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ABSTRACT 
 

The dynamics of neural populations must maintain stability while also performing 

behaviorally useful representation and processing of rapidly changing environmental 

inputs. How the nervous system accomplishes this flexible coordination of its own 

dynamics with that of the sensory stream, while also maintaining its own stability, is 

poorly understood. However, answers to this puzzle promise better understanding of 

neurological disorders involving dynamic instability such as epilepsy, as well as 

uncovering evolutionarily-optimized algorithms for processing information that evolves 

over time, more robustly than our current technology. Given that relevant information 

can change rapidly in the case of spatial navigation at different running speeds, 

hippocampal neural circuits that support both externally-tuned spatial cognition and 

internally stable memory must particularly employ such mechanisms. In Chapter 2, we 

propose and find empirical support for a novel framework that allows hippocampal cells 

to maintain stability in the face of rapidly changing external inputs, called the logarithmic 

theta transform (LTT), as implemented by the nonlinear shape of theta phase 

precession in individual place cells. Findings suggest how space and time coding 

mechanisms in hippocampal networks come together to stabilize the internal 

organization of place cell activity within theta cycles. In Chapter 3, we investigate 

mechanisms controlling the rapid progression of seizures in epilepsy patients with a 

focus on fast-spiking inhibitory neuronal activity. These findings suggest that cell-type 
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specific propensities to depolarization block play an important role in the evolution of 

sequential neural dynamics during focal seizures with secondary generalization, with 

implications for therapeutic approaches needing the proper timing relative to this 

sequence. Overall, this work points toward properties on the level of individual cells as 

supporting stable population dynamics that are nevertheless flexible in responding to 

changing information.
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CHAPTER 1: Introduction 
 

1.1 Neural population dynamics in healthy brain function 

1.1.1 Coordinating neural and environmental dynamics  

Deciphering the coding system used by the brain to internally represent and efficiently 

process information about the environment is a key task to understanding brain function 

and inspire better information processing algorithms. At the core of such neural coding 

is a behaviorally useful mapping between the rules governing environmental patterns 

and the rules governing representational neural activity. The dynamics of useful 

representations and those of the environment need not have the same governing rules, 

yet must be coordinated in a functional and responsive nervous system.  These external 

and internal pattern generating systems, also referred to as implicit and explicit neural 

spaces, respectively (Zemel et al., 1997), often cannot be coupled in a trivial way. For 

example, sensory and motor representations at the interface of the nervous system with 

the environment may only need signal-transducing ion channels or neurotransmitter 

release to couple neural and behavioral information. However, central pattern 

generators in the brainstem or spinal cord that drive and sustain their own activity 

necessitate more dynamic strategies to relate ongoing neural and behavioral activity, 
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such as by using oscillatory resonance and phase resetting to coordinate otherwise 

independently evolving processes (John et al., 2014; Phillips et al., 2019; X.-J. Wang, 

2010; Yuste et al., 2005). When environmental dynamics change in implicit space, 

neural states should be correspondingly updated without violating the internal rules of 

explicit neural or representational space. Considering the neural coding mechanisms 

that simultaneously satisfy the rules of dynamics in both the implicit and explicit systems 

eliminates a large part of hypothesis space about neural function. Thus, specifying the 

method of mapping between environmental dynamics and neural dynamics will be a 

critical component of the effort to understand neurophysiology. Furthermore, observing 

when neural biophysics and the physics of the environment would naturally diverge, but 

nevertheless become coupled by the operations of local neural circuits, is a promising 

approach to discovering fundamental principles of neural coding. One prominent 

instance of natural divergence between external input dynamics and internal neural 

dynamics occurs in the problem of temporal sequence coding.  

1.1.2 The temporal sequence coding problem 

Representing a sequence requires forming symbols for a set of environmental elements 

and the order in which they present across time. However, inputs do not arrive at sense 

organs such that the identity of the environmental elements and their relative order are 

unambiguously represented by features of neural activity. Instead, sensory transduction 

creates initial neural representations that are sensitive to input timing and magnitude but 

not necessarily to segmented element identity or order. Robust representations of these 

properties must be computed through combination and transformation of evoked 

sensory activity by internal neural dynamics (Long et al., 2010; Vogels et al., 2005). In 
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particular, brain circuits must represent this sequence information in a way that is robust 

against noise and yet receptive to updates based on changing external inputs, i.e. in a 

way that is both stable and flexible.  

 

The basic neural principles behind the stable and flexible representation of time and 

temporal sequence can be experimentally studied in central pattern generators, which 

accomplish this par excellence (Marder & Bucher, 2001; J. E. Rubin, Shevtsova, et al., 

2009). One such model system is that of the respiratory rhythm generator located in the 

brainstem, with time-keeping methods having implications for higher order circuits that 

likely reused these principles over the course of evolution (Katz, 2016; Yuste et al., 

2005).  This rhythm generating circuit can be thought of as keeping track of time and 

temporal sequence by neuronally representing and computing the time between the 

broad phases of inspiration and expiration.  

 

What neural or biochemical entity does the brainstem wait for in order to signal the start 

of our next breath? A rich history of experimental and theoretical research has revealed 

the importance of the dynamics of bursting in individual cells guided by their slow 

intrinsic conductances, such as the persistent sodium conductance, in determining the 

timing of inspiration (Butera et al., 1999; Koizumi & Smith, 2008). Furthermore, these 

initially unsynchronized neurons dynamically couple their bursts with each other and 

use the timing of the spread of their synchrony across the whole network (Ashhad & 

Feldman, 2020; Smith et al., 2009) to create the breathing rhythm as a high-

dimensional, robust oscillator with a large dynamic range of frequencies. These timing 
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circuits generate stable rhythms despite using the noisy components of stochastically 

firing neurons because of weakly coupled oscillators from which synchrony emerges (J. 

Rubin & Smith, 2019) without a common, potentially unreliable, central drive. Because 

of the voltage-dependence of the frequency of their bursting neural components 

(Koizumi & Smith, 2008; Phillips et al., 2019), these circuits can nevertheless retain a 

large dynamic range in response to inputs like blood oxygenation levels and higher 

order inputs from cortex. Because these neurons also display criticality, resting in 

between silent, tonically firing, and bursting states (Butera et al., 1999), these circuits 

can also change their frequency rapidly in response to external inputs without affecting 

their oscillatory stability, generated on a more network level as a “group pacemaker” (J. 

E. Rubin, Hayes, et al., 2009; Smith et al., 2009). As a result, the temporal sequence of 

inspiration, post-inspiration, and expiration is stably represented by ventral medullary 

circuits despite also being highly responsive to external inputs that modulate its pace 

and timing (Smith et al., 2013). 

 

Studies in higher order neural circuits involved in temporal sequence coding have also 

pointed towards the importance of internally generated dynamics operating stably yet in 

harmony with external drives, dubbed the “stability-flexibility dilemma” (Liljenström, 

2003).  The requirements for stability and flexibility are particularly prominent in the 

circuits responsible for representing space since the code is stable over time yet highly 

receptive to environmental cues. The processes determining the timing of spikes 

relative to the theta rhythm and relative to other cells coding for space are not 
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completely understood, but they are likely required to exhibit both stability and flexibility 

in order to constitute an effective sequence coding scheme.  

1.1.3 The sequence coding problem in spatial navigation 

Identifying and representing sequences is a core challenge in the process of 

constructing a cognitive map of one’s surrounding environment from sensory and motor 

signals evolving over time (Tolman, 1948; Wikenheiser & Redish, 2015b). Such spatial 

computation involves a significant dimensionality reduction from a sensory stream that 

changes across time and across an array of dedicated sense receptors into a 

representation of connectedness amongst segmented features (Howard et al., 2014). 

The ability to retain an independence from certain aspects of sensory input, such as 

intensity or duration, despite a sensitivity to relationships amongst those inputs, such as 

distance and order, allows spatial cognition to apply successfully to many different, even 

novel, environments (Kaplan et al., 2012). Even in the case of recognizing a spatial 

sequence in an essentially one-dimensional environment, sensory inputs are constantly 

changing as an organism moves forward at various speeds. Despite this, the spatial 

map construct in which all of this occurs must remain stable in keeping with the 

objective structure of the environment. Sensory inputs and the internal neural activities 

computing their spatial context are thus both dynamic, each evolving in time according 

to their own rules which often naturally mismatch.  Spatial map or sequence coding is 

consequently a promising model problem testing the limits of effective coordination 

between otherwise independent internal and external dynamics, making it fruitful to 

elucidate the precise strategies the hippocampal formation uses to accomplish it. 
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1.1.4 Stable spatial coding in hippocampus despite variable running speed 

The hippocampus is necessary for forming new memories and is also essential to 

constructing our notion of space and time (Eichenbaum 2017). When rats are exposed 

to a new environment while experimenters make electrical recordings from the dorsal 

hippocampus, cells emerge that increase their firing rate only when the rat is at a 

particular location in the environment, and are thus named place cells (O’Keefe & 

Dostrovsky, 1971). Two major models describing how the hippocampus represents 

spatial information are the continuous attractor network and oscillatory interference 

model, each purporting a different feature of neural activity that changes with speed to 

stably track spatial patterns. Continuous attractor networks consist of an abstract 2D 

plane of position-encoding neurons with Gaussian-shaped local excitatory connectivity 

and global inhibitory connections (Samsonovich & McNaughton, 1997). They implement 

path integration of externally generated speed signals through the movement of a stable 

bump of activity that is self-sustained and contained by this connectivity to represent 

position as a vector of firing rates across the population. The speed of the activity bump 

in this model is determined by the strength of spatially asymmetric influences relative to 

symmetric influences such as recurrent synaptic strengths or afferent input. Information 

about the self-motion must be relayed in a form that increases asymmetry only in the 

direction of motion and in proportion to the speed of that motion (McNaughton et al., 

1996). Errors accumulate in the path integration strategy so this model also requires a 

mechanism for allowing sensory input to robustly recalibrate the position of the bump, 

which is possible due to the stimulus integration property of such attractor networks 

(Clark and Taube, 2012). How the finely-tuned synaptic connections would self-organize 
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to implement a continuous attractor network that is appropriately receptive to self-

motion signals and sensory reset is an open question. The observed saturation and 

diversity of the response to speed across the hippocampal formation (Hinman et al., 

2016) should also be taken into account in the connectivity of future attractor models. 

Thus, while a continuous attractor network is dynamically stable by virtue of its 

connectivity, how the bump of activity representing position can be reliably moved by 

incoming speed signals to alter the symmetry of connections towards the direction of 

motion remains an open question. 

 

Rather than expressing spatial position solely in a population firing rate vector, the 

oscillatory interference model proposes that such information can also be represented 

on a finer timescale in the phase difference between neural oscillators, which are found 

extensively in spatial navigation circuits (Burgess et al., 2007). This model rests on the 

mathematical fact that the time integral of the frequency difference between sinusoids is 

precisely equal to their phase difference and thus their degree of constructive 

interference at any given time. This suggests a natural way to implement the 

instantaneous storage and readout of the result of path integration if speed were 

encoded by frequency difference between neural oscillators that sum together as 

proposed by this model. This model also predicts a coupling between place fields and 

the phase of spiking in proportion to the frequency difference of the oscillators. 

Nevertheless, this integration of speed is still subject to error accumulation and this 

model leaves open the question of how speed would lead to precise changes in 

frequency despite the inherently noisy variability of theta rhythm and neural oscillator 
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cycle durations. These models thus both leave open the question of precisely how 

position become stably coded by place cells by an internal neural code despite 

fluctuations in external inputs due to speed changes. The logarithmic theta transform 

model is proposed as a possible solution implemented by hippocampal place cell 

circuits in Chapter 2, based on the spike timing based code exhibited by these cells 

called theta phase precession, as explored next. 

 

1.1.5 Current models of phase precession and theta sequences in place cells 

Interestingly, place cells not only systematically change their firing rate depending on 

the location of the rat, but also the time at which they fire bursts of spikes on a tens of 

milliseconds timescale with respect to individual cycles of the total population drive 

oscillating at 4-12Hz (O’Keefe & Recce, 1993). In particular, place cell spikes start near 

the end of these ~100 millisecond cycles of this rhythm (the theta rhythm) when the 

animal enters the place specific to that cell (the cell’s place field). Place cells then fire 

earlier and earlier on successive bursts of spikes in direct proportion to the distance the 

animal has travelled within its place field. This phenomenon is known as phase 

precession (O’Keefe & Burgess, 2005; O’Keefe & Recce, 1993). Cells with overlapping 

place fields also organize their spike times into sequences that span half of a theta 

cycle, i.e. ~50ms, based on the order of their traversal (Dragoi & Buzsáki, 2006; 

Schmidt et al., 2009). How spike times are made to be organized into sequences on the 

timescale of milliseconds so as to reflect behavioral events that occur on the time scale 

of seconds (movement in space) is unknown, but there are several theories (Booth & 

Bose, 2001; Lengyel et al., 2003; O’Keefe & Burgess, 2005; Tsodyks et al., 1996). This 
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organization could provide the link between sensory input during behavior and the rich 

field of learning through synaptic plasticity, which traditionally operates on the 

millisecond timescale through mechanisms such as spike timing-dependent plasticity 

(Lever et al., 2002; Shen et al., 2008).   Knowing these relationships, and their 

sensitivity to internal dynamics and external drives, is crucial to discovering how the 

hippocampus organizes learned information stably and flexibly, sensitive to spatial 

properties but invariant to other contingencies of the sensory stream.  

 

One of the first major questions that emerged after the discovery of phase precession 

was how it is generated in terms of cellular and network mechanisms in relation to its 

information content, and the related question of whether it constituted an independent 

signal from the firing rate signal emitted by place cells (Foster & Wilson, 2007; Huxter et 

al., 2003; Mehta et al., 2002). It was already clear that the phase code is at least 

somewhat independent from the place field firing rate in that it showed a monotonic 

relationship with position within a place field, whereas firing rate is modal, with both 

rising and falling branches. Models emerged with differing degrees of dependence 

between the firing rate and spike timing codes of place cells, with some proposing an 

asymmetric ramping drive across the field that crosses the rhythmic inhibitory theta 

drive at earlier and earlier phases with each passing cycle while also driving firing rate 

(Mehta et al., 2002). Others suggested a network-based look-ahead mechanism in 

which theta phase is determined by a moving bump attractor that moves across place 

cells on the timescale of each theta cycle, independent of a more sensory-driven input 

determining firing rate by moving the bump attractor on the timescale of behavior 
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(Tsodyks et al., 1996; Y. Wang et al., 2015). This network mechanism within theta 

cycles also inspired a third concept potentially independent from both place cell firing 

rate and phase precession in being a property of multiple place cells, i.e. the theta 

sequence (Foster & Wilson, 2007). Synaptic interactions between place cells could 

allow sequences of place cells on the behavioral scale of their partially overlapping 

place fields to be represented in their relative spike timing within theta cycles, forming 

theta sequences. 

 

The independence of the existence of phase precession in individual place cells and 

that of theta sequences amongst a group of precessing cells has been demonstrated 

and attributed to the coordination or disagreement of the phase offset of the 

participating cells (Feng et al., 2015). Both theta phase precession and theta sequences 

exist without place fields when a spatial navigation tasks includes a “space-clamped” 

portion of a running wheel where hippocampal cells form “episode fields” or “time fields” 

that are similarly organized in term of spike timing within theta cycles as place fields 

(Pastalkova et al., 2008). Furthermore, the independence of place fields from theta 

sequences and phase precession was shown by blocking medial septum input driving 

the theta rhythm without abolishing the place field firing rate code (Y. Wang et al., 

2015).  The spatial extent of the phase coupling of spikes with the theta rhythm can also 

be vastly larger than the spatial extent of the firing rate based place field and show 

strong asymmetry relative to the place field center (Souza & Tort, 2017). All of these 

point towards a strong independence of the theta phase code from the place field rate 
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code in hippocampal cells and suggest a different mechanism and function for theta 

phase as opposed to place fields, likely related to sequence coding.  

 

Accordingly, the asymmetry of phase precession across the place field center has been 

investigated for the clues it may offer towards how the hippocampus accomplishes 

sequence coding. Fitting multiple normal distributions to phase precession point clouds 

showed that phase precession is best approximated by two normal distributions, the first 

covering the later 180 degrees of the theta cycle and the 2nd covering the first 180 

degrees of a theta cycle, with the former showing a higher phase-position correlation 

(Yamaguchi et al., 2001). A similar finding of more phase variability in the 2nd half of a 

place field (Dragoi & Buzsáki, 2006) supports a significant difference between first and 

second halves of the phase precession curve. Furthermore, differing power of fast and 

slow gamma rhythms in the respective dendritic regions for entorhinal cortical and CA3 

inputs to CA1 place cells during the first and last halves of place fields (Fernández-Ruiz 

et al., 2017) suggests an important role for differences in phase precession in these two 

halves of a field in sequence coding. In Chapter 2, we propose the overall shape of 

phase precession is logarithmic to account for these differences across a place field, 

and as a novel mechanism to accomplish scale-invariant spatial sequence coding in a 

way comparable to J.J. Hopfield’s logarithmic latency coding framework for analog 

pattern recognition (Hopfield, 1995). 
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1.2 Neural population dynamics in epilepsy 

1.2.1 Epilepsy as instability in a dynamical system 

Epilepsy is a neurological disorder characterized by a propensity to seizures, in which 

internal, explicit dynamics in neural circuits not only fail to adequately represent 

external, implicit dynamics in the environment or body, but also are dysfunctional in 

themselves. The dysfunction of a seizure is largely characterized by instability, or loss of 

equilibrium, which can be understood in the mathematical framework of dynamical 

systems. This framework is particularly needed because neural networks behave with 

nonlinear dynamics: their overall behavior is not always proportional to the activity of 

their underlying ion channels, neurons, and synapses. Dynamical systems theory offers 

a powerful geometric and analytical framework for thinking about the behavior of such 

nonlinear systems and has been extensively used to model what causes the dramatic 

transitions between normal and epileptic brain states (Jirsa et al., 2014; Silva et al., 

2003). These models are characterized by so-called stable and unstable fixed points, 

regimes of the system that are either attracting or repelling, respectively. When a neural 

network is in a stable healthy regime, perturbations (inputs) such as sensory or 

electrical stimulation, or even interictal spikes (Avoli et al., 2006; Gotman, 1991), cannot 

easily switch this system into an epileptic state – the network absorbs the hit; it shakes, 

but remains resilient and quickly returns to its stable fixed point in the normal regime. All 

is well and the healthy regime is still standing strong. However, as a key parameter of 

the network – its overall excitability – slowly increases, the network becomes less 

resilient to perturbations. Exactly the same input as before, be it an interictal spike or 

electrical stimulation, can now severely rattle this excitable network and lead to 
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catastrophic changes (for the aficionados: a fold bifurcation best describes this loss of 

stability). The healthy state now falls dramatically and suddenly, replaced by an epileptic 

state. Is there a warning sign for this progressive network instability, for this slow loss of 

resilience? In dynamical systems theory, the process leading up to the tipping point is 

often characterized by “critical slowing” (not to be confused with the slowing seen in 

some EEG signals during and after seizures). Critical slowing refers to the fact that as a 

network starts to lose its resilience, it is much slower to recover from any perturbations 

(Maturana et al., 2020). This suggests a possible way to probe a neural network to see 

if it is starting to lose its resilience: weakly stimulate it at different times and see how 

long it takes to return to baseline. When the network starts to take a very long time to 

recover, then there might be a seizure around the corner. The apparent culprit is the 

interictal spike or electrical stimulation, belying the deeper contribution of a slowly 

changing excitability (bifurcation) parameter (Somjen, 2004; Ziburkus et al., 2006). 

Thus, the dynamical systems perspective allows for building intuition about the non-

linear physiology of neural population activity surrounding seizures, which can then be 

applied to understanding the roles of the pathophysiological mechanisms themselves. In 

turn, this opens up the possibility of intervening to restrain this pathophysiology towards 

the goal of seizure freedom.  

 

1.2.2 Epilepsy as propensity to excitation-inhibition imbalance 

The physiological substrate of dynamic instability in epileptic seizures is thought to be in 

the transient loss of balance between excitatory and inhibitory neural activity, favoring 

excessive excitatory activity (Sritharan & Sarma, 2014; Žiburkus et al., 2012).  Such 
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balance is in turn typically maintained through microcircuit organization that prevents 

excessive recurrent excitation, such as feed-back inhibition (Paz & Huguenard, 2015), 

feed-forward inhibition (Trevelyan et al., 2007), and the relative placement of inhibitory 

and excitatory synapses on excitatory cells favoring inhibitory override of excitatory 

input (Megıás et al., 2001; Trevelyan & Schevon, 2013). The relative timing of spikes 

amongst inhibitory and excitatory neuron subpopulations, and the size of those recruited 

subpopulations, also determines their balance on a fine timescale, such that 

pathologically increased synchronization across a population can lead to epileptic 

seizures and the often associated high frequency oscillations (Charupanit et al., 2020; 

Weiss et al., 2016) and large amplitude spike potentials (Avoli et al., 2006). Even 

beyond microcircuit activity balance, factors from the extracellular matrix including its 

volume (Leifeld et al., 2022) and its concentration of potassium ions (Fisher et al., 1976; 

Somjen, 2004) can alter the passive electrophysiological properties of neurons to initiate 

or sustain activity imbalance. Thus, the cause of a temporary loss in sufficient inhibitory 

restraint in epilepsy can be manifold, making fine scale cell-type specific population-

level, microcircuit-level, and even transmembrane voltage-level information crucial in 

understanding epileptic pathophysiology in any given case. Localizing the pathology will 

likely advance our understanding most efficiently, and the most common localizable 

form of epilepsy is temporal lobe epilepsy (TLE), in which seizures originate or primarily 

involve circuits in the temporal lobe (Bell et al., 2011; Weiss et al., 2016). Much 

experimental and theoretical work on how TLE manifests in intact animal models and 

brain slice models points towards deficits and excesses in activity in specific cell types 

as playing specific roles at different times during seizure onset and progression. 
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1.2.3 Role of FS vs RS cells in animal models of TLE 

The broad cell type of most interest in investigating mechanisms initiating and 

supporting seizures is the GABAergic neuron, given the purported role of inhibition as a 

protective restraint against imbalanced hyperactivity as discussed above. In terms of 

how GABAergic neurons contribute to seizures, however, studies point to a variety of 

mechanisms including excessive activity and diminished activity. For example, 

recordings from in-vitro models of epilepsy suggest seizure-like events are sustained by 

alternating bursts of action potentials in excitatory (regular spiking or RS-like) neurons 

and inhibitory (putative fast-spiking or FS, parvalbumin-positive) cells, in which inhibitory 

cells are hyperactive (Ziburkus et al., 2006). FS cell activity can also become diminished 

due to inhibition by other types of inhibitory cells becoming overactive, facilitating 

seizure progression (Khoshkhoo et al., 2017; Miri et al., 2018).  Other studies point 

toward a loss of effective inhibition during seizure initiation due to chloride ion 

accumulation raising the equilibrium potential of ionotropic GABA receptors (Buchin et 

al., 2016), depletion of GABA neurotransmitter release (Z. J. Zhang et al., 2012), or 

inhibitory neurons reaching depolarization block (Cammarota et al., 2013) in which the 

inactivation gate of spike-generating sodium ion channels becomes prolongedly closed 

due to excessive depolarization. Given this variety of cell-type specific mechanisms 

contributing to seizures in animal models, it is necessary to evaluate the relevance of 

such mechanisms in human patients where each factor in animal model studies may or 

may not also be involved. 
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1.2.4 Role of FS vs RS cells in human patients with TLE 

Data from human patients on mechanisms actively contributing to seizures is rare, given 

that such recordings are inherently invasive and can only be obtained under the specific 

circumstance of TLE patients undergoing surgical resection treatment. The limited 

existing evidence from neocortical recordings in human TLE patients suggests that 

inhibitory neuron activity increases prior to seizure onset (Truccolo et al., 2011), 

potentially representing the activity of a feedforward inhibitory restraint mechanism that 

ultimately fails (Trevelyan & Schevon, 2013).  There is also evidence that the fine-scale 

temporal pattern of spiking activity during seizures in humans is related to the oscillatory 

state more coarsely characterizing the seizure, with gamma-band (40-60 Hz) local field 

potential oscillation-related seizures involving irregular and asynchronous firing amongst 

both putative FS and putative RS cells, while seizures characterized by spike-wave 

complexes involved fine timescale synchrony also in both putative FS and putative RS 

cells (Truccolo et al., 2014). These suggest different microcircuit mechanisms 

sustaining these seizures, based on either population-wide activity levels or relative 

individual cell spike timings, respectively. These studies point toward the need to obtain 

more mechanism-specific information from recordings in human patients.  

