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Abstract 

 
Humans are perturbing the carbon cycle, primarily through the emission of carbon 

dioxide (CO2) from the combustion of fossil fuels, resulting in a warming climate and 

uncertainties in how the carbon cycle will respond to these changes. Cities play an outsized role 

in contributing to climate change, as they are the source of the majority of fossil CO2 emissions. 

Cities are also emerging as leaders in the fight against climate change, through the 

implementation of urban climate action programs, with ambitious emissions reductions targets, 

policy plans to achieve these targets, and self-calculated estimates of emissions tracked in self-

reported inventories (SRIs). As space-based technology for observing CO2 and co-located proxy 

species such as nitrogen dioxide (NO2) improve, satellites are opening up many pathways for the 

estimation of urban CO2 emissions. This dissertation interrogates the utility of space-based 

assessments of urban CO2 emissions and their implications, using observations of CO2 from the 

Orbiting Carbon Observatory-2 (OCO-2) and the Orbiting Carbon Observatory-3 (OCO-3) in its 

urban-focused Snapshot Area Map (SAM) mode, as well as observations of NO2 from the 

TROPOspheric Monitoring Instrument (TROPOMI). 

Applications, methods, and policy implications of assessments of urban CO2 emissions 

with the use of satellite observations are explored in this work. First, global emissions inventory 

representations of five Middle Eastern cities’ fossil CO2 emissions are evaluated using 

comparisons between OCO-2 observations and simulations using the global emissions 

inventories in combination with the column version of the Stochastic Time‐Inverted Lagrangian 

Transport (X‐STILT) model. These comparisons provide optimum inventory scaling factors that 



 xiv 

suggest that the inventory representations are underestimating the Middle Eastern cities’ 

emissions. These results are found to be insensitive to the spatial distribution of the inventories. 

Next, empirical relationships between SAM CO2 and TROPOMI NO2 observations for three 

cities around the world are derived and applied to observed NO2 fields to generate NO2-derived 

CO2 fields (NDCFs). Leveraging the greater availability and quality of the TROPOMI NO2 

observations, the NDCF method demonstrates relatively small methodological uncertainties 

when taken in aggregate, and shows a capacity to estimate emissions at a subannual timescale. 

The last study in this dissertation evaluates the ability of satellite observation-based estimates of 

CO2 to assess urban climate action programs in the U.S. Application of results from previous 

studies using OCO-2 observations as well as extrapolating these results to the use of OCO-3 

SAMs suggest that these satellite-based estimates have some policy relevance. They are shown 

to be able to evaluate the accuracy of SRIs and assess progress toward long-term emissions 

reduction targets, but more improvements in methods need to be made to track emissions year-

to-year and to estimate sectoral emissions. A lack of compatibility between the design of the 

climate action plans and what observations can feasibly be used to estimate is found, which 

limits the ability of satellite-based emissions estimates to achieve policy-relevant urban CO2 

assessments. 
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Chapter 1 Introduction 

1.1 The Changing Carbon Cycle 

Analogous to the water cycle, the global carbon cycle refers to the process by which 

carbon is cycled between four main reservoirs: the atmosphere, the oceans (including the water 

and the marine biosphere), terrestrial land (including soil and the terrestrial biosphere), and the 

lithosphere (Ussiri & Lal, 2017). The biogeochemical cycling of carbon is quite complex, as it 

involves all living things on this planet, inorganic carbon reservoirs, and the links between them 

(Holmén, 1992). Carbon is constantly being exchanged within and between different carbon 

reservoirs, transforming between different molecular forms as it cycles, through a wide variety of 

physical, chemical, and biological processes (Ussiri & Lal, 2017). A number of these processes 

are shown in Figure 1.1, which details the faster components of the carbon cycle (“The Carbon 

Cycle,” 2011). 

Carbon primarily exists in the atmosphere in the form of carbon dioxide (CO2) and 

methane (CH4) (Ussiri & Lal, 2017). In this dissertation, we primarily focus on CO2. There are 

various natural CO2 sinks that take it out of the atmosphere, including the biosphere through 

photosynthesis, chemical weathering by silicate rocks over millions of years, and dissolution into 

the ocean resulting in a lowering of the pH (Caldeira & Wickett, 2003; Ussiri & Lal, 2017). 

However, humans are perturbing the carbon cycle by emitting CO2 into the atmosphere at a rate 

of approximately 10 gigatons of carbon per year (Archer, 2010). The majority of this carbon 

entering the atmosphere is being transferred from the lithosphere due to combustion of fossil 

fuels and cement manufacturing, with additional carbon transferring from the biosphere due to  
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Figure 1.1 The fast carbon cycle, showing the movement of carbon between land, atmosphere, and oceans. Yellow 
numbers represent natural fluxes, while red are human contributions, all in gigatons of carbon per year. White 
numbers show stored carbon. Reproduced from “The Carbon Cycle” (2011). 

destruction of land biomass (Archer, 2010). This anthropogenic perturbation of carbon into the 

atmosphere is the main contributor to human-induced climate change, a phenomenon involving 

the warming of the atmosphere, ocean, and land, all over the world (Masson-Delmotte et al., 

2021). 

1.1.1 Climate Change and Anthropogenic Emissions 

1.1.1.1 Fossil Fuel CO2 Emissions, Climate Change, and the Carbon Cycle 

When discussing climate change, CO2 is the most important greenhouse gas (GHG) in 

terms of its contribution to warming. Prior to the industrial revolution, the CO2 mixing ratio was 

280 ppm (IPCC, 2014); since then, this concentration has broken 420 ppm (“The Keeling  
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Figure 1.2 The CO2 concentration in the air as measured daily since 1958 at Mauna Loa, Hawaii. Reproduced from 
“The Keeling Curve” (2022). 

Curve,” 2022). Figure 1.2 shows concentrations of global CO2, as measured in Mauna Loa, 

Hawaii, taken daily from 1958 to the time of this writing. As we can see in the figure, not only is 

the mixing ratio of CO2 rising, but the rate of growth is also increasing, with the latest 

concentration measurement amounting to 420.42 ppm as of June 21, 2022. This increase in CO2 

concentrations in the atmosphere can be linked to global temperature increases. In Figure 1.3, 

global surface temperatures are shown to be increasing at the present, an abrupt change from a 

period of relatively stable temperatures. This is the result of increased anthropogenic emissions 

of GHGs like CO2 into the atmosphere, which trap radiation from the surface of the Earth and 

radiate it back to the surface and cause warming (Jacob, 1999). 

As we can see in Figure 1.4, the majority of anthropogenic CO2 can be attributed to the 

burning of fossil fuels, both cumulatively and in the period of 2010-2019. Specifically for this 

time period, 86% of the total emissions (EFOS+ELUC) were derived from fossil CO2 emissions 

(EFOS), and 14% were from land-use change (ELUC) (Friedlingstein et al., 2020). Total emissions 

were subdivided between the atmosphere (46%), ocean (23%), and land (31%), with an  
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Figure 1.3 Left: change in global surface temperature (decadal average), reconstructed years 1-2000 and observed 
years 1850-2020. Right: change in global surface temperature (annual average), as observed (black), simulated using 
human & natural factors (brown), and simulated using only natural factors, during the years 1850-2020. Reproduced 
from Masson-Delmotte et al. (2021). 

unattributed budget imbalance (-1%) (Friedlingstein et al., 2020). Note that, as shown in the 

figure, there are uncertainties attributed to each source and sink. 

Given that the majority of anthropogenic CO2 emissions are attributed to the combustion 

of fossil fuels, it is important for us to understand these emissions, for the sake of climate 

mitigation and adaptation, and for the sake of predicting how carbon sinks will behave in the 

future. Tracking fossil CO2 emissions allows us to set accurate baseline values of emissions 

against which to evaluate climate policies, and to monitor the efficacy of climate mitigation 

policies (Ciais et al., 2014). However, understanding these emissions is also important in a more 

indirect way. When assessing global carbon budgets, the carbon cycle scientific community has 

typically assumed fossil CO2 emissions to be a known quantity, studying other components of 

the carbon cycle like the land and ocean sinks by subtracting off fossil emissions (Hutyra et al., 

2014). With such assumptions, it is important for the fossil emissions to be as well constrained as 

possible. Understanding the different components of the carbon cycle is necessary to make 

accurate future projections about the carbon cycle and our climate. For example, changes in the  
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Figure 1.4 Anthropogenic carbon flows, showing cumulative changes during the period of 1850-2019 and mean 
fluxes during the period of 2010-2019. The sink resulting from cement carbonation is included in EFOS. Reproduced 
from Friedlingstein et al. (2020). 

role of the ocean as a global carbon sink could have enormous consequences for GHG 

management, making the understanding of ocean fluxes and how they respond to the climate 

vital (Ciais et al., 2014). The future role of the land biosphere is also an unknown, as we do not 

understand the mechanisms controlling land uptake well enough to project how it will behave in 

the future (Archer, 2010). By the end of this century, it is quite possible that warming may turn 



 6 

the ocean and soils into carbon sources instead, amplifying rather than mitigating the effects of 

climate change (Archer, 2010); we need to better understand the processes controlling them to 

predict how they will respond to warming. Better understanding these mechanisms controlling 

the carbon cycle would also allow us to predict the impacts of GHG management strategies 

(Ciais et al., 2014). Accordingly, it is incredibly important to constrain fossil CO2 emissions not 

just to track them and their direct effect on the climate, but also to allow us to understand the role 

of the rest of the components of the carbon cycle in the future. 

1.1.1.2 NOx and their Link to Fossil CO2 

While not GHGs themselves, the gases collectively referred to as NOx play an important 

role in the quantification of fossil CO2 emissions. Nitrogen monoxide (NO) is a gas that is 

formed during combustion processes, including fossil fuel combustion, as a result of high 

temperatures combining molecular nitrogen with molecular oxygen at very high temperatures 

(Griffin et al., 2019). NO then rapidly oxidizes into nitrogen dioxide (NO2). These two gases 

rapidly cycle between each other, and are often considered together as a family known as NOx. 

NOx has a relatively short lifetime within a plume (a few hours), making tropospheric NOx 

concentrations correlate strongly with local emissions (Goldberg, Lu, Streets, et al., 2019; Griffin 

et al., 2019). 

Because we can readily observe NO2 with existing instruments, observing this gas could 

help us in better understanding fossil CO2 emissions. Both NO2 and CO2 share many sources that 

are co-located in time and space, suggesting that observing NO2 could help to constrain fossil 

emissions and monitor temporal changes in CO2 emissions (Berezin et al., 2013; Konovalov et 

al., 2016). Additionally, using NO2 as a proxy for fossil CO2 could help to disentangle 

anthropogenic and biogenic sources of CO2, allowing for reliable attribution of fossil CO2 
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emissions (Ciais et al., 2014). We leverage the relationship between NO2 and fossil CO2 in 

Chapter 3 of this dissertation. 

1.2 Cities and their Role in Climate Change 

Cities play an incredibly important role in the story of climate change, and they are the 

focus of the three studies in this dissertation. Despite covering less than 5% of the surface of the 

globe, cities contribute a disproportionate amount to climate change, with the majority of fossil 

fuel CO2 emissions attributed to them (van der Heijden, 2019; International Energy Agency, 

2008). At present, more than half of the global population lives in cities, and this is projected to 

increase to 68% by the middle of the century (United Nations, Department of Economic and 

Social Affairs, Population Division, 2019). Following the increase in urban population, the 

global-scale uncertainty of fossil CO2 has also been increasing with time, largely driven by the 

overall increase in emissions by developing countries that are quickly urbanizing (Hutyra et al., 

2014). Accordingly, constraining urban emissions is vital to constraining fossil CO2 emissions. 

While cities are an epicenter for many of the activities and behavior that contribute to 

climate change, they are also where the consequences of climate change will be experienced 

most severely (van der Heijden, 2019). For example, climate change is predicted to increase the 

frequency of urban heat island events, in which air temperatures in cities rise more than in 

surrounding areas and cause locally negative impacts to human health, the economy, and the 

environment (Corburn, 2009). Additionally, the concentration of population and economic 

impact in cities suggests that a climate change event would have a major impact if it hit a city 

(van der Heijden, 2019). 

Cities are also responding to climate change in the face of stalling national and 

international climate policy, emerging as leaders in both mitigation and adaptation to climate 
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change (Hughes, 2019; Rosenzweig et al., 2010). While cities have a disproportionate 

contribution to climate change, they also play a significant role in global environmental 

governance. Cities are uniquely positioned to play this role because of their location at the 

interface of local action and both national and international level climate change adaptation and 

mitigation commitments, along with their local understanding of the tradeoffs and synergies 

between adaptation and mitigation (Reckien et al., 2018). They have been forming transnational 

networks to tackle climate change at the international level, such as the C40 Cities Climate 

Leadership Group, the Covenant of Mayors, and the ICLEI – Local Governments for 

Sustainability’s Cities for Climate Protection (CCP) program (Lee, 2013). Thousands of cities 

have been actively engaging in global climate change issues within their own jurisdictions and 

setting ambitious GHG emission reduction targets, implementing climate action plans to achieve 

those targets (Hughes, 2019; Lee, 2013). These climate action plans are documents prepared at 

the city level that contain policies relevant to climate change mitigation and/or adaptation 

(Reckien et al., 2018). Chapter 4 of this dissertation specifically delves into urban climate action 

plans in the U.S. and their associated programs, which also include the self-estimation of urban 

GHG emissions and reporting these estimates in what are referred to as self-reported inventories 

(SRIs). 

1.3 Monitoring the Earth’s Changing Systems with Satellite Remote Sensing  

Humans are changing the world that we live in, and development over the last several 

decades in satellite-based technology has allowed us to monitor these changes via space-based 

observations. These satellites rely on remote sensing technology, which involves detecting and 

measuring radiation at different wavelengths either reflected or emitted from distant objects or 

materials, allowing for the identification, classification, and quantification of the objects or 
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materials that have interacted with that radiation (Kansakar & Hossain, 2016). Earth Observation 

(EO) satellites have remote sensing instrumentation that allow for measurements and mapping of 

Earth’s physical, chemical, and biological systems. In the span of 1960 to 2030, there will have 

been hundreds of EO satellite launched into space to monitor our planet and its systems (Guo et 

al., 2015). Such satellites are monitoring components of the Earth to track environmental 

conditions that are tied to human health and safety, providing data that can be used in science-

based decision-making on critical topics like disaster management, the global environment, and 

natural resource management (Kansakar & Hossain, 2016; Seltenrich, 2014). By delivering data 

on how the Earth’s systems respond to both natural and anthropogenic changes, EO satellite 

missions can directly benefit society by giving us the tools we need to make the Earth a more 

sustainable place to live (Kansakar & Hossain, 2016). 

In particular, EO satellites are allowing us to study the carbon cycle and climate change. 

The United Nations Framework Convention on Climate Change has listed 34 Essential Climate 

Variables that require contributions from EO satellites; these variables lie within the 

atmospheric, oceanic, and terrestrial domains, and include atmospheric composition, 

temperatures, wind speeds, acidity, and biodiversity—all aspects that can be observed from 

space (Guo et al., 2015). Climate change is a major global issue that transcends political 

boundaries, and remote sensing from space can help the globalized community achieve common 

goals by providing data resources that can be accessed and shared by all, including developing 

countries that may be more resource-limited (Kansakar & Hossain, 2016). As a result, satellite 

technology is opening up many doors for the study of climate change and the carbon cycle, and it 

will continue to do so as more EO satellites are launched into space. 
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The main chapters of this dissertation interrogate various aspects of climate change and 

the carbon cycle through the lens of satellite observations of CO2 and NO2, and the following 

subsections describe some of these satellites in more detail. 

1.3.1 Satellites that Observe CO2 

Satellite missions to observe CO2 from space have increased our opportunities to 

understand climate change and the carbon cycle. Observations of CO2 concentrations from 

satellites are valuable for the estimation of CO2 emissions because of the large density of 

observations provided by satellites, which would reduce some of the uncertainties associated 

with sparse sampling from other types of instruments (Ciais et al., 2014). Such space-based 

observations are playing an important role in monitoring the status and progress of compliance 

with international emission reduction agreements, such as the Montreal Protocol and the 

upcoming Global Stocktake as part of the Paris Agreement (Kuze et al., 2022). 

Space-based remote sensing of CO2 captures an entire emission plume vertically and 

horizontally from the top of the atmosphere (Kuze et al., 2022). Satellites retrieve XCO2, which 

is the column-averaged dry air mole fraction of CO2 (Crisp, 2015). In order to estimate XCO2, 

satellites use high-resolution spectroscopic observations of reflected sunlight, measuring at three 

spectral bands around 0.765 μm (O2 A band), 1.61 μm (weak CO2 band), and 2.06 μm (strong 

CO2 band) (Crisp, 2015). These measurements are then inputted into a retrieval algorithm to 

estimate XCO2 along with other atmospheric and surface state properties such as surface albedos 

and aerosol properties (Crisp, 2015; Wu et al., 2019). The first satellite instruments to use this 

measurement approach are the European Space Agency (ESA) EnviSat SCanning Imaging 

Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) and the Japanese 

Greenhouse Gases Observing Satellite (GOSAT) Thermal And Near infrared Sensor for carbon 
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Observation Fourier Transform Spectrometer (TANSO-FTS), which have helped to advance 

carbon cycle science at scientific and policy-relevant scales (Crisp, 2015; Kuze et al., 2022). 

There have been a number of more recent CO2-observing space-based instruments, including the 

Orbiting Carbon Observatory-2 (OCO-2), which is designed to measure atmospheric CO2 with 

the accuracy, coverage, and resolution needed to detect sinks and sources of CO2 all over the 

world (Crisp, 2015). Japan’s second GHG observing satellite, GOSAT-2, was launched in 2018, 

also increasing the accuracy and spatial density of observations as compared to GOSAT (Suto et 

al., 2021). Finally, the installation of the Orbiting Carbon Observatory-3 (OCO-3) instrument on 

the International Space Station has opened up new potential pathways for urban CO2 emissions 

studies to move forward, with observations during different times of the day (instead of only the 

afternoon as with OCO-2), and the new Snapshot Area Map (SAM) mode that can capture the 

entire urban plume (Eldering et al., 2019). Given that satellite-based observations of CO2 suffer 

from limitations such as loss of data due to clouds and observations limited to certain periods of 

the day (Ciais et al., 2014), OCO-3 and upcoming missions such as Japan’s Global Observing 

SATellite for Greenhous gases and Water cycle (GOSAT-GW) and Geostationary Carbon Cycle 

Observatory (GeoCarb) will provide even more data for the improved understanding of our 

changing carbon cycle (Kuze et al., 2022; Moore III et al., 2018). 

1.3.2 Satellites that Observe NO2 

Satellites are able to measure NO2 concentrations in the atmosphere because of the gas’s 

unique high frequency spectral features within the 400-500 nm wavelength region (Goldberg, 

Lu, Streets, et al., 2019). Over the past two decades, our ability to observe near-surface 

concentrations of air pollutants like NO2 from space has grown dramatically (Griffin et al., 

2019). The first space-based spectrometer to observe NO2 was the Global Ozone Monitoring 
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Experiment (GOME), which was first launched in 1995 and operated for 16 years (Coldewey-

Egbers et al., 2018; Griffin et al., 2019). The SCIAMACHY instrument, which also measured 

other gases including CO2, and the GOME-2 instrument, improved upon the capabilities of 

GOME (Griffin et al., 2019). Until a few years ago, the Ozone Monitoring Instrument (OMI) 

was the standard for NO2 satellite observations, as it was able to resolve pollutant distributions at 

the urban scale and infer emissions from large point sources with an observational resolution of 

up to 13 km × 24 km (Griffin et al., 2019). Building on the legacy of the previous ultraviolet-

visible space-based spectrometers, the latest remote sensing spectrometer to observe NO2 is the 

TROPOspheric Monitoring Instrument (TROPOMI), aboard the European Space Agency’s 

Sentinel-5 Precurser satellite, (Goldberg, Lu, Streets, et al., 2019; Griffin et al., 2019). Launched 

in October 2017, TROPOMI has unprecedented spatial resolution and data product quality 

(Griffin et al., 2019). As of 2019, TROPOMI has been able to provide observations with a 

resolution of up to 5.5 km × 3.5 km (S. Liu et al., 2021), allowing for greatly improved 

capabilities in observing NO2 at the urban scale. 

1.4 Overview of Dissertation 

This dissertation explores different facets of the study of urban fossil CO2 emissions 

using satellite remote sensing observations. Chapter 2 focuses on space-based assessment of 

urban emissions estimates represented by three global CO2 emissions inventories, for five cities 

in the Middle East. Using observations from OCO‐2 in combination with a Lagrangian particle 

dispersion model to account for atmospheric transport and link emissions to observations, we 

evaluate the three inventory representations of afternoon emissions. We optimize emissions 

inventory estimates with the OCO-2 observations, demonstrating that the inventory 

representations of afternoon emissions are too low. We also discuss the impact of the prior 
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inventory spatial distributions on our results, suggesting that we can make robust quantitative 

assessments of urban emission magnitudes without requiring high‐resolution gridded inventories. 

