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ABSTRACT

Machine learning has been applied to more and more socially-relevant scenarios

that influence our daily lives, ranging from social media and e-commerce to self-

driving cars and criminal justice. It is therefore crucial to develop trustworthy ma-

chine learning methods that perform reliably, in order to avoid negative impacts on

individuals and society. In this dissertation, we focus on understanding and improv-

ing the trustworthiness of graph machine learning, which poses unique challenges due

to the complex relational structure of the graph data.

In particular, we view the trustworthiness of a machine learning model as be-

ing reliable under exceptional conditions. For example, the performance of a machine

learning model should not degrade seriously under adversarial attacks or on a subpop-

ulation, which respectively corresponds to the problems of adversarial robustness or

fairness. The unique challenges for trustworthy graph machine learning are that there

are many more complicated and sometimes implicit exceptional conditions in the con-

text of graph data. This dissertation identifies under-explored exceptional conditions,

understands the expected model behavior under the identified exceptional conditions,

and improves the existing models under such exceptional conditions.

Specifically, we focus on graph neural networks (GNNs), a family of popular graph

machine learning models that leverage recent advances in deep learning. In this dis-

sertation, we identify three exceptional conditions of GNNs. First, we study the

adversarial robustness of GNNs with a new and practical threat model inspired by

social network application scenarios, and investigate when and why GNNs may suffer

xvii



from the adversarial attacks. Second, we find that existing GNNs can be misspecified

for many real-world graph data and develop a novel framework to improve existing

models. Finally, we discover a type of unfairness of GNN predictions among subpop-

ulations of test nodes that is relevant to the structural positions of the nodes. We

also propose an active learning framework to mitigate the unfairness problem.

xviii



CHAPTER I

Introduction

Artificial Intelligence (AI), especially Machine Learning (ML), has been integrated

into human society as a general-purpose technology1, with the promise of reshaping

our daily lives in numerous aspects, ranging from social media and e-commerce to self-

driving cars and criminal justice. However, despite the enormous empirical success

and commercial value brought by AI and ML, more widespread deployment of these

techniques requires better understandings of ML models’ impacts on society. As a

result, Trustworthy ML arises as an increasingly popular research direction.

Trustworthy ML is an umbrella concept that includes various topics regarding the

reliability and transparency of ML, such as fairness, robustness, explainability, etc.

For example, ML models may perform systematically worse on specific subpopu-

lations, which leads to fairness concerns. As a result, there has been a rapid increase

in research interests in ML fairness. There have also been real-world ML applications

that demonstrate biases and unfairness: Amazon’s AI recruiting tool was found to

have gender biases [37]; a once widely-used criminal prediction tool, Correctional Of-

fender Management Profiling for Alternative Sanctions (COMPAS), was found to be

racially biased [4].

As another example, ML models have been shown to be sensitive to small adversar-

ial perturbations added to the data, and thus vulnerable to adversarial attacks [136].

1https://en.wikipedia.org/wiki/General-purpose_technology
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For instance, state-of-the-art computer vision models can be misled to recognize a

Stop sign as a Speed Limit sign through a seemingly random graffiti on the Stop

sign [45].

Due to the variety of relevant topics and the bibliographical history of our scien-

tific understanding of trustworthy ML, the community has naturally grown a set of

relatively well-accepted conceptual categories of trustworthiness issues, which include

but are not limited to fairness, robustness, safety, privacy, accountability, explainabil-

ity, and causality. While this conceptual classification, like any classification system,

helps to ease the understanding of the field, it can also sometimes be misleading2.

First, this classification can make the different issues of trustworthy ML perceived

as isolated topics. However, these different trustworthiness issues can be conflicting

or relevant to each other. For example, there are inherent conflicts between certain

notions of privacy and fairness [32, 24]. On the other hand, fairness can also be

relevant to out-of-domain generalization [99]. Furthermore, explainable ML [41] and

causal inference [113] could be candidate solutions to some of the fairness or robustness

problems. A flat taxonomy of the conceptual categories fails to capture the rich inter-

relationships among the different topics.

Second, this classification tends to drive efforts in searching for overly generic

solutions for each topic, which may not be the best way to approach the problem

of trustworthy ML. Because of the conceptual nature of the topics, there are often

various intuitively sound ways to formalize a trustworthiness concept (e.g., fairness

or robustness) into quantitative notions, while achieving trustworthiness in terms of

all notions simultaneously is unrealistic. For example, Kleinberg et al. [78] proved

that it is generally impossible to have a single algorithm that simultaneously meets

three common fairness standards. Therefore, there is no generic solution that is a

panacea for all applications. In addition, the importance and the proper formulation

2See Bowker and Star [15] for a comprehensive investigation on the impacts that classification
systems can have.
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of different trustworthiness issues are highly application-specific. In terms of the

importance of different aspects of trustworthiness, for example, a self-driving car is

likely to suffer from adversarial attacks as it takes an input of data in the wild [45];

in contrast, performing adversarial attacks on Electronic Health Records (EHR) data

is practically much more difficult, as the data are generated by authorized medical

experts and circulated in closed systems. On the other hand, the privacy standard

for EHR data is much higher than that for driving data. In terms of the proper

formulation of trustworthiness, it has been shown that the choice of the formulation

should leverage the perception of the stakeholders in the specific application [28].

Overall, trustworthiness should be investigated as properties of an ML technique

situated in a specific type of application scenario, as opposed to properties of a generic

ML technique.

In a sense, the aforementioned categories are both too narrow and too broad.

They are too narrow because this classification misses many interactions among the

different categories. They are also too broad because the concept of each category

can have many different (and even conflicting) formulations.

In light of the limitations of the conventional and conceptual definition and clas-

sification of trustworthiness, this dissertation follows an alternative operational pro-

cedure to organize and approach the study of trustworthy ML. In particular, we use

the following application-centric procedure to identify trustworthiness issues.

1. We are given a specific application scenario and certain metrics that measure

the behaviors of an ML model (e.g., the predictive performance).

2. We assume that there is a normal condition where the ML model is behaving

well.

3. Finally, we identify trustworthiness issues by revealing certain exceptional condi-

tions where the ML model has unexpected behaviors or degraded performance.
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Exceptional Conditions ML Models

Unexpected Behaviors/
Degraded Performance

ML ModelsNormal Conditions

Figure I.1: A trustworthiness issue can be identified as the discrepancy of the model
behaviors between an exceptional condition and the normal condition.

As shown in Figure I.1, a trustworthiness issue can be identified as the discrepancy

of the model behaviors between an exceptional condition and the normal condition.

Many existing trustworthiness notions can be reformulated following this proce-

dure. For example, the unfairness problems of ML models are often due to their

degraded performance on specific minority sub-populations, compared to their per-

formance on majority sub-populations. The adversarial vulnerability of ML refers to

their degraded performance under adversarial attacks, compared to their performance

on clean data. On the other hand, some other trustworthiness concepts, such as ex-

plainability or causality, cannot be directly formulated through the procedure above.

To some extent, a model being unfair or non-robust will have direct consequences,

while explainability or causality can be viewed as candidate solutions that mitigate

the problems (e.g., unfairness or non-robustness). The procedure above focuses on

the trustworthiness concepts that are problems rather than solutions. This procedure

also emphasizes grounding the trustworthiness issues with the application scenarios.

To constrain the scope in a particular type of application scenarios, this disserta-

tion focuses on the trustworthiness of Graph Machine Learning (GML). Real-world

data are rich in relational structures, often represented in the form of graphs. For

example, users on social media or sensors in an Internet-of-Things system are inter-
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connected through a graph structure. Such relational graph structures provide signif-

icant predictive power when exploited properly in prediction tasks. GML is a popular

family of machine learning techniques that leverage graph structures into predictive

models. Recently, GML has demonstrated great performance in many applications

that influence everyone’s daily life. For common examples, GML has been playing a

major role in industrial recommender systems at Uber Eats [65], Amazon [162], and

Pinterest [157]; GML is also broadly used to model geographical data in tasks such as

ETA prediction in Google Map [38] or real estate price estimation [114]. Moreover,

due to the ubiquity of relational structures, GML methods either have been applied

to or are ready to be applied to high-stake decision-making problems such as social

justice. Examples include crime prediction and data-driven prosecution [68, 156],

police misconduct prediction [22], risk assessment of parole decisions [132], surveil-

lance for public safety [95], and many other social justice and security problems in

general [111].

Given the numerous socially-relevant application scenarios of GML, the trustwor-

thiness issues of such ML systems become crucially important. Moreover, compared

to conventional ML, there are unique challenges in understanding and improving the

trustworthiness issues of GML due to the complex relational structures. In particular,

there are many more complicated and sometimes implicit exceptional conditions in the

context of GML. Taking adversarial attack as an example, in conventional ML setups,

the attacker mostly conducts attacks by adding adversarial perturbations to the input

features. For GML, there are more complicated threats in practice: the attacker can

perturb not only the node attributes but also the graph structures; the attacker can

also conduct an indirect attack that influences the prediction on one node by perturb-

ing its neighbors. In terms of ML fairness among subpopulations, most conventional

literature studies subpopulations concerning certain sensitive attributes, such as gen-

der or ethnicity. In graph data, one can investigate subpopulations based on the
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graph structures, such as node centrality [12, 13] or community structures [51, 47].

The structural traits of people in a social network are often relevant to their socioe-

conomic status suggested by social science theories [53, 16]. The unique adversarial

threats and structure-based subpopulations in graph data present exceptional condi-

tions that are not well-explored in conventional ML literature, making trustworthy

GML more challenging.

This dissertation aims to address such unique challenges toward understanding

and improving the trustworthiness of GML. Specifically, this dissertation aims to an-

swer the following three types of research questions and demonstrate the methodology

under three application scenarios.

1. What are potential exceptional conditions a GML model may encounter in a

real-world application scenario?

2. What are the expected behaviors of the GML model under the identified ex-

ceptional conditions?

3. How to mitigate the performance disparity of the GML model under the iden-

tified exceptional conditions?

Among the GML methods, we focus on Graph Neural Networks (GNNs) [52, 124, 77],

which are a large family of trending GML models that leverage the recent advance-

ments of deep learning [83] into GML, and have shown superior performance on many

real-world applications.

The overall structure is organized as follows. Chapter I provides an introduction

and a summary of the contributions. Chapter II provides preliminary background

concepts for the rest of the dissertation and a brief literature review on trustworthy

GML. Chapter III to Chapter VI introduce the main technical contributions of this

dissertation. Finally, Chapter VII provides a conclusion and a discussion on future

directions. The technical contributions are summarized in the following Section 1.1.
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1.1 Introduction to Individual Technical Contributions

In this dissertation, we investigate three exceptional conditions for GNNs. First,

Chapter III [97] investigates a practical adversarial attack condition for GNNs in-

spired by social network application scenarios, and demonstrates that existing GNNs

are vulnerable in such an adversarial condition. Second, Chapter IV [98] discovers a

condition that, for many real-world graph data, most existing GNNs can be misspec-

ified and thus have suboptimal performance. We also introduce a novel framework

to improve existing GNNs. Third, Chapter V [99] reveals that GNNs have lower

prediction accuracy systematically on specific subgroups of nodes relevant to their

structural characteristics, leading to a unique type of unfairness concerns for GNNs.

Chapter VI [100] follows up on the problem revealed in Chapter V and proposes

an active learning approach to improve the generalization and fairness of existing

GNNs. Most of the technical contributions introduced in this dissertation have been

published or preprinted, as suggested by the citations in this paragraph.

1.1.1 Practical Adversarial Attacks on Graph Neural Networks (Chap-

ter III)

Like deep learning models on images or text, GNNs are also shown to be vulnerable

to adversarial attacks [169]. Most early studies about adversarial attacks on GNNs

assume the attacker has at least access to the GNN predictions on all nodes, following

common adversarial attack setups for image classifiers. However, such setups, i.e., the

attacker having access to global information of the GNN, tend to be unrealistic for

many GNN applications such as social networks. For instance, an attacker usually

only has access to information of a limited set of nodes on a social network. In

Chapter III, we study adversarial attacks on GNNs under a highly restricted black-

box setup that is practical to social network applications. Under this setup, we derive

a principled attack strategy and show that an effective attack on GNNs is still possible.
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The key insight is that the graph structure of GNNs leaks considerable information

about the models. In particular, a few nodes are significantly more influential on the

model than others, analogous to the fragility of scale-free networks under targeted

attack. The attacker can therefore poison the model without knowing any information

about the model parameters or predictions for most nodes, to the degree that is not

likely for deep learning models on non-graph-structured data.

1.1.2 The Representational and Correlational Roles of Graphs in Graph

Neural Networks (Chapter IV)

Graph-structured data are ubiquitous. However, graphs encode diverse types of

information and thus play different roles in data representation. In Chapter IV, we

distinguish the representational and the correlational roles played by the graphs in

different real-world graph data, and we investigate how GNN models can effectively

leverage both types of information. Conceptually, the representational information

provides guidance for the model to construct better node features; while the corre-

lational information indicates the correlation between node outcomes conditional on

node features. Through a simulation study, we find that many popular GNN models

have suboptimal performance when the graph plays a significant role in providing

correlational information. We also propose a general framework to improve existing

GNNs by leveraging the idea of the copula, a principled way to describe the depen-

dence among multivariate random variables. The proposed framework, Copula Graph

Neural Network (CopulaGNN), can take a wide range of GNN models as base models

and utilize both representational and correlational information stored in the graphs.

Experimental results on two types of regression tasks verify the effectiveness of the

proposed method.
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1.1.3 Generalization and Fairness of Graph Neural Networks (Chapter V)

Establishing theoretical guarantees for the generalization and fairness of machine

learning models is a key step towards developing trustworthy machine learning mod-

els. While a large body of literature has studied the generalization and fairness of

machine learning under the supervised learning setup with independent and identically

distributed (IID) data, little work has been done for GNNs under the semi-supervised

learning setup, where non-IID graph-structured data are involved. In Chapter V,

we provided one of the first learning-theoretic generalization bounds for GNNs under

the semi-supervised learning setup by applying a PAC-Bayesian analysis. With the

theoretical tools developed above, we further investigated how the structural charac-

teristics of different nodes affect the GNN predictions on them. We found that there

is a systematic accuracy disparity among test nodes. In particular, we showed that

test nodes that are “farther away” from the training nodes tend to suffer from a more

significant generalization error, suggesting an unfairness unique to machine learning

on graph-structured data.

1.1.4 Partition-Based Active Learning for Graph Neural Networks (Chap-

ter VI)

Motivated by the analysis in Chapter V, we propose a novel active learning ap-

proach for GNNs. The proposed method first splits the graph into disjoint partitions

and then selects representative nodes within each partition as training data. The

training data is selected in a balanced way such that distances from test nodes to

training nodes are significantly reduced, which in turn reduces the generalization

error for each subgroup. Extensive experiments on multiple benchmark datasets

demonstrate that the proposed method improves both the generalization and fairness

of GNNs. In addition, the proposed method does not introduce additional hyperpa-

rameters, which is crucial for model training, especially in the active learning setting
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where a labeled validation set may not be available.
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CHAPTER II

Preliminaries

All of the technical chapters of this dissertation focus on graph neural networks

(GNNs) in the context of graph-based semi-supervised learning problem. This chapter

formally introduces these two concepts to familiarize readers with the preliminary

background. Some of the introductions here may be repeated (sometimes with slightly

different notations) in the following technical chapters as reminders for the readers

and to ease the notations in each chapter. This chapter also provides a brief literature

review on trustworthy GML.

2.1 Graph-Based Semi-Supervised Learning

This dissertation focuses on one of the most popular types of GML tasks, graph-

based semi-supervised learning. Traditional machine learning methods typically treat

data samples as independent and approximate a mapping function from the features to

the outcome of each individual sample. However, many real-world data, such as social

media or scientific articles, often come with richer relational information among the

individual samples. Graph-based semi-supervised learning is a family of problems in

such scenarios where the relational information is stored in a graph structure with the

data samples as nodes, and the learning task is to predict the outcomes of unlabeled

nodes based on the node features, the graph structure, as well as the labels of a subset
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of nodes.

Formally, given a set of data samples D = {(xi, yi)}Ni=1, xi ∈ RD and yi ∈ RK

are the feature and outcome vectors of sample i respectively. We further denote

X ∈ RN×D and Y ∈ RN×K as the matrices formed by feature and outcome vectors.

The dataset also comes with a graph G = (V,E) with the data samples as nodes,

where V = {1, 2, · · · , N} is the set of nodes and E ⊆ V × V is the set of edges. In

the semi-supervised learning setting, only 0 < M < N samples have observed their

outcome labels, and the outcome labels of other samples are missing. Without loss

of generality, we assume the outcomes of the samples 1, 2, · · · ,M are observed, and

that of M +1, · · · , N are missing. Therefore we can partition the outcome matrix as

Y =

 Yobs

Ymiss

 .
The goal of graph-based semi-supervised learning is to infer Ymiss based on (X,Yobs, G).

This is usually done by learning a prediction model y = f(x;X,G) using empirical

risk minimization, optionally with regularizations:

f̂ = argmin
f

1

M

M∑
i=1

L(yi, f(xi;X,G)) + λR(f ;G),

where L(·, ·) is a loss function, R(·;G) is a graph-based regularization term, and λ

is a hyper-parameter controlling the strength of the regularization. Then f̂ is used

to predict Ymiss. While f̂ can take any general form, we are particularly interested in

the form of GNNs (see Section 2.2).

There are two specific learning settings, namely transductive learning and induc-

tive learning, which are common in graph-based semi-supervised learning. Transduc-

tive learning assumes that X and G are fully observed during both the learning and

inference stages. In contrast, inductive learning assumes XM+1:N and the nodes of
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M +1, · · · , N in G are missing during the learning stage but available during the in-

ference stage. In this dissertation, we will mainly focus on the transductive learning

setting.

2.2 Graph Neural Networks

This dissertation also focuses on a popular family of GML methods, GNNs. Given

the graph G, a GNN model is a function fG : RN×D → RN×K that maps the node

features X to output logits of each node. We denote the output logits of all nodes

as a matrix H ∈ RN×K and H = fG(X). A GNN fG is usually built by stacking

a certain number (L) of layers, with the l-th layer, 1 ≤ l ≤ L, taking the following

form:

H
(l)
i = σ

(∑
j∈Ni

αijWlH
(l−1)
j

)
, (2.1)

where H(l) ∈ RN×Dl is the hidden representation of nodes with Dl dimensions, output

by the l-th layer; Wl is a learnable linear transformation matrix; σ is an element-wise

nonlinear activation function; and different GNNs have different normalization terms

αij. For instance, αij = 1/
√
didj or αij = 1/di in Graph Convolutional Networks

(GCN) [77]. In addition, H(0) = X and H = H(L).

2.3 Trustworthy Graph Machine Learning

This section provides a preliminary literature review on a few aspects of trust-

worthy GML. This literature review is by no means comprehensive, and only serves

the purpose of guiding the readers toward the technical chapters. While we have dis-

cussed the limitations of the conceptual classification of trustworthiness in Chapter I,

this is still the most common way of summarizing literature in survey papers. We

therefore have followed this convention in this literature review section.
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2.3.1 Adversarial Attacks

The study of adversarial attacks on GNNs has surged recently. A taxonomy of

existing work has been summarized by Jin et al. [70], and we give a brief introduction

here. First, there are two types of machine learning tasks on graphs that are com-

monly studied, node-level classification and graph-level classification. Next, there are

a couple of choices of the attack form. For example, the attack can happen either dur-

ing model training (poisoning) or during model testing (evasion); the attacker may

aim to mislead the prediction on specific nodes (targeted attack) [169] or damage

the overall task performance (untargeted attack) [168]; the adversarial perturbation

can be done by modifying node features, adding or deleting edges, or injecting new

nodes [135]. For the adversarial perturbation, most existing works of untargeted at-

tacks apply global constraints on the proportion of node features or the number of

edges to be altered. Our work in Chapter III belongs to untargeted evasion attacks on

node-level classification tasks. We set a novel local constraint on node access, which is

more realistic in practice: perturbation on top (e.g., celebrity) nodes is prohibited and

only a small number of nodes can be perturbed. Finally, depending on the attacker’s

knowledge about the GNN model, existing work can be split into three categories:

white-box attacks [154, 26, 149] have access to full information about the model, in-

cluding model parameters, input data, and labels; grey-box attacks [168, 169, 135]

have partial information about the model and the exact setups vary in a range; in the

most challenging setting, black-box attacks [35, 10, 25] can only access the input data

and sometimes the black-box predictions of the model. In Chapter III, we consider an

even more strict black-box attack setup, where model predictions are invisible to the

attackers. As far as we know, the only prior works that conduct untargeted black-box

attacks without access to model predictions are those by Bojchevski and Günnemann

[10] and Chang et al. [25]. However, both of them require access to embeddings of

nodes, which are prohibited as well in our setup.
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2.3.2 Generalization

The majority of existing literature that aims to develop theoretical understandings

of GNNs has focused on the expressive power of GNNs (see Sato [123] for a survey

along this line). At the same time, the number of studies trying to understand the

generalization of GNNs is rather limited. Among them, some [42, 49, 89] focus on

graph-level tasks, the analyses of which cannot be easily applied to node-level tasks.

As far as we know, Scarselli et al. [125], Verma and Zhang [142], and Baranwal et al.

[6] are the only existing studies investigating the generalization of GNNs on node-

level tasks, even though node-level tasks are more common in reality. Scarselli et al.

[125] present an upper bound of the VC-dimension of GNNs; Verma and Zhang [142]

derive a stability-based generalization bound for a single-layer GCN [77] model. Yet,

both Scarselli et al. [125] and Verma and Zhang [142] (implicitly) assume that the

training nodes are IID samples from a certain distribution, which does not align

with the common practice of node-level semi-supervised learning. Baranwal et al. [6]

investigate the generalization of graph convolution under a specific data generating

mechanism (i.e., the contextual stochastic block model [39]). Our work in Chapter V

presents the first generalization analysis of GNNs for non-IID node-level tasks without

strong assumptions on the data generating mechanism.

2.3.3 Fairness

The fairness issues of machine learning on graphs start to receive research attention

recently. Following conventional machine learning fairness literature, most previous

work along this line [1, 14, 18, 34, 80, 118, 134, 159] concerns fairness with respect

to a given sensitive attribute, such as gender or race, which defines protected groups.

In practice, the fairness issues of learning on graphs are much more complicated

due to the asymmetric nature of the graph-structured data. However, only a few

studies [75] investigate the unfairness caused by the graph structure without knowing
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a sensitive feature. Moreover, in a node-level semi-supervised learning task, the non-

IID sampling of training nodes brings additional uncertainty to the fairness of the

learned models. The work in Chapter V is the first to present a learning theoretic

analysis under this setup, which in turn suggests how the graph structure and the

selection of training nodes may influence the fairness of machine learning on graphs.

16



CHAPTER III

Practical Adversarial Attacks on Graph Neural

Networks

3.1 Introduction

Graph neural networks (GNNs) [151], the family of deep learning models on

graphs, have shown promising empirical performance on various applications of ma-

chine learning to graph data, such as recommender systems [157], social network

analysis [85], and drug discovery [131]. Like other deep learning models, GNNs have

also been shown to be vulnerable under adversarial attacks [169], which has recently

attracted increasing research interest [70]. Indeed, adversarial attacks have been an

efficient tool to analyze both the theoretical properties as well as the practical ac-

countability of graph neural networks. As graph data have more complex structures

than image or text data, researchers have come up with diverse adversarial attack

setups. For example, there are different tasks (node classification and graph classi-

fication), assumptions of attacker’s knowledge (white-box, grey-box, and black-box),

strategies (node feature modification and graph structure modification), and corre-

sponding budget or other constraints (norm of feature changes or number of edge

changes).

Despite these research efforts, there is still a considerable gap between the existing
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attack setups and the reality. It is unreasonable to assume that an attacker can alter

the input of a large proportion of nodes, and even if there is a budget limit, it is

unreasonable to assume that they can attack any node as they wish. For example, in a

real-world social network, the attackers usually only have access to a few bot accounts,

and they are unlikely to be among the top nodes in the network; it is difficult for the

attackers to hack and alter the properties of celebrity accounts. Moreover, an attacker

usually has limited knowledge about the underling machine learning model used by

the platform (e.g., they may roughly know what types of models are used but have

no access to the model parameters or training labels). Motivated by the real-world

scenario of attacks, in this chapter we study a new type of black-box adversarial attack

for node classification tasks, which is more restricted and more realistic, assuming that

the attacker has no access to the model parameters or predictions. Our setup differs

from existing work with a novel constraint on node access, where attackers only have

access to a subset of nodes in the graph, and they can only manipulate a small number

of them.

The proposed black-box adversarial attack requires a two-step procedure: 1) se-

lecting a small subset of nodes to attack under the limits of node access; 2) altering

the node attributes or edges under a per-node budget. In this chapter, we focus on

the first step and study the node selection strategy. The key insight of the proposed

strategy lies in the observation that, with no access to the GNN parameters or pre-

dictions, the strong structural inductive biases of the GNN models can be exploited

as an effective information source of attacks. The structural inductive biases encoded

by various neural architectures (e.g., the convolution kernel in convolutional neural

networks) play important roles in the success of deep learning models. GNNs have

even more explicit structural inductive biases due to the graph structure and their

heavy weight sharing design. Theoretical analyses have shown that the understanding

of structural inductive biases could lead to better designs of GNN models [153, 79].
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From a new perspective, our work demonstrates that such structural inductive biases

can turn into security concerns in a black-box attack, as the graph structure is usually

exposed to the attackers.

Following this insight, we derive a node selection strategy with a formal analysis

of the proposed black-box attack setup. By exploiting the connection between the

backward propagation of GNNs and random walks, we first generalize the gradient-

norm in a white-box attack into a model-independent importance score similar to

the PageRank. In practice, attacking the nodes with high importance scores in-

creases the classification loss significantly but does not generate the same effect on

the mis-classification rate. Our theoretical and empirical analyses suggest that such

discrepancy is due to the diminishing-return effect of the mis-classification rate. We

further propose a greedy correction procedure for calculating the importance scores.

Experiments on three real-world benchmark datasets and popular GNN models show

that the proposed attack strategy significantly outperforms baseline methods. We

summarize our main contributions as follows:

1. We propose a novel setup of black-box attacks for GNNs with a constraint of

limited node access, which is by far the most restricted and realistic compared

to existing work.

2. We demonstrate that the structural inductive biases of GNNs can be exploited

as an effective information source of black-box adversarial attacks.

3. We analyze the discrepancy between classification loss and mis-classification

rate and propose a practical greedy method of adversarial attacks for node

classification tasks.

4. We empirically verify the effectiveness of the proposed method on three bench-

mark datasets with popular GNN models.
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3.2 Principled Black-Box Attack Strategies with Limited Node

Access

In this section, we derive principled strategies to attack GNNs under the novel

black-box setup with limited node access. We first analyze the corresponding white-

box attack problem in Section 3.2.2 and then adapt the theoretical insights from the

white-box setup to the black-box setup and propose a black-box attack strategy in

Section 3.2.3. Finally, in Section 3.2.4, we correct the proposed strategy by taking

into account of the diminishing-return effect for the mis-classification rate.

3.2.1 Preliminary Notations

We first introduce necessary notations. We denote a graph as G = (V,E), where

V = {1, 2, . . . , N} is the set of N nodes, and E ⊆ V ×V is the set of edges. For a node

classification problem, the nodes of the graph are collectively associated with node

features X ∈ RN×D and labels y ∈ {1, 2, . . . , K}N , where D is the dimensionality of

the feature vectors and K is the number of classes. Each node i’s local neighborhood

including itself is denoted as Ni = {j ∈ V | (i, j) ∈ E} ∪ {i}, and its degree as

di = |Ni|. To ease the notation, for any matrix A ∈ RD1×D2 in this chapter, we refer

Aj to the transpose of the j-th row of the matrix, i.e., Aj ∈ RD2 .

GNN models. Given the graph G, a GNN model is a function fG : RN×D → RN×K

that maps the node features X to output logits of each node. We denote the output

logits of all nodes as a matrix H ∈ RN×K and H = fG(X). A GNN fG is usually built

by stacking a certain number (L) of layers, with the l-th layer, 1 ≤ l ≤ L, taking the

following form:

H
(l)
i = σ

(∑
j∈Ni

αijWlH
(l−1)
j

)
, (3.1)

where H(l) ∈ RN×Dl is the hidden representation of nodes with Dl dimensions, output

by the l-th layer; Wl is a learnable linear transformation matrix; σ is an element-wise
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nonlinear activation function; and different GNNs have different normalization terms

αij. For instance, αij = 1/
√
didj or αij = 1/di in Graph Convolutional Networks

(GCN) [77]. In addition, H(0) = X and H = H(L).

Random walks. A random walk [94] on G is specified by the matrix of transition

probabilities, M ∈ RN×N , where

Mij =

 1/di, if (i, j) ∈ E or j = i,

0, otherwise.

Each Mij represents the probability of transiting from i to j at any given step of the

random walk. And powering the transition matrix by t gives us the t-step transition

matrix M t.

3.2.2 White-Box Adversarial Attacks with Limited Node Access

Problem formulation. Given a classification loss L : RN×K × {1, . . . , K}N → R,

the problem of white-box attack with limited node access can be formulated as an

optimization problem as follows:

max
S⊆V

L(H, y) (3.2)

subject to |S| ≤ r, di ≤ m,∀i ∈ S

H = f(τ(X,S)),

where r,m ∈ Z+ respectively specify the maximum number of nodes and the maxi-

mum degree of nodes that can be attacked. Intuitively, we treat high-degree nodes as

a proxy of celebrity accounts in a social network. For simplicity, we have omitted the

subscript G of the learned GNN classifier fG. The function τ : RN×D × 2V → RN×D

perturbs the feature matrix X based on the selected node set S (i.e., attack set).

Under the white-box setup, theoretically τ can also be optimized to maximize the
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loss. However, as our goal is to study the node selection strategy under the black-box

setup, we set τ as a pre-determined function. In particular, we define the j-th row

of the output of τ as τ(X,S)j = Xj + 1[j ∈ S]ϵ, where ϵ ∈ RD is a small constant

noise vector constructed by attackers’ domain knowledge about the features. In other

words, the same small noise vector is added to the features of every attacked node.