 

In Chapter 3 here, we start to address this need by classifying units from extracellular 

depth electrode recordings in TLE patients into the excitatory RS cell and inhibitory FS 

cell categories. We find evidence supporting the mechanism of depolarization block of 

FS cells explaining this dynamic as well as spike amplitude changes over the course of 

seizures in humans, inferring transmembrane potential changes beyond just 
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extracellularly detected spike times. We suggest a slowly changing factor such as 

accumulating potassium ions in extracellular space as driving this change, similar to the 

bifurcation or excitability parameter referred to in the above section on a dynamical 

systems perspective on epilepsy. The plausibility of this mechanism is shown with a 

computational model of spike amplitude in relation to holding potential. This mechanism 

could suggest novel treatment approaches for patients with epilepsy grounded in its 

timing relative to this cell-type specific, population activity sequence.
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CHAPTER 2: Time-warped Behaviors are Logarithmically Transformed into Stable 

Hippocampal Sequences 

 

2.1 Abstract 

The mammalian brain evolved to robustly encode spatial sequences despite time-warp 

caused by movement at variable speeds, but time-warped behaviors are incompatible 

with traditionally-assumed fixed neural coding schemes. Here, we propose and 

empirically validate an alternative framework – the logarithmic theta transform (LTT) – 

that can convert variable behavioral time into stable neural spike timing patterns that do 

not change with speed. LTT makes three predictions about hippocampal place cells that 

go beyond previous assumptions: 1) a logarithmic theta-phase curve; 2) non-uniform 

sequence spacing within individual theta cycles; 3) phase-shifted theta sequences at 

faster running speeds. Analysis of place cells during spatial exploration confirms each 

prediction. We discover that the hippocampus implements LTT using a scaling-factor of 

1.4, identical to the scaling-factor governing the spacing of entorhinal grid modules. 

Thus, LTT represents an evolutionarily-optimized neural algorithm for stable encoding of 

information despite the warping of time by natural speed variation. 
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2.2 Introduction 

Facile processing of sequence information is critical for an organism to attain predictive 

control over its environment, yet representing sequential inputs that present on the 

variety of timescales relevant to natural behaviors is notoriously difficult (Burgess and 

Hitch, 2006; Hopfield and Brody, 2001; Howard et al., 2015). The hippocampal 

formation is likely to implement evolutionarily-optimized codes for handling 

spatiotemporal sequence information, as it is necessary for episodic memory across 

time (Buzsáki, 2005; Scoville and Milner, 1957; Spiers et al., 2001) and for navigation 

across time (Chersi and Burgess, 2015; O’Keefe and Nadel, 1978). One of the 

hippocampus’s key computational units is the place cell (O’Keefe and Dostrovsky, 1971; 

O’Keefe and Nadel, 1978; Redish, 1999), whose activity is generally restricted to a 

particular location in an environment, corresponding to its place field. However, a given 

place cell can have multiple fields (Fenton et al., 2008; Park et al., 2011), and the 

positions of these fields change in different environments (Bostock et al., 1991; Lever et 

al., 2002), suggesting this neural activity constitutes a population code for position or 

sequence in which a single cell’s field is meaningful only relative to the co-occurring 

activity of other place cells. This sequence-coding activity is generated by both internal 

and external drives (Dragoi, 2013; Pastalkova et al., 2008). 

 

Manifestations of internal coordination between co-active place cells can be seen in 

patterns in the local field potential (LFP) that permeate the hippocampal formation. The 

LFP shows high amplitude oscillations in the theta (4-12 Hz) frequency range, 

particularly during spatial navigation (McNaughton et al., 1983; O’Keefe and 
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Dostrovsky, 1971). This high amplitude extracellular rhythm implies precise temporal 

summation involving widespread synchronization of activity on the sub-second scale 

amongst hundreds of hippocampal cells (Buzsáki et al., 2012; Kajikawa and Schroeder, 

2011). Thus, describing place cell activity with respect to the hippocampal theta rhythm 

is an important window into the coordination responsible for constructing a 

spatiotemporal sequence code from individual place fields. Indeed, prominent patterns 

have been discovered in the regions of overlap between place fields in the rat, in the 

form of their coordination with the theta rhythm and with each other, termed theta phase 

precession (Huxter et al., 2003; O’Keefe and Recce, 1993; Skaggs et al., 1996) and 

theta sequences (Dragoi and Buzsáki, 2006; Foster and Wilson, 2007; Skaggs et al., 

1996), respectively. Hippocampal phase coding during navigation is evolutionarily 

conserved, having been observed across other mammalian species including mice 

(Mou et al., 2018), bats (Eliav et al., 2018), and even humans (Qasim et al., 2021). 

Thus, the rules governing place cell activity within theta cycles likely point toward 

powerful neural strategies for achieving robust sequence coding.  

 

What does theta phase precession encode? Foundational studies have systematically 

explored the behavioral correlates of the theta phase of spikes from place cells to reveal 

what information it represents during spatial navigation such as distance travelled or 

time elapsed within a field (Jeewajee et al., 2014; Schmidt et al., 2009). These support 

the optimality of distance correlations when aggregating data across all laps but leave 

open the possibility of some additional time correlation when considering single passes 

through a field. While some studies have further supported a distance coding function 
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for theta phase precession by advancing phase in proportion to instantaneous speed 

across time (Geisler et al., 2007; Huxter et al., 2003; O’Keefe and Recce, 1993), other 

work challenges this solution by pointing to time-dependence apart from simple distance 

phase coding (Gupta et al., 2012; Itskov et al., 2008; Parra-Barrero et al., 2021).  

 

An open question persists about the nature of theta phase precession beyond the 

behavioral information it may code for. Several studies have noted that phase 

precession follows a nonlinear shape across a place field (the non-linear curvature of 

this shape has led to it being sometimes referred to simply as a “banana shape”; Huxter 

et al., 2003; McClain et al., 2019; Mehta et al., 2002). However, in explorations of its 

mechanisms and functions, phase precession is still modeled as approximating a linear 

shape (Burgess, 2008; McClain et al., 2019), notwithstanding phenomenological models 

that incorporate this shape for the purpose of biophysical realism (Jahnke et al., 2015). 

There is currently no framework attributing a function to the nonlinear shape of phase 

precession, which has heretofore justified the use of a first-order linear approximation 

despite visual evidence to the contrary. Furthermore, this linear framework makes the 

problematic (from a decoding perspective) prediction of a variable time separation 

between coded elements of a sequence (Geisler et al., 2007; Huxter et al., 2003), 

rendering the spacing of sequence elements expected by temporal summation at 

downstream decoders ambiguous (Figure 1). For spatial sequence coding, this 

framework is particularly insufficient because natural speed variability implies a 

corresponding wide range of neural timescales to which downstream sequence 

decoders must display invariance if they are to represent a stable map of space. The 
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problem of robustness to different timescales has been recognized in other behaviors 

such as word recognition within speech naturally occurring at different cadences, and 

was suggested to be solved by the neural coding strategy of logarithmic latency 

encoding (Hopfield, 1995, 1996). However, the potential utility of a similar framework for 

creating a stable neural code for space at different running speeds (Sheeran and 

Ahmed, 2020) has not yet been explored. 

 

Here, we propose that a logarithmic framework is utilized for time-warp invariant 

sequence coding in hippocampal place cells, a theoretical framework that we call the 

logarithmic theta transform (LTT). LTT makes three explicit, non-trivial predictions about 

the evolution of theta phase statistics during movement, the form of sequence 

representations within individual theta cycles, and the coding of speed changes in 

properties of theta phase precession. Using large datasets with > 1000 place cells, we 

empirically validate each of these 3 predictions. Remarkably, our analysis of place cell 

temporal dynamics show an implementation of LTT in the hippocampus using a scaling-

factor of 1.4, identical to the scaling-factor governing the relative spacing of entorhinal 

grid modules (Barry et al., 2007; Stensola et al., 2012). This suggests the possibility of a 

common system connecting hippocampal and cortical circuits for robustly processing 

episodic information despite behaviorally natural changes in the spatiotemporal scale of 

this information. 



 
 

 23 

2.3 Results 

Spatiotemporal coding and the behavioral time-warp problem 

A stable representation of space requires that changing speed does not change the 

underlying representation of space, and, accordingly, this speed invariance of the theta 

phase code is supported in previous studies (Geisler et al., 2007; Huxter et al., 2003; 

Jeewajee et al., 2014). However, how speed-invariance arises in the theta phase code 

is not clear and even problematic for current theories about the nature of theta phase 

precession. In particular, the following problem arises when considering downstream 

readers of place field sequences (Buzsáki, 2010), which we refer to as the behavioral 

time-warp problem (Figure 1): If temporal sequence information is to be preserved 

between place fields, it first becomes necessary to have a physical representation of 

time such as a delay line system to recognize time-order (Hopfield, 1996; Howard et al., 

2015; Tank & Hopfield, 1987). This representation may correspond to active processes 

generating dendritic sequence sensitivity on the timescale of a theta cycle for place cell 

sequences (Branco et al., 2010). However, such a physical representation of a time-

order template involving linear time compression would suffer from rigidity and fail to 

achieve sufficient temporal summation in the case of multifold behavioral time warp 

(Figure 1), in which the sequence of interest can occur over vastly different time 

intervals. We note that this would be the case for a sequence of place fields being 

traversed at the wide range of running speeds that mammals exhibit during spatial 

navigation, covering multiple orders of magnitude and showing significant variation even 

in laboratory conditions as analyzed here (Supplementary Figure 1). Still, the theta 

phase differences between these overlapping place fields are also invariant to speed 
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(Geisler et al., 2007), as we verify in our later results section on theta sequence 

properties. This points to a time-order sensitive code produced by a presently unknown 

neural algorithm in hippocampal circuits that solves the behavioral time-warp problem. 

 

The logarithmic theta transform framework 

We propose the LTT solution in hippocampal circuits, inspired by foundational 

theoretical work solving the analog match problem (Hopfield, 1995, 1996). The key is a 

change from a rigid template representation of time between sequence elements into a 

logarithmic representation of the time between them, leading to equivalent downstream 

post-synaptic coincidence detection across a range of timescales. We illustrate how this 

would apply to place field sequences at different running speeds in Figure 1B,C in the 

form of phase precession implementing a nonlinear time compression and 

transformation. If this transformation is logarithmic, the resulting spike timing code 

retains the same pattern for a wide range of speeds, with an overall offset representing 

the warp factor. A temporally summating post-synaptic neuron can then respond to 

these input sequences identically, regardless of the level of time-warp, after this 

transformation (Figure 1B).   
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Figure 2-1. The behavioral time-warp problem for recognition of place field sequences can 

theoretically be solved using the logarithmic theta transform (LTT).  

A) Example illustration of 4 spatiotemporally overlapping place fields (color-coded bell-shaped 

curves) plotted in time at high running speed (left column) and at low running speed (right column). 

According to the theta phase coding model in which time is compressed linearly into sequences on the 

theta cycle timescale, readout using a delay line system and temporal summation of place cell outputs 

would fail with different running speeds (bottom).  

B) Proposed implementation of time-warp invariant sequence coding using logarithmic time 

compression. The effects of a logarithmic transformation of time for a sequence of 7 consecutive place 

field centers, occurring in the color-coded temporal order of (red, orange, yellow, green, blue, indigo, 

violet) at high running speed (upper) and at low running speed (lower). While they occur over ~0.7 sec 

(high speed) and ~1.4 sec (low speed) in behavioral time (left), they become time-compressed into a 

theta cycle lasting 0.1 sec (right) via phase precession and are mapped to the same temporal pattern only 

if the transformation is logarithmic.  
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C) Schematic of theta-phase coded logarithmic transformation of time via phase precession. 

Precession plotted as a function mapping inputs in behavioral time (x-axis) to outputs in time within a 

theta cycle (y-axis). Behavioral time axis is reversed here to maintain negative slope of standard phase 

precession plots for comparison to standard model without affecting overall shape or transformation 

effect. This is shown for the same sequence as in (B) at low (left) to high (right) running speeds.  

Colored numbers 1,2,3 in panels B and C: Predictions of LTT tested in real place cell data in the 

remaining figures. Prediction 1: Theta phase has logarithmic relationship with time in place fields. 

Prediction 2: Theta sequences display a logarithmic spike timing difference gradient, decreasing in phase 

increment from early to late within theta cycles. Prediction 3: When running speed increases, theta 

sequences display no change in phase separation, increase in phase-time compression ratio, and 

decrease in mean phase.  
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The “characteristic banana shape” (McClain et al., 2019; Souza & Tort, 2017) of phase 

precession manifests as its progressively increasing steepness across a field (Figure 

1C, Figure 2A). When the phase of spikes within theta cycles is visualized in relation to 

the rat’s concurrent position, the pattern of an initially shallow relationship between 

phase and distance that gradually increases in slope is evident across fields (Figure 

2A).  This ubiquitous curvature has not been given a mathematical significance or 

structure, which itself can lead to powerful implications through the rich theoretical 

background that is already established for such structures. If the shape of phase 

precession transforms time into the logarithm of time to produce time-warp invariant 

sequences in hippocampal activity, at least 3 falsifiable predictions can be made (Figure 

1B,C): 1) theta phase has a logarithmic relationship with time in place fields; 2) 

sequence spacing within individual theta cycles is not uniform, and 3) when running 

speed increases, theta sequence patterns remain identical, but shift coherently to earlier 

theta phases. To test the LTT theory, we next assessed each of these predictions in 

hippocampal place cell datasets recorded from multiple rats during spatial navigation. 

 

Prediction 1: Theta phase is sensitive to the logarithm of remaining time in field 

We first sought to show whether a logarithmic formulation of the shape of phase 

precession with respect to time is also consistent with the data from place cells in 

navigating rats (Figure 2). In testing this, we first note that the traditional interpretation of 

phase precession as coding for distance within a place field (Geisler et al., 2007; Huxter 

et al., 2003), does not rule out an additional relationship with time since these studies 

do not control for potentially confounding variations in elapsed time that always 
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accompany changes in distance. An example session showing multiple place fields on a 

linear track is shown in Figure 2A. Theta oscillations in the local field potential are 

concurrently observed with place cell firing and these oscillations precisely modulate 

place cell spike timing: spikes shift to progressively earlier (lower) phases within theta 

cycles (phase precession). This phase precession follows a progressively steepening, 

non-linear, curved shape (often referred to as a “banana” shape) as a rat moves across 

each field (Figure 2A).   

 

To understand how theta phase precession is controlled by distance versus time, it is 

illustrative to examine single lap place field traversals at different running speeds, 

allowing for empirical disambiguation between distance and time coding (Figure 2B). In 

particular, during a lap traversed at a low speed, phase-distance coding predicts that 

theta phase shows no change in slope with respect to distance but approaches zero 

(horizontal) slope with time. In contrast, phase-time coding predicts phase approaching 

infinite (vertical) slope with distance during a slow lap with no change in slope with 

respect to time (Figure 2B). Data from a place cell across traversals at low and high 

speeds are shown in Figure 2C (see also examples in Supplementary Figure 2). The 

changes in phase slope with respect to each behavioral variable are consistent with the 

existence of time-sensitivity in phase precession as predicted by LTT, alongside the 

well-established distance coding. This was verified on a population level amongst fields 

with at least 20% variation of speed across traversals relative to the typical speed, 

showing a significant increase in the slope of phase with respect to time in the top 10 

percentile of speed traversals relative to the bottom 10 percentile (Figure 2D; Wilcoxon 
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signed rank p=1.575e-47), as well as a significant decrease in the slope of phase with 

respect to distance in the same (Figure 2D; Wilcoxon signed rank p=6.090e-17). These 

changes in slope with speed could not be explained by changes in correlation, as the 

pairwise difference between phase-time correlation ratio between speed categories and 

phase-distance correlation between speed categories for each field was not significantly 

different from 0 (Figure 2D; Wilcoxon signed rank p=0.36). Furthermore, 69% (490) of 

the 701 fields showed some decrease in distance-phase slope across speed categories 

(Figure 2D), consistent with time-coding existing to some extent in the majority of place 

cells studied here.  Consistent with previous work on multiplexed distance and time 

coding in the hippocampal formation (Kraus et al., 2013, 2015), 530 (76%) of fields 

showed an increase time-phase slope from the low to high speed category indicative of 

with distance coding, and 335 (48%) of fields showed both signatures suggesting mixed 

distance and time coding. Indicating that essentially all place cells studied here track 

some form of progression in space and time, only 15 fields (2%) showed neither of 

these speed-slope signatures of distance or time coding (Figure 2D). 

 

To more comprehensively disentangle the effects of distance and time on theta phase, 

we computed a “phase precession surface” with respect to both distance and time 

(Figure 2E). This clearly revealed that phase changes as a function of remaining time in 

addition to the expected changes with distance. Importantly, a fair comparison between 

distance and theta-cycle discretized time requires similarly discretizing the distance 

corresponding to each spike as the average distance within the relevant theta cycle as 

done here (see Methods) to avoid unequal contributions of within-cycle phase rolling to 
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phase correlation coefficients (Sloin et al., 2022).  Conditional phase precession curves 

as population averages (Figure 2E; Supplementary Figure 3AB) also show that the 

phase precession can be controlled by time remaining in field, rather than only by 

distance (Figure 2E, Wilcoxon rank-sum test on best fit slope within surface, rank-

sum=78, p=4.883x10-4***). Finally, the strong relationship between phase and time 

remaining in field when restricting analysis to spikes occurring at a single distance is 

also seen robustly on an individual field level (Supplementary Figure 3; Wilcoxon signed 

rank test on phase-remaining time R given remaining distance, p=1.16e-126). Given this 

observation of phase-time coding in place cells in addition to distance-time coding, we 

next sought to more quantitatively characterize this phase-time and phase-distance 

relationships and their consistency with the aforementioned predictions of LTT. 
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Figure 2-2. Testing logarithmic theta transform (LTT) prediction 1: Theta phase is sensitive to 

remaining time in place fields in addition to remaining distance in field. 

A) Example session depicting location of place fields formed along one direction of movement in 
linear track across several laps. Concurrent with place cell firing are oscillations in the local field 
potential (example raw trace shown in beige). 

B) Illustration depicting how a change in speed across laps can empirically signify distance and/or 
time coding during movement.  

C) Raw data from one example field during a lap with slow running (upper row) or fast running (lower 
row) but with the same remaining time (7 theta cycles) to the end of the field. Simultaneously 
shown are position (purple), theta oscillations (beige), and spike times (black) across time over 
the single traversal.  Right panels corresponding to slow running lap (upper) and fast running lap 
(lower) show the theta phase of spikes plotted against remaining distance and remaining time, 
showing signatures of both distance and time coding. 

D) Population level analysis of speed-based signatures of time coding and distance coding amongst 
701 fields showing sufficient speed variation. Upper plot shows the ratio of the phase slope with 
respect to each variable obtained from the top 10% fastest traversals relative to that for the 
bottom 10% average speed traversals. Highlights both a speed-related increase in slope with 
time (distance-phase coding) and a speed-related decrease in slope with distance (time-phase 
coding, which cannot be explained by changes in correlation (bottom plot). Venn diagram shows 
the percentage of each class of outcomes resulting from this analysis, with fields showing a 
smaller magnitude slope with distance in the high speed category classified as time coding, those 
with a larger magnitude slope with time in the high speed classified as distance coding, and those 
with both classified as mixed time and distance coding. 

E) On the left, circular mean theta phase was computed as a 2D function of remaining distance and 
remaining time coordinate pairs across 1226 place fields. Distance-time bins with less than 100 
spikes across all fields are shown as blank. Only spikes where the rat displayed a speed of at 
least 5 cm/s were included for analysis. (upper right) Conditional relationship between phase and 
distance while controlling for time, and vice versa, obtained for 12 equal-width, constant-time bins 
whose centers are represented from 0 to 1 as cold to hot colors for bins with at least 50 spikes 
(n=1163 place fields). Highlights the dependence of phase on remaining time despite controlling 
for distance. (lower left) Each conditional phase precession curve with mean phase and mean x-
coordinate in field subtracted out for emphasis on relative changes in each variable. (lower right) 
The conditional phase gain of distance and time are computed as the slope of the least-squares 
linear fit to each curve. 
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A logarithmic theta transform predicts that phase precession would take this logarithmic 

shape when theta phase is plotted against not just distance, but also against remaining 

time in a place field (Figure 3A-C), with an initially shallow slope that increases towards 

a steeper slope with time. This is confirmed in quantitative analysis of a large population 

of place cells from multiple rats.  A quantitatively accessible yet defining criterion for 

achieving a logarithmic shape is that the temporal slope at any point on the curve 

should be proportional to the inverse of time at that point (Figure 3D-F; Methods 

Equation 1). In contrast, a linear form of phase precession, the average case predicted 

from the standard linear spatial phase precession model (Burgess, 2008; Jaramillo & 

Kempter, 2017) would predict a flat, independent relationship between time remaining in 

field and the slope of the relationship between theta phase and time (Figure 3D-F). 

