
A Systems Approach to Overcome Tumor-cell Heterogeneity in Drug Response: Metrics and 

Mechanisms 

 

by 

 

Natacha Comandante-Lou 

A dissertation submitted in partial fulfillment 

 of the requirements for the degree of  

Doctor of Philosophy 

(Biomedical Engineering) 

in the University of Michigan 

2022 

Doctoral Committee: 

 

Assistant Professor Mohammad Fallahi-Sichani, Chair  

Assistant Professor Kelly B. Arnold 

Professor Jennifer J. Linderman 

Professor Lonnie D. Shea 

Associate Professor Greg M. Thurber  

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

Natacha Comandante-Lou 

  

natacom@umich.edu  

  

ORCID iD:  0000-0002-7981-7333 

 

  

  

© Natacha Comandante-Lou 2022 

 



 ii 

Dedication 

 

To my parents and my brother, who have always supported me and my dreams. 

In memory of my aunt, whose battle with cancer inspired me to study this disease. 

 

 



 iii 

Acknowledgements 

 

Foremost, I would like to express my deepest gratitude to my advisor, Dr. Mohammad Fallahi-

Sichani, for his support, guidance, and inspiration throughout my graduate school journey. 

Mohammad taught me by example how to become a better scientist, communicator, and mentor. 

I would like to thank my thesis committee members, Dr. Kelly Arnold, Dr. Jennifer Linderman, 

Dr. Lonnie Shea, and Dr. Greg Thurber, for their thought-provoking questions and their support 

through each milestone. I would also like to thank all Fallahi lab members for the inspiring 

discussions and being unreservedly helpful, especially: Dr. Douglas Baumann and Dr. Mehwish 

Khaliq, whose experimental expertise and insightful feedback were instrumental to this work; 

Cara Abecunas, for being there sharing our graduate school life and lab social-chair 

responsibilities; Dr. Mohan Manikkam, for keeping our lab in order. I acknowledge my funding 

sources for making this work possible: NIH, Elsa Pardee Foundation and Rackham International 

Student Fellowship. 

I am grateful to Dr. Wendy Thomas for believing in me and her unwavering support as I 

navigated through this journey. I thank Dr. Gim Toh and Dr. Christine Asidao who were there to 

listen and support. I thank my friends who keep me sane with board games, distractions, and 

conversations: from Michigan – Lia Bozarth, Carolina Chung, Sony Choi, Dinank Gupta, 

Nirmala Maldeniya, Danaja Maldeniya, and Shraddha Surve; from Seattle – Dr. Leonard Wong, 

Sarah Mac, Tsz Ling Leung, Tin Yan Li, Lael Wentland, Polly Yorioka, and Laura Penner; from 

Macau – Chris Wong, Lulu Leong, Christy Choi, and Priscila Lau.  

I would like to thank my parents Loretta and Patricio, and my brother Marco, for their 

unconditional love and sacrifices that have brought me to where I am. I would also like to thank 

Jessi Brown, for keeping me loved and happy through the highs and lows of this process. 

 

  



 iv 

 

 

 

 

 

Table of Contents 

Dedication ....................................................................................................................................... ii 

Acknowledgements ........................................................................................................................ iii 

List of Tables ............................................................................................................................... viii 

List of Figures ................................................................................................................................ ix 

List of Appendices ........................................................................................................................ xii 

Abstract ......................................................................................................................................... xii 

Chapter 1 Introduction .................................................................................................................... 1 

1.1 Heterogeneity in the state of pathway dependency ............................................................... 3 

1.2 Survival of the outliers: selection and adaptation ................................................................. 5 

1.3 Overcoming drug resistance and cellular plasticity .............................................................. 8 

1.4 Quantification of drug response and drug combination interactions for heterogeneous 

populations of tumor cells ......................................................................................................... 10 

1.4.1 Variability in drug sensitivity ....................................................................................... 11 

1.4.2 Dynamics of drug response .......................................................................................... 13 

1.5 Structure of thesis ................................................................................................................ 14 

Aim 1: Developing new mathematical and experimental frameworks to model cell-to-cell 

variability in drug response and combination efficacy (Chapter 2) ...................................... 15 

Aim 2: Elucidating the role of AP-1 transcription factor family in melanoma differentiation 

state heterogeneity and plasticity underlying MAPK inhibitor response (Chapter 3) ........... 16 

References ..................................................................................................................................... 17 

Chapter 2 Phenotype-Based Probabilistic Analysis of Heterogeneous Responses to Cancer Drugs 

and Their Combination Efficacy ................................................................................................... 26 

2.1 Introduction ......................................................................................................................... 26 



 v 

2.2 Results ................................................................................................................................. 29 

2.2.1 Probabilistic description of drug-induced phenotypic events ...................................... 29 

2.2.2 Probabilistic rate constants capture time-dependent heterogeneities in phenotypic 

responses................................................................................................................................ 32 

2.2.3 Estimating probabilistic rate constants using time-lapse live cell microscopy ............ 37 

2.2.4 Evaluating statistical independence of drug combination efficacies using probabilistic 

phenotype metrics .................................................................................................................. 44 

2.2.5 Probabilistic phenotype metrics uncover target-specific differences in drug 

combination efficacies ........................................................................................................... 48 

2.3 Discussion ........................................................................................................................... 55 

2.4 Materials and Methods ........................................................................................................ 57 

2.4.1 Cell culture ................................................................................................................... 57 

2.4.2 Reagents ....................................................................................................................... 58 

2.4.3 Cell seeding and drug treatment ................................................................................... 58 

2.4.4 High-throughput time-lapse live cell microscopy ........................................................ 59 

2.4.5 Image analysis and automated cell tracking workflow ................................................ 60 

2.4.6 Estimating probabilistic phenotype rate constants from individual cell tracking data . 61 

2.4.7 Verifying the accuracy of automated cell tracking workflow using manual single-cell 

tracking .................................................................................................................................. 62 

2.4.8 Estimating fraction of cells affected (fa) by drug ......................................................... 63 

2.4.9 Stochastic simulation of cytotoxic and cytostatic drug effects .................................... 64 

2.4.10 Validation of non-stationary Poisson models for live cell microscopy data .............. 66 

2.4.11 Simulations of combined drug responses with variable modes of drug interaction ... 67 

2.4.12 Simulations of heterogeneous drug response in the presence of drug-tolerant 

subpopulations ....................................................................................................................... 68 

2.4.13 Hierarchical clustering ................................................................................................ 70 

2.4.14 Sensitivity analysis ..................................................................................................... 70 



 vi 

2.4.15 Statistical analysis ...................................................................................................... 70 

2.4.16 Data availability.......................................................................................................... 70 

2.4.17 Code availability ......................................................................................................... 71 

2.4.18 Acknowledgments ...................................................................................................... 71 

References ..................................................................................................................................... 72 

Chapter 3 AP-1 transcription factor network explains diverse patterns of cellular plasticity in 

melanoma ...................................................................................................................................... 77 

3.1 Introduction ......................................................................................................................... 77 

3.2 Results ................................................................................................................................. 80 

3.2.1 Single-cell AP-1 protein levels predict differentiation state heterogeneity in melanoma 

cells ........................................................................................................................................ 80 

3.2.2 AP-1 transcript levels predict variations in differentiation state programs across 

melanoma lines ...................................................................................................................... 86 

3.2.3 Single-cell network inference reveals the role of AP-1 activity in regulation of 

differentiation programs ........................................................................................................ 90 

3.2.4 MAPK inhibitor-induced changes in the AP-1 state predict patterns of drug-induced 

dedifferentiation and ERK pathway reactivation .................................................................. 93 

3.2.5 Perturbation of AP-1 state by siRNA confirms its role in driving differentiation state 

heterogeneity ......................................................................................................................... 99 

3.3 Discussion ......................................................................................................................... 104 

3.4 Acknowledgments ............................................................................................................. 106 

3.5 Materials and Methods ...................................................................................................... 107 

3.5.1 Cell culture and drug treatments ................................................................................. 107 

3.5.2 AP-1 gene knockdown by siRNA .............................................................................. 108 

3.5.3 Iterative indirect immunofluorescence imaging (4i) .................................................. 109 

3.5.4 Image analysis ............................................................................................................ 113 

3.5.5 Classifying melanoma differentiation states .............................................................. 114 

3.5.6 Random forest classification ...................................................................................... 115 



 vii 

3.5.7 Partial least squares regression (PLSR) modeling ...................................................... 117 

3.5.8 Uniform manifold approximation and projection (UMAP) ....................................... 119 

3.5.9 Single-cell regulatory network inference and clustering (SCENIC) .......................... 119 

3.5.10 Partial correlation analysis ....................................................................................... 120 

3.5.11 Statistics and reproducibility .................................................................................... 121 

References ................................................................................................................................... 122 

Chapter 4 Conclusions and Future Directions ............................................................................ 127 

4.1 Summary ........................................................................................................................... 127 

4.2 Key findings by aim .......................................................................................................... 129 

4.2.1 Aim 1 .......................................................................................................................... 129 

4.2.2 Aim2 ........................................................................................................................... 129 

4.3 Future Directions ............................................................................................................... 131 

4.3.1 Decipher the transcription-factor code for signal-dependent enhancer selection 

underlying tumor cell heterogeneity and drug-induced plasticity ....................................... 131 

4.3.2 Linking the state of MAPK signaling to phenotypic heterogeneity through modeling of 

the AP-1 network ................................................................................................................. 136 

References ................................................................................................................................... 145 

Appendices .................................................................................................................................. 151 

Appendix A Supplementary information for Chapter 3 ............................................................. 152 



 viii 

List of Tables 

 

Table 3.1 siRNA sequences used for AP-1 gene knockdown .................................................... 109 

Table 3.2 Primary antibodies used in immunostaining assays ................................................... 112 

Table A.1 List of bZIP transcription factor genes used in constructing the random PLSR models 

in Figure 3.11. Transcript levels of 8 randomly chosen bZIP transcription factors from this list 

were used to construct each random model. ............................................................................... 152 

 



 ix 

List of Figures 

 

Figure 1.1 Variability in response to RAF inhibitor in BRAF-mutant melanoma patients. ........... 3 

Figure 1.2 Different sources of heterogeneity give rise to resistance to targeted therapies. .......... 5 

Figure 1.3 Fractional tumor-cell killing can arise from selection of intrinsic heterogeneity or 

drug-induced adaptation.................................................................................................................. 8 

Figure 1.4 Conventional dose-response curve and metrics. ......................................................... 11 

Figure 2.1 Schematic representation of phenotypic effects of drug action in a cell population. .. 30 

Figure 2.2 Input and output of the model simulating dose-dependent responses in a cell 

population. .................................................................................................................................... 31 

Figure 2.3 fa quantities do not capture probabilities of drug action. ............................................. 32 

Figure 2.4 Schematic representation of drug response in a heterogeneous cell population and the 

key model parameters used to model such population. ................................................................ 33 

Figure 2.5 Probabilistic rate constants capture time-dependent heterogeneities in phenotypic 

responses ....................................................................................................................................... 35 

Figure 2.6 Sensitivity of fa metrics decreases as drug cytotoxicity increases. .............................. 37 

Figure 2.7 Overview of the time-lapse image analysis pipeline to quantify occurrence of single-

cell phenotypic events from time-lapse live cell microscopy data. .............................................. 39 

Figure 2.8 Dynamic analysis of heterogeneous drug response using estimates of probabilistic 

phenotype rate constants from time-lapse live cell microscopy. .................................................. 41 

Figure 2.9 Simulations based on Poisson processes recapitulate the cell-to-cell variability of 

phenotypic drug-responses and distributions of phenotypic events observed experimentally. .... 43 

Figure 2.10 Probabilistic rate constants of phenotypic events measured using automated tracking 

is consistent with the rate constants acquired from manual single-cell tracking across different 

cell lines and drug conditions. ...................................................................................................... 44 

Figure 2.11 Probabilistic phenotype metrics, but not fa-based metrics, reveal statistical 

independence in drug combination efficacies. .............................................................................. 46 



 x 

Figure 2.12 Bliss independence based on probabilistic phenotype metrics resolve the differential 

drug-interactions in death and stasis. Bliss independence based on fa quantities, in contrast, can 

lead to biased conclusions of drug interactions. ........................................................................... 48 

Figure 2.13 Dynamic responses of COLO858 cells to epigenetic-modifying compounds and cell 

cycle inhibitors in sequential combination with Vemurafenib plus Trametinib. .......................... 50 

Figure 2.14 Dynamic responses of MMACSF cells to epigenetic-modifying compounds and cell 

cycle inhibitors in sequential combination with Vemurafenib plus Trametinib. .......................... 52 

Figure 2.15 Probabilistic phenotype metrics uncover target-specific differences in drug 

combination efficacies and their interactions. .............................................................................. 54 

Figure 3.1 Schematic representation of the iterative indirect immunofluorescence imaging (4i) 

procedure used in this study .......................................................................................................... 80 

Figure 3.2 Population-averaged measurements of AP-1 proteins and differentiation state markers 

across BRAF-mutant melanoma cell lines .................................................................................... 81 

Figure 3.3 Single-cell heterogeneity in differentiation states within and across melanoma cell 

lines ............................................................................................................................................... 82 

Figure 3.4 Cell-line representations across differentiation states of the sampled cell population.83 

Figure 3.5 Single-cell AP-1 protein levels predict differentiation state heterogeneity in melanoma

....................................................................................................................................................... 84 

Figure 3.6 Identifying the most important AP-1 factors for single-cell differentiation-state 

prediction using SHAP ................................................................................................................. 85 

Figure 3.7 Top six AP-1 factors identified from the random forest model resolve the melanoma 

differentiation trajectory. .............................................................................................................. 86 

Figure 3.8 AP-1 transcript levels predict variations in differentiation state across melanoma lines.

....................................................................................................................................................... 87 

Figure 3.9 PLSR scores of the first two PLS components separate cell lines following the 

differentiation trajectory. .............................................................................................................. 89 

Figure 3.10 VIP scores quantifying AP-1 transcript importance across differentiation states. .... 89 

Figure 3.11 PLSR model built based on the transcript levels of top 8 AP-1 genes outperforms 

most models built based on other bZIP transcription factors or transcription factors in general. 90 

Figure 3.12 Single-cell network inference from melanoma cell lines reveals the role of AP-1 

activity in regulation of differentiation state programs................................................................. 91 

Figure 3.13 Single-cell network inference from patient-derived melanoma tumors reveals the role 

of AP-1 activity in regulation of differentiation state programs. .................................................. 93 



 xi 

Figure 3.14 Population-averaged measurements of AP-1 proteins, differentiation state markers 

and ERK activity across BRAF-mutant melanoma cell lines upon 24 h and 72 h of MAPK 

inhibitor treatment. ........................................................................................................................ 95 

Figure 3.15 Single-cell distributions of differentiation state markers measured in five cell lines 

under the control or 72 h of MAPK inhibitor treatment. .............................................................. 96 

Figure 3.16 MAPK inhibitor-induced changes in cJUN/p-cJUN levels correlate with drug-

induced dedifferentiation. ............................................................................................................. 97 

Figure 3.17 Single-distributions of p-ERK levels across melanoma cell lines under the control or 

MAPK inhibitor treatment. ........................................................................................................... 98 

Figure 3.18 MAPK inhibitor-induced changes in p-FRA1 levels correlate with adaptive changes 

in ERK pathway activity. .............................................................................................................. 99 

Figure 3.19 Population-averaged measurements of AP-1 proteins and differentiation state 

markers upon siRNA-mediated perturbation of the AP-1 state. ................................................. 100 

Figure 3.20 Changes in single-cell covariance between SOX10 and MITF upon siRNA-mediated 

perturbation of the AP-1 state. .................................................................................................... 101 

Figure 3.21 Perturbation of AP-1 state by siRNA confirms its role in driving differentiation state 

heterogeneity. .............................................................................................................................. 103 

Figure A.1 Single-cell distribution of seventeen AP-1 factors measured across 19 cell lines and 

shown by violin plots highlighting the median and interquartile (25% and 75%) ranges. Related 

to Figure 3.2 and Figure 3.3. ....................................................................................................... 153 

Figure A.2 Single-cell distribution of AP-1 protein measurements, including cFOS, p-cFOS, 

FRA1, p-FRA1, FRA2, cJUN, p-cJUN, JUNB, and JUND, measured in 18 cell lines before and 

following treatment with MAPK inhibitors for 24 and 72 h. Violin plots highlight the median and 

interquartile (25% and 75%) ranges. Related to Figure 3.14. ..................................................... 154 

Figure A.3 Single-cell distribution of AP-1 protein measurements, including p-ATF1, ATF2, p-

ATF2, ATF3, ATF4, p-ATF4, ATF5 and ATF6, measured in 18 cell lines before and following 

treatment with MAPK inhibitors for 24 and 72 h. Violin plots highlight the median and 

interquartile (25% and 75%) ranges. Related to Figure 3.14. ..................................................... 155 

Figure A.4 Single-cell distribution of melanoma differentiation state markers MITF and NGFR, 

measured in 18 cell lines before and following treatment with MAPK inhibitors for 24 and 72 h. 

Violin plots highlight the median and interquartile (25% and 75%) ranges. Related to Figure 3.15 

and Figure 3.16. .......................................................................................................................... 156 

 

 



 xii 

Abstract 

 

Resistance due to tumor cell heterogeneity poses a major challenge to the use of targeted 

therapies for cancer treatment. Targeted therapies that are designed to block oncogenic signaling 

in tumor cells often yield substantial short-term responses but fail to fully eradicate tumors. 

Among the major barriers to full cures is the cell-to-cell heterogeneity in drug response that 

arises even among genetically identical cells. Recent single-cell studies have revealed that such 

non-genetic heterogeneity can prime a rare, transient subpopulation of tumor cells to be 

intrinsically drug-tolerant or render them cellular plasticity to adapt to drug-induced stress 

dynamically. These therapy escapees constitute a reservoir of reversibly drug-tolerant cells, 

which can then acquire more stably resistant phenotypes with continuous drug exposure, 

ultimately driving tumor relapse. Although the emergence and consequences of such intrinsic 

and adaptive heterogeneities are widely recognized, their molecular basis and their connection to 

variable states of drug sensitivity remain elusive. Furthermore, the dynamic responses of residual 

subpopulations of drug-tolerant cells are often obscured by fixed-time population-based 

measurements in most pre-clinical drug-response assays, posing another challenge to the design 

of effective therapeutic strategies to overcome drug resistance. 

The focus of this dissertation is to address these gaps in our knowledge by quantifying 

and dissecting the origins of cell-to-cell heterogeneity in cancer drug response using systems 

biology approaches. First, I developed new experimental and mathematical frameworks to 

evaluate time-dependent drug responses using probabilistic metrics that quantify drug-induced 

phenotypic events (i.e., cell death and division) at the single-cell level. By quantifying single-cell 

phenotypic events over time, these metrics provide a more accurate description of drug response 

for heterogeneous cell populations. Furthermore, these metrics can reveal which drugs or drug 

combinations have the ability to block rare subpopulations of drug-tolerant cells. Thus, they have 

important implications for designing efficacious treatments to avoid therapeutic escape. 

Second, this thesis investigates the molecular basis of cellular plasticity and non-genetic 

heterogeneity in drug response, focusing on the activator protein 1 (AP-1) transcription factor 
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family, for their roles as key effectors of the mitogen-activated protein kinase (MAPK) pathway 

in BRAF-mutant cancers. Using BRAF-mutant melanoma as a model system with dysregulated 

MAPK signaling, I employed systems biology approaches that integrated data-driven modeling 

with multiplexed measurements to capture single-cell heterogeneity before and after MAPK 

inhibitor treatments in BRAF-mutated melanoma cells. I showed that the state of the AP-1 

network plays a unifying role in explaining the intrinsic diversity of phenotypic states and 

adaptive responses to MAPK inhibitors. Perturbing the state of the AP-1 network through genetic 

depletion of specific AP-1 proteins, or by MAPK inhibitors, shifts cellular heterogeneity in a 

predictable fashion. Thus, AP-1 may serve as a critical node for manipulating cellular plasticity 

with potential therapeutic implications. Together, this thesis may facilitate future efforts for the 

rational design of therapeutic strategies that aim at overcoming the challenge of drug resistance 

arising due to tumor cell heterogeneity and plasticity. 
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Chapter 1 Introduction 

 

The Human Genome Project has opened up the possibility of understanding the genetic 

basis of human diseases [1]. This new understanding fuels the movement towards precision 

medicine [2], which together with the rapid pace of drug development, has provided new 

treatment options for many cancers through molecularly targeted therapies. Targeted therapies 

are designed to selectively inhibit oncoproteins or components of their effector signaling 

cascades that drive tumor growth. They block tumor cells by exploiting their elevated 

dependency on the hyperactivated oncogenic pathways for survival and cell growth, a 

phenomenon also known as oncogene addiction [3,4]. As a result, targeted therapies have 

drastically improved the safety and efficacies of cancer therapies over conventional cytotoxic 

agents that block the general cell proliferative processes [5]. Prominent examples of targeted 

therapies include the use of imatinib to inhibit the deregulated fusion protein BCR-ABL that 

drives chronic myeloid leukemia [6], the epidermal growth factor receptor (EGFR) inhibitor 

gefitinib for EGFR-mutated non-small-cell lung cancer [7], and serine-threonine protein kinase 

B-RAF (BRAF) inhibitor vemurafenib for BRAF-mutant melanoma, the deadliest form of skin 

cancer [8]. These pioneering examples mark a paradigm shift in anticancer drug development 

from the broad, fortuitous search for exceptional responders within patient populations, to the 

focused investigation of new mutation-tailored therapeutics in a subset of patients with defined 

genomic signatures [9]. 
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Therapeutic resistance due to tumor heterogeneity, however, still represents a major 

hurdle for achieving full cure with targeted therapies. Even in patients who have substantial 

initial responses, treatments eventually fail to fully eradicate tumors, and subsequently lead to 

progression of drug-resistant disease. A paradigmatic example of therapy resistance is observed 

in response to BRAF/MEK-targeted therapies in melanoma. Small-molecule BRAF inhibitors 

and their combinations with MEK kinase inhibitors have greatly improved the prognosis in 

BRAF-mutant melanoma patients [8,10]. Nevertheless, they are commonly not curative for most 

patients. Many patients experience tumor relapse due to acquired resistance, which evidently 

arises from the regrowth of a small fraction of residual cells that escape the initial phase of 

treatment [11,12]. The challenge of incomplete response to targeted therapies is prevalent across 

different cancers, shedding light on a common phenomenon in cancer biology [5]; yet the root 

mechanisms of resistance remain elusive. 

Mounting evidence has revealed a wide spectrum of phenotypic outcomes among and 

within tumors upon inhibition of the mutated oncogenic pathways. Across tumors, responses to 

targeted therapies varies vastly in the extent and in the duration of response [8,12] (Figure 1.1). 

Within the same tumor population, the suppression of oncogenic signaling leads to considerable 

variability in cell fates and cell states, including apoptosis, proliferative arrest, or changes in 

differentiation state and metabolic state [13–18]. The variety of phenotypic responses to targeted 

therapies demonstrates the remarkable diversity across tumor cells in their state of oncogenic 

pathway dependency that cannot be fully explained by their genetic background alone. 

Understanding the molecular origins of such heterogeneity and precisely how drug-resistant 

tumor cells arise from seemingly homogeneous populations of cells are essential for improving 

the outcome of targeted therapies in patients. 
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Figure 1.1 Variability in response to RAF inhibitor in BRAF-mutant melanoma patients.  

(A) Objective response across 132 BRAF-mutant melanoma patients treated with BRAF inhibitor Vemurafenib. (B) 

Time to response and response duration among 69 patients who had a response. (Adapted from Sosman et al [8]) 

 

1.1 Heterogeneity in the state of pathway dependency 

Cell-to-cell variability in drug response can arise from heterogeneity in the extracellular 

environment, such as variability in the spatial distribution of drug or paracrine signaling from the 

microenvironment [19–21]. Cell-autonomous heterogeneity, however, is also a major driver of 

therapeutic resistance. Heterogeneity can arise because of genetic variability among tumor cells. 

For example, mutations in the gatekeeper residue of the targeted molecules may enable some 

tumor cells to escape the effect of therapy by sterically impairing the binding of the drug [22,23]. 

Alternatively, genetic alterations can alleviate the dependency of tumor cells on a single 

oncoprotein by activating upstream or downstream effectors of the targeted pathway, or by 

engaging parallel pro-growth pathways [24–27] (Figure 1.2). 

Cell-to-cell variability in drug response may have non-genetic origins, as seen among 

genetically identical cells that are exposed to uniform concentrations of drugs [28–30]. Such 



 4 

phenotypic diversity in the absence of genetic variation has been the topic of extensive research 

in the past decade, and may be attributed to a combination of factors that influence the state of 

oncogenic pathway dependency across individual cells (Figure 1.2), including:  

I) the epigenetic regulation of transcriptional states (e.g. differentiation states) 

[11,13–16,28,31,32];  

II) stochastic fluctuations in the abundance, localization and activity of key 

molecules (e.g. mRNA or protein of an effector gene that bypasses the targeted 

oncogene) [29,33–36];  

III) multi-stability and oscillation generated by certain biological circuit topologies 

(e.g. a bistable switch formed by feedback motifs) [37–40].  

Altogether, the non-genetic sources of cell-to-cell variability diversify the phenotypic responses 

of tumor cells to cancer drugs. Such deviation from the simple one-to-one genotype-phenotype 

mapping poses a significant challenge to the use of targeted therapies for cancer treatment [41]. 
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Figure 1.2 Different sources of heterogeneity give rise to resistance to targeted therapies. 

