealed that NM samples remained 

relatively well mixed amongst each other, whereas CR samples distinctly clustered by individual 

(Figure 2.2A).  While CR11 and CR15 exhibited some overlap in clustering, CR23 remained 

distinct from the other samples.   Samples clustered by CR status along tSNE_1 and both NM 

and CR samples clustered as myoepithelial and luminal cells (Figure 2.2B and C). KRT14 was 

selectively expressed in NM and CR myoepithelial populations, however, KRT18 expressing CR 

cells also co-expressed moderate levels of KRT14. To determine if this clustering behavior was 

representative of CR gene expression alterations or due to the greater proportion of CR to NM 

cells, the same clustering and marker gene identification was performed on a randomly down-

sampled subset comprised of 200 cells from each NM and CR sample. This subset of cells 

displayed the same clustering patterns and marker gene expression as the full dataset (Figure 

2.A1 C-F). The co-expression (KRT18/KRT14) of luminal and myoepithelial markers was the 

first indication that the CR process could induce a hybrid state phenotype worthy of further 

investigation.   
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Conditionally Reprogrammed Mammary Cells Differentially Express Breast Cancer and 

Stem Cell Associated Genes 

To gain mechanistic insight into the effects of the CR process, we compared gene 

expression patterns between NM and CR cells with differential gene expression (DGE) analysis. 

DGE between the NM and CR epithelial cells resulted in 3177 genes differentially expressed 

between the two cell populations (FDR<0.05) (Figure 2.2D). DGE was also conducted between 

the NM and CR cells of each individual and the overlap of differentially expressed genes (DEGs) 

was compared between individuals (Figure A2.2A). DEGs by individual were consistent with 

those found in combined NM and CR analysis, with both analyses identifying LGALSI as one of 

the most differentially upregulated genes in CR. Comparing DEGs between NM and CR by 

individual also revealed that the DEGs between samples 11 and 15 are highly correlated with 

each other (r=0.896) whereas DEGs between samples 11 and 23 (0.713) and between samples 15 

and 23 (0.79) are less well correlated. Because the CR process requires the ROCK pathway small 

molecule inhibitor Y-27632, we assessed DEGs overlapping with ROCK associated pathway 

genes (Figure 2.A2E). Unsurprisingly, ROCK2 was the most significantly downregulated gene 

in this pathway (log2FC=-1.25) in CR cells. We used the top 1000 DEGs in CR and inputted 

them to the Enrichr web server to identify transcription factors likely driving this process. Gene 

targets of known stem cell associated transcription factors E2F4, FOXM1, BRCA1, SOX2, KLF4, 

and MYC were all identified as enriched in CR upregulated genes (Figure 2.A2F).  

To further investigate whether NM and CR cells exhibit differences in expression of stem 

cell associated genes, we performed analyses using overall gene expression as well as NM and 

CR DEGs. We estimated how “embryonic stem cell-like” each cell was by calculating the 

proportion of total transcripts annotated to embryonic stem cell (ESC) associated genes 

expressed in each NM and CR sample.72 CR samples had higher ESC scores than their NM 

counterparts (Figure 2.2E), providing further evidence that CR cells express a more 

developmentally immature phenotype. To further characterize this phenotype in comparison to 

stem and progenitor cells in the normal breast, we overlapped NM and CR DEGs with mammary 

stem cell (MaSC) and luminal progenitor gene expression signatures reported by Lim et. al 

(2009). 74 Of the MaSC associated DEGs, 211/282 of the genes were upregulated in CR (Figure 

2.2F), whereas only 68/144 luminal progenitor associated DEGs were upregulated in CR (Figure 
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2.A2D).   Together, these analyses suggest that the CR process enriches for a stem cell-like state, 

and that the CR transcriptomic signature is reminiscent of ESCs and MaSCs. 

Conditionally reprogrammed cells reflect a more developmentally immature phenotype  

Due to the enrichment of stem cell associated genes in CR cells, we chose to further 

investigate this link in the context of mammary gland development.  We integrated our data with 

the mouse mammary single-cell transcriptome atlas generated by Giraddi et. al (2018) which 

spans mouse mammary gland development from embryonic day 16 to adulthood (Figure 

2.3A).54 We calculated pseudotime estimates for each cell across the mouse developmental 

trajectory. Pseudotime estimates correlate to the developmental timepoint during which each cell 

was isolated, the more negative the pseudotime estimate the more embryonic-like the cell 

(Figure 2.3B). Using the CORGI alignment algorithm, we used the Giraddi data as a reference to 

map our NM and CR samples onto the mammary gland developmental trajectory. The majority 

of NM cells aligned to the adult mouse cells, whereas CR cells spanned the trajectory with a 

distinct population aligning to the embryonic mouse cells (Figure 3.3C).  When CR cells were 

labeled by individual, CR15 and CR23 had cells spanning the whole trajectory, whereas CR11 

mapped mostly to mouse mammary gland at post-natal day 4 and adulthood (Figure 3.3D).  

Hybrid Stem Cell Populations Emerge Following Conditional Reprogramming 

A growing number of studies have characterized hybrid stem cell populations in the 

normal and cancerous breast and have linked these epithelial/mesenchymal (E/M) or 

luminal/basal (L/B) hybrid phenotypes to aggressiveness of cancer.41,84,85 Additionally, emerging 

evidence shows that stem cells can stably exist in hybrid states and that these hybrid phenotypes 

may be metastable.65 To investigate the presence of hybrid populations in normal mammary 

cells, we assessed the co-expression of the luminal and basal (here used interchangeably with 

myoepithelial) markers KRT18/KRT14 (L/B) and the epithelial and mesenchymal markers 

EPCAM/VIM (E/M) to identify “double positive” hybrid cells. Overlap of EPCAM/VIM and 

CDH1/VIM double positive populations indicate that EPCAM and CDH1 are both effective 

epithelial markers, however, EPCAM was ultimately chosen as the epithelial marker for hybrid 

identification due to its overall higher expression in NM and CR cells (Figure A2.1 G,H). Co-

expression of all four markers KRT18/KRT14/ EPCAM/VIM identified “quadruple positive” 

hybrid cells. “Triple positive” hybrid combinations were also assessed, however, we found these 
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redundant and less informative than the double positive and quadruple positive marker 

combinations (Figure A2.4). We identified L/B, E/M, and quadruple positive hybrid populations 

in the Giraddi dataset, NM, and CR cells, with CR cells expressing the highest proportions of 

both double positive hybrids and quadruple hybrids (Table A11). CR15 expressed the highest 

proportion of hybrid cells among the individuals.  

In the Giraddi dataset, E/M hybrids spanned both basal and luminal branches of the 

trajectory, L/B hybrids mostly mapped to adult luminal and post-natal day 4, and quadruple 

hybrids mapped along the luminal branch around embryonic day 18 and post-natal day 4 (Figure 

2.3E). E/M hybrids were the only cells to map to the basal adult cells and the embryonic cells.  

To investigate the developmental maturity of hybrid CR cells, we mapped the E/M, L/B, and 

quadruple hybrids to the mouse developmental trajectory (Figure 2.3F). Almost all of the hybrid 

CR cells mapped to mouse cells spanning embryonic day 16 through post-natal day 4, with a few 

mapping to the adult populations. Interestingly, the hybrid E/M cells map along both the luminal 

and basal trajectories, however, the L/B hybrids almost exclusively map along the luminal 

trajectory. The majority of the quadruple hybrids also mapped along the luminal trajectory.  

To further characterize the different cell types, pseudotime analysis was performed on the 

CR, NM, and hybrid populations. Pseudotime estimates for CR cells were more negative than 

NM cells, indicating a more developmentally immature phenotype (Figure 2.3G). Pseudotime 

analysis of the Giraddi mouse hybrid populations revealed that hybrid E/M cells are the most 

developmentally immature, followed by the quadruple hybrids, and then hybrid L/B cells 

(Figure 2.3H). CR hybrids exhibited a similar pattern to the mouse hybrids, where hybrid E/M 

cells were the most developmentally immature, quadruple hybrids were intermediate, and L/B 

hybrids were the most mature (Figure 2.3I). Pseudotime differences between hybrid populations 

in the CR cells were less pronounced than in the mouse hybrid cells.  We also calculated the 

embryonic stem cell score for the NM and CR hybrid cell populations and found that E/M and 

quadruple hybrids expressed a higher embryonic stem cell score, whereas L/B hybrids were less 

distinct (Figure 2.A3 A-C). From this we concluded that the CR process causes an enrichment 

of hybrid cells and that these hybrid populations are transcriptionally similar to mammary cells 

in early development. Finally, E/M and L/B hybrids appear to represent distinct cellular 

populations with quadruple positive hybrid cells falling somewhere in between.  
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Differential gene expression analysis between quadruple positive hybrids and all other 

epithelial NM and CR cells identified 4052 genes upregulated and 2660 genes downregulated in 

quadruple hybrids (Figure 2.A2 B).  The most significant DEG upregulated in the quadruple 

positive hybrids was extracellular matrix gene COL14A1 which has been found to be upregulated 

in cancerous breast stroma compared to normal breast stroma.86 We further investigated the 

DEGs from the quadruple hybrids by calculating the overlap of these genes with the MSIGDB 

EMT hallmark gene set (Table S13). We found that 82 out of the 200 (41%) genes differentially 

expressed in the quadruple hybrids were EMT related genes (Figure 2.A2 C). Together, these 

data provide compelling evidence for the presence of plastic hybrid cells in the normal and 

developing breast, specifically early in development.   

Hybrid Stem Cell Populations are Enriched During Gestation and Lactation 

The enrichment of these hybrid populations early in breast development aligns with the 

current understanding of the highly dynamic nature of mammary gland morphogenesis.  This led 

us to investigate another highly dynamic and proliferative developmental stage of the breast: 

gestation and lactation.  We incorporated the adult mouse mammary developmental dataset 

generated by Bach et. al (2017), which spans the nulliparous, mid-gestation, lactation, and post-

involution time points.75 Alignment of the Bach dataset to the Giraddi developmental trajectory 

revealed a striking chronological pseudotime arc (Figure 2.4A). Beginning at the nulliparous 

stage, mammary cells exhibit a developmentally mature pseudotime, reflected by alignment to 

Giraddi mouse adult cells. Mammary cells during the gestation stage exhibit a more 

developmentally immature phenotype, indicated by a drop in pseudotime. Through the lactation 

and post-involution stages, pseudotime of mammary cells sequentially increases to re-stablize at 

a pseudotime similar to the developmental maturity of the nulliparous stage. Mapping of these 

cells to the Giraddi trajectory demonstrated that the nulliparous and post-involution stages 

mapped most closely to the luminal and basal adult cells, the lactation stage mapped most closely 

to adult basal cells, and the gestation stage mapped most closely to the embryonic day 18 cells 

(Figure 2.4B). L/B, E/M, and quadruple hybrids were also identified in the Bach dataset and 

mapped to the Giraddi trajectory (Figure 2.4C-E). Proportions of hybrid cells were calculated 

for each stage (Figure 2.4F).  The highest proportion of E/M hybrids were found in the gestation 

stage which also expressed the highest proportion of L/B hybrids, followed closely by the 
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lactation stage. Interestingly, the lactation stage expressed the highest proportion of quadruple 

hybrids, followed by the gestation stage. Although the pseudotime estimates for the nulliparous 

and post-involution stages were similar, the post-involution stage had an approximately 5-fold 

lower proportion of hybrid cells.  The enrichment of hybrid populations during the gestation and 

lactation stages suggests the importance of these cells during pregnancy-associated mammary 

gland morphogenesis.  

To further extend and validate these findings in human patient samples, we also explored 

the distribution of hybrid cells in the Nguyen dataset, which is generated largely from 

nulliparous patients. We aligned the Nguyen data to the Giraddi developmental trajectory and 

found that cells largely clustered with the mouse adult luminal and basal cells (Figure 2.A5B). 

In the Nguyen dataset, there were approximately 11 and 12% of cells classified as E/M and L/B 

hybrids (S5J), respectively, which is comparable to the proportion of these hybrid cells in the 

nulliparous mice from the Bach dataset (10 and 16%). The proportion of these cells in the post-

involution mouse cells from the Bach dataset were 3% and 2%, respectively. 

Basal Breast Cancers are the most Transcriptionally Distinct and Developmentally 

Immature of Breast Cancer Subtypes 

All our prior findings about hybrid cell states and developmental phenotypes were 

characterized in normal human and mouse mammary cells. Our next step was to leverage this 

data to inform our understanding of breast cancer subtype biology. To do this, we assessed gene 

expression of breast tumors from the Cancer Genome Atlas (TCGA).  Principal component 

analysis of the TCGA tumors without any alignment showed that basal tumors clustered as the 

most distinct from the other subtypes, with luminal A and luminal B overlapping, and the other 

subtypes grouping between the luminal and basal subtypes (Figure 2.5A).  We mapped the bulk 

TCGA tumor RNA expression data onto the Giraddi mouse developmental trajectory and found 

that normal, luminal A, and luminal B tumors mapped most closely to the adult cells, HER2 

tumors mapped to slightly more immature cells, and basal tumors spanned pseudotime along the 

basal trajectory (Figure 2.5B).  Pseudotime estimates by subtype revealed that the luminal A 

subtype exhibits a significantly more developmentally mature phenotype than the luminal B 

(p=4.97E-07), Her2 (p=0.0495), and basal (p<2E-16) subtypes, with the basal subtype exhibiting 

the most immature pseudotime estimate (Figure 2.5C). As a next step, we assessed the link 
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between the pseudotime estimates of gene expression and breast cancer outcomes. Of the top 10 

annotated genes with the most negative pseudotime estimates, 5 were significantly associated 

with poor prognosis in breast cancer patients (Figure 2.5D). Our results suggest that “phenotypic 

developmental maturity” of cancer cells, particularly at timepoints strongly associated with the 

hybrid E/M state may be a distinguishing factor of the subtypes and that pseudotime-associated 

genes have prognostic implications for breast cancer patients. 

Discussion 

Through our integrated analysis of normal human and mouse mammary data and TCGA 

tumor data, we witness an overarching theme – “developmentally immature” pseudotime is 

linked to the likelihood of hybrid cells which express a stem-like gene expression 

signature.  Here, we demonstrate that hybrid cells are more developmentally immature and 

embryonic stem cell-like. Further, we identify an increased proportion of hybrid cells at 

particular important timepoints during development: in particular the in utero period, gestation, 

and lactation. Others have found associations between an “embryonic stem-cell like” gene 

expression signature and aggressiveness of cancers.87 Hybrid E/M cells present a particularly 

interesting population to further explore in the context of aggressive cancers due to their 

expression during the lowest pseudotime estimates and their mapping along the basal mouse 

trajectory. Together, this suggests that hybrid cells/states and their stem-like plasticity are 

important mediators in development and cancer and that this intersection is a promising future 

direction to explore. 

The precision of single-cell RNA-seq allowed us to characterize NM tissue as comprised 

of stromal, immune, and epithelial cells. When we perturbed NM cells in vitro with the 

conditional reprogramming method, we identified that CR cells only contained luminal and 

myoepithelial populations, with a small subpopulation of mouse fibroblasts, which were used as 

a feeder layer to support the growth of the CR cells. The CR process appears to enhance inter-

individual heterogeneity, where post-CR samples cluster much more distinctly by individual. 

Given that the CR samples and NM counterparts were derived from the same individual, the 

preferential clustering by CR status is indicative that the CR process likely induces major 

transcriptomic alterations as well as depletion of immune and stromal cells. 
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DGE between NM and CR samples allowed us to identify a number of significant genes. 

Understanding their molecular functions may provide crucial mechanistic insight into the CR 

process, the enrichment of the embryonic stem cell phenotype we observed, and the connection 

between stemness and cancer. Of these genes, LGALS1 stands out due to its significant 

upregulation overall in CR cells as well as in comparisons of DEGs by sample. A member of the 

galectin family of proteins which modulate proliferation and cell-cell/cell-matrix interactions, 

upregulation of LGALS1 expression in breast cancer adjacent fibroblasts has been linked to 

metastasis and has also been found to be altered in lymph node metastases compared to primary 

breast tumors.88,89 Outside of the breast, LGALS1 has also been linked to invasiveness and 

metastasis in oral cancer.90 Amongst the other highly significant upregulated CR genes by p-

value and log2FC, SKA2, MKI67, HJURP, BIRC5, and CCNB1 have all been found to be 

upregulated in breast cancer tissues and all five except for SKA2 have been identified as 

prognostic markers for breast cancer.91–96 Additionally, BUB1 and BIRC5 have been linked to 

stemness, where depletion of BUB1 reduced cancer stem cell potential in MDA-MB-231 and 

MCF-7 breast cancer cell lines and BIRC5 is commonly expressed in embryonic tissues and 

cancer but not in adult tissues.97–99 Experimental evidence continues to support the link between 

stemness and cancer, and our results showing enrichment of a stem-like phenotype and breast 

cancer related genes in CR cells adds to this body of work. It is striking that just the induction of 

stem-like proliferation and de-differentiation of normal mammary adult cells by ROCK inhibitor 

Y-27632 upregulates numerous genes which overlap with breast cancer and metastasis, 

providing further experimental evidence that cancers are potentially hijacking normal stem cell 

mechanisms. 

