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Abstract

The elegant and simple idea of using origami to create 3D structures from 2D surfaces

is suitable for designing engineering systems like soft robots, programmable meta-

materials, smart facades, shareable infrastructures, and many more. This dissertation

proposes an integrated framework on fabrication, simulation, and design of functional

origami systems to overcome the limitations of state-of-the-art methods. This new

framework can be used to build functional origami structures with superior and ver-

satile functionalities for applications where programmability, 3D assembly, and dense

packaging are desirable.

First, this dissertation introduces a versatile fabrication method for an electro-

thermal micro-origami system that can accomplish superior controllability and com-

plex functionality that is beyond the capability of existing micro-origami structures. A

high-performance actuator, which can fold both elastically and plastically, is designed

and integrated into these micro-origami structures to achieve multi-degree-of-freedom

actuation and versatile shape morphing motion for complex functionality. The work

in this chapter greatly extends the motion versatility and functional complexity of ex-

isting micro-origami systems. This electro-thermal micro-origami can be used for

building functional micro-robots, surgery tools, transducers, and many other MEMS

devices.

Next, this work introduces a simulation framework developed for functional origami

structures, where three new models are created to capture complex behaviors within

functional origami systems. The framework can simulate more realistic geometries

xiii



of origami compliant creases, global panel contact between origami assemblages, and

the multi-physical actuation in active origami. In addition, an open-access simula-

tion package is developed to implement this framework and the package is published

on GitHub. Together, the three models and the simulation package provide the much

needed tools for capturing the behaviors of functional origami structures and pave the

ground for future researches on optimization and inverse design of functional origami.

The Appendix of this dissertation gives a thorough review of different origami simu-

lation techniques. For the first time, this work systematically analyzes and categorizes

different simulation techniques for origami-inspired systems so that future researchers

can better select and develop origami simulations for their specific applications.

Finally, this dissertation harnesses an interpretable machine learning method to

establish a holistic inverse design procedure of functional origami structures. This

method can handle categorical features for comparing different origami patterns and

tackles multi-objective problems for considering multi-physics performance targets.

Moreover, the method enables existing geometry-based origami inverse design algo-

rithms to further consider non-geometrical performance. The proposed method pro-

vides a holistic inverse design procedure for building superior functional origami sys-

tems.

In summary, this work provides novel methods for fabrication, simulation, and de-

sign of origami structures. The established methods in this dissertation complement

existing tools of origami engineering and allow future researchers to build better func-

tional origami systems for resolving practical engineering challenges.
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Chapter 1. Introduction

Folding, a concentration of curving within a thin film or a narrow rod of material, has generated
various inspiring phenomena in nature and in our daily lives. For example, some insects have
wings with folded edges to resist the load from flying [Wootton, 1981] and proteins require accu-
rately folded 3D configurations to function properly [Dobson, 2003]. Seeing artist transforming
a thin piece of paper into origami insects, fishes, and birds must have inspired engineers and sci-
entists to think about the vast potential of utilizing folding techniques to build structural systems
for engineering applications. Over the past decades, various origami inspired structures have been
proposed for different applications, including deplyoable architectural structures [Filipov et al.,
2015, Filipov et al., 2019, Cai et al., 2019], reconfigurable space structures [Lang et al., 2016, Cai
et al., 2017b,Hernandez et al., 2017b], functional robots [An et al., 2018,Felton et al., 2014,Kam-
rava et al., 2018], actuators and sensors [Martinez et al., 2012, Nauroze et al., 2018], small-scale
responsive systems [Yoon et al., 2014,Rogers et al., 2016,Na et al., 2015,Breger et al., 2015,Bassik
et al., 2009], medical devices [Jager et al., 2000, Leong et al., 2008, Leong et al., 2009], metama-
terials [Fang et al., 2018, Lv et al., 2014, Ma et al., 2018b, Silverberg et al., 2014, Silverberg et al.,
2015, Kamrava et al., 2017] and more [Yasuda et al., 2017, Faber et al., 2018, Hur et al., 2017].
There are several advantages of using origami inspired assemblages for building engineering struc-
tures. For example, origami structures provide methods to densely pack engineering systems, sav-
ing storage space and maximizing the functionality [Lang et al., 2016, Hernandez et al., 2017b].
In addition, many origami structures can be used to create metamaterials with tunable mechani-
cal, thermal, electro-magnetic, and other properties [Fang et al., 2018, Lv et al., 2014, Ma et al.,
2018b,Liu et al., 2019,Overvelde et al., 2016,Hanna et al., 2014,Schenk and Guest, 2013]. More-
over, origami principles provide a fabrication method to convert 2D surfaces into 3D systems with
intricate geometries, especially when it is difficult to build 3D structures directly [Rogers et al.,
2016, Na et al., 2015, Breger et al., 2015, Bassik et al., 2009, Leong et al., 2010].

In the following sections, we will give an overview of the application, fabrication, simulation,
and design of functional origami. We will discuss the capabilities and limitations of the existing
methods. Furthermore, the limitations within existing fabrication, simulation, and design methods
for origami will lead us to five unresolved challenges in the field of origami engineering. These five
challenges include: (1) How to build functional origami to achieve complex functions? (2) How
to simulate functional origami with compliant creases? (3) How to simulate global panel contact
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Figure 1.1: Functional origami applications at different length scales.

in functional origami? (4) How to simulate multi-physics actuation in functional origami? and
(5) How to design functional origami with categorical features and multi-objective performance
targets? Finally, to address these five challenges, this chapter will introduce a novel integrated
framework for fabrication, simulation, and design of functional origami that is proposed in this
dissertation.

1.1 Applications of Functional Origami

Functional origami is a type of engineered origami structure that can achieve designated functions
that is beyond the aesthetic purpose of origami art. Functional origami structures can be used
for engineering applications at different length scales (see Fig. 1.1). At greater-than-meter scales,
these origami systems can be used to design deployable structures for packaging applications or
for adaptive purpose. Architectural structures like adaptive facades can be made with functional
origami [Babilio et al., 2019], and space structures like solar panels and antennas can be densely
packed using the appropriate origami patterns [Lang et al., 2016, Hernandez et al., 2017b]. Other
slightly smaller structures like packageable ballistic shields can also be made with origami assem-
blages [Seymour et al., 2018].

At meter-to-centimeter scales, functional origami structures provide novel methods to build
various reconfigurable robots and programmable mechanical systems. Using the concepts of
origami, engineers have successfully tranformed flat surfaces to 3D robots [An et al., 2018] for
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achieving functions like walking [Felton et al., 2014] and griping [Butler et al., 2020]. Other
robotic components, like actuator and sensor systems, can also be made with origami structures [Li
et al., 2017, Kamrava et al., 2017, Nauroze et al., 2018]. In addition, origami systems can also
be used to build metamaterials for programmable properties. For example, various mechanical
metamaterials have been built using origami assemblages [Fang et al., 2018, Schenk and Guest,
2013,Lv et al., 2014,Silverberg et al., 2014,Silverberg et al., 2015]. Electro-magnetic systems like
programmble frequency selective surfaces (FSS) can also be built using origami structures [Fuchi
et al., 2016, Fuchi et al., 2012, Nauroze and Tentzeris, 2019, Biswas et al., 2020].

At sub-centimeter scales, functional origami are more often used as fabrication techniques to
build 3D systems. This is because conventional small scale fabrication methods like photolithog-
raphy based micro-fabrication have difficulties to build complex 3D structures directly [Rogers
et al., 2016, Na et al., 2015]. Through forming 3D systems using origami principles, these small-
scale structures can achieve superior functions. For example, micro-origami can accomplish non-
invasive surgery [Leong et al., 2009, Yoon et al., 2014], complex robotic motions [Liu et al.,
2021, Na et al., 2015], cell manipulation [Jager et al., 2000], and drug delivery [Leong et al.,
2008].

1.2 Current Fabrication Methods for Functional Micro-Origami

The fabrication of functional origami is different at different scales. In general, there are more fab-
rication methods and actuation methods available at larger scales. For example, at decimeter scale,
origami systems can be made with broadly available materials like flat plastic sheet, cardboard,
and electric motors [Felton et al., 2014, Belke and Paik, 2017]. In addition, active materials (such
as thermally active polymers or SMAs) can also be used to fold origami systems to form different
3D geometries at centimeter scales [An et al., 2018,Hawkes et al., 2010]. Finally, other fabrication
methods like the PCB based monolithic fabrication [Sreetharan et al., 2012,Wood et al., 2008] and
the 3D printing technology [Mao et al., 2015] can also be used to build origami systems at this
scale.

However, less methods are available to build functional origami systems at sub-millimeter scale
because it is difficult to build small electric motors and integrate heterogeneous components into
micro-scale systems. In general, engineering structures at sub-millimeter scale are built with pho-
tolithography based micro-fabrication processes. These processes are used to create microelec-
tromechanical system (MEMS), which is the technology that is behind the accelerometers, gyro-
scopes, RF-switches, and many other micro-devices we use in our daily lives [Senturia, 2001].
This photolithography based micro-fabrication process has an inherent 2D nature [Rogers et al.,
2016, Leong et al., 2010] and has difficulties to build complex 3D geometries directly. There-
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Figure 1.2: Fabrication methods for small-scale functional origami and challenges in the field.

fore, it is beneficial to combine origami designs and the photolithography based fabrication so that
we can convert 2D micro-surfaces to complex 3D micro-structures for superior performance and
functionality (see Fig. 1.2).

Folding actuation at micro-scale is usually achieved using bi-material morphs created with
active materials [Kang et al., 2019, Na et al., 2015, Silverberg et al., 2015, Yoon et al., 2014].
These bimorph designs usually have two layers: one made with an active material and the other
made with a passive material. When a certain stimulus is applied, the active material will experi-
ence expansion or contraction and the other material will stay passive, which forces the bimorph
system to generate bending motion. Unlike the discrete hinges used in larger origami structures,
these bi-material morphs bend with distributed curvatures and the widths of these actuating creases
are usually not negligible. Pragmatic solutions for creating small-scale functional origami struc-
tures include using passive hinges with magnetically active panels [Shaar et al., 2015, Iwase and
Shimoyama, 2005, Yi and Liu, 1999, Zou et al., 2001, Kim et al., 2011], thermally active ma-
terials [Kang et al., 2019, Na et al., 2015, Silverberg et al., 2015, Yoon et al., 2014], bimetallic
morphs [Randhawa et al., 2010, Bassik et al., 2009], and several others [Liu et al., 2011, Fu et al.,
2018, Ning et al., 2018].

Despite the advancements in designing and building functional micro-origami structures, the
current functional micro-origami systems usually have one or more limitations. For example, ex-
isting micro-origami systems tend to have limited motion complexity and can only achieve simple
fold and unfold motions because these systems require applying environmental stimuli for actua-
tion, where the folding or unfolding motions are correlated to applying or removing the stimuli [Na

4



et al., 2015]. In addition, these active micro-origami systems tend to have slow folding speed either
because they use actuation materials with relatively slow response speed [Liu et al., 2011] or be-
cause it takes time to apply environmental stimuli (such as heating up water [Na et al., 2015,Kang
et al., 2019]). Moreover, existing actuator creases can either fold elastically (reversibly) or plasti-
cally (irreversibly) but not both, which limits the programmability of current micro-origami sys-
tems. These limitations lead us to the first challenge we will tackle in this dissertation and it is:

Challenge 1: How to build functional micro-origami to achieve complex functions?

1.3 Current Simulation Methods for Functional Origami

There has been a number of simulation methods developed for analyzing the folding motions and
properties of functional origami structures in the past decades. The Appendix of this dissertation
gives a thorough review on origami simulations. Here, we will briefly go over these existing
methods, explain their formulations, point out their limitations, and identify three challenges to
be resolved in this dissertation. In general, we can broadly split origami simulation methods into
three categories and they are: kinematic models, simplified mechanical models, and finite element
models (see Fig. 1.3).

Early origami simulation methods were mostly kinematics based. For example, the rigid fold-
ing algorithm developed by Tachi is one successful kinematic simulation method for origami struc-
tures [Tachi, 2009c, Tachi, 2009a]. The method assumes the origami panels are rigid so all the de-
formations are concentrated in the folding creases [Tachi, 2009c, Tachi, 2009a], and these folding
creases are simplified as 1D rotating hinge lines for simplicity. The algorithm tracks the viable
folding motions complying with the geometrical constraints imposed by the pattern with numer-
ical methods such as the Euler’s method [Tachi, 2009c, Belcastro and Hull, 2002]. Similar and
mathematically equivalent kinematic simulations for origami structures can also be found in other
studies [Evans et al., 2015b, Feng et al., 2020a, Wu and You, 2010]. Although this type of meth-
ods is successful and is widely used in the origami engineering community, it cannot capture the
deformable panels and compliant creases (folding creases with distributed width) in functional
origami structures. To extend kinematical simulations to capture compliant creases, the “smooth
fold” model is developed [Hernandez et al., 2016b, Hernandez et al., 2017c]. This model uses the
rigid panel assumption but can consider the compliant crease geometries explicitly.

More recently, simplified mechanical models, such as the bar and hinge model, are proposed to
capture deformable panels in origami structures. These models treat the entire origami structure as
a deformable body with flexibility in both the panels and the creases [Liu and Paulino, 2017a]. A
number of different variations of bar and hinge models were developed in the past decades [Filipov
et al., 2017,Liu and Paulino, 2018a,Zhu and Filipov, 2020,Zhu and Filipov, 2019b,Zhu and Filipov,
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Figure 1.3: Simulations methods for functional origami and challenges in the field.

2019a], and a detailed comparative study is available in [Filipov et al., 2017]. In addition to the
bar and hinge models, plate theory based models were also created to capture the behaviors of
functional origami systems [Hu et al., 2021,Zhang et al., 2021,Soleimani et al., 2021]. These plate
theory based models can be seen as coarse-meshed versions of FE simulations where the model
fidelity is traded for faster simulation run time.

Finally, we can use finite element (FE) models to simulate the behaviors of functional origami
structures. These FE simulations are used widely in origami engineering community because they
produce high fidelity results [Ma and You, 2014, Ma et al., 2018a, Mukhopadhyay et al., 2020, Na
et al., 2015]. These simulations are usually implemented using plate elements and can capture
the local deformations in both origami panels and origami creases [Ma and You, 2014, Ma et al.,
2018a, Mukhopadhyay et al., 2020, Na et al., 2015]. Although these FE simulations can produce
high fidelity results, it usually takes tremendous efforts to build and run them to obtain usable
results. Moreover, FE simulations can behave like “black boxes”, which makes them not suitable
for some scientific explorations.

This dissertation will focus on the bar and hinge model, which is the most widely used sim-
plified mechanical model for origami structures. This model is popular among the origami engi-
neering community because it can capture the global mechanical behaviors in origami systems and
is computationally efficient [Wei et al., 2013, Grey et al., 2020, Liu et al., 2020, Filipov and Red-
outey, 2018,Masana and Daqaq, 2019,Gillman et al., 2019]. The bar and hinge model simulates an
origami pattern using extensional bar elements and rotational spring elements. The bar elements
are extensional springs in 3D that can capture the in-plane behaviors such as panel stretching and
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shearing, and the rotational spring elements are folding hinge lines with stiffness that can capture
the out-of-plane behaviors such as panel bending and crease folding [Liu and Paulino, 2016, Liu
and Paulino, 2017a].

One limitation of existing bar and hinge models is that they use simplified 1D creases and thus,
cannot simulate compliant crease origami structures. Capturing compliant creases is important
because most functional origami systems do not have localized hinges and instead, they have thin
shell like regions to serve as creases [Jager et al., 2000, Bassik et al., 2009, Wheeler and Culpeper,
2016,Leong et al., 2009,Yoon et al., 2014]. Capturing these compliant creases is also important for
studying advanced mechanical behaviors such as bistability and multi-stability in origami assem-
blages [Faber et al., 2018] and allows better representation of origami contact and panel thickness
accommodation [Zhu and Filipov, 2019a,Butler et al., 2020]. This limitation leads us to the second
challenge of this dissertation:

Challenge 2: How to simulate functional origami with compliant creases?

Another major limitation of these existing bar and hinge models is that they cannot capture
the global panel contact induced behaviors within functional origami structures [Liu and Paulino,
2017a, Liu and Paulino, 2016]. In fact, this limitation is not unique to the bar and hinge mod-
els. Prior to this work, both existing simplified mechanical simulations and kinematic simulations
could not capture global panel contact [Schenk and Guest, 2013, Wei et al., 2013, Belcastro and
Hull, 2002, Tachi, 2009c]. Although FE simulations tend to provide an alternative method, the
computation time required to run a contact simulation with FE approaches tends to be long. This
leads us to the third challenge of this dissertation:

Challenge 3: How to simulate global panel contact in functional origami?

Finally, existing bar and hinge models cannot capture multi-physics actuation mechanisms
within functional origami structures. Similar to the global contact, integrating multi-physics ac-
tuation into other simplified mechanical simulations or kinematic simulations is also challenging.
Without resolving this issue, the design of functional origami systems can only be based on trial
and error approaches, which are not effective. For example, thermally active folding creases are
used to fold origami structures at small scales with only sub-optimal performance because these
functional origami structures are designed using trial and error approaches [Zhu et al., 2020, Na
et al., 2015, Kang et al., 2019, Breger et al., 2015]. To address this limitation, this dissertation also
aims to resolve the following Challenge 4:

Challenge 4: How to simulate multi-physics actuation in functional origami?
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Figure 1.4: Design methods for functional origami and challenges in the field.

1.4 Current Design Methods for Functional Origami

The advancement in origami simulation techniques makes it possible to develop inverse design
algorithms of functional origami structures. So far, most of these existing inverse design methods
focus on addressing the shape fitting problem [Dang et al., 2022, Dudte et al., 2016, Tachi, 2010d]
(see Fig. 1.4). For example, Tachi’s Origamizer [Tachi, 2010d] provides an algorithmic solution
to fit an origami to arbitrary 3D geometries using tuck-folding techniques. The work by Dudte
et. al. demonstrates an optimization based method to build Miura-ori patterns to fit arbitrary
surfaces [Dudte et al., 2016]. In addition to the shape fitting, other kinematic based inverse design
problems were also studied by the origami community. For example, the TreeMaker proposed
by Lang [Lang, 1997, Lang, 2009] provides an algorithm to compute the base pattern design for
complex origami. The work by Chen et. al. [Chen et al., 2020] demonstrates that it is possible to
use mixed integer programs to determine the mountain-valley assignment of origami patterns.

Despite the advancements introduced above, designing functional origami structures is still a
challenging task. This is because the majority of existing inverse design methods for origami struc-
tures do not consider multi-physical behaviors and are only tailored for specific patterns. These
methods cannot tackle categorical features needed for comparing different origami patterns and
cannot resolve multi-objective problems needed for simultaneously considering multiple multi-
physical performance targets. Without the capability of comparing different patterns and address-
ing multi-physical performance targets, a holistic origami inverse design methodology cannot be
established. These limitations in existing origami design methods lead us to the Challenge 5:

Challenge 5: How to design functional origami structures with categorical

features and multi-objective performance targets?
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Table 1.1: Existing challenges and the proposed solution methods in each chapter.

Topics Existing challenges Solution
Fabrication How to build functional micro-origami to achieve complex func-

tions?
Chapter 2

Simulation
How to simulate functional origami with compliant creases? Chapter 3
How to simulate global panel contact in functional origami? Chapter 4
How to simulate multi-physics actuation in functional origami? Chapter 5

Design How to design functional origami with categorical features and
multi-objective performance targets?

Chapter 6

1.5 Novel Fabrication, Simulation, and Design of Functional Origami

The work in this dissertation establishes a novel framework for fabrication, simulation, and design
of functional origami systems. Each chapter in this dissertation aims to resolve one of the chal-
lenges introduced previously. Table 1.1 summarizes these unresolved challenges and the proposed
solutions in this dissertation.

First, a versatile micro-fabrication process is established in Chapter 2 to resolve the first chal-
lenge. With this novel micro-fabrication process, an electro-thermal actuator that can fold both
elastically and plastically can be integrated into functional micro-origami systems to achieve com-
plex motions and functions. The folding capability of this actuator array is tested to demonstrate
its superior performance. Multiple micro-origami devices, including a micro-crane that can fold
and flap its wings and a inter locked micro-origami gripper, are built and tested in this chapter to
highlight the superior performance and functionality.

In addition, a multi-physics based reduced order simulation framework is established to resolve
Challenges 2, 3, and 4. This simulation framework is based on bar and hinge models but drastically
expands the capabilities of existing formulations. Chapter 3 introduces an improved bar and hinge
model to capture the existence of compliant creases. Additional bar elements and rotational spring
elements are used to capture the distributed width of compliant creases explicitly. The bar area
and rotational spring stiffness are derived by matching the stiffness of the bar and hinge model
to that of a theoretical plate system. After the derivation, finite element simulations are used to
verify the accuracy of the model. Computational examples show that this model is crucial for
simulating bistable behaviors in functional origami sytems. Chapter 4 establishes the first global
panel contact model for simplified origami simulations. This model introduces a barrier function
into the total potential of the origami system to address the potential panel contact. This contact
potential function can generate large forces between contacting panels so that the panel penetration
is prevented. Application examples show that the model is efficient and can capture the accurate
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contact geometry within an origami pattern. This model allows us to study the stiffness jumps and
interlocking behaviors associated with global panel contact in functional origami assemblages that
cannot be captured with previous simplified origami simulations. Chapter 5 introduces a multi-
physics based model to capture the folding behaviors in electro-thermal micro-origami systems. In
this chapter, a reduced order heat transfer simulation is established for functional origami systems.
A 1-D conduction model is established to capture the heat transfer between the origami and the
surrounding environment and a standard linear triangle thermal element is used for simulating
the heat transfer within the origami structure. This model is verified against both finite element
simulations and experiments to demonstrate its accuracy and effectiveness. More significantly,
this chapter uses application examples to show that this actuation model can be used to optimize
the performance of electro-thermal functional origami structures. In addition to the three models
demonstrated in Chapter 3, Chapter 4, and Chapter 5, an open-access simulation package that
implements all three models is coded and published on GitHub [Zhu and Filipov, 2021c]. Finally,
a thorough review on origami simulations can be found in the Appendix. For the first time, this
review systematically categorizes existing simulation techniques for origami structures, introduces
their formulations, and analyzes their pros and cons. The work will enable future researchers to
develop better simulation techniques for origami structures.

Finally, Chapter 6 introduces an interpretable machine learning based inverse design method
for functional origami structures to address Challenge 5. When using the proposed methodology,
an origami performance database is built using the simulation package developed in Chapters 3
to 5 and a decision tree-random forest machine learning method is trained to learn the underlying
structures in this database. We demonstrate that identifying the more informative tree branches
in the decision tree-random forest method can provide us useful design rules to build superior
functional origami structures. This machine learning based inverse-design method is particularly
suitable for origami systems because it can capture the interaction between categorical and contin-
uous features and can tackle the multi-objective problems needed for designing functional origami
with multi-physics performance targets. We also demonstrate that this methodology can enhance
other origami shape fitting algorithms to design for non-geometrical performance targets such as
mechanical stiffness.

1.6 Simulation Codes and Databases

In addition to developing the simulation models from Chapter 3 to 5, a simulation code package
is developed for implementing these three models. Moreover, the origami performance databases
used in Chapter 7 are also published and made open-access online. Here, we introduce the simula-
tion code package and the origami performance databases built for this thesis.
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SWOMPS An open access software package that implements all the origami models from Chap-
ter 3 to Chapter 5 is coded and made open-access on GitHub. This package is called SWOMPS
and it stands for Sequentially Working Origami Multi-Physics Simulator. The following link can
be used to find the package https://github.com/zzhuyii/OrigamiSimulator. A
tutorial paper associated with this simulation package can be found in [Zhu and Filipov, 2021c].

Database codes Three origami performance databases used in Chapter 6 and the corresponding
simulation codes for building the three databases are also provided as supplementary materials.
These three databases are:

• Data S1: Database on origami canopy;
• Data S2: Database on active origami gripper;
• Data S3: Database on origami shape fitting;

The codes used for generating the databases are available on GitHub: https://github.com/
zzhuyii/GenerateOrigamiDataSet

Machine learning codes The implementation codes for the decision tree based inverse design
method introduced in Chapter 6 are also published on GitHub: https://github.com/zzhuyii/
TreeForOrigami. This code package is built in Python.

11

https://github.com/zzhuyii/OrigamiSimulator
https://github.com/zzhuyii/GenerateOrigamiDataSet
https://github.com/zzhuyii/GenerateOrigamiDataSet
https://github.com/zzhuyii/TreeForOrigami
https://github.com/zzhuyii/TreeForOrigami


Chapter 2. Elctro-Thermal Micro-Origami

This chapter introduces an electro-thermal micro-origami system that can fold elastically and plas-
tically to resolve Challenge 1 of this dissertation. A versatile and powerful MEMS actuator is
designed and integrated into micro-origami systems to achieve complex motions and functions.
More specifically, this actuator crease can fold elastically and rapidly at different atmospheric tem-
peratures and can achieve plastic folding to permanently change the fold configuration. The highly
versatile motions enabled by these actuator creases allow the micro-origami to achieve sophisti-
cated shape morphing for self-assembly and superior functionality.

This chapter is arranged as the following. First, we will discuss existing MEMS (microelec-
tromechanical systems) and micro-origami systems in Section 2.1. We will echo with Challenge
1 proposed in the Introduction, and give a more detailed discussion on MEMS based actuators.
After that, Section 2.2 introduces the design and fabrication of the proposed electro-thermal ac-
tuator system, and Section 2.3 uses a single-crease origami device to test the folding capability
of the proposed electro-thermal actuator. The results show that the proposed system can achieve
large folding angle elastically and rapidly, can function at various atmospheric temperatures, and
can fold plastically to reprogram the zero current rest angle. Moreover, a long term deterioration
test is performed to demonstrate the robustness of the actuator. After testing the folding behaviors,
Section 2.4 shows a number of samples to highlight the capabilities of the proposed micro-origami
systems. These micro-origami examples show that the proposed system can achieve complex
functions and motions, like folding a crane with flapping wings and building inter-locked origami
gripper systems, by combining elastic folds, plastic folds, and individually controllable folding
circuits.

2.1 MEMS and Micro-Origami

MEMS stands for microelectromechanical systems and is the technology behind most of the sen-
sors and micro-systems, including the accelerometers, gyroscopes, ink-jet printing heads, RF-
switches, and many more, that we use in our daily lives. Despite being a robust field, most MEMS
devices are limited to a 2D plane because traditional photolithography fabrication for MEMS has
difficulties building 3D systems directly. Combining origami principles with MEMS is beneficial
because it overcomes the limitation of traditional MEMS and enables the fabrication of complex
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3D micro-systems [Na et al., 2015, Bassik et al., 2009, Leong et al., 2010]. However, as discussed
in Chapter 1 Introduction, existing micro-origami systems tend to have limitations that prevent
them from achieving complex motions and functions, including the slow response speed, reliance
on external stimuli, and limited motion versatility.

To resolve the challenge, this chapter designs and integrates a novel MEMS based actuator,
which is more powerful and versatile than the existing actuators for micro-origami, into a func-
tional origami structure. More specifically, this chapter uses an electro-thermal bimorph micro-
actuator. To give a rational of choosing this particular actuator, we will first give an introduction
of different MEMS actuators.

Traditional MEMS actuators can be roughly divided into electro-static actuators, piezoelectric
actuators, and electro-thermal actuators [Wootton, 1981,Suh et al., 1999,Todd et al., 2006,Chronis
and Lee, 2005, Oldham et al., 2007, Choi et al., 2017]. The electro-static actuator tends to have
a finger-capacitor structure that can accumulate electric charge when applying voltage. This ac-
cumulated electric charge can generate electro-static forces to produce actuator motions. Because
electro-static force decays drastically with distance, these electro-static actuators cannot generate
large deformations. The piezoelectric actuators use piezoelectric materials, which produce strain
when applying voltage, to generate the designated motions. Similarly, these piezoelectric actuators
also cannot produce large motions because the output strains are small.

Unlike the previous two forms of MEMS actuators, the electro-thermal actuators can achieve
larger motion range. These electro-thermal actuators generate motions using Joule heating and
thermal expansion. A number of different designs can be used to convert the thermal expansion in
materials to useful actuator motions. These electro-thermal actuators can be further divided into
three types: hot and cold arm systems, Chevron-type systems, and bimorph systems [Potekhina and
Wang, 2019]. For origami applications, the bimorph electro-thermal actuators are most relevant
because they can produce out-of-plane folding motions [Todd et al., 2006, Suh et al., 1999, Ataka
et al., 1993, Zhang et al., 2015, Luo et al., 2005, Luo et al., 2006], whereas the rest two types are
only capable of providing in-plane motions. Therefore, it is possible to design a powerful electro-
thermal bimorph actuator and use it to fold micro-origami for complex motions and functions.

2.2 Electro-Thermal Actuator for Functional Origami

2.2.1 Design of electro-thermal actuator

In this section, we introduce the design of the electro-thermal actuator system. Figure 2.1 shows
the design of the bi-layer electro-thermal actuator used to drive the micro-origami. This electro-
thermal micro-actuator has a patterned gold heater layer and a SU-8 polymer layer. The actuator
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Figure 2.1: Design of the electro-thermal actuator for the active micro-origami.

system can produce large bending motion in two steps. First, Joule heating is generated by ap-
plying current through the gold heater to elevate the temperature of the actuator. Next, because
the polymer layer has a larger thermal expansion coefficient than the gold, this bi-material actu-
ator can bend towards the gold side. When operating at a low temperature, the folding motion
from this actuator array is elastic, so the motion is fully recovered upon removal of the applied
current. We choose gold and SU-8 for their relatively large difference in thermal expansion coeffi-
cient (TEC) [Chronis and Lee, 2005] , which allows the actuators to achieve large folding angles
(αAu = 14 ppm/K, αS U−8 = 52 ppm/K).

The gold layer integrates multiple functions in this micro-origami design, which include: (1)
Strengthening the surfaces of the thin film SU-8 to prevent the upwards bending triggered by the
residual stress (see Figure 2.2); (2) Heating up the actuators locally; (3) Acting as an electronic
circuit to control folding creases separately; (4) Serving as the passive layer for the large difference
in TEC. With this high level of integration, the fabrication process is greatly simplified and only
needs three masks. The proposed fabrication cannot create actuators that actively bend downwards
because putting gold film under the thin film SU-8 triggers unwanted residual stress profile (see
Figure 2.2). However, as will be demonstrated later, it is possible to bypass this problem by putting
actuators only at upward folding creases while leaving downward folding creases as elastic springs.
By arranging these actuators into arrays and connecting them with thick SU-8 panels (see Fig. 2.1),
a single-crease origami is made. Figure 2.1 also shows the detailed dimensions of the benchmark
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Figure 2.2: Residual stress and curvature of released systems.

single-crease origami tested in this article. Although this work only fabricates and tests designs in
the range of 1 mm for a panel, the origami system can be scaled up and down without changing
the principle of design.

Here, we introduce the bi-material beam model proposed by Timoshenko [Timoshenko, 1925]
that can be used to estimate the folding behavior of this bi-material actuator system. The curvature
of the bi-material beam under elevated temperature can be calculated as:

κ =
6(αg−αs)δT (1+m)2

h(3(1+m)2+ (1+mn)(m2+ 1
mn ))

, (2.1)

where the notations used are defined as the follows: αs and αg are the thermal expansion coefficient
of the SU-8 layer and the gold layer; m = ts/tg, where ts and tg are the thickness of SU-8 layer and
the gold layer; n = Es/Eg, gives the ratio of Young’s modulus of the two material; h is the total
thickness of the bimorph and h = ts+ tg; δT is the elevated temperature of the bimorph actuator.

To optimize the thickness of gold, we fix the thickness of the SU-8 layer to be 0.8 µm and vary
the thickness of gold to find a thickness that gives the largest curvature. The Young’s modulus of
gold is assumed to be Eg = 79 GPa and the thermal expansion coefficient is αg = 14 ppm/K. We
manually reduce the Young’s modulus of gold by half because gold only covers about half of the
actuator area. The material properties of SU-8 are assumed as the following: Young’s modulus of
Es = 2 GPa and thermal expansion coefficient of αs = 52 ppm/K. The elevated temperature used is
set as 80 K and the results are given in the Figure 2.3. The curvature is converted into the rotation
of a 400 µm beam for more intuitive understanding. The conversion between rotation and curvature
is: rotation = l · κ, where l = 400 µm is the beam length. As shown in Figure 2.3, a gold layer of
around 0.1 µm thickness can give the maximum rotation. For the final design, a 0.2 µm thick layer
of gold is selected for better robustness without significantly changing the folding behavior.
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Figure 2.3: Beam rotation of a 400 µm long actuator beam with varying gold thickness.

2.2.2 Customizable micro-fabrication for electro-thermal origami

This subsection introduces the fabrication method for building the proposed electro-thermal micro-
origami and demonstrate the versatility and simplicity of the process. Figure 2.4 shows the fabri-
cation flow chart of the proposed micro-origami. This process starts with spinning a thin film SU-8
2000.5 resin (0.8 µm) on top of a bare Si wafer. Because the SU-8 2000.5 resin is a very fine and
thin solution, it is difficult to maintain a nice and even film directly on top of the bare Si wafer.
Thus, mild oxidization is recommended to improve the film condition. We use 20 sec of O2 plasma
etch to promote the adhesion and this allows us to obtain an even SU-8 thin film. Next the SU-8
thin film is soft baked for one minute and patterned with standard mask aligner. The exposure time
can be calculated according to the datasheet provided by the manufacturer. Hard contact mode
or equivalent is recommended for better pattern transfer. Adding an extra dosage of exposure in
addition to the recommended time from the data sheet is also recommended to further improve the
adhesion. After the exposure, one minute of post exposure baking and 90 sec of developing is used
to remove the unexposed SU-8.

A thorough hard bake is necessary to ensure that the SU-8 is fully cross-linked. However,
overheating the thin film SU-8 can change its residual stress profile and results in unwanted residual
curvatures. Based on the results of this work, a long hard bake at relatively low temperature
produces a better result. For the structures fabricated and tested in this work, we performed an
overnight hard bake at 70 degree centigrade.

Next, a 0.2 µm gold layer is deposited on top of the thin film SU-8 using e-beam evaporation.
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Figure 2.4: Fabrication flow chart of the electro-thermal micro-origami system.

To promote the adhesion between the gold and the SU-8, a 0.01 µm layer of chrome adhesion layer
is added under the gold. The gold layer is masked by common photoresists, such as SPR 220, and
patterned with standard wet etch. It is necessary to perform a short O2 plasma etch immediately
before the wet etch to promote the quality of etching. After the wet etch, the masking photoresists
can be removed with IPA and Acetone. This will not damage the thin film SU-8 because SU-8 is
not dissolvable by IPA or Acetone.

After patterning the gold, a thicker SU-8 layer is deposited and patterned to fabricate the panel.
A 20 µm thick layer of SU-8 2010 is spin coated onto the wafer. The spread and spin speed is
determined according to the data sheet provided by the manufacturer. Similar to the thin film, this
thick SU-8 is patterned with standard photo-lithography equipment using a hard contact mode. To
ensure good adhesion between the thick SU-8 layer and the existing layers, slightly extending the
exposure time is recommended. This extra time helps to resist the peeling off during the developing
of SU-8. Moreover, it is recommended not to use IPA for rinsing to further avoid peeling off.
Finally, the structure is released with a xenon difluoride etch machine. A number of 40 µm wide
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Figure 2.5: Devices for testing the performance of a single-crease origami.

etch holes in a square grid at 120 µm spacing is added to the origami panel for releasing the system
from the silicon substrate.

One of the major concerns when fabricating small-scale structures is to control and mitigate
the influence of residual stresses. In the proposed method, the gold layer also serves to control the
residual stresses that can cause initial curvature as shown in Figure 2.2. The thin film SU-8 has a
tendency to bend upward after release due to the gradient residual stress across thickness. Thus, by
putting the patterned gold layer on top of the SU-8, it is possible to strengthen the SU-8 surface and
prevent this initial curvature from happening. On the other hand, putting the gold layer under the
thin SU-8 can trigger unwanted residual stress as shown in Figure 2.2 (b). This unwanted residual
stress makes it more challenging to create actuators that bends downward.

Next, Fig. 2.5 shows how to package these small-scale origami systems for testing. Relatively
large (3 mm × 3 mm) gold pads, which make it possible to directly solder thin electric wires for
connection, are added into the micro-origami designs. However, using large connection pads is
not the most efficient way of packing, despite being the simplest. In real practice, it is possible to
use much smaller pads (100 µm × 100 µm) and wire bonding machines to connect and power these
origami devices. With the wire bonding technique, it is possible to pack many more small-scale
origami onto a single wafer to reduce the fabrication price of a single origami device.

Before the micro-origami structures are released, the silicon wafer is diced into smaller pieces
and placed within metal boxes (Figure 2.5 (a)). A small mirror is used to provide a side view of
the single-crease origami samples (Figure 2.5 (a)). This mirror allows us to directly measure the
folding angle of the single-crease origami using the microscope camera pictures taken during the
tests. The electric wires are connected to a DC source meter (or an AC source meter) to apply and
measure the input voltage and current.

Figure 2.5 (b) and (c) show the devices we used to change the environmental temperature. A
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hot plate is used to generate temperature that is higher than the room temperature and an ice bath
is used to generate the temperature that is lower than the room temperature. Foam walls are used
to build an insulated compartment for testing. A circular lid is built from transparent acrylic sheet
to cover the compartment so that an enclosed and stable thermal environment is obtained.

2.3 Folding Performance of Eletro-Thermal Actuator

The folding performance of individual origami crease controls the global performance of the func-
tional origami structures, so it is important to test the capability of the proposed micro-actuator. In
this section, a single-crease origami system is tested in detail to highlight the four most attractive
capabilities of the proposed micro-actuator: (1) to achieve large folding (forming an acute interior
angle with greater than 90° folding from the initial orientation) displacements reversibly; (2) to
function in atmospheric environments with different temperatures; (3) to fold rapidly; (4) to have
the zero current rest angle reprogrammed. The first three capabilities highlight the good elastic
folding capability, while the last capability enables the plastic folding to reprogram the shape of
the micro-origami.

2.3.1 Static elastic folding

We first study the static elastic folding of these single crease micro-origami (see Fig. 2.6). Fig-
ure 2.6 (b) shows the relationship between the folding angle and applied current for single-crease
origami systems with different actuator lengths and Fig. 2.6 (c) shows the measured current-voltage
relationships. As shown in the measurements, longer actuators can achieve higher folding angles
at the same current level but also require higher voltage input. It takes about 3.0 V of voltage
and 20 mW of power to fold these single-crease origami to a right angle, which is reasonable for
the ability to achieve large and rapid folding. Because the panels in these structures are thick and
heavy (20 times thicker than the actuator), these single-crease origami structures tend to rest at
negative folding angles under the influence of gravity. A threshold current is required to overcome
gravity for lifting the panel off from the silicon wafer. However, this threshold current is difficult to
determine because the negative folding region cannot be visually observed. This threshold effects
will be studied with greater details in Chapter 5, when introducing a new simulation method for
the multi-physics electro-thermal actuation.

The single-crease origami system can fold elastically in common atmospheric temperatures
(see Fig. 2.6 (a)). Results for actuation at 1◦C to 49◦C show that, although the systems are affected
by the environmental temperature, it is possible to offset the influence by changing the current
and the voltage input (Fig. 2.6 (d)). This temperature range is selected because it represents com-
mon temperature range of outdoor atmospheric environments. The systems can function around

19



Figure 2.6: Elastic static folding performance of a single-crease origami system.

and below freezing temperature. However the zero current rest angle is negative under this low
temperature, which is restricted by the wafer below and cannot be observed (Fig. 2.6 (d)).

2.3.2 Dynamic elastic folding

This single-crease system can also achieve rapid elastic folding up to and slightly beyond reso-
nance. We demonstrate this behavior using sine wave sweeping tests (from 1 Hz to 200 Hz) with
three different input voltage setups (see Figure 2.7). The folding motion is mostly quasi-static
when the frequency is low. However, as the input frequency increases, the response becomes dy-
namic: the motion range decreases gradually until 20 to 40 Hz and then increases to a peak at
the resonance frequency. The single-crease origami can oscillate with a folding range of 65◦ at
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Figure 2.7: Elastic dynamic folding performance of a single-crease origami system.

resonance when applying a 77 Hz AC voltage input (peak to peak voltage is 1.35V to 1.65V). This
folding performance achieves an average speed of about 10000◦ sec−1. At a higher frequency of
150 Hz, the sample only oscillates locally with small motion because the actuators cannot heat and
cool fast enough at higher frequencies. The single-crease origami system shows a longer funda-
mental period when increasing the AC voltage amplitude or increasing the DC voltage offset. This
period elongation occurs because the actuator is working at higher temperature when the voltage
is higher, which in turn causes the material to become softer. The rapid folding capability of the
proposed system is far beyond what is offered by most existing micro-origami systems that require
more than several seconds to fold [Na et al., 2015, Silverberg et al., 2015, Liu et al., 2021]. The
high folding speed of the proposed micro-origami offers an unprecedented ability to achieve rapid
and responsive shape morphing systems at the micro-scale.

A one-degree-of-freedom analytical model can be used to estimate the resonance frequency of
the single-crease origami. The single-crease origami system is simplified as a rotational spring of
stiffness Kspr connected to a panel with the moment of inertial about the spring as Jp (see Fig. 2.8).
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Figure 2.8: A 1-DOF model to estimate the resonance frequency.

Geometries and material properties used to calculate the stiffness and the moment of inertia are:
tg = 0.2 µm, Eg = 79 GPa, ts = 0.8 µm, Es = 2 GPa, W = 200 µm, tp = 20 µm, L= 1 mm. To simplify
the calculation, it is possible to assume that the depth of the system is 1 (dimension perpendicular
to the page). The density of SU-8 is assumed to be ρs = 1200 kg/m3, which will be used to calculate
the moment of inertia of the panel.