Resistance is conferred by genetic and non-genetic sources of heterogeneity, which changes the state of oncogenic 

pathway dependency of tumor cells. 

 

1.2 Survival of the outliers: selection and adaptation 

One possible way for the emergence of drug resistance is through Darwinian selection 

against intrinsic heterogeneity that exists within the cell population independent of drug 

treatment. As demonstrated by Luria and Delbrück in an elegantly simple experiment in 1943 

[42], molecular variations among cells, which exist prior to drug treatment, may provide small 

subpopulations of cells with survival advantage when they are exposed to cytotoxic drugs [43–

46] (Figure 1.3). Such intrinsic cell-to-cell variability that renders drug resistance has been 

conventionally attributed to genetic heterogeneity among cells [12,42,45–48]. However, recent 
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studies have revealed that such heterogeneity may also exist among genetically homogeneous 

populations of cells, leading to fractional killing of tumor cells and the enrichment of drug-

tolerant persister cells following drug treatment [14,28,30,43,44,49]. These persister cells may 

constitute subpopulations with a size as small as < 1% of the total cancer cell population, and 

may dynamically fluctuate between drug-sensitive and slow-growing drug-tolerant states in the 

absence of drug [14,28]. Upon selection and growth following drug treatment, they undergo 

further changes and ultimately evolve toward acquired genetic resistance in response to a 

continuous drug-induced selective pressure [43,44].  

In addition to the pre-existing intrinsic heterogeneity that facilitates the Darwinian 

selection of drug-tolerant cells, drug-induced adaptive changes in cells may lead to drug 

resistance. The emergence of such reversibly drug-adapted phenotypes has been described using 

a Lamarckian induction framework, in which tumor cells respond to drug treatment by activating 

a variety of homeostatic adaptive mechanisms that allow them to escape the cytotoxic effects of 

therapy [50,51] (Figure 1.3). Such adaptive responses have been shown to be remarkably diverse 

both across genetically distinct tumors and among genetically identical cells. The most 

commonly reported adaptive responses to targeted therapies are those that involve either 

reactivation of the targeted pathway [52] or up-regulation of an alternative pro-growth pathway 

or stress/cytokine response [53–60], reflecting the feedback regulation in cell signaling 

homeostasis. The diversity and complexity of these adaptive cascades, however, suggests the 

possibility of a more global epigenetic reprogramming of phenotypic states that enable tumor 

cells to adapt to environmental stress. In the case of BRAF-mutant melanomas, time-lapse live-

cell experiments followed by single-cell analysis have revealed the emergence of slow-cycling, 

drug-tolerant cells that exhibit a de-differentiated phenotype within 1 to 2 days of BRAF/MEK 
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inhibitor treatment [15,61]. Upon growing in the absence of drugs, or with the inhibition of 

appropriate epigenetic modifiers, these drug-tolerant cells can be reverted to a differentiated, 

drug-sensitive state [15]. Such developmental plasticity associated with drug resistance has 

recently been observed in numerous studies for various cancers in cell cultures [15,60,62,63], 

mouse models [11,63,64] and patients [17], suggesting that lineage switching could be a 

universal mechanism for adaptive resistance. Notably, across different cancers, these drug-

adaptive phenotypes commonly maintain effective pathway suppression in the presence of drug. 

This suggests that lineage switching is often accompanied with a transient transformation into a 

less oncogene-dependent state. [15,50,63–65].  

Cellular mechanisms that lead to drug resistance through selection or adaptation are not 

mutually exclusive. For example, drug-tolerant persister cells transiently primed via natural 

fluctuations in the expression of drug resistance genes can be selected by drug treatment. The 

continuous presence of the drug can further push these surviving outliers into a more stable or 

irreversible oncogene-independent state through dynamic, stepwise epigenetic reprogramming 

[28,31]. Collectively, these various mechanisms of drug resistance demonstrate a rich intraclonal 

dynamics of tumor cell heterogeneity that necessitates novel therapeutic approaches. While often 

the acquired genetic mutations conferring resistance seem to be a moving target that escape 

constant development of newer generations of targeted inhibitors, the transient maintenance of 

slow-cycling, drug-tolerant states appears to be a common phenomenon across different cancer 

types and drug-treatments. Furthermore, these drug-tolerant states are typically observed much 

earlier (in hours or days) than the emergence of genetic resistance (in months or years). Thus, 

these transient drug-tolerant states could provide new therapeutic targets and an opportunity of 

early intervention. 
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Figure 1.3 Fractional tumor-cell killing can arise from selection of intrinsic heterogeneity or drug-induced 

adaptation. 

Resistance to targeted therapy emerges from a small fraction of drug-tolerant cells, which can be selected by 

therapeutic pressure, or generated by drug-induced adaptive mechanisms. These residual drug-tolerant cells 

constitute a reservoir for establishing more stable resistant phenotypes through acquiring additional genetic 

alterations or epigenetic reprogramming. 

 

1.3 Overcoming drug resistance and cellular plasticity 

Leveraging our new understanding of tumor cell heterogeneity and plasticity, the 

following two main categories of strategies that focus on minimizing these slow-cycling, drug-



 9 

tolerant cells could be envisaged to overcome the challenge of fractional tumor cell killing. The 

first approach is to selectively target the drug-tolerant states, including those that pre-exist as 

persister cells or those that emerge though phenotype switching. Such an approach leverages a 

concept parallel to synthetic lethality, where a tumor-specific alteration in one gene may increase 

the essentiality of another, creating a new vulnerability to be exploited therapeutically [66,67]. 

Often, the shift in the dependence of these drug-tolerant states on the targeted pathway is also 

accompanied with increased dependence on alternative transcriptional or metabolic activities 

[14,18,68], thus exposing drug-tolerant cells to new vulnerabilities that are specific to them. For 

example, loss of differentiation in melanoma cells that are tolerant to BRAF inhibitors renders 

them more vulnerable to ferroptosis-inducing drugs due to their increased susceptibility to 

oxidative stress [13].  

An alternative class of strategies to maximize tumor cell killing is to modulate the 

variability of a tumor cell population by targeting the regulators of such variability. For pre-

existing heterogeneity, targeting the regulatory pathways that drive the primed drug-tolerant 

persister states could minimize the frequency of their existence in the first place [31]. For the 

heterogeneity that emerges dynamically from adaptive responses, targeting key phenotype-

switching regulators to either block or revert such transition [11,69–72], could overcome the 

challenge of cellular plasticity. The establishment of new transient drug-adaptive phenotypes 

predominantly requires global remodeling and licensing of the epigenetic landscape. Such 

epigenetic landscape then permits execution of various transcriptional programs for drug-

adaptation or lineage conversion. Focusing on the epigenetic process of phenotype switching, 

several levels of molecular mechanisms could be potential targets: I) epigenetic regulators that 

modulate chromatin accessibility [15,16,73,74], II) pioneer factors that select enhancer 
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landscapes and recruit additional transcription factors for lineage-specific programs [75,76], III) 

lineage-specific transcription factors that directly control cellular reprogramming [72,77,78], and 

IV) signaling pathways that are crucial to the establishment of drug-tolerant phenotypes [52,54]. 

The heterogeneous and dynamic nature of tumor cell phenotypic responses to anticancer 

drugs suggests that full eradication of tumor cells would most likely require a combination of 

targeted therapies. Indeed, co-targeting oncogenic dependency and cellular plasticity of a tumor 

population has yielded the most substantial response compared to either approach alone in 

certain cancers [15,72,79]. Therefore, identifying the optimal combinatorial therapy approaches 

will be key to achieving full cure. 

 

1.4 Quantification of drug response and drug combination interactions for heterogeneous 

populations of tumor cells 

Quantification of drug response is essential for the discovery of novel cancer drugs, the 

prioritization of promising compounds for clinical investigations, and the elucidation of their 

mechanisms of action [80–83]. The current standard to quantify anticancer drug response is 

based on dose-response curves, which are generated by measuring cell count at a fixed time-

point (typically 72 h or 96 h) following the exposure of cells to varying concentrations of a drug. 

A dose-response curve captures at least two distinct pharmacological properties of a drug: 

potency and efficacy (Figure 1.4 A). Potency is the drug concentration required to achieve a 

given level of drug response (e.g., 50% inhibition in growth rate). Efficacy, in contrast, is the 

maximum response attainable by a drug at its highest tolerated dose. Conventionally, relative 

viability (number of cells in the drug-treated culture relative to the untreated control) across dose 

is fitted to a sigmodal function given by the Hill Equation [84], from which quantitative metrics 
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such as half-maximum inhibitory concentration (IC50), drug maximal effect (Emax), area under 

the dose-response curve (AUC) and hill slope (HS) are extracted (Figure 1.4 B). These dose-

response curve metrics are routinely used to compare various aspects of drug sensitivity across 

cell lines and drug types. These dose-response metrics have also been used in large-scale 

pharmacogenomic studies to systematically identify genomic predictors of drug sensitivity and 

resistance in tumor cells through statistical analysis [80–82]. Despite their wide-spread usage, 

these conventional dose-response metrics fall short in capturing the following two emerging 

areas of cancer pharmacology: variability and dynamics. Addressing these challenges are critical 

for the discovery of effective therapies to overcome cell-to-cell heterogeneity in drug response 

and ultimately drug resistance.  

 

Figure 1.4 Conventional dose-response curve and metrics. 

 (A) Conventional dose-response curve. Potency is the dose required to achieve a given level of response. Efficacy is 

the response attainable at the maximum tolerated dose. (B) Dose-response metrics vary with the shape of the dose-

response curves (adapted from Fallahi-Sichani et al [85]) 

 

1.4.1 Variability in drug sensitivity 

Conventional dose-response curves use cell population survival as the main readout for drug 

response. Such population-level measurements are the result of a sequence of events that in 

combination determine the drug effect, including drug uptake, target engagement, alteration of 
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downstream pathways, and the resulting phenotypes [86]. Variations in each of these events and 

pathways may contribute to variations in the overall shape of the dose-response curve. When 

comparing dose-response curves across cell populations, one may ask which aspects of dose-

response most represent drug sensitivity. Without delineating the origins of variations in dose-

response parameters, the answer to this question may not be obvious. In fact, multiparametric 

studies have demonstrated that different dose-response metrics encode complementary yet 

distinct information about how populations of cells respond to a drug [85,87].  

Conventionally, comparative analyses of anticancer drug responses have mainly focused 

on variations in drug potency (e.g., IC50), assuming that it most importantly represents drug 

sensitivity. Variations in potency can be explained by differences in drug-target interactions 

(e.g., binding affinities), drug and target concentrations, (e.g., drug influx/efflux, number of 

target receptors), polypharmacology (e.g., secondary targets) and existence of pathway 

redundancy (e.g., presence of a secondary oncogenic driver), among others [86]. More potent 

drugs engage more targets more effectively, therefore, require a lower drug concentration to 

achieve the same amount of response.  

On the other hand, variations in metrics other than potency (e.g., Emax and HS) are rarely 

examined in traditional pharmacology. Variations in efficacy, for example, arise from differences 

in the amount of heterogeneity in drug response within the cell population. Such cell-to-cell 

variability is less commonly considered in classical pharmacology because measurements are 

typically made on bulk populations of cells. However, recent single-cell studies have revealed a 

remarkable level of cell-to-cell variability even within genetically-homogeneous populations of 

tumor cells [15,28–30]. Cell-to-cell fluctuations in protein abundance or activity involving the 

drug-response pathway may cause the dose-response relationship to vary from one cell to the 
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next. At the population level, averaging these varying dose-response relationships across cells 

can give rise to dose-response curves that vary in metrics other than potency. In fact, shallow 

dose response curves (i.e. low efficacies) often correlate with the emergence of drug-tolerant or 

drug-adapted subpopulations [85], which have important implications in driving therapy 

resistance. Overcoming such cell-to-cell variability motivates efforts towards identifying 

efficacious combination therapies that minimize cross-resistance by blocking subpopulations of 

drug-tolerant cells. However, the reliance on population-averaged measurements in conventional 

dose-response analyses limits our ability to delineate how heterogeneity is influenced by 

combined drug interactions. Quantifying such heterogeneity within a population, therefore, 

requires single-cell measurements and metrics that consider the probabilistic nature of drug 

response and its variation from one cell to another. 

1.4.2 Dynamics of drug response 

The relative-viability approach in assessing drug response suffers from a fundamental flaw, 

which is being confounded by variations in cell proliferation rate and assay duration. The reason 

is that cell count, which is used as a normalization factor in the calculation of relative viability, is 

nonlinearly time-dependent. Consequently, the use of relative viability in pharmacogenomic 

studies may lead to false-positive and false-negative associations between genomic variables and 

drug sensitivity [87]. To correct for such bias, new generation of drug response metrics, such as 

drug-induced proliferation (DIP) rate [88] and growth rate (GR) inhibition [89], have recently 

been proposed and applied [16]. These metrics measure drug-induced changes as a function of 

drug dose in terms of the net growth rate of the tumor cell population instead of their relative 

viability. By normalizing the net growth rate in drug-treated cell population to the untreated 

control, these metrics correct for the variability in growth rate that is irrelevant to drug treatment, 
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such as basal variability in proliferation rate across tumor populations and arbitrary differences 

in experiment conditions and durations. 

While these new generation metrics correct for an important bias in the conventional 

dose-response metrics, their assumption of time-invariant growth rate is not always valid. 

Moreover, their reliance on fixed-time measurements does not sufficiently capture the 

complexity and heterogeneity of drug response among individual cancer cells that may adapt to 

treatment or become selected because of varied levels of intrinsic sensitivity to drug. For 

instance, the emergence of a drug-adaptive state due to phenotype-switching may occur 48 hour 

after MAPK inhibitor treatment in one BRAF-mutated melanoma cell line, while in a different 

cell line, such adaptive state may not be observed even after 96 h [15]. Furthermore, residual 

drug-tolerant cells are likely undetectable at early timepoints with population measurements, but 

with time, drug-sensitivity of the population decreases as the drug-tolerant subpopulation is 

enriched. Measurements of drug response at arbitrarily fixed time-points, therefore, will likely 

miss important information of the population response in the long-term. 

 

1.5 Structure of thesis 

As described above, resistance to therapy due to tumor cell heterogeneity remains to be a major 

challenge in the use of targeted therapies. Molecular differences generate cell-to-cell variability 

in phenotypes that profoundly impact the efficacy and duration of response to targeted therapies. 

Recent system-wide single-cell studies have revealed that resistance is driven by rare 

subpopulations of drug-tolerant tumor cells that transiently escape the early phase of treatment 

and regrow with prolonged drug-exposure. These rare subpopulations can arise from the intrinsic 

heterogeneity within a tumor population prior to treatment or emerge from adaptive phenotypic 
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switching. Despite our increasing knowledge of phenotypic diversity in tumor cell drug response, 

the molecular basis of such cellular plasticity and its connection to the diverse state of oncogene 

dependency remains poorly understood. Furthermore, responses from these residual rare 

subpopulations are not captured in most pre-clinical drug response assays, posing another 

challenge to discover therapy agents that block such heterogeneity. Here, I present a dissertation 

that applies systems pharmacology and single-cell biology approaches to address these 

challenges from two angles: 

I) developing new drug-response metrics to score such rare-cell variability;  

II) elucidating the mechanisms underlying cellular plasticity, using BRAF-mutated 

melanoma as a model system. 

The approaches to these goals can be organized into the following two aims: 

Aim 1: Developing new mathematical and experimental frameworks to model cell-to-cell 

variability in drug response and combination efficacy (Chapter 2) 

Cell-to-cell variability generates subpopulations of drug-tolerant cells that diminish therapeutic 

efficacy, even in populations of cells that are scored as highly sensitive based on drug potency. 

Overcoming such heterogeneity and blocking subpopulations of drug-tolerant cells motivate 

efforts toward identifying efficacious combination therapies. The success of these efforts 

depends on our ability to distinguish how heterogeneous populations of cells respond to 

individual drugs, and how these responses are influenced by combined drug interactions. In this 

aim, I propose mathematical and experimental frameworks to evaluate time-dependent drug 

interactions based on probabilistic metrics that quantify drug-induced tumor cell killing or 

inhibition of division at a single-cell level. These metrics can reveal heterogeneous drug 

responses and their changes with time and drug combinations. Thus, they have important 
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implications for designing efficacious combination therapies, especially those designed to block 

or overcome drug-tolerant subpopulations of cancer cells. 

Aim 2: Elucidating the role of AP-1 transcription factor family in melanoma differentiation 

state heterogeneity and plasticity underlying MAPK inhibitor response (Chapter 3) 

Cellular plasticity underlies the observed cell-to-cell variability in MAPK inhibitor response in 

melanomas. Understanding the molecular basis for cellular plasticity is therefore key to 

overcome fractional tumor-cell killing. Such plasticity has been associated with fluctuations in 

transcriptional programs that are linked to melanoma differentiation state heterogeneity, or with 

diverse adaptive responses that reflect signaling homeostasis upon inhibition of MAPK 

signaling. It remains unclear whether these seemingly distinct forms of heterogeneity are driven 

by independent mechanisms, or by an overarching process governed by a common set of 

molecular players. In this aim, I test the hypothesis that the Activator Protein 1 (AP-1) 

transcription factor network serves as a critical node that unifies diverse patterns of cellular 

plasticity in melanoma cells. Using systems approaches and single-cell analyses, I show that the 

state of the AP-1 network explains both the intrinsic heterogeneity of differentiation states and 

adaptive responses to MAPK inhibition in individual melanoma cells. Perturbing the AP-1 state 

can shift such cellular heterogeneity in a predictable fashion. Therefore, AP-1 may be leveraged 

therapeutically for manipulating cellular plasticity in melanoma to minimize therapy escape. 
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Chapter 2 Phenotype-Based Probabilistic Analysis of Heterogeneous Responses to Cancer 

Drugs and Their Combination Efficacy 

2.1 Introduction  

In pre-clinical studies, potentially effective drug combinations are usually identified based on 

evidence of synergy [1–4]. In the case of cancer drugs, synergistic interactions are typically 

assessed on the basis of bulk cell population measurements, such as relative viability (normalized 

cell count) and net growth rate inhibition, and their variations with drug dose and combination 

[5–9]. The benefit of drug combination is then evaluated based on whether using two drugs 

together improves the potency (via minimizing the dose) or efficacy of treatment (via enhancing 

the effect) as compared with using either of the drugs alone [10–16]. Such benefit with respect to 

efficacy and potency, however, may be decoupled [10], as each metric encodes distinct 

information about cellular response to a drug [17]. Variations in potency are often explained by 

differences in target engagement (e.g. physicochemistry of drug-target interaction), concentration 

of drug available to cells (e.g. drug uptake and efflux), or existence of pathway redundancy (e.g. 

presence of a secondary oncogenic driver), among others [18]. Thus, a more potent drug 

combination enables engaging the target and achieving the desired effect in a cell population by 

using lower doses of treatment [19,20]. Efficacy, on the other hand, refers to the maximum 

response achievable using tolerable doses of a drug. A more efficacious drug or drug 

combination engages a larger proportion of cells [21,22]. Previous systematic studies have 

revealed that variation in cancer drug efficacy is associated with the extent of cell-to-cell 
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variability in drug response [17,23], although such heterogeneity is not directly scored in most 

pre-clinical drug response assays. 

Cell-to-cell variability may generate subpopulations of drug-tolerant cells that diminish 

cancer drug efficacy [24–30]. An example of such heterogeneity is observed following the 

emergence of adaptive resistance or selection of resistant sub-clones even in populations of cells 

that are scored as highly responsive based on drug potency (e.g. EC50 measurements) in routine 3 

to 5-day assays. In such cases, while more than half (often as many as 90-99%) of cells may 

respond to treatment (depending on time and dose), the remaining cells give rise to a drug-

insensitive subpopulation of survivors that may stay quiescent or divide slowly in the presence of 

drug [31]. Although not obvious from the most commonly used potency measurements, the 

emergence of such survivors limits therapeutic efficacy, leading to residual cells from which 

drug-resistant clones may eventually arise and drive disease progression [32–35]. Overcoming 

such heterogeneity in drug response and eradicating subpopulations of drug-tolerant cells 

provide a strong motivation for identifying more efficacious combination therapies [36]. A key 

step toward this goal is the ability to distinguish how heterogeneous populations of cells respond 

to individual drugs in short-term assays, and how these responses are influenced by combined 

drug interactions. However, the standard way in which drugs or their combinations are screened 

using normalized population assays obscures single-cell and subpopulation effects that likely 

play a major role in diminishing the therapeutic efficacy [21,37]. 

Focusing on efficacy, the benefit of drug combination in a heterogeneous population of 

cells may arise either from its cooperative inhibitory effect on target cells [22], or simply from 

the increased probability of cells being sensitive to any of the constituent drugs [38]. In both 

cases, the overall phenotypic consequences of drug interactions may be assessed in cell culture 
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experiments based on null models of non-interaction [3]; synergistic efficacy is typically 

concluded when the observed combinatorial effect exceeds the expected effect from a given null 

model. The most commonly used model, Bliss independence, evaluates interactions based on the 

probability theory for statistically independent drug actions [16]. In cancer treatment, two basic 

phenotypic events affected by drug action are cell death and division. The effect of a drug on an 

individual cell changes the probability of its survival or division within a given time interval. 

However, current application of the Bliss independence typically uses fraction of cells affected 

(fa), a number between zero and one defined based on relative viability or net growth rate 

inhibition normalized to an untreated control at a fixed timepoint, as drug effect [3,7]. We argue 

that this commonly used approach leads to a bias in the estimation of both drug efficacy and 

combination effectiveness in heterogeneous cell populations, especially when the ultimate goal is 

to block or eradicate small subpopulations of drug-tolerant cells. This is because fa quantities are 

not equal to the time-dependent probabilities at which cell death or inhibition of cell division are 

induced by a drug. 

In this paper, we discuss evaluating time-dependent drug responses based on probabilistic 

metrics that quantify drug-induced tumor cell killing and inhibition of division at a single-cell 

level. Using these phenotype metrics, we re-evaluate criteria for statistical independence of drug 

interactions based on probability theory. Experimentally, phenotype metrics are measured using 

time-lapse live cell microscopy via monitoring cells engineered to express fluorescent reporters 

for nucleus identification (to distinguish live versus dead cells) and cell cycle progression (to 

score division events). As a proof of concept, we evaluate the performance of the metrics in two 

BRAF-mutant melanoma cell lines exposed to a range of targeted drugs which have been tested 

or proposed to be studied in combination with standard of care BRAF and MEK kinase 
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inhibitors. Dynamic measurements of the phenotype metrics reveal distinctive responses of 

melanoma cells to drug combinations that may not be distinguishable when assessed based on 

conventional assays. This is because these metrics deconvolve differential degrees of drug effect 

on tumor cell killing versus inhibition of division, which are not necessarily correlated across 

various drug treatments and their combinations. Furthermore, these metrics increase the 

sensitivity of short-term drug response assays to cell-to-cell heterogeneities and thus the presence 

or emergence of drug-tolerant subpopulations, which are typically overlooked in conventional 

drug response assays.  

 

2.2 Results 

2.2.1 Probabilistic description of drug-induced phenotypic events 

We model the arrival of phenotypic events, including cell division and death, in a given cell 

population as independent non-stationary Poisson processes with time-varying rate constants 

(kevent). These rate constants are linked to the actual probabilities (Pevent) with which such events 

occur in individual cells within a series of short time intervals (dt): 

Pevent=1 − e−keventdt≈keventdt      (Equation 2.1) 

At a population level, the occurrence of these phenotypic events can be described by 

Poisson processes of which the time-dependent rates of occurrence are directly related to the 

probabilities of events at a single-cell level (Figure 2.1). Therefore, the distribution of death and 

division events observed for a population of N cells during a time period of t may be 

approximated using the following equation: 

P {Nevent(t→t + t)=x} =
(kevent(t)Nt)

x

x!
e−(kevent(t)N)t    (Equation 2.2) 
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where Nevent (t → t + t) is the number of phenotypic events (death or division) occurring during 

the time interval between t and t + t.  

Assuming negligible cell death in the absence of any treatment, the model describes the 

cytotoxic effect of a drug on a given cell by the probability with which it induces cell death per 

unit of time (Pdeath = kdeathdt). The cytostatic effect of drug on a given cell is defined by a 

conditional probability (Pstasis) with which it prevents the cell from dividing given that the same 

cell would have divided in the absence of drug with a probability of Pdivision (no drug) = kdivision (no 

drug)dt. The relationships between the conditional probability Pstasis and the probability of cell 

division in the presence of drug (Pdivision (with drug) = kdivision (with drug)dt) and their associated rate 

constants are as follows (see Materials and Methods for the derivation details):  

Pstasis=1 − 
Pdivision (with drug)

Pdivision (no drug)
= 1 − 

kdivision (with drug)

kdivision (no drug)
    (Equation 2.3) 

kstasis=Pstasiskdivision (no drug)
       (Equation 2.4) 

 

 

Figure 2.1 Schematic representation of phenotypic effects of drug action in a cell population. 

Drug effect is described as probabilistic events, involving induction of cell death and inhibition of cell division, at a 

single-cell level. Cytotoxic effect of a drug on a given cell is described by the probability with which it induces cell 
death per unit of time (Pdeath). The cytostatic effect of drug on a given cell is described by a conditional probability 

(Pstasis) with which it prevents the cell from dividing given that the same cell would have divided in the absence of 

drug with a probability of Pdivision (no drug). 

The model provides a framework to simulate how dose-dependent responses in 

populations of cells vary with Pdeath per unit of time (h) and Pstasis by using input parameters 
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(kdeath and kstasis) that represent drugs with a wide range of cytotoxic and cytostatic effects. For 

each condition, the fraction of cells affected (fa), defined based on changes in relative viability or 

net growth rate inhibition (using recently developed drug-induced proliferation (DIP) and growth 

rate (GR) inhibition metrics [5,6]) normalized to an untreated control, are also derived as model 

outputs (Figure 2.2).  