In Chapter 3, we explore the potential of using NO2 satellite data in combination with 

available CO2 satellite data to assess urban CO2 emissions, with a focus on three different cities 

around the world. In this study, we calculate empirical relationships between satellite 

observations of CO2 and NO2, using these relationships to generate NO2-derived CO2 fields from 

which CO2 emissions can be estimated. First establishing the method with simulations, we then 

use actual satellite observations from OCO-3 and TROPOMI with our method to estimate the 

cities’ CO2 emissions over time. We show monthly variations in urban CO2 emissions estimates 

that are comparable to monthly emissions inventory estimates. We demonstrate how powerful 

the much larger quantity of NO2 observations is, suggesting that our method can provide a 

valuable observational constraint on urban CO2 emissions with the use of proxy data. 

Chapter 4 discusses an evaluation of the ability of satellite CO2 observations to assess the 

effectiveness of urban climate action programs. With an initial focus on the city of Los Angeles, 

we apply results from previous studies as well as derive approximate uncertainties associated 

with CO2 emissions estimates based on observations from the latest satellite technology to 

evaluate various facets of the city’s climate action program. We explore the utility of satellite-

based emissions estimates for evaluating the accuracy of the city’s reported emissions, assessing 

overarching emissions targets, tracking year-to-year emissions reductions, tracking specific 

policies in their urban climate action plan, and evaluating sectoral emissions. We then apply our 

findings to other cities’ climate action programs around the U.S. We discuss short- and long-term 

options for improving the ability of satellite observations of CO2 to provide policy-relevant 

assessments of emissions. 
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Finally, in Chapter 5, we draw general conclusions from this dissertation and discuss 

future research directions.
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Chapter 2 Using Space-Based Observations and Lagrangian Modeling to Evaluate Urban 

Carbon Dioxide Emissions in the Middle East  

Reprinted (adapted) with permission from Yang et al. (2020). Copyright 2020 American 

Geophysical Union. 

 

Abstract 

Improved observational understanding of urban CO2 emissions, a large and dynamic 

global source of fossil CO2, can provide essential insights for both carbon cycle science and 

mitigation decision making. Here we compare three distinct global CO2 emissions inventory 

representations of urban CO2 emissions for five Middle Eastern cities (Riyadh, Mecca, Tabuk, 

Jeddah, and Baghdad) and use independent satellite observations from the Orbiting Carbon 

Observatory-2 (OCO-2) satellite to evaluate the inventory representations of afternoon 

emissions. We use the column version of the Stochastic Time-Inverted Lagrangian Transport (X-

STILT) model to account for atmospheric transport and link emissions to observations. We 

compare XCO2 simulations with observations to determine optimum inventory scaling factors. 

Applying these factors, we find that the average summed emissions for all five cities are 100 

MtC y-1 (50-151, 90% CI), which is 2.0 (1.0, 3.0) times the average prior inventory magnitudes. 

The total adjustment of the emissions of these cities comes out to ~7% (0%, 14%) of total 

Middle Eastern emissions (~700 MtC y-1). We find our results to be insensitive to the prior 

spatial distributions in inventories of the cities’ emissions, facilitating robust quantitative 

assessments of urban emission magnitudes without accurate high-resolution gridded inventories. 
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Plain Language Summary 

Carbon dioxide (CO2) emitted from burning fossil fuels is the most important contributor 

to climate change and is changing the Earth’s carbon cycle. Most of these emissions can be 

linked to cities. Since cities around the world are quickly changing and growing, especially in 

developing countries, it is important to better understand the extent of urban CO2 emissions to 

understand how the climate and carbon cycle will change. In this study, we evaluate three global 

emissions inventories—modeled estimates of CO2 emissions on a grid spanning the globe—and 

their ability to capture the afternoon emissions of five Middle Eastern cities (Riyadh, Mecca, 

Tabuk, Jeddah, and Baghdad). This assessment relies on comparing simulations using the 

inventories with observations from the Orbiting Carbon Observatory-2 (OCO-2) satellite. Based 

on these comparisons, we see that the inventory representations have underestimated afternoon 

emissions of the five studied cities, and that the level of underestimation is a substantial portion 

of total Middle Eastern emissions. Our results are unaffected by the differing spatial patterns of 

emissions from different inventories. This work demonstrates the ability to use satellites to 

evaluate sub-national emissions, a valuable advance for both science and policy issues relating to 

climate change and the carbon cycle. 

2.1 Introduction 

Before the Industrial Revolution, the CO2 mixing ratio was 280 ppm (IPCC, 2014); since 

then, it has surpassed 400 ppm and continues to rise (Betts et al., 2016), mainly due to emissions 

from burning fossil fuels (Stocker et al., 2013). To predict future climatic trends, it is important 

for us to know how each part of the carbon cycle is responding to this significant perturbation to 

CO2 concentrations. However, rising uncertainties in fossil fuel CO2 (FFCO2) emissions due to 

overall increases in absolute emissions and increases in the proportion of emissions from 
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developing regions with fewer constraints are limiting our understanding of the extent and 

implications of this large and growing perturbation.  

A first step to constraining such uncertainties is to focus on cities, as the majority of 

FFCO2 emissions derive from urban areas (International Energy Agency, 2008). These in-city 

emissions are mostly linked to automobile tailpipe emissions, industrial emissions, and home 

heating; emissions also come from electricity generation from power plants that use fossil fuels, 

though such emissions may take place outside of the city itself (Lin et al., 2018). Presently, more 

than half of the global population resides in cities (United Nations, Department of Economic and 

Social Affairs, Population Division, 2015). Quantifying urban emissions is also becoming more 

important as cities pledge to take greenhouse gas mitigation actions (Rosenzweig et al., 2010; 

Gurney et al., 2015; Bodansky, 2016) and require a means of assessing those actions. As the 

developing world rapidly urbanizes, it is becoming critical to quantify and constrain the FFCO2 

emissions in cities, to inform such urban mitigation policy issues as well as to understand the 

carbon cycle science implications of the FFCO2 perturbation.  

Global FFCO2 gridded emissions inventories are valuable tools for carbon cycle science 

and mitigation policies, but have room for improvement with respect to local- and urban-scale 

representations of emissions. These emissions inventories use proxies to disaggregate national-

level emissions statistics onto a fine-scale grid (Oda & Maksyutov, 2011; Oda et al., 2019)—but 

at finer spatial scales, the proxy approach becomes insufficient to characterize the spatial 

distribution of emissions sources (Oda et al., 2019). For example, Gurney et al. (2019) found 

city-level differences between inventories for four U.S. cities of up to about 20%. Meanwhile, in 

their study on different inventories for the northeastern United States, Gately and Hutyra (2017) 

found that more than one-fourth of the grid cells in urban areas at 0.1 x 0.1° resolution had 



 18 

relative differences of 100-300%. In that study, the researchers determined that existing global-

scale FFCO2 inventories are unsuitable for urban emissions monitoring, as they are unable to 

describe the underlying spatiotemporal patterns of the activities from which urban emissions are 

sourced (Gately & Hutyra, 2017). Lacking in the spatiotemporal resolution needed to capture the 

variability in local-level emissions and exhibiting large uncertainties, global FFCO2 emissions 

inventories need improvement not just for local-scale issues, but also global-scale ones. For 

example, such large uncertainties are a problem for the accuracy of global carbon budgets that 

are determined by considering fossil fuel CO2 emissions to be a known quantity (Hutyra et al., 

2014). Additionally, errors in the spatiotemporal distribution or magnitude of FFCO2 fluxes have 

been shown to propagate to remaining flux components of carbon inversion studies (Gurney et 

al., 2005; see also Hutyra et al., 2014). Uncertainties in FFCO2 emissions in global inventory 

representations have also been shown to be a dominating factor in global CO2 atmospheric 

inversion model spread and to limit the assessment of regional scale terrestrial fluxes and ocean-

land partitioning (Gaubert et al., 2019). For the sake of fine-resolution emissions inventories to 

be useful at many scales, it is thus a critical task to evaluate and improve the inventory models, 

and to optimize model representations of smaller scale emissions.  

Top-down, space-based observations of CO2 concentrations are a strong contender for 

evaluating emissions inventories at a local scale, especially in regions with few or no on-ground 

observations. In recent years, space-based technological advancements have been evolving the 

study of urban- and local-scale emissions. Satellites have opened the doors to global, high-

resolution measurements of XCO2, the column-averaged dry-air mole fraction of CO2. A number 

of satellites observing XCO2 have already been launched, such as the Japanese Greenhouse 

Gases Observing SATellite (GOSAT) and its successor GOSAT-2, the American Orbiting 
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Carbon Observatory-2 (OCO-2) and its successor (OCO-3), and the Chinese TanSat. A number 

of studies have already been conducted that have utilized the observations of some of these 

satellites to better understand local sources of CO2 such as large cities and power plants (Kort et 

al., 2012; Hakkarainen et al., 2016; Nassar et al., 2017; Wu et al., 2018; Hedelius et al., 2018). 

That body of work—and in particular that of Wu et al. (2018), which presents a method of 

extracting urban XCO2 signals from OCO-2 and evaluates this method with a case study of 

Riyadh, Saudi Arabia—serves as the foundation for the work of this present study. 

In this study, we evaluate global FFCO2 emissions inventory representations of urban 

CO2 emissions in the Middle East, and assess the ability of satellite observations to inform this 

evaluation. Middle Eastern cities serve as optimal target study domains. Limited cloud cover 

increases data density, and reduced biospheric signals simplifies the analysis. Additionally, these 

cities provide a good example of locations with few ground-based measurements making space-

based approaches the only observation-based method that could be applied. To complete our 

assessment, we focus on three global FFCO2 emissions inventories: the Fossil Fuel Data 

Assimilation System (FFDAS), the Open-source Data Inventory for Anthropogenic CO2 

(ODIAC), and the Emission Database for Global Atmospheric Research (EDGAR). We examine 

the differences in the spatial distribution and magnitudes of these inventories at the urban scale 

for cities in the Middle East, focusing on Riyadh, Saudi Arabia but also analyzing Saudi Arabian 

cities Mecca, Tabuk, and Jeddah, as well as the city of Baghdad, Iraq. We next quantify the 

relationship between observations of XCO2 from the OCO-2 satellite and simulations of XCO2 

using the column version of the Stochastic Time-Inverted Lagrangian Transport (X-STILT) 

model coupled with Global Data Assimilation System (GDAS) reanalysis products and the three 

inventories. Using this comparison between top-down observations and bottom-up simulations of 
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XCO2, we calculate scaling factors to adjust the flux magnitudes of the inventory estimates of 

city emissions. We then discuss the implications of our estimates on a regional scale, and on the 

ability of space-based observations to quantify urban emissions. 

2.2 Data and Methods 

2.2.1 Emissions Data and Methods 

2.2.1.1 Global FFCO2 Emissions Inventories 

In this study, we evaluate three of the most widely used global FFCO2 emissions 

inventories: FFDAS, ODIAC, and EDGAR. Figure 2.1 shows the three inventories’ 

representations of the Middle East. Each of these inventories is formed using an approach that 

combines top-down elements—distribution of emissions in space by using spatial proxies like 

population or nighttime lights—with bottom-up elements—summing up individual fuel 

consumption or emissions sources to estimate total emissions at a larger scale (Hutchins et al., 

2017). However, the inventories are all gridded using different mechanisms, with variations in 

energy statistics used, sectors included, and methods of downscaling emissions. These 

differences contribute to notable discrepancies between the inventories’ aggregated emissions 

totals and spatial distributions. Table 2.1 summarizes the key information about the inventories. 

FFDAS is a global product with a spatial resolution of 0.1 x 0.1°. This inventory 

downscales national emissions statistics reported by the International Energy Agency (IEA), 

distributing emissions by constraining the Kaya identity, which uses population, GDP, energy 

intensity, and carbon intensity as multiplicative factors to determine emissions (Rayner et al., 

2010; Asefi-Najafabady et al., 2014; Gately & Hutyra, 2017; Hutchins et al., 2017). Constraints 

are placed on the Kaya identity using satellite nightlights, population density information, and  



 21 

 
Figure 2.1 Global fossil fuel CO2 emissions inventory representations of the Middle East: FFDAS, ODIAC, and 
EDGAR, shown with a square-root scale. The three representations differ in both spatial distribution and magnitude 
of emissions. Note that all inventories are shown at their native resolutions, with ODIAC having land emissions at a 
resolution of 1 x 1 km and international aviation and marine bunker emissions at 1 x 1°.  
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 FFDAS ODIAC EDGAR 
Version 2014b (beta) ODIAC2017 4.3.2 

Year(s) used 2014 2014-2016 2012 
Resolution 0.1 x 0.1° 

Hourly/annual 
1 x 1 km 
Monthly 

0.1 x 0.1° 
Annual 

Global total 8.9 PgC y-1 9.9 PgC y-1 9.5 PgC y-1 
Middle Eastern total  697 MtC y-1 789 MtC y-1 722 MtC y-1 
Sectors or categories 

included 
IEA sectors: energy 
generation, 
manufacturing, 
industrial, and 
transportation, others 
including residential, 
commercial, 
agriculture, and 
fishing 

CDIAC fuel types 
(liquid, gas, solid, 
cement production, 
gas flaring, and 
international aviation 
and marine bunkers); 
re-categorized as 
point source, 
nonpoint source, 
cement production, 
gas flare, and 
international aviation 
and marine bunkers 

IPCC sectors: 
energy, fugitive, 
industrial processes, 
solvents and 
products use, 
agriculture, waste, 
and other (emissions 
due to fossil fuel 
fires) 

 

Table 2.1 Key information about the global gridded FFCO2 emissions inventories used in this study. 

power plant data (publicly disclosed or from the World Electric Power Plants (WEPP) database). 

Sectors that are included in FFDAS are based on sectors from which IEA produces emissions 

statistics, including energy generation, industrial, and transportation (land transport native to 

FFDAS, aviation and shipping added in from EDGAR), as well as other sectors such as 

residential, commercial, agriculture, and fishing (Asefi-Najafabady et al., 2014; Rayner et al., 

2010; Hutchins et al., 2017). Emissions due to cement production and gas flaring are excluded 

from this product (Asefi-Najafabady et al., 2014). In this study, we use the 2014b (beta) dataset, 

an early version of the FFDAS v2.0 dataset. This dataset is at both hourly and yearly temporal 

resolutions and provides emissions data for the year 2014. For 2014, total global emissions in 

this set come out to 8.9 PgC. 

ODIAC is a monthly global product that distributes FFCO2 emissions with a spatial 

resolution of approximately 1 x 1 km (0.008333 x 0.008333°) (Oda et al., 2018). In the 
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ODIAC2017 version, the inventory begins with national emissions estimates separated by fuel 

type (liquid, gas, solid, cement production, gas flaring, and international aviation and marine 

bunkers) as opposed to emissions sectors, from the Carbon Dioxide Information Analysis Center 

(CDIAC) at the Oak Ridge National Laboratory (ORNL). These emissions data are then re-

categorized into the following categories: point source, nonpoint source, cement production, gas 

flare, and international aviation and marine bunkers. For the more recent years that are not 

included in the CDIAC estimates (2015-2016), the 2014 CDIAC emissions estimates are 

extrapolated using more recent BP global fuel statistical data (Oda et al., 2018; BP, 2017). These 

emissions statistics are then spatially distributed with multiple spatial proxies such as the Carbon 

Monitoring for Action (CARMA) database for point sources, nighttime light data collected by 

Defense Meteorological Satellite Program (DMSP) satellites for nonpoint sources, and ship and 

aircraft fleet tracks. The emissions are also distributed temporally using seasonality derived from 

the CDIAC monthly gridded emissions, resulting in a monthly gridded product (Oda et al., 

2018). We note that ODIAC makes available at a resolution of 1 x 1° international aviation and 

marine bunkers emissions information, which is recorded by CDIAC/ORNL but not included in 

CDIAC’s gridded emissions data products. In this study, we use the ODIAC2017 version for the 

years 2014-2016 (Oda & Maksyutov, 2015), summing the 1 x 1 km land emissions dataset with 

the 1 x 1° international aviation and marine bunkers data. For the year 2014, total global 

emissions in this dataset are 9.9 PgC. 

EDGAR is an annual global emissions inventory with a resolution of 0.1 x 0.1°, and it 

relies on international activity data provided by sources like the IEA and emissions factors to 

determine country-specific CO2 emissions (Janssens-Maenhout et al., 2019; Crippa et al., 2018; 

Olivier & Janssens-Maenhout, 2015; European Commission Joint Research Centre, 2017). 
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National sector totals for emissions are then distributed using a number of different proxies, 

including location of energy and manufacturing facilities, road networks, shipping routes, 

population density, and agricultural land use (European Commission Joint Research Centre, 

2017; Janssens-Maenhout et al., 2013). EDGAR includes emissions sectors as defined by the 

Intergovernmental Panel on Climate Change (IPCC): energy (including international aviation 

and shipping emissions), fugitive, industrial processes (including cement production), solvents 

and products use, agriculture, waste, and other (emissions due to fossil fuel fires) (Janssens-

Maenhout et al., 2019). Gridded FFCO2 emissions for version 4.3.2 are available for years 1970-

2012 (Janssens-Maenhout et al., 2019); we use only the most recent year (2012) in this study. 

For 2012, the total global emissions magnitude for this dataset is 9.5 PgC. 

2.2.1.2 Inventory Resolutions, Years, and Domains  

Direct comparisons between the three inventories necessitate the inventories to share 

common spatiotemporal dimensions. For such direct comparisons, we sum the 2014 ODIAC 

monthly emissions to form a single annual gridded product, and aggregate it from its native 

spatial resolution to 0.1 x 0.1°. We also use the annual 2014 FFDAS dataset and the 2012 

EDGAR dataset. For comparisons with observations, we use ODIAC both in its native resolution 

and in the aggregated resolution. While the years do not match perfectly, we choose 2014 for 

ODIAC and FFDAS due to the availability of both inventory and OCO-2 data. We choose to 

match FFDAS and ODIAC, and use the most recent year (2012) for EDGAR, under the 

assumption that EDGAR’s emissions representations would not change in distribution much 

between the two years, with mostly changes in magnitude. Regarding the change in magnitude 

from 2012 to 2014, there is some uncertainty; while Friedlingstein et al. (2014) find that global 

CO2 emissions grow 2.5% per year on average, the developing world may experience a different 
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rate of emissions growth. However, the growth rate in population for the cities of interest are 

approximately 2-4% per year (for 2004 to 2010 for Saudi Arabian cities and 2009 to 2018 for 

Baghdad) (Brinkhoff, 2018), suggesting small emissions growth as well. These changes are 

expected to have minimal effects on the results of this study. 

We choose separate domains of interest for each studied city: square domains that range 

from 0.4 x 0.4° in size to 0.7 x 0.7° to encompass the cities of interest (Figure 2.2). For each city, 

a first-pass domain is chosen by examining Google Earth to approximate the spatial boundaries 

of the cities. After an approximate square domain is chosen, a sensitivity analysis is done using 

the emissions inventories, either by reducing or expanding the domain by increments of 0.1° on 

each side of the domain to determine at which size the total emissions within the chosen domain 

changes the least.  

Note that the chosen domains do not correspond exactly to the administrative boundaries 

of the cities themselves. Emissions sources such as nearby suburbs that would not necessarily be 

part of the cities themselves could be included. However, given that it would be quite difficult to 

distinguish OCO-2 XCO2 enhancements as having come from either a city or its neighboring 

suburb, we choose to set the boundaries of the domains as squares that hold the greatest 

emissions relative to the rest of the neighboring area. 

2.2.1.3 Analytical Methods for Direct Comparisons Between Inventories 

To evaluate the differing urban representations of the emissions as modeled by the 

inventories, we conduct direct comparisons between them using methods to discriminate 

between the magnitudes and the spatial distributions of the inventories. Some of these methods 

were also conducted by Hutchins et al. (2017) in their study focusing on the continental U.S. and 

Gately and Hutyra (2017) in their study of the northeast U.S. We sum up the emissions over the  
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Figure 2.2 Emissions representations of each city of interest for each inventory at a spatial resolution of 0.1 x 0.1° 
(colors) and roads in that domain (black). At the urban scale, these representations show more clear differences in 
the spatial distribution and magnitudes of the emissions than at the regional scale. Note that the ODIAC 
representation for Jeddah has an error due to a mismatch between two gas flare nightlight data sources at that 
particular location (see Section 2.6.2, Supporting Information); we proceed in this paper by treating it as though 
there is no error to understand how our methods handle the mismatch. 
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domains of interest and compare their magnitudes. The emissions of the three inventories are 

plotted over each domain of interest on a linear scale and compared visually. The correlation 

between maps is also determined by finding the Kendall rank correlation coefficients between 

pairs of inventory representations of each city. We also generate cumulative emissions curves by 

arranging emissions for each inventory in ascending order, taking the cumulative sums of the 

emissions, and plotting these cumulative sums against each other.  