Another key finding of our study was the emergence of hybrid cell populations post-CR. 

Our characterization of these populations is consistent with what has been previously reported 

and provides additional insight into the “developmental maturity” of these hybrid states. Hybrid 

E/M cells have been found in human primary tumors and lymph nodes where they have been 

shown to exhibit enhanced tumor initiation and metastatic potential and have been implicated in 

contributing to therapy resistance and poor survival. 85,100,101 Similarly, L/B hybrids have been 

characterized in both normal and cancer tissue from humans and are believed to be derived from 

luminal progenitors. 79,84 This hypothesis of L/B hybrids being luminal in origin is consistent 

with what we observed, where L/B hybrids in both human and mouse map only along the 



39 
 

luminal trajectory of the mouse mammary gland developmental atlas, whereas E/M hybrids map 

to both luminal and basal trajectories. Sun et al. have shown that in the developing mouse 

mammary gland, KRT5/KRT14 (L/B) hybrids are observed beginning from embryonic day 15.5 

up until adulthood (8-12 weeks).102 While these populations dramatically decreased after 3 

weeks, it is important to note that they were still present in the normal adult mouse mammary 

gland.  Additionally, they also identified a distinct population of cells expressing KRT6, a 

multipotent mammary epithelial progenitor marker, which emerged at embryonic day 16.5 and 

was found localized to the nipple sheath.  Expression of KRT6 was also correlated to the 

boundary of the mammary mesenchyme, separate from luminal and basal localization.  

Considering the proximity to the mammary mesenchyme and its distinctness from luminal and 

basal progenitors, the KRT6 population in the mouse mammary gland may be analogous to the 

E/M hybrids we identified in the CR population. The embryonic origin of hybrid populations in 

the developing mouse mammary gland and their persistence through adulthood suggests that 

hybrid populations in the human mammary gland also arise during embryogenesis and are 

maintained through adulthood.   

Pseuodotime analysis of mouse, NM, CR, and breast tumor samples suggest that the 

“developmental maturity” state of a cell or tumor plays a direct role in its biological behavior.  

Of the hybrid populations in both mouse and CR cells, the E/M hybrids exhibited the lowest 

estimated pseudotime. Based on prior knowledge implicating E/M hybrids in tumorigenesis and 

metastasis, this population may be of particular interest in the future to target for cancer 

prevention and therapy. To understand the impact of variation in pseudotime on our 

understanding of breast subtype biology, we calculated pseudotime estimates of bulk tumor 

RNA-seq data from TCGA samples. On average, none of the TCGA tumor subtypes exhibited 

pseudotime scores corresponding to adult mouse cells. Instead, average subtype scores 

corresponded to post-natal day 4 and earlier in development. While these are bulk samples being 

aligned to single-cell mouse samples, this suggests that regardless of cell type, a more 

developmentally immature phenotype is characteristic of cancers. Among the subtypes, basal 

cancers preferentially map to the most developmentally immature cells in the mammary gland 

and express the lowest pseudotime scores. This difference in “developmental maturity” may be a 

key distinction between basal cancers and other subtypes and may play a major role in the 

aggressiveness and low survival outcomes observed clinically and epidemiologically.  
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One of our most exciting findings was the characterization of hybrid cells in the adult 

mouse mammary gland during pregnancy. The enrichment of hybrid populations during 

gestation and lactation and the loss of them in the subsequent post-involution stage suggests that 

these hybrid states are inducible and transient. This transiency provides compelling evidence that 

these hybrid populations are instrumental to the dynamic modifications in breast morphogenesis 

which occur during pregnancy and lactation. This arc of mouse hybrid enrichment and 

stabilization parallels the transient increase in breast cancer risk during and immediately 

following pregnancy, which decreases over time. The time period during which hybrid 

populations are most prevalent in the mouse breast overlaps with pregnancy associated breast 

cancer (PABC) risk in humans, diagnosed between pregnancy and one year following birth.103 

This overlap in time period, as well as the parallel transiency of mouse hybrid populations and 

PABC risk, supports the presence of these hybrid populations in the human breast during 

pregnancy and implicates their involvement in PABC. The pathophysiology of PABC is 

characterized by metastatic, high grade tumors, and survival is inversely correlated with time 

since birth.103 Consistent with this is the finding that ER-/ PR-/HER2+, and triple-negative 

tumors were more common in women diagnosed with PABC compared to nulliparous women.104 

Based on our other findings that basal breast tumors exhibit the most “developmentally 

immature” pseudotime estimates and the link between hybrid cells and aggressive cancers, 

characterizing hybrid populations and “developmental maturity” of PABCs could inform 

prognostic and therapeutic treatment.   

Our study had a number of limitations. One was the source and sample size of mammary 

tissue.  Mammoplasty tissue has been critiqued as not being fully representative of the “normal” 

breast, and due to the de-identification of the samples we also lack demographic data on the 

women from whom they were obtained for our study, although we were able to supplement our 

findings with additional human data from the Nguyen study. 105 Moreover, the conditional 

reprogramming methodology only supports the outgrowth of epithelial cells from samples, a 

phenomenon which has been linked to the J2 fibroblast co-cultures since the 1970s.106 A better 

understanding of stromal/epithelial interactions in regulating these hybrid stem cell states is an 

important future direction of research. These future experiments could, for example, assess the 

impact of adult fibroblasts or cancer associated fibroblasts on the reprogramming process. Future 

complementary analyses of conditional reprogramming using breast cancer samples could also 
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provide important insights into the impacts of enhanced stemness and developmental immaturity 

on tumor characteristics.  While single-cell technology is rapidly evolving and improving, we 

acknowledge that in this study we are only capturing expression of a subset of the genes 

expressed in each individual cell.  Another limitation is the potential for unanticipated bias from 

using the subset of CORGI selected genes for alignment with the human mammary cells and 

TCGA tumor samples to the mouse developmental trajectory.   

 Overall, we showcase a computational analysis which leverages publicly available data to 

gain insight into the relationship between hybrid cell populations, stemness, and cancer. We and 

others have identified significant inter-individual heterogeneity in proportions of stem cells in 

mammary tissue.40,41 Our ongoing work is utilizing single-cell RNA-seq of normal mammary 

tissue from epidemiologically well characterized women to understand how known 

epidemiological risk factors for cancer influence the “stemness” of breast epithelial cells. 

Quantification of reprogramming efficiency during conditional reprogramming across samples 

from diverse women could provide a functional readout of “stemness” or reprogramming 

capacity and their relations to known cancer risk factors, such as age, ethnicity, or genetic 

predisposition to cancer. Future work can focus on identifying the localization of these hybrid 

states in the adult mammary gland using advanced techniques, such as spatial transcriptomics. 

Overall, these results provide further evidence to support investigating the role of stem cells, and 

particularly hybrid E/M cells, in normal development and characterizing how this biology is 

hijacked during tumorigenesis. Understanding the biology of these cells will likely provide novel 

targets for the prevention and therapy of breast cancers, including aggressive subtypes with 

fewer therapeutic options. 
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Tables and Figures 

Figure 2.1: Unbiased clustering and cell type identification of NM cells. (A) tSNE dimension 

reduction of NM samples colored by individual (B) Unbiased clustering of NM samples colored by cell 

cluster (C) Expression of known cell type marker genes by cluster across all NM samples 
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Figure 2.2: Unbiased clustering and differential gene expression between NM and CR. (A) tSNE 

dimension reduction of NM and CR samples by individual (B) FeaturePlots of myoepithelial marker gene 

(KRT14) and (C) luminal marker gene (KRT18) expression (D) Differentially expressed genes between 

NM and CR epithelial cells. Significantly upregulated genes in CR (FDR<0.05) are colored in orange. 

Significantly upregulated genes in NM are colored in purple (E) Distribution of cells from NM and CR 

samples scored by embryonic stem cell gene expression (F) Comparison of overlap between NM and CR 

differentially expressed genes and the mammary stem cell (MaSC) gene expression signature reported in 

Lim et al. (2009). Yellow genes indicate MaSC genes more highly expressed in CR vs NM.  
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Figure 2.3: Alignment of NM and CR cells to mouse mammary developmental trajectory and 

characterization of hybrid cells. (A) Principal component analysis plot of single cell RNA-seq data of 

mouse mammary gland at embryonic day 16 (E.16), embryonic day 18 (E. 18), post-natal day 4 (P.4), and 

adult basal (A. basal) and adult luminal (A.luminal) cells as reported in Giraddi et al. (2018) (B) 

Pseudotime estimates of mouse mammary developmental stages (C) NM and CR cells mapped to the 

developmental trajectory with CoRGI (D) CR samples mapped to the mouse mammary developmental 

trajectory labeled by individual (E) Hybrid cell identification of mouse mammary cells along the 

developmental trajectory. Luminal/basal hybrids were identified by concurrent high KRT/14/KRT18 

expression. Epithelial/mesenchymal hybrids were identified by concurrent high EPCAM/VIM expression. 

Quadruple positive hybrid cells were identified by high expression of all four marker genes KRT14/ 

KRT18,/EPCAM/VIM (F) CR cells mapped to mouse developmental trajectory and labeled by hybrid 

status (G) Pseudotime estimates of NM and CR cells relative to the mouse mammary developmental 

trajectory cells(H) Pseudotime estimates of mouse hybrid cells (I) Pseudotime estimates of CR hybrid 

cells. 
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Figure 2.4: Alignment of Bach mouse mammary developmental dataset to the Giraddi mammary 

trajectory. (A) Pseudotime estimates of Bach mammary developmental stages: nulliparous (NP), mid-

gestation (G), lactation (L), and post-involution (PI) (B) Bach mammary cells mapped to the Giraddi 

trajectory with CoRGI (C) Bach luminal/basal hybrid cells mapped to Giraddi trajectory (D) Bach 

epithelial/mesenchymal hybrid cells mapped to Giraddi trajectory (E) Bach quadruple positive hybrid 

cells mapped to Giraddi trajectory (F) Proportions of Bach hybrid cells by developmental stage.  
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Figure 2.5: Alignment of TCGA tumors to Giraddi mammary trajectory (A) Principal component 

analysis of TCGA bulk breast tumor RNA-seq labeled by subtype (B) Alignment of TCGA tumors to 

Giraddi developmental trajectory (C) Pseudotime estimates of TCGA tumor subtypes (D) Mortality 

hazard ratio estimates relative to expression of the top 10 genes most negatively correlated with mouse 

pseudotime. The more negative the pseudotime estimate, the more highly expressed the gene is in the 

earliest developmental timepoint.  
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Appendix  

Figure 2.A1: Post-CR single cell unbiased clustering and gene expression (A) tSNE 

dimension reduction of CR cells colored by cell cluster, identified by unbiased clustering (B) 

Expression of known cell type marker genes by cluster. Cluster 7 and 8 identified as mouse cells 

(C) tSNE dimension reduction of NM and CR samples by individual. Each individual sample 

was down-sampled to 200 cells. (D) NM and CR FeaturePlots of myoepithelial marker gene 

(KRT14) and (E) luminal marker gene (KRT18) expression (F) Expression of known cell type 

marker genes by down-sampled NM and CR individuals (G) Identification of NM and CR 
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CDH1/VIM double positive cells and (H) EPCAM/VIM double positive cells. Table compares the 

overlap between the CDH1/VIM and EPCAM/VIM classifications.  

 

Figure 2.A2: Post-CR differential gene expression and pathway analysis (A) Comparison of 

differentially expressed genes between NM and CR cells of individual samples. DEGs are 

plotted by average log2FC.  Positive values represent genes upregulated in CR and negative 

values represent genes downregulated in CR (B) Differential gene expression of quadruple 

hybrids vs all other NM and CR cells. Significantly upregulated genes in quadruple positive 

hybrids (FDR<0.05) are colored in orange. Significantly downregulated genes in quadruple 

hybrids are colored in purple (C) Overlap between quadruple hybrid upregulated genes and EMT 

related genes. Upregulated EMT genes in quadruple hybrids in orange, and downregulated EMT 

genes in purple (D) Comparison of overlap between NM and CR differentially expressed genes 

and the luminal progenitor gene expression signature reported in Lim et al. (2009). Yellow genes 

indicate luminal progenitor genes more highly expressed in CR vs NM (E) Comparison of 

overlap between NM and CR differentially expressed genes and the ROCK pathway gene set (F) 

Top 10 transcription factors associated with top 1000 genes overexpressed in CR cells. 
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Figure 2.A3: Embryonic stem cell gene signature of NM and CR hybrid cells (A) ESC score 

of NM and CR cells labeled by EPCAM/VIM hybrids status, (B) KRT14/KRT18 hybrid status, 

and (C) quadruple positive hybrid status. 
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Figure 2.A4: Comparison of triple positive Giraddi mammary cells and aligned CR cells 

Localization of (A) mouse KRT14/EPCAM/VIM triple positive cells, (B) CR 

KRT14/EPCAM/VIM triple positive cells, (C) mouse KRT14/KRT18/EPCAM triple positive cells, 

(D) CR KRT14/KRT18/EPCAM triple positive cells, (E) mouse KRT14/KRT18/VIM triple 

positive cells, (F) CR KRT14/KRT18/VIM triple positive cells, (G) mouse KRT14/EPCAM/VIM 

triple positive cells, and (H) CR KRT14/EPCAM/VIM triple positive cells when aligned to the 

mouse mammary developmental trajectory with CoRGI. 
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Figure 2.A5: Comparison of hybrid NM cells and Nguyen human mammary cells (A) 

Alignment of NM cells to Giraddi trajectory by individual (B) Alignment of Nguyen mammary 

cells to Giraddi trajectory (C) NM EPCAM/VIM hybrids (D) Nguyen EPCAM/VIM hybrids (E) 

NM KRT14/KRT18 hybrids (F) Nguyen KRT14/KRT18 hybrids (G) NM quadruple positive 

hybrids (H) Nguyen quadruple positive hybrids (I) Proportions of NM cells by hybrid status (J) 

Proportions of Nguyen cells by hybrid status 
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Chapter 3 

Establishing a Biobank of Normal Mammary Tissue from Genetically Diverse Individuals and 

Quantifying Differences Using a Multi-omic Approach 

Introduction  

In the US, women of African ancestry have significantly worse cancer outcomes at every 

age group, yet the biological basis underlying this disparity is still unknown.10,11 Triple negative 

breast cancer (TNBC), the most aggressive subtype, is a striking example of this disparity, with 

African American (AA) women 2-3 times more likely to develop it than European American 

(EA) women.7,12  Although approximately 10% of breast cancer diagnoses are attributable to 

hereditable risk factors, such as BRCA mutations, the vast majority (70-90%) of cases occur in 

women with no family history, suggesting that extrinsic factors are primarily responsible for 

lifetime cancer risk.37  

Vast amounts of resources and time have been poured into characterizing race associated 

differences in gene expression and single nucleotide polymorphisms (SNPs) that might account 

for differences in breast cancer risk and outcomes. However, population-based studies conducted 

to characterize hereditary ancestry differences in known breast cancer risk associated genes such 

as BRCA1, BRCA2, PALB2, and BARD1, have not identified a “smoking gun”. In a study 

conducted by Domchek and colleagues comparing 3946 Black women and 25,287 non-Hispanic 

white women with breast cancer in the US, they report no difference in prevalence of germline 

pathogenic variants in the 12 evaluated breast cancer susceptibility genes.107 Shimelis et al 

performed multigene hereditary cancer panel testing in order to identify women at elevated risk 

of TNBC and reported similar trends between EA and AA women in pathogenic variants 

associated with TNBC risk. 108 Results from population-based studies such as these indicate that 

germline pathogenic variants alone are not the primary cause of race associated differences 

observed in breast cancer incidence and survival and that other factors, which could interact with 

these variants need to be better characterized. Genotypic analysis revealed that variations in 

somatic mutation as well as copy number variations in breast tumors were more specific to 
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subtype rather than ancestral subgroup.109 Similarly, while DEGs have been identified between 

tumors from AA and EA individuals, these differences have not been linked to significant 

differences in survival.109 Additionally, once DEGs are identified, it is challenging to determine 

if differences in expression are due to ancestry related differences or functional differences in 

tumor subtype.  