 

 

Figure 2.2 Input and output of the model simulating dose-dependent responses in a cell population. 

(A) Dose-dependent changes in phenotype rate constants (kdeath and kstasis) in simulation of drug effect in a 

population of cells. (B) Model outputs showing variations in the fraction of cells affected (fa) at t = 96 h 

corresponding to phenotype rate constant values shown in (A). fa may be calculated in three different ways based on 

bulk response metrics such as relative viability and net growth rate inhibition (GR and DIP) following normalization 

to an untreated control. 

We compared fa quantities with probabilistic measures of drug action (Pdeath and Pstasis) 

across a number of drug response simulations. Except for extreme cases such as when Pdeath = 

Pstasis = 0 (i.e. there is no drug) or when Pdeath = 1 (i.e. all cells dying within the first time 

interval), fa quantities differed substantially from the probability with which drugs induced cell 

death or from the probability with which they inhibited cell division (Figure 2.3). fa gives a 

closer estimate of the overall probability with which a drug induces either cell death or inhibition 

of cell division (Pdeath  stasis), i.e. the probability of a cell being affected (Figure 2.3). However, it 

still fails to accurately represent the probabilistic nature of drug action in cells. Together, 

simulation results suggest that using fa as a metric for probabilistic analysis of drug response or 

drug combination efficacy (such as in Bliss independence) might lead to unreliable conclusions. 
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Instead, we propose to use direct measures of probabilistic phenotype metrics (Pdeath and Pstasis or 

kdeath and kstasis) for such analyses. 

 

Figure 2.3 fa quantities do not capture probabilities of drug action. 

Simulation results comparing fa quantities at t = 96 h with probabilistic measures of drug action, Pdeath quantified per 

unit of time (h) and conditional probability Pstasis, and the overall probability with which a drug induces cell death or 

inhibits cell division (Pdeath  stasis) across a variety of conditions, representing drugs with different levels of cytotoxic 

and cytostatic effect. Each data-point represents the mean of 30 stochastic simulations. Cells grow from an initial 

number of Nlive (t = 0) = 1000 and at a rate of kdivision (no drug) = 0.025 h-1. 

 

2.2.2 Probabilistic rate constants capture time-dependent heterogeneities in phenotypic 

responses 

Probabilistic rate constants are estimated based on the frequencies of occurrence of individual 

phenotypic events. These metrics are expected to exhibit high sensitivity to the presence of cell-

to-cell heterogeneities that cause the selection of small subpopulations of drug-tolerant cells. To 
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test this hypothesis, we simulated drug treatment scenarios where the initial cell population 

consisted of heterogeneous subpopulations, in which a small fraction (  5%) of cells were 

substantially less sensitive (by up to r = 16-fold) to treatment relative to the majority of the cell 

population (Figure 2.4). We then defined and calculated “resistance enrichment ratio” for each of 

the fa metrics (described based on viability, GR and DIP) or for phenotype rate constants (kdeath 

and kstasis) by normalizing each metric measured for the heterogeneous population to that in a 

homogeneous population (i.e.  = 0 or r = 1) at different times of treatment. Smaller resistance 

enrichment ratios represent greater sensitivity to the presence of heterogeneous drug-tolerant 

cells. 

 

Figure 2.4 Schematic representation of drug response in a heterogeneous cell population and the key model 

parameters used to model such population. 

Prior to drug-treatment, cells consist of a dominantly drug-sensitive population plus a small fraction (  5%) of 

drug-tolerant subpopulation which is r times more drug-resistant than the majority of cells. Upon drug treatment, the 

drug-tolerant subpopulation is gradually enriched over time. Resistance enrichment ratio for each of the fa metrics 

(described based on viability, GR and DIP) or for phenotype rate constants (kdeath and kstasis) is calculated by 

normalizing each metric measured for a heterogeneous population to that in a homogeneous population (i.e.  = 0 or 

r = 1) at different times of treatment. Smaller resistance enrichment ratios represent greater sensitivity to the 

presence of heterogeneous drug-tolerant cells. 

We first compared the ability of each metric to capture the presence of small 

subpopulations of drug-tolerant cells by analyzing how resistance enrichment ratio varies with  

and time (Figure 2.5 A-C). Simulation results show that fa metrics, defined based on either 

normalized cell viability or growth rate inhibition (GR and DIP), are significantly less sensitive 

than kdeath and kstasis to the presence of drug-tolerant cells. Furthermore, for any given initial 
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fraction of drug-tolerant cells (), phenotype rate constants captured the emergence of drug 

resistance at earlier timepoints. Using similar simulations, we also tested how the relative level 

of drug resistance (r) in a fixed initial fraction of drug-tolerant cells would influence each of the 

drug response metrics. Simulation results show that for a given , phenotype rate constants 

detect subpopulations with weaker levels of resistance (i.e. smaller r values) and at earlier 

timepoints (Figure 2.5 D-F). 



 35 

 

Figure 2.5 Probabilistic rate constants capture time-dependent heterogeneities in phenotypic responses 

(A-C) Simulation results showing changes in resistant enrichment ratio calculated for each of the fa metrics and for 

phenotype rate constants (kdeath and kstasis) as a function of  (at a fixed value of r = 16) across different times of 

treatment. Data are shown for fixed inherent growth rates for the sensitive population, kS
division (no drug) = 0.035 h-1 and 

three different rates of inherent growth rate for the resistant subpopulation: kR
division (no drug) = 0.02 h-1 (A), kR

division (no 

drug) = 0.009 h-1 (B) and kR
division (no drug) = 0.035 h-1 (C). (D-F) Simulation results showing changes in resistant 

enrichment ratio calculated for each of the fa metrics and for phenotype rate constants (kdeath and kstasis) as a function 

of r (at a fixed value of  = 0.03) across different times of treatment. Data are shown for fixed inherent growth rates 

for the sensitive population, kS
division (no drug) = 0.035 h-1 and three different rates of inherent growth rate for the 
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resistant subpopulation: kR
division (no drug) = 0.02 h-1 (D), kR

division (no drug) = 0.009 h-1 (E) and kR
division (no drug) = 0.035 h-1 (F). 

All data represent mean values from 50 simulations. 

Most conventional drug screening assays are performed following exposure of cells to 

drug for 3 to 5 days. While variations in drug potency are distinguishable in such assays, it is 

often suggested that longer periods of treatment are essential to detect the phenotypic 

consequences of drug-tolerant persisters that diminish the efficacy. However, our results show 

that phenotype rate constants can capture heterogeneities that would otherwise require 

significantly longer experiments when using population-level fa metrics that mask such 

heterogeneities. The benefit of using phenotype rate constants would be especially significant in 

the case of potent drugs that induce substantial cell death, while sparing a small fraction of drug-

tolerant cells (Figure 2.6 A,B). In particular, as the efficiency of drug-induced cell killing 

increases, the sensitivity of fa metrics to detect drug tolerance in the surviving fraction of cells 

decreases (Figure 2.6C). 
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Figure 2.6 Sensitivity of fa metrics decreases as drug cytotoxicity increases. 

(A) Input dose response profiles used in simulations. The maximum cytotoxic efficacy was varied at three different 

levels, whereas the cytostatic dose response profiles for all three conditions were held constant. (B) Model output 

measured from the simulated conditions in (A) at t = 72 h showing variations in viability, GR and the probabilistic 

phenotype rate constants. (C) Analysis of metric sensitivity with varying drug cytotoxicity parameter Pdeath, 

quantified per unit of time (h). Sensitivity analysis was performed on simulations with Pstasis = 0 and kdivision (no drug) = 

0.035 h-1. Initial cell number was Nlive(t = 0) = 5000. Data shown are mean  SEM across 50 simulations. 

Probabilistic phenotype rate constants were estimated from a 24 h time-interval centered at 72 h. 

 

2.2.3 Estimating probabilistic rate constants using time-lapse live cell microscopy 

To experimentally capture stochastic processes of induction of cell death and inhibition of 

division in drug-treated tumor cell populations, we used time-lapse live cell microscopy and cells 

engineered to express two fluorescent reporters. The reporters included: (i) an H2B-Venus 

reporter which labels chromatin, allowing identification of nuclei and scoring cell death based on 

changes in nucleus morphology, and (ii) an mCherry-Geminin reporter for cell cycle progression 
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[39] which allows tracking of cell division events. Using a high-throughput, automated image 

analysis workflow (see Materials and Methods), the occurrence of individual phenotypic events 

(death and division) in single cells was tracked in time across a variety of drug treatment 

conditions (Figure 2.7). To estimate time-dependent changes in probabilistic phenotype rate 

constants, the number of cell death and division events (Nevent) were quantified over a series of 

uniform time intervals of length t. Phenotype rate constants were then estimated via 

normalizing Nevent in each time interval to the length (t) and the average number of live cells 

over that time interval [Nlive(t → t + t)]avg as detailed below:   

kdeath(t)=
Ndeath(t → t + t)

[Nlive(t → t + t)]avgt
        (Equation 2.5) 

kdivision(t)=
Ndivision(t → t + t)

[Nlive(t → t + t)]avgt
        (Equation 2.6) 

kstasis(t)=kdivision (no drug) − kdivision (with drug)(t)    (Equation 2.7) 
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Figure 2.7 Overview of the time-lapse image analysis pipeline to quantify occurrence of single-cell phenotypic 

events from time-lapse live cell microscopy data. 

The automated image analysis pipeline involves four steps: (1) Each background (BG) subtracted H2B image was 

segmented in CellProfiler for nucleus identification. For each nucleus object, a variety of features (e.g. mean signal 

intensities across multiple channels, area and shape) were measured. (2) To classify the phenotypes of interest (i.e. 

live or dead cells, Gemininhigh or Gemininlow cells) in each image, classification models were trained in CellProfiler 

Analyst based on feature measurements of the user-annotated training sets. (3) Based on phenotype classifications of 

individual cells for each image output from CellProfiler, corresponding synthetic images were generated in 

MATLAB for each phenotype of interest. Synthetic images contained synthetic pixels at locations of Gemininhigh or 

dead cells. To facilitate tracking of individual cells, relative intensities of the synthetic pixels for each phenotype 

were scaled with the mean intensity of the signal associated with that phenotype. For example, intensities of death 

synthetic pixels were scaled with the mean H2B signal intensities of individual cells, whereas intensities of the 

Gemininhigh synthetic pixels were scaled with the mean Geminin signal intensities. (4) Synthetic pixels for each 

phenotype were tracked separately in TrackMate. Since Geminin reporter level drops at the M phase, a division 

event is marked when the Geminin track ends. The beginning of a death track is also marked as a death event. 
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As a proof of concept, we monitored responses of two BRAF-mutated melanoma cell 

lines (COLO858 and MMACSF) following exposure to a BRAF inhibitor Vemurafenib at 6 

doses for a period of ~120 h. Heterogeneity in drug response was then visualized through the 

estimation and analysis of phenotype rate constants, kdeath and kstasis, as a function of drug dose 

and time in each cell line (Figure 2.8A, B). In COLO858 cells, which have been shown to be 

initially sensitive but rapidly develop adaptive resistance to Vemurafenib [21,22], increasing 

drug concentration enhanced both the amplitude and the rate of increase in kdeath and kstasis within 

the first 36 h. After that, these responses were attenuated concurrent with the activation of drug-

induced adaptive responses (Figure 2.8A). Responses of MMACSF cells involved a relatively 

monotonic and dose-dependent decrease in the number of live cells. At the highest drug 

concentration (3.2 M), however, we observed two peaks of apoptotic response, one similar to 

COLO858 cells at t  36 h and a higher peak later at t  108 h (Figure 2.8B). These data are 

consistent with previous data reporting high sensitivity of MMACSF cells to 5 days of exposure 

to Vemurafenib [21,22], but also highlight the impact of cell-to-cell heterogeneity and the 

presence of subpopulations of cells with different levels of drug tolerance. 
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Figure 2.8 Dynamic analysis of heterogeneous drug response using estimates of probabilistic phenotype rate 

constants from time-lapse live cell microscopy. 

(A-B) Dynamics of (A) COLO858 and (B) MMACSF cell responses to BRAF inhibitor Vemurafenib across 6 doses 

(0-3.2 M). Time- and dose-dependent changes in live cell count and estimates of kdeath, kdivision and kstasis for time 

intervals of t = 12 h are shown. Experimental data for Vemurafenib concentrations of 0 and 0.032 M are shown 

until 48 h, that is when cells reached confluency under these conditions. Data are shown as mean  SEM across four 

replicates. 

In addition to interrogating dynamic aspects of heterogeneous drug response, we also 

tested the performance of our automated image analysis workflow by comparing the estimated 

phenotype rate constants with those measured from data generated by manual single-cell tracking 

using a MATLAB-based software [40]. The software allowed accurate tracking and cell fate 

annotation of individual cells across time-lapse images taken over a period of multiple days. 

Single-cell profiles from manual tracking confirmed heterogeneity in the number and timing of 

death and division events in cells exposed to drug. In COLO858, for example, cell-to-cell 

variability ranged from cells that died rapidly (as early as ~24 h) in response to high 

concentrations of Vemurafenib, to cells that survived but did not divide, to cells that slowly 

divided following a temporary delay in their cell cycle, the proportion and dynamics of which 

changed with drug dose (Figure 2.9A). By comparing rate constants between two image analysis 
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methods across a variety of conditions in two cell lines, we identified quantitatively similar 

patterns (Figure 2.10). This consistency confirms that the automated workflow would be suitable 

for high-throughput analysis of drug response. 

We also used single-cell phenotype data to empirically evaluate the assumption of non-

stationary Poisson process to model drug-induced death and division events. We compared the 

distribution of phenotypic events measured from time-lapse microscopy experiments with those 

simulated based on Poisson processes using estimates of phenotype rate constants. We observed 

similarity across patterns of response at the single-cell level and between distributions of events 

at the population level (Figure 2.9), suggesting that a simplified model of non-stationary Poisson 

process for drug-induced death and division events is a reasonable one.  

Taken together, high-throughput estimation and analysis of phenotype rate constants and 

their changes with time and dose provide an efficient tool to capture critical dynamic aspects of 

probabilistic and heterogeneous drug response that would be overlooked in bulk population 

assays. 
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Figure 2.9 Simulations based on Poisson processes recapitulate the cell-to-cell variability of phenotypic drug-

responses and distributions of phenotypic events observed experimentally. 

(A) Single-cell profiles of COLO858 response to Vemurafenib depicted based on manual tracking of individual cells 

exposed to different concentrations of Vemurafenib as described in (Figure 2.8A). Each cell track is presented 

horizontally along time axis. Division events are marked as red circles. Transition from white to black represents a 

cell death event. Times at which cells spend out of field of view are shown in light green. (B) Single-cell profiles of 

COLO858 response to Vemurafenib simulated based on Poisson processes using rate parameters estimated from 

COLO858 experimental data along 12 h time intervals. (C) Comparison of normalized distributions of division and 

death events along 12 h time intervals between experiments performed in COLO858 cells and the simulated 

responses for the same conditions. Experimental data-points represent pooled data from all four replicates. 

Simulated data-points represent mean  SEM across 30 simulations. 
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Figure 2.10 Probabilistic rate constants of phenotypic events measured using automated tracking is consistent with 

the rate constants acquired from manual single-cell tracking across different cell lines and drug conditions. 

(A-B) Probabilistic rate constants of death (kdeath) and division events (kdivision) measured in (A) COLO858 and (B) 

MMACSF cells treated with Vemurafenib at the indicated doses, using automated tracking analysis pipeline (top 

row) versus manual tracking (bottom row) on the same set of time-lapse images. For each condition, the automated 

tracking estimates at each timepoint are the mean values across four replicated wells. Error bars represent SEM. The 

rate constants calculated from manual tracking data are based on individually tracked cells pooled from four 

replicated wells, including about 150-220 cells per condition. 

2.2.4 Evaluating statistical independence of drug combination efficacies using probabilistic 

phenotype metrics 
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Among the most widely used reference models in evaluation of synergistic efficacy for cancer 

drug combinations is Bliss independence [16]. The Bliss model assumes that drug effects are 

consequences of probabilistic processes, and that two drugs act independently if their combined 

effect confers probabilistic or statistical independence: 

PA+B
I =P

A
+PB−PAPB       (Equation 2.8) 

where PI
A+B describes the expected probability of the combinatorial effect of drugs A and B 

when they act independently. 0 ≤ PA ≤ 1 and 0 ≤ PB ≤ 1 represent probabilities of effect mediated 

by drugs A and B when tested individually. The Bliss combination index (CI) for drugs A and B 

is defined as: 

CIA+B
Bliss =

PA+B
I

PA+B
          (Equation 2.9) 

where PA+B describes the actual probability of effect induced by drugs A and B when used in 

combination. Synergistic combination efficacy is concluded if CI < 1, i.e. when the observed 

combinatorial effect exceeds the expected effect from the Bliss independence model. Despite its 

probabilistic definition, however, the Bliss model is broadly applied to a variety of fa metrics 

(such as normalized viability or net growth rate inhibition), thereby leading to unreliable 

conclusions which are largely due to the following limitations. First, although fa measurements 

satisfy the mathematical requirement of 0 ≤ fa ≤ 1, they do not have a probabilistic nature and 

thus do not necessarily follow the rules of probability theory. Second, fa quantities are the result 

of two distinct probabilistic processes, induction of cell death and inhibition of cell division. 

These processes, even when induced by drugs with the same probabilities, do not necessarily 

have the same impact on fa. Third, for drugs A and B with fa < 1, the Bliss model (when applied 

to fa) is unable to account for the difference between being affected by drug A, drug B, or both. 

For example, consider the combined effect of two truly independent and purely cytostatic drugs 
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A and B, whose phenotypic effects (individually) are described by Pstasis = 1 (and Pdeath = 0). By 

Bliss independence when applied to fa metrics such as viability or normalized growth rate 

inhibition, the combination of drugs A and B is expected to exhibit substantial cytotoxic effect 

and thus their combination would be scored incorrectly as antagonistic (CI > 1) (Figure 2.11). To 

overcome such limitations and to avoid erroneous conclusions about drug combination 

efficacies, we propose to use probabilities of phenotypic events or their associated rate constants 

in evaluation of Bliss independence according to its probabilistic definition. 

 

Figure 2.11 Probabilistic phenotype metrics, but not fa-based metrics, reveal statistical independence in drug 

combination efficacies. 

(A) Simulation results shown for the effect of two independent and purely cytostatic drugs, A and B, with identical 

dose-effect profiles used individually and in combination. Dose-effect profiles of drugs A and B are shown as Pdeath 

and Pstasis, quantified per unit of time (h). Normalized changes in relative viability and growth rate (GR) inhibition 

are reported for each condition at 48 h and the predicted combination effects are shown for scenarios where either 

the probabilistic metric Pdeath and Pstasis or fa quantities (based on viability and GR) where used in the evaluation of 

Bliss independence. (B) Bliss combination index values calculated (at t = 48 h) using different drug response 

metrics, fa (viability), fa (GR) and Pstasis, in simulations of combined effects of two independent and identical drugs 

with variable cytostatic effects represented by variations in Psatsis. The rate of cell division in the absence of drug 

was simulated as kdivision (no drug) = 0.035 h-1. 

When applied to probabilistic events of drug-induced cell death, Bliss independence for 

the combined cytotoxic effect of drugs A and B is described as follows: 

Pdeath (A+B)
I =kdeath (A+B)

I dt=Pdeath (A)+Pdeath (B) − Pdeath (A)Pdeath (B) 
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≈ (k
death (A)

+kdeath (B))dt    (Equation 2.10) 

where Pdeath (A) and Pdeath (B) represent the probabilities with which drugs A and B induce cell 

death within a short time interval of dt, respectively. PI
death (A+B) represents the probability of 

death induced by the combination of drugs A and B when they act independently. kdeath (A), kdeath 

(B) and kI
death (A+B) represent rate constants associated with these probabilistic events, respectively. 

When applied to the conditional event of inhibition of cell division given that cells divide at a 

rate of kdivision (no drug) in the absence of drug, Bliss independence is described as follows: 

Pstasis (A+B)
I =

kstasis (A+B)
I

kdivision (no drug)
=Pstasis (A)+P stasis(B) − Pstasis (A)Pstasis (B)  

(Equation 2.11) 

where Pstasis (A) and Pstasis (B) represent the probabilities with which drugs A and B inhibit cell 

division given that cells would divide with a probability of Pdivision (no drug) = kdivision (no drug)dt 

within a short time interval of dt. PI
stasis (A+B) represents the cytostatic effect for the combination 

of drugs A and B when they act independently. kstasis (A), kstasis (B) and kI
stasis (A+B) represent rate 

constants associated with these probabilistic events. The Bliss combination index (for each of the 

drug-induced phenotypic effects) is thus defined as follows: 

CIdeath (A+B)
Bliss =

Pdeath (A+B)
I

Pdeath (A+B)
=

kdeath (A+B)
I

kdeath (A+B)
     (Equation 2.12) 

CIstasis (A+B)
Bliss =

Pstasis (A+B)
I

Pstasis (A+B)
=

kstasis(A+B)
I

kstasis (A+B)
     (Equation 2.13) 

Systematic simulation results show that evaluating probabilistic independence based on 

drug-induced phenotypic events can distinguish a variety of possible drug interactions that would 

be otherwise overlooked when assessed on the basis of fa quantities (Figure 2.12). The 

discrepancy is particularly substantial under conditions where drug combinations have uneven 

cytotoxic and cytostatic interactions, e.g., when two compounds act synergistically with respect 
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to inhibition of division but act independently or antagonistically with respect to induction of cell 

death, and vice versa.  

 

Figure 2.12 Bliss independence based on probabilistic phenotype metrics resolve the differential drug-interactions 

in death and stasis. Bliss independence based on fa quantities, in contrast, can lead to biased conclusions of drug 

interactions. 

Simulation results quantifying Bliss combination index values (at t = 48 h) calculated using fa response metrics, fa 

(viability) and fa (GR), in comparison with probabilistic combination index values (CIdeath and CIstatsis). Each data-

point represents the mean of 10 simulations for a drug combination condition with a given set of probabilistic drug 

interaction condition quantified as CIdeath and CIstasis. Conditions where CIdeath = CIstasis are highlighted in yellow. 

Representative simulations were performed using an initial live cell number of Nlive (t = 0) = 2000, kdivision (no drug) = 

0.035 h-1, kdeath (drug A) = kdeath (drug B) = 0.01 h-1, Pstasis (drug A) = Pstasis (drug B) = 0.2. 

 

2.2.5 Probabilistic phenotype metrics uncover target-specific differences in drug combination 

efficacies 

We applied the probabilistic definition of Bliss independence to evaluate time-dependent 

changes in the efficacies of a group of 12 compounds in sequential combination with BRAF 

kinase inhibitor, Vemurafenib, plus MEK kinase inhibitor, Trametinib, in two BRAF-mutated 

melanoma cell lines COLO858 and MMACSF over the course of five days (see Methods for 

details). Single-cell drug responses were monitored using time-lapse fluorescence microscopy, 
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and changes in probabilistic rate constants kstasis and kdeath were tracked for the entire period of 

experiment for each drug condition individually or in combinations (Figure 2.13, Figure 2.14). 

The list of compounds based on their nominal targets included two HDAC inhibitors 

(Fimepinostat and Givinostat), two BET bromodomain inhibitors (Birabresib and I-BET762), 

two KDM1A inhibitors (SP2509 and ORY-1001), a pan Jmj-KDM inhibitor (JIB-04), a KDM5 

inhibitor (CPI-455), two Tankyrase inhibitors (AZ6102 and NVP-TNKS656), and two CDK4/6 

inhibitors (Palbociclib and Abemaciclib). These compounds were selected from two broad 

classes of anti-cancer drugs, referred to as epigenetic-modifying compounds and cell cycle 

inhibitors, which have been proposed to be used in combination with standard of care BRAF and 

MEK inhibitors to overcome drug-adapted subpopulations of cells in BRAF-mutant melanomas 

[10,21,41–49].  
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Figure 2.13 Dynamic responses of COLO858 cells to epigenetic-modifying compounds and cell cycle inhibitors in 

sequential combination with Vemurafenib plus Trametinib. 

Estimated dynamics of changes in live cell count, kdeath, kstasis and kdivision measured from time-lapse live cell 

microscopy data for COLO858 cell responses to the combination of Vemurafenib (0.32 M) and Trametinib (0.032 

M), a 3rd compound (including epigenetic-modifying compounds or cell cycle inhibitors), their triple combination, 
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or vehicle (DMSO) control. Cells were treated initially for 24 h with DMSO control or one of the epigenetic-

modifying compounds or cell cycle inhibitors (3rd compound) at the following concentrations: Fimepinostat (0.02 

M), Givinostat (0.2 M), Birabresib (0.5 M), I-BET762 (1 M), SP2509 (1 M), ORY-1001 (1 M), JIB-04 (0.2 

M), CPI-455 (5 M), AZ6102 (1 M), NVP-TNKS656 (1 M), Palbociclib (1 M), and Abemaciclib (1 M). 

After 24 h, Vemurafenib at 0.3 M plus Trametinib at 0.03 M, or DMSO control were added to each treatment 

condition. kdivision (no drug) used for the estimation of kstasis is estimated using cell division data averaged for the first 24 

h in cells treated with DMSO only. In conditions where confluency was achieved, data-points were replaced with the 

last available data-point (dotted line). Data-points represent mean  SEM across 2 or 3 replicates. 
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Figure 2.14 Dynamic responses of MMACSF cells to epigenetic-modifying compounds and cell cycle inhibitors in 

sequential combination with Vemurafenib plus Trametinib. 