2.2.2 Atmospheric Data and Methods 

2.2.2.1 OCO-2 XCO2 Data and Preprocessing 

We use bias-corrected OCO-2 Lite, version 8 data from September 2014 to April 2017 

(O’Dell et al., 2018). Overpasses are initially chosen by proximity to the cities of interest; the 

original net cast for overpasses is quite wide for exploratory purposes, such that any observations 

within an 8 x 8° box surrounding the location coordinates of the city of interest are selected. 

These are further filtered by location of observations, to ensure that there are observations 

present near the city center (at least within 50-75 km away) as well as further out for the 

purposes of background calculation (within 200-350 km away). Then, overpasses are screened 

visually for sufficient number, distribution (no or few gaps), and density of observations. The 

data are then preprocessed by finding the medians of the up to eight cross-track footprints at each 

measurement time step, so as to remove outliers. Then a block average of the medians is taken in 

bins of 0.1° by latitude. Most of the overpasses are observed in Nadir Mode, though 7 are in 

Glint Mode. For Riyadh, Mecca, Tabuk, Baghdad, and Jeddah, we use 11, 6, 3, 3, and 3 

overpasses, respectively. The OCO-2 data are not filtered by warn level; see Section 2.6.1 

(Supporting Information) for details. Table 2.5 details the 26 overpasses used in this study and 
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Figure 2.7 maps the overpasses in relation to the cities (in Section 2.6.3, Supporting Figures and 

Table). 

2.2.2.2 Simulations of XCO2  

We simulate XCO2 with the inventories such that the simulated XCO2 is directly 

comparable to the values observed by OCO-2; in this way we can quantify the relationship 

between the observations and the models. Most of the steps used to simulate XCO2 follow the 

methodology of the “X-STILT” approach described by Wu et al. (2018), which utilizes the 

STILT model to simulate urban XCO2 values. Here we summarize our process to simulate 

XCO2, noting any deviations in the methodology from the X-STILT formulation.  

2.2.2.2.1 Summary of Approach 

We simulate XCO2 values along the OCO-2 tracks of interest at a resolution of 0.1° by 

latitude. The basic process of these simulations at each along-track location involves using 

GDAS reanalysis products at 0.5 x 0.5° resolution to drive the STILT model, which releases air 

parcels from each of n prescribed column receptor locations backward in time and calculates a 

“footprint.” Footprints are a measure of the sensitivity of the mixing ratio to surface fluxes and 

are an indicator of the upstream influences of the chosen receptor locations; they are in units of 

ppm/(µmole/m2/s). The footprints are then convolved with fluxes given by the three emissions 

inventories to determine an enhancement at that column receptor location. Combining these 

enhancements with a background value and a biospheric enhancement gives a full, simulated 

concentration CO2.sim,n at the nth level in the column (Section 2.2.2.2.2). These concentrations 

are then weighted with the satellite’s averaging kernel profiles to determine a single column 

value of XCO2 (XCO2.sim.ak) that is directly comparable to an OCO-2 XCO2 value (Section 

2.2.2.2.3). 
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2.2.2.2.2 Simulating CO2 Concentrations at each nth Level 

To reduce computational time, we differentiate between simulating CO2 concentrations at 

each nth level either above a height designated as MAXAGL, or below or at this height. We 

define MAXAGL to be the maximum release height of air parcels with STILT. For this study, we 

use a MAXAGL of 6 km for wintertime overpasses, following Wu et al. (2018), and 10 km for 

non-wintertime overpasses. 

At each level at or below MAXAGL, we simulate a value of CO2.sim,n by following the 

basic approach described in 2.2.2.1. Using STILT, we release 100 air parcels at each column 

receptor 48 hours backward in time, with our column receptors located at every 100 m up from 

the surface to 3 km for wintertime overpasses (5 km for non-winter), then every 500 m up to the 

6 km. Non-wintertime overpasses additionally have receptors located every 1 km up to the 10 km 

MAXAGL. This results in a footprint for each column receptor to be convolved with the 

emissions inventories to produce enhancements. 

To capture the temporal variations of emissions, we use the Temporal Improvements for 

Modeling Emissions by Scaling (TIMES) scaling factors in combination with the inventory 

fluxes (Nassar et al., 2013). The TIMES scaling factors can be combined with monthly FFCO2 

emissions inventories to account for both diurnal and within-week variability, with 24 hourly 

grids capturing the diurnal variations and seven daily grids capturing the weekly variations.  

The STILT model simulations span several years to match observations from late 2014 to 

mid-2017, whereas the emissions inventories do not have the same availability. Since FFDAS 

has an hourly temporal resolution for just the year 2014, we aggregate the data up to monthly 

emissions by day of week and hour, such that we have 24 grids per day of week in each month to 

maintain both the diurnal and weekly cycles internal to the 2014 data set. (Note that these 



 30 

internal diurnal and weekly cycles are derived through application of the TIMES scaling factors.) 

For ODIAC, we use years 2014-2016 to correspond with the appropriate years’ simulations, and 

use the 2016 grids for the 2017 simulations. As these are monthly grids, we use both the diurnal 

and weekly TIMES scaling factors along with the ODIAC datasets, which we keep in their native 

spatial resolutions of 1 x 1 km and also aggregate up to 0.1 x 0.1°. For EDGAR, the most recent 

year available is 2012; we use this annual file along with both the diurnal and weekly TIMES 

scaling factors. Each of these adjusted emissions inventories are then convolved with footprints 

to find the fossil fuel contribution to CO2.sim,n, or the enhancements. 

We also simulate the natural contribution to CO2.sim,n by using biospheric flux data from 

CarbonTracker-NearRealTime (CT-NRT) v2016 and v2017. These biospheric fluxes are 

convolved with footprints in a similar fashion to the inventory FFCO2 fluxes. Fluxes from 

oceanic and fire-related sources are deemed negligible in comparison to the anthropogenic and 

biospheric fluxes for this domain and not included. 

The boundary conditions to add to the natural and fossil fuel enhancements are 

determined using the trajectory endpoint technique. CO2 concentrations sourced from CT-NRT 

3-D mole fractions of CO2 that correspond with the endpoints of the STILT trajectories serve as 

the boundary conditions. These are then combined with the enhancements to find the full 

CO2.sim,n value at each level. This technique differs from that suggested by Wu et al. (2018). 

Above MAXAGL, each simulated level n is defined by the OCO-2 retrieval levels. CO2.sim,n is 

found by finding the CT-NRT 3-D mole fractions of CO2 corresponding to the OCO-2 levels.  

2.2.2.2.3 Simulating XCO2 to be Directly Comparable to OCO-2 Observations 

The OCO-2 sensor has sensitivities to CO2 that are different at varying heights of the 

atmosphere, which are characterized by the satellite’s averaging kernel profiles. OCO-2 thus 
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retrieves XCO2 values by using these averaging kernel profiles, which are the product of the 

satellite’s normalized averaging kernel profiles (AKnorm) and pressure weighting function (PW), 

to find the relative weight between the observed “true” profile and the a priori profile (CO2,ap) 

(Wu et al., 2018). To make a direct, 1:1 comparison between a simulated profile and the OCO-2 

retrieved profile, we thus use the same OCO-2 weighting functions, with the simulated, 

unweighted column serving as the “true” profile. Our simulated profile weighted with the 

averaging kernel, XCO2.sim.ak, is thus determined as follows, adapted from (O’Dell et al., 2012) 

and reproduced from Wu et al. (2018): 

𝑋𝑋𝑋𝑋𝑋𝑋2.𝑠𝑠𝑠𝑠𝑠𝑠.𝑎𝑎𝑎𝑎 = ∑ �𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛 × 𝑃𝑃𝑃𝑃𝑛𝑛 × 𝐶𝐶𝐶𝐶2.𝑠𝑠𝑠𝑠𝑠𝑠,𝑛𝑛 + �𝐼𝐼 − 𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛� × 𝑃𝑃𝑃𝑃𝑛𝑛 × 𝐶𝐶𝐶𝐶2.𝑎𝑎𝑎𝑎,𝑛𝑛�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛=1 , (2.1)  

where I is the identity vector and n is the X-STILT release level. Since the X-STILT levels do 

not match the 20 levels prescribed by OCO-2, we linearly interpolated AKnorm, PW, and CO2.ap 

values from the OCO-2 levels to the X-STILT levels. Note that these values undergo the 

preprocessing described in Section 2.2.2.1. 

2.2.2.3 Further Data Filtering 

After the overpasses are simulated with our X-STILT model, they are filtered by 

leveraging the STILT output to calculate footprint (influence) values from the city of interest; 

they pass through the filter if any modeled point at 100 m AGL in the simulated overpass pass a 

threshold for footprint values (average of 0.01 ppm/(µmole/m2/s)). In this way, overpasses only 

pass the filter and are analyzed if they indicate influence from within the city of interest. 

Footprint-filtered overpasses are then further filtered by returning to the observations. 

These remaining overpasses are filtered by their viability for differentiating enhancements from 

what we refer to as the tail values, which are XCO2 values that are not enhanced and help define 

the background specific to each overpass when averaged. In part, this differentiation is done 
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through visual inspection, as well as by selecting overpasses whose enhanced values on average 

exceeded the tail values by at least 0.2 ppm. 

2.2.2.4 Determining Directly Comparable OCO-2 and Simulated Enhancements  

Our interest in both the simulations and the observations of OCO-2 are the enhancements 

due to fossil fuel combustion within the cities of interest. Thus, our main points of comparison 

are between the simulated fossil enhancements and observed enhancements, which are 

determined by subtracting the simulated boundary conditions and natural contributions of XCO2 

from both the OCO-2 observations (XCO2.obs) and the fully simulated XCO2.sim from Section 

2.2.2.2.3. (Note that subtracting the boundary conditions and natural contributions from XCO2.sim 

is not exactly the same as solely convolving the footprints with the emissions inventory fluxes; 

such a convolution ignores the contribution to XCO2.sim from the averaging kernel and a priori 

profiles as described in Section 2.2.2.2.3.)  

An additional constant value that corrects the bias between the CarbonTracker-derived 

background and the observed background is also either added to or subtracted from the full 

XCO2 values to determine final enhancements. This bias correction term is determined as 

follows. For Riyadh, a swath of 3° of latitudinal points for each observed overpass of interest is 

examined, differentiating between the enhanced points and the other points, the tails of the 

overpass, by means of expert judgment and comparison with the simulated enhancements from 

the city of interest. The other cities undergo a similar process, except not all overpasses use 3° of 

data. The other cities have enhancements from other nearby cities, artifacts to be avoided, or 

their own large-scale variability, so the length of the tails may be shorter for non-Riyadh 

overpasses to only capture the local background. Next, for all cities, the tails are averaged to a 
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single constant. This constant serves as a bias-correction term between the CarbonTracker-

derived background and the OCO-2 observed background. 

This methodology for determining the background differs from that described in Wu et 

al. (2018). However, we choose to use this methodology for two reasons: computation time 

savings and the ability to capture upwind variability using CarbonTracker. Regarding the former 

reason, Wu et al. (2018) opts for a method that requires a plume defined through forward-

modeling with STILT that is computationally expensive, especially given the number of 

overpasses analyzed in this study. Regarding the latter reason, we use CarbonTracker to define 

our boundary conditions in this study to fully capture variability upwind of the urban plume. Any 

biases between the OCO-2 observations and the CarbonTracker-derived background are then 

corrected for using observations with little local influence. In this way, we account for large-

scale variation in XCO2, while also correcting biases using the observations. 

2.2.2.5 Quantifying the Relationship between the Modeled and Observed Enhancements 

We evaluate the relationship between the simulated and observed enhancements for each 

overpass of interest by generating cumulative enhancement curves, which is a modified area-

under-the-curve technique. In this technique, the data points that are enhanced for each day or in 

aggregate are placed in ascending order, and their cumulative sums are plotted against each 

other, in a similar fashion as to the cumulative emissions curves described in Section 2.2.1.3. 

This method allows for the examination of the spatial distribution of enhancements while 

simultaneously latitudinally integrating the areas under the curves generated by the 

enhancements. Each modeled curve is also scaled such that the total summed enhancements for 

that particular overpass was equivalent to that of the corresponding OCO-2 sum, to make scaled 

cumulative enhancement plots.  
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The scaling factors used to scale the cumulative enhancement plots are combined using a 

bootstrap method to determine a single, mean scaling factor that relates the modeled 

enhancements to the observed ones—one scaling factor for each inventory per city. The 

bootstrap method is as follows. For each overpass analyzed, there is a set of scaling factors (with 

one scaling factor per inventory representation) and a single associated uncertainty. Each scaling 

factor and its corresponding uncertainty is assumed to have a Gaussian distribution, with the 

scaling factor as the mean and the uncertainty as the standard deviation. It is resampled based on 

this distribution, outputting a single resampled scaling factor. All of the resampled scaling 

factors for an inventory per city further undergo a bootstrap resampling, using the mean statistic. 

This dual set of resamplings is repeated one million times for each inventory per city. The mean 

of the vector of one million resamplings is the mean scaling factor for each inventory per city. 

Meanwhile, the 5th and 95th percentiles serve as the bounds of the 90% confidence interval.  

The mean scaling factors are then multiplied by the corresponding prior emissions 

magnitude, in order to scale the prior inventory estimates by the OCO-2 observations.  

2.2.2.6 Evaluation of Uncertainties 

We determine uncertainties for both the modeled and OCO-2 integrated enhancements. 

Combining these two sources of uncertainty also results in an uncertainty for the scaling factors 

and for our estimates of FFCO2 emissions for each city. 

For the model integrated enhancements, we leverage the 33% fractional uncertainty over 

five overpasses due to horizontal and vertical transport evaluated by Wu et al. (2018), which was 

estimated by quantifying the effect of the inclusion in the STILT model of a wind error 

component derived from radiosonde observations (horizontal) and calculating the root-mean-

squared errors between enhancements found with different rescaled planetary boundary layer 
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heights (vertical). To find an average fractional uncertainty per overpass, we multiply this value 

by the square root of 5, resulting in a ~74% fractional uncertainty to describe the transport 

uncertainty for a single overpass’s latitudinally integrated modeled enhancements. While their 

study focused on Riyadh, we apply this uncertainty to all of the Middle Eastern cities in the 

study. This transport uncertainty is the only one we use for the modeled integrated 

enhancements. Since the emissions inventories do not have their own uncertainties and this study 

attempts to constrain those very emissions, we do not include a measure of the inventory 

uncertainties for the modeled integrated enhancements.  

For the OCO-2 integrated enhancements, we first evaluate the uncertainties for each 

binned XCO2 value at each 0.1° of latitude. We approximate this by considering the standard 

deviation of the medians in each bin. 

The uncertainties related to the background also are included, since the OCO-2 

enhancements are determined by subtracting the background from the total XCO2. Contributions 

to the background uncertainty come from both the OCO-2 tails and from CarbonTracker. The 

tails’ uncertainty contribution is determined by first only using the bin-level standard deviations 

that correspond only to the tails. Those values are added in quadrature and divided by the 

number of values used to find the average tail values. Meanwhile, the CarbonTracker 

contribution to the uncertainty is calculated by finding the standard deviation of the 

CarbonTracker-derived values (both boundary condition and biospheric influence) within the 

enhanced region of each overpass.  

The contributions to the OCO-2 uncertainties (OCO-2 spread, tail spread, and 

CarbonTracker spread) are then added in quadrature, resulting in uncertainty values 

corresponding to each binned XCO2 enhancement at each 0.1° of latitude. The combined binned 
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uncertainties are then also added in quadrature, resulting in an uncertainty corresponding to the 

OCO-2 enhancements for a single overpass. A fractional OCO-2 uncertainty is found by dividing 

this single uncertainty by the integrated enhancements for each overpass. 

To determine the uncertainties for each scaling factor corresponding to a single overpass, 

the 74% transport uncertainty and the fractional OCO-2 uncertainties (generally substantially 

smaller than the transport uncertainties) are combined by taking the square root of the sum of the 

two squared fractional uncertainties.  

The overpass-level uncertainties are then used as inputs into the bootstrap method 

described in Section 2.2.2.5 to determine 90% confidence intervals for the mean scaling factors. 

2.3 Results 

2.3.1 Inventory Representations of the Middle East in Emissions-Space 

On a regional scale, we determine that the three studied emissions inventories represent 

the Middle East quite differently, from the perspective of both spatial distributions of emissions 

and magnitudes of emissions. In Figure 2.1, we show inventory representations of a domain that 

approximates the Middle East. A visual appraisal of these representations suggests that the way 

cities, roads, and transport are distributed throughout the Middle East vary from inventory to 

inventory. The total emissions magnitudes for this domain varies between inventories as well. 

For FFDAS, ODIAC, and EDGAR, respectively, the emissions represented in this domain come 

out to 697, 789, and 722 MtC y-1. 

2.3.2 Inventory Representations of Urban Centers in the Middle East 

Emissions representations of each city of interest for each inventory at 0.1 x 0.1° 

resolution are displayed in Figure 2.2, with emissions scaling linearly. Note that the displayed 
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scales are the same for each representation for a city, though the maximum values vary for each 

city.  

Figure 2.2 illustrates that the emissions within the chosen domains are distributed quite 

differently, to the point that it is not immediately apparent that different inventories are even 

representing the same city, apart from overlapping of the highest-valued grid cells in each 

representation. Same-city patterns across the inventories are not apparent in this form. A sense of 

these distributions can be gained by determining the Kendall rank correlations between pairs of 

inventories for each city, as shown in Table 2.2. Apart from those correlation coefficients 

associated with Jeddah’s representation by ODIAC, which has an error with its representation 

(see Section 2.6.2, Supporting Information), the remaining correlation coefficients suggest that 

the same-city inventory representations are correlated with each other to varying degrees without 

being identical.  

The magnitudes of the emissions within each representation, i.e. the sums of the 

emissions in each displayed domain, are listed in Table 2.3. Other than in the case of Jeddah, the 

FFDAS and ODIAC summed magnitudes for all other cities are more similar to each other than 

with EDGAR.  

The maximum values in each domain are also listed in Table 2.3. For each city, the 

maximum valued grid cell among the three inventories is almost always represented by FFDAS.  

Those maximum values are often significantly higher than those of the other inventories, 

sometimes multiple times higher. This suggests that for FFDAS, large point sources carry more 

weight than they do for the other two inventories, whether that is due to the method of 

distribution of emissions by proxy, or due to large point source data containing much higher 

values for FFDAS than those used by the other inventories. 
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 FFDAS-ODIAC ODIAC-EDGAR EDGAR-FFDAS 
Riyadh 0.81 0.81 0.78 
Mecca 0.70 0.82 0.69 
Tabuk 0.77 0.85 0.78 

Baghdad 0.64 0.67 0.51 
Jeddah -0.010* -0.15* 0.71 

Table 2.2 Kendall rank correlation coefficients between pairs of inventories for each studied city. For all paired 
inventory domains other than those including the ODIAC representation of Jeddah (labeled with *), the inventory 
representations are correlated with each other. 

 

 Pop. 
(million 
people) 

Emissions Sums (MtC y-1)   Maximum Values (MtC y-1)   

  FFDAS ODIAC EDGAR FFDAS ODIAC EDGAR 
Riyadh 5.2 29.0 28.4 18.2 17.6 6.36 7.26 
Mecca 1.5 5.81 6.54 7.89 3.10 1.88 0.616 
Tabuk 0.4 2.48 2.37 0.548 1.65 0.837 0.137 

Baghdad 6.7 4.74 3.60 7.00 1.91 1.26 1.38 
Jeddah 3.4 13.4 4.08* 19.4 5.74 2.73*  8.97 

Table 2.3 City populations (April 2010 census data for Saudi Arabian cities, October 2009 estimate for Baghdad) 
(Brinkhoff, 2018), along with, the total sums (magnitudes) and maximum values of CO2 emissions within each 
city’s domain, for the three inventories. (Jeddah values marked with * indicate the error in their representation by 
ODIAC; see Section 2.6.2, Supporting Information.) 