Plotting the slope of the relationship between theta phase and remaining time across 

each field unambiguously supports a relationship between these two variables, arguing 

against a linear phase-time relationship (Figure 3H). In addition, this relationship can be 

well approximated by linear regression on inverse phase gain vs remaining time in field 

on the population level and in individual place fields, with the vast majority showing 

large correlation coefficients of typical value significantly less than 0 (Figure 3IJ; R=-

0.50±0.02 [mean ± sem], signed rank z = -14.17, p=1.475x10-45***). Furthermore, linear 

fit slopes cluster around a representative value corresponding to a base of 1.4 (Figure 

3J; Supplementary Figure 6). Having identified the typical logarithm base and its 

variability across many place fields, we were then able to directly assess the relative 

error of logarithmic versus linear fits for each field (Figure 3K; less error in logarithmic 

fit; Wilcoxon signed rank p=1.4996e-27; 319 of 399 fields [80%]). Analyzing this error as 
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a function of remaining time within field also showed systematic bias in the circular-

linear regression fit, starting with overestimation, then underestimation, then 

overestimation again (Figure 3L), a pattern which was eliminated when using a 

logarithmic model (Figure 3M). Very similar results were obtained when performing 

these same analyses with respect to remaining distance in a place field, with the same 

best fit base of 1.4 with respect to distance (Supplementary Figure 4). A logarithmic 

distance transformation can support a similar function as a logarithmic time transform in 

creating stable spike time patterns invariant to, rather than speed-related time-warp, 

cognition-related space-warp manifesting as differing theta sequence trajectory lengths 

depending on navigational goals independent of running speed (Gupta et al., 2012; 

Wikenheiser & Redish, 2015a). We illustrate how such logarithmic distance 

compression can be useful for this function in Supplementary Figure 5. Thus, these 

results are consistent with a quantitatively characteristic, logarithmic curvature in the 

phase-time coding and phase-distance coding exhibited by place cells. 
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Figure 2-3. Testing logarithmic theta transform (LTT) prediction 1 (continued): Theta phase has 

logarithmic relationship with time remaining in place fields with quantitative specificity.  

The following analysis is for all spikes from place fields with at least 100 spikes across all laps and at 

least 5 cycles in the central 60% of the field to estimate curvature (n=399 fields). 

A) Raw data from an individual example field showing the theta phase of each spike against time 
remaining in field, with logarithmic fit in orange (see panel J) 

B) Raw data from an individual example field showing the theta phase of each spike against time 
remaining in field, with logarithmic fit in green (see panel J) 

C) Raw data from an individual example field showing the theta phase of each spike against time 
remaining in field, with logarithmic fit in purple (see panel J) 

D) Schematic comparing predictions of LTT (blue) and linear time compression (black) for the 
evolution of theta phase over remaining time in field.  

E) Schematic comparing predictions of LTT (blue) and linear time compression (black) for the 
evolution of theta phase gain over remaining time in field.  

F) Schematic comparing predictions of LTT (blue) and linear time compression (black) for the 
evolution of the multiplicative inverse of phase gain over remaining time in field.  

G) 150 example phase precession curves with base higher than 1.3 (see panel J), each of one 
random color, showing peak probability theta phase corresponding to each remaining time in field 

H) Local phase gain for each place field at each remaining time in field (black dots), and a curve 
showing k/(time to end of field) (blue dashed line) for k=log(1.4). 

I) Multiplicative inverse of local phase gain for each place field at each remaining time in field (black 
dots), and a curve showing (time to end of field)/k for k=log(1.4) (blue dashed line).  

J) Probability distribution of estimated k from linear fits of local phase gain vs remaining time in field 
for each place field. Inset: Probability distribution of correlation coefficient of local phase gain vs 
remaining time in field for each place field showing significant linearity of the relationship (***, 
Wilcoxon signed rank test, z=-20.81, p=3.775e-96). The peak slope corresponds to a peak 
probability logarithm base of 1.4.  

K) Probability distribution of the ratio of absolute median error using a logarithmic model relative to 
that using circular-linear regression. 

L) Probability distribution of angular error of a linear phase-time at each remaining time in field, 
showing systematic bias depending on remaining time in field.  

M) Probability distribution of angular error of logarithmic phase-time model at each remaining time in 
field, showing elimination of systematic bias depending on remaining time in field.  
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Prediction 2: Theta sequences show non-uniform spacing within single cycles 

Coding for the logarithm of time or distance in individual place cells does not guarantee 

that spike coordination amongst place cells also respects this relationship. This is 

because additional coordination beyond independent phase precession in overlapping 

cells is known to occur in the formation of theta sequences (Feng et al., 2015; Foster & 

Wilson, 2007). If the time-warp invariance conferred by logarithmic coding in single cells 

precessing through their fields is to be useful in a spatial sequence code, it must be 

inherited by the code for sequences of overlapping fields across cells within individual 

theta cycles. Therefore, we next looked for evidence of the preservation of logarithmic 

time within the separation of spike phases of overlapping fields in individual cycles. LTT 

predicts that spacing between spikes coding for consecutive place fields should be 

expanded at early theta phases and contracted at late theta phases, while a linear 

relationship with time would predict no such change (Figure 4A). An example session 

illustrating the analysis including 13 such place cell pairs is shown in Figure 4B, with all 

pairs showing a contraction in timing difference from early to late phase. Quantifying this 

expansion across all sessions including 377 sufficiently overlapping field pairs (see 

Methods) yielded a significant average pairwise contraction from early to late theta cycle 

(Figure 4C), paired observation signed rank test, z = 8.314, p = 9.270x10-17***). Thus, 

coordination of place cell spikes within theta cycles preserves a nonlinear phase code, 

consistent with theta sequences respecting the LTT of the field sequences they 

represent. 
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Figure 2-4. Testing logarithmic theta transform (LTT) prediction 2: Theta sequences display a 

logarithmic spike timing difference gradient, decreasing in phase separation from early to late 

within theta cycles. 

A) Schematic showing how LTT in theta sequences predicts larger inter-cell spike intervals when 
they both occur late in a theta cycle than when they occur early in a theta cycle, while linear time 
or distance compression predicts no difference. 
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B) Example session including 13 overlapping place field pairs whose centers are no more half a field 
apart, and overall leftward shift in the distribution of spike phase difference (left). When examining 
these pairwise, all pairs show an increase in theta phase difference (blue) from early (black) to 
late (red) theta phase (right). 

C) Distribution of the change in spike timing difference between all place field pairs (n=377 pairs) as 
they occur in early (black) vs late (red) theta phases, showing a population wide decrease in 
spike time difference moving to later phases (signed rank z = -8.314, p = 9.270x10-17***) as 
predicted by LTT in theta sequences.  

 

 

Prediction 3: Time-warp (speed change) leads to selective phase shift in theta 

sequences without corresponding change in phase separation 

As running speed corresponds to behavioral time warp for spatial field sequences, LTT 

has unique predictions for the relationship between behavioral field sequences and 

theta phase sequences at different speeds. If our proposed theory is accurate, speed 

increases should be transformed into uniform phase shifts in the theta phase code (see 

Figure 1B) for the following reasons. Running at different speeds causes the behavioral 

time intervals between place fields to stretch or shrink in time (Figure 5A).  Different 

models for how space and time are encoded by theta phase then manifest different 

speed-phase signatures in response to this changing behavioral time interval (Figure 

5B-D; see Methods Equations 2-4). These signatures can be recognized by quantifying 

phase separation, phase-time compression ratio, and mean phase at different running 

speeds. In particular, distance coding of any kind, particularly of linear compression or a 

logarithmic transformation, predicts no phase shift with running speed, as distance 

within field at any given position does not vary with speed. In contrast, time remaining in 

field at any given position is speed-dependent such that linear time compression 

predicts phase separation changes in proportion to speed, while a logarithmic time 

transformation predicts changes only in theta sequence phase offset. 
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In order to distinguish between these models being at work in hippocampal cells, we 

assessed the relationship between these theta sequence properties and running speed 

while controlling for position (see Methods) in place cell data. Examples of field 

sequences and the theta sequences representing them shows a mean phase shift 

towards earlier phases with increasing running speed without comparable change in 

phase separation (Figure 5E-G), consistent only with LTT (Figure 5D). To evaluate this 

effect statistically on the population level, data across all 831 distinct place field 

sequences represented by a total of 6680 theta sequences across laps were analyzed 

with respect to running speed (Figure 5H; see Methods). This showed no significant 

relationship between speed and phase separation (Figure 5H left; circular-linear 

regression; rho=0.07, p=0.82), a significant positive relationship between speed and 

phase-time compression ratio (Figure 5H middle; linear-linear regression; Pearson’s 

correlation R=0.86, p=3.90x10-4***), and a significant negative relationship between 

speed and mean phase (Figure 5H right; circular-linear regression; rho=-0.79, 

p=0.00234**). These speed-phase signature results were again only consistent with the 

LTT theory (Figure 5D). 

 

We next evaluated whether the predicted relationships between speed and theta 

sequence properties were present not only when combining data across field 

sequences but also on an individual sequence level, given that these are not 

necessarily consistent with each other (Parra-Barrero et al., 2021). Each field sequence 

showing sufficient speed variation across laps and its average theta sequence property 
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in low- and high-speed traversals are visualized as an individual point in a two-

dimensional space to easily compare its value across the two speed categories (Figure 

5I). In this space, average theta sequence phase separation occurs approximately 

equally above and below the x=y line amongst individual sequences, suggesting no 

systematic change in phase separation with increasing speed. In contrast, the point 

cloud representing theta sequence phase-time ratio presents systematically above the 

x=y line, and the point cloud of mean phases lies primarily below this line, supporting a 

widespread increase in phase-time ratio and widespread decrease in mean phase 

amongst field sequences. Quantitative analysis again showed no significant relationship 

between phase separation and speed (Figure 5I; bootstrap reshuffling test, p=0.4173), a 

significant positive relationship between phase-time compression and speed (Figure 5I; 

bootstrap reshuffling test, p=1.622 x10-5***), and a significant negative relationship 

between mean phase and speed (Figure 5I; bootstrap reshuffling test, p=0.0091**). 

Variation in mean distance with running speed (bootstrap reshuffling test, p=0.4040) or 

in distance separation with running speed (bootstrap reshuffling test, p=0.4915) are 

effectively the same between these groups and could not explain the results 

(Supplementary Figure 8AB). Overall, this result of theta sequence property changes 

with speed variation is not consistent with linear distance compression or linear time 

compression, but is precisely what is predicted only by the LTT framework (Figure 5J).   
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Figure 2-5. Testing logarithmic theta transform (LTT) prediction 3: When running speed increases, 

theta sequences display no change in phase separation, increase in phase-time compression 

ratio, and decrease in mean phase. 

A) Schematic illustrating a sequence of 4 place fields at low running speed and high running 
speeds, with order of visitation encoded in cool to warm colors.  

B) Summary of predictions of the linear distance compression models for theta sequence 
properties in relation to running speed,(see also Methods Equation 2). 

C) Summary of predictions of the linear time compression theta sequence properties in relation 
to running speed (see also Methods Equation 3). 

D) Summary of predictions of LTT model for theta sequence properties in relation to running 
speed, (see also Methods Equation 4). 

E) Example field sequences with place fields shown in color by order of visitation, from cool to 
warm colors. The theta sequences representing this field sequence in each lap is shown as a 
raster of all spikes from both fields, with each lap representing a row, sorted by increasing 
running speed from bottom to top. The mean phase of spikes for a traversal in a given lap is 
represented by a color-coded dot. A repetition of each theta cycle is displayed to show the 
circular nature of this data. 

F) Example field sequence with place fields shown in color by order of visitation, from cool to 
warm colors. Dashed lines indicate the positions at which theta sequences were sampled. 
Distance within field as a fraction of the field width is shown with respect to running speed. 
The distribution of average running speeds within the field sequence is also shown across 
laps. A scatter plot of theta sequence properties against running speed with linear fits 
represents the speed-phase signature for this field sequence. 

G) Example field sequence analogous to panel (F) with 3 participating cells. 
H) The mean value of each property from 831 distinct place field sequences represented by a 

total of 6680 theta sequences with respect to speed. Error bars represent upper and lower 
limits of the circular mean computed by a one-sample test for mean angle, or ± standard error 
of the mean in the case of phase-time compression ratio. Circular-linear regression or linear-
linear regression was used to statistically evaluate the relationship between the running 
speed and the population level theta sequence properties, respectively (n.s. = not significant, 
indicating p>0.05; *** indicates p<0.001; ** indicates p<0.01). 

I) Field sequences with sufficient speed variation across laps were collected (n=49 different 
field sequences). Each field sequence is represented as a dot in the space relating its mean 
value in the low-speed group (x-coordinate) with its mean value in the high-speed group (y-
coordinate) relative to the x=y line (dashed line). The mean difference of these properties 
between speed groups (inset, vertical line) being different from 0 was evaluated with 
bootstrap label reshuffling (black distribution). 

J) Summary schematic illustrating which theta sequence property changes with speed variation 
in place field data are consistent with each phase coding model (green check = correct 
prediction, red “x” = incorrect prediction). 
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Given that novelty has been shown to bias the phase of spikes towards the peak of 

theta cycles through an acetylcholine-dependent mechanism (Douchamps et al., 2013), 

we note that the vast majority of sessions analyzed here were from linear tracks to 

which each rat was already familiar, with 75 out of 80 sessions being on the 10th or 

greater performance of the task, 4 sessions in which the task had been performed at 

least 7 times, and only 1 session which constituted a novel exposure. Thus, changes in 

theta phase offset with running speed cannot be attributed to confounding changes in 

novelty. Another important consideration is the extent to which realistic accelerations 

and decelerations can break the assumptions about speed in the LTT framework. These 

assumptions include that the theta phase of place cell spikes preferentially follows time 

remaining regardless of speed changes within a spatial sequence to support a 

consistent time transform, which we verified here (Supplementary Figure 9A).  

 

In particular, the relationships between theta phase, remaining time, and remaining 

distance were analyzed in the same way as in Figure 2, but now restricted only to 

traversals characterized by deceleration (-80 cm/s2 to -10 cm/s2), a constant speed (-5 

cm/s2 to 5 cm/s2), or acceleration (10 cm/s2 to 80 cm/s2). The significant distance-

conditional relationship between phase and remaining time persisted in all 3 conditions 

(Supplementary Figure 9A; Wilcoxon signed rank tests; deceleration: signed rank= 91, 

p=2.441e-4, constant speed: signed rank= 91, p=2.441e-4, acceleration: signed rank= 

90, p=4.883e-4). However, time coding was particularly prominent in accelerating 

conditions, and distance coding more prominent in decelerating conditions 

(Supplementary Figure 9A), potentially forming a behavioral division between the 
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operation of the logarithmic time transform and the logarithmic distance transform that 

make up LTT.  

 

Another assumption is that a linear time warp factor constitutes a good approximation of 

most presentations of a spatial sequence to hippocampal circuits, enough to be of 

practical use during realistic behavior. We test this in the present dataset by feeding in 

all field traversals of varying amounts of speed and acceleration/deceleration into an 

LTT simulation converting a field sequence into a theta sequence (Supplementary 

Figure 9BC). Results show that moving from the extremes of 80cm/s2 to -80 cm/s2 

corresponds to increasing phase separation and decreasing phase offset both by about 

30 degrees. This corresponds to about 10 milliseconds or less, an amount contained 

within even fast gamma cycles that help parse theta sequences, suggesting the speed 

changes in this dataset do not break the constant speed assumption for coding and 

decoding purposes. The simulations highlight how speed changes must be evaluated 

within the relatively small spatial range that determines the LTT, namely the range of 

ends of partially overlapping fields participating in the sequence. Speed is likely to be 

relatively constant in this small region for closely overlapping fields given natural 

limitations on both acceleration and deceleration during this time, including the limits of 

skeletal muscle force that allows for changing speed up or down.  Still, an important 

future test of LTT will be to reassess its robustness to realistic amounts of field overlap 

and speed change within field sequences in ethologically relevant environments.  
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Figure 2-6. Summary of theoretical and empirical support for Logarithmic Theta Transform (LTT) 

producing speed-invariant code for field sequence in the hippocampus. 

A) LTT posits that hippocampal theta phase precession has a nonlinear shape that allows phase 
to represent the time since field entry on a logarithmic scale (spike time in theta cycle), 
leading to equivalent downstream post-synaptic coincidence detection across a different 
running speeds. 

B) Predicted Neural Dynamics 1: Theta phase has logarithmic relationship with time in individual 
place fields with quantitative specificity. Empirical data matches this prediction and shows 
that the hippocampus uses a temporal scaling factor of 1.4, identical to the spatial scaling 
governing the spacing between entorhinal grid modules. 

C) Predicted Neural Dynamics 2: Theta sequences display a logarithmic spike timing difference 
gradient, decreasing in phase increment from early to late within theta cycles. Empirical data 
matches this prediction. 

D) Predicted Neural Dynamics 3: As running speed increases, theta sequences display i) no 
change in phase separation (i.e. the spike timing pattern remains the same), ii) increase in 
temporal compression ratio (Dphase/Dtime), and iii) decrease in mean phase. Empirical data 
matches this prediction. 
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2.4 Discussion 

Here we have shown that the theta phase code logarithmically represents time and 

distance in a place field, enabling the speed-invariant representation of place field 

sequences within theta cycles (Figure 6). This logarithmic theta transform (LTT) 

framework parsimoniously organizes known features and predicts novel features of the 

hippocampal neural code for episodic information, with implications for more general 

principles of sequence coding in the brain, as explored further below.  

 

Implications for sequence coding  

A useful perspective for understanding any given neural activity is to consider not only 

what behaviorally relevant information is coded by properties of this activity, but also 

what aspects of the activity can be decoded by downstream neural readers (Buzsáki, 

2010; Hopfield, 1995; Johnson, 2000). Applying this reasoning to hippocampal 

sequence coding, the behaviorally dynamic sequences of place cell activity at different 

speeds (Maurer et al., 2012; Parra-Barrero et al., 2021) would not be well-decoded by a 

traditional perceptron-like readout and requires an alternate explanation. This is 

because synaptic weights conflate the relative pattern and salience of sequence 

elements, making these networks insensitive to changes in time-order and fragile to 

changes in time-warp (Hopfield, 1996; Hopfield & Brody, 2001).  

 

In the LTT framework proposed and validated here for hippocampal theta sequences, 

theta phase coding functions to remove scalar changes in behavioral time using a 
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logarithmic scale. One of the defining features of space is its invariance to the speed of 

the observer, so we view this removal of the effect of speed on spike time patterns as 

an important step in constructing or supporting a spatial code. Through this 

transformation, a spatial field sequence traversed at a variety of speeds, or 

contemplated at different spatial scales (Gupta et al., 2012; Wikenheiser & Redish, 

2015a), is encoded by an identical theta sequence pattern, allowing for an equivalent 

decoding of the relative spike time pattern by a post-synaptic neuron. Maintaining a 

speed-invariant spike time pattern not only facilitates the consistent functioning of 

downstream temporal summation, but also that of any neural processes that rely on 

timing such as spike-timing dependent plasticity, synaptic facilitation and depression, 

and the dynamics of voltage-gated intrinsic conductances.  Importantly, this mechanism 

for mapping variable behavioral time onto stable neural time operates within individual 

theta cycles and should not be confused with the notion of log-normal distributions of 

neural firing rates in the brain (Buzsáki & Mizuseki, 2014). The log-normal distribution is 

the observation of skewed rates and other features across neural populations (Mizuseki 

& Buzsáki, 2013; Roxin et al., 2011) whereas LTT is a functional framework working at 

the level of single theta cycles to algorithmically explain how stable spike time patterns 

emerge in the hippocampus. 

 

Of note, this strategy for achieving time-warp invariant sequence coding requires only a 

fiducial time representation accessible to all neurons involved, and not necessarily a 

highly repeatable or periodic one (Hopfield et al., 1998). The phase-based encoding and 

decoding of field sequences could operate on a cycle-by-cycle basis, such that even if 
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absolute delays vary slightly in terms of milliseconds across cycles, these changes are 

shared amongst encoding and decoding neurons to produce an identical response. The 

preference for theta phase separations rather than absolute time separations could be 

mechanistically enforced by the phase-specific interneuron class activities (Klausberger 

& Somogyi, 2008) following theta rhythm rather than absolute time, determining the size 

of effective windows for temporal summation based on the frequency of the local cycle. 

The fact that theta cycles can be used to estimate time beyond its approximate period 

(~120 ms) is independent of its ability to form the time-domain code of phase for timing 

less than a theta period. Timing can be defined even more generally as relative to 

widely-available behavioral events such as binaural sound arrival (Carr, 1993), sniffing 

(Deschênes et al., 2012), or whisking (Bush et al., 2016) events. Indeed, recent findings 

on hippocampal formation activity in bats during spatial navigation show no theta rhythm 

but do show spike synchrony and phase coding relative to large LFP fluctuations (Eliav 

et al., 2018), which as reported seems to retain the concave-down, “banana” shaped 

curvature that could also follow the logarithmic transformation pattern. This potentially 

supports the conservation and greater generalizability of this framework beyond 

hippocampal function to circuits with widely available, but not periodic, timing signals 

shared amongst neurons. 

 

In addition to this critical function of maintaining stable neural timing, LTT also has 

several additional information processing advantages, including supporting time-warp 

invariant pattern compositionality (Tank & Hopfield, 1987). Applied to place field 

sequences, this means different sequences can be recognized separately and 
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combined at another step downstream if they have matching time-warp, effectively 

coding for sequences of sequences to allow spatial cognition involving longer paths 

than fit within single theta cycles. LTT also allows for separation of the coding of pattern 

scale and pattern salience, where the former can be coded in logarithmic time shift and 

the latter coded in synaptic weights and firing rate without mutual interference. Delay-

based coding structures show greater tolerance in responding to partial information 

(Hopfield et al., 1998), another attractive feature for spatial navigation processing, which 

must integrate many sources of information without over-dependence on any single 

one, such as optic flow or self-motion estimates (Harvey et al., 2009; Poulter et al., 

2018).  

 

The LTT framework further suggests a new way to consider rate and time coding in the 

hippocampal formation, helping to unify the traditional viewpoints of spatial coding and 

episodic memory formation involving temporal sequences (Buzsáki & Moser, 2013). 

This combination can be achieved by assigning the rate-coded fields the function of 

tracking spatial nodes that can be presented at a range of temporal separations 

depending on running speed, whose relationships are then encoded into relative spike 

timings in a time-warp invariant way using LTT. Extending this reasoning, the rate-

coded fields need not represent positions, but could represent nodes along any 

continuous dimension of motor or sensory space, such as sound wave frequency 

(Aronov et al., 2017), to create stable internal sequences despite external timing 

variability more generally. LTT in hippocampal circuits can thus serve as a fruitful 

scaffold to build further understanding of neural strategies for sequence coding. 
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Implications for the hippocampal neural code 

An important parallel question is the physical instantiation of LTT in the hippocampus, 

which has thus far been considered phenomenologically here for its functional 

consequences, independent of the mechanisms producing it. Potential neural 

mechanisms for logarithmic time coding in the hippocampus include the temporal decay 

of post-synaptic potentials, the time dependence of subthreshold conductances, and 

short-term synaptic plasticity shaping phase precession, all of which are predicted to 

involve faster dynamics with each passing theta cycle. A more network-level 

mechanism is in the dynamic frequency of theta-coupled gamma rhythms that are 

known to orchestrate pyramidal cell spike times through local inhibitory circuits in the 

hippocampus (Bieri et al., 2014; Colgin, 2015). The switch from fast gamma to slow 

gamma could correlate with the logarithmic shape described here by coupling with place 

cell dynamics at different halves of a place field (Fernández-Ruiz et al., 2017). In 

particular, if phase precession across theta cycles is discretized by gamma cycles, the 

precession step-size would be small late in the theta cycle where fast gamma occurs, 

corresponding to slow phase precession, but large in the early theta cycle where slow 

gamma occurs with wider cycles and thus faster phase precession. Of note, the 

direction of theta cycle asymmetry (Belluscio et al., 2012) and the preferred phases of 

slow gamma and fast gamma (Bieri et al., 2014; Colgin, 2015; L. Zhang et al., 2019) fit 

well with the dynamics of the corresponding branches of logarithmic phase precession 

(Figure 3; Supplementary Figure 6). Using theta-coupled gamma rhythms to generate a 

consistent logarithmic transformation would require that gamma frequencies increase 
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with running speed in parallel with theta frequency increases with running speed. 