We use the Carlili-Wagner loss for our analysis, a close approximation of cross-

entropy loss and has been used in the analysis of adversarial attacks on image classi-

fiers [21]:

L(H, y) ≜
N∑
j=1

Lj(Hj, yj) ≜
N∑
j=1

max
k∈{1,...,K}

Hjk −Hjyj . (3.3)

The change of loss under perturbation. Next we investigate how the overall

loss changes when we select and perturb different nodes. We define the change of loss

when perturbing the node i as a function of the perturbed feature vector x:

∆i(x) = L(f(X ′), y)− L(f(X), y), where X ′
i = x and X ′

j = Xj,∀j ̸= i.

To concretize the analysis, we consider the GCN model with αij = 1
di

in our fol-

lowing derivations. Suppose f is an L-layer GCN. With the connection between

GCN and random walk [153] and Assumption 3.2.1 on the label distribution, we can

show that, in expectation, the first-order Taylor approximation ∆̃i(x) ≜ ∆i(Xi) +

(∇x∆i(Xi))
T (x−Xi) is related to the sum of the i-th column of the L-step random

walk transition matrix ML. We formally summarize this finding in Proposition 1.

Assumption 3.2.1 (Label Distribution). Assume the distribution of the labels of all

nodes follows the same constant categorical distribution, i.e.,

Pr[yj = k] = qk,∀j = 1, 2, . . . , N,
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where 0 < qk < 1 for k = 1, 2, . . . , K and
∑K

k=1 qk = 1. Moreover, since the classifier

f has been well-trained and fixed, the prediction of f should capture certain relation-

ships among the K classes. Specifically, we assume the chance for f predicting any

node j as any class k ∈ {1, . . . , K}, conditioned on the node label yj = l ∈ {1, . . . , K},

confines to a certain distribution p(k | l), i.e.,

Pr

[(
argmax
c∈{1,...,K}

Hjc

)
= k | yj = l

]
= p(k | l).

Proposition 1. For an L-layer GCN model, if Assumption 3.2.1 and a technical

assumption about the GCN1 hold, then

δi ≜ E
[
∆̃i (x) |x=τ(X,{i})i

]
= C

N∑
j=1

[ML]ji,

where C is a constant independent of i.

3.2.3 Adaptation from the White-Box Setup to the Black-Box Setup

Now we turn to the black-box setup where we have no access to the model pa-

rameters or predictions. This means we are no longer able to evaluate the objective

function L(H, y) of the optimization problem (3.2). Proposition 1 shows that the

relative ratio of δi/δj between different nodes i ̸= j only depends on the random walk

transition matrix, which we can easily calculate based on the graph G. This implies

that we can still approximately optimize the problem (3.2) in the black-box setup.

Node selection with importance scores. Consider the change of loss under the

perturbation of a set of nodes S. If we write the change of loss as a function of the

perturbed features and take the first order Taylor expansion, which we denote as δ,

we have δ =
∑

i∈S δi. Therefore δ is maximized by the set of r nodes with degrees less

1This is an assumption made by Xu et al. [153], which we list as Assumption A.1.1 in Ap-
pendix A.1.
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than m and the largest possible δi, where m, r are the limits of node access defined

in the problem (3.2). Therefore, we can define an importance score for each node

i as the sum of the i-th column of ML, i.e., Ii =
∑N

j=1[M
L]ji, and simply select

the nodes with the highest importance scores to attack. We denote this strategy as

RWCS (Random Walk Column Sum). We note that RWCS is similar to PageRank.

The difference between RWCS and PageRank is that the latter uses the stationary

transition matrix M∞ for a random walk with restart.

Empirically, RWCS indeed significantly increases the classification loss (as shown

in Section 3.3.2). The nonlinear loss actually increases linearly w.r.t. the pertur-

bation strength (the norm of the perturbation noise ϵ) for a wide range, which in-

dicates that ∆̃i is a good approximation of ∆i. Surprisingly, RWCS fails to con-

tinue to increase the mis-classification rate (which matters more in real applications)

when the perturbation strength becomes larger. Details of this empirical finding are

shown in Figure III.1 in Section 3.3.2. We conduct additional formal analyses on the

mis-classification rate in the following section and find a diminishing-return effect of

adding more nodes to the attack set when the perturbation strength is adequate.

3.2.4 Diminishing-Return of Mis-classification Rate and its Correction

Analysis of the diminishing-return effect. Our analysis is based on the inves-

tigation that each target node i ∈ V will be mis-classified as we increase the attack

set.

To assist the analysis, we first define the concepts of vulnerable function and

vulnerable set below.

Definition 3.2.2 (Vulnerable Function). We define the vulnerable function gi : 2
V →
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{0, 1} of a target node i ∈ V as, for a given attack set S ⊆ V ,

gi(S) =

 1, if i is mis-classified when attacking S,

0, if i is correctly-classified when attacking S.

Definition 3.2.3 (Vulnerable Set). We define the vulnerable set of a target node

i ∈ V as a set of all attack sets that could lead i to being mis-classified:

Ai ≜ {S ⊆ V | gi(S) = 1}.

We also make the following assumption about the vulnerable function.

Assumption 3.2.4. gi is non-decreasing for all i ∈ V , i.e., if T ⊆ S ⊆ V , then

gi(T ) ≤ gi(S).

With the definitions above, the mis-classification rate can be written as the average

of the vulnerable functions: h(S) = 1
N

∑N
i=1 gi(S). By Assumption 3.2.4, h is also

clearly non-decreasing.

We further define the basic vulnerable set to characterize the minimal attack sets

that can lead a target node to being mis-classified.

Definition 3.2.5 (Basic Vulnerable Set). ∀i ∈ V , we call Bi ⊆ Ai a basic vulnerable

set of i if,

1) ∅ /∈ Bi; if ∅ ∈ Ai, Bi = ∅;

2) if ∅ /∈ Ai, for any nonempty S ∈ Ai, there exists a T ∈ Bi s.t. T ⊆ S;

3) for any distinct S, T ∈ Bi, |S ∩ T | < min(|S|, |T |).

And the existence of such a basic vulnerable set is guaranteed by Proposition 2.

Proposition 2. For any i ∈ V , there exists a unique Bi.
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The distribution of the sizes of the element sets of Bi is closely related to the

perturbation strength on the features. When the perturbation is small, we may have

to perturb multiple nodes before the target node is mis-classified, and thus the element

sets of Bi will be large. When perturbation is relatively large, we may be able to turn

a target node to be mis-classified by perturbing a single node, if chosen wisely. In

this case Bi will have a lot of singleton sets.

Our following analysis (Proposition 3) shows that h has a diminishing-return effect

if the vulnerable sets of nodes on the graph present homophily (Assumption 3.2.6),

which is common in real-world networks, and the perturbation on features becomes

considerably large (Assumption 3.2.7).

Assumption 3.2.6 (Homophily). ∀S ∈ ∪Ni=1Ai and |S| > 1, there are b(S) ≥ 1

nodes s.t., for any node j among these nodes, S ∈ Aj.

Intuitively, the vulnerable sets present strong homophily if b(S)’s are large.

Assumption 3.2.7 (Considerable Perturbation). ∀S ∈ ∪Ni=1Ai and if |S| > 1, then

there are ⌈p(S) · b(S)⌉ nodes s.t., for any node j among these nodes, there exists a set

T ⊆ S, |T | = 1, and T ∈ Aj. And r
r+1

< p(S) ≤ 1.

Proposition 3. If Assumptions 3.2.6 and 3.2.7 hold, h is γ-approximately submod-

ular for some 0 < γ < 1
r
, i.e., there exists a non-decreasing submodular function

h̃ : 2V → R+, s.t. ∀S ⊆ V ,

(1− γ)h̃(S) ≤ h(S) ≤ (1 + γ)h̃(S).

As greedy methods are guaranteed to enjoy a constant approximation ratio for

such approximately submodular functions [60], Proposition 3 motivates us to develop

a greedy correction procedure to compensate the diminishing-return effect when cal-

culating the importance scores.

26



The greedy correction procedure. We propose an iterative node selection pro-

cedure and apply two greedy correction steps on top of the RWCS strategy, motivated

by Assumption 3.2.6 and 3.2.7.

To accommodate Assumption 3.2.6, after each node is selected into the attack set,

we exclude a k-hop neighborhood of the selected node for next iteration, for a given

constant integer k. The intuition is that nodes in a local neighborhood may contribute

to similar target nodes due to homophily. To accommodate Assumption 3.2.7, we

adopt an adaptive version of RWCS scores. First, we binarize the L-step random

walk transition matrix ML as M̃ , i.e.,

[
M̃
]
ij
=

 1, if [ML]ij is among Top-l of [ML]i and [ML]ij ̸= 0,

0, otherwise,
(3.4)

where l is a given constant integer. Next, we define a new adaptive influence score as a

function of a matrix Q: Ĩi(Q) =
∑N

j=1[Q]ji. In the iterative node selection procedure,

we initialize Q as M̃ . We select the node with highest score Ĩi(Q) subsequently. After

each iteration, suppose we have selected the node i in this iteration, we will update

Q by setting to zero for all the rows where the elements of the i-th column are 1.

The underlying assumption of this operation is that, adding i to the selected set is

likely to mis-classify all the target nodes corresponding to the aforementioned rows,

which complies Assumption 3.2.7. We name this iterative procedure as the GC-

RWCS (Greedily Corrected RWCS) strategy, and summarize it in Algorithm A.1 in

Appendix A.3.

Finally, we want to mention that, while the derivation of RWCS and GC-RWCS

requires the knowledge of the number of layers L for GCN, we find that the empirical

performance of the proposed attack strategies are not sensitive w.r.t. the choice of L.

Therefore, the proposed methods are applicable to the black-box setup where we do

not know the exact L of the model.
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3.3 Experiments

3.3.1 Experiment Setup

GNN models. We evaluate the proposed attack strategies on two common GNN

models, GCN [77] and JK-Net [153]. For JK-Net, we test on its two variants, JKNet-

Concat and JKNetMaxpool, which apply concatenation and element-wise max at last

layer respectively. We set the number of layers for GCN as 2 and the number of layers

for both JK-Concat and JK-Maxpool as 7. The hidden size of each layer is 32. For

the training, we closely follow the hyper-parameter setup in Xu et al. [153].

Datasets. We adopt three citation networks, Citeseer, Cora, and Pubmed, which

are standard node classification benchmark datasets [155]. Following the setup of

JK-Net [153], we randomly split each dataset by 60%, 20%, and 20% for training,

validation, and testing. And we draw 40 random splits.

Baseline methods for comparison. As we summarized in the preliminary chap-

ter, our proposed black-box adversarial attack setup is by far the most restricted, and

none of existing attack strategies for GNN can be applied. We compare the proposed

attack strategies with baseline strategies by selecting nodes with top centrality met-

rics. We compare with three well-known network metrics capturing different aspects

of node centrality: Degree, Betweenness, and PageRank and name the attack

strategies correspondingly. In classical network analysis literature [107], real-world

networks are shown to be fragile under attacks to high-centrality nodes. Therefore

we believe these centrality metrics serve as reasonable baselines under our restricted

black-box setup. For the purpose of sanity check, we also include a trivial baseline

Random, which randomly selects the nodes to be attacked.

Hyper-parameters for GC-RWCS. For the proposed GC-RWCS strategy, we

fix the number of step L = 4, the neighbor-hop parameter k = 1 and the parameter

l = 30 for the binarized M̃ in Eq. (3.4) for all models on all datasets. Note that L = 4
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is different from the number of layers of both GCN and JK-Nets in our experiments.

But we achieve effective attack performance. We also conduct a sensitivity analysis

in Appendix A.5 and demonstrate the proposed method is not sensitive w.r.t. L.

Nuisance parameters of the attack procedure. For each dataset, we fix the

limit on the number of nodes to attack, r, as 1% of the graph size. After the node

selection step, we also need to specify how to perturb the node features, i.e., the design

of ϵ in τ function in the optimization problem (3.2). In a real-world scenario, ϵ should

be designed with domain knowledge about the classification task, without access to

the GNN models. In our experiments, we have to simulate the domain knowledge

due to the lack of semantic meaning of each individual feature in the benchmark

datasets. Formally, we construct the constant perturbation ϵ ∈ RD as follows, for

j = 1, 2, . . . , D,

ϵj =


λ · sign(

∑N
i=1

∂L(H,y)
∂Xij

), if j ∈ arg top-J

([∣∣∣∑N
i=1

∂L(H,y)
∂Xil

∣∣∣]
l=1,2,...,D

)
,

0, otherwise,

(3.5)

where λ is the magnitude of modification. We fix J = ⌊0.02D⌋ for all datasets.

While gradients of the model are involved, we emphasize that we only use extremely

limited information of the gradients: determining a few number of important features

and the binary direction to perturb for each selected feature, only at the global level

by averaging gradients on all nodes. We believe such coarse information is usually

available from domain knowledge about the classification task. The perturbation

magnitude for each feature is fixed as a constant λ and is irrelevant to the model.

In addition, the same perturbation vector is added to the features of all the selected

nodes. The construction of the perturbation is totally independent of the selected

nodes.
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3.3.2 Experiment Results

Verifying the discrepancy between the loss and the mis-classification rate.

We first provide empirical evidence for the discrepancy between classification loss

(cross-entropy) and mis-classification rate. We compare the RWCS strategy to base-

line strategies with varying perturbation strength as measured by λ in Eq. (3.5). The

results shown in Figure III.1 are obtained by attacking GCN on Citeseer. First, we

observe that RWCS increases the classification loss almost linearly as λ increases, in-

dicating our approximation of the loss by first-order Taylor expansion actually works

pretty well in practice. Not surprisingly, RWCS performs very similarly as PageR-

ank. And RWCS performs much better than other centrality metrics in increasing

the classification loss, showing the effectiveness of Proposition 1. However, we see the

decrease of classification accuracy when attacked by RWCS (and PageRank) quickly

saturates as λ increases. The GC-RWCS strategy that is proposed to correct the im-

portance scores is able to decreases the classification accuracy the most as λ becomes

larger, although it increases the classification loss the least.

(a) Loss on Test Set (b) Accuracy on Test Set

Figure III.1: Experiments of attacking GCN on Citeseer with increasing perturba-
tion strength λ. Results are averaged over 40 random trials and error bars indicate
standard error of mean.

Full experiment results. We then provide the full experiment results of attacking

GCN, JKNetConcat, and JKNetMaxpool on all three datasets in Table 3.1. The

perturbation strength is set as λ = 1. The thresholds 10% and 30% indicate that we
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set the limit on the maximum degree m as the lowest degree of the top 10% and 30%

nodes respectively.

The results clearly demonstrate the effectiveness of the proposed GC-RWCS strat-

egy. GC-RWCS achieves the best attack performance on almost all experiment set-

tings, and the difference to the second-best strategy is significant in almost all cases.

It is also worth noting that the proposed GC-RWCS strategy is able to decrease the

node classification accuracy by up to 33.5%, and GC-RWCS achieves a 70% larger

decrease of the accuracy than the Random baseline in most cases (see Table A.3 in

Appendix A.5). And this is achieved by merely adding the same constant perturba-

tion vector to the features of 1% of the nodes in the graph. This verifies that the

explicit structural inductive biases of GNN models make them vulnerable even in the

extremely restricted black-box attack setup.
Table 3.1: Summary of the attack performance. The lower the accuracy (in %) the
better the attacks. The bold marker denotes the best performance. The asterisk
(*) means the difference between the best strategy and the second-best strategy is
statistically significant by a t-test at significance level 0.05. The error bar (±) denotes
the standard error of the mean by 40 independent trials.

Cora Citeseer Pubmed
Method GCN JKNetConcat JKNetMaxpool GCN JKNetConcat JKNetMaxpool GCN JKNetConcat JKNetMaxpool
None 85.6 ± 0.3 86.2 ± 0.2 85.8 ± 0.3 75.1 ± 0.2 72.9 ± 0.3 73.2 ± 0.3 85.7 ± 0.1 85.8 ± 0.1 85.7 ± 0.1

Threshold 10%
Random 81.3 ± 0.3 68.8 ± 0.8 68.8 ± 1.3 71.3 ± 0.3 60.8 ± 0.8 61.7 ± 0.9 82.0 ± 0.3 75.9 ± 0.7 75.4 ± 0.7
Degree 78.2 ± 0.4 60.7 ± 1.0 59.9 ± 1.5 67.5 ± 0.4 52.5 ± 0.8 53.7 ± 1.0 78.9 ± 0.5 63.4 ± 1.0 63.3 ± 1.2
Pagerank 79.4 ± 0.4 71.6 ± 0.6 70.0 ± 1.0 70.1 ± 0.3 61.5 ± 0.5 62.6 ± 0.6 80.3 ± 0.3 71.3 ± 0.8 71.2 ± 0.8
Betweenness 79.7 ± 0.4 60.5 ± 0.9 60.3 ± 1.6 68.9 ± 0.3 53.5 ± 0.8 55.1 ± 1.0 78.5 ± 0.6 67.1 ± 1.1 66.2 ± 1.1
RWCS 79.5 ± 0.3 71.2 ± 0.5 69.9 ± 1.0 69.9 ± 0.3 60.8 ± 0.6 62.2 ± 0.7 79.8 ± 0.3 70.7 ± 0.8 70.7 ± 0.8
GC-RWCS 78.5 ± 0.5 52.7 ± 1.0* 53.3 ± 1.9* 65.1 ± 0.5* 46.6 ± 0.8* 48.2 ± 1.1* 77.3 ± 0.7 62.1 ± 1.2 60.6 ± 1.4*

Threshold 30%
Random 82.6 ± 0.4 70.7 ± 1.1 71.8 ± 1.1 72.6 ± 0.3 62.7 ± 0.8 63.9 ± 0.8 82.6 ± 0.2 77.3 ± 0.4 77.4 ± 0.5
Degree 80.7 ± 0.4 64.9 ± 1.4 67.0 ± 1.5 70.4 ± 0.4 56.9 ± 0.8 58.7 ± 0.9 81.5 ± 0.4 72.4 ± 0.7 72.3 ± 0.7
Pagerank 82.6 ± 0.3 79.6 ± 0.4 79.7 ± 0.4 72.9 ± 0.2 70.2 ± 0.3 70.3 ± 0.3 83.0 ± 0.2 79.3 ± 0.3 79.6 ± 0.3
Betweenness 81.8 ± 0.4 64.1 ± 1.3 65.9 ± 1.4 70.7 ± 0.3 56.3 ± 0.8 58.3 ± 0.9 81.3 ± 0.3 74.1 ± 0.5 74.6 ± 0.5
RWCS 82.8 ± 0.3 79.3 ± 0.5 79.5 ± 0.4 72.9 ± 0.2 69.8 ± 0.3 70.1 ± 0.3 82.1 ± 0.2 77.8 ± 0.3 78.4 ± 0.3
GC-RWCS 80.7 ± 0.5 59.1 ± 1.6* 61.1 ± 1.6* 67.8 ± 0.5* 49.0 ± 0.9* 50.7 ± 1.1* 80.3 ± 0.5* 69.2 ± 0.7* 70.0 ± 0.7*

3.4 Conclusion

In this chapter, we propose a novel black-box adversarial attack setup for GNN

models with constraint of limited node access, which we believe is by far the most

restricted and realistic black-box attack setup. Nonetheless, through both theoreti-

cal analyses and empirical experiments, we demonstrate that the strong and explicit
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structural inductive biases of GNN models make them still vulnerable to this type of

adversarial attacks. We also propose a principled attack strategy, GC-RWCS, based

on our theoretical analyses on the connection between the GCN model and random

walk, which corrects the diminishing-return effect of the mis-classification rate. Our

experimental results show that the proposed strategy significantly outperforms com-

peting attack strategies under the same setup.
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CHAPTER IV

The Representational and Correlational Roles of

Graphs in Graph Neural Networks

4.1 Introduction

Graphs, as flexible data representations that store rich relational information, have

been commonly used in data science tasks. Machine learning methods on graphs [23],

especially Graph Neural Networks (GNNs), have attracted increasing interest in the

research community. They are widely applied to real-world problems such as rec-

ommender systems [157], social network analysis [85], and transportation forecast-

ing [158]. Among the heterogeneous types of graph-structured data, it is worth not-

ing that graphs usually play diverse roles in different contexts, different datasets, and

different tasks. Some of the roles are relational, as a graph may indicate certain

statistical relationships of connected observations; some are representational, as the

topological structure of a graph may encode important features/patterns of the data;

some are even causal, as a graph may reflect causal relationships specified by domain

experts.

It is crucial to recognize the distinct roles of a graph in order to correctly utilize

the signals in the graph-structured data. In this chapter, we distinguish the rep-

resentational role and the correlational role of graphs in the context of node-level
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(semi-)supervised learning, and we investigate how to design better GNNs that take

advantage of both roles.

In a node-level prediction task, the observed graph in the data may relate to

the outcomes of interest (e.g., node labels) in multiple ways. Conceptually, we call

that the graph plays a representational role if one can leverage it to construct better

feature representations. For example, in social network analysis, aggregating user

features from one’s friends is usually helpful (thanks to the well-known homophily

phenomenon [104]). In addition, the structural properties of a user’s local network,

e.g., structural diversity [140] and structural holes [17, 93], often provide useful in-

formation for making predictions about certain outcomes of that user. On the other

hand, sometimes a graph directly encodes correlations between the outcomes of con-

nected nodes, and we call it playing a correlational role. For example, hyper-linked

Webpages are likely to be visited together even if they have dissimilar content. In

spatiotemporal predictions, the outcome of nearby locations, conditional on all the

features, may still be correlated.

While both the representational and the correlational roles are common in graph-

structured data, we find that, through a simulation study, many existing GNN models

are incapable of utilizing the correlational information encoded in a graph. Specif-

ically, we design a synthetic dataset for the node-level regression. The node-level

outcomes are drawn from a multivariate normal distribution, with the mean and the

covariance as functions of the graph to reflect the representational and correlation

roles respectively. We find that when the graph only provides correlational informa-

tion of the node outcomes, many popular GNN models underperform a multi-layer

perceptron which does not consider the graph at all.

To mitigate this deficiency of GNNs, we propose a principled solution, the Copula

Graph Neural Network (CopulaGNN), which can take a wide range of GNNs as the

base model and improve their capabilities of modeling the correlational graph infor-
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mation. The key insight of the proposed method is that, by decomposing the joint

distribution of node outcomes into the product of marginal densities and a copula

density, the representational information and correlational information can be sep-

arately modeled. The former is modeled by the marginal densities through a base

GNN while the latter is modeled by a Gaussian copula. The proposed method also

enjoys the benefit of easy extension to various types of node outcome variables includ-

ing continuous variables, discrete count variables, or even mixed-type variables. We

instantiate CopulaGNN with normal and Poisson marginal distributions for continu-

ous and count regression tasks respectively. We also implement two types of copula

parameterizations combined with two types of base GNNs.

We evaluate the proposed method on both synthetic and real-world data with

both continuous and count regression tasks. The experimental results show that

CopulaGNNs significantly outperform their base GNN counterparts when the graph

in the data exhibits both correlational and representational roles. We summarize our

main contributions as follows:

1. We raise the question of distinguishing the two roles played by the graph and

demonstrate that many existing GNNs are incapable of utilizing the graph in-

formation when it plays a pure correlational role.

2. We propose a principled solution, the CopulaGNN, to integrate the representa-

tional and correlational roles of the graph.

3. We empirically demonstrate the effectiveness of CopulaGNN compared to base

GNNs on semi-supervised regression tasks.

4.2 Related Work

There have been extensive existing works that model either the representational

role or the correlational role of the graph in node-level (semi-)supervised learning

tasks. However, there are fewer methods that try to model both sides simultaneously,
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especially with a GNN.

Methods focusing on the representational role. As we mentioned in Sec-

tion 4.1, the graph can help construct better node feature representations by both

providing extra topological information and guiding node feature aggregation. There

have been vast existing studies on both directions, and among them we can only list

a couple of examples. Various methods have been proposed to leverage the topolog-

ical information of graph-structured data in machine learning tasks, such as graph

kernels [143], node embeddings [115, 138, 54], and GNNs [152]. Aggregating node

features on an attributed graph has also been widely studied, e.g., through feature

smoothing [105] or GNNs [77, 57]. In this work, we restrict our focus on the GNN

models, which have been the state-of-the-art graph representation learning method

on various tasks.

Methods focusing on the correlational role. On the other hand, there has also

been extensive literature on modeling the dependence of variables on connected nodes

in a graph. One group of methods is called the graph-based regularization [166, 87],

where it is assumed that the variables associated with linked objects change smoothly

and pose an explicit similarity regularization among them. The correlational role of

the graph is also closely related to undirected graphical models [82, 72, 144]. In

graphical models, the edges in a graph provide a representation of the conditional

(in)dependence structure among a set of random variables, which are represented by

the node set of the graph. Finally, there has been a line of research that combines

graphical models with copulas and leads to more flexible model families [44, 40, 91, 7].

Our proposed method integrates the benefits of copulas and GNNs to capture both

the representational and correlational roles.

Methods improving GNNs by leveraging the correlational graph infor-

mation. A few methods explicitly leverage the correlational graph information to

improve the GNN training, but most of them focus on a classification setting [117, 96].
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A recent study [67] that we have been aware of only lately shares a similar motivation

to ours, yet our methodology differs significantly. In particular, Jia and Benson [67]

apply a multivariate normal distribution to model the correlation of node outcomes,

which can be viewed as a special case of our proposed CopulaGNN when a Gaussian

copula with normal marginals is used. Our method not only generalizes to other

marginals (we show the effectiveness of some of them), but also has a more flexible

parameterization on the correlation matrix of the copula distribution. In addition,

we differ with these previous works by explicitly distinguishing the two roles of the

graph in the data.

Spatial autoregressive models for network data. There is another line of

literature in statistics that explicitly describes the correlation among the responses

associated with nodes in a network [84, 167, 64]. They applied the spatial autore-

gressive (SAR) models [30] to network data. In particular, the response of each node

is linearly associated with the responses of its neighbor nodes and exogenous covari-

ates. Therefore, given the node covariates and the network, the correlation among

responses is captured by a network autocorrelation coefficient, which is often assumed

to the same for all nodes. Recently, [102] proposed a semiparametric autoregressive

method that allows the spatial dependence to vary across nodes. The SAR models

can be thought as alternatives to the copula model used in this work. It is an inter-

esting future direction to consider leveraging SAR models to improve GNNs similarly

as the CopulaGNN framework proposed in this work.

4.3 Simulating the Two Roles of the Graph

In this section, we investigate, through a simulation study, the representational

and correlational roles of the graph in the context of node-level semi-supervised learn-

ing.
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4.3.1 Node-Level Semi-Supervised Learning

We start by formally introducing the problem of node-level semi-supervised learn-

ing. A graph is a tuple: G = (V , E), where V = {1, 2, . . . , n} is the set of n nodes;

E ∈ V × V is the set of edges. The graph is also associated with X ∈ Rn×d and

y ∈ Rn, which are the node features and outcome labels. In the semi-supervised

learning setting, we only observe the labels of 0 < m < n nodes. Without loss

of generality, we assume the labels of nodes {1, 2, . . . ,m} are observed and those

of {m + 1, . . . , n} are missing. Therefore, the label vector y can be partitioned as

y = (yTobs,y
T
miss)

T . The goal of a node-level semi-supervised learning task is to infer

ymiss based on (yobs,X,G).

4.3.2 Synthetic Data

To simulate the representational and correlational roles of the graph, we first

design a synthetic dataset by specifying the joint distribution of y conditional on X

and G. In particular, we let the joint distribution of the node outcomes take the

form of y|X,G ∼ N (µ(X,G),Σ(G)), for some µ,Σ to be specified. In this way,

the graph G plays a representational role through µ(X,G) and a correlational role

through Σ(G).

Specifically, we generate synthetic node-level regression data on a graph with n

nodes and m edges (see Appendix B.1.1 for the whole procedure). We first randomly

generate a feature matrixX ∈ Rn×d0 . AssumeA is the adjacency matrix of the graph,

D is the degree matrix, and L = D − A is the graph Laplacian. Let Ã = A + I

and D̃ = D + I. Given parameters wy ∈ Rd0 , we generate the node label vector

y ∼ N (µ,Σ), where, for some γ > 0, τ > 0, and σ2 > 0,

(a) µ = D̃−1ÃXwy, Σ = σ2I;

(b) µ = Xwy, Σ = τ(L+ γI)−1;

(c) µ = D̃−1ÃXwy, Σ = τ(L+ γI)−1.
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Depending on how (µ,Σ) are configured, we get three types of synthetic data

settings: (a), (b), and (c). Intuitively, the graph plays a pure representational role in

setting (a) since the label of a node depends on the aggregated features of its local

neighborhood and the node labels are independent conditional on the node features.

In setting (b), the graph plays a pure correlational role; while the means of node labels

only depend on their own node features, the node labels are still correlated conditional

on the features, and the correlation is determined by the graph structure. Finally,

setting (c) is a combination of (a) and (b) where the graph plays both representational

and correlational roles.

In the rest of this section, we test the performance of a few widely used GNNs

under setting (a) and (b) to examine their capabilities of utilizing the representational

and correlational information. We defer the experimental results under setting (c) to

Section 4.5.2 for ease of reading.

4.3.3 Simulation Study

Simulation Setup. We set n = 300,m = 5000, and d0 = 10. Elements of

both Wg and wy are generated from i.i.d. standard normal distribution. For setting

(a), we vary σ2 ∈ {2.5, 5, 10, 20}. For settings (b) and (c), we set γ = 0.1 and

vary τ ∈ {0.5, 1, 2, 5}. We test 4 common GNN models, GCN [77], GraphSAGE [57]

(denoted as SAGE), GAT [141], and APPNP [79], as well as the multi-layer perceptron

(MLP).

Simulation Results. First, we observe that all 4 types of GNNs outperform

MLP under setting (a) (Figure IV.1a), where the graph plays a pure representational

role. This is not surprising as the architectures of the GNNs encode a similar feature

aggregation structure as the data. However, under setting (b) (Figure IV.1b) where

the graph plays a pure correlational role, all 4 types of GNNs underperform MLP.

This suggests that a majority of popular GNN models might be incapable of fully
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(a) µ = D̃−1ÃXwy, Σ = σ2I.
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(b) µ = Xwy, Σ = τ(L+ γI)−1.

Figure IV.1: The coefficient of determination R2 (the higher the better) of GNNs and
MLP when the graph plays (a) the representational role or (b) the correlational role.
For each configuration, the results are aggregated from 100 trials. In (a), all GNNs
outperform MLP; in (b), all GNNs underperform MLP.

utilizing the correlational graph information.

Motivated by our findings in the simulation study, in the following section, we

seek for methods that augment existing GNN models in order to better utilize both

representational and correlational information in the graph.