First, the bending rigidity of the bimorph actuator is calculated. We assume that the neutral axis
(the term c) is in the gold layer and assume that the material response is linear elastic. Because
the heaters only cover about half the area of actuator, the Young’s modulus of gold is reduced by a
factor of two. The equilibrium of forces requires:

1
2
ϵgcEg =

1
2
ϵ
′

g(tg− c)Eg+
1
2

(ϵs+ ϵ
′

g)tsEs, (2.2)

ϵg = ϕc, (2.3)

ϵ
′

g = ϕ(tg− c), (2.4)

ϵs = ϕ(tg+ ts− c). (2.5)

Solving the above equations gives the location of the neutral axis c = 0.184 µm. Thus, the neutral
axis is indeed in the gold layer and the above calculation is valid. The bending rigidity can then be
calculated as:
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EIcomp =
1
3

Egc3+
1
3

Eg(tg− c)3+ (c+
1
2

ts)Es(tg− c)ts+
1
2

(c+
2
3

ts)Est2s

= 5.56×10−10 N ·m.
(2.6)

The bending rigidity of beam can then be converted to the stiffness of the rotational spring with
the pseudo-rigid-body model as:

Kspr =
EIcomp

W
. (2.7)

The moment of inertia of the panel is:

Jp =
1

12
ρs(tp+ ts)L3+ρs(tp+ ts)L(W +

1
2

L)2

= 1.43×10−11 kg ·m.
(2.8)

In addition, because half of the area of the actuator crease region is occupied by the releasing holes,
it is necessary to further reduce the spring stiffness by half to consider the reduction in stiffness.
Finally, the fundamental frequency of this 1-DOF system is calculated as follows:

ω =

√
Kspr

2Jp
= 311.8rad/sec, (2.9)

f =
ω

π
= 99Hz. (2.10)

Despite the simplicity of this 1-DOF model, this analytical prediction is close to the 80 Hz reso-
nance frequency recorded in the experiment. The fundamental frequency is overestimated because
(1) the 1-DOF model can overestimate the stiffness of the structure and (2) the damping effect is
neglected.

This analytical model can also be used to study the blocking moment of the single-crease
origami. The blocking moment is defined as the moment that prevents the bimorph actuators from
folding (no deformation) at a given elevated temperature. With the calculated EIcomp the blocking
moment for a given elevated temperature is:

Mblock(δT ) = EIcompκ(δT ). (2.11)

where the term κ(δT ) is calcualted using Eqn. (2.1). The relationship between the elevated tem-
perature and the blocking moment is shown in Figure 2.9, and the gravity induced moment acting
on the structure is also plotted for reference. As shown in the result, the actuator system needs to
first overcome the gravity induced negative folding before producing the positive upward folding.
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Figure 2.9: Relationship between the blocking moment and elevated temperature.

More advanced simulation methods are required to fully understand these complex behaviors, and
the simulation model proposed in Chapter 5 will address these concerns.

Finally, the dynamic loading is used to investigate the durability of these electro-thermal actua-
tors. In Fig. 2.10, a single-crease micro origami with 300 µm long actuators is set to be oscillating
at its resonance frequency of 55 Hz for 30 minutes. During the experiment, the minimum fold
angle and the maximum fold is recorded to check if any obvious degradation happens. Figure 2.10
shows the measured results, and we can see that these micro-actuators display limited degradation.
The minimum fold angle remains unchanged throughout the testing and the maximum fold angle
increases by only a few degrees (from ≈83◦ to ≈86◦). Overall, this slight increase in maximum
fold angle is minor compared to the total range of the actuator. During this 30 minutes long exper-
iment, this single-crease origami sample has experienced 99000 cycles of folding and unfolding,
highlighting the superior durability of the proposed design.

2.3.3 Quasi-static plastic folding

In addition to the superior elastic folding capabilities, this electro-thermal actuator can also fold
plastically. This plastic folding ability greatly enhances the versatility and functionality of the
micro-origami system and allows for controlled programming and reprogramming of the folded
shape. Figure 2.11 shows how to achieve this plastic folding by overheating the actuator to high
temperatures and applying forces simultaneously. Because the thin SU-8 layer will display visco-
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Figure 2.10: Degradation of the folding range is minor after 99000 cycles of folding and unfolding.

elasto-plastic deformation at high temperature, the stress free angle of the creases can be repro-
grammed permanently.

Figure 2.12 demonstrates a proof-of-concept experiment to reprogram the folding state of a
single-crease origami with 200 µm long actuator beams. At the beginning, the zero current rest
angle of this single-crease origami is zero degrees. The crease folds and unfolds reversibly, when
applying and removing the 2.4 V of input, and no obvious plastic deformation is observed for
multiple cycles of loading. However, when 3.0 V are applied across the circuit, the crease folds
beyond 90◦ and the SU-8 polymer starts to experience a visco-elasto-plastic material behavior. At
this state, the influence of gravity further deforms the crease (as an external load), and the zero
current rest angle is reprogrammed. After removing the applied current, this single-crease origami
develops ten degrees of plastic deformation, and its reversible motion from 0V to 2.4 V is also
offset by the same amount. Next, we can recover the original zero current rest angle by directly
pressing down on the panel and reapplying 3.0 V to overheat the crease again.

Figure 2.13 show the measured hysteretic folding curves of the single-crease micro-origami,
where two loading cycles are applied to systems with 200 µm and 400 µm long actuator beams.
First, a sequence of loading cycle A, cycle B, and cycle A is applied onto the single-crease origami
with 200 µm beams and the recorded motion is plotted in Fig. 2.13 (c). During the first cycle
A loading, no plastic folding is observed because the voltage is low, so the unloading curve falls
directly on top of the loading curve. However, plastic folding is observed during the cycle B
loading, where the applied voltage is high enough to cause the SU-8 material to deform visco-
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Figure 2.11: Plastic folding behavior of the micro-origami.

elasto-plastically. At the end of the loading cycle B, the zero current rest angle is changed to
10 degrees from the perfectly flat state. When a second loading cycle A is applied, the plastic
folding does not occur. The loading and unloading curves coincide but are offset by the new zero
current rest angle. Next a loading cycle B is applied onto a single-crease origami with 400 µm
actuator beams, and the loading curve shows that no plastic folding or hysteresis is developed
during the process. This is because longer actuators have higher resistance and thus generate lower
temperatures when the same voltage is applied. Because this plastic folding technique does not
require continuous power input after reprogramming the zero current rest angle, it provides an
energy efficient solution for creating 3D origami systems that do not need to recover their original
flat configurations. When this reprogramming method is used to permanently change the shape of
these micro-origami, passive folds that act like elastic springs can be integrated into the system to
generate this external force.

2.4 Achieving Complex Functions with Micro-Origami

Now that we have demonstrated the superior folding capabilities of the proposed micro-actuator,
the next goal is to show how micro-origami structures, equipped with these powerful micro-
actuators, can accomplish complex motions and functions. In the following part of this section,
five micro-origami systems will be demonstrated to highlight the versatility, preciseness, control-
lability, and functionality of the proposed micro-origami systems.
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Figure 2.12: Proof-of-concept experiment of the plastic folding behavior of the micro-origami.

2.4.1 Controllable multi-degree-of-freedom shape morphing

First, we demonstrate that the proposed micro-origami systems can accomplish complex functions
using separately controllable folding creases with two origami gripper examples. Because of the
inherent 2D nature of photolithography based micro-fabrication, it is difficult to create gripper type
mechanisms with a large motion range [Chronis and Lee, 2005, Choi et al., 2017]. However, with
the principles of origami, it is possible to fold 3D systems that can achieve large gripping motion.
In this section, we demonstrate two designs of origami grippers that have different characteristics.
Figure 2.14 shows one design of the origami gripper that can achieve a large gripping range and
can survive a wet environment where it is sprinkled with water. This micro-origami has two side
panels for 3D assembly and two gripper panels acting as gripping arms. First, a voltage is applied
across the assembly circuit (1) to fold the gripper into its functional state; next, we apply a voltage
across the function circuit (2) to grip; finally, the origami gripper can return to its original flat
position after usage by releasing the applied voltage. The same gripper is next subjected to a wet
environment where the origami is sprinkled with water (Fig. 2.14 (c) right). The cooling effects
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Figure 2.13: The hysteretic folding behavior of a single-crease origami with 200 µm beams under
different loading cycles.

of water evaporation dramatically changes the local thermal environment and leads to unwanted
folding at points where water is sprayed. However, as the water dries, the origami recovers its
capability to fold and grip.

The second gripper design can lock into a functional 3D state, where it can remain without
additional input of current (see Fig. 2.15). This origami design has two pins and two corresponding
holes that can lock the system into a 3D shape. The 3D assembly requires controlling two separate
heater circuits, and a third circuit is later used to actuate the gripper. Because these actuator
systems do not rely on using environmental stimulus, this micro origami can achieve individual
crease control needed for the complex assembly, where the two 20 µm thick pins are aligned
precisely with the two 60 µw wide holes. After the locking, the system can remain assembled
even when the current in the circuits is removed. This gripper can be more energy efficient for
extended usage, because it requires no continuous heating for maintaining the functioning state
after the locking assembly. Moreover, the locking device makes the origami gripper mechanically
more robust, because the gripping functionality now only depends on two actuated creases rather
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Figure 2.14: A micro-origami gripper with a large gripping range.

than the four creases used in the first design.

2.4.2 Combining elastic and plastic folding for complex functions

Next, we introduce two techniques to create complex origami systems: one by combining active
folds and passive folds, and the other by combining the elastic folding and the plastic folding. To-
gether, the two techniques open up new potentials to create complex origami systems for functional
shape-morphing and reprogrammable 3D systems at smaller scales.

We first show how to fold origami systems with both mountain and valley folds using a com-
bination of active and passive folds. To that end, we had to overcome an inherent limitation of
the fabrication approach, which allows only upward bending of creases due to residual stress (see
Figure 2.2). Instead of actively folding all creases simultaneously, we use the active folds to gen-
erate the upward folding, and let those creases that fold downward remain passive and behave like
elastic rotational springs. If the pattern is designed to have one degree-of-freedom kinematics, ac-
curate folding can potentially be achieved by only actuating the upward folding creases. The first
example is a single Miura-ori unit made up of three active folding creases that bend upwards and
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Figure 2.15: A micro-origami gripper that can first assemble into the 3D configuration using lock-
ing devices then achieve gripping motion.

one passive crease that deforms like an elastic rotational spring (Figure 2.16 (a-c)). The second
example is a Miura-ori system with three units that all fold together when actuated (Figure 2.16
(d-f)). Micro-origami structures like these provide a basic building block for micro-actuators or
metamaterials [Fang et al., 2016, Kamrava et al., 2018]. The Miura-ori pattern is known to have
one degree-of-freedom kinematics, which is needed for the proposed design approach. Generic
origami patterns can also be designed to have the 1-DOF kinematics using origami simulation
methods [Tachi, 2010d, Tachi, 2009c]. For more complicated patterns, kinematic analysis alone
may not be sufficient to determine if the system can be folded accurately and the placement of
actuators will play a significant role [Stern et al., 2017]. For these more complicated systems, bar
and hinge models [Liu and Paulino, 2017a, Zhu and Filipov, 2020, Zhu and Filipov, 2019a], which
can consider the mechanical properties of an origami, can be used to study if the system can fold
accurately. These micro-origami can alter between the unfolded and the folded 3D shape swiftly,
which is superior to many existing systems and allows them to be used for various applications in
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Figure 2.16: Combining elastic active folds and passive folds for origami with both mountain and
valley folds. (a-c) A single-unit Miura micro-origami; (d-e) A multi-unit Miura beam.

robotics and metamaterials, where fast folding is needed.
Next, we show that by combining the elastic folding and the plastic folding, we can create

programmable 3D micro-origami systems to achieve functions that were not realizable previously.
For example, although origami cranes have been folded at smaller scales [Na et al., 2015], those
systems cannot achieve active functions such as flapping the wings after the initial 3D assembly.
In this section an origami crane pattern that can fold and subsequently flap its wings is shown
(Figure 2.17 (a)). The plastic folding is used to reprogram the origami shape into a static 3D crane
geometry and the elastic folding is subsequently used to flap the wings of this crane. We first
apply a current across the folding circuit, to overheat the creases and to develop plastic folding
using the forces generated by gravity and the passive folds that tend to revert the pattern back
to a flat state (Figure 2.17 (b)). When we release the applied current, the plastic folding occurs
in the reverse direction, and the crane pattern reaches a static folded configuration. After the
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Figure 2.17: Creating complex origami crane that can first assemble then flaps its wings using a
combination of elastic folds and plastic folds.

crane is successfully folded, we can apply current through the wing circuit to elastically flap the
wings as shown on Figure 2.17 (c). With the multiple active degrees-of-freedom provided with the
proposed system, the micro-origami can first fold permanently to a desired 3D geometry with one
set of plastic folds and then achieve functions with another set of elastic folds. The combination
of elastic, plastic, and passive folds allows us to create high performance shape morphing origami
systems at smaller scales that were not achievable previously. In practice, designers can use longer
actuators to achieve elastic folding at lower functioning temperature or use shorter actuators to
achieve higher crease temperature for plastic folding.
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2.5 Concluding Remarks

In this chapter, a new fabrication and actuation methodology for electro-thermal micro-origami
systems is introduced and tested in detail. The fabrication of the system is simple and only re-
quires a three masks process, because we integrate multiple functions into a single gold layer.
Unlike most existing origami systems, the proposed electro-thermal micro-origami can fold with-
out relying on an environmental stimulus, which allows these micro-origami to achieve rapid and
large elastic folding in common atmospheric environments with temperatures ranging from 1◦C to
49◦C. The proposed origami systems can have the folded state of creases (zero current rest angle
of creases) to be reprogrammed by overheating, which provides a method to generate permanently
and plastically folded 3D geometries. Experiments show that, in addition to having relatively good
folding performance, the folding creases of the proposed micro-origami have reasonable power
consumption and require low voltage input. Moreover, because these micro-origami systems do
not need environmental stimulus for actuation, they can have multiple active degrees-of-freedom
and thus can achieve shape morphing with complex motion paths and a higher level of functional
versatility. For example, we present a micro-origami gripper that can align locking pins to locking
holes to assemble a mechanically robust interlocked structure and can subsequently perform large
displacement gripping motion after locking. Finally, we introduce two methods to create complex
origami systems from unidirectional electro-thermal actuators. The first method combines active
and passive folds to create origami patterns with both valley (upward) and mountain (downward)
folding directions. Two Miura-ori patterns demonstrate the rapid shape morphing between folded
and flat states achieved with the proposed system. The second method uses plastic folding to re-
program the 3D shape of the micro-origami then uses elastic folding to achieve functional motions.
An origami crane pattern is presented to demonstrate this method. The crane can first permanently
changes its 3D geometry using the plastically folded creases and then flaps its wings with another
set of creases that folds elastically.

We believe future research can enhance the capabilities of the proposed systems and over-
come limitations presented in the current work. New active polymers can be used to improve the
efficiency, folding capability, and control of the residual stress to achieve simultaneous upward
and downward actuation. Batteries and on-board sensors can also be integrated into these micro-
origami systems to create fully autonomous functional micro-robots. The integrated fabrication
and actuation methodologies demonstrated in this chapter provide a customizable framework for
future work in micro-scale functional origami systems.
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Chapter 3. Compliant Crease Bar and Hinge Model

This chapter introduces a compliant crease bar and hinge model to resolve the Challenge 2 pro-
posed in Chapter 1 Introduction. More specifically, existing standard bar and hinge models are
modified to capture the compliant creases explicitly. This modification allows the new bar and
hinge model to better capture the geometry and mechanics of functional origami systems.

This chapter is arranged as the following. First, we will give a brief introduction of the standard
bar and hinge models to motivate and illustrate the development of the compliant crease bar and
hinge model. After that, Section 3.2 derives the stiffness parameters of the compliant crease bar
and hinge model by matching the model stiffness to that obtained from fundamental plate theories
and pseudo-rigid-body models. Next, in Section 3.3, a thorough verification study is performed
by comparing the proposed model against FE simulations for both small strain stiffness and large
strain stiffness. Finally, Section 3.4 presents simulation examples to show the efficiency and capa-
bility of the proposed model. Moreover, the presented examples show that this new bar and hinge
model model can capture the bistability in compliant crease origami accurately. The nomenclatures
used in this Chapter are summarized in Table 3.1.

3.1 Bar and Hinge Models

In a bar and hinge model, the bars are extensional elements that can capture in-plane stretching
and shearing, and the rotational springs (hinges) are rotational hinge like elements with stiffness
that can capture out-of-plane bending and torsion. Detailed formulation of the bar elements and the
rotational spring elements can be found in [Liu and Paulino, 2017a,Filipov et al., 2017]. Figure 3.1
(a) gives an illustration of a standard bar and hinge model. In this standard model, a folding crease
within an origami is represented as a single rotational spring. This formulation is widely used
to study the mechanical behaviors of origami systems [Filipov and Redoutey, 2018, Dong and
Yu, 2021] and works well for paper-based origami systems [Liu and Paulino, 2017a, Liu et al.,
2020, Masana and Daqaq, 2019], which indeed have narrow fold lines. However, this standard
model is not suitable for functional origami structures that have compliant creases for thickness
accommodation [Butler et al., 2020] and actuation [Na et al., 2015, Zhu et al., 2020, Breger et al.,
2015].

To better simulate the geometry and mechanics of compliant creases, a new compliant crease
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Table 3.1: Nomenclature used in Chapter 3

Symbols Definition
L,W Length and width of creases
tcrease, tpanel Thickness of creases and panels
A0,A1,A2,A3 Areas of bars for crease region
νcrease, νpanel Poisson’s ratio for creases and panels
Ecrease,Epanel Young’s modulus for creases and panels
ka,pl,ka,BH Axial stiffness of crease from plate theory and bar and hinge model
ks,pl,ks,BH Shear stiffness of crease from plate theory and bar and hinge model
Kspr1,Kspr2 Rotational spring stiffness for crease region
f Torsional stiffness scaling factor
Apanel,Kpanel Area and rotational spring stiffness for panels
α Crease Aspect Ratio
β Thickness Ratio

bar and hinge model is developed here as shown in Fig. 3.1 (b). This new model is developed based
on the observed behaviors of an origami assemblage with compliant creases. When a compliant
crease is folded by applying pure moment on it, the curvature of the crease is evenly distributed
across the width (Fig. 3.1 (c)). The proposed model captures this more even distribution of curva-
ture and the three-dimensional geometry using three lines of rotational springs instead of just one.
Two rotational springs connect the panels to the crease area, and two half-length rotational springs
are located along the center of the crease region. When relative torsion occurs between two panels,
the connecting crease deforms diagonally as indicated in the Fig. 3.1 (d). This behavior is captured
with the four additional rotational springs placed diagonally within the crease region. Notably, this
meshing technique also captures the extensional stiffness of creases, which can play a significant
role in analyzing bistable and multistable behaviors of origami [Faber et al., 2018].

3.2 Derivation of Model Stiffness Parameters

The compliant crease bar and hinge model can be defined based on the following geometric pa-
rameters: the crease width W, crease length L, crease thickness tcrease, and panel thickness tpanel

(Fig. 3.2 (a)). Two indexes, Crease Aspect Ratio and Thickness Ratio, are defined to quantify the
geometrical characteristics of compliant creases. The Crease Aspect Ratio is defined as: α =W/L,
where W and L are crease width and crease length respectively (see Fig. 3.2 (a)). The Thick-

ness Ratio is defined as: β = tpanel/tcrease, where tpanel and tcrease are the thickness of panels and
creases respectively. These two indexes describe geometric properties of compliant crease origami
that affect the local and global stiffness of the system. Common origami designs with compli-
ant creases typically have a Crease Aspect Ratio α ≈ 0.1 and a Thickness Ratio β ≈ 3.0 [Yoon
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Figure 3.1: (a) Conventional bar and hinge models; (b) Compliant crease bar and hinge models;
(c-e) Rotational springs added to capture richer mechanical deformation.

et al., 2014, Bassik et al., 2009]. Deriving the bar and hinge model requires solving the bar area
(A0,A1,A2,A3) and the rotational spring stiffness (Kspr1 and Kspr2). We will start with the bar areas
first.

3.2.1 Derivation of bar areas

Bar areas of the model are determined by matching the stiffness of the bar and hinge model to
that from a theoretical plate model of the same bulk material. The bars within a crease region
are divided into four different groups as shown in the Fig. 3.2 (b). The area of A0 bars is later
determined in the panel modeling section and is temporarily assumed to be infinite in this section.
This assumption generally works well because panels are usually much thicker and stiffer than
creases.

The area of A1 bars is calculated such that they produce the same stiffness as a plane-stress plate
under a uniform tensile loading (Fig. 3.2(c)). The stiffness of the plate is calculated by applying a
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Figure 3.2: Derivation of bar areas for the compliant crease bar and hinge model

unit normal strain field ϵ⃗ = [1 0 0]T and the total extensional stiffness of the plate model is obtained
as:

ka,pl =

Ecrease
1−ν2

crease
tcreaseL

W
, (3.1)

where the Ecrease and νcrease are the Young’s modulus and Poisson’s ratio of the crease region
respectively. The axial stiffness of the compliant crease in the bar and hinge model is calculated
with one additional assumption: the contribution of diagonal bars (A2 bars) is neglected because
of their large inclination. This assumption tends to be valid because the crease length L is typically
much larger than its width W. With this additional assumption, only four A1 bars are contributing
to the axial stiffness and thus the stiffness of the bar and hinge model is calculated as:

ka,BH =
2EA1

W
. (3.2)

By setting ka,BH = ka,pl, we solve the assigned area for A1 bars as:

A1 =
Ltcrease

2(1− ν2
crease)

. (3.3)

Similarly, the area of diagonal bars (A2 bars) is set such that they produce the same shear
stiffness as a plate with the same bulk material. A unit shear strain field ϵ⃗ = [0 0 1]T is applied and
the shear stiffness of the plate is calculated as:
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Figure 3.3: Derivation of rotational spring stiffness for compliant crease bar and hinge model.

ks,pl =
EcreasetcreaseL
2W(1+ νcrease)

. (3.4)

Because A0 bars are assumed to have infinite area, only the diagonal bars are contributing to the
shear deformation in the bar and hinge model. Therefore, the shear stiffness of the bar and hinge
model can be calculated as:

ks,BH =
2EcreaseA2

(W2+L2)1.5 L2. (3.5)

By setting ks,BH = ks,pl, we can solve the assigned areas for A2 bars. It is further assumed that
A3 bars have the same area as the A2 bars. Overall, the A3 bars do not contribute significantly
either to tensile or shear behaviors, because they are orthogonal to the edge of the crease region.
Although this asumption is somewhat crude, it greatly simplifies the formulation and gives results
that match FE simulations relatively well as will be demonstrated in following sections. The areas
of A2 and A3 bars are thus calculated as:

A3 = A2 =
(L2+W2)1.5

4(1+ νcrease)
tcrease

LW
. (3.6)
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3.2.2 Derivation of rotational spring stiffness

In this section, upper case Kspr denotes the length-normalized spring stiffness, and the lower case
kspr is the total stiffness of the rotational spring, which is calculated as:

kspr = KsprLspr, (3.7)

where Lspr is the length of the rotational spring. A compliant crease within an origami structure
can be treated as a compliant mechanism and modeled as a single rotational spring using the
pseudo-rigid-body model described in [Howell, 2001] (Fig. 3.3 (a)). The rotational stiffness of the
corresponding pseudo-rigid-body crease model is given as:

kcrease =
EcreaseI

W
=

EcreaseLt3crease

12W
. (3.8)

In the proposed model, this single rotational spring is further divided into three lines of springs
(The four Kspr1 in Fig. 3.3 (a) and (b)) to better match the distributed curvature observed in real
compliant creases. Because one spring is split into three lines of springs, the rotational stiffness of
each spring should be increased by a factor of three such that it produces the same global stiffness
as the one-spring pseudo-rigid-body model. Thus the normalized rotational spring stiffness for
these four Kspr1 springs is given as:

Kspr1 =
3EcreaseI

WL
=

Ecreaset3crease

4W
. (3.9)

All above mentioned model parameters are derived analytically. However, it is difficult to
solve the stiffness of the four diagonal rotational springs Kspr2 using the previous strategies and
thus their stiffness is obtained by matching the results from FE simulations of compliant creases
for a specific scenario. A factor f is used to scale the stiffness of Kspr2 with respect to Kspr1 as
shown in Eqn. 3.10. By matching the infinitesimal torsional stiffness of the bar and hinge model
with the FE simulation for the α = 0.1 and β = 3.0 case, f = 4 is obtained and Kspr2 is calculated
as:

Kspr2 = f Kspr1 =
4×3EcreaseI

WL
=

Ecreaset3crease

W
. (3.10)

It makes sense that this factor f should be greater than one, because the corresponding diagonal
deformations have more concentrated curvatures as shown on Fig. 3.1 (c), and thus the diagonal
springs should be stiffer. Details on the performance of this assigned f = 4 when other values of α
and β are encountered will be demonstrated in the following verification section.

To sum up, the model parameters representing the crease stretching, shearing, and bending
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behaviors are derived analytically using the pseudo-rigid-body model and theoretical plate model.
However, because of the simplicity of a bar and hinge representation, we were not able to derive
the model parameters related with torsional behaviors of a crease analytically. Thus an additional
parameter f is used to match the torsional behavior of the proposed model to FE simulation result
of a specific geometric set up with α = 0.1 and β = 3.0. These values are selected because they are
representative of common origami structures [Yoon et al., 2014, Bassik et al., 2009]. This addi-
tional f factor only affects the stiffness of the rotational spring Kspr2 and thus does not influence
the model behavior for crease stretching (controlled mainly by A1), crease shearing (controlled
mainly by A2), and crease bending (controlled mainly by Kspr1). Generally speaking, we find the
suggested value f = 4 gives relatively good results over a large range of α and β values as will be
demonstrated in the following verification section.

3.2.3 Modeling of panels

The area of the bars within panels is calculated using the generalized N5B8 model derived in [Liu
and Paulino, 2018a] as shown in Eqn. (3.11). The equation is formulated with the panel area S and
total length of the bars Li within the panel, and is derived such that the strain energy is preserved
when the panel undergoes uniform in-plane dilation.

Apanel =
2S tpanel

(1− ν)
∑

i=1 Li
(3.11)

The rotational spring stiffness within the panel is derived based on the knowledge that bending
stiffness scales with the cubic of thickness and the material stiffness [Timoshenko and Krieger,
1959]. The cubic of the ratio between panel thickness and crease thickness and the ratio of Young’s
modulus are used to scale the normalized crease stiffness to obtain the stiffness for panel springs
as:

Kpanel =
Epanelt3panel

Ecreaset3crease
Kcrease. (3.12)

More robust models for bar and hinge formulations of origami panels as those in [Filipov et al.,
2017] could be used, but they are derived based on fully restrained panel edges. For the purpose
of this article, these two simple equations work relatively well because the deformation of panels
is usually not the controlling factor that governs the global behavior of compliant crease origami
as will be shown in the example section.
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Figure 3.4: Infinitesimal tensile stiffness verification. (a-b) Tensile loading of compliant crease
bar and hinge model and the FE model; (c-e) Comparison between the compliant crease bar and
hinge model and the FE model for different α and β values.

3.3 Model Verification

In this section, the proposed compliant crease bar and hinge model is compared against FE simu-
lations to verify its performance. This verification is divided into two parts: infinitesimal stiffness
and large deformation stiffness. In the following verification sections, the elastic moduli of creases
and panels are set to be Ecrease = Epanel = 2GPa, while the Poisson’s ratios of both creases and pan-
els are set as νcrease = νpanel = 0.3, which are realistic values of soft crease origami assemblages.

3.3.1 Infinitesimal stiffness verification

Four types of loading are checked in the infinitesimal stiffness verification. They are tensile, shear,
bending, and torsional loading. Stiffness predictions from the compliant crease bar and hinge
model are compared against FE simulations when varying α values or β values (defined at the start
of model derivation section). The value of α is changed by varying W while fixing L = 2.0cm, and
the value of β is changed by varying tpanel while fixing tcrease = 0.1mm. These values were selected
because they represent realistic small-scale origami structures.

The tensile verification for the bar and hinge model with respect to the FE simulation is shown
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Figure 3.5: Infinitesimal shear stiffness verifications. (a-b) Shear loading of the compliant crease
bar and hinge model and the FE model; (c-e) Comparison between the compliant crease bar and
hinge model and the FE model for different α and β values.

in Fig. 3.4. Infinitesimal stiffness of both models is normalized by EcreaseLtcrease/W to give a
dimensionless result. The proposed bar and hinge model is about 10− 25% softer than the FE
simulation for all explored geometric variations of the structure. This difference is attributed to
the error in the panel region rather than the crease region as demonstrated in the Fig. 3.4 (c). The
generalized N5B8 panel model as defined in Eqn. (3.11) does not capture the Poisson’s effect
correctly and underestimates the stiffness because it only matches the strain energy under uniform
dilation. The total amount of deformation δ in the compliant crease region appears appropriate,
however the deformed shape does not match the FE simulation exactly.

The results of shear verification are summarized in Fig. 3.5. Similar to the tension case, the
stiffness plotted is normalized by EcreaseLtcrease/W to give dimensionless results. Figure 3.5 (c)
and (d) show that the mismatch between the bar and hinge model and FE simulation is around
10−15%, with the bar and hinge model predicting stiffer responses. This difference is most likely
due to the error in the model formulation of panels rather than of creases (see Fig. 3.5 (e)) due to
the same reason discussed in the tensile verification.

Figure 3.6 (a) and (b) illustrate the loading set up for infinitesimal bending verification and the
results are plotted in Fig. 3.6 (c) and (d). The stiffness predictions from the two models match well
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Figure 3.6: Infinitesimal bending stiffness verification.

Figure 3.7: Infinitesimal torsional stiffness verification.

for different α values when β ≈ 3.0 as illustrated in Fig. 3.6 (c). When β becomes large (β > 5),
the stiffness mismatch between the two models reaches an asymptotic value of about 25%. This
mismatch is due to the additional diagonal rotational springs Kspr2 that are introduced to capture
torsional deformations of the crease. These diagonal springs soften the bending stiffness of the
crease by introducing additional degrees of freedom. The softening is much less aparent at larger
strains, as will be demonstrated in the following section. When β is small, the mismatch is larger
because bending of panels is significant in the global deformation and it is not captured by the bar
and hinge model.

The verification of torsional stiffness is summarized in Fig. 3.7. The results only match well
when α ≈ 0.1 and differ significantly otherwise. When α is small, the contribution of torsional
deformation from the panel is large, while when α is large the pseudo-rigid-body model proposed
in Eqn. (3.8) does not hold. The bar and hinge model is not well suited for capturing these torsional
deformations over a wide range of α values, and thus, we tune the factor f in Eqn. (3.10) such that
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realistic results are obtained for a typical compliant crease region with α ≈ 0.1. The torsion results
match well for different values of β when α = 0.1 as shown in Fig. 3.7 (d).

Overall, the proposed bar and hinge model can predict infinitesimal stiffness of origami as-
semblages relatively well. The proposed model matches FE simulation well when α ≈ 0.1 and
β ≈ 3.0, which are typical values found in real origami inspired engineering structures. Exceeding
these ranges tends to create errors in the simulations, but these errors are often still within accept-
able ranges. Considering that the proposed compliant crease bar and hinge model only has about
one tenth of the degrees of freedom when compared with a coarsely meshed FE simulation, this
accuracy is acceptable.

3.3.2 Large deformation stiffness verification

For the verification of large deformation stiffness, only pure bending and combined bending and
torsion are studied because shear and tensile deformations are substantially smaller. Two methods
are used to compare compliant crease bar and hinge model with the FE simulation: (1) Relative

error is used to measure the influence of β on the difference in response between the two models
because force displacement curves generally overlaps for different values of β; (2) Force displace-
ment curves are used to demonstrate the influence of the α value, because relative error did not
show clear correlation as α changes. The relative error is defined as:

Error =
1
N

N∑
i=1

√
(δFEA

i −δBH
i )2

δFEA
i

, (3.13)

where N is the total number of load increments, and δ∗i is the predicted deformation of the ith load
increment from the different models. The loading was set-up such that the two models have the
same force increment sequence. In the following verifications, α is varied by fixing L = 2.0cm

while changing W, and β is varied by fixing tcrease = 0.1mm while changing tpanel.
Figure 3.8 (a) illustrates the loading set up for the verification of large deformation bending.

Figure 3.8 (b) shows that the bar and hinge model matches the FE model well when β is around
2 to 3. The error reaches an asymptotic value of 20% as β becomes large. This mismatch is also
due to the additional diagonal springs Kspr2, which add additional flexibility as described in the
infinitesimal bending section. When β < 1.2, the results from the bar and hinge model become
highly offset from the FE model. This offset is because the proposed bar and hinge model is not
able to capture the bending behavior of the relatively thin panels. The large error when β < 1.2
is not of a concern because realistic origami inspired structures with compliant creases usually
have a larger β. Our verification indicates that the relative error is less affected by the α index and
is around 5% to 10% for all α tested. Thus, the force displacement curves are plotted to better
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Figure 3.8: Comparison between the bar and hinge model and FE simulation for large deformation
bending.

illustrate the influence of the α value. Figure 3.8 (c) shows that the compliant crease bar and hinge
model matches the FE simulation relatively well for all α values tested when β = 3.0.

Figure 3.9 shows the results for the verification of combined torsional and bending loading
case. The trends found in the combined torsion and bending case are similar to those found in the
pure bending case with large strain. When β > 2.0, the relative error between the FE simulation and
the proposed bar and hinge model varies between 5% to 10%. Larger errors are observed as the
panels become very thin (β < 1.2). Similarly, the force displacement curves are plotted for various
α values and the relative errors for these curves are between 5% to 10%.

3.4 Simulation Examples

3.4.1 Self-Folding of a plate pattern

To demonstrate the capability and efficiency of the proposed model, we simulate the folding of a
plate pattern with four vertexes by applying external loads on the origami structure as demonstrated
in [Hernandez et al., 2016b]. The equilibrium is traced with a modified general displacement
controlled method used in [Liu and Paulino, 2017a]. Because the detailed dimensions of structure
were not provided in the reference, the dimensions used in the bar and hinge model are assumed
such that they provide a similar shape. The thickness of panels is assumed to be five times the
thickness of creases, so that the structure behaves like a rigid panel origami. Although the bar and
hinge model cannot recreate the exact smooth curvature at the folds, it provides the same global
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Figure 3.9: Comparison between the bar and hinge model and FE simulation for large deformation
loading with combined bending and torsion.

shape for the origami (Fig. 3.10 (c)).
Simulation results and the computation time of the smooth fold model and FE simulation are

obtained directly from [Hernandez et al., 2016b]. The 20 second run-time for the bar and hinge
model was recorded on a modern (2018) desktop computer with an i7-7700 processor. The pro-
posed model was able to fold the structure with only about 5% of computation time needed for the
smooth fold model. If only the global response and the geometry of the structure are of interest,
using the proposed model can save a large amount of computational effort. However, the proposed
model does not have a high resolution of the local response, so the smooth fold model or the FE
simulation would be more suitable if the local response is of interest.

3.4.2 Self-folding of a flower pattern

Generally speaking, the folding speed of each crease within a rigid origami is different due to
the geometrical constraints imposed by the pattern. However, real self-folding functional origami
usually actuate all creases simultaneously at similar rates and thus require special design of the
pattern [Na et al., 2015]. Here, we demonstrate how the proposed model can be used to approach
this problem.

In this example, a flower-like pattern with 48 creases is used (see Fig. 3.11). This flower pattern
has a diameter that is about 10cm and its creases can be self-folded to different angles and with
different mountain or valley assignments. The panels have a Young’s modulus that is assumed to be

46



Figure 3.10: Comparing the compliant crease bar and hinge model, the smooth fold model, and
the FE model. Figure (a) and (b) are reprinted from [Hernandez et al., 2016b]. Copyright (2016),
with permission from Elsevier.

2000MPa and the creases have a modulus that is 20MPa. The thickness of creases are 0.3mm and
the thickness of panels are 1mm. These dimensions are selected such that they represent realistic
functional origami structures. The self-folding is accomplished by changing the stress-free angle
of each crease incrementally and tracing the equilibrium with a Newton-Raphson iteration method.

Both Fig. 3.11 (a) and (b) attempt to fold the same structure into an umbrella-like configuration
by assigning an alternating mountain-valley crease arrangement around the center vertex. These
mountain-valley assignments give us a water bomb base. In the folding sequence presented in
Fig.3.11 (b), the stress free angle of all mountain folds is gradually changed to 0.5π and the stress
free angle of all valley folds is gradually changed to π. This self-folding path meets the rigid
folding requirements relatively well, and thus the real folding angle follows the assigned stress
free angle closely. This folding path allows the structure to be successfully folded to the desired
umbrella configuration with minimum strain energy developed as demonstrated in Fig. 3.11 (d).
However, if all creases are folded at the same rate, this pattern does not fold to the umbrella shape
correctly (see Fig. 3.11 (b)). In this folding path, the stress free angles for both mountain folds
and valley folds are gradually changed to 0.7π and thus have the same speed of folding. Because
the folding path does not match well with the rigid folding constraints imposed by the pattern,
the structure becomes trapped at an undesired configuration and the real folding angles diverge
from the assigned stress free angles extensively. This divergence generates a large amount of
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Figure 3.11: Self-folding of a flower like pattern with different strain energy profile. The reference
crease is displayed in the black circle.
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strain energy that is stored within the structure (Fig. 3.11 (d)). In real practice, one can solve
this problem by (i) adjusting the folding rate of each crease, or (ii) by assigning different folding
sequence of each crease.

Figure 3.11 (c) shows another possible folding path of the structure where each crease is folded
such that the final geometry looks like a bowl. In this case, all active compliant creases are folded
simultaneously and their folding rates are the same. Because all creases are folded with the same
rate, the folding path does not follow rigid folding requirements exactly. However, because the
assigned folding path does not diverge from the rigid folding path significantly, the structure folds
to its final configuration successfully despite building up strain energy in the system.

Although the pattern studied here has 48 creases and is a relatively complex problem, all sim-
ulations of the self-folding are finished within one minute. This example further demonstrates the
efficiency of the proposed model and shows that the model is suitable to study the self-folding
process of compliant origami systems. The model allows researchers to investigate the possible
design space rapidly and to learn about the global behaviors of the system before building more
detailed FE models.

3.4.3 A bistable four-fold vertex

Next, in Fig. 3.12 we study the bistable behavior of a four-fold vertex presented in [Faber et al.,
2018]. This four-fold origami vertex is a cone-like structure that experiences bistable snap-through
behavior when loaded. Figure 3.12 (a) shows the loading set up of the structure, where four nodes
in the center are fixed in space while the loads are applied at the center of each panel. From the top
view, these panels appear as 5×5cm2 squares, and all compliant creases have the same 6mm width.
The cone shape is generated by moving the shared center nodes upward and the four outer free
corners downward, which skews the square panel to form the missing angle as shown in Fig. 3.12
(a). Thus the actual panels are not square but are rhombus if flattened onto a plane. The thickness
of the creases is 1mm and the thickness of the panels is 2.2mm. These geometries are selected
such that they represents the structure presented in [Faber et al., 2018]. The Young’s modulus of
the crease material is set as 25MPa and the panel material is set as 2852MPa. We directly use
these values from [Faber et al., 2018] without altering them to recreate the test response recoreded
from [Faber et al., 2018] with our model. In principle, changing the material properties could
eventually change the bistable behavior of these systems as well.

Figure 3.12 (b) shows the force displacement curves recorded during the loading process and
Fig. 3.12 (c) records the energy landscape. The force-displacement results obtained from the anal-
yses are in good agreement with the experimental findings presented in [Faber et al., 2018], when
comparing the initial peak force in the bistable snap-through. Furthermore, the plots show that
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Figure 3.12: Loading of a bistable four-fold vertex. Energy curves plotted for a case with missing
angle of 7.5◦.

the crease stretching energy dominates the energy barrier that forms the bistable snap-through
behavior, again matching the observations presented in [Faber et al., 2018] well. Because conven-
tional origami modeling techniques simplify the compliant creases as rotational hinges that have
no width, they cannot capture the creases extensional deformations and thus cannot capture this
type of bistable behavior. This example demonstrates that the proposed model provides a relatively
fast and accurate simulation method to study bistable behaviors of origami where the bistability
occurs due to the presence of compliant creases.

3.4.4 Bistable Miura-ori beams

In this section, the bistable behavior of a Miura-ori beam with three units will be studied. The
Miura-ori pattern is developable, and can become bistable, for example if (1) there is differential
stiffnesses and rest angles in the fold lines [Waitukaitis et al., 2015], or (2) if applied constraints
and loads cause reorientation of the geometry. Here, we explore the second case where a simple
Miura-ori sheet is loaded to invert one of its vertices. To demonstrate this bistable behavior, we use
a physical model with flexible polymer sheet creases and cardboard paper to serve as the panels
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Figure 3.13: Bistable Miura beams. The physical models are made with polymer creases and
cardboard paper panels (The left edge is fixed at θ = 20◦).

(Fig. 3.13 (a)). The geometry of the Miura-ori system is set as illustrated in Fig. 3.13 (b), with
a = b = 5cm and γ = 80◦. The thickness of the creases is 0.1mm and the thickness of the panels
is 1mm. The width of the creases is 6mm for all compliant creases. We assume the panels have a
Young’s modulus of 1GPa and the creases have a Young’s modulus of 2GPa. When a pair of loads
is applied to the outermost unit of the Miura cantilever (forces F in Fig. 3.13(a)), the outermost two
panels bend over and reach another stable state. The left edge of the physical model is restrained
to keep the angle θ = 20◦ fixed throughout the simulation.