In Figure 2.3, we show cumulative emissions curves for each inventory and city. These 

curves reaffirm that the total magnitudes of emissions for FFDAS and ODIAC tend to be more 

similar than they are for EDGAR. These figures also give us a further understanding of the 

distribution of the emissions for each inventory representation of a city. For each city (other than 

Jeddah), the FFDAS and ODIAC curves are more rounded out than the EDGAR curves, 

suggesting that more of the total emissions in the domain of interest are due to fewer and higher-

emission grid cells. This also means that EDGAR’s urban representations distribute emissions 

more evenly than the other two inventories. This could be attributed to EDGAR distributing on-

road emissions more homogeneously than the other inventories, which was discussed by Gately 

and Hutyra (2017) for an earlier version of EDGAR. Regarding the greater similarity in 

distribution between the FFDAS and ODIAC curves, this could be due to their shared use of  
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Figure 2.3 Cumulative emissions curves for each inventory and city. These figures simultaneously represent 
magnitudes and spatial distributions of emissions for each city and inventory. The total emissions magnitudes are 
represented by the rightmost point, whereas the distributions are represented by the shape of the curves, with 
straighter curves being more evenly spread than those that are more rounded out. Based on these curves, the 
EDGAR representations of the cities of interest differ most from the other inventories, with more variant magnitudes 
and more evenly spread emissions. 

nighttime lights as a proxy for distributing emissions. In any case, all curves show EDGAR as 

having the most evenly spread emissions, suggesting that all studied cities follow similar patterns 

of emissions distributions for the same inventories, in spite of relative differences in emissions 

magnitudes. 

2.3.3 Simulated Atmospheric Concentrations of Urban Centers in the Middle East  

The magnitude and spatial distribution differences between the different inventories 

across the cities of interest are found not only in their emissions, but also in their respective 
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simulations of concentrations. As an example to show the manifestations of these differences 

into concentration-space, Figure 2.4 shows the enhancements for four different observed and 

modeled overpasses, for three cities and all on different dates. Note that we have included 

ODIAC in its native resolution (“ODIAC” in green) and at the resolution aggregated to match 

the other inventories (“Agg ODIAC” in pink). In these sample overpasses, all of the modeled 

overpasses capture the urban plumes, though the distribution and the magnitudes of the captured 

enhancements vary by inventory used in the model. While these modeled overpasses’ attributes 

are not representative of all modeled overpasses for their respective cities, they do show how the 

differences in emissions magnitudes and distributions have manifested themselves into 

concentration-space on these particular days due to atmospheric transport. A similar figure to 

Figure 2.4 but with observational uncertainties included is in the Supporting Information as 

Figure 2.8. Corresponding observed and simulated total XCO2 plots are found in Figure 2.9. 

2.3.4 Comparison between Observed and Simulated Enhancements 

When comparing the simulated enhancements by latitude to the observed ones, such as in 

Figure 2.4, we continue to see that the magnitude and distribution of enhancements in the models 

differ from what OCO-2 has observed. In this figure, we show enhancements vs. latitude, where 

the black squares are the binned observed enhancements and the other colored points show the 

different modeled enhancements. In certain cases, the magnitudes of the enhancements seem 

fairly consistent between the observations and models (e.g., Riyadh 2016-02-16); in others, they 

are quite different (e.g., Mecca 2016-03-22), which we attribute to daily variations in emissions 

that are not captured by the temporal resolution of the models. However, the models capture the 

urban plumes that the satellite has observed, suggesting that there is a fidelity to the models. 

There are also cases in which the observed and the modeled plumes are latitudinally shifted from  
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Figure 2.4 Enhancements of sample observed (black) and modeled (other colors) overpasses for different cities and 
days. Note that we have included ODIAC in its native resolution (“ODIAC” in green) and at the resolution 
aggregated to match the other inventories (“Agg ODIAC” in pink). All modeled overpasses capture the urban plume 
depicted in the observations. Differences in magnitudes and spatial distributions of the emissions manifest 
themselves in the differing representations of the enhancements. The sample overpasses for Jeddah on March 13, 
2015 and Riyadh on December 27, 2014 depict latitudinal shifts in the urban plume as a result of transport errors 
that offset the location of the plumes. Our integral method of comparison between the observed and modeled 
enhancements is not inhibited by these latitudinal shifts.  
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each other, as in the overpass of Riyadh 2014-12-27. This latitudinal shift, which is likely due to 

transport errors, demonstrates the model’s ability to capture the urban plume, even when 

transport errors offset the plume’s location from the satellite-observed plume. 

The differing distributions of enhancements and latitudinal shifts in the plumes between 

the simulations and the observations lend themselves to an integral method of comparing 

enhancements. This process is captured in the cumulative enhancement curves shown in the four 

unscaled examples (left) in Figure 2.5, which correspond to four of the same overpasses shown 

in Figure 2.4. The cumulative sum, or magnitude of the enhancements for each overpass are 

captured by the rightmost points on each curve, visually representing the differences in 

magnitude between the different models and the observation for each respective overpass. 

In the scaled cumulative enhancement curves of Figure 2.5 (right), the summed modeled 

enhancements are all scaled to match those of the observed enhancements for each overpass. 

These curves make the differences in distribution of enhancements within the urban plume 

clearer. Despite the distributions of the enhancements still differing, this method normalizes the 

magnitudes of the modeled enhancements to those of the OCO-2 observations, resulting in 

overpass-specific scaling factors for each inventory, for each studied day. For the overpasses in 

Figure 2.5, we have scaling factors ranging from 0.50 (aggregated ODIAC simulation of 

overpass for Riyadh 2014-12-27) to 2.77 (aggregated ODIAC simulation of overpass for 

Baghdad 2015-03-01). Scaling factors vary from day to day for a specific city. 

All overpass-level scaling factors are combined into a singular scaling factor for each 

inventory and city with the bootstrap method discussed in Section 2.2.2.5. These mean scaling 

factors are listed in Table 2.4 with their 90% confidence intervals.  These scaling factors are 

determined by comparison with midday satellite observations, meaning we correct the whole  
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Figure 2.5 Cumulative enhancement curves, unscaled (left) and scaled (right), corresponding to the several of the 
overpasses shown in Figure 2.4. The unscaled curves illustrate magnitude differences between the models and 
observations, while the scaled illustrate the spatial differences in the enhancements. The unscaled modeled curves on 
the left are scaled on the right to match the integral of the OCO-2 enhancements. We use those scaling factors to 
quantify the relationship between the modeled and observed enhancements. 
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 FFDAS ODIAC EDGAR Agg. ODIAC 
Riyadh 1.1 (0.5, 1.8) 1.2 (0.5, 1.9) 1.8 (1.0, 2.6) 1.1 (0.4, 1.8) 
Mecca 1.7 (0.7, 2.7) 1.7 (0.6, 2.8) 1.4 (0.5, 2.4) 1.6 (0.6, 2.6) 
Tabuk 3.4 (0.9, 5.8) 3.1 (0.7, 5.4) 8.7 (4.6, 12.7) 3.1 (0.7, 5.4) 

Baghdad 3.0 (1.3, 4.9) 3.0 (1.6, 4.4) 2.2 (0.8, 3.7) 4.0 (1.8, 6.4) 
Jeddah 3.3 (2.1, 4.4) 6.7 (5.5, 7.9) 1.9 (0.9, 2.9) 6.6 (4.9, 8.5) 

Table 2.4 Mean scaling factors that represent the relationship between the inventory modeled enhancements for each 
city and the satellite observations. Their respective 90% confidence intervals are in parentheses. 

inventory based on midday comparisons, an approach that relies on the diurnal model 

representation being accurate. 

2.3.5 Estimates of Urban Emissions in the Middle East 

The mean scaling factors multiplied with their respective inventories result in new, scaled 

estimates of urban emissions in the Middle East. These estimates are shown in the first five 

panels of Figure 2.6. In these panels, for each city, the colored bars represent the inventory 

magnitudes, while the gray bars represent the corresponding scaled emissions estimates, with 

90% confidence intervals. Though some of the confidence intervals are quite large, we find that 

many of the scaled inventory estimates and their corresponding confidence intervals are either 

higher than the prior inventory emissions magnitudes or overlap only slightly. This suggests that, 

as compared to the OCO-2 observations, the global emissions inventories are underestimating 

several of the urban representations of afternoon emissions. This is the case for the EDGAR 

representation of Riyadh, and all prior inventory representations of Tabuk, Baghdad and Jeddah. 

The mean scaled estimates all exceed the prior inventory estimates for all cities. 

As discussed in Section 2.3.2, all of the prior inventory representations of each city 

demonstrate varying spatial distributions and magnitudes of emissions, with no specific measure 

of uncertainty. However, our work has determined emissions estimates for each city that 

converge across inventories and are indistinguishable within the confines of the confidence 

intervals. Based on a limited number of observations, we have thus found emissions magnitude  
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Figure 2.6 Prior (colored) and scaled (gray) emissions magnitude estimates for our five cities of interest: Riyadh, 
Mecca, Tabuk, Baghdad, and Jeddah, as well as the sums of the emissions of all five cities. The black lines on the 
gray bars represent the 90% confidence intervals. When taken in aggregate, the prior emissions magnitudes 
underestimate emissions as compared to those scaled by our emissions scaling factors. 

estimates for each city that are insensitive to the distributions of the prior inventory emissions 

and that adjust the magnitudes of the emissions, in spite of the differences between the priors. 

This is a surprisingly powerful result, especially given the significance placed on the accuracy of 

high-resolution inventories for previous ground-based inversion studies, (e.g., Lauvaux et al., 

2016; Oda et al., 2017). While the space-based column measurements of CO2 concentrations 

have not given us information to quantify the spatial distribution of emissions, it has allowed us 

to bypass the differences in spatial distributions by providing an integral constraint to quantify 

urban magnitudes of CO2 emissions.  

Sums of the different emissions estimates for each inventory (prior and scaled with 

confidence intervals) across the five cities are shown at the bottom right in Figure 2.6. As shown 
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in this figure, our scaled estimates, with minimal or no overlap between our 90% confidence 

intervals and the prior emissions, demonstrate larger emissions than those estimated by the 

unscaled inventories. In other words, the five cities are, when summed, underestimated by their 

prior inventory representations as compared to their observation-scaled counterparts.  

2.4 Discussion 

2.4.1 Implications for Middle Eastern Emissions and their Representations  

 Our scaled emissions and their respective 90% confidence intervals constrain emissions 

of five Middle Eastern cities. We find that for Riyadh, EDGAR representations underestimate 

afternoon emissions as compared to what our observations suggest. Moreover, for Tabuk, 

Baghdad, and Jeddah, almost all prior inventory representations underestimate afternoon 

emissions. After summing emissions for all five cities, prior estimates for all inventories overlap 

minimally or not at all with lower bounds of the scaled emissions confidence intervals. Thus, we 

can highlight that, in sum, inventory representations across all five cities underestimate afternoon 

emissions. If prior and scaled summed emissions are averaged across three inventories, the 

average scaled summed emissions of all cities are 100 MtC y-1 (50, 151), which is 2.0 (1.0, 3.0) 

times greater than the average prior summed emissions. 

 Our scaled estimates have regional significance. The entire Middle East as a whole emits 

approximately 700 MtC y-1 (Boden et al., 2016). The difference between the average scaled and 

prior summed emissions for our five cities is 49 (-1, 100) MtC y-1, which is equivalent to ~7% 

(0%, 14%) of total Middle Eastern emissions. Meanwhile, the emissions of Saudi Arabia and 

Iraq are approximately 200 MtC y-1 (Boden et al., 2016). Prior and scaled summed emissions 

come out to ~26% and 50% (25%, 76%) of the Saudi Arabian and Iraqi total, respectively. The 

difference between the average scaled and prior summed emissions for the five studied cities 
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comes out to ~25% (-1%, 50%) of the sum of the two countries’ total emissions.  However, 

further work at a national or regional scale is needed to determine whether the underestimation in 

these urban emissions representations suggest either underestimation in the national totals or if 

our estimated discrepancy is more a result of misallocation of the emissions throughout the 

studied countries. 

 This work demonstrates the ability to use satellite observations to constrain urban 

emissions of cities of a variety of sizes. Given the much smaller magnitude of emissions of 

Tabuk as compared to Riyadh, for example, it is a surprising result that we can observe XCO2 

enhancements from a city like Tabuk from space (as in Figure 2.10 in Supporting Information). 

It does appear that with appropriate isolation from our strong XCO2 signals, and with sufficient 

concentration of emissions and favorable atmospheric dynamics, even relatively small cities 

(with populations of hundreds of thousands) can be identified and have emissions quantified. 

 This study provides an objective evaluation of the emission downscale approaches used 

by the gridded emissions inventories. For the five studied cities, EDGAR’s prior estimates 

overlap substantially with the confidence intervals of our scaled emissions estimates only for 

Mecca. For every other city, the EDGAR representations have emissions lower than or 

minimally overlapping with the lower bound of the confidence intervals we estimate. As such, 

EDGAR does not seem to accurately capture urban emissions of these studied cities. Why is 

this? EDGAR tends to distribute emissions across the urban domain more than the other two 

inventories. Of the studied cities, Riyadh is the largest, and EDGAR’s emissions estimate is 

significantly lower than those of other inventories. It is possible that the distributed nature of 

how EDGAR grids emissions is less able to capture the high emissions intensity of such a large 

city than alternate gridding methods that rely on proxies such as nightlights.  
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FFDAS and ODIAC (and its aggregated version) both also appear to underestimate 

emissions in comparison with the OCO-2 data, though their emission magnitudes are within the 

large confidence intervals of three of our optimized estimates of individual cities. These two 

inventories share the use of nighttime lights as a proxy for emissions distribution, and this work 

is somewhat suggestive this may be a useful proxy for global representation of urban domains, 

but further work is required to further parse out their similarities, differences, and reasons for 

their underestimation of the studied urban emissions. 

 Our work also has the potential to identify larger errors in inventory representations of 

cities. For example, the ODIAC representation of Jeddah has an error in it due to a mismatch 

between two nightlight data sources (one for distributed emissions and the other for gas flare 

emissions, see Oda et al. 2018) at that particular location. This error was identified with our 

methods. We have not corrected for the spatial distribution error in this manuscript, but we have 

estimated the magnitude of emissions for Jeddah that can be used to take into account when 

correcting ODIAC for future versions of the inventory. 

2.4.2 The Spatial Resolution of the Prior Emissions 

 When making direct comparisons between the emissions inventories themselves, we 

scale ODIAC to match the spatial resolution of the other inventories. However, in its native 

spatial resolution, ODIAC has 12 times higher resolution in each spatial dimension. In order to 

assess the effect of using the two different spatial resolutions, all modeled results include both 

native resolution results (“ODIAC”) and results in which the resolution is aggregated up to 0.1 x 

0.1° (“Agg ODIAC”). We can see in plots such as Figure 2.4 that the differences in spatial 

resolution do affect the individual modeled enhancement values, as the points for the two 

ODIAC resolutions do not perfectly overlap with each other. However, within the scope of our 
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study, the differences in spatial resolution do not greatly affect the outcome of our scaled 

emissions estimates. For each studied city, the scaled estimates across the different ODIAC 

resolutions provide convergent estimates. Thus, our estimates are insensitive to both the 

differences in the studied resolutions as well as the spatial distributions in the priors.   

2.4.3 Limitations and their Implications 

 The OCO-2 satellite follows a sun-synchronous orbit, meaning that all the observations 

used in this study are temporally limited to local afternoon. Consequently, we cannot assess the 

diurnal cycle of our results, and our results are dependent on the accuracy of the diurnal model 

representation by the TIMES scaling factors. Our results thus suggest an emissions 

underestimation by the modeled inventory representations and their corresponding parts—

namely, the convolution of the inventories themselves and the diurnal model representations. 

(Note that the FFDAS product has its own internal diurnal cycle embedded into the product 

based on the TIMES factors.) We cannot disentangle the TIMES factors from the inventory 

representations, which suggests that this underestimation could be a result of the inventories 

having too-low emissions, the TIMES diurnal cycle not fully capturing afternoon emissions, or a 

combination of these two factors. 

 Given the widespread usage of the TIMES factors for capturing diurnal cycles, it is 

possible that there is a systematic bias across many model representations of diurnality of 

emissions. The TIMES factors are potentially unable to fully correct for the lack of diurnality in 

the emissions inventories, particularly at the urban scale, a scale for which these factors were not 

designed. While this potential bias cannot be tested using OCO-2 data alone, as is done in this 

study, observations from multiple times of day from other satellites such as the recently launched 

OCO-3 could allow for assessments of the diurnal cycle represented by the TIMES factors. 
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Moreover, there is great potential for carbon-observing satellites in geostationary orbit to assess 

the diurnal cycle of CO2 emissions, as they would be able to make multiple observations of the 

same locations throughout the day. For example, the upcoming Geostationary Carbon Cycle 

Observatory (GeoCARB) mission, which will continuously monitor column concentrations of 

CO2, CH4, and CO in the Americas throughout the day from geostationary orbit, is an important 

step forward in this respect (Moore III et al., 2018). 

 Assessments of the emissions magnitudes of inventory representations are also limited by 

the signal-to-noise ratio (SNR) of the OCO-2 observations. The methods used in this paper to 

analyze observed overpasses rely on high SNR and optimal conditions; it is possible that 

overpasses with higher SNR simultaneously also have stronger signals, suggesting that our 

results may be biased toward higher scaling factors and thus suggesting greater underestimation 

by the modeled representations of afternoon emissions. This potential bias highlights the 

limitations of not just this study but for other studies involving space-based observations for the 

use of urban emissions assessments. The use of space-based observations of XCO2 can be 

hindered by a number of factors, such as clouds, high albedo, topography, and wind conditions; 

for regions at urban scales, these factors in turn limit the types of studies for which the 

observations can be used. Given these limitations, our study does not seek to quantify absolute 

emissions in the studied cities, but rather assess the inventory representations’ ability to capture 

the variations in urban emissions that are suggested by the observations used in this study. The 

underestimation by these inventory representations that we have evaluated thus suggest that the 

inventories can be improved to better capture such variations. The larger observed swaths 

available at urban scales in both the target and snapshot area mapping (SAM) modes of OCO-3 
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will provide for much more data at urban scales, and could lessen some of the limitations 

associated with OCO-2 data (Eldering et al., 2019). 

2.5 Summary and Conclusions 

Global FFCO2 emissions inventories need to be evaluated and improved at the urban-

scale for the sake of carbon cycle science and urban mitigation policies. In this study, we 

evaluate global FFCO2 emissions inventory representations of afternoon urban CO2 emissions in 

the Middle East, and assess the ability of satellite observations to inform this evaluation. We find 

the relationship between top-down satellite observations and bottom-up simulations of XCO2 to 

calculate scaling factors to adjust the prior inventory estimates of five Middle Eastern cities’ 

emissions. Based on our findings, we estimate that the sum of the studied cities’ scaled emissions 

are on average 2.0 (1.0, 3.0) times the prior inventory magnitudes. The underestimation of these 

five cities’ emissions by the inventories comes out to ~7% (0%, 14%) of total Middle Eastern 

emissions. Our results are insensitive to the spatial differences in the inventory representations of 

the cities’ emissions, facilitating robust quantitative assessments of urban emissions inventory 

representations. This is in contrast with atmospheric inverse analyses carried out with ground-

based observations, which would be heavily dependent on the spatial distribution of the prior 

inventories. Using space-based XCO2 observations allows us to constrain urban emissions in a 

fashion not previously available to us, enabling evaluation of inventories and downscaling 

methods at subnational scales. These results are based only on a few overpasses for each city; 

with additional observations, urban emissions could be even further constrained, and more cities 

could be included in a future study. In particular, the recent launch of the OCO-3 is especially 

exciting: it opens up new potential pathways for urban CO2 emissions studies to move forward, 

with observations during different times of the day (instead of only the afternoon as with OCO-
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2), and the new SAM mode that could capture the entire urban plume (Eldering et al., 2019). The 

upcoming launch of the geostationary GeoCARB mission will also help to fill in some of the 

observational gaps of the sun-synchronous OCO-2 and OCO-3 satellites by mapping column 

concentrations of CO2 in the Americas with multiple measurements of the same locations every 

day. Constraining urban emissions is critically important, and satellites are paving the way for 

such work to be done. 

2.6 Supporting Information 

This section contains supplementary information, including a supporting description of 

data processing (Section 2.6.1), details on an error in ODIAC’s representation of the city of 

Jeddah (Section 2.6.2), a figure and table illustrating information about the overpasses used in 

this study (Figure 2.7 and Table 2.5), figures illustrating additional detail to Figure 2.4 above 

(Figures 2.8 and 2.9), and a figure supporting the discussion in Section 2.4.1 on our ability to 

observe enhancements from relatively small cities (Figure 2.10).  