A likely contributor to the challenges in identifying race associated DEGs and SNPs is 

the issue of sample size, specifically a lack of AA samples in these large sequencing and 

profiling projects.12 Additionally, individuals of African ancestry in the United States represent a 

vast range of genetic diversity, representative of highly variable, cross continental diasporic 

spread. This highlights the pressing need for increased sampling of AA individuals, especially 

because of the vast genetic diversity they represent.   

The majority of studies characterizing race-associated differences have been conducted 

using tumor tissues from diverse individuals. Tumors functionally exhibit high levels of 

intratumor genetic heterogeneity due to their carcinogenic transformation, thus comparisons of 

tumor tissue between AA and EA are limited in distinguishing true race-associated differences 

versus those that arise due to carcinogenesis.  There is an ever-growing need for biologically 

relevant models of the breast, and normal mammary tissue presents a promising source of 

characterization for race associated differences. However, it is both challenging to acquire these 

samples as well as culture them in the lab.  The conditional reprogramming (CR) culture 

developed by Schlegel et al provides a promising method to establish and expand normal 

mammary samples from diverse individuals.53 

The era of big data and multi-omics technology provide immense potential for 

characterizing the biological basis of racial disparities in breast cancer. With high throughput 

RNA sequencing, epigenetic profiling, and genotyping technology rapidly improving in profiling 

capabilities and decreasing in cost, integrating these pieces of data can provide key insight into 

gene expression differences as well as potential mechanisms driving them.   

In this study, we aimed to address the knowledge gap of uncovering the biological basis 

for racial disparities in breast cancer by characterizing transcriptomic differences between CR 

cultured normal mammary cells from AA and EA individuals.  We established a biobank of 

normal mammary punch biopsy samples from diverse individuals in CR culture and profiled 
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these using single cell RNA-sequencing (scRNA-seq), DNA methylation bisulfite sequencing, 

and SNP genotyping. By performing a high throughput multi-omic analysis of CR normal 

mammary cells integrated with publicly available data and gene sets, we provide a 

transdisciplinary approach for better characterization of race associated differences in gene 

expression and their mechanistic drivers. We also present an ex vivo model of the normal breast 

for precision toxicology.  To our knowledge, this is the first study integrating single cell RNA-

seq, DNA methylation, and SNP genotyping of normal mammary cells from the same 

experimental dataset.   

Materials and Methods 

Komen Sample Acquisition 

Cryopreserved normal mammary tissue samples were acquired from the Susan G. Komen 

normal tissue bank and immediately stored in liquid nitrogen upon arrival. All samples were 

nulliparous and either self-identified African American (n=17) or European American (n=32), 

matched on age, BMI, and days since last period. Samples were acquired with institutional 

review board approval (University of Michigan IRB approval number HUM00094966).  

Ancestry Analysis: Ancestry data for each sample was obtained from the Komen Normal 

Tissue Bank who performed the genotyping and ancestry analysis. Genotyping was performed 

using the Illumina HumanHap650 Y Beadchip and ancestry proportions were quantified using 

the Ancestry Informative Marker Panel of SNPs developed by Nievergelt et al.110  

Tissue dissociation and establishment in conditional reprogramming (CR) culture 

Samples were processed by enzymatic and mechanical digestion following an adapted 

version of the protocol by Nakshatri et al (2015)40.  For dissociation, samples were thawed 

(37°C, 5%  CO2) and poured over a 70 µm filter into a 15mL conical tube (FALCON) containing 

enzyme mixture (300 μl 10x Collagenase/hyaluronidase (STEMCELL technologies cat. 

no.07912)  in 2.7mL F-media (Thong et al 2020)).111 The tissue was gently scraped off the filter 

using a sterile spatula into a new conical tube, and the enzyme mixture remaining in the original 

tube was used to rinse the filter. The conical tube containing the sample in enzyme mixture was 

placed in a pre-heated shaking incubator (37°C, 135 RPM) for 1-2 hours depending on 

appearance of tissue sample (size, color).  Samples were removed from the shaking incubator 
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and pipetted up and down 20x with a 1mL or 5mL pipet depending on size. This combination of 

incubation and pipetting was repeated every hour until the tissue chunk dissociated into single 

cells or stopped reducing in size. For samples that did not fully dissociate from incubation and 

pipetting, tissue chunks were chopped on a petri dish using two scalpels, pipetted 20x with a 

filtered glass pipet, and filtered again through a 70 µm filter. Once dissociated, samples were 

checked for single cell suspensions, cell counted and assessed for viability (LUNA-FL Dual 

Fluorescence cell counter), and centrifuged at 500g for 5 minutes.  Samples were resuspended in 

5mL of F-media, counted again, and plated in adherent 6 well plates containing pre-plated 

irradiated J2 fibroblasts. Samples which successfully grew multiple colonies were maintained 

and expanded according to the CR protocol outline in Thong et al (2020). 111 

Conditional reprogramming culture and sample collection for single cell RNA-sequencing 

All of the samples which were successfully established in CR were grown simultaneously 

in culture to account for batch effects and split into two sample collection days and single cell 

RNA-seq (drop-seq) runs.  Cryopreserved samples were thawed, counted, and 500,000 cells from 

each passage 1 sample were added to pre-plated irradiated J2s in a T-75 flask with F-media. The 

first day of plating included samples (KCR8519, KCR7889, KCR8565, KCR8483, KCR8523, 

KCR8580, KCR7554, KCR79530) and the remaining samples (KCR8195, KCR7518, KCR7195, 

KCR8474, KCR8617,KCR 8302, KCR8451, KCR8084) were plated the following day. Samples 

were monitored every day for confluence and media was changed every 3 days. Due to 

differences in growth rate, a number of samples (KCR8519, KCR8483, KCR7953, KCR7554, 

KCR8580, KCR7889, KCR8195) required passaging to prevent over confluence.  In total, 

samples were in culture for 4-7 days depending on if they were collected in the first batch 

(KCR7518 (EA), KCR8302(AA), KCR7195(AA), KCR8519(AA), KCR8523 (EA), KCR8084 

(EA), KCR7554 (EA), KCR7953 (EA)) or the second batch (KCR8195 (AA), KCR8483 (AA), 

KCR8580 (AA), KCR7889 (EA), KCR8474 (EA), KCR8451(AA), KCR8617(AA), KCR8565 

(EA)) 3 days later.   

For sample collection, differential trypsinization according to the CR protocol was 

performed to remove the J2 fibroblasts and 500,000 cells at a concentration of 100 cells/ µL from 

each sample were collected for drop-seq.  

 



69 
 

Single cell RNA-sequencing 

Samples were transported on ice and processed for drop-seq analysis according to the 

protocol of Macosko et al (2015)69 and Thong et al (2020).111  

DNA extraction 

For the remainder of cells not used for drop-seq, J2 fibroblasts were removed using the 

Mouse Cell Depletion Kit (Miltenyi cat. no. 130-104-694) and DNA was extracted using the 

DNeasy blood and tissue kit and protocol (QIAGEN cat. no. 69504).  DNA quality was assessed 

by NanoDrop nucleic acid quantification (ThermoFisher) and frozen at -80°C for further 

experimentation  

DNA sequencing  

DNA samples stored at -80°C were thawed and NanoDrop quantification was used to 

dilute DNA to a concentration of 100ng/µL.  25µL from each sample was sent to the University 

of Michigan Advanced Genomics Core for genotyping. PicoGreen/Qubit analysis and 

normalization were performed to normalize samples and genotyping was performed using the 

Infinium Global Diversity Array-8 according to the manufacturer’s instructions (Illumina) at the 

University of Michigan Advanced Genomics Core.  

Epigenetic profiling  

DNA samples stored at -80°C were thawed and sent to the University of Michigan 

Epigenomics Core for analysis using the EPIC Methylation Array (Illumina). DNA was 

quantified using the Qubit High Sensitivity dsDNA assay and quality was assessed using the 

TapeStation genomic DNA kit. 250ng of each sample were bisulfite converted using Zymo’s EZ 

DNA Methylation kit according to the manufacturer’s (Illumina) incubation parameters. Cleaned 

up samples were then sent to the UM Advanced Genomics Core for hybridization to the Infinium 

MethylationEPIC BeadChip array, washing, and scanning, according to the manufacturer’s 

instructions (Illumina EPIC Datasheet). 

Single cell data analysis  

Raw data processing : Raw data was processed according to the protocol of Thong et al 

(2020).111 
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QC and high quality cell selection: The R package Seurat112,113 was used for all of the 

initial QC and cell selection. Cells were filtered and selected if they met the QC criteria of less 

than 20% mitochondrial genes, gene counts between 200 and 6000, and RNA counts of less than 

50,000. One of the samples KCR7889 was excluded from downstream analyses due to a 

sequencing issue where the Read1 of the Illumina sequencer read off the 5’ mRNA sequence 

instead of the cell barcode sequence in the library. After QC and filtering, a total of 8 AA 

samples (n=8240 cells) and 7 EA samples (n=4577 cells) were available for further analysis. 

Once high quality cells were selected, they were normalized using the “LogNormalize” method 

in Seurat and highly variable features were identified. Data were then scaled by regressing on 

percent mitochondrial genes. Linear dimension reduction was run on the scaled data using 

variable genes to identify the top principle components (PCs). 

Unbiased clustering and cell type identification :Unbiased clustering was performed 

using the top 10 PCs at a resolution of 0.05.  Non-linear dimension reduction (UMAP) was also 

performed using the top 10 PCs.  Cell type markers were used to identify myoepithelial 

(KRT5/KRT14) and luminal (KRT8/KRT18) cells which separated into two clear clusters at a 

resolution of 0.05.   

Differential gene expression analysis: Cells were split by type (luminal and 

myoepithelial) and differential gene expression (DGE) analysis was performed using the 

Pseudobulk method according to the pipeline outlined by Amexquita et al.114  For each cell type, 

pseudobulk samples were generated by aggregating across the Sample variable. Pseudobulk 

sample libraries with low counts (<100 cells ) and genes with low counts were filtered out.  

Composition biases were corrected for by computing normalization factors with the trimmed 

mean of M-value. Multi-dimensional scaling, negative binomial dispersions, and quasi-

likelihood dispersions were performed to calculate mean and per-gene variance. Generalized 

linear models (GLM) were fit to the counts for each gene and differential gene expression testing 

was performed between AA and EA cells for each cell type.  

CytoTRACE: The Cellular (Cyto) Trajectory Reconstruction Analysis using gene Counts 

and Expression (CytoTRACE) package in R was used to predict the differentiation state of 

cells.115 CytoTRACE leverages the number of detectably expressed genes per cell as a read out 

of developmental potential. Each individual cell was assigned a CytoTRACE score where cells 
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with a higher number of genes per cell were considered more transcriptionally diverse, which 

correlates with a more “stem cell” like gene expression profile. 

Hybrid Analysis: Luminal/myoepithelial hybrid cells were identified by pulling the gene 

counts for marker genes KRT5/KRT8 and EPCAM/VIM  Cells in the upper 50% quantile for each 

gene were considered “highly expressed” and cells which highly co-expressed both KRT5 and 

KRT8  or EPCAM and VIM were labeled as hybrid cells.111 The “FindMarkers” function in 

Seurat was used to perform differential expression testing using the Wilcoxon rank sum test to 

identify  marker genes distinguishing the hybrid cells from all other cells in order to identify a 

hybrid cell signature.  

Single cell Gene Set Enrichment Analysis: The escape package in R was used to perform 

single cell gene set enrichment analysis (GSEA),116 assigning each individual cell an enrichment 

score for relevant gene sets. Gene sets were pulled from the C2 and Hallmark libraries from the 

Molecular Signatures Database (MsigDB)117 and enrichment was performed using escape.  

Cell Cycle Scoring and Regression : Cell cycle phase scores were generated for each cell 

using the Seurat cell cycle scoring pipeline.118  Scores were then used to assign phases S or 

G2/M to each cell and stored in the metadata.  

Epigenetics Data Analysis  

QC and Filtering : Initial QC and filtering was performed by the University of Michigan 

Epigenomics Core using the Snakemake bioinformatics workflow.119  Raw IDAT files were read 

into R using the minfi Bioconductor package120 and the Enmix Bioconductor package121 was 

used to perform initial qc based on detection p-values and signal intensity. Probes were removed 

if the detection p-value was <0.05 in more than 5% of samples (11841 probes), if a sample had 

more than 5% of probes with detection p-value <0.05 (0 samples), if a probe was within 2bp of a 

SNP (58337 probes),122,123 or was located on the X or Y chromosome (19681 probes). After 

filtering a total of 776,977 probes were used for downstream analysis and were corrected, 

normalized, and had intensities background and dye-corrected using the NOOB background 

correction.124 

Differential methylation was calculated by constructing a regression model using ebayes 

(limma) by race. The differentially methylated probes were annotated using the EPIC annotation 



72 
 

and merged with the UCSC reference genome to assign them to differentially expressed genes 

from the single cell analysis.  

DNA Data Analysis 

Imputation of SNPs via TopMed: We imputed polymorphisms genome-wide for each 

sample based on the GlobalDiversity SNP array results generated by the Advanced Genomics 

Core using the TOPMed Imputation Server.125 Briefly the TOPMed Imputation Server performs 

an established quality control pipeline to validate variants, phases haplotypes via eagle2126 , and 

imputes genotypes against the TOPMed reference panel (consisting of data from 97,256 

individuals) using minimac4.125  

Assigning genotypes to individuals for race associated SNPs of interest: For genes of 

interest identified through differential gene expression, we looked at single tissue specific eQTLs 

in GTEx to identify race-associated SNPs we could extract genotypes in our samples with. Using 

the dbSNP feature, we looked at the SNP report ALFA allele frequency and calculated the 

difference in allelic frequency between the European and African American populations. The 

SNP was selected if the difference in allelic frequency was > 10%. Using the SNP report we also 

noted the chromosome location. After loading in the TOPMed imputed tabix file for the relevant 

chromosome the SNP was located on, we used the SNP location from GTEx to identify the hard 

calls for each individual. Based on the reference and alternate allele in GTEx we assigned 

genotypes for each of our samples for the SNP. R2 >0.3 was used as the cutoff.  

Results 

Establishment of Komen Biopsy samples in Conditional Reprogramming Culture and 

Multi-omic Characterization  

Cryopreserved punch biopsy samples from AA (n=17) and EA (n=32) women 

epidemiologically matched on age, BMI, and days since last period were dissociated and 

cultured in CR conditions. Of these, 8 AA and 8 EA samples were successfully established and 

expanded with enough cells and genetic material to use for single cell RNA-seq, DNA 

methylation, and SNP genotyping analysis (Figure 3.1).  AA samples had a higher establishment 

rate (53.3%) compared to EA samples (26.7%) in CR culture conditions. SNP ancestry analysis 

from all acquired samples exhibit a dynamic range of ancestry percentages across both self-
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identified race groups, indicating a diverse range of genetic phenotypes even within race groups 

(Appendix Figure 3.A1).  H&E histology staining of available samples strongly suggest that 

establishment success in CR culture is highly dependent on epithelial and cellular composition of 

the original cryopreserved biopsy tissue, with samples containing a higher proportion of 

epithelial material more likely to be established versus those with a higher adipocyte content 

(Appendix Figure 3.A2).  

Normal Mammary Cells From AA and EA Women Cluster by Cell Type, Cell Cycle Phase, 

and are Highly Variable by Individual 

After undergoing QC and filtering, a total of 12,817 cells (n=8240 AA, n = 4577 EA) and 

33,794 genes passed the selection criteria and were used for downstream single cell analysis 

(Appendix Figure 3.A3). Unbiased clustering at a resolution of 0.075 and analysis of mammary 

cell type markers revealed that cells primarily cluster by luminal (KRT8) and myoepithelial 

(KRT5) cell types and expression of epithelial/mesenchymal (EPCAM/VIM) and stem cell 

(ITGA6/ALDH1A3) markers was consistent with our findings in Chapter 2 (Figure 3.2). More 

specifically, the luminal cluster showed local sub-clustering into two smaller clusters with 

differences in ALDH1A3 stem cell marker expression. Labeling by cell type, race, and individual 

revealed that cells from each race group were distributed throughout both luminal and 

myoepithelial clusters, with local sub-clustering highly influenced by gene expression of 

individual samples (Fig 3.3 A-C). In addition to clustering by cell type, an analysis of gene 

expression by cell cycle phase revealed that cells cluster by phase in a dimensional direction 

consistent with the biological process progression –G1, S, to G2M (Figure 3.3 D).  Further 

analysis of cell type distributions across race groups and samples revealed that cell type 

distribution is highly variable by individual. The AA group was evenly split with 4 samples 

composed of a majority luminal cells and 4 samples primarily myoepithelial, whereas the EA 

group had 5 samples primarily luminal and 2 samples primarily myoepithelial in cell type 

distribution (Figure 3.3 E-F).  