We perform numerical simulations for the same Miura beam folded to three different θ values.
Figure 3.13 (c) shows that by decreasing the folding angle θ we can obtain less obvious bistable
behaviors, and at θ = 12◦, we obtain a monostable structure. This behavior is expected because
when the θ value is approaching zero, the Miura cantilever is not folded and is mostly flat. Thus,
loading the structure using the pair of forces displayed in Fig. 3.13 (a) is only bending the two
creases elastically, which gives a monostable response. When the θ value becomes larger, the
geometry of the folded Miura cantilever gives rise to the second stable configuration, where the
last vertex has to be inverted into a new state that is not compatible with the initial rigid folding
kinematics.
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This is another example that demonstrates the benefits of having compliant creases modeled ex-
plicitly, especially when studying bistable behaviors in origami structures. Besides the previously
mentioned stretching deformation of creases, this example demonstrates that relative torsional de-
formations between adjacent panels is also important for capturing the correct geometry of these
bistable origami. Figure 3.13 (d) shows how the proposed model captures this relative torsion be-
tween adjacent panels by including the additional diagonal Kspr2 springs (A2 bars) into the creases
region.

3.5 Concluding Remarks

This chapter proposes an improved formulation for a bar and hinge model to study the behavior
of origami assemblages with flexible compliant creases. Equations for assigning bar areas and
spring stiffness are derived by matching the stiffness of the bar and hinge model to that from
the theoretical plate model and the pseudo-rigid-body model for crease stretching, shearing, and
bending behaviors. However, due to the simplicity of the proposed model, one spring stiffness
Kspr2 for crease torsion cannot be obtained analytically. Thus a factor f is used to scale it so that
the torsional stiffness of our model matches the FE simulation for α = 0.1 and β = 3.0 case. We
latter confirm that this selected f = 4 factor performs relatively well for a much wider range of α
and β values in the verification section.

The proposed model is checked against FE simulations and the results match generally well
under tensile, shear, bending, and torsion for infinitesimal deformation. The proposed model pro-
duces the best estimate of structural stiffness when the crease aspect ratio is α ≈ 0.1 and the panel
thickness ratio is β ≈ 3.0. These ratios are representative of real origami systems with compliant
creases. At large deformations, the behavior of the proposed model is not sensitive to the α value
and is able to give closely matched predictions when β > 1.2.

Simulation examples were used to further demonstrate the capabilities and efficiency of the
model. The model can capture the crease bending for three dimensional folding simulations and
can approximate self-assembly where folds are actuated. In self-assembly simulations, the model
can predict if the desired shape will be reached with simultaneous actuation of all folds, or if the
folds will need to be actuated separately to successfully complete the folding process. Further-
more, the proposed model captures the contribution from torsional and extensional behaviors of
creases, which are of great significance when studying the bistable or multi-stable behaviors of
origami inspired assemblages with non-negligible crease width. Many origami patterns that are
traditionally considered monostable are in fact multistable when the added flexibility of compliant
hinges is taken into account. The proposed model can be used as a fast and relatively accurate
modeling technique for preliminary exploration of origami inspired assemblages with compliant
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creases.
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Chapter 4. Global Self-Contact Model

This chapter introduces a novel method to capture the global panel contact within functional
origami systems to tackle Challenge 3 proposed in the Introduction. This contact model is de-
rived by adding an additional contact potential to the total potential of the bar and hinge models.
Moreover, this proposed contact simulation method is computationally efficient and can capture
the internal forces, the contact configuration, and the thickness of origami panels accurately.

The organization of this chapter is as the following. First, we give a brief introduction of con-
tact simulations for origami models and for FE models. This section focuses on highlighting the
differences between the two problems and motivates the development of the inter-panel contact
model. Then, Section 4.2 derives the formulation of the proposed contact model in detail, which
is followed by a numerical verification in Section 4.3. Next, Section 4.4 introduces an implemen-
tation scheme for including the proposed model within a bar and hinge simulation framework.
This scheme is next tested to verify its continuity, penetration prevention, and contact initiation
needed to build a well-performing contact model. Moreover, we showed that the proposed model
can be used to simulate thickness of panels in an origami by tuning the model parameters accord-
ingly. In the end, computational examples are provided in Section 4.5 to demonstrate the validity
and efficiency of the proposed model. The nomenclatures used in this chapter is summarized in
Table 4.1.

4.1 Contact Models for Origami and for FE Methods

Simulation of global panel contact is difficult and crucial for modeling functional origami systems.
Although many existing origami simulation techniques have included the local contact prevention:
the folding is stopped when a crease is folded by 180 degree [Tachi, 2009c,Liu and Paulino, 2017a],
there is currently no method to capture the global panel contact in functional origami systems.

The existence of global panel contact can add substantial difficulties to determine if an origami
pattern can be folded or not even for a simple single vertex. Figure 4.1 demonstrate this using
a comparison of a spherical linkage problem and a single vertex folding problem. The spherical
linkage problem can be seen as a reduced single vertex foldability problem where panel contact
does not need to be considered. For this reduced problem, the loop closure condition provides a
necessary and sufficient condition for the rotated linkage to be in a valid configuration. In fact,
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Table 4.1: Nomenclature used in Chapter 4

Symbols Definition
I3×3 3×3 identity matrix
03×3 3×3 zero matrix
E Young’s modulus of material
A Cross section area of a simple bar element
L0 Length of a simple bar element
Π Potential energy (strain energy)
f Internal force vector
K Stiffness matrix
x Deformed nodal coordinate (generic)
X Reference nodal coordinate (generic)
u Deformation vector (generic)
x0,x1,x2,x3 Deformed nodal coordinates of the four nodes
X0,X1,X2,X3 Reference nodal coordinates of the four nodes
u0,u1,u2,u3 Deformation vectors of the four nodes
d Distance between the point and the triangle
d0, d0c, d0e Initiation thresholds for panel contact
ke Potential scaling factor
V Volume of the parallelepiped (with a sign)
As0 Area square of the parallelogram in zone 0
As2 Area square of the parallelogram in zone 2
Ls Length square of the distance between two nodes in zone 2
xz0,xz1,xz2 Deformed nodal coordinates for three zones

this loop closure equation is the basis of many existing kinematic simulation methods for origami
systems [Tachi, 2009c, Tachi, 2009a]. To further consider the foldability problem of a single ver-
tex, potential interaction between different origami panels must be considered. In this case, the
loop closure condition no longer guarantees the validity of a folded condition and it only states a
necessary condition, because of the potential panel contact indicated in Fig. 4.1 (b).

On top of the above foldability problem, there is an even more challenging question to ask:
How do the mechanical properties of an origami pattern change once the global panel contact
is initiated? The inter panel contact within an origami pattern usually induces changes in the
mechanical behaviors, such as the sudden stiffness jump studied in [Fang et al., 2016, Fang et al.,
2018]. In addition, the inter-panel contact also allows engineers to build various inter locking
origami that can sustains forces without adhesion [Mao et al., 2015, Kamrava et al., 2017]. Such
behaviors can be utilized to design metamaterials and locking devices for various engineering
applications. Unfortunately, limited works have done to address this issue in the field of origami
simulation.
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Figure 4.1: Origami folding is difficult to simulate because of the existence of global panel contact.

Although modeling of global panel contact in origami is rarely studied, contact modeling in
FE models (often in combination with discrete element (DE) models) is a more robust field of
research. It is not our focus to introduce the field in a detailed manner, but we focus more on
how the origami contact problem is different from conventional contact simulation within a FE
framework.

The contact simulations in FE analysis can be roughly split into two major topics: contact
detection and contact mechanics [Dahlstrom and Lindkvist, 2007, Vorobiev, 2012]. The contact
detection mostly focuses on determining the geometrical relationship between different bodies and
searching for contacting elements. A variety of methods can be selected based on the geometrical
characteristics or other special properties of the system for optimal efficiency [Zhong and Nils-
son, 1989, Oldenburg and Nilsson, 1994, Zheng et al., 2017, Munjiza and Andrews, 1998, Perkins
and Williams, 2001]. FE simulation usually requires a fine mesh for useful results, and thus the
number of degrees of freedom involved in contact detection is typically large. Because of the
large number of degrees of freedom, a key objective in the implementation of contact detection is
to find ways that will bring down the overall computational cost. For example, in many modern
software programs contact is only tracked on user pre-specified surfaces, and not over the entire
model domain. However, only a sparse mesh is needed to capture the geometry, kinematics, and
global mechanics for origami simulations, and thus much fewer degrees of freedom are required
for simulating an origami than performing typical FE simulations (such as those in [Hirota, 2002]).
Therefore, the key issue in origami contact is not how to reduce the number of areas for contact
detection, but instead how to capture the contacting geometry correctly even when the contacting
nodes are sparsely spaced. The field of contact mechanics focuses on the force law used to obtain
the correct model response. Reference [Adams and Nosonovsky, 2000] gives a thorough review
of various models for contact mechanics. So far, no significant exploration has been performed on
the contact force laws for origami structures and how the force laws can influence the foldability
or other mechanical behaviors of an origami.
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Although finite element (FE) simulations provide one option for studying the influence of
global panel contact on the mechanical behavior of an origami pattern and is indeed used to study
related problems, such as those in [Mukhopadhyay et al., 2020], it requires tremendous modeling
efforts and long computation time to obtain useful results. In many situations, it is difficult to have
the desired computing resources or the time schedule to analyze the foldability and eventually the
mechanics of origami structures under the influence of panel contact with FE simulations.

Because of the above mentioned problems, it is difficult to design a foldable structure and even-
tually analyze its mechanical properties if panel contact were to happen. One way to bypass such
problem is to use a thoroughly studied base pattern for the design. For example, with the Miura-ori
pattern, a large number of engineering devices were designed, such as deployable tubes with high
out-of-plane stiffness [Filipov et al., 2015, Filipov et al., 2019], origami grippers [Kamrava et al.,
2018], frequency selective surface [Nauroze et al., 2018], and metamatierials [Schenk and Guest,
2013, Ma et al., 2018b, Lv et al., 2014]. Because the design is based on the Miura-ori, the fold-
ability is preserved and thus the structure is guaranteed to be foldable. However, using pre-exist
patterns provides limited geometries for engineering applications, where more generalized patterns
are desired. To address the issue, the following sections formulated a contact simulation method
for origami model to capture the global contact induced mechanical behaviors within an origami
effectively.

4.2 Formulation of the Global Panel Contact Model

4.2.1 Methodology: principle of stationary potential energy and barrier func-
tions

The panel contact model proposed in this chapter is constructed under the framework of the prin-
ciple of stationary potential energy with the help of barrier functions. Within the framework of
principle of stationary potential energy, the equilibrium position of a deformable body is a con-
figuration that gives a stationary potential energy (gradient of potential vanishes). To prevent the
panels from penetrating each other, a set of barrier functions are added into the total potential of
the system such that the potential goes to infinite as the distances between the contacting panel
and the contacting node approaches zero. This is similar to the interior point method for linear
programs where barrier functions in the form of ln(xi) can be added into the total cost function to
replace the constraint xi ≥ 0 [Bertsimas and Tsitsiklis, 1997].

We start with a brief review of the principle of stationary potential energy. We will use the prin-
ciple to derive the internal force vector and the stiffness matrix of a 1-D extensional bar element.
To simplify our derivation, it is further assumed that the bar has a constant stiffness EA

L0
, where E
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is the Young’s modulus, A is the area of the bar section, and L0 is the original length of the bar.
The total Lagrangian approach is used to formulate the equations, and the potential energy of a bar
element can be written as:

Πbar =
EA
2L0

(
√

(x1− x2)2−L0)2, (4.1)

where the x1 and x2 are the current (deformed) configuration of the two nodes on the 1-D axis,
and the term

√
(x1− x2)2− L0 measures the elongation of the spring. By taking the gradient of the

potential, the internal force vector fbar is obtained as:

fbar =
∂Πbar

∂u
=
∂Πbar

∂x
=

EA
L0

(
√

(x1− x2)2−L0)√
(x1− x2)2


x1− x2

x2− x1

 , (4.2)

where x = [x1, x2]T are the current nodal coordinates represented as a 2× 1 vector. The displace-
ment vector u is defined as u= x−X where upper-case X = [X1,X2]T is the reference (undeformed)
nodal coordinate vector. Because the reference configuration is constant we have ∂Πbar

∂u =
∂Πbar
∂x . By

further taking the Hessian of the potential, we obtain the stiffness matrix Kbar of the spring:

Kbar =
∂2Πbar

∂u2 =
∂2Πbar

∂x2 =
EA
L0


1 −1

−1 1

 , (4.3)

which gives back the constant spring stiffness that we assumed. In the formulation of panel contact,
the same procedure of using the principle of stationary potential energy will be followed, except
that the calculations involve more nodes and are thus lengthier.

4.2.2 Contact potential, force vector, and stiffness matrix

To simulate the contact between panels, a repulsive force field is added around each triangulated
panel (referred to as triangle in the following text). This force field acts on three nodes of the
triangle and another node (referred to as the point in the following text) from another triangle.
Figure 4.2 illustrates the concept with the red node referring the point. In the proposed model, the
repulsive forces grow to infinity as the distance between the point and the triangle approaches zero
such that panel penetration is prevented.

We assume that the contact force is conservative so that we can derive it by prescribing a poten-
tial function that acts as a barrier function using the principal of stationary potential energy. This
assumption of conservation generally works well when our goal is to prevent panel penetrations
and capture phenomena such as a sudden stiffness jump studied in [Fang et al., 2016, Fang et al.,
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Figure 4.2: Panel penetration prevention is achieved by creating an imaginary repulsive force field
around the triangle, and the magnitude of the forces can be calculated based on the closest distance
from the point to the triangle d.

2018], sequential folding induced self-locking [Mao et al., 2015], or an inter-locking behaviors that
sustains forces without adhesion [Kamrava et al., 2017]. Generally speaking, the frictional forces
do not comply with the principle of stationary potential energy, and requires solving initial value
problems with dynamics mechanics solvers. The proposed model could potentially be extended to
capture those behaviors, but the work is beyond the scope of this chapter.

We set three requirements in selecting a proper potential function: (1) the function should pro-
duce a continuous force field (continuity); (2) the function should give infinite forces and stiffness
as the distance between the point and the triangle approaches zero (penetration prevention); and (3)
the function should have a piecewise formulation such that the repulsive forces are only triggered
when the point is close to the panel and are zero otherwise (contact initiation/disengagement). To
achieve these three requirements, the contact potential is constructed using the closest distance d

(Fig. 4.2) between the triangle and the point and is expressed as:

Π(d(x)) =


ke{ln[sec(

π

2
−
πd
2d0

)]−
1
2

(
π

2
−
πd
2d0

)2} (d ⩽ d0)

0 (d > d0),
(4.4)

where d0 is the threshold when the repulsive force is triggered and ke is a constant used to scale
the magnitude of the potential. When d > d0 the potential is zero so that there is no repulsive
forces and no additional stiffness. In the most general situation, the point to triangle distance d is
a function of all four deformed nodal coordinates x0,x1,x2,and x3 (Fig. 4.2 (b)). The form of this
contact potential equation is inspired from the interior point method for linear programs, where the
constraint x > 0 can be represented as −ln(x) in the objective function. Other origami simulation
packages like the MERLIN [Liu and Paulino, 2017a], also uses similar strategies to capture local
panel contact. With the potential equation formulated, we can obtain the corresponding internal
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force vector by taking the gradient of the contact potential as:

f =
∂Π

∂u
=
∂Π

∂x
=


ke{

π

2d0
(
π

2
−
πd
2d0
− tan(

π

2
−
πd
2d0

))
∂d
∂x
} (d ⩽ d0)

0 (d > d0),
(4.5)

where u is the corresponding nodal displacement vector of the four nodes and is defined as u =
x−X, following the convention of using lowercase x for deformed configuration and uppercase X
for undeformed (reference) configuration. Because the nodal coordinate vector of the undeformed

configuration X is constant, we have
∂Π

∂x
=
∂Π

∂u
. Similarly, the stiffness matrix can be constructed

by taking the Hessian of the potential as:

K =
∂2Π

∂u2 =
∂2Π

∂x2 =


ke{

π

2d0
(
π

2
−
πd
2d0
− tan(

π

2
−
πd
2d0

))
∂2d
∂x2

+(
π

2d0
)2[sec2(

π

2
−
πd
2d0

)−1](
∂d
∂x

)(
∂d
∂x

)T }

(d ⩽ d0)

0 (d > d0)

. (4.6)

4.2.3 Definition of the point to triangle distance d

Fully calculating the internal forces and stiffness associated with the contact potential requires
calculating the closest distance between the contacting triangle and the point. To calculate the
closest distance, we need to first determine the relative location between the point and the triangle.
There are three different cases for defining the point to triangle distance d as demonstrated in
Fig. 4.3 (a). The problem of determining the contact zones can be done by linear decomposition or
projection. Figure 4.3 (a) shows the vectors that will be used to achieve this goal. Vectors p1, p2,
and p3 point from node 1, node 2, and node 3 to the projection of the point respectively. Vectors
E1 and E2 point from node 1 to node 2 and node 1 to node 3 respectively.

For zone 0, we use vectors E1 and E2 to form a basis and linearly decompose p1 within the
basis. (By saying linear decomposition, we mean writing p1 = aE1 + bE2). If both results (a and
b) are positive and are less than one, then the point falls in zone 0.

For zone 1, without loss of generality, we assume that the point is closest to node 1. We then
linearly decompose the vector p1 within the basis formed by vectors v11 and v12. If both results
are positive, the point is within zone 1 and is closest to node 1.

For zone 2, we assume that the point is closest to the line segment formed by node 1 and node
2. We project vector p1 onto vectors E1 and v11, and next project vector p2 onto −E1. If all three
results are positive, the point falls within zone 2 and is closet to the line segment formed by node
1 and node 2.

Practically, there is no need to differentiate the cases when the point falls on the edge where
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Figure 4.3: Calculation of the point to triangle distance.
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two or three separate zones meet. Because the contact potential has continuity over the three
zones, using equations from different zones yields the same answer on the edges. Therefore,
we can always use ’≥’ and ’≤’ rather than ’>’ and ’<’ for judging the zones when coding the
implementation package, and the problem is solved automatically.

If the projection is located within zone 0, then the point to triangle distance is a node to plane
distance, which can be calculated as:

d =

√
V2
√

As0
=

√
{(x0− x1)T [(x2− x1)× (x3− x1)]}2√

[(x2− x1)× (x3− x1)]2
. (4.7)

Equation 4.7 calculates the distance d by dividing the volume of the parallelepiped by the area
of the parallelogram (Fig. 4.3 (c)), which is in the form of a triple product of three vectors over
the value of a cross product of two vectors. Square-root-of-square is used to obtain an absolute
value of point to triangle distance d. As0 is defined to represent the square of the area of the
parallelogram in zone 0 formed by the three nodes of the triangle as in Fig. 4.3 (c). In zone 0, the
nodal coordinate vector and nodal displacement vector are both 12×1 vectors and can be written
as xz0 = [x0

T , x1
T , x2

T , x3
T ]T , and uz0 = [u0

T ,u1
T ,u2

T ,u3
T ]T respectively, where the individual

nodal quantitites x0, x1, x2, x3, u0, u1, u2, and u3 are defined according to Fig. 4.3 (b).
If the projection is located within zone 1, the point to panel distance is calculated as a node to

node distance, which can be expressed as:

d =
√

(x1− x0)T (x1− x0). (4.8)

Without loss of generality, we assume that node 1 is closest to the point. This case is relatively
simple and is demonstrated on Fig. 4.3 (d). In this zone, because only two nodes are used to
construct the point to triangle distance, the nodal coordinates vector and nodal displacement vector
are both 6× 1 vectors and are difined as xz1 = [x0

T , x1
T ]T , and uz1 = [u0

T ,u1
T ]T respectively

(Fig. 4.3 (d)).
If the projection is located within zone 2, the point to triangle distance d is the point to line

distance as illustrated on Fig. 4.3 (e). It is assumed that the point is closet to the line segment
formed by node 1 and node 2, and the point to triangle distance is calculated using:

d =
√

As2
√

Ls
=

√
[(x0− x1)× (x2− x1)]2√

(x2− x1)T (x2− x1)
, (4.9)

which is in the form of an area of a parallelogram over the length between the two nodes (see
Fig. 4.3 (f)). As2 represents the square of area of the parallelogram formed with the three nodal
coordinates in zone 2 and Ls represents the square of length between node 1 and node 2. In
zone 2, because three nodes are used to construct the point to triangle distance, the corresponding
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nodal coordinate vector and nodal displacement vector are both 9× 1 vectors and are written as:
xz2 = [x0

T , x1
T , x2

T ]T , and uz2 = [u0
T ,u1

T ,u2
T ]T respectively (Fig. 4.3 (e)).

4.2.4 Calculation of gradient and Hessian of d

After computing the point to triangle distance d, its gradient and Hessian need to be calculated so
that Eqn.4.5 and Eqn.4.6 can be used to calculate the contact force vector and the stiffness matrix.
Because the point to triangle distance has different formulations in the different zones, the gradient
and Hessian of d also need to be calculated separately.

In zone 0, the point to triangle distance is calculated using Eqn.4.7. Based on this formulation,
the gradient of d can be calculated using:

∂d
∂x
=

∂d
∂xz0

=
η
√

As0

∂V
∂xz0

−
1
2
ηV√
A3

s0

∂As0

∂xz0
, (4.10)

where η = sign(V) is the sign of V . The Hessian of d is:

∂2d
∂x2 =

∂d
∂xz02 =

η
√

As0

∂2V
∂xz02 −

1
2

η√
A3

s0

(
∂V
∂xz0

)(
∂As0

∂xz0
)T −

1
2
ηV√
A3

s0

∂2As0

∂xz02

−
1
2

η√
A3

s0

(
∂As0

∂xz0
)(
∂V
∂xz0

)T +
3
4
ηV√
A5

s0

(
∂As0

∂xz0
)(
∂As0

∂xz0
)T .

(4.11)

As defined in the previous section, As0 is the square of the area of the parallelogram formed by the
three nodes of the triangle, and V is the volume of the parallelepiped (Fig. 4.3 (c)). Because four
nodal coordinates are used to define the point to panel distance d in zone 0, the gradient of d in
zone 0 is a 12×1 vector while the Hessian of d will give a 12×12 matrix.

In zone 1, the point to triangle distance is calculated using Eqn.4.8, so the gradient can be
calculated using:

∂d
∂x
=

∂d
∂xz1

= [(
∂d
∂x0

)T , (
∂d
∂x1

)T ]T = [
1
d

(x0− x1)T ,
1
d

(x1− x0)T ]T , (4.12)

and the Hessian can be calculated using:
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∂2d
∂x2 =

∂2d
∂xz12 =


∂2d

∂x0∂x0
,
∂2d

∂x0∂x1
∂2d

∂x1∂x0
,
∂2d

∂x1∂x1

 =
1
d

I3×3−
1
d3 (x0− x1)(x0− x1)T

−
1
d

I3×3+
1
d3 (x0− x1)(x0− x1)T

−
1
d

I3×3+
1
d3 (x0− x1)(x0− x1)T

1
d

I3×3−
1
d3 (x0− x1)(x0− x1)T

 .
(4.13)

The symbol I3×3 represents a 3× 3 identity matrix. Because only two nodal coordinates are used
to construct the point to panel distance in zone 1, ∂d

∂xz1
is a 6×1 vector and ∂2d

∂xz12 is a 6×6 matrix.
In zone 2, the point to panel distance is calculated using Eqn.4.9. The gradient is calculated

using the following equation:

∂d
∂x
=

∂d
∂xz2

=
1
2

1
√

As2Ls

∂As2

∂xz2
−

1
2

√
As2√
L3

s

∂Ls

∂xz2
, (4.14)

and the Hessian is calculated as:

∂2d
∂x2 =

∂2d
∂xz22 =

1
2

1
√

As2Ls

∂2As2

∂xz22 −
1
4

1√
A3

s2Ls

(
∂As2

∂xz2
)(
∂As2

∂xz2
)T

−
1
4

1√
As2L3

s

(
∂As2

∂xz2
)(
∂Ls

∂xz2
)−

1
2

√
As2√
L3

s

∂2Ls

∂xz22

−
1
4

1√
As2L3

s

(
∂Ls

∂xz2
)(
∂As2

∂xz2
)T +

3
4

√
As2√
L5

s

(
∂Ls

∂xz2
)(
∂Ls

∂xz2
)T .

(4.15)

Because three nodal coordinates are used to construct the distance d, the gradient of d is a 9× 1
vector and the Hessian is a 9×9 matrix.

To finish the above calculations, it is necessary to calculate the gradients and Hessians of V ,
As0, As2 and Ls. The gradients and Hessians of V , As0, As2 and Ls need to be solved separately for
different zones because the number of nodal coordinate needed for calculation is different. We use
xz0, xz1, and xz2 to denote the nodal coordinate vectors for zone 0, zone 1, and zone 2 respectively,
just as the notations used in the previous formulation section.

The volume of parallelepiped formed by four nodes x0, x1, x2, and x3 can be calculated using
the following:

V = (x0− x1) · [(x2− x1)× (x3− x1)]. (4.16)
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This value is used in the Eqn.4.7, Eqn.4.10, and Eqn.4.11, and the gradient of the volume V is a
12×1 vector as:

∂V
∂xz0

= [(
∂V
∂x0

)T , (
∂V
∂x1

)T , (
∂V
∂x2

)T , (
∂V
∂x3

)T ]T

=



[a,b,c]T

(x2− x3)× (x0− x1)− [a,b,c]T

(x3− x1)× (x0− x1)

(x1− x2)× (x0− x1)


, (4.17)

where the [a,b,c]T vector is calculated using:

[a,b,c]T = (x2− x1)× (x3− x1). (4.18)

The Hessian of the volume V is a 12×12 matrix and can be calculated as:

∂2V
∂xz02 =



03×3
∂2V

∂x0∂x1

∂2V
∂x0∂x2

∂2V
∂x0∂x3

∂2V
∂x1∂x0

03×3
∂2V

∂x1∂x2

∂2V
∂x1∂x3

∂2V
∂x2∂x0

∂2V
∂x2∂x1

03×3
∂2V

∂x2∂x3
∂2V

∂x3∂x0

∂2V
∂x3∂x1

∂2V
∂x3∂x2

03×3



=



03×3 −skew(x2− x3) −skew(x3− x1) −skew(x1− x2)

skew(x2− x3) 03×3 −skew(x3− x0) −skew(x2− x0)

skew(x3− x1) skew(x3− x0) 03×3 −skew(x1− x0)

skew(x1− x2) skew(x2− x0) skew(x1− x0) 03×3



(4.19)

where the symbol 03×3 is a 3×3 zero matrix, and the skew() operator is defined as the following:

skew([u,v,w]T ) =


0 −w v

w 0 −u

−v u 0


. (4.20)

65



This skew() operator basically back calculates the skew tensor from its axial vector.
The area of a parallelogram in zone 0 formed by three nodes x1, x2, and x3 of the triangle can

be calculated using:

A =
√

As0 =

√
[(x2− x1)× (x3− x1)]2. (4.21)

The gradient of As0 with respect to xz0 is a 12× 1 vector in zone 0, and the Hessian is a 12× 12
matrix. The gradient of As0 can be calculated using:

∂As0

∂xz0
= [(

∂As0

∂x0
)T , (

∂As0

∂x1
)T , (

∂As0

∂x2
)T , (

∂As0

∂x3
)T ]T =



03×1

2(x2− x3)× [a,b,c]T

2(x3− x1)× [a,b,c]T

2(x1− x2)× [a,b,c]T


, (4.22)

and the Hessian of As0 can be calculated using:

∂2As0

∂xz02 =



03×3 03×3 03×3 03×3

03×3
∂2As0

∂x12
∂2As0

∂x1∂x2

∂2As0

∂x1∂x3

03×3
∂2As0

∂x2∂x1

∂2As0

∂x22
∂2As0

∂x2∂x3

03×3
∂2As0

∂x3∂x1

∂2As0

∂x3∂x2

∂2As0

∂x32


. (4.23)

The three diagonal terms are calculated using:

∂2As0

∂x12 = 2{[(x2− x3)T (x2− x3)]I3×3+ (x2− x3)(x3− x2)T }, (4.24)

∂2As0

∂x22 = 2{[(x3− x1)T (x3− x1)]I3×3+ (x3− x1)(x1− x3)T }, (4.25)

∂2As0

∂x32 = 2{[(x1− x2)T (x1− x2)]I3×3+ (x1− x2)(x2− x1)T }. (4.26)

Because of the symmetry, only three off-diagonal terms need to be calculated and the remaining
three can be obtained by transposing the matrix. The off-diagonal terms can be calculated using:
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∂2As0

∂x1∂x2
= (

∂2As0

∂x2∂x1
)T = 2[(x3− x1)T (x2− x3)]I3×3

−2(x3− x1)(x2− x3)T −2skew([a,b,c]T ),
(4.27)

∂2As0

∂x2∂x3
= (

∂2As0

∂x3∂x2
)T = 2[(x1− x2)T (x3− x1)]I3×3

−2(x1− x2)(x3− x1)T −2skew([a,b,c]T ),
(4.28)

∂2As0

∂x3∂x1
= (

∂2As0

∂x1∂x3
)T = 2[(x2− x3)T (x1− x2)]I3×3

−2(x2− x3)(x1− x2)T −2skew([a,b,c]T ).
(4.29)

The area of a parallelogram in zone 2 formed by three nodes x1 and x2 of the triangle and the
point x0 can be calculated using:

A =
√

As2 =

√
[(x2− x1)× (x0− x1)]2. (4.30)

The gradient of As2 with respect to xz2 is a 9×1 vector in zone 2, and the Hessian is a 9×9 matrix.
The gradient of As2 can be calculated using:

∂As2

∂xz2
= [(

∂As2

∂x0
)T , (

∂As2

∂x1
)T , (

∂As2

∂x2
)T ]T =


2(x1− x2)× [a,b,c]T

2(x2− x0)× [a,b,c]T

2(x0− x1)× [a,b,c]T


, (4.31)

where [a,b,c]T = (x2− x1)× (x0− x1) and Hessian of As2 can be calculated using:

∂2As2

∂xz22 =



∂2As2

∂x02
∂2As2

∂x0∂x1

∂2As2

∂x0∂x2
∂2As2

∂x1∂x0

∂2As2

∂x12
∂2As2

∂x1∂x2
∂2As2

∂x2∂x0

∂2As2

∂x2∂x1

∂2As2

∂x22


. (4.32)

The three diagonal terms are calculated using:

∂2As2

∂x02 = 2{[(x1− x2)T (x1− x2)]I3×3+ (x1− x2)(x2− x1)T }, (4.33)

∂2As2

∂x12 = 2{[(x2− x0)T (x2− x0)]I3×3+ (x2− x0)(x0− x2)T }, (4.34)
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∂2As2

∂x22 = 2{[(x0− x1)T (x0− x1)]I3×3+ (x0− x1)(x1− x0)T }. (4.35)

Similarly, because of the symmetry, only three off-diagonal terms need to be calculated and the
remaining three can be obtained by transposing the matrix:

∂2As2

∂x1∂x2
= (

∂2As2

∂x2∂x1
)T = 2[(x0− x1)T (x2− x0)]I3×3

−2(x0− x1)(x2− x0)T −2skew([a,b,c]T ),
(4.36)

∂2As2

∂x2∂x0
= (

∂2As2

∂x0∂x2
)T = 2[(x1− x2)T (x0− x1)]I3×3

−2(x1− x2)(x0− x1)T −2skew([a,b,c]T ),
(4.37)

∂2As2

∂x0∂x1
= (

∂2As2

∂x1∂x0
)T = 2[(x2− x0)T (x1− x2)]I3×3

−2(x2− x0)(x1− x2)T −2skew([a,b,c]T ).
(4.38)

Ls is defined as the square of Length between two nodes x1 and x2 as:

Ls = (x1− x2) · (x1− x2). (4.39)

In zone 2, the nodal coordinate vector is a 9×1 vector so the gradient is also a 9×1 vector and the
Hessian is 9×9 matrix. The gradient and Hessian of Ls can be calculated using:

∂Ls

∂xz2
= [(

∂Ls

∂x0
)T , (

∂Ls

∂x1
)T , (

∂Ls

∂x2
)T ]T =


03×1

2(x1− x2)

2(x2− x1)


, (4.40)

∂2Ls

∂x2
z2

=


03×3 03×3 03×3

03×3 2I3×3 −2I3×3

03×3 −2I3×3 2I3×3


. (4.41)

4.3 Numerical verification

In this section, the three requirements previously proposed for the formulation will be verified
numerically. These three requirements are: (1) continuity; (2) penetration prevention; and (3)

68



Figure 4.4: (a-c) Numerical verification of penetration prevention and contact initiation (require-
ments 2 and 3); (d-f) Numerical verification for continuity of internal forces (requirement 1).

contact initiation/disengagement.
To test the requirements (2) and (3), a triangular panel is set still in space by defining three

nodal coordinates as: x1 = [0,0,0]T , x2 = [1,0,0]T , and x3 = [0,1,0]T . The initiation threshold is
set as d0 = 1. The coordinates of the point are set to be x0 = [0.2,0.2,z]T , where z is the height of
the point. The value of z is changed from two gradually to zero, representing the situation when the
point gradually approaches the panel. As the point to panel distance goes to zero, both the reacting
internal forces and the stiffness are approaching infinity (see Fig. 4.4 (b) and (c)). Figure 4.4 (b)
and (c) also demonstrate that the proposed model will not generate any additional internal forces or
stiffness unless the point approaches the panel closer than the contact initiation threshold (d < d0).
This simulation shows that the formulation satisfies requirements (2) and (3).

Because the point to panel distance is defined for three zones separately, it is necessary to test
the requirement (1) to ensure that the internal forces are indeed continuous when the point crosses
between different zones. This test is performed by moving the point across the panel and recording
the internal forces and stiffness (see Fig. 4.4 (d)). A variable δ is used to control the location of
the point, and the test is performed for three different values of height z. Figure 4.4 (e) and (f)
show the internal forces and stiffness with respect to the location of the point when it moves across
the panel. The recorded internal forces are indeed continuous when the point moves across the
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Table 4.2: Pseudo-code for Implementation of Panel Contact

Insert this loop when calculating internal forces and stiffness of bar and hinge model
1: for each Triangle(j) in Panel(i)
2: for each Node(p) in Panel(q)
3: if q!=i
4: Check which zones Node(p) falls in
5: Compute distance d between Node(p) and Triangle(j) with Eqn. 4.7 to 4.9
6: if distance d ⩽ d0

7: Calculate derivatives of V , As0, As2 and Ls (section 4.2.4)
8: Assemble ∂d

∂x and ∂2d
∂x2 with Eqn. 4.10 to 4.15 with previous results

9: Assemble internal force vector Eqn. 4.5
10: Assemble stiffness matrix with Eqn. 4.6
11: end if
12: end if
13: end for
14: end for

three zones, thereby numerically demonstrating a satisfactory performance for requirement (1) on
continuity. Although z-direction stiffness is continuous for this particular test, it is not continuous
for general situations. To ensure the compliance with the principle of stationary potential energy,
the stiffness does not need to be continuous but only needs to be integrable.

4.4 Implementation and Behaviors of the Contact Model

4.4.1 Implementation scheme

Table 4.2 summarizes the procedure to include the proposed panel contact formulation into any
bar and hinge model. The loops in the pseudo code are set to cycle through different combinations
of the points and the triangles. Once a combination is selected, we will check the relative position
between the point and the triangle to determine the correct zone, and calculate the point to triangle
distance with Eqn. 4.7 to 4.9. If this distance is small enough to initiate the contact process, the
additional internal forces vector and stiffness matrix will be computed based on Eqn. 4.5, Eqn. 4.6.
With the calculation of internal force vector and stiffness matrix established, the equilibrium path
of the folding structure can be traced with various increment-iterative methods (such as the Modi-
fied Generalized Displacement Controlled Method). Readers may refer to [Liu and Paulino, 2017a]
for the use of the Modified Generalized Displacement Controlled Method in analyzing nonlinear
origami, and to [Leon et al., 2011, Leon et al., 2014] for details about nonlinear solution schemes.

The implementation scheme in Table 4.2 includes a double-loop through all the panels, which
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Figure 4.5: Intentional and unintentional omissions of contact.

makes it quadratically more expensive than the computation of assembling the stiffness matrix.
This additional computational cost is expected when solving the foldability problem of a unknown
new origami patterns, because it is necessary to check all possible panel contact combinations.
If we need to exhaust all combinations for new patterns, it is not wise to use a finely meshed FE
model to simulate folding because the computation cost would be enormous. The proposed bar and
hinge implementation provides a lower cost alternative to FE models, because the folding sequence
and contact can be captured using a sparse distribution of nodes. If more accurate estimation
of the structure and associated contact mechanics are required, FE models would be used next.
Additionally, because the nature of the origami contact would be already known (from the sparse
global simulation), the FE models could be built to only detect and capture contact where it is
expected to occur. This two model approach for simulating folding and contact in origami would
be drastically more efficient than using FE models for the entire process.

When implementing the proposed model, it is possible to omit checking for contact between
some combinations of the points and the triangles. Such omissions can save a considerable amount
of computational time without introducing large errors into the simulation. When contact is imple-
mented in the bar and hinge model with compliant creases [Zhu and Filipov, 2019b], it is possible
to make two types of such omissions. First, nodes in the center line of the creases (three crossed
nodes in Fig. 4.5 (a)) can be neglected for panel contact. This simplification will not introduce
large errors into the simulation because the creases are usually narrow compared with the panels.
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Therefore, when a triangle is approaching the nodes at the center of a crease, the nodes on the
adjacent panels (two blue nodes in Fig. 4.5 (a)) are enough to stop the movement of the triangle.
Second, it is not necessary to check for contact between nodes sharing the same crease from ad-
jacent panels (see Fig. 4.5 (b)). This rule is introduced so that the tensile repulsive force within a
crease is avoided if the initiation threshold d0 is larger than the width of the crease W. This sim-
plification generally works well because the only possibility that these combinations will contact
is to fold the crease to 180 degrees, which is already captured by other nodes as shown in Fig. 4.5
(c). If these two type of omitted contact are deemed as necessary for a particular origami pattern, it
is not hard to check them because the compliant creases are triangulated and thus the same contact
model applies.

Figure 4.5 (d) shows one limitation of the proposed implementation scheme. Because of the
sparsity of nodes in a bar and hinge representation of an origami structure, sometimes direct panel
to panel contact cannot be captured. Fortunately, most of the origami patterns do not encounter
this problem, but if it were to happen, it could be solved by sub-discretizing the triangular panel
and adding additional nodes to the edges of the origami as illustrated in Fig. 4.5 (d). Similarly, the
edge to edge contact cannot be captured by the proposed model without adding more nodes to the
edges (see Fig. 4.5 (e)).

4.4.2 Behavior of global panel contact simulation

In this section, we study how the proposed panel contact formulation behaves when implemented
within a bar and hinge model with compliant creases. A simulation example with a single compli-
ant crease is used to demonstrate the behavior of the proposed model. The single fold origami is
simply supported as shown in Fig. 4.6 (a), and the loading set-up is illustrated in Fig. 4.6 (b). Three
model parameters can be used to adjust the behavior of the panel contact simulation for origami
structures. These parameters include: (i) the potential scaling factor ke, (ii) the contact initiation
threshold d0e for nodes at the edge of the panel, and (iii) the contact initiation threshold d0c for
nodes at the center of the panel.

The influence of the potential scaling factor ke is first studied. In this test, the length of the
upper panel is set to be x = 1.6 cm while the length of the lower panel is set to be L = 2 cm. The
width of the crease is set as W = 4 mm, which represents realistic origami structures with compliant
creases. The panel contact initiation threshold is set as d0 = d0e = d0c = 2 mm and different values
of ke are used to form a group of simulations. The upper panel is first self-folded to θ0 = 0.1π
before the nonlinear loading starts. The height of the node on the outer edge of the upper panel is
denoted as z and is used to measure the deformation. Figure 4.6 (c) shows that the potential scaling
factor ke can be used to control the smoothness of transition when panel contact is initiated. When
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Figure 4.6: Influence of potential scaling factor and using the model to simulate thick panels in
origami.

a larger ke is used, a larger contact force vector and a stiffness matrix is obtained which results in a
sharper transition after the triggering of panel contact. By controlling the value of ke, it is possible
to tune the behavior of the model such that it simulates the existence of thickness in origami. When
ke = 0.02 or higher for this case, a sharp transition occurs such that the height of the node on the
outer edge practically stops at z = 2 mm, which mimics the loaded configuration of having a 2 mm
thick panel (1 mm on each side). If only general contact is of interest a lower ke can be used for a
smoother transition, which would be beneficial for faster model convergence.

Both the absolute magnitude of d0e and d0c and the relative ratio between them can affect
the deformed configuration and contact forces of the structure. In order to simulate thickness in
origami, the potential scaling factor is set as ke = 0.05 so that a sharp initiation of panel contact is
obtained. By setting d0 = d0e = d0c, we can study the influence of the absolute values of d0c and
d0e on the behavior of the model. Figure 4.6 (b) show how the deformed configuration changes
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Figure 4.7: The panel contact model can capture the internal forces and reaction forces accurately.

when different values of d0 are used, and Fig. 4.6 (d) shows the corresponding force displacement
curves. A larger value of d0 leads to earlier initiation of contact and thus larger contact forces.
When the same load is applied, the model with larger d0 has larger separation between panels, and
the separation (measured with z) is exactly around the value of d0, which represents the behavior
including panel thickness in simulating origami.

Figure 4.6 (e) shows that by varying the ratio between d0c to d0e, different contact force distri-
butions can be obtained. The symbol Ic and Ie refer to the contact forces of nodes at the center and
nodes at the edge of panels respectively (see Fig. 4.6 (a)). If the panels are relatively thin compared
to the width of the crease W, the edge of the panels will contact first and thus the internal contact
forces should be centered at the edges. This behavior can be simulated by setting d0c/d0e to be a
relatively small value (< 0.7) as shown in Fig. 4.6 (e). On the other hand, if the panels are relatively
thick compared to the widths of the creases or if there are extruded parts in the center of the panels
(e.g. motors, sensors, or batteries in some mechanical origami devices), a larger d0c/d0e value can
be used such that the contact forces are concentrated at the center node of the panel.