Indeed, this relationship between gamma frequency and running speed has been observed 

and is linear on a log-log scale (Ahmed & Mehta, 2012; Zheng et al., 2015), consistent 

with a logarithmic representation of behavioral time by gamma oscillations within theta 

cycles. This possible mechanism for LTT would put gamma frequency changes across 

theta cycles in a new light, not only forming separate information channels (Schomburg 

et al., 2014; Zheng et al., 2016), but also with the succession of frequencies itself being 

important to transform time into an internal logarithmic representation of time.  

 

In addition to these constraints on local network dynamics, LTT makes predictions 

about the downstream neurons that detect theta sequences. The identity of these cells 

is under investigation, with promising candidates including those in the medial prefrontal 

cortex (Jones & Wilson, 2005), retrosplenial cortex via the subiculum (Nitzan et al., 

2020), and ventral striatum (Meer & Redish, 2011) to allow decision-making, memory 

consolidation, and reward prediction, respectively, based on spatial sequence 

information. In this framework, such cells are predicted to possess integration 

mechanisms that operate on the timescale appropriate for the readout of theta 

sequences, and recent studies show that active dendritic delay lines are sensitive to 

sequences on this timescale in cell types throughout the brain (Branco et al., 2010; 

Ishikawa & Ikegaya, 2020).  

 

Another attractive candidate for theta sequence decoders is the dendrites of place cells 

themselves, such that upcoming place fields are generated or stabilized through 

dendritic detection of theta sequences formed by preceding place cells during 
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navigation. Recent work showing that local CA1 circuits contribute to the spatial 

selectivity of place fields (Geiller et al., 2022; Zutshi et al., 2021) and that dendritic 

integration occurs within CA1 circuits during sharp-wave ripple sequence replay 

(Ishikawa & Ikegaya, 2020), particularly in association with spatial learning in a novel 

environment (Rolotti et al., 2022), strengthens the plausibility of this prediction. 

Furthermore, the backwards phase shift of CA3 theta sequences and dendritic 

depolarization relative to CA1 firing (Dragoi & Buzsáki, 2006; Mizuseki et al., 2009), the 

functional connectivity of CA3 pyramidal cells with the dendrites of CA1 pyramidal cells 

(Bittner et al., 2015), and the approximately symmetric bell shape of firing rate within 

place fields is consistent with the generation of place fields through partial-full-partial 

detection of sequential activity amongst preceding fields during navigation. This predicts 

that sequential activation of consecutive dendritic regions in CA1 pyramidal cells would 

be visible with subcellular calcium imaging during place field generation, similar to that 

observed during sharp-wave ripples (Ishikawa & Ikegaya, 2020). The preferential 

response of dendritic detection mechanisms in these decoders to the nonlinearly 

shaped theta sequences shown here, accelerating in phase from past to future within a 

theta cycle (Figure 4), is another prediction made by the LTT framework. This could be 

tested using sequential activation of dendritic regions with controlled spatiotemporal 

profiles using holographic two-photon optogenetics (Adesnik & Abdeladim, 2021). 

 

As far as the shape of theta sequences themselves, we have shown that spikes from 

the same pair of fields present at different phase separations, depending on when in the 

theta cycle the spikes occur as predicted by LTT. The amount of space these phase 
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separations represent depends on the field width of the considered fields, but the 

consistent monotonic relationship between theta phase and relative phase separation 

(Figure 3; Supplementary Figure 7) suggests that the phase-to-place slope within theta 

sequences increases into the represented future for a given theta cycle. This phase-

place resolution for upcoming positions also depends on available landmarks, 

acceleration, and the navigational planning of the rodent as shown by Gupta et al. 

(Gupta et al., 2012), but we show it also has a consistent relationship with theta phase 

itself in this dataset. Reexamining this relationship in tasks with more landmarks, speed 

variation, and navigational choices similar to those in Gupta et al. (Gupta et al., 2012) 

would help reveal how much LTT can shape theta sequences in the context of these 

changing navigational variables. 

 

 

Our results lastly point toward the importance of a quantitative temporal scale factor of 

approximately 1.4, matching the spatial scale factor governing grid module spacing 

changes (Barry et al., 2007; Stensola et al., 2012).  Theoretical studies of entorhinal 

function investigating the reason for this constant grid module ratio point toward a 

maximum efficiency “base-b” representation of space using noisy neurons to be in the 

range 1.4-1.7 (Wei et al., 2015) or no more than 1.5 (Stemmler et al., 2015). We 

suggest similar principles may apply to the efficient representation of time within place 

fields by theta phase given this quantitative agreement of the base used for 

representation. The matching scale factor used for logarithmic compression may also 

reflect the mechanistic connection between entorhinal input and hippocampal phase 
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precession (Fernández-Ruiz et al., 2017; Schlesiger et al., 2015), and may thus also 

point to similar principles of speed-invariance in spike timing patterns amongst grid 

cells. The fact that grid module scale changes with respect to the ratio but not the 

absolute difference in width (Barry et al., 2007; Stensola et al., 2012) is reminiscent of 

Weber’s law that perception is proportional to relative changes rather than absolute 

changes in a stimulus. Weber’s law is achieved in mathematical form by having 

perception be logarithmic with stimulus intensity (Portugal & Svaiter, 2011), and our 

work shows that the shape of phase precession in the hippocampus may support this 

very transformation for spatiotemporal information, with several associated predictions 

supported empirically here. This quantitative convergence to logarithmic coding can 

inspire productive investigation into the mechanisms and computational principles 

governing episodic memory processing in entorhinal-hippocampal circuits and 

potentially other brain circuits that must deal with variably timed sequences. 

 

Overall, this work proposes and finds empirical support for a logarithmic latency code 

being implemented by hippocampal phase precession to form theta sequences that 

stably represent distances between fields, regardless of the variable time that elapses 

between them at different running speeds. This scale-to-offset transforming function of 

phase precession can supplement the traditional path integration framework that 

depends on a potentially noisy (Zilli & Hasselmo, 2010) and often saturating running 

speed signal (Hinman et al., 2016) to estimate distance, ensuring in the neural code the 

speed-invariance that is a defining feature of distance itself.  The question of how to 

reconcile distance coding at different speeds also manifested in theta sequences being 



 
 

 56 

proportional in length to running speed despite phase precession seemingly coding for a 

fixed distance regardless of running speed (Gupta et al., 2012; Maurer et al., 2012). 

This apparent paradox on the theta sequence population level was clarified by recent 

analysis showing that the apparent speed dependence of theta sequence trajectory 

lengths can be explained by the speed-dependence of place field width, with phase still 

stably coding for distance across laps (Parra-Barrero et al., 2021). To a similar end, we 

show that time sensitivity in the theta phase for distance also exists within individual 

fields particularly during acceleration (Supplementary Figure 9), and a distance-coding 

function for theta sequence that is invariant to speed can nevertheless arise using a 

logarithmic representation of spatiotemporal variables within theta cycles as achieved 

by the non-linear shape of phase precession. 

 

It should be noted that previous work has used datasets involving tens of fields to 

initially assess the nonlinear shape of phase precession, finding that two normal 

distributions optimally describe the phase precession cloud, speculating either two 

separate mechanisms controlling phase precession in the two halves of a place field or 

an accelerating phase precession across a field, even in circular mazes where position-

induced speed asymmetries were less likely to occur (Yamaguchi et al., 2001). 

Similarly, a dataset involving 100s of place fields found more phase variability was 

found in the 2nd half of a place field (Dragoi & Buzsáki, 2006), supporting a significant 

difference between first and second halves of the phase precession curve and arguing 

against a uniform slope or linear phase precession curve, instead suggesting a banana-

shaped phase precession curve. Here we have analyzed data across more than 1000 
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place fields in support of a more quantitative framework in which this shape implements 

a logarithmic transformation from spatial navigation across time into theta phase, 

creating a scale-invariant code for space in the relative phase of place cell spikes.  

2.5 Materials and Methods 

Data subjects 

All analyzed data comes from the linear maze, bilateral silicone probe recording 

sessions from hippocampal CA1 of 3 Long-Evans rats, including head-mounted LED 

data to track position and velocity simultaneous with electrophysiological recordings 

(Grosmark & Buzsáki, 2016). These are from the hc-3 dataset made publicly available 

by the Buzsaki lab on the Collaborative Research in Computational Neuroscience 

website (CRCNS.org). This dataset and associated descriptions can be obtained here: 

 

Mizuseki, K., Sirota, A., Pastalkova, E., Diba, K., Buzsáki, G. (2013) 

Multiple single unit recordings from different rat hippocampal and entorhinal regions 

while the animals were performing multiple behavioral tasks. CRCNS.org. 

http://dx.doi.org/10.6080/K09G5JRZ 

 

Only sessions involving CA1 place cells on linear maze tasks were extracted using the 

following sql command, yielding 80 sessions performed by rats ec013, ec14, and ec016: 

 '"SELECT distinct s.topdir, s.session, e.animal, s.duration ' ... 

          'FROM cell c, session s, epos e, file f ' ... 

          'WHERE c.topdir=s.topdir AND c.topdir=e.topdir AND s.session=f.session ' ... 

          'AND c.region=''CA1'' '... 
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          'AND (s.behavior = ''linear'' OR s.behavior = ''linearOne'' OR s.behavior = 

''linearTwo'') '... 

          'ORDER BY s.duration desc;" 

 

Data analysis 

All analysis was performed using the MATLAB2017b software and the Great Lakes 

Computing Cluster at the University of Michigan. The following quantities were 

determined using these methods: 

 

Theta phase 

Theta phase of each spike was defined with respect to each cycle of the filtered LFP 

recorded from the reference channel in each session closest to the pyramidal cell layer 

of hippocampal CA1 as specified in the hc-3 meta-data. In particular, after peaks and 

troughs in the 6-12 Hz filtered LFP were initially identified, the maximum of the 6-40 Hz 

filtered LFP between the neighboring troughs of each peak was taken to define the 

more precise cycle boundaries (Ghosh et al., 2020). This is to account for the known 

asymmetry within theta cycles (Belluscio et al., 2012) and associated fast dynamics that 

are filtered out by the initial low-pass filter. After assigning each spike to a theta cycle 

defined this way, its theta phase was stored as the time from the beginning of that cycle 

to the spike time, divided by the duration of the cycle, multiplied by 360 degrees.  

 

Place cells and fields 
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Place cells were initially identified using the same procedure as previously published 

(Grosmark & Buzsáki, 2016), including binning all spikes into 2 cm bins, smoothing with 

a 5 cm Gaussian kernel, and dividing this by the total time spend at each position to 

obtain firing rate for each position and direction of travel in each session. This also 

included removing cells with peak average firing rate of less than 1 Hz amongst these 

spatial bins, regardless of the shape of these fields. This was to consider all cells with 

enough place-specific spikes to allow quantitative evaluation of phase precession. 

 

Strongly phase precessing cells and the spatial and temporal boundaries of phase 

precession for each field were chosen as the position and times at which theta phase 

coupling began and ended. In particular, including spikes accumulated across each 

whole session, positions at which theta phase was not significantly different from 0 were 

automatically detected by a one-sample test for mean direction by circ_mtest of the 

MATLAB CircStat toolbox (Berens, 2009). These boundaries were then adjusted by 

visual inspection to eliminate noisy detections. This semi-automatic boundary 

specification was important because rate-based boundary detection of place fields does 

not enclose the true boundaries of theta phase coupling (Souza & Tort, 2017) and thus 

phase precession dynamics as is of primary interest here. This process yielded 1227 

different place fields used in all subsequent analyses unless otherwise stated. 

 

Time remaining in field 

The time remaining in field for any given spike is measured as the number of theta 

cycles that occur in between the spike and the time at which the field was exited. The 
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time at which a field was exited was determined as the next time at which the position 

time series, smoothed with a moving average using a 0.5 second window, crossed the 

field end position with positive speed. Speed was determined using the MATLAB 

function movingslope applied to the smoothed position time series over a 0.25 second 

window with a 1st order polynomial model. The total duration of each field was 

determined by collecting the maximum number of theta cycles remaining in field from 

each lap, disregarding those below 4 theta cycles and those from laps in which the 

animal’s smoothed speed drops below 5 cm/s to avoid outlier-based distortion, and 

storing the 95th percentile of these values. When comparing across fields, the time in 

field associated with each spike was normalized by dividing by this total field duration. 

 

Theta phase vs Time remaining in field relationship 

Only spikes where the animal displayed a speed of at least 5 cm/s were included for 

distance-time coding comparison analysis (Figure 2A-C). Acceleration was calculated 

using the movingslope to estimate the time derivative of speed, using a 2nd order 

polynomial fit in a local window of 2 seconds. The conditional phase gain of distance 

and time were computed as the slope of the circular-linear fit to each curve. When 

comparing distance and time variables related to each spike, distance was discretized 

per theta cycle to resemble how time is measured in number of theta cycles, assigning 

each spike the average position the rat is in over the course of its corresponding theta 

cycle. To assess the error of linear models (Figure 3), the MATLAB function angdiff was 

used to calculate the circular difference between the phase predicted by the linear 

model at the spike’s time in field, and the actual phase at that time in the field.  
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Linear-circular regression slope and correlation coefficient were acquired using the 

function kempter_lincirc as previously published for analysis of phase precession slope 

(Climer et al., 2013; Kempter et al., 2012). The code was modified to restrict the search 

space of circular-linear regression slopes between -3 and 3 when the linear variable 

was in normalized units to prevent the overfitting that often occurs with steep slopes that 

allow wrapping around the circular range. When circular-linear regression is used for 

comparing maximum probability phase values to time remaining in field, peak phase 

was computed as the phase corresponding to the peak of Gaussian kernel estimate of 

distribution obtained using CircStat function circ_ksdensity. Phase gain vs time was 

calculated using movingslope, with parameters set to estimate derivatives based on a 

2nd order polynomial fit in a local window of 0.2 of the total field duration or 3 theta 

cycles, whichever is larger. Heat maps show either circular mean phase (CircStat 

function circ_mean), joint probability distribution, or joint probability distribution given the 

x value, which is the joint probability with each column divided by the total probability of 

that column. These are smoothed with a 2D Gaussian kernel with a standard deviation 

of 1.26 bins instantiated over a square of width 7 bins, with the number of bins dividing 

the range in each dimension being 30 unless otherwise indicated. 

 

 

Logarithm of time remaining in field 

Wherever logarithm is mentioned, unless otherwise specified, we refer to the shifted 

and scaled version (logb(x) + k)/k for x domain between 0 and 1 and with k=7 (Lisman & 
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Jensen, 2013) so that the output is also expressive in the range 0 and 1, or in the range 

0 and 360 degrees when referring to phase within theta cycles. When identifying 

parameters of the logarithm, the units of cycle fraction between 0 and 1 rather than 

degrees are used for the output and units of fraction of field are used for the input. 

Quantification of the relationship between theta phase and the logarithm of time 

remaining in field are then the same as between theta phase and time remaining in field 

as above. When assessing phase gain across time, this was compared to the 

theoretical derivative of the logarithm which is given by the equation, 

 

     !
!"
log# 𝑡 = 	

$
"
' $
%&#
(     

 

Determining base of logarithm 

The base of the logarithm and the slope of the linear relationship between the inverse of 

time and time-derivative of the logarithm are also associated by equation (1). The 

proportionality constant of this relationship specifies the base of the logarithm (Figure 3) 

and can be estimated using linear statistics. Accordingly, for each field with at least 100 

spikes, all theta cycles corresponding to a given remaining time in the field were 

grouped and the circular mean phase corresponding to each unique remaining time was 

computed. To compute the time-derivative of the relationship between mean phase and 

remaining time, the aforementioned function movingslope was used with 1st order model 

and a window size of 1/3rd of the field duration or 3 theta cycles, whichever is larger.  To 

avoid spurious slopes associated with circular wraparound, the mean phase vs 

remaining time curve was circularly shifted in 1 degree increments until the number of 

(1) 
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phase jumps greater than 180 degrees between consecutive cycles was minimized.  

The relationship between the inverse of the resulting temporal phase gain vs remaining 

time was assessed in the middle 60% of the field (to avoid edge effects) using the 

MATLAB function robustfit with default parameters to return a best linear fit slope 

reflecting the amount of curvature in the phase precession curve. Fields with 3 or less 

points to make this linear fit were excluded. The resulting slope was converted into a 

best-fit logarithm base by interpolated table-lookup of the same slope associated with 

numerically generated logarithmic curves of a range of bases. With each field having its 

associated best fit logarithm base, the logarithmic fit was completed by searching all 

possible offsets of a logarithm with the corresponding base in 1 degree and one-

hundredth of a field duration increments for the one producing minimal mean circular 

error relative to the mean phase precession curve. The performance of the resulting 

logarithmic model was compared to that of a circular-linear regression model by 

computing the absolute value of the circular difference between the mean phase and 

predicted phase according to each model, at each cycle corresponding to a given 

remaining time in field. The median absolute error across the field was taken as a 

measure of performance of each model so that a logarithmic vs linear fit could be 

compared across the population of fields (Figure 3). Supplementary Figure 6 illustrates 

what the curvature corresponding to a similar range of logarithm bases looks like and its 

implications for the temporal resolution and dynamic range of the resulting coding 

scheme using theta phase bins. In particular, a base of 1.4 allows coding using a 

minimal separation of about 10 milliseconds, which could be physiologically 

distinguished by fast gamma oscillations (Bieri et al., 2014; Colgin, 2015). On the other 
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hand, a base of 1.2 allows only incomplete coding using 5 out of 7 bins, and a base of 

2-3 implies timing separations on the timescale of an individual action potential and only 

half of the phase output domain or less for coding (Supplementary Figure 6).  

 

Theta phase difference across cells 

To compare coordination of theta phase across overlapping place fields in the last half 

as compared to the first half of theta cycles (Figure 4), we analyzed all pairs of place 

fields whose overlap facilitated such a scenario. This analysis requires focusing on 

place cell pairs that are overlapping and also whose field centers are spatially close 

enough such that their spike time representations both fit within the last half of theta 

cycles initially, and both transition into the first half of theta cycles later. Operationally 

this was defined to occur for place fields whose centers were no more than half the 

width of the smaller field apart. These pairs are likely to be represented by co-firing 

within the same half of a theta cycle, allowing differences between the first and last half 

of theta cycles to be assessed. Spike phase differences were calculated for every theta 

cycle in which both cells fire spikes that occur in the same order as the order of their 

respective field centers. These differences were calculated using the MATLAB function 

angdiff, and the resulting phase differences were separated by whether both spikes in 

the difference occurred in the first half or last half. These late and early groups were 

compared with a pairwise nonparametric test for a significant difference across all 377 

field pairs tested. 
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Theta sequence property vs running speed theory 

 

Equations: 

 

The following equations show how the speed-phase signatures are predicted from each 

model during speed changes in which theta phase is coding for distance, linear time, or 

the logarithm of time, respectively. 

 

Linear distance compression:  

𝜃!"#$(𝑡) = 𝑘𝑑	

𝜃!"#$ )
𝑡
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Linear time compression: 
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Logarithmic time transform: 

(2) 

(3) 
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𝜃)34(𝑡) = log(𝑘𝑡)	

𝜃)34 )
𝑡
𝑠+ = log /𝑘 )

𝑡
𝑠+0	

𝜃)34 )
𝑡
𝑠+ = log(𝑘𝑡) − log(𝑠)	

𝜽𝒍𝒐𝒈 )
𝒕
𝒔+ = 𝜽𝒍𝒐𝒈(𝒕) − 𝐥𝐨𝐠(𝒔) 

 

, where 𝜽model (t) gives the theta phase associated with time t as predicted by the 

corresponding model, t is the amount of time remaining until reaching the end of the 

field, k is a proportionality constant converting between behavioral time or distance and 

theta phase, d is the distance remaining to the end of the field, and s is a time-warp 

factor proportional to the animal’s running speed. For a linear distance compression 

model, the phase is determined by distance independent of time, implying no changes 

in phase separation or mean phase with an increase in running speed but a proportional 

increase in phase-time compression ratio to maintain the distance code (Figure 5B; 

Equation 2). We note that these predictions for the effect of speed on theta sequence 

properties are identical for other transformations of distance into theta phase, such as a 

logarithmic distance transformation, and therefore explicitly analyze the linear distance 

compression case as a representative of distance-phase coding here. For a linear time 

compression model, increases in running speed effectively cause time compression that 

become equally manifest in theta phase separation and mean theta phase, with phase 

and time in constant proportion such that phase-time compression ratio does not 

change with speed (Figure 5C; Equation 3). For a logarithmic theta transform model, 

(4) 
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increases in running speed cause a negative shift in phase offset without affecting theta 

phase separation, but with a similar increase in phase-time compression ratio as in 

linear distance compression, allowing it to maintain constant phase differences despite 

changes in time separation (Figure 5D; Equation 4). Phase offset is estimated using 

mean phase as a model-free surrogate measure. 

 

Theta sequence properties vs behavior  

Theta sequences were identified by first collecting all theta cycles in which at least two 

place cells in a given session fired spikes. The corresponding theta sequence for each 

such theta cycle was taken to be the sequence of representative mean phases 

(circ_mean) of the spikes from each cell within the cycle. Only sequences of place fields 

in which the narrowest field was no less than 75% of the width of the widest field in the 

sequence were considered for analysis so that place fields were of similar size and 

percentage of field traversed was a meaningful quantity for comparison across fields.  

The distance within each field as a fraction of the field’s respective width and the time 

remaining until the animal reached each field’s end, relative to the longest typical 

duration amongst the fields, were also collected for each member in a given theta 

sequence. Typical duration for each field was defined as the peak of a Gaussian kernel 

estimate (MATLAB function ksdensity) of the distribution of field durations across laps. 

To control for position within a field sequence across laps, a representative position for 

each field sequence was defined as the peak of a Gaussian kernel estimate of the 

distribution of positions at which the same field sequence was detected, and only theta 
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sequences within 1/12th of an average field width of this representative position were 

considered for further analysis (dashed lines in Figure 5FG).  