Single Cell Gene Set Enrichment (ssGSEA) of Breast Cancer and Stem Cell Associated 

Gene Sets Reveals Highly Variable Inter-individual Differences Within AA and EA Race 

Comparisons 
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To investigate global gene signature differences between AA and EA mammary cells, 

enrichment scores were calculated for each individual cell using breast cancer and stem cell 

associated gene sets curated from MsigDB. Heatmap clustering revealed that enrichment scores 

were highly variable by individual, even within race groups, and that gene sets also grouped by 

biological function (Appendix Figure 3.4A). Unsurprisingly, the luminal A and luminal B 

breast cancer gene sets (SMID_BREAST_CANCER_LUMINAL_A_UP and 

SMID_BREAST_CANCER_LUMINAL_B_UP) grouped with the luminal progenitor 

(LIM_MAMMARY_LUMINAL_PROGENITOR_UP) gene set. The basal breast cancer gene 

set (SMID_BREAST_CANCER_BASAL_UP) grouped with the embryonic stem cell 

(WONG_EMBRYONIC_STEM_CELL_CORE) and mammary stem cell 

(LIM_MAMMARY_STEM_CELL_UP) gene sets, and the ERBB2 breast cancer gene set 

(SMID_BREAST_CANCER_ERBB2_UP)  grouped most closely with the mammary luminal 

mature (LIM_MAMMARY_LUMINAL_MATURE_DN) gene set. Enrichment scores across 

gene sets were also variable by luminal and myoepithelial cell types (Appendix Figure 3.A4). 

Linear mixed effects modeling revealed no significant enrichment differences by race for any of 

the gene sets after accounting for inter-individual differences (Appendix Table 3.A1).  

Differential Gene Expression Reveals Transcriptomic Differences Between AA and EA 

Normal Mammary Cells, Including DEG in The Cancer Genome Atlas (TCGA) Tumors 

To characterize transcriptomic differences between AA and EA mammary cells and 

identify specific genes driving them, differential gene expression was performed between AA 

and EA luminal and myoepithelial populations. After controlling for inter-individual differences, 

we identified 589 genes upregulated and 483 genes downregulated in AA vs EA (p<0.05) 

myoepithelial cells (Figure 3.5 A). In luminal cells, we identified 297 genes upregulated and 342 

genes downregulated (p<0.05) in AA cells compared to EA (Figure 3.5 B).  After adjusting for 

multiple comparisons, only 2 genes in the myoepithelial subset were identified as significantly 

(FDR<0.05) differentially expressed– MTND4P24 (log2FC =6.14, p= 2.99E-09) and RP11-

673C5.1 (log2FC = 2.68, p = 7.29E-08). No genes in the luminal subset passed the FDR cutoff 

of 0.05 (Appendix Table 3.A2).  Luminal and myoepithelial DEGs were compared with race 

associated DEGs identified as differentially expressed in TCGA tumors by Huo et al.127 Of these, 

8 genes in luminal cells and 13 genes in myoepithelial cells were differentially expressed 
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between AA and EA in both our normal mammary samples and TCGA tumors (Table 3.1).  

CRYBB2 stood out as a particular gene of interest due to its differential expression in both the 

luminal and myoepithelial subtypes as well as being differentially upregulated in AA TCGA 

tumors for every breast cancer subtype.127 

CytoTRACE Prediction of Cellular Differentiation Potential Reveals Differences By Cell 

Type  

Differentiation potential is a key feature of stem cells and cancer, therefore we assessed 

this in AA and EA cells across luminal and myoepithelial subtypes using the Cellular (Cyto) 

Trajectory Reconstruction Analysis using gene Counts and Expression (CytoTRACE) 

computational method.115 CytoTRACE predicts the differentiation state of cells by leveraging 

transcriptional diversity, or the number of genes per cell, as a measure of developmental 

potential. Average gene counts per cell showed a range across individual samples as well as 

within cells from the same individual (Appendix Figure 3.A5). AA samples showed on average 

slightly higher gene counts compared to their EA counterparts (Appendix Figure 3.A5). 

CytoTRACE scores across clusters showed the highest CytoTRACE scores in clusters which 

corresponded to the G1 and G2 phases identified in the previous cell cycle analysis (Figure 

3.6A, Figure 3.3D). Higher CytoTRACE scores indicate higher transcriptional activity and 

developmental potential.  Comparisons of CytoTRACE scores between luminal and 

myoepithelial cells from all individuals showed that myoepithelial cells on average express a 

higher CytoTRACE score than luminal cells (Wilcoxon p<0.05) (Figure 3.6B). CytoTRACE 

scores vary highly by individual in both luminal an myoepithelial cell types, and after adjusting 

for individual differences there was no significant difference in CytoTRACE score by race 

(Figure 3.6C-D).  

Hybrid Stem Cell Populations Exhibit a Stem-like Developmentally Immature Phenotype 

and are Associated with Poor Cancer Outcomes 

Chapter 2 showed the emergence of hybrid stem cell populations following conditional 

reprogramming, and we aimed to characterize these populations in this dataset across more 

genetically diverse individuals. Here we used the marker gene combinations of KRT8/ KRT5 to 

identify luminal/basal (used interchangeably here with myoepithelial)(L/B) and EPCAM/VIM to 

identify epithelial/mesenchymal (E/M) hybrids. We found that L/B hybrids were mostly 
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localized to the luminal cluster (Figure 3.7A) and that E/M hybrids were present in both luminal 

and myoepithelial clusters (Figure 3.7B). This localization of hybrids was consistent with our 

findings from Chapter 2. Hybrid L/B cells were identified in both AA and EA groups with 

proportions varying greatly by individual and numerous individuals in both groups exhibiting 

very few of the L/B hybrids (Figure 3.7C). Hybrid E/M cells were also identified in all 

individuals, with higher overall proportions in both AA and EA groups (Figure 3.7D). 

Proportions of hybrid E/M were variable by individual but with less pronounced differences than 

for L/B hybrids. CytoTRACE scoring of both L/B and E/M hybrids revealed that hybrid cells 

exhibit the most developmentally immature phenotype compared to their counterparts (Figure 

3.7E-F).   

The developmentally immature phenotype of hybrid cells has previously been linked to 

cancer stem cells and aggressiveness of tumors, therefore we used ssGSEA of stem cell and 

metastasis associated gene sets to further characterize this. L/B and E/M hybrid cells exhibit 

distinct enrichment signatures from each other, but showed similarities overall (Figure 3.8A-B) . 

In particular, both L/B and E/M hybrid cells exhibit enrichment for the 

ALONSO_METASTASIS_EMT_UP gene set and a small subset of E/M hybrids exhibit a 

particularly strong signal for the VANTVEER_BREAST_CANCER_METASTASIS_UP  gene 

set.   

Differential Gene Expression of Hybrid Stem Cells Reveals Transcriptomic Differences 

between AA and EA Mammary Cells, Including DEGs in TCGA tumors  

To quantify and further characterize gene expression signatures of L/B and E/M hybrid 

cells and identify race-associated differences, we performed differential gene expression analysis 

between AA and EA hybrid populations. We were able to identify both significantly upregulated 

(n=40, adj. p<0.05) and downregulated (n=64, p<0.05) DEGs between AA and EA L/B hybrids 

(Figure 3.9A). E/M hybrids exhibited greater transcriptomic differences by race, characterized 

by a larger number of DEGs upregulated (n=337, adj. p <0.05) and downregulated (n=494, adj. p 

<0.05) in AA hybrids compared to EA (Figure 3.9B). Race associated DEGs of hybrid cells 

were overlapped with DEGs from TCGA tumors, resulting in 5 overlapping genes shared by L/B 

hybrids and TCGA tumors and 11 overlapping genes for E/M hybrids. Of these, CRYBB2 stands 

out due to its upregulated in AA cells for both hybrid types and our previous identification of 
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upregulation in both luminal and myoepithelial AA cells. Other genes of interest include 

TINGAGL1, DEFB1, and SNHG5 which are downregulated in both hybrid cell types as well as 

in TCGA tumors 

Differentially Methylated CpG Sites Between AA and EA Mammary Cells Correspond to 

DEGs in Both Luminal and Myoepithelial Cell Types  

DNA methylation was analyzed for AA and EA samples in order to gain mechanistic 

insight into potential upstream causes of differential gene expression characterized earlier in the 

study.  A total of 776,187 CpG sites were successfully annotated to the EPIC reference and fit to 

a regression model using ebayes (limma). Of these, 20,694 CpGs were differentially methylated 

(p<0.05), however, none were significant after adjusting for multiple comparisons (FDR<0.05). 

The CpG annotation was used to identify the genes they were located on and after filtering by p 

value (<0.05) and percent methylation change (>10%), 88 CpG sites were identified to be 

differentially methylated between AA and EA luminal cells on luminal DEGs (Figure 3.11A), 

and 50 CpGs on myoepithelial DEGs (Figure 3.11B). When assessing DNA methylation 

alongside RNA expression, PRDM16 stood out as a DEG of interest (log2FC= -3.1, p =0.03) in 

the luminal population due to it having 31 differentially methylated CpGs (p<0.05) in AA 

compared to EA samples. CpGs for PRDM16 ranged from -10 to -22.6% difference in 

methylation and 8 were located on islands, 15 on shores, and 8 on shelves. (Appendix Table 

3.A3).  ANKR7L was a DEG of interest in the myoepithelial population (log2FC=2.73, p=0.01) 

containing 6 CpGs ranging from 15.8-29.9% differential methylation and all of which were 

located on an island.  Lastly, GSTM1 stood out as a DEG of interest due to its upregulation in 

myoepithelial (log2FC =3.58, p=0.014) and luminal (log2FC=2.75, p=0.17) cells as well as 

TCGA tumors. GSTM1 contained one significant CpG with -10.51% differential methylation in 

myoepithelial cells which was located on an island.  

Identification of Race Associated eQTLs on DEGs Between AA and EA Mammary Cells 

Show Genotypic Differences by Race Consistent with Gene Expression in Normal 

Mammary Tissue (GTEx) and TCGA Tumors  

A number of the most significant DEGs between AA and EA showed no significant 

differences in CpG methylation, which led us to investigate whether these expression differences 

could be accounted for by differences in eQTLs in our samples with imputed genotypes.  
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CRYBB2 was the first gene we investigated due to its upregulation in both luminal (log2FC = 

5.58, p=0.013) and myoepithelial (log2FC=3.94, p=0.036 ) AA cells as well as in TCGA tumors 

(log2FC=1.23, p= 3.02E-32). We selected two SNPs and identified genotypes of our samples at 

these loci due to their differences in allelic frequency by race (rs5996939: 44%, rs6519611: 

29%)(Figure 3.12A).  For rs5996939, the A allele was associated with higher expression in 

GTEx mammary tissue, and 6/7 AA samples had 1 or more A allele at this locus compared to 1/6 

for EA samples (Figure 3.12B-C).  Similarly, the G allele for rs6519611 was associated with 

higher expression, and was present in 6/7 AA and 1/6 EA samples.  In TCGA tumors, CRYBB2 

is significantly upregulated in AA tumors as well as in the TNBC tumor subtype (Figure 3.12D-

E). 

We also investigated eQTLs on SNHG5, which was significantly downregulated in AA 

cells for both hybrid cell types (L/B: log2FC= -0.9, p = 9.06E-22,  E/M: log2FC =-0.96, p = 

2.94E-47) as well as TCGA tumors (log2FC=-0.62, p=3.32E-7). We looked at the SNPs 

rs1059307 and rs9450311 which had allelic frequency differences of 28% and 31%, respectively 

(Figure 3.13A). The G allele was associated with lower expression in GTEx mammary tissue 

and 7/7 AA samples had a G allele, with 5/7 being GG for this loci (Figure 3.13B-C).  Only 1 

EA sample expressed the GG genotype for this eQTL and 4/6 were GT.  In TCGA, AA tumors 

significantly expressed lower levels of SNHG5 compared to EA counterparts, and TNBC tumors 

also significantly expressed lower levels compared to normal (Figure 3.13 D-E).  

Lastly, we also looked at two SNPs in CLN8, a gene downregulated in AA luminal cells 

(log2FC= -0.54, p=3.41E-.2) and TCGA tumors (log2FC=-0.36, p=6.21E-7) with allelic 

frequency difference of 41% for rs6558535 and 13% for rs6558532 (Figure 3.14A). For 

rs6558535 the T allele associated with lower in expression in GTEx mammary tissue was present 

in 5/7 AA samples and 3/6 EA samples. The C allele for rs6558532 was present in all AA and 

EA samples, with 4/7AA samples and 1/6 EA samples exhibiting the CC genotype.  

Overall, we found this integration of DNA SNPs, DEGs from RNA-seq, and TCGA tumor data 

informative and promising to identify race associated eQTLs.  
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Discussion 

In this chapter we leverage a multi-omic systems biology approach to characterize 

transcriptomic differences and potential mechanisms driving these differences between 

mammary cells from genetically diverse AA and EA donors. The integration of high throughput 

and computationally rigorous tools allowed us to characterize transcriptomic signatures of 

luminal, myoepithelial, and hybrid cell types at single cell resolution, gain insight into DNA 

methylation and/or genotype differences potentially contributing to differences in gene 

expression, and compare normal mammary stem cells with TCGA tumor expression signatures.  

From this, we gleaned two major conclusions 1) there are no strikingly clear race associated 

differences in transcriptomic expression and DNA methylation between AA and EA mammary 

cells that can be deconvoluted from inter-individual and cell type heterogeneity 2) while DNA 

methylation and genotyping analysis can give us potential mechanistic insight into a handful of 

genes of interest we still have a limited understanding of the underlying causes of the differential 

expression we characterized.  

While the inter-individual heterogeneity of our samples made it challenging to 

distinguish  differences in gene expression and DNA methylation by race, what it does confirm is 

that the CR culture is a viable model system to study mammary cells from genetically diverse 

individuals as it retains inter-individual differences even after reprogramming. The ancestry data 

(Appendix 3.A1) provided to us by the Komen normal tissue bank showcases the genetic 

diversity of all our individual donors, even within self-identified AA and EA race groups. This 

genetic diversity across our samples was likely the reason that differentially expressed genes and 

CpG sites were not significant after adjusting for multiple comparisons  due to our sample size of 

8 AA and 7 EA individuals being underpowered to detect differences. Future studies may need to 

include greater sample size to account for this diversity or a more nuanced integration of 

ancestry/genotype information rather than the broad AA and EA race groups. Using the R 

package PROPER (PROspective Power Evaluation for RNAseq)128, we ran a power simulation 

analysis to estimate the minimum sample size needed in order to detect significant differences 

using the number of genes and transcript counts observed in our dataset as the simulation inputs.  

Based on the simulation, the minimum number of samples required in each group is estimated to 

be 20-25 to achieve a target power of 0.8 and FDR <0.05 (Appendix 3.A6). Due to this, our 
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sample size of 8 AA and 7 EA was likely underpowered (~0.6) to detect differences between 

such diverse individuals.  

Other factors contributing to the inter-individual heterogeneity of our samples include the 

sample collection process as well as the expansion in CR conditions.  Samples from the Komen 

Normal Tissue Bank are collected at different sites across the country and differences in sample 

collection and personnel may introduce heterogeneity in the collected samples. Additionally, the 

punch biopsy samples are so small that even samples taken from different locations on the same 

breast may capture different distributions of cells and cell types. Thus, the cellular composition 

of the original sample highly influences the success of establishment and expansion in CR and 

may introduce heterogeneity in cell type distribution if cells take hold in CR conditions 

differently. Additionally, as mentioned in Chapter 2, the CR process appears to enhance inter-

individual heterogeneity post-CR compared to NM cells.  

One strength of this study was the way single cell RNA-seq was leveraged sequentially, 

beginning with cell type identification upstream and stratified differential gene expression 

leading to a more targeted downstream analysis of DNA methylation and eQTL assessment. The 

upstream identification of luminal and myoepithelial cells was crucial to the stratified differential 

gene expression analysis we performed which allowed us to identify distinct cell type specific 

transcriptomic differences between AA and EA mammary cells.  