Next, we check if the proposed model can capture the reaction forces correctly for both the
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single fold origami and another double fold origami (Fig. 4.7). This test is performed by varying
the length of the upper panel x and comparing the simulated support reactions with the theoretical
solutions. In these particular tests, the panel length is set as L = 2 cm and the width of the crease
is set as W = 1.5 mm. The potential scaling factor is set as ke = 0.0002 and the two initiation
thresholds are set as d0e = 1.5 mm and d0c = 1.05 mm such that contact forces concentrate on the
node at the outer edge. Figure 4.7 shows how the support reactions change as x/L varies. It is
found that the proposed panel contact model can simulate the support reactions correctly, which
further confirms the model’s compliance with the principal of stationary potential energy.

In general, we recommend selecting the d0 to be relatively close to the real panel thickness
such that the simulation has a similar geometry as the real structure. When the real thickness of the
panel is small, however, we recommend select the d0 to be larger than the real thickness to avoid
numerical instability. Values around 2% to 5% of the panel length can be a good initial guess.
The selected ke value should scale the contact potential such that it is comparable to strain energy
(potential energy) stored within the structure under elastic deformation. If the contact potential is
much larger than the strain energy in the structure or vice versa, adding the two energy terms can
results in numerical instability. Unfortunately, selecting the proper ke is largely based on trial-and-
error method (e.g. similar to picking a load step in a Newton-Raphson method).

One limitation of the current simulation code is that the contact forces can grow to infinite
without considering the material failure within the structure. The material model used in this bar
and hinge model assumes elasticity and cannot capture yielding, softening, or brittle failures in
the material. This indicates that the stiffness and forces jump is credible but only to a point when
the material stress and strain are not large enough to trigger failure. When material failure does
happen, the stiffness and forces should drop and should not go to infinity. More realistic responses
can be obtained if we adjust the bar model and the rotational spring model such that they can mimic
material failure, but these topics are beyond the scope of this work and are seen as potential future
research directions.

4.5 Numerical Examples

In this section, four simulations are performed to demonstrate the efficiency and capability of the
the proposed model. These simulations are designed to test the proposed model with more com-
plicated patterns beyond those in the previous sections. Both self-folding simulation and loading
simulation are tested within the four examples.
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Figure 4.8: Self-folding of an origami box pattern with inter-panel contact.

4.5.1 Self-folding of a box

This example studies the self-folding of a box pattern (see Fig. 4.8 (a)). The four actively moving
panels are 2×2 cm2 and are connectd with 3 mm wide creases. The potential scaling factor is set
to be ke = 0.002 and the contact initiation distances are d0c = d0e = d0 = 2 mm. The self-folding is
achieved by changing the stress free angle of the folds incrementally and tracing the equilibrium
with a Newton-Raphson algorithm. In this example, folding is performed with two steps: (i) the
two side panels are folded to 0.3π (Fig. 4.8 (c) circle 1); (ii) the two center panels are next folded
to 0.8π such that the two side panels will contact with the anchored panel (Fig. 4.8 (c) circles 2
to 4). The corresponding strain energy is recorded and plotted in Fig. 4.8 (b). The strain energy
is calculated based on the assumed linear elasticity in both the bar elements and the rotational
spring elements, and the contact potential is excluded from the energy calculation such that the
energy term only contains the elastic strain energy. With the assumed linear elasticity, the strain
energy in bars is calculated as 0.5 EA

L0
(δL)2 and the strain energy in rotational springs is calculated

as 0.5Kspr(δθ)2, where EA
L0

gives the stiffness of the bar, δL gives the change in bar length from the
stress free length, Kspr gives the spring stiffness, and δθ gives the change in rotation angle from
the stress free angle.

When no panel contact is initiated, the Newton-Raphson algorithm can always find an equilib-
rium configuration that is stress free, and thus, no strain energy is observed. However, when the
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Figure 4.9: Self-folding and loading of the locking box corner.

panels come into contact with each other, the stress free configuration is no longer an equilibrium
configuration. Strain energy is stored in the structure because panel contact interferes with the
self-folding process. A wall-clock time of 20 sec was recorded on a desktop computer with an
i7-7700 processor for this simulation, which demonstrates the efficiency of the proposed method.

4.5.2 Loading of an inter-locking box corner

In this example, the folding and loading of an inter-locking box corner is studied. Both simulations
with and without the panel contact are performed and the results are compared. Each panel of the
box is a 6× 6 cm2 square. The width of the two creases that connect two large panels are 4 mm
while the width of the two creases that connect the two teeth are 8 mm. The two teeth are about
2 cm wide at base and 3 cm tall. The potential scaling factor is selected as ke = 0.02 and the
contact initiation thresholds are set as 4 mm for edge nodes and 2 mm for center nodes. The box
is first folded to an interlocked configuration (see Fig. 4.9 (a)) by changing the stress free angle
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of the creases incrementally and tracing the equilibrium with a Newton-Raphson algorithm. After
reaching the interlocked configuration, a point load is added and the displacement is measured as
indicated in Fig. 4.9 (a) bottom left. The recorded force displacement curves are shown on Fig. 4.9
(b) for the two cases and the deformed configurations are plotted on Fig. 4.9 (a).

The proposed method is capable of capturing the deformed configuration under the influence
of panel contact. The force displacement curves plotted on Fig. 4.9 (b) show that the proposed
model is capable of capturing the additional stiffness induced by the interlocking effects which in
turn produces a higher force for the same displacement. Moreover, Fig. 4.9 (a) also demonstrate
that the proposed model can capture panel deformation after contact in a global sense, although
this simulation cannot capture localized panel deformation such as dimples near the contact point.
Including the panel contact to stop panels penertrating each other is essential for capturing a real-
istic mechanical behavior of this box corner. The wall-clock time for running the entire analysis
(including a sequential folding analysis and a loading analysis) was recorded to be 21 sec on the
same computer with an i7-7700 processor.

4.5.3 Folding sequence of a box corner

The following example demonstrates how the proposed method can be used to study the folding
sequence of a foldable origami pattern. The pattern studied here has four creases numbered with
A, B, C, and D as shown in Fig. 4.10 (a). When the folding sequence is assigned correctly, the
pattern can be folded to an interlocked configuration as shown Fig. 4.10 (b). Even with this simple
pattern, there exists a large number of design parameters that can be varied and explored for an
optimal design, including pattern geometry, folding speed, and folding sequence. We will only
focus on the folding sequence and fix the pattern geometry and the folding speed for this example.
The geometry of the pattern is shown in Fig. 4.10 (a), where all creases have the same width W = 4
mm. Creases A, B, and C are all folded by 90 degrees while crease D is folded by 180 degrees
in the folded configuration. To further simplify the simulation, the folding of all four creases is
achieved with a fixed number of increments. Therefore, the folding speed of crease D is twice
the folding speed of creases A, B, and C. We have also found several folding sequences where we
cannot determine if the structure folds correctly or not as shown in Fig. 4.10 (d). In these folding
sequences, there is a folding motion that involves pushing the triangle panel towards the vertical
side panel. Because the two panels share the same plane, the triangle panel is pushed to either the
correct position or the incorrect position depending on numerical errors, and different simulation
setups such as total folding steps will yield different results. We mark these cases as “Maybe” to
differentiate them.

The total number of combinations of folding sequence available for a n-crease pattern follows
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Figure 4.10: Studying the correct folding sequence to build an origami box corner using inter-panel
contact.

the ordered bell number sequence or Fubini number sequence (A000670 sequence in online en-
cyclopedia of integer sequences). This number sequence counts the number of weak orderings
on a set of n elements (n folds in our case) [OEIS, 2019]. This integer number sequence scales
faster than n! [OEIS, 2019] and thus for a general n-crease pattern, exhausting all possible fold-
ing sequence combinations requires a large amount of computational effort. At n = 4, the pattern
gives a total number of 75 possible folding sequence combinations. The results for checking these
75 combinations are summarized in Fig. 4.10 (e). The required wall-clock time to run one sin-
gle analysis is recorded to be 15sec on the same computer with an i7-7700 processor. To cycle
through all 75 different combinations, it requires a total time of about 1200 sec, which by today’s
standards is small. Moreover, this analysis was performed on only one thread of the processor,
yet each folding sequence test could be run in parallel, and the overall processing time would be
divided by the number of tests run in parallel. However, if we use FE simulations to cycle through
all combinations where each run of analysis can take tens of minutes or even hours, the required
computation time can become unaffordable to fit into a desired design schedule. Also, the number
of combinations can grow at an alarmingly fast rate if we start adding more design parameters
such as folding speed and pattern geometry. If the analysis required us to further explore these

79



Figure 4.11: Studying the stiffness jumps in origami assemblages under the influence of global
panel contact.

additional parameters, the efficiency in the proposed model can be of great benefit.

4.5.4 Loading of an inter-locking origami

The following example analyzes one inter-locking origami of those studied in [Kamrava et al.,
2017]. The basic pattern of the design is based on the Miura-pattern and thus is rigid foldable.
When two such patterns are placed on top of each other and folded, they create an inter-locking
system with which a considerable amount of force can be resisted without any gluing or adhesion.
In the following example, we recreate the inter-locking origami with the proposed panel contact
model. In order to demonstrate the versatility of the proposed model, the conventional bar and
hinge model without compliant creases is used for the simulation. It is reasonable not to use the
compliant hinge version of the bar and hinge model as the additional degrees of freedom in the
crease region are not a significant factor in this particular example.
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Figure 4.11 (a) shows the loading set up of the simulation. The origami on the bottom is fixed
in space by the four supports (Fig. 4.11 (a) white support nodes), while the origami on the top has
four fictitious elastic supports the in z-direction (Fig. 4.11 (a) spring support nodes) that are needed
to avoid numerical instability associated with a free floating body. The loads are applied on the top
four nodes on the top origami (Fig. 4.11 (a) blue nodes) and the displacement is measured using
the z-direction height of one of the reference nodes.

Figure 4.11 (b) gives the force displacement curves and Fig. 4.11 (c) and (d) show the loaded
configuration for both simulations with panel contact and without panel contact. When panel
contact is not activated, the two origami patterns will cross each other and the only resisting force
is the fictitious elastic support reaction. However, when the panel contact is activated, a jump in
the stiffness is observed, which mimics the interlocking behavior of this particular origami design.

Although the contact is successfully captured by the model, we need to point out that the
simulation code still assumes linear elasticity for the material model and thus captures no material
failure. In real loading situations, material failure eventually happens and stops the loading forces
from reaching infinity. Therefore, the predicted mechanical behavior may not be trusted if the
contact force is too large to fail the structural material used in the system. However, we believe
future enhancement of the material model embedded in the bar models and rotational spring models
can solve the problem.

Although the interlocking behavior considered here is complicated, a wall-clock time of 57
seconds was recorded on a modern computer (2018) with i7-7700 processor. Not surprisingly,
for this particular example, 80% of computation time is used to calculate the point to triangle
distance and to check if the contact has happened. Because contact detection requires a double loop
through all triangle elements, contact detection is quadratically more expensive computationally
than nonlinear simulation (assembling stiffness matrix) of an origami pattern. This suggests that
the previously mentioned two model approach can be a desirable method to simulate origami
interlocking problems such as the one studied here. Knowing the contact pattern in advance would
allow us to eliminate a large portion of unnecessary contact detection checking and thus bring
down the computation cost of a detailed FE simulation.

4.6 Concluding Remarks

In this chapter, an efficient panel contact simulation technique is proposed to study the occurrence
of contact, and contact induced behaviors in origami tessellations. The proposed model does not
require a dense FE meshing so that it is computationally cheap and efficient to implement nu-
merically. Because frictional forces are generally not significant when studying the foldability of
origami systems, we assume that the contact force is conservative and thus has a potential. The
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contact potential is constructed such that when a selected node (point) approaches a triangulated
panel (triangle), a large contact force vector is triggered. To prevent panel penetration, the proposed
contact potential gives an internal force vector and a stiffness matrix that approach infinity as the
distance between the point and the triangle approaches zero. The model was tested numerically
and the tests confirm that the proposed model complies with three requirements: (1) continuous
internal forces; (2) infinite forces and stiffness as point to triangle distance approaches zero to
prevent penetration; and (3) piecewise formulation for contact initiation and disengagement.

An implementation scheme for including the panel contact model within a bar and hinge model
is also presented. Simple origami patterns are used to test the behavior of the contact simulation
when combined with the bar and hinge model. These tests show that the model captures the contact
geometry and forces correctly and efficiently. Moreover, by tuning the model parameters, the con-
tact model can simulate thickness in origami panels. More complicated simulations are explored
in the example section to demonstrate the validity and efficiency of the model. We showed that the
proposed model can be combined with any bar and hinge type framework and thus has broad ap-
plicability in studying contact related problems in origami engineering. The model is suitable for
detecting when contact occurs during the origami folding sequence, studying the foldability, and
capturing the relevant mechanical behaviors in the origami structure after contact. This model can
enable the discovery of origami patterns that can be folded either by avoiding contact, or despite
self-contact, and can open up a new frontier for origami structures that harness contact to achieve
new functionality.
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Chapter 5. Multi-Physics Electro-Thermal Actuation Model

In this chapter, a novel multi-physic actuation model for functional origami systems is established
to resolve the Challenge 4 discussed in Chapter 1 Introduction. More specifically, this work focuses
on the simulation of electro-thermal origami systems (those proposed in Chapter 2). This work
provides the much needed simulation model for capturing the heat transfer within active origami
systems that can be used to study the behaviors of thermal metamaterials. Although this work
is tailored for thermally active systems, the model formulation could be extended to other active
systems in the future.

This chapter is organized as the following. First, to echo with the Challenge 4, we give a more
detailed discussion on why current origami simulations cannot capture the behaviors of functional
active origami system with multi-physical actuation. Next, we introduce the proposed simulation
framework in Section 5.2. We describe the three major steps of the framework and introduce the
modeling techniques involved. Section 5.3 uses a series of calibration tests to fine tune the model
parameters and to check the accuracy of the new heat transfer model against high-fidelity finite
element simulations. Following the calibration, Section 5.4 verifies the performance of the pro-
posed simulation framework by comparing it against physical experiments. Finally, three practical
examples are presented to demonstrate the broad capability, efficiency, and usefulness of this rapid
simulation framework.

5.1 Active Origami and Multi-Physical Simulation

Over the past decades, a number of active origami systems have been built and tested. These
origami are actuated with active materials or responsive systems, such as hydrogels [Na et al.,
2015, Yoon et al., 2014, Kang et al., 2019], metallic morphs with residual stress [Leong et al.,
2009,Leong et al., 2008,Bassik et al., 2009], shape memory polymers [Felton et al., 2014,An et al.,
2018], magnetic active systems [Shaar et al., 2015, Iwase and Shimoyama, 2005], etc. Among
these different systems, thermally active materials demonstrate great potential in building practical
origami devices [Na et al., 2015, Leong et al., 2009, Leong et al., 2008], because thermally active
material can achieve high energy efficiency and provide high work density [Yang et al., 2020].
Moreover, by designing proper electric circuits to control the heaters, one can control the folding
motion of origami creases separately to achieve complex motions and functions [Zhu et al., 2020,
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Figure 5.1: Simulating of electro-thermal actuation with a bar and hinge model.

Jager et al., 2000].
Figure 5.1 demonstrates how electro-thermal actuators can enable origami systems to achieve

controllable folding at the micro-scale. This is the system proposed in the Chapter 2 of this dis-
sertation. When passing current through the patterned metallic heaters, Joule heating will elevate
the temperature of the crease regions. If the creases are made with a bi-material morph that has
two different thermal expansion coefficients (α), the changing temperature will generate bending
motion because one layer will expand more than the other.

However, simulation of electro-thermally actuated functional origami has remained substan-
tially limited. Current simulation methods for origami are mostly kinematics-based [Tachi, 2009c,
Tachi, 2010b] or mechanics-based [Liu and Paulino, 2017a, Liu and Paulino, 2016] and have in-
complete abilities to capture the multi-physics based actuation. As demonstrated in Fig. 5.1 (c),
properly capturing the folding motion is indeed difficult, as it requires simultaneously simulating
the coupled electro-thermal heating, the interaction between heat dissipation and large deforma-
tion folding, the potential contact between substrate and origami panels, and other loading effects
such as gravity. This difficulty in simulation has limited design methods for functional origami to
mostly trial and error approaches [Na et al., 2015,Zhu et al., 2020]. Furthermore, without efficient
simulation it is difficult to optimize designs or to construct control protocols for these functional
origami systems.

Therefore, the primary goal of this Chapter is to build a multi-physics based simulation method
to resolve the Challenge 4 proposed in the Introduction. Part of this problem is already addressed
in Chapter 3 and Chapter 4 of this dissertation, where the compliant crease bar and hinge model
and the inter-panel contact model is proposed. Thus, to fully resolve the problem, this Chapter
will develop a heat transfer model within the bar and hinge formulation and design an integrated
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simulation framework to merge these different capabilities.

5.2 A Simulation Framework for Functional Origami

In this section, we introduce the proposed rapid simulation framework for electro-thermal micro-
origami systems, which is based on a simple but effective bar and hinge model. The simulation
framework has three major steps: (1) simulate the temperature profile under applied heating power,
(2) calculate the stress-free angle of creases based on the elevated temperature, and (3) solve the
new equilibrium position of origami system (Fig. 5.2). The first step contains the new heat transfer
model developed in this Chapter, whereas the following two steps use existing models developed
in the Chapter 3 and Chapter 4 of this dissertation. In the following subsections, we will describe
these steps in detail.

5.2.1 Step 1: Solving the heat transfer problem

First, we focus on how to capture the elevated temperature of the origami systems under applied
heating power (see Fig. 5.3). This heat transfer problem has two major components: the heat trans-
fer within the origami structure, and the heat transfer between the structure and the surrounding
environment (Fig. 5.3 (a) to (c)). For the heat transfer problem within the origami structure, we
use the existing nodes in the bar and hinge model to store the temperature information and use the
planar triangular (T3) thermal elements to generate the conductivity matrix (see Fig. 5.3 (c)). This
elements are a convenient choice because the bar and hinge model naturally provides triangulated
meshing of the origami surface. Next, to consider the heat transfer between the origami and the
surrounding environment, additional nodes are introduced to represent the temperature of the sur-
rounding environment (e.g. air, water) near the surface of these active systems. The heat transfer
between the structure and the surrounding environment is simplified as an 1-D thermal conduction
problem and use multiple bars to represent the thermal conductivity between the structure and the
surrounding environment. Generally speaking, simulating the heat transfer as a conduction prob-
lem is a valid assumption for small-scale systems, because convection is not significant. For most
devices fabricated with MEMS processes, this is a valid assumption [Hussein et al., 2016, Ozsun
et al., 2009]. In the remainder of this subsection, we will introduce how to calculate the model
parameters based on the system geometry and the material properties to effectively capture the
heat transfer between the origami and the surrounding environment.

A chain of nodes and bars is added to each node of the origami to represents the surrounding
environment (Fig. 5.3 (a) to (c)). This chain of nodes and bars captures the heat transfer between
the structure and the surrounding environment as an 1-D thermal conduction problem. It is assumed
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Figure 5.2: Flowchart for the rapid simulation framework for electro-thermally actuated origami
systems.
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Figure 5.3: Simulating heat transfer using a bar and hinge model.

that the end nodes (farthest away from structure) are at room temperature (RT). The conductivity
of bars in this chain representing the environmental substance column can be calculated as:

ki j =
kmatAi j

Li j
, (5.1)

where kmat is the thermal conductivity of the surrounding environment, Li j is the bar length be-
tween node i and node j, and Ai j is the cross section area of the bar (see Fig. 5.3 (c)).

Figure 5.3 (b) and (c) introduce how to calculate the bar area Ai j connecting node i and node j.
The equation for assigning the bar area Ai j is derived by preserving the total thermal conductivity
of the bulk material of the surrounding environment. Consider a triangular heating panel as shown
in Fig. 5.3 (b) and assume that at thickness tenv away from the panel, the surrounding environment
is at room temperature. To model the effect that a larger volume of surrounding substance gets
heated as the distance from the heating panel increases, we introduce the dissipation angle β. Then
the total volume of surrounding substance at one side of the panel is the sum of four triangular
prisms as pictured in Fig. 5.3 (c). We further introduce N, the total number of bars in the chain,
to convert this gradually changing cross section into N bars with different constant cross sections
Ak

i j (where the superscript k indicates that this area is for layer k). To match the total thermal
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Figure 5.4: Capping tenv to simulate thermal boundaries.

conductivity for layer k, we need to preserve the total volume and thus we have:

3tenvAk
i j

N
= 2

tenv

N
(At +Lsumtenv tanβ(

k−0.5
N

)), (5.2)

where At is the area of the triangle heating panel and Lsum is the length of the perimeter of the
heating panel. By rearranging the equation, we obtain the expression of the cross section of bars
for each layer in the chain as:

Ak
i j =

2
3

(At +Lsumtenv tanβ(
k−0.5

N
)). (5.3)

Tuning the value of N, β, and tenv allows us to capture the heat transfer between the origami and
the surrounding environment properly. The effects of different combinations of these parameters
are studied closely in the following section.

After solving the thermal conductivity of different bars, we can assemble the global thermal
conductivity matrix and solve the nodal temperature as T = K−1q, where T is the nodal temperature
vector, K is the global conductivity matrix, and q is the input nodal heating power.

One major advantage of the proposed bar and hinge framework is that it can simulate the
thermo-mechanical coupling by varying the tenv parameter based on the geometric configuration
of origami. Figure 5.4 shows how the thickness of surrounding substance is capped to consider
the changing thermal boundary. When a triangular heating panel gets close to a thermal boundary,
the distances between the three nodes of the heating panel and the planar thermal boundary are
calculated, and the average tmax = (timax + t j

max + tkmax)/3 is used to cap tenv. When tmax ≤ tenv,
tmax is used to calculate the conductivity for structure-environment heat loss. When tenv ≤ tmax,
the boundary has limited effects on the heat transfer problem, and tenv is used to calculate the
conductivity for structure-environment heat loss. In the verification section, we will show that this
simple method allows the refined bar and hinge model to capture the thermo-mechanically coupled
folding behavior of the functional origami effectively. While this thermal model is built specifically
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for small-scale origami structures, we envision that it can be extended to model thermal behavior
of other thin origami and kirigami inspired structures.

When following the flowchart on Fig. 5.2 for solving the heat transfer problem of functional
origami system, it is important to select an appropriate step size for heating dq. If the heating step
dq is too large, step 3 of the flowchart can have convergence problems. In general, it is suggested
controlling the heating step dq to be relatively small so that step 3 can converge within 5 to 10
Newton iterations. A smaller dq value will require more increments to finish the simulation and
thus makes the wall-clock time longer. However, this longer run time may be preferred because it
stabilizes the simulation and ensures easier convergence of the problem.

5.2.2 Step 2: Solving the stress-free angle

Next, the stress-free angle of the folding crease is computed based on the nodal temperature pro-
file obtained in step 1. This work assumes the crease region to be made of bi-material morph
components that consist of two layered materials with different coefficients of thermal expansion.
Because one of the material layers expands more when heated, the bi-material morph will develop
curvature and folding in the crease region (Fig. 5.1 (a)). This is a common actuator design which
has been used in many previous research efforts [Na et al., 2015,Zhu et al., 2020,Kang et al., 2019].
Furthermore, it is assume that the panels of the origami will remain near to rigid, and that the ele-
vated temperature will not introduce significant deformation in the panels that interferes with the
crease folding. This is a reasonable assumption because most functional origami system have pan-
els that are rigid when compared to the creases, and also the panels remain passive to the applied
stimulus [Zhu et al., 2020, Na et al., 2015, Kang et al., 2019, Felton et al., 2014]. Timoshenko’s
bi-material morph model [Timoshenko, 1925] is used to calculate the stress-free curvature of the
creases based on the elevated crease temperature. This analytical model assumes that both the
section level structural response and the material response are linear. Though simple, the model
gives a good prediction of the curvature and rotation of the bi-material morphs, and its accuracy
has been demonstrated in previous research [Zhu et al., 2020,Na et al., 2015,Pezzulla et al., 2015].
The curvature of the bending actuator under a given elevated temperature δT is calculated as:

κ =
6(α1−α2)(1+m)2δT

(t1+ t2)[3(1+m)2+ (1+mn)(m2+ 1
mn )]

, (5.4)

where α1 and α2 are the thermal expansion coefficient of the two materials, E1 and E2 are the
Young’s moduli of the two materials, t1 and t2 are the thicknesses of the two materials, m = t2/t1,
and n = E2/E1. The stress-free angle of the folding crease with length l can be next calculated as:
θ = κl. The updated stress-free angle of folding creases will be used in the mechanics formulation
in step 3 to determine the new equilibrium shape of the origami systems.
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5.2.3 Step 3: Solving the equilibrium position

Finally, the compliant crease bar and hinge model (developed in Chapter 3) is used to simulate the
new equilibrium position of the origami system. The total potential strain energy stored within the
origami system can be expressed as the following:

U(x) = Ubar(x)+Uspr(x, δT )+Ucontact(x), (5.5)

where x is the nodal coordinates, and Ubar, Uspr, and Ucontact are the potential energies from
stretching of bar elements, folding of rotational springs, and contact of system components. As
can be seen in the equation, the elevated temperature can affect the potential of the rotational spring
elements. Contact within the origami model can be detected based on the distance d between nodes
and surfaces in the modele (origami panels or substrate). To simulate the contact interactions, a
contact penalty function (developed in Chapter 4) is included into the total potential of the system.
The formulas for the contact potential term Ucontact(x) can be found in Section 4.2. By the for-
mulation of principle of stationary potential energy, searching for the configuration with the local
minimum potential will yield a configuration that is in equilibrium.

Together, the simulation framework allows us to capture: the global temperature distribution
induced by electro-thermal heating, crease curvature resulting from the elevated temperature, in-
teraction between heating dissipation and the large deformation folding, mechanical deformation
from gravity and other loading, and contact induced interactions within the origami systems.

5.3 Calibration and Parameter Selection

Since the heat transfer model (step 1 of the framework) is new, this section studies its behaviors
and verifies its performance. The validity of the models for solving crease curvature (step 2) [Zhu
et al., 2020, Na et al., 2015, Pezzulla et al., 2015] and for solving the large deformation origami
motion (step 3) [Zhu and Filipov, 2020, Zhu and Filipov, 2019a] have been studied previously in
Chapter 3, so we will not reiterate the material. Moreover, this section also demonstrates how
to select the model parameters (thickness of surrounding environment at room temperature tenv,
number of layers N , and dissipation angle β) used to tune the behavior of the heat transfer between
the structure and the surrounding environment. Additional studies further verify that the chosen set
of parameters are applicable to a wide range of combinations of geometries and material properties.

5.3.1 Heat transfer within origami structures

We first study the validity of the proposed bar and hinge model for simulating the heat transfer
problem within the origami structure. Because the proposed model uses a well established pla-
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Figure 5.5: Verification of the proposed simulation for heat transfer within the origami structure.

nar triangular (T3) thermal element, the performance is guaranteed when fine meshing is used.
However, because the proposed bar and hinge model only uses a coarse mesh, it is necessary to
determine how much error is introduced in the temperature prediction. Figure 5.5 (a) shows the
setup for a two-panel origami with one heating crease system, with which we explore the perfor-
mance of the model. The far ends of the two panels are set to be at room temperature (RT = 0),
and apply a uniform body heat of magnitude q = 10 in the center crease. The planar geometry of
the panels is defined using L, L1, and L2, while the crease is defined using L and W. The thickness
of the panels is tp, and the thickness of the crease is tc. This system can be effectively modeled as
an 1-D heat transfer problem with available analytical solutions.

A non-dimensionalized material thermal conductivity k = 1 is assumed for all the verification
studies in this subsection. A FE simulation of the two panel origami shows the 1-D characteristic
of this heat transfer problem (Fig. 5.5 (c)). Four non-dimensional parameters are studied for this
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comparison and they are: (1) W/L indicating the ratio between the width of the creases to the
length of the creases; (2) tc/tp indicating the ratio between the thickness of the creases and the
thickness of the panels; (3) L1/L where L1 = L2 indicating the aspect ratio of the panels; and (4)
L1/L2 indicating different lengths of the two panels.

The proposed bar and hinge model cannot capture the 1-D heat transfer feature perfectly
because the three nodes on the center line of the crease give different temperature predictions.
However, as will be shown, these predictions are close to the theoretical 1-D heat transfer solu-
tion. For the verification, we compare the difference between the maximum simulated temperature
T BH

max = T3, the average simulated temperature T BH
ave = (T1+T2+T3)/3, and the analytical solution

of the 1-D heat transfer problem T 1D.
First, we assume that the geometry of the two panels is identical by setting L1 = L2 and study

the performance of the model for different crease versus panel thicknesses (tc/tp - Fig. 5.5 (d)) and
for different length versus width of the structure (L1/L Fig. 5.5 (e)). The prediction from the pro-
posed bar and hinge framework closely matches the analytical solution and captures the identical
trends for different crease dimensions (W/L). Both curves of T BH

max and T BH
ave match the analytical

solution well and there is limited difference between the value of T BH
max and T BH

ave . Next, we break
the assumed the symmetry of the system and study the performance of the model when the two
panels have different geometries (L1/L2 Fig. 5.5 (f)). Similarly, the bar and hinge model can cap-
ture the trends well. Although the maximum temperature of the crease is slightly overestimated,
the average temperature of the crease is about the same as the analytical solution. These results
indicate that the non-uniformity of the coarse bar and hinge mesh do not introduce a significant
error regardless of the system geometries.

5.3.2 Heat transfer between origami structures and surrounding environments

To test the performance of the model for simulating heat transfer between the structure and the
surrounding environment, we need to study how the three model parameters affect the model per-
formance, namely: thickness of surrounding substance between the structure and the point at room
temperature tenv, the number of discretizing layers N , and the dissipation angle β. We vary the
combinations of these three parameters and compare the results from the bar and hinge model to
a 2-D FE simulation and a 3-D FE simulation of the same two panel origami system (see Fig. 5.6
(a) for the set up). The 3-D FE simulation represents the realistic behavior of the system because
it is able to consider heat loss in all directions. On the other hand, the 2-D FE simulation result
is provided as an upper bound. We assume the surrounding environment to be air (with thermal
conductivity of kair = 0.026W ·m−1 ·K−1 [Huang and Lee, 1999]) and assume the structure is made
from an SU-8 polymer (with thermal conductivity of kS U8 = 0.3W ·m−1 ·K−1 [MicroChem, 2019]),
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Figure 5.6: Calibration of the heat transfer between the origami and the surrounding environment.

which is a common polymer material for MEMS devices.
The comparisons of the results for different combinations of the three model parameters are

summarized in Fig. 5.6 (b), (c), and (d). Figure 5.6 (b) suggests that our model is sensitive to the
selection of the dissipation angle β. This β parameter allows us to consider the heat loss in different
directions and is determined by the geometric characteristics of the system. The results presented
suggest that β= 20◦ matches the 3-D FE simulation well for a typical single crease origami system,
and thus this value is selected for further simulations performed in the paper. Figure 5.6 (e) shows
that a value of tenv = 1.5L is needed for the thickness of the surrounding substance such that the
proposed model can properly capture the surrounding environment. Figure 5.6 (f) shows that the
simulation is not sensitive to the number of discretizing layers N, once N is sufficiently large (5 ≤
N). The results presented in Fig. 5.6 show that when the proper combination of model parameters
are selected (β = 20◦; tenv = 1.5L; N = 10), the proposed bar and hinge model can capture heat
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Figure 5.7: Checking the model accuracy for capturing the heat transfer between the origami and
the surrounding environment with different material thermal conductivity.

transfer between the origami and the surrounding environment with reasonable accuracy. The
model captures the trends with respect to the geometry of the system (W/L ratio) and provides a
reasonable approximation of the actual temperature changes in the 3-D system.

Finally, we check the performance of the proposed model for different material combinations
(Fig. 5.6 (e) and (f)). We select air and water as the surrounding environments and use Su-8, Si, and
Au as the materials of origami structures (these environments/materials are common for functional
origami systems). We use the same model parameters as those chosen through the parametric
study in Fig. 5.6 (β = 20◦; tenv = 1.5L; N = 10). The model shows a good match with the 3-D FE
simulation regardless of the type of environmental substance and the type of material that is used
for the origami structure. Thus the above model parameters are a reasonable choice for simulating
different structure and environment combinations.

5.4 Experimental Verification

In this section, we will verify the performance of the proposed simulation framework by compar-
ing the prediction of the folding motion from the model to physical micro-origami systems. The
two cases to be studied are: a single-crease origami with a folding threshold and a double-crease
origami with thermo-mechanical coupling.
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Figure 5.8: Comparison between the predicted folding behavior from simulation method and the
measured folding behavior of electro-thermal one-panel micro origami.

5.4.1 Single-crease origami with a folding threshold

First, a single-crease micro-origami system, which experiences a gravity induced folding threshold,
will be studied. The threshold effect occurs because gravity acting down on the origami causes it
to come into contact with the substrate underneath. To fold the single crease origami, we need to
apply power higher then a specific threshold to overcome the effects of gravity before observable
folding is achieved (Fig. 5.8 (a)). This case study shows that the proposed model can accurately
capture the multi-physics interaction between the heating induced self-folding, panel contact, and
gravity.

Figure 5.8 (b) demonstrates the simulated folding behavior with our bar and hinge framework,
and Fig. 5.8 (c) shows the comparison between the simulation and experimental measurements.
The physical devices were fabricated and actuated with processes introduced in our previous work
[Zhu et al., 2020]. The simulation curves are plotted with an assumed negative residual folding
angle. This negative residual folding angle is a physical characteristic of the systems which occurs
because of a residual stress generated during the fabrication of the polymer (SU-8) layer and the
gold layer. This effect is difficult to quantify analytically, so we assume that the creases will
develop about −10◦ of residual folding, which matches the observation of testing beams with
no panels [Zhu et al., 2020]. The simulation results for 0◦ and −20◦ of residual folding are also
plotted for comparison. The simulation is able to capture the threshold effects and the large folding
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Figure 5.9: Comparison between the predicted folding behavior from simulation method and the
measured folding behavior of electro-thermal two-panel micro origami.

of the origami accurately. The wall-clock time for running the entire simulation with 250 thermal
increments is 13 seconds recorded on a modern laptop with i7-8750H processor. The model under-
predicts the nonlinearity in the folding and a higher heating power is needed to reach the high
folding angles. The more extreme nonlinearity observed in the real experiments is likely due to
the nonlinear material responses and the complex thermal boundary generated by the etch holes
surrounding the single-crease origami. Previous researches have shown that the mechanical and
thermal properties of SU-8 is nonlinear [Robin et al., 2014, Xu et al., 2016], which can lead to the
mismatch in Fig. 5.8 (c). Also, the thermal boundary with a complex 3-D shape is simplified as a
2-D plane in the proposed model so the heating dissipation is not captured exactly.

Figure 5.8 (c) also contains one outlier that we encountered during the physical testing (Sample
5). In this case, the specimen experienced a local defects during the fabrication which caused the
wrinkling in the electro-thermal actuator crease and delayed the folding from happening (Fig. 5.8
(d)). Such localized behaviors cannot be captured with the proposed model as our model has
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limited degrees of freedom and is dedicated to only simulating the global response of origami.
Although this outlier illustrates the limitation of our model, we believe it does not compromise
the usefulness of the proposed model. More robust fabrication methods will prevent such outliers
from happening in the future.

5.4.2 Double-crease origami with thermo-mechanical coupling

Here, we study the thermo-mechanically coupled folding behavior within a double-crease origami
pattern (Fig. 5.9). This system has two identical creases, however, the folding of the two creases is
different because each crease has different thermal boundaries that results in different temperatures
when heated. The second fold (fold 2 on Fig. 5.9 (a)) is folded further away from the substrate
which leads to a slower heat dissipation, a higher temperature, and a higher curvature. This coupled
thermo-mechanical effect can be captured accurately with the proposed model.

Figure 5.9 (a) shows the simulated folded geometry of the origami system, and Fig. 5.9 (b)
shows the experimental pictures of the same systems. The physical devices are fabricated using
the processes reported in [Zhu et al., 2020]. A single simulation of the double-crease origami pat-
tern takes about 18 seconds to complete (recorded on a modern laptop with i7-8750H processor).
Figure 5.9 (c) and (d) show a comparison between the simulation and the measured results for
the folding angle of the two creases. Similar to the single-crease, the double-crease system also
experiences the gravity induced threshold effect, which can be captured with the bar and hinge for-
mulation accurately. More significantly, the results show that the proposed model can capture the
thermo-mechanical interaction during the large folding deformation. The simulation successfully
predicts that the fold 2 will develop a higher temperature and a larger folding angle as it moves
away from the substrate.

The experimental results show that the fabricated physical samples have different residual fold-
ing as a result of the fabrication process (in Fig. 5.9 (b), the two samples rest at different con-
figurations when no heating is applied). The difference in residual folding is mainly caused by
the variation in residual stresses of the SU-8 layer and the gold layer. This residual folding can
be measured and estimated using the testing beam samples from our previous work [Zhu et al.,
2020]. These variations in residual stress are common for micro-scale fabrication but they are
tremendously difficult to control [Kang et al., 2019]. We envision that the proposed simulation
framework can be used to enumerate different combinations of design parameters efficiently to
make the origami design robust against the influence of residual stress and other factors. Because
the proposed framework is computationally efficient, it is possible to enumerate a large number of
combinations of design parameters within a reasonable time schedule.
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Figure 5.10: Simulation of the self-folding of an origami crane. (a) Folding the crane pattern with
applied heating to all active creases. (b) Folding the crane pattern with two creases deactivated.

5.5 Application Examples

In this section, we will demonstrate the effectiveness and efficiency of the proposed method with
three application examples: simulation of a crane pattern, folding of a Miura origami lifter, and an
optimization study of an origami micro-gripper.

5.5.1 Simulation of a crane pattern

The first example studies the folding of an origami crane pattern as shown in Fig. 5.10. This
crane pattern has 17 creases and is more complex then the single-crease and double-crease systems
demonstrated previously. We use this example to demonstrate that the provided implementation
code package can be easily adapted to simulate more complex origami systems. It is assume that
the crane pattern is made with the same fabrication method as discussed previously [Zhu et al.,
2020] and thus the panel are made of thick SU-8 and the electro-thermal creases are made with Au
and thin SU-8 films. The folding is accomplished by applying heating power to all creases of the
crane pattern simultaneously. For simplicity, the effects of gravity and the thermal boundary of the
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substrate are neglected in this example.
Figure 5.10 (a) demonstrates the folded geometry of this crane pattern, and the wall-clock time

for running this simulation is about 30 seconds (recorded on a modern desktop with i9-10900K
processor). When folding complex origami patterns, the folding speed of different creases tend
to be different because of kinematic constraints by the pattern geometry [Zhu and Filipov, 2020].
However, common fabrication methods usually cannot ensure that different creases will fold with
different speeds [Zhu et al., 2020, Na et al., 2015]. Thus, there will be interference between the
different folding creases and strain energy will develop in the creases as their fold angles deviate
from the computed stress-free state [Zhu and Filipov, 2020]. The proposed method can be used
to study and simulate this interference effectively as demonstrated in Figure 5.10 (a). In general,
by designing an origami pattern that has one-degree-of-freedom kinematic motion, one can also
achieve the desired folding even if the actuation speed deviates from the kinematic folding speed.
Moreover, it is also possible that real fabrication cannot actuate all creases simultaneously, and
there may be a need to leave certain creases as passive rotational springs [Zhu et al., 2020]. Fig-
ure 5.10 (b) demonstrates one example of non-uniform actuation where two creases of the crane
pattern are deactivated. The simulation shows that although we are not applying heating to these
two creases, the folding can still proceed successfully. The successful folding is achieved because
the pattern of this crane has one-degree-of-freedom folding kinematics. The two computation
examples show that the proposed simulation framework is well suited for studying the complex
folding motion of functional origami. Moreover, this example shows that the provided execu-
tion package can be easily adapted to efficiently simulate the electro-thermal folding of relatively
complicated origami systems with non-uniform actuator placement. The relevant simulation code
“Example06 Crane.m” can be found on the GitHub page.

5.5.2 Folding of a Miura beam lifter

In this second example, a Miura beam based lifting device is studied. This example shows that the
proposed simulation framework can capture complex thermo-mechanical interactions even when
simulating a relatively complex origami pattern. Figure 5.11 shows the loading set up of the
Miura beam, where the left end of the beam is anchored. All creases of the pattern are heated
simultaneously so that the right end of the beam will be lifted as the pattern folds. We first consider
folding the device when no substrate is presented under it. Figure 5.11 (a) shows the folded the
geometry when no supporting substrate is presented and the dark line in Fig. 5.11 (c) gives the
lifting displacement with respect to the normalized heating power.

This first loading set up is usually not realistic because a substrate is needed to support the
device in a physical test. For small-scale devices, the large substrate supporting the devices will
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Figure 5.11: Simulation of a Miura-ori pattern lifting device.

naturally introduce a temperature boundary condition. Figure 5.11 (b) shows the deformed geom-
etry of the same Miura beam under the same electrical heat loading when the substrate is presented
underneath. We can see that those creases on the left end of the beam (in the dashed box) have
a lower temperature than those creases on the right end. This temperature reduction is observed
because the creases on the left end are closer to the substrate and thus dissipate the heating power
quicker. Because part of the creases develop lower temperature, the lifting displacement of the
device is also lower compared to the situation when no substrate is presented (see Fig. 5.11 (c)
gray line). A wall clock time of about 50 seconds is recorded to run the analysis of this Miura
beam example on a modern laptop with i7-8750H processor, which shows the efficiency and the
capability of capturing changing thermal boundary of the proposed simulation framework. The
simulation code “Example03 Miura.m” can be found on our GitHub.