 

To help control for variation in distance separation amongst fields in addition to mean 

position, only sequences with an average distance separation within 15%-85% of the 

average field width in the sequence were considered for further analysis.  Running 

speed was also assigned to each theta sequence as the average speed within the 

associated traversal from the earliest field start position to the latest field end position. 

Phase separation within each theta sequence was defined as the circular mean of 

consecutive circular differences (MATLAB function angdiff) amongst the representative 

phases of each participating field taken in the order of their respective field centers. 

Phase-time compression ratio for each theta sequence was defined as the absolute 

value of the average of such consecutive circular differences in phase, each divided by 

the difference in percentage time duration remaining to each field’s respective end 

position as defined above. The mean phase of a theta sequence was taken to be the 

circular mean of the representative mean phases from each participating field.  

 

To compare the phase separation within theta sequences against behavioral variables 

including distance between fields, running speed, acceleration, and progression within 

field, each behavioral variable was divided into 16 equally spaced bins in their 

respectively specified ranges (Supplementary Figure 6). The mean phase separation as 

described above was averaged within each bin for which the 3rd specified variable was 
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also in its color coded range and displayed +/- standard error of the mean for bins 

containing at least 10 field sequences. 

 

Combined population data was analyzed by taking the mean value of each property 

corresponding to each of 12 speed bins between a minimum and maximum speed, with 

circular variability quantified using the upper and lower limits of the one-sample test for 

mean angle (circ_mtest of CircStats package) or with standard error of the mean for 

phase-time ratio (Figure 5H). Speed was normalized to allow comparison across field 

sequences with different characteristic widths by dividing the speed originally in meters 

per second by the average width of fields participating in a theta sequence, yielding 

speed units of field widths per second (written as fields/sec). Linear regression was 

used to assess the relationship between the running speed and the population level 

theta sequence properties. Individual field sequences with sufficient speed variation 

across laps were identified as those having at least one low speed traversal with speed 

less than 0.55 fields/sec and one high speed traversal with speed greater than 1.05 

fields/sec (approximately ± 1 standard deviation from the mean speed across all field 

sequences). The difference between phase separation, phase-time compression ratio, 

and mean phase in these two groups of traversals for each individual field sequence 

was obtained, and the center of these distributions being different from 0 was 

statistically evaluated to assess the effect of speed and its direction (Figure 4I). The 

average distance in field and average separation in distance within each field sequence 

was also evaluated for the same group to assess whether the controlled differences in 

distance could nevertheless explain the results (Figure 4I).  
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LTT simulations with empirical movement trajectories 

To simulate the predictions of the LTT framework for realistic movements including 

accelerations and decelerations within the traversal of a field sequence, all trajectories 

through field sequences in the dataset were first collected as 21,608 position time 

series, each with its starting time and position subtracted out. Four fields implementing 

LTT were simulated as starting phase precession at 360 degrees, 2 seconds (~15 theta 

cycles) prior to reaching its respective end using the same definition as above for 

defining field exit in data analysis, lasting for 2 seconds. The first field ended at 1 m and 

each subsequent field ending was offset by 10 cm relative its partially overlapping 

neighbor (see Supplementary Figure 8B). The theta sequence was obtained as the 

sequence of 4 phases exhibited by the 4 fields at the readout position of 0.8 m. The 

average speed and acceleration of each trajectory was determined using the same 

process as described above for data analysis and the predictions of LTT for theta 

sequence offset and mean separation were collected corresponding to the trajectories 

of various speeds and accelerations (Supplementary Figure 8BC). 

 

Statistics 

For testing whether correlation coefficients and slopes of phase vs phase gain 

relationships are significantly different from zero, and for paired sample difference data, 

we use the two-sided nonparametric Wilcoxon signed rank test. For statistical 

comparison of population medians such as conditional phase gain of distance in field 

and time in field and the median spike time difference between early and late theta 
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cycle spike pair groups, we employ the two-sided nonparametric Wilcoxon rank-sum 

test. To statistically test whether theta sequence properties (Figure 5) and behavioral 

parameters (Supplementary Figure 8) are different between high and low speed groups, 

we performed a bootstrap reshuffling test by shuffling the speed group label across all 

speed-property points to create 500,000 bootstrapped surrogate population pairs from 

which the corresponding differences were recomputed. This procedure captures the 

distribution of property differences between the groups that can be explained by random 

chance. The probability of observing differences by chance was computed as the area 

under this distribution more extreme than the difference computed for the original pair of 

speed groups. Significance was determined relative to a significance threshold of 

p=0.05. 
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Supplementary Figure 2-1. Firing rate level response to time-warp amongst place cells. 

A) Demonstrations of time-warp via speed changes in the firing rate response of single place cell 
over position (upper) and time (lower).  

B) Demonstration of time-warp of spike time raster plots via speed changes across laps within single 
session. 
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Supplementary Figure 2-2. Testing logarithmic theta transform (LTT) prediction 1 (continued): 

Theta phase correlates strongly with remaining time in field within individual fields.  

A-D) Raw data from one example field during a lap with slow running (upper row) or fast running (lower 

row) but with the same remaining time (7 theta cycles) to the end of the field. Simultaneously shown are 

position (purple), theta oscillations (beige), and spike times (black) across time over the single traversal.  

Right panels corresponding to slow running lap (upper) and fast running lap (lower) show the theta phase 

of spikes plotted against remaining distance and remaining time.  
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Supplementary Figure 2-3. Testing logarithmic theta transform (LTT) prediction 1 (continued): 

Theta phase correlates strongly with remaining time in field when controlling for distance. 

A) Example data from 2 place fields (top, bottom) showing the relationship between (left) theta 
phase and distance remaining in field when controlling for remaining time in field (analyzing only 
spikes occurring within 1% of the field duration), and that between (right) theta phase and time 
remaining in field when controlling for remaining distance (analyzing only spikes occurring within 
1% of the field width). Dashed lines indicate the result of circular-linear regression. Random jitter 
is added to the remaining time to allow better visualization of otherwise overlapping data points.  

B) (top) Distribution of average circular-linear regression correlation coefficients across population of 
fields between spike theta phase and remaining distance or time when controlling for the other.  
(bottom) ) Distribution of average circular-linear regression slopes across population of fields 
between spike theta phase and remaining distance or time when controlling for the other.   

C)  (top) Each field with at least 6 data points in the controlled condition (spikes occurring within 1% 
of the field width) is represented as a dot in the space relating its mean value of remaining time 
(left), remaining distance (middle), and theta phase (right) in the low-remaining time group (x-
coordinate) with its mean value in the high-remaining time group (y-coordinate) relative to the x=y 
line (dashed line). (bottom)  Same as above except restricted to spikes occurring within 1% of 
field duration. 

D)  (top) Distribution of average circular-linear regression correlation coefficients across population 
of fields between spike theta phase and time restricted to spikes occurring within 1% of the field 
width.  (bottom) ) Distribution of average circular-linear regression slopes across population of 
fields between spike theta phase and time restricted to spikes occurring within 1% of the field 
width.   
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Supplementary Figure 2-4. Testing logarithmic theta transform (LTT) prediction 1 (continued): 

Theta phase has logarithmic relationship with theta-discretized distance remaining in place fields 

with quantitative specificity.  

The following analysis is for all spikes from place fields with at least 100 spikes across all laps and at 

least 5 cycles in the central 60% of the field to estimate curvature (n=472 fields). 
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A) Schematic comparing predictions of LTT (green) and linear time compression (black) for the 
evolution of theta phase over remaining time in field.  

B) Schematic comparing predictions of LTT (green) and linear time compression (black) for the 
evolution of theta phase gain over remaining time in field.  

C) Schematic comparing predictions of LTT (green) and linear time compression (black) for the 
evolution of the multiplicative inverse of phase gain over remaining time in field.  

D) 150 example phase precession curves with base higher than 1.3 (see panel G), each of one 
random color, showing peak probability theta phase corresponding to each remaining time in field 

E) Local phase gain for each place field at each remaining time in field (black dots), and a curve 
showing k/(distance to end of field) (green dashed line) for k=log(1.4). 

F) Multiplicative inverse of local phase gain for each place field at each remaining time in field (black 
dots), and a curve showing (distance to end of field)/k for k=log(1.4) (green dashed line).  

G) Probability distribution of estimated k from linear fits of local phase gain vs remaining time in field 
for each place field. Inset: Probability distribution of correlation coefficient of local phase gain vs 
remaining distance in field for each place field showing significant linearity of the relationship (***, 
Wilcoxon signed rank test, p=1.634e-53). The peak slope corresponds to a peak probability 
logarithm base of 1.4.  

H) Probability distribution of the ratio of absolute median error using a logarithmic model relative to 
that using circular-linear regression (***, Wilcoxon signed rank test, p=7.520e-34). 

I) Probability distribution of angular error of a linear phase-distance at each remaining distance in 
field, showing systematic bias depending on remaining distance in field.  

J) Probability distribution of angular error of logarithmic phase-distance model at each remaining 
distance in field, showing elimination of systematic bias depending on remaining distance in field.  
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Supplementary Figure 2-5. The cognitive space-warp problem for warping of spike time patterns at 

different theta sequence trajectory lengths can be solved using the logarithmic theta transform 

(LTT) with respect to distance. 

A) (left panel) Illustration of a theta sequence involving 4 (long sweep, left) or 2 (short sweep, 

right) place fields depending on the cognitively determined spatial scale of the theta sequence trajectory. 

According to the theta phase coding model in which distance is compressed linearly into sequences on 

the theta cycle timescale (right panel), the same pair of fields has a variable amount of phase separation 

within the sequence depending on the space warp of the overall trajectory. 

B) Proposed implementation of space-warp invariant sequence coding using logarithmic distance 

compression. (left panel) The effects of a logarithmic transformation of distance for the same theta 

sequences as in (A), during a long sweep (left) or short sweep (right).  While the long sweep occurs over 

about 50 cm and 4 fields, the short sweep covers about 25 cm and 2 fields. Nevertheless, the distance 

between them becomes logarithmically compressed into a theta cycle (right panel) via the logarithmic 

theta transform. The two sweeps of differing lengths are mapped to the same phase separation only if the 

transformation is logarithmic.   
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Supplementary Figure 2-6.  Illustration of how logarithm base controls curvature and its coding 

properties.   

The same equal-width bins in the x-domain, corresponding to elapsed time in this application, become 

mapped to differently spaced bins in the y domain, corresponding to theta phase bins here, depending on 

the base of the logarithm with a higher base corresponding to a greater concave curvature. Note that the 

base of 1.4, which represents the empirical mean base of phase precession in hippocampal place field, 

also corresponds to a minimum theta phase bin width of 0.084≈30 degrees≈10 msec. This approximately 

fits with the period of the fast gamma oscillations (~100 Hz) that group spike timing of pyramidal cells late 

within theta cycles.  The maximal theta phase bin width of 0.3≈108 degrees≈36 msec approximately fits 

with the period of slow gamma oscillations (~30 Hz) that group spike timings early within theta cycles.   
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Supplementary Figure 2-7.  Testing logarithmic theta transform (LTT) prediction 2: Theta 

sequences display a logarithmic spike timing difference gradient, decreasing in phase separation 

from early to late within theta cycles.  

Mean phase separation within each theta sequence (n=831) was averaged within each bin for which the 

3rd specified variable (field center separation, running speed, acceleration, and mean time in field) was 

also in its color coded range and displayed +/- standard error of the mean for bins containing at least 10 

field sequences.  
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Supplementary Figure 2-8.  Testing logarithmic theta transform (LTT) prediction 3 (continued): 

Distance within and between fields are well-controlled across speed groups, while time between 

fields is allowed to vary. 

A) The average distance in field, average separation in distance, and average separation in time 
within each field sequence was evaluated for the low and high speed groups to assess 
whether the differences in distance are controlled while permitting differences in time 
separation with speed. Bar graphs show mean ± standard error of these metrics in low and 
high speed groups (n.s. = not significant, indicating p>0.05; *** indicates p<0.001; ** indicates 
p<0.01). 

B) Probability distribution of surrogate differences when high and low speed labels are 
reshuffled amongst all data points N=500,000 times. The p-value is the probability of 
observing a difference equal to or more extreme than the observed difference, taken as the 
area under the curve corresponding to these values.  
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Supplementary Figure 2-9.  Effect of realistic accelerations and decelerations on LTT predictions, 

empirical phase precession, and empirical theta sequence properties. 

A) Reanalysis of phase precession surface (see Figure 2) restricted to traversals of deceleration 
(left), constant speed (middle), or acceleration (right) showing similar result of control of theta 
phase by time in addition to distance, particularly in the accelerating traversal group. 

B) Theta sequence properties at a given position (dashed line) resulting from LTT model simulated 
for 4 overlapping place fields at high deceleration (left), constant speed (middle), or high 
acceleration (right), showing mild deformation of spacing and offset. 

C) Simulation of theta sequence properties produced by LTT using all empirical traversals binned by 
amount of deceleration/acceleration. Shows decreasing phase offset and increasing phase 
separation with deceleration but within a relatively restricted range. Each mean is showed with 
error bars representing standard error of the mean. 
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Stand-alone Supplementary Figures 

 
Supplementary Figure 2-10. Testing logarithmic theta transform (LTT) prediction 1 (continued): 

Theta phase has logarithmic relationship with continuous time (total theta phase) remaining in 

place fields with quantitative specificity.  

The following analysis is for all spikes from place fields with at least 100 spikes across all laps and at 

least 5 cycles in the central 60% of the field to estimate curvature (n=325 fields). 

A) Example phase precession curves with base higher than 1.3 (see panel G), each of one random 
color, showing peak probability theta phase corresponding to each remaining time in field 

B) Local phase gain for each place field at each remaining time in field (black dots), and a curve 
showing k/(time to end of field) (green dashed line) for k=log(1.4). 

C) Multiplicative inverse of local phase gain for each place field at each remaining time in field (black 
dots), and a curve showing (time to end of field)/k for k=log(1.4) (green dashed line).  

D) Probability distribution of estimated k from linear fits of local phase gain vs remaining time in field 
for each place field. The peak slope corresponds to a peak probability logarithm base of 1.3.  

E) Probability distribution of the ratio of absolute median error using a logarithmic model relative to 
that using circular-linear regression (***, Wilcoxon signed rank test, p=3.634e-15). 

F) Probability distribution of angular error of a linear phase-time at each remaining time in field, 
showing systematic bias depending on remaining time in field.  

G) Probability distribution of angular error of logarithmic phase-time model at each remaining time in 
field, showing elimination of systematic bias depending on remaining time in field.   
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Supplementary Figure 2-11. Testing logarithmic theta transform (LTT) prediction 1 (continued): 

Theta phase has logarithmic relationship with continuous distance remaining in place fields with 

quantitative specificity.  

The following analysis is for all spikes from place fields with at least 100 spikes across all laps and at 

least 5 cycles in the central 60% of the field to estimate curvature (n=373 fields). 

A) 150 example phase precession curves with base higher than 1.3 (see panel G), each of one 
random color, showing peak probability theta phase corresponding to each remaining time in field 

B) Local phase gain for each place field at each remaining time in field (black dots), and a curve 
showing k/(distance to end of field) (green dashed line) for k=log(1.4). 

C) Multiplicative inverse of local phase gain for each place field at each remaining time in field (black 
dots), and a curve showing (distance to end of field)/k for k=log(1.4) (green dashed line).  

D) Probability distribution of estimated k from linear fits of local phase gain vs remaining time in field 
for each place field. The peak slope corresponds to a peak probability logarithm base of 1.3.  

E) Probability distribution of the ratio of absolute median error using a logarithmic model relative to 
that using circular-linear regression (***, Wilcoxon signed rank test, p=1.3396e-28). 

F) Probability distribution of angular error of a linear phase-distance at each remaining distance in 
field, showing systematic bias depending on remaining distance in field.  

G) Probability distribution of angular error of logarithmic phase-distance model at each remaining 
distance in field, showing elimination of systematic bias depending on remaining distance in field. 
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Supplementary Figure 2-12. Testing logarithmic theta transform (LTT) prediction 1 (continued): 

Theta phase at given distance becomes lower at higher running speeds in individual fields. 

A) Example data from place field showing the relationship between theta phase and distance 
remaining in field from traversals with average speed in the bottom 10% of traversal average 
speeds for the field (black) and the same for traversals in the top 10% (red). Dashed lines 
indicate example boundaries of position over which circular mean phase was commuted for each 
group (large dots). 

B) Example data analogous to (A) for another representative place field. 
C) (top) Distribution of the difference in average circular mean phase in position bounds shown in A 

and B (0.7+/- 0.1 fraction of distance within field) between high speed and low speed traversal 
group, showing a significant reduction in phase (Wilcoxon signed rank p=0.00031). (bottom) 
Distribution of difference in average distance in field within position bounds shown in A and B 
(0.7+/- 0.1 fraction of distance within field) between high speed and low speed traversal group, 
show no significant difference in average position (Wilcoxon signed rank p=0.1286), precluding a 
distance confound as explaining the reduction in phase. 

D) Beyond a reduction in mean phase at a given distance (0.7+/- 0.1 fraction of distance within field) 
with running speed for each field, fields with a larger difference in running speed  in the top and 
bottom 10% of traversals should also show a larger difference in  mean phase if phase is time-
sensitive, i.e. the running speed difference should be correlated with  mean phase difference at a 
given position. The top panel shows a point (black dot) for each field indicating its mean phase 
difference  (y-ccordinate) and  mean speed difference (x-coordinate) between the two speed 
groups, normalized by the typical (peak probability) traversal speed characteristic to each field. 
Bottom panel shows the same data as a heatmap of joint probability in this space. Both show a 
negative correlation between phase difference and speed difference at the given position, 
consistent with phase-time sensitivity. 

E) Bin-averaged phase difference +/- SEM within 7 equally spaced speed difference bins, showing 
negative relationship between phase difference and speed difference, consistent with phase-time 
sensitivity within individual fields. 

F) Analagous to (C) with fixed distance of 0.6+/- 0.1 fraction of distance within field 
G) Analagous to (D) with fixed distance of 0.6+/- 0.1 fraction of distance within field 
H) Analagous to (E) with fixed distance of 0.6+/- 0.1 fraction of distance within field 
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CHAPTER 3: Two Modes of Inhibitory Shutdown Distinctly Amplify Seizures In 

Humans 

3.1 Abstract 

Inhibitory neurons are critical for normal brain function but dysregulated in disorders 

such as epilepsy. At least two theories exist for how inhibition may acutely decrease 

during a seizure: hyperpolarization of fast-spiking (FS) inhibitory neurons by other 

inhibitory neurons, or depolarization block (DB) of FS neurons resulting in an inability to 

fire action potentials. Firing rate alone is unable to disambiguate these alternatives. 

Here, we show that human FS neurons can stop firing due to both hyperpolarization and 

DB within the same seizure. However, only DB of FS cells is associated with dramatic 

increases in local seizure amplitude, unobstructed traveling waves, and transient 

increases in excitatory neuronal firing. This result is independent of seizure etiology or 

focus. Computational models of DB reproduce the in vivo human biophysics. These 

methods enable intracellular decoding using only extracellular recordings in humans 

and explain the otherwise ambiguous inhibitory neuronal control of human seizures.
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3.2 Introduction 

Epilepsy is a debilitating disease affecting some 50 million people worldwide (de 

Polavieja, 2005; Thurman et al., 2011). Epileptic seizures are thought to result from an 

imbalance between excitatory and inhibitory neuronal activity (Žiburkus et al., 2013). 

However, electrographically similar seizures on the macroscopic scale can be driven by 

mechanistically distinct processes on the cellular and cell-type population scale (Farrell 

et al., 2019). Thus, the relative roles of local inhibitory and excitatory networks in driving 

seizure progression must be elucidated to guide the development of novel treatments 

for intractable epilepsies and our understanding of their associated seizures. Due to the 

tremendous technical challenges of recording from individual human neurons and the 

relative sparsity of inhibitory neurons, the activity of well isolated inhibitory interneurons 

during seizures is only rarely examined (Elahian et al., 2018; Weiss et al., 2016).  

 

There are several theories, based on slice and whole animal experiments, proposing 

both insufficient (Chagnac-Amitai & Connors, 1989; Gutnick et al., 1982; Karlócai et al., 

2014; McCormick et al., 1985; Pavlov & Walker, 2013; Prince & Connors, 1984; 

Schwartzkroin & Prince, 1980; Trevelyan & Schevon, 2013; Ziburkus et al., 2006) and 

excessive (Avoli & de Curtis, 2011; Cope et al., 2009; Lévesque et al., 2016; Neumann 

et al., 2017; Sessolo et al., 2015) inhibition as possible facilitators of epileptic activity, 

with at least two hypotheses for how inhibition may acutely decrease during a seizure: 

(1) hyperpolarization of fast-spiking (FS) inhibitory neurons by other inhibitory neurons 

(Buckmaster et al., 2000; Khoshkhoo et al., 2017; Miri et al., 2018; Xu et al., 2013), or 

(2) excessive depolarization of FS neurons that precludes subsequent action potentials 
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due to blockade of voltage-dependent sodium channels (Cammarota et al., 2013; 

Karlócai et al., 2014; Ziburkus et al., 2006). Resolving these two theories necessitates 

whole cell recordings (Petersen, 2017), but it is practically impossible to record the 

intracellular membrane potential of neurons during human seizures in vivo. In this study, 

we address these challenges by combining (1) large-scale extracellular recordings of 

human neocortical inhibitory and excitatory neurons during focal seizures with 

secondary generalization and (2) a novel method of decoding membrane potential 

trajectory from extracellular action potentials. We show the remarkable ability of active 

fast-spiking inhibitory neurons to block epileptic traveling waves in human neocortex, 

and reveal the dynamical control of human seizures by the subthreshold trajectory of 

inhibitory neurons. 

 

My contribution to this collaborative work included conducting all formal analysis and 

visualization of all main and supplementary data as figures, other than Figure 3-3 made 

by O.J.A. I also conceptualized the methodology used here to assess unit waveform 

sortability dynamically across time as a modification to the previous methods assuming 

stationarity.   Discussions between myself and O.J.A constituted conceptualization of 

our method of inferring subthreshold dynamics from extracellular waveform shape 

during seizure progression. I also contributed to writing, reviewing, and editing the 

manuscript, particularly drafting and editing the results and methods descriptions 

relevant to each analysis, as well as relevant sections of the introduction and 

discussion. This chapter has also been deposited as a medRxiv preprint 

(https://doi.org/10.1101/2020.10.09.20204206).  
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3.3 Results 

Patients were implanted with intracranial grid electrodes as part of the clinical process 

of identifying the precise site of origin of their drug-resistant focal epilepsy (see 

Materials and Methods). A 4x4 mm NeuroPort microarray (Blackrock Microsystems) 

was also placed in a region of the neocortex that was expected to be in the resection 

site (Figure 1a; Extended Data Fig. 1a). Histology of the resected tissue confirmed that 

the electrodes consistently targeted layers 2/3 of the neocortex (Extended Data Fig. 1b). 