Estimated dynamics of changes in live cell count, kdeath, kstasis and kdivision measured from time-lapse live cell 

microscopy data for MMACSF cell responses to the combination of Vemurafenib (0.32 M) and Trametinib (0.032 

M), a 3rd compound (including epigenetic-modifying compounds or cell cycle inhibitors), their triple combination, 
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or vehicle (DMSO) control. Cells were treated initially for 24 h with DMSO control or one of the epigenetic-

modifying compounds or cell cycle inhibitors (3rd compound) at the following concentrations: Fimepinostat (0.02 

M), Givinostat (0.2 M), Birabresib (0.5 M), I-BET762 (1 M), SP2509 (1 M), ORY-1001 (1 M), JIB-04 (0.2 

M), CPI-455 (5 M), AZ6102 (1 M), NVP-TNKS656 (1 M), Palbociclib (1 M), and Abemaciclib (1 M). 

After 24 h, Vemurafenib at 0.3 M plus Trametinib at 0.03 M, or DMSO control were added to each treatment 

condition. kdivision (no drug) used for the estimation of kstasis is estimated using cell division data averaged for the first 24 

h in cells treated with DMSO only. In conditions where confluency was achieved, data-points were replaced with the 

last available data-point (dotted line). Data-points represent mean  SEM across 2 or 3 replicates.  

 

The analysis of variations in Bliss combination index, defined based on probabilistic 

cytotoxic and cytostatic actions, with drug and time (followed by unsupervised clustering) led to 

two major conclusions (Figure 2.15A). First, effective drugs with comparable mechanisms of 

action (e.g. BET inhibitors, HDAC inhibitors or CDK4/6 inhibitors) exhibited similar dynamic 

patterns of interaction with BRAF and MEK kinase inhibitors, suggesting that differences in 

probabilistic drug action and interactions are target-specific. Second, cytostatic and cytotoxic 

drug interactions among efficacious drug combinations often varied in time and did not 

necessarily correlate with one another. BET inhibitors, for example, exhibited a strong 

synergistic cytotoxic interaction (CIdeath < 1) with the combination of BRAF and MEK inhibitors 

within 48-72 h of treatment in both COLO858 and MMACSF cell lines, whereas their interaction 

was scored as independent (CIstasis  1) with respect to inhibition of cell division (Figure 2.15A, 

B). Furthermore, the benefit of BET inhibitors combined with Vemurafenib and Trametinib 

diminished following 96 h, concomitant with the emergence of a small proliferating 

subpopulation (kdivision > 0) (Figure 2.15B). CDK4/6 inhibitors acted independently with BRAF 

and MEK inhibitor combination to inhibit cell division within 72-96 h in both cell lines (Figure 

2.15A and Figure 2.13, Figure 2.14). Surprisingly, however, their effects on cell death appeared 

to be antagonistic especially in MMACSF cells (Figure 2.15C). This might be due the possibility 

that upon G0/G1 arrest, BRAF-mutant cells become less responsive to the effect of BRAF and 
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MEK inhibitors, an interesting observation which requires further investigation across more cell 

lines.  

 

Figure 2.15 Probabilistic phenotype metrics uncover target-specific differences in drug combination efficacies and 

their interactions. 

(A) Unsupervised clustering of Bliss combination index values (CIdeath and CIstasis) calculated using probabilistic 

metrics kdeath and kstasis in COLO858 and MMACSF cells between 48-120 h of exposure to various drugs in 

sequential combination with Vemurafenib and Trametinib. Cells were treated initially for 24 h with DMSO control 

or one of the epigenetic-modifying compounds or cell cycle inhibitors (3rd compound) at the following 

concentrations: Fimepinostat (0.02 M), Givinostat (0.2 M), Birabresib (0.5 M), I-BET762 (1 M), SP2509 (1 

M), ORY-1001 (1 M), JIB-04 (0.2 M), CPI-455 (5 M), AZ6102 (1 M), NVP-TNKS656 (1 M), Palbociclib 

(1 M), and Abemaciclib (1 M). Nominal targets of compounds are highlighted. After 24 h, Vemurafenib at 0.3 

M plus Trametinib at 0.03 M, or DMSO control were added to each treatment condition. Combination index data-

points represent mean values across 2-3 replicates. NaN data-points represent conditions where the effect of drug 

combination or that of the independence model are within measurement error, making the ratio (combination index) 

unreliable. (B) Estimated dynamics of changes in live cell count, kdeath, kstasis and kdivision measured from time-lapse 

live cell microscopy data for COLO858 and MMACSF cell responses to the combination of Vemurafenib (0.32 M) 

and Trametinib (0.032 M), BET bromodomain inhibitor I-BET762 (1 M), their triple combination, or vehicle 

(DMSO) control. (C) Estimated dynamics of changes in live cell count, kdeath, kstasis and kdivision measured from time-

lapse live cell microscopy data for MMACSF cell responses to the combination of Vemurafenib (0.32 M) and 

Trametinib (0.032 M), CDK4/6 inhibitors Palbociclib (1 M) and Abemaciclib (1 M), their triple combination, or 

vehicle (DMSO) control. kdivision (no drug) used for the estimation of kstasis for each cell line was estimated using cell 

division data averaged for the first 24 h in cells treated with DMSO only. In conditions where confluency was 

achieved (e.g. DMSO-treated cells after 60 h), data-points were replaced with the last available data-point (dotted 

line). Data-points represent mean  SEM across 2 or 3 replicates. 
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Altogether, experimental results and simulation outcomes suggest that dynamic 

measurements of the phenotype metrics and probabilistic evaluation of combination index reveal 

distinctive responses of cells to drug combinations that might be indistinguishable when assessed 

based on conventional assays. Phenotype metrics deconvolve differential (and sometimes 

opposing) degrees of drug effect on tumor cell killing versus inhibition of cell division, a 

potentially important consideration in choosing appropriate drug combinations. Furthermore, the 

probabilistic nature of these metrics makes them sensitive to cell-to-cell heterogeneities which 

are typically overlooked in conventional bulk drug response assays. They are therefore 

appropriate choices to assess synergistic efficacy in drug combinations aimed at blocking 

heterogeneous subpopulations of drug-tolerant cells. 

2.3 Discussion 

Synergistic interactions in cancer drug efficacy are typically assessed using Bliss independence 

or other models (e.g. Highest Single Agent approach [2]). These models are commonly applied 

to drug response measurements, whose outcomes are normalized to those measured in untreated 

controls to identify the fraction of cells affected (fa) by drugs. Examples of these metrics include 

drug-induced changes in viability (normalized live cell count) or net growth rate inhibition, 

which are analyzed across drug doses and combinations. Synergistic efficacy is then concluded 

when the observed combinatorial effect on fa metrics exceeds the expected effect from the null 

model. In this paper, we use basic probability theory and computer simulations to demonstrate 

that using fa metrics may bias our estimation of drug combination effectiveness and synergistic 

efficacy, especially when the ultimate goal is to block heterogeneous drug-tolerant 

subpopulations. Instead, we propose to use direct measures of time-dependent probabilities of 

key drug-induced phenotypic events, i.e. induction of cell death and inhibition of cell division, 
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and their associated rate constants (kdeath and kstasis) to evaluate synergistic efficacy using 

probabilistic models such as Bliss.  

Probabilistic phenotype metrics improve our ability to quantify drug efficacy and 

characterize drug combination interactions in the following three ways. First, in contrast to the 

commonly used fa metrics, phenotype metrics are directly related to the probabilities of drug 

action in a cell population within any given time interval following drug exposure. Furthermore, 

they deconvolve differential degrees of drug effect on tumor cell killing versus inhibition of cell 

division, which may not be correlated in many cases. Second, kdeath and kstasis dramatically 

increase the sensitivity of short-term drug response assays to dynamic cell-to-cell heterogeneities 

and the presence (or emergence) of drug-resistant sub-clones, which are typically overlooked in 

conventional fa based drug response analyses. This is a critical issue especially when 

heterogeneous tumor cell populations consist of cells that are differentially sensitive to drugs and 

that their sensitivity changes with time. Third, the probabilistic nature of phenotype metrics 

allows us to use them directly in unbiased evaluation of independence, synergistic or antagonistic 

efficacy in drug combinations using probabilistic models such as Bliss independence.  

While we focused on Bliss independence as a probabilistic framework to study 

synergistic efficacy, phenotype metrics and their dose- and time-dependent variations could be 

used in other platforms for broad evaluation of synergy. A recently developed multi-dimensional 

framework (MuSyC) uses a two-dimensional extension of Hill equation to distinguish synergistic 

efficacy versus synergistic potency, thereby allowing for a comprehensive understanding of drug 

interactions. Such understanding not only helps with improving therapeutic efficacy via 

enhancing effect, but also reducing off-target toxicities via dose reduction [10]. Probabilistic 
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phenotype rate constants follow dose-response patterns suitable to be fit by Hill equation and 

therefore can be used as input to platforms such as MuSyC.  

Estimating probabilistic phenotype metrics requires continuous time-lapse experiments 

along periods of multiple days, followed by computational single-cell analysis. In this study, we 

used cell lines engineered to express fluorescent reporters to capture drug-induced changes in 

cellular death and division events. Such integrative methods may not be necessary for large-scale 

drug screening projects, in which many drugs are filtered out because of lack of potency. The 

benefit of these methods is significant, however, when there is a need for identifying more 

efficacious drugs or drug combinations among a selection of reasonably potent candidates. It has 

become increasingly evident that cell-to-cell variability is the cause of partial efficacy and 

incomplete responsiveness of tumor cell populations to a variety of highly potent cytotoxic and 

targeted therapies. Such heterogeneities are not captured using conventional population-based 

assays, but may originate residual cells from which drug-resistant clones can arise. Therefore, the 

probabilistic analysis of single-cell phenotypes has a great potential to improve our 

understanding of heterogeneity in drug response and facilitate the discovery of more efficacious 

combination therapies. We envision that the ongoing experimental and computational advances 

in single-cell tracking (including dye-based or label-free cell fate tracking and lineage 

construction by using machine learning and deep learning algorithms) will rapidly improve the 

efficiency, accuracy, and applicability of single-cell approaches to the analysis of cancer drug 

response. 

 

2.4 Materials and Methods 

2.4.1 Cell culture 
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BRAF-mutated melanoma cell lines used in this study were obtained from the Massachusetts 

General Hospital Cancer Center with the following primary sources: COLO858 (ECACC) and 

MMACSF (Riken Bioresource Center). Each cell line was independently authenticated by Short 

Tandem Repeats (STR) profiling by ATCC. COLO858 cells were grown in RMPI 1640 (Corning 

cellgro, Cat. 10-040 CV), and MMACSF cells were grown in DMEM/F-12 (Thermo Fisher 

Scientific, Cat. 11330-032). For both cell lines, growth media were supplemented with 5% fetal 

bovine serum (Thermo Fisher Scientific, Cat. 26140-079) and 1% sodium pyruvate (Thermo 

Fisher Scientific, Cat. 11360-070). We added penicillin and streptomycin at 100 U/ml (Thermo 

Fisher Scientific, Cat. 15140-122) and plasmocin at 0.5 g/ml (InvivoGen, Cat. ant-mpp) to all 

growth media. Cells were engineered to stably express H2B-Venus and mCherry-Geminin 

fluorescent reporters as described previously [21]. Engineered and parental cell lines were 

confirmed to grow at comparable rates in the absence of any treatment or in the presence of 

different concentrations of BRAF inhibitor Vemurafenib over 72 hours of treatment. 

2.4.2 Reagents  

Chemical inhibitors used in this study were obtained from Selleck Chemicals with the following 

catalog numbers: Vemurafenib (Cat. S1267), Trametinib (Cat. S2673), SP2509 (Cat. S7680), 

ORY-1001 (Cat. S7795), Palbociclib (Cat. S1116), Abemaciclib (Cat. S7158), AZ6102 (Cat. 

S7767), NVP-TNKS656 (Cat. S7238), Givinostat (Cat. S2170), Fimepinostat (CUDC-907; Cat. 

S2759), JIB-04 (Cat. S7281), CPI-455 (Cat. S8287), I-BET762 (Cat. S7189) and Birabresib 

(OTX-015; Cat. S7360). All chemical inhibitors were dissolved in dimethyl sulfoxide (DMSO) 

as 10 mM stock solution, except Palbociclib of which the stock concentration was 5 mM. 

2.4.3 Cell seeding and drug treatment  
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COLO858 and MMACSF cells expressing fluorescent reporters were seeded into Costar 96-well 

black clear-bottom tissue culture plates (Corning 2603) in 220 L full growth medium without 

phenol red at a density of 2000 and 3000 cells/well, respectively. Cells were counted using a 

TC20™ Automated Cell Counter (Bio Rad). In the case of Vemurafenib dose-response 

experiments, cells were treated ~24 h after seeding with either DMSO or five different 

concentrations of Vemurafenib (0.0316, 0.1, 0.316, 1 and 3.16 M) for a period of ~5 days. In 

the case of drug combination experiments, cells were treated (also 24 h after seeding) with 

DMSO control or one of the epigenetic-modifying compounds or cell cycle inhibitors at the 

following concentrations: Fimepinostat (0.02 M), Givinostat (0.2 M), Birabresib (0.5 M), I-

BET762 (1 M), SP2509 (1 M), ORY-1001 (1 M), JIB-04 (0.2 M), CPI-455 (5 M), 

AZ6102 (1 M), NVP-TNKS656 (1 M), Palbociclib (1 M), and Abemaciclib (1 M); drug 

concentrations were chosen based on previous reports exhibiting maximal target inhibition in 

cells. After 24 h, Vemurafenib at 0.3 M plus Trametinib at 0.03 M, or DMSO control were 

added to each treatment condition. All drug treatments were performed in at least 4 replicates 

using a Hewlett-Packard (HP) D300 Digital Dispenser.  

2.4.4 High-throughput time-lapse live cell microscopy 

Within 50-60 min after each treatment, cells were imaged every 10 min (for COLO858) and 

every 15 min (for MMACSF) using a Nikon Ti2-E inverted microscope with motorized stage, 

Perfect Focus System, 20 objective, and a Photometrics Prime 95B camera followed by 22 

binning. The process of image acquisition was controlled using NIS element software. 

Illumination was powered by the Lumencor Spectra X light engine. H2B-Venus fluorescence 

was captured using 510 nm excitation and 535 nm emission at 25 ms exposure for MMACSF 
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cells and 20 ms exposure for COLO858 cells.  mCherry-Geminin fluorescence was captured 

using 575 nm excitation and a 629.5 nm emission at 80 ms exposure for MMACSF cells and 100 

ms exposure for COLO858 cells. Throughout the entire period of image acquisition, 

environmental conditions were maintained at 37°C, 5% CO2, and 93% humidity using an 

OkoLab Enclosure. 

2.4.5 Image analysis and automated cell tracking workflow 

Images were first processed using Fiji [50] for rolling ball background subtraction with radius of 

20 pixels. Background-subtracted images were then analyzed using CellProfiler (3.1.8) for 

segmentation and classification of cellular phenotypic states, including cells that express high 

and low levels of Geminin (referred to as Gemininhigh and Gemininlow cells, respectively), or live 

versus dead cells. Briefly, CellProfiler analysis (Figure 2.7) involved: (1) edge enhancement and 

dark hole feature enhancement of the background-subtracted H2B images to facilitate 

segmentation; (2) segmenting individual cell nuclei using the Otsu thresholding method; (3) 

using nuclei segmentations as masks to measure object intensities for all channels as well as 

object sizes and shapes; (4) classification of phenotypic states of each cell object using the 

classification model output from CellProfiler Analyst (2.2.1) [51] based on features measured 

from the previous step. Gemininhigh versus Gemininlow cell classifiers and live versus dead cell 

classifiers were trained separately using fast gentle boosting algorithm in CellProfiler Analyst 

with eight and fifteen maximum rules, respectively. The training set used to develop each 

phenotype classifier was an annotated set, generated via manually sorting the cell object tiles into 

their corresponding phenotype classes in CellProfiler Analyst. The process of manual sorting 

followed by model training was iterated until approximately 80% of true positive accuracy was 

achieved. 
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Based on phenotype classifications of individual cells for each image output from 

CellProfiler, corresponding synthetic images were generated in MATLAB (2018b) for each 

phenotype of interest. Synthetic images contained synthetic pixels at locations of cells. They 

were used to mark each of the phenotypes of interest (i.e. Gemininhigh or dead cells) in each 

image, which were then tracked across series of timepoints using the Fiji plugin TrackMate 

(3.8.0), without additional need to perform image segmentation. In other words, we combined 

the power of CellProfiler analysis for accurate and high-throughput image segmentation with the 

ability of TrackMate to track individual cell phenotypes in a multi-day time-lapse experiment. To 

achieve this goal, synthetic images for Gemininhigh cells, dead cells, background-subtracted H2B 

and Geminin images acquired from the same site were merged into a single multi-channel image 

composite using Fiji. Image composites were then analyzed using TrackMate with TrackMate 

extras and Track Analysis extensions [52] for automated tracking. Synthetic pixels of a selected 

channel were detected by the Laplacian of Gaussian detector and spots were linked with Linear 

Assignment Problem (LAP) Tracker. Additional spots filtering (based on intensities from 

multiple channels) and track filtering (based on track duration, track median velocity, and 

velocity standard deviation) were implemented to optimize tracking results.  

2.4.6 Estimating probabilistic phenotype rate constants from individual cell tracking data 

Single-cell tracking data generated using TrackMate was analyzed using MATLAB. 

Transition of a live cell from Gemininhigh to Gemininlow was recorded as a division event, 

whereas the beginning of a dead cell track was recorded as a death event (Figure 2.7). To 

estimate time-dependent changes in probabilistic phenotype rate constants, kdeath and kdivision, the 

number of recorded cell death and division events (Ndeath and Ndivision) were quantified over a 

series of uniformly distributed time intervals (t → t + t), where t = 12 h or 24 h. Normalizing 
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Ndeath and Ndivision to the length of each time interval (t) and the average number of live cells 

within the same interval [Nlive(t → t + t)]avg , phenotype rate constant were estimated using 

Equations 2.5-2.7. As expected, we observed that the magnitude of noise in single-cell tracking 

data and consequently the relative error in the estimation of kdivision and kdeath, increased under 

conditions where Gemininhigh and dead cells were highly concentrated, respectively. To mitigate 

the effect of noise under such conditions, we imposed the following constraints in our estimation 

of Ndivision (when Ndeath < Ndivision) and Ndeath (when Ndeath > Ndivision) during each time interval, 

respectively: 

Ndivision(t → t + t)= (Nlive(t + t) − Nlive(t)) −Ndeath(t → t + t)  

(Equation 2.14) 

Ndeath(t → t + t)= Ndivision(t → t + t) − (Nlive(t + t) −Nlive(t)) 

(Equation 2.15) 

These constraints are consistent with the assumption that the overall change in the 

number of live cells during each time interval (t) must be equal to the number of division 

events minus the number of death events during the same time interval. 

2.4.7 Verifying the accuracy of automated cell tracking workflow using manual single-cell 

tracking 

To test the performance of our automated image analysis workflow, we compared the phenotype 

rate constants measured using data from the automated pipeline with those measured using data 

generated from manual single-cell tracking. This was accomplished using a MATLAB-based 

software, allowing accurate single-cell tracking and cell fate annotation of individual cells across 

time-lapse images taken over a period of multiple days [40]. Briefly, the manual tracking method 

relies on identification of individual cells using intensity and shape information of the nuclear 
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marker (H2B-Venus), track propagation using nearest neighbor criteria, and real-time user 

correction of tracking, and annotation of cell death and division events based on H2B and 

Geminin signal intensities. For each condition, about 150-250 cells pooled from four replicates 

were manually tracked and cell death and division events were recorded. Phenotype rate 

constants were then calculated using Equations 2.5-2.7. 

2.4.8 Estimating fraction of cells affected (fa) by drug 

Currently, evaluation of Bliss independence (and other drug interaction frameworks) is based on 

fraction of cells affected (fa), a normalized parameter between zero and one, that represents the 

fractional effect of drugs individually or in combination [53]. Conventionally, relative viability 

(or cell count normalized to an untreated control) measured at a fixed time-point (typically 72 or 

96 h) following drug treatment has been used to calculate fa: 

f
a
(viability)=1 − viability      (Equation 2.16) 

Despite its wide-spread usage, however, the relative viability approach in assessing drug 

response suffers from a fundamental flaw, which is being confounded by variation in cell 

proliferation rates and assay duration. The reason is that cell count, which is used as a 

normalization factor in this approach, is non-linearly time-dependent. Therefore, new generation 

drug response metrics have recently been introduced to correct for this bias [5,6]. The nature of 

these metrics is based on modeling drug-induced changes in the net growth rate of the cancer cell 

population (instead of relative viability) as a function of drug dose. These metrics include drug-

induced proliferation (DIP) rate [6] and growth rate (GR) inhibition [5], both of which consider 

and correct for the variability in growth rate that is irrelevant to drug treatment via normalizing 

the net growth rate of the drug-treated cell population to that of the untreated control. DIP rate 

and GR inhibition are defined as follows: 
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DIP=
knet growth (with drug)

knet growth (no drug)
      (Equation 2.17) 

GR=2

knet growth (with drug)

knet growth (no drug) − 1      (Equation 2.18) 

where knet growth (with drug) and knet growth (no drug) are the net population growth rates measured in the 

drug-treated cell population and the untreated control at a particular time-point, respectively. 

Given the dynamic range of each metric, the definition of fraction of cells affected (fa) for 

these new metrics, fa(DIP) and fa(GR), is modified as follows so that 0 ≤ fa ≤ 1:  

f
a
(DIP)=

1−DIP

1-min(DIP)
       (Equation 2.19) 

f
a
(GR)=

1−GR

2
        (Equation 2.20) 

2.4.9 Stochastic simulation of cytotoxic and cytostatic drug effects  

We modeled phenotypic events in a heterogeneous tumor cell population as a series of 

independent stochastic reaction processes at a single-cell level. Drug-induced death events were 

described by the following reaction: 

cell
kdeath
→   dead cell 

where the rate constant of death kdeath is defined such that a given cell dies with a probability of 

kdeathdt within a reasonably short time interval (dt). Cell division in the absence of drug may be 

described by the following reaction: 

cell
kdivision (no drug)
→          2 cells 

where kdivision (no drug) is the inherent rate of division of a given cell. The cytostatic effect of a drug 

on a cell was described by a conditional probability (Pstasis = Pinhibition of division (with drug) | division (no 

drug)) with which it prevents a cell from dividing given that it would have divided in the absence 

of drug with a probability of Pdivision (no drug). Drugs that do not inhibit cell division and those that 



 65 

accelerate cell division are both characterized by Pstasis = 0. To satisfy this assumption, we 

consider an upper-bound limit for the probability of cell division that is equal to Pdivision (no drug). 

For cancer drugs that have inhibitory effect on cell division, the relationship between Pstasis and 

Pdivision (with drug) may be derived as follows:   

Pdivision (no drug) 

= Pdivision (no drug) ∩ division (with drug)+ Pdivision (no drug) ∩ inhibition of division (with drug) 

(Equation 2.21) 

= Pdivision (with drug)+ P inhibition of division (with drug) | division (no drug)∙Pdivision (no drug) 

(Equation 2.22) 

P inhibition of division (with drug) | division (no drug)= 
Pdivision (no drug)−Pdivision (with drug)

Pdivision (no drug)
  

          (Equation 2.23) 

Pstasis=1 −  
Pdivision (with drug)

Pdivision (no drug)
      (Equation 2.24) 

Pdivision (with drug)=(1− Pstasis)Pdivision (no drug)
   (Equation 2.25) 

In the presence of drug, cell division and inhibition of cell division (stasis) may be 

described by the following reactions, respectively: 

cell
kdivision 
→     2cells 

cell
kstasis
→   cell 

where the rate constants are as follow: 

kstasis=Pstasiskdivision (no drug)
      (Equation 2.26) 

kdivision=(1− Pstasis)kdivision (no drug)
     (Equation 2.27) 
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The model assumes that the processes of drug-induced cell death and inhibition of cell division 

are independent of each other. 

At the population level, Poisson processes of drug-induced phenotypic events in a tumor 

cell population were simulated using the Gillespie algorithm. Briefly, the Gillespie algorithm 

determines the time to the next reaction event in the cell population based on an exponential 

distribution that statistically characterizes the Poisson processes. The algorithm then 

stochastically determines whether the event is death or division based on probabilities that are 

proportional to the rates of these two processes (kdeath and kdivision). If the chosen event is division, 

then with probability Pstasis that division event is rejected. 

2.4.10 Validation of non-stationary Poisson models for live cell microscopy data 

The probabilistic modeling approach used in this study involves a commonly used formulation of 

stochastic chemical kinetics, describing the time evolution of a reacting system while taking into 

consideration the fact that individual reaction events (typically between individual molecules) 

are random point Poisson processes [54]. While using a similar formulation, we consider a 

single-cell event (death or division) as an individual event, rather than modeling any of the drug-

induced molecular events that underlie such cellular processes. Previous work (based on live-cell 

measurement and modeling) has shown that apoptosis, for example, is controlled by a snap 

action switch at a single-cell level [55]. This switch, however, is associated with a delay that is 

variable from one cell to another within a population, preventing cells from dying en masse 

following exposure to a death stimulus. Such variability makes it possible for an all-or-none 

response at a single-cell level to be graded at the population level such that the concentration of 

stimulus (or drug) controls the probability with which a cell responds during a specific period of 

time. This is in general agreement with the definition of Poisson process to model the population 
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behavior, where the rate of a cellular event is directly linked to the Poisson rate parameter. Such 

parameter is expected to be controlled by the concentration of a key set of molecular regulators 

that are not explicitly modeled. However, changes in cellular state (due to drug adaptation, for 

example) may influence the concentration of these regulators, causing time-dependent changes in 

the Poisson rate constant, making non-stationary Poisson process a potentially suitable 

framework to model such dynamic, adaptive responses.  