5.5.3 Optimization of origami gripper

The final example demonstrates how the simulation framework can be used as an efficient tool
for optimizing the design of functional origami devices for realistic application. Over the past
decades, there have been a number of research efforts to optimize origami designs [Dudte et al.,
2016]. For example, particle swarm optimization can be used for finding new origami tessellations
[Chen et al., 2021], a mixed-integer-program can be used for determining the mountain-valley
assignment of origami creases in a pattern [Chen et al., 2020], and genetic algorithms could be
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Figure 5.12: Optimizing the power consumption of a micro-origami 3-D gripper.

used for optimizing the geometry of origami patterns [Gillman et al., 2019]. However, most of
the existing optimization studies are applied onto kinematic simulations of origami systems and
thus have limited capability to optimize performance based metrics of origami like the power
consumption. With the proposed model, we now have the capability to simulate function related
metrics of functional origami efficiently and effectively, and thus can further achieve optimization
of the performance of a functional origami.

Here, the proposed framework is used to optimize the design of an active origami gripper first
demonstrated in Chapter 2. This micro-gripper has four foldable panels controlled by two separate
circuits (see Fig. 5.12 (a) for system design and dimensions). The first circuit is used to fold
the base panels to assemble the gripper into the 3-D geometry, and the second circuit is used to
close the arms to achieve gripping functions. In Chapter 2, this gripper is designed using trial
and error approaches so the gripping performance is not optimized. Here, we will search for a
better geometrical design to minimize the input power needed to first assemble and then close the
gripping arms. Practical constraints are considered and these include: (1) the size of the panels
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Figure 5.13: Verifying the results of optimization with experiments.

should not exceeds a prescribed range; (2) the gripping range is fixed as a constant; and (3) the
temperature of the creases should not exceed the glass transition temperature of SU-8 so that the
structure will not soften too much due to the excessive heating. The gripper optimization problem
is formulated as follows:

min (Power(W,L1,L2,La)) (5.6)

s.t. Lmin ≤ L1,L2 ≤ Lmax (5.7)

Wmin ≤W ≤Wmax (5.8)

La,min ≤ La ≤ La,max (5.9)

maxi(T crease
i ) ≤ 1.2×Tg,S U8 (5.10)

A coordinate descent with fixed step length is used to perform the optimization. The starting
geometry is: L0

1 = 1000µm, L0
2 = 1000µm, L0

a = 700µm, and W0 = 200µm, and the constraints are
selected as: Lmin = 500µm, Lmax = 1500µm, Wmin = 100µm, Wmax = 300µm, La,min = 500µm, and
La,max = 1500µm. Unlike the original design presented in [Zhu et al., 2020], the panels of these
micro-origami grippers are made with 5 µm thick SPR photoresist rather than the 20 µm thick SU-8
photoresist. This reduction in thickness makes the folding motion of the gripper easier to control
by reducing effects of gravity. Figures 5.12 (b) to (e) summarize the results of the optimization.
We can see that as the optimization proceeds, the base panels become smaller and the actuator
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creases become longer. These optimization results are obtained because the smaller base panels
can reduce gravity loading and the longer actuator creases can achieve the same folding angle at
a lower temperature with less input power. The optimized gripper not only demonstrates better
energy performance, but also has lower functioning temperature, which makes it more robust and
less likely to be overheated. Each simulation of the gripper can be done in 20 seconds and the
entire optimization is accomplished in about 25 minutes without parallelization, demonstrating the
high efficiency of the proposed simulation framework.

After running the simulation, the optimized gripper was fabricated and tested. The recorded
folding motion and the power consumption are shown in Fig. 5.12 (f) and (g). The first gripper
sample Fig. 5.12 (f) has a geometry that is close to the simulated gripper obtained in step 4 of the
optimization, and the second gripper in Fig. 5.12 (g) has a geometry that is close to the simulated
gripper obtained in step 9 of the optimization. The geometry of the fabricated samples does not
match the simulated geometry exactly due to practical limitation of the fabrication. The first grip-
per design requires 29.8 mW to complete the full gripping function while the optimized sample
requires 21.6 mW, demonstrating that the optimization successfully reduced the power consump-
tion. However, the measured power consumption of the unoptimized gripper is lower than what is
simulated. There are multiple factors that can lead to this overestimation. First of all, the resid-
ual curvature of the relatively thin SPR panel for the non-optimized gripper can interact with the
folding process and contribute to the mismatch in the power calculation. Besides, a fixed heat
dissipation angle β is used for the entire system without considering the thermal interaction be-
tween adjacent creases. When there are multiple creases and panels that are close to each other
(such as in this gripper), the heat dissipation angles β should decrease to consider that the multi-
ple creases/panels cannot dissipate as much heating power using a shared volume of air. Because
the crease temperatures in the optimized design are substantially lower, there is less overall dissi-
pation, and thus it matches simulated prediction better. Finally, variations in thickness, material
properties, pattern sizes, and other factors during the fabrication could also contribute to the mis-
match. Although the predicted power consumption does not match the the experiment perfectly,
the revealed design principle is valid and useful and the power consumption of the gripper is re-
duced successfully, which demonstrate capability of using the simulation framework for design
optimization.

5.6 Concluding Remarks

In this chapter, a novel simulation framework is proposed to capture the multi-physical behaviors
of electro-thermally actuated origami systems. The framework is based on the comliant crease bar
and hinge model developed in Chapter 3, which allows for a simplified and rapid simulation of the
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active systems with thin-sheet geometry. This chapter establishes a new model for capturing the
heat transfer and the thermo-mechanical coupling within the origami. Our approach recursively
solves (1) the heat transfer problem for the nodal temperature of the origami under an applied
heating power, (2) the curvature of each crease from the elevated crease temperature, and (3)
the new equilibrium position of the origami using a mechanical solver that determines the global
folding motion of the system.

In the proposed formulation, planar triangular thermal elements are used to capture heat transfer
within the structure, while the structure to environment heat loss is simulated as a simplified 1-D
heat conduction problem. This modeling technique is calibrated and verified against analytical
solutions and FE simulations, and the result shows that the new model can accurately capture the
two forms of heat transfer within functional origami systems.

Next, this chapter presents two verification examples where we compare the predicted fold-
ing motion from the proposed simulation framework to physical experiments of electro-thermally
actuated micro-origami. The two verification examples show that the simulation can capture the
gravity induced folding threshold, the contact between the origami and a substrate, and the thermo-
mechanically coupled folding motions. These two examples highlight the capability and validity of
the proposed simulation framework as a rapid method to capture the behaviors of origami-inspired
systems.

Finally, three application examples are presented where the model is used to study (1) the
folding motion of a relatively complex origami crane pattern, (2) the influence of having a sub-
strate under a Miura origami lifting device, and (3) the design optimization of an origami gripper.
With these three examples, we further demonstrate the efficiency and effectiveness of the proposed
framework for simulating the interdependent electro-thermal actuation, large deformation folding,
contact between different panels, and other loading effects.

This simulation framework provides a much needed method to simulate, design, and optimize
electro-thermal or thermally actuated origami systems. Moreover, the proposed framework can be
used at multiple length scales and is not limited to origami-type systems. By re-tuning the model
parameters, we envision that the model can also be applied to simulate thermal and active multi-
physical behaviors in other systems with planar features such as ribbon-based or kirigami-based
structures. We believe that the proposed simulation framework will push the limits of origami
systems, allowing engineers and researchers to explore new origami systems, to create new control
protocols for functional origami structures, and to rapidly refine and optimize their designs.
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Chapter 6. Origami Inverse Design with Interpretable Machine Learning

In this chapter, we will introduce an interpretable machine learning based inverse design strategy
for functional origami structures to address the Challenge 5 proposed in the Introduction. More
specifically, this chapter will demonstrate that a decision tree-random forest method is particularly
suitable for fitting origami performance databases, computed using simulation methods developed
in Chapter 3 to Chapter 5, for the inverse design of functional origami. First, this interpretable
machine learning method can reveal complex interactions between categorical features and contin-
uous features for comparing and selecting different origami patterns. Next, this method can tackle
multi-objective problems for designing functional origami with multiple multi-physical perfor-
mance targets. Finally, this proposed method can extend existing origami shape fitting algorithms
to further consider non-geometrical performance for a holistic origami inverse design. The pro-
posed framework greatly expands the capability of existing origami inverse design methods from
shape fitting to function design for applications in metamaterials, deployable structures, soft robots,
biomedical devices, and many more.

This chapter is arranged as the following. First, we give an introduction of machine learning
methods. We introduce how traditional machine learning method are used as surrogate models
for physical simulations and how interpretable machine learning methods are different from those
traditional ones. Next, we introduce how we can use the decision tree-random forest method
(one interpretable method) to compute the design rules for origami structures. After establishing
the methodology, we will use three demonstration examples to highlight the effectiveness and
usefulness of the proposed method. More specifically, we will start with one simple design example
and then show how categorical features and multi-objective problems can be integrated into the
framework for a holistic inverse design. Finally, we will end this chapter with a brief discussion
and a concluding remark.

6.1 Introduction of Machine Learning

Machine learning is a powerful tool rooted in data science that can be used to solve problems in
many disciplines like structural analysis [Mangalathu and Jeon, 2018], molecular simulation [Noe
et al., 2020], financial analysis [Chi and Tang, 2006], and many others [Carleo et al., 2019]. In
general, there are three major machine learning problem formulations and they are: supervised
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learning, unsupervised learning, and reinforced learning. In supervised learning, a database is
given with labels, and we apply the machine learning method to learn how to predict these la-
bels based on data features. For example, we may have a database on the financial performance
of companies, and the label information tells us whether the company goes bankrupted or not in
some years [Chi and Tang, 2006]. Then, we can train machine learning methods to differentiate
companies that may go bankrupt from those that are healthy. This trained machine learning model
can then be used to guide investors to avoid bankrupting companies. In unsupervised learning,
the goal is to train machine learning methods to spot patterns from data with no labels. These
unsupervised learning algorithms can be used to address problems like clustering, dimension re-
duction, and anomaly detection. For example, we can use unsupervised learning to create image
segmentation, where we represent an image with less than 4, 6, or 8 colors [Ng et al., 2018] for
reducing the storage space. In reinforced learning, the goal is to train an agent to achieve better
performances with superior strategies. For example, we can train machine learning method to learn
the best strategies to win a video game (e.g. StarCraft II) [Vinyals et al., 2019]. In this chapter, we
will focus on the supervised learning topic because many engineering problems can be cast as a
supervised learning problem. More specifically, we will first take a look at how machine learning
methods can be used as surrogate models to replace physical simulations.

6.1.1 Machine learning as surrogate models

Using machine learning algorithms as surrogate models to replace physical simulations is benefi-
cial for optimization or designing for a large number of samples, where we need to run physical
simulations repeatedly. Suppose we are interested in designing an electro-thermal origami gripper
and our goal is to calculate the gripper performance (including stiffness stiff, fundamental fre-
quency f req, applied heating needed to close the gripper Q, and the maximum nodal temperature
of gripper Tmax) based on the design features (including origami geometrical features like: L1, L2,
tp, rate, and actuator design features t1, t2, W). A problem like this can be thought of as identifying
a nonlinear function f to calculate the performance from the design features:

[Stiff, freq,Q,Tmax] = f (L1,L2,rate,W, t1, t2, tp). (6.1)

In general, there exist no analytical solution of this function f so physical simulations are
used to solve the performances based on the design features (top branch in Fig. 6.1). However,
because of the non-linearity and the iterative solution methods, these physical simulations are
slow. Therefore, people are interested in speeding up the simulation using machine learning. One
way of understanding machine learning method for supervised learning problem is that machine
learning is a powerful function generator that can approximate a nonlinear function with high
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Figure 6.1: Using machine learning as surrogate models for physical simulations.

accuracy and efficiency. For example, we can train the machine learning method to fit the nonlinear
function f using a performance database of the gripper, and after the training, the learned machine
learning model can approximate the physical simulation with high precision. Moreover, using the
trained machine learning model is much faster than using the physical simulation itself, because
the internal structures of machine learning models require no iterations (bottom branch in Fig. 6.1).
Figure 6.1 shows one computation example where running a physical simulation requires 33 sec
but using the machine learning (a multi-layer-perceptron model with sklearn package) only needs
0.004 sec. More importantly, we can see that the difference between the machine learning method
and the physical simulation is relatively small. Therefore, using machine learning methods as
surrogate models can drastically speed up the simulation speed for applications like optimization or
inverse design for engineering applications [Mangalathu and Jeon, 2018,Hanakata et al., 2018,Noe
et al., 2020].

Next, we show how to train a machine learning method. The first step of training a ma-
chine learning is to generate a performance database using the simulation methods (or use existing
database). Normally, a number of simulations are executed (e.g., 1000) with randomly generated
design features to build the performance database (see table in Fig. 6.2). Building the database
with random features can be thought of as a sampling process, where we sample the behaviors
of an origami simulation using the randomly generated design features. After establishing the
database, we can train the machine learning method to fit it so that the machine learning model
can approximate the behaviors of the physical simulation. This training process is different when
different machine learning method is used, and this training process can be thought of as a more
advanced version of polynomial fitting or linear regression. Basically, the data points represent
the underlying structure of the non-linear function f , and the machine learning is trained to fit that
function. In this work, we will use the open-access sklearn package to implement the machine
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Figure 6.2: Training process of machine learning methods.

learning method [Buitinck et al., 2013].

6.1.2 Interpretable machine learning and decision trees

In this subsection, we want to focus on one specific type of machine learning method called inter-
pretable machine learning. In general, interpretable machine is different from standard “black box”
machine learning method because it can produce human understandable decision rules to explain
why a decision is made [Rudin, 2019, Quinlan, 1986, Quinlan, 1993, Breiman et al., 1984]. This
allows us to obtain an interpretable approximation of the nonlinear function (the Eqn. 6.1) that is
more than accurate and efficient. This interpretability is crucial for the inverse design because it
helps us to construct the inverse relationship to calculate design features from target performances
as will be discussed in detail in the following sections. More specifically, we will use one in-
terpretable machine learning method called decision tree and its ensemble version called random
forest [Quinlan, 1986, Quinlan, 1993, Breiman et al., 1984].

Suppose we want to study a problem shown in Fig. 6.3 (a) with the decision tree-random
forest method, where we want to classify the data points (with class label y = 0,1) based on its
four-dimension features (x0, x1, x2, x3). Figure 6.3 (b) gives a sample decision tree for classifying
the data, which has a reversed tree shape. When using the decision tree method, the data point
will flow into the tree from the root node on the top of the tree. Then, the algorithm will judge if
the data point should go to the left branch or to the right branch based on if the data point meet
the splitting rule given by the branch node or not. After a series of judgements, the data point
will reach a leaf node where no more branching occurs. At the leaf node, the data point will be
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Figure 6.3: Decision tree method for solving supervised learning problems.

predicted as either class 0 or class 1. As shown, the internal structure of a decision tree method is
highly interpretable.

The tree structure as well as the splitting rules are learned from the database automatically
during the training process. Figure 6.3 (c) introduces a traditional greedy method to train a decision
tree [Breiman et al., 1984]. The algorithm will generate the branch node one after another starting
from the root node, and the algorithm will try to obtain purer sub-databases after creating the split.
The purity of the data can be measured using the cross-entropy index and a purer database will
have a smaller cross-entropy. With this index, the tree algorithm will enumerate different splitting
rules to find the one that produces two sub-databases with smaller cross-entropy values after the
split. The algorithm will keep generating new splits until the new sub-database is pure or when the
tree reaches the maximum depth. At this point, a leaf node is generated and the class prediction is
determined using the majority class of the data points within that node.

Although the formulation of the decision tree algorithm can naturally support the use of cat-
egorical data features, most implementation packages (e.g. the sklearn package [Buitinck et al.,
2013]) do not support categorical features directly and treat all features as continuous. Consider
having a categorical feature called “type of origami pattern” m = {1,2,3}, which is used to rep-
resents three different origami patterns. Clearly, m = 2 and m = 3 shall not happen at the same
time. However, if the machine learning does not treat m as categorical, it can produce decision
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Figure 6.4: Using interpretable machine learning to compute design rules from origami design.

rules like “pattern m ≥ 0.5”, which has no physical meaning. To resolve this, a technique called
one-hot encoder can be used. Figure 6.3 (d) explains how the encoder works. Basically, the cate-
gorical variable pattern m (m = {1,2,3}) is converted to three different true-false binary variables as
“m = 1”, “m = 2”, and “m = 3”, each can take values of 1 for being true or 0 for being false. With
this formulation, the machine learning will not produce unreasonable rules like “pattern m ≥ 0.5”
and can treat m as categorical.

6.2 Computing Inverse Design Rules with the Tree Method

Before introducing the proposed inverse design method, we shall first revisit the main idea of
origami design and inverse design conceptually. The design of origami can be thought of as cre-
ating a nonlinear function f (simulation) to calculate the performance indices (such as stiffness,
Poisson’s ratio, material cost, etc.) based on the design features (such as number of origami cells,
thickness of materials, sector angles of patterns, etc.). This is represented conceptually in Fig. 6.4
and in Eqn. 6.1. Therefore, understanding origami design means understanding how this nonlinear
function f (simulation) behaves. Traditionally, this is done by deliberately picking a set of num-
bers for the features and calculating the associated performances using simulation methods [Ma
et al., 2018b, Biswas et al., 2020, Xia and Wang, 2019, Fang et al., 2018, Li and Wang, 2015]. By
plotting the relationships between the features and the performances based on these deliberately
generated data points, one can understand the design rules embedded in this nonlinear function.

Unlike design, the inverse design tries to find an inverse function f −1 so that we can calcu-
late the feature values for certain performance target. In general, this inverse function f −1 does
not have a mathematically robust definition because a target performance can be achieved with
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Figure 6.5: A detailed framework for pattern selection and feature design of origami.

multiple combinations of design features. However, understanding this inverse function as some
relationship to calculate design features based on target performance is still a powerful idea. Tradi-
tional machine learning methods can only approximate the nonlinear function f without showing
us how to reconstruct an approximation of the inverse function f −1 so they are not suitable for the
inverse design problem. However, with interpretable machine learning, it is possible to reconstruct
this inverse function to resolve the inverse design problem, because of the high interpretability.

Figure 6.5 shows a flowchart of the proposed methodology. In the following subsections, we
use an example on the design of Miura origami cell to explain the proposed method. In this
demonstration example we want to design the Miura origami cell to have a stiffness k that is
smaller than 6000 N/m (see Fig. 6.5 (a)) and the design features include the sector angle (γ), the
thickness of panels and creases (tc and tp), and the width of the creases (W).
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6.2.1 Generate origami performance database

To generate the origami performance database, we randomly sample values of the design features
to first form the feature database (step number 1 in Fig. 6.5 (b)). We first determine the practical
ranges of the design features based on fabrication considerations or other limits. In this example,
we set 0.5mm ≤ tc ≤ 1.0mm, 1.0mm ≤ tp ≤ 6.0mm, 1.0mm ≤W ≤ 4.0mm 50◦ ≤ γ ≤ 80◦. Next, we
randomly generate different values for these design features to create the data points. For example,
one column in the table on Fig. 6.5 (b) is associated with one data point.

After generating the feature data points, we can compute the performance of these different
design realizations using origami simulation methods (step number 2 Fig. 6.5 (b)). We will use the
simulation platform developed in the Chapter 3, Chapter 4, and Chapter 5 to execute the simulation.
The simulation codes used to build this database and the other databases used in this work can be
found in the following link: https://github.com/zzhuyii/GenerateOrigamiDataSet.

After the above two steps, we obtained an origami database with both features and perfor-
mances. Finally, we can assign class labels to the data point based on if it meets the target perfor-
mance or not, as demonstrated in the step number 3 on Fig. 6.5 (b). For example, suppose we are
interested in having an origami unit cell with k < 6000N/m, we can assign a label 1 to those data
points that meet the target and a label 0 to the rest.

6.2.2 Train decision trees to obtain design rules

After labeling the data points, we apply the decision tree-random forest method to learn the under-
lying structures of the database. The design features and the class labels are used to train the tree
method to differentiate those designs that meet the target performance (with class label 1) from
those that do not (with class label 0). Figure 6.5 (c) shows a sample decision tree for the design
problem of Miura unit cells. Assume that we have an origami data point, we can determine its class
by sending this data point into the tree from the top. Each time the data point flows into a branch
node, a simple criterion is checked to further determine if the point should go the left or go to the
right. For example, suppose a design data point with tp = 1.1 flows into the first node, it will be sent
to the left branch according to the sample tree shown on Fig. 6.5 (c). After a series of judgements,
the data point will be sent to a leaf node, where there is no more branching and a class label is
predicted. For example, the data point listed in the column one of table in Fig. 6.5 (b) will follow
the gray arrow marked as “rule 1” and be judged as a class 1 data. This means that the machine
learning algorithm thinks the feature design in column one is most likely to produce a canopy that
meets the performance target (stiffness k smaller than 6000 N/m) because the feature design value
matches the rule: tp < 2.1mm and tc < 0.8mm. As demonstrated in this simple problem, the high
interpretability of decision tree-random forest method gives us the capability of constructing the
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inverse function f −1 easily. We can track the splitting criteria associated with class 1 data and the
produced design rules (e.g. the rule 1: tp < 2.1mm and tc < 0.8mm) will give us an approximation
of this inverse function f −1.

In practice, we will also train multiple decision trees to get more potential design rules. This
can be done using randomly created sub-databases to train the decision trees, which creates an en-
sembled version of the decision tree method called random forest. After training multiple decision
trees, we can gather more potential design rules as shown in Fig. 6.5 (d).

6.2.3 Select design rules with better precision

Now that we have a number of potential design rules, we need to select those with better perfor-
mances. Figure 6.5 (e) illustrates two important aspects for selecting the better rules. First, a design
rule should has high precision, which means that the data points that match the design rule should
indeed meet the target performance. The precision index is a commonly used criterion for checking
this aspect and it is defined as the ratio between the number of accurate predictions of class k over
the number of all predictions of class k [Tharwat, 2020]. For example, the rule 1 marked with blue
dots in Fig. 6.5 (e) has 9 correct predictions of class 1 and a total of 10 predictions of class 1 so it
has a precision of 0.9. In addition to the precision, we also want the design rules to be statistically
robust and span the target performance boundary as much as possible. There are two common
ways of checking this: using the total number of data that meet the rules (which is the denominator
of precision) and using the recall index. The recall is defined as the accurate predictions of class
k over the number of all class k data [Tharwat, 2020]. Suppose we have a total number of 30 data
points in the target zone, the rule 1 will have a recall of 0.3 (which is 9/30). In general, our target
is to find rules that have higher precision and recall values. For instance, among the three sample
rules shown on Fig. 6.5 (e), the rule 1 marked with the blue dot is better than the rule 2 and rule 3
marked with orange square and pink cross respectively.

In this work, we use the following routine to select the better design rules. First, two thresholds
are used to remove design rules with bad performances: the precision of rules need to be greater
than 0.9 and the design rule should contain a number of data points that is more than a minimum
value of 10. After this elimination step, we rank the rules using the F-score function [Tharwat,
2020]:

Fβ = (1+β2)(
precision · recall

β2 · precision+ recall
). (6.2)

This F-score function creates an average score from both the precision and recall value, where the
recall is seen as β times more significant as the precision value. In this work, we select a value
of β = 0.2, so the precision is five times more significant than the recall. Focusing more on the
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precision is reasonable for an inverse design problem, where the goal is to find “some designs” to
meet the target performance not “all designs” to meet the target performance.

Finally, we can select the rules with the highest F-score after ranking them. Figure 6.5 (f)
shows the top design rule that can be used to build an Miura origami cell with axial stiffness
k < 6000(N/m). In this example, the machine learning thinks that having tc < 0.78mm, tp < 2.2mm,
W ≥ 1.9mm, and γ ≥ 67◦ will give us a Miura unit cell that meets the performance target. In
practice, we can compute more than one rules or reuse the database for other design targets. We
will demonstrate these capabilities in the remainder of this chapter.

6.2.4 Hold out testing and hyperparameter selection

After picking the better design rules, we need to further test the rules to see how well they behave.
This testing can be done by checking the precision of the rules using another testing database that
is not used during the training. This is a common technique in machine learning called hold-out
testing, where a portion of the data is hold out from the training process and only used in testing.

Figure 6.6 shows the setup of the hold out testing. In this work, the complete database is
randomly split into two sets: one with 60% of the data for training the machine learning, and the
other one with 40% of data for testing the performance. Moreover, we will use random sub sets
of the entire training data to train different decision trees. The number of data points used in these
random sub sets is determined using the “subset ratio”. With this approach, drastically different
decision trees can be obtained because different random data sets are used to train them. In general,
hold out testing is like creating two sets of questions: one for training the students, and the other
for testing if how well the students learned from the training set of questions. Figure 6.5 (f) further
shows the precision score of the computed design rules, and a high precision is obtained.

Hyperparameters refer to the variables in the machine learning algorithm that are explicitly
specified by the users and are not learned from the training data. Usually, a grid search is performed
to find the optimal hyperparameter values for the machine learning algorithm. In this work, we
need to consider five variables and they are (1) the maximum depth of the trees, (2) the number of
tree learners in the forest, (3) the cost-complexity pruning alpha value, (4) the criterion for splitting
rules, and (5) the subset ratio for training. The testing precision of the final design rule is used to
assess the selections of these hyperparameters. Five runs of hold out testing with different training-
testing partition are implemented and the mean precision is recorded. Because the depths of trees
and the number of tree trainers are the two major hyperparameters of a decision tree-random forest
method, we mainly focus on the effects of these two values while briefly highlighting the others.
In addition to the grid search results, we also trained two other machine learning algorithms for
comparison, namely the kNN method, and Gradient Boosting method. The kNN method is usually
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Figure 6.6: (a) Introduction of decision tree method. (b) Training a decision tree. (c) Using the
one-hot encoder to convert categorical data. (d) Hold out testing setup.

used as a baseline method in machine learning because it has a simple formulation. In general, we
expect the precision obtained from the target method to be superior to that obtained using the kNN
method. The Gradient Boosting method is a “black box” machine learning method that tends to
perform well on many databases. If the target method can achieve a testing precision that is close
to that from the Gradient Boosting, the target method can be seen as competitive.

We perform grid searches using the three main databases built in this work. These three
databases are the origami canopy database, the origami gripper database, and the origami arch
database. We will introduce the details on these three databases later but focus on the hyperparam-
eter selection for now. First, we give a brief discussion on the influence of the maximum depth
of trees and the number of trees. We can see from Fig. 6.7 to 6.9 that there is a saturation effect
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Figure 6.7: Gird search results for the canopy database.

in the maximum depth of trees. The precision first improves when increasing the maximum depth
but stops once the maximum depth reaches certain values. This saturation is expected because if
the tree-based learners are too deep, the leaf nodes will just have one or two data points, which is
seen as “pure” by the algorithm. In this case, further increasing the depth of trees will not change
the tree structure. Moreover, branches with just one or two data points are not representative and
cannot be used to compute reliable design rules. Therefore, it is recommended to set the depth of
trees such that the algorithm barely reaches the saturation point. In this work, we select a depth
of 20. For the number of tree trainers in the forest, we found a similar trends. A relatively large
number of tree trainer is helpful for improving the precision, but the precision can saturate once
the number is too large. This saturation happens because we are “close to enumerate” all possi-
ble formulations of tree branches when using a large number of tree trainers. In this case, further
adding in tree trainers may not produce new high performance branches. Thus, a value of 100 is
picked for the number of trainers in this work.

With the canopy database shown in Fig. 6.7, we further study the effects of the cost-complexity-
pruning alpha (ccp-alpha) value. The cost-complexity-pruning is another step in training the deci-
sion tree where the machine learning method will automatically remove some branch nodes from a
tree to avoid over-fitting. In general, the larger the alpha value is, the more likely the algorithm will
remove nodes. As demonstrated in Fig. 6.7, the pruning alpha value does not have a significant
influence on the precision of our prediction, and increasing the alpha value does not improve the
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Figure 6.8: Gird search results for the gripper database.

precision for all cases. Therefore, this work uses a ccp-alpha value of 0.0001 in all the training
performed.

Next, we study the splitting criterion used to separate data points. The sklearn package provides
two different splitting criteria and they are the Gini index and the entropy index. The Gini index
is similar to the entropy but is computed differently [Buitinck et al., 2013]. From Fig. 6.8 we see
that entropy tends to provide better performance than the Gini index, so the entropy index is used
in this work.

With the origami arch database, we further consider the effects of the subset ratio. To train an
effective random forest algorithm, different decision trees need to be built [Breiman et al., 1984].
One way of achieving this goal is to use a randomly generated subset of training data to train the
decision trees instead of using the entire training data set. The subset ratio is the ratio between
the size of this sub dataset when compared to the entire training dataset. We can see from Fig. 6.9
that a smaller subset ratio can improve the performance of the machine learning algorithm. This
is expected because a smaller subset ratio can encourage the algorithm to generate more different
trees so that we have a larger likelihood to capture better tree branches. Thus, we select a subset
ratio of 0.5 in this work. We did not explore the potential of having an even smaller subset ratio
value because that will make the training set too small.

6.3 Handling Categorical Features for Comparing Different Patterns

The single unit Miura origami example shown on Fig. 6.5 demonstrates the basic formulation of
the proposed methodology. In the following sections, we will show how this methodology can
be extended to handle the categorical features and multi objective problems for a holistic origami
inverse design. We will start with the categorical features.
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Figure 6.9: Gird search results for the arch database.

Comparing different origami patterns is difficult because categorical variables are needed to
represent different origami patterns. However, common optimization-based origami inverse de-
sign methods cannot handle these categorical features. Because of this limitation, existing origami
inverse design methods are developed based on specific origami patterns [Dudte et al., 2016,Dang
et al., 2022]. For example, the shape fitting algorithm developed in the work by Dudte et. al.
is based on just one generalized Miura origami pattern [Dudte et al., 2016]. The proposed inter-
pretable machine learning based methodology can be used to resolve this challenge because the
decision tree-random forest method can handle categorical features naturally.

In this section, we will study a design problem on origami canopy as shown in Fig. 6.10. In
this study, an origami canopy is cut out from a thin square plate with a footprint of 0.2m× 0.2m.
Two different patterns are studied, and they are the standard Miura-origami pattern (Pattern 1) and
the Tachi-Miura Polyhedron (TMP) [Yasuda and Yang, 2015] (Pattern 2). To represents the two
patterns, an integer (binary) variable p = 1,2 is introduced. In addition, we further consider the
situation where the two patterns can have different numbers of unit cells in them. The numbers
of unit cells are represented as m and n in the two directions. In addition to these categorical
features, three continuous design features are also added to the problem, and they are the thickness
of panels 1.0mm < tp < 6.0mm, the thickness of creases 0.5mm < tc < 1.0mm, and the width of
creases 1.0mm < W < 4.0mm. An origami database is populated by randomly sampling values
of these design features, and the database contains 2000 Miura origami samples and 2000 TMP
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Figure 6.10: Building the origami canopy database.

origami samples. In this example, we will design for two targets, and they are the axial stiffness
ka at 60% extension and the bending stiffness kb at 90% extension. The extension ratio (Ext) is
measured as the ratio between the folded length of the pattern and the flat length of the pattern.

We first study the design for axial stiffness ka at 60% extension (see Fig. 6.11 (a)). Assume that
we want to design an origami canopy to have 15000N/m < ka < 30000N/m (Zone a1), we can use
the procedure in Fig. 6.5 to compute the design rules for this target. The computed design rule is
shown in the left column of Fig. 6.11 (a). We can then repeat the process for the other three targets
30000N/m< ka < 50000N/m, 50000N/m< ka < 80000N/m, 15000N/m< ka. This divides the data
into four design target zones, and the computed rules for all four targets are shown in Fig. 6.11 (a).
The training precision, testing precision, and sample realizations are also provided in Fig. 6.11.
This series of results shows how we can design for an origami canopy to have increasingly stiffer
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Figure 6.11: Design rules computed for the canopy database.

120



behaviors in axial compression. Interestingly, the machine learning method prefers changing the
continuous variables to achieve the different stiffness targets in the axial compression. More specif-
ically, the machine learning method thinks that controlling the thickness of creases and the width
of the creases are more significant than other parameters because tighter thresholds are used for
the two features.

However, the design rules can be very different when we study the 90% bending stiffness. We
repeat the same process of labeling the data and computing the rules for 90% bending stiffness.
Similarly, four design rules are computed for four different target zones as shown in Fig. 6.11 (b).
When we investigate the result of this series of design rules, we can see that the machine learning
method is paying more attention to the categorical features. As the target moves from one zone
to another, the computed design rules change in a non-continuous manner because of the complex
interactions between categorical variables and continuous variables. For example, when the target
changes from Zone b2 to Zone b3 (stiffer target in 90% bending), the machine learning method
indicates that increasing the thickness of panels is enough to achieve the target performance. How-
ever, when further increasing the requirement on bending stiffness (from Zone b3 to Zone b4), the
machine learning method thinks it is better to change the categorical features and the continuous
features simultaneously. A similar categorical jump is also observed when the target moves from
Zone b1 to Zone b2. The proposed method can capture these complex interactions between the
continuous features and categorical features, which are difficult to capture with optimization-based
design methods. This capability allows us to compare different origami patterns while simultane-
ously designing for other continuous design features.

Moreover, this example highlights another advantage of using data science and machine learn-
ing method for solving origami design problems. Unlike optimization-based design methods, the
database is reusable for different target performances. Thus, we can use the same database to de-
sign for different target performances (e.g. the different zones demonstrated in the example). This
allows us to save computation time and design for functional origami efficiently.

6.4 Solving Multi-Objective Problems for Multi-Physical Performances

Next, we want to show how the proposed methodology can tackle the multi-objective problems
needed for handling multi-physical performance targets. In practice, the behaviors of functional
origami structures are multi-physical so designing for these multi-physical performance targets
will yield a multi-objective problem that is difficult to handle with common optimization based
inverse design methods. Thus, in this section, we will use a sample design problem on functional
origami gripper to demonstrate how the proposed method can handle multi-objective problems.

In this sample problem, functional origami grippers will be designed based on three candidate
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Figure 6.12: Building the origami gripper database.
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origami patterns as shown on Fig. 6.12. To represent the three patterns, a categorical variable
p = 1,2,3 is used. Geometrical design features of the gripper include the length L1 and width L2

of the gripper arm and the location of the first hinge from base measured using Ra. Moreover,
design features related to the actuator include thicknesses of the two material layers in the actuator
t1 and t2 and the width of the actuator creases W. The actuator design used in this work is assumed
to be similar to the electro-thermal actuator system proposed in Chapter 2. The bi-layer actuator
contains one active layer and one passive heater layer. When current is applied to the passive heater
layer, Joule heating will heat up the bi-layer system. Then, because the active layer expands more
than the passive layer, folding motions are generated (see right sub-figure on Fig. 6.12 (c)). We
can build the origami performance database using the model from Chapter 5 because it captures
the multi-physical behaviors.

Four indices are used to measure the performance of the origami gripper and they are: (1) fun-
damental frequency of the gripper f req, (2) input heating power for the gripper to close its gripping
arm Q, (3) maximum nodal temperature of the gripper during the gripping motion T , (4) stiffness
to ply open the gripper k. These four indices contain information regarding the dynamic, thermal,
and mechanical behaviors of the gripper. Simultaneously designing for these four performance
targets will form a multi-objective problem that is difficult to solve using common optimization
techniques. Here, show that the proposed inverse design method can handle problems like this.

Basically, the flexibility in labeling data when using machine learning methods allows us to
handle the multi-objective problems easily. We can label those data that meet the target per-
formance to has a label 1 regardless of the dimensions of the objective. For example, suppose
we want to simultaneously design an origami gripper to have the following performance target:
10Hz < f req < 40Hz, heating power Q < 0.2W, and maximum temperature T < 200◦C (Target 1).
We can just label those data points that satisfy the performance target to be Class 1 and label the
rest of the data as Class 0. Then, by computing the more representative decision rules for Class 1,
we can obtain an active origami that satisfy all three performance targets simultaneously.

Figure 6.13 (a) shows the computed design rules for this Target 1. In addition to the rule with
the highest F-score, the second-highest rule is also computed and plotted in Fig. 6.13 (a). Inter-
estingly, we can see that both rules have high precision and are similar to each other (except for
a small difference in the selection of t1 and tp). Similarly, we can extend the results to simulta-
neously design for all four performance indices (Target 2: frequency 10Hz < f req, heating power
Q < 0.7W, and maximum temperature T < 500◦C, and stiffness 0.002N/m < k), and the result is
presented in Fig. 6.13 (b). If we compare the computed rules for Target 2 with those for Target 1,
we can see that the machine learning method has picked another pattern after adding in the stiff-
ness requirement. This is because Pattern 3 selected for achieving Target 1 only has horizontal
creases, which cannot provide additional stiffness compared to Pattern 2 selected for achieving
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Figure 6.13: Design rules computed for the origami gripper database.
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Target 2. This high interpretability of the tree methods helps users to better understand and reason
about the behaviors of functional origami systems. Moreover, the machine learning method also
demonstrates that the significant features can be different for different design targets. For example,
controlling the values of the gripping arm length L1 and the location of the first creases (defined
by Ra) is only significant for Target 2.

In general, the two design rules with the highest F-score value tend not to be very different from
each other. This is commonly seen especially when the machine learning method prefers selecting
the same origami patterns for achieving a target performance. However, Fig. 6.13 (c) shows one
interesting result where the two computed rules have relatively large differences between them be-
cause they are based on different patterns. For Target 2, the Rule 1 is computed based on Pattern 1
while the Rule 2 is computed based on Pattern 2. This is significant because it highlights that by
computing multiple rules with high F-score rather than picking the one with the top rank, it is pos-
sible to find more flexible design rules to be chosen from. In addition, comparing the Rule 1 and
Rule 2 for the Target 2 also reveals the complex interaction between the categorical features and
continuous features in origami designs. Because the Target 2 is 2-dimensional, we further extract
the data point that fits the rules in both the training dataset and the testing dataset and plot them
in Fig. 6.13 (d). The result shows that the data points that fit the computed rules trace the design
boundary nicely and fills the design boundary with reasonable coverage.

6.5 Enabling Holistic Origami Inverse Design

Finally, this section will show how the proposed method can enable existing origami shape fitting
algorithms to achieve holistic origami inverse design. So far, there has been a number of studies on
designing an origami system to fit a target geometry [Tachi, 2010a,Tachi, 2010d,Dudte et al., 2016,
Lang and Howell, 2018, Chen et al., 2020]. Usually, the shape fitting problem can be constructed
as an optimization and the error between the target geometry and the origami is minimized given
certain constraints [Dudte et al., 2016,Dang et al., 2022]. However, these existing methods cannot
consider other non-geometrical properties of origami structures that tend to be the final design
targets. Moreover, these optimization schemes often leave tremendous flexibility for a designer to
vary the origami pattern (e.g. number of panels used or maximum size of panels), without showing
which combination can produce more superior performances. We will resolve these challenges in
this section using the proposed method.

As a demonstration, we implement our method on top of an existing shape fitting approach
introduced in [Dudte et al., 2016], where an analytical solution was derived to build Miura-origami
strips to fit arbitrary planar curves. Figure 6.14 shows how this shape fitting method can generate
different origami strips to fit a target planar curve. In this method, the target curves are first
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Figure 6.14: Populating the origami arch database using an origami shape fitting algorithm.
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separated into different sections and the number of segments is measured by m. Then a planar
origami strip geometry is generated by setting the offset length lo of the center node and the width
of the strip Ws. Finally, the 3D origami is created by extruding the planar geometry to form
the Miura geometry with an extrusion le. Figure 6.14 also shows the shape fitting results for
three different curves. As can be seen, there is great flexibility in selecting these parameters for
shape fitting and the selection should depend on which combination can give the more desirable
origami performances (which tend to be non-kinematical). Suppose our target is to build an origami
structure that can achieve a given stiffness performance while fitting a half-circle arch shape, how
should we select these shape fitting parameters? The proposed machine learning based method
will be able to answer questions like this.

Without loss of generality, we will focus on designing a Miura-origami half-circle arch with
a 2m radius. The origami arch database is generated by randomly picking shape fitting design
features to build different arch geometries. These variables include the number of segments m, the
offset length lo, the strip width Ws, and the extrude dimension le. Other design features such as
the thicknesses of panels tp and creases tc and the width of creases W are also included because
they affects the stiffness of the arch. Based on the random set of design features, we compute
and record the responses of the origami using the SWOMPS simulation package, and the database
consists of 3000 data samples. The performance indices include the stiffness in X-direction kx and
Z-direction kz, the error of shape fitting e, and whether the structure will snap under a 5 N load
applied vertically S z (see Fig. 6.15 (a)).

With the database established, we can apply the interpretable machine learning method to ana-
lyze the database for different targets and the results are shown on Fig. 6.15 (b). Moreover, we can
demonstrate the trade-off between requirements on shape fitting errors and the mechanical perfor-
mances of origami systems using the proposed method. The performance Target 1 on Fig. 6.15 (b)
shows the computed design rules for a target with stricter stiffness requirement but less strict shape
fitting target while the performance Target 2 has more relaxed stiffness requirement but stricter er-
ror target. The testing precision indicates that both rules are highly reliable and accurate. The result
demonstrates that the machine learning method can produce different design rules to accommodate
the trade-offs between the shape fitting error and mechanical performances. More significantly, we
want to point out that the proposed machine learning based method is not tied to specific origami
patterns or shape fitting methods, and thus the method can be combined with other origami shape
fitting method (such as those in [Tachi, 2010a, Tachi, 2010d, Dudte et al., 2016, Lang and Howell,
2018, Chen et al., 2020]) to further consider other non-geometrical origami behaviors.