We used these arrays to simultaneously record the activity of dozens of individual 

neocortical neurons during both ictal and interictal activity. We then classified the 

neurons as either fast-spiking (FS) inhibitory interneurons or regular-spiking (RS) 

excitatory cells using well-established criteria (Cardin et al., 2009; Nowak et al., 2003), 

including action potential shape (Extended Data Fig. 1c-f). FS cells correspond to the 

class of parvalbumin-expressing interneurons and represent the largest source of 

inhibition in the neocortex(Rudy et al., 2011).  The resulting information thus allowed us 

to differentiate between putative inhibitory and excitatory unit activity patterns during 

seizure progression in humans.  

 

A total of 37 FS cells and 539 RS cells were recorded across 4 patients with NeuroPort 

arrays implanted in the temporal neocortex (see Supplementary Methods for details 

about each patient). As secondarily generalized seizures first reached the arrays, both 

FS and RS cells increased their rate of action potentials (Figs. 1, 2, and Extended Data 

Figs. 2-4). This finding is consistent with what is known about the feedforward 
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recruitment of both inhibition and excitation (Cammarota et al., 2013; Connors et al., 

2001). At the population level, the FS firing rate was significantly higher than RS cells 

(100,000 bootstrap iterations of label-shuffled peak rate differences; p=0.036). Within 40 

seconds of seizure onset, the mean FS firing rate fell rapidly to 0-2 Hz at the same time 

as local field potential intensity increased dramatically to its highest levels (Figs. 1, 2, 

and Extended Data Figs. 2-4). Consistently, among the best isolated FS units during the 

seizure (isolation quality discussed in more detail below and see Methods), 10 out of 15 

had at least one nearby RS cell that exhibited the peak of its overall activity several 

seconds after the dramatic fall in local FS activity and accompanying elevation in local 

field potential intensity (Figs. 1, 2, and Extended Data Figs. 2-4). Thus, at the population 

level, FS cells show a cessation of activity near the middle of secondarily generalized 

seizures accompanied by a dramatic increase in the amplitude of seizure activity. This 

FS cessation is followed by a transient increase in RS cell firing, presumably because 

these RS cells are now less inhibited due to the loss of FS firing. The RS population 

rate eventually also fell to an average of 0-3 Hz but with a delay of several seconds 

following FS cells. At the population level, FS cells (N=37) exhibited significantly earlier 

cessation times than RS cells (N=539) (Fig. 2g-j, FS cell average cessation occurred 

4.6 seconds earlier than RS average cessation; 100,000 bootstrap iterations of label-

shuffled time differences; p<0.0001).  

 

We next compared activity patterns among individual FS cells. Many individual FS cells 

did not start firing until ~10 seconds into the seizure, often starting to fire robustly only 

after the RS rate had already increased (Figs. 1, 2, and Extended Data Figs. 2-4). As 
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seen with the population means (Fig. 2g), each individual FS cell dramatically reduced 

its firing roughly half-way through the seizure (Figs. 1, 2, and Extended Data Figs. 2-4). 

However, even simultaneously recorded FS cells during a single seizure did not 

necessarily cease firing at the same time, just as they did not start firing at the same 

time. Figure 1 shows the activity of two simultaneously recorded FS cells that were 

separated by a distance of 2.04 mm. FS Cell 1 (Fig. 1a) approached cessation ~35 

seconds into the seizure, and at ~35 seconds, the amplitude of the LFP next to FS Cell 

1 increased dramatically, as did the firing rate of nearby RS cells. FS Cell 2 (Fig. 1b) 

approached cessation ~24 seconds into the seizure, and the LFP amplitude next to FS 

Cell 2 also increased at ~24 seconds, along with the firing rate of nearby RS cells. 

Furthermore, when sorting all simultaneously recorded channels during a seizure by the 

timing of transition to the large amplitude spike-and-wave event phase, a raster plot of 

all spikes with units sorted in the same order produced a similar sequence of mid-

seizure firing time cessations (Fig. 1c&d). Thus, FS cell cessation is correlated with a 

dramatic increase in the very local intensity of seizures.  

 

Given changing waveform shapes and noise characteristics during seizures(Merricks et 

al., 2015), an important methodological question arises of how separable clusters in 

waveform feature space are from each other and from noise to allow valid unit 

assignments during this period. To quantitatively assess this isolation quality of feature 

space clusters over the course of seizures, we employed a modified version of the Lratio 

metric of cluster separation introduced and validated by Schmitzer-Torbert et al. 

(2005)58 (see Methods). Cluster divisions with Lratio less than 0.1 are considered to have 



 
 

 97 

a significantly low level of false negative contamination, indicating that drops in firing 

rate are not caused by over-assigning candidate spikes to noise or other clusters due to 

changing waveform shapes in these divisions. We consider units whose average 

contamination level across seizure divisions (dynamic Lratio) is less than 0.1 to be a best-

isolated subset58. Figure 2 shows an example of an FS unit whose waveform shape 

could be well isolated from noise across the entire seizure despite showing a monotonic 

decrease in spike amplitude (Fig. 2a-c). The isolation quality of this unit throughout the 

seizure is demonstrated visually by 2D voltage histograms of these waveforms (Fig. 2d) 

and is quantitatively captured by its dynamic Lratio being far below threshold in all seizure 

divisions in which it was active (Fig. 2b). This isolation quality was similarly sustainable 

throughout the seizure for many RS units (e.g. Extended Data Fig. 5), although at a 

lower proportion than FS units, with 48.6% of FS units meeting this criterion but only 

19.8% of RS units. This pattern sustained throughout seizures, with the proportion of 

well-isolated FS units remaining between 30% and 48% across all 8 seizure divisions 

and that of RS units remaining between 13% and 19% (Extended Data Fig. 6). The 

apparent difference in sortability by cell type may be because the frequency content of 

noise is such that random threshold crossings are more similar in shape and amplitude 

to the wider waveforms of RS units than to the sharper waveforms of FS units. This 

suggests that FS cell spikes are inherently more distinguishable from noise in human 

neocortical recordings even during seizures. We considered the best-isolated subset of 

units following this quantitative criterion in parallel with all-inclusive analyses of firing 

rate dynamics in various time divisions of seizures with similar results. In particular, 

similar temporal profiles by cell type were observed throughout seizures when 
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considering all units or only best-sorted units with an average Lratio < 0.1 across all 

divisions for Patient C (Fig. 2e&f), as well as when comparing average firing rate time 

courses by cell type across all patients (Fig. 2g&h). Furthermore, the observed time 

difference between mean RS activity cessation timing and mean FS activity cessation 

timing remained significantly larger than that expected by random cell-type label 

reshuffling when considering all units (p<0.0001; Fig. 2i), as well as only best-isolated 

units with maximum Lratio < 0.1 (p<0.005; Fig. 2j). Thus, FS cell cessation occurs several 

seconds before RS cell cessation across the population as well as for the very best 

isolated units. 

 

The firing profile of individual FS cells and the accompanying changes in the seizure 

LFP amplitude were remarkably consistent across all secondary generalized focal 

seizures examined, independent of etiology or focus (Figs. 1, 2, and Extended Data 

Figs. 2-4). In patients with an etiology of mesial temporal sclerosis, where the seizure 

started focally in the hippocampus or surrounding medial temporal regions, FS cells in 

the temporal neocortex consistently stopped firing after the seizure secondarily 

generalized and spread to the neocortex, leading to accompanying increases in seizure 

LFP amplitude (Fig. 1a&b). Similarly, in a patient with an etiology of neocortical 

dysplasia (Patient C) where the seizure originated in the temporal neocortex, several 

cm from the implanted electrode array, FS cells near the array stopped firing within the 

first 40 seconds of the seizure spreading to that location (Fig. 2a&b). Again, this 

coincided with a transition to even larger amplitude spike-wave LFP events.  
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The variability in FS cessation times raises the question of how seizure waves travel 

across the neocortex: is there a wave that slowly moves across the cortex(Schevon et 

al., 2012) or a series of faster waves that are perhaps altered by the local activity of FS 

cells (Chagnac-Amitai & Connors, 1989; Connors et al., 2001; Sabolek et al., 2012)? 

We found fast traveling LFP waves in all patients that swept across the 4x4 mm 

microelectrode array within 40 ms, at a speed of ~0.1 m/s, consistent with estimates 

from slice and computational studies (Chervin et al., 1988; Connors et al., 2001; 

Golomb & Amitai, 1997). There was a dramatic effect of individual FS cell activity: when 

an FS cell was still firing, it was able to impede and alter epileptic traveling waves (Fig. 

3a; Supplementary Video 1), preventing the wave from increasing the seizure’s LFP 

amplitude in the vicinity of the FS cell. Once the FS cell activity ceased, traveling waves 

swept through the entire array, successfully recruiting the area around the now-silent FS 

cell (Figure 3b; Supplementary Video 1). Indeed, once all FS cells had switched off, the 

path of epileptic traveling waves became far more regular and stereotyped. Thus, 

human FS inhibitory cells possess a remarkable capability to obstruct and alter the path 

of epileptic traveling waves. This again points to the importance of FS activity in 

controlling local neuronal activity and LFP dynamics during local seizure propagation 

but leaves open the question of what is causing them to stop firing during the seizure. 

 

There are two ways in which FS cells can stop firing during a seizure: 1) they could be 

hyperpolarized by inhibition from other inhibitory neurons (Xu et al., 2013), also known 

as the disinhibition hypothesis (Buckmaster et al., 2000); or 2) they could enter 

depolarization block and thus become incapable of firing additional action potentials, 
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despite receiving strong excitatory synaptic input (Cammarota et al., 2013; Karlócai et 

al., 2014; Ziburkus et al., 2006). These two scenarios produce very different predictions 

for how the action potential (AP) amplitude of an FS cell should change during a 

seizure. In the case of hyperpolarization, the AP amplitude should increase as the firing 

rate is decreasing. In the case of depolarization block, AP amplitude should decrease 

before the cell stops firing while its firing rate is also decreasing. To monitor the relative 

contributions of hyperpolarization and excessive depolarization throughout the seizure 

in each recorded unit, we therefore devised a novel method that decodes the 

membrane potential regime of neurons from extracellular spike amplitude data by 

computing the sign of the correlation between AP amplitude and firing rate in each 

second of the seizure (Fig. 4a-c; see Methods). Some units first paused their firing due 

to transient inhibition from other cells, as suggested by strongly negative correlations 

between AP amplitude and firing rate as firing rate initially decreased (Fig. 4b&h; 

Extended Data Figs. 7&8). This period corresponded precisely to the time period of 

increased firing in neighboring FS units (Fig. 4d&j). However, these apparently 

hyperpolarized units resumed their firing after this pause. Cessation of firing 

subsequently occurred presumably due to massive depolarization of their membrane 

potential, as demonstrated by strongly positive correlations of AP amplitude and firing 

rate as these units stopped firing spikes (Fig. 4b&h). The regimes of negative 

correlation correspond to a dynamic inhibitory control of local firing rates during the 

seizure, followed by a regime of positive correlation with decreasing AP amplitudes 

during the final descent in firing rate, a pattern consistent with what is seen during 

depolarization block.  
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This pattern was also seen on the population level in spiking event-triggered averages 

of the time course of our predicted membrane potential measure (Fig. 4e). Aligning 

inferred membrane potential time courses around the time of firing rate pauses 

(dropping below 30% of peak rate) revealed a large negative deflection for FS cells, 

indicative of these units being inhibited via hyperpolarization to reduce firing rate at this 

time (Fig. 4e; n=12; Rmean,pause=-0.44±0.19 [sem]; less than 0 with p<10-7 by bootstrap 

mean resampling test, nsample=10, Nbootstrap=50,000). Furthermore, the inferred 

membrane potential amongst the FS cell population showed that this shift was also 

widespread (Fig. 4f), with 9 out of 12 (75%) FS units pausing during the negative, 

hyperpolarized regime during this rate-based event. Aligning inferred membrane 

potential time courses around the later time of firing rate cessation in units (defined by 

rate falling below 30% of peak rate for the final time) revealed a large positive deflection 

for FS cells, indicative of these units entering a regime depolarization block (Fig. 4e; 

n=26; Rmean,cess=+0.45±0.12 [sem]; greater than 0 with p<10-7 by bootstrap mean 

resampling test, nsample=20, Nbootstrap=50,000). Again, the inferred membrane potential 

amongst the FS cell population showed that this shift was also widespread across units 

(Fig. 4f), with 20 out of 26 (77%) FS units landing in the positive, over-excited regime.  

When comparing these values only in units that showed both a pause and cessation to 

control of heterogeneity amongst different units, the inferred membrane potential was 

still significantly higher as the unit ceased firing compared to as the unit paused its firing 

(right-sided Wilcoxon signed rank test; n=12, p=0.0049). Finally, these firing rate 

descents in FS cell activity were associated with distinct changes in LFP amplitude 
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despite being of the same magnitude (at 30% of peak firing rate) as shown by event-

triggered averages in LFP amplitude (Fig. 4e). FS cessation was associated with a 

larger LFP amplitude than that associated with pausing even amongst cells exhibiting 

both events (right-sided Wilcoxon signed rank test; n=12, p<10-4). Similar results were 

obtained indicative of significant and widespread overexcitation underlying the cessation 

of activity in RS units, with 225 out of 331 (68%) RS units with sufficient rate at the time 

of cessation exhibiting a positive value (Extended Data Fig. 7e; n=331; 

Rmean,cess=0.30±0.03 [sem]; greater than 0 with p<10-7 by bootstrap mean resampling 

test, nsample=20, Nbootstrap=50,000). However, amongst RS cells exhibiting a pause in 

activity, membrane potential appeared much more heterogenous despite controlling for 

firing rate at this time, appearing in a bimodal distribution amongst both inhibition and 

depolarization block that was not significantly different from 0 (Extended Data Fig. 7e&f; 

n=130; Rmean,cess=-0.08±0.06 [sem]; greater than 0 with p=0.3782, nsample=10, 

Nbootstrap=50,000). This may be because RS cells receive a greater diversity of input 

magnitudes during seizure progression than do FS cells but succumb to the same, more 

uniform mechanism underlying depolarization block at firing rate cessation and seizure 

transition, which we hypothesize is due to increasing potassium concentrations in the 

extracellular environment shared by all of these cells.  

 

This sequence of significant hyperpolarization in FS cells followed by large and 

widespread overexcitation in all cells suggests a consistent membrane potential-based 

mechanism by which local cortical circuits fight but ultimately succumb to seizure 

progression. The dynamics in firing rate and action potential amplitude that characterize 
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this mechanism were accurately reproduced in a computational model of the cell 

membrane incorporating voltage-dependent sodium and potassium conductances 

(Hodgkin-Huxley formalism) with stochastic background synaptic input. The model 

reproduced all of the observed mutual dynamics between action potential rate and 

amplitude during inhibitory (hyperpolarizing) pauses versus depolarization-induced 

cessation (Fig. 5), confirming the plausibility of this mechanistic sequence driving unit 

activity patterns during seizure progression. 
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Figure 3-1: Human neocortical inhibitory and excitatory neurons have different temporal profiles 

relative to secondarily generalized focal seizure progression on local electrodes 

a. Upper. Electrocorticogram trace (ECoG, black) from contact closest to source of focal seizure in 
hippocampus of Patient A. Note its time of initiation at T = -20 seconds, substantially preceding 
the start of the seizure in neocortex.  Lower. The firing rate of a single FS cell (blue), the firing 
rate of a single RS cell recorded from the same electrode (green) and the local field potential 
(LFP, gray, recorded from the same electrode as the FS cell) during a seizure recorded from 
Patient A. Note the decrease in LFP amplitude as the FS cell starts firing, followed by a dramatic 
increase in LFP seizure amplitude after the FS cell decreases its rate at T=35 seconds. RS cell 
quickly increases its firing rate as the seizure first spreads to the NeuroPort array (T=0 seconds), 
then decreases in rate slightly as the FS cell switches on, and finally settles into a lower firing rate 
regime during the large spike-and-wave events that dominates the remainder of the seizure after 
FS cell cessation. Inset shows the mean normalized extracellular action potential waveforms (with 
99% confidence intervals in lighter shading) of FS Cell 1 (blue) and the neighboring RS cell 
(green). Inset 1: the mean normalized extracellular action potential waveforms (with 99% 
confidence intervals in lighter shading) of FS Cell 1 (blue) and the neighboring RS cell (green). 
Inset 2: The implanted microelectrode array (Top) with overlaid clinical grid electrodes (Bottom); 
Scale bar: 1 cm. Top left corner shows the array before implantation. Scale bar: 200 µm. Inset 3: 
Histology of resected tissue showing the NeuN-stained neurons in the full neocortical column and 
electrode tracts and an enlarged image (Right) showing that the array targeted layer 3 of the 
neocortex. Scale bars: 400 µm. 
 

b. The inset shows a schematic of the array and the location of two simultaneously recorded FS 
cells separated by ~2 mm: FS Cell 1 (blue, firing rate shown in Fig. 1c) and FS Cell 2 (purple). FS 
Cell 2 approached cessation at T=24 seconds, well before FS Cell 1. The LFP (grayish-purple) 
recorded at the same location as FS Cell 2 dramatically increases at the same time as FS Cell 2 
decreases firing, well before the increase seen in the LFP recorded next to FS Cell 1. These 
suggest the activity of FS cells during human seizures is strongly correlated to the local intensity 
of seizure waves. FS Cell 2 activity cessation again precedes a sharp increase in local RS cell 
activity (gold), further suggesting an important role of FS cells in controlling local activity during 
seizure progression.  
 

c. Heatmap shows local LFP amplitude (absolute value) over time on each electrode in NeuroPort 
array exhibiting classifiable units as each row, sorted by time of start of spike-and-wave event 
and with brighter colors indicating larger amplitudes. Note the increasing delay to start of spike-
and-wave event suggesting different dynamics to seizure spread across the array over the 
timecourse of approximately 20 seconds.  
 

d. Raster plot showing spike times of all cells on NeuroPort array in Patient A that could be 
classified into FS (blue) or RS (green) categories with rows sorted by the same order as in (C). 
Note the increasing delay to reduction in spike density corresponding to LFP transition to spike-
and-wave events suggesting control of local seizure progression by local cellular spiking activity. 
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Figure 3-2: Analyzing unit subpopulations by isolation quality demonstrates consistent cell-type 

specific activity profiles and cessation order despite changing unit amplitude and noise structure.   

 
a. LFP in Patient C indicating seizure as split into 8 equal time divisions for analysis of unit isolation 

quality across duration of seizure.  
 

b. Bar graph shows firing rate in 1 second bins of best-isolated example FS unit (blue) in Patient C. 
Dotted red line indicates threshold used to determine best-isolated units using the dynamic Lratio 
measure (see Methods) in each time division of seizure. Line plot indicates dynamic Lratio in each 
division (red) and shows large separation of example FS unit from noise in feature space used for 
clustering throughout the seizure (note log scale).  
 

c. Line plot showing average spike amplitude (dark blue) and individual spike amplitudes (light blue) 
of example FS unit over course of seizure in Patient C. Note that even as amplitude decreases 
the unit remains well-isolated from noise as quantified by dynamic Lratio across seizure.  
 

d. Time-voltage histogram of all threshold crossings assigned to this example FS unit (blue, Upper) 
and to noise (red, Lower) in eight divisions of seizure in Patient C. Shows unit waveforms are 
visually distinguishable from threshold crossings assigned as noise across seizure. 
 

e. Average firing rate traces across seizures for each cell type group in Patient C, with y-axis 
normalized to firing rate peak and x-axis normalized to total seizure duration before averaging. 
Note right-shifted rate profile of RS units over course of seizure as compared to FS units.  
 

f. Average firing rate traces across seizures for each cell type group using only best-isolated units 
(see Methods) in Patient C, with y-axis normalized to firing rate peak and x-axis normalized to 
total seizure duration before averaging. Note right-shifted rate profile of best-isolated RS units 
over course of seizure as compared to best-isolated FS units. 
 

g. Average firing rate traces across seizures for each cell type group across all patients, with y-axis 
normalized to firing rate peak and x-axis normalized to total seizure duration before averaging. 
Note right-shifted rate profile of RS units over course of seizure as compared to FS units. 
 

h. Average firing rate traces across seizures for each cell type group using only best-isolated units 
(see Methods) across all patients, with y-axis normalized to firing rate peak and x-axis normalized 
to total seizure duration before averaging. Note right-shifted rate profile of best-isolated RS-
classified units over course of seizure as compared to best-isolated FS-classified units. 
 

i. Observed time difference (solid red line) between mean RS activity cessation timing (n=399) and 
mean FS activity cessation timing (n=37) in relation to probability distribution of this timing 
difference across random label reshufflings of unit cell type labels (Nshuffles=100,000; solid black 
line). P-value indicates probability of observing a value equal to or more extreme than the 
observed value simply by random assignment of cell type to each unit. Values on the right half 
correspond to a positive difference between RS and FS cessation, with larger values associated 
with increasing certainty that FS cells stop firing before RS cells. Values on the left half 
correspond to a negative difference between RS and FS cessation times, with larger values 
associated with increasing certainty that RS cells stop firing before FS cells. 
 

j. Observed time difference (solid red line) between mean best-isolated RS activity cessation timing 
(n=83; Lratio < 0.1 during middle 3 seizure divisions) and mean best-isolated FS activity 
cessation timing (n=17; Lratio < 0.1 during middle 3 seizure divisions) in relation to probability 
distribution of this timing difference across random label reshufflings of unit cell type labels 
(Nshuffles=100,000; solid black line). P-value indicates probability of observing a value equal to or 
more extreme than the observed value simply by random assignment of cell type to each unit. 
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Values on the right half correspond to a positive difference between best-isolated RS and best-
isolated FS cessation times, with larger values associated with increasing certainty that best-
isolated FS cells stop firing before best-isolated RS cells. Values on the left half correspond to a 
negative difference between best-isolated RS and best-isolated FS cessation, with larger values 
associated with increasing certainty that best-isolated RS cells stop firing before best-isolated FS 
cells. 
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Figure 3-3: Fast-spiking inhibitory neurons, when still firing, impede the spread of epileptic 
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traveling waves. 

 
a. An example of a traveling wave recorded 30 seconds after the start of a seizure in Patient A. The 

FS cell located at the position marked “FS” was firing at high rates at this time. The 8 snapshots 
(1-8) are taken over a 35 ms interval as the traveling LFP wave starts in the top-right corner of the 
array and travels across the array. The traveling wave does not fully invade the region of 
neocortex containing the active FS cell, resulting in lower amplitude LFPs around the FS cell. In 
each subfigure, each square denotes a single LFP sensor, and white squares indicate omitted 
sensors. 
 