4.4 Copula Graph Neural Network

In this section, we propose a principled solution called the Copula Graph Neural

Network (CopulaGNN). At the core of our method is the application of copulas, which

are widely used for modeling multivariate dependence. In the rest of this section, we

first provide a brief introduction to copulas (more detailed expositions can be found in

the monographs by Joe [71] and Czado [33]), then present the proposed CopulaGNN

and its parameterization, learning, and inference.

4.4.1 Introduction to Copulas

General formulation. Sklar’s theorem [133] states that any multivariate joint

distribution F of a random vector Y = (Y1, . . . , Yn) can be written in terms of one-

dimensional marginal distributions Fi(y) = P(Yi ≤ y) and a copula C : [0, 1]n →

[0, 1] that describes the dependence structures among variables: F (y1, . . . , yn) =
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C(F1(y1), . . . , Fp(yn)). In other words, one can decompose a joint distribution into

two components: the marginals and the copula. Furthermore, a copula C can

also be regarded as the Cumulative Distribution Function (CDF) of a correspond-

ing distribution on the unit hypercube [0, 1]n. Its copula density is denoted by

c(u1, . . . , un) := ∂nC(u1, u2, . . . , un)/∂u1 · · · ∂un. The Probability Density Function

(PDF) of a random vector can be represented by its corresponding copula density. If

the random vector Y is continuous, its PDF can be written as

f(y) = c(u1, . . . , un)
n∏
i=1

fi(yi), (4.1)

where fi is the PDF of Yi, ui = Fi(yi), and c is the copula density. For discrete

random vectors, the form of the Probability Mass Function (PMF) is more complex.

See Appendix B.2.2 for details.

Gaussian copula. One of the most popular copula family is the Gaussian cop-

ula. When the joint distribution F is multivariate normal with a mean of 0 and a

covariance matrix of Σ, the corresponding copula is the Gaussian copula:

C(u1, u2, · · · , un;Σ) = Φn(Φ
−1(u1), · · · ,Φ−1(un);0,R),

where Φn(·;0,R) is the multivariate normal CDF, R is the correlation matrix of Σ,

and Φ−1(·) is the quantile function of the univariate standard normal distribution.

Its copula density is

c(u1, u2, . . . , un;Σ) = (detR)−1/2 exp

(
−1

2
Φ−1(u)T (R−1 − In)Φ

−1(u)

)
,

where In is the identity matrix of size n and u = (u1, u2, . . . , un).
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4.4.2 The Proposed Model

Recall that our goal is to model both representational and correlational graph

information in the conditional joint distribution of the node outcomes,

f(y;X,G) = c(u1, . . . , un;X,G)
n∏
i=1

fi(yi;X,G), (4.2)

which can be decomposed into the copula density and marginal densities. In this

formulation, the representational information and correlational information are natu-

rally separated into the marginal densities fi, for i = 1, . . . , n, and the copula density

c, respectively. Note that both the marginal densities and the copula density are

conditional on the node features X and the graph G. Next, we need to choose a

proper distribution family for each of these densities and parameterize the distribu-

tion parameters as functions of X and G.

Choice of distribution family and parameterization for the copula density.

For the distribution family, we choose the Gaussian copula as the copula family,

c(u1, . . . , un;Σ(X,G;θ)), where the form of Σ(·;θ) and the learnable parameters θ

remain to be specified. To leverage the correlational graph information, we draw

a connection between the graph structure G and the covariance matrix Σ in the

Gaussian copula density. Let K = Σ−1 be the precision matrix; if two nodes i and

j are not linked in the graph, we constrain the corresponding (i, j)-th entry in K to

be 0. In other words, the absence of an edge between nodes i and j leads to their

outcome variables yi and yj being conditionally independent given all other variables.

The motivation of parameterizing the precision matrix K instead of the covariance

matrix Σ is closely related to undirected graphical models [82, 72, 144], where the

conditional dependence structure among a set of variables is fully represented by

edges in an underlying graph. In our use case, we could view our assumption on

K as a graphical model among random variables (y1, . . . , yn), where the underlying
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graph structure is known.

The conditional independence assumption has significantly reduced the number

of non-zero entries in K to be estimated. However, without any further constraints,

there are still |E| free parameters growing with the graph size, which can hardly

be estimated accurately given only one observation of (y1, . . . , ym). In practice, we

consider two ways of parametrizing K with fewer parameters.

Two-parameter parametrization. A rather strong but simple constraint is to as-

sume the non-zero off-diagonal entries of K have the same value or they are propor-

tional to the corresponding entries in the normalized adjacency matrix, and introduce

two global parameters controlling the overall strength of correlation. For example, we

could have K = τ−1(L+ γI) as what we did in the simulation study in Section 4.3,

or K = β(In−αD−1/2AD−1/2) as used in Jia and Benson [67], where (τ, γ) or (α, β)

are learnable parameters.

Regression-based parametrization. We further propose a more flexible parameter-

ization that allows the non-zero entries in K to be estimated by a regressor taking

node features as inputs. In pariticular, for any (i, j)-pair corresponding to a non-zero

entry of K, we set Âi,j = softplus(h(xi,xj;θ)), where h is a two-layer MLP that

takes the concatenation of xi and xj as input and outputs a scalar. Let D̂ be the

degree matrix if we treat Â as a weighted adjacency matrix, and we set the precision

matrix K = In+D̂−Â. This parameterization improves the flexibility on estimating

K while keeping the number of learnable parameters θ independent of the graph size

n. It also ensures that K is positive-definite and thus invertible.

Choice of distribution families and parameterization for the marginal den-

sities. One benefit of the copula framework is the flexibility on the choice of

distribution families for the marginal densities. In this work, we choose the marginal

densities to be normal distributions if the labels y are continuous variables, and

we choose them to be Poisson distributions if the y are discrete. We denote the
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i-th marginal density function by fi(yi;ηi(X,G;θ)) and the corresponding CDF by

Fi(yi;ηi(X,G;θ)), where ηi(·;θ) denotes the distribution parameters to be specified.

If the i-th marginal distribution takes the form of a normal distribution N (µi, σ
2
i ),

then ηi(X,G;θ) = (µi(X,G;θ), σ2
i (X,G;θ)). We define µi(X,G;θ) as the output

of a base GNN model for node i, and σ2
i (X,G;θ) as the i-th diagnoal element of

the covariance matrix Σ(X,G;θ) as we specified in the Gaussian copula. If the

i-th marginal distribution takes the form of a Poisson distribution Pois(λi), then

ηi(X,G;θ) = λi(X,G;θ), and we define λi(X,G;θ) as the output of a base GNN

model for node i. Either way, the representational role of the graph is reflected in the

location parameters (µi or λi) computed by a base GNN model. In practice, we can

also choose other distribution families such as the log-normal or negative binomial,

depending on our belief on the true distributions of the node outcomes. One can even

choose different distribution families for different nodes simultaneously if necessary.

4.4.3 Model Learning and Inference

For simplicity of notation, we write ηi(X,G;θ) and Σ(X,G;θ) as ηi and Σ

throughout this section.

Model learning. The model parameters θ are learned by maximizing the log-

likelihood on the observed node labels. Given the partition of y, we can further

partition the covariance matrix Σ accordingly:

y =

yobs

ymiss

 and Σ =

Σ00 Σ01

Σ10 Σ11

 ,

where yobs = (y1, . . . , ym) and ymiss = (ym+1, . . . , yn). In other words, Σ00 and Σ11

are the covariance matrices of the observed and missing nodes. We further denote

ui = Fi(yi;ηi) for i = 1, . . . , n, uobs = (u1, . . . , um), and umiss = (um+1, . . . , un);

that is, ui is the probability integral transform of the i-th label yi. According to
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Equation 4.1, the joint density can be written as the product of the copula density

and the marginal densities. Therefore, the loss function is

L(θ) = log f(yobs;X,G) = log c(uobs;Σ00) +
m∑
i=1

log fi(yi;ηi).

The parameters θ are learned end-to-end using standard optimization algorithms such

as Adam [76].

Model inference. At inference time, we are interested in the conditional distri-

bution f(ymiss|yobs;X,G). The inference of the conditional distribution can be done

via sampling. Since f(y;X,G) is modeled by the Gaussian copula, we have

Φ−1(uobs)

Φ−1(umiss)

 ∼ N

0

0

 ,

R00 R01

R10 R11


 ,

where R is the correlation matrix corresponding to the covariance matrix Σ. By

the property of the multivatiate normal distribution, the conditional distribution of

Φ−1(umiss)|Φ−1(uobs) is also multivatiate normal:

Φ−1(umiss)|Φ−1(uobs) ∼ N
(
R10R

−1
00 Φ

−1(uobs),R11 −R10R
−1
00 R01

)
. (4.3)

This provides a way to draw samples from f(ymiss|yobs;X,G) as follows: (i) compute

uobs and R from (yobs,X,G), as described in Section 4.4.2; (ii) draw random samples

Φ−1(umiss) from the conditional distribution in Equation 4.3; (iii) apply Φ(·) elemen-

twise to get umiss; and (iv) apply F−1
i (·;ηi) elementwise to get ymiss. The average of

the samples can be used as the point estimate.
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4.5 Experiments

4.5.1 General Setup

We instantiate CopulaGNN with either GCN or GraphSAGE as the base GNN

models, and implement both the two-parameter parameterization (the (α, β) param-

eterization, denoted by “αβ-C-”, where “C” stands for copula) and the regression-

based parameterization (denoted by “R-C-”). In combination, we have four variants

of CopulaGNN: αβ-C-GCN, R-C-GCN, αβ-C-SAGE, and R-C-SAGE. When

the outcome is a continuous variable, the normal margin is used; and when the out-

come is a count variable, the Poisson margin is used. In particular, in the former case,

the αβ-C-GNN degenerates to the Correlation GNN proposed by Jia and Benson [67].

We compare different variants of CopulaGNN with their base GNN counterparts, as

well as an MLP model, on two types of regression tasks: continuous outcome variables

and count outcome variables. More experiment details can be found in Appendix C.3.

4.5.2 Regression with Continuous Outcome Variables

We use two groups of datasets with continuous outcome variables. The first group

is the synthetic data of setting (c) as described in Sections 4.3.2 and 4.3.3, where a

graph provides both representational and correlational information. The second group

includes four regression tasks constructed from the U.S. Election data [67]. We use

the coefficient of determination R2 to measure the model performance.

Results. For the synthetic datasets (Table 4.1), we vary the value of τ , which

controls the overall magnitude of the label covariance. Unsurprisingly, as τ increases,

the labels become noisier and the test R2 of all models decreases. In all configurations,

R-C-GCN and R-C-SAGE respectively outperform their base model counterparts,

GCN and SAGE, by significant margins. This verifies the effectiveness of the proposed

method when the graph provides both representational and correlational information.
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Table 4.1: Experiment results on the synthetic data under setting (c) as described in
Sections 4.3.2 and 4.3.3. The average test R2 from 100 trials is reported (the larger
the better). The asterisk markers, *, **, and ***, indicate the difference between
a variant of CopulaGNN and its GNN base model is statistically significant by a
pairwise t-test at significance levels of 0.1, 0.05, and 0.01, respectively. The (±) error
bar denotes the standard error of the mean.

τ = 0.5 τ = 1.0 τ = 2.0 τ = 5.0

MLP 0.624 ± 0.011 0.549 ± 0.014 0.437 ± 0.018 0.193 ± 0.020

GCN 0.673 ± 0.022 0.563 ± 0.034 0.384 ± 0.055 0.174 ± 0.032

αβ-C-GCN 0.669 ± 0.024 0.568 ± 0.033 0.408 ± 0.050* 0.200 ± 0.035

R-C-GCN 0.706 ± 0.017*** 0.617 ± 0.023*** 0.489 ± 0.034*** 0.217 ± 0.029*

SAGE 0.733 ± 0.013 0.644 ± 0.020 0.507 ± 0.030 0.262 ± 0.025

αβ-C-SAGE 0.741 ± 0.013** 0.650 ± 0.019 0.518 ± 0.029* 0.281 ± 0.024**

R-C-SAGE 0.754 ± 0.010*** 0.665 ± 0.017** 0.540 ± 0.024** 0.290 ± 0.022*

Another interesting observation is that GCN outperforms MLP when τ is small (0.5

and 1.0), but underperforms MLP when τ becomes large (2.0 and 5.0), whereas R-C-

GCN consistently outperforms MLP. Note that τ can also be viewed as the tradeoff

between the representational role and the correlational role served by the graph. The

correlational role of the graph will have more influence on the outcome variables

when τ becomes larger. This explains the intriguing observation: GCN fails to utilize

the correlational information and its advantages on the representational information

diminish as τ increases.

For the U.S. Election dataset (Table 4.2), we observe that all variants of Copu-

laGNN significantly outperform their base GNN counterparts. It is interesting that

the simpler two-parameter parameterization outperforms the regression-based pa-

rameterization in most setups on this dataset. One possible explanation is that the

outcome variables that are connected in the graph tend to have strong correlations,

since adjacent counties usually have similar statistics. This is indeed suggested by Jia

and Benson [67]. The Unemployment task in particular, where the two-parameter pa-

rameterization appears to have the largest advantage, is shown to have the strongest

correlation.
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Table 4.2: Experiment results on regression tasks of the U.S. Election dataset (with
continuous outcome variables). The average test R2 from 10 trials is reported (the
larger the better). The asterisk markers and the (±) error bar indicate the same
meaning as in Table 4.1.

Education Election Income Unemployment

MLP 0.660 ± 0.004 0.400 ± 0.003 0.597 ± 0.006 0.400 ± 0.004

GCN 0.418 ± 0.004 0.472 ± 0.002 0.607 ± 0.003 0.572 ± 0.010

αβ-C-GCN 0.452 ± 0.001*** 0.558 ± 0.002*** 0.635 ± 0.001*** 0.750 ± 0.004***

R-C-GCN 0.454 ± 0.002*** 0.578 ± 0.005*** 0.661 ± 0.001*** 0.654 ± 0.009***

SAGE 0.677 ± 0.004 0.565 ± 0.005 0.714 ± 0.006 0.628 ± 0.005

αβ-C-SAGE 0.709 ± 0.003*** 0.700 ± 0.003*** 0.775 ± 0.003*** 0.813 ± 0.004***

R-C-SAGE 0.707 ± 0.003*** 0.692 ± 0.005*** 0.763 ± 0.003*** 0.695 ± 0.003***

4.5.3 Regression with Count Outcome Variables

We use two groups of datasets with count outcome variables. The first group

consists of two Wikipedia datasets: Wiki-Chameleon and Wiki-Squirrel [122]; both

are page-page networks of Wikipedia pages with the visiting traffic as node labels.

The second group is a co-citation network of papers at the EMNLP conferences. The

goal is to predict the overall number of citations of each paper (including citations

from outside EMNLP). We use the R2-deviance, an R2 measure for count data [20],

to measure the model performance.

Results. The results of the count regression tasks are shown in Table 4.3. In-

tuitively, hyper-linked web pages or co-cited papers are more likely to be visited

or cited together, therefore leading to correlated outcome variables captured by the

graph. Indeed, we observe that the different variants of CopulaGNN outperform their

base model counterparts in almost all setups. However, as the correlation may not

be as strong as in the U.S. Election dataset, we observe that the regression-based

parameterization (R-C-GCN and R-C-SAGE) has a greater advantage.
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Table 4.3: Experiment results on regression tasks with count outcome variables. The
average test R2 (deviance) from 50 trials is reported (the larger the better). The
asterisk markers and the (±) error bar indicate the same meaning as in Table 4.1.

EMNLP Wiki-Chameleon Wiki-Squirrel

MLP 0.125 ± 0.006 0.347 ± 0.008 0.439 ± 0.004

GCN 0.609 ± 0.002 0.408 ± 0.008 0.470 ± 0.006

αβ-C-GCN 0.630 ± 0.001*** 0.405 ± 0.007 0.476 ± 0.006***

R-C-GCN 0.657 ± 0.001*** 0.424 ± 0.007** 0.490 ± 0.006***

SAGE 0.711 ± 0.002 0.343 ± 0.009 0.539 ± 0.004

αβ-C-SAGE 0.721 ± 0.002*** 0.352 ± 0.009** 0.548 ± 0.004***

R-C-SAGE 0.734 ± 0.002*** 0.360 ± 0.008*** 0.551 ± 0.004***

4.6 Conclusion

In this work, we explicitly distinguish the representational and correlational roles

of the graph representation of data. We demonstrate through a simulation study

that many popular GNN models are incapable of fully utilizing the correlational

graph information. Furthermore, we propose CopulaGNN, a principled method that

improves upon a wide range of GNNs to achieve better prediction performance when

the graph plays both representational and correlational roles. Compared with the

corresponding base GNN models, multiple variants of CopulaGNN yield consistently

superior results on both synthetic and real-world datasets for continuous and count

regression tasks.
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CHAPTER V

Generalization and Fairness of Graph Neural

Networks

5.1 Introduction

Graph Neural Networks (GNNs) [52, 124, 77] are a family of machine learning

models that can be used to model non-Euclidean data as well as inter-related samples

in a flexible way. In recent years, there have been enormous successful applications

of GNNs in various areas, such as drug discovery [69], computer vision [106], trans-

portation forecasting [158], recommender systems [157], etc. Depending on the type

of prediction target, the application tasks can be roughly categorized into node-level,

edge-level, subgraph-level, and graph-level tasks [151].

In contrast to the marked empirical success, theoretical understanding of the gen-

eralization ability of GNNs has been rather limited. Among the existing literature,

some studies [42, 49, 89] focus on the analysis of graph-level tasks where each sam-

ple is an entire graph and the samples of graphs are IID. A very limited number of

studies [125, 142] explore GNN generalization for node-level tasks but they assume

the nodes (and their associated neighborhoods) are IID samples, which does not align

with the commonly seen graph-based semi-supervised learning setups. Baranwal et al.

[6] investigate GNN generalization without IID assumptions but under a specific data
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generating mechanism.

In this chapter, our first contribution is to provide a novel PAC-Bayesian analysis

for the generalization ability of GNNs on node-level tasks with non-IID assumptions.

In particular, we assume the node features are fixed and the node labels are inde-

pendently sampled from distributions conditioned on the node features. We also

assume the training set and the test set can be chosen as arbitrary subsets of nodes

on the graph. We first prove two general PAC-Bayesian generalization bounds (The-

orem 5.4.2 and Theorem 5.4.3) under this non-IID setup. Subsequently, we derive

a generalization bound for GNN (Theorem 5.4.10) in terms of characteristics of the

GNN models and the node features.

Notably, the generalization bound for GNN is influenced by the distance between

the test nodes and the training nodes in terms of their aggregated node features. This

suggests that, given a fixed training set, test nodes that are “far away” from all the

training nodes may suffer from larger generalization errors. Based on this analysis,

our second contribution is the discovering of a type of unfairness that arises from

theoretically predictable accuracy disparity across some subgroups of test nodes. We

further conduct a empirical study that investigates the prediction accuracy of four

popular GNN models on different subgroups of test nodes. The results on multi-

ple benchmark datasets indicate that there is indeed a significant disparity in test

accuracy among these subgroups.

We summarize the contributions of this chapter as follows:

(1) We establish a novel PAC-Bayesian analysis for graph-based semi-supervised

learning with non-IID assumptions.

(2) Under this setup, we derive a generalization bound for GNNs that can be applied

to an arbitrary subgroup of test nodes.

(3) As an implication of the generalization bound, we predict that there would be
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an unfairness of GNN predictions that arises from accuracy disparity across

subgroups of test nodes.

(4) We empirically verify the existence of accuracy disparity of popular GNNmodels

on multiple benchmark datasets, as predicted by our theoretical analysis.

5.2 Related Work

In Chapter 2.3, we have introduced prior work investigating generalization and

fairness of GNNs. In this section, we further give a very brief literature review on

PAC-Bayesian analysis.

5.2.1 PAC-Bayesian Analysis

PAC-Bayesian analysis [103] has become one of the most powerful theoretical

framework to analyze the generalization ability of machine learning models. We will

briefly introduce the background in Section 5.3.2, and refer the readers to a recent

tutorial [56] for a systematic overview of PAC-Bayesian analysis. We note that Liao

et al. [89] recently present a PAC-Bayesian generalization bound for GNNs on IID

graph-level tasks. Both Liao et al. [89] and this work utilize results from Neyshabur

et al. [109], a PAC-Bayesian analysis for ReLU-activated neural networks, in part

of our proofs. Compared to Neyshabur et al. [109], the key contribution of Liao

et al. [89] is the derivation of perturbation bounds of two types of GNN architectures;

while the key contribution of this work is the novel analysis under the setup of non-

IID node-level tasks. There is also an existing work of PAC-Bayesian analysis for

transductive semi-supervised learning [8]. But it is different from our problem setup

and, in particular, it cannot be used to analyze the generalization on subgroups.
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5.3 Preliminaries

In this section, we first formulate the problem of node-level semi-supervised learn-

ing. We also provide a brief introduction of the PAC-Bayesian framework.

5.3.1 The Problem Formulation and Notations

Semi-supervised node classification. Let G = (V,E) ∈ GN be an undirected

graph, with V = {1, 2, . . . , N} being the set of N nodes and E ⊆ V × V being the

set of edges. And GN is the space of all undirected graphs with N nodes. The nodes

are associated with node features X ∈ RN×D and node labels y ∈ {1, 2, . . . , K}N .

In this work, we focus on the transductive node classification setting [155], where

the node features X and the graph G are observed prior to learning, and every

quantity of interest in the analysis will be conditioned on X and G. Without loss of

generality, we treat X and G as fixed throughout our analysis, and the randomness

comes from the labels y. In particular, we assume that for each node i ∈ V , its

label yi is generated from an unknown conditional distribution Pr(yi | Zi), where

Z = g(X,G) and g : RN×D×GN → RN×D′
is an aggregation function that aggregates

the features over (multi-hop) local neighborhoods1. We also assume that the node

labels are generated independently conditional on their respective aggregated features

Zi’s.

Given a small set of the labeled nodes, V0 ⊆ V , the task of node-level semi-

supervised learning is to learn a classifier h : RN×D × GN → RN×K from a function

family H and perform it on the remaining unlabeled nodes. Given a classifier h, the

classification for a node i is obtained by

ŷi = argmax
k∈{1,...,K}

hi(X,G)[k],

1A simple example is gi(X,G) = 1
|N (i)|+1

(
Xi +

∑
j∈N (i) Xj

)
, where gi(X,G) is the i-th row of

g(X,G) and N (i) := {j | (i, j) ∈ E} is the set of 1-hop neighbors of node i.
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where hi(X,G) is the i-th row of h(X,G) and hi(X,G)[k] refers to the k-th element

of hi(X,G).

Subgroups. In Section 6.4.1, we will present an analysis of the GNN generalization

performance on any subgroup of the set of unlabeled nodes, V \ V0. Note that the

analysis on any subgroup is a stronger result than that on the entire unlabeled set, as

any set is a subset of itself. Later we will show that the analysis on subgroups (rather

than on the entire set) further allows us to investigate the accuracy disparity across

subgroups. We denote a collection of subgroups of interest as V1, V2, . . . , VM ⊆ V \V0.

In practice, a subgroup can be defined based on an attribute of the nodes (e.g., a

gender group), certain graph-based properties, or an arbitrary partition of the nodes.

We also define the size of each subgroup as Nm := |Vm|,m = 0, . . . ,M .

Margin loss on each subgroup. Now we can define the empirical and expected

margin loss of any classifier h ∈ H on each subgroup Vm,m = 0, 1, . . . ,M . Given a

sample of observed node labels yi’s, the empirical margin loss of h on Vm for a margin

γ ≥ 0 is defined as

L̂γm(h) :=
1

Nm

∑
i∈Vm

1hi(X,G)[yi] ≤ γ +max
k ̸=yi

hi(X,G)[k], (5.1)

where 1· is the indicator function. The expected margin loss is the expectation of

Eq. (5.1), i.e.,

Lγm(h) := Eyi∼Pr(y|Zi),i∈VmL̂γm(h). (5.2)

To simplify the notation, we define ym := {yi}i∈Vm ,∀m = 0, . . . ,M , so that Eq. (5.2)

can be written as Lγm(h) = EymL̂γm(h). We note that the classification risk and

empirical risk of h on Vm are respectively equal to L0
m(h) and L̂0

m(h).
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5.3.2 The PAC-Bayesian Framework

The PAC-Bayesian framework [103] is an approach to analyze the generalization

ability of a stochastic predictor drawn from a distribution Q over the predictor family

H that is learned from the training data. For any stochastic classifier distribution Q

and m = 0, . . . ,M , slightly overloading the notation, we denote the empirical margin

loss of Q on Vm as L̂γm(Q), and the corresponding expected margin loss as Lγm(Q).

And they are given by

L̂γm(Q) := Eh∼QL̂γm(h), Lγm(Q) := Eh∼QLγm(h).

In general, a PAC-Bayesian analysis aims to bound the generalization gap between

Lγm(Q) and L̂γm(Q). The analysis is usually done by first proving that, for any “prior”

distribution2 P over H that is independent of the training data, the generalization

gap can be controlled by the discrepancy between P and Q; the analysis is then

followed by careful choices of P to get concrete upper bounds of the generalization

gap. While the PAC-Bayesian framework is built on top of stochastic predictors,

there exist standard techniques [81] that can be used to derive generalization bounds

for deterministic predictors from PAC-Bayesian bounds.

Finally, we denote theKullback-Leibler (KL) divergence asDKL(Q∥P ) :=
∫
ln dQ

dP
dQ,

which will be used in the following analysis.

5.4 The Generalization Bound and Its Implications for Fair-

ness

As we mentioned in Section 5.2.1, existing PAC-Bayesian analyses cannot be di-

rectly applied to the non-IID semi-supervised learning setup where we care about the

2The distribution is called “prior” in the sense that it doesn’t depend on training data. “Prior”
and “posterior” in PAC-Bayesian are different with those in conventional Bayesian statistics. See
Guedj [56] for details.
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generalization (and its disparity) across different subgroups of the unlabeled samples.

In this section, we first present general PAC-Bayesian theorems for subgroup gener-

alization under our problem setup; then we derive a generalization bound for GNNs

and discuss fairness implications of the bound.

5.4.1 General PAC-Bayesian Theorems for Subgroup Generalization

Stochastic classifier bound. We first present the general PAC-Bayesian theorem

(Theorem 5.4.2) for subgroup generalization of stochastic classifiers. The generaliza-

tion bound depends on a notion of expected loss discrepancy between two subgroups

as defined below.

Definition 5.4.1 (Expected Loss Discrepancy). Given a distribution P over H, for

any λ > 0 and γ ≥ 0, for any two subgroups Vm and Vm′ (0 ≤ m,m′ ≤ M), define

the expected loss discrepancy between Vm and Vm′ with respect to (P, γ, λ) as

Dγ
m,m′(P ;λ) := lnEh∼P e

λ
(
Lγ/2
m (h)−Lγ

m′ (h)
)
,

where Lγ/2m (h) and Lγm′(h) follow the definition of Eq. (5.2).

Intuitively, Dγ
m,m′(P ;λ) captures the difference of the expected loss between Vm

and Vm′ in an average sense (over P ). Note that Dγ
m,m′(P ;λ) is asymmetric in terms

of Vm and Vm′ , and can be negative if the loss on Vm is mostly smaller than that on

Vm′ .

For stochastic classifiers, we have the following Theorem 5.4.2. Proof can be found

in Appendix C.1.1.

Theorem 5.4.2 (Subgroup Generalization of Stochastic Classifiers). For any 0 <

m ≤ M , for any λ > 0 and γ ≥ 0, for any “prior” distribution P on H that is

independent of the training data on V0, with probability at least 1− δ over the sample
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of y0, for any Q on H, we have3

Lγ/2m (Q) ≤ L̂γ0(Q) +
1

λ

(
DKL(Q∥P ) + ln

1

δ
+

λ2

4N0

+Dγ
m,0(P ;λ)

)
. (5.3)

Theorem 5.4.2 can be viewed as an adaptation of a result by Alquier et al. [3]

from the IID supervised setting to our non-IID semi-supervised setting. The terms

DKL(Q∥P ), ln 2
δ
, and λ2

4N0
are commonly seen in PAC-Bayesian analysis for IID su-

pervised setting. In particular, when setting λ = Θ(
√
N0),

1
λ

(
ln 2

δ
+ λ2

4N0

)
vanishes

as the training size N0 grows. The divergence between Q and P , DKL(Q∥P ), is usu-

ally considered as a measurement of the model complexity [56]. And there will be

a trade-off between the training loss, L̂γ0(Q), and the complexity (how far can the

learned “posterior” Q go from the “prior” P ).

Uniquely for the non-IID semi-supervised setting, there is an extra termDγ
m,0(P ;λ),

which is the expected loss discrepancy between the target test subgroup Vm and the

training set V0. Note that this quantity is independent of the training labels y0. Not

surprisingly, it is difficult to give generalization guarantees if the expected loss on Vm

is much larger than that on V0 for any stochastic classifier P independent of training

data. We have to make some assumptions about the relationship between Vm and

V0 to obtain a meaningful bound on 1
λ
Dγ
m,0(P ;λ), which we will discuss in details in

Section 5.4.2.

Deterministic classifier bound. Utilizing standard techniques in PAC-Bayesian

analysis [81, 103, 109], we can convert the bound for stochastic classifiers in Theo-

rem 5.4.2 to a bound for deterministic classifiers as stated in Theorem 5.4.3 below

(see Appendix C.1.2 for the proof).

Theorem 5.4.3 (Subgroup Generalization of Deterministic Classifiers). Let h̃ be any

classifier in H. For any 0 < m ≤M , for any λ > 0 and γ ≥ 0, for any “prior” distri-

3Theorem 5.4.2 also holds when we substitute Lγ/2
m (h) and Lγ/2

m (Q) as Lγ
m(h) and Lγ

m(Q) respec-
tively. But we state Theorem 5.4.2 in this form to ease the presentation of the later analysis.
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bution P on H that is independent of the training data on V0, with probability at least

1−δ over the sample of y0, for any Q onH such that Prh∼Q

(
maxi∈V0∪Vm ∥hi(X,G)− h̃i(X,G)∥∞ < γ

8

)
>

1
2
, we have

L0
m(h̃) ≤ L̂

γ
0(h̃) +

1

λ

(
2(DKL(Q∥P ) + 1) + ln

1

δ
+

λ2

4N0

+D
γ/2
m,0(P ;λ)

)
. (5.4)

Theorem 5.4.2 and 5.4.3 are not specific to GNNs and hold for any (respec-

tively stochastic and deterministic) classifier under the semi-supervised setup. In

Section 5.4.2, we will apply Theorem 5.4.3 to obtain a subgroup generalization bound

that explicitly depends on the characteristics of GNNs and the data.