Finally, we want show that the proposed method can be used to design origami systems with
complex mechanical behaviors such as bistability and multi-stability [Faber et al., 2018, Zhu and
Filipov, 2019b]. Target 3 in the Fig. 6.15 (b) shows the results of the computed design rules
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Figure 6.15: Design rules computed for the origami arch database.
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for the designed origami arch to exhibit the snap through behavior under the applied 5N forces.
Unlike designing for a stiff arch with relatively small errors, the machine learning method shows
that introducing more segmentation (larger m) into the origami stripe can give rise to the snaping
behavior. Moreover, it is necessary to keep the thickness of panels and crease thin. The testing
precision of this design rule is high, indicating that the design rule is reliable and accurate.

6.6 Concluding Remarks

This work introduces a novel interpretable machine learning based method for designing origami
systems. We showed that by populating an origami performance database and training an inter-
pretable machine learning method called decision tree to fit the database we can obtain useful
design rules of origami systems. More specifically, we pick the more informative branches (design
rules) in multiple decision trees using the F-score. The results presented in the work showed that
the proposed method can compute accurate design rules of origami systems and these design rules
can achieve a high precision in the testing database.

From a machine learning point of view, the proposed method basically uses the F-score to select
the better tree branches from the others. It is similar to selecting the better learned classifiers from
a number of trained classifiers using the F-score. The advantage of focusing on a single branch in
the decision tree (or the ensembled version random forest) is that the produced design rules that
are sparser and thus easier to be understood by human. Moreover the computed feature threshold
from a single branch of the tree is useful for guiding the design of complex origami systems. This
method particularly fits the design of origami systems because it can consider complex interactions
between categorical design features and continuous design features.

There are a number of benefits of using a data science and interpretable machine learning based
approach when compared to the optimization-based design and other inverse design strategies for
origami in the existing literature. First, the generated database can be reused for multiple times
when computing rules for new targets. Suppose we want to build an origami canopy with another
target stiffness, we will not need to recreate the database. All we need to do is to retrain the machine
learning method with the new labels and compute the new set of rules. Second, the method can
simultaneously analyze the significances of each design features for certain design targets, which
is not provided in optimization-based design method for origami systems. If a design feature is
significant for achieving certain target performances, a relatively tight threshold of that feature will
be computed. Third, as demonstrated in the example with origami canopy, the proposed method
can demonstrate the complex interaction between continuous variables and categorical variables,
because the decision tree based machine learning method can naturally support categorical data.
This is significant for origami design because many origami features are represented with cate-
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gorical data types, and these categorical data is difficult to capture using the optimization-based
design method. In addition, we also showed that the proposed method can handle multi-physical
and multi-objective design target for origami system, and more importantly, we demonstrated that
the proposed method can be integrated into existing origami shape fitting inverse design schemes
so that origami researchers and engineers can start considering the trade-off between shape fitting
error and other non-geometrical origami performances. This is important because origami engi-
neering is more about achieving superior performances by folding to form 3D configuration rather
than folding complex geometries to match the target configuration itself.

In summary, this chapter demonstrates that it is possible to compute useful design rules of
origami systems using database and interpretable machine learning based methods. We showed
that the interpretable machine learning can reveal the complex interaction between categorical and
continuous variables in origami design, can create design rules for origami systems with multi-
physical and multi-dimensional targets, and can enhance existing origami shape fitting methods to
allow them to further consider the trade-off between shape fitting error and non-geometrical per-
formances. We envision that the proposed methodology can be used to resolve complex origami
design problems in practice and be used for creating functional origami systems with superior per-
formances for various applications in biomedical devices, soft robotics, metamaterials, deployable
structures, and many more.
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Chapter 7. Conclusion and Future Challenges

7.1 Major Contributions

This PhD dissertation establishes a novel framework for the fabrication, simulation, and design of
functional origami structures. In practice, this proposed framework can be used for analyzing and
building functional origami structures for applications in robotics, biomedical devices, deployable
structures, reconfigurable metamaterials, and many more.

For fabrication, this work introduces a novel micro-origami that can fold both elastically and
plastically to achieve complex motions and functions. A novel electro-thermal actuator design is
proposed and its folding capacity is tested. A versatile fabrication method is established to inte-
grate this actuator system into micro-origami structures. Different functional devices are built and
tested to highlight the superior controllability and precise motion of the proposed micro-origami
systems. These micro-origami structures can achieve complex motions and functions, like fold-
ing an origami crane that can then flap its wings and folding an inter-locked gripper to grip small
objects.

For simulation, this work introduces three separate models, including a compliant crease bar
and hinge model, an inter-panel contact model, and an electro-thermal actuation model, for captur-
ing the behaviors of functional origami structures. First, this work adjusts the traditional bar and
hinge model to capture the compliant creases, which are folding creases with distributed width,
within functional origami systems explicitly. With both computational and physical experiments,
this work shows that the proposed compliant crease model is critical for simulating bistable be-
haviors in functional origami. In addition, this compliant crease origami model enables better
representations of origami configurations for thickness accommodation and contact simulation.
Next, this work introduces a method to capture the global inter-panel contact within the bar and
hinge model. This inter-panel contact model provides a much needed method to capture stiff-
ness jumps and inter-locking behaviors triggered by panel contact within origami assemblages.
Moreover, this inter-panel contact model provides a method to check if an origami pattern can
be folded accurately without having panel intersections. Finally, this dissertation introduces a
multi-physics based simulation method to capture active folding in the electro-thermally actuated
origami structures. A reduced-order heat transfer model is integrated within the bar and hinge
model to capture the electro-thermo-mechanically coupled behaviors in these functional origami
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structures. Although this electro-thermal simulation model is only calibrated for the micro-scale
origami systems fabricated in this work, the principle can be scaled up for simulating thermally
active origami systems at larger scales.

In addition, this work establishes an open-access simulation package to implement the three
proposed models and provides a thorough review on the recent advancements in origami simula-
tion. A Matlab based simulation code package called Sequentially Working Origami Multi-Physics
Simulator (SWOMPS) is developed and made open-access on GitHub. This package enables rapid
simulation of multi-physical behaviors in active origami and the GitHub webpage is gaining in-
creasing traffic from researchers who are interested in using functional origami systems. The Ap-
pendix of this work gives a thorough review of resent advancements in origami simulation. Three
major groups of origami simulation methods, namely the kinematic simulation, the mechanical
simulation, and the multi-physical simulation, are thoroughly categorized and introduced. The re-
view introduces the formulation of different origami simulation techniques for researchers to select
and develop appropriate simulation techniques for their specific applications.

For design, this work demonstrates an interpretable machine learning based method to compute
human-understandable design rules for functional origami. This inverse design method can capture
the interaction between categorical and continuous features for representing different origami pat-
terns, and can handle the multi-objective problem formulations needed for considering the multi-
physical performance targets. This inverse design method provides a holistic solution to design
active origami structures for different engineering applications.

Together, the integrated framework presented in this thesis can capture and design the com-
plex behaviors of functional origami structures. This work directly connects knowledge from
structural engineering, computational mechanics, microelectromechanical systems, and machine
learning with origami engineering to build novel and functional origami structures. The proposed
work can be directly used to analyze and build programmable metamaterials, active micro-robots,
biomedical surgery tools, deployable structures, and many other engineering systems. Moreover,
the presented material highlights the advantage and superiority of solving engineering problems
with origami assemblages.

7.2 Future Challenges

In this section, we discuss future challenges in the field of origami engineering and functional
origami structures. More specifically, this work identifies three challenges and they are: (1) Inte-
gration of controllers and sensors into micro-origami systems, (2) Reduced-order multi-physical
simulation for functional origami, and (3) Design of large-scale functional origami structures.
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Integration of controllers and sensors into micro-origami systems This work demonstrates
that active micro-origami structures have superior shape morphing capability and can achieve com-
plex functions. However, it is not yet clear how to integrate more elaborate control circuits and
sensors into micro-origami systems. In general, integration of different sensors requires using dif-
ferent active materials and designs. However these sensors and circuits are difficult to build with
existing photo-lithography based processes, which have strict compatibility requirements. Alter-
native approaches like using addictive manufacturing and digital fabrication techniques, which
provide high flexibility in handling multiple active materials, can help integrate sensors and con-
trollers into the micro-origami structures. Integration of controllers and sensors is crucial because
it allows micro-origami structures to increase their functionality and act autonomously in complex
environments.

Reduced-order multi-physical simulation for functional origami The next challenge we want
to discuss is on developing reduced-order multi-physical simulation for functional origami struc-
tures. This work provides one reduced-order model to integrate electro-thermal actuation into an
origami simulation platform, but the method is tailored to just a specific form of active folding.
Functional origami structures can be folded using other mechanisms such as magnetic actuations,
active hydro-gels, shape memory alloys, shape memory polymers, and many other active designs.
Future origami simulation methods need to capture these other actuation mechanisms. In addition
to the active folding, functional origami can also display multi-physical properties that are of inter-
est. New reduced-order simulation methods for capturing these multi-physical properties are also
needed for different projects. These new reduced-order simulation techniques for multi-physical
and functional origami systems can enable origami researchers to design better origami-inspired
engineering devices.

Design of large-scale functional origami structures Scaling up functional origami structures
for civil applications remains a difficult challenge in the field of origami engineering. Existing de-
sign and simulation methods for origami systems are not appropriate for capturing the behaviors of
larger origami-inspired systems because they tend to assume origami panels to have zero thickness.
To design for large-scale origami structures, new fundamental theorems are needed to analyze and
design the behaviors of thick and non-developable origami systems. Moreover, common actuation
mechanisms for small-scale functional origami structures, like active hydrogels and shape memory
polymers, are not directly scalable to large-scale civil systems. Therefore, it is necessary to build
thick origami structures with hinge connections and design other practical actuators for folding
origami inspired structures at large scales. These large-scale functional origami structures can be
used to design smart facade and deployable buildings for future cities.
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Appendix A. A Review on Origami Simulation

A.1 Introduction, History, and Organization

This appendix is dedicated to give a thorough summary of origami simulation techniques. Sim-
ulating the physical behavior of origami forms the basis for understanding, analyzing, designing,
and optimizing origami-inspired systems. In light of this, we believe that it is beneficial to cat-
egorize different simulation techniques, to summarize the underlying mathematical models and
solution methods involved, and to present the strengths and weaknesses of different simulation
techniques. Although origami simulation borrows widely from analyses and techniques in other
disciplines in science and engineering, there are unique challenges; for example, the pattern ge-
ometry and localised crease behavior can significantly impact the global response, and efficient
simulations require careful consideration of the degrees of freedom of the origami system. The
presented material aims to help future origami scientists and engineers to select and develop ap-
propriate methods for specific projects. Moreover, because different simulation techniques were
developed to answer different questions regarding origami systems, learning about the underlying
principles for simulation techniques can also help origami researchers to ask the right questions.

Figure A.1 depicts the history of origami simulations in broad brush strokes. Of course, no his-
tories are complete and technical developments are not necessarily sequential; moreover, related
simulations can be found in advance of the specific development related to origami. The simulation
of origami starts with the analysis of their kinematics, dating back to the early 1970s. The pioneer-
ing works by Huffman [Huffman, 1976] and by Resch [Resch and Christiansen, 1970] demonstrate
such early efforts to simulate origami folding in a virtual environment. In the 1990s and 2000s, a
number of studies proposed approaches and concepts to simulate the kinematic folding motions of
origami [Kawasaki and Yoshida, 1988,Kawasaki, 1989,Belcastro and Hull, 2002,Tachi, 2009c,Mi-
tani, 2008]. These studies pinned down many fundamental ideas for the kinematic simulation
techniques of origami. During this period, there were also early works studying the mechanical
behavior of origami [Guest and Pellegrino, 1994, Guest and Pellegrino, 1996]. Starting around
2010, researchers began exploring origami for creating mechanical metamaterials, crash boxes,
and other engineering structures [Yang and Silverberg, 2017b,Schenk and Guest, 2013,Fang et al.,
2016]. To capture the mechanical properties of origami systems for these application scenarios,
various mechanics-based simulation techniques were created [Schenk and Guest, 2010, Wei et al.,
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Figure A.1: The history of simulation of origami systems in a broad brush stroke (left) and related
simulations and analyses from other engineering disciplines (right).

2013, Liu and Paulino, 2017a]. More recently, researchers have started exploring active origami
systems that can fold autonomously in response to environmental stimuli and can generate unique
non-mechanical behaviors [Na et al., 2015, Zhu et al., 2020, Yoon et al., 2014]. In response to
the need for capturing the folding behaviors and the non-mechanical properties of active origami
systems, researchers have started building multi-physics based simulation platforms to capture ad-
vanced behaviors of origami systems [Zhu and Filipov, 2021a,Hathcock et al., 2021,Nauroze et al.,
2018].

The history of origami simulation also gives us a rationale for separating the simulation tech-
niques into three major groups: kinematics-based simulations, mechanics-based simulations, and
multi-physics simulations. These three groups form the three major sections of this review; within
each section, we will categorize the simulations based on their formulation rather than their chrono-
logical order. First, we will briefly discuss the scope of this work and terminology, before expand-
ing on each of the three identified categories. Following these three sections, we will summarize
existing simulation packages, discuss how to select appropriate simulation techniques, and discuss
future challenges in the field.

A.2 Scope and Terminology

This section outlines the scope of the appendix and introduces important terminologies related to
origami simulations. The focus of this work is the simulation of origami systems, which answers
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the question of how to simulate the folding motions and the corresponding property changes in
origami systems. This review will therefore not focus on the design of origami systems, which in-
cludes problems such as how to generate new origami patterns, solve mountain-valley assignments,
adjust existing patterns for certain applications, etc. Nonetheless, we expect that this review will
provide useful information for origami designers to select and build suitable simulation techniques
for their specific problems.

Moreover, we will focus on the simulation of origami with straight creases. Modeling and
simulating the behavior of curved creases often requires drastically different formulations [Dias
et al., 2012]. For example, defining a straight crease only requires specifying two nodes at the end
of the crease and the folding can be represented with a single scalar variable. In contrast, defining a
curve crease requires using mathematical tools such as spline or polynomial functions, and the fold
angle can vary along the length of the crease. The simulation techniques covered in this review will
also be applicable to the analysis of a wide range of kirigami systems, where cuts are introduced,
provided that the folding creases remain straight.

Model, solution method, simulation Before introducing specific origami terminologies, we
first discuss three fundamental terms used in the simulation of physical systems: model, solution

method, and simulation. In many situations, these three terms are used interchangeably; however,
we believe it is best to define and use these terms more carefully.

model: In this work, we define a model as a mathematical representation of physical objects.
This primarily includes variables to describe the state of the system and governing relationships be-
tween these variables. The number of independent variables within the system is referred to as the
degrees-of-freedom or DOF. For example, the configuration of a single-degree-of-freedom (SDOF)
system can be determined using just one scalar variable; a multi-degrees-of-freedom (MDOF) sys-
tem needs to be defined using multiple scalar variables. In addition, a model gives mathematical
equations to describe the governing relationships between these variables. For example, we can use
constitutive relationships to correlate fold angles and crease moments or use kinematic constrain-
ing equations to coordinate folding angles between different creases. We are usually interested
in how these variables evolve over “time” (or loading step) without violating the governing equa-
tions. However, a model alone cannot tell us how these variables evolve as it only formulates a
mathematical problem to be solved. To further solve the evolution problem, solution methods are
needed.

solution method: We define solution methods as ways of solving mathematical problems. For
sufficiently simple origami models, analytical solutions can be found for the folding motion. More
complicated origami models, however, require the solution of partial differential equations (PDEs)
or ordinary differential equations (ODEs) with no analytical solution. In such cases, numerical
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Figure A.2: Definitions of common origami terminologies.

solution methods are used to analyze the problem.
simulation: In general, simulation refers to imitating the behaviors of physical systems over

time in virtual environments. More specifically, a simulation includes a model to represent a
physical system and a solution method to solve how the system evolves over “time” (or loading
step). A suitable origami model is developed based on the characteristics of the physical origami
system and a solution method is chosen based on the characteristics of the mathematical problem
embedded in the origami model.

Origami terminology Next, we introduce common origami terminologies, which will be used
throughout the remainder of this review.

crease: The creases (or folds) of an origami pattern are the lines about which the folding
occurs; see Fig. A.2 (a,b). Common origami models idealize creases as 1D fold lines with zero
width and the adjacent panels rotate about these creases. The terms ‘creases’ and ‘folds’ are often
used interchangeably.

compliant crease: Unlike creases that provide rotation about a 1D axis (like a door hinge), the
folding motion of compliant creases relies on a distributed bending deformation over the width of
a crease. The non-negligible width of these compliant creases requires additional considerations
when building models for origami systems. Compliant membranes often serve as origami creases
for actuation [Zhu et al., 2020,Na et al., 2015] or for panel thickness accommodation [Butler et al.,
2020].

vertex: The vertex is a “point” where multiple “creases” meet; see Fig. A.2 (b). In most
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origami models, the vertex is indeed a point in 3D space. However, when modeling origami with
thick panels or with compliant creases, the intersection of creases is no longer a defined point —
nonetheless, a vertex can still be identified intuitively.

panel: The panel is the facet of an origami pattern; see Fig. A.2 (b). For straight-crease origami,
it is the polygon enclosed by origami creases and boundary lines.

origami crease pattern: The crease pattern is the geometry formed by the vertices and creases
of an origami in the flat configuration; see Fig. A.2 (a). In combination with the mountain/valley
assignment of each of the folds, the crease pattern determines the folding motion of an origami
pattern and has significant influence on the properties of an origami.

mountain fold and valley fold: The mountain/valley fold convention denotes the direction of
folding in origami. For example, the Miura-ori pattern shown in Fig. A.2 (c) and (d) has three
mountain folds, indicated with red solid lines, and one valley fold, indicated with blue dashed
lines.

sector angles: The sector angles are the in-plane angles around vertices used to describe
origami patterns; see Fig. A.2 (c). In this work, we use θ to represent sector angles.

dihedral angles: The dihedral angle is the crease angle between two adjacent origami panels;
see Fig. A.2 (d). It can be calculated using the normal vectors of the two adjacent panels. In this
work, we use ϕ to denote dihedral angles.

fold angles: The fold angle is similar to the dihedral angle, but it measures how much a crease
folds from its initial configuration. In general, the sum of the fold angle and the corresponding
dihedral angle is 180◦ as indicated in Fig. A.2 (d). In this work, we use ρ to denote the fold angles.

thick origami: In applications where the thickness of panels cannot be neglected, as is often
done for origami models, thick origami models integrate thickness into the model formulations.

rigid foldable origami: An origami system is rigid foldable if the folding process can happen
without panel deformation. That is, all deformations occur in the form of crease folding.

developable origami: An origami pattern is developable if it forms a flat surface after all creases
are unfolded (to flat). Equivalently, a developable origami pattern has all sector angles at each
vertex adding to 2π.

flat foldable origami: An origami is flat foldable if it forms a flat surface after all creases are
folded (to 180◦). We will revisit developable origami and flat foldable origami in Section A.3.

A.3 Kinematics-Based Simulations

This section introduces kinematics-based simulations of origami systems. First, we briefly re-
view how to perform kinematic simulations for a generic mechanism. Consider the analysis of the
simple linkage shown in Fig. A.3. The first step is to select the variables to describe its current
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Table A.1: A summary of kinematics-based simulations for thin and rigid origami.

Simulation technique Formulation Note

Reflection based simulation Reflection operation is used to
capture the flat folding process of
origami systems.

The simulation technique predicts
no intermediate folding steps.

Reference [Mitani, 2008, Mitani, 2012] figure from [Mitani, 2008]

Spherical trigonometry Solve the folding angle of origami
using spherical trigonometry
directly (see Eqn. (A.4) to
Eqn. (A.7)).

This simulation is mostly used for
analyzing SDOF systems and the
origami kinematic is solved ana-
lytically.

Reference [Huffman, 1976], [Lang et al., 2016], [Lang and Howell, 2018], [Evans et al., 2015c],
[Evans et al., 2015b], [Evans et al., 2015a], [Tachi, 2009a], [Hull, 2013], [Zimmermann et al., 2019],
[Waitukaitis et al., 2015], [Chen et al., 2016], [Hanna et al., 2014], [Silverberg et al., 2014], [Wang
et al., 2018], [Zhao et al., 2018], [Lv et al., 2014] figure from [Evans et al., 2015c]

Basic trigonometry Solve the nodal coordinates and
folding angles of origami using
basic trigonometry.

This simulation is usually appli-
cable to specific patterns with pe-
riodically repeating unit cells.

Reference [Schenk and Guest, 2013], [Yasuda et al., 2013], [Yasuda and Yang, 2015], [Kamrava et al.,
2017], [Kamrava et al., 2018], [Wu and You, 2011], [Balkcom et al., 2009] figure from [Schenk and
Guest, 2013]

Loop closure condition The simulation technique solves
the folding motion that complies
with the loop closure condition
(Eqn. (A.16)).

Equivalent to using spherical
trigonometry. Numerical solution
methods can be used for MDOF
systems.

Reference [Kawasaki and Yoshida, 1988], [Belcastro and Hull, 2002], [Tachi, 2009c], [Tachi, 2010b],
[Hu and Liang, 2020], [Xi and Lien, 2015], [Feng et al., 2020a], [Peng et al., 2017], [Bowen et al.,
2014], [Wei and Dai, 2014], [Tachi, 2010a], [Demaine and Tachi, 2017], [Tachi, 2010d], [Tachi, 2013],
[Feng et al., 2020b], [Silverberg et al., 2015] figure from [Tachi, 2010a]

Quaternion Expressing the loop closure con-
dition using quaternions instead
of the rotation matrix.

Quaternions can be more efficient
and can capture the panel contact
[Wu and You, 2010].

Reference [Wu and You, 2010], [Broyles et al., 2020], [Cai et al., 2016b], [Cai et al., 2017a] figure
from [Cai et al., 2016b]

Geometric-graph-theory The graph product is used to rep-
resent the origami geometry with
periodic unit, such as the Miura-
ori tessellation.

The simulation technique can
capture the periodic folding mo-
tion in origami.

Reference [Chen et al., 2019b] figure from [Chen et al., 2019b]
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Table A.2: A summary of kinematics-based simulations for compliant crease origami systems and
thick origami systems.

Simulation technique Formulation Note

Smooth fold model The simulation technique is an
extension of the loop closure con-
dition. In addition to the rota-
tional constraint, a translational
constraint is added to ensure the
compatibility at a vertex.

The formulation is similar to sim-
ulating openings using loop clo-
sure condition. Extensions of
the model enables it for consider-
ing mechanical loading [Hernan-
dez et al., 2017c].

Reference [Hernandez et al., 2017c], [Hernandez et al., 2016b], [Hernandez et al., 2017b], [Hernandez
et al., 2017a], [Hur et al., 2017] figure from [Hernandez et al., 2017c]

Spatial linkages The simulation technique cap-
tures the motion of degree-4,
degree-5, and degree-6 thick
origami vertices as spatial 4R, 5R
and 6R linkages.

The technique can be used to
model thick origami made with
shift-hinge technique.

Reference [Chen et al., 2015], [Chen and You, 2012] figure from [Chen et al., 2015]

Rolling hinges Kinematic constraining equations
can be derived based on the ge-
ometry of the rolling surface and
the motion can be solved analyti-
cally.

This technique is designed specif-
ically for the thick origami with
rolling hinge connection.

Reference [Lang et al., 2017], [Cai, 2016] figure from [Lang et al., 2017]

4-bar linkages Kinematic constraining equations
can be derived based on the ge-
ometry of the 4-bar linkage and
the motion can be solved analyt-
ically.

This technique is designed specif-
ically for the offset linkage based
thick origami systems.

Reference [Lang et al., 2020] figure from [Lang et al., 2020]
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Figure A.3: An introduction to kinematics-based simulations.

configuration; here, we use the Cartesian coordinates (x,y) of the free moving end. Next, a kine-
matic constraining equation is established for the variables; here, the constraint is the fixed length
l of the rigid member. After deriving this constraint, the kinematically admissible motion can be
solved analytically or numerically. For an analytical solution, coordinate y can be directly calcu-
lated from coordinate x through rearranging the kinematic constraint. For a numerical solution,
the constraining equations are first linearized with respect to time. Then, we find the kinematically
admissible infinitesimal solution (the velocity solution of ẋ and ẏ) which does not violate the lin-
earized constraints. In this simple example, the velocity vector needs to be perpendicular to the
rigid bar. Finally, an ODE solver can be used to solve how y and x vary over time. This simple
example also illustrates how the selection of the variables can affect the solution process of the
problem significantly; using polar coordinates here would have been more straightforward.

The remainder of this section addresses how to pick variables to represent an origami, how to
form the constraining equations, and how to solve folding trajectories based on the constraining
equations.

A key assumption in the kinematics-based simulations of origami is that the origami panels are
assumed to be rigid throughout the folding process, meaning that the origami panels (or facets)
do not change shape and remain planar. Usually, a kinematics-based origami model represents an
origami structure using crease folding angles as variables. Based on the folding angles, kinematic
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constraining equations can be derived. Additional constraints can be added for enforcing devel-
opability and flat foldability of the origami pattern if necessary. These kinematic constraints will
be relaxed when using mechanics-based simulations of origami systems where the panel deforma-
tions are allowed. For sufficiently simple systems, the embedded mathematical problem can be
solved directly and the evolution of the folding angles is found analytically. However, for more
complicated systems, we often rely on numerical methods to solve for the folding trajectory.

In this section, we introduce different origami model formulations and solution methods used
to analyze the kinematic folding motions of origami systems. The subsections are categorized
based on the characteristics of the origami systems: (1) developable and flat-foldable origami; (2)
thin and rigid origami; (3) compliant crease origami; and (4) thick origami. Subsection A.3.1
introduces the constraining equations for developability and flat-foldability, and a simulation tech-
nique for solving this type of origami system. Subsections A.3.2 to A.3.5 introduce kinematic
simulations for thin and rigid origami models (with rigid panels that have assumed zero thick-
ness). More specifically, subsection A.3.2 and subsection A.3.3 introduce simulations that are
based on analytical solution methods while subsection A.3.4 and subsection A.3.5 focus on sim-
ulations that use numerical solution methods. After introducing the thin and rigid origami model,
we will discuss how to extend this model to capture the motions of compliant crease origami (sub-
section A.3.6) and thick origami systems (subsection A.3.7). Table A.1 and Table A.2 gives a
summary of kinematics-based simulations covered in this section.

A.3.1 Developable and flat-foldable origami and reflection based simulations

The first simulation technique we will introduce is the reflection-based simulation for computing
the folded configurations of developable and flat-foldable origami systems. Before introducing the
formulation of this simulation technique, we further discuss developability and flat-foldability of
origami patterns. These two concepts can be used to generate kinematic constraining equations for
many origami models.

If an origami vertex is developable, it should form a flat surface when there is no folding at all
creases. Equivalently, a developable origami vertex should have:

N∑
i=1

θi = 2π, (A.1)

where θi are the sector angles within the vertex. Figure A.4 (a) provides an intuitive explanation
of this equation. If the sum of all sector angles is smaller than 2π, a cone is obtained. If the sum
of all sector angles is larger than 2π, the additional angles will prevent the paper from reaching
a flat configuration and a saddle-like configuration is obtained. A more mathematically rigorous
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Figure A.4: Developability and flat-foldability of an origami with a single vertex.

definition for developability can be found in the textbook by Demaine and O’Rourke [Demaine and
O’Rourke, 2007]. Developability is particularly valuable for the fabrication of origami structures:
planar fabrication techniques like lithography [Zhu et al., 2020, Bassik et al., 2009, Kang et al.,
2019] or laser cutting [An et al., 2018,Felton et al., 2014] can be used to build the origami structure
before folding it into a 3D shape.

Flat-foldability is another important characteristic of an origami vertex. An origami vertex is
flat-foldable if it forms a flat surface after all creases are folded by ±180◦. The flat foldability is
useful for densely packing engineering systems [Filipov et al., 2015, Filipov et al., 2019, Seymour
et al., 2018]. The Kawasaki-Justin theorem [Justin, 1989,Kawasaki, 1989] provides one necessary
condition for a degree-n vertex to be flat-foldable:

θ1+ θ3+ ...θn−1 = θ2+ θ4+ ...θn = 180◦, (A.2)

where n needs to be even. In addition to this angular relationships, the necessary mountain-valley
assignment is given by the Maekawa theorem [Kasahara and Takahama, 1987] which states that
the number of mountain folds and valley folds should differ by ±2. Figure A.4 (b) gives a graphical
explanation of these two theorems. The origami in Fig. A.4 (b) is a degree-4 vertex and has four
sector angles, θ1 to θ4. If the vertex is cut from a unit circle, then the arc lengths associated with
these four sector angles are also θ1 to θ4. For the vertex to be folded flat, the sum of arc lengths from

143



odd sector angles should equal the sum of arc lengths from even sector angles, that is: θ1 − θ2 +

θ3 − θ4 = 0. If this condition is not satisfied, the origami will be torn apart and develop a “gap” if
forced to fold flat, as illustrated in Fig. A.4 (b). More rigorous mathematical proofs and derivations
for flat-foldability can be found in [Demaine and O’Rourke, 2007]. Both developability and flat-
foldability were discussed extensively in the early works on kinematic simulations of origami, such
as in the work by Bern and Hayes [Bern and Hayes, 1996], Hull [Hull, 1994], Kawasaki [Kawasaki,
1989], and Justin [Justin, 1989].

Finding the flat folded configuration of a developable and flat-foldable origami can be done
directly, as demonstrated in the work by Mitani [Mitani, 2008]. In his work, a reflection based
simulation is used to generate the flat folded configuration of origami by using seven reflection
based operations summarized in [Mitani, 2008]. After generating the flat folded configuration, one
can determine the overlapping conditions of panels using a brute-force searching approach. This
simulation technique is implemented in a Java software package called ORIPA and can be found
at [Mitani, 2012]. The reflection based simulation was later used to study the folding of curved
crease origami by Mitani and his coworkers [Mitani and Igarashi, 2011]. Although the simulation
was one of the early achievements in the field of computational origami, it cannot reproduce the
intermediate folding process.

A.3.2 Spherical Trigonometry and analytical methods

Not all origami systems are developable or flat-foldable, and these constraints can therefore be
relaxed. For thin and rigid origami models, the only assumption is that the panels of the origami
are rigid with zero thickness. In this section, we introduce the use of spherical trigonometry to
model this origami systems.

Spherical trigonometry provides one direct way of simulating the folding motions of a thin and
rigid origami system [Huffman, 1976, Lang and Howell, 2018, Evans et al., 2015c, Lang et al.,
2016, Hull, 2013]. We represent the relationship between crease dihedral angles at a vertex using
spherical trigonometry and solve how these dihedral angles evolve analytically. Figure A.5 (a)
shows a spherical triangle, which is the intersection of a three-face box corner and a unit sphere.
Angles a, b, and c are the angles of the three-face box corner measured at the center of the sphere,
while the angles A, B, and C are the angles measured on the curved surface of the sphere (using the
tangent line of the great circle arc). For a unit sphere the arc lengths corresponding to the center
angles a, b, and c are also a, b, and c. These angles (or arc lengths) can be related using the cosine
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Figure A.5: Simulating origami folding using spherical trigonometry.

rule:

cos(a) = cos(b)cos(c)+ sin(b) sin(c)cos(A),

cos(b) = cos(a)cos(c)+ sin(a) sin(c)cos(B),

cos(c) = cos(a)cos(b)+ sin(a) sin(b)cos(C).

(A.3)

Using these relationships, we can directly solve for the dihedral angles of creases. For the
degree-4 vertex shown in Fig. A.5 (b), applying the spherical trigonometry equations with added
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arc l2 (see Fig. A.5 (c)) allows us to relate the dihedral angles of these four creases as:

ϕ1 = ϕ1,1+ϕ1,2

= cos−1
(
cos(θ2)−

cos(l2)cos(l3)
sin(l2) sin(l3)

)
(A.4)

+ cos−1(cos(θ3)−
cos(l1)cos(l2)
sin(l1) sin(l2)

),

ϕ2 = cos−1
(
cos(l2)− cos(θ1)cos(θ2)

sin(θ1) sin(θ2)

)
(A.5)

ϕ3 = 2π−ϕ3,1−ϕ3,2

= 2π− cos−1
(
cos(l1)− cos(l2)cos(θ2)

sin(l2) sin(θ2)

)
(A.6)

− cos−1
(
cos(l3)− cos(l2)cos(θ3)

sin(l2) sin(θ3)

)
,

ϕ4 = cos−1
(
cos(l2)− cos(θ3)cos(θ4)

sin(θ3) sin(θ4)

)
. (A.7)

These equations are obtained by applying the cosine rules to the two spherical triangles marked
with arc {θ1, θ2, l2} and {θ3, θ4, l2} of the degree-4 vertex. Generic equations for an arbitrary degree-n
vertex can be found in [Evans et al., 2015c,Zimmermann et al., 2019]. For simplicity, we will focus
on the degree-4 vertex. Assuming that all sector angles are given, it can be seen from the above
four equations that the degree-4 vertex has a single degree of freedom. Although this simulation is
derived for more generic thin and rigid origami systems, it can still be applied to developable and
flat-foldable origami systems. Substituting the developability and flat-foldability constraints for a
degree-4 vertex, θ1+ θ3 = π and θ2+ θ4 = π, into Equations (A.4-A.7) will yield:

ϕ1 = −ϕ3

ϕ2 = ϕ4,

which shows that that the dihedral angles at the opposite sides of such a degree-4 vertex are
equal [Huffman, 1976, Lang et al., 2016, Lang and Howell, 2018, Evans et al., 2015c]. By con-
vention, folds 1 and 3 are referred to as minor folds and folds 2 and 4 as major folds. The minor
folds have opposite mountain-valley assignments while the major folds have the same assignments.

For this developable and flat-foldable degree-4 vertex, we can further express the relation be-
tween dihedral angles ϕ1 and ϕ2 using the fold angle multiplier µ1,2 as:

µ1,2 =
tan

(
1
2ϕ1

)
tan

(
1
2ϕ2

) = sin
(

1
2 (θ1+ θ2)

)
sin

(
1
2 (θ1− θ2)

) . (A.8)
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Figure A.6: Applying the fold angle multiplier to analyze the folding motion of an Miura origami
pattern.

The general form of dihedral angle multiplier µi, j and the calculation of the remaining three folding
angle multipliers for the degree-4 vertex are:

µi, j =
tan

(
1
2ϕ j

)
tan

(
1
2ϕi

) . (A.9)

µ3,4 = −µ1,2; µ2,3 = −
1
µ1,2

; µ4,1 =
1
µ1,2

. (A.10)

This fold angle multiplier is thoroughly discussed in [Evans et al., 2015a], while detailed deriva-
tions can be found in textbook by Hull [Hull, 2013] (Activity 29 and 30) and in the appendix by
Lang et. al. [Lang et al., 2016]. The fold angle multiplier provides a useful technique to extend the
study of a single vertex to the study of an entire origami pattern [Evans et al., 2015a]. To further
ensure that the vertices around a polygonal panel are rigid foldable, we need to ensure that:

n∏
i=1

µi = 1, (A.11)

where µi are the fold angle multiplier of the angles within a polygonal panel. Figure A.6 shows
an example based on the Miura-ori tessellation. Using Eqn. (A.8) and Eqn. (A.10), the fold angle
multipliers of the Miura-ori unit cell are calculated. Next, we place these values at the correspond-
ing locations on the pattern. To ensure that the four vertices around a quad panel can fold, we need
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Figure A.7: Geometry of Miura-ori using standard trigonometry.

to have µ1µ2µ3µ4 = 1. In this example, the Miura-ori pattern indeed satisfies the requirement and
thus it is rigid foldable.

This fold angle multiplier is particularly useful for designing and studying the kinematics of
quad-based developable and flat-foldable origami, which are origami patterns with degree-4 ver-
tices and quadrilateral panels [Lang et al., 2016, Lang and Howell, 2018, Evans et al., 2015b, Feng
et al., 2020a, Kamrava et al., 2017, Kamrava et al., 2018]. Based on this fold angle multiplier,
Evans et al. summarize various rigid-foldable quad-based origami patterns (such as the Miura
pattern, Huffman grid pattern, chicken wire pattern, etc.) and introduce multiple ways to adjust
these existing patterns for developing new patterns in [Evans et al., 2015b]. Similar but equivalent
techniques for quad-based origami systems were also developed by Tachi [Tachi, 2009a], Lang et
al. [Lang and Howell, 2018], and Feng et al. [Feng et al., 2020a].

A.3.3 Trigonometry and analytical methods

The simulation techniques introduced in subsection A.3.2 only use dihedral angles to describe the
folded geometry of an origami structure. It is common to further include the nodal coordinates as
model variables for representing the configurations of origami structures when working on simple
patterns with repeating unit cells [Schenk and Guest, 2013,Lv et al., 2014,Silverberg et al., 2014].
For example, the folding motions of Miura-ori patterns can be calculated using standard trigonom-
etry and the nodal coordinates of the Miura unit are found using the following equations [Schenk
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and Guest, 2013]:

H = a · sin(ψ) sin(θ), (A.12)

S = b ·
cos(ψ) tan(θ)√

1+ cos2(ψ) tan2(θ)
, (A.13)

L = a ·
√

1− sin2(ψ) sin2(θ), (A.14)

V = b ·
1√

1+ cos2(ψ) tan2(θ)
, (A.15)

where the variables are depicted in Fig. A.7. Solving the nodal coordinates of an origami structure
directly is useful in some situations. For example, the above equations relate the length 2L and
width 2S of the unit cell, so the Poission’s ratio of Miura-ori metamaterials can be found directly
[Wei et al., 2013, Schenk and Guest, 2013, Evans et al., 2015c]. However, direct calculation of
the nodal coordinates is usually only applicable to simple patterns with repeating unit cells such
as the Miura-ori and its variations [Kamrava et al., 2017, Kamrava et al., 2018, Yasuda et al.,
2013,Yasuda and Yang, 2015]. In special situations, this approach can also be applied to study the
folding motions of specific patterns such as the shopping bag packing problem in [Balkcom et al.,
2009, Wu and You, 2011].

The simulation techniques introduced in subsection A.3.2 and subsection A.3.3 are primarily
suitable for analyzing the folding motion of SDOF origami patterns. Certain origami patterns with
higher-degree vertices (and therefore MDOF kinematics) can also be solved analytically by intro-
ducing additional symmetry constraints. Symmetry constraints enforce the same folding angles
in specific sets of creases, which reduces the kinematics to SDOF. For instance, the waterbomb
pattern (which contains degree-6 or degree-8 vertices) has been studied by adding symmetry con-
ditions [Chen et al., 2016], which has revealed multi-stability [Hanna et al., 2014] and the ability
to program 3D surfaces [Zhao et al., 2018]. Wang et al. have given a summary of various patterns
with degree-6 vertices [Wang et al., 2018].

A.3.4 Loop closure condition and numerical methods

In order to create a simulation technique for generic origami systems with MDOF kinematics, a
more scalable and compact formulation of the kinematic constraints is required.

Over the years, origami researchers have realized that the study of origami systems shares
great similarities with the study of linkages [Demaine and O’Rourke, 2007, Bowen et al., 2014,
Peng et al., 2017, Wei and Dai, 2014]. More specifically, a thin and rigid origami vertex can
be represented by an equivalent spherical linkage model (Fig. A.8). This similarity provides an
approach to construct the loop closure constraint, which can be solved using numerical methods.

149



Figure A.8: Simulating “thin and rigid” origami vertex as spherical linkage. (a) An origami system.
The n1,n2,n3 denotes a local coordinates for the first panel (corresponds to θ1), where we have
n1 ∥ e1 and n3 perpendicular to the panel. (b) The corresponding spherical linkage model.

The mathematical equation of loop closure constraint is first developed by Kawasaki [Kawasaki
and Yoshida, 1988] and Belcastro and Hull [Belcastro and Hull, 2002] without highlighting the
connection with spherical linkages.

Figure A.8 demonstrates how the loop closure constraint for an origami matches that of a
spherical linkage. In this formulation, the loop closure constraint can be represented using rotation
matrices as:

F(ρ1, ...,ρn) = R3,nR1,n...R3,1R1,1 = I3×3, (A.16)

where R1,i and R3,i are defined as:

R1,i =


1 0 0

0 cosρi −sinρi

0 sinρi cosρi


, (A.17)

R3,i =


cosθi −sinθi 0

sinθi cosθi 0

0 0 1


. (A.18)

The two matrices describe the rotation around local coordinate axis 1 and axis 3 of a folding
crease as shown in Fig. A.8. These matrices are expressed in the local coordinates and are counter
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clockwise. To understand this equation, imagine that we walk around the vertex. Every time we
cross the panel with sector angle θi we rotate about axis 3 using R3,i, and every time we cross a
crease ϕi, we rotate by fold angle ρi about axis 1 using R1,i. Thus, the relationship between the
adjacent crease direction vectors ei and ei+1 can be expressed as ei+1 = R3,iR1,iei.

In this fashion, if we combine all the rotations around a given vertex, we should have R3,nR1,n

... R3,1R1,1e1 = e1, which is equivalent to saying that R3,nR1,n ... R3,1R1,1 equals the identity matrix.
Or in terms of walking, we return to the starting position. In addition to using Eqn. (A.17) and
Eqn. (A.18), there are various equivalent and similar formulations, such as those demonstrated in
Feng et al. [Feng et al., 2020a] or in Belcastro and Hull [Belcastro and Hull, 2002].

There are a few properties worth mentioning regarding this loop closure constraint. First,
this constraining equation is applicable to an arbitrary degree-n vertex (including non-developable
vertices). Second, the loop closure constraint is mathematically equivalent to using spherical
trigonometry, as pointed out in [Tachi, 2009c, Lang and Howell, 2018]. Third, Equation (A.16)
gives three constraining equations for a single vertex so a generic degree-n vertex will have n− 3
degrees-of-freedom. Finally, to extend this loop closure constraint from a vertex to an entire pat-
tern, we need to ensure that all internal vertices of the pattern satisfy the constraint.

Now that we have the loop closure constraint, we can follow the process identified in Fig. A.3
(c) to solve for the folding motion numerically. First, taking the derivative of the the loop closure
constraint with respect to time (Eqn. (A.16)) will give a linearized constraining equation. This
equation shows how the loop closure constraint acts on the folding velocity of each fold. Next,
we identify the non-trivial solution of the folding velocity that satisfies the linearized constraint.
Finally, we numerically integrate this folding velocity solution to solve for the folding motion.