2.6.1 Impact of Data Screening with Warn Levels on Scaling Factors 

To maximize usable data, we conduct a sensitivity study to assess what level of warn 

level filtering to apply to the OCO-2 data used in this study. Since we have the densest 

observational dataset for Riyadh, we use this as a case study. We consider the impact of using 

data from warn levels 0, 2, 4, and 5 for the 9 overpasses that retain sufficient data density for 

evaluation when screened at level 0. There is a trade-off between including potentially biased 

data points (warn level 5) and reducing the data volume such to limit statistics (warn level 0). We 

find that our scaling factors are not statistically different irrespective of warn level used for 

Riyadh. At level 0, 2, and 4 with 90% confidence intervals, our scaling factors for FFDAS, 
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ODIAC, EDGAR, and aggregated ODIAC are, respectively: 1.2 (0.5, 1.9), 1.3 (0.5, 2.1), 1.9 

(1.0, 2.8), and 1.2 (0.5, 1.9). At level 5, the scaling factors are all the same other than the 

EDGAR scaling factor, 1.9 (1.0, 2.9), which has a slight increase in its upper bound. The 

minimal effect of warn level screening on the scaling factors may in part be due to the 

differential nature of our urban analysis, and/or that we average individual soundings together 

and consider the variability in the soundings averaged as an uncertainty in our analysis, both of 

which might mitigate the inclusion of skewed soundings. Given the results of this Riyadh study, 

we report results using the most generous inclusion of data (warn level 5) in this manuscript. 

2.6.2 ODIAC Representation Error for the City of Jeddah 

ODIAC’s representation error of Jeddah’s emissions is due to a mismatch between two 

gas flare nightlight data sources at that particular location. ODIAC uses multiple nighttime light 

data sources to distribute emissions. Generally speaking, nightlight intensity is used as a proxy 

for the magnitude of human activities, and correspondingly, CO2 emissions. However, the pixels 

associated with gas flares are very bright and thus do not serve as an appropriate proxy for 

emissions. These bright pixels are thus removed. Gas flares are still included in the ODIAC data 

product, however; a modified version of NOAA’s gas flare nightlight data is used to distribute 

gas flare emissions country by country. At Jeddah’s location, the emissions representation 

corresponds to a difference between the two gas flare nightlight products. This is a model error 

in ODIAC and is fixed in the latest version of the product. 
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2.6.3 Supporting Figures and Table 

 

Figure 2.7 All studied overpasses (light blue), overlaid upon the cities of interest, which represented by nighttime 
lights. The cities of interest are centered within each subplot; in particular, Mecca is the central high-intensity unit of 
the three shown in its corresponding subplot. 
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Figure 2.8 Enhancements of sample observed and modeled overpasses for different cities and days, as in Figure 2.4 
but with uncertainties on the observations. The uncertainties are derived from the spread of the OCO-2 data, with 
each uncertainty value representing the standard deviation of the observed points whose medians are used in each 
plotted observed point. 
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Figure 2.9 Total XCO2 for sample observed (black) and modeled (other colors) overpasses for different cities and 
days, matching those of Figure 2.4.  
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Figure 2.10 OCO-2 observations of XCO2 on 2016-09-05 overlaid on gridded nighttime lights of the city of Tabuk, 
Saudi Arabia. 
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City Date Hour (UTC) Observation Mode 
Riyadh 2014-12-27 10 Nadir 
Riyadh 2014-12-29 10 Glint 
Riyadh 2015-01-28 10 Nadir 
Riyadh 2015-03-01 10 Nadir 
Riyadh 2015-08-17 10 Glint 
Riyadh 2015-09-09 10 Nadir 
Riyadh 2015-12-16 10 Glint 
Riyadh 2016-02-16 10 Nadir 
Riyadh 2016-05-22 10 Nadir 
Riyadh 2016-07-25 10 Nadir 
Riyadh 2016-10-29 10 Nadir 
Mecca 2014-09-25 11 Nadir 
Mecca 2014-11-12 11 Nadir 
Mecca 2015-11-15 11 Nadir 
Mecca 2016-02-19 11 Nadir 
Mecca 2016-03-22 11 Nadir 
Mecca 2017-04-10 11 Nadir 
Tabuk 2015-05-23 11 Glint 
Tabuk 2016-09-05 11 Nadir 
Tabuk 2017-04-17 11 Nadir 
Baghdad 2015-03-01 10 Nadir 
Baghdad 2015-05-20 10 Nadir 
Baghdad 2015-11-12 10 Nadir 
Jeddah 2015-03-13 11 Glint 
Jeddah 2015-04-14 11 Glint 
Jeddah 2016-02-28 11 Glint 

Table 2.5 Information on all overpasses used in this study: city, date, hour (UTC) at which observations were made, 
and observation mode. 
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Chapter 3 Using Space-Based CO2 and NO2 Observations to Estimate Urban CO2 

Emissions 

This chapter is awaiting submission to Journal of Geophysical Research: Atmospheres. 

It was coauthored with Eric A. Kort, Lesley Ott, Tomohiro Oda, and John C. Lin. 

 

Abstract 

As the majority of fossil fuel CO2 emissions derive from cities, the use of novel 

techniques to leverage available satellite observations of CO2 and proxy species to constrain 

urban CO2 is of great importance. In this study, we seek to empirically determine relationships 

between satellite observations of CO2 and the proxy species NO2, applying these relationships to 

NO2 fields to generate NO2-derived CO2 fields (NDCFs) from which CO2 emissions can be 

estimated. We first establish this method using simulations of CO2 and NO2 for the cities of 

Buenos Aires, Melbourne, and Mexico City, finding that the method is viable throughout the 

year. For the same three cities, we next calculate empirical relationships (slopes) between co-

located observations of NO2 from the TROPOspheric Monitoring Instrument (TROPOMI) and 

Snapshot Area Mode (SAM) observations of CO2 from Orbiting Carbon Observatory-3 (OCO-

3). Applying varying combinations of slopes to generate NDCFs, we evaluate methodological 

uncertainties for each slope application method and use a simple mass balance method to 

estimate CO2 emissions from NDCFs. We demonstrate monthly urban CO2 emissions estimates 

that are comparable to emissions inventory estimates. We additionally prove the utility of our 

method by demonstrating how large uncertainties at a grid cell level (equivalent to ~1-3 ppm) 
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can be reduced substantially when aggregating emissions estimates from NDCFs generated from 

all NO2 swaths (about 1-6%). Rather than rely on prior knowledge of emission ratios, our 

method circumvents such assumptions and provides a valuable observational constraint on urban 

CO2 emissions. 

3.1 Introduction 

As the global carbon dioxide (CO2) mixing ratio rises, it is becoming increasingly 

important to assess fossil CO2 emissions from cities. At present, the majority of fossil CO2 

emissions entering the atmosphere derive from urban areas, resulting mostly from automobile 

tailpipe emissions, industrial emissions, home heating, and fossil fuel-based power plants, 

though the lattermost emissions may take place away from the urban center itself (International 

Energy Agency, 2008; Lin et al., 2018). As of 2018, 55% of the global population resided in 

urban areas, and this proportion is projected to increase to 68% by 2050 (United Nations, 

Department of Economic and Social Affairs, Population Division, 2019). Not only are urban 

fossil CO2 emissions expected to play an increasingly important role in the global carbon cycle, 

but also their quantification is becoming a higher priority as cities pledge to reduce emissions 

(Bodansky, 2016; Gurney et al., 2015; Rosenzweig et al., 2010) and require a means of assessing 

progress toward pledged goals (Lauvaux et al., 2020; Mueller et al., 2021). However, there are 

many gaps in our understanding of urban carbon emissions, along with high uncertainties, due in 

large part to limited data collected at the urban scale (Gately & Hutyra, 2017; Hutyra et al., 

2014). In more recent years, there has been a push to fill this gap using space-based observations 

of CO2 to better understand urban emissions (Kort et al., 2012; Hakkarainen et al., 2016; 

Hedelius et al., 2018; Wu et al., 2018; Park et al., 2020; Wu et al., 2020; Yang et al., 2020; Ye et 

al., 2020; Kiel et al., 2021; Lei et al., 2021; Kuze et al., 2022). 
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Observation of gaseous species that are co-emitted with fossil CO2 during combustion 

has the potential to provide much-needed information to fill the urban carbon cycle knowledge 

gaps. These proxy species, such as the nitrogen oxides family (NOx) and carbon monoxide (CO), 

share many sources that are co-located in time and space with those of CO2, and thus can be used 

to help constrain fossil CO2 emissions and monitor temporal changes in emissions (Berezin et al., 

2013; Konovalov et al., 2016). In particular, observations of nitrogen dioxide (NO2), one of the 

gases in the NOx family, have the potential to greatly increase our understanding of urban carbon 

emissions for a variety of reasons. Using NO2 as a proxy for fossil CO2 allows for the 

quantification of anthropogenic emissions and disentanglement from biogenic sources of CO2 

(Ciais et al., 2014; Goldberg, Lu, Oda, et al., 2019). Additionally, the relatively short lifetime of 

NO2 means that observed NO2 concentrations are less affected by long-range transport than CO2 

or longer-lived proxies like CO, and lend themselves to more robust interpretation in a local 

setting (Berezin et al., 2013; Goldberg, Lu, Oda, et al., 2019). NO2 observations are also less 

sensitive to clouds than those of CO2, and quantification of NO2 emissions is less affected by 

background variability (Kuhlmann et al., 2019). 

Space-based NO2 observations in particular have the potential to improve the 

quantification of CO2 emissions. Satellite observations of NO2 have been used in combination 

with NOx:CO2 inventory ratios to indirectly estimate CO2 emissions. For example, Berezin et al. 

(2013) used NO2 observations from the Global Ozone Monitoring Experiment (GOME) and the 

SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) 

space-based instruments to infer NOx emissions, then used NOx:CO2 emission conversion factors 

defined by the Emission Database for Global Atmospheric Research (EDGAR) and the Regional 

Emission Inventory in Asia (REAS) to estimate multiannual trends of CO2 emissions in China. 
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Konovalov et al. (2016) also made regional estimates of CO2 emissions in Western Europe using 

satellite observations of both proxy species NO2 and CO from the Ozone Monitoring Instrument 

(OMI) and the Infrared Atmospheric Sounding Interferometer (IASI) in combination with 

EDGAR emission ratios, finding that NO2 observations had the potential to provide much 

stronger constraints to the total annual fossil CO2 emissions in the study region than those of CO. 

More recent studies have used similar methods to constrain CO2 emissions at smaller scales, with 

Goldberg et al. (2019) using OMI NO2 observations and NOx:CO2 ratios from the U.S. EPA to 

infer CO2 emissions from eight U.S. megacities, while Liu et al. (2020) indirectly estimated CO2 

emissions from eight U.S. power plants by combining OMI NO2 observations with the NOx:CO2 

relationship reported by continuous emissions monitoring system (CEMS) programs. There are 

limitations to studies that rely on prior NOx:CO2 ratios, however, as this relationship changes 

over time. 

There have also been studies that have leveraged satellite NO2 observations to provide 

additional information to existing satellite CO2 observations. In this vein, Reuter et al. (2019) 

used NO2 observations from the TROPOspheric Monitoring Instrument (TROPOMI) to adjust 

wind direction and constrain the shape of the CO2 plume observed by the Orbiting Carbon 

Observatory-2 (OCO-2) to make CO2 flux estimates for six case studies of various cities, power 

plants, and wildfires. Kiel et al. (2021) also related CO2 observations of Los Angeles from the 

Orbiting Carbon Observatory-3 (OCO-3) instrument to TROPOMI NO2 observations to ensure 

that the observed CO2 distributions showed true signals derived from local emissions. Finally, 

there has been a study in which the authors derived a mean NOx:CO2 ratio from co-located 

TROPOMI and OCO-2 observations of the Matimba power plant in South Africa, then applied 

the ratio to annual NOx emissions derived from TROPOMI to make CO2 flux estimates that were 
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consistent with emissions inventory estimates from the Open-source Data Inventory for 

Anthropogenic CO2 (ODIAC) (Hakkarainen et al., 2021). 

In this study, we demonstrate a method for estimating urban CO2 emissions using NO2-

derived CO2 fields (NDCFs) empirically derived from space-based observations of urban CO2 

and NO2, and we assess this method using simulated and observational data for the cities of 

Buenos Aires, Melbourne, and Mexico City. Rather than rely on prior knowledge of NOx:CO2 

emission ratios, as did Berezin et al. (2013), Konovalov et al. (2016), Goldberg et al. (2019), and 

Liu et al. (2020), our method circumvents such assumptions and depends instead on finding 

empirical relationships between observations of column‐averaged dry‐air mole fraction of CO2 

(XCO2) from OCO-3 and tropospheric NO2 observations from TROPOMI. These relationships 

can then be applied to TROPOMI NO2 data to generate NDCFs for time periods that have no co-

located CO2 observations. Inverse methods can then be used on the NO2-derived CO2 fields to 

estimate CO2 emissions. We evaluate the feasibility of this method using co-located Goddard 

Earth Observing System Composition Forecast (GEOS-CF) simulations of XCO2 and NO2, and 

we demonstrate the method with observations from OCO-3 and TROPOMI. We further assess 

mass balance estimates of CO2 emissions based on the NDCFs, and discuss uncertainties 

associated with this method. Given the relative abundance and resolution of space-based NO2 

observations compared to those of CO2, we explore the potential our method has on the 

constraint of urban CO2 emissions. 

3.2 Data and Methods 

The goal of this study is to demonstrate a method of generating urban NO2-derived CO2 

fields (NDCFs) from empirical relationships between observations of CO2 and NO2, and use 

these NDCFs to estimate emissions of CO2. We first establish this method using simulations of 
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these gases, as our pool of available observations is limited. We then find empirical relationships 

from available co-located satellite observations of CO2 and NO2 to explore the utility of the 

method and emissions estimates based on the method. Our areas of focus are the following three 

cities: Buenos Aires, Argentina; Melbourne, Australia; and Mexico City, Mexico. 

3.2.1 Simulation Data and Methods 

3.2.1.1 Simulation Data and Pre-processing 

We use hourly simulations of CO2 and NO2 from the GEOS-CF system focused on our 

cities of interest (Keller et al., 2021). The GEOS-CF system is a 0.25° global constituent 

prediction system that combines the GEOS weather and aerosol modeling system with the 

GEOS-Chem chemistry module, simulating various atmospheric constituents such as CO2 and 

NO2 in the past, as well as five-day forecasts of said constituents. The NO2 data are publically 

available, while the CO2 simulations are not yet publically available.  

For this study, we use concurrent and co-located hourly CO2 (dry air column-averaged 

mixing ratio) and tropospheric column NO2 (tropospheric vertical column density) simulations 

for our three cities of interest. We use data from each season (referred to as their northern 

hemisphere season in this sentence only), with one week’s worth of data for spring (2019-04-14 

to 2019-04-20), summer (2019-07-14 to 2019-07-20), and fall (2019-10-13 to 2019-10-19), and 

four weeks’ worth of data for winter (2020-01-12 to 2020-02-08). Note that there are a few gaps 

in the northern hemisphere winter CO2 data, with six hourly simulations missing from the first 

week and one missing from each of the following weeks. Figure 3.1a and b show an example of 

a set of co-located CO2 and NO2 simulations for Buenos Aires in April 2019. 

We choose separate domains of interest for each city of interest, focusing on the area 

emitting CO2 with the highest intensity. These domains are chosen by comparing the spatial  
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Figure 3.1 An example of a set of hourly, co-located GEOS-CF simulations of (a) CO2 and (b) NO2, and (c) the 
relationship between the two, in April 2019 in Buenos Aires. 

boundaries of the cities shown on Google Earth with the areas of highest carbon emission 

represented by the Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC) (Oda et al., 

2018). The domain for Buenos Aires is 1.0° × 0.75° in size, and the domains for Melbourne and 

Mexico City are both 0.75° × 0.75° squares. 
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Once domains are chosen, we filter the simulations. We only use hours during which 

daylight is present for each location. Additionally, we filter out co-located sets of simulations 

with the highest 95th percentile of NO2 values greater than 1.5 × 1016 molecules cm-2, as we have 

observed nonlinearity in the CO2-NO2 relationship when such high values are present. We then 

calculate the CO2-NO2 slopes and intercepts for daytime simulations (see Figure 3.1c) and filter 

for correlation (at least 0.1), R2 (at least 0.1), and slope (must be positive). The simulations are 

further screened via visual inspection to ensure clarity of plumes. 

3.2.1.2 Simulating NO2-Derived CO2 Fields, Evaluating Simulated Uncertainties, and Assessing 

Sensitivity to Seasonal Changes 

To generate NDCFs, we multiply single slopes with an NO2 field from an hour different 

from which the slopes are derived. The field generated in such a manner represents an NO2-

derived CO2 enhancement field. When the intercept associated with the slope is added to the 

enhancements, the resulting field is an NO2-derived CO2 concentration field. Note that these 

NDCFs represent total CO2, with the empirical slopes capturing all impacts from the biosphere 

or chemistry. 

To estimate uncertainties from the simulations, we group simulations by city and season, 

and we generate concentration fields by applying each calculated slope and intercept in a season 

to every other NO2 simulation in that season. Next, we find the relative difference between the 

individual grid values of the NDCFs and those of the “true” CO2 fields that temporally 

correspond to the NO2 fields from which the NDCFs are derived. The standard deviation of the 

gridded relative differences serves as a measure of the uncertainty of each simulated NDCF grid 

cell. 
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We test the sensitivity of the NDCFs to seasonal changes in biosphere activity and NO2 

chemical lifetime by assessing the seasonality of the uncertainties.  

3.2.2 Observation Data and Methods 

3.2.2.1 Satellite Data and Pre-processing 

For our CO2 observations (dry air column-averaged mixing ratio), we use bias‐corrected 

OCO‐3 Level 2 Lite, version 10.4r data in Snapshot Area Map (SAM) mode (Eldering et al., 

2019). These SAMs are fine-scale spatial samplings (with footprint size of 4 km2 or smaller) of 

large contiguous areas that generally target urban centers. We filter the SAMs so that they have 

at least 1000 soundings each, with reasonable data density near the city center of interest, and all 

used data points are screened by quality flag. Additionally, if a CO2 field demonstrates 

enhancements on the edge of a SAM far from and unrelated to the urban center, the enhanced 

edge is masked out. 

For our NO2 observations, we use Level 2 version 1 observations of tropospheric NO2 

tropospheric vertical column density (with resolution of 5.5 km × 3.5 km) from the TROPOMI 

instrument onboard the Sentinel‐5P satellite (Veefkind et al., 2012). We define the “source area 

domain” as the same domains used in the GEOS-CF simulations (Section 3.2.1.1). We define the 

“surrounding domain” as a larger area surrounding the source area domain, generally an 

additional 0.5° box around. The TROPOMI swaths are filtered similarly to those used by Huber 

et al. (2020). Only pixels with “flag_value” greater than or equal to 0.75 are used. Next, we only 

use swaths with at least 30 pixels in the source area domain and 30 pixels in the surrounding 

domain. Finally, the number of passing pixels must be at least 25% the total number of pre-

filtered pixels. As with the GEOS-CF simulations, we also filter out swaths whose highest 95th 

percentile of NO2 values are greater than 1.5 × 1016 molecules cm-2. 
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As an additional filter, we plot co-located SAMs and TROPOMI swaths and visually 

inspect them to ensure plume clarity. We use available SAMs and TROPOMI swaths from the 

end of 2019 through mid-2021.  

3.2.2.2 Defining Empirical Relationships between CO2 and NO2 Observations and Generating 

NDCFs 

As with the GEOS-CF simulations, we calculate slopes and intercepts between co-located 

and semi-concurrent observations. Figure 3.2 shows an example of this process. Because the 

satellites pass over the cities of interest at different times, we must account for the time 

difference. We spatially shift the NO2 field by increments of 0.01° in each direction up to 0.3° 

and calculate the correlation after each shift between the CO2 values, which are averaged to fit 

the corresponding TROPOMI grid, and the NO2 values, which are spatially masked to match the 

outline of the SAM. If the highest correlation found is less than 0.2, that co-located set of 

observations is filtered out. Otherwise, the shift corresponding to the highest correlation is then 

applied to the NO2 field, and the slope and intercept are calculated. Additionally, co-located sets 

can be filtered out through visual inspection if there are no clear plumes.  