b. An example of a traveling wave recorded 49 seconds after the start of the same seizure. In the 
absence of FS cell firing, the epileptic traveling wave moves unimpeded through the array, fully 
invading the region around the marked FS cell and resulting in larger amplitude LFPs at all 
locations.  
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Figure 3-4. Cessation of individual FS unit activity is consistently associated with inferred 

membrane potential signatures of depolarization block, despite prior hyperpolarized pauses  

 
a. Firing rate (upper) and trough-to-peak spike amplitude (lower) of example FS unit in Patient A, 

color-coded by the local correlation between spike rate and amplitude (in 1 second time bins) as 
an extracellular proxy for membrane potential trajectory and subthreshold input history.  Dotted 
lines indicate starts and ends of two time periods of firing rate suppression characterized by 
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different membrane potential signatures further characterized in (B), namely a negative 
correlation regime corresponding to inhibition followed by a positive correlation regime 
corresponding to over-excitation ending in firing rate cessation putatively though depolarization 
block. 
 

b. Example of negative correlation (left) between local spike rate and amplitude in first time period 
indicated by dotted lines in (A) and example of positive correlation (right) between local spike rate 
and amplitude in second time period indicated by dotted lines in (A). Least squares linear fit 
indicated in dotted lines following color scheme in (A) with Pearson’s correlation coefficient 
indicated above each plot.  
 

c. Trajectory of unit activity over time during seizure in local spike rate vs spike amplitude space, 
with increasing time indicated by increasingly lighter copper color. The first time period of firing 
rate reduction in dotted lines in (A) is indicated with an arrow as “Pause” and the second time 
period of firing rate reduction in dotted lines in (A) is indicated with an arrow as “Cessation.” 
 

d. Firing rate of unit from (A) with neighboring FS unit firing rate overlaid, giving further evidence that 
first period of firing rate suppression corresponds to inhibition from local FS units while second 
period of firing rate suppression does not correspond to inhibition from local FS units.  
 

e. Unit cessation-triggered population average of the time course of novel membrane potential 
regime measure, i.e. the correlation coefficient relating spiking amplitude and rate in a local time 
window, around the two significant descents in firing rate (below 30% of peak rate) that occur in 
sequence during seizure. These are designated as pause (left panel) and cessation (right panel). 
Left panel shows population average firing rate (blue) and inferred membrane potential regime 
(black) aligned according to the time of pause in each unit, for all FS units displaying a pause 
(n=14), with inset showing average for best-isolated FS units displaying a pause (n=10). Right 
panel shows population average firing rate (red) and inferred membrane potential regime (black) 
aligned according to the cessation time of each unit, for all FS units (n=37), with inset showing 
average for best-isolated FS units (n=24). 
 

f. Probability distribution of membrane potential regime measure (spike rate-amplitude correlation; 
black line) at the time of pause (left panel) for FS unit pausing subpopulation (n=14) with sample 
mean distribution (gold line; resampling size n=10, Nbootstrap=50,000) showing the mean 
correlation to be significantly below zero, i.e. in the hyperpolarized membrane potential regime 
(blue). In combination with its declining firing rate, this is indicative of widespread inhibition across 
this subpopulation at the time of pause. The population distribution of inferred membrane 
potential regime is also shown at the time of cessation (right panel) for the full FS unit population 
(n=37) with sample mean distribution (gold line; resampling size n=10, Nbootstrap=50,000) showing 
the mean correlation to be significantly above zero, i.e. in the highly depolarized membrane 
potential regime (red). This is indicative of widespread depolarization block occurring across FS 
population at the time of cessation. 
 

g. Unit cessation-triggered population average of the time course of same-electrode LFP amplitude 
around unit activity pause (left panel) and cessation (right panel). In particular, left panel shows 
population average firing rate (blue) and LFP amplitude (black) aligned according to the time of 
pause in each unit, for all FS units displaying a pause (n=14). Right panel shows population 
average firing rate (red) and LFP amplitude (black) aligned according to the time of cessation in 
each unit, for all FS units (n=37), indicative of larger LFP increase associated with second FS 
firing rate descent (cessation) than with first (pause) despite comparable local firing rates in the 
two conditions. 
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Figure 3-5. Mechanistic model of unit dynamics across seizure progression: inhibition followed by 

over-excitation in conductance-based neuron model reproduces key features of extracellular unit 

behavior during seizures. 
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a. Simulated membrane potential in conductance-based spiking model color-coded by the local 
correlation between spike rate and amplitude and with net excitatory input indicated by gold line 
(upper panel). Shows what is hypothesized to be happening within cortical cells during seizure 
progression as inferred from extracellular spike shape and rate dynamics. Firing rate (middle 
panel) and trough-to-peak spike amplitude (lower panel) of the same model, color-coded by the 
local correlation between spike rate and amplitude as an extracellular proxy for membrane 
potential and subthreshold input history.  Dotted lines indicate starts and ends of two time periods 
of firing rate suppression characterized by different membrane potential signatures further 
characterized in (b) and (c). 
 

b. Example of negative correlation between local spike rate and amplitude during firing pause in (a), 
corresponding to activity shutdown via inhibition. Least squares linear fit indicated in dotted lines 
following color scheme in (a) with Pearson’s correlation coefficient indicated above plot.  

 

c. Example of positive correlation between local spike rate and amplitude during firing cessation, 
corresponding to activity shutdown via over-excitation. Least squares linear fit indicated in dotted 
lines following color scheme in (a) with Pearson’s correlation coefficient indicated above plot. 

 

d. Trajectory of unit activity over time during seizure in local spike rate vs spike amplitude space, 
with increasing time indicated by increasingly lighter copper color. The first time period of firing 
rate reduction in (a) is indicated with an arrow as “Pause” and the second time period of firing rate 
reduction is indicated with an arrow as “Cessation.”’ 
 

e. Summary of observed dynamics in cell-type specific firing rate and inferred membrane 
potential trajectories.  
Blue box: Following seizure onset, some FS cells can stop firing for brief periods (as observed 
on extracellular electrodes, upper panel). This pause in firing is coupled with signs of 
hyperpolarization in the inferred membrane potential (lower panel).  
Red box: As the seizure starts to transition to a dramatically higher amplitude FS cells stop firing 
(as observed on extracellular electrodes, upper panel). This cessation is coupled with signs of 
excessive depolarization in the inferred membrane potential (lower panel; resting membrane 
potential indicated as dashed line). This is likely due to elevated extracellular potassium ion 
concentrations by this point of the seizure or increased synaptic drive. 
Green box: The subsequent stage of high amplitude spike-and-wave rhythms corresponds to a 
transient increase and then decrease of firing rate amongst RS cells (as observed on extracellular 
electrodes, upper panel). This decrease in firing rate is coupled with signs of excessive 
depolarization in the inferred membrane potential (lower panel). 
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3.4 Discussion 

 

We have shown that both FS and RS cells are strongly activated during the initial 

spread of secondarily generalized seizures. The immediate increase in RS rate at 

seizure onset, in particular, clearly indicates spread of the seizure, and not a failed 

seizure in what has been called an ictal penumbra, where no initial increases in RS rate 

appear(Schevon et al., 2012). Importantly, we have shown that both FS and RS cells 

can sometimes pause their activity due to hyperpolarization (likely due to inhibition-

mediated hyperpolarization from other nearby inhibitory neurons) but stop firing midway 

through secondarily generalized seizures due to depolarization block. This result is 

independent of seizure etiology (cortical dysplasia vs. mesial temporal sclerosis) or site 

of origin (hippocampus vs. neocortex). This suggests that there is an almost complete 

lack of FS-mediated inhibition towards the end of a human seizure, in contrast to some 

animal models without loss of inhibition (Neumann et al., 2017). FS cells are active near 

the beginning and middle of the seizure, in contrast to computational models placing the 

loss of inhibitory restraint at seizure onset (Liou et al., 2020). Strikingly, this absence of 

FS inhibitory activity is accompanied by large increases in the amplitude of the seizure’s 

LFP and unimpeded fast traveling waves, as well as a short-lasting increase in RS 

firing. Thus, these results suggest a more complicated set of dynamics than a 

monotonic increase or decrease of inhibition and provide further insight into the 

associated biophysical mechanisms.  
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The main difference between RS and FS cell firing during the seizures observed here 

was the significantly earlier cessation of spiking by FS cells, which is consistent with 

previous results from in vitro models of seizure-like events showing increased 

propensity of FS cells to enter depolarization block compared to pyramidal cells 

(Cammarota et al., 2013; Karlócai et al., 2014; Ziburkus et al., 2006). The reason for 

this difference in propensity to enter depolarization block has not been established, but 

these results suggest this difference could represent a primary source of imbalance 

between excitatory and inhibitory cell activities that allows seizures to propagate and 

transition to a large amplitude phase in human neocortex. One hypothesis accounting 

for this difference is that of the differential expression of voltage-gated potassium 

channel units in FS as opposed to RS cells (Lien & Jonas, 2003; Martina et al., 1998; 

Rudy & McBain, 2001) in combination with the elevated extracellular potassium ion 

levels known to occur in the context of seizures (Fröhlich et al., 2008; Somjen, 2004). 

However, there are several intrinsic and network-based properties that are known to 

differ between FS cells and pyramidal cells and could contribute to this difference, such 

as intrinsic excitability and the relative strength of feedforward drive (Cruikshank et al., 

2007; Kawaguchi, 1995; Markram et al., 2004; Pouille & Scanziani, 2004). The results 

here suggest that properties responsible for increasing the propensity of FS cells to 

enter depolarization block relative to RS cells are also those that allow the propagation 

and exacerbation of seizures in human neocortex. Beyond seizure progression, it is also 

possible that the lack of FS activity sets in motion a critical network-level transition that 

leads to seizure termination (Beverlin et al., 2012; Fröhlich et al., 2010; Kramer et al., 
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2012). This transition may include the activation of inhibitory cell types other than FS 

cells (Cammarota et al., 2013). 

 

In summary, FS cells are the largest source of inhibition in the neocortex, and human 

FS cells approach cessation less than halfway through a seizure, most likely due to 

depolarization block. This is associated with a dramatic increase of the seizure’s local 

field potential amplitude and a transition to clear spike-and-wave events at a frequency 

of ~3 Hz. Rhythmic spike-and-wave discharges, when they occur in the motor cortex, 

are responsible for the rhythmic ~3 Hz movements seen during the clonic phase of 

tonic-clonic seizures (Blumenfeld, 2005). Importantly, this suggests a novel, FS-

dependent, mechanistic explanation for the two behaviorally defined phases of 

secondarily generalized tonic-clonic seizures: the high-FS-rate, low-LFP-amplitude 

phase of the seizure corresponds to the tonic phase, whereas the post-FS-cessation 

phase with periodic spike-wave bursts corresponds to a longer lasting clonic phase. 

Thus, in addition to existing approaches (Berényi et al., 2012; Krook-Magnuson et al., 

2013; Paz et al., 2013; Sukhotinsky et al., 2013; Wykes et al., 2012), novel therapies 

that prevent FS cells from entering depolarization block may prevent - or at least limit 

the severity of - seizures, representing a novel and potentially powerful avenue for 

treating seizures with many different etiologies. 

 

3.5 Materials and Methods 
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3.5.1 Patients & Clinical/Research Electrode Placement 

Approval for all experiments was granted by the Institutional Review Boards of 

Massachusetts General Hospital / Brigham & Women’s Hospital and Rhode Island 

Hospital. The decision to implant intracranial electrodes in an epilepsy patient as well 

the positioning of those electrodes in a patient was made solely on clinical factors by 

clinical staff. The explicit goal of this study was to examine the single neuron correlates 

of tonic-clonic seizures (Fröhlich et al., 2008) with focal onsets (also referred to as focal 

seizures with secondary generalization), one of the most common kind of epilepsies 

(Annegers, 2001). These focal seizures have a localized onset zone, either in the 

mesial temporal lobe or neocortex, but secondarily generalize, spreading to both 

hemispheres and almost always leading to impaired consciousness. Here, we studied 

data from 4 patients (Patients A,B,C,D) with clear focal seizures with secondary 

generalization, with each of these clinical seizures showing clear spike-and-wave 

patterns. Two additional patients with temporal-lobe epilepsy were implanted with 

NeuroPort Arrays but not studied here because one of them did not have any seizures 

while implanted (Patient E), and the NeuroPort Array in the other patient did not sample 

any typical spike-and-wave seizures (Patient F). A total of 10 secondarily generalized 

seizures with spike-and-wave discharges from the 4 patients were analyzed (3 each 

from Patients A and D; 2 each from Patients B and C). A detailed clinical description of 

each of these 4 patients follows: 

Patient A. Patient A was a left-handed man in his 30s at the time of his surgery. He had 

suffered from pharmacologically intractable partial complex seizures for almost two 

decades.  His seizures lasted 1-2 minutes and were characterized by a sudden onset of 
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slurred and nonsensical speech. This was followed by a staring spell, lack of 

responsiveness, and head turning to the right. He also displayed automatisms and 

posturing that involved his right arm and hand more than his left. MRI suggested left 

(dominant) temporal polymicrogyria.  He underwent placement of grids and strips for ~2 

weeks to delineate the seizure focus with respect to this area of abnormal sulcation. A 

4x4 mm NeuroPort array with 1.5 mm long contacts was placed in the left superior 

temporal gyrus. Seizures were found to emanate from the mesial temporal structures, 

but during secondary generalization, the seizures spread to the location of the array in 

the superior temporal gyrus and beyond. The patient underwent a left temporal 

lobectomy, and histology confirmed that the microarray targeted layer 3. Pathology was 

consistent with mesial temporal sclerosis. 

 

Patient B. Patient B was a right-handed man in his 40s at the time of his surgery, with a 

history of medically refractory epilepsy. His seizures lasted 1-2 minutes. Clinically, the 

seizures started with arousal and bilateral arm and leg extension. This was followed by 

leftward head deviation, left arm flexion, and generalized tonic-clonic activity. He 

underwent placement of grids, strips, and depths in his right hemisphere. A 4x4 mm 

NeuroPort array (with 1.5 mm deep contacts) was placed in the right middle temporal 

gyrus. During secondary generalization, the seizures spread to the location of the 

NeuroPort array in the middle temporal gyrus and beyond. The patient underwent a 

right temporal lobectomy. Histology on the resected tissue confirmed that the microarray 

targeted layer 3.  
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Patient C. Patient C was a left-handed woman in her 20s at the time of her surgery.  

She started to have complex partial seizures at least 10 years prior to surgery. These 

seizures included an aura of nausea and a ‘tunneling’ sensation, then a flattening of 

affect, slowed responsiveness, automatisms, and associated amnesia. Such seizures 

occurred 3-4 times per month and were persistent despite being on a three-drug 

anticonvulsant regimen. MRI revealed an extensive nodular gray matter heterotopia in 

the right hemisphere. Video-EEG monitoring had found right hemispheric onset 

seizures, and fMRI had shown normal left sided language activation patterns and 

normal motor activation patterns. Wada testing confirmed left hemispheric language 

dominance and suggested her left hemisphere could adequately support memory 

function subsequent to a right temporal lobectomy. Based on these data, she was 

implanted with a combination of subdural grid and strip electrodes over the right 

hemisphere and 3 depth electrodes into the right temporal lobe. The NeuroPort array 

(with 1.5 mm deep contacts) was placed in the right middle temporal gyrus. Her 

seizures lasted between 1-2.5 minutes. These showed very consistent patterns of 

seizure onset and propagation on ECoG; all began in the right middle and upper gyri of 

the posterior temporal cortex. Low amplitude and fast activity were recorded from these 

grid sites at the onset, followed by a buildup of 11-13 Hz activities from these leads 

which then spread anteriorly and inferiorly along the grid. Rhythmic spike-wave 

discharges were also detected soon after seizure onset spreading to several locations, 

including the location of the NeuroPort array in the right middle temporal gyrus. The 

patient underwent an extensive right temporal resection with extension posteriorly 

toward the right temporo-occipital junction but sparing of much of the mesial temporal 
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structures (including the hippocampus). Histology confirmed that the array targeted 

layers 2/3. Pathology revealed subtle neuronal dysgenesis and focal superficial gliosis 

and encephalomalacia in the posterior temporal neocortex, including the recorded 

seizure-onset zone.  Anterior temporal cortex showed mild gliosis. 

 

Patient D. Patient D was a right-handed man in his 20s whose seizures began when he 

was a teenager. His seizures were characterized by a blank stare and oral automatisms 

accompanied by stiffening and posturing of the right hand. His MRI was unremarkable, 

but his semiology and phase I EEG recordings suggested a left temporal seizure onset. 

Consequently, he was implanted with several strip electrodes covering the left frontal 

and temporal regions. The NeuroPort array (1.0 mm deep contacts) was placed in the 

middle temporal gyrus about 1–2 cm posterior to the temporal tip. All of the seizures 

had similar clinical and electrographic signatures with a left gaze preference at onset 

followed by tonic and then clonic movements of the right arm. Electrographically, the 

seizures began with a generalized burst of sharp waves followed by sharp wave com-

plexes that were maximal in mesial temporal leads. The participant underwent a left 

temporal lobectomy. Histological examination of the tissue revealed mild dysplastic 

changes in the lateral temporal neocortex and gliosis and moderate neuronal loss in 

regions CA4 and CA3 of the hippocampus.  

 

3.5.2 NeuroPort Recordings, Data Collection & Analysis 

A Neuroport array (manufactured by Blackrock Microsystems) is a 10x10 grid of 

electrodes with an inter-electrode spacing of 400 um, giving a total size of 4x4 mm. The 
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depth of the electrodes used in this study was either 1.5 mm (Patients A,B,C) or 1.0 mm 

(Patient D). 96 of the 100 electrodes were used to record the activity of individual 

neurons as well as the local field potential (LFP). The 0.3-7500 Hz wideband analog 

signal from each electrode was referenced to a distant intracranial reference wire and 

sampled at 30 kHz. The LFP shown in Figs. 1, 2, and Extended Data Fig. 1 were z-

scored, but not filtered any further. Traveling wave analysis, videos (Supplementary 

Video 1), and images (Fig. 3) made use of these z-scored, unfiltered LFP signals. For 

single unit analysis, the broadband signal was high-pass filtered above 250 Hz using a 

6-pole Bessel filter and then manually spike-sorted using Plexon Offline Sorter. We then 

classified the neurons as either fast-spiking (FS) inhibitory interneurons or regular-

spiking (RS) excitatory cells using well-established criteria(Cardin et al., 2009; Nowak et 

al., 2003), including action potential shape. Cessation of firing during a seizure was 

defined as the bin after which the firing rate never exceeded 30% of the unit’s peak rate. 

For action-potential (AP) amplitude analysis (Fig. 4a), the AP amplitude was defined as 

the trough-to-peak amplitude of each individual extracellular action potential.  

 

3.5.3 Cluster isolation quality assessment: Dynamic LRatio 

To assess the isolation quality of feature space clusters over the course of seizures, we 

employed a modified version of the Lratio metric of cluster separation introduced and 

validated by Schmitzer-Torbert et al. (2005)58. This involved first calculating the 

Mahalanobis distance of every spike to a given cluster’s center in a 4D feature space 

consisting of trough-to-peak amplitude, trough-to-peak width, principal component 1, 

and principal component 2. The Mahalanobis distance normalizes the Euclidean 
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distance by the variance of a given cluster along its major dimensions to correct for 

correlations amongst features. Schmitzer-Torbert et al. (2005)58 showed strong error 

rate correlation with ground truth extracellular spikes by assuming a multi-dimensional 

Gaussian distribution for a given cluster and taking the amount of contamination by 

false negative assignments to be the sum of probabilities of each un-clustered spike of 

a given Mahalanobis distance to belong to that Gaussian, which was robust to the 

particular feature space used. These probabilities are given by the inverse of the 

cumulative distribution function of a chi-squared distribution with degrees of freedom 

equal to the number of features in the features space, the sum of which is called L.  

Because clusters in this space moved over the course of the seizure in a non-monotonic 

pattern here, we calculated Mahalanobis distances to a surrogate cluster for multiple 

subsets of the whole cluster at 8 equal divisions over the course of the seizure and 3 

divisions of the 10 minute period that occurred two minutes after the end of the seizure.  

A composite cluster across initial divisions was used to provide a liberal estimate of the 

space that a given cluster might occupy despite early waveform shape changes. This 

composite reference cluster included all available spikes before the seizure along with 

those in the first two divisions of the seizure, which were generally well-sortable. We 

calculated the sum of false negative assignment probabilities under a Gaussian model 

for this reference cluster, the value L, for each seizure and post-seizure division. We 

then dynamically normalized L by the number of spikes assigned to the cluster in each 

time division to estimate contamination rates relative to the number of spikes assigned 

during that division, which we refer to as the dynamic Lratio. 
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3.5.4 Membrane potential trajectory analysis 

We exploited the biophysical relationship between depolarization, voltage-gated Na+ 

channel inactivation, and spike waveform shape (de Polavieja, 2005) to infer the 

direction of membrane potential changes underlying the changes in firing rate exhibited 

by single units recorded extracellularly in patients across time. This was done for a 

given unit by first computing the local spike rate and average trough-to-peak waveform 

amplitude in moving time windows of width 1 second unless otherwise specified, moving 

with a step size of 0.1 seconds. Then a linear regression was performed at each point in 

this series across a moving time window of 3 seconds, producing a time series of 

correlation coefficients for bins with an average spike rate of at least 5 Hz. Strong 

negative correlations were taken as evidence of firing rate changes associated with 

membrane potential changes near resting membrane potential, while strong positive 

correlations were taken as evidence of membrane potential changes closer to firing 

threshold, near the regime of depolarization block (Bikson et al., 2003). 

 

3.5.5 Computational model 

Computer simulations of transmembrane voltage dynamics consistent with the 

extracellular observations here were made in MATLAB R2017b to explore plausible 

underlying biophysical mechanisms. A 4-dimensional ordinary differential equation 

model of a patch of neural membrane following the Hodgkin-Huxley formalism of 

passive (gL=0.033 mS/cm2, EL=-60 mV, IL=gL(V-EL)) and voltage-dependent spiking Na+ 

(gNa=60.0 mS/cm2, ENa=+58 mV, INa=gNam3h(V-ENa))  and K+ (gK=5 mS/cm2, EK=-85 
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mV, IK=gKn4(V-EK)) conductances was solved using Euler integration with a timestep of 

0.005 msec. First order kinetics of gating variables m, h, and n were modeled as in 

previously established models of this form (Hoffman et al., 1997). Slowly changing net 

synaptic input and extracellular ion gradient changes were considered to constitute a 

net external drive modeled as an injected inward current.  This current follows a 

temporal form hypothesized to drive human neocortical neurons during secondarily 

generalized seizures based on the dynamic membrane potential decoding analysis 

performed here. Fast synaptic inputs were modeled as conductances with a maximum 

conductance gsyn=0.15 mS/cm2 and an exponential decay time course of 5 milliseconds 

gated by input spike times generated by a Poisson process with a linearly increasing 

rate parameter from 0.001 to 0.2 Hz representing increasing input firing rates across 

seizure. Analysis of the resulting spike trains was completed in the same manner as 

dynamic membrane potential trajectory decoding was performed for the observed 

extracellular data. 