To experimentally test whether a simplified model of non-stationary Poisson process may 

explain the distribution of drug-induced death and division events in time-lapse microscopy data, 

we used maximum likelihood estimation to fit two non-stationary Poisson models, one to the 

single-cell death data and one to the single-cell division data. The rate function k(t) of the non-

stationary Poisson models used for data fitting was assumed to be a piece-wise function in time, 

where for each 12 h interval the rate was given by a single parameter. Hence, to capture 120 h of 

data, we set the rate function for each Poisson process with 10 parameters. The log-likelihood 

function for fitting a non-stationary Poisson model is given as follows: 

ℓ(θ)=∑ log{k(tj;
n
j=1 θ)} − ∫ k(τ;

T

0
θ)dτ    (Equation 2.28) 

where   is a vector of the 10 parameters to be estimated from the data, n is the number of 

datapoints, ti is the time of the ith event and T is the end time of the experiment. The log-

likelihood function was then maximized using the constrained optimization function ‘fmincon()’ 

in MATLAB. Using the fit parameters, we then simulated drug responses for 30 times and the 

normalized mean counts of phenotypic events were compared to that of the same data used for 

parameter estimation. 

2.4.11 Simulations of combined drug responses with variable modes of drug interaction 
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For combined drug response simulations, we modified the Gillespie algorithm as follows. After 

determining the time of the next event, the algorithm stochastically determines whether that 

event is a death event induced by drug A, a death event induced by drug B, or a division event 

based on probabilities proportional to their rates of occurrence. In cases where the two drugs 

confer statistically independent cell killing, the probabilities of the next event being drug A-

induced death and drug B-induced death are respectively proportional to their single drug-

induced rates of death, i.e. kdeath(A) and kdeath(B), whereas the probability of the next event being a 

division event is proportional to the inherent division rate of the cell, kdivision (no drug). If the next 

event is division, then with a probability of Pstasis(A+B) that division event is rejected. For 

independent cytostatic interactions, Pstasis(A+B) is set to PI
stasis(A+B) as defined in Equation 2.11. In 

cases where drug combinations are not independent, Pstasis(A+B) and Pdeath(A+B) will be calculated 

as PI
stasis(A+B) and PI

death(A+B) divided by CIdeath and CIstasis to simulate different modes of drug 

interaction, respectively. For the purpose of comparison, we also evaluated Bliss combination 

index while replacing probabilistic metrics with fa quantities measured for each drug condition 

individually and in combination. 

2.4.12 Simulations of heterogeneous drug response in the presence of drug-tolerant 

subpopulations  

We simulated drug treatment scenarios where the initial cell population consisted of 

heterogeneous subpopulations, in which a small fraction of cells was substantially less sensitive 

to treatment relative to the majority of the cell population. Stochastic arrival of death and 

inhibition of division events were modeled using Gillespie algorithm as described above, while 

considering two subpopulations: a larger sensitive (S) subpopulation and a small drug-tolerant or 

resistant (R) subpopulation. We initialized simulations with 300 cells, a small fraction of which 
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(, varied from 0%-5%) had a more resistant phenotype, i.e. a lower death rate constant and a 

higher probability of stasis than that of the sensitive population, in the presence of drug. We 

modeled such resistant phenotype by defining the level of resistance (r  1, varied from 1-16) as 

the fold-change in the rates of death and probability of stasis relative to the sensitive population. 

We used same fold-changes for death and cytostasis rates. We assumed a fixed inherent growth 

rate for the sensitive population kS
division (no drug) = 0.035 h-1, while considering three different 

possible inherent growth rates for the resistant population kR
division (no drug) = 0.035 h-1, 0.02 h-1, and 

0.009 h-1. Drug response parameters for the drug-sensitive population include: kS
death (drug) = 0.03 

h-1, PS
stasis (drug) = 0.8. Drug response parameters for the drug-tolerant subpopulation are: kR

death 

(drug) = kS
death (drug) / r, PR

stasis (drug) = PS
stasis (drug) / r. We assumed that phenotypic responses of both 

subpopulations are independent of each other and that daughter cells within the same 

subpopulation inherit the exact same probabilities of phenotypic events as their mother cells. The 

responses (i.e. number of live cells, death and division events) of the two subpopulations were 

summed together to show the overall response of the entire cell population. To compare 

quantitatively the sensitivity of different metrics in capturing the differences in drug effect in the 

presence of phenotypic heterogeneity, we systematically varied the initial fraction of drug-

tolerant subpopulation () and its level of resistance (r) as input parameters in simulations. For 

each simulation, overall drug effect using different metrics (fraction affected or phenotype rate 

constants) were calculated. To evaluate the sensitivity of each metric to the presence of drug-

tolerant subpopulations, we defined and calculated “resistance enrichment ratio” as the ratio of 

these metrics between two treatment scenarios, one in the presence of a heterogeneous 

population (varying  > 0 and r > 1) and one in the absence of heterogeneity ( = 0 or r = 1). 
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The smaller the resistance enrichment ratio becomes, the more significant decrease in drug effect 

is captured by a given metric in the presence of drug-tolerant cells. 

2.4.13 Hierarchical clustering 

Unsupervised hierarchical clustering of combination index (CI) values estimated from the 

application of Bliss independence to probabilistic phenotype rate constants measured for 24 h 

time intervals of drug treatments was carried out using MATLAB 2018b with the Euclidean 

distance metric and the Complete (farthest distance) algorithm for computing the distance 

between clusters. 

2.4.14 Sensitivity analysis 

To compare the sensitivity of different metrics (with different units), to the variation of 

parameter Pdeath, we defined fractional sensitivity (Sf) as follows: 

Sf(fa,Pdeath)=
∂fa/fa

∂Pdeath/Pdeath
      (Equation 2.29) 

Sf(kdeath,Pdeath)=
∂kdeath/kdeath

∂Pdeath/Pdeath
     (Equation 2.30) 

Sf values of less than 1 represent reduced sensitivity of the metric to changes in Pdeath. 

2.4.15 Statistical analysis 

All data with error bars were presented as mean  standard error of the mean (SEM) using 

indicated numbers of replicates.  

2.4.16 Data availability 
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Source data extracted from the analysis of time-lapse imaging in melanoma cells (presented in 

Figure 2.8, Figure 2.13 and Figure 2.14) are included in Supplementary Tables S1-S4 on the 

publication website (https://dx.plos.org/10.1371/journal.pcbi.1007688). 

2.4.17 Code availability 

Custom MATLAB scripts for probabilistic simulation of drug response in heterogeneous tumors 

cell populations (presented in Figure 2.3, Figure 2.5 and Figure 2.12) are available on GitHub at 

the following address: https://github.com/fallahi-sichani-lab/probabilisticDrugResponse 
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Chapter 3 AP-1 Transcription Factor Network Explains Diverse Patterns of Cellular 

Plasticity in Melanoma 

3.1 Introduction 

Individual cells, even those derived from the same clone, respond heterogeneously to 

environmental perturbations [1,2]. Nongenetic heterogeneity can arise due to variances 

associated with transcriptional state plasticity [1,3–5]. Although such plasticity is required for the 

proper development of complex organisms [6], it limits the efficacy of therapies that target 

abnormally-activated signaling pathways [7,8]. An example of cell-to-cell transcriptional 

heterogeneity with phenotypic consequences for therapy resistance is observed in melanomas [9–

11]. Numerous studies have associated fluctuations in the state of MAPK inhibitor sensitivity 

across BRAF-mutant melanoma cells to intrinsic variations in their differentiation state [12–17]. 

The reported heterogeneity spans a range of transcriptionally distinguishable states, including a 

relatively drug-sensitive, melanocytic phenotype that expresses melanocyte lineage markers 

SOX10 and MITF [18], to less drug-sensitive states, including neural crest-like cells that express 

NGFR [9,19], and undifferentiated cells characterized by the overexpression of AXL and loss of 

SOX10 and MITF [20,21]. In addition to intrinsic disparities in differentiation state, drug-

induced adaptive responses may help a fraction of cells rewire their state of MAPK inhibitor 

sensitivity, most commonly through dedifferentiation (concomitant with loss of MITF and 

acquisition of NGFR) [9,13,22] or reactivation of the MAPK pathway [23,24]. Although the 

emergence and consequences of such intrinsic and adaptive heterogeneities are widely 

recognized, there is still more to learn about their origins and their possible connection at a 
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molecular level. For example, it is unclear whether these seemingly distinct forms of 

heterogeneity arise from independent mechanisms, or whether the observed variability in the 

initial state of cells and their adaptive changes following MAPK inhibitor treatment could both 

be traced back to a common subset of molecular players. 

Transcription factor networks that regulate the expression of genes in response to 

signaling pathway perturbations play a key role in creating the biological noise that leads to 

population heterogeneity [25,26]. The AP-1 protein family comprises one such network that 

serves as a major transcription node, integrating inputs from the upstream MAPK signaling 

pathway [27]. In addition to linking signal transduction to transcription, AP-1 proteins have been 

recently identified to serve as pioneer factors, establishing chromatin states that predispose cells 

to transcriptional programs driven by other transcription factors or histone modifications, thereby 

guiding cells towards paths of differentiation or epigenetic reprogramming [28–31]. These roles 

are consistent with numerous reports on AP-1 proteins being involved in resistance to MAPK 

inhibitors, cell state heterogeneity, and therapy-induced dedifferentiation in melanomas and other 

cancers [9,14,32–40]. Despite these reports, we lack a clear understanding of the rules that define 

AP-1 behavior and its role in explaining the intrinsic plasticity and the diversity of adaptive 

responses to MAPK signaling perturbations. This gap in our knowledge may be addressed by a 

system-wide analysis with single-cell precision to reveal interdependencies between an array of 

AP-1 proteins, which comprise over a dozen transcription factors, including JUN, FOS, and ATF 

subfamilies [41], their post-translational modification states, and their association with 

melanoma cell phenotypes at a single-cell level. 

In this chapter, we test the hypothesis that the state of the AP-1 transcription factor 

network determines the intrinsic diversity of phenotypic states (i.e., differentiation states) and 
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adaptive responses to MAPK inhibitors in BRAF-mutated melanoma cells. We define the AP-1 

state as the combinatorial concentrations of AP-1 proteins, their phosphorylation state, and their 

transcriptional activity, which are either measurable experimentally, or inferable by using 

bioinformatics tools. Our systems biology approach combines multiplexed measurements of the 

AP-1 state, MAPK signaling activity and differentiation state, at population and single-cell 

levels, across many genetically characterized melanoma cell lines before and after their exposure 

to BRAF/MEK inhibitors. We apply statistical learning to capture the predictivity of AP-1 states, 

and corresponding AP-1 factors, for phenotypic heterogeneity in melanoma cultures and patient-

derived tumors. We then employ RNAi-mediated knockdown experiments combined with 

single-cell analysis to validate the causality of our statistical predictions in a heterogeneous 

melanoma cell population. We find that a tightly regulated balance between AP-1 transcription 

factors cJUN, FRA2, FRA1 and cFOS and their transcriptional activity determines the baseline 

differentiation state of melanoma cells. This balance is perturbed following MAPK pathway 

inhibition. Nevertheless, MAPK-inhibitor-induced changes in the AP-1 state, including the 

abundance of cJUN and its phosphorylation, as well as the phosphorylation state of FRA1, 

remain strong predictors of drug-induced dedifferentiation and adaptive MAPK pathway 

reactivation, respectively. These results show that the state of AP-1 network offers a critical 

context, which controls not only the initial state of melanoma cells and their population 

heterogeneity, but also their adaptive changes immediately following MAPK pathway inhibition. 

Thus, AP-1 may serve as a critical node for strategies to manipulate cellular plasticity in 

melanoma with potential therapeutic implications. 
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3.2 Results 

3.2.1 Single-cell AP-1 protein levels predict differentiation state heterogeneity in melanoma 

cells 

To quantify the baseline heterogeneities in differentiation state and to assess their covariation 

with AP-1 proteins across genetically diverse or isogenic melanoma cell populations, we utilized 

an iterative indirect immunofluorescence imaging (4i) protocol [42] in conjunction with high-

throughput automated microscopy (Figure 3.1). Dr. Douglas Baumann, our experimental 

collaborator from the Fallahi-Sichani lab, collected multiplexed measurements of 21 proteins 

using 4i-validated antibodies in 19 BRAF-mutant melanoma cell lines (Figure 3.2). The 

measurements included total levels of eleven AP-1 transcription factors (including cFOS, FRA1, 

FRA2, cJUN, JUNB, JUND, ATF2, ATF3, ATF4, ATF5 and ATF6), six AP-1 phosphorylation 

states (including p-cFOSS32, p-FRA1S265, p-cJUNS73, p-ATF1S63, p-ATF2T71 and p-ATF4S245) and 

four differentiation state markers MITF, SOX10, NGFR and AXL.  

 

Figure 3.1 Schematic representation of the iterative indirect immunofluorescence imaging (4i) procedure used in 

this study  

Illustration of the 4i procedure used to generate multiplexed single-cell data on 17 AP-1 proteins and 4 

differentiation state markers. Representative images of selected AP-1 transcription factors and differentiation state 

markers are shown for LOXIMVI cells. Scale bars represent 20 µm. Hoechst staining of nuclei is shown in blue 

while staining of the indicated protein is shown in red. 
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Figure 3.2 Population-averaged measurements of AP-1 proteins and differentiation state markers across BRAF-

mutant melanoma cell lines 

Population-averaged measurements of 17 AP-1 proteins and 4 differentiation state markers acquired across 19 

BRAF-mutant melanoma cell lines. Protein data shown for each condition represent the log-transformed mean 

values for two replicates, followed by z-scoring across all cell lines. 

Importantly, these four differentiation state markers were previously reported to represent 

transcriptionally distinct melanoma differentiation states [12,16]. The panel of 19 melanoma cell 

lines tested represented a broad spectrum of differentiation states, including populations of 

melanocytic (MITFHigh /SOX10High /NGFRLow /AXLLow), transitory (MITFHigh /SOX10High 

/NGFRHigh /AXLLow), neural crest-like (MITFLow /SOX10High /NGFRHigh /AXLHigh) and 

undifferentiated (MITFLow /SOX10Low /NGFRLow /AXLHigh) cells (Figure 3.3, Figure 3.4). We 

and others have shown that the frequency of these states in melanoma cell populations varies 

from one tumor to another and predicts their overall sensitivity to MAPK inhibitors [13,16,43]. 
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Here, we asked whether the observed heterogeneities in differentiation state could be explained 

by variations in patterns of AP-1 measurements at a single-cell level. 

 

Figure 3.3 Single-cell heterogeneity in differentiation states within and across melanoma cell lines 

Single-cell distribution of differentiation state markers MITF, SOX10, NGFR and AXL across 19 cell lines, shown 

by violin plots highlighting the median and interquartile (25% and 75%) ranges. 
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Figure 3.4 Cell-line representations across differentiation states of the sampled cell population. 

The percentage of cells sampled from each of the 19 cell lines, and their corresponding differentiation states 

(defined based on MITF, SOX10, NGFR and AXL levels) used in the random forest model. 

The population-averaged and single-cell protein data revealed a high degree of variation 

in differentiation state markers and AP-1 proteins across genetically distinct cell lines (Figure 

3.2, Figure 3.3, Figure A.1). To test whether there is a relationship between AP-1 variations 

and the differentiation state of individual cells regardless of their genetic differences, we 

randomly sampled a total of 10,000 cells, including 2,500 from each of the four differentiation 

states, in a way that they represented all 19 cell lines and 4 distinctive differentiation states as 

equally as possible (Figure 3.4). We used the multiplexed AP-1 data of 80% of the cells to train 

a random forest classification model to predict the differentiation state of each individual cell. 

We then used the remaining 20% of the cell population to independently validate model 

predictions. Model-predicted single-cell differentiation states matched true (measured) 

differentiation states with an accuracy of 0.74, representing a remarkable performance relative 

to a random 4-class classifier with an expected accuracy of 0.25 (Figure 3.5). A close look at 
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showed that they matched true states for ~88% of undifferentiated cells, ~72% of neural crest-

like cells and >66% of melanocytic cells. In cases where the true and predicted state of a cell did 

not match, the model predicted a closely related neighboring state along the differentiation state 

trajectory. When we combined cells from these related states, e.g., cells in melanocytic and 

transitory states, the model was able to distinguish them from the other two states with an 

accuracy of >90% (Figure 3.5). 

 

Figure 3.5 Single-cell AP-1 protein levels predict differentiation state heterogeneity in melanoma 

Confusion matrix showing the independent validation performance of the random forest classifier in predicting the 

differentiation state of cells based on single-cell AP-1 measurements. The model was trained using a group of 8,000 

cells and validated using an independent group of 2,000 cells. The prediction accuracy and area under the receiver 

operating characteristic curve (ROC AUC) are shown as an overall measure of the classifier performance. 

To identify those AP-1 measurements that most strongly predicted single-cell 

differentiation state, we computed the SHapley Additive exPlanations (SHAP) values for the 

random forest classifications [44]. SHAP assigns each AP-1 factor an importance value, 

quantifying its contribution, either positively or negatively, to the predicted differentiation state 

of any given cell (Figure 3.6A). Among the most important AP-1 factors (ranked based on mean 
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measurements of these six factors made it possible to predict the differentiation state of a cell 

with an accuracy of 67% (Figure 3.6B). In agreement with the SHAP analysis results, 

dimensionality reduction by Uniform Manifold Approximation and Projection (UMAP) [45] 

using only the top six AP-1 factors resulted in a continuous trajectory ordered from melanocytic 

to undifferentiated states (Figure 3.7). Together, these analyses revealed that the heterogeneity in 

melanoma differentiation state was associated with distinguishable patterns of variation in the 

expression of a few key AP-1 proteins. Melanocytic and transitory cells expressed substantially 

higher levels of p-cFOS, cFOS and ATF4, while undifferentiated cells exhibited lower levels of 

all these factors and instead exhibited increased levels of FRA2, cJUN and p-FRA1.  

 

Figure 3.6 Identifying the most important AP-1 factors for single-cell differentiation-state prediction using SHAP 

(A) Distributions of Shapley Additive exPlanations (SHAP) scores for each AP-1 factor across individual cells from 

the independent validation set. The color indicates the z-score scaled, log-transformed level of each AP-1 protein at 

a single-cell level. For each differentiation state, AP-1 factors are ordered based on the mean absolute values of their 

SHAP scores. (B) Classification performance of the random forest model based on varying numbers of top AP-1 

factors (based on their SHAP values) used as predictors. 
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Figure 3.7 Top six AP-1 factors identified from the random forest model resolve the melanoma differentiation 

trajectory. 

(A) UMAP analysis of the sampled melanoma cells (as shown in Figure 3.4) based on their multiplexed levels of top 

6 predictive AP-1 measurements (FRA2, p-cFOS, ATF4, cFOS, p-FRA1 and cJUN) results in a continuous 

trajectory of differentiation states. (B) Single-cell levels of the top six AP-1 proteins overlaid on UMAP plots. 

3.2.2 AP-1 transcript levels predict variations in differentiation state programs across 

melanoma lines 

To test whether the relationships between the patterns of AP-1 expression and melanoma 

differentiation state were recapitulated at the transcriptional level, we analyzed a previously 

published dataset, including RNA sequencing of 53 melanoma cell lines [12]. Each cell line was 

assigned a series of seven signature scores, defined as the average of z-scores for the expression 

levels of differentiation state signature genes [12]. The differentiation signature scores were then 

related to the transcript levels of 15 AP-1 genes for each cell line by partial least square 

regression (PLSR) (Figure 3.8A). The overall performance of the PLSR model was evaluated by 

computing the fraction of variance in signature scores explained (R2) or predicted (Q2) by 

changes in AP-1 gene expression (Figure 3.8B). The model revealed a high performance and 

prediction accuracy with R2 of 0.72 and Q2 of 0.55 (using leave-one-out cross-validation) for 
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four PLSR components. To evaluate the accuracy of predictions for each differentiation state, we 

assessed the correlation between the signature scores derived from the differentiation signature 

genes and scores predicted by the PLSR model. The model showed consistent accuracy with an 

average Pearson’s correlation coefficient of 0.74 ± 0.08 (P = 3.2×10-17 to 1.3×10-6) between the 

actual and predicted signature scores (Figure 3.8A). To independently validate the model 

predictions, we used RNA sequencing data from a different panel of 32 BRAF-mutant melanoma 

cell lines in the Cancer Cell Line Encyclopedia (CCLE) [46]. The PLSR model trained against 

the original set of 53 cell lines was able to predict the differentiation signature scores in the new 

set of 32 melanoma cell lines, leading to an average Pearson’s correlation coefficient of 0.65 ± 

0.13 (P = 2.3×10-8 to 6.8×10-3) between the actual and predicted scores (Figure 3.8C).  

 

Figure 3.8 AP-1 transcript levels predict variations in differentiation state across melanoma lines. 

(A) Comparison between differentiation signature scores computed based on RNA sequencing data for 53 cell lines 

reported by Tsoi et al [12] (left) and PLSR-predicted scores (following leave-one-out cross-validation) for each cell 

line based on their transcript levels of 15 AP-1 genes (right). M: melanocytic; MT: melanocytic-transitory; T: 

transitory; TN: transitory-neural crest-like; N: neural crest-like; NU: neural crest-like-undifferentiated; U: 

undifferentiated. (B) Performance of the PLSR model evaluated by computing the fraction of variance in 

differentiation signature scores explained (R2) or predicted based on leave-one-out cross validation (Q2) with 

increasing number of PLS components. (C) Comparison between differentiation signature scores computed based on 
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RNA sequencing data of 32 CCLE cell lines (left) and predicted scores based on the PLSR model built for the 

original set of 53 cell lines (right). 

The high performance of the PLSR model shows that variations in the transcriptional 

levels of at least some AP-1 genes may explain the variability in differentiation states across 

melanoma cell lines. In agreement with this expectation, different cell lines could be separated 

by their PLSR scores based on their position along the different state trajectory (Figure 3.9). 

Because the PLSR model achieved its maximum prediction accuracy by four components, we 

computed the Variable Importance in the Projection (VIP) scores across all these components to 

determine the overall contribution of each AP-1 gene to each differentiation state (Figure 3.10). 

Among the most important predictors of differentiation state (determined by |VIP| > 1) were the 

expression of FOS (encoding cFOS), FOSL1 (encoding FRA1), FOSL2 (encoding FRA2), JUN 

(encoding cJUN), JUNB, JUND, ATF2 and ATF4 (Figure 3.10). Importantly, a model created 

using only these AP-1 genes was able to significantly outperform most PLSR models that were 

built based on combinations of eight randomly chosen transcription factors from the basic 

leucine zipper (bZIP) family (the family to which AP-1 factors belong) (P = 0.008) or based on 

any eight randomly chosen transcription factors (P = 0.01) (Figure 3.11).  
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Figure 3.9 PLSR scores of the first two PLS components separate cell lines following the differentiation trajectory. 

PLSR scores (of the first two PLS components) for each cell line colored according to their differentiation signature 

scores for melanocytic, transitory, neural crest-like and undifferentiated states. M: melanocytic; MT: melanocytic-

transitory; T: transitory; TN: transitory-neural crest-like; N: neural crest-like; NU: neural crest-like-undifferentiated; 

U: undifferentiated. 

 

Figure 3.10 VIP scores quantifying AP-1 transcript importance across differentiation states. 

PLSR-derived variable importance in projection (VIP) scores, highlighting combinations of AP-1 transcripts that are 

predictive of differentiation signature scores for melanocytic, transitory, neural crest-like and undifferentiated states. 

The sign of the VIP score shows whether the indicated variable (AP-1 transcript level) positively or negatively 
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contributes to a given differentiation signature. Only significant VIP scores (of greater than 1 or smaller than -1) are 

highlighted. 

 

Figure 3.11 PLSR model built based on the transcript levels of top 8 AP-1 genes outperforms most models built 

based on other bZIP transcription factors or transcription factors in general. 

Comparison of performance (with respect to differentiation state prediction) between the PLSR model based on 

transcript levels of the top 8 AP-1 transcription factors with models based on transcript levels of combinations of 8 

randomly chosen bZIP family transcription factors (n = 1×105 iterations; left panel) or built based on 8 randomly 

chosen transcription factors (n = 5×105 iterations; right panel). Empirical P values were reported for the comparison 

of predicted variances based on ten-fold cross-validation. 

Together, these analyses revealed that the predictivity of patterns of AP-1 variation for 

melanoma differentiation state could also be captured at the level of transcription of these 

factors. Except for ATF4, the statistical association of AP-1 factors with differentiation state was 

generally consistent across bulk transcript and single-cell protein measurements. Melanocytic 

and transitory cells expressed substantially higher levels of FOS transcript and cFOS protein 

levels, whereas undifferentiated cells were associated with increased levels of FOSL1, FOSL2 

and JUN transcripts and their corresponding proteins FRA1, FRA2 and cJUN, respectively. 