With this general process in mind, the first task is to calculate the derivative of this loop closure
constraint to obtain the following governing equation:

Cρ̇ =


[C1]

...

[CM]




ρ̇1

...

ρ̇N


= 0, (A.19)

where the matrix C is the Jacobian of the loop closure constraint, M is the number of vertices, N

is the number of creases, the matrix [Ck] is the derivative matrix for the kth vertex, and ρ̇i is the
folding velocity of the ith crease. Details of the calculation can be found in [Tachi, 2009c].

The next task is to find the velocity vector ρ̇ that satisfies this linearized constraining equation.
Equation (A.19) shows that the solution must lie in the null-space of the Jacobian C to satisfy the
loop closure constraint. Following the work by Tachi, this non-trivial solution of ρ̇ is calculated
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using a trial velocity vector ρ̇0 and the pseudo-inverse of matrix C as:

ρ̇ = [IN −C+C]ρ̇0, (A.20)

where ρ̇ is the projection of the trial vector ρ̇0 onto the null space of the constraint matrix C. By
selecting different trial vectors ρ̇0 one can also track different folding trajectories and study the
bifurcation of different folding paths.

Finally, to find the evolution of the folding angles over time, we numerically integrate the fold-
ing velocity ρ̇. There are numerous solution methods available to handle this ODE. Tachi [Tachi,
2009c] used Euler’s method to simulate the motion of rigid origami, and many coding packages
provide built-in ODE solvers such as the ode45 function in MATLAB. In addition to these meth-
ods, Hu et al. introduce a Lagrange multiplier based method to calculate the folding trajectory [Hu
and Liang, 2020]. Xi and Lien give a solution method that uses the pattern symmetry to speed up
the algorithm when searching for the folding trajectory [Xi and Lien, 2015].

This loop closure based simulation has enabled numerous works on the design of origami
systems. In subsequent work by Tachi and Demaine [Tachi, 2010a, Tachi, 2010d, Demaine and
Tachi, 2017], they developed an approach to tuck fold an origami pattern to fit arbitrary surfaces
based on this simulation. Feng et al. studied helical Miura origami [Feng et al., 2020b] using an
equivalent loop closure formulation [Feng et al., 2020a]. Their modified formulation was also used
in [Velvaluri et al., 2021] to study the folding motion of an origami-inspired shape memory alloy
medical stent. Silverberg et al. studied the mechanical behaviors of origami by adding rotational
springs to the kinematic relationships derived based on the loop closure constraints [Silverberg
et al., 2015].

It should be noted that the numerical integration of the loop closure conditions described here
cannot be applied directly to quad-based origami patterns with SDOF kinematics. The simulation
relies on the existence of a null-space in the Jacobian matrix C, to follow the folding motion. Due
to the numerical errors accumulated in the simulation, the constraining equation may no longer
be singular. To avoid this, Tachi suggests triangulating the quad panels by introducing additional
crease lines [Tachi, 2009c, Tachi, 2010b]. In this way, the SDOF quad-based origami is modeled
as a MDOF system.

Finally, we wish to point out one fundamental limitation of the trigonometry-based simulations
and the loop closure based simulations. Both techniques cannot guarantee that the origami pattern
is folded to a valid configuration. This is because the mathematical theories behind both simu-
lations do not consider the intersection of panels at a vertex and thus only provide necessary but
non-sufficient conditions for having a valid folding process [Belcastro and Hull, 2002, Demaine
and O’Rourke, 2007] (see Fig. A.9). More difficulties emerge when considering intersections be-
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Figure A.9: Loop closure based simulation techniques cannot capture situations where panels
intersect.

tween different parts of the origami that do not share a single vertex. The search of a sufficient and
necessary condition for folding a thin and rigid origami remains an open question [Demaine and
O’Rourke, 2007].

A.3.5 Other simulations of thin and rigid origami

In addition to the use of spherical trigonometry and loop closure constraints, other simulations have
also been developed to study the kinematics of rigid and thin origami structures. Although these
simulations utilize different mathematical representations for the thin and rigid origami model,
their formulations remain mathematically equivalent.

Wu and You [Wu and You, 2010] first used quaternions to describe the kinematics of thin and
rigid origami, replacing the rotation matrices when expressing the loop closure constraint. Us-
ing quaternions offers a number of advantages when compared to rotation matrices. For example,
quaternions give more compact representations of rigid body rotations, are numerically more stable
and allow users to potentially determine panel intersection to rule out invalid origami configura-
tions [Wu and You, 2010]. The quaternion-based simulation was used to study Miura-ori inspired
structures and to demonstrate the non-rigid-foldability of Kresling patterns in the works by Cai et
al. [Cai et al., 2016b, Cai et al., 2017a]. Despite their benefits, quaternions have not been popular
among the origami community, likely because engineers and scientists are less familiar with this
mathematical tool.

More recently, a paper by Chen et al. [Chen et al., 2019b] demonstrated a new approach for
representing the geometry of origami using an integrated geometric-graph-theoretic approach. In
this approach, the graph product is used to generate the origami pattern with periodic geometries.
The paper applies this approach to study the folding motion of the Miura-ori and Kresling patterns.
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Figure A.10: Origami with openings (a), and those with compliant creases (b,c) can be modeled
similar to spherical linkages, but with additional constraints.

However, the current formulations have difficulties representing origami with non-periodic char-
acteristics (i.e. free-form origami patterns [Tachi, 2010a]). The use of this graph product based
approach provides an efficient technique for studying the uniform folding behavior (as well as the
corresponding loading behavior under uniform load), but future studies are needed to extend the
formulation to capture non-periodic patterns.

A.3.6 Openings and compliant creases

If the origami has internal openings or contains compliant creases, new constraints, in addition
to the loop closure constraint (Eqn. (A.16)) are needed to ensure valid folded configurations. In
previous simulations of origami with internal openings and compliant creases, the two topics are
discussed separately. However, a closer look at the formulations of these two techniques will reveal
that they share great similarities.
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Figure A.10 (a) shows an origami loop with an opening. A loop pattern like this can be modeled
as a spatial linkage [Peng et al., 2017]. As pointed out by Tachi [Tachi, 2010b], an additional
constraint is required in addition to the loop closure condition in Eqn. (A.16). This extra constraint
takes the form of:

n∑
k=1

(
Πk

i=1
(
R1,i(ρi)R3,i(θi)

)
dk

)
= 03×1, (A.21)

where dk is the edge vector following the internal loop boundary. The edge vector dk is expressed
in the local facet coordinate system and can be zero, as illustrated in Fig. A.10 (a). The rotation
Πk

i=1
(
R1,i(ρl)R3,i(θi)

)
is applied to dk to express it in the global coordinate system. In effect, this

additional Eqn. (A.21) ensures that we return to the location where we started after looping around
the opening and the original loop closure Eqn. (A.16) ensures that we recover a direction that
is parallel to the starting orientation. A single vertex discussed in the previous subsection is a
special case of the loop pattern with an opening where all edge vectors dk are zero and Eqn. (A.21)
is therefore automatically satisfied. This modeling technique for origami patterns with openings
enables the design of “geometrically misaligned” patterns, which are origami patterns with missing
panels, proposed by Saito et al. [Saito et al., 2016].

Figure A.10 (b) gives an illustration of a single vertex with compliant creases. Similarly, in
addition to the rotational constraint expressed in Eqn. (A.16) another translational constraint is
needed. This additional constraint was developed by Hernandez et al. [Hernandez et al., 2017c]
and is referred to as the “smooth fold model”. This constraint has the form:

n∑
k=1

(
Πk−1

i=1
(
R1,i(ρi)R3,i(θi)

)
R1,k(akρk)r̃k +Π

k−1
i=1

(
R1,i(ρi)R3,i(θi)

)
R1,k(ρk)Ik

)
= 03×1 (A.22)

where r̃k is a reference vector in the creases and Ik is a reference vector in the panels (both ex-
pressed in local coordinates). The rotation matrices in front of the two vectors convert them back
to the same global coordinates. Setting the sum of all vectors to a zero vector ensures that the loop
around the compliant crease vertex is not broken.

Detailed calculations of the reference vectors r̃k can be found in the original work [Hernandez
et al., 2017c]. In a nutshell, a polynomial deformation shape function is used to describe the com-
pliant crease geometry, and this shape function is used to calculate r̃k and ak based on the crease
rotation and the width of crease. Hernandez et al. has enabled this model to further capture the
strain energy stored within compliant creases for simulating mechanical loading [Hernandez et al.,
2016b]. This simulation technique was used for designing 3D surfaces for different engineering
applications [Hernandez et al., 2017a, Hernandez et al., 2017b, Hur et al., 2017].

The above discussion shows that simulating the openings within origami patterns and the com-
pliant creases requires adding an additional vector-based constraining equation. The additional
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Figure A.11: Design and modeling techniques for thick origami systems.

constraint is needed because the “vertex” has higher degrees-of-freedom for both cases. There-
fore, even if the rotational constraint is satisfied, the linkage can still be broken due to ranslational
motions. If we can close the vertex by removing the opening [Tachi, 2010b] or by removing the
width of the creases [Hernandez et al., 2017c], both models can be reduced to the loop closure
constraint shown in Eqn. (A.16) and the constraints given in Eqn. (A.21) and Eqn. (A.22) will be
satisfied automatically.

A.3.7 Thick origami

In this subsection, we discuss techniques for simulating thick origami structures. In general, differ-
ent thickness accommodation techniques need to be simulated using different approaches. There-
fore, this subsection is organised based on the classification of different techniques for accom-
modating panel thickness (see Fig. A.11) as provided in the review article by Lang [Lang et al.,
2018].

We begin with two simple thickness accommodation techniques: the tapered panel technique
[Tachi, 2011] and the offset panel technique [Edmondson et al., 2014, Edmondson et al., 2016].
The thick origami systems generated using these two techniques have the same kinematic folding
motions as their corresponding thin origami systems. Thus, any simulation technique for thin and
rigid origami systems (those introduced in subsection A.3.2 to A.3.5) can be used to solve the
folding motion of these two types of thick origami. One limitation to consider is that, the range of
the folding angle can no longer reach 180◦ when using the tapered panel technique [Tachi, 2011].

Next, the double crease technique is also used for creating thick origami structures [Ku and
Demaine, 2016, Hoberman, 1991]. Here, the single crease is separated into two creases to accom-
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modate the thick panels. Although the technique itself does not preserve the kinematics (because
one crease is separated into two), the generated new crease pattern with double creases can still
be analyzed with simulations based on the loop closure constraint as demonstrated in the paper by
Ku and Demaine [Ku and Demaine, 2016]. In this case, the incorporation of double creases will
generate openings within the origami pattern and thus the additional constraints for the openings
(introduced in subsection A.3.6) are required to simulate the behavior accurately.

The rolling contact technique and the offset linkage technique are two approaches to build
thick origami that have unique kinematics. Because of the special designs of these two thickness
accommodation techniques, both rotational and translational motion occurs between adjacent pan-
els during the folding process. Thus, simulating the folding kinematics requires using a generalized
crease model that can further consider the additional translational motion between adjacent panels.
When using the rolling contact technique, the two adjacent panels each have a curved edge and can
roll against each other [Lang et al., 2017]. The paper by Cai [Cai, 2016] and the work by Lang et
al. [Lang et al., 2017] provide kinematic models and the analytical solutions for origami systems
built with rolling contact. When using the offset linkage technique, the two adjacent panels are
connected using a four bar linkage [Lang et al., 2020]. The work by Lang et al. [Lang et al., 2020]
provides an approach to simulate the kinematics of an offset linkage.

When using hinge-shift techniques, the hinges of the origami structures are placed on the op-
posite side of the panels to accommodate the thickness [Hoberman, 1988,Chen et al., 2015]. When
the origami pattern is sufficiently simple (such as the Miura-ori pattern with symmetric bird foot
vertices), the technique can be applied directly to accommodate the thickness as demonstrated
in [Hoberman, 1988]. In this case, using the thin and rigid origami model to analyze the folding
kinematics is sufficient. However, when more complex vertices are encountered, one needs to
rely on more sophisticated models to simulate the folding kinematics. In the pioneering paper by
Chen et al., they showed that the folding motions of thick origami vertices built with hinge-shift
techniques can be simulated using well established spatial linkage models [Chen et al., 2015]. In
their work, the degree-4, degree-5, and degree-6 thick origami vertices are modeled as spatial 4R,
5R, and 6R linkages. With this simulation technique, the folding kinematics of these thick origami
vertices can be solved using analytical methods. A summary of existing mechanical linkages can
be found in reference [Chen and You, 2012].

Finally, we introduce the strained crease technique. Instead of using a hinge to connect adjacent
panels, this technique connects two thick panels with a bendable soft plate to serve as a crease [But-
ler et al., 2020, Delimont et al., 2015]. A design like this is commonly seen in active origami
structures and has been widely used in previous studies [Na et al., 2015, Zhu et al., 2020, Leong
et al., 2009, Yoon et al., 2014]. These strained (compliant) creases can be made with active mate-
rials such as shape memory polymers [Liu et al., 2011, Mao et al., 2015], hydrogels [Yoon et al.,
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Figure A.12: An introduction to mechanics-based simulations of physical systems.

2014, Na et al., 2015], shape memory alloys [Hawkes et al., 2010], light activated polymers, and
others [Bassik et al., 2009, Leong et al., 2009]. The smooth fold model can be used to study the
folding behavior of this type of thick origami [Hernandez et al., 2016b, Hernandez et al., 2017c]
because it can capture the widths of creases explicitly. Because the mechanical characteristics
of the compliant creases (e.g. their bending stiffness) can affect the behavior of compliant crease
origami systems significantly, it is more common to simulate these systems with mechanics-based
simulation techniques. For example, both the compliant crease bar and hinge model [Zhu and
Filipov, 2019b, Zhu and Filipov, 2020] and finite element model [Fang et al., 2018] were used to
simulate origami of this type. We will discuss these models when introducing mechanics-based
simulations in Section A.4 and multi-physics simulations in Section A.5.

A.4 Mechanics-Based Simulations

In this section, we introduce mechanics-based simulations for origami systems. The first step in
creating a mechanics based simulation is to formulate a model that represent the origami structure
and its internal properties. Figure A.12 (a) provides an illustrative example, where the single fold
origami is represented using a point mass connected to an extensional spring (for panel stretching)
and a linear-elastic rotational spring (for crease bending).

These mechanics-based models can then be used to simulate the physical behaviors of the
origami due to applied loading, self-folding, or other external effects. The physical behaviors can
be broadly separated into static or dynamic responses. In a static process, the kinetic energy of
the system is assumed to be negligible. The goal is to solve for the deformed configuration x
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Table A.3: A summary of rigid panel-based models and bar and hinge models for origami.

Simulation technique Formulation Note

Rigid bar based simulation This technique uses rigid bars
to represent triangulated origami
panels for deriving kinematic
constraining equations.

The technique could be seen as
a transition from kinematic sim-
ulations to mechanic simulations
and the precursor of bar and hinge
models.

Reference [Zhang et al., 2018], [Schenk and Guest, 2010], [Zhang and Kawaguchi, 2021] figure from
[Zhang et al., 2018]

Rigid frame based simulation This model represents rigid
origami panels using rigid frame
elements and simulates creases as
rotational hinges.

Rigid frame are used to preserve
the folding kinematics. It is dif-
ficult to correlate frame deforma-
tion to panel deformation so the
model is primarily suited for kine-
matic analyses.

Reference [Hayakawa and Ohsaki, 2021], [Hayakawa and Ohsaki, 2019] figure from [Hayakawa and
Ohsaki, 2021]

Standard bar and hinge model The model uses bar elements
to capture panel stretching and
shearing and uses rotational
spring elements to capture crease
folding and panel bending.

Bar and hinge model based sim-
ulations are computationally effi-
cient and can capture the global
mechanical behavior of origami.

Reference [Filipov et al., 2015], [Filipov et al., 2017], [Filipov and Redoutey, 2018], [Liu et al., 2020],
[Liu et al., 2019], [Gillman et al., 2018], [Gillman et al., 2019], [Kaufmann et al., 2021], [Li and Wang,
2015], [Mukhopadhyay et al., 2020], [Pagano et al., 2017], [Wei et al., 2013], [Cai et al., 2016a], [Greco
et al., 2006], [Kidambi and Wang, 2020], [Fuchi et al., 2015] figure from [Liu and Paulino, 2017a]

Compliant crease bar and
hinge model

This model represents the ge-
ometry of compliant creases by
adding additional bar elements
and rotational spring elements in
the crease region.

This model captures the bistabil-
ity and multistability induced by
having compliant creases.

Reference [Zhu and Filipov, 2019b], [Zhu and Filipov, 2019a], [Zhu and Filipov, 2020], [Zhu and
Filipov, 2021a] figure from [Zhu and Filipov, 2020]

Particle bar and hinge model This model lumps the mass of the
origami onto the nodes for sim-
ulating the dynamic behaviors of
origami.

Particle bar and hinge model
based simulations can be used to
analyze the transient dynamics of
origami rapidly.

Reference [Xia et al., 2021a], [Xia et al., 2021b], [Yu et al., 2019], [Xia and Wang, 2019], [Dong et al.,
2021], [Dong and Yu, 2021], [Bhovad and Li, 2021] figure from [Yu et al., 2019]
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Table A.4: A summary of plate theory based simulations and FE simulations for origami.

Simulation technique Formulation Note

Plates models for creases This technique represents the
origami compliant crease as a
plate and solves its deformation
under applied forces.

The technique can be used to cal-
culate spring stiffness for bar and
hinge models as shown in [Zhang,
2021]

Reference [Zhang et al., 2021], [Zhang, 2021] figure from [Zhang et al., 2021]

Plates models for panels This technique simulates the
small-strain bending behavior of
origami panels using plate theory.

This formulation can be seen as a
coarse meshed finite element sim-
ulation with limited capability for
nonlinearity but better efficiency.

Reference [Hu et al., 2021], [Soleimani et al., 2021], [Filipov et al., 2017] figure from [Hu et al., 2021]

Shell element panels & hinges This formulation models origami
panels using shell elements and
origami creases as rotational
springs or rotational hinges.

This formulation is suitable for
studying origami systems with
softer creases. The fold line
can deform and buckle during the
loading process.

Reference [Filipov et al., 2015], [Filipov et al., 2016], [Filipov et al., 2017], [Grey et al., 2019] figure
from [Filipov et al., 2017]

Shell element panels & rigid
creases

This formulation models origami
systems as shell elements con-
nected with rigid creases (that do
not fold).

This formulation is widely used
for simulating origami unit cells
and sheets, metamaterials, sand-
wich cores, and crash boxes when
the creases are rigidly connected.

Reference [Yuan et al., 2020], [Karagiozova et al., 2019], [Ma et al., 2018b], [Zhang et al., 2019], [Cai
et al., 2017b], [Liu et al., 2015], [Ma et al., 2018a], [Thai et al., 2018], [Schenk et al., 2014], [Heimbs
et al., 2007], [Heimbs et al., 2010], [Xiang et al., 2020], [Ma and You, 2014], [Wang and Zhou,
2017], [Song et al., 2012], [Yang et al., 2016], [Zaghloul and Bone, 2020], [Xiang et al., 2018] figure
from [Xiang et al., 2018]

Shell elements for both panels
and creases

This formulation simulates both
creases and panels using shell
elements so that the compliant
creases can be captured.

This formulation is useful for
simulating active origami because
active origami systems usually
have actuating compliant creases.

Reference [Zhu and Filipov, 2019b], [Zhu and Filipov, 2020], [Hernandez et al., 2016b], [Hernandez
et al., 2016a] figure from [Hernandez et al., 2016a]

Solid elements This formulation can capture
the non-negligible thickness in
origami.

Suitable for simulating thick
origami or origami-inspired
systems with blocked volume.

Reference [Fang et al., 2018], [Kwok, 2020] figure from [Kwok, 2020]
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under applied loading (or self-folding) to where the system is in equilibrium. This case usually
forms a boundary value problem (BVP) where the internal forces (the Jacobian of the internal
strain energy U) are equal to the external applied loads: ∇xU(x) = Fext. These BVPs can be solved
using various nonlinear BVP solvers (implicit solvers). Figure A.12 (d) demonstrates how typical
nonlinear BVP solvers break the target load into small increments of load (δFext). Within each
increment, the deformed state is iteratively updated to minimize error so that the solver can find
the real solution (following the zig-zag curves in Fig. A.12 (d) to find the ground truth curve).

For dynamic behaviour, the deformations occur rapidly, the kinetic energy of the system is
no longer negligible, and we solve for the origami motions over time. Solving for the dynamic
behaviors usually forms an initial value problem (IVP) (see Fig. A.12 (c)). The numerical inte-
gration methods previously introduced for kinematic simulations can also be used to solve these
IVPs. These are explicit solution methods because they do not have iterative loops within their
formulations (see Fig. A.12 (e)), which makes them faster than implicit methods per incremental
step. However, because no iterative loops are used to minimize error, the numerical errors can
accumulate over time. The accumulation of error limits the step length (δt) of explicit methods,
so these methods need to take large number of small steps for convergence and for achieving rea-
sonable fidelity. Overall, this large number of steps typically makes solving dynamic simulations
with explicit solvers more time consuming when compared to solving static problems with implicit
solvers.

A quasi-static simulation is a dynamic simulation that assumes a slow loading rate so kinetic
energy is insignificant and instead the structural response is governed only by the static behaviors.
The quasi-static simulation is useful when simulating origami with contact related behaviors such
as the graded stiffness studied in [Ma et al., 2018b].

In the following subsections, we introduce mechanics-based origami simulations and focus on
the models to represent origami structures (i.e. part (a) of Fig. A.12). After constructing the origami
model, applying implicit or explicit solvers to run the simulation follows common procedures of
mechanical analysis. A summary of different implicit solvers can be found in the work by Leon
et al. [Leon et al., 2014] and common explicit solvers for dynamics simulations can be found in
structural dynamics text books [Chopra, 2014,Clough and Penzien, 1975]. This section is arranged
as follows. First, we introduce rigid panel models for kinematic analysis which can be seen as the
transition from kinematics-based simulations to mechanics-based simulations. Next, we present
bar and hinge models and plate theory based models, which are two popular reduced-order models
for origami structures. We then introduce finite element simulations for origami structures that can
offer high fidelity results. Following the discussion of these models, we proposed building hybrid
reduced-order models for origami systems, and discuss how contact behaviors can be simulated
for origami systems. Table A.3 and Table A.4 summarizes the models we cover in this section.
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Figure A.13: Using kinematic simulations to capture simple mechanical responses.

A.4.1 Rigid panel models

The close connection between kinematic and mechanical simulations of origami can be illustrated
by considering the folding stiffness of a Miura-ori structure; see Fig. A.13. After assigning rota-
tional springs to the folding creases of this origami pattern, the internal hinge moments and total
elastic potential energy at any rigid-foldable configuration can be calculated using the kinemat-
ics given in Eqn. (A.12-A.15). From the elastic potential energy, the force-displacement response
(and thus stiffness) of the fold pattern can be found using Castigliano’s theorem. This approach
allows for rapid parametric studies, but is only suitable for obtaining simple mechanical behavior
of rigid-foldable origami with known kinematics [Wei et al., 2013, Kamrava et al., 2018, Hanna
et al., 2014, Yasuda and Yang, 2015, Yasuda et al., 2020, Yang and Silverberg, 2017a].

Next, we introduce rigid panel models for origami structures. These models can be seen as
transitional models that lie between kinematic simulations and mechanical simulations. They usu-
ally use rigid truss elements or frame elements to represent the panels of origami structures and
can capture the folding kinematics of origami.

Figure A.14 (a) demonstrates a technique to represent rigid origami panels using rigid bar
elements and pin-joints. To analyze the kinematic folding motions of the origami system, one can
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Figure A.14: Rigid panel models for kinematic studies. (a) Rigid bar models; (b) Rigid truss model
for thick origami; (c) Rigid frame models.

study the compatibility matrix Cbar of the rigid bar system [Schenk and Guest, 2010, Zhang and
Kawaguchi, 2021, Zhang et al., 2018]. This compatibility matrix relates the nodal deformation of
the structure u to the internal member strains e as:

Cbar(u) u = e, (A.23)

We use the 1D bar shown on Fig. A.14 (a) to demonstrate how this compatibility matrix can be
calculated. The engineering strain of this bar is expressed as e = (u2− u1)/l. Reorganizing the
equation gives e = [−1/l, 1/l][u1, u2]T so the compatibility matrix is [−1/l, 1/l]. More systematic
ways of deriving the compatibility matrix for complex structures can be found in structural analysis
textbooks [McGuire et al., 2000] or in the following papers [Schenk and Guest, 2010, Zhang and
Kawaguchi, 2021, Zhang et al., 2018]. This compatibility matrix also relates the velocity of bar
strains with respect to the velocity of nodal displacements:

Cbar(u) u̇ = ė, (A.24)

Assuming the panel is rigid, there would be no bar strains throughout the kinematic motion which
is equivalent to:

Cbaru̇ = 0. (A.25)

This Eqn. (A.25) is similar to Eqn. (A.19) introduced in subsection A.3.4. Both of these equations
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form an ODE and can be solved using the numerical integration methods and explicit solvers.
The Cbar matrix demonstrated in Eqn. (A.25) plays the same role as the C matrix in Eqn. (A.19).
However, the derivation of Cbar is directly obtained by solving the compatibility matrix rather than
taking a kinematic approach. On top of the rigid bar constraint, rotational springs can be added
to enable the simulation of mechanical loading and other stiffness properties [Schenk and Guest,
2010, Fuchi et al., 2015].

In addition to modeling thin origami panels, rigid truss models can also be used to capture the
kinematic motion of thick origami panels [Zhang and Kawaguchi, 2021]. In this formulation, a
set of truss-based pyramids are used to represent the thick and rigid origami panels (see Fig. A.14
(b)). Although the current model has not been used to study deformable thick panels, this model
can be extended for such studies in the future.

Hayakawa et al. introduced a related frame element based alternative for origami kinematic
simulation [Hayakawa and Ohsaki, 2021, Hayakawa and Ohsaki, 2019] (Figure A.14 (c)). Here,
triangulated panels of the origami are represented using three frame elements that are rigidly con-
nected at the panel center, and the folding creases are represented by rotational hinges at the crease
line where two panels connect. If the frame elements remain rigid during the deformation, the
system will preserve the kinematics of the rigid and thin origami. After deriving the compati-
bility matrix, numerical integration allows to track kinematically admissible motions. The work
by Hayakawa et al. also demonstrated that this model can be used for inverse design of origami
patterns that fit arbitrary surfaces [Hayakawa and Ohsaki, 2021, Hayakawa and Ohsaki, 2019].

A.4.2 Bar and hinge models

The bar and hinge model has become a widely used reduced-order mechanical model for simulat-
ing origami systems [Filipov et al., 2015, Mukhopadhyay et al., 2020, Kaufmann et al., 2021, Wei
et al., 2013]. The model is sometimes referred to as the truss-based mechanism model [Greco
et al., 2006, Gillman et al., 2018, Gillman et al., 2019] or the pin-jointed bar framework [Schenk
and Guest, 2010], but here, will use the name bar and hinge model because it is an expressive name
(directly pointing to the two elements involved).

The model represents an origami using bar elements and rotational spring elements (hinges
with rotational stiffness) as shown in Fig. A.15 (a). The bar elements are extensional springs in
3D space that can capture the stretching and shearing of origami panels (and creases). On the
other hand, the rotational spring elements are rotating hinges with stiffness that can capture the
crease folding or panel bending. The strain energy stored within the entire origami system can be
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Figure A.15: (a) The bar element and the rotational spring element; (b) standard bar and hinge
model for simulating origami; (c) compliant crease bar and hinge model for simulating origami.

expressed as:

U =
Nbar∑
i=1

Ubar,i+

Nspr∑
j=1

Uspr, j, (A.26)

where Ubar,i represents the strain energy in bar i and the Uspr, j gives the strain energy of rotational
spring j. The simplest bar element is a linear spring and can be expressed as:

Ubar,i =
1
2

EiAi

l0,i
((x1− x2)− l0,i)2, (A.27)

where Ei is the Young’s modulus, Ai is the bar area, x1 and x2 are the nodal coordinates, and l0,i
is the original length of the bar. Many studies use this linear elastic bar formulation because it is
simple and easy to derive [Gillman et al., 2018,Gillman et al., 2019,Kaufmann et al., 2021,Kidambi
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and Wang, 2020, Li and Wang, 2015, Zhu and Filipov, 2020, Mukhopadhyay et al., 2020, Pagano
et al., 2017]. More advanced hyper-elastic formulations are also available for deriving the total
potential of the bar element [Liu and Paulino, 2016, Liu and Paulino, 2017a, Liu and Paulino,
2018a]. Similarly, the linear elastic rotational spring model is the simplest hinge element and it
can be expressed as:

Uspr,i(x1, x2, x3, x4) =

1
2 Kspr,i(ϕ(x1, x2, x3, x4)−ϕ0)2,

(A.28)

where Kspr,i is the spring stiffness, x1 to x4 are the nodal coordinates, and ϕ0 is the stress free
dihedral angle of the fold. The current dihedral angle can be calculated using the current nodal
coordinates of the four nodes adjacent to the fold (see Fig. A.15 (a)), and detailed calculations of
this function ϕ can be found in [Liu and Paulino, 2017a, Gillman et al., 2018, Hu et al., 2021].
Most existing studies use this linear elastic rotational spring formulation [Pagano et al., 2017,
Mukhopadhyay et al., 2020, Gillman et al., 2018, Gillman et al., 2019, Kaufmann et al., 2021,
Kidambi and Wang, 2020, Li and Wang, 2015, Zhu and Filipov, 2020].

There are different ways of meshing an origami structure using the bar elements and the rota-
tional spring elements. The N4B5 model [Schenk and Guest, 2010, Liu and Paulino, 2017a] and
the N5B8 model [Filipov et al., 2017,Liu and Paulino, 2018a] are two common models for a quad
origami panel. The N4B5 model represents a quad panel with 4 nodes and 5 bar elements (see
Fig. A.15 (b)). This N4B5 model can capture the bending behavior across one diagonal axis of the
quad panel but produces a skewed deformation under in-plane axial loading. In order to avoid this
skewed deformation, the N5B8 model (see Fig. A.15 (c)) was proposed by Filipov et al. in [Filipov
et al., 2017]. This panel model contains 5 nodes and 8 bars. With the additional bars, it produces
a more accurate deformation under the applied axial loading and can capture bending across both
diagonals of the panel. In addition to these models for quad based origami, the generalized N4B5
and generalized N5B8 models are also proposed for panels with arbitrary number of edges by Liu
and Paulino in [Liu and Paulino, 2018a]. Finally, explicit derivations for trapezoidal and hexagonal
panels are provided by Redoutey et al. in [Redoutey et al., 2021].

In a standard bar and hinge model, the folding creases of the origami structure are represented
with individual rotational springs [Filipov et al., 2015, Filipov et al., 2017, Filipov and Redoutey,
2018, Liu et al., 2020, Liu et al., 2019, Gillman et al., 2018, Gillman et al., 2019, Kaufmann et al.,
2021, Li and Wang, 2015, Mukhopadhyay et al., 2020, Pagano et al., 2017, Wei et al., 2013]. In
this formulation, the folding creases are simplified as lines with no width (see Fig. A.15 (b)).
This type of model can capture the crease folding, panel bending, panel stretching, and panel
shearing deformations. However, the model cannot capture possible extensional and torsional
crease motions in compliant creases.
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More recently, the bar and hinge model has been extended to capture compliant creases within
active origami [Zhu and Filipov, 2019b,Zhu and Filipov, 2020]. In this formulation, the compliant
creases are represented using 7 nodes, 12 bars, and 8 rotational springs (see Fig. A.15 (c)). Using
compliant crease bar and hinge model can further capture the extensional strain energy in folding
creases, which is necessary for simulating some bistable behaviors in origami structures [Zhu and
Filipov, 2019b, Zhu and Filipov, 2020].

There are three main approaches to assigning stiffness parameters (bar areas and rotational
spring stiffness) when using bar and hinge models. First, it is possible to assign fictitious values
to the bar area and the rotational spring stiffness [Ghassaei et al., 2018]. This technique can be
used when studying the algorithmic properties of origami simulations (such as studying parallel
computation or convergence properties), where we are less interested in predicting the exact phys-
ical origami behaviors. Second, we can derive the stiffness parameters by matching the stiffness
of a bar and hinge model to that of a theoretical plate model [Filipov et al., 2017, Zhu and Filipov,
2020, Liu and Paulino, 2018a]. Because these derivations tend to be based on a small-deformation
assumption, the generated stiffness parameters can produce mechanical behaviors that are stiffer
than physical experiments where large deformations such as panel buckling occur. Finally, it is
possible to assign the bar area and the rotational spring stiffness by doing curve fitting using ex-
periments [Masana and Daqaq, 2019]. This approach tends to produce a more accurate prediction
of the origami stiffness because curve fitting can artificially account for large panel deformations.
In other words, using curve fitting is similar to using the secant stiffness of the behavior, while
matching with theoretical plates is similar to using the initial tangent stiffness.

Simulating origami mechanical behaviors using bar and hinge models and static nonlinear
solvers has become popular because these models have a simple formulation and are computa-
tionally efficient. This simulation technique can capture the global response of origami structures
and allows richer deformation to be simulated when compared to kinematics-based simulations.
So far, bar and hinge model simulation techniques have been successfully used for studying the
bistability and multistability in origami hypars [Liu et al., 2019, Filipov and Redoutey, 2018] and
Kresling patterns [Cai et al., 2016a, Liu and Paulino, 2017a, Pagano et al., 2017, Kidambi and
Wang, 2020], simulating the folding motions of tubular origami [Filipov et al., 2015, Mukhopad-
hyay et al., 2020], studying the behaviors of compliant crease origami [Zhu and Filipov, 2019b,Zhu
and Filipov, 2020], designing origami metamaterials [Wei et al., 2013, Pratapa et al., 2021], op-
timizing the performance of origami patterns [Gillman et al., 2019, Fuchi et al., 2015], studying
the influence of origami defects [Liu et al., 2020], and more. However, the bar and hinge model
cannot capture localized behaviors such as crease buckling, panel buckling, stress concentration,
and local material plasticity in the origami structures.

The bar and hinge model can also be used to study the dynamics of origami systems. To do
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Figure A.16: Using plate theory based models to simulate origami systems. (a) from [Zhang et al.,
2021], (b) right from [Hu et al., 2021].

that, one needs to use a particle bar and hinge formulation. This formulation captures the mass of
origami by assigning “particle” mass to the nodes of the origami models [Xia and Wang, 2019,Xia
et al., 2021a, Yu et al., 2019, Dong et al., 2021]. The velocity and acceleration of the origami are
also stored at these mass nodes. [Xia and Wang, 2019,Xia et al., 2021a,Yu et al., 2019,Dong et al.,
2021]. The dynamic motions of the origami structure can be solved using explicit solvers such
as those introduced in [Yu et al., 2011, Chopra, 2014, Clough and Penzien, 1975]. This model is
used to study the folding dynamics of various origami structures including Miura tubes [Xia et al.,
2021a], Miura sheets [Bhovad and Li, 2021], waterbomb tubes [Dong et al., 2021], and Ron-Resch
patterns [Yu et al., 2019]. This model can also be used to study “chaotic” type dynamic folding
behaviors in origami [Fonseca et al., 2019, Yasuda et al., 2020, Han et al., 2020].

A.4.3 Plate theory based simulations

Because origami tends to have planar characteristics, plate theories can be used for simulating both
compliant creases and deformable origami panels. In the work by Zhang et. al., an analytical plate
model for simulating the mechanics of compliant creases is proposed [Zhang et al., 2021]. In their
work, additional rotational springs were added at the connection between the origami panels and
the compliant creases so that richer deformations could be enabled (Fig. A.16 (a)). In recent work
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by Zhang [Zhang, 2021], this advanced plate theory based model is incorporated into a bar and
hinge model to simulate the behaviors of an entire origami pattern.

Plate theory based models can also be used for capturing the behavior of origami panels. Hu
et. al. [Hu et al., 2021] created a user defined quad element in ABAQUS to capture the small-
deformation behaviors of origami plates. In their approach, the quad element is designed such that
it can capture the panel bending using the separation distance between the center points of the two
straight lines that connect opposite corners of the quad panel (Fig. A.16 (b)). The potential of this
quad element is calculated as:

U =
De

2
(∆w)2 =

De

2
(uP−uQ)2. (A.29)

This formulation is derived with assumed small curvature deformation [Hu et al., 2021]. In the
equation, the term De is a modified bending rigidity of the plate and the subtraction uP−uQ obtains
the distance between point P’ and Q’ (see Fig. A.16 (b)). Their work demonstrates that if the panel
deformation is governed by small-strain bending, the model can capture the origami behaviors
rapidly. In addition to this formulation, the study by Soleimani et. al. [Soleimani et al., 2021]
derived a plate theory based panel model using the first order shear deformation theory.

Using plate theory based panel models and crease models can be thought of as using finite
element simulations with coarse meshes. These plate theory based simulations can provide a lower
fidelity but more computationally efficient approaches to capture the behaviors of origami com-
pared to the use of finite element simulation. However, plate theory based origami models cannot
capture extreme local buckling and kinking because these models are derived with strict assump-
tions on the deformation shapes.

A.4.4 Finite element simulations

Finite element (FE) simulation is another popular technique for analyzing origami-inspired engi-
neering structures. FE simulations provide approaches to capture the complicated local behaviors
(such as local buckling and stress concentration [Heimbs et al., 2007,Heimbs et al., 2010,Ma et al.,
2018a]) and material nonlinearity (such as plasticity [Karagiozova et al., 2019,Zhang et al., 2019])
in origami structures. Most commercial FE packages also have automated internal static and dy-
namic solvers so that users do not need to code their own numerical solvers. In this subsection, we
focus on how FE simulations are used for studying the mechanical behaviors of origami systems
such as stiffness under static loading and energy absorption under dynamic loading. In addition to
these purely mechanical studies, FE simulations are also widely used for simulating multi-physical
behaviors of origami systems, and this topic will be discuss in section A.5.

One way to model origami using FE is to represent the panels using shell elements and connect
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Figure A.17: Different types of FE models used for simulation of origami structures. The lower
figures of (a) to (d) are from [Filipov et al., 2016], [Heimbs et al., 2007], [Hernandez et al., 2016a],
and [Fang et al., 2016] respectively.

the panels using rotational springs or hinges [Filipov et al., 2015,Filipov et al., 2016,Filipov et al.,
2017, Grey et al., 2019] (see Fig .A.17 (a)). This approach is commonly used for studying the
mechanical properties of origami sheet and tubular structures because it can capture the relatively
soft creases in such systems. Filipov et. al. have used this approach to study a reconfigurable
tubular origami structure [Filipov et al., 2016] and a stiff zig-zag origami tube [Filipov et al., 2015].
Both the load bearing capacity and the eigen properties of origami tubes are investigated [Filipov
et al., 2015, Filipov et al., 2016]. A similar approach was used in work by Grey et. al. [Grey et al.,
2019] to study the deployment process of Miura-ori tubes with crease actuation.

Another way of modeling origami structures using FE simulation is to connect the shell element
panels with fixed and rigid fold lines (see Fig .A.17 (b)). This formulation is suitable for study-
ing the behaviors of origami-inspired devices such as metamaterials, crash boxes, and sandwich
cores. These origami-inspired devices are not fabricated to be “deployed”. Instead, these devices
are over-constrained and used as a single block of material with fixed creases. This FE simulation
setup was used for exploring the static response [Yuan et al., 2020, Zhang et al., 2019] and the
dynamic response [Karagiozova et al., 2019] of origami metamaterials. In addition, this formula-
tion has been used for analyzing origami crash boxes for energy absorption applications [Ma and
You, 2014, Wang and Zhou, 2017, Song et al., 2012, Yang et al., 2016]. In this prior research,
physical experiments were also conducted and good agreements between the FE simulations and
experiments were obtained. Wang and Zhou [Wang and Zhou, 2017] use this approach to study
the influence of imperfection sensitivity of origami crash boxes. Xiang et. al. [Xiang et al., 2020]
provided a detailed review on using origami-inspired structures for energy absorption. Moreover,
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Heimbs et. al. [Heimbs et al., 2007, Heimbs et al., 2010] used this approach to study the behav-
ior of an origami sandwich core. In their work, complex material failures such as delamination
was also captured using a special technique of overlaying shell elements in LS-DYNA. Schenk et.
al. [Schenk et al., 2014] used this approach to study the behavior of stacked Miura-ori sandwich
beams for blast-resistance. In all of the above studies, the deployment of the origami structure is
restricted and the systems are kinematically over constrained. Typical deformation of these sys-
tems include panel buckling and stretching, and the local crease deformations are not considered
to be important for the global behaviors.

Compliant origami creases can also be modeled using shell elements as shown in Fig. A.17 (c)
[Zhu and Filipov, 2019b,Zhu and Filipov, 2020,Hernandez et al., 2016b,Hernandez et al., 2016a].
In this modeling approach, the geometry and stiffness of the compliant creases can be accurately
captured using shell elements with fine meshes. Simulating the compliant creases explicitly can
be important for many reasons. For example, it allows users to simulate the active folding from
plate-based bending actuators [Hernandez et al., 2016a].

Finally, solid elements can also be used for simulating origami-inspired system [Fang et al.,
2018, Kwok, 2020]. In these cases, the thickness of the origami-inspired systems is of importance
so solid elements are needed to properly capture the full system geometry. Using this approach is
computationally expensive because fine meshes across the thickness of origami panels are needed
to capture the accurate panel bending behavior. Thus, solid elements are usually not used for
origami simulation unless explicitly capturing the thickness is of essential importance.