Once the empirical relationships have been found between the co-located CO2 and NO2 

fields, NDCFs can be generated. We generate NDCFs from NO2 swaths that have corresponding 

SAMs (e.g., Figure 3.2e), and we also generate NDCFs from the large quantity of NO2 swaths 

that do not have corresponding SAMs. For when we have co-located observations, we use a 

circular application of slopes, i.e., we apply the same-day slopes and intercepts to the NO2 field 

to make direct comparisons with the corresponding SAM. For the non-co-located NDCFs, we 

apply slopes and intercepts with the following four different methods. 1) Single Slope: one slope 

at a time is applied to all NO2 fields temporally following a set of co-located observations. 2)  
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Figure 3.2 (a) An example of a SAM in Buenos Aires. The values have been averaged to match the corresponding 
TROPOMI grid. (b) The corresponding TROPOMI NO2 field from the same day, observed about one hour after the 
SAM. (c) The same NO2 field shifted spatially to have the highest correlation with the CO2 data and masked to 
match the SAM. (d) Scatterplot of CO2 and NO2 data from plots (a) and (c) from which the empirical relationship 
can be found. (e) NDCF generated using relationship from (d) applied to the field in (c). 
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Average Slope: all available slopes are averaged together and applied to every NO2 field. 3) 

Single Slope with Baseline: similar to the single slope method, but each slope is also averaged 

with the average slope value, to capture temporal variations but dampen noise. 4) Rolling 

Averages: averages of multiple slopes are applied to subsequent NO2 fields. For Buenos Aires 

and Mexico City, we use rolling averages of two, three, four, and five slopes. For Melbourne, we 

only use a rolling average of two slopes, as the number of Melbourne SAMs that pass our filters 

is only three. 

3.2.2.3 Estimating CO2 Emissions with a Simple Mass Balance Method 

To estimate CO2 emissions, we use a simple mass balance method similar to that 

described by Buchwitz et al. (2017). In their study, Buchwitz et al. demonstrated a fast method of 

emissions estimation for time-averaged satellite observations of methane. We apply their method 

to SAMs and NDCFs with a few changes to account for the different application. Note that we 

use this emissions estimate method to be able to fairly quickly generate a large quantity of order-

of-magnitude emissions estimates with some temporal variations rather than precise emissions 

estimates; this mass balance method is not a part of the NDCF method we are describing in this 

study. 

The mass balance method is based on a box model, in which the “box” described is the 

CO2 source region, e.g., the domain of the city of interest. The emissions E associated with the 

source region are given as 

𝐸𝐸 = 𝐶𝐶𝐶𝐶 × ∆𝐶𝐶 × 𝑉𝑉/𝐿𝐿, (3.1) 

where CF is a correction factor, ∆C is the average enhancement in the source region as a vertical 

column density, V is the wind speed, and L is the length of the box. Regarding CF and V, 

Buchwitz et al. used CF = 2 and a constant V of 1.1 m s-1, which were derived from comparing 
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their estimates to a prior. As we are not using time-averaged observations, we use 10 m wind 

speeds from the ERA5 reanalysis data (Hersbach et al., 2020), averaging the wind speeds over 

the domain. With wind speeds of approximately 3-6 m s-1, we find from a comparison with 

inventory data that CF = 1/3 is sensible for our study. For ∆C, we first find the average 

concentration in the source region and subtract off a background value, which we determine to 

be the average value of the lowest 20th percentile of values within the bounds of the surrounding 

domain. We then convert this enhancement from units of ppm to kg m-2 using a simple 

conversion factor of 0.01 kg m-2 per 1 ppm of enhancement, as described by Kuhlmann et al. 

(2020). Regarding L, we use an average of the ERA5 wind direction in the source region to 

determine whether the winds are flowing in a more north-south direction or east-west direction. 

Depending on this direction, we use the corresponding length of the domain as L. 

We use the mass balance method to estimate CO2 emissions from SAMs, corresponding 

co-located NDCFs, and NDCFs generated with the four slope application methods described in 

Section 3.2.2.2.2. We also make comparisons between our emissions estimates and EDGAR 

monthly sector-specific gridmaps of CO2 emissions for the year 2015 (Crippa et al., 2020). We 

combine emissions from the four sectors that produce the most emissions in cities: power 

industry, manufacturing, road transport, and buildings. 

3.2.2.4 Evaluating Methodological Uncertainties 

Similar to how we determine simulation uncertainties in Section 3.2.1.2, we use the 

spread of the observation-derived data to estimate methodological uncertainties that capture the 

uncertainties associated with the slope calculations and with the assumptions behind the method 

itself. Grouping the co-located data by city, we generate separate sets of NDCFs by applying our 

four slope application methods to every NO2 field in the group, with the exception of fields 
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whose slopes were used in the slope calculation. Specifically for the Average Slope method, we 

find an average of every slope except one and apply the average to that corresponding NO2 field, 

and rotate through all available co-located datasets. Once the separate sets of NDCFs are 

generated, we again calculate the standard deviation of relative differences of individual grid 

cells between SAMs and the corresponding NDCFs generated with the different methods. These 

standard deviations serve as a measure of the methodological uncertainty that can be propagated 

through to NDCF emissions estimates. The methodological uncertainty is derived relative to 

concentration, as opposed to enhancement, in order to ensure that there is some uncertainty 

regardless of the level of enhancement. 

Note that we do not include an evaluation of uncertainties from the mass balance method. 

This study assesses the utility of the NDCF method and not the mass balance method, and 

uncertainties associated with the mass balance method would be large enough to mask the effect 

of the NDCFs on their own. 

3.3 Results 

3.3.1 Establishment of the NDCF Method with GEOS-CF Simulations 

Generating simulation-based NDCFs with reasonable levels of error and low bias in 

comparison to the “true” CO2 simulations suggests that the NDCF method can be reasonably 

applied to observations. Following the methods described in Section 3.2.1.2, we generate 

simulation-based NDCFs with application of a single slope for each city and season, find the 

relative differences between the NDCFs and their “true” counterparts, and use the spread of the 

distribution of these relative differences at grid cell-level as a measure of the simulation-based 

uncertainty. An example distribution of the relative differences for Mexico City (July) is found 

in Figure 3.3. For this example, the standard deviation of the relative differences is 0.24% of the 
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total concentration of a grid cell, which is equivalent to 0.97 ppm if we assume a concentration 

of 410 ppm. There is low bias associated with this example because the Gaussian distribution 

corresponding to the standard deviation of the data and the Gaussian distribution fit to the data 

are almost the same. This is the same for all other seasons and cities as well.  

Figure 3.4 shows the spread of the relative differences for all cities and seasons. The 

simulation-based uncertainties are at fairly reasonable levels, ranging between 0.11 and 0.97 

ppm if we assume a concentration of 410 ppm. With this figure, we also assess the impact of 

seasonal effects—biospheric activity and NO2 chemistry—on our method. The NDCF method 

involves generating total CO2, which empirically captures seasonal effects in the slopes used. 

Accordingly, we would expect to see larger uncertainties associated with certain times of year if  

 

Figure 3.3 An example of the distribution of grid cell-level relative differences (RD) for Mexico City July (summer). 
The green line shows the empirical density curve, the red line shows the Gaussian curve using the standard deviation 
of the relative differences, and the blue curve fits a Gaussian to the data. Because the red and blue curves are very 
similar to each other, there is low bias. The standard deviation of the relative differences for this example is 0.24% 
of the total concentration of a grid cell, which would be equivalent to 0.97 ppm if we assume a concentration of 410 
ppm.  
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Figure 3.4 A seasonal comparison of the simulation uncertainties. Note that these are for the time period of April 
2019 to February 2020, and that Mexico City’s values have been reordered to follow the seasonal pattern of the 
other cities as opposed to their temporal order. This plot shows no clear seasonal dependence across the cities, 
suggesting that changes in biospheric activity and NO2 chemical lifetime due to season are not primary drivers of 
variations in uncertainty. 

these seasonal effects were a dominant source of error—a systematic bias. Meanwhile, chemical 

or biological effects that are not strongly correlated between the gases would just impart 

additional noise to our uncertainties. While there are variations between months, Figure 3.4 

shows no clear seasonal pattern when comparing across the cities. This suggests that, while there 

is inherent noise driving the variations in uncertainty across seasons, seasonal changes in 

biospheric activity and NO2 chemistry are not the primary drivers of those variations. Thus, these 

seasonal effects do not appear to be a dominating source of error. 
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3.3.2 Methodological Uncertainties in Observation-based NDCFs 

Distributions of the relative differences between observation-based NDCFs and their 

corresponding SAMs, for each slope application method, are shown in Figures 3.5-3.7, with each 

figure corresponding to a different city. The standard deviations of these relative differences 

(listed in Table 3.1) represent the methodological uncertainties corresponding to their respective 

slope application methods and cities. These uncertainties at a grid cell-level are higher than those 

associated with the simulations. Assuming 410 ppm as the concentration for a grid cell, these 

result in uncertainties ranging between about 1.5 and 3 ppm. We expect higher uncertainties due 

to observational noise. 

For Buenos Aires and Mexico City (Figures 3.5 and 3.7), as expected, we see that 

uncertainties are highest for the Single Slope method (panel (a) in both figures). Averaging with 

a baseline (c) or averaging all available slopes together (b) reduces uncertainties by dampening 

noise associated with the use of slopes that may be less representative. For Mexico City (Figure 

3.7), we also observe the expected behavior: uncertainties are reduced as more slopes are 

averaged together (Figure 3.7d-g). For Buenos Aires (Figure 3.5d-g), we see the opposite 

behavior, though the uncertainties are fairly close to each other for these four cases of rolling 

averages. It appears that the particular slopes that are available for Buenos Aires generate greater 

relative differences when rolling averages are taken; we discuss this further regarding the mass 

balance estimates in Section 3.3.3.2. As for Melbourne (Figure 3.6), which has fewer co-located 

observations to derive slopes from, there are a few things of note. First, likely due to the limited 

number of observations, we see higher bias than for the other cities. Second, the Single Slope 

case (Figure 3.6a) demonstrates higher uncertainties than the cases involving the application of 

Average Slopes and Single Slope with Baseline (Figures 3.6b and c, respectively). Third, while  
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Figure 3.5 Distributions of relative differences, as in Figure 3.3, but for Buenos Aires observation-based NDCFs 
derived using the different slope application methods: (a) Single Slope, (b) Average Slope, (c) Single Slope with 
Baseline, (d) Rolling Averages (two slopes), (e) Rolling Averages (three slopes), (f) Rolling Averages (four slopes), 
and (g) Rolling Averages (five slopes). 
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Figure 3.6 Same subplots as Figure 3.5 (a-d), but for Melbourne. Note that the low number of SAM observations 
limits the Rolling Averages method to two slopes only. 

 

 Buenos Aires Melbourne Mexico City 
Single Slope 0.47% (1.94 ppm) 0.43% (1.76 ppm) 0.79% (3.26 ppm) 

Average Slopes 0.37% (1.50 ppm) 0.37% (1.52 ppm) 0.59% (2.44 ppm) 
Single Slope  

with Baseline 
0.40% (1.63 ppm) 0.35% (1.44 ppm) 0.75% (3.07 ppm) 

Rolling Averages  
(2 slopes) 

0.430% (1.76 ppm) 0.44% (1.80 ppm) 0.78% (3.20 ppm) 

Rolling Averages  
(3 slopes) 

0.441% (1.81 ppm) - 0.75% (3.09 ppm) 

Rolling Averages  
(4 slopes) 

0.443% (1.82 ppm) - 0.72% (2.94 ppm) 

Rolling Averages  
(5 slopes) 

0.447% (1.83 ppm) - 0.65% (2.68 ppm) 

Table 3.1 Methodological uncertainties associated with each slope application method 
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Figure 3.7 Same subplots as Figure 3.5, but for Mexico City. 
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the Single Slope (Figure 3.6a) and Rolling Averages of two slopes (Figure 3.6d) cases show very 

similar uncertainties, the latter actually has slightly higher uncertainty. We expect that this is also 

a peculiarity of the low number of observations used. However, the uncertainties are generally 

lower for Melbourne than the other cities, as a result of fairly similar slopes used.  

3.3.3 Emissions Estimates from Observation-based NDCFs 

3.3.3.1 Emissions Estimates from Co-located Observations: SAMs and NDCFs 

Figure 3.8 shows CO2 emissions estimates from the co-located observations for all three 

cities. In black, we show the mass balance estimates of SAMs, and in purple, we show the 

estimates of corresponding NDCFs derived from circular slope application. A comparison 

between SAM and NDCF emissions estimates shows them to be within the same order of 

magnitude, and many of the dates presented in Buenos Aires are quite similar to each other 

(Figure 3.8a). However, we do also expect differences due to the methodological uncertainties 

we have already discussed in Section 3.3.2, as well as uncertainties due to the mass balance 

method itself. Estimates of NDCF emissions being in the same order of magnitude as SAM 

emissions is a reasonable demonstration of effectiveness given the large uncertainties expected. 

3.3.3.2 Emissions Estimates from NDCFs Generated from Remaining Available TROPOMI NO2 

Fields 

Time series of mass balance estimates of NDCFs generated from all available TROPOMI 

NO2 swaths, excluding those that are used in the co-located analysis and slope calculation, are 

shown in Figures 3.9-3.11, with each figure corresponding to a different city. The black dots 

represent individual mass balance estimates, and the purple dots represent the value of the slope 

applied to subsequent dates for all slope application methods other than Average Slope. For each  
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Figure 3.8 Mass balance estimates of CO2 emissions from co-located observations, with the estimates of SAMs in 
black and the corresponding NDCFs in purple, for (a) Buenos Aires, (b) Melbourne, and (c) Mexico City. 

city, there are variations in the emissions estimates, especially depending on the value of the 

slopes used. This is particularly apparent in panel (a) of each of Figures 3.9-3.11, which shows 

the Single Slope method. High or low slopes that are not representative and that are not averaged 

with any other values result in large periods of time with enhanced or suppressed emissions 

estimates that do not appear reasonable. This issue is potentially compounded with the Rolling 

Averages method if multiples of these types of slopes occur consecutively, which possibly 

explains the increased uncertainties for Buenos Aires with the Rolling Averages method 

discussed in Section 3.3.2. Despite these variations across methods, we observe that many of the 

time series suggest a seasonal cycle, with higher emissions in the winter than in the summer. 

These subannual variations are more common in cases not using the Single Slope method. These 

other methods, which average more than one slope together, demonstrate more physically  
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Figure 3.9 Time series of mass balance estimates of Buenos Aires CO2, calculated from NDCFs derived from the 
different slope application methods: (a) Single Slope, (b) Average Slope, (c) Single Slope with Baseline, (d) Rolling 
Averages (two slopes), (e) Rolling Averages (three slopes), (f) Rolling Averages (four slopes), and (g) Rolling 
Averages (five slopes). For all subplots other than (b), we show the slope used to generate all subsequent NDCFs in 
purple. 
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Figure 3.10 Same subplots as Figure 3.9 (a-d), but for Melbourne. Note that the low number of SAM observations 
limits the Rolling Averages method to two slopes only. 

reasonable temporal variation. In particular, the Single Slope with Baseline method captures 

some of the temporality of the Single Slope method but dampens some of the noise from slopes 

that may not be representative of the entire period to which those slopes are applied. The Rolling 

Averages methods show relatively similar results for each city across the differing numbers of 

slopes used to generate the NDCFs. However, since the Rolling Averages method applies 

averaged slopes to NO2 fields following the date of the latest slope used in the average, there is a 

greater loss of NO2 data to be used to generate NDCFs with a greater number of slopes averaged. 

3.3.3.3 Emissions Estimates Aggregated Over Time 

While uncertainties for individual NDCF emissions estimates are large, the value of the 

NDCF method becomes apparent in aggregate. Figures 3.12-3.14 show monthly averages of the  
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Figure 3.11 Same subplots as Figure 3.9, but for Mexico City. 
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Figure 3.12 Mass balance estimates of Buenos Aires CO2 averaged by month, with propagated uncertainties, 
corresponding to the different slope application methods in different colors (see legend). EDGAR monthly data for 
the year 2015 are shown in black squares, with multiples of the same month showing repeated values. Each of these 
EDGAR points represents the sum of emissions from the four sectors of interest: power industry, manufacturing, 
road transport, and buildings. 

mass balance estimates, with methodological uncertainties (excluding mass balance method 

uncertainties). These figures show all of the slope application methods together, along with the 

2015 EDGAR monthly and sectoral emissions estimates (with monthly values repeated across 

multiple years). In these figures, the monthly variations of the emissions estimates are quite 

apparent. These variations are in line with what is reported by EDGAR. Such monthly-scale 

estimates and variations have not previously been demonstrated by satellite estimates of CO2 

emissions. With the very large number of NO2 swaths available for the generation of NDCFs, we 

can reduce uncertainty substantially in aggregate and capture unprecedented temporality in 

emissions estimates. 
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Figure 3.13 Same as Figure 3.12 but for Melbourne. Note that the low number of SAM observations limits the 
Rolling Averages method to two slopes only. 

Along with monthly estimates, we can average every mass balance estimate for a city and 

slope application method to estimate overall emissions over the time period of interest. Table 3.2 

lists these estimates and their corresponding methodological uncertainties (excluding mass 

balance method uncertainties). Across methods, the emissions estimates are fairly similar to each 

other, with greater variation across methods with the inclusion of more unrepresentative slopes. 

Methodological uncertainties at this level of aggregation are quite low (ranging between about 1-

6% of the estimates themselves), given the large number of NDCFs used in each of the averages. 

The much greater availability of TROPOMI swaths as opposed to SAMs demonstrates the utility 

of the NDCF method. 
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Figure 3.14 Same as Figure 3.12, but for Mexico City. 

 

 Buenos Aires Melbourne Mexico City 
Single Slope 7.82 ± 0.12 3.37 ± 0.18 9.33 ± 0.15 

Average Slopes 8.63 ± 0.10 2.97 ± 0.12 11.70 ± 0.10 
Single Slope  

with Baseline 
8.21 ± 0.10 3.21 ± 0.14 10.35 ± 0.14 

Rolling Averages  
(2 slopes) 

8.52 ± 0.12 3.09 ± 0.19 10.98 ± 0.15 

Rolling Averages  
(3 slopes) 

10.49 ± 0.13 - 11.67 ± 0.15 

Rolling Averages  
(4 slopes) 

10.18 ± 0.14 - 12.31 ± 0.15 

Rolling Averages  
(5 slopes) 

9.97 ± 0.15 - 12.83 ± 0.14 

EDGAR 2015 11.06 3.83 7.88 
Table 3.2 Averaged emissions estimates in MtC y-1 across slope application methods and cities. EDGAR annual 
emissions estimates for the year 2015, for the four sectors addressed in this study, are also presented at the bottom. 
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3.4 Discussion 

Given the much greater availability of TROPOMI NO2 data than OCO-3 SAM CO2 data, 

the application of empirical relationships between CO2 and NO2 to the TROPOMI fields to 

generate NDCFs opens up many possibilities for assessing urban CO2 emissions subannually and 

over time. Our study demonstrates monthly assessments of urban CO2 emissions that have 

previously not been done before with satellite data.  

Some CO2-only studies have previously opted for wintertime data only to avoid influence 

from the biosphere (e.g., Wu et al., 2018), while NO2 observation-based studies of CO2 often 

used observations from only warm months due to the shorter NO2 lifetime (e.g., Goldberg et al., 

2019). As discussed in Section 3.3.1, we would expect systematic biases in our calculated slopes 

and uncertainties if these seasonal effects were the main sources of error, but there is no evidence 

that this is the case. Accordingly, using the atmospheric correlation between NO2 and CO2 to 

generate NDCFs allows us to fairly simply estimate CO2 emissions throughout the year.  

Single-day estimates of urban CO2 emissions with the NDCF method would result in 

high methodological uncertainties, but aggregating emissions estimates from the large quantity 

of NDCFs that can be generated decreases uncertainties substantially. With the hundreds of NO2 

swaths taken over our study periods, our aggregated emissions estimates correspond to 

methodological uncertainties of only about 1-6% of the emissions estimates themselves 

(excluding uncertainties related to the mass balance method). Thus, we do not recommend the 

use of the NDCF method on a single-day basis but rather in aggregate, whether to assess 

subannual trends or to find an annual emissions estimate. Additionally, while a simple mass 

balance method is used in this study to demonstrate the utility of the NDCF method, CO2 
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emissions can also be estimated from NDCFs using methods that are more rigorous to calculate 

more precise emissions estimates. 

The NDCF method is shown to be a fairly powerful tool for assessment of time-averaged 

CO2 emissions, though limited observational data of CO2 may cause difficulties. In our study, we 

use a very limited number of SAMs (three) for Melbourne, due to limited overpasses and our 

data filtration. With only a small number of slopes to work with for this city, our mass balance 

emissions estimates are still reasonable as compared to EDGAR, as the slopes passing the filter 

appear to be fairly representative. Slope filtration is particularly important for a case like this, as 

a single unrepresentative slope could skew emissions estimates substantially. 