3.2.3 Single-cell network inference reveals the role of AP-1 activity in regulation of 

differentiation programs 

Next, we asked whether the statistical associations between the identified key AP-1 proteins and 

single-cell differentiation states resulted from the active regulation of differentiation programs by 

the AP-1 factors. To address this question, we applied single-cell regulatory network inference 

and clustering (SCENIC) [47,48] to analyze a previously published single-cell RNA sequencing 
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dataset of 10 melanoma cell lines [14]. SCENIC uses single-cell gene expression data to infer 

transcription factors alongside their candidate target genes (collectively called a regulon), 

enabling the identification of regulatory interactions and transcription factor activities with high 

confidence. Enrichment analysis of differentiation signature genes among 10 cell lines showed 

that they predominantly consisted of cells in the melanocytic, transitory, or undifferentiated 

states. In line with our results from the gene and protein expression analyses, SCENIC analysis 

found the FOSL2 and JUN motif regulons to be substantially enriched in populations of 

undifferentiated cells in comparison with melanocytic or transitory cells (Figure 3.12A, B). The 

activity of the FOSL1 regulon was low in melanocytic cells but gradually increased among 

transitory and undifferentiated cells (Figure 3.12C). The FOS regulon, on the other hand, was 

substantially enriched in melanocytic and transitory cells, but its activity was low in 

undifferentiated cells (Figure 3.12D). 

 

Figure 3.12 Single-cell network inference from melanoma cell lines reveals the role of AP-1 activity in regulation of 

differentiation state programs. 

(A-D) Single-cell distributions of the activity of SCENIC regulons for FOSL2 (A), JUN (B), FOSL1 (C) and FOS 

(D) motifs, measured using AUCell in individual cells (from 10 melanoma cell lines profiled by Wouters et al [14]) 

across distinct differentiation states. The differentiation state of individual cells was determined based on their gated 

levels of enrichment (quantified by AUCell) for the differentiation gene signatures as defined by Tsoi et al [12]. 
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Boxplot hinges correspond to the lower and upper quartiles, with a band at median. Whiskers indicate 1.5 times 

interquartile ranges. 

To test whether the relationship between AP-1 regulon activities and melanoma 

differentiation states existed in single cells derived from tumor biopsies, we performed 

differentiation state enrichment and SCENIC analysis on single-cell RNA sequencing data 

previously collected via dissociation and profiling of patient-derived melanoma samples [43,49]. 

Enrichment analysis of differentiation signature genes among 11 treatment-naïve malignant 

melanoma samples showed that they consisted of cells in either melanocytic or undifferentiated 

states. In agreement with the analysis results from the established melanoma cultures, SCENIC 

analysis of patient tumors showed that FOSL2, JUN and FOSL1 regulons were significantly 

enriched in undifferentiated cells in comparison with melanocytic cells (Figure 3.13A-C). In 

contrast to a substantially higher FOS regulon activity observed in cultured melanocytic cells, the 

activity of FOS regulon was only slightly higher in melanocytic tumor cells in comparison with 

undifferentiated cells (Figure 3.13D). Interestingly, however, the FOS/JUN activity ratio at a 

single-cell level was able to distinguish melanocytic cells from undifferentiated cells more 

efficiently than either of these AP-1 factors alone (Figure 3.13E), suggesting that it is the balance 

between AP-1 factor activities that determines a cell’s differentiation state. Together, these 

analyses revealed that melanoma cells of diverse differentiation states are associated with distinct 

regulatory network activities by AP-1 transcription factors. In particular, the role of FOS, 

FOSL1, FOSL2 and JUN regulon activities was consistent with their corresponding patterns of 

gene and protein expression across melanoma differentiation states at both population and single-

cell levels. 
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Figure 3.13 Single-cell network inference from patient-derived melanoma tumors reveals the role of AP-1 activity in 

regulation of differentiation state programs. 

(A-E) Single-cell distributions of the AUCell activity of SCENIC regulons for FOSL2 (A), JUN (B), FOSL1 (C), 

and FOS (D) motifs, as well as the ratio of FOS and JUN regulon activities (E), quantified in individual cells from 

11 treatment-naïve melanoma tumors as profiled by Tirosh et al [43] and Jerby-Arnon et al [49]. Statistical 

comparisons were performed using two-sided unpaired t test. Boxplot hinges correspond to the lower and upper 

quartiles, with a band at median. Whiskers indicate 1.5 times interquartile ranges. 

3.2.4 MAPK inhibitor-induced changes in the AP-1 state predict patterns of drug-induced 

dedifferentiation and ERK pathway reactivation 

Although melanoma populations consist of stable mixtures of cells in diverse differentiation 

states at baseline, they can switch state in response to environmental perturbations. Treatment 

with MAPK inhibitors, for example, may induce the dedifferentiation of melanocytic cells 

toward the neural crest-like phenotype. Such adaptive phenotype switching occurs as early as 2-3 

days of exposure to MAPK inhibitors, concomitantly with loss of MITF and acquisition of 

NGFR [16]. In addition to drug-induced dedifferentiation, adaptive reactivation of the ERK 

pathway following a transient period of ERK inhibition is known as a common mechanism of 

adaptive resistance that helps tumor cells escape the effect of drug [23,24]. To determine 

common patterns of AP-1 changes that might be associated with these adaptive responses, we 
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alone or in combination with the MEK inhibitor trametinib (at 0.0316 µM). We fixed the cells 

following 24 or 72 h of treatment and then used the 4i procedure to measure the abundance or 

phosphorylation state of AP-1 transcription factors, MITF, NGFR, and p-ERKT202/Y204 

(Figure 3.14, Figure A.2, Figure A.3). 
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Figure 3.14 Population-averaged measurements of AP-1 proteins, differentiation state markers and ERK activity 

across BRAF-mutant melanoma cell lines upon 24 h and 72 h of MAPK inhibitor treatment. 

Population-averaged measurements of 17 AP-1 proteins, differentiation state markers MITF and NGFR, and p-

ERKT202/Y204 levels acquired across 18 BRAF-mutant melanoma cell lines. Protein data shown for each condition 

represent the log-transformed mean values for two replicates, followed by z-scoring across all cell lines and 

treatment conditions, including DMSO, vemurafenib alone (at 0.316 µM) or the combination of vemurafenib (at 

0.316 µM) and trametinib (at 0.0316 µM) for 24 or 72 h. 
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To identify possible associations between AP-1 factors and drug-induced 

dedifferentiation, we first calculated the relative enrichment of dedifferentiated cells at baseline 

(DMSO) or following MAPK inhibitor treatments by subtracting the fraction of cells that are 

NGFRLow/MITFHigh from the fraction of cells that are NGFRHigh/MITFLow. We then used 

pairwise partial correlation analysis to reveal statistical associations between each of the AP-1 

measurements and the enrichment of dedifferentiated cells following MAPK inhibitor treatments 

across 18 cell lines, while controlling for the intrinsic (drug-naïve) variance in the enrichment of 

dedifferentiated cells across cell lines (Figure 3.15). This analysis identified cJUN and p-cJUN 

as the strongest predictors of drug-induced dedifferentiation in melanoma cells following 72 h of 

exposure to either of the MAPK inhibitors (Figure 3.16A). In agreement with population-level 

correlation analysis, single-cell analysis revealed significant increases in cJUN and p-cJUN 

levels of melanoma cells that switched from an NGFRLow/ MITFHigh state to an NGFRHigh/ 

MITFLow state following drug treatment (Figure 3.16B).  

 

Figure 3.15 Single-cell distributions of differentiation state markers measured in five cell lines under the control or 

72 h of MAPK inhibitor treatment. 

6

7

8

M
IT

F
 (

lo
g

 a
.u

.)

3

5

7

N
G

F
R

 (
lo

g
 a

.u
.)

DMSO Vemurafenib (0.316 μM):           72 h

Vemurafenib (0.316 μM) + Trametinib (0.0316 μM):       72 h

C
O
LO

85
8

R
VH

42
1

U
A
C
C
62

W
M

90
2B

W
M

26
64



 97 

Single-cell distributions of differentiation state markers MITF and NGFR in 5 cell lines that show MAPK inhibitor-

induced dedifferentiation, shown by violin plots highlighting the median and interquartile (25% and 75%) ranges. 

 

Figure 3.16 MAPK inhibitor-induced changes in cJUN/p-cJUN levels correlate with drug-induced dedifferentiation. 

(A) Pairwise partial correlations (evaluated across 18 cell lines) between each of the 17 AP-1 measurements and the 

enrichment of NGFRHigh/MITFLow cells relative to NGFRLow/MITFHigh cells following 72 h treatment with MAPK 

inhibitors, while correcting for the baseline (drug-naïve) differentiation state of cell lines. Vem: vemurafenib alone; 

Vem+Tram: vemurafenib and trametinib in combination. (B) Analysis of covariance between the levels of p-cJUN 

or c-JUN and the difference between NGFR and MITF protein levels at the single-cell level across indicated 

treatment conditions. 
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because of adaptive reactivation of ERK signaling (Figure 3.17). Cells treated with the 

combination of vemurafenib (at 0.316 µM) and trametinib (at 0.0316 µM), however, exhibited 
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72 h (Figure 3.17). To assess if any of the AP-1 factors would capture such time-dependent and 

drug-specific changes in ERK signaling, we used partial correlation analysis to determine 

pairwise correlations between p-ERK and AP-1 levels across 18 drug-treated cell lines. This 

analysis identified p-FRA1 as a consistent predictor of p-ERK changes following both MAPK 

inhibitor conditions (Figure 3.18A). In agreement with population-level correlation analysis, 

single-cell analysis also revealed a significant covariance between p-ERK and p-FRA1 levels 

(Figure 3.18B). Such strong connection between p-FRA1 and p-ERK is consistent with FRA1 

serving as a tightly coupled sensor of ERK activity [50]. Together, these data reveal that in 

addition to predicting the differentiation state of melanoma cells at baseline, AP-1 changes 

following exposure to MAPK inhibitors are strong predictors of the ways that melanoma cells 

respond to MAPK inhibition.  

 

Figure 3.17 Single-distributions of p-ERK levels across melanoma cell lines under the control or MAPK inhibitor 

treatment. 

Single-cell distribution of p-ERKT202/Y204 level and its changes across different conditions, including DMSO, 

vemurafenib alone (at 0.316 µM) or the combination of vemurafenib (at 0.316 µM) and trametinib (at 0.0316 µM) 

for 24 or 72 h. Violin plots highlight the median and interquartile (25% and 75%) ranges. 
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Figure 3.18 MAPK inhibitor-induced changes in p-FRA1 levels correlate with adaptive changes in ERK pathway 

activity. 

(A) Pairwise partial correlations (evaluated across 18 cell lines) between each of the 17 AP-1 measurements and p-

ERK levels following 24 or 72 h of treatment with MAPK inhibitors, while correcting for the corresponding 

baseline (drug-naïve) AP-1 levels of cell lines. (B) Analysis of covariance between p-FRA1 and p-ERK levels 

across indicated treatment conditions at the single-cell level. 
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composed of both melanocytic and undifferentiated cells, thereby allowing us to track changes in 

the heterogeneity of differentiation state after AP-1 perturbations. Following 96 h of AP-1 gene 

knockdown in COLO858 cells, we measured (in three replicates) protein levels of differentiation 

markers MITF, SOX10 and AP-1 factors cFOS, FRA1, FRA2, cJUN, and JUND using 4i (Figure 

3.19). As shown above, cFOS, FRA1, FRA2, and cJUN were able to consistently distinguish 

melanocytic/transitory (MITFHigh/ SOX10High) cells from undifferentiated (MITFLow/ SOX10Low) 

cells at the levels of gene expression, protein expression, and regulon activity. We thus asked 

whether siRNA-induced changes in the levels of these AP-1 proteins would be followed by 

predictable changes in the fractions of melanocytic/transitory or undifferentiated cells as 

evaluated by single-cell expression of MITF and SOX10 proteins. 

 

Figure 3.19 Population-averaged measurements of AP-1 proteins and differentiation state markers upon siRNA-

mediated perturbation of the AP-1 state. 

(A, B) The effect of siRNA-mediated depletion (for 96 h) of AP-1 proteins cFOS, FRA2, cJUN, and JUND, either 

individually or in pairwise combinations, on protein levels of cFOS, FRA1, FRA2, cJUN, and JUND (A) or 

differentiation state markers MITF and SOX10 (B) in COLO858 cells. Protein data shown for each condition 

represent the log-transformed mean values for three replicates, followed by z-scoring across all knockdown 

conditions. 
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Figure 3.20 Changes in single-cell covariance between SOX10 and MITF upon siRNA-mediated perturbation of the 

AP-1 state. 

Analysis of covariance between SOX10 and MITF protein levels across indicated knockdown conditions at the 

single-cell level. Dashed lines indicate the gating thresholds for each protein. 
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down FOSL2 and JUN in combination, but not individually, reduced the percentage of 

undifferentiated cells most significantly and by approximately 2-fold (P = 0.002) (Figure 3.21B, 

C). This behavior is consistent with our finding regarding the role of FRA2 and cJUN in 

regulation of the undifferentiated state. Furthermore, it shows that the co-depletion of FRA2 and 

cJUN is essential for blocking the undifferentiated cells that otherwise up-regulate cJUN 

following the knockdown of FOSL2 alone (Figure 3.19A). On the other hand, knocking down 

FOS reduced the percentage of melanocytic/ transitory cells (P = 0.03) (Figure 3.21B, D), which 

is consistent with our finding regarding its role in driving the melanocytic lineage. Furthermore, 

the combination of FOS and JUND knockdown dramatically enhanced this effect, leading to a 

reduction of >2-fold in the percentage of melanocytic /transitory cells (P = 0.0001) and an 

increase of >2-fold in the percentage of undifferentiated cells (P = 0.01) (Figure 3.21B, D, E). As 

discussed above, this observation also could be explained by the induction of cJUN expression (a 

driver of dedifferentiation) following JUND knockdown.  
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Figure 3.21 Perturbation of AP-1 state by siRNA confirms its role in driving differentiation state heterogeneity. 

(A) Variation of the percentage of SOX10High/MITFHigh (melanocytic or transitory; M or T) cells and 

SOX10High/MITFHigh (undifferentiated; U) cells following each knockdown condition. (B) Two-dimensional 

projection of siRNA conditions in terms of percentages of melanocytic or transitory cells versus undifferentiated 

cells at 96 h. (C-E) Statistical comparison (using two-sided t test) between fractions of cells in undifferentiated or 

melanocytic/transitory states and indicated siRNA knockdown conditions. The central mark on the plots indicates 

the median across three replicates. 

Together, these results validate the causality of our statistical predictions for the AP-1 

state in contributing to differentiation state plasticity in melanoma cells. They show that a tightly 

regulated balance between JUN and FOS subfamily members determines the baseline 

differentiation state of a cell. Directed perturbation of this state leads to changes in the 

composition of differentiation states in a predictable manner. 
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3.3 Discussion 

The hyperactivation of MAPK signaling in BRAF-mutant melanomas is linked to their overall 

sensitivity to MAPK inhibition. The differentiation state heterogeneity, however, leads to 

variability in MAPK inhibitor responses both across genetically diverse tumors and among 

genetically homogeneous populations of cells. Understanding the origins of such heterogeneity is 

key to identifying effective strategies to overcome fractional responses that undermine the 

potential of MAPK-targeted therapies. It requires a detailed knowledge of the mechanisms and 

molecular players that link epigenetic plasticity and transcriptional regulation of differentiation 

state to therapy-induced changes in MAPK signaling. To begin to fill this gap in our knowledge, 

we used a multidimensional approach at single-cell resolution to systematically investigate the 

AP-1 transcription factor contributions to heterogeneity in BRAF-mutant melanomas. We focus 

on the AP-1 factors because they serve as downstream targets of MAP kinases, and previous 

work has connected several AP-1 proteins to MAPK inhibitor resistance, differentiation state 

heterogeneity, and therapy-induced dedifferentiation in melanomas.  

Our data showed that a tightly regulated balance between a few key AP-1 family 

members and their activities strongly predict previously characterized heterogeneities in 

melanoma differentiation states. Specifically, cFOS and p-cFOS were associated with 

melanocytic and transitory cells, while FRA1/p-FRA1, FRA2, and cJUN/p-cJUN correlated with 

less differentiated cell states. The systematic nature of the study across many genetically 

different melanomas suggests that these associations are a general feature of melanomas and 

likely not unique to a particular cell line or linked to a certain genetic context. Furthermore, we 

showed that perturbing the molecular balance of AP-1 factors in melanoma cells by siRNAs that 
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deplete specific AP-1 proteins, either alone or in combination, or by treatments with MAPK 

inhibitors can induce differentiation state switching and heterogeneity in a controllable manner. 

Together, these findings provide new insights into AP-1 function, its role in cell state plasticity, 

and its potential dysregulation in melanoma, while opening new avenues for interrogating the 

AP-1 behavior in the context of adaptive response to MAPK inhibitors. In theory, gaining the 

ability to target certain AP-1 states could force cells to remain in a more drug-sensitive state, 

thereby increasing the fractional killing of melanoma cells in response to MAPK inhibition.  

Future studies may leverage the findings from this study to further elucidate 

transcriptional mechanisms that contribute to MAPK-targeted therapy escape in melanomas at a 

single-cell level. Furthermore, uncovering how the information encoded in the MAPK signaling 

dynamics is transduced through its downstream AP-1 network will be key for explaining the 

observed variability in tumor cell responses to MAPK inhibitors. For example, AP-1 family 

members FOS and FOSL1 are early ERK target genes whose regulation by ERK activity 

constitutes feedforward motifs that enable them to decode the dynamics of ERK signaling [52]. 

Differentiation state-specific variations in the baseline expression and activities of these AP-1 

genes, as we observed in this study, could introduce variability in the transduction of MAPK 

signals, generating heterogeneity in cell fate under MAPK perturbations. Future studies that link 

dynamic fluctuations in ERK activity and other MAP kinases to AP-1 behavior could offer 

important insights into mechanisms of heterogeneity in drug response and adaptive resistance to 

MAPK inhibitors.  

Consistent with our findings regarding the role of AP-1 state changes in determining the 

differentiation state plasticity, recent studies have highlighted a key role for AP-1 factors in 

chromatin organization and enhancer accessibility. AP-1 proteins have been reported to facilitate 
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new cell fate transitions, such as cellular senescence or differentiation, by establishing the 

enhancer landscape and granting long-term chromatin access to other transcription factors, 

thereby allowing the timely execution of cell state-specific transcriptional programs [28–31]. 

Understanding which AP-1 factors and cofactors work to keep poised enhancers accessible and 

which function to shift enhancers from a poised to active state could connect transcription to 

dedifferentiation and genome reorganization following inhibition of MAPK signaling and its 

adaptive reactivation. Furthermore, AP-1 proteins like other bZIP proteins must form dimers 

before they could bind to the AP-1 motif site. For example, while FOS family members bind 

DNA as obligate heterodimers with members of the JUN family, JUN family members can bind 

the AP-1 motif site as both homodimers and heterodimers with FOS family members. Future 

studies, therefore, should also determine the extent to which the combinatorial activity of AP-1 

family members is influenced by distinct patterns of dimerization among these transcription 

factors.  
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3.5 Materials and Methods 

3.5.1 Cell culture and drug treatments 

BRAF-mutant melanoma cell lines used in this study were obtained from the following sources: 

COLO858 (from ECACC), RVH421 (from DSMZ), A375, A375(NRASQ61K), C32, A2058, 

WM115, SKMEL28, HS294T, WM1552C, SKMEL5, A101D, and IGR39 (all from ATCC), 

LOXIMV1 (from DCTD Tumor Repository, National Cancer Institute), MMACSF (RIKEN 

BioResource Center), WM902B and WM2664 (from Wistar Institute), UACC62 and SKMEL19 

(from the Cancer Cell Line Encyclopedia). All cell lines have been subjected to re-confirmation 

by short tandem repeat (STR) profiling by ATCC and mycoplasma testing by MycoAlert™ 

PLUS Mycoplasma Detection Kit (Lonza). A375, A375(NRASQ61K), A2058, HS294T, A101D, 

and IGR39 cells were grown in DMEM with 4.5 g/l glucose (Corning, Cat# 10-013-CV) 

supplemented with 5% fetal bovine serum (FBS) (Gibco Cat. No. 26140079). SKMEL5 and 

WM2664 cells were grown in EMEM (Corning, Cat# 10-009-CV) supplemented with 5% FBS. 

C32, MMACSF, SKMEL28, and WM115 cells were grown in DMEM/F12 (Gibco, Cat# 11330-

032) supplemented with 1% sodium pyruvate (Gibco Cat. No. 11360070) and 5% FBS. 

COLO858, LOXIMVI, RVH421, SKMEL19, UACC62, WM1552C, and WM902B cells were 

grown in RPMI 1640 (Corning, Cat# 10-040-CV) supplemented with 1% sodium pyruvate and 

5% FBS. Cells were grown at 37°C with 5% CO2 in a humidified chamber. 100 U/mL Penicillin-

Streptomycin (10,000 U/mL), and 0.5 mg/mL Plasmocin Prophylactic (Invivogen Cat. No. 

NC9886956) were present in all cell cultures. Cells were seeded in 200 µl/well in Corning 96-

well plates (Cat. No. 3904). Vemurafenib (Selleck Chemicals Cat. No. S1267), Trametinib 

(Selleck Chemicals Cat. No. S2673) or vehicle (DMSO) was added at indicated concentrations 

using the Tecan D300e Digital Dispenser 24 hours after cell seeding. Cells were fixed at the 
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indicated timepoints with 4% paraformaldehyde in phosphate-buffered saline (PBS) for 30 

minutes at room temperature.  

3.5.2 AP-1 gene knockdown by siRNA 

COLO858 cells were seeded in 100 µl of antibiotic-free growth media (RPMI supplemented with 

5% FBS and 1 mM Sodium Pyruvate) in 96-well plates at a density of 2000 cells/well. After 24 h 

of incubation, cells were transfected using 0.05 µl of DharmaFECT 2 reagent (Horizon 

Discovery Cat. No. T-2002-01) per well with indicated Dharmacon ON-TARGETplus AP-1 

siRNAs (at 25 nM) individually or in pairwise combinations. Knockdowns targeting a single AP-

1 gene were supplemented with non-targeting siRNA to normalize the final siRNA concentration 

(to 50 nM siRNA) across all siRNA conditions. All siRNAs were tested for knockdown 

efficiency and specificity by measuring protein levels of each factor and members of the factor 

subfamily (i.e., measure single-cell protein levels of cFOS, FRA1, and FRA2 following FOS 

knockdown). Only siRNA species that showed knockdown of the protein target without off-

target knockdown effects were used. Cells were fixed 96 hours after transfection with 4% 

paraformaldehyde in PBS for 30 minutes at room temperature. The siRNA sequences used for 

each condition are included below (Table 3.1). 
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Table 3.1 siRNA sequences used for AP-1 gene knockdown 

Target Gene Dharmacon Cat# siRNA sequence 

Non-targeting control D-001810-10-05 

UGGUUUACAUGUCGACUAA, 

UGGUUUACAUGUUGUGUGA, 

UGGUUUACAUGUUUUCUGA, 

UGGUUUACAUGUUUUCCUA 

FOS 

J-003265-09 GGGAUAGCCUCUCUUACUA 

J-003265-10 ACAGUUAUCUCCAGAAGAA 

J-003265-12 GCAAUGAGCCUUCCUCUGA 

FOSL1 

J-004341-06 GAGCUGCAGUGGAUGGUAC 

J-004341-07 AAUCUGGGCUGCAGCGAGA 

J-004341-08 GAGUAAGGCGCGAGCGGAA 

FOSL2 J-004110-13 GGCCCAGUGUGCAAGAUUA 

cJUN 
J-003268-10 GAGCGGACCUUAUGGCUAC 

J-003268-12 GAAACGACCUUCUAUGACG 

JUND 

J-003900-12 GAAACACCCUUCUACGGCG 

J-003900-13 CCGACGAGCUCACAGUUCC 

J-003900-14 UCAAGAGUCAGAACACGGA 

J-003900-15 GUUCGAUUCUGCCCUAUUU 

3.5.3 Iterative indirect immunofluorescence imaging (4i) 

4i images were obtained using the protocol described by Gut et. al. [42] with minor 

modifications. After media aspiration, cells in 96-well plates were fixed with 4% 

paraformaldehyde in PBS for 30 minutes at room temperature. All washes were performed using 

a BioTek EL406 Washer Dispenser and consisted of 4 wash cycles of 200 µl with the indicated 

buffer while retaining approximately 20 µl liquid in each well during the aspiration step to limit 

cell loss. Cells were washed with PBS then permeabilized for 15 minutes at room temperature 

with 100 µl 0.5% Triton X-100 in PBS. Cells were washed with PBS followed by Milli-Q 

deionized water. Cells were next treated 3 times total for 12 minutes each instance with 40 µl 

elution buffer which consists of 0.5M L-Glycine (Sigma-Aldrich Cat. No. 50046), 3M Urea 

(Sigma-Aldrich Cat. No. U5128), 3 M Guanidinium chloride (Sigma-Aldrich Cat. No. G3272), 
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and 70 mM TCEP-HCl (Sigma-Aldrich Cat. No. C4706) at pH of 2.5. Cells were washed with 

PBS as above. Samples were then blocked for 1 h at room temperature with 50 µl blocking 

buffer which consists of PBS-based Intercept buffer (LiCor Cat. No. 927-70001) supplemented 

with 150 mM maleimide (Millipore Sigma Cat. No. 129585-25G). Blocking buffer was prepared 

immediately prior to adding to the samples for each round. Following a PBS wash, samples were 

incubated overnight at 4°C with 40 µl primary antibody diluted in Intercept buffer. After 

overnight incubation, cells were washed with PBS then incubated for 1 hour at room temperature 

in 40 µl secondary antibody solution consisting of the appropriate species-specific Alexa Fluor-

conjugated antibodies diluted 1:2000 in Intercept buffer. Cells were then washed with PBS and 

incubated with 50 µl Hoechst 33342 (Invitrogen Cat. No. H3570) diluted 1:20,000 in PBS. For 

the first round of imaging, cells were stained with a mixture of Hoechst and CellMask Green 

(ThermoFisher Cat. No. C37608) for 30 minutes at room temperature according to the 

manufacturer’s instructions. Next, cells were washed with Milli-Q water and 80 µl imaging 

buffer consisting of 700 mM N-Acetyl-Cysteine (Sigma-Aldrich Cat. No. A7250) at pH of 7.4. 