While there were some overlapping genes differentially expressed in both cell types such 

as CRYBB2 and GSTM1, stratified analysis by cell type allowed us to identify genes like CLN8, 

which was significantly downregulated in luminal but not myoepithelial AA cells as well as in 

TCGA tumors. CLN8 has been most characterized as a mutated gene in neuronal ceroid 

lipofuscinoses (NCLs), a rare family of neurodegenerative disorders. Emerging studies have 

identified genetic alterations in NCL genes across multiple cancer types.129 In brain cancers, 

CLN8 has been showed to act as a tumor suppressor, with lower expression linked to worse 

cancer outcomes.129 More specifically in the breast, CLN8 has also been included as part of a 

gene set used as a strong prognostic factor for the development of breast cancer metastasis and 

has also been identified to be located on a domain of CERS2, known to be alternatively spliced in 

Luminal B cancers.130,131 Kaplan-Meier survival analysis of the breast also shows low expression 

of CLN8 associated with lower chance of survival. Together, alongside our identification of race 



81 
 

associated eQTLs consistent with the downregulation in expression, CLN8 emerges as a prime 

candidate for further characterization in normal tissue and breast tumors.   

Conversely, CRYBB2 has been consistently identified as differentially upregulated in AA 

vs EA normal mammary tissue and tumors, although its mechanism of action and identification 

as a race specific gene are still being elucidated.132–135 In addition to CRYBB2, its pseudogene 

CRYBB2P1 is also garnering increasing interest for its potential function as a regulatory non-

coding RNA of CRYBB2. Barrow et. al report that CRYBB2 and CRYBB2P1 independently 

promote tumor growth likely through distinct mechanisms.134 We report significant 

overexpression of CRYBB2 and CRYBB2P1 in both luminal, myoepithelial cell types as well as 

identify race specific CRYBB2 eQTLs reflected in the corresponding genotypes of our samples. 

While there were no significant differentially methylated CpGs for CRYBB2, CRYBB2P1 had 

one significant CpG (cg04572826, % methylation difference = 20%, p=0.006) which has been 

identified to be located on a promoter regulatory element. Together, these findings add to the 

existing body of evidence that CRYBB2 and CRYBB2P1 are race specific genes linked to breast 

cancer and breast cancer outcomes. To our knowledge, this is the first parallel integration of gene 

expression, eQTL genotype imputation, and DNA methylation analysis from the same 

experiment and individuals providing mechanistic evidence to account for CRYBB2 and 

CRYBB2P1 gene expression differences by race.  

As seen in Chapter 2, hybrid stem cells are of particular interest in relation to stemness 

and breast cancer, and we were able to further characterize L/B and E/M hybrid population 

across more individuals in this chapter. Hybrid L/B and E/M exhibit distinct transcriptomic 

signatures from each other while simultaneously exhibiting an enriched stem-like, 

developmentally immature phenotype compared to their non-hybrid counterparts.  GSEA 

allowed us to characterize these global signatures as enriched in gene sets related to stem cells, 

metastasis, EMT, and poor prognosis. Differential gene expression between AA and EA hybrid 

cells also highlighted a few additional genes interest, TINAGL1, DEFB1, SNHG5, and TMEM 

100—all of which were significantly downregulated in both L/B and E/M hybrids as well as 

TCGA tumors.  TMEM100 expression has been linked to inhibit and suppress gastric, lung, and 

colorectal cancer.136–138 Similarly, DEFB1 downregulation has been identified in renal, prostate, 

and colorectal cancers.139–141. SNHG5 has been previously identified as a promising diagnostic 
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and therapeutic target for multiple cancer types, however most of these findings report 

upregulation of SNHG5 promoting cancer survival and progression.142–144 This provides the 

opportunity for future work to characterize the functional implications of downregulation of 

SNHG5. Lastly, TINAGL1 presents an especially interesting finding due to its differential 

expression in AA vs EA hybrid cells, but not overall in luminal and myoepithelial cells. More 

specifically, TINAGL1 has been found to suppress triple negative breast cancer progression and 

metastasis in vitro and in vivo and has also been successfully targeted for gene therapy to 

suppress TNBC growth.145,146 Due to the higher prevalence of TNBC among AA individuals, 

TINAGL1 is a promising target to study further in the characterization of breast cancer disparities 

as well as overall breast cancer outcomes.  

Overall, this multi-omics systems biology approach to characterizing transcriptomic 

differences and mechanisms in AA and EA mammary cells showcases an integrated and targeted 

pipeline for identifying differentially expressed genes and potential mechanisms with functional 

implications for breast cancer and breast cancer outcomes. These results also suggest that genetic 

ancestry analysis rather than self-identified race may be a better predictor of breast 

carcinogenesis and outcomes. The highly variable inter-individual differences in gene 

expression, DNA methylation, and eQTL genotypes we report highlight the pressing need to use 

and develop better model systems which are able to capture the genetic variation of diverse 

individuals.  
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Tables and Figures 

Figure 3.1. Experimental Design and Sample Demographics. Conditional reprogramming of 

AA and EA matched normal mammary samples and multi-omic characterization of differences.  

 

 

 

Figure 3.2. Unbiased clustering and marker gene expression A) UMAP clustering of cells at 

0.075 resolution and  B) Cell marker expression across clusters.   
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Figure 3.3. Clustering and cell type distributions. A) Labeled by cell type from KRT5/KRT8 

gene expression B) Labeled by race C) Labeled by sample ID D) Labeled by cell cycle phase E) 

Cell counts stratified by sample and cell type. Grey cells indicate the cell type with the majority 

proportion. F) Cell type proportions by individual 
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Figure 3.4. ssGSEA of breast cancer and stem cell associated gene sets A) Heatmap of 

enrichment scores by sample stratified by race where each vertical column represents an 

individual cell.  B) Violin plots of enrichment scores for individual gene sets across samples. 

Purple indicates AA individuals and orange indicates EA individuals.  

 

A 
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Figure 3.5. Differentially expressed genes between AA and EA mammary cells by cell type 

A) DEGs in myoepithelial cells. Genes shown in red are significantly upregulated (p <0.05) and 

genes shown in blue are significantly downregulated (p<0.05) in AA cells compared to EA. B) 

DEGs in luminal cells.  

Table 3.1 Overlapping DEGs between AA and EA normal mammary cells and TCGA 

tumors stratified by cell type. Genes highlighted in red were upregulated in AA compared to 

EA and blue were downregulated. 

 

 

 

 

 

 

 

 

 

 

 

 



87 
 

 

Figure 3.6. CytoTRACE scoring to assess transcriptional diversity across cell types and 

individuals A) FeaturePlot of CytoTRACE scores across clusters B) Differences in CytoTRACE 

scores by cell type. The higher the score the more transcriptionally active. C) Luminal 

CytoTRACE scores by AA and EA individuals D) Luminal CytoTRACE scores by AA and EA 

individuals 

Figure 3.7. Hybrid KRT5/KRT8 and EPCAM/VIM cells A-B) Across clusters C-D) 

Individual sample proportions of hybrid cells stratified by race E-F) CytoTRACE scoring  
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Figure 3.8. ssGSEA of stem cell and metastasis associated gene sets in hybrid cells  A) 

Heatmap of enrichment scores for EPCAM/VIM hybrid cells  B) Heatmap of enrichment scores 

for KRT5/KRT8 hybrid cells  

Figure 3.9. Differentially expressed genes between AA and EA hybrid cells  A) DEGs in 

KRT5/KRT8 hybrids. Genes shown in red are significantly upregulated (adj. p <0.05) and genes 

shown in blue are significantly downregulated (adj. p<0.05) in AA cells compared to EA B) 

DEGs in EPCAM/VIM hybrids 

B 

A 
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Table 3.2 Overlapping DEGs between AA and EA hybrid cells and TCGA tumors.  Genes 

highlighted in red were upregulated in AA and blue were downregulated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Heatmap clustering of top 1000 differentially methylated CpGs by individual 

and race. A) Each row represents a CpG. Variance was calculated across samples 
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Figure 3.11. Percent methylation change of differentially methylated CpG sites on  

differentially expressed genes between AA and EA mammary cells  A) Luminal DEGs and 

annotated CpG sites. Differentially methylated CpGs with greater than 10% methylation change 

are colored in red if up and dark grey if down. B) Myoepithelial DEGs and annotated CpG sites.  
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Figure 3.12. CRYBB2: Integration of imputed genotypes with race associated eQTLs and 

comparisons to TCGA tumor expression A) Aggregate allele frequency of AA and EA from 

dbGaP and RNA expression by cell type B) Imputed genotypes of AA and EA individuals from 

TOPMed C) eQTL violin plots of expression by genotype D) Expression of CRYBB2 gene in 

TCGA tumors by race from UALCAN E) Expression of CRYBB2 in TCGA tumors by subtype 

from UALCAN  
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Figure 3.13. SNHG5: Integration of imputed genotypes with race associated eQTLs and 

comparisons to TCGA tumor expression A) Aggregate allele frequency of AA and EA from 

dbGaP and RNA expression by cell type B) Imputed genotypes of AA and EA individuals from 

TOPMed C) eQTL violin plots of expression by genotype D) Expression of SNHG5 gene in 

TCGA tumors by race from UALCAN E) Expression of SNHG5 in TCGA tumors by subtype 

from UALCAN  
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Figure 3.14. CLN8: Integration of imputed genotypes with race associated eQTLs and 

comparisons to TCGA tumor expression A) Aggregate allele frequency of AA and EA from 

dbGaP and RNA expression by cell type B) Imputed genotypes of AA and EA individuals from 

TOPMed C) eQTL violin plots of expression by genotype D) Expression of CLN8 gene in 

TCGA tumors by race from UALCAN E) Expression of CLN8 in TCGA tumors by subtype from 

UALCAN  
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Appendix  

Figure 3.A1. Ancestry analysis of komen tissue samples. Quantification of ancestry 

percentages from SNP genotyping stratified by establishment success in CR culture.  

Figure 3.A2.  Histological composition of Komen tissue samples. H&E histology depiction of 

Komen samples stratified by race and establishment success.  
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Figure 3.A3. Quality control metrics for single-cell filtering split by race A) AA and EA 

cells pre-filtering B) Post-filtering distributions C) Number of high quality cells filtered by 

individual 

Figure 3.A4.  ssGSEA of breast cancer and stem cell associated gene sets A) Stratified by cell 

type and race   

A 
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Table 3 A.1 Linear mixed effects modeling results of ssGSEA of breast cancer and stem cell 

associated gene sets by race. AA race was used as the reference group and coefficients of fixed 

effects are shown in this table.  

 

Table 3 A.2 Top 100 differentially expressed genes between AA and EA mammary cells  

Top 100 Luminal DEGs Top 100 Myoepithelial DEGs 

Gene log2FC PValue FDR Gene 

log2F

C PValue FDR 

RP11-

251G23.2 6.14 2.62E-06 5.41E-02 MTND4P24 6.14 2.99E-09 

6.21E-

05 

MTND4P24 5.31 6.75E-06 6.97E-02 RP11-673C5.1 2.68 7.29E-08 

7.57E-

04 

PSG4 -5.59 5.41E-05 3.72E-01 HMGB1P5 2.34 1.25E-05 

8.69E-

02 

FAM153A 3.97 1.14E-04 5.40E-01 

RP11-

733O18.1 1.59 1.89E-05 

9.81E-

02 

ATAD3C -1.33 1.31E-04 5.40E-01 MTND4P12 3.24 2.55E-05 

1.06E-

01 

RP11-673C5.1 2.87 3.84E-04 

1.00E+0

0 EEF1GP1 -4.96 7.66E-05 

2.65E-

01 

FAM21B -3.15 4.82E-04 

1.00E+0

0 KRTAP2-3 -5.04 9.78E-05 

2.90E-

01 

RP11-

395N3.1 -4.16 4.92E-04 

1.00E+0

0 TNFAIP3 -1.98 1.40E-04 

3.64E-

01 

RP11-

254B13.3 3.39 5.95E-04 

1.00E+0

0 BMS1P8 -4.65 2.49E-04 

5.75E-

01 

FAM154B 2.76 5.99E-04 

1.00E+0

0 

ABC7-

42389800N19.

1 1.90 3.47E-04 

7.22E-

01 

RPS26P3 -2.75 6.64E-04 
1.00E+0

0 PNMA2 -3.29 5.06E-04 
8.99E-

01 

HSP90AA6P -2.40 7.34E-04 

1.00E+0

0 RP11-305B6.1 -1.67 5.40E-04 

8.99E-

01 

HMGB1P5 2.50 8.36E-04 
1.00E+0

0 CILP -3.45 6.02E-04 
8.99E-

01 
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ABLIM3 -1.37 9.98E-04 
1.00E+0

0 RPS3AP49 -2.57 6.16E-04 
8.99E-

01 

CRYBB2 5.58 1.32E-03 

1.00E+0

0 BMS1P16 -4.73 6.65E-04 

8.99E-

01 

AC006273.7 3.08 1.41E-03 
1.00E+0

0 
RP11-
160C18.2 -4.75 7.14E-04 

8.99E-
01 

NBPF14 -1.75 1.51E-03 

1.00E+0

0 POMZP3 -1.53 9.99E-04 

8.99E-

01 

AC144652.1 4.15 1.53E-03 
1.00E+0

0 IL2RG -3.13 1.15E-03 
8.99E-

01 

SEMA6A 0.92 1.54E-03 

1.00E+0

0 MTATP6P1 1.15 1.19E-03 

8.99E-

01 

TNFRSF11B -1.76 1.77E-03 
1.00E+0

0 SLC6A8 0.77 1.20E-03 
8.99E-

01 

TTN-AS1 1.97 1.98E-03 

1.00E+0

0 MT-TH -1.43 1.26E-03 

8.99E-

01 

RP11-
395N3.2 -2.16 2.10E-03 

1.00E+0
0 TMEM229B -1.92 1.26E-03 

8.99E-
01 

Z73979.1 -2.68 2.37E-03 

1.00E+0

0 MEF2C 2.31 1.33E-03 

8.99E-

01 

HIP1R 0.78 2.53E-03 
1.00E+0

0 CTC-529P8.1 -1.36 1.34E-03 
8.99E-

01 

KCTD8 -4.96 2.57E-03 

1.00E+0

0 D2HGDH -1.05 1.35E-03 

8.99E-

01 

KIT 1.10 2.60E-03 
1.00E+0

0 GRIA4 2.33 1.38E-03 
8.99E-

01 

SAT1 1.03 2.81E-03 

1.00E+0

0 PLBD1 -4.11 1.47E-03 

8.99E-

01 

GSTT2 -3.22 3.08E-03 
1.00E+0

0 XYLT1 -1.50 1.49E-03 
8.99E-

01 

TDRD12 -5.48 3.24E-03 

1.00E+0

0 ITGB1P1 -1.85 1.58E-03 

8.99E-

01 

RP11-
303E16.7 -3.31 3.28E-03 

1.00E+0
0 RP11-269C4.1 -3.52 1.59E-03 

8.99E-
01 

RP11-

785H5.1 -0.87 3.36E-03 

1.00E+0

0 DEPTOR 1.97 1.76E-03 

8.99E-

01 

ZBTB8OSP2 4.41 3.56E-03 
1.00E+0

0 
CTD-
2215L10.1 3.92 1.85E-03 

8.99E-
01 

PELI2 1.18 3.66E-03 

1.00E+0

0 RPL7P23p -1.62 1.92E-03 

8.99E-

01 

CHCHD2P9 -3.07 3.93E-03 
1.00E+0

0 CELF2 -1.08 1.95E-03 
8.99E-

01 

AFAP1L1 -1.34 4.05E-03 

1.00E+0

0 HMGB1P8 -1.33 1.97E-03 

8.99E-

01 

SMPD1 -0.89 4.07E-03 
1.00E+0

0 MT-TS2 -0.90 1.97E-03 
8.99E-

01 

C11orf54 0.70 4.08E-03 

1.00E+0

0 MIR29B1 -1.71 1.99E-03 

8.99E-

01 

MTND1P23 8.18 4.09E-03 

1.00E+0

0 AC079150.2 -4.14 2.02E-03 

8.99E-

01 
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PLD1 1.02 4.11E-03 
1.00E+0