Of the four slope application methods we explore in this study, we find that the Single 

Slope case is the most susceptible to physically unrealistic temporal fluctuations, whereas the 

other three result in more reasonable temporality in emissions estimates. The Average Slopes and 

Rolling Averages cases demonstrate monthly variations in emissions that we expect based on 

EDGAR (see Figures 3.12 - 3.14) and are much better candidates for use in future studies. The 

Single Slope with Baseline case also captures these temporal variations for Melbourne and 

Mexico City, but this is not demonstrated as much for Buenos Aires (Figures 3.9-3.14). This 

particular case seems to capture the temporality of slopes while dampening some of the potential 

noise associated with these slopes. Limited co-located observational data hampers our ability to 

understand how slopes change over time and evaluate how well the Single Slope and Single 

Slope with Baseline methods work. If higher frequencies of co-located observations were to be 

available, this would likely increase the utility of the Single Slope and Single Slope with 

Baseline methods, though with a high enough frequency it would be more sensible to use the 

CO2 observations themselves rather than the NDCF method. Given the current state of data 
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availability and the results of this study, using a slope application method that averages at least 

two slopes together seems to work well in aggregate. Overall, the use of the vast quantities of 

available NO2 data to generate NDCFs and facilitate the study of urban CO2 emissions is quite 

powerful. 

3.5 Summary and Conclusions 

Using proxy species such as NO2 has proven to be a useful tool for the estimation of 

urban CO2 emissions. In this study, we demonstrate a method of utilizing empirical relationships 

between satellite observations of CO2 and NO2 and applying these relationships to NO2 fields to 

generate NO2-derived CO2 fields, or NDCFs. We first establish this method with GEOS-CF 

simulations of these gases for the cities of Buenos Aires, Melbourne, and Mexico City, and then 

we evaluate the utility of the method on observations of CO2 from OCO-3 in SAM mode and 

NO2 from TROPOMI. We find methodological uncertainties from the spread of relative 

differences at the grid cell level between the NDCFs and SAMs ranging between 0.35% (1.44 

ppm assuming a 410 ppm concentration) and 0.79% (3.26 ppm). We also use a simple mass 

balance method to estimate emissions from NDCFs generated using four different slope 

application methods: Single Slope, Average Slopes, Single Slope with Baseline, and Rolling 

Averages. Slope application methods that average more than one slope together are more 

effective. We make monthly-scale emissions estimates that are comparable to monthly sectoral 

EDGAR emissions inventory estimates from 2015, an unprecedented temporal scale achieved by 

space-based urban CO2 emissions estimates. We also find that, due to the large number of 

TROPOMI NO2 swaths available for the generation of NDCFs, our methodological uncertainties 

are drastically reduced when the emissions estimates are aggregated by month or longer. While 

the current availability of CO2 satellite data limits the amount of information we can extract from 
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such data on its own, the use of this data in conjunction with more abundant proxy data creates 

many possibilities for future studies to better understand and constrain urban CO2 emissions. 
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Chapter 4 Evaluation of the Utility of Space-Based Observations of CO2 for Assessing 

Urban Climate Action Program Effectiveness 

Abstract 

Cities play an important role in tackling climate change. However, there are questions as 

to whether the greenhouse gas (GHG) emissions estimates reported in their self-reported 

inventories (SRIs) are accurate enough to track the effectiveness of the policies in their climate 

action plans. Here, we evaluate the ability of satellite observation-derived estimates of carbon 

dioxide (CO2) to assess the effectiveness of urban climate action programs in the U.S. First 

focusing on Los Angeles (L.A.), we apply results from previous studies as well as derive 

approximate uncertainties associated with CO2 emissions estimates based on observations in 

Snapshot Area Map (SAM) mode from the Orbiting Carbon Observatory-3 (OCO-3). We 

determine that satellite-based emissions estimates can help inform SRI emissions estimates, but 

they cannot be used to distinguish between year-to-year Scope 1 emissions. We find a greater 

utility of SAM-based emissions estimates for assessing L.A.’s overarching GHG emissions 

targets, and we explore the ability of these estimates to track specific policies in their urban 

climate action plan and sectoral emissions. We then apply our findings to other urban climate 

action plans in the U.S. Overall, we find a lack of compatibility between the designs of climate 

action plans and the current scientific capabilities associated with satellite observations of CO2, 

and we discuss options for improving the ability of satellite observations of CO2 to provide 

policy-relevant assessments of emissions. 
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4.1 Introduction 

Cities play an inextricable role in the wicked problem of climate change. Despite 

covering less than 5% of the area of the globe, cities are the source of the majority of 

anthropogenic global greenhouse gas (GHG) emissions, an outsized contribution to climate 

change (van der Heijden, 2019; International Energy Agency, 2008). While contributing heavily 

to climate change, cities are also the places where the negative impacts of climate change will be 

felt the most severely (van der Heijden, 2019). Along with this, cities are increasingly becoming 

important actors in efforts to both mitigate and adapt to climate change (Rosenzweig et al., 

2010). 

While climate policy is making fairly minimal progress at the national and international 

levels, thousands of city governments around the world have committed to reducing their GHG 

emissions to mitigate climate change (Hughes, 2019). Many of these cities are joining 

transnational city networks like the C40 Climate Leadership Group and Local Governments for 

Sustainability (referred to as ICLEI). These cities have set ambitious targets to reduce their GHG 

emissions over the next few decades. The ability of these cities to achieve their emissions 

reductions goals lies in the effectiveness of their climate action plans, a set of policies designed 

to ultimately reduce the city’s GHG emissions (Deetjen et al., 2018). Deetjen et al. (2018) 

reviewed 29 urban climate plans in the U.S. and found that cities can implement five broad 

climate change mitigation strategies in their climate action plans: 1) shifting transportation 

modes, 2) reducing building energy consumption, 3) reducing power sector emissions, 4) 

improving public utilities and green spaces, and 5) addressing regional impacts. 

In order to assess the success of these strategies, cities estimate their own GHG emissions 

and report them in self-reported inventories (SRIs) (Mueller et al., 2021). These SRIs can contain 
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emissions estimates across three scopes: Scope 1, which come from sources located within the 

city boundary; Scope 2, which derive from the use of grid-supplied electricity; and Scope 3, 

which come from goods and services from outside the city boundary but result from actions 

occurring within the city boundary (LA Sanitation & Environment, 2022; Mueller et al., 2021). 

However, estimating GHG emissions is complex, and city governments may not have the 

resources to account for their emissions accurately, or they may be politically motivated to avoid 

disclosing all of their emissions (Hughes, 2019). It has been found that, on average, cities under-

report their GHG emissions by 18.3% (Gurney et al., 2021), calling into question the basis of 

their climate action plans and associated progress toward plan targets. 

While the cities themselves may have difficulties in tracking their own emissions, there is 

an increasing interest among the scientific community in using observations of carbon dioxide 

(CO2) to make policy-relevant assessments of CO2 emissions (e.g., Lauvaux et al., 2020; Mueller 

et al., 2021). These researchers use a combination of CO2 observations and bottom-up inventory 

information to evaluate Scope 1 GHG emissions, which can readily be linked to atmospheric 

observations and are more straightforward to estimate than other scopes (Mueller et al., 2021). 

Discrepancies in Scope 1 emissions estimates between the SRIs and the observation-based 

estimates, then, imply discrepancies between other types of reported and actual emissions. 

In recent years, satellites have opened the doors to high-resolution, temporally frequent, 

globally available observations of CO2. There have been a number of studies that have used 

satellite observations to assess urban CO2 emissions (e.g., Kort et al., 2012; Hakkarainen et al., 

2016; Hedelius et al., 2018; Wu et al., 2018; Park et al., 2020; Wu et al., 2020; Yang et al., 2020; 

Ye et al., 2020; Kiel et al., 2021; Lei et al., 2021; Kuze et al., 2022). Extensions of these space-

based studies could lead to CO2 emissions estimates that could be useful for the assessment of 
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SRIs and urban climate action plans. In particular, Los Angeles (L.A.) has been the focus of a 

number of space-based studies (e.g., Hedelius et al., 2018; Kiel et al., 2021; Kort et al., 2012; 

Roten et al., in press; Wu et al., in press; Ye et al., 2020), making this megacity a valuable test 

case for the utility of satellite observation-based emissions estimates in evaluations of urban 

policies. 

In this chapter, we seek to answer the following question: What can satellite observations 

tell us about the effectiveness of urban climate action programs? First focusing on the city of 

L.A., we evaluate how well current satellite-based observations and related techniques can assess 

Scope 1 emissions of L.A.—those reported in SRIs, as well as how they change over time. We 

then evaluate the utility of satellite assessments of overarching GHG emissions reduction targets 

in L.A.’s climate action plan, as well as the more specific policies and sectors of their plan. We 

then discuss how our findings can be applied to other urban climate plans in the U.S., and what 

types of improvements can be made to achieve a stronger overlap between what urban policy 

makers need and what scientific experts in space-based CO2 emissions estimates can provide. 

4.2 Satellite Assessments of L.A.’s Climate Action Plan 

4.2.1 Overview of L.A.’s Climate Action Program 

In 2019, L.A. released their climate action plan, entitled L.A.’s Green New Deal, which is 

the first four-year update to their 2015 Sustainable City pLAn (https://plan.lamayor.org/). 

(Hereafter their climate action plan is referred to as the “pLAn.”) This pLAn is governed by four 

key principles: 1) a commitment to the Paris Climate Agreement and to scientifically driven 

strategies for achieving carbon neutrality, zero waste, and zero wasted water; 2) the delivery of 

environmental justice and equity, 3) a green economy accessible to all Angelenos, and 4) 

leadership by example to drive positive change. These key principles that drive the pLAn are 
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interdisciplinary by nature and focus on many aspects other than the reduction of GHG emissions 

alone, and the pLAn itself covers many goals that overlap with Sustainable Development Goals 

(Mayor Eric Garcetti, 2019). 

Regarding GHG emissions, the pLAn sets the overarching goals of cutting emissions by 

50% by 2025 as compared to their 1990 baseline, 73% by 2035, and 100% (carbon neutral) by 

2050 (Mayor Eric Garcetti, 2019). In order for the city to accomplish these goals, the plan has 

many targets organized into 13 focus areas: Renewable Energy, Local Water, Clean and Healthy 

Buildings, Housing & Development, Mobility and Public Transit, Zero Emission Vehicles, 

Industrial Emissions and Air Quality Monitoring, Waste and Resource Recovery, Food Systems, 

Urban Ecosystems and Resilience, Environmental Justice, Prosperity and Green Jobs, and Lead 

By Example (objectives related to L.A. municipal functions). The combination of these grouped 

goals all contribute to reducing emissions overall by the overarching goals listed above, as well 

as reducing emissions separated by sector, as reproduced in Figure 4.1. Note that the targets 

proposed in the current pLAn would not allow the city to achieve carbon neutrality by 2050; new 

technology or carbon negative projects would be required to bridge the gap between the current 

targets and the goal of carbon neutrality. 

To track progress toward their emissions goals, the city of L.A. is using an annual GHG 

inventory as part of their climate action program (LA Sanitation & Environment, 2022). This 

SRI contains the city’s GHG emissions estimates based on the Global Protocol for Community-

Scale GHG Emission Inventories (GPC) for a “Basic” reporting level, which includes Scope 1 

emissions from fuel use in building, transport, and industry; Scope 2 emissions from energy 

consumption from the grid; and Scope 1 and 3 emissions from waste from within the boundary 

of the city (Mayor Eric Garcetti, 2019). Table 4.1 reproduces the emissions estimates in the  
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Figure 4.1 L.A. GHG emissions by sector. The targets in the current pLAn would reduce emissions down to 8.5% by 
2050. Future iterations of the pLAn will aim to close this gap by using carbon negative projects or new technology. 
Figure reproduced from https://plan.lamayor.org/. 
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change 

Stationary 
Energy 

26.0 23.8 23.1 19.6 19.6 19.1 17.7 16.8 -35% 

Transportation 5.6 4.7 4.3 4.1 3.9 3.9 3.9 3.0 -47% 
Waste 1.2 1.1 1.2 1.2 1.3 1.3 1.3 1.3 12% 

Total Emissions 32.8 29.6 28.6 24.9 24.8 24.3 22.9 21.1 -36% 
Table 4.1 L.A.’s GHG emissions inventory data in MtCO2e, showing the 1990 baseline and annual estimated 
emissions from 2014 to 2020, separated by sectors. Reproduced from LA Sanitation & Environment (2022). 

inventory by sector, in units of megatonnes CO2 equivalent (MtCO2e). L.A.’s SRI estimates are 

further broken down by subsectors (e.g., types of buildings, types of transportation, etc.), but not 

by scope; many of the subsectors would produce emissions associated with multiple scopes at 

once. Note that these reported emissions are self-calculated. Gurney et al. (2021) showed that 

L.A. under-reported its emissions by more than 50%, suggesting significant flaws in their 

accounting. 
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4.2.2 Ability of Satellite Observations to Track L.A.’s Scope 1 Emissions and Assess 

Overarching Emissions Goals 

In this section, we evaluate the usefulness of satellite observation-based CO2 emissions 

estimates in assessing L.A.’s SRI, Scope 1 emissions, and overarching emissions targets listed in 

the pLAn. We first examine the results of previous space-based studies that estimated urban CO2 

emissions and determine what similar results for L.A. would mean in terms of their climate 

action program. Because of the dearth of such studies, we then make an approximate estimation 

of uncertainties associated with the latest satellite technology and techniques to evaluate what 

these methods have to offer in terms of policy relevance for the city’s emissions overall and 

associated targets. 

There are only a few studies that have used satellite observations to estimate urban CO2 

emissions with a full uncertainty analysis. We take two existing examples and discuss their 

implications on the use of satellite-based assessments of L.A.’s climate action program. 

In Chapter 2 of this dissertation, Yang et al. (2020) used satellite observations to estimate 

urban CO2 emissions in the Middle East. Despite having only a small number of Orbiting Carbon 

Observatory-2 (OCO-2) overpasses to work with and thus large uncertainties for each city, often 

greater than 50%, the researchers were able to inform the adjustment of inventory magnitudes for 

these Middle Eastern cities, finding that most of the inventory representations of emissions 

magnitudes for those cities were underestimated as compared to what the observations 

suggested. Given that Gurney et al. (2021) found that L.A. was underestimating their emissions 

by more than 50%, this suggests that even a study like that of Yang et al. (2020), which used a 

very simple integral method and had limited numbers of observed overpasses to work with 

(between 3 and 11 for the different cities studied), could be useful in informing the emissions of 
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L.A. and assessing the accuracy of the SRI Scope 1 emissions estimates. This is especially the 

case because the uncertainty associated with such methods would decrease with an increasing 

number of overpasses, and L.A. is observed quite frequently by satellite compared to other cities. 

We expect Scope 1 emissions to be about half the total GHG emissions from a city (Mueller et 

al., 2021). Accordingly, assessments like those done in Chapter 2 but for the city of L.A. could 

quite feasibly estimate L.A.’s Scope 1 emissions with enough certainty to confirm whether half 

the SRI’s reported emissions are vastly underestimated, as implied in the study by Gurney et al. 

(2021).  

A more sophisticated method was used by Hedelius et al. (2018) to estimate CO2 

emissions of the South Coast Air Basin (SoCAB), which includes L.A. In their study, they used 

29 OCO-2 overpasses and a Bayesian inversion over the time period of September 2014 to 

August 2016 to estimate SoCAB CO2 emissions, and found a fractional uncertainty of 25%. 

While this uncertainty level is much smaller than that found by Yang et al. (2020), likely mostly 

attributed to the much larger quantity of OCO-2 overpasses used, a 25% fractional uncertainty on 

an emissions estimate is still quite large. Certainly, L.A.’s SRI could be assessed in the same way 

as if we applied the methodologies used by Yang et al. (2020), but is there greater policy 

relevance associated with emissions estimates with an uncertainty of 25%? If we assume a 

straight-line trend downward from the year 2014 (the first year tracked in L.A.’s SRI) to 2050, 

there would need to be an approximately 3% drop in emissions per year, on average, to achieve 

carbon neutrality. As such, a 25% fractional uncertainty on an emissions estimate is insufficient 

for tracking annual emissions changes, as year-to-year emissions estimates would be 

indistinguishable from each other with that level of uncertainty. Satellite-based emissions 

estimates of CO2 with a fractional uncertainty of 25% should be able to assess progress toward 



 100 

the pLAn’s overarching GHG emissions goals, however. If we continue to assume that half of 

the total GHG emissions are Scope 1, L.A.’s goals for 2025 and 2035 equate to 8.2 and 4.428 

MtCO2 in Scope 1 emissions. With a 25% uncertainty attached to emissions of that magnitude, 

these goals are distinguishable from each other. Thus, these satellite observations can be used to 

assess longer-term progress toward L.A.’s overarching GHG emissions goals, even if they 

cannot be used to evaluate emissions trends at an annual pace.  

What if the latest satellite technology, in place of OCO-2, were used for the sake of 

assessing L.A.’s climate action program? We seek to get a sense of how well Orbiting Carbon 

Observatory-3 (OCO-3) Snapshot Area Map (SAM) data can constrain L.A. emissions, instead 

of the OCO-2 data used by Hedelius et al. (2018). The SAM observation mode was specifically 

designed to capture anthropogenic emissions, allowing observational data to be collected over 

large contiguous areas (approximately 80 × 80 km2) with a single overpass (Kiel et al., 2021). As 

such, SAMs are the state of the art in terms of satellite observations of urban CO2, and we aim to 

evaluate the utility of these observations for L.A.’s climate action program. 

The uncertainties associated with the study conducted by Hedelius et al. (2018) were 

calculated by adding in quadrature uncertainties of five different types: random uncertainties 

(5%), uncertainty due to choice of initial values in the inversion process (10%), uncertainties in 

the prior flux (5%), uncertainties from observations and the boundary condition (10%), and 

uncertainties due to model winds (20%). When we filter L.A. SAMs to those with at least 1000 

soundings, there are 37 in the period of February 2020 to May 2022. As Hedelius et al. (2018) 

used 29 overpasses, we would expect a decrease in the total uncertainty due to an increased 

number of observations. If we simply adjust the total 25% uncertainty to account for the differing 

number of observations by multiplying it by the square root of 29 and dividing by the square root 
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of 37, we find a reduction in overall uncertainty to 22.6%. If we used OCO-3 SAMs instead of 

OCO-2 overpasses, we would additionally expect reductions in the uncertainties from 

observations and the boundary condition due to the increased spatial coverage from SAMs.  In 

the unrealistic case that the use of SAMs rather than OCO-2 overpasses would reduce such 

observational and boundary condition uncertainties to 0%, the total fractional uncertainty would 

drop to 20.8%, which is not a large enough reduction to change the policy relevance of these 

types of emissions estimates. For the purposes of further discussion, we estimate that the use of 

SAMs in place of OCO-2 observations would cut the observational and boundary condition 

uncertainties in half, leading to a total fractional uncertainty of 21.2%, a value that is still too 

large for annual emissions tracking. 

In order to actually distinguish year-to-year emissions estimates of Scope 1 emissions, 

uncertainties would need to be much smaller. Examining Table 4.1, we can calculate that the 

mean difference in total emissions from year to year is 1.42 MtCO2e, meaning Scope 1 emissions 

would, on average, be expected to decrease by about 0.7 MtCO2 per year. This suggests that an 

uncertainty of about 0.35 MtCO2 (~3% fractional uncertainty) could be policy-relevant. If we 

were to reduce our 21.2% value uncertainty to 3% by only increasing the number of 

observations, we would need 1848 SAMs. This is not particularly feasible for an annual estimate. 

In other words, the current state of satellite technology and the associated components required 

to convert observations of concentrations into emissions is not useful for year-to-year emissions 

tracking for L.A. Improvements in all aspects of the estimation process—number of overpasses, 

instrument accuracy, background calculation, prior accuracy, and transport modeling accuracy—

would need to occur before this type of emissions tracking could be made with satellites. 
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Essentially, we find that satellite observations of CO2 and associated techniques are 

broadly useful for diagnosing inconsistencies in L.A.’s SRI estimates, as well as for assessing 

progress toward the pLAn’s overarching emissions reduction goals. However, assessments at 

finer temporal scales of a year or less would require improvements on all inputs into inversion 

schemes. 

4.2.3 Satellite Observation-based Assessments of Specific Targets and Sectoral Emissions 

Delineated in the pLAn 

Under each of its 13 focus areas, the pLAn has specific targets. For example, one of the 

targets under the Clean and Healthy Buildings focus area is to reduce building energy use per 

square foot for all building types 22% by 2025, 34% by 2035, and 44% by 2050 as compared to 

a 2015 baseline (Mayor Eric Garcetti, 2019). Such a target mixes scopes, as buildings use a 

combination of electricity from the grid (Scope 2) and other energy sources like natural gas that 

release emissions on-site when burned in furnaces for heating, for example (Scope 1). 