Images were obtained using Operetta CLS high content imaging system (Perkin Elmer) using a 

10x air objective lens. Following imaging, samples were washed with Milli-Q water after which 

antibodies were eluted with 3 successive 12-minute incubations at room temperature with elution 

buffer. Cells were washed with PBS followed by Milli-Q water. Next, 50 µl imaging buffer was 

added to each well and samples were imaged as above to assess removal of fluorescent signal. 

Cells were then washed with PBS and all steps were repeated starting at the blocking step for 

each round of 4i. In instances where the time between 4i rounds exceeded 3 days, following 

elution, the plates were fixed for 10 minutes at room temperature with 4% paraformaldehyde in 

PBS. In these cases, to resume staining, cells were then washed with PBS followed by Milli-Q 
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water and treated with elution buffer lacking TCEP-HCl three times for 10 minutes, totaling 30 

minutes. Afterwards, cells were washed with PBS and the next round of 4i commenced. The 

following primary antibodies were used in immunostaining assays (Table 3.2). 
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Table 3.2 Primary antibodies used in immunostaining assays 

Target Antibody Name Manufacturer Cat# 

c-FOS c-Fos (9F6) Rabbit mAb 
Cell Signaling 

Technologies 
2250 

p-c-FOS 

Phospho-c-Fos (Ser32) 

(D82C12) XP® Rabbit 

mAb 

Cell Signaling 

Technologies 
5348 

FRA1 
Recombinant Anti-FRA1 

[EP4711] Rabbit mAb 
Abcam ab124722 

p-FRA1 
Phospho-FRA1 (Ser265) 

(D22B1) Rabbit mAb  

Cell Signaling 

Technologies 
5841 

FRA2 Fra2 (D2F1E) Rabbit mAb 
Cell Signaling 

Technologies 
19967 

cJUN c-Jun (60A8) Rabbit mAb 
Cell Signaling 

Technologies 
9165 

p-cJUN 

Phospho-c-Jun (Ser73) 

(D47G9) XP® Rabbit 

mAb 

Cell Signaling 

Technologies 
3270 

JUND 
JunD (D17G2) Rabbit 

mAb 

Cell Signaling 

Technologies 
5000 

JUNB 
JunB (C37F9) Rabbit 

mAb 

Cell Signaling 

Technologies 
3753 

p-ATF1 
Phospho Anti-ATF1 (S63) 

Rabbit mAb  
Abcam ab76085 

ATF2 
Recombinant Anti-ATF2 

[E243] 
Abcam ab32160 

p-ATF2 
Recombinant Anti-ATF2 

(phospho T71) [E268] 
Abcam ab32019 

ATF3 Anti ATF3 Abcam ab87213 

ATF4 
Recombinant Anti-ATF4 

antibody [EPR18111] 
Abcam ab184909 

p-ATF4 
Anti-ATF4 (phospho 

S245)  
Abcam ab28830 

ATF5 
Recombinant Anti-ATF5 

[EPR18286]  
Abcam ab184923 

ATF6 Anti-ATF6 antibody [1-7] Abcam ab122897 
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p-ERK 
Phospho pErk1/2 

(T202/Y204) Rabbit mAb 

Cell Signaling 

Technologies 
4370 

MITF Human MITF Antibody R&D Systems AF5769 

SOX10 
Anti-SOX10 antibody 

[SOX10/991] 
Abcam ab212843 

NGFR p75NTR Rabbit mAb 
Cell Signaling 

Technologies 
8238 

AXL Human Axl Antibody R&D Systems AF154 

3.5.4 Image analysis  

Images were background subtracted using the rolling ball subtraction algorithm in ImageJ. 

Background-subtracted images from each round of 4i were aligned using Hoechst nuclei staining 

with CellProfiler 3.1.9 using the normalized cross correlation method within the Align module. 

Nuclei were segmented from the aligned images using the Minimum Cross Entropy thresholding 

method within the IdentifyPrimaryObjects module in CellProfiler. The Threshold smoothing 

scale and correction factor were 2.4 and 1, respectively with lower and upper threshold bounds 

of 0 and 1. Cell segmentation was then performed using CellMask Green staining to propagate 

objects from the nuclei. This was done using the Propagation method within the 

IdentifySecondaryObjects module. The Minimum cross entropy thresholding method was 

employed with a smoothing scale of 0 and correction factor of 1, the lower and upper threshold 

bound values set to 0 and 1, and a regularization factor of 0.05. The TrackObjects module was 

used to multiplex data from individual rounds of 4i. Within TrackObjects, the Follow Neighbors 

method was used with the maximum pixel distance of 50 and average cell diameter of 15. 

Comma-separated text files containing quantitative single-cell measurements of tracked objects 

from CellProfiler were organized using Matlab. Only objects present in every round of imaging 

were included in the analysis. Additional data analysis was performed using Matlab, R, and 

Python.  
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3.5.5 Classifying melanoma differentiation states  

To classify the differentiation state of cells based on image-based protein measurements, we 

generated histograms of single-cell data on each of the previously validated melanoma 

differentiation state markers (MITF, SOX10, NGFR and AXL) [12,16]. For each protein (X), we 

identified an appropriate binary gate, based on which individual melanoma cells were divided 

into two groups of XHigh and XLow cells. The gating thresholds used on background-subtracted 

image data for each protein included: log(MITF) = 7.37, log(SOX10) = 6.82, log(NGFR) = 4.61, 

and log(AXL) = 5.60. We then used these classifications to determine the differentiation subtype 

of each individual melanoma cell as follows: melanocytic (M): MITFHigh /SOX10High /NGFRLow 

/AXLLow; transitory (T): MITFHigh /SOX10High /NGFRHigh /AXLLow; neural crest-like (N): 

MITFLow /SOX10High /NGFRHigh /AXLHigh; and undifferentiated (U): MITFLow /SOX10Low 

/NGFRLow /AXLHigh; the single-cell analysis and baseline differentiation state classification were 

performed across 19 different melanoma cell lines representing a wide spectrum of 

differentiation states. To classify the differentiation state of cells in gene knockdown 

perturbation assays, we used a similar approach to distinguish melanocytic/transitory (MITFHigh 

/SOX10High) cells from undifferentiated (MITFLow /SOX10Low) cells. 

To classify melanoma differentiation states using bulk transcriptomic data, each 

melanoma cell line was assigned a series of seven differentiation signature scores, defined as the 

average of z-scores for the expression levels of differentiation state signature genes identified 

previously by Tsoi et al [12]. These differentiation signatures included the four main 

differentiation signatures, i.e., melanocytic (M), transitory (T), neural crest-like (N) and 

undifferentiated (U), as well as mixtures of neighboring signatures, including melanocytic-
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transitory (MT), transitory-neural crest-like (TN) and neural crest-like-undifferentiated states 

(NU).  

To determine the differentiation state of individual cells for each of the 10 melanoma cell 

lines profiled by single-cell RNA sequencing by Wouters et al [14], we used the R package 

AUCell to quantify the enrichment of differentiation signature genes (as defined by Tsoi et al 

[12]) in individual cells. Because not all differentiation states were equally represented by the 10 

cell lines tested and not all signature genes were available in the expression matrix, we focused 

our single-cell differentiation state classification on melanocytic, transitory and undifferentiated 

states by combining two or three closely related signature gene sets as follows: M-MT gene set 

(combination of M and MT signature genes), MT-T-TN gene set (combination of MT, T and TN 

signature genes) and NU-U set (combination of NU and U genes). To minimize the impact of 

noise from single-cell analysis, we then selected cells that represented individual differentiation 

states based on their gated AUCell scores as follows: melanocytic cells: M-MTHigh/NU-ULow; 

transitory cells: MT-T-TNHigh/NU-ULow; undifferentiated cells: M-MTLow/ MT-T-TNLow/NU-

UHigh. The differentiation state of individual melanoma cells derived from treatment-naïve patient 

tumors profiled by Tirosh et al [43] and Jerby-Arnon et al [49] were determined in the same 

way, except that only melanocytic and undifferentiated cells were identified and analyzed. 

3.5.6 Random forest classification  

We used random forest classification to test the predictivity of AP-1 variations for melanoma 

differentiation state using single-cell protein data collected by immunofluorescence imaging of 

19 melanoma cell lines. We randomly sampled a total of 10,000 cells, including 2,500 from each 

of the four differentiation states, in a way that they represented all 19 cell lines and 4 distinctive 

differentiation states (melanocytic, transitory, neural crest-like and undifferentiated) as equally as 
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possible. By random sampling, we aimed to minimize potential biases associated with genotype 

differences among cell lines. We used the data from 80% of the sampled cells to train a random 

forest classification model to predict the differentiation state of each individual cell. We then 

used the remaining 20% of cells to independently validate model predictions. Model training, 

cross-validation and independent validation were all performed in Python (3.9.2) using the scikit-

learn library (0.24.1) [53]. To standardize the model input, protein levels of each AP-1 

measurement were normalized across cells to zero mean and unit variance (z-score scaled) using 

the StandardScaler() function. The random forest model was trained using the 

RandomForestClassifier() function. All parameters were as defined in the default settings, except 

the number of trees in the forest (n_estimators = 100) and maximum tree depth (max_depth = 

14), which were separately optimized through 5-fold Stratified Shuffle Split cross-validation on 

the training set, using the StratifiedShuffleSplit() function with 10 times splitting iterations 

(n_splits = 10).  

The random forest model performance was evaluated based on accuracy and Area Under 

the Receiver Operating Characteristic Curve (ROC AUC). Accuracy reports the fraction of 

correctly classified samples, i.e., true positives and true negatives, and it was calculated using the 

accuracy_score() function. The ROC AUC scores were calculated using the roc_auc_score() 

function with the One-vs-rest option (multi_class = ‘ovr’), which computes the AUC of each 

class against the rest. The ROC AUC scores consider both the sensitivity (true positive rate) and 

specificity (true negative rate) of the model predictions.  

To assess the importance of each AP-1 factor in explaining the predictions made by the 

random forest model for each individual cell in the independent validation set, we used the 

SHapley Additive exPlanations (SHAP) package [54]. SHAP provides a model agnostic measure 
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of feature importance based on Shapley values, which assign importance of input features based 

on their contribution to the model output prediction. Mathematically, given a specific prediction 

output by model f with input x, Shapley value for feature i, φi(f,x), is the average of feature i’s 

marginal contributions across all possible orders of features being included [54,55]: 

φ
i
( f , x)=∑

|S|!(M−|S|−1)!

M!
[f

x
(S ∪ {i}) − f

x
(S)]S ⊆ Sall\{i}

   (Equation 3.1) 

where M is the total number of features, |S| denotes number of entries in set S and the term 

f
x
(S ∪ {i}) − f

x
(S) is the marginal contribution of feature i. In SHAP, the marginal impact of a 

feature is defined as the change in the expected value of the model output f(x) when that feature 

is observed versus unknown:  

f
x
(S ∪ {i}) − f

x
(S)=Ε [f(x) | xs ∪{i}] − Ε [f(x) | xs]    (Equation 3.2) 

where xs is a subset of features with only set S is observed. 

3.5.7 Partial least squares regression (PLSR) modeling  

We used PLSR analysis to test whether the relationships between the patterns of AP-1 gene 

expression and melanoma differentiation state were recapitulated at the transcriptional level. 

Bulk RNA sequencing data of 53 melanoma cell lines used for PLSR analysis were deposited by 

Tsoi et al [12] in the Gene Expression Omnibus (GEO) database under accession number 

GSE80829. We first log2-transformed the gene expression data (reported as FPKM) with an 

offset of 1. Input vectors for PLSR analysis were then created by combining the z-scored 

expression data for fifteen AP-1 transcription factor family genes, including FOS, FOSL1, 

FOSL2, FOSB, JUN, JUNB, JUND, ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, ATF6B and 

ATF7, across 53 cell lines. The response variables for each cell line were then assembled as a 

series of seven signature scores, defined as the average of z-scores for the expression levels of 



118 

differentiation state signature genes [12]. The PLSR model was trained in python using the 

scikit-learn library and the PLSRegression() function. To evaluate the predictability of the linear 

relationship between the input and output variables using the same dataset, we used leave-one-

out cross-validation by LeaveOneOut() function. To independently validate the model, we used 

RNA sequencing data from an independent panel of 32 melanoma cell lines in the Cancer Cell 

Line Encyclopedia (CCLE) [46]. The CCLE data (CCLE_RNAseq_genes_rpkm_20180929.gct 

data) was downloaded from https://sites.broadinstitute.org/ccle. As with the training dataset, we 

first log2-transformed the CCLE gene expression data (reported as RPKM) with an offset of 1. 

We then created input vectors by combining the z-scored expression data for fifteen AP-1 

transcription factor family genes and used them in the optimized PLSR model (using the first 

four PLS components) trained against the original set of 53 cell lines to predict the 

differentiation signature scores in the new set of 32 cell lines.  

The PLSR model performance was evaluated in terms of fraction of variance explained 

(R2) or predicted (Q2) using the explained_variance_score() function. We assessed the relative 

importance of each AP-1 factor in the PLSR model based on the variable importance in 

projection (VIP) scores, computed for the first four PLS components, at which the PLSR model 

achieves its optimal performance  [56]. To help interpret the directionality of the contribution, 

we multiplied the VIP score for each AP-1 factor by the sign of Pearson correlation coefficient 

between its expression levels and differentiation signature z-scores.  

We compared the performance (based on 10-fold cross validation) of optimized PLSR 

model, built based on the top eight AP-1 genes (FOS, FOSL1, FOSL2, JUN, JUNB, JUND, 

ATF2 and ATF4) with optimized models built using combinations of eight randomly chosen 

basic leucine zipper (bZIP) transcription factors [57] (Table A.1) or eight randomly chosen 

https://sites.broadinstitute.org/ccle
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transcription factors [47] (excluding those that were explicitly involved in the differentiation 

signature genes) by computing empirical P values using 100,000 and 500,000 iterations, 

respectively.  

3.5.8 Uniform manifold approximation and projection (UMAP) 

UMAP was performed in R using the umap package. For single-cell protein data, we first 

performed principal component analysis (PCA) using the prcomp() function on the z-scored log-

transformed data and selected the PCA scores from the first four principal component for UMAP 

analysis. The parameters used in generating the UMAP for single-cell protein data include 

nearest neighbor (n_neighbors) = 90, minimum distance (min_dist) = 0.7 and distance metric 

(metric) = Euclidean. 

3.5.9 Single-cell regulatory network inference and clustering (SCENIC) 

For the SCENIC analysis of melanoma cell lines, the baseline regulon activities inferred by the 

SCENIC workflow [47,48] were obtained from the .loom file 

(10_Baselines_filteredRegulons.loom) published by Wouters et al [14] 

(http://scope.aertslab.org/#/Wouters_Human_Melanoma). The .loom file was imported to R for 

downstream analysis using the SCopeLoomR package.   

Single-cell RNA sequencing data for patient-derived melanoma tumors were obtained 

from previous studies published by Tirosh et al [43] and Jerby-Arnon et al [49] (GSE72056 and 

GSE115978). Single-cell gene expression analysis and SCENIC was focused on 2072 malignant 

melanoma cells, which were distinguished (by the authors) from non-malignant cells based on 

gene copy number variations We selected 14,689 genes which were detected in more than 1% of 

the cells (i.e., 20 cells) with at least 103 logged TPM counts. Using this dataset, we then inferred 

http://scope.aertslab.org/#/Wouters_Human_Melanoma
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regulons using pySCENIC in a Nextflow pipeline adapted from Wouters et al [14] 

(https://github.com/aertslab/singlecellRNA_melanoma_paper), performing 100 SCENIC runs on 

the data. As in Wouters et al’s regulon filtering criteria, only regulons that had more than 10 

target genes and recurred in at least 80/100 runs were retained. Target genes (used in AUCell 

calculation) that appear in at least 80% of the runs in regulons that recurred 100 times, and all 

target genes for regulons that recurred 80-100 times were retained. This analysis pipeline 

resulted in 373 motif regulons. 

3.5.10 Partial correlation analysis 

Partial correlation analysis is used for the evaluation of correlations between pairs of variables 

while controlling for the variance explained by a third variable. We used pairwise partial 

correlation analysis to evaluate correlations among changes induced by MAPK inhibitors in each 

of the AP-1 protein levels, dedifferentiation, and p-ERK levels across different cell lines, while 

controlling for the baseline (drug-naïve) variance of differentiation state or AP-1 levels across 

the same cell lines. To identify possible associations between AP-1 factors and drug-induced 

dedifferentiation, we first calculated the relative enrichment of dedifferentiated cells at each 

treatment condition (including the baseline) by subtracting the fraction of cells that are 

NGFRLow/MITFHigh from the fraction of cells that are NGFRHigh/MITFLow at that condition. AP-1 

data were also averaged across two replicates and log-transformed. We then used the Matlab 

function partialcorr to evaluate the Pearson’s partial correlation coefficients (and the associated P 

values) between the enrichment of dedifferentiated cells and AP-1 data for each MAPK inhibitor 

treatment condition, while correcting for the variance in the enrichment of dedifferentiated cells 

at baseline (DMSO condition). Similarly, to assess if any of the AP-1 factors would capture 

drug-specific changes in ERK signaling, we used partial correlation analysis to determine 

https://github.com/aertslab/singlecellRNA_melanoma_paper
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pairwise correlations between p-ERK and AP-1 levels across drug-treated cell lines, while 

correcting for differences in their baseline AP-1 levels.  

3.5.11 Statistics and reproducibility 

No statistical method was used to predetermine sample size. Sample sizes were chosen based on 

similar studies in the relevant literature. The experiments were not randomized. The investigators 

were not blinded to allocation during experiments and outcome assessment. All data with error 

bars were presented as mean values ± s.d. as indicated in figure legends using indicated 

numbers of replicates. The significance of pairwise correlations were evaluated based on P 

values associated with the corresponding two-sided Pearson’s correlation analysis. To identify 

the statistical significance of differences between mean of measurements within two different 

groups P values from two-sided t test were used. Statistical analyses were performed using 

MATLAB (2020b), R (4.0.4), Python (3.9.2), Scikit-learn Library (0.24.1). All custom scripts 

used for data analysis are available on GitHub (https://github.com/fallahi-sichani-lab/AP1-

networkPlasticityMelanoma). 

https://github.com/fallahi-sichani-lab/AP1-networkPlasticityMelanoma
https://github.com/fallahi-sichani-lab/AP1-networkPlasticityMelanoma
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Chapter 4 Conclusions and Future Directions 

4.1 Summary 

Resistance due to tumor cell heterogeneity is a fundamental challenge that faces the discovery 

and use of targeted therapies for cancer treatment. Patient responses to cancer drugs vary 

significantly in the extent and duration. Moreover, many patients eventually develop drug 

resistance despite their substantial initial responses to treatment. Understanding the molecular 

basis for such variations in treatment response is key to the development of better cancer 

therapies. Most of our current systematic approaches to understand variations in anticancer drug 

response rely on correlating drug responses to genomic profiles across tumor populations. Such 

genome-wide interrogations have already led to discoveries of targeted therapies tailored to 

patients with specific genomic signatures and significantly refined our understanding of the 

disease. However, emerging evidence has revealed that a considerable amount of non-

determinism in tumor cell drug response may be traced back to non-genetic heterogeneity.  

Advances in single-cell biology in the past two decades let us appreciate the numerous 

ways in which cells are different from one another. Non-genetic sources of molecular 

fluctuations diversify phenotypic responses of cells to drugs at the single-cell level. Such 

molecular fluctuations can prime a fraction of tumor cells to be intrinsically drug-tolerant or 

render them phenotypic plasticity to adapt to drug-induced stress. Such single-cell variability has 

profound clinical impact on tumor responses to targeted therapies. In fact, resistance of a rare 

subpopulation of tumor cells to therapy may be sufficient for tumors to relapse in patients after a 

transient period of good response. These rare drug-tolerant subpopulations diminish therapeutic 
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efficacy, yet they are often masked by population-based measurements in most standard pre-

clinical assays. Furthermore, there is a major gap in our understanding of the precise biochemical 

mechanisms that determine cellular plasticity and the variability in responses of cells to drugs 

that target specific oncogenic pathways.  

The goal of this work is to address the current gaps in quantifying cell-to-cell variability 

in drug response and identifying intrinsic and adaptive mechanisms that lead to cell-to-cell 

heterogeneity in drug response. To this end, we developed a systems pharmacological framework 

to evaluate time-dependent drug responses based on probabilistic metrics that quantify drug-

induced tumor cell killing and inhibition of division at the single-cell level. We revealed the 

time-varying impact of rare drug-tolerant cells in the assessment of drug response and 

combination interactions. We have also studied the origins of intrinsic diversity of phenotypic 

states and adaptive responses in melanoma cells by systematically interrogating the AP-1 

transcription factor network. Our systems biology approach integrates data-driven modeling with 

multiplexed measurements capturing tumor cell heterogeneity at transcriptional and protein 

levels. This system-wide investigation uncovered previously unknown interdependencies among 

AP-1 factors and their associations with diverse patterns of cellular plasticity. Collectively, these 

studies are critical for designing therapeutic strategies at cellular precision, which is necessary to 

overcome fractional killing due to phenotypic heterogeneity and plasticity. 

 In this final chapter, I will briefly summarize the key findings from each aim of my PhD 

thesis proposal. I will then make suggestions for future studies based on these findings. In 

particular, I will focus on discussing the exciting next steps that we can take to elucidate the 

mechanisms that link transcriptional and epigenetic plasticity, heterogeneity in the state of 
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oncogenic MAPK signaling, and the phenotypic diversity of MAPK inhibitor responses in 

melanoma cells. 

4.2 Key findings by aim 

4.2.1 Aim 1 

We used basic probability theory, computer simulations, time-lapse live cell microscopy, and 

single-cell analysis to show that fraction of cells affected (fa) metrics derived from conventional 

dose-response curves may bias our assessment of drug efficacy and combination effectiveness. 

This bias may be corrected when dynamic probabilities of drug-induced phenotypic events, i.e. 

induction of cell death and inhibition of division, at a single-cell level are used as metrics to 

assess drug efficacy. Probabilistic phenotype metrics offer the following three benefits. First, in 

contrast to the commonly used fa metrics, they directly represent probabilities of drug action in a 

cell population. Therefore, they deconvolve differential degrees of drug effect on tumor cell 

killing versus inhibition of cell division, which may not be correlated for many drugs. Second, 

they increase the sensitivity of short-term drug response assays to cell-to-cell heterogeneities and 

the presence of drug-tolerant subpopulations. Third, their probabilistic nature allows them to be 

used directly in unbiased evaluation of synergistic efficacy in drug combinations using 

probabilistic models such as Bliss independence. Altogether, we envision that probabilistic 

analysis of single-cell phenotypes complements currently available assays via improving our 

understanding of heterogeneity in drug response, thereby facilitating the discovery of more 

efficacious combination therapies to block drug-tolerant cells. 

4.2.2 Aim2 
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We tested the hypothesis that the intrinsic diversity of phenotypic states (i.e., differentiation 

states) and adaptive responses to MAPK inhibitors in BRAF-mutated melanoma cells can be 

traced back to a common set of molecular determinants. To test this hypothesis, we focused on 

the AP-1 transcription factor family, since they are major MAP kinase targets linking signaling 

to transcription, and that they have been implicated in previous studies for their roles in MAPK 

inhibitor resistance and differentiation. To systematically interrogate AP-1 contributions in 

BRAF-mutant melanoma plasticity, we combined multiplexed measurements of AP-1 state, 

MAPK signaling activity and differentiation state at population and single-cell levels, across 

genetically diverse melanoma cell lines before and after BRAF/MEK inhibitor exposure. Using 

multivariate statistically learning and single-cell regulatory network inference, we identified 

patterns of a subset of AP-1 factors that are highly predictive of phenotypic heterogeneity in 

melanoma cultures and patient-derived tumors. We validated the causality of these statistical 

predictions with RNAi-mediated knockdown experiments followed by single-cell analysis. We 

found that a tightly interdependent balance among AP-1 factors cJUN, FRA2, FRA1 and cFOS 

determines the intrinsic diversity of differentiation states of melanoma cells. Such balance is 

perturbed by MAPK pathway inhibition. We found that MAPK inhibitors induce changes in the 

AP-1 state, including the abundance of cJUN and its phosphorylation, as well as the 

phosphorylation state of FRA1, which are strong predictors of drug-induced dedifferentiation 

and adaptive MAPK pathway reactivation, respectively. Altogether, these results show that the 

state of AP-1 transcription factor network offers critical molecular context for the intrinsic and 

drug-adaptive response to MAPK pathway perturbation in melanoma, unifying these seemingly 

distinct forms of heterogeneity. Thus, AP-1 may serve as a critical node for manipulating cellular 

plasticity with potential therapeutic implications. 
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4.3 Future Directions 

Molecular differences at the single-cell level can generate remarkably distinct phenotypic 

responses to drug treatment. Overcoming therapeutic resistance therefore requires uncovering the 

hidden molecular variables that explain the seemingly probabilistic mapping between oncogenic 

signaling and phenotypic outcomes at the single-cell level [1]. Most recent efforts have been 

focused on characterizing the intrinsic cell-to-cell variability (revealing e.g., differences in the 

abundance of receptor tyrosine kinases, epigenetic modifiers, and transcription factors) that may 

lead to resistant phenotypes [2–5]. However, mechanisms of cell-fate control, i.e., how variable 

phenotypic outcomes emerge in the context of specific signaling perturbations, remain unclear in 

most cases. Such mechanistic understanding is key to overcoming tumor-cell heterogeneity in 

therapeutic response, since phenotypic states that emerge in response to external cues may 

exhibit a rich diversity of cellular states rather than binary outcomes (e.g., resistant or sensitive) 

[6]. These cellular states can also vary depending on the external cue and molecular context. 