5.4.2 Subgroup Generalization Bound for Graph Neural Networks

The GNN model. We consider GNNs where the node feature aggregation step

and the prediction step are separate. In particular, we assume the GNN classifier

takes the form of hi(X,G) = f(gi(X,G);W1,W2, . . . ,WL), where g is an aggregation

function as we described in Section 5.3.1 and f is a ReLU-activated L-layer Multi-

Layer Perceptron (MLP) with W1, . . . ,WL as parameters for each layer4. Denote the

largest width of all the hidden layers as b.

Remark V.1. There is a technical restriction on the possible choice of the aggrega-

tion function g. For the following derivation of the generalization bound (5.6) to be

valid, we need the condition that the node labels yi’s are independent conditional on

their aggregated features gi(X,G)’s, as introduced in the problem formulation in Sec-

tion 5.3.1. However, we also note that this condition tends to hold when the aggregated

features gi(X,G)’s contain rich information about the labels.

Upper-bounding Dγ
m,0(P ;λ). To derive the generalization guarantee, we need to

upper-bound the expected loss discrepancy Dγ
m,0(P ;λ). It turns out that we have to

4SGC [148] and APPNP [79] are special cases of GNNs in this form.
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make some assumptions on the data in order to get a meaningful upper bound.

So far we have not had any restrictions on the conditional label distributions

Pr(yi = k | gi(X,G)). If the label distributions on V \ V0 can be arbitrarily different

from those on V0, the generalization can be arbitrarily poor. We therefore assume

that the label distributions conditional on aggregated features are smooth (Assump-

tion 5.4.4).

Assumption 5.4.4 (Smoothness of Data Distribution). Assume there exist c-Lipschitz

continuous functions η1, η2, . . . , ηK : RD′ → [0, 1], such that, for any node i ∈ V ,

Pr(yi = k | gi(X,G)) = ηk(gi(X,G)),∀k = 1, . . . , K.

We also need to characterize the relationship between a target test subgroup Vm

and the training set V0. For this purpose, we define the distance from Vm to V0 and

the concept of near set below.

Definition 5.4.5 (Distance To Training Set and Near Set). For each 0 < m ≤ M ,

define the distance from the subgroup Vm to the training set V0 as

ϵm := max
j∈Vm

min
i∈V0
∥gi(X,G)− gj(X,G)∥2.

Further, for each i ∈ V0, define the near set of i with respect to Vm as

V (i)
m := {j ∈ Vm | ∥gi(X,G)− gj(X,G)∥2 ≤ ϵm}.

Clearly,

Vm = ∪i∈V0V (i)
m .

Then, with the Assumption 5.4.6 and 5.4.7 below, we can bound the expected

loss discrepancy Dγ
m,0(P ;λ) with the following Lemma 5.4.8 (see the proof in Ap-
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pendix C.1.3).

Assumption 5.4.6 (Equal-Sized and Disjoint Near Sets). For any 0 < m ≤ M ,

assume the near sets of each i ∈ V0 with respect to Vm are disjoint and have the same

size sm ∈ N+.

Assumption 5.4.7 (Concentrated Expected Loss Difference). Let P be a distribution

on H, defined by sampling the vectorized MLP parameters from N (0, σ2I) for some

σ2 ≤ (γ/8ϵm)2/L

2b(λN−α
0 +ln 2bL)

. For any L-layer GNN classifier h ∈ H with model parameters

W h
1 , . . . ,W

h
L , define Th := maxl=1,...,L ∥W h

l ∥2. Assume that there exists some 0 < α <

1
4
satisfying

Pr
h∼P

(
Lγ/4m (h)− Lγ/20 (h) > N−α

0 + cKϵm | TLh ϵm >
γ

8

)
≤ e−N

2α
0 .

Lemma 5.4.8 (Bound for Dγ
m,0(P ;λ)). Under Assumptions 5.4.4, 5.4.6 and 5.4.7,

for any 0 < m ≤ M , any 0 < λ ≤ N2α
0 and γ ≥ 0, assume the “prior” P on

H is defined by sampling the vectorized MLP parameters from N (0, σ2I) for some

σ2 ≤ (γ/8ϵm)2/L

2b(λN−α
0 +ln 2bL)

. We have

D
γ/2
m,0(P ;λ) ≤ ln 3 + λcKϵm. (5.5)

Intuitively, what we need to bound Dγ
m,0(P ;λ) is that the training set V0 is “rep-

resentative” for Vm. This is reasonable in practice as it is natural to select the

training samples according to the distribution of the population. Specifically, As-

sumption 5.4.6 assumes that Vm can be split into equal-sized partitions indexed by

the training samples. The elements of each partition V
(i)
m are close to the corre-

sponding training sample i but not so close to training samples other than i. This

assumption is stronger than needed to obtain a meaningful bound on Dγ
m,0(P ;λ), and

we can relax it by only assuming that most samples in Vm have proportional “close
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representatives” in V0. But we keep Assumption 5.4.6 in this work, as it is intuitively

clear and significantly eases the analysis and notations. Assumption 5.4.7 essentially

assumes that the expected margin loss on Vm is not much larger than that on V0 when

the number of samples becomes large. We first note that this assumption becomes

trivially true in the degenerate case that all samples in Vm and V0 are IID. In this

case, Lγ/4m (h) = Lγ/40 (h) < Lγ/20 (h) ≤ 0 for any classifier h. In Appendix C.1.5, we

further provide a simple non-IID example where Assumption 5.4.7 holds.

The bound (5.5) suggests that the closer between Vm and V0 (smaller ϵm), the

smaller the expected loss discrepancy.

Bound for GNNs. Finally, with an additional technical assumption (Assump-

tion 5.4.9) that the maximum L2 norm of aggregated node features does not grow

in terms of the number of training samples, we obtain a subgroup generalization

bound for GNNs in Theorem 5.4.10. The proof of Theorem 5.4.10 can be found in

Appendix C.1.4.

Assumption 5.4.9. Define Bm := maxi∈V0∪Vm ∥gi(X,G)∥2. For any classifier h̃ ∈ H

with parameters {W̃l}Ll=1, assume ∥W̃l∥F ≤ C for l = 1, . . . , L. Assume Bm, C are

constants with respect to N0.

Theorem 5.4.10 (Subgroup Generalization Bound for GNNs). Let h̃ be any classifier

in H with parameters {W̃l}Ll=1. Under Assumptions 5.4.4, 5.4.6, 5.4.7, and 5.4.9, for

any 0 < m ≤M , γ ≥ 0, and large enough N0, with probability at least 1− δ over the

sample of y0, we have

L0
m(h̃) ≤ L̂

γ
0(h̃)+O

(
cKϵm +

b
∑L

l=1 ∥W̃l∥2F
(γ/8)2/LNα

0

(ϵm)
2/L +

1

N1−2α
0

+
1

N2α
0

ln
LC(2Bm)

1/L

γ1/Lδ

)
.

(5.6)

Next, we investigate the qualitative implications of our theoretical results.
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5.4.3 Implications for Fairness of Graph Neural Networks

Theoretically predictable accuracy disparity. One merit of our analysis is

that we can apply Theorem 5.4.10 on different subgroups of the unlabeled nodes and

compare the subgroup generalization bounds. This allows us to study the accuracy

disparity across subgroups from a theoretical perspective.

A major factor that affects the generalization bound (5.6) is ϵm, the aggregated-

feature distance (in terms of g(X,G)) from the target test subgroup Vm to the training

set V0. The generalization bound (5.6) suggests that there is a better generalization

guarantee for subgroups that are closer to the training set. In other words, it is

unfair for subgroups that are far away from the training set. While our theoretical

analysis can only tell the difference among upper bounds of generalization errors, we

empirically verify that, in the following Section 6.5, the aggregated-feature distance

ϵm is indeed a strong predictor for the test accuracy of each subgroup Vm. More

specifically, the test accuracy decreases as the distance increases, which is consistent

with the theoretical prediction given by the bound (5.6).

Impact of the structural positions of nodes. We further investigate if the

aggregated-feature distance can be related to simpler and more interpretable graph

characteristics, in order to obtain a more intuitive understanding of how the struc-

tural positions of nodes influence the prediction accuracy on them. We find that

the geodesic distance (length of the shortest path) between two nodes is positively

related to the distance between their aggregated features in some scenarios5, such as

when the node features exhibit homophily [104]. Empirically, we also observe that

test nodes with larger geodesic distance to the training set tend to suffer from lower

accuracy (see Figure V.2).

In contrast, we find that common node centrality metrics (e.g., degree and PageR-

ank) have less influence on the test accuracy (see Figure V.3). These centrality metrics

5A more detailed discussion on such scenarios is provided in Appendix C.4.1.
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Figure V.1: Test accuracy disparity across subgroups by aggregated-feature distance.
Each figure corresponds to a dataset, and each bar cluster corresponds to a model.
Bars labeled 1 to 5 represent subgroups with increasing distance to training set.
Results are averaged over 40 independent trials with different random splits of the
data, and the error bar represents the standard error of the mean.

only capture the graph characteristics of the test nodes alone, but do not take their

relationship to the training set into account, which is a key factor suggested by our

theoretical analysis.

Impact of training data selection. Another implication of the theoretical results

is that the selection of the training set plays an important role in the fairness of the

learned GNN models. First, if the training set is selected unevenly on the graph,

leaving part of the test nodes far away, there will likely be a large accuracy disparity.

Second, a key ingredient in the proof of Lemma 5.4.8 is that the GNN predictions

on two nodes tend to be more similar if they are closer in terms of the aggregated

node features. This suggests that, if an individual training node is close to many test

nodes, it may bias the predictions of the learned GNN on the test nodes towards the

class it belongs to.

5.5 Experiments

In this section, we empirically verify the fairness implications suggested by our

theoretical analysis.

General setup. We experiment on 4 popular GNN models, GCN [77], GAT [141],
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Figure V.2: Test accuracy disparity across subgroups by geodesic distance. The
experiment and plot settings are the same as Figure V.1, except for the bars labeled
from 1 to 5 here represent subgroups with increasing shortest-path distance to training
set.

SGC [148], and APPNP [79], as well as an MLP model for reference. For all models,

we use the implementations by Deep Graph Library [145]. For each experiment

setting, 40 independent trials are carried out.

5.5.1 Accuracy Disparity Across Subgroups

Subgroups. We examine the accuracy disparity with three types of subgroups as

described below.

Subgroup by aggregated-feature distance. In order to directly investigate the effect

of ϵm on the generalization bound (5.6), we first split the test nodes into subgroups by

their distance to the training set in terms of the aggregated features. We use the two-

step aggregated features to calculate the distance. In particular, denote the adjacency

matrix of the graph G as A ∈ {0, 1}N×N and the corresponding degree matrix as D,

where D is an N × N diagonal matrix with Dii =
∑N

j=1Aij, ∀i = 1, . . . , N . Given

the feature matrix X ∈ RN×D, the two-step aggregated features Z are obtained by

Z = (D + I)−1(A + I)(D + I)−1(A + I)X. For each test node i, we calculate its

aggregated-feature distance to the training set V0 as di = minj∈V0 ∥Zi − Zj∥2. Then

we sort the test nodes according to this distance and split them into 5 equal-sized

subgroups.
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Strictly speaking, our theory does not directly apply to GCN and GAT as they

are not in the form as we defined in Section 5.4.2. Moreover, the two-step aggre-

gated feature does not match exactly to the feature aggregation function of SGC and

APPNP. Nevertheless, we find that even with such approximations, we are still able

to observe the expected descending trend of test accuracy with respect to increasing

distance in terms of the two-step aggregated features, on all four GNN models.

Subgroup by geodesic distance. As we discussed in Section 5.4.3, geodesic dis-

tance on the graph may well relate to the aggregated-feature distance. So we also

define subgroups based on geodesic distance. We split the subgroups by replacing the

aggregated-feature distance di of each test node i with the minimum of the geodesic

distances from i to each training node on the graph.

Subgroup by node centrality. Lastly, we define subgroups based on 4 types of

common node centrality metrics (degree, closeness, betweenness, and PageRank) of

the test nodes. We split the subgroups by replacing the aggregated-feature distance

di of each test node i with the centrality score of i. The purpose of this setup is

to show that the common node centrality metrics are not sufficient to capture the

monotonic trend of test accuracy.

Experiment setup. Following common GNN experiment setup [130], we randomly

select 20 nodes in each class for training, 500 nodes for validation, and 1,000 nodes for

testing. Once training is done, we report the test accuracy on subgroups defined by

aggregated-feature distance, geodesic distance, and node centrality in Figure V.1, V.2,

and V.3 respectively6.

Experiment results. First, as shown in Figure V.1, there is a clear trend that

the accuracy of a test subgroup decreases as the aggregated-feature distance between

the test subgroup and the training set increases. And the trend is consistent for all 4

6The main paper reports the results on a small set of datasets (Cora, Citeseer, and Pubmed [126,
155]). Results on more datasets, including large-scale datasets from Open Graph Benchmark [63],
are shown in Appendix C.3.
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(b) GAT on Cora.
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(c) APPNP on Cora.
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(d) GCN on Citeseer.
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(e) GAT on Citeseer.
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(f) APPNP on Citeseer.
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(g) GCN on Pubmed.
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(h) GAT on Pubmed.
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(i) APPNP on Pubmed.

Figure V.3: Test accuracy disparity across subgroups by node centrality. Each figure
corresponds to the results of a pair of model and dataset, and each bar cluster corre-
sponds to the subgroups defined by a certain centrality metric. In each cluster, the
bars labeled from 1 to 5 represent subgroups with decreasing node centrality. Other
settings are the same as Figure V.1.
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GNN models on all the datasets we test on (except for APPNP on Cora). This result

verifies the existence of accuracy disparity suggested by Theorem 5.4.10.

Second, we observe in Figure V.2 that there is a similar trend when we split

subgroups by the geodesic distance. This suggests that the geodesic distance on the

graph can sometimes be used as a simpler indicator in practice for machine learning

fairness on graph-structured data. Using such a classical graph metric as an indicator

also helps us connect graph-based machine learning to network theory, especially to

understandings about social networks, to better analyze fairness issues of machine

learning on social networks, where high-stake decisions related to human subjects

may be involved.

Furthermore, as shown in Figure V.3, there is no clear monotonic trend for test

accuracy when we split subgroups by node centrality, except for some particular

combinations of GNN model and dataset. Empirically, the common node centrality

metrics are not as good as the geodesic distance in terms of capturing the accuracy

disparity. This contrast highlights the importance of the insight provided by our

analysis: the “distance” to the training set, rather than some graph characteristics of

the test nodes alone, is the key predictor of test accuracy.

Finally, it is intriguing that, in both Figure V.1 and V.2, the test accuracy of

MLP (which does not use the graph structure) also decreases as the distance of a

subgroup to the training set increases. This result is perhaps not surprising if the

subgroups were defined by distance on the original node features, as MLP can be

viewed as a special GNN where the feature aggregation function is an identity map-

ping, so the “aggregated features” for MLP essentially equal to the original features.

Our theoretical analysis can then be similarly applied to MLP. The question is why

there is also an accuracy disparity w.r.t. the aggregated-feature distance and the

geodesic distance. We suspect this is because these datasets present homophily, i.e.,

original (non-aggregated) features of geodesically closer nodes tend to be more simi-
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(b) Citeseer.

123
GCN

45 123
GAT

45 123
SGC

45 123
APPNP

45 123
MLP

45
0.4

0.5

0.6

0.7

0.8

AC
C

(c) Pubmed.

Figure V.4: Test accuracy disparity across subgroups by aggregated-feature distance,
experimented with noisy features. The experiment and plot settings are the same as
Figure V.1, except for the node features are perturbed by independent noises such
that they are less homophilous.
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(a) GCN on Cora.
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(c) MLP on Cora.

Figure V.5: Relative ratio between the FPR under biased training node selection and
the FPR under uniform training node selection. Each bar in each cluster corresponds
to a class (there are 7 classes in total). The red shaded bar indicates the class with
high centrality training nodes under the biased setup. Each cluster corresponds to a
centrality metric being used for the biased node selection.

lar. As a result, a subgroup with smaller geodesic distance may also have closer node

features to the training set. To verify this hypothesis, we repeat the experiments

in Figure V.1, but with independent noises added to node features such that they

become less homophilous. As in Figure V.4, the decreasing pattern of test accuracy

across subgroups remains for the 4 GNNs on all datasets; while for MLP, the pattern

disappears on Cora and Pubmed and becomes less sharp on Citeseer.

5.5.2 Impact of Biased Training Node Selection

In all the previous experiments, we follow the standard GNN training setup where

20 training nodes are uniformly sampled for each class. Next we investigate the impact
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if the selection of training nodes is biased, verifying our discussions in Section 5.4.3.

We will demonstrate that the node centrality scores of the training nodes play an

important role in the learned GNN model.

We choose a “dominant class” and construct a manipulated training set. For each

class, we still sample 20 training nodes but in a biased way. For the dominant class,

the sample is biased towards nodes of high centrality; while for other classes, the

sample is biased towards nodes of low centrality. We evaluate the relative ratio of

False Positive Rate (FPR) for each class between the setup using the manipulated

training set and the setup using a uniformly sampled training set.

As shown in Figure V.5, compared to MLP, the GNN models have significantly

worse FPR for the dominant class when the training nodes are biased. This is because,

after feature aggregation, there will be a larger proportion of test nodes that are closer

to the training nodes of higher centrality. And the learned GNN model will be heavily

biased towards the training labels of these nodes.

5.6 Conclusion

We present a novel PAC-Bayesian analysis for the generalization ability of GNNs

on node-level semi-supervised learning tasks. As far as we know, this is the first

generalization bound for GNNs for non-IID node-level tasks without strong assump-

tions on the data generating mechanism. One advantage of our analysis is that it can

be applied to arbitrary subgroups of the test nodes, which allows us to investigate

an accuracy-disparity style of fairness for GNNs. Both the theoretical and empiri-

cal results suggest that there is an accuracy disparity across subgroups of test nodes

that have varying distance to the training set, and nodes with larger distance to the

training nodes suffer from a lower classification accuracy.
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CHAPTER VI

Partition-Based Active Learning for Graph Neural

Networks

6.1 Introduction

In the previous chapter, we have seen that the selection of training nodes plays a

critical role in the generalization and fairness of GNNs. In this chapter, we investigate

the problem of Graph-based Semi-Supervised Learning (GSSL) with GNNs in an

active learning setup [128], where one is allowed to actively query node labels on

the graph given a limited annotation budget. Our goal is to design effective active

learning strategy that can improve the generalization and fairness of GNNs.

The active learning setup is also particularly interesting in the context of GSSL

as we usually have access to abundant unlabeled samples prior to learning and, in

many cases (e.g., on a social network), we have the flexibility to query the labels

for a small portion of the samples. Furthermore, since a key advantage of GNN is

the ability to utilize the relational information among the inter-connected samples,

properly selecting nodes to annotate may further enhance the GNN performance.

However, directly adapting conventional active learning methods to GSSL may be

sub-optimal due to the special structure of the problem and the GNN models. Indeed,

utilizing proper smoothness properties of the data has been a key ingredient for the
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success of many active learning methods. For example, a commonly used assumption

(which we call feature smoothness) is that samples with similar features have higher

chances to fall into the same class. In addition to feature smoothness, real-world

GSSL tasks often leverage multiple types of smoothness properties over the graph,

spanning the spectrum between local smoothness and global smoothness [163]. While

there have been existing graph-based active learning methods utilizing some of these

smoothness properties [36, 19, 150], methods that fully utilize feature and structural

smoothness at the proper level are rare.

In this chapter, we propose GraphPart, a Graph-Partition-based active learning

method for GNNs. The method is largely motivated by the community structures

that are commonly present in real-world graphs. Node and structural properties of-

ten exhibit homogeneity within a community and heterogeneity across communities.

We formalize this observation with proper smoothness assumptions of the graph-

structured data at community level (represented by partitions of the graph) and

conduct a novel analysis of the GNN classification error under such assumptions.

The analysis further motivates the graph-partitioning step in the proposed method,

GraphPart. In particular, GraphPart first splits the graph into several partitions

based on modularity [29] and then selects the most representative nodes within each

partition to query. An important merit of the proposed method is that it does not

introduce additional hyperparameters, which is crucial for active learning setups as

labeled validation data are often absent. Through extensive experiments, we demon-

strate that the proposed method outperforms existing active learning methods for

GNNs on multiple benchmark datasets for a wide range of annotation budgets. In

addition, the proposed active learning method is able to mitigate the accuracy dis-

parity phenomenon of GNNs that we have seen in Chapter V.
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6.2 Related Work

Active learning is a subfield of machine learning that primarily concerns about

the bottleneck in expensive annotation and attempts to achieve high accuracy by

querying as few labeled samples as possible. Early efforts in this field prior to the

emergence of deep learning has been comprehensively summarized by Settles [128].

Active Learning Setups The classic active learning algorithms query one sam-

ple at a time and label it. Such a setting is inefficient for a deep learning model as

it frequently retrains but updates little, and it is prone to overfitting [120]. There-

fore, in deep active learning, the batch-mode setting, where a diverse set of instances

are sampled and queried, is more often considered. In recent years, the optimal ex-

perimental design principle [116, 2] motivates the machine learning community to

minimize the use of training resources and avoid tuning on a validation set. Com-

bining the settings of one-shot learning and batch-mode active learning, some recent

studies [31, 150] adopt a one-step batch-mode active learning setting. In each run,

the algorithm use up the predefined budget to select a batch of nodes to label. The

querying process is done once and for all in order to minimize retraining. In this

work, we focus on such one-step batch-mode setup as we concern active learning for

graph neural networks.

Active Learning on Graphs Early works in active learning on graphs [55, 66, 36]

are designed specifically for non-deep-learning models and/or fail to take the node

features into consideration. As deep geometric learning and GNNs become popular,

iterative node selection criteria were designed upon the expressiveness of GNNs. In

particular, AGE [19] evaluates the informativeness of nodes by linearly combining cen-

trality, density and uncertainty, Gao et al. [48] further proposed ANRMAB, which ex-

tends this framework by dynamically learning the weights with a multi-armed bandit
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mechanism and maximizing the surrogate reward. Similarly, Chen et al. [27] follows

previous works and proposed ActiveHNE, which extends AL on non-i.i.d data and

heterogeneous networks. The above frameworks neglect interaction between nodes

and suffer from sub-optimality due to short-term surrogate criterion. Upon this ob-

servation, Hu et al. [62] propose GPA, which formalizes AL task as a Markov decision

process and learns the optimal query strategy with reinforcement learning techniques.

More recent works approached the problem by incremental clustering [92], adversar-

ial learning [88] and influence maximization [160, 161]. Yet, all of these models are

based on an iterative setting. Given some efforts to avoid validation [119], iterative

querying and retraining is still required.

Another line of optimization-based approaches develop active learning algorithms

by investigating upper bounds of the classification loss. FeatProp [150] is one of

the state-of-the-art active learning approaches for GNNs, which derives an upper

bound of the node classification error under smoothness assumptions over the label

distributions and GNN models. The theoretical analysis by Wu et al. [150] follows

prior work, including ANDA [9] which proves a finite sample bound on the expected

loss of KNNs in the covariate shift setting, and Coreset [127] which conducts an

analysis on Convolution Neural Networks. A common pattern of the active learning

algorithms along this line is that the algorithms seek to select a set of nodes that

achieves a good coverage of the space of sample features or hidden representations,

and this is typically done via certain clustering algorithms. Our work falls into this

category. Compared to existing methods, our method utilizes both the local and

global smoothness properties of graph-structured data, where the latter was largely

missing in the literature of active learning for GNNs so far.
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6.3 Preliminaries

6.3.1 Notations

We start by introducing useful notations to characterize node classification with

GNNs.

Attributed Graph The task of node classification is defined on an attributed

graph. Define [n] = {1, 2, · · · , n}. We denote a graph of size n as G = (V,A),

where V = [n] is the set of nodes and A ∈ {0, 1}n×n is the adjacency matrix. Each

node i ∈ V is associated with a d-dimensional feature vector xi ∈ X ⊆ Rd, and

a label yi ∈ Y = [C], where C is the number of classes. Denote X ∈ Rn×d as the

feature matrix stacking each node feature. Given the original adjacency matrix A, the

degree matrix D ∈ Rn×n is defined as Dii =
∑

j Aij, ∀i ∈ V , and Dij = 0,∀i, j ∈ V ,

i ̸= j. We denote S as the normalized adjacency matrix with added self-loops:

S = (I +D)−
1
2 (A+ I)(I +D)−

1
2 .

Graph Neural Networks GNNs are a family of neural networks modeling graph-

structured data. A GNN model is typically defined with two types of operations on

the node representations: aggregation and transformation. For example, an L-layer

Graph Convolution Network (GCN) [77] can be recursively represented by a series of

aggregation operations g
(l)
GCN and transformation operations h

(l)
GCN, for l = 1, . . . , L,

defined as follows,

H̃(l) = g
(l)
GCN(H

(l−1), G) := SH(l−1), and

H(l) = h
(l)
GCN(H̃

(l)) := ReLU(H̃(l)W (l))

where H(0) = X is the feature matrix, ReLU(·) is the element-wise rectified-linear

unit activation function, and W (l) is the parameter matrix for the transformation
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operation h
(l)
GCN.

Noticing that, in most GNNs, the prediction for each node only depends on a

local neighborhood of that node, we can define a general GNN as a function that

maps a local neighborhood of a node to its classification predictions. Define N (L)(i)

as the set of all neighboring nodes of node i that can be reached within L-hop on

the graph (including itself), and G
(L)
i as the subgraph of G restricted on N (L)(i). For

each node i, define v
(L)
i :=

(
{xj}j∈N (L)(i), G

(L)
i

)
, which is a tuple including all the node

features and the subgraph in node i’s local neighborhood. Let V(L) be the space of

such possible v
(L)
i . Then we can define a GNN as a function

f : V(L) → RC .

In our later analysis in Section 6.4.1, we will consider a type of abstract GNNs

in the form of f = h ◦ g, where the aggregation operation g : V(L) → Rd′ and

the transformation operation h : Rd′ → RC are separated. In particular, g can

represent any types of feature aggregation on the L-hop ego-network of a node. And

h is a transformation function with learnable parameters, which is often modeled

by a Multi-Layer Perceptron (MLP). Some recently developed GNN models, such as

SGC [148] and APPNP [79], are special cases of this form.

In the rest of this chapter, we omit the superscription (L) in notations for sim-

plicity.

Margin Loss Given some γ ≥ 0, the margin loss [109] on a GNN classifier f : V →

RC for a given labeled sample (vi, yi) is defined as follows,

Lγ(f(vi), yi) := 1
[
f(vi)[yi] ≤ γ +max

c ̸=yi
f(vi)[c]

]
, (6.1)
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where 1(·) is the indicator function. When we set γ = 0, L0 corresponds to the 0-1

classification error.

6.3.2 Active Learning for Graph Neural Networks

In this work, we focus on the one-step batch-mode active learning setup [31, 150]

for node classification using GNNs. Suppose there is an attributed graph where the

graph structure and the node features are known but the node labels are unobserved.

We assume that for each node i, the node label yi is a random variable following a

conditional distribution Pr[yi | vi].

At the beginning of learning, we are given a small set s0 ⊆ V of nodes being

labeled, which we call a seed set. Given all the node samples {vi}i∈V and labels on

the seed set {yi}i∈s0 , for a fixed annotation budget b > 0, an active learning algorithm

aims to carefully select a set of nodes s1 ⊆ V \ s0 and |s1| ≤ b, query the labels on s1,

and train a GNN model f̂ based on the labeled data {(vi, yi)}i∈s0∪s1 , such that the

expected classification error on the remaining unlabeled set is small.

6.4 A Graph-Partition-Based Active Learning Framework

The key motivation of the proposed method is that many real-world graphs present

community structures, which induces a proper level of smoothness properties in the

graph-structured data. In this section, we first formalize this motivation through an

analysis of the GNN performance given proper smoothness assumptions, and then

introduce the proposed graph-partition-based active learning approach.

6.4.1 An Analysis of Expected Classification Error Under Smoothness

Assumptions

The main result of our analysis is an upper bound (Proposition 4) on the quantity

EyiL0(f(vi), yi), the expected classification error for a node i and a fixed GNN model
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f .

Assumptions We first state the set of assumptions in order to establish the up-

per bound. Denote a K-partition of the graph as TK = {T1, T2, · · · , TK}, where

T1, . . . , TK ⊆ V are disjoint partitions satisfying
⋃K
k=1 Tk = V . Recall that we con-

sider GNNs in the form of f = h ◦ g, where g : V → Rd′ is a feature aggregation

function and h : Rd′ → RC is an MLP that takes the aggregated features as input

and output the classification logits. We make the following two assumptions on the

smoothness of the label distribution and the model.

Assumption 6.4.1 (Label Smoothness). Assume that ∀c ∈ [C], there exists a func-

tion ηc : V → [0, 1] such that Pr[yi = c | vi] = ηc(vi) for any i ∈ V . Moreover,

∀k ∈ [K], ∀i, j ∈ Tk, assume that there exists a constant δη <∞, such that

|ηc(vi)− ηc(vj)| ≤ δη||g(vi)− g(vj)||2.

Assumption 6.4.2 (Model Smoothness). Assume that ∀e, e′ ∈ Rd′, the MLP h sat-

isfies ||h(e)− h(e′)||∞ ≤ δh||e− e′||2 for some constant δh <∞.

The Main Result We use T (i) to denote the partition where the node i belongs to,

and denote for convenience the training set Str := s0∪s1 and the test set Ste := V \Str.

We have the following result.

Proposition 4. For any fixed GNN model f , under Assumptions 6.4.1 and 6.4.2,

for any i ∈ Ste, if Str ∩ T (i) ̸= ∅, letting τ(i) := argminl∈Str∩T (i) ∥g(vi) − g(vl)∥2,

ϵi := ∥g(vi)− g(vτ(i))∥2, and γi := 2δhεi, then we have

Eyi [L0(f(vi), yi)] ≤ Cδηεi + Eyτ(i) [Lγi(f(vτ(i)), yτ(i))]. (6.2)

Proposition 4 provides an upper bound of the expected classification loss Eyi [L0(f(vi), yi)]
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for each node i in the test set Ste. This upper bound is primarily dependent on the

training node τ(i) and their distance εi on the aggregated feature space, where τ(i)

is the closest training node to i among the ones reside in the same graph partition

as i. Specifically, the first term is linearly proportional to εi; and the second term

(the expected margin loss of τ(i)) is increasing with respect to εi. This upper bound

motivates an active learning algorithm that selects the training set by minimizing∑
i∈Ste

εi, which we will introduce in details in Section 6.4.2.