One major reason behind the popularity of using FE simulation for origami structures is the
existence of commercially available software programs such as ABAQUS [Ma and You, 2014, Ma
et al., 2018b, Yuan et al., 2020], ANSYS [Heimbs et al., 2007, Zaghloul and Bone, 2020], and
LS-DYNA [Heimbs et al., 2007, Heimbs et al., 2010, Zaghloul and Bone, 2020]. These com-
mercially available programs provide a wide variety of material models and element types, and
allow researchers to perform static loading, quasi-static loading, or dynamic loading using stan-
dardized procedures through convenient user interfaces. The FE simulations also capture local
structural responses such as stress concentration and local buckling [Ma et al., 2018a, Heimbs
et al., 2007, Heimbs et al., 2010, Liu et al., 2015], which is otherwise difficult to simulate with
reduced-order simulation techniques. However, building FE models and running the analyses is
time consuming, especially if the origami is made with non-repetitive base patterns. Because of
those difficulties, most of the studies covered in this subsection were based on simple patterns such
as the Miura-ori pattern. Transforming “freeform” origami designs into executable FE simulation
programs in a stream-lined manner is still a difficult task to be resolved. Another limitation of us-
ing FE simulation is that an FE simulation acts like a black box. Many scientific explorations and
theoretical developments still favor the use of reduced-order simulations because they can reveal
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Figure A.18: Different types of mechanical models for origami panels and creases.

the underlying theoretical behaviors (as discussed further in Section A.7).

A.4.5 Rethinking reduced order mechanical models: Hybrid formulations

In this subsection, we take a step back and provide a holistic discussion on the formulation of
reduced-order mechanical models for origami systems. Unlike kinematics-based simulations for
origami systems, mechanics-based simulations allow users to combine different panel models and
crease models to assemble new “element-based” formulations. We can think of the formulation of
a mechanical model as “gluing” different “elements” at the nodes of the origami structure. These
different elements will generate the relationships between internal forces and nodal deformations
needed to simulate the folding and loading behaviors of origami systems. When FE models are
used for simulating origami systems, we are already modeling the origami by grouping different
panel models and different crease models. The same perspective can be applied to the reduced-
order origami models for creating new hybrid formulations. Figure A.18 demonstrates how com-
bining different simplified origami panel models and crease models can potentially create new
reduced-order simulation techniques. The key of achieving this combination is to ensure that the
panel models have identical boundary setups (number of nodes and number of DOF per node) as
the crease models.

All models demonstrated in Fig. A.18 were discussed previously except the spring based mod-
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els for creases, which we will now briefly discuss. The simplest way of modeling the mechanical
behavior of origami creases is to use a single spring element. In addition to the common rotational
springs for modeling crease folding motions [Liu and Paulino, 2017a, Gillman et al., 2018, Gill-
man et al., 2019,Zhu and Filipov, 2019b,Filipov et al., 2015], other deformations between the two
panels can also be captured using spring elements with different forms. In general, there are six
different forms of relative deformations between the two panels as shown in the bottom left box of
Figure A.18. In many situations, we do not need all six forms of deformations to simulate the accu-
rate global mechanical behaviors of origami systems. For example, studying the Poisson’s effects
or the stretching stiffness of Miura sheet only requires using rotational springs for the folding mo-
tion [Schenk and Guest, 2010, Wei et al., 2013] and the simulation of a bistable origami cone can
be accomplished with rotational springs and extensional springs [Faber et al., 2018]. There are also
models including all six forms of springs such as the one proposed by Soleimani et. al. [Soleimani
et al., 2021]. These six forms of springs provide a useful tool to model the behaviors of lamina
emergent mechanism (LEM) type joints for origami. Using these LEM type joints provides a novel
technique for building thick origami systems (introduced in section A.3.7). The work by Delimont
et. al. provides a summary of different LEM joints and equations for calculating the corresponding
spring stiffness [Delimont et al., 2015]. Spring based models are appropriate for simulating linear
origami crease behaviors or behaviors with small deformations. However, the models are not suit-
able for capturing the distributed width of compliant creases or for simulating localized behaviors
such as buckling of creases.

Considering the variety of different panel and crease models, one can create new origami mod-
els tailored for specific origami systems by combining appropriate models (Fig. A.18). In this way,
one can create a hybrid origami model that inherits both the capabilities from the selected crease
model and the selected panel model. For example, the truss-based thick panel model [Zhang and
Kawaguchi, 2021] can be grouped with the bar and hinge compliant crease model [Zhu and Filipov,
2020,Zhu and Filipov, 2019b] to capture the behaviors of origami systems with strained creases and
thick panels. Alternatively, the plate theory based panels [Soleimani et al., 2021, Hu et al., 2021]
could be grouped with spring based creases to simulate deformable origami with small-strain plate
bending and linear crease deformations.

Some of the currently implemented packages for origami simulation already allow users to
choose between different combinations. For example, the bar and hinge MERLIN2 package al-
lows users to switch between the N4B5 and N5B8 panel models [Liu and Paulino, 2018a, Liu
and Paulino, 2018b] and the bar and hinge SWOMPS package allows users to switch between
the spring based creases and compliant creases [Zhu and Filipov, 2021a, Zhu and Filipov, 2021b].
However, the variability provided with current packages is still limited. Future studies on reduced-
order mechanical models for origami systems can explore the potential of generating a more uni-
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fied formulation to incorporate different panel models and crease models. In addition, future im-
plementations can expand built-in panel models and crease models so that users can create more
on-demand combinations for the specific origami that they are working with.

A.4.6 Capturing panel contact

One fundamental limitations in the kinematics-based simulations of origami is that panel contact
within origami systems cannot be easily simulated (see Fig. A.9). With the help of mechanics-
based simulation techniques, the issue of contact can be resolved. Capturing the occurrence and
behavior of panel contact can be important for studying origami-inspired metamaterials or crash
boxes as shown in [Yuan et al., 2020,Zhang et al., 2019,Ma and You, 2014]. In this subsection, we
briefly discuss how mechanics-based simulation techniques can capture the panel contact within
origami systems. We discuss panel contact models for static simulations and dynamic simulations
separately because they tend to have different formulations and characteristics.

To prevent the origami panels from penetrating each other in a static simulation, the internal
strain energy (potential) of the origami structure needs to be adjusted. This can be achieved by
changing the strain energy formulation of the rotational springs. In the work by Liu and Paulino
[Liu and Paulino, 2017a,Liu and Paulino, 2016] a piecewise penalty function is added to the strain
energy of the rotational springs. This additional penalty function gives a large stiffness when
the crease folds towards 180◦ so that the crease is prevented from over-folding (see Fig. A.19
(a)). Similarly, a slightly different but continuous strain energy formulation of rotational springs is
provided by Gillman et. al. [Gillman et al., 2018, Gillman et al., 2019] (see Fig. A.19 (b)). This
continuous form can also avoid local penetration.

However, these formulations only prevent panels from penetrating each other locally (the two
panels need to share a common hinge). A more thorough penetration prevention technique was
developed in [Zhu and Filipov, 2019a]. In their work, the penalty function for panel contact is
developed based on the distance between a contacting triangle panel and a contacting node. This
technique can prevent panel penetration globally and the contacting panels do not need to share a
common crease. Figure A.19 (c) demonstrates a sample application of this model, where contact
results in a stiffness jump between two separate but interlocked origami strips. This model also
provides the capability to capture thickness in origami within a mechanical simulation [Zhu and
Filipov, 2019a] (see Fig. A.19 (d)).

Both the local and the global panel contact models introduced above have a potential based
formulation. That is to say, the panel contact forces can be determined based on the current con-
figuration of the origami (without the history of prior configurations). Because these are potential
based formulations, the contact forces within these models are conservative (there is no energy
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Figure A.19: Panel contact and prevention of panel penetration in origami simulation. Figure (a)
from [Liu and Paulino, 2017a], figure (b) from [Gillman et al., 2018], figures (c) and (d) from [Zhu
and Filipov, 2019a], and figure (e) from [Dong and Yu, 2021].
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dissipation). One advantage of these contact models is that they are fast to solve because they
form a BVP that can be solved statically using implicit solution methods. However, these poten-
tial based contact models cannot capture frictional forces. To resolve this limitation, one needs to
construct IVPs and use dynamic based (or quasi static based) simulation techniques such as those
proposed in the work by Dong and Yu [Dong and Yu, 2021] (see Fig. A.19 (e)). In their model, the
panel contact forces are not only calculated using the current origami configuration, but are also
calculated using the velocity of origami motion (see Eqn. (14) in reference [Dong and Yu, 2021]).
This panel contact model forms an IVP because calculating the velocity of origami motion needs
to use the origami configurations from previous steps. Solving these dynamic contact models are
more time consuming because they need to use the explicit dynamic solution methods.

In addition to using the above mentioned reduced-order models for simulating contact, com-
mercial FE simulation software can also be used to study contact related origami behaviors. For
example, Ma et. al. studied the quasi-static loading of an origami-inspired structure with graded
stiffness [Ma et al., 2018b] and an origami crash box for energy absorption [Ma et al., 2016].
Similarly, Heimbs et. al. studied dynamic impact loading [Heimbs et al., 2010] and quasi-static
loading [Heimbs et al., 2007] of origami sandwich fold cores using FE simulations. Usually, even
when exploring static contact behaviors in origami, a dynamic simulation (in a quasi-static manner)
is performed [Song et al., 2012, Ma et al., 2018b, Wang and Zhou, 2017, Ma and You, 2014, Xiang
et al., 2018]. The reasoning is that explicit solvers in FE simulation packages often provide better
contact models and contact searching algorithms [MIT, 2017a, MIT, 2017b, MIT, 2017c].

A.5 Multi-Physics Based Simulations

Recently, there has been an increased need to analyze the multi-physics based active folding and
other non-mechanical properties of origami-inspired systems such as thermally active folding,
magnetic active folding, electromagnetic properties of origami-inspired systems, drag force of
origami surfaces in submerged environments, heat conduction properties of origami, etc. Fig-
ure A.20 (a) gives a general flow-chart for analyzing origami using multi-physics based simu-
lations. Generally speaking, there are two parts of the analysis process that involve the use of
multi-physics simulations and they are: simulation of the actuation for active folding and the sim-
ulation of non-mechanical properties. In this section, we discuss these two aspects of origami
multi-physics.

Traditionally, origami artists fold an origami using their hands and their craftsmanship. But
nowadays, origami engineers take other approaches and fold origami-inspired engineering systems
using active materials or responsive systems. For example, origami-inspired systems can be folded
using active hydrogels [Na et al., 2015, Yoon et al., 2014, Kang et al., 2019], metallic morphs
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Figure A.20: Multi-physics simulation of active origami. Figure (b) from [An et al., 2018], figure
(c) from [Zhu and Filipov, 2021a], figure (d) from [Hathcock et al., 2021], figure (e) from [Nauroze
et al., 2018].

with residual stresses [Leong et al., 2009, Leong et al., 2008, Bassik et al., 2009, Arora et al.,
2006], shape memory polymers [Felton et al., 2014, An et al., 2018, Mao et al., 2015], shape
memory alloys [Hawkes et al., 2010, Paik and Wood, 2012, Hernandez et al., 2016a], electro-
thermal actuators [Zhu et al., 2020,Zhu and Filipov, 2021a], active magnetic systems [Shaar et al.,
2015, Iwase and Shimoyama, 2005, Xu et al., 2019, Swaminathan et al., 2021], etc. The folding
motions generated using these actuation mechanisms have a multi-physical nature, and thus, multi-
physics based simulations are needed.

The multi-physics based actuation can act on the origami through two major types of action:
by triggering crease folding or by triggering globally applied forces. In the first type, the applied
stimuli first trigger the material in the crease region to develop strains and stresses. The strains
and stresses then force the crease to bend and transform the origami into a folded geometry. Most
active origami systems achieve shape morphing using this form of actuation. When determining
the relationship between the applied stimuli and the crease folding, both experiment-based and
simulation-based approaches can be used. For example, in the work by Leong et al. [Leong et al.,
2009, Leong et al., 2008], experiments were used to determine the folding angle given the heat-
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ing or other applied stimuli. In the work by Zhu and Filipov [Zhu and Filipov, 2021a], a bar and
hinge model with heat transfer and a Timoshenko’s bi-material morph model are used to solve the
crease temperature and the folding motion from the applied heating power [Timoshenko, 1925].
In general, active-material crease folding tends to rely on using compliant creases with distributed
crease regions and bi-material layers. Therefore, the behavior of these active origami can be better
captured using models such as the smooth fold model, the compliant crease bar and hinge model,
or with finite element simulations. The analysis of the bi-material morph by Timoshenko [Timo-
shenko, 1925] also provides a direct analytical solution to correlate material strains and the crease
folding of active compliant creases.

Stimuli can also generate globally applied forces onto the origami to achieve the folding mo-
tion. Magnetically activated origami are one major genre of active origami using this form of
actuation [Shaar et al., 2015, Iwase and Shimoyama, 2005, Xu et al., 2019, Swaminathan et al.,
2021]. Magnetic forces acting on the origami structure can be calculated based on the orientation
of the embedded magnets and the applied magnetic field. After calculating the magnetic forces,
the folded configuration can be tracked using mechanics-based origami simulations. The work by
Swaminathan et al. [Swaminathan et al., 2021] provides a simulation technique that can capture
these magnetic forces using the Kangaroo solver in Rhino [Piker, 2017, Piker, 2013]. Apart from
magnetic systems, the forces could also be applied directly by connecting the passive origami sys-
tem to an active supporting mechanism [Chen et al., 2019a]. With such a system, the connected
origami is deployed by forces from the supporting mechanism.

In addition to using multi-physics simulations to capture the actuation of active origami, multi-
physics simulations are also needed to capture the non-mechanical properties of origami-inspired
structures for design and for optimization. For example, origami-inspired structures have been
used to create frequency selective surface (FSS) for filtering electro-magnetic waves [Nauroze
et al., 2018, Nauroze and Tentzeris, 2019, Fuchi et al., 2012, Fuchi et al., 2016, Cui et al., 2019,
Biswas et al., 2020]. To analyze and design the performance of these FSS devices, electro-magnetic
simulation through commercial FE software such as ANSYS HFSS can be used [Nauroze et al.,
2018]. Moreover, similar multi-physics based simulations have been used to analyze origami-
inspired engineering systems for acoustic wave manipulation [Babaee et al., 2016,Hathcock et al.,
2021,Pratapa et al., 2018,Thota and Wang, 2018,Zhu et al., 2019], as thermal metamaterials [Boatti
et al., 2017], and for their drag forces in submerged environments [Hur et al., 2017].

Capturing variable multi-physics properties of origami usually requires one simulation envi-
ronment to capture the origami folding and a separate environment to capture the non-mechanical
properties. In light of this complexity, it is important for future work on origami simulation to gen-
erate easy to use output formats that can easily interface with multi-physics based simulation envi-
ronments. A unified format such as the FOLD structure [Demaine et al., 2021] could be useful for
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achieving trouble-free data transfer between different environments. However, additional informa-
tion regarding the active folding systems, the compliant crease geometry, the material properties,
the localized circuit designs, and other origami properties of interest would need to be included.
Another challenge of multi-physics simulation of origami is the coupling between the origami
folding, the multi-physics actuation, and the non-mechanical performance (red dashed lines in
Fig. A.20). Simulating these coupled behavior and interactions requires passing information be-
tween different environments which is still difficult to accomplish effectively. An alternative way
to solve the coupling problem is to build reduced-order simulations within the same environment
such as the simulation of electro-thermal crease folding in [Zhu and Filipov, 2021a] or the simula-
tion of magnetically actuated origami in [Swaminathan et al., 2021]. However, the capabilities of
current reduced-order simulations is still limited so further work is needed.

A.6 Available Simulation Packages

In this section, we introduce existing implementation packages for simulating origami systems and
discuss their capabilities and potential application scenarios. Table A.5 to Table A.7 summarizes
these packages.

First, Mitani’s ORIPA [Mitani, 2008, Mitani, 2012] implements a reflection-based simulation
for flat-foldable origami systems. The package directly solves the folded configuration using re-
flection based theories and calculates the panel sequence using brute force enumeration. This
package is one of the earliest computational tools developed for origami engineers. ORIPA cannot
simulate the intermediate folding states, the folding process, or physical behaviors, which are all
important for the analysis and design of engineering origami systems.

Next, the Rigid Folding Simulator, the Origamizer, and the Freeform Origami developed by
Tachi share some similarities [Tachi, 2020, Tachi, 2009b, Tachi, 2010c]. The Rigid Folding Sim-
ulator can capture the folding motion of origami systems based on the loop closure constraint
(Eqn. A.16). Kinematically feasible folding motion is solved using numerical integration such as
Euler’s method (see subsection A.3.4). The simulation package provides a rapid and effective im-
plementation to study the kinematic folding of thin and rigid origami, providing one of the most
popular computational tools for simulating origami folding. Based on the rigid folding simula-
tor, Origamizer [Tachi, 2010c] and Freeform Origami [Tachi, 2020] were developed. Origamizer
can be used to design an origami to fit arbitrary 3D surfaces using a tuck folding technique, and
Freeform origami allows users to design new origami patterns by directly editing existing tes-
sellations. However, these three packages cannot capture compliant creases, panel deformations,
mechanical properties, and other multi-physics based properties of origami.

The smooth fold model developed by Hernandez and coworkers [Hernandez et al., 2016b,Her-
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Table A.5: A summary of available kinematic simulation packages for origami structures.

Package Formulation Reference and Links

Flat-foldable origami

ORIPA If the input pattern is rigidly flat foldable, the
program will use reflection based simulation
to directly generates the folded geometry of
the origami. The program then calculate the
panel sequence using brute-force approach.

Ref. [Mitani, 2008, Mitani and
Igarashi, 2011, Mitani, 2012]
Package found at:
https://mitani.cs.
tsukuba.ac.jp/oripa/

Loop closure condition

Rigid folding
simulator &
Origamizer &
Freeform Origami

The rigid folding simulator uses Euler’s in-
tegration to track the folding trajectory com-
plying with the loop closure condition. The
Origamizer can fit any triangulated 3D sur-
face using origami with tuck-folding tech-
nique. The Freeform origami is based on
the rigid folding simulator and allows users
to drag vertices of origami for creating new
origami designs.

Ref. [Tachi, 2009c, Tachi,
2009b, Tachi, 2010d, Tachi,
2010c, Tachi, 2010a, Tachi,
2020]
Package found at: https:
//tsg.ne.jp/TT/
software/index.html

Kinematic compliant crease model

Smooth fold model This is a MATLAB based implementation
of the smooth fold model. This kinematics-
based simulation can capture the compliant
crease geometry in origami structures.

Ref. [Hernandez et al.,
2016b, Hernandez et al.,
2017c]
Package found in the
supplementary information of
articles [Hernandez et al.,
2017c]

180

https://mitani.cs.tsukuba.ac.jp/oripa/
https://mitani.cs.tsukuba.ac.jp/oripa/
https://tsg.ne.jp/TT/software/index.html
https://tsg.ne.jp/TT/software/index.html
https://tsg.ne.jp/TT/software/index.html


Table A.6: A summary of available mechanical simulation packages for origami structures.

Package Formulation Reference and Links

Bar and hinge models

MERLIN &
MERLIN 2

MERLIN is a MATLAB based implemen-
tation of the standard bar and hinge model.
MERLIN implements the N4B5 panel for-
mulation and solve the mechanical behavior
using a modified generalized displacement
controlled method. The MERLIN 2 provides
updated N5B8, generalized N4B5, and gen-
eralized N5B8 panel models.

Ref. [Liu and Paulino,
2016, Liu and Paulino,
2017a, Liu and Paulino,
2018a, Liu and Paulino,
2018b]
Package found at: http:
//paulino.ce.gatech.
edu/software.html

Origami Simulator This is a GPU accelerated version of the
standard bar and hinge model. The simu-
lation is based on the formulation demon-
strated in [Schenk and Guest, 2010] and the
pattern editing is based on [Tachi, 2010a].
With the GPU acceleration, the simulation is
1000X faster than MERLIN per step.

Ref. [Ghassaei et al.,
2018, Ghassaei, 2017]
Package found at: https:
//origamisimulator.
org/

OMTO This package implements the standard bar
and hinge model proposed in [Gillman et al.,
2018, Gillman et al., 2019], and can perform
topological optimization to generate origami
patterns for optimal actuation.

Ref. [Gillman et al.,
2018, Gillman et al.,
2019, Gillman, 2018]
Package found at: https:
//www.mathworks.com/
matlabcentral/
fileexchange/
51811-origami-mechanism\
-topology-optimizer-omtol

SWOMPS This package implements the compliant
crease bar and hinge model, a global inter-
panel contact model, and an electro-thermal
actuation model for active origami. The pro-
gram support loading the origami with arbi-
trary number and sequence of the provided
five loading solvers.

Ref. [Zhu and Filipov,
2020, Zhu and Filipov,
2019b, Zhu and Filipov,
2019a, Zhu and Filipov,
2021a, Zhu and Filipov,
2021b]
Package found at: https://
github.com/zzhuyii/
OrigamiSimulator
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https://www.mathworks.com/matlabcentral/fileexchange/51811-origami-mechanism \ -topology-optimizer-omtol
https://www.mathworks.com/matlabcentral/fileexchange/51811-origami-mechanism \ -topology-optimizer-omtol
https://www.mathworks.com/matlabcentral/fileexchange/51811-origami-mechanism \ -topology-optimizer-omtol
https://github.com/zzhuyii/OrigamiSimulator
https://github.com/zzhuyii/OrigamiSimulator
https://github.com/zzhuyii/OrigamiSimulator


Table A.7: A summary of adds-on packages and commercial packages for origami structures.

Package Formulation Reference and Links

Kangaroo This a physics engine developed for Rhino
and Grasshopper. The package can be
used to model origami system and was used
for simulating magnetic active origami in
[Swaminathan et al., 2021].

Ref. [Swaminathan et al.,
2021, Piker, 2017, Piker, 2013]
Package found at:
https://www.
food4rhino.com/en/
app/kangaroo-physics

Crane This is a Grasshopper plugin for Rhino. The
folding simulation and form finding is based
on the Freeform Origami. The package also
can simulate thickness in origami systems.

Ref. [Tachi, 2010a, Suto and
Tanimichi, 2021]
Package found at: https:
//www.food4rhino.
com/en/app/crane

Commercial FE
programs

Commonly used commercial FE software
programs include ANSYS, ABAQUS, LS-
DYNA, COMSOL, and many others.

See section A.4.4 for details

Small strain plate User defined elements for origami panels im-
plemented in ABAQUS. The plate model can
capture the small-strain bending of panels.

Ref. [Hu et al., 2021]
Code found in the appendix
of [Hu et al., 2021].
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nandez et al., 2017c] is one of the first kinematic models to explicitly consider compliant creases
within origami systems (see subsection A.3.6). A MATLAB implementation was published as
electronic supplementary material in [Hernandez et al., 2017c]. This package can capture the
geometry and mechanics of compliant creases within active origami. However, because the sim-
ulation was developed based on rigid panel assumptions, this package cannot simulate behaviors
related to panel deformations.

Here, we give a short description of existing implementations of the bar and hinge model.
MERLIN [Liu and Paulino, 2016, Liu and Paulino, 2017a, Liu and Paulino, 2017b] is a public
implementation of the bar and hinge model that can track origami folding and mechanical defor-
mations using a modified generalized displacement control method. The package is implemented
in MATLAB and is based on the standard bar and hinge model formulation with the N4B5 panel
model and the linear rotational spring based crease model. MERLIN 2 [Liu and Paulino, 2018b,Liu
and Paulino, 2018a] is an updated implementation which further supports the use of N5B8, gen-
eralized N4B5, and generalized N5B8 panel models, and provides useful functions to read OBJ
format. These two packages are rapid and powerful tools for simulating origami folding and ex-
ploring mechanical properties such as stiffness, bistability, and multi-stability. The Origami Sim-
ulator [Ghassaei, 2017, Ghassaei et al., 2018] is a parallelized GPU accelerated version of the bar
and hinge model. It is based on a standard bar and hinge model with N4B5 panels and linear elastic
rotational springs. This package uses an explicit solver so that it can parallelize its computation.
With parallelization, the package can compute one loading step orders of magnitude faster than the
MERLIN package (measured using wall clock time). However, the package does require manually
softening the material stiffness (from its actual value) and using a much shorter loading step to
obtain converging results. OMTO [Gillman et al., 2018, Gillman et al., 2019, Gillman, 2018] is
another bar and hinge type software implementation specially designed for topological optimiza-
tion applications. The underlying folding simulation of this package is similar to MERLIN but
is designed to perform topological optimization of origami systems. MERLIN, MERLIN 2, and
OMTO can capture localized panel contact and prevent creases from folding more than 180◦ (see
Fig A.19 (a) and (b)). SWOMPS [Zhu and Filipov, 2021a] is a MATLAB based object oriented
implementation of the bar and hinge model. The package uses a generalized N5B8 panel model
and allows users to choose between a simple rotational spring crease model and a compliant crease
model. SWOMPS can simulate global panel contact (see Fig A.19 (c)), it can approximate panel
thickness, and can capture electro-thermal-mechanically coupled actuation within active origami.
The SWOMPS implementation gives users multiple options in how the origami can be modeled
and allows for sequential and arbitrary loading of the origami.

In general, these bar and hinge model implementations are suitable for studying the kinemat-
ics, capturing the mechanical and non-mechanical properties, simulating the active folding, and
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performing pattern optimization of origami systems. The models have the capability of real-time
simulation [Ghassaei et al., 2018], and can be updated for rapid simulations with origami multi-
physics [Zhu and Filipov, 2021a]. However, because the bar and hinge model uses a coarse mesh
for the origami these packages are only suitable for capturing global behaviors. Localized nonlin-
ear behaviors such as panel buckling, kinking, and stress concentrations are beyond the capabilities
of these packages.

Finally, a number of commercial software and the associated extension packages can also be
used to simulate origami systems. Rhino and Grasshopper based physics-engine Kangaroo [Piker,
2017] can be used to model origami systems. The Crane package [Suto and Tanimichi, 2021] is
an extension that implements the Freeform origami algorithm within the Rhino and Grasshopper
environment. The Rhino and Grasshopper environment is more suitable for parametric design of
origami systems but tends to provide limited fidelity in its physical simulation. When high accuracy
simulations are needed, commercial FE software programs tend to be used. A variety of different
FE software programs have been used for simulating the behaviors of origami systems such as
ABAQUS [Cai et al., 2017b, Karagiozova et al., 2019, Liu et al., 2015, Ma et al., 2018b, Ma et al.,
2018a, Ma and You, 2014, Schenk et al., 2014, Song et al., 2012, Wang and Zhou, 2017, Xiang
et al., 2020, Yang et al., 2016, Yuan et al., 2020, Zhang et al., 2019], ANSYS [Heimbs et al.,
2007, Zaghloul and Bone, 2020, Nauroze et al., 2018], LS-DYNA [Heimbs et al., 2007, Heimbs
et al., 2010, Thai et al., 2018], and COMSOL [Zhu et al., 2019, Hathcock et al., 2021]. These
packages also support origami researchers to create user-defined elements. For example, the work
by Hu et. al. [Hu et al., 2021] created a small-strain plate model for simulating origami panels with
small curvature deformation that are more computationally efficient than using the fine meshed FE
models. Using commercial FE software programs can achieve high fidelity solutions and capture
localized nonlinear behaviors in origami systems. However, using FE simulations requires longer
computation time and an extended model building schedule. In addition, FE simulations can act
like “black boxes” in some situations, which make them not suitable for developing fundamental
theories of origami structures.

A.7 Selecting and Developing Appropriate Origami Simulations

In this section, we discuss how to select or develop a simulation technique for capturing the be-
havior of origami systems. After evaluating the challenges in selecting and developing appropriate
techniques, we present a flowchart to help guide the process, along with a number of accompanying
case studies.
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Figure A.21: A universal origami simulation approach is not achievable; instead, there is an ex-
ponential growth in tailored models that can capture distinct properties and characteristics for
individual origami problems.

Appropriate models What constitutes an appropriate model for a particular origami system de-
mands a significant element of judgement from the engineer or scientist investigating the problem.
A common guiding scientific principle (“Occam’s Razor”) is to use the simplest model that still
captures the observed behavior of interest. This model might be called a “minimal model’. In
many cases, lower-fidelity models with a greater number of assumptions provide greater insight
into the behavior of origami systems. Consider, for instance, the analysis of rigid-foldable origami
systems; these systems can be modeled using high-fidelity finite element simulations, but this
approach will not provide an understanding of the mathematical conditions for rigid-foldability
that could be obtained from kinematics-based modeling [Belcastro and Hull, 2002]. Moreover,
reduced-order bar and hinge models can provide insight into the mechanics of an origami system,
not offered by detailed FE simulations with continuum elements. For example, in the study of
bistable origami hypars [Filipov and Redoutey, 2018], comparing different bar and hinge meshes
(i.e. with different panel bending direction) provides insight into which deformations are most sig-
nificant to the bistability of origami hypars. Similarly, in the analysis of origami tubes [Grey et al.,
2019], the bar and hinge models provide a method to independently change the in-plane, bending,
and folding stiffness to gain insight into the dominant contributors. These types of comparative
studies are difficult to execute in FE simulations. Finally, such “minimal models” can reveal theo-
retical connections between origami and other disciplines, which helps origami engineers develop
new simulation techniques. For example, the development of simulation techniques for thick and
rigid origami has revealed the close connection between origami and linkage mechanisms.

From an engineering perspective, an appropriate simulation should also consider the balance
between the speed and the fidelity of the model. Here, speed could refer to the number of floating
point operations (not affected by the programming language that is used), the wall-clock run time
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(affected by the programming language), or even the duration of developing the simulation and
implementing a model. An illustrative example where analysis speed and model simplicity are
traded off against fidelity is the analysis of tubular origami structures such as the Kresling pattern;
their non-rigid foldable properties require the use of a mechanics-based simulation. In various
works, the behavior of the Kresling pattern is simulated using a bar and hinge model [Liu and
Paulino, 2017a, Novelino et al., 2020, Kidambi and Wang, 2020] because it captures the panel
deformation, is computationally efficient, and rapid to set up for different geometries. However,
bar and hinge models cannot capture the buckling of crease lines, which are observed in some
physical experiments [Masana and Daqaq, 2019]. Masana and Daqaq therefore modified their
formulation of the bar and hinge model by introducing additional nodes and springs along the fold
lines [Masana and Daqaq, 2019]. These additional nodes and springs allow the creases to buckle
so that the model can better simulate the global physical behavior. An alternative to capture this
local crease buckling in the Kresling pattern is to use FE simulations as shown in the work by
Hwang [Hwang, 2021]. Another consideration is the time required to formulate the model and
set up the simulation for a specific problem. In this case, human factors can play a large role.
A researcher familiar with reduced-order simulations may choose the bar and hinge approach as
in [Masana and Daqaq, 2019] and a researcher familiar with commercial FE simulation packages
may choose the FE simulations as in [Hwang, 2021]. These cases illustrate that finding a ‘balanced’
model is subjective, and in addition to the features of the different simulation options one should
also consider their prior knowledge and experience.

Lastly, as the community continues to design increasingly sophisticated origami structures for
engineering applications, selecting and developing origami simulations becomes more complex
due to the exponentially growing number of origami characteristics that need to be captured; see
Fig. A.21. This exponential growth makes it challenging to find a “minimal model” that satisfies
the desire for simplicity or a “balanced model” that trades optimum speed and fidelity.

Flowchart To help navigate the complexity of selecting and developing origami simulation tech-
niques, we offer a non-exhaustive flowchart, shown in Fig. A.22, to aid the selection and develop-
ment process. The three aspects to consider when selecting and building simulation techniques are:
the origami characteristics, objectives of the simulation, and other factors. To select an appropriate
simulation for origami, the left flowchart identifies potential simulations that can capture the target
characteristics of the origami systems, and the right flowchart helps find a simulation that fits the
given objectives. Once a potential simulation techniques is identified, other factors such as avail-
able facilities and capabilities can be taken into consideration. In developing a new or modified
simulation method, the flowchart can help users select a base simulation technique. The following
text discusses the flowchart and presents a number of examples.
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Figure A.22: Considerations for selecting and developing simulation techniques for origami sys-
tems.
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Starting with the flowchart for origami characteristics in section 1 of Fig. A.22, one of the most
fundamental features of an origami system is whether it is rigid-foldable or not. If the origami is
rigid-foldable, their folding motions can be captured using kinematic simulations or rigid panel
based mechanical simulations (item 1.1). However, if the origami is non-rigid-foldable, simplified
mechanical simulations like the bar and hinge model [Liu and Paulino, 2017a,Filipov et al., 2017]
and the plate theory based models [Soleimani et al., 2021,Hu et al., 2021] or more advanced options
like FE simulations are needed (item 1.2). Next, more detailed features of the origami system
can be considered. For example, studying rigid-foldable origami with non-negligible compliant
creases can be accomplished using the smooth fold model [Hernandez et al., 2017a, Hernandez
et al., 2016b, Hernandez et al., 2017c] (item 1.1.1), while studying the non-rigid-foldable origami
with non-negligible compliant creases can use compliant crease bar and hinge models [Zhu and
Filipov, 2020], plate theory based models [Zhang et al., 2021], or FE simulations [Hernandez et al.,
2016a] (item 1.2.1).

In addition to the properties of the origami, the objectives of the simulation should also be
considered, as shown in section 2 of Fig. A.22. Broadly, tehre are three types of objectives that
may be of interest: to study the origami folding motion, to study the change in origami properties,
and to achieve pattern design and shape fitting. For the simulation of origami folding motions, the
primary factor to consider is its means of actuation; if no actuation mechanisms are considered,
conventional kinematic and mechanical origami simulation techniques can be used (item 2.1.1).
On the other hand, if multi-physics actuation is intended (item 2.1.2), building new origami simu-
lations may be necessary. For example, Swaminathan et al. [Swaminathan et al., 2021] introduce
a magnetic actuation module into a physics-based origami simulation program. Capturing the
property changes in origami is a common objective in origami simulation. For changes in the kine-
matic and mechanical properties, using existing origami simulations tends to be sufficient (item
2.2.1 to 2.2.3), but analysing multi-physical properties may require combining different simulation
environments, as discussed in Section A.5. In this case, finding an origami simulation method
that integrates with other multi-physics simulation environments can become crucial (item 2.2.4).
Lastly, selecting simulations for pattern design and origami shape fitting focuses more on the bal-
ance between the computational speed and the model fidelity (item 2.3). In general, kinematics
simulations and reduced-order mechanical simulations are preferred for such objectives.

Case studies Finally, we present a number of case studies on selecting and developing origami
simulations. The first example is to design an origami that fits a desired target surface (item 2.3
in Fig. A.22). Research efforts have mainly focused on using rigid-foldable patterns for shape
fitting [Zhao et al., 2018, Peraza-Hernandez et al., 2018, Feng et al., 2020a], with potential appli-
cations as deployable structures. As indicated in item 1.1 and item 2.3, kinematic simulations are
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popular for this objective because they are computationally efficient [Zhao et al., 2018,Dudte et al.,
2016, An et al., 2018, Peraza-Hernandez et al., 2018, Feng et al., 2020a]. Moreover, some of these
kinematic simulations can be extended such that origami structures with thick panels [Tachi, 2011]
or those with compliant creases [Peraza-Hernandez et al., 2018] can also be designed in a similar
fashion (item 1.1.2). Alternatively, reduced-ordered mechanical models for origami could be used
because they can capture non-rigid foldable origami [Gillman et al., 2018, Gillman et al., 2019]
while also remaining computationally efficient (item 1.1).

The second example is the analysis of origami frequency selective surfaces (FSS). A num-
ber of publications have studied the performance of origami FSS, often using the Miura-ori pat-
tern [Biswas et al., 2020,Nauroze and Tentzeris, 2019,Nauroze et al., 2018,Cui et al., 2019,Fuchi
et al., 2012, Fuchi et al., 2016]. Because the Miura-ori tessellation is rigid-foldable, a simulation
method from item 1.1 on Fig. A.22 can be employed to capture the geometry. However, capturing
the electro-magnetic properties of the origami FSS requires more sophisticated models and is thus
performed using separate simulation packages (item 2.2.4). In this case, it is important to build
an origami simulation that can output and transfer the origami geometry to the separate simulation
package smoothly.

Lastly, consider origami for use as an energy absorption system or as a metamaterial with
graded stiffness. The objective of such simulations is to find the mechanical properties of the
origami (item 2.2.2 or item 2.2.3 in Fig. A.22). Usually, the origami structure will experience large
panel deformations with potential panel contact, as listed in item 1.2.3. Here, FE simulations can be
the preferred choice because they are capable of capturing nonlinear and plastic deformations [Ma
et al., 2018b, Yang et al., 2016]. However, if the origami is rigid-foldable and does not experience
large panel deformations, a reduced-order mechanical model may also be suitable [Miyazawa et al.,
2021, Zhu and Filipov, 2019a, Fang et al., 2018].

A.8 Future Challenges and Concluding Remarks

Despite the significant advances in the field of origami simulations, there remains a range of open
challenges. Here, we offer our view on key themes within the future challenges: model validation,
enhancement of simulation capabilities, and integration with design.

Model validation A large number of different simulation techniques have been proposed for
capturing the behavior of origami-inspired structures. What are the limits of these simulations?
How accurate are these simulations when applied to different origami patterns, across different
scales and manufactured from different materials? These are open questions that have not been
systematically addressed in existing research. To resolve the problem, we propose the develop-
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ment of a high-quality open-access library of experimental benchmarks of origami. This approach
is inspired by experimental benchmark libraries created for other engineering problems (e.g. radar
cross-sections [Woo et al., 1993]). What patterns should be chosen for these high quality exper-
iments? At the very least, the selection should include both rigid foldable patterns (such as the
Miura-ori) and non-rigid foldable patterns (such as the Kresling pattern). However, as demon-
strated by Pinson et al. [Pinson et al., 2017], the strain energy from origami folding can span
orders of magnitude depending on how well the pattern complies with the rigid-foldability condi-
tions; this makes it challenging to select representative patterns that sufficiently capture this energy
landscape. In addition, the physical length scale of origami needs to be considered. For example,
origami systems at meter and millimeter scale show different responses, because gravity has a
greater impact at larger scales. Moreover, what materials should the library contain? The use of
paper would seem to be a straightforward answer because of its ubiquitous use in origami prototyp-
ing. However, as pointed out by Grey et al. [Grey et al., 2020], paper is not suitable for validation
because of its nonlinear and pseudo-plastic behavior. Thus future benchmarks should consider
multiple materials with different elasto-plastic behaviors. Finally, these benchmark experiments
should also reflect information on the variability in material properties and dimensions because
origami structures can be significantly affected by even small imperfections [Liu et al., 2020].

Enhancement of simulation capabilities Future research needs to enhance the capabilities of
current simulation techniques and packages. These enhancements include but are not limited to
supporting more elaborate material models, developing advanced multi-scale simulations, build-
ing multi-physics interaction models, capturing interaction between origami modules, etc. For
instance, current reduced-order origami simulation capabilities have been mostly limited to linear-
elastic material models, whereas materials used for origami prototyping and applications are gen-
erally nonlinear elasto-plastic [Grey et al., 2020] and can be further affected by the ambient envi-
ronment such as temperature and humidity (especially for active folding). Simulating the global
response of origami systems requires accurately capturing local details such as the properties at
creases and small manufacturing imperfections [Liu et al., 2020]. In order to develop origami-
inspired systems with increased numbers of unit cells, as might be needed for shape-adaptive sur-
faces, multi-scale simulation methods should be developed. High-fidelity models of local features
and unit cell geometry would feed into larger-scale, reduced-order simulations of the behavior
of origami systems. Further, in order to better capture the coupling between actuation, response
to external stimuli, origami folding, and the non-mechanical properties of origami devices, more
comprehensive multi-physics models must be developed. Another less visited topic in the simula-
tion of origami is the interaction between origami modules. Many origami-inspired metamaterials
are constructed by integrating repeating origami unit cells [Overvelde et al., 2016]. These unit
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cells are often fabricated individually and then assembled to form an origami metamaterial. The
interaction between individual origami modules can affect the bulk behavior of the metamaterial,
and developing reliable simulations to capture such interactions is also an important task for the
future.

Integration of simulation and design Lastly, the effective integration of origami simulation
with different origami design methodologies remains an open challenge. Currently, many origami
simulation techniques and tools are developed without considering how these tools can be system-
atically integrated into origami design methodologies. A unified workflow, data format, and pa-
rameterization of the origami design space would be important for connecting simulation to design.
A standardized data format can help origami researchers to develop computational tools more effi-
ciently and the FOLD format [Demaine et al., 2021] demonstrates a first attempt to accomplish this
goal. However, further developments are needed to include additional origami properties related to
active folding, mechanical behavior, and non-mechanical performance. In addition, improving the
accessibility of the simulation package is also important. Many new users of origami simulation
software programs may not have prior background in computational mechanics or even general
programming. Therefore, future origami simulation packages will need to enhance their accessi-
bility to researchers from non-computational disciplines and the general public. For example, the
Crane package [Suto and Tanimichi, 2021] for Rhino/Grasshopper demonstrates one successful
attempt to bring origami design and simulation techniques [Tachi, 2010a] to the architecture and
design community.

In conclusion, in this work we reviewed the state-of-the-art in origami simulations, and broadly
categorised origami simulation techniques into kinematics-based, mechanics-based, and multi-
physics simulations. We analyzed the underlying origami models and solution methods, discussed
the theoretical background of these techniques, evaluated the advantages and disadvantages of dif-
ferent simulations, and demonstrated the connection between origami simulations and other engi-
neering disciplines. Based on the overview of available simulations techniques, we discussed why
developing origami simulations is challenging and how to select and develop appropriate origami
simulation techniques for specific applications. Lastly, we identified promising directions of future
research, focusing on model validation, enhanced modeling capabilities, and improved integration
of simulation and design. Origami simulation is a rapidly evolving field of research and we believe
that future developments will yield faster, more robust, and easier-to-use simulation techniques
and packages for researchers and designers from different disciplines.
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