0 AC132192.1 3.52 2.15E-03 
8.99E-

01 

GPR55 -3.88 4.15E-03 

1.00E+0

0 PXK 1.24 2.16E-03 

8.99E-

01 

RP4-564F22.5 4.18 4.35E-03 
1.00E+0

0 CRYBB2P1 1.42 2.20E-03 
8.99E-

01 

KRT121P -2.68 4.53E-03 

1.00E+0

0 NXPH4 2.36 2.23E-03 

8.99E-

01 

CTB-
147C22.8 -1.87 4.93E-03 

1.00E+0
0 BCYRN1 -1.17 2.24E-03 

8.99E-
01 

TFEB -0.83 5.05E-03 

1.00E+0

0 SLC15A2 -3.03 2.27E-03 

8.99E-

01 

ZGPAT -2.50 5.08E-03 
1.00E+0

0 SLC7A11-AS1 5.29 2.28E-03 
8.99E-

01 

BMP7 3.61 5.14E-03 

1.00E+0

0 

RP11-

519G16.2 -4.88 2.30E-03 

8.99E-

01 

DPP4 -1.88 5.31E-03 
1.00E+0

0 CTC-484P3.1 -4.06 2.34E-03 
8.99E-

01 

SULT1A1 0.93 5.33E-03 

1.00E+0

0 RP3-417G15.1 -1.16 2.34E-03 

8.99E-

01 

LUZP2 -2.53 5.49E-03 
1.00E+0

0 MBNL2 0.75 2.40E-03 
8.99E-

01 

TFPI2 -2.05 5.54E-03 

1.00E+0

0 RP11-1036F1.1 -3.28 2.44E-03 

8.99E-

01 

KLK6 -1.27 5.55E-03 
1.00E+0

0 AC007292.1 -4.38 2.45E-03 
8.99E-

01 

GPR83 -3.71 5.57E-03 

1.00E+0

0 NBPF14 -2.60 2.46E-03 

8.99E-

01 

COL22A1 -1.87 5.65E-03 
1.00E+0

0 TRIM22 -1.54 2.49E-03 
8.99E-

01 

CTA-

390C10.10 -3.97 5.65E-03 

1.00E+0

0 C17orf97 2.23 2.52E-03 

8.99E-

01 

RP11-
326G21.1 -2.10 5.91E-03 

1.00E+0
0 RP11-429J17.2 -1.38 2.59E-03 

8.99E-
01 

RP11-

545M17.1 3.73 5.96E-03 

1.00E+0

0 AP000688.14 5.39 2.62E-03 

8.99E-

01 

RP1-102K2.6 -3.08 5.96E-03 
1.00E+0

0 HMGN1P37 -3.42 2.66E-03 
8.99E-

01 

EI24P2 -4.04 5.96E-03 

1.00E+0

0 AC091492.2 -4.01 2.67E-03 

8.99E-

01 

RP11-
326A19.5 -3.69 5.99E-03 

1.00E+0
0 

RP11-
297L17.6 -1.15 2.75E-03 

8.99E-
01 

SRIP3 -4.12 6.01E-03 

1.00E+0

0 DBIP1 -3.82 2.78E-03 

8.99E-

01 

MILR1 -3.51 6.03E-03 
1.00E+0

0 RP11-111F16.2 -3.47 2.80E-03 
8.99E-

01 

AGAP7 -2.98 6.07E-03 

1.00E+0

0 HMGXB3 0.75 2.82E-03 

8.99E-

01 

SNX6P1 -3.76 6.24E-03 

1.00E+0

0 RIN2 -0.72 2.87E-03 

8.99E-

01 
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COL6A2 -1.02 6.30E-03 
1.00E+0

0 
RP11-
554E23.4 4.63 2.95E-03 

8.99E-
01 

SNORD3B-1 4.08 6.46E-03 

1.00E+0

0 GAREML -1.04 2.99E-03 

8.99E-

01 

PLXDC1 4.22 6.50E-03 
1.00E+0

0 C16orf72 -0.89 3.12E-03 
8.99E-

01 

C2orf71 -3.47 6.79E-03 

1.00E+0

0 

RP11-

361H10.3 -4.07 3.19E-03 

8.99E-

01 

RNA5SP283 -3.48 6.87E-03 
1.00E+0

0 CDH8 -3.39 3.25E-03 
8.99E-

01 

XXbac-

BPG181M17.

6 -3.48 6.87E-03 

1.00E+0

0 TBC1D17 1.15 3.26E-03 

8.99E-

01 

RP11-

764K9.4 -1.54 7.03E-03 

1.00E+0

0 ADAMTS6 -1.46 3.27E-03 

8.99E-

01 

FAM195B -1.83 7.09E-03 

1.00E+0

0 CDV3P1 -4.16 3.40E-03 

8.99E-

01 

RNA5SP248 -3.48 7.36E-03 

1.00E+0

0 

XXbac-

BPG252P9.9 2.67 3.42E-03 

8.99E-

01 

KIRREL3 -3.70 7.41E-03 

1.00E+0

0 BANK1 1.98 3.44E-03 

8.99E-

01 

PRRG3 -1.67 7.65E-03 

1.00E+0

0 RP11-69E11.4 1.99 3.64E-03 

8.99E-

01 

RP5-968J1.1 3.05 7.65E-03 

1.00E+0

0 STARD4-AS1 2.18 3.73E-03 

8.99E-

01 

MET -0.58 7.96E-03 

1.00E+0

0 RPS7P4 -3.23 3.78E-03 

8.99E-

01 

AC005003.1 1.59 7.98E-03 
1.00E+0

0 RP11-75L1.2 -1.34 3.80E-03 
8.99E-

01 

RP11-181C3.1 2.89 8.02E-03 

1.00E+0

0 SMN2 -1.08 3.85E-03 

8.99E-

01 

POLD4 -1.62 8.03E-03 
1.00E+0

0 TMEM139 -1.17 3.88E-03 
8.99E-

01 

hsa-mir-6723 3.32 8.07E-03 

1.00E+0

0 IFITM1 2.42 3.97E-03 

8.99E-

01 

HIST1H4A 3.67 8.15E-03 
1.00E+0

0 JAKMIP3 3.17 4.04E-03 
8.99E-

01 

RP11-

494K3.2 -4.30 8.41E-03 

1.00E+0

0 STAU2-AS1 -4.45 4.06E-03 

8.99E-

01 

RP11-462L8.1 2.31 8.60E-03 
1.00E+0

0 
XXyac-
YRM2039.2 -1.85 4.11E-03 

8.99E-
01 

MFI2 -0.68 8.61E-03 

1.00E+0

0 RPL35P5 -1.89 4.14E-03 

8.99E-

01 

RP11-
537I16.2 3.22 8.85E-03 

1.00E+0
0 FCHO1 4.35 4.21E-03 

8.99E-
01 

DIP2A-IT1 2.50 8.88E-03 

1.00E+0

0 SERBP1P1 -1.52 4.23E-03 

8.99E-

01 

CLIC2 -3.19 9.02E-03 
1.00E+0

0 TMEM97 1.05 4.27E-03 
8.99E-

01 
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RP11-
449P15.2 -2.13 9.28E-03 

1.00E+0
0 RNA5SP252 -3.69 4.31E-03 

8.99E-
01 

ANKRD36B 0.84 9.28E-03 

1.00E+0

0 C16orf45 1.49 4.41E-03 

8.99E-

01 

SLC6A20 2.54 9.31E-03 
1.00E+0

0 PSG4 -6.27 4.43E-03 
8.99E-

01 

FAM153C 2.47 9.49E-03 

1.00E+0

0 CTB-13H5.1 -1.30 4.49E-03 

8.99E-

01 

S1PR3 -1.49 9.54E-03 
1.00E+0

0 RP11-297C4.1 3.76 4.50E-03 
8.99E-

01 

LRRFIP1P1 1.10 9.61E-03 

1.00E+0

0 RNA5SP248 -3.08 4.52E-03 

8.99E-

01 

RPL35P3 -2.71 9.77E-03 
1.00E+0

0 AC079354.3 -4.01 4.64E-03 
8.99E-

01 

CTC-

228N24.1 -3.25 9.86E-03 

1.00E+0

0 NBPF15 -1.25 4.68E-03 

8.99E-

01 

CTD-
2555O16.2 -3.25 9.86E-03 

1.00E+0
0 RNA5SP195 -2.78 4.68E-03 

8.99E-
01 

PPARGC1A 1.89 9.93E-03 

1.00E+0

0 NPM1P21 -2.11 4.71E-03 

8.99E-

01 

RP11-
390D11.2 -3.26 9.98E-03 

1.00E+0
0 

RP11-
251G23.2 7.25 4.72E-03 

8.99E-
01 

CASC14 -3.26 9.98E-03 

1.00E+0

0 RNU4-80P -3.25 4.75E-03 

8.99E-

01 

RP11-347P5.1 -3.09 1.00E-02 
1.00E+0

0 TMEM156 -3.76 4.77E-03 
8.99E-

01 

 

Figure 3.A5.  Quantification of gene counts for cells across individual samples. Samples are 

colored by race and ranked from high to low average gene counts per individual.  
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Table 3A.3. Differentially methylated CpG sites for selected differentially expressed genes 

and their annotations 

Gene Name pct.meth.change DNAm.pvalue Islands_Name Relation_to_Island 

AKR7L cg18202521 24.60 7.15E-03 chr1:19600249-19600942 Island 

AKR7L cg13935437 29.85 1.07E-02 chr1:19600249-19600942 Island 

AKR7L cg11376198 26.55 1.28E-02 chr1:19600249-19600942 Island 

AKR7L cg20677058 16.68 4.52E-02 chr1:19600249-19600942 Island 

AKR7L cg12798157 22.67 1.56E-02 chr1:19600249-19600942 Island 

AKR7L cg09045262 15.75 2.95E-02 chr1:19600249-19600942 Island 

        

GSTM1 cg16180556 -10.51 3.47E-02 

chr1:110230238-

110230614 Island 

        

PRDM16 cg14761019 -22.59 1.08E-02 chr1:3028179-3028557 Island 

PRDM16 cg23022057 -18.89 2.05E-02 chr1:3351365-3351632 S_Shore 

PRDM16 cg22730864 -18.69 1.69E-02 chr1:3163969-3164643 N_Shelf 

PRDM16 cg01713250 -18.45 2.09E-03  OpenSea 

PRDM16 cg04423188 -17.69 9.94E-03 chr1:3327991-3329424 Island 

PRDM16 cg02481237 -16.61 6.47E-03 chr1:3071899-3072239 N_Shore 

PRDM16 cg26846424 -16.24 8.45E-03 chr1:3310102-3311035 Island 

PRDM16 cg12096707 -15.97 1.55E-04 chr1:3071899-3072239 S_Shore 

PRDM16 cg18381051 -15.84 3.94E-02 chr1:2983925-2987962 Island 

PRDM16 cg06748955 -15.52 1.89E-02  OpenSea 

PRDM16 cg26407161 -15.29 1.48E-02 chr1:3028179-3028557 S_Shore 

PRDM16 cg06970772 -15.18 4.37E-04 chr1:3275029-3275284 N_Shelf 

PRDM16 cg10021614 -15.10 1.41E-02 chr1:3028179-3028557 S_Shore 

PRDM16 cg02404410 -15.05 2.74E-03 chr1:3163969-3164643 N_Shelf 

PRDM16 cg24514678 -14.83 1.99E-02 chr1:3147845-3148081 N_Shelf 

PRDM16 cg06911744 -14.10 4.02E-02 chr1:3275029-3275284 S_Shore 

PRDM16 cg22726349 -13.45 4.83E-03 chr1:2990030-2990718 Island 

PRDM16 cg12599275 -13.42 2.59E-03  OpenSea 

PRDM16 cg19243842 -13.39 1.60E-02 chr1:3059050-3059268 N_Shore 

PRDM16 cg27444751 -12.90 1.67E-02 chr1:3028179-3028557 S_Shore 

PRDM16 cg12884780 -12.67 6.06E-03 chr1:3080934-3081292 N_Shelf 

PRDM16 cg01071314 -11.73 2.47E-02 chr1:3275029-3275284 S_Shelf 

PRDM16 cg01602345 -11.69 2.66E-02 chr1:3275029-3275284 S_Shelf 

PRDM16 cg01062116 -11.61 1.65E-02 chr1:3351365-3351632 S_Shore 

PRDM16 cg01593475 -11.39 3.51E-02 chr1:3203765-3204453 S_Shelf 

PRDM16 cg11229543 -11.00 2.30E-02 chr1:2983925-2987962 Island 

PRDM16 cg09077530 -10.98 1.25E-02  OpenSea 

PRDM16 cg14706825 -10.98 4.44E-02  OpenSea 

PRDM16 cg08876274 -10.97 1.89E-02 chr1:3028179-3028557 Island 

PRDM16 cg14030836 -10.95 2.15E-04 chr1:2990030-2990718 S_Shore 

PRDM16 cg26300135 -10.87 3.08E-02 chr1:3321269-3322310 S_Shore 
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PRDM16 cg10588310 -10.66 5.66E-03 chr1:3331986-3332227 Island 

PRDM16 cg14659814 -10.59 4.14E-02  OpenSea 

PRDM16 cg08110058 -10.39 3.88E-02 chr1:3071899-3072239 S_Shore 

PRDM16 cg22396632 -10.30 7.29E-03 chr1:3080934-3081292 N_Shore 

PRDM16 cg15059176 -10.18 2.73E-02 chr1:3307069-3307285 N_Shore 

PRDM16 cg16011907 -10.07 4.21E-02  OpenSea 

PRDM16 cg21604357 -10.05 2.66E-02 chr1:3028179-3028557 N_Shore 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.A6.  Power simulation for sample size A) Power analysis for sample size groups 

based on number of counts B) FDR estimates for sample size and counts C) Distribution of 

counts per gene  
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Chapter 4 

Characterizing Inter-individual Differences in Transcriptomic Response to Bisphenol 

Exposure of Normal Mammary Cells 

Introduction 

Every year, the number of environmental chemicals in production and circulation 

increases, yet the experimental evaluation of the risk they pose on human health progresses at a 

much slower rate. A growing body of evidence points to inter-individual differences in response 

and susceptibility to these toxicants, highlighting the need for experimental models of precision 

toxicology able to capture gene-environment interactions and their effects on disease outcomes.  

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer 

death among women worldwide.1,147 Although approximately 10% of breast cancer diagnoses are 

attributable to hereditable risk factors, such as BRCA mutations, the vast majority (70-90%)  of 

cases occur in women with no family history, suggesting that extrinsic factors are primarily 

responsible for lifetime cancer risk.37 The implications of this for public health intervention are 

hopeful—environmental factors are characterizable and modifiable, and thus present tangible 

targets for breast cancer prevention. 

AA individuals experience disproportionate exposure to environmental toxicants such as 

air pollution, beauty products, and endocrine disrupting chemicals, all of which have been linked 

to human disease.46,148,149 Additionally, human biomarker analyses in the National Health and 

Nurses Examinates Study (NHANES) provide quantitative measures for race associated 

differences in exposure doses as well as toxicological response to chemicals.150,151 

Of the chemicals AA women are disproportionately exposed to, Bisphenol-A (BPA) and 

its analogues are of interest due to their ability to alter mammary gland morphogenesis and 

stemness in vivo and in vitro.47,152–154 Bisphenols are ubiquitously used in the manufacturing of 

plastics and epoxy resins used in food packaging, kitchenware, coatings of cans and jars, dental 
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materials, toys, thermal paper, and more.155,156 Due to this widespread use, common routes of 

exposure include oral, inhalation, and transdermal.156  BPA and BPS have been measured in 

human urine and breast milk at concentrations ranging from 1nM to 6uM and MCF-7 ER 

positive cancer cells have been observed to exhibit alterations in stem-related genes when 

exposed to concentrations as low as 10nM of BPA.47,157,158  Classified as xenoestrogens due to 

their ability to bind and activate the estrogen receptor (ER), bisphenols have been implicated in 

carcinogenesis, however their mechanism of action remains unclear. Studies characterizing 

bisphenol exposure of normal mammary cells are limited, thus whether or not bisphenols 

contribute to carcinogenic transformation of normal mammary cells remains to be seen.  

Additionally, animal and cell line models are unable capture inter-individual differences in 

response to bisphenol exposure. Given the ubiquitous and wide dose range of human exposure to 

bisphenols, characterizing inter-individual differences in response to bisphenol exposure is 

imperative to our understanding of their health risks.  

In this study we aim to characterize the effects of BPA, BPS, and BPF on normal 

mammary cells from diverse individuals across a range of human relevant doses. We leverage 

high throughput single cell RNA-seq to gain insight into transcriptomic alterations elicited by 

bisphenol, gain insight into their mechanisms of action, and test if this is a viable model of the 

normal breast for precision toxicology that can be expanded to other chemicals. 

Materials and Methods 

Sample acquisition and selection 

This experiment utilized normal mammary samples acquired from the Susan G. Komen 

normal tissue bank which had been previously established and expanded by conditional 

reprogramming (CR) culture in Chapter 3.111  6 samples (n=3 AA, n=3 EA) which were closely 

matched by age (AA= 25.6 (1.2), EA= 25.0 (1.7)) , BMI (AA =27.7 (7.6), EA = 27.1 (6.6)), and 

days since last period (AA= 8.6 (1.5), EA= 15.3 (4.2)) were selected to be used for this 

experiment.  