Remarks We make a few remarks on the bound (6.2) in comparison to relevant

previous work. Our novel technical contributions in the analysis include that 1)

we have a weaker assumption on label smoothness; and 2) our proof removes an

unrealistic implicit assumption in previous work.

First, our analysis can be viewed as an extension of the results by [127] and

[150]. One key difference between our analysis and theirs lies in the assumption on

label smoothness (Assumption 6.4.1). Adapting the label smoothness assumption by

Sener and Savarese [127] and Wu et al. [150] into our notations gives the following

Assumption 6.4.3.

Assumption 6.4.3 (Label Smoothness by Sener and Savarese [127] and Wu et al.

[150]). Assume that ∀c ∈ [C], there exists a function ηc : V → [0, 1] such that

Pr[yi = c | vi] = ηc(vi) for any i ∈ V . Moreover, ∀i, j ∈ V , assume that there ex-

ists a constant δ′η <∞, such that

|ηc(vi)− ηc(vj)| ≤ δ′η||g(vi)− g(vj)||2.

The following obvious fact indicates that Assumption 6.4.1 is weaker than As-

sumption 6.4.3.

Lemma 6.4.4. If Assumption 6.4.3 holds, then there exists a constant δη ≤ δ′η satis-
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fying Assumption 6.4.1.

In addition, the δη in Assumption 6.4.1 could be much smaller than the δ′η Assump-

tion 6.4.3 if the label distribution presents global smoothness over the graph [163],

i.e., the distributions of node labels tend to be closer for nodes within a parti-

tion/community of the graph than for nodes reside in different partitions/communities.

Second, while the upper bounds on classification error given by Sener and Savarese

[127] and Wu et al. [150] seem to be tighter than our bound (6.2), we remark that they

made an implicit assumption in the proofs that is counter-intuitive. In particular, the

implicit assumption is that, the label distributions of the selected training samples

are always concentrated on one class. This assumption is counter-intuitive as the

selection of training samples alters the label distributions of those samples. We avoid

such an assumption in our analysis at the expense of introducing an extra margin

loss term.

Finally, we remark that while GCN cannot be written in the form of f = h ◦ g as

we assumed in our analysis, it has been shown by Wu et al. [150] that the difference

between outputs of an L-layer GCN on two nodes i, j ∈ V can be upper bounded by

δGCN∥(SLX)i − (SLX)j∥2 for some constant 0 < δGCN < ∞. So the analysis in this

section can be similarly applied to GCN.

6.4.2 The Proposed Graph Partition-Based Active Learning Framework

The General Framework Motivated by Proposition 4, we propose an active learn-

ing framework that selects the set of nodes to be labeled, s1, by solving the following

optimization problem: for εi as defined in Proposition 4,

min
s1:|s1|≤b

∑
i∈Ste

ϵi = min
s1:|s1|≤b

∑
i∈V

min
j∈T (i)∩(s0∪s1)

||g(vi)− g(vj)||2. (6.3)
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For any partition Tk ∈ TK , if we further specify a budget bk for the number of

nodes to be selected from this partition, such that
∑K

k=1 = bk = b, then we can

approximately1 re-write the optimization problem (6.3) as K separate optimization

problems as follows: for k = 1, . . . , K,

min
s
(k)
1 ∈Tk:|s

(k)
1 |≤bk,

∑
i∈Tk

min
j∈s(k)1

||g(vi)− g(vj)||2, (6.4)

where the individual optimization problem (6.4) is equivalent to minimizing the ob-

jective of a K-Medoids problem with bk medoids on the partition Tk.

Given a K-partition of the graph and a feature aggregation function g : V → Rd′ ,

we summarize the proposed general framework, which we call it GraphPart (Graph-

Partition-based query), in Algorithm VI.1. For the K-Medoids algorithm, in practice,

we apply an efficient approximation by Park and Jun [112] by selecting nodes closest

to K-Means centers. The aggregation function g should be chosen according to the

GNN architecture that we will be training. For example, for a 2-Layer GCN model,

we set g(vi) = (S2X)i for any i ∈ V , since this type of aggregation function effectively

reflects the output difference of GCN as we remarked at the end of Section 6.4.1.

The Graph-Partition Method We use a modularity-based graph partition method,

which is one of the most popular class of methods for community detection [108, 29].

Specifically, we obtain a K-partition of a graph using the Clauset-Newman-Moore

greedy modularity maximization [29] method. This method is a bottom-up algo-

rithm, which begins with communities containing each single node, and iteratively

merges the pair of communities that increases modularity the most, until K commu-

nities are left. If no pairs of communities can be merged to increase modularity when

more than K communities are left, we further use agglomerative hierarchical cluster-

ing [73] to iteratively merge small outlying communities until only K communities

1Omitting the seed set s0, which is 0 in one-step setting.
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Algorithm VI.1: Graph-Partition-Based Query

Input: A K-partition TK of the graph, budget b
Output: A subset of unlabelled nodes s1 of size b: s1 ⊆ V \ s0 and |s1| = b

1: Set s1 = ∅.
2: for Tk ∈ TK do
3: bk ← b//K.
4: Tk ← Tk \ {s0 ∪ s1}.
5: Ek ← {g(vi)}i∈Tk .
6: s← bk-Medoids(Ek).

//Perform K-Medoids clustering on the set of data points Ek with

bk medoids returned as s.
7: s1 = s1 ∪ s.
8: end for
9: return s1

are left. Notably, we also propose a simple elbow method to automatically determine

the number of partitions K without the need of node labels. Therefore the whole

active node selection process is hyperparameter-free. Please see more details of the

graph-partition method in Appendix D.3.

Compensating for the Interference across Partitions One potential short-

coming of the proposed GraphPart method shown in Algorithm VI.1 is that it ig-

nores the interference across partitions as it optimizes separate K-Medoids problems

independently on each partition. The medoids selected on two different partitions

may be close to each other, which compromises the overall covering of the unlabeled

nodes. To compensate for this problem, we come up with a greedy correction that

when selecting the medoids in the partition Tk, we penalize the nodes that is close

to the medoids already selected in the partitions T1, T2, . . . , Tk−1. Instead of select-

ing nodes closest to K-Means centers, the distance function to minimize is penalized

by the minimum distance to any selected node. We name this corrected variant of

GraphPart as GraphPartFar, which makes sure that all the nodes returned to s1

are not too close and similar to each other, increasing the diversity of the pool.
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Figure VI.1: Performance of GCN on citation networks with training set selected
by each active learning baseline in one shot, averaged from 10 different runs. Our
methods are embolden. In each sub-figure, the Macro-F1 score is plotted against
budget in log scale. The error bar stands for the standard error of the mean.

6.5 Experiments

6.5.1 Experiment Setup

We experiment on 7 public benchmark datasets, and compare the proposed meth-

ods against several state-of-the-art baseline active learning approaches on training 3

different GNN models. Following Wu et al. [150], we evaluate each baseline with a

series of label budgets and report the Macro-F1 performance for node classification

over the full graph. Each experiment setting is repeated with 10 random seeds.

Dataset We experiment on citation networks Citeseer, Cora, and Pubmed [126],

three standard node classification benchmarks. We also experiment on Corafull [11]

and Ogbn-Arxiv [63], for performance on denser network with more classes, and on

co-authorship networks [130] for diversity. The summary statistics of the datasets are

provided in Table D.1 in Appendix D.2.1.

GNN Models We perform experiments over different popular GNN models, in-

cluding GCN [77], GraphSAGE [57], and GAT [141]. Details are described in Ap-

pendix D.2.2.
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Baselines We compare active learning methods that can be applied to one-step

setting, divided into two categories: 1) general-purpose methods that is agnostic

to the graph structure (Random, Density, Uncertainty, and CoreSet); and 2) meth-

ods tailored for graph-structured data (Centrality, AGE, FeatProp, GraphPart, and

GraphPartFar), where GraphPart and GraphPartFar are our proposed methods.

• Random: The Random Sampling method chooses nodes uniformly at random.

• Density [19]: The Density method first performs clustering on the hidden rep-

resentations of the nodes, and then chooses nodes with maximum density score,

which is (approximately) inversely proportional to the L2-distance between each

node and its cluster center.

• Uncertainty [129]: The Uncertainty method chooses the nodes with maximum

entropy on the predicted class distribution.

• CoreSet [127]: The CoreSet method performs K-Center clustering over the hidden

representations of nodes. Since the MIP optimized version is not scalable to large

datasets, we use the time-efficient greedy approximation described in the original

work.

• Centrality: The Centrality method chooses nodes with the largest graph centrality

metric value, which only considers only the graph structure, but not the node

features. As is empirically validated by Cai et al. [19], Degree centrality and

PageRank centrality outperform other metrics.

• AGE [19]: AGE defines the informativeness of nodes by linearly combining three

metrics: centrality, density and uncertainty. It further chooses nodes with the

highest scores.

• FeatProp [150]: The FeatProp method first performs K-Means on the aggregated

node features, and then choose the nodes closest to the K-Means centers.
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• GraphPart and GraphPartFar: These are two variants of the proposed method

as described in Section 6.4.2.

Active Learning Setup In our one-step setting, we vanish the seed set s0 to

zero. Note that some baseline methods (Density, Uncertainty, CoreSet, and AGE)

are intended for iterative settings and require an initial model trained with the seed

set s0, as these methods rely on the hidden representations of nodes or the predicted

class distribution returned by the initial model. For these baselines, we choose one

third of the budget as random initialization, and let the method select the other two

thirds. On smaller datasets with sparser networks and less classes, we test each active

learning approach with the series of budgets chosen as 2{0,1,2,3,4} × 10. On the large

datasets where the network is denser and the number of classes is drastically larger,

the budgets are chosen as 2{3,4,5,6,7} × 10.

6.5.2 Experiment Results

We provide the active learning results of GCN on 5 datasets in Figure VI.1. We

further provide the exact average Macro-F1 scores and their standard errors for a

sub-sample of budget sizes in Table 6.1. Due to page limit, the results of other

model-dataset combinations are attached in Appendix D.4.

Overall, we observe in Figure VI.1 and Table 6.1 that the proposed methods,

GraphPart and GraphPartFar, outperform baseline methods in a wide range of bud-

gets before the performance saturates. On smaller datasets where the number of

classes is relatively small, the proposed methods outperform baseline methods by a

large margin under a moderate budget size. On Corafull and Arxiv where the number

of classes is much larger, the proposed methods demonstrate advantages over baseline

methods (in particular, FeatProp) in a slightly later stage. This may be due to that

some classes were not yet fully visited so the model has not been learning reliably
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Table 6.1: Summary of the performance of GCN on citation networks with 40/320
budget nodes queried. The numerical values represent the average Macro-F1 score of
10 independent trials and the error bar denotes the standard error of the mean (all
in %). The bold marker denotes the best performance and the underlined marker
denotes the second best performance. Asterisk (*) means the difference between our
strategy and the best baseline strategy is statistically significant by a pairwise t-test
at significance level 0.05.

Baselines Cora Citeseer Pubmed Corafull Ogbn-Arxiv
Budget 40 40 40 320 320

Random 60.7 ± 8.7 48.9 ± 5.8 69.5 ± 6.2 33.2 ± 1.8 27.6 ± 1.5
Uncertainty 55.2 ± 10.0 42.8 ± 12.5 64.8 ± 9.2 28.1 ± 2.1 24.3 ± 1.8
Density 58.7 ± 5.5 47.5 ± 6.4 68.7 ± 5.3 29.0 ± 0.9 20.7 ± 1.4
CoreSet 64.1 ± 5.3 49.6 ± 7.5 66.3 ± 8.6 33.4 ± 1.1 25.5 ± 1.2
Degree 61.1 ± 1.3 38.5 ± 0.3 54.4 ± 0.7 28.4 ± 5.9 12.0 ± 0.4

Pagerank 60.2 ± 1.2 45.6 ± 0.9 66.4 ± 0.1 29.9 ± 0.7 28.9 ± 0.1
AGE 66.7 ± 4.1 45.2 ± 7.7 70.3 ± 8.0 32.6 ± 1.1 25.9 ± 0.1

FeatProp 76.1 ± 2.5 53.7 ± 4.5 75.1 ± 2.8 37.6 ± 0.8 28.5 ± 0.6

GraphPart 78.1 ± 1.5 59.0* ± 2.0 74.9 ± 1.3 41.2* ± 1.4 29.5* ± 0.8
GraphPartFar 78.1 ± 2.1 57.5* ± 2.9 76.2 ± 0.9 38.4 ± 0.6 30.2* ± 0.6

when the budget size is small. Indeed, as shown in Figure VI.1d, VI.1e, the difference

between our methods and FeatProp are not statistically significant until the budget

size is at least 160.

The superior performance of the proposed methods, especially against the state-of-

the-art baseline FeatProp, demonstrates that selecting training nodes within proper

partitions of the graph significantly helps the active learning performance.

6.5.3 More Analysis

We further conducted two sets of more detailed analysis to better understand the

proposed methods.

Mitigating Accuracy Disparity of GNNs The GNN models are reported to be

less accurate on nodes that are further away from the training nodes, which leads to

potential fairness concerns [99]. As the goal of proposed active learning methods is
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to have the selected training nodes evenly distributed on the graph, we conduct an

analysis on the accuracy disparity of the actively learned GNN models, following the

study by Ma et al. [99]. As can be seen in Figure VI.2, we split the test nodes into

subgroups according to their aggregated-feature distance to the training nodes and

report the test accuracy on each subgroup. While the GNNs learned by GraphPart

and GraphPartFar are still less accurate for test nodes that are further away, the

accuracy disparity is mitigated in most cases compared to that by Random. The

results on other datasets are provided in Appendix D.6.1.
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Figure VI.2: Accuracy disparity across 10 subgroups. Increasing subgroup indices
represent increasing distance to selected training set.

Sensitivity Analysis on Graph Partitioning We further conduct an sensitivity

analysis for the proposed method. In particular, we are interested in the effectiveness

of the partition approach when combined with distance metrics on different node

representations. Specifically, (1) Aggregation: aggregated node features S2X; (2)

Embedding: the last hidden layer of GCN trained on one third of the budget; and

(3) Feature: the original node features. As is shown in Table 6.2, the graph-partition

step is robustly effective when combined with various types of distance metrics. Due

to the page limit, the complete results are attached in Appendix D.6.2.
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Table 6.2: Performance of different combinations of distance metric on Cora datasets
with or without using graph partition.

Node Rep.
With Cora

Partition? 20 40 80

Aggregation
yes 76.1* ± 2.7 78.1 ± 1.5 80.3 ± 1.6
no 71.0 ± 5.7 76.1 ± 2.5 79.9 ± 0.9

Embedding
yes 61.3* ± 4.8 69.4* ± 3.9 76.7 ± 3.4
no 54.5 ± 4.7 62.6 ± 5.7 74.1 ± 3.7

Feature
yes 65.6* ± 2.6 71.0* ± 2.1 77.2 ± 1.3
no 53.2 ± 5.2 64.0 ± 5.1 77.4 ± 1.7

6.6 Conclusion and Discussion

In this work, we investigate the problem of active learning for GNNs. Inspired by

the commonly seen local and global smoothness properties on graph-structured data,

we propose a graph-partition-based active learning framework for GNNs, with two

variants of concrete algorithms. The proposed framework can be seen as an active

training node selection algorithm that approximately optimizes an upper bound of

the expected classification error of unlabeled nodes. Through extensive experiments,

we show that the proposed methods significantly outperform existing state-of-the-art

baseline active learning methods. Furthermore, the proposed active learning methods

are able to mitigate the accuracy disparity phenomenon commonly seen in GNN

models.
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CHAPTER VII

Conclusion and Future Directions

At the beginning of this dissertation, we have a discussion on the limitations of

the conceptual categories of trustworthiness in the trustworthy ML literature: (1) the

concept of each category can have multiple (even conflicting) quantitative formula-

tions (e.g., different notions of fairness); and (2) some formulations of the concepts

among different categories can be relevant or have tensions with each other (e.g.,

privacy versus fairness). This discussion motivates us to follow an operational pro-

cedure that takes a holistic but application-centric view to organize and approach

the study of trustworthy ML. In particular, we identify trustworthiness issues of an

ML model as the discrepancy of the model behaviors between a normal condition

and an exceptional condition that the model may run into. Following this approach,

this dissertation aims to investigate the trustworthiness issues of ML on graph data,

where the complex relational structures lead to many complicated and sometimes

implicit exceptional conditions in the context of GML, leading to unique challenges

for trustworthy GML. From Chapter III to Chapter VI, we have identified three types

of trustworthiness issues of GNNs, a popular family of ML models on graph data.

• In Chapter III, we investigated the exceptional conditions for GNNs in social

media application scenarios when there are malicious hackers that aim to de-

grade the model performance by hacking into user accounts. We identified a
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more practical adversarial attack setup for GNNs in such scenarios and demon-

strated that GNNs are vulnerable in the proposed setup.

• In Chapter IV, we revealed that most prior GNNs have significantly degraded

performance in an exceptional condition where the graph mainly plays a cor-

relational role. We proposed a CopulaGNN framework to improve most GNNs

for this scenario.

• In Chapter V and Chapter VI, we investigated the non-IID generalization ability

of GNNs on nodes in different subgroups. Both theoretical and empirical results

suggest that GNNs may suffer from degraded performance for nodes farther

away from the training nodes, leading to fairness concerns. We also proposed

an active learning approach to mitigate this problem.

Many graph data are highly socially-relevant. For instance, social networks and

financial networks are networks of people; spatio-temporal data may be used to esti-

mate crime rates or real estate prices. Non-robustness or unfairness of GML systems

in these domains may lead to high-stakes consequences for individuals and society.

The studies presented in this dissertation can be potentially applied to mitigate some

of the real-world problems. For example, the adversarial vulnerability revealed in

Chapter III could be practically relevant to real-world GNN applications on social

networks and financial networks, as we have made realistic assumptions directly moti-

vated by these scenarios. The correlational role of the graph emphasized in Chapter IV

is prevalent in social network and spatio-temporal data. And the studies in Chap-

ter V and Chapter VI may help us mitigate unfairness on social media applications

without knowing protected sensitive attributes.

While the concrete case studies in this dissertation focus on the domain of GML,

we believe the general procedure to systematically identify, understand, and mitigate

the (un)trustworthiness issues could be helpful beyond GML. Finally, we briefly dis-
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cuss a few future directions motivated by this dissertation in the following Section 7.1.

7.1 Future Directions

7.1.1 Evaluation of Trustworthy ML

As an empirical discipline, the development of ML models heavily relies on bench-

mark evaluations. Nevertheless, evaluating the trustworthiness of ML models appears

to be tricky due to the complication of trustworthiness definitions. Motivated by the

general procedure of identifying trustworthiness issues proposed in this dissertation,

we foresee the following directions to advance the evaluation benchmarks for trust-

worthy ML.

Evaluation driven by exceptional conditions. The operational nature of the

trustworthiness definitions induced by the aforementioned procedure provides a new

and natural way to establish evaluation benchmarks for trustworthy ML methods. In

particular, the procedure involves a step that finds normal and exceptional conditions.

Once one can define or simulate these conditions, then we can establish evaluation

criteria by contrasting the model performance between the two types of conditions.

Infrastructures for crowdsourcing benchmarks. As the trustworthiness issues

are often highly application-dependent, it is therefore necessary to crowdsource bench-

marks through a bottom-up approach. In order to leverage the community effort as

much as possible, an important future direction is to develop infrastructures that can

ease the contribution of evaluation benchmarks by individual researchers and prac-

titioners. Following this line, we have initiated and successfully held a workshop,

Graph Learning Benchmarks (GLB)1, that calls to crowdsource machine learning

benchmarks on graph data. We plan to continue this effort and further implement a

1We have successfully held the GLB workshop twice, respectively collocated with The Web Con-
ference 2021 and 2022. Workshop website: https://graph-learning-benchmarks.github.io/.
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long-term and evolving platform for GML benchmark dataset submission and cura-

tion.

7.1.2 Human-Machine Collaboration

Ultimately, trustworthy ML concerns how we can make ML systems trusted by

humans, which influences how these ML systems can be deployed in reality. In more

and more ML applications, the deployment of ML is not a static decision. Instead,

the ML systems need to interact and co-operate with humans. For example, search

and recommendation systems serve the purpose of helping users efficiently acquire

relevant information; healthcare AI systems are mainly used to assist medical experts

in making clinical decisions. As a result, it is essential to investigate and improve the

trustworthiness of ML in the context of such dynamic human-machine collaboration

systems, rather than the trustworthiness of ML models alone.

An interesting future direction would be extending the proposed trustworthiness

definition in the aforementioned human-machine collaboration context. In particular,

a few canonical paradigms of human-machine collaboration systems are commonly

seen. One paradigm is machine recommendation and human decision, such as AI-

assisted medical diagnostics or social media content moderation. Another paradigm

is machine augmented innovation, such as the use of ML in scientific discovery or

art creation. A straightforward extension of the trustworthiness definition might be

a contrast between the utility of the human-machine collaboration system and the

utility of human or ML alone. If the ML is designed to be trustworthy by humans,

then we may expect improved utility for the collaboration system.
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APPENDIX A

Appendix of Chapter III

A.1 Proof of Proposition 1

We first remind the reader for some notations, a GCN model is denoted as a

function f , the feature matrix is X ∈ RN×D, and the output logits H = f(X) ∈

RN×K . The L-step random walk transition matrix is ML. More details can be found

in in Section 6.3

We give in Lemma A.1.2 the connection between GCN models and random walks.

Lemma A.1.2 relies on a technical assumption about the GCN model (Assump-

tion A.1.1) and the proof can be found in Xu et al. [153].

Assumption A.1.1 (Xu et al. [153]). All paths in the computation graph of the given

GCN model are independently activated with the same probability of success ρ.

Lemma A.1.2. (Xu et al. [153].) Given an L-layer GCN with averaging as αi,j =

1/di in Eq. 3.1, assume that all path in the computation graph of the model are

activated with the same probability of success ρ (Assumption A.1.1). Then, for any

node i, j ∈ V ,

E
[
∂Hj

∂Xi

]
= ρ ·

1∏
l=L

Wl[M
L]ji, (A.1)

where Wl is the learnable parameter at l-th layer.
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Then we are able to prove Proposition 1 below.

Proof. First, we derive the gradient of the loss L(H, y) w.r.t. the feature Xi of node

i,

∇Xi
L(H, y) = ∇Xi

(
N∑
j=1

Lj(Hj, yj)

)

=
N∑
j=1

∇Xi
Lj(Hj, yj)

=
N∑
j=1

(
∂Hj

∂Xi

)T
∂Lj(Hj, yj)

∂Hj

, (A.2)

where Hj is the jth row of H but being transposed as column vectors and yj is the

true label of node j. Note that
∂Lj(Hj ,yj)

∂Hj
∈ RK , and

∂Hj

∂Xi
∈ RK×D.

Next, we plug Eq. A.2 into ∆̃i (x) |x=τ(X,{i})i . For simplicity, We write ∆̃i (x) |x=τ(X,{i})i

as ∆̃i in the rest of the proof.

∆̃i = (∇Xi
L(H, y))T ϵ

=
N∑
j=1

(
∂Lj(Hj, yj)

∂Hj

)T
∂Hj

∂Xi

ϵ. (A.3)

Denote aj ≜ ∂Lj(Hj ,yj)

∂Hj
∈ RK . From the definition of loss

Lj(Hj, yj) =
N∑
j=1

max
k∈{1,...,K}

Hjk −Hjyj ,

we have

ajk =


−1, if k = yj and yj ̸= argmaxc∈{1,...,K}Hjc,

1, if k ̸= yj and k = argmaxc∈{1,...,K}Hjc,

0, otherwise,
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for k = 1, 2, . . . , K. Under Assumption 3.2.1, the expectation of each element of aj is

E[ajk] = −qk(1− p(k | k)) +
K∑

w=1,w ̸=k

p(k | w)qw, k = 1, 2, . . . , K

which is a constant independent of Hj and yj. Therefore, we can write

E[aj] = c,∀j = 1, 2, . . . , N,

where c ∈ RK is a constant vector independent of j.

Taking expectation of Eq. (A.3) and plug in the result of Lemma A.1.2,

E
[
∆̃i

]
≈ E

[
N∑
j=1

(
∂Lj(Hj, yj)

∂Hj

)T
∂Hj

∂Xi

ϵ

]

=
N∑
j=1

E[aj]T
(
ρ

1∏
l=L

Wl[M
L]ji

)
ϵ

=

(
ρcT

1∏
l=L

Wlϵ

)
N∑
j=1

[ML]ji

= C
N∑
j=1

[ML]ji,

where C = ρcT
∏1

l=LWlϵ is a constant scalar independent of i.

A.2 Proofs for Propositions in Section 3.2.4

Proof of Proposition 2.

Proof. If Ai = ∅, Bi ⊆ Ai so Bi = ∅. The three conditions of Definition 3.2.5 are also

trivially true. Below we investigate the case Ai ̸= ∅.

The existence can be given by a constructive proof. We check the nonempty

elements in Ai one by one with any order. If this element is a super set of any other

element in Ai, we skip it. Otherwise, we put it into Bi. Then we verify that the
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resulted Bi is a basic vulnerable set for i. Bi ⊆ Ai. For condition 1), clearly, ∅ /∈ Bi

and if ∅ ∈ Ai, all nonempty elements in Ai are skipped so Bi = ∅. For condition 2),

given ∅ /∈ Ai, for any nonempty S ∈ Ai, if S ∈ Bi, the condition holds. If S /∈ Bi, by

construction, there exists a nonempty strict subset S1 ⊂ S and S1 ∈ Ai. If S1 ∈ Bi,

the condition holds. If S1 /∈ Bi, we can similarly find a nonempty strict subset S2 ⊂ S

and S2 ∈ Ai. Recursively, we can get a series S ⊃ S1 ⊃ S2 ⊃ · · · . As S is finite, we

will have a set Sk that no longer has strict subset so Sk ∈ Bi. Therefore the condition

holds. Condition 3) means any set in Bi is not a subset of another set in Bi. This

condition holds by construction.

Now we prove the uniqueness. Suppose there are two distinct basic vulnerable

sets Bi ̸= Ci. Without loss of generality, we assume S ∈ Bi but S /∈ Ci. Bi ̸= ∅ so

∅ /∈ Ai. Further S ∈ Ai, hence Ci ̸= ∅. As S ∈ Bi ⊆ Ai, S ̸= ∅, and Ci satisfies

condition 2), there will be a nonempty T ∈ Ci s.t. T ⊂ S. If T ∈ Bi, then condition

3) is violated for Bi. If T /∈ Bi, there will be a nonempty T ′ ∈ Bi s.t. T
′ ⊂ T . But

T ′ ⊂ S also violates condition 3). By contradiction we prove the uniqueness.

In order to prove Proposition 3, we first would like to construct a submodular

function that is close to h, with the help of Lemma A.2.1 below.

Lemma A.2.1. If ∀i ∈ V , Bi is either empty or only contains singleton sets, then h

is submodular.

Proof. We first prove the case when ∀i ∈ V,Ai ̸= ∅.

First, we show that ∀i ∈ V , if Ai ̸= ∅, for any nonempty S ⊆ V, gi(S) = 1 if

and only if Bi = ∅ or ∃T ∈ Bi, T ⊆ S. On one hand, if gi(S) = 1, then S ∈ Ai. If

∅ ∈ Ai, Bi = ∅. If ∅ /∈ Ai, by condition 2) of the basic vulnerable set, ∃T ∈ Bi, T ⊆ S.

On the other hand, if ∃T ∈ Bi, T ⊆ S, gi(T ) = 1, by Assumption 3.2.4, gi(S) ≥ gi(T ),

so gi(S) = 1. If Bi = ∅, as Ai ̸= ∅, if ∅ /∈ Ai, the condition 2) of Definition 3.2.5 will

be violated. Therefore ∅ ∈ Ai so gi(∅) = 1. Still by Assumption 3.2.4, gi(S) ≥ gi(∅),
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so gi(S) = 1.

Define a function e : V → 2V s.t. for any node i ∈ V ,

e(i) = {j ∈ V | {i} ∈ Bj}.

Given Bi is either empty or only contains singleton sets for any i ∈ V , for any

nonempty S ⊆ V

h(S) =
1

N

N∑
i=1

gi(S) (A.4)

=
1

N
|{j ∈ V | Bj = ∅ or ∃T ∈ Bj, T ⊆ S}|

=
1

N
|{j ∈ V | Bj = ∅ or ∃{i} ∈ Bj, i ∈ S}|

=
1

N
|{j ∈ V | Bj = ∅ or ∃i ∈ S, {i} ∈ Bj}|

=
1

N
(|∪i∈Se(i)|+ |{j ∈ V | Bj = ∅}|) .

|{j ∈ V | Bj = ∅}| is a constant independent of S. Therefore, maximizing h(S) over

S with |S| ≤ r is equivalent to maximizing |∪i∈Se(i)| over S with |S| ≤ r, which is a

maximum coverage problem. Therefore h is submodular.

The case of allowing some nodes to have empty vulnerable sets can be easily proved

by removing such nodes in Eq. (A.4) as their corresponding vulnerable functions

always equal to zero.

Proof of Proposition 3. For simplicity, we assume Ai ̸= ∅ for any i ∈ V . The proof

below can be easily adapted to the general case without this assumption, by removing

the nodes with empty vulnerable sets similarly as the proof for Lemma A.2.1.

Proof. ∀i ∈ V , define B̃i ≜ {S ∈ Bi | |S| = 1}. We can then define a new group of
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vulnerable sets Ãi on V for i ∈ V . Let

Ãi =


2V , if Bi = ∅,

∅, Bi ̸= ∅ but B̃i = ∅,

{S ⊆ V | ∃T ∈ B̃i, T ⊆ S}, otherwise.

Then it is clear that B̃i is a valid basic vulnerable set corresponding to Ãi, for i ∈ V .

If we define g̃i : 2
V → {0, 1} as

g̃i(S) =

 1, if Bi = ∅ or ∃T ∈ B̃i, T ⊆ S,

0, otherwise,

we can easily verify that g̃i is a valid vulnerable function corresponding to Ãi, for

i ∈ V . Further let h̃ : 2V → R+ as

h̃(S) =
1

N

N∑
i=1

g̃i(S).

By Lemma A.2.1, as ∀i ∈ V, B̃i is either empty or only contains singleton sets, we

know h̃ is submodular.