 

3.5.6 Statistical analyses 

In performing hypothesis testing on various metrics describing activity amongst FS and 

RS units including peak firing rate difference, mean cessation time difference, and mean 

correlation between spike firing rate and action potential amplitude at time of cessation, 

we employed bootstrap-based methods to quantify the uncertainty in these metrics. For 

peak firing rate and cessation time differences this involved combining all relevant unit 

measurements into a single population, randomly reshuffling RS and FS labels amongst 

this population, and recomputing the relevant difference metrics Nbootstrap times as 
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indicated to generate a distribution of the metric for random unit classifications. The 

probability of a Type-I (false positive) error, the p-value, was then reported as the area 

under the distribution corresponding to values more extreme than the observed value 

for the original data. For testing the positivity of the mean correlation between spike 

firing rate and action potential amplitude at time of cessation, this involved first removing 

correlation coefficients in the time series corresponding to a linear regressions involving 

spike rates of less than 5 Hz. Then the coefficients at each unit’s detected cessation 

time were resampled with replacement in 20 unit subpopulations 50,000 times (unless 

otherwise specified) and averaged to generate a bootstrapped sample mean distribution 

characterizing the variability in this mean relative to zero. The probability of a Type-I 

(false positive) error that the observed mean coefficient was greater than zero by 

chance, the p-value, was then reported as the area under the distribution corresponding 

to values equal to or less than zero. To nonparametrically test the significance of 

differences in paired measures at cessation and pause times within single units, we 

employed the right-sided Wilcoxon signed rank test (RMatlab2017b). 
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3.8 Supplemental Figures and Tables 
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Extended Data Figure 3-1: Human neural activity classification  

a. Average waveform of each FS-classified unit, normalized by the value the waveform reaches at 
its trough. The overlaid average waveforms show visual consistency amongst all units classified 
as FS and as having spike widths narrower than those of RS-classified units. 

b. Average waveform of each RS-classified unit, normalized by the value the waveform reaches at 
its trough. The overlaid average waveforms show visual consistency amongst all units classified 
as RS and as having spike widths wider than those of FS-classified units. 

c. All units indicated as points in the average waveform feature space that produced optimal cluster 
separation, namely the width of the waveform at the potential corresponding to 15% of the 
potential at its trough and the time between the trough and peak of the waveform.  Clustering was 
automated using a Gaussian Mixture Model where points with posterior probability exceeding 
0.95 were assigned to the closest centroid. Black dots indicate units that did not exceed this 
threshold for either Gaussian cloud and were thus unclassified and not used in the remainder of 
the study.  

d. Mahalanobis distance of each unit from both the RS and FS clusters with color indicating its 
posterior probability of belonging to the RS cluster. Closeness of points to both axes shows that 
the clusters are well-separated when accounting for their different variances along different 
directions in feature space.  
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Extended Data Figure 3-2: Human neocortical inhibitory and excitatory neuron activities have 

distinct temporal profiles relative to secondarily generalized focal seizure progression on local 

electrodes, Patient A, Seizure 2 

a. The LFP (gray) recorded at the same location as FS Cell 1 (blue) dramatically increases at the 
same time as FS Cell 1 decreases firing. FS Cell 1 activity cessation again precedes a sharp 
increase in local RS cell activity (green), further suggesting an important role of FS cells in 
controlling local activity during seizure progression.  

b. Heatmap shows local LFP amplitude (absolute value) over time on each electrode in NeuroPort 
array exhibiting classifiable units as each row, sorted by time of start of spike-and-wave event 
and with brighter colors indicating larger amplitudes.  

c. Raster plot showing spike times of all cells on NeuroPort array in Patient B that could be 
classified into FS (blue) or RS (green) categories with rows sorted by the same order as in (B). 
Note the increasing delay to reduction in spike density corresponding to LFP transition to spike-
and-wave events suggesting control of local seizure progression by local cellular spiking activity.  
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Extended Data Figure 3-3: Human neocortical inhibitory and excitatory neuron activities have 
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distinct temporal profiles relative to secondarily generalized focal seizure progression on local 

electrodes, Patient C, Seizure 2 

a. The LFP (gray) recorded at the same location as FS Cell 1 (blue) dramatically increases at the 
same time as FS Cell 1 decreases firing. FS Cell 1 activity cessation again precedes a sharp 
increase in local RS cell activity (green), further suggesting an important role of FS cells in 
controlling local activity during seizure progression.  

b. Heatmap shows local LFP amplitude (absolute value) over time on each electrode in NeuroPort 
array exhibiting classifiable units as each row, sorted by time of start of spike-and-wave event 
and with brighter colors indicating larger amplitudes.  

c. Raster plot showing spike times of all cells on NeuroPort array in Patient C that could be 
classified into FS (blue) or RS (green) categories with rows sorted by the same order as in (B). 
Note the increasing delay to reduction in spike density corresponding to LFP transition to spike-
and-wave events suggesting control of local seizure progression by local cellular spiking activity.  
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Extended Data Figure 3-4: Human neocortical inhibitory and excitatory neuron activities have 

distinct temporal profiles relative to secondarily generalized focal seizure progression on local 

electrodes, Patient B, Seizure 1 

a. The LFP (gray) recorded at the same location as FS Cell 1 (blue) dramatically increases at the 
same time as FS Cell 1 decreases firing. FS Cell 1 activity cessation again precedes a sharp 
increase in local RS cell activity (green), further suggesting an important role of FS cells in 
controlling local activity during seizure progression.  

b. Heatmap shows local LFP amplitude (absolute value) over time on each electrode in NeuroPort 
array exhibiting classifiable units as each row, sorted by time of start of spike-and-wave event 
and with brighter colors indicating larger amplitudes.  

c. Raster plot showing spike times of all cells on NeuroPort array in Patient C that could be 
classified into FS (blue) or RS (green) categories with rows sorted by the same order as in (B).  
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Extended Data Figure 3-5: Cluster isolation quality assessment suggests RS units are well-

isolatable across seizure despite changing unit amplitude and noise structure, allowing analysis 
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of firing rate changes across seizure.   

a. LFP in Patient C indicating seizure as split into 8 equal time divisions for analysis of unit isolation 
quality across duration of seizure.  

b. Bar graph shows firing rate in 1 second bins of best-isolated example RS unit (green) in Patient 
C. Dotted red line indicates threshold used to determine best-isolated units using the dynamic 
Lratio measure (see Methods) in each time division of seizure. Line plot indicates dynamic Lratio in 
each division and shows large separation of example FS unit from noise in feature space used for 
clustering throughout the seizure (note log scale).  

c. Line plot showing average spike amplitude (dark green) and individual spike amplitudes (light 
green) of example RS unit over course of seizure in Patient C. Note that even as amplitude 
decreases the unit remains well-isolated from noise as quantified by dynamic Lratio across seizure.  

d. Time-voltage histogram of all threshold crossings assigned to this example RS unit (green, 
Upper) and to noise (red, Lower) in eight divisions of seizure in Patient C. Shows unit waveforms 
are visually distinguishable from threshold crossings assigned as noise across seizure. 
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Extended Data Figure 3-6: Cluster isolation quality assessment suggests RS and FS units on 

same channel are well-isolatable across seizure despite changing unit amplitude and noise 

structure, allowing analysis of firing rate changes across seizure for multiple patients. 

a. LFP in Patient B indicating seizure as split into 8 equal time divisions for analysis of unit isolation 
quality across duration of seizure.  

b. Bar graph shows firing rate in 1 second bins of best-isolated example FS unit (blue) in Patient B. 
Dotted red line indicates threshold used to determine best-isolated units using the dynamic Lratio 
measure (see Methods) in each time division of seizure. Line plot indicates dynamic Lratio in each 
division and shows large separation of example FS unit from noise in feature space used for 
clustering throughout the seizure (note log scale).  

c. Line plot showing average spike amplitude (dark blue) and individual spike amplitudes (light blue) 
of example FS unit over course of seizure in Patient B. Note that even as amplitude decreases 
the unit remains well-isolated from noise as quantified by dynamic Lratio across seizure.  

d. Time-voltage histogram of all threshold crossings assigned to example FS unit (blue, Middle), RS 
unit on same channel (green, Upper), and to noise (red, Lower) in eight divisions of seizure in 
Patient B. Shows unit waveforms are visually distinguishable from threshold crossings assigned 
as noise and as other units across seizure. 
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Extended Data Figure 3-7: Cessation of individual RS unit activity is consistently associated with 

inferred membrane potential signatures of depolarization block, despite prior pauses  

a. Firing rate (upper) and trough-to-peak spike amplitude (lower) of example RS unit in Patient A, 
color-coded by the local correlation between spike rate and amplitude (in 1 second time bins) as 
an extracellular proxy for membrane potential trajectory and subthreshold input history.  Dotted 
lines indicate starts and ends of two time periods of firing rate suppression characterized by 
different membrane potential signatures further characterized in (B), namely a negative 
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correlation regime corresponding to inhibition followed by a positive correlation regime 
corresponding to over-excitation ending in firing rate cessation putatively though depolarization 
block. 

b. Example of negative correlation (left) between local spike rate and amplitude in first time period 
indicated by dotted lines in (A) and example of positive correlation (right) between local spike rate 
and amplitude in second time period indicated by dotted lines in (A). Least squares linear fit 
indicated in dotted lines following color scheme in (A) with Pearson’s correlation coefficient 
indicated above each plot.  

c. Trajectory of unit activity over time during seizure in local spike rate vs spike amplitude space, 
with increasing time indicated by increasingly lighter copper color. The first time period of firing 
rate reduction in dotted lines in (A) is indicated with an arrow as “Pause” and the second time 
period of firing rate reduction in dotted lines in (A) is indicated with an arrow as “Cessation.” 

d. Firing rate of unit from (A) with neighboring FS unit firing rate overlaid, giving further evidence that 
first period of firing rate suppression corresponds to inhibition from local FS units while second 
period of firing rate suppression does not correspond to inhibition from local FS units.  

e. Unit cessation-triggered population average of the time course of novel membrane potential 
regime measure, i.e. the correlation coefficient relating spiking amplitude and rate in a local time 
window, around the two significant descents in firing rate (below 30% of peak rate) that occur in 
sequence during seizure. These are designated as pause (left panel) and cessation (right panel). 
Left panel shows population average firing rate (blue) and inferred membrane potential regime 
(black) aligned according to the time of pause in each unit, for all RS units displaying a pause 
(n=176), with inset showing average for best-isolated RS units displaying a pause (n=41). Right 
panel shows population average firing rate (red) and inferred membrane potential regime (black) 
aligned according to the cessation time of each unit, for all RS units meeting cessation criteria 
(n=379), with inset showing average for best-isolated RS units (n=111). 

f. Probability distribution of membrane potential regime measure (spike rate-amplitude correlation; 
black line) at the time of pause (left panel) for RS unit pausing subpopulation (n=176) with sample 
mean distribution (gold line; resampling size n=10, Nbootstrap=50,000) showing a bimodal 
distribution of correlation coefficients near +1 and -1 , i.e. in the hyperpolarized membrane 
potential regime (blue) or in the highly depolarized regime (red). The population distribution of 
inferred membrane potential regime is also shown at the time of cessation (right panel) for the RS 
unit population meeting cessation criteria (n=379) with sample mean distribution (gold line; 
resampling size n=10, Nbootstrap=50,000) showing the mean correlation to be significantly above 
zero, i.e. in the highly depolarized membrane potential regime (red). This is indicative of 
widespread depolarization block occurring across RS population at the time of cessation. 

g. Unit cessation-triggered population average of the time course of same-electrode LFP amplitude 
around unit activity pause (left panel) and cessation (right panel). In particular, left panel shows 
population average firing rate (blue) and LFP amplitude (black) aligned according to the time of 
pause in each unit, for all RS units displaying a pause (n=176). Right panel shows population 
average firing rate (red) and LFP amplitude (black) aligned according to the time of cessation in 
each unit, for all RS units (n=379). 
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Extended Data Figure 3-8: Seizure progression is consistently associated with extracellular signs 
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of depolarization block preceded by inhibition in single units.  

a. Firing rate (upper) and trough-to-peak spike amplitude (lower) of another example FS unit in 
Patient A, color-coded by the local correlation between spike rate and amplitude (in 1 second 
time bins) as an extracellular proxy for membrane potential and subthreshold input history.  
Dotted lines indicate starts and ends of two time periods of firing rate suppression characterized 
by different membrane potential signatures further characterized in (B), namely a negative 
correlation regime corresponding to inhibition followed by a positive correlation regime 
corresponding to over-excitation ending in firing rate cessation putatively though depolarization 
block. 

b. Example of negative correlation (left) between local spike rate and amplitude in first time period 
indicated by dotted lines in (A) and example of positive correlation (right) between local spike rate 
and amplitude in second time period indicated by dotted lines in (A). Least squares linear fit 
indicated in dotted lines following color scheme in (A) with Pearson’s correlation coefficient 
indicated above each plot.  

c. Trajectory of unit activity over time during seizure in local spike rate vs spike amplitude space, 
with increasing time indicated by increasingly lighter copper color. The first time period of firing 
rate reduction in dotted lines in (A) is indicated with an arrow as “Pause” and the second time 
period of firing rate reduction in dotted lines in (A) is indicated with an arrow as “Cessation.” 
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Extended Data Figure 3-9: Seizure progression is consistently associated with extracellular signs 

of depolarization block preceded by inhibition in single units.  

a. Firing rate (upper) and trough-to-peak spike amplitude (lower) of another example RS unit in 
Patient A, color-coded by the local correlation between spike rate and amplitude (in 1 second 
time bins) as an extracellular proxy for membrane potential and subthreshold input history.  Firing 
rate of local FS unit is overlaid as purple histogram. Dotted lines indicate start and end times of 
two time periods of firing rate suppression characterized by different membrane potential 
signatures further characterized in (B), namely a negative correlation regime corresponding to 
inhibition followed by a positive correlation regime corresponding to over-excitation ending in 
firing rate cessation putatively though depolarization block. 

b. Example of negative correlation (left) between local spike rate and amplitude in first time period 
indicated by dotted lines in (A) and example of positive correlation (right) between local spike rate 
and amplitude in second time period indicated by dotted lines in (A). Least squares linear fit 
indicated in dotted lines following color scheme in (A) with Pearson’s correlation coefficient 
indicated above each plot.  

c. Trajectory of unit activity over time during seizure in local spike rate vs spike amplitude space, 
with increasing time indicated by increasingly lighter copper color. RS unit is released from 
inhibition shortly following the cessation of activity in local FS unit as indicated by increasing firing 
rate with decreasing amplitude but then enters regime of over-excitation indicated by decreasing 
firing rate with decreasing amplitude at trajectory “corner” corresponding to a spiking rate of 40 
Hz, until the unit ceases to fire likely due to depolarization block given these indicators of 
membrane potential history. 
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CHAPTER 4: Discussion and Future Directions 
 

4.1 Network and cell-intrinsic dynamics interact in health and disease 

This work highlights properties on the level of individual cells, including the shape of 

phase precession in hippocampal place cells and the sensitivity of FS neurons to 

depolarization block in human neocortex, as supporting stable population dynamics that 

are nevertheless flexible in responding to changing external and internal conditions, 

such as running speed and neural excitability levels. In particular, cell-type specific 

propensities to depolarization block determine the cell-type specific sequence of 

inhibition, recovery, and depolarization block that we postulate occur reproducibly 

across patients leading to seizure progression across the neocortex, with implications 

for therapeutic approaches with the proper timing relative to this sequence. Similarly, 

space and time coding mechanisms in the hippocampus were explored here based on 

the internal organization of place cell activity within theta cycles, also with 

consequences for the proper timing of episodic memory-supporting mechanisms that 

may utilize such sequences. In both cases, the dynamics of the internal network must 

be regulated to maintain stability while also performing behaviorally useful 

representation and processing of environmental inputs with their own dynamics. 
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Given that environmental dynamics can change rapidly, such as in the case of 

behavioral time warp at different running speeds, hippocampal and other neural circuits 

must employ mechanisms that maintain stability yet flexibility in their own dynamics. We 

have proposed two such mechanisms that maintain stability in the face of rapidly 

changing external inputs and internal conditions, first in the form of a logarithmic theta 

transform as implemented by the nonlinear shape of phase precession, and second in 

the form of fast-spiking inhibitory neuron activity prior to reaching depolarization block. 

4.2 Comparison to previous studies on distance vs time coding by theta 

phase 

It should be clarified that previous studies have systematically looked for whether the 

theta phase of place cell spikes correlates better with distance or with time, with the 

general consensus that distance correlates better on the single cell level despite 

variability on the population level (Gupta et al., 2012; Huxter et al., 2003; Jeewajee et 

al., 2014; Parra-Barrero et al., 2021).  Recent insightful work has particularly shown that 

the related paradox of highly speed-dependent theta sequence trajectory lengths 

despite speed-invariant distance coding within individual place cells can be explained by 

a determination of place field size by the typical (“characteristic”) speed occurring at a 

position (Parra-Barrero et al., 2021), rather than instantaneous speed. This amounts to 

distance coding occurring on the individual field level across laps, and time coding being 

a consequence of the conditions during which the field was initially formed. We report 

the existence of some time coding happening across individual laps, and propose that 

the apparent difference can be explained by the change in position of the rodent that 

occurs over the course of a theta cycle at different running speeds. This is considered a 
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negligible amount (on the order of 1 to 10 cm) in comparison to the spatial extent of 

theta sequences (approximately 50 cm) in the prior study. It should be noted that, 

although strongly correlated, theta frequency does not follow running speed to any 

comparable percentage change, with no significant change when experimentally 

controlling for acceleration (Kropff et al., 2021), and from less than 1% to about 4% 

change in theta frequency (from about 7.5 Hz to 7.8 Hz) with a 32-fold increase in 

running speed in freely moving rats (Kennedy et al., 2022). Therefore, a multifold 

change in running speed would nevertheless cause an essentially multifold change in 

the distance traveled over the course of a theta cycle. This can cause a contraction in 

the phase-position relationship of up to about 20% if, for example the distance travelled 

in a theta cycle changes from 5 cm to 10 cm in a theta cycle that also represents a 25 

cm theta sequence trajectory. Also note, the length of a theta sequence trajectory can 

vary independently of position or speed due to cognitive factors or navigational goals 

(Gupta et al., 2012; Wikenheiser & Redish, 2015a), so the theta sequence trajectory 

could become small relative to place field sizes depending on these factors (also 

discussed as cognitive space-warp in Chapter 2, Supplementary Figure 5), and 

increase the effective amount distortion in a purely distance coding framework. A 

speed-dependent contraction of the phase-position relationship of 20% is consistent 

with the amount of time coding observed here, and as shown in Figure 1 below, even 

such a 4:1 ratio of distance to time coding in phase can present significant time warp in 

spike time patterns. Furthermore, this warp can be alleviated by coding the part of the 

phase that is time-sensitive in a logarithmic fashion i.e. by LTT (Figure 2). To also 

prevent attributing relationships that only occur when pooling fields together of differing 
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characteristic speed (Parra-Barrero et al., 2021), we have analyzed all data on the 

individual field level in addition to pooled analysis throughout Chapter 2. 
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Figure 4-1. Even with dominant distance coding, just 20% time dependence of phase precession 

leads to contraction of spike time patterns with running speed.  

Top plot shows a phase precession surface that is 4 times more sensitive to distance in field than to time 

in field. A running speed trajectory involving 7 simulated place cells each spiking according to this phase 

precession surface leads to a spike time pattern with mean separation 0.17 cycles. The same trajectory 
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traversed 3 times faster leads to a mean separation of 0.14 cycles, i.e. speed-dependent contraction of 

the resulting spike time pattern. 
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Figure 4-2. Even with dominant distance coding, logarithmic time coding of just the time-

dependent portion of phase precession leads to stabilization of spike time patterns with respect to 

running speed.  

Top plot shows a phase precession surface that is 4 times more sensitive to distance in field than to 

log(time). A running speed trajectory involving 7 simulated place cells each spiking according to this 
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phase precession surface leads to a spike time pattern with mean separation 0.15 cycles. The same 

trajectory traversed 3 times faster leads to a constant mean separation of 0.15 cycles, i.e. speed-invariant 

spike time pattern construction, while encoding speed in the offset of the pattern within a theta cycle. 

 

4.3 Method of time-keeping in LTT in comparison to previous literature 

The discretization of theta phase information from spikes is another difference from 

previous works that assume theta phase can continuously code for external variables 

(Dragoi & Buzsáki, 2006; Geisler et al., 2007). In our view, the chunking of variables into 

fundamental units of information processing is one of the most conspicuous potential 

functions of oscillations and should be considered in analysis of its phase code. As far 

as detection of cycles may introduce artificial bounds to this discretization, we 

incorporate the asymmetry of individual cycles in cycle detection and maintain that the 

separation of cycles is a general problem with discretizing time that these neural circuits 

should be robust to.  Respecting the discrete nature of distinct cycles allows for 

analyzing relevant information closer to how neural circuits experience them, potentially 

with the unique advantages of time being discretized by theta cycles such as more 

efficient information representation. Indeed, the continuous representation of variables 

requires infinite information capacity. Therefore, at some point the information must be 

represented in a discrete form in the brain, and oscillatory cycles represent a plausible 

candidate for this. In terms of the effect of discretization on phase correlations, since 

theta phase within a cycle is positively correlated with both time and distance but the 

phase precession of spikes is negatively correlated with the same, discretization 

enhances the magnitude of circular-linear correlations by removing this within-cycle 

“phase rolling” effect (Sloin et al., 2022).  Therefore, it was important to enforce the 
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same method of discretization when comparing the relative correlations of distance and 

time with phase to avoid unequal contributions of within-cycle phase rolling to phase 

correlation coefficients. 

 

Despite the variability of theta frequency, we also consider theta cycles as keeping time 

for hippocampal circuits primarily in the sense that its change is accessible to a large 

number of neurons in the hippocampal formation and in potential decoders (Tingley & 

Buzsáki, 2018). Similar to discretization, this variability may also serve an information 

processing advantage in increasing the flexibility of temporal representations and 

chunking information into units that can be readout across circuits with a variety of 

dynamics and temporal resolutions (Deng et al., 2022). The idea of remaining time here 

is thus meant to encapsulate internally discretized fiducial time (Hopfield et al., 1998), 

not how time is traditionally defined as continuous, elapsed clock time which is not likely 

equally accessible by neural circuits participating in theta sequence generation. 

 

4.4 Future Directions 

The primary future direction of this work will be in demonstrating the computational 

benefits of temporally decoding speed-invariant theta sequences in downstream reader 

circuits, first within the context of a random feedforward CA3-CA1 hippocampal circuit. 

We propose that such an arrangement can support place field generation prior to 

learning via dendritic sequence decoding (Beniaguev et al., 2022; Branco et al., 2010). 

The stability of this network arrangement should be assessed in the extent of speed 

intensities for which the model maintains a given output state. The flexibility can be 
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quantified as the extent of linearly separable output states, i.e. downstream decoder 

firing rates, that can be produced by the circuit in response to different theta sequences. 

Temporal coding schemes like the one inspired by hippocampal circuits here may offer 

crucial robustness amidst variation that can be decoded by ubiquitous neural computing 

elements like dendritic sequence sensitivity, and therefore play an important role across 

the brain in handling information on patterns that evolve over time. 
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