Bisphenol dose preparation  

Bisphenol-A (Sigma-Aldrich cat.no. 239658, lot no. MKCD7508), Bisphenol-S (Sigma-

Aldrich cat. no. 103039, lot. no. MKCL2824) and Bisphenol-F (Alfa Aesar cat. 
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no.AAA1141703, lot. no. 10211585) 10mM stocks were made by dissolving each chemical in 

DMSO. The 10mM stocks were frozen at -20°C for storage. Intermediate stocks of 5mM, 

2.5mM, 160µM, 80 µM , 5µM, and 2.5 µM were made for each chemical by serial dilution with 

DMSO and F-media the week of the experiment and frozen at -20°C.  The chemical doses used 

on the cells were made fresh the day of dosing by diluting the intermediate stocks with F-media 

to final concentrations of 25 µM, 0.8 µM, and 0.025 µM, with a final DMSO content of 0.05%.  

Controls were made by diluting DMSO with F-media to a final concentration of 0.05% DMSO.  

Conditional reprogramming culture and dosing  

Conditionally reprogrammed cells from each sample (KCR8195, KCR8580, KCR8519, 

KCR7889, KCR7953, KCR7518) were thawed from cryopreservation and plated individually in 

CR culture. All samples were plated at passage 1. Once confluence was reached (3-4 days), cells 

were differentially trypsinized (Gibco 0.05% Trypsin/EDTA), counted, and viability was 

assessed using acridine orange/propidium iodide staining (LUNA FL Dual Fluorescence Cell 

Counter). From the cell counts, 650,000 cells from each individual were pooled and the pooled 

sample containing a mix of cells from all 6 individuals was split and plated into 12 T-75 flasks of 

300,000 cells, one flask for each dose (0 µM, 0.025 µM, 0.8 µM, 25µM) of each chemical (BPA, 

BPS, BPF). After growing in normal CR conditions for 48 hours, each flask was dosed with its 

designated F-media including one of the bisphenols or DMSO control and grown for another 48 

hours. 

Sample collection and multiplexing 

On the day of sample collection, wash buffers (PBS + 0.04% BSA and PBS + 0.1% BSA, 

Gibco) for cell multiplexing were prepared fresh. All 12 flasks were differentially trypsinized 

(Gibco 0.05% Trypsin/EDTA), centrifuged (500gs for 5 minutes), and resuspended in wash 

buffer.  Following the manufacturer’s specifications for CellPlex preparation of cell lines, each 

of the 12 samples was incubated with a unique feature barcode oligonucleotide for multiplexing. 

(10x Genomics). Once incubation, washing, and oligo tagging was complete, concentration and 

viability was quantified for each of the 12 samples.  117,000 cells were taken from each sample 

and pooled, and concentration and viability of pooled sample was measured. The concentration 

of the pooled sample was adjusted for a final target concentration of 1,300-1,600 cells/µL for 

targeted cell recovery of 10,000-30,000 cells per Chromium Next GEM Chip G run.  The pooled 
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sample was transported on ice to the University of Michigan Advanced Genomics Core for 

sequencing.  

Single cell RNA-sequencing and library construction  

Oligo tagged multiplexed cells were run across two Chromium Next GEM G Chips core 

using the manufacturer’s protocol and reagents.  Briefly, CellPlex labeled cells contained within 

the 10x Master Mix were loaded onto the Chromium chip along with partitioning oil and gel 

beads in order to generate Gel Beads-in-Emulsion (GEMs). Each GEM consists of an oil droplet 

encapsulating a CellPlex labeled cell and a barcoded gel bead. Once GEMS were generated, the 

encapsulated cells were lysed and gel beads were dissolved, releasing primers.  Within the GEM, 

the poly (dT) primer for cDNA generation and the Capture Sequence 2 primer for multiplexing 

libraries were simultaneously engaged in separate reactions in order to generate cDNA from 

mRNA and barcoded DNA from the CMO barcodes. cDNA was PCR amplified and 

multiplexing were constructed. Sample libraries were run on a NovaSeq 6000 DNA sequencer 

(Illumina).The 10x genomics CellRanger Multi pipeline was used to analyze the generated single 

cell gene expression and multiplexing libraries. Briefly, “cellranger mkfastq” was run to generate 

demultiplexed FASTQ files. “Cellranger count” was run on each GEM well that was 

demultiplexed to generate feature barcode libraries for CMOs and gene expression libraries for 

each cell.  The output gene expression and barcode matrices were then further analyzed 

downstream for QC and cell selection.  

Single cell data analysis 

Sample deconvolution using Demuxlet: To identify which cells from the sequenced cell 

pools derived from which sample, we used the genetic demultiplexing tool Demuxlet.159 

Demuxlet assigns cells to individual samples based on a genetic reference and polymorphisms 

called from the single cell RNA-seq data. From the CellRanger Multi output, we analyzed the 

aligned read BAM files for each CellPlex pool using the TOPMED imputed genome VCF files. 

We used the settings “r2-info 0.8”, “doublet-prior 0.05”, “alpha 0”, and “alpha 0.5”. After 

running Demuxlet, the “best guess” for the Sample ID and “droplet type” were added to the 

metadata of the gene expression matrix. 
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QC and high quality cell selection: The R package Seurat112,113 was used for all of the 

initial QC and cell selection. Individual gene expression matrixes from the 12 multiplexed 

samples were merged into a singular Seurat object.  Cells were filtered and selected if they met 

QC criteria of less than 25% mitochondrial genes and gene counts (nFeature_RNA) between 200 

and 7500 genes. Additionally, cells were further filtered based on the droplet type identified by 

Demuxlet and selected if they were identified as singlets.  Once high quality cells were selected, 

they were normalized using the “LogNormalize” method in Seurat and highly variable features 

were identified. Data was then scaled by regressing on percent mitochondrial genes. Linear 

dimension reduction was run on the scaled data using variable genes to identify the top principle 

components (PCs).  

Unbiased clustering and cell type identification: Unbiased clustering was performed 

using the top 10 PCs at a resolution of 0.075.  Non-linear dimension reduction (UMAP) was also 

performed using the top 10 PCs.  Cell type markers were used to identify myoepithelial 

(KRT5/KRT14) and luminal (KRT8/KRT18) cells which separated into two clear clusters at a 

resolution of 0.075.   

Differential gene expression analysis: Cells were split by cell type (luminal and 

myoepithelial) and differential gene expression (DGE) analysis was performed using the 

Pseudobulk method.114  For each cell type, pseudobulk samples were generated by aggregating 

across the variables “Sample”, “Treatment”, and “Dose”. Pseudobulk samples with low counts 

(<20 cells) and genes with low counts (min.total.count =5) were filtered out.  Composition biases 

were corrected for by computing normalization factors with the trimmed mean of M-value. 

Multi-dimensional scaling, negative binomial dispersions, and quasi-likelihood dispersions were 

performed to calculate mean and per-gene variance. Generalized linear models (GLM) were fit to 

the counts for each gene and differential gene expression testing was performed between controls 

and each dose (0.025µM, 0.8 µM, 25 µM) for each chemical (BPA, BPS,BPF). 

CytoTRACE: The Cellular (Cyto) Trajectory Reconstruction Analysis using gene Counts 

and Expression (CytoTRACE)115 package in R was used to predict the differentiation state of 

cells. CytoTRACE leverages the number of detectably expressed genes per cell as a read out of 

developmental potential. Each individual cell was assigned a CytoTRACE score where cells with 
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a higher number of genes per cell were considered more transcriptionally diverse, which 

correlates with a more “stem cell” like gene expression profile. 

Hybrid Analysis: Luminal/myoepithelial hybrid cells were identified by extracting the 

gene counts for marker genes KRT5 and KRT14.  Cells in the upper 50% quantile for each gene 

were considered “highly expressed” and cells which highly co-expressed both KRT5 and KRT14 

were labeled as hybrid cells.111 The “FindMarkers” function in Seurat was used to perform 

differential expression testing using the Wilcoxan rank sum test to identify  marker genes 

distinguishing the hybrid cells from all other cells in order to identify a hybrid cell signature.  

Single cell Gene Set Enrichment Analysis: The escape package in R was used to perform 

single cell gene set enrichment analysis (GSEA),116 assigning each individual cell an enrichment 

score for relevant gene sets. Gene sets were pulled from the Hallmark and C2 libraries from the 

Molecular Signatures Database (MSigDB)117 and enrichment was performed using escape.  

Cell Cycle Scoring and Regression :Cell cycle phase scores were generated for each cell 

using the Seurat cell cycle scoring pipeline.118  Scores were then used to assign phases S or 

G2/M to each cell and stored in the metadata.  

Benchmark Dose Analysis: To calculate dose-response relationships for individual genes 

and pathways and chemical treatments, we performed benchmark dose (BMD) analysis using 

BMDExpress2. We performed counts per million normalization from the pseudobulk aggregated 

counts matrices. Counts per million data were then loaded into BMDExpress2 based on chemical 

exposure (BPA, BPS, and BPF) across doses by cell type (luminal, myoepithelial). Genes were 

first filtered using analysis of variance (ANOVA) with an unadjusted p-value cutoff of 0.05 

across doses. Benchmark dose analyses were conducted on the ANOVA filtered gene list using 

the hill, power, linear, poly 2, poly3, exponential 2 ,exponential 3, exponential 4, and exponential 

5 methods. The benchmark response was a 1 standard deviation change, and the best model was 

selected using a nested chi-squared test followed by the lowest Akaike information criteria 

(AIC). Benchmark doses for pathway alterations were calculated for all Gene Ontology 

categories and Reactome pathways, with pathway enrichment calculated via a Fisher’s Exact 

test. We additionally calculated enrichment for the MSigDB gene sets as described in the section 

above.  
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Results 

Multiplexed Bisphenol Exposed Cells from Genetically Diverse Individuals Can Be 

Successfully Deconvoluted using Genetic Variation 

Conditionally reprogrammed mammary cells from 6 diverse individuals (n=3 AA, n=3 

EA) were cultured, pooled, and exposed to 0, 0.025, 0.8, or 25 µM of BPA, BPS, or BPF (Figure 

4.1).  Each of the 12 experimental conditions was tagged with a cell multiplexing oligo (CMO) 

prior to single cell RNA-sequencing. Following sequencing, the 12 experimental conditions were 

deconvoluted using Cell Ranger and the individual samples were deconvoluted using the 

Demuxlet algorithm and DNA extracted from Chapter 3.  After sample deconvolution, we 

determined the cell counts for each individual, which ranged from 912 – 9629 cells per 

individual (Table 4.2). We saw more consistency in cell counts across the experimental 

conditions, with a total of 4970 vehicle controls and bisphenol treated cells ranging from 1268-

1675 cells per experimental condition (Table 4.3).  

Bisphenol Treated Mammary Cells Cluster by Cell Type and Vary by Individual 

Unbiased clustering of all cells which met our filtering criteria showed that there was no 

distinct clustering by bisphenol treatment and that cells primarily cluster by luminal and 

myoepithelial cell type (Figure 4.2 B-D). Both luminal and myoepithelial clusters contain cells 

from all 6 individuals, however, the proportions of luminal and myoepithelial cells vary highly 

by individual (Table 4.2). Within the luminal and myoepithelial cell type clusters, there also 

appears to be sub-clustering by individual (Figure 4.2A).  

Bisphenol Treated Mammary Cells Include Hybrid KRT5/KRT8 and EPCAM/VIM 

Hybrids Which Vary by Individual  

We explored the presence of the hybrid cell types discussed in Chapters 2 and 3 and 

found that both KRT5/KRT8 Luminal/Basal (L/B) and EPCAM/VIM (E/M) hybrids were present 

in all of our samples following exposure to bisphenols.  Consistent with prior findings, L/B 

hybrids cluster mostly in a subsection of the luminal cell cluster, whereas E/M hybrids are in 

both clusters, but mostly diffuse across the luminal cluster (Figure 4.3 A,C). Proportions of 

hybrids varied by individual for both hybrid cell types (Figure 4.3).  
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Differential Gene Expression Reveals Individual Bisphenols Elicit Unique Transcriptomic 

Alterations Highly Variable by Cell Type and Dose  

After differential gene expression was performed controlling for differences by 

individual, the different bisphenols showed distinct transcriptomic differences in directionality 

and magnitude, which were variable by cell type and dose. For upregulated genes, BPA showed 

the highest number of DEGs at 25µM for both cell types, BPS for 0.8µM in myoepithelial and 

0.025 µM in luminal, and BPF at 0.8 µM for luminal and 0.025 µM for myoepithelial.  For 

downregulated genes, BPF showed the highest number of DEGs for all luminal doses and 0.025 

µM for myoepithelial. BPS had the most DEGs for 0.8 µM and 25 µM for myoepithelial cells. 

(Figure 4.4).   

When looking at overlaps between DEGs stratified by cell type and direction of fold 

change, only a small fraction of total DEGs overlapped across the conditions. The greatest 

number of overlaps was across 5 out of the 9 doses in the myoepithelial downregulated genes 

(Figure 4.5D). For overlaps between all three bisphenols at the highest dose 25 µM, there were 

47 upregulated and 38 downregulated overlapping DEGs in luminal cells, and 30 upregulated 

and 45 downregulated overlapping DEGs in myoepithelial cells (Figure 4.5 A-D). Overall 

bisphenol exposure appears to induce a more heavily downregulated transcriptomic signature 

across doses and chemicals.  

We further investigated genes which met the FDR <0.05 cutoff to characterize their 

magnitude and directionality across 0.8 µM and 25 µM. While transcriptomic differences remain 

by cell type, bisphenol, and dose, there were a few notably consistent alterations. MUCL1 was 

significantly downregulated at both doses of BPA, BPF, and BPS in luminal cells. NFKBIA was 

significantly downregulated for both cell types at 0.8 µM and 25 µM for BPS and BPF, however it 

was not significantly different for BPA. GREB1, an estrogen responsive gene, was significantly 

upregulated at 25 µM BPF and BPS in luminal cells. GATA3, associated with ER positive breast 

cancers, was significantly upregulated at 25 µM BPA and BPF for both luminal and 

myoepithelial subtypes, but not for BPS.  

Overall, characterizing similarities as well as differences in transcriptomic alterations 

induced by bisphenols stratified by cell type, provides useful insight into potential mechanisms 

of action and genes of interest to probe further.  
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Benchmark Dose Analysis and Single Cell Gene Set Enrichment Reveal BPS Elicits 

Significant and Distinct Transcriptomic Alterations at Low and High Doses  

To extrapolate the accumulated gene alterations of bisphenols for doses spanning our 

0.025-25 µM range, we performed benchmark dose analysis using the significant genes 

identified from the differential gene expression analysis. Accumulation, indicating the number of 

significantly affected genes at the corresponding dose, showed similar rates of increase for BPA 

and BPF in both luminal and myoepithelial cell types (Figure 4.7). BPS exposed myoepithelial 

cells exhibited the highest accumulation overall spanning all doses, however, the BPS exposed 

luminal cells showed the highest levels of accumulation at the lowest tested dose and below.   

We also performed single cell gene set enrichment (GSEA) for a number of breast 

cancer, stem cell, and estrogen associated gene sets.  Overall, we did not see any strikingly clear 

enrichment for any of the selected gene sets across chemicals, however, comparisons of the 

enrichment signatures across bisphenols reinforces the prior observations that BPA, BPF, and 

BPS elicit distinct transcriptomic alterations with some overlapping similarities (Figure 4.8 A).  

Due to the high accumulation results of BPS from the benchmark dose analysis and a 

faint signal from overall GSEA, we decided to take a closer look at the enrichment of the 

WONG_EMBRYONIC_STEM_CELL_CORE and SMID_BREAST_CANCER_BASAL_UP 

gene sets across BPS doses. We see significantly different enrichment for both of these gene sets 

compared to control for both luminal and myoepithelial cells across all doses except 25 µM 

SMID in myoepithelial cells (Figure 4.8 B-E).  Interestingly, at 0.025 µM BPS cells exhibited 

enrichment scores greater than controls, however 0.8 µM and 25 µM were significantly lower.  

This non-monotonic response of BPS at low vs higher doses was also observed when 

looking at the overlaps between BPS DEGs at these doses and the genes in the Wong gene set.  

We overlapped all doses of BPS by luminal and myoepithelial subtype with the 335 genes in the 

Wong gene set and found the following overlaps – 0.025 µM (n=30 genes), 0.8 µM (n=4 genes), 

25 µM (n=30 genes). We observed more overlaps in the myoepithelial subset with 0.025 µM 

(n=37 genes), 0.8 µM (n=89 genes), 25 µM (n=155 genes).  None of the luminal-Wong 

overlapping genes were shared across all three doses. However, for the myoepithelial- Wong 

overlaps, 30 of the genes were differentially expressed across all 3 doses (p<0.05) (Table 4.4). 

Interestingly, 29/30 genes for 0.025 µM were upregulated, whereas for the other two doses, the 
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majority of genes were downregulated.  A number of these genes have been linked to cell cycle 

and proliferation, and a few AURKA, CDCA3, CDC20, CDCA8 have even been linked to breast 

cancer and estrogenic pathways.  