Next we investigate the difference between h and h̃. First, for any S ⊆ V , if

S /∈ ∪Ni=1Ai, clearly h(S) = h̃(S) = 0; if |S| ≤ 1, it’s easy to show h(S) = h̃(S).

Second, for any S ∈ ∪Ni=1Ai and |S| > 1, by Assumption 3.2.6, there are exactly

b (omitting the S in b(S)) nodes whose vulnerable set contains S. Without loss of

generality, let us assume the indexes of b nodes are 1, 2, . . . , b. Then, for any node

i > b, gi(S) = 0, g̃i(S) = 0. For node i = 1, 2, . . . , b, gi(S) = 1, and

g̃i(S) =

 1, if Bi = ∅ or ∃T ⊆ S, |T | = 1 and T ∈ B̃i,

0, otherwise.

98



By Assumption 3.2.7, there are at least ⌈pb⌉ (omitting the S in p(S)) nodes like j s.t.

g̃j(S) = 1. Therefore, h(S) = b
N

and ⌈pb⌉
N
≤ h̃(S) ≤ b

N
. Hence 1− 1

r
< 1 ≤ h(S)

h̃(S)
≤ 1

p
<

1 + 1
r
.

A.3 Algorithm Details of GC-RWCS

We summarize the GC-RWCS strategy in Algorithm A.1.

Algorithm A.1: The GC-RWCS Strategy for Node Selection.

Input: number of nodes limit r; maximum degree limit m; neighbor hops k;

binarized transition matrix M̃ ; the adaptive influence score function

Ĩi,∀i ∈ V .

Output: the set S to be attacked.

Initialize the candidate set P = {i ∈ V | di ≤ m}, and the score matrix

Q = M̃ ;

Initialize S = ∅;

for t = 1, 2, . . . , r do

z ← argmaxi∈P Ĩi(Q);

S ← S ∪ {z};

P ← P \ {i ∈ P | shortest-path(i, z) ≤ k};

q ← Q·,z;

for i ∈ V do

if qi is 1 then

Qi ← 0;

end

end

end

return S;
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A.4 Additional Experiment Details

Datasets. We adopt the Deep Graph Library [145] version of Cora, Citeseer, and

Pubmed in our experiments. The summary statistics of the datasets are summarized

in Table A.1. The number of edges does not include self-loops.

Table A.1: Summary statistics of datasets.

Dataset Nodes Edges Classes Features
Citeseer 3,327 4,552 6 3,703
Cora 2,708 5,278 7 1,433

Pubmed 19,717 44,324 3 500

A.5 Additional Experiment Results

In this section, we provide results of more experiment setups and conduct a sen-

sitivity analysis of the hyper-parameter L in GC-RWCS in Table A.2. We provide

a setup of 20% threshold in addition to the 10% and 30% thresholds shown in Sec-

tion 3.3.2, to give a better resolution of the results. And the results of threshold

20% are consistent with other setups. We also show the results of GC-RWCS with

L = 3, 4, 5, 6, 7. Note that GCN has 2 layers and the JK-Nets have 7 layers. The

variations of GC-RWCS results with the provided range of L are typically within 2%,

indicating that the proposed GC-RWCS strategy does not rely on the exact knowledge

of number of layers in the GNN models to be effective.

Further, we also compare the relative decrease of accuracy between the proposed

GC-RWCS strategy (L = 4) and the Random strategy in Table A.3. GC-RWCS

is able to decrease the node classification accuracy by up to 33.5%, and achieves a

70% larger decrease of the accuracy than the Random baseline in most cases. As

the GC-RWCS and Random use exactly the same feature perturbation and the node

selection step of Random does not include any information of the graph structure, this

relative comparison can be roughly viewed as an indicator of the attack effectiveness
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Table A.2: Summary of the accuracy (in %) when L = {3, 4, 5, 6, 7}. The bold
number and the asterisk (*) denotes the same meaning as Table 3.1. The underline
marker denotes the values of GC-RWCS outperforms all the baseline.

Cora Citeseer Pubmed
Method GCN JKNetConcat JKNetMaxpool GCN JKNetConcat JKNetMaxpool GCN JKNetConcat JKNetMaxpool
None 85.6 ± 0.3 86.2 ± 0.2 85.8 ± 0.3 75.1 ± 0.2 72.9 ± 0.3 73.2 ± 0.3 85.7 ± 0.1 85.8 ± 0.1 85.7 ± 0.1

Threshold 10%
Random 81.3 ± 0.3 68.8 ± 0.8 68.8 ± 1.3 71.3 ± 0.3 60.8 ± 0.8 61.7 ± 0.9 82.0 ± 0.3 75.9 ± 0.7 75.2 ± 0.7
Degree 78.2 ± 0.4 60.7 ± 1.0 59.9 ± 1.5 67.5 ± 0.4 52.5 ± 0.8 53.7 ± 1.0 78.9 ± 0.5 63.4 ± 1.0 63.2 ± 1.2
Pagerank 79.4 ± 0.4 71.6 ± 0.6 70.0 ± 1.0 70.1 ± 0.3 61.5 ± 0.5 62.6 ± 0.6 80.3 ± 0.3 71.3 ± 0.8 71.2 ± 0.8
Betweenness 79.7 ± 0.4 60.5 ± 0.9 60.3 ± 1.6 68.9 ± 0.3 53.5 ± 0.8 55.1 ± 1.0 78.5 ± 0.6 67.1 ± 1.1 66.1 ± 1.1
RWCS 79.4 ± 0.4 71.7 ± 0.5 70.3 ± 0.9 69.9 ± 0.3 62.4 ± 0.4 63.1 ± 0.6 79.8 ± 0.3 70.7 ± 0.8 70.7 ± 0.8
GC-RWCS-3 78.6 ± 0.5 52.1 ± 1.1* 53.0 ± 1.9* 64.8 ± 0.5* 46.4 ± 0.8* 48.2 ± 1.0* 78.1 ± 0.6 62.3 ± 1.2 61.6 ± 1.5
GC-RWCS-4 78.5 ± 0.5 52.7 ± 1.0* 53.3 ± 1.9* 65.1 ± 0.5* 46.6 ± 0.8* 48.2 ± 1.1* 77.3 ± 0.7 62.1 ± 1.2 60.6 ± 1.4*
GC-RWCS-5 78.9 ± 0.5 53.5 ± 1.1* 54.2 ± 1.9* 65.3 ± 0.5* 46.6 ± 0.8* 48.4 ± 1.0* 78.4 ± 0.5 64.2 ± 1.2 62.5 ± 1.4
GC-RWCS-6 78.5 ± 0.5 54.3 ± 1.1* 54.9 ± 1.9* 65.5 ± 0.5* 47.1 ± 0.8 48.9 ± 1.1* 78.0 ± 0.6 63.7 ± 1.1 62.6 ± 1.4
GC-RWCS-7 78.1 ± 0.5 54.2 ± 1.1* 54.8 ± 1.9* 66.1 ± 0.4* 47.5 ± 0.8 49.3 ± 1.1* 78.7 ± 0.5 64.9 ± 1.2 63.3 ± 1.3

Threshold 20%
Random 82.3 ± 0.3 71.7 ± 1.1 69.8 ± 1.1 72.1 ± 0.3 62.1 ± 0.7 62.6 ± 0.9 82.6 ± 0.2 77.9 ± 0.5 77.5 ± 0.5
Degree 79.3 ± 0.4 64.2 ± 1.2 61.6 ± 1.3 69.2 ± 0.4 56.0 ± 0.8 56.4 ± 1.0 80.6 ± 0.4 69.5 ± 0.8 69.4 ± 1.0
Pagerank 80.8 ± 0.3 74.5 ± 0.8 73.0 ± 0.8 72.1 ± 0.3 68.3 ± 0.3 68.2 ± 0.4 82.2 ± 0.2 77.7 ± 0.4 77.8 ± 0.4
Betweenness 80.7 ± 0.4 62.2 ± 1.4 60.1 ± 1.4 70.1 ± 0.4 54.8 ± 0.8 55.8 ± 1.1 80.2 ± 0.4 72.4 ± 0.8 72.0 ± 0.7
RWCS 81.4 ± 0.3 76.8 ± 0.6 76.0 ± 0.6 72.4 ± 0.3 68.9 ± 0.3 69.0 ± 0.4 81.3 ± 0.2 76.0 ± 0.4 76.5 ± 0.4
GC-RWCS-3 79.4 ± 0.5 57.5 ± 1.6* 53.1 ± 1.5* 67.1 ± 0.4* 48.4 ± 0.9* 49.3 ± 1.2* 79.0 ± 0.5* 67.4 ± 0.9* 66.3 ± 1.0*
GC-RWCS-4 79.4 ± 0.5 57.5 ± 1.7* 53.2 ± 1.4* 67.3 ± 0.5* 47.9 ± 0.9* 48.8 ± 1.3* 79.0 ± 0.5* 67.4 ± 1.0* 66.3 ± 1.0*
GC-RWCS-5 79.4 ± 0.5 59.0 ± 1.7* 54.5 ± 1.4* 67.3 ± 0.4* 48.4 ± 0.9* 49.4 ± 1.3* 79.2 ± 0.5* 68.5 ± 0.9 68.1 ± 0.9
GC-RWCS-6 79.5 ± 0.5 59.3 ± 1.7 54.9 ± 1.5* 68.1 ± 0.4* 49.2 ± 0.9* 50.2 ± 1.3* 79.1 ± 0.5* 68.4 ± 0.9 68.5 ± 1.0
GC-RWCS-7 79.4 ± 0.5 59.3 ± 1.6 55.3 ± 1.5* 68.1 ± 0.4* 50.0 ± 0.9* 50.8 ± 1.3* 79.2 ± 0.5* 68.7 ± 0.9 68.2 ± 0.8

Threshold 30%
Random 82.6 ± 0.4 70.7 ± 1.1 71.8 ± 1.1 72.6 ± 0.3 62.7 ± 0.8 63.9 ± 0.8 82.6 ± 0.2 77.3 ± 0.4 77.3 ± 0.5
Degree 80.7 ± 0.4 64.9 ± 1.4 67.0 ± 1.5 70.4 ± 0.4 56.9 ± 0.8 58.7 ± 0.9 81.5 ± 0.4 72.4 ± 0.7 72.1 ± 0.8
Pagerank 82.6 ± 0.3 79.6 ± 0.4 79.7 ± 0.4 72.9 ± 0.2 70.2 ± 0.3 70.3 ± 0.3 83.0 ± 0.2 79.3 ± 0.3 79.5 ± 0.3
Betweenness 81.8 ± 0.4 64.1 ± 1.3 65.9 ± 1.4 70.7 ± 0.3 56.3 ± 0.8 58.3 ± 0.9 81.3 ± 0.3 74.1 ± 0.5 74.5 ± 0.5
RWCS 82.9 ± 0.3 79.7 ± 0.4 80.0 ± 0.4 72.9 ± 0.2 70.2 ± 0.3 70.4 ± 0.3 82.1 ± 0.2 77.8 ± 0.3 78.4 ± 0.3
GC-RWCS-3 80.2 ± 0.6 57.3 ± 1.7* 59.0 ± 1.6* 67.9 ± 0.5* 49.1 ± 0.9* 50.8 ± 1.1* 80.3 ± 0.5* 69.0 ± 0.7* 69.8 ± 0.7*
GC-RWCS-4 80.7 ± 0.5 59.1 ± 1.6* 61.1 ± 1.6* 67.8 ± 0.5* 49.0 ± 0.9* 50.7 ± 1.1* 80.3 ± 0.5* 69.2 ± 0.7* 70.0 ± 0.7*
GC-RWCS-5 80.8 ± 0.5 59.8 ± 1.6* 61.5 ± 1.6* 68.4 ± 0.5* 49.2 ± 0.9* 51.2 ± 1.1* 80.2 ± 0.5* 70.4 ± 0.6* 71.5 ± 0.6
GC-RWCS-6 80.7 ± 0.5 59.8 ± 1.5* 61.4 ± 1.5* 68.5 ± 0.5* 50.5 ± 0.9* 52.2 ± 1.1* 80.2 ± 0.5* 70.5 ± 0.5* 71.6 ± 0.6
GC-RWCS-7 80.7 ± 0.5 60.2 ± 1.5* 61.9 ± 1.5* 68.7 ± 0.5* 50.7 ± 0.9* 52.6 ± 1.1* 80.3 ± 0.4* 70.9 ± 0.5* 71.9 ± 0.6
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attributed to the structural inductive biases of the GNN models.

Table A.3: Accuracy decrease (in %) comparison with clean dataset

Cora Citeseer Pubmed
Method GCN JKNetConcat JKNetMaxpool GCN JKNetConcat JKNetMaxpool GCN JKNetConcat JKNetMaxpool

Threshold 10%
Random 4.3 17.4 17 3.8 12.1 11.5 3.7 9.9 10.3
GC-RWCS 7.1 33.5 32.5 10.0 26.3 25.0 8.4 23.7 25.1
GC-RWCS/Random 165.12% 192.53% 191.18% 263.16% 217.36% 217.39% 227.03% 239.39% 243.69%

Threshold 30%
Random 3.0 15.5 14 2.5 10.2 9.3 3.1 8.5 8.3
GC-RWCS 4.9 27.1 24.7 7.3 23.9 22.5 5.4 16.6 15.7
GC-RWCS/Random 163.33% 174.84% 176.43% 292.00% 234.31% 241.94% 174.19% 195.29% 189.16%
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APPENDIX B

Appendix of Chapter IV

B.1 Experiment Details

B.1.1 Details of Synthetic Data Generation

We generate the synthetic data with the following procedure.

1. Sample a node feature matrix X ∼ N (0, Id0), where X ∈ Rn×d0 and d0 is the

feature dimension.

2. Generate the graph in a way similarly to a latent space model [59]. First com-

pute the latent variables Z = XWg, where Wg ∈ Rd0×d1 is a given weight

matrix. Then calculate the latent distance ∥zi − zj∥2 for each node pair

(i, j), 1 ≤ i < j ≤ n. Finally assign edges between the m pairs of nodes

with the shortest latent distances to form a graph with n nodes and m edges.

3. Assume A is the adjacency matrix of the graph, D is the degree matrix, and

L = D −A is the graph Laplacian. Let Ã = A + I and D̃ = D + I. Given

parameters wy ∈ Rd0 , generate the node label vector y ∼ N (µ,Σ), where, for

some γ > 0, τ > 0, and σ2 > 0,

(a) µ = D̃−1ÃXwy, Σ = σ2I;

(b) µ = Xwy, Σ = τ(L+ γI)−1;

(c) µ = D̃−1ÃXwy, Σ = τ(L+ γI)−1.
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B.1.2 Simulation Details for Section 4.3

For each configuration we randomly generate 100 datasets with different seeds.

For each dataset, we randomly split the nodes into training, validation, and test sets

equally to form a semi-supervised learning task.

We set the number of layers as 2 and the total hidden units as 16 for all models.

We use the Adam optimizer [76] with an initial learning rate of 0.01 to train all models

by minimizing the MSE loss, with early stopping on the validation set. Finally, we

report the R2 score on the test set.

B.1.3 Experiment Details for Section 4.5

Training details. For all neural networks involved in the experiments, we set

the number of layers as 2 and the number of hidden units as 16. We use the Adam

optimizer to train all the models and apply early stopping on a validation set. For

the real-world datasets, the initial learning rate is chosen from {0.01, 0.001} on the

validation set.

The U.S. Election dataset. The nodes in the election data are U.S. counties and

edges connect adjacent counties on the map. Each county is associated with demo-

graphic and election statistics. In each of the regression tasks, one statistic is selected

as the node outcome and the remaining statistics are used as the node features. The

four regression tasks are named by the outcome statistics: Education, Election, In-

come, Unemployment. We randomly split the data into training, validation, and test

sets with ratio 6:2:2 following Jia and Benson [67], and we refer to their work for

more details of the datasets.

The Wikipedia datasets. Each of the two Wikipedia datasets consists of a graph

on Wikipedia, where each node is a Wikipedia page related to the animal of the page

title and edges reflect mutual hyper-links between the pages. The node features are

principal components of binary indicators for the presence of certain nouns. The count
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outcome variable of each node label is the monthly traffic in the unit of thousands.

The EMNLP dataset. This dataset is constructed from the DBLP citation data

provided by AMiner [137]. We first extract a set of papers published on the EMNLP

conference and treat each paper as a node. Then we construct a graph where two

papers have an edge if they are cited simultaneously by at least two EMNLP papers.

The node features are principal components of the bag-of-words of paper titles and

abstracts as well as the year of publication. The node label is the number of citations

of each paper from outside EMNLP. For both types of datasets, we randomly split

the data into training, validation, and test sets with ratio 1:1:1.

B.2 More Details about Copulas

B.2.1 Two-Dimensional Examples

Figure B.1 shows PDFs of two-dimensional distributions constructed using differ-

ent parametric copulas; the marginal distributions are all standard normal.

Figure B.1: Density functions of two-dimensional distributions constructed using cop-
ulas. The marginal distributions are all standard normal. See Joe [71] for the defini-
tions of these parametric copulas.

105



B.2.2 Approximating the Copulas for Discrete Random Variables

If the random vector Y is discrete, the copula representation of its PMF is more

complex. Take n = 2 as an example, the PMF of Y = (Y1, Y2) is

f(y) = P(Y1 = y1, Y2 = y2)

= P(Y1 ≤ y1, Y2 ≤ y2)− P(Y1 < y1, Y2 ≤ y2)− P(Y1 ≤ y1, Y2 < y2) + P(Y1 < y1, Y2 < y2)

= C(u12, u22)− C(u11, u22)− C(u12, u21) + C(u11, u21),

where ui1 = limx→y−i
Fi(x) = Fi(y

−
i ) and ui2 = Fi(yi). In general, the PMF has the

following form:

f(y) =
2∑

j1=1

· · ·
2∑

jn=1

(−1)j1+···+jnC(u1j1 , . . . , unjn), (B.1)

which is computationally intractable because there are 2n summands. Kazianka and

Pilz [74] propose an approximation of the above PMF based on the generalized quan-

tile transform. It smooths the CDF of ordinal discrete variables from a step function

to a piece-wise linear one:

f(y) ≈ c(v1, . . . , vn)
n∏
i=1

fi(yi), (B.2)

where vi = (ui1 + ui2)/2. It has been shown that the approximation works well as

long as the marginal variance is not too small. We apply this method to approximate

PMF to handle discrete random variables.
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APPENDIX C

Appendix of Chapter V

C.1 Proofs

C.1.1 Proof of Theorem 5.4.2

We first introduce three lemmas whose proofs can be found in the referred litera-

ture.

Lemma C.1.1 (Hoeffding’s Inequality for Bounded Random Variables [58]). Suppose

X1, X2, . . . , Xn are independent random variables with ai ≤ Xi ≤ bi,∀i = 1, 2 . . . , n.

Let X̄ = 1
n

∑n
i=1Xi. Then, for any t > 0,

Pr
(
|X̄ − EX̄| > t

)
≤ 2e

− n2t2∑n
i=1

(bi−ai)
2
.

Lemma C.1.2 (Sub-Gaussianity). If X is a centered random variable, i.e., EX = 0,

and if ∃ν > 0, for any t > 0,

Pr(|X| > t) ≤ 2e−νt
2

.

Then, for any λ > 0,

EeλX ≤ e
λ2

2ν .
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See Rivasplata [121] (Theorem 3.1) for the proof of Lemma C.1.2.

Lemma C.1.3 (Change-of-Measure Inequality, Lemma 17 in Germain et al. [50]).

For any two distributions P and Q defined on H, and any function ψ : H → R,

Eh∼Q[ψ(h)] ≤ DKL(Q∥P ) + lnEh∼P [eψ(h)].

Then we can prove Theorem 5.4.2. For convenience, we re-state it as Theo-

rem C.1.4 below.

Theorem C.1.4 (Subgroup Generalization of Stochastic Classifiers). For any 0 <

m ≤ M , for any λ > 0 and γ ≥ 0, for any “prior” distribution P on H that is

independent of the training data on V0, with probability at least 1− δ over the sample

of y0, for any Q on H, we have1

Lγ/2m (Q) ≤ L̂γ0(Q) +
1

λ

(
DKL(Q∥P ) + ln

1

δ
+

λ2

4N0

+Dγ
m,0(P ;λ)

)
. (C.1)

Proof. We prove the result by upper-bounding the quantity λ(Lγ/2m (Q) − L̂γ0(Q)).

First, we have

λ(Lγ/2m (Q)− L̂γ0(Q))

≤Eh∼Qλ(Lγ/2m (h)− L̂γ0(h))

≤DKL(Q∥P ) + lnEh∼P e
λ
(
Lγ/2
m (h)−L̂γ

0 (h)
)
, (C.2)

where the first inequality is due to Jensen’s inequality, and the last inequality is due

to Lemma C.1.3.

Next we would like to upper-bound the second term in the RHS of (C.2). Note that

the quantity U := Eh∼P e
λ
(
Lγ/2
m (h)−L̂γ

0 (h)
)
is a random variable with the randomness

1Theorem C.1.4 also holds when we substitute Lγ/2
m (h) and Lγ/2

m (Q) as Lγ
m(h) and Lγ

m(Q) re-
spectively. But we state the theorem in this form to ease the development of the later analysis.
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coming from the sample of node labels y0 for V0. Also note that P is independent of

y0. Applying Markov’s inequality to U , we have for any δ > 0, with probability at

least 1− δ over the sample of y0,

U ≤ 1

δ
Ey0U,

and hence,

lnU ≤ ln
1

δ
Ey0U = ln

1

δ
+ lnEy0U.

Then we need to upper-bound the quantity lnEy0U . We can re-write it as

lnEy0U = lnEy0Eh∼P e
λ
(
Lγ/2
m (h)−L̂γ

0 (h)
)
= lnEh∼PEy0e

λ
(
Lγ/2
m (h)−L̂γ

0 (h)
)
. (C.3)

For a fixed model h,

Ey0e
λ
(
Lγ/2
m (h)−L̂γ

0 (h)
)

=Ey0e
λ
(
Lγ/2
m (h)−Lγ

0 (h)+Lγ
0 (h)−L̂γ

0 (h)
)

=Ey0e
λ
(
Lγ/2
m (h)−Lγ

0 (h)
)
eλ(L

γ
0 (h)−L̂γ

0 (h))

=e
λ
(
Lγ/2
m (h)−Lγ

0 (h)
)
Ey0eλ(L

γ
0 (h)−L̂γ

0 (h)). (C.4)

In the following we will give an upper bound on Ey0eλ(L
γ
0 (h)−L̂γ

0 (h)) that is inde-

pendent of h. Recall that

L̂γ0(h) =
1

N0

∑
i∈V0

1hi(X,G)[yi] ≤ γ +max
k ̸=yi

hi(X,G)[k],

where the node labels are independently sampled (though not from the identical

distribution), so L̂γ0(h) is the empirical mean of N0 independent Bernoulli random
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variables and Lγ0(h) is the expectation of L̂γ0(h). By Lemma C.1.1, for any t > 0,

Pr
(
|Lγ0(h)− L̂

γ
0(h)| ≥ t

)
≤ 2e−2N0t2 ,

and hence Lγ0(h)− L̂
γ
0(h) is sub-Gaussian. Further by Lemma C.1.2, we have

Ey0eλ(L
γ
0 (h)−L̂γ

0 (h)) ≤ e
λ2

4N0 ,

which implies that

Ey0eλ(L
γ
0 (h)−L̂γ

0 (h)) ≤ e
λ2

4N0 , (C.5)

Therefore, plugging (C.4) and (C.5) back into (C.3), we have

lnEy0U

≤ lnEh∼P e
λ
(
Lγ/2
m (h)−Lγ

0 (h)
)
e

λ2

4N0

=Dγ
m,0(P ;λ) +

λ2

4N0

.

Finally, plugging everything back into (C.2), we get

λ(Lγ/2m (Q)− L̂γ0(Q))

≤DKL(Q∥P ) + lnEh∼P e
λ
(
Lγ/2
m (h)−L̂γ

0 (h)
)

≤DKL(Q∥P ) + ln
1

δ
+

λ2

4N0

+Dγ
m,0(P ;λ).

Rearranging the terms gives us the final result

Lγ/2m (Q) ≤ L̂γ0(Q) +
1

λ

(
DKL(Q∥P ) + ln

1

δ
+

λ2

4N0

+Dγ
m,0(P ;λ)

)
.
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C.1.2 Proof of Theorem 5.4.3

We re-state Theorem 5.4.3 as Theorem C.1.5 below.

Theorem C.1.5 (Subgroup Generalization of Deterministic Classifiers). Let h̃ be any

classifier in H. For any 0 < m ≤M , for any λ > 0 and γ ≥ 0, for any “prior” distri-

bution P on H that is independent of the training data on V0, with probability at least

1−δ over the sample of y0, for any Q onH such that Prh∼Q

(
maxi∈V0∪Vm ∥hi(X,G)− h̃i(X,G)∥∞ < γ

8

)
>

1
2
, we have

L0
m(h̃) ≤ L̂

γ
0(h̃) +

1

λ

(
2(DKL(Q∥P ) + 1) + ln

1

δ
+

λ2

4N0

+D
γ/2
m,0(P ;λ)

)
. (C.6)

Proof. For simplicity, we write hi(X,G) and h̃i(X,G) as hi and h̃i in this proof. We

first construct a distribution Q′ by restricting Q on Hh̃ ⊆ H, where

Hh̃ := {h ∈ H | max
i∈V0∪Vm

∥hi − h̃i∥∞ <
γ

8
}.

And Q′ is defined as

Q′(h) =


1
ZQ′

Q(h), if h ∈ Hh̃

0, otherwise

,

where ZQ′ = Prh∼Q(h ∈ Hh̃) ≥ 1
2
by the condition of the theorem.

For any h ∈ Hh̃ and any sample i ∈ V0 ∪ Vm, by definition of Hh̃, we have

max
k,k′∈{1,...,K}

|(h̃i[k]− h̃i[k′])− (hi[k]− hi[k′])| <
γ

4
,

which implies the following relationships:

L0
m(h̃) ≤ Lγ/4m (h), L̂γ/20 (h) ≤ L̂γ0(h̃).
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Therefore, with probability at least 1− δ over the sample of ym,

L0
m(h̃)

≤Eh∼Q′Lγ/4m (h)

≤Eh∼Q′L̂γ/20 (h) +
1

λ

(
DKL(Q

′∥P ) + ln
1

δ
+

λ2

4N0

+D
γ/2
m,0(P ;λ)

)
≤L̂γ0(h̃) +

1

λ

(
DKL(Q

′∥P ) + ln
1

δ
+

λ2

4N0

+D
γ/2
m,0(P ;λ)

)
,

where the second inequality is due to the application of Theorem 5.4.2 by substituting

γ as γ/2 and Q as Q′.

Finally, to complete the proof, we only need to show

DKL(Q
′∥P ) ≤ 2(DKL(Q∥P ) + 1).

Denote Hc
h̃
as the complement of Hh̃ and define Q′c as the distribution restricted to

Hc
h̃
similarly as Q′. Define H(x) := −x lnx − (1 − x) ln(1− x), which is the binary

entropy function and we know H(Z) ≤ 1. Then

DKL(Q∥P ) =
∫
Hh̃

ln
dQ

dP
dQ+

∫
Hc

h̃

ln
dQ

dP
dQ

= ZQ′

∫
H

ln
dQ′

dP
dQ′ + (1− Z ′

Q)

∫
H

ln
dQ′c

dP
dQ′c −H(ZQ′)

= ZQ′DKL(Q
′∥P ) + (1− Z ′

Q)DKL(Q
′c∥P )−H(ZQ′).

So

DKL(Q
′∥P ) = 1

ZQ′

(
DKL(Q∥P ) +H(ZQ′)− (1− Z ′

Q)DKL(Q
′c∥P )

)
≤ 2(DKL(Q∥P )+1),

since DKL(Q
′c∥P ) ≥ 0.
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C.1.3 Proof of Lemma 5.4.8

We first present the following Lemma C.1.6 that bounds the difference between

the margin loss on Vm and that on V0 for a fixed GNN.

Lemma C.1.6. Suppose an L-layer GNN classifier h is associated with model pa-

rameters W1, . . . ,WL. Define Th := maxl=1,...,L ∥Wl∥2. Under Assumption 5.4.4

and 5.4.6, for any 0 < m ≤M and γ ≥ 0, if ϵmT
L
h ≤

γ
4
, then

Lγ/2m (h)− Lγ0(h) ≤ cKϵm.

Proof. For simplicity in this proof, for any i ∈ V0 ∪ Vm and k = 1, . . . , K, we use

hi to denote hi(X,G) and use ηk(i) to denote Pr(yi = k | gi(X,G)). And define

Lγ(hi, yi) := 1hi[yi] ≤ γ +maxk ̸=yi hi[k]. Then we can write

Lγ/2m (h)− Lγ0(h)

=Eym
[

1

Nm

∑
j∈Vm

Lγ/2(hj, yj)

]
− Ey0

[
1

N0

∑
i∈V0

Lγ(hi, yi)

]

=
1

N0

Ey0,ym
∑
i∈V0

1

sm

∑
j∈V (i)

m

Lγ/2(hj, yj)

− Lγ(hi, yi)
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where in the last step we have used Assumption 5.4.6. Therefore,

Lγ/2m (h)− Lγ0(h)

=
1

N0

∑
i∈V0

1

sm

∑
j∈V (i)

m

EyjLγ/2(hj, yj)

− EyiLγ(hi, yi)

=
1

N0

∑
i∈V0

1

sm

∑
j∈V (i)

m

K∑
k=1

ηk(j)Lγ/2(hj, k)

− K∑
k=1

Pr(yi = k)Lγ(hi, k)

=
1

N0

∑
i∈V0

1

sm

∑
j∈V (i)

m

K∑
k=1

(
ηk(j)Lγ/2(hj, k)− ηk(i)Lγ(hi, k)

)
=

1

N0

∑
i∈V0

1

sm

∑
j∈V (i)

m

K∑
k=1

(
ηk(j)

(
Lγ/2(hj, k)− Lγ(hi, k)

)
+ (ηk(j)− ηk(i))Lγ(hi, k)

)
(C.7)

≤ 1

N0

∑
i∈V0

1

sm

∑
j∈V (i)

m

K∑
k=1

(
1 ·
(
Lγ/2(hj, k)− Lγ(hi, k)

)
+ (ηk(j)− ηk(i)) · 1

)
, (C.8)

where the last inequality utilizes the facts that both ηk(j) and Lγ(hi, k) are upper-

bounded by 1. According to Assumption 5.4.4 and 5.4.6,

ηk(j)− ηk(i) ≤ c∥gj(X,G)− gi(X,G)∥2 ≤ cϵm.