Therefore, future effort should shift towards gaining a systems and mechanistic understanding of 

cell-to-cell molecular differences as a network rather than as individual biomarkers and 

investigating how such network interprets oncogenic signaling perturbations differently from one 

cell to the next. Focusing on the deregulated MAPK signaling in melanoma, here I will discuss 

two future directions that aim at mechanistically elucidating the epigenetic and transcriptional 

mapping between MAPK signaling and phenotypic outcomes (differentiation states) in 

melanoma (Figure 4.1). 
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Figure 4.1 Future directions to elucidate the epigenetic and transcriptional mapping underlying MAPK-dependent 

cellular plasticity in melanoma 

Intrinsic regulation of the MAPK-AP-1 network interactions may preferentially lead to formation of different AP-1 

dimers, which in turn could select for different enhancer landscapes that ultimately lead to distinct cellular states. 

For future directions, identifying the variable states of the MAPK-AP-1 network and elucidating the epigenetic and 

transcriptional roles of different AP-1 dimers in cellular plasticity may reveal the hidden molecular mapping 

between MAPK signaling and phenotypic states. 

 

4.3.1 Decipher the transcription-factor code for signal-dependent enhancer selection 

underlying tumor cell heterogeneity and drug-induced plasticity 

Cell-fate decision and cell-state maintenance require cells to selectively read genetic regulatory 

information within the genome. Differences in the epigenetic landscape generate variability in 
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such selective reading, thereby establishing diverse states of drug tolerance in tumor cells in the 

absence of genetic variability. In melanoma, numerous recent studies have linked heterogeneity 

in the state of MAPK signaling dependency to epigenetic differences, which result in a mixture 

of differentiation states at varying frequencies within genetically homogeneous cell populations 

[3,7–11]. Furthermore, remodeling of the epigenetic landscape enables cellular plasticity, 

through which cells can adapt to environmental perturbations such as drug treatment. For 

example, therapeutic inhibition of MAPK signaling in melanoma results in cell-state switching to 

a transiently drug-tolerant phenotype with an altered differentiation state [2,12]. However, the 

dynamic epigenetic mechanisms and regulatory networks that drive these distinct epigenetic 

states and their connection to oncogenic MAPK signaling remain poorly understood, leaving 

potential therapeutic strategies to manipulate cell state plasticity largely unrealized. 

Enhancers are important regulatory elements that encode the instructions to execute cell-

state specific gene expression programs. Such programs are encoded by the composition of 

transcription factor binding motifs within an enhancer [13]. Transcription factor binding to 

enhancers depends on chromatin accessibility of the epigenetic landscape. A subset of 

transcription factors, also known as pioneer factors, can bind cooperatively to nucleosomal 

enhancers, evicting nucleosomes and rendering enhancer accessibility for other non-pioneer 

transcription factors [14,15]. Importantly, cell-state specific responses to external stimuli are 

often specified by an enhancer landscape that is already primed by pioneer factors prior to 

signal-dependent activation [16–18]. Changes in transcription factor expression and/or activity, 

therefore, can influence not only gene regulation, but also enhancer selection for cell-state 

establishment and future cell-fate in response to stimuli. Identifying transcription factors that 

pioneer variable enhancer landscapes underpinning tumor cell state plasticity will provide a key 
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to modulate tumor heterogeneity. It will also open up opportunities to link the global epigenetic 

landscape to upstream signaling that acts through these transcription factors. 

In Chapter 3, we discovered that differentiation state heterogeneity and cellular plasticity 

in melanoma are associated with distinct states of the AP-1 transcription factor network. 

Moreover, recent studies have reported that AP-1 proteins pioneer the enhancer landscape to 

regulate specific gene expression programs [15,16,19,20]. As downstream effectors of the 

MAPK pathway and pioneer factors, the AP-1 family serves as an intriguing node for elucidating 

the mapping between oncogenic signaling and melanoma cell states. Furthermore, AP-1 dimers 

differ in their enhancer binding affinities and specificities depending on their compositions [21]. 

Therefore, different AP-1 dimer compositions, which likely select for different enhancer 

landscapes, could encode distinct cellular states. For future studies, I propose to investigate how 

enhancer landscapes are shaped by different AP-1 combinations across melanoma differentiation 

states and in response to MAPK inhibition (Figure 4.1 A). This investigation will uncover the 

transcription factor regulation principles of the enhancer landscapes that drive melanoma 

heterogeneity associated with both intrinsic and adaptive resistance to MAPK inhibitors. This 

goal may be accomplished using the following approaches: 

1) Identify AP-1 dimer compositions associated with enhancer selection across heterogeneous 

melanoma cell populations 

In Chapter 3, we determined that a regulated balance among specific AP-1 factors determines 

distinct differentiation states in melanoma. Based on these studies and the evidence from 

literature, I hypothesize that different AP-1 dimer compositions select distinct enhancer 

landscapes that establish melanoma differentiation states. To test this hypothesis, I propose to 

perform molecular profiling on melanocytic and undifferentiated cell subpopulations within a 
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heterogeneous cell line (e.g., COLO858) sorted based on cell surface markers for these 

differentiation states. Enhancer landscape and AP-1 binding activity can be determined based on 

genome-wide profiling using CUT&RUN [22] for histone modifications H3K4me1 and 

H3K27ac, and AP-1 factors cFOS, FRA2, cJUN and ATF4. These AP-1 factors are chosen 

because they are associated with heterogeneity in differentiation state within the COLO858 cell 

line. Overlapping the genomic coordinates of the CUT&RUN signals for these markers in each 

cell subpopulation will reveal the AP-1 bound enhancers, enhancer state (active versus poised) 

and AP-1 binding compositions at these enhancers. I expect that comparing the enhancer 

landscapes between the melanocytic and undifferentiated subpopulations will suggest whether 

and which potential AP-1 bound enhancers are associated with the non-genetic heterogeneity in 

differentiation state. Motif enrichment analyses [23] on the enhancer regions of interest can also 

suggest binding of potential co-factors or other AP-1 members. 

Building upon the findings from the study proposed above, I would also suggest a 

systematic study to interrogate the role of AP-1 combinations in shaping the enhancer landscape 

associated with differentiation state heterogeneity at the single-cell level. I propose simultaneous 

profiling of genome-wide chromatin accessibility and transcriptome at the single-cell level 

across a panel of melanoma cell lines using SHARE-Seq [24]. SHARE-Seq uniquely and 

simultaneously labels mRNA and chromatin fragments in the same cell with barcoded 

oligonucleotides, thereby allowing high-throughput joint profiling of chromatin accessibility and 

gene expression at the single-cell level. The selection of cell lines should be genetically diverse 

and covers a wide spectrum of melanoma differentiation state in order to avoid discoveries that 

may be biased to a particular cell line. Leveraging the single-cell resolution of the resulting 

dataset, computational strategies can be used to infer cis-regulatory interactions. In particular, 
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chromatin regions containing high densities of gene interactions are likely super-enhancers that 

may serve as regulatory hubs for lineage-determining genes. To systematically identify the 

enhancer landscape associated with changes in melanoma differentiation, pseudo-temporal 

ordering [25,26] of cells based on differentiation signature gene expressions and/or cis-

regulatory topics [27] (inferred from chromatin accessibility) can be used to resolve the 

differentiation trajectory. Using this pseudo-time trajectory, we can then determine changes in 

chromatin accessibility that may prime cells for lineage commitment. During lineage 

commitment, changes in these priming chromatin regions along the trajectory are expected to 

precede expression of differentiation programs [24]. Motif enrichment analysis of these key 

regions should reveal whether AP-1 members bind to those regions and possibly provide some 

information about their dimer or co-factor compositions. Furthermore, examining the pseudo-

time dynamics for specific gene expressions and transcription factor motif activities (inferred 

from chromatin accessibility) can reveal the potential mechanisms governing the primed 

chromatin states based on the ordering of events [24]. Finally, to validate the findings, I propose 

using CRISPR interference [28] to disrupt the AP-1 dimer or co-factor binding sites (individually 

and in combinations) at the enhancer of interest, followed by CUT&RUN to measure 

components of the AP-1 dimer complex from the sorted melanocytic and undifferentiated cell 

subpopulations. This experiment should validate the functionality of the enhancer for 

maintaining certain differentiation states, and whether their function requires binding of both 

factors or just one of the factors. 

2) Uncover MAPK inhibitor-induced changes in enhancer selection and the associated AP-1 

dimer compositions 
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Perturbation of the MAPK signaling pathway can influence the concentrations, activities, and 

dimer composition of the AP-1 transcription factors. Accordingly, in Chapter 3, we showed that 

inhibiting MAPK signals with drugs in melanoma results in changes in certain AP-1 protein and 

phosphoprotein concentrations. These changes in AP-1 state are associated with drug-induced 

dedifferentiation and ERK signaling changes, both of which are known mechanisms connected 

to adaptive resistance in melanoma [12,29]. Based on such knowledge, I hypothesize that cellular 

plasticity induced by MAPK inhibition is mediated by specific AP-1 combinations altering the 

enhancer landscape. To test this hypothesis, I propose using SHARE-seq to profile chromatin 

accessibility and gene expression at the single-cell level in COLO858 cells at 48 h and 96 h upon 

different drug-treatment conditions. These treatment conditions include the untreated control, 

BRAF inhibitor vemurafenib alone and BRAF inhibitor in combination with MEK inhibitor 

trametinib at three different doses. Applying trajectory inference techniques on the SHARE-seq 

data as described above will uncover the pseudo-dose trajectories of COLO858 following MAPK 

inhibition. Based on similar preliminary results of inferred trajectories from the 4i single-cell 

protein data under the same proposed experimental conditions, I anticipate that this pseudo-dose 

analysis will result in two distinct, continuous trajectories between BRAF inhibitor treatment and 

BRAF/MEK inhibitor combination treatment. Based on these trajectories, we can determine 

which chromatin regulatory hubs become accessible upon MAPK inhibition and whether these 

chromatin regions are connected to known adaptive signaling pathways. We can also determine 

whether there are primed chromatin states that may distinguish MAPK inhibitor treatment 

conditions. Finally, examining these regulatory regions of interest using motif enrichment 

analysis, we can uncover whether and which AP-1 dimers or co-factors are potential regulators 
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for the activities of these regulatory regions. A similar CRISPR interference approach described 

in the previous section can be used to validate these findings. 

 Altogether, following these directions will elucidate the mechanistic link between AP-1, 

a key MAPK-signaling dependent transcription factor node, and the enhancer landscapes 

underlying the intrinsic heterogeneity and drug-induced plasticity in melanoma. Uncovering 

regulators for enhancer selection will also inform potential therapeutic strategies for 

manipulating tumor cell state heterogeneity and plasticity. 

 

4.3.2 Linking the state of MAPK signaling to phenotypic heterogeneity through modeling of 

the AP-1 network 

Cellular responses to external cues depend on the molecular context. In the case of melanoma, 

inhibition of the hyperactivated MAPK signaling often generates variable responses that are 

associated with differentiation state plasticity and heterogeneity [2,12]. The mechanisms of how 

perturbing MAPK signals engenders such heterogeneity remain unclear. Conversely, it is also 

not well-understood as to why melanoma cells of distinct differentiation states tolerate MAPK 

inhibition differently (e.g., incomplete inhibition versus reduced dependency on MAPK 

signaling) [7]. Resolving such mapping between signaling and cell-fate decisions is fundamental 

to precision medicine and is key for implementing targeted therapies at cellular precision. 

As a major target of the MAPK signaling cascade, the AP-1 transcription factor family is 

activated in response to a wide range of extracellular signals [30]. AP-1 factors play a critical 

role in the transcriptional regulation of many cellular processes, ranging from stress response and 

apoptosis to differentiation and proliferation [15,16,20,31,32]. In malignancy, dysregulation of 

different AP-1 factors has been linked to tumorigenesis, metastasis, and drug resistance 



 139 

[12,31,33–36]. The crucial role of AP-1 in transcriptional regulation in response to extracellular 

stimuli places AP-1 at a functional epicenter that bridges upstream signals, transcription, and 

phenotypic outcomes [31]. Indeed, our study in Chapter 3, among others, has illuminated the 

possibility that the state of the AP-1 network provides important signaling context for distinct 

cell-fate decisions [15,30,37,38]. However, the detailed mechanistic interactions among AP-1 

members and MAP kinases, and how such interactions influence cellular outcomes remain 

elusive. Elucidating these interactions as a network will open up new avenues for interrogating 

the connection between MAPK signaling and cell-fate decisions. 

Our investigation in Chapter 3 was primarily focused on AP-1 function in terms of 

individual factors. Nevertheless, much of the upstream MAPK signaling information is likely 

interpreted by AP-1 as an interconnected network. In particular, while AP-1 transcription, 

activity and degradation are regulated by MAP kinases [15,39–41], crosstalk among AP-1 

complexes and autoregulation can also influence AP-1 transcription and stability [31,42–46]. 

Furthermore, the diverse repertoire of transcriptional responses elicited by AP-1 is orchestrated 

by their expansive combinatorial arrays of homodimeric or heterodimeric complexes 

[34,37,42,47–49]. Such compositional diversity may explain why individual AP-1 members are 

often linked to contradictory functions in different contexts. JUN, for example, is associated with 

pro-apoptotic or anti-apoptotic functions, depending on the dimeric composition induced under 

different biochemical contexts [50,51]. 

Focusing on melanoma as a paradigm for understanding the connection between 

phenotypic heterogeneity and fluctuations in oncogenic signaling, I propose to elucidate the 

interactions within the AP-1 network in order to understand how such network encodes MAPK 

signals and directs distinct differentiation states in melanoma (Figure 4.1 B). I envision this 
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investigation will uncover a previously hidden molecular mapping that links oncogenic signaling 

to phenotypic outcomes on the basis of the state of AP-1 network. Such knowledge can provide a 

roadmap for predicting and manipulating the state of oncogene dependency. This goal may be 

accomplished using the following approaches: 

1) Elucidate the logic of the AP-1 network governing differentiation state heterogeneity in 

melanoma 

AP-1 factors function in unison as a network to execute specific transcriptional programs. In 

Chapter 3, we showed that perturbation of certain AP-1 factors can influence the levels of other 

AP-1 factors. This is consistent with many reports showing the tightly regulated interactions 

among AP-1 factors [31,32,34]. Such interactions can be mediated by dimerization directly 

impacting the transcription and stability of one another, or indirectly through other 

downstream/upstream factors including MAP kinases [31,43,45,46,52]. From a systems 

perspective, these interactions comprise various network motifs (e.g., autoregulation, feedback, 

feedforward loops) that control the stability and dynamics of the state of the AP-1 network. 

Ultimately, tipping the balance of AP-1 interactions could impact the cellular states and 

responses regulated by the AP-1 network.  

While many pairwise interactions among certain AP-1 members have been reported, 

there has not been a systematic study of AP-1 behaviors as a network, especially in the context of 

its regulation of melanoma differentiation state. For future directions, I propose combining 

single-cell measurements and mathematical modeling to elucidate the interactions among several 

key AP-1 factors identified in Chapter 3 and to understand the underlying network behaviors that 

drive melanoma differentiation state heterogeneity. To generate the data for network inference, I 

propose siRNA perturbation experiments as described in Chapter 3 to deplete key AP-1 factors 
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(cFOS, FRA1, FRA2, cJUN, JUND) individually and in pairwise combinations in a cell line 

(e.g., COLO858) consisting of heterogeneous AP-1 state and differentiation state. Using 4i [53], 

we can then acquire multiplexed measurements of these five AP-1 factors, their phosphorylated 

states and differentiation state markers for each condition. Using this data, I suggest to first use 

data-driven techniques to generate a Boolean model describing the logic of the AP-1 network 

[54]. In a Boolean model, dependencies among nodes (i.e., molecular players in the signaling 

network) are specified by logic gates, which are described in terms of Boolean logic operators 

such as “AND”, “OR”, and “NOT”. Logic-based modeling is an attractive approach for our goal 

since it allows us to describe the dynamics of a system without explicitly modeling the detailed 

biochemical interactions which requires significantly higher numbers of parameters and higher 

amounts of prior knowledge [54,55]. In this case, literature reports on the detailed biochemical 

interactions remain largely disparate and likely depend on the biological context. 

To infer an AP-1 Boolean network that explains melanoma differentiation state 

heterogeneity, I suggest to first train a Boolean model against the data from the control and 

individual knockdown conditions using CellNetOpt [54,56]. The training data will consist of the 

population-averaged AP-1 measurements from each differentiation state (classified as 

melanocytic or undifferentiated based on differentiation markers) across different experimental 

conditions. The a priori network used as input for CellNetOpt can be obtained by information 

theoretic analysis (e.g. DREMI [57,58]) that quantifies the directionality and connectivity 

between pairs of AP-1 factors across cells. Additional knowledge on the transcriptional 

regulatory interactions among AP-1 factors from the SCENIC analysis [59] in Chapter 3 can also 

be incorporated into this a priori network. Using this input network, CellNetOpt optimizes the 

model against the experimental data by searching through all possible logic gates compatible 
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with the input. The optimization algorithm in CellNetOpt will generate a family of optimal 

models that balance model complexity and accuracy in explaining the data. Combinatorial 

knockdown conditions not used in model training can then be used to validate the models or to 

rule out alternative models.  

Analyzing the validated Boolean model can yield the following biological insights or 

hypotheses. First, examining the model state-transition graph, we can identify the attractor states 

(a single state or a reoccurring sequence of states), which describe the long-term behavior of the 

model [60,61]. With such analysis, we can determine: I) whether the attractors represent the 

differentiation fates of COLO858; II) what circuitries (e.g., feedback loops) within the network 

are driving these attractors, and III) perturbations of which node(s) can shift the network from 

one attractor or differentiation state to another. Such information will provide insights into the 

key AP-1 combinations and interactions underlying each differentiation state.  

Additionally, by examining the network topology we can generate hypotheses about 

mechanistic interactions between AP-1 factors. For example, an “AND” operator connecting two 

AP-1 factors suggests that their downstream activity possibly requires dimer formation. On the 

other hand, a toggle-switch-like topology between two AP-1 proteins could imply a scenario 

where each AP-1 self-activates as homodimers and mutually inhibits one another through 

heterodimerization. Such dimeric interactions between transcription factors have been shown 

recently to generate multi-stability in synthetic circuits [62]. To test these hypotheses derived 

from the Boolean model, we can then model these hypothetical key AP-1 interactions 

mechanistically and dynamically in greater detail using ordinary differential equations (ODE). 

Additional time-course perturbation experiments focusing on these key interactions can be used 

to calibrate and validate the ODE models. Analyzing such ODE models (e.g., by stability 
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analysis and sensitivity analysis) can further generate novel insights into how we may be able to 

manipulate cell state stability and transition on the basis of key AP-1 factors in the model.  

2) Understanding how the state of MAPK signaling is encoded by the AP-1 network. 

As transcriptional effectors of the MAPK pathway, AP-1 plays an integral role in regulating 

transcription for diverse biological responses to extracellular stimuli. This suggests that the 

execution of appropriate cellular responses relies on the AP-1 network encoding the critical 

biochemical context (e.g., identity of environmental stimuli) that is relayed through MAPK 

signaling dynamics [30,37,38,48,63]. Indeed, several AP-1 factors have been associated with 

resistance to MAPK signaling inhibition in melanoma, further suggesting the link between AP-1 

state and the state of MAPK signaling dependency [12,36,64,65]. However, it remains unclear 

how AP-1 as a network integrates upstream MAPK signals to direct cell fate decisions such as 

differentiation or drug resistance. Using melanoma as an example system, I propose integrating 

multiplexed measurements and mathematical modeling to elucidate the interactions between the 

AP-1 network and its key activators, ERK, JNK and p38 MAP kinases. Elucidating the mapping 

between the AP-1 network and MAPK signaling will be key to understand the molecular basis of 

cell-to-cell heterogeneity in differentiation state and sensitivity to MAPK inhibition. 

 To generate the data for network inference, I propose treating a heterogeneous cell line 

(e.g., COLO858) with ERK inhibitor, JNK inhibitor, or p38 inhibitor, individually and in 

pairwise combinations, for multiple time-points (e.g., 0.5 h, 2 h, 6 h, 15 h, 24 h, 72 h). Using 4i 

[53], we can then measure the activity of three MAP kinases, the key AP-1 factors (from the 

previous section), their phosphorylated states and differentiation state markers for each condition 

at the single-cell level. Applying a similar data-driven approach from the previous section, we 

can train a Boolean model of the AP-1-MAPK network against the time-course perturbation data 
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[66]. The optimized AP-1-MAPK Boolean model can then be validated with additional time-

course experiments that simultaneously perturb MAP kinases and AP-1 (e.g., combining MAPK 

inhibitors with CRISPR activation or interference to overexpress or deplete specific AP-1 

proteins, respectively [67,68]). Using the Boolean model of the AP-1-MAPK network, we can 

then: I) identify the attractors of the AP-1-MAPK network and their associations with 

differentiation states, II) determine whether certain AP-1 circuitries encode specific MAPK 

states or dynamics (e.g., ERK reactivation), and III) determine whether perturbations of 

particular AP-1 factors can alter the MAPK state or vice versa. Finally, transforming the Boolean 

model of the AP-1-MAPK network to an ODE model [69] and incorporating mechanistic 

interactions identified in the previous section, we can obtain more detailed dynamic insights into 

the AP-1-MAPK network behaviors. For example, we can ask the following questions: I) what 

MAPK states or dynamics drive certain AP-1 dimer formations that are responsible for a 

particular differentiation state and vice versa? II) what parameters control the number and 

stability of attractors? III) under what parameter regimes, transient MAPK perturbations can lead 

to irreversible changes (hysteresis) in the AP-1 network? Through modeling of the AP-1 

network, answers to these questions can provide a deeper understanding of how phenotypic 

heterogeneity, memory and plasticity can be modulated by upstream signaling perturbations. 

 Altogether, combining systems biology and control systems theory, these directions will 

provide novel network-level principles connecting AP-1 behaviors, oncogenic signaling and cell-

fate control. These principles can offer important insights into the mechanisms of drug response 

heterogeneity and adaptive resistance to MAPK inhibitors, while opening up new opportunities 

to explore therapeutic strategies that enforce oncogene dependency by modulating the state of 

the AP-1 network. 
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Appendix A Supplementary Information for Chapter 3 

Table A.1 List of bZIP transcription factor genes used in constructing the random PLSR models in Figure 3.11. 

Transcript levels of 8 randomly chosen bZIP transcription factors from this list were used to construct each random 

model. 

Gene Name 

BACH1 

BACH2 

BATF 

BATF3 

CEBPA 

CEBPB 

CEBPD 

CEBPE 

CEBPG 

CREB1 

CREB3 

CREB3L1 

CREB3L3 

CREB5 

CREM 

DBP 

DDIT3 

HCFC1 

HLF 

JDP2 

MAF 

MAFB 

MAFF 

MAFG 

MAFK 

NFE2 

NFE2L2 

NFE2L3 

NFIL3 

NRF1 

NRL 

TEF 

XBP1 
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Figure A.1 Single-cell distribution of seventeen AP-1 factors measured across 19 cell lines and shown by violin 

plots highlighting the median and interquartile (25% and 75%) ranges. Related to Figure 3.2 and Figure 3.3.  
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Figure A.2 Single-cell distribution of AP-1 protein measurements, including cFOS, p-cFOS, FRA1, p-FRA1, FRA2, 

cJUN, p-cJUN, JUNB, and JUND, measured in 18 cell lines before and following treatment with MAPK inhibitors 

for 24 and 72 h. Violin plots highlight the median and interquartile (25% and 75%) ranges. Related to Figure 3.14. 

6

7

5

7

5

7

5

7

5

8

5

8

5

8

5

7

5

7

lo
g
 a

.u
.

lo
g

 a
.u

.
lo

g
 a

.u
.

lo
g
 a

.u
.

lo
g
 a

.u
.

lo
g

 a
.u

.
lo

g
 a

.u
.

lo
g
 a

.u
.

lo
g

 a
.u

.
cFOS

p-cFOS(S32)

FRA1

p-FRA1(S265)

FRA2

cJUN

p-cJUN(S73)

JUNB

JUND

DMSO Vemurafenib (316 nM): 24 h 72 h

Vemurafenib (316 nM) + Trametinib (31.6 nM): 24 h 72 h

A101D
A375

A2058
C32

COLO858

HS294T
IG

R39

LOXIM
VI

MMACSF

RVH421

SKMEL5

SKMEL19

SKMEL28

UACC62

W
M115

W
M902B

W
M1552C

W
M2664



155 

Figure A.3 Single-cell distribution of AP-1 protein measurements, including p-ATF1, ATF2, p-ATF2, ATF3, ATF4, 

p-ATF4, ATF5 and ATF6, measured in 18 cell lines before and following treatment with MAPK inhibitors for 24 
and 72 h. Violin plots highlight the median and interquartile (25% and 75%) ranges. Related to Figure 3.14.
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Figure A.4 Single-cell distribution of melanoma differentiation state markers MITF and NGFR, measured in 18 

cell lines before and following treatment with MAPK inhibitors for 24 and 72 h. Violin plots highlight the median 

and interquartile (25% and 75%) ranges. Related to Figure 3.15 and Figure 3.16. 
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