Overlapping scopes makes such targets like this difficult to measure via satellite observation 

without further parsing. Even when targets do not overlap in scope, such as the goal to reduce 

industrial emissions by 38% by 2035 and 82% by 2050, there are difficulties in observing such 

targets, as satellites are able to observe the integral of all emissions in an area without separating 

by focus area. Moreover, some of the targets that are listed in the pLAn do not even have GHG 

accounting associated with it, such as for Local Water goals, which include a statement that the 

L.A. Department of Water and Power is at present developing protocols to monitor GHG 

emissions related to water management; without existing accounting, satellite observations 

cannot offer a useful constraint on policy changes. Essentially, specific targets in the pLAn are 
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not particularly amenable to CO2 satellite-based assessment, as they have been designed for 

practitioners without bearing in mind compatibility with assessment via observations. 

Tracking L.A.’s sectoral emissions, rather than specific targets, would potentially be 

feasible by satellite, though this has never done before. Figure 4.1 shows the emissions trends 

related to sectors that the pLAn aims to achieve. If L.A. separated these trends out by scope, we 

have reason to believe that the sectoral, Scope 1 trends could be tracked on a multiple-year 

timescale in the same way that whole-city Scope 1 emissions can be tracked, and the SRI’s 

sectoral emissions estimates can be evaluated. As mentioned above, using only satellite 

observations of CO2 would not be able to separate out sectoral emissions, as satellites see the 

integral of all CO2 in an area. However, combining satellite observations of CO2 with additional 

a priori information could allow for tracking Scope 1 emissions by sector.  

Nathan et al. (2018) attempted to use flask-based measurements of different atmospheric 

trace gases alone to attribute sector-level emissions in Indianapolis, but they were unable to do so 

successfully due to the spatial overlap of almost every source sector. They found that the use of 

additional information, such as inventories of trace gases at the sector level, would be necessary 

to accomplish this task. Lauvaux et al. (2020) achieved policy-relevant, sector-specific 

assessments (of grouped stationary vs. non-stationary sectors) of Indianapolis CO2 emissions 

using a combination of a dense network of atmospheric sensors and a very high-resolution 

space/time-explicit bottom-up, sector-specific emissions inventory called Hestia (Gurney et al., 

2012). Hestia is only available for four cities, including L.A. While this has yet to be done, the 

methods used by Lauvaux et al. (2020) could be used while substituting the observations from 

the network of atmospheric sensors with observations from SAMs to produce sector-specific 

emissions estimates. Mueller et al. (2021) also suggested that inversions utilizing observations in 
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combination with bottom-up, sector-explicit inventories with the granularity of Hestia could help 

city planners to detect the largest-emitting buildings as priorities to audit for achieving goals in 

their climate action plans. Meanwhile, Wu et al. (in press) used SAMs and TROPOMI carbon 

monoxide observations in combination with an urban land cover classification dataset to study 

sector-specific combustion efficiencies—the first satellite-based, intra-urban, sector-specific 

assessment that we know of. The researchers stated that the use of more sophisticated approaches 

could constrain sector-specific emissions of the two gases. Note that the urban land cover 

classification dataset used by Wu et al. is only available for a few cities around the world, 

including L.A. 

In summary, various studies have suggested that L.A.’s CO2 emissions at a sectoral level 

could be constrained in a policy-relevant manner using a combination of satellite observations 

and either a very high-resolution, sector-specific, bottom-up inventory like Hestia or an urban 

land cover classification dataset. However, this work has never previously been done, and would 

be an involved process requiring data that is available for L.A. and only a few other locations. 

Additionally, for sector-level emissions estimates to be useful, L.A.’s SRI would need to 

explicitly parse out Scope 1 emissions for each sector. 

4.3 Looking Beyond L.A. 

4.3.1 Application to U.S. Urban Climate Action Plans 

In this section, we review the climate action plans of four other cities in the U.S. (Ann 

Arbor, MI; Portland, OR; Boston, MA; and Austin, TX) and assess similarities and differences 

with each other and with that of L.A. We then make assessments about the ability of satellite 

observations of CO2 to assess progress on climate action plans overall. 



 105 

Ann Arbor's Living Carbon Neutrality Plan is a document whose fourth and latest version 

was released in April 2020 (Ann Arbor Office of Sustainability & Innovations, 2020). The main 

goal of this plan is to achieve carbon neutrality by 2030. The plan is comprised of seven 

overarching strategies: 1) power the grid with 100% renewable energy, 2) switch appliances to 

electric, 3) improve energy efficiency, 4) reduce vehicle miles traveled by at least 50%, 5) 

change the use, reuse, and disposal of materials, 6) enhance resilience, and 7) other. These 

strategies are explicitly acknowledged as being linked with each other. 44 actions are associated 

with these strategies, with quantified GHG emissions reductions associated with many of the 

actions. While scopes are not explicitly mentioned, the plan implies that emissions that are the 

focus of being cut are associated with Scopes 1 and 2. The plan separates energy use and 

emissions goals for different sectors: Residential Electricity, Commercial Electricity, University 

of Michigan Electricity, Grid Losses, Residential Natural Gas, Commercial Natural Gas, 

University of Michigan Natural Gas, Fugitive Emissions, Transportation, Residential Solid 

Waste, and Commercial Solid Waste. 

Portland’s 2015 Climate Action Plan has overarching goals of reducing GHG emissions 

by 40% of their 1990 baseline by 2030 and 80% by 2050 (City of Portland, 2015). Carbon 

emissions in the plan are organized into three sectors: building energy, transportation, and waste 

disposal. There are nine focus areas (Buildings and Energy; Urban Form and Transportation; 

Consumption and Solid Waste; Food and Agriculture; Urban Forest, Natural Systems, and 

Carbon Sequestration; Climate Change Preparation; Community Engagement, Outreach, and 

Education; Local Government Operations; and Implementation), some of which overlap with 

sectors and some of which are not explicitly or quantitatively tied to GHG emissions. Each focus 

area has objectives and associated specific targeted actions. In order to track emissions, Portland 
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has sector-based and consumption-based SRIs to approximate emissions associated with 

Portland’s activities, whether they take place within or outside of the boundaries of the city itself 

(all scopes). 

Boston’s 2019 update to its climate action plan lists goals of reducing emissions by 50% 

of its 2005 baseline by 2030, and 100% (carbon neutral) by 2050 (Mayor Martin J. Walsh, 2019). 

The plan relies on accounting for the following sectors: commercial/industrial/large residential, 

transportation, small residential, fugitive emissions, and wastewater treatment. The straight-line 

decrease in emissions from 2005 to 2050 amounts to a 2.2% decrease in emissions per year. The 

plan has actions and targets for three areas: buildings, transportation, and energy supply. While 

there are specific goals for each area, some are quantifiable in terms of GHG emissions, and 

others are not. No scopes are mentioned in the plan, and many specific goals overlap in scope, 

making measurement via satellite difficult (e.g., energy efficiency in buildings). 

The city of Austin is aiming to achieve net-zero GHG emissions by 2040 in its plan 

released in 2021 (City of Austin, 2021). The plan’s associated SRI covers Scope 1 and Scope 2 

emissions separated by sector: energy in buildings, transportation, industrial, refrigerants, and 

waste. There are five climate equity goal areas in the plan: sustainable buildings, transportation 

and land use, transportation electrification, food and product consumption, and natural systems. 

For each goal area, there are specific strategies, some more quantifiable than others, and many 

overlapping in terms of emissions scopes. Some strategies also require additional evaluation of 

energy usage before specific plans can be made. Many strategies lack clear, quantifiable metrics 

for assessment of success. Carbon offsets are included as part of the plan, with the goal of 

reducing direct emissions as much as possible but using carbon offsets for any remaining 

emissions to achieve carbon neutrality by 2040.  
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What is apparent from reviewing these four urban climate action plans along with L.A.’s 

pLAn is that they are not standardized at all, and are instead fit to the needs, values, and 

capabilities of the cities themselves. While this is not surprising, it does make it very difficult for 

a standardized procedure to measure GHG emissions to be useful. Additionally, for all five of 

these cities, many of the targets and goal areas are very much interconnected, without clear 

boundaries between said targets regarding emissions; instead, planned actions often cover 

multiple scopes at once, without necessarily having a clearly quantified metric for success. 

Without delineating out Scope 1, 2, and 3 GHG emissions reduction goals, satellite observations 

of CO2 cannot be used to assess the impact of specific policy actions. Based on the organization 

of these climate action plans, it seems that satellite observations would instead be useful for the 

purposes of evaluating the accuracy of SRIs and assessing multi-year progress toward 

overarching emissions goals. We expect that, while the assumption of Scope 1 emissions 

comprising half the emissions of a city is not a perfect one, it can serve as a reasonable 

approximation for the sake of tracking progress toward overarching emissions goals, in the 

absence of SRIs better delineated by scopes.  

While all five cities separate out emissions by sector, the sectors they choose to separate 

by are not standardized either. As done by Lauvaux et al. (2020), sectors can be combined into 

several groupings to make observation-based assessment simpler and more standardized. 

However, grouping sectors together would make satellite assessments of emissions useful on a 

broader scale as opposed to relevant for the assessment of specific, targeted policies. Moreover, 

Hestia, the sector-specific, high-resolution, bottom-up inventory used by Lauvaux et al. (2020) in 

their study, is only available for four cities in the U.S. Lauvaux et al. (2020) asserted that the 

quality and amount of information required to produce the Hestia product for Indianapolis was 
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“unprecedented” and would be “challenging to reproduce for many cities across the world,” 

suggesting that the kind of bottom-up inventories available for other cities would only be able to 

provide whole-city policy-relevant assessments, rather than sector-specific assessments. As such, 

inventories like Hestia need to be generated for other cities to have the same type of analysis 

done at the sector level. 

There are some additional complications involved in assessing urban climate action plans 

around the U.S. using satellite observation-based emissions estimates. For one, not all cities have 

the same type and quality of satellite data available. SAMs are the state of the art in terms of 

urban satellite CO2 observations, but there are no SAMs taken for a smaller city like Ann Arbor, 

MI. There are OCO-2 overpasses that could potentially be used to generate emissions estimates, 

but the much smaller density of observations (10 km wide as opposed to ~80 km × 80 km SAMs) 

coupled with the smaller CO2 signals from a smaller city makes satellite assessment of a city like 

Ann Arbor much more difficult. Along with this, there are general complications associated with 

all cities, regardless of size. First, emissions in an area that a satellite can observe are not limited 

to administrated boundaries of a city, so care must be taken to ensure that emissions estimates 

are limited to the city in question in order to be policy-relevant. Second, observed reductions in 

emissions cannot necessarily be attributed to the actions of a city government alone, as urban 

GHG emissions can be influenced by policies implemented at other levels of government 

(Hughes, 2019). This suggests that satellite observations of CO2 are better fit for the role of 

assessing more overarching goals than specific policies. 

Overall, it seems that using satellites like OCO-3 to estimate CO2 emissions from cities 

has some utility for assessing broad goals in urban climate action plans, but lacks the ability to 

assess progress toward specific targets without more clearly defined and quantifiable goals in the 
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plans, separated by scope. If cities want to better validate their SRIs, track progress of their 

plans, and assess sector-level progress with observation-based emissions estimates, they need to 

more clearly define scopes and create measurable targets. On the observation side, a priori 

inventories like Hestia need to be made available to potentially achieve sector-specific emissions 

estimates to compare with sector-specific SRI values. Along with development of or 

improvements to a priori inventories, satellite technology itself as well as transport modeling 

need to undergo improvements to decrease the gap between current capabilities and policy-

relevant constraints to emissions at the city level. 

4.3.2 Further Bridging the Science-Policy Gap 

Given the underestimated emissions reported in SRIs (Gurney et al., 2021) and the strong 

interest in the scientific community to provide policy-relevant CO2 emissions estimates (e.g., 

Gurney et al., 2020; Lauvaux et al., 2020; Mueller et al., 2021), it seems that both urban decision 

makers and scientists would benefit from a framework that allows for scientific assessments to 

provide more useful products for decision makers. How can we bridge the gap between CO2 

satellite studies and urban climate action plans? What is evident in this study is that there is a 

lack of compatibility between what the climate action plans aim to achieve and what emissions 

estimation techniques based on current satellite technology have the capability to provide.  

Following a model of co-production of science and policy from the beginning helps to 

prevent mismatches such as have been discussed here (Lemos & Morehouse, 2005). This model 

suggests that communication and iteration between scientists and those who wish to use 

scientific results is key. This iteration is grounded in three components: 1) sustained stakeholder 

interaction, 2) usable science, and 3) interdisciplinarity. Stakeholder interaction refers to how 

much stakeholders are involved in aspects of research, such as in helping to define the problem 
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and research questions, choosing methods, actually conducting research and analysis, etc. In our 

case, this would refer to the involvement of urban planners and policy makers throughout every 

step of satellite observation-based work, from the planning stages (even in discussions of future 

satellite technology needs), to the asking of science questions, to the analysis of results. Usable 

science refers to science that results in knowledge that meets the needs of constituents. In our 

case, this would refer to satellite observation-based work that provides results that are 

immediately understandable and applicable to urban policy needs. Interdisciplinarity refers to 

scientists from different disciplines working together to solve problems that go beyond the scope 

of a single discipline. In our case, this would mean atmospheric scientists working with social 

and political scientists to define research questions, conduct research, and analyze results. 

Achieving this level of co-production between science and policy is not easy, but science 

intermediaries such as boundary organizations, consultancies, and extension agencies can help 

connect the limited number of scientists to the many decision makers that would benefit from 

scientific information (Ultee et al., 2018). In their commentary on three cases of science 

intermediaries and their role in sea-level adaptation, Ultee et al. (2018) found that, while efforts 

to engage scientists with intermediaries can be resource intensive and context-dependent, 

intermediaries have the power to increase the benefits of science and engineering in preventing 

the negative effects of sea-level rise. While their commentary focused on sea-level rise and 

adaptation, we can extrapolate their findings to our own case, which would suggest that scientific 

intermediaries can play an important role in connecting researchers in the satellite and 

atmospheric science communities to urban planners seeking to track and reduce GHG emissions 

in their cities. 
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4.4 Summary and Conclusions 

In this chapter, we aim to understand how well satellites can assess the different facets of 

urban climate action programs. With an initial focus on the city of L.A., we assess the level of 

uncertainty associated with CO2 emissions estimates of the city using satellite observations. 

Previous studies suggest that OCO-2 satellite observations are able to help evaluate the accuracy 

of L.A.’s SRI, which serves as the basis for pLAn targets and is fundamental to the tracking of 

pLAn policies. The level of uncertainty associated with satellite-based emissions estimates is too 

high for us to track emissions from year to year. However, this level of uncertainty is sufficient 

for distinguishing between emissions that would be estimated during the target years of 2025, 

2035, and 2050, suggesting that satellite observations can be useful for assessing the overarching 

targets of the pLAn. In a thought experiment replacing OCO-2 observations with SAMs, we 

roughly estimate a fractional uncertainty of 21.2% on emissions estimates, which is still too large 

to be able to distinguish between annual Scope 1 GHG emissions; improvements on all fronts of 

the inversion process need to be made before year-to-year emissions tracking can be 

accomplished. Recent studies suggest that, while specific policies in the pLAn cannot be 

assessed for their impact on GHG emissions, space-based emissions estimates could be used to 

assess L.A.’s sectoral level emissions over multi-year timespans. A review of multiple urban 

climate plans around the U.S. suggests that none of these plans parse out scopes well, making it 

difficult for space-based assessments of emissions to be policy-relevant. We find that there is an 

overall lack of compatibility between the climate action plans and the utility of satellite 

observation-based emissions estimates. There are improvements to be made on both the science 

and policy sides, such as increased availability of a priori datasets and clearer distinctions 

between scopes in climate action plan policies. Additionally, utilizing a model of science-policy 
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co-production, perhaps facilitated by science intermediaries, could, in the long-term, improve the 

policy relevance of space-based assessments of urban CO2 emissions. 
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Chapter 5 Conclusions 

5.1 Summary of Findings 

This dissertation explores multiple facets of the evaluation of urban CO2 emissions 

through the lens of space-based observations. It is incredibly important for us to constrain urban 

emissions, as the majority of fossil CO2 emissions are derived from cities. For the sake of better 

monitoring the human contributions of climate change, evaluating plans for mitigating climate 

change, and understanding the different carbon cycle components’ responses to both natural and 

anthropogenic changes, we need to improve our quantification of urban CO2 emissions—and 

space-based observations can help us do this. 

In Chapter 2, we evaluated global fossil CO2 emissions inventory representations of 

afternoon urban CO2 emissions in the Middle East, and assessed the ability of satellite 

observations to inform this evaluation. By finding relationships between top-down satellite 

observations and bottom-up simulations of XCO2, we calculated scaling factors for adjusting 

prior inventory estimates of five Middle Eastern cities’ emissions. We estimated that the sum of 

the cities’ scaled emissions were on average 2.0 (1.0, 3.0) times the prior inventory magnitudes, 

suggesting that the underestimation of the cities’ emissions amounted to ~7% (0%, 14%) of total 

emissions in the Middle East. These results were insensitive to spatial differences in the prior 

inventory representations of the studied cities’ emissions, allowing for robust evaluations of 

urban emissions inventory representations. 

Chapter 3 of this dissertation focused on the use of satellite observations of the proxy 

species NO2 to estimate urban CO2 emissions. We demonstrated a method applying empirical 
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relationships between satellite observations of CO2 and NO2 to NO2 fields, generating NO2-

derived CO2 fields (NDCFs). First establishing the method with GEOS-CF simulations for three 

cities around the world, we then evaluated the method using SAMs and TROPOMI observations. 

We calculated methodological uncertainties at the grid cell level between 0.35% (1.44 ppm 

assuming a 410 ppm concentration) and 0.79% (3.26 ppm). We used a simple mass balance 

method to estimate emissions from NDCFs generated using four different slope application 

methods, finding that slope application methods that averaged more than one slope together were 

more effective. We were able to produce CO2 emissions estimates over time as well as reduce 

methodological uncertainties through aggregations of estimates, both facilitated by the much 

greater availability of NO2 observations than those of CO2.  

In Chapter 4, we interrogated the utility of satellite-based CO2 emissions in the 

assessment of the different components of urban climate action programs in the U.S. Applying 

the results of previous studies as well as a thought experiment on uncertainties associated with 

emissions estimates using the latest satellite technology, we found that space-based urban CO2 

emissions estimates can help evaluate the accuracy of SRIs and assess progress in attaining 

overarching emissions targets, but these uncertainties are too large to track annual emissions 

progress. We also explored the feasibility of satellite assessments of emissions at the intra-urban 

scale, determining that such assessments would not be able to track progress of specific policies 

in climate action plans. However, with some additional advancement in methodologies, they 

have the potential to provide policy-relevant estimates of sectoral emissions. We found that 

climate action plans are not designed to be compatible with assessment via satellite-based 

emissions estimates, especially because scopes are not parsed out well in the plans. We explored 

improvements that could be made on both the science and policy fronts to improve this 
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compatibility, recommending a model of science-policy co-production as a means of attaining 

more policy-relevant space-based evaluations of urban CO2 emissions in the long term. 

5.2 Further Research Directions 

As space-based technology for the observation of CO2 and proxy species continues to 

improve, more avenues of further research can be explored. The latest in urban CO2 

observational technology from space, OCO-3 SAMs, have opened up many pathways for the 

assessment of urban emissions, with measurements taken over much larger areas than used to be 

available, and during different times of day. Accordingly, we see many possibilities for future 

studies focusing on intra-urban gradients of emissions, assessed throughout the day. More work 

that expands upon sectoral emissions in particular, through the combined use of SAMs and 

satellite observations of co-located proxy species, would be fruitful. Future CO2-observing 

satellite missions will only grow such opportunities. The European Copernicus program’s 

planned constellation of multiple polar orbiting satellites, the Copernicus CO2 Monitoring 

Mission (CO2M), is particularly exciting, as it will provide co-located measurements of CO2 and 

NO2 from the same satellites, allowing for improved sectoral emissions estimates at the urban 

scale (Kaminski et al., 2022).  

Additionally, we can see the application of NDCFs providing policy-relevant assessments 

of CO2 emissions with further improvements of the method. By providing large amounts of data 

previously unavailable while only using CO2 observations, NDCFs have the potential to deliver 

CO2 emissions assessments at a finer temporal scale than previously possible. Using the NDCF 

method in combination with more sophisticated inversion methods beyond the scope of the work 

in this dissertation could lead to the tracking of CO2 emissions estimates over annual or even 

subannual scales, facilitating finer evaluation of progress toward urban climate action plan goals.  
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Finally, there is more work to be done on improving the utility of satellite-based 

emissions estimates of CO2 for use by decision makers and practitioners. Improved 

interdisciplinarity, along with the expansion of science intermediary programs, can help to 

facilitate this. We see this as a vital step toward making our science more useful in the face of 

climate change—one of the most complex problems of our time—which cannot be solved 

without cooperation and collaboration across multiple fields and disciplines. 
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