Further, as hi = f(gi(X,G);W1, . . . ,WL) where f is a ReLU-activated MLP, so

∥hi − hj∥∞ ≤ ∥gi(X,G)− gj(X,G)∥2
L∏
l=1

∥Wl∥2 ≤ ϵmT
L
h ≤

γ

4
.

This implies that, for any k = 1, . . . , K,

Lγ/2(hj, k) ≤ Lγ(hi, k).
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So we have

Lγ/2m (h)− Lγ0(h)

≤ 1

N0

∑
i∈V0

1

sm

∑
j∈V (i)

m

K∑
k=1

0 + cϵm

=cKϵm.

Then we can prove Lemma 5.4.8, which we re-state as Lemma C.1.7 below.

Lemma C.1.7 (Bound for Dγ
m,0(P ;λ)). Under Assumption 5.4.4, 5.4.6 and 5.4.7,

for any 0 < m ≤ M , any 0 < λ ≤ N2α
0 and γ ≥ 0, assume the “prior” P on

H is defined by sampling the vectorized MLP parameters from N (0, σ2I) for some

σ2 ≤ (γ/8ϵm)2/L

2b(λN−α
0 +ln 2bL)

. We have

D
γ/2
m,0(P ;λ) ≤ ln 3 + λcKϵm. (C.9)

Proof. Recall thatD
γ/2
m,0(P ;λ) = lnEh∼P e

λ
(
Lγ/4
m (h)−Lγ/2

0 (h)
)
. We prove the upper bound

of D
γ/2
m,0(P ;λ) by decomposing the space H into the two regimes: a regime with

bounded spectral norms of the model parameters required by Lemma C.1.6, and its

complement. Following Lemma C.1.6, for any classifier h with parametersW1, . . . ,WL,

we define Th := maxl=1,...,L ∥Wl∥2.

We first prove an upper bound on the probability Pr
(
TLh ϵm > γ

8

)
over the drawing

of h ∼ P . For any h, as its vectorized MLP parameters vec(Wl), for each l = 1, . . . , L,

is sampled from N (0, σ2I), we have the following spectral norm bound [139], for any

t > 0,

Pr(∥Wl∥2 > t) ≤ 2be−
t2

2bσ2 ,

where b is the maximum width of all hidden layers of the MLP. Setting t =
(

γ
8ϵm

)1/L
115



and applying a union bound, we have that

Pr
(
TLh ϵm >

γ

8

)
= Pr

(
Th >

(
γ

8ϵm

)1/L
)
≤ 2bLe−

(γ/8ϵm)2/L

2bσ2 ≤ e−λN
−α
0 ,

where the last inequality utilizes the condition σ2 ≤ (γ/8ϵm)2/L

2b(λN−α
0 +ln 2bL)

.

For any h satisfying TLh ϵm ≤
γ
8
, by Lemma C.1.6, we know that e

λ
(
Lγ/4
m (h)−Lγ/2

0 (h)
)
≤

eλcKϵm . For all h such that TLh ϵm > γ
8
, by Assumption 5.4.7, with probability at least

1− e−N2α
0 ,

e
λ
(
Lγ/4
m (h)−Lγ/2

0 (h)
)
≤ eλN

−α
0 +λcKϵm .

Also note that Lγ/4m (h)− Lγ/20 (h) ≤ 1 trivially holds for any h. Therefore we have

D
γ/2
m,0(P ;λ)

= lnEh∼P e
λ
(
Lγ/4
m (h)−Lγ/2

0 (h)
)

≤ ln
(
Pr
(
TLh ϵm >

γ

8

)(
e−N

2α
0 · eλ + (1− e−N2α

0 ) · eλN
−α
0 +λcKϵm

)
+ Pr

(
TLh ϵm ≤

γ

8

)
eλcKϵm

)
≤ ln

(
eλ−N

2α
0 + Pr

(
TLh ϵm >

γ

8

)
eλN

−α
0 eλcKϵm + eλcKϵm

)
≤ ln

(
1 + e−λN

−α
0 eλN

−α
0 eλcKϵm + eλcKϵm

)
= ln

(
1 + 2eλcKϵm

)
≤ ln 3 + λcKϵm,

since 1 + 2eλcKϵm ≤ 3eλcKϵm .

C.1.4 Proof of Theorem 5.4.10

The proof of Theorem 5.4.10 relies on the combination of Theorem 5.4.3, Lemma 5.4.8,

and an intermediate result of the Theorem 1 in Neyshabur et al. [109] (which we state

as Lemma C.1.8 below).
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Lemma C.1.8 (Neyshabur et al. [109]). Let h̃ be any classifier in H with parameters

{W̃l}Ll=1. Define β̃ =
(∏L

l=1 ∥W̃l∥2
)1/L

. Let {Ul}Ll=1 be the random perturbation to be

added to {W̃l}Ll=1 and vec({Ul}Ll=1) ∼ N (0, σ2I). Define Bm := maxi∈V0∪Vm ∥gi(X,G)∥2.

If

σ ≤ γ

84LBmβL−1
√
b ln(4bL)

,

and β is any constant satisfying |β̃ − β| ≤ β̃
L
, then with respect to the random draw

of {Ul}Ll=1,

Pr

(
max

i∈V0∪Vm
∥f(gi(X,G); {W̃l}Ll=1)− f(gi(X,G); {W̃l + Ul}Ll=1)∥∞ <

γ

8

)
>

1

2
.

Then we prove Theorem 5.4.10 (re-stated as Theorem C.1.9 below).

Theorem C.1.9 (Subgroup Generalization Bound for GNNs). Let h̃ be any classifier

in H with parameters {W̃l}Ll=1. Under Assumptions 5.4.4, 5.4.6, 5.4.7, and 5.4.9, for

any 0 < m ≤M , γ ≥ 0, and large enough N0, with probability at least 1− δ over the

sample of y0, we have

L0
m(h̃) ≤ L̂

γ
0(h̃)+O

(
cKϵm +

b
∑L

l=1 ∥W̃l∥2F
(γ/8)2/LNα

0

(ϵm)
2/L +

1

N1−2α
0

+
1

N2α
0

ln
LC(2Bm)

1/L

γ1/Lδ

)
.

(C.10)

Proof. There are two main steps in the proof. In the first step, for a given constant

β > 0, we first define the “prior” P and the “posterior”Q onH in a way complying the

conditions in Lemma 5.4.8 and Lemma C.1.8. Then for all classifiers with parameters

satisfying |β̃ − β| ≤ β̃
L
, where β̃ =

(∏L
l=1 ∥W̃l∥2

)1/L
, we can derive a generalization

bound by applying Theorem 5.4.3 and Lemma 5.4.8. In the second step, we investigate

the number of β we need to cover all possible relevant classifier parameters and

apply a union bound to get the final bound. The second step is essentially the same

as Neyshabur et al. [109] while the first step differs by the need of incorporating

Lemma 5.4.8.
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We first show the first step. Given a choice of β independent of the training data,

let

σ = min

(
(γ/8ϵm)

1/L√
2b(λN−α

0 + ln 2bL)
,

γ

84LBmβL−1
√
b ln(4bL)

)
.

Assume the “prior” P on H is defined by sampling the vectorized MLP parameters

from N (0, σ2I); and the “posterior” Q on H is defined by first sampling a set of

random perturbations {Ul}Ll=1 with vec({Ul}Ll=1) ∼ N (0, σ2I) and then adding them

to {W̃l}Ll=1, the parameters of h̃. Then for any h̃ with {W̃l}Ll=1 satisfying |β̃−β| ≤
β̃
L
,

by Lemma C.1.8, we have

Pr
h∼Q

(
max

i∈V0∪Vm
|hi(X,G)− h̃i(X,G)|∞ <

γ

8

)
>

1

2
.

Therefore, by applying Theorem 5.4.3, we know the bound (5.4) holds for h̃, i.e., with

probability at least 1− δ,

L0
m(h̃)− L̂

γ
0(h̃)

≤1

λ

(
2(DKL(Q∥P ) + 1) + ln

1

δ
+

λ2

4N0

+D
γ/2
m,0(P ;λ)

)
≤1

λ

(
2(DKL(Q∥P ) + 1) + ln

1

δ
+

λ2

4N0

+ ln 3 + λcKϵm

)
(C.11)

≤ 2

N2α
0

DKL(Q∥P ) +
1

N2α
0

(
ln

3

δ
+ 2

)
+

1

4N1−2α
0

+ cKϵm, (C.12)

where in (C.11) we have applied Lemma 5.4.8 to bound D
γ/2
m,0(P ;λ) under Assump-

tions 5.4.4, 5.4.6, and 5.4.7; and in (C.12) we have set λ = N2α
0 .

Moreover, since both P and Q are normal distributions, we know that

DKL(Q∥P ) ≤
∑L

l=1 ∥W̃l∥2F
2σ2

.

By Assumption 5.4.9, both Bm and C are constant with respect to N0. Later we
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will show that we only need β ≤ C. Therefore, for large enough N0, we can have

(γ/8ϵm)
1/L√

2b(Nα
0 + ln 2bL)

<
γ

84LBmβL−1
√
b ln(4bL)

,

which implies,

σ =
(γ/8ϵm)

1/L√
2b(Nα

0 + ln 2bL)
,

and hence,

DKL(Q∥P ) ≤
b(Nα

0 + ln 2bL)
∑L

l=1 ∥W̃l∥2F
(γ/8)2/L

(ϵm)
2/L. (C.13)

Therefore, with probability at least 1− δ,

L0
m(h̃)− L̂

γ
0(h̃)

≤cKϵm +
2

N2α
0

DKL(Q∥P ) +
1

N2α
0

(
ln

3

δ
+ 2

)
+

1

4N1−2α
0

≤O

(
cKϵm +

b
∑L

l=1 ∥W̃l∥2F
(γ/8)2/LNα

0

(ϵm)
2/L +

1

N1−2α
0

+
1

N2α
0

ln
1

δ

)
. (C.14)

Then we show the second step, i.e., finding out the number of β we need to cover

all possible relevant classifier parameters. Similarly as Neyshabur et al. [109], we will

show that we only need to consider ( γ
2Bm

)1/L ≤ β̃ ≤ C (recall that ∥W̃l∥F ≤ C, l =

1, . . . , L). For any β̃ outside this range, the bound (C.10) automatically holds. If

β̃ < ( γ
2Bm

)1/L, then for any node i ∈ V0, ∥h̃i(X,G)∥∞ < γ
2
, which implies L̂γ0(h̃) = 1

as the difference between any two output logits for any training node is smaller than

γ. Also noticing that L0
m(h̃) ≤ 1 by definition, so the bound (C.10) trivially holds.

And for β̃ in this range, |β − β̃| ≤ 1
L
( γ
2Bm

)1/L is a sufficient condition for β to satisfy

|β̃ − β| ≤ β̃
L
, and we need at most LC(2Bm)1/L

γ1/L
of β to cover all β̃ in the above range.

Taking a union bound on all such β, which is equivalent to replace δ with δ
LC(2Bm)1/L

γ1/L
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in (C.14), it gives us the final result: with probability at least 1− δ,

L0
m(h̃)−L̂

γ
0(h̃) ≤ O

(
cKϵm +

b
∑L

l=1 ∥W̃l∥2F
(γ/8)2/LNα

0

(ϵm)
2/L +

1

N1−2α
0

+
1

N2α
0

ln
LC(2Bm)

1/L

γ1/Lδ

)
.

C.1.5 Discussion on Assumption 5.4.7

To better understand Assumption 5.4.7, we show a simplified scenario where this

assumption holds.

We discuss in the context where the classification problem has binary labels and

the MLP of the classifier h only consists of a linear layer with parametersW ∈ RD′×2.

In this case, the distribution P on H in Assumption 5.4.7 is defined by sampling the

vectorized parameters vec(W ) ∼ N (0, σ2I2D′). Under Assumption 5.4.6, each training

sample in V0 has a near set in Vm with the same size sm. For simplicity, we consider

the case where sm = 1. Let Z(0), Z(m) ∈ RN0×D′
be the aggregated node features of

V0 and Vm respectively. Without loss of generality, assume for each i = 1, . . . , N0, the

closest point in Z(0) for Z
(m)
i is Z

(0)
i . To simplify the notations, we define Z := Z(0)

and ε := Z(m) − Z(0). We always treat Mi for any matrix M as the transpose of the

i-th row of M and define M(i) as the i-th column vector of M .

Following the proof of Lemma C.1.6, and in particular, Eq. (C.7), it is easy to

show that, for any h ∈ H with parameters W ,

Lγ/4m (h)− Lγ/20 (h)

≤ 1

N0

N0∑
i=1

2∑
k=1

ηk(Z
(m)
i )

(
Lγ/4((Z(m) ·W )i, k)− Lγ/2((Z(0) ·W )i, k)

)
+ cϵm

=2cϵm +
1

N0

N0∑
i=1

2∑
k=1

ηk(Z
(m)
i )

(
1W T

(k)(Zi + εi) <
γ

4
+W T

(3−k)(Zi + εi)− 1W T
(k)Zi <

γ

2
+W T

(3−k)Zi

)
.

(C.15)
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0

ZZ + ε
ε

Areas where the loss difference 
could be positive

ΔZ = 𝛄/2

ΔZ + Δε = 𝛄/4

ΔZ = - 𝛄/2

ΔZ + Δε = - 𝛄/4

Figure C.1: An illustrative example of areas in the space of ∆W where the loss
difference term for an index i could be positive. For visual simplicity in the figure,
we have used Z and ε to represent Zi and εi.

For Assumption 5.4.7 to hold, a sufficient condition is to have the second term in

Eq. (C.15) smaller than Nα for any h. Below we will investigate when this sufficient

condition holds.

To further simplify the notations, we define ∆W := W(1) −W(2), ∆Z := Z∆W ,

∆ε := ε∆W , and ηik := ηk(Z
(m)
i ). Then

Lγ/4m (h)− Lγ/20 (h)

≤2cϵm +
1

N0

N0∑
i=1

2∑
k=1

ηik

(
1(−1)k+1(∆Z +∆ε)i <

γ

4
− 1(−1)k+1∆Zi <

γ

2

)
. (C.16)

Note that since vec(W ) ∼ N (0, σ2I2D′), we have ∆W ∼ N (0, 2σ2ID′). And the second

term in (C.16) depends on W only through ∆W .

Table C.1: Possible values of the loss difference term for each index i = 1, . . . , N0.

∆Zi >
γ
2

∆Zi < −γ
2
−γ

2
≤ ∆Zi ≤ γ

2

(∆Z +∆ε)i >
γ
4

0 ηi2 − ηi1 −ηi1
(∆Z +∆ε)i < −γ

4
ηi1 − ηi2 0 −ηi2

−γ
4
≤ (∆Z +∆ε)i ≤ γ

4
ηi1 ηi2 0

For each i = 1, . . . , N0, the term
∑2

k=1 η
i
k

(
1(−1)k+1(∆Z +∆ε)i <

γ
4
− 1(−1)k+1∆Zi <

γ
2

)
in (C.16) has only a few possible values, which can be summarized in the following 9
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Figure C.2: An illustrative example of data points with no intersected positive areas.
Only the positive areas as shown in Figure C.1 are visualized. Each color corresponds
to a unique index i. As shown in the figure, there are no intersections among the
areas of different data points when the Zi’s are nicely scattered and εi’s are small.

cases in Table C.1. As can be seen, this loss difference term could be positive only

when (1) ∆Zi >
γ
2
and (∆Z +∆ε)i ≤ γ

4
or (2) ∆Zi < −γ

2
and (∆Z +∆ε)i ≥ −γ

4
. This

implies that, for fixed Zi and εi, there are two linear subspaces in the space of ∆W

where the loss difference for index i could be positive. In Figure C.1, we provide an

illustrative example of such linear subspaces in the case ∆W ∈ R2, such that we can

visualize it. Qualitatively, when ∥εi∥2 is much smaller than ∥Zi∥2 (which is often the

case by their constructions), the areas that the loss difference term being positive will

be very small.

For a classifier h to have Lγ/4m (h)−Lγ/20 (h) > cKϵm+N−α
0 , a necessary condition

is that its corresponding ∆W lies in the intersection of positive areas of at least N1−α
0

samples. Conversely, if εi’s are small and Zi’s are nicely scattered such that the N0

samples can be divided into Nα
0 groups where the positive areas of any two points from

different groups do not intersect, then we know Lγ/4m (h) − Lγ/20 (h) ≤ cKϵm + N−α
0

for any h. And hence this is a sufficient condition for Assumption 5.4.7 to hold.

Figure C.2 provides an illustrative example of data points with no intersected positive
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(b) Amazon Photo.

Figure C.3: Test accuracy disparity across subgroups by aggregated-feature distance.
Extra experiments on Amazon-Computers and Amazon-Photo datasets. The experi-
ment and plot settings are the same as Figure V.1.

areas on a 2-dimensional surface. When D′ > 2, it might be difficult to completely

avoid intersections of the positive areas. However, what Assumption 5.4.7 requires is

that the areas where a large number of data points intersect are small.

C.2 More Details of Experiment Setup

In this section, we describe more details of our experiment setup that are omitted

in the main paper due to the space limit.

C.2.1 Detailed Training Setup

We use the default setting in Deep Graph Library [145]2 for model hyper-parameters.

We use the Adam optimizer with an initial learning rate of 0.01 and weight decay

of 5e-4 to train all models for 400 epochs by minimizing the cross-entropy loss, with

early stopping on the validation set.

C.2.2 Detailed Setup of the Noisy Feature Experiment

In this experiment (corresponding to Figure V.4), we make the node features less

homophilous by adding random noises to each node independently. Specifically, we

2Apache License 2.0.
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(a) Amazon Computers.
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(b) Amazon Photo.

Figure C.4: Test accuracy disparity across subgroups by geodesic distance. Extra
experiments on Amazon-Computers and Amazon-Photo datasets. The experiment
and plot settings are the same as Figure V.2.

use noisy features X̃ = X+α ∥X∥F
∥U∥F

U , where X ∈ RN×D is the original feature matrix,

and U ∈ RN×D is a random matrix with each element independently and uniformly

sampled from [0, 1]. And we set α = 5. In this way, the magnitude of the noise is

slightly larger than the original feature to significantly reduce the homophily property.

All other experiment settings are the same as those corresponding to Figure V.1.

C.2.3 Detailed Setup of the Biased Training Node Selection Experiment

In this experiment (corresponding to Section 5.5.2), we investigate the impact of

biased training node selection. As briefly described in Section 5.5.2, we choose a

“dominant class” and construct a manipulated training set. For each class, we still

sample 20 training nodes but in a biased way. Specifically, given one choice of the four

node centrality metrics (degree, closeness, betweenness, and PageRank), the training

set is sampled as follows.

1. For the dominant class, uniformly sample 15 nodes from the 10% of the nodes

with highest node centrality, and uniformly sample 5 nodes from the remaining.

2. For each of the other classes, uniformly sample 15 nodes from the 10% of the

nodes with lowest node centrality, and uniformly sample 5 nodes from the re-

maining.
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In this way, the training nodes of the dominant class are biased towards high-centrality

nodes while the training nodes of the other classes are biased towards low-centrality

nodes.

After the biased training set is constructed, we randomly sample 500 validation

nodes and 1000 test nodes from the remaining nodes and perform the model training

following the standard setup as the previous experiments.

C.3 Extra Experiment Results

C.3.1 Accuracy Disparity on Amazon Datasets

In addition to the commonly used citation network benchmarks, Cora, Citeseer,

and Pubmed [126, 155], we also provide results of the test accuracy disparity experi-

ments of subgroups by aggregated-feature distance and geodesic distance on Amazon-

Computers and Amazon-Photo datasets [130], which have a similar scale but a dif-

ferent network type compared to the three citation networks.

For Amazon-Computers and Amazon-Photo, we follow exactly the same exper-

iment procedure as for Cora, Citeseer, and Pubmed. The results of subgroups by

aggregated-feature distance are shown in Figure C.3 and the results of subgroups by

geodesic distance are shown in Figure C.4. The results are respectively similar as

those in Figure V.1 and Figure V.2.

C.3.2 Accuracy Disparity on Open Graph Benchmarks

We further provide experiment results on two large-scale datasets from Open

Graph Benchmark [63], OGBN-Arxiv and OGBN-Products.

For OGBN-Arxiv and OGBN-Products, we first follow the standard training pro-

cedure suggested by Open Graph Benchmark [63] to train a GCN, a GraphSAGE,

and an MLP. And we split the test groups into 20 groups in terms of the aggregated
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(a) GCN.
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(b) GraphSAGE.
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(c) MLP.

Figure C.5: Results on OGBN-Arxiv. Test accuracy disparity across subgroups by
aggregated-feature distance. Each figure corresponds to a model. Bars labeled 1 to
20 represent subgroups with increasing distance to training set.
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(b) GraphSAGE.

1 2 3 4 5 6 7 8 9 1011121314151617181920
0.4

0.5

0.6

0.7

0.8

0.9

AC
C

(c) MLP.

Figure C.6: Results on OGBN-Products. Test accuracy disparity across subgroups
by aggregated-feature distance. The experiment and plot settings are the same as
Figure C.5.
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(a) GCN.
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(b) GraphSAGE.
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(c) MLP.

Figure C.7: Results on OGBN-Arxiv. Test accuracy disparity across subgroups by
aggregated-feature distance, experimented with noisy features. The experiment and
plot settings are the same as Figure C.5, except the node features are perturbed by
independent noises to reduce homophily.
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(a) GCN.
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(b) GraphSAGE.
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(c) MLP.

Figure C.8: Results on OGBN-Products. Test accuracy disparity across subgroups by
aggregated-feature distance, experimented with noisy features. The experiment and
plot settings are the same as Figure C.6, except for the node features are perturbed
by independent noises to reduce homophily.
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feature distance. As there are more test nodes available, we can afford the split of

more groups better resolution. The results on OGBN-Arxiv and OGBN-Products are

respectively shown in Figure C.5 and Figure C.6, where we observe a similar decreas-

ing pattern of test accuracy as in Figure V.1 (on the citation networks). Since there

is also a decreasing pattern for MLP, following the experiments shown in Figure V.4,

we further inject independent noises to node features to reduce the homophily of the

OGBN-Arxiv and OGBN-Products dataset and repeat the experiments in Figure C.5

and Figure C.6. The results are respectively shown in Figure C.7 and Figure C.8,

where, similar as Figure V.4, the decreasing pattern largely remains for GNNs but

disappears for the MLP.

We also experiment on subgroups split in terms of geodesic distance and node

centrality metrics. The results of these experiments are slightly different on the

large-scale datasets compared to those on the smaller benchmark datasets.

For geodesic distance (Figure C.9 for OGBN-Arxiv and Figure C.10 for OGBN-

Products), there is not a descending trend of test accuracy until the last few groups.

This is because the size of training set is large such that most test nodes are 1-hop

neighbors of some training nodes. Therefore most groups are random split of such

1-hop neighbors and there will not be a descending accuracy among these subgroups.

This problem is especially obvious for OGBN-Arxiv, where 60% of the nodes are in

the training set. So we only see an accuracy drop on the last two subgroups. The

size of training set is relatively smaller on OGBN-Products but still more than 60%

of the test nodes are 1-hop neighbors of some training nodes. It is worth-noting

that the plots in Figure C.10 have stair patterns, showing a clear descending trend

with respect to the geodesic distance. The fluctuation of early subgroups is larger

on OGBN-Arxiv because there are fewer test nodes in OGBN-Arxiv than in OGBN-

Products. Overall, there is still a clear descending trend with respect to increasing

geodesic distance. But the nodes are less distinguishable in terms of geodesic distance
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than aggregated-feature distance, especially when the size of training set is large (more

discussions in Appendix C.4.1).

For node centrality metrics, we report experiments on degree and PageRank, and

omit the betweenness and closeness metrics due to their high computation cost on

large-scale graphs. The results on OGBN-Arxiv are shown in Figure C.11. It is in-

triguing that there is a descending trend with respect to the degree and PageRank

metrics on this particular experiment setting, though the descending trend is not as

sharp as the one in Figure C.5 (experiments on aggregated-feature distance). It is

possible that, when there is a very large training set (60% in this case), the node

centrality metrics become related to the aggregated-feature distance. However, node

centrality metrics again fail to capture the descending trend on OGBN-Products, as

shown in Figure C.12. In future work, we plan to further explore the relationship be-

tween the theoretically derived aggregated-feature distance and various more intuitive

graph metrics on different graph data.
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(a) GCN.
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(b) GraphSAGE.

Figure C.9: Results on OGBN-Arxiv. Test accuracy disparity across subgroups by
geodesic distance. The experiment and plot settings are the same as Figure C.5,
except for the aggregated-feature distance is replaced by the geodesic distance.
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(a) GCN.
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(b) GraphSAGE.

Figure C.10: Results on OGBN-Products. Test accuracy disparity across subgroups
by geodesic distance. The experiment and plot settings are the same as Figure C.9.

C.3.3 More Results of Biased Training Node Selection

In Figure V.5 of Section 5.5.2, we have shown that the learned GNN models will

be biased towards the labels of training nodes of higher centrality (while the learned

MLP models do not show a similar trend). Due to the space limit, in the main

paper, we are only able to report the experiment results on Cora with a particular

class selected as the “dominant” class. Here we report the full experiment results on

three datasets, with each class selected as the “dominant” class. The results on Cora,

Citeseer, and Pubmed are respectively shown in Figures C.14, C.15, and C.16. As

can be seen from the figures, the observed phenomenon is consistent over almost all

settings.

C.4 Discussions

C.4.1 Relationship Between Aggregated-Feature Distance and Geodesic

Distance

We discuss two scenarios where the aggregated-feature distance and the geodesic

distance are likely to be related.
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(a) GCN. Subgroup by degree.
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(b) GraphSAGE. Subgroup by de-
gree.
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(c) GCN. Subgroup by PageRank.
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(d) GraphSAGE. Subgroup by
PageRank.

Figure C.11: Results on OGBN-Arxiv. Test accuracy disparity across subgroups by
node centrality metrics. The experiment and plot settings are the same as Figure C.5.
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(a) GCN. Subgroup by degree.
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(b) GraphSAGE. Subgroup by de-
gree.
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(c) GCN. Subgroup by PageRank.
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(d) GraphSAGE. Subgroup by
PageRank.

Figure C.12: Results on OGBN-Products. Test accuracy disparity across subgroups
by node centrality metrics. The experiment and plot settings are the same as Fig-
ure C.6.
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Smoothing effect of feature aggregation in GNNs. Many existing GNN models are

known to have a smoothing effect on the aggregated node features [86]. As a result,

nodes with a shorter geodesic distance are likely to have more similar aggregated

features.

Homophily. Many real-world graph-structured data exhibit a homophily prop-

erty [104], i.e., connected nodes tend to share similar attributes. In this case, again,

nodes with a shorter geodesic distance on the graph tend to have more similar aggre-

gated features.

However, the geodesic distance is usually coarser-grained than the aggregated-

feature distance due to its discrete nature. When the graph is a “small world” [147]

and the number of training nodes is large, the geodesic distance from most test nodes

to the set of training nodes will concentrate on 1 or 2 hops, making the test nodes

indistinguishable with respect to this metric.

It is an interesting future direction to explore interpretable graph metrics that

may better relate to the aggregated-feature distance.

C.4.2 Implications for GNN Generalization under Non-Homophily

A number of recent studies suggest that classical GNNs (e.g., GCN [77]) can only

work well when the labels of connected nodes are similar [110, 61, 165], which is now

commonly referred as homophily [104]. However, homophily is not a necessary condi-

tion to have small generalization errors in our analysis. Instead, good generalization

can be achieved when the aggregated features of test nodes are close to those of some

training nodes. Interestingly, a concurrent work [101] of this paper observes a similar

phenomenon with empirical evidence.

The new results by Ma et al. [101] and our work suggest that the space of non-

homophilous data can be further dissected into more fine-grained categories, which

may motivate designs of new GNN models tailored for each category.
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(a) Squirrel.
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(b) Chameleon.

Figure C.13: Test accuracy disparity across subgroups by aggregated-feature distance.
Extra experiments on non-homophilious datasets, Squirrel and Chameleon. The ex-
periment and plot settings are the same as Figure V.1.

Experiments on “Non-Homophilious” Datasets. We further have experiments

on two datasets, Squirrel and Chameleon [122], that are usually considered as non-

homophilious [90]. Interestingly, while the analysis in this work is not guaran-

teed to be applicable on non-homophilious datasets, we find that the decreasing-

accuracy pattern appears on Chameleon while it does not appear on Squirrel (see

Figure C.13). With further investigation, we find that while Chameleon is similarly

“non-homophilious” as Squirrel in terms of the homophily measure proposed by Zhu

et al. [165], Chameleon is much more “homophilious” than Squirrel in terms of the

homophily measure proposed by Lim et al. [90].

C.4.3 Limitations of the Analysis

To our best knowledge, this work is one of the first attempts3 to theoretically

analyze the generalization ability of GNNs under non-IID node-level semi-supervised

learning tasks. While we believe this work presents non-trivial contributions towards

the theoretical understanding of generalization and fairness of GNNs with supportive

empirical evidence, there are a few limitations of the current analysis which we hope

to improve in future work.

3The only other work we are aware of is by Baranwal et al. [6], where strong assumptions (CSBM)
on the data generating mechanisms are made.
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The first limitation is that the derived generalization bounds do not yet match

the practical performances of GNNs. This limitation is partly inherited from the

mismatch between the theories and the practices of deep learning in general, as we

utilize the results by Neyshabur et al. [109] to illustrate the characteristics of the

neural-network part of GNNs. In future work, we hope to adapt stronger PAC-

Bayesian bounds for neural networks under IID setup [164, 43] to the non-IID setup

for GNNs.

Another limitation is that we have assumed a particular form of GNNs similar as

SGC [148] or APPNP [79]. This form of GNNs simplifies the analysis but does not

include some common GNNs such as GCN [77] and GAT [141]. We notice that the

key characteristics of GNNs we need for the analysis are that the change of outputs of

GNNs under certain perturbations needs to be bounded. A recent work [89] has shown

that some more general forms of GNNs (including GCN) indeed have bounded output

changes under perturbations. So the analysis in this work can be potentially adapted

to more general forms of GNNs by utilizing such perturbation bounds. Empirically,

we have demonstrated that the accuracy disparity phenomenon predicted by our

theoretical analysis indeed appears in experiments on GCN, GAT, and GraphSAGE.