 

Individuals Exhibit Distinct and Variable Transcriptomic Responses to Bisphenol 

Exposure  

Finally, we aimed to characterize inter-individual response to bisphenol exposure and if 

transcriptomic alterations are individual specific.  For this we selected the top 20-25 most 

differentially expressed genes (FDR significance) at 25 µM for each bisphenol and looked at fold 

change differences in the selected genes between control and 25 µM for each individual. Overall 

we see the most variation in inter-individual response for BPS in both luminal and myoepithelial 

cells, with a mixture of up and down regulated genes. Conversely, when stratified by individual, 

25 µM BPF exposure exhibits a down regulated, low expressing signature across most samples. 

Together, this indicates differences in transcriptomic response to bisphenols by chemical and 

individual, and provides preliminary evidence for inter-individual chemical susceptibility.  

Discussion  

This study leverages a high resolution single cell dataset of bisphenol exposure 

multiplexed across 3 chemicals, 12 human relevant doses, and 6 genetically diverse individuals 

to perform integrated transcriptomic analyses characterizing their effects. From these analyses 

we come to the following main conclusions in our study 1) BPA, BPF, and BPS induce distinct 

transcriptomic alterations on mammary cells, which vary by cell type 2) The magnitude of 

transcriptomic alteration is highly dose and chemical dependent, and in some cases non-

monotonic 3) Individuals exhibit differences in transcriptomic response to bisphenol DEGs  4) 

Response to bisphenol exposure in our study does not appear to strongly induce changes in 

canonical estrogen pathways.  These findings add to the growing body of evidence that 

bisphenols are relevant environmental chemicals to study in relation to breast cancer risk, that 

they likely have both estrogenic and non-estrogenic mechanisms of action, and that analogues of 

BPA, which were introduced as replacements, elicit distinct, potentially worse, transcriptomic 

alterations on mammary cells.  
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We were able to characterize significant transcriptomic alterations in mammary cells, 

however, the majority of these DEGs did not seem to highlight a clear estrogenic signal or 

pathway activation.  One reason for this could be that expression of ESR1 and ESR2 is fairly low 

in our cells, likely an effect of the CR culture conditions. Although we did not detect strong 

enrichment for estrogenic pathway activation, we did identify a number of genes associated with 

estrogen signaling and response. GREB1, an estrogen responsive gene correlated with expression 

in hormone responsive cancer, was found to be upregulated 25 µM for BPF and BPS in luminal 

cells but not myoepithelial.160,161 Isoforms of GREB1 have been found regulate proliferation in 

both ER positive and ER negative breast cancer cell lines, with increased or decreased 

proliferation dependent on isoform specificity.162 AURKA, which is overexpressed in breast 

cancer and inducible by estrogen, was found to be upregulated at the lowest dose of BPS but 

down regulated at the two higher doses.163,164 While others have characterized these genes as 

estrogen responsive in other in vitro and in vivo models, our data does not strongly suggest 

estrogen mediated alterations.  

Non-estrogenic effects of bisphenols have been characterized by others and due to our 

cells not expressing the estrogen receptor, it is likely that the transcriptomic effects we observe 

are through non-estrogenic pathways. In cervical cancer cell lines, HeLA, siHa, and C-33A, 

exposure to 1uM and 1nM BPA promoted in vitro migration and activity of NFkB.165 NFKBIA 

was significantly downregulated (p<0.05) at 0.8uM and 25uM for both BPS and BPF, thus the 

NFkB pathway is a promising target to explore further in our differential gene expression 

analysis. In estrogen negative breast cancer cell lines SUM149 and SUM190, BPA exposure 

activated EGFR and ERK signaling and enhanced proliferation through EGFR mediation.166 

Additionally, the author’s note that EGFR activation in response to BPA also correlated with an 

increase in GPER, the alternate ER receptor. BPA exposure also was found to trigger 

tumorigenesis and progression of laryngeal cancer cells via GPER upregulation of IL-6, thus 

making it another promising non-estrogenic target to investigate further.167  

The single cell resolution of this data allowed us to characterize differences by luminal 

and myoepithelial cell type, which adds significant computational rigor to our analysis. Our 

differential gene expression results show distinct transcriptomic signatures in response to 

bisphenols between luminal and myoepithelial cell types, suggesting that bisphenols may have 
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distinct mechanistic targets based on cell type. For example, genes like GREB1 and MUCL1 

were found to be differentially expressed exclusively in the luminal cell type. GREB1 is 

significantly upregulated in luminal TCGA tumors, but significantly down regulated in the 

HER2 positive and TNBC subtypes.168 MUCL1 was significantly downregulated in BPA, BPF, 

and BPS treated luminal cells, and luminal TCGA tumors also exhibit significant downregulation 

of this gene.168   In bisphenol exposed myoepithelial cells, AURKA, GATA3, and KIF23 are 

differentially expressed, but not in luminal cells. These genes are expressed most highly by triple 

negative TCGA tumors as well as found to promote EMT, proliferation, and self-renewal and are 

regulated by the FOXM1 transcription factor.169–173 This stratified cell type differential gene 

expression analysis provides greater precision for identifying and prioritizing genes of interest 

which in turn sheds insight into potential mechanistic differences in response to bisphenols.  

Lastly, the non-monotonic dose response we observe with BPS as well as the inter-

individual differences in DEG expression highlight the pressing need for improved models of 

precision toxicology which can model dose-dependent inter-individual differences in response to 

chemicals.  With BPS, we observe upregulation of cell cycle and proliferation associated genes 

at 0.025 µM, but downregulation of these same genes at the higher doses. This non-monotonic 

dose response coupled with the distinct transcriptomic signatures and directionality we observe 

between the low and high doses suggest differential pathway activation dependent on dose of 

exposure.  

While our experimental design allowed us to test 12 different chemical treatments across 

6 individuals, these were all captured at one 48 hour time point. Future experiments could be 

designed to include a range of time points to gain more insight into how cells respond to 

bisphenols over time. Additionally, while growing pooled cells from different individuals in the 

same flask helps to correct for potential batch effects, it is possible that cell to cell 

communication occurs between cells from different samples and influences their growth.  

Although the same number of cells were taken from each individual sample to pool, some 

samples proliferated much faster than others leading to an inadequate amount of cells for 

analysis from certain individuals downstream.  Future work to characterize the effects of 

growing cells from different individuals in one culture can be performed to understand and 

standardize this process better.  
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Overall, this study demonstrates the computational power of single cell technology to 

characterize differences in bisphenol exposure across multiple chemicals, doses, and individuals, 

and highlights the importance of stratified analyses to detect these differences by dose and 

individual.  Future work will involve expanding the experimental model to test a greater range of 

chemicals and doses. Additionally, functional experiments and epigenetic profiling could provide 

crucial mechanistic insight into the effect of bisphenols on normal mammary cells.  
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Tables and Figures 

 

Figure 4.1. Experimental design and overview. Conditional reprogramming of AA and EA 

matched normal mammary samples, bisphenol exposure and cell multiplexing single cell RNA 

sequencing. 

 

Table 4.1. Overview of sample demographics. 

 

 

 

 



129 
 

 

Figure 4.2. Unbiased clustering by UMAP at 0.075 resolution A) Labeled by sample ID B) 

Labeled by bisphenol treatment C) FeaturePlot of luminal cell type marker KRT8 D) FeaturePlot 

of myoepithelial cell type marker KRT5 

 

  

 

 

 

 

 

 

 

Table 4.3. Cell counts by 

treatment and dose 
Table 4.2. Cell counts by sample 

and cell type                 
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Figure 4.3. Clustering and proportions of hybrid cells A) Clustering of KRT5/KRT8 hybrid 

cells ID B) Proportion of KRT5/KRT8 hybrids by sample C) Clustering of EPCAM/VIM hybrid 

cells D) Proportion EPCAM/VIM hybrids by sample  
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Figure 4.4. Number of differentially expressed genes across bisphenol doses A) Upregulated 

DEGs split by cell type (p<0.05) B) Downregulated DEGs split by cell type (p<0.05) C) FDR 

adjusted upregulated DEGs split by cell type (FDR <0.05) D) FDR adjusted downregulated 

DEGs split by cell type (FDR <0.05) 
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Figure 4.5. Overlapping differentially expressed genes across bisphenol doses A) 

Upregulated DEGs across luminal cells (p<0.05) B) Upregulated DEGs across myoepithelial 

cells (p<0.05)  C) Downregulated DEGs across luminal cells (p<0.05) D) Downregulated DEGs 

across myoepithelial cells (p<0.05) 
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Figure 4.6 (A-F) Differentially expressed genes for 0.8µM and 25µM luminal cells. Genes in 

color met FDR <0.05 cutoff A) BPA 0.8 µM B) BPA 25 µM C) BPF 0.8 µM D) BPF 25 µM E) 

BPS 0.8 µM F) BPS 25 µM 
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Figure 4.6 (G-L) Differentially expressed genes for 0.8µM and 25µM myoepithelial cells. 

Genes in color met FDR <0.05 cutoff G) BPA 0.8 µM H) BPA 25 µM I) BPF 0.8 µM J) BPF 25 

µM K) BPS 0.8 µM L) BPS 25 µM 
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Figure 4.7. Benchmark dose response analysis using DEGs for each bisphenol. 

Accumulation indicates the number of significantly affected genes at the corresponding dose. 
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Figure 4.8. Gene set enrichment analysis of breast cancer, stem cell, and estrogen 

associated gene sets A) Combined heatmap across BPA, BPF, BPS cells and doses B) Heatmap 

of BPS luminal cells by dose for Wong embryonic stem cell and Smid breast cancer basal gene 

sets C) Heatmap of BPS myoepithelial cells D) Violinplot of BPS luminal GSEA by dose. All 

doses were significantly different (linear mixed effects model) from control for both gene sets 

p(<0.05)  E) Violinplot of BPS myoepithelial GSEA by dose. All doses except 25 µM for Smid 

were significantly different from control p <0.05 
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Table 4.4 Overlaps between myoepithelial cells and Wong embryonic stem cell gene set 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Difference in expression of most significant differentially expressed genes by 

individual. A) BPA 25 µM luminal B) BPF 25 µM luminal C) BPS 25 µM luminal D) BPA 25 

µM myoepithelial E) BPF 25 µM myoepithelial F) BPS 25 µM myoepithelial 
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Chapter 5 

Conclusions and Future Directions 

 

Summary of Research Findings 

In this study, we showcase the utility of CR as a biologically relevant ex vivo model of 

the normal breast and highlight the computational power of multi-omic analyses. Our findings 

highlight the precision of high resolution single cell transcriptomics and its utility in 

characterizing distinct differences in cell types (luminal and myoepithelial) and cell states 

(hybrid cells, cell cycle). Additionally, we characterize inter-individual transcriptomic 

differences across genetically diverse individuals and in response to bisphenol exposure.   

In chapter 2 we identify hybrid cell types in normal mammary tissue, conditionally 

reprogrammed mammary tissue, and the mouse mammary gland. These hybrid L/B and E/M 

cells are distinct populations but are both characterized by a stem-like developmentally immature 

phenotype. The emergence of hybrid populations post-CR and during pregnancy in the mouse 

mammary gland suggest that these hybrid states are inducible and transient. This transiency 

provides evidence that hybrid cells may be instrumental in breast remodeling during pregnancy 

and lactation. 

Our integrated multi-omic analysis in chapter 3 revealed that there are no strikingly clear 

race associated differences in transcriptomic expression and DNA methylation between AA and 

EA mammary cells that can be deconvoluted from inter-individual and cell type heterogeneity. 

This suggests that genetic ancestry rather than self-identified race may be a better predictor of 

breast carcinogenesis and outcomes. We found that we were able to integrate DNA methylation 

and genotyping data to give us potential mechanistic insight into a handful of genes of interest, 

although this only accounts for a small fraction of genes we observe to be differentially 

expressed. The highly variable inter-individual differences in gene expression, DNA 

methylation, and eQTL genotypes we report highlight the pressing need to use and develop 

better model systems which are able to capture the genetic variation of diverse individuals.  
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Finally, our results in chapter 4 show that BPA, BPF, and BPS elicit transcriptomic 

alterations on mammary cells across a range of human relevant doses. The magnitude and 

direction of transcriptomic alterations varied by dose, cell type, and by chemical. This is 

exemplified by the results of overlapping DEGs from TCGA tumors between AA and EA 

women and the DEGs from 25uM bisphenol exposure.  For luminal cells, 25uM BPA was the 

only chemical which shared a DEG overlap with the TCGA AA tumors in gene DEFB1.  In 

myoepithelial cells, 25uM BPA had 7 overlaps (CLN8, COL14A1, LPCAT2, PLA2G4A, 

POLR2J3, TINAGL1, TSHZ2), BPF had 2 overlaps (COL14A1, LPCAT2), and BPS had 6 

overlaps (AURKB, CDH1, CDK1, DEFB1, TINAGL1, TSFM). These differences in number and 

identity of differentially expressed genes illustrate the varying effects of each bisphenol. 

Additionally, their overlaps with DEGs from AA tumors provide promising gene targets to 

explore further. In conclusion, mammary cells from genetically diverse individuals exhibited 

differences in transcriptomic response to bisphenol exposure, demonstrating the utility of the CR 

ex vivo system as a biologically relevant model of precision toxicology.  

Relevance to Human Health  

 Breast cancer is the most commonly diagnosed in the world and affects individuals at 

every corner of the globe. These individuals exhibit vast genetic variation and are exposed to 

distinct combinations of environmental exposures. Our findings highlight that genetic ancestry 

and inter-individual differences highly influence an individual’s transcriptomic response to 

environmental exposures and may even influence their risk of cancer incidence and survival 

outcomes.  

 These findings also add to the growing body of evidence that bisphenols are relevant 

environmental chemicals to study in relation to breast cancer risk and that analogues of BPA, 

which were introduced as replacements, elicit distinct, potentially worse, transcriptomic 

alterations on mammary cells. In particular, BPS may be especially potent at low doses. While 

traditional toxicology relies heavily on measures such as no observed adverse effect levels 

(NOAELs) and lowest observed adverse effect levels (LOAELs), given that the low dose of BPS 

induces a proliferative and cancer stem cell signature, whereas the higher doses appear to 

downregulate this, reinforces the importance of characterizing dose specific transcriptomic 

alterations in order to distinguish differences in lowest observed adverse effect levels and the 
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functional dose of chemicals which actually elicit the lowest adverse effects. Additionally, 

NOEALs and LOELs are often determined using model systems which are limited in capturing 

inter-individual differences in toxicant response.  Given the vast range and magnitude of human 

exposure to environmental chemicals and their increased distribution, the pressing need for better 

of models of precision toxicology has never been more imminent. Expanding the use of precision 

toxicology models across a range of environmental exposures and characterizing their effects 

could have major implications for reducing disparities in breast cancer and overall cancer 

incidence. 

Impact and Innovation  

To our knowledge we are the first group to perform an integrated multi-omic analysis of 

normal mammary cells cultured in CR conditions. Additionally, we used advanced 

computational approaches and integrated publicly available data (TCGA, GTEx, UALCAN) into 

our analysis pipelines.  Our bisphenol experiment also involved a novel multiplexing technique 

with pooled cells from multiple individuals which we deconvoluted downstream.  Our 

establishment of the CR system for normal mammary cells and successful transcriptomic 

characterization of genetically diverse individuals will be expanded to test other chemicals. 

Limitations 

 One limitation of this study is that while we are aiming for biologically relevant models 

of the breast, the CR system is not “true normal”. Culturing primary cells in conditions they 

would not normally want to grow in requires significant alterations to occur in them to be 

established.  Additionally, we observe major differences in cell type proportions by individual 

and based on the source of our samples we are unable to determine if these proportions reflect 

the overall composition of an individual’s breast or if they represent an expansion of the few 

cells we acquire after a punch biopsy dissociation. Lastly, we were unable to pick up significant 

race associated transcriptomic differences. This limitation could be due to our sample size being 

not high powered enough to detect alterations.  

Recommendations for Future Research  

The CR model system provides a promising model for precision toxicology and should 

be expanded for use across more chemicals and mammary cells for individuals. Based on the 
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inter-individual heterogeneity of our samples, future experiments comparing the AA and EA 

groups should target a sample size of 20-25 per group in order to be powered enough to detect 

differences across such diverse individuals.  Future work could also be performed to assess the 

effect of mixtures on normal mammary cells, as these are often the form that environmental 

exposures take.  In order to gain mechanistic insight into the response of mammary cells to 

bisphenols, DNA methylation could be performed. Finally, techniques such as high content 

imaging can also be used to further characterize morphometric alterations. 

 

 