Finally, our analysis requires some assumptions on the relationship between the

training set and the target test subgroup. While, not surprisingly, we have to make

some assumptions about this relationship to expect good generalization to the target

subgroup, it is an interesting future direction to explore more relaxed assumptions

than the ones used in this work.

C.4.4 Societal Impacts

As GNNs have been deployed in human-related real-world applications such as

recommender systems [157], understanding the fairness issues of GNNs may have

direct societal impacts. On the positive side, understanding the systematic biases
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embedded in the GNN models and the graph-structured data helps researchers and

practitioners come up with solutions that mitigate the potential harms resulted by

such biases. On the negative side, however, such understanding may also be used

for malicious purposes: e.g., performing adversarial attacks on GNNs that utilizes

systematic biases. Nevertheless, we believe the theoretical understandings resulting

from this work contribute to a small step towards making the GNN models more

transparent to the research community, which may motivate the design of better and

fairer models.
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(a) Model: GCN. Class: 1.

degree closenessbetweennesspagerank0.0
0.5
1.0
1.5
2.0
2.5
3.0

Re
la

tiv
e 

Ra
tio

 o
f F

PR

(b) Model: GAT. Class: 1.
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(c) Model: MLP. Class: 1.
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(d) Model: GCN. Class: 2.
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(e) Model: GAT. Class: 2.
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(f) Model: MLP. Class: 2.
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(g) Model: GCN. Class: 3.
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(h) Model: GAT. Class: 3.
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(i) Model: MLP. Class: 3.
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(j) Model: GCN. Class: 4.
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(k) Model: GAT. Class: 4.
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(l) Model: MLP. Class: 4.
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(m) Model: GCN. Class: 5.
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(n) Model: GAT. Class: 5.
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(o) Model: MLP. Class: 5.
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(p) Model: GCN. Class: 6.
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(q) Model: GAT. Class: 6.

degree closenessbetweennesspagerank0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Re
la

tiv
e 

Ra
tio

 o
f F

PR

(r) Model: MLP. Class: 6.

Figure C.14: Relative ratio of FPR in the biased training node selection experiment.
Remaining results on Cora besides Figure V.5. Each row corresponds to a different
dominant class of choice. See Figure V.5 for the plot settings.
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(a) Model: GCN. Class: 0.
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(b) Model: GAT. Class: 0.
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(c) Model: MLP. Class: 0.
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(d) Model: GCN. Class: 1.
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(e) Model: GAT. Class: 1.
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(f) Model: MLP. Class: 1.
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(g) Model: GCN. Class: 2.
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(h) Model: GAT. Class: 2.
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(i) Model: MLP. Class: 2.
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(j) Model: GCN. Class: 3.
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Figure C.15: Relative ratio of FPR in the biased training node selection experiment.
Full results on Citeseer. Each row corresponds to a different dominant class of choice.
See Figure V.5 for the plot settings.
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Figure C.16: Relative ratio of FPR in the biased training node selection experiment.
Full results on Pubmed. Each row corresponds to a different dominant class of choice.
See Figure V.5 for the plot settings.
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APPENDIX D

Appendix of Chapter VI

D.1 Proofs

D.1.1 Proof of Proposition D.1.1

Before we start the proof of Proposition 4, we first introduce a helpful lemma

below.

Lemma D.1.1. Under Assumption 6.4.2, for any i ∈ Ste, if Str ∩ T (i) ̸= ∅, letting

τ(i) := argminl∈Str∩T (i) ∥g(vi)− g(vl)∥2 and ϵi := ∥g(vi)− g(vτ(i))∥2, then we have

||f(vi)− f(vτ(i))||∞ ≤ δhϵi. (D.1)

Proof of Lemma D.1.1.

||f(vi)− f(vτ(i))||∞

= ||h(g((vi))− h(g(vτ(i)))||∞

≤ δh||g((vi)− g(vτ(i))||2 (Assumption 6.4.2)

= δhϵi.

140



We now start the proof of Proposition 4.

Proof of Proposition 4. We first consider the expected difference between the loss of

vi and vτ(i):

Eyi [L0(f(vi), yi)]− Eyτ(i) [Lγi(f(vτ(i)), yτ(i))]

=
C∑
c=1

P [yi = c | vi]L0(f(vi), c)

−
C∑
c=1

P [yτ(i) = c | vτ(i)]Lγi(f(vτ(i)), c)

=
C∑
c=1

ηc(vi)L0(f(vi), c)−
C∑
c=1

ηc(vτ(i))Lγi(f(vτ(i)), c)

=
C∑
c=1

ηc(vi)
[
L0(f(vi), c)− Lγi(f(vτ(i)), c)

]
+

C∑
c=1

[
ηc(vi)− ηc(vτ(i))

]
Lγi(f(vτ(i)), c).

Given the smoothness assumption on the class-specific regression function, the

second term can be bounded as:

C∑
c=1

[
ηc(vi)− ηc(vτ(i))

]
Lγi(f(vτ(i)), c)

≤
C∑
c=1

[
ηc(vi)− ηc(vτ(i))

]
(Lγi(f(vτ(i)), c) ≤ 1)

≤
C∑
c=1

∣∣∣ηc(vi)− ηc(vτ(i))∣∣∣
≤

C∑
c=1

δη

∣∣∣∣∣∣g(vi)− g(vτ(i))∣∣∣∣∣∣
2

(Assumption 6.4.1)

=
C∑
c=1

δηϵi

= Cδηϵi.
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We then prove that for γi = 2δhϵi, the first term is non-positive. We prove it by

discussing two cases:

i). Lγi(f(vτ(i)), c) = 1: In this case L0(f(vi), c) − Lγi(f(vτ(i)), c) ≤ 0 always holds

and the first term is non-positive.

ii). Lγi(f(vτ(i)), c) = 0: This situation only happens if:

f(vτ(i))[c] > γi +max
b ̸=c

f(vτ(i))[b].

By Lemma D.1.1, we know that

f(vi)[c] ≥ f(vτ(i))[c]− δhϵi, and

f(vi)[b] ≤ f(vτ(i))[b] + δhϵi,∀b = 1, . . . , C.

Therefore,

f(vi)[c]−max
b̸=c

f(vi)[b]

≥
(
f(vτ(i))[c]− δhϵi

)
−
(
max
b ̸=c

f(vτ(i))[b] + δhϵi

)
=f(vτ(i))[c]− 2δhϵi −max

b ̸=c
f(vτ(i))[b]

=f(vτ(i))[c]− γi −max
b̸=c

f(vτ(i))[b]

>0,

which implies L0(f(vi), c) = 0. Hence L0(f(vi), c)−Lγi(f(vτ(i)), c) = 0 and the

first term is non-positive.

Therefore, for γi = 2δhϵi,

Eyi [L0(f(vi), yi)] ≤ Cδηϵi + Eyτ(i) [L2δhϵi(f(vτ(i)), yτ(i))].
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D.2 Experiment Reproducibility

D.2.1 Datasets Descriptions

We experiment on citation networks Citeseer, Cora, and Pubmed [126], three

standard node classification benchmarks. We also experiment on Corafull [11] and

Ogbn-Arxiv [63], for performance on denser network with more classes, and on co-

authorship networks [130] for diversity. The summary statistics of the datasets are

provided in Table D.1.

Table D.1: Summary statistics of datasets.

Dataset # Nodes # Edges # Features # Classes # Partitions

Cora 2,708 5,278 1,433 7 7
Citeseer 3,327 4,552 3,703 6 14
Pubmed 19,717 44,324 500 3 8
Coauthor-CS 18,333 81,894 6,805 15 6
Coauthor-Physics 34,493 247,962 2,000 5 5
Corafull 19,793 126,842 8,710 70 7
Ogbn-arxiv 169,343 1,166,243 128 40 9

D.2.2 GNN Architectures and Training Setup

We perform experiments over different popular GNN models, including a 2-layer

GCN [77] with 16 hidden neurons, a 2-layer GraphSAGE [57] with 16 hidden neurons

and a 2-layer GAT [141] with 8 attention heads with 8 hidden neurons each. For

Ogbn-Arxiv dataset, the number of hidden neurons is increased to 128. To train

each model, we use an Adam optimizer with initial learning rate of 1 × 10−2 and

weight decay of 5 × 10−4. As in the active learning setup, there are not enough

labeled samples to be used as a validation set, we train the GNN model with fixed

300 epochs in all the experiments.
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D.2.3 Implementation Details

We adopt PyTorch Geometric [46] for dataset preprocessing and model construc-

tion in our experiments. For CoreSet [127], since the MIP optimized version is not

scalable to large datasets, we use the time-efficient greedy approximation version by

choosing node closest to the cluster centers. To adapt AGE [19] for one-shot setting,

we stick to the default parameters in the original work (γ = 0.3 for Citeseer, γ = 0.7

for Cora and γ = 0.9 for Pubmed. For benchmarks not mentioned, we set γ = 0.8.

For methods that depend on K-Medoids, we apply an efficient approximation by [112]

by initializing with K-Means++ [5] and selecting nodes closest to centers.

D.3 Graph Partitioning Details

When merging small outlying communities, we applied Ward’s method for agglom-

erative hierarchical clustering [146], which defines the cost of merging two clusters as

the increase of sum of squares. We define a balance score as the ratio of the average

cluster sizes over the size of the smallest cluster. When the score is no larger than 3,

the process reaches its balance with Kbalance communities remaining. To determine

the best number of K < Kbalance communities in the graph, we find the elbow of the

costs using the kneebow 1 toolkit. The value of K for each dataset is illustrated in

Figure D.1.

D.4 Addendum to Experiments

The complete experimental results are summarized in Figures D.2, D.3, D.4, D.5

and Tables D.2, D.3, D.4, D.5. For Ogbn-Arxiv, we reported both the Macro and

Micro (Accuracy) F1 score. As can be seen in Tables D.5, no statistically significant

difference can be observed from the Micro-F1 evaluation among the active learning

1https://pypi.org/project/kneebow/
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Figure D.1: A summary of the number of partitions, automatically determined by
the elbow method.

methods when the budget is larger than 320, but our methods significantly outper-

formed baselines on Macro-F1.

D.5 Case Study

To illustrate our method, we created a synthetic dataset using the Contextual

Stochastic Block Model (CSBM) [39], with 300 nodes, 100 features and random noise

in labels and edges. The graph has C = 3 classes, each with 2 graph communities.

We experiment with 6C budget, and the result is visualized in Figure D.6. As can be

seen from the visualization, our method makes sure the selected nodes comes from

different communities, avoiding under-representing some regions of graph.

D.6 More Analysis

In this section, we provide more detailed descriptions and results supplementing

Section 6.5.3 in the main paper.
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Figure D.2: Results of each baseline on benchmark datasets on GCN averaged from
10 different runs.

Table D.2: Summary of the performance of GCN on each baseline on each benchmark
datasets. All the markers follow those of Table 6.1.

Baselines
Cora Citeseer Pubmed

20 40 80 10 20 40 10 20 40

Random 49.7 ± 9.7 60.7 ± 8.7 71.6 ± 5.0 28.4 ± 12.6 37.6 ± 6.7 48.9 ± 5.8 49.1 ± 11.4 55.7 ± 10.6 69.5 ± 6.2
Uncertainty 37.6 ± 8.2 55.2 ± 10.0 70.1 ± 6.4 18.8 ± 7.1 24.2 ± 5.7 42.8 ± 12.5 46.0 ± 11.5 54.7 ± 10.4 64.8 ± 9.2
Density 49.8 ± 8.6 58.7 ± 5.5 73.1 ± 4.1 22.6 ± 7.5 37.8 ± 9.0 47.5 ± 6.4 43.6 ± 9.8 52.1 ± 8.0 68.7 ± 5.3
CoreSet 50.6 ± 6.2 64.1 ± 5.3 73.4 ± 3.3 27.2 ± 6.6 36.3 ± 7.8 49.6 ± 7.5 45.3 ± 8.5 55.7 ± 13.0 66.3 ± 8.6
Degree 57.7 ± 0.6 61.1 ± 1.3 74.4 ± 0.5 19.1 ± 0.1 28.0 ± 0.3 38.5 ± 0.3 53.9 ± 1.9 51.2 ± 0.9 54.4 ± 0.7
Pagerank 35.1 ± 0.9 60.2 ± 1.2 70.8 ± 0.6 11.7 ± 0.3 33.0 ± 0.5 45.6 ± 0.9 45.5 ± 0.6 51.0 ± 0.6 66.4 ± 0.1
AGE 50.3 ± 5.0 66.7 ± 4.1 74.2 ± 2.7 20.9 ± 6.3 35.5 ± 9.2 45.2 ± 7.7 47.2 ± 9.9 65.2 ± 8.3 70.3 ± 8.0
FeatProp 71.0 ± 5.7 76.1 ± 2.5 79.9 ± 0.9 27.9 ± 5.5 42.9 ± 4.5 53.7 ± 4.5 59.1 ± 5.5 65.4 ± 5.2 75.1 ± 2.8

GraphPart 76.1* ± 2.7 78.1 ± 1.5 80.3 ± 1.6 45.0* ± 0.7 45.4 ± 4.1 59.0* ± 2.0 63.0 ± 0.7 73.2* ± 1.0 74.9 ± 1.3
GraphPartFar 68.6 ± 1.5 78.1 ± 2.1 82.0* ± 0.7 35.1* ± 0.6 55.2* ± 2.4 57.5* ± 2.9 75.7* ± 0.3 67.5 ± 0.5 76.2 ± 0.9

Baselines
Co-CS Co-Physics Corafull

20 40 80 10 20 40 160 320 640

Random 43.8 ± 8.8 58 ± 7.7 76.1 ± 6.3 65.6 ± 14.3 73.1 ± 7.5 82.5 ± 7.6 23.8 ± 2.0 33.2 ± 1.8 43.2 ± 2.1
Uncertainty 32.4 ± 8.0 51.6 ± 6.2 66.7 ± 6.4 48.1 ± 12.6 56.3 ± 9.3 75.8 ± 9.2 17.3 ± 1.7 28.1 ± 2.1 39.1 ± 1.2
Density 34.2 ± 8.0 49.1 ± 4.6 60.1 ± 6.0 53.8 ± 8.0 67.9 ± 12.0 72.4 ± 8.8 21.3 ± 1.1 29.0 ± 0.9 38.3 ± 1.1
CoreSet 32.6 ± 4.3 50.3 ± 4.8 63.4 ± 7.2 43.8 ± 15.3 56.2 ± 14.4 79.8 ± 8.3 22.8 ± 1.4 33.4 ± 1.1 43.7 ± 0.5
Degree 31.1 ± 0.5 49.8 ± 0.5 53.8 ± 0.1 13.4 ± 0.0 13.4 ± 0.0 13.4 ± 0.0 20.3 ± 0.7 28.4 ± 0.6 37.6 ± 0.6
Pagerank 52.9 ± 0.5 67.6 ± 1.5 78.5 ± 0.5 82.8 ± 0.4 78.2 ± 0.2 84.9 ± 0.2 22.5 ± 0.4 29.9 ± 0.7 39.7 ± 0.5
AGE 39.3 ± 6.6 67.8 ± 8.0 77.9 ± 5.0 62.1 ± 10.6 75.6 ± 7.9 85.9 ± 3.8 22.2 ± 1.4 32.6 ± 1.1 43.0 ± 0.9
FeatProp 60.6 ± 3.6 77.2 ± 3.2 84.5 ± 0.6 79.7 ± 1.9 88.6 ± 1.7 90.6* ± 0.4 29.6 ± 1.0 37.6 ± 0.8 46.7 ± 0.8

GraphPart 68.5* ± 0.2 78.9 ± 2.7 86.2* ± 1.2 84.8* ± 0.2 86.1 ± 0.1 89.3 ± 0.2 31.0* ± 1.3 41.2* ± 1.4 48.6 ± 0.5
GraphPartFar 56.8 ± 0.7 77.4 ± 1.1 84.6 ± 1.3 81.2 ± 0.3 87.6 ± 0.4 90.1 ± 0.3 28.0 ± 1.2 38.4 ± 0.6 44.3 ± 0.7
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Figure D.3: Results of each baseline on benchmark datasets on GraphSAGE averaged
from 10 different runs.

Table D.3: Summary of the performance of GraphSAGE on each baseline on each
benchmark datasets. All the markers follow those of Table 6.1

Baselines
Cora Citeseer Pubmed

20 40 80 10 20 40 10 20 40

Random 36.0 ± 9.6 49.1 ± 8.5 64.2 ± 5.6 24.5 ± 11.9 32.4 ± 6.6 46.1 ± 5.6 40.6 ± 13.0 52.3 ± 12.2 66.3 ± 7.9
Uncertainty 23.5 ± 5.0 38.3 ± 10.6 58.6 ± 7.8 17.6 ± 6.3 25.1 ± 6.1 35.7 ± 4.4 35.2 ± 6.6 50.5 ± 10.1 64.1 ± 10.5
Density 38.0 ± 8.3 47.3 ± 6.2 62.1 ± 5.4 22.4 ± 9.1 35.1 ± 4.9 49.5 ± 4.7 32.7 ± 8.9 51.2 ± 10.1 62.1 ± 9.9
CoreSet 28.7 ± 5.4 47.8 ± 9.4 64.1 ± 9.2 16.6 ± 5.2 28.2 ± 7.4 39.0 ± 7.4 32.9 ± 7.8 53.1 ± 10.2 63.5 ± 7.4
Degree 43.0 ± 1.5 48.2 ± 1.4 65.4 ± 2.1 16.6 ± 0.9 23.1 ± 1.1 28.6 ± 1.2 39.7 ± 0.5 41.9 ± 0.1 43.0 ± 0.1
Pagerank 27.8 ± 1.6 47.9 ± 1.2 68.5 ± 0.9 13.0 ± 1.0 29.8 ± 1.3 38.3 ± 2.2 29.7 ± 0.3 41.7 ± 0.6 62.9 ± 0.3
AGE 38.2 ± 8.0 56.9 ± 7.8 69.5 ± 2.7 19.8 ± 5.0 29.7 ± 4.9 42.6 ± 6.0 39.9 ± 15.4 59.5 ± 9.8 70.2 ± 4.7
FeatProp 52.5 ± 4.6 61.4 ± 5.5 72.8 ± 2.6 23.4 ± 4.3 39.9 ± 6.2 53.3 ± 3.8 48.0 ± 5.9 59.1 ± 6.0 73.6 ± 1.7

GraphPart 61.4* ± 4.7 70.0* ± 2.4 76.2* ± 2.7 34.1* ± 2.6 36.1 ± 6.4 54.0 ± 4.6 52.0 ± 0.8 71.5* ± 0.5 74.6 ± 1.1
GraphPartFar 57.9* ± 2.8 69.7* ± 4.2 78.6* ± 1.5 30.7* ± 2.3 46.9 ± 5.0 53.1 ± 4.0 49.7 ± 3.1 70.7* ± 1.6 74.2 ± 0.4

Baselines
Co-CS Co-Physics Corafull

20 40 80 10 20 40 160 320 640

Random 38.3 ± 8.7 52.4 ± 5.8 69.7 ± 5.2 58.3 ± 13.8 66.9 ± 10.1 78.3 ± 7.1 15.4 ± 1.1 23.4 ± 1.4 33.5 ± 1.3
Uncertainty 36.5 ± 6.3 56.0 ± 9.4 72.5 ± 3.5 44.9 ± 10.6 50.6 ± 8.4 70.5 ± 8.5 15.3 ± 0.8 27.0 ± 1.9 39.7 ± 1.1
Density 31.5 ± 8.5 39.4 ± 6.2 54.3 ± 3.3 55.8 ± 7.9 56.8 ± 11.5 77.8 ± 8.9 13.0 ± 1.2 19.7 ± 0.4 30.6 ± 1.0
CoreSet 25.0 ± 6.5 40.8 ± 4.3 55.0 ± 5.3 39.0 ± 14.1 50.7 ± 11.3 75.6 ± 9.5 12.2 ± 1.2 19.7 ± 0.6 31.2 ± 0.7
Degree 23.1 ± 5.2 33.1 ± 5.1 44.9 ± 3.0 13.4 ± 0.0 13.4 ± 0.0 13.4 ± 0.0 10.6 ± 0.4 16.7 ± 0.7 26.8 ± 0.7
Pagerank 50.6 ± 1.3 59.4 ± 1.8 75.5 ± 0.7 81.0* ± 0.8 75.6 ± 0.7 82.6 ± 0.4 12.4 ± 0.3 19.4 ± 0.8 30.3 ± 0.4
AGE 36.5 ± 6.3 56.0 ± 9.4 72.5 ± 3.5 63.7 ± 7.8 71.0 ± 8.8 82.4 ± 3.9 13.5 ± 0.8 21.4 ± 0.8 33.1 ± 1.0
FeatProp 55.9 ± 3.2 68.6 ± 3.2 74.1 ± 1.7 77.0 ± 2.4 85.2 ± 2.2 90.0 ± 0.7 18.7 ± 0.8 25.8 ± 0.7 35.0 ± 1.6

GraphPart 62.9* ± 1.4 71.8* ± 2.2 80.3* ± 1.3 75.8 ± 2.7 85.8 ± 0.3 88.9 ± 0.3 19.7* ± 0.9 28.3 ± 0.7 36.1* ± 1.0
GraphPartFar 51.9 ± 1.9 73.3* ± 2.2 81.5* ± 2.4 78.5 ± 1.1 87.6* ± 0.9 88.8 ± 0.5 17.5 ± 1.0 26.2 ± 1.4 34.1 ± 0.9
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Figure D.4: Results of each baseline on benchmark datasets on GAT averaged from
10 different runs.

Table D.4: Summary of the performance of GAT on each baseline on citation net-
works. All the markers follow those of Table 6.1

Baselines
Cora Citeseer Pubmed

20 40 80 10 20 40 10 20 40

Random 41.2 ± 9.4 51.2 ± 8 62.3 ± 4.3 27.1 ± 11.4 35.9 ± 4.9 46.7 ± 5.3 41.6 ± 9.5 48.8 ± 11.6 64.5 ± 7.7
Uncertainty 23.2 ± 5.5 26.5 ± 4.9 47.2 ± 6.6 21.5 ± 6.7 25.8 ± 7.5 37.1 ± 8.0 43.9 ± 10.5 47.7 ± 11.2 56.7 ± 10.2
Density 41.6 ± 9.7 47.7 ± 5.6 62.8 ± 5.0 27.0 ± 9.0 36.7 ± 6.8 45.1 ± 6.8 48.4 ± 9.8 45.8 ± 13.5 60.1 ± 11.2
CoreSet 29.1 ± 6.2 44.9 ± 9.1 61.5 ± 6.9 19.6 ± 9.8 26.3 ± 7.9 44.3 ± 5.6 49.3 ± 12.9 54.6 ± 10.2 60.4 ± 13.0
Degree 39.3 ± 3.5 47.4 ± 2.3 61.3 ± 3.3 15.9 ± 1.2 20.0 ± 4.0 30.6 ± 2.0 44.3 ± 8.4 39.9 ± 4.3 40.2 ± 5.5
Pagerank 34.8 ± 4.1 50.3 ± 2.5 65.7 ± 1.2 15.4 ± 0.6 33.0 ± 2.4 42.5 ± 1.9 40.9 ± 13 46.3 ± 7.0 61.7 ± 3.7
AGE 39.8 ± 5.5 56.5 ± 6.3 66.7 ± 2.7 24.9 ± 12.5 32.9 ± 7.8 51.0 ± 5.0 42.0 ± 13.4 51.1 ± 9.7 64.8 ± 9.6
FeatProp 56.7 ± 5.8 58.7 ± 5.7 69.8 ± 2.1 24.9 ± 4.9 38.5 ± 7.9 50.4 ± 4.2 49.2 ± 8.1 58.4 ± 6.8 71.9 ± 2.4

GraphPart 59.1 ± 6.0 63.9* ± 3.5 71.8 ± 2.4 38.6* ± 4.3 38.1 ± 5.8 53.5 ± 4.0 63.0* ± 6.6 68.2 ± 2.2 68.4 ± 8.3
GraphPartFar 58.9 ± 2.9 66.7* ± 1.7 73.8* ± 2.2 33.6* ± 4.1 46.6* ± 3.3 52.2 ± 4.2 52.1 ± 12.4 60.6 ± 7.3 66.2 ± 2.8
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Figure D.5: Results of each baseline on Ogbn-Arxiv datasets on GCN, averaged from
10 different runs.
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Figure D.6: Results of each baseline on synthetic contextual SBM data, with 300
nodes, 100 features and 3 classes. Each color represent one class and each class has
2 graph communities. The 18 nodes selected by the active learning algorithm are

embolden.
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Table D.5: Summary of the performance of each baseline on large-scale Ogbn-Arxiv
dataset. All the markers follow those of Table 6.1.

Baselines
Macro-F1 Micro-F1

160 320 640 1280 160 320 640 1280

Random 21.9 ± 1.4 27.6 ± 1.5 33.0 ± 1.4 37.2 ± 1.1 52.3 ± 0.8 56.4 ± 0.8 60.0 ± 0.7 63.5 ± 0.4
Uncertainty 17.5 ± 1.2 24.3 ± 1.8 30.5 ± 1.0 36.7 ± 0.9 44.5 ± 3.0 51.7 ± 1.0 58.0 ± 1.2 62.5 ± 0.4
Density 16.3 ± 1.6 20.7 ± 1.4 24.8 ± 0.7 29.5 ± 1.1 46.3 ± 2.3 51.8 ± 1.4 56.0 ± 1.1 60.2 ± 0.5
CoreSet 19.5 ± 1.8 25.5 ± 1.2 30.5 ± 1.2 35.0 ± 0.9 47.6 ± 2.9 53.2 ± 1.4 58.1 ± 0.8 61.3 ± 0.3
Degree 8.0 ± 0.2 12.0 ± 0.4 12.0 ± 0.3 15.4 ± 0.3 29.2 ± 0.9 42.1 ± 0.5 42.9 ± 0.9 48.5 ± 0.5

Pagerank 21.8 ± 0.6 28.9 ± 0.1 34.0 ± 0.2 38.2 ± 0.1 50.8 ± 1.6 56.8 ± 0.1 60.8 ± 0.2 64.2 ± 0.0
AGE 20.4 ± 0.9 25.9 ± 1.1 31.7 ± 0.8 36.4 ± 0.8 48.3 ± 2.3 54.9 ± 1.6 60.0 ± 0.7 63.5 ± 0.3

FeatProp 24.0 ± 0.7 28.5 ± 0.6 33.6 ± 0.4 39.1 ± 0.8 51.9 ± 1.1 56.5 ± 0.6 60.4 ± 0.4 63.5 ± 0.3

GraphPart 24.2 ± 0.7 29.5* ± 0.8 36.4* ± 0.5 41.0* ± 0.5 52.3 ± 0.9 56.8 ± 0.8 60.7 ± 0.6 63.6 ± 0.5
GraphPartFar 26.0* ± 0.7 30.2* ± 0.6 36.1* ± 0.7 40.8* ± 0.7 53.8* ± 1.0 56.3 ± 0.5 59.4 ± 0.3 63.5 ± 0.4

D.6.1 Mitigating Accuracy Disparity of GNNs

Following [99], we analyze the generalization performances by evaluating accuracy

disparity across 10 subgroups by aggregated-feature distance from 40 selected nodes

(320 for CoraFull). The results on other five datasets not shown in the main paper

are provided in Figure D.7. In most datasets, the proposed active learning methods

are able to mitigate the accuracy disparity of GCN predictions compared to training

with random training nodes.

D.6.2 Sensitivity Analysis on Graph Partitioning

Recall in the main paper that we are interested in the effectiveness of the partition

approach when combined with distance metrics on different node representations.

Specifically, (1) Aggregation: aggregated node features S2X; (2) Embedding: the

last hidden layer of GCN trained on s0; and (3) Feature: the original node features.

For each choice of distance, we evaluate the active learning performance with or

without the graph-partition step. We perform the experiments on Citeseer, Pubmed

and Cora. On each dataset, we evaluate each active learning method with budget

size of 20, 40 and 80. Each experiment is repeated with 10 random seeds.

As can be seen from Table D.6, the graph-partition step is robustly effective when

combined with various types of distance metrics. This suggests that the proposed
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Table D.6: Summary of the performance of different combinations of distance metric
on Citeseer, Pubmed and Cora datasets with or without using graph partition. The
numerical values represent the average Macro-F1 score of 10 independent trials and
the error bar denotes the standard error of the mean (all in %). The bold marker
denotes the better performance between with and without using graph partition, and
asterisk (*) means this difference is statistically significant by a pairwise t-test at
significance level 0.05.

Node Rep.
With Cora Citeseer Pubmed

Partition? 20 40 80 20 40 80 20 40 80

Aggregation
yes 76.1* ± 2.7 78.1 ± 1.5 80.3 ± 1.6 45.4 ± 4.1 59.0* ± 2.0 67.7 ± 1.5 73.2* ± 1.0 74.9 ± 1.3 79.7 ± 2.3
no 71.0 ± 5.7 76.1 ± 2.5 79.9 ± 0.9 42.9 ± 4.5 53.7 ± 4.5 67.4 ± 2.0 65.4 ± 5.2 75.1 ± 2.8 79.5 ± 0.9

Embedding
yes 61.3* ± 4.8 69.4* ± 3.9 76.7 ± 3.4 43.9 ± 7.1 54.4 ± 2.8 61.1 ± 2.3 70.1 ± 8.8 74.9 ± 2.8 78.1 ± 2.0
no 54.5 ± 4.7 62.6 ± 5.7 74.1 ± 3.7 38.2 ± 9.0 50.6 ± 5.1 59.7 ± 2.3 63.4 ± 10.6 70.3 ± 6.6 77.0 ± 1.5

Feature
yes 65.6* ± 2.6 71.0* ± 2.1 77.2 ± 1.3 15.7* ± 0.9 33.1 ± 3.4 54.4 ± 1.8 56.6 ± 2.1 67.1 ± 2.1 77.1 ± 2.0
no 53.2 ± 5.2 64.0 ± 5.1 77.4 ± 1.7 6.1 ± 2.4 30.9 ± 4.5 54.0 ± 4.1 64.3* ± 8.6 70.0 ± 4.1 76.6 ± 0.9

graph-partition framework may be able to generalize to the active learning for other

graph representation learning methods. It is also interesting to observe that methods

with a graph-partition step tend to have lower standard errors.
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Figure D.7: Accuracy disparity across 10 subgroups. Increasing subgroup indices
represent increasing distance to selected training set.
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