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Abstract 

 

Heart disease is the leading cause of death globally. The advancement of precision 

medicine can aid in identification of high risk individuals to initiate early preventive treatment. 

The growth of electronic health record (EHR)-linked biobanks around the world provides an 

opportunity to integrate clinical and genetic information to improve risk prediction. In this 

dissertation, I have illustrated how leveraging both clinical and genetic data from Michigan 

Medicine biobank could identify patients with high risk of cardiovascular risk using a well-

powered polygenic risk score (PRS) and a novel clinical risk score (ClinRS), created using 

adapted natural language processing (NLP) method. 

In chapter 2, I analyzed the Michigan Medicine Precision Health COVID-19 Survey, 

deployed by our research group in May 2020 to study the impact of the ‘Stay Home Stay Safe’ 

Executive Order on health behavior changes that could potentially lead to an increase of 

cardiovascular risk. This study found that African Americans, women, and the lowest income 

group reported worsening health behaviors during the Executive Order in Michigan.  

In chapter 3, I investigated the power of genetic diversity on creating PRS for heart 

failure risk estimation. In this study, I evaluated the association between heart failure PRS and 

phenotypic subtypes (heart failure with reduced ejection fraction [HFrEF] and heart failure with 

preserved ejection fraction [HFpEF]). The heart failure PRS was calculated using both single- 

and multi-ancestry genome-wide association study (GWAS) summary statistics meta-analyzed 

by Global Biobank Meta-analysis Initiative (GBMI). The GBMI meta-analyzed heart failure 

multi-ancestry GWAS, included a total of 1,354,739 individuals (5% cases) from 5 ancestral 



 xiii 

populations and 13 biobanks. Of the 1.35 million participants, 24.7% were of non-European 

ancestry. The results showed that the multi-ancestry GWAS based PRS is the most powerful 

genetic risk score that is significantly associated with both HFrEF and HFpEF in European 

American and HFrEF in African American ancestry samples. 

In chapter 4, I developed a novel clinical risk score using NLP to learn the co-occurrence 

patterns within the EHR system and to further extract independent information to summarize the 

EHR data into low-dimensional features. Next, I evaluated the performances of heart failure 

prediction models using baseline demographic information, PRS, ClinRS, and a model with both 

PRS and ClinRS as predictors. The results showed that the model including both PRS and 

ClinRS yielded superior accuracy to predict future heart failure events up to 10 years in advance, 

showing the additive power of integrating clinical and genetic information in precision health.  

This dissertation developed risk scores using novel methodology and demonstrated the 

benefits of incorporating clinical and genetic data using large-scale EHR-linked biobanks. 

Together, the research conducted in this dissertation can enhance precision medicine and 

improve disease prediction and modify disease progression by initiating earlier preventive care.  
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Chapter 1  

 

 

Introduction 

 

The growth of electronic health record (EHR)-linked biobanks has provided the 

opportunity to build scalable automated disease screening systems that incorporate clinical and 

genetic information. To enhance preventive approaches for at-risk populations, I used the 

Precision Health COVID-19 Survey within Michigan Medicine to identify individuals with an 

increased risk of cardiovascular disease during the pandemic. Also, I used large EHR-linked 

biobanks hosted by the University of Michigan to develop predictive algorithms for 

cardiovascular disease. 

In Chapter 2, I used the Michigan Medicine Precision Health COVID-19 Survey to 

evaluate the impact of the COVID-19 “Stay Home Executive Order” and identified pandemic-

impacted health behaviors that could potentially increase one’s risk of cardiovascular disease, 

particularly among African Americans, women, and the lowest income group. In Chapter 3, I 

calculated polygenic risk scores from a multi-ancestry genome-wide association study, which 

uncovered susceptibility to heart failure and highlighted the potential for identifying high-risk 

individuals during precursor stages. In Chapter 4, I applied natural language processing 

techniques to extract healthcare utilization patterns from the Michigan Medicine EHR system, 

which significantly improved the heart failure risk prediction accuracy compared to genetic 

information alone.  
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1.1 Background 

With the ever-increasing medical knowledge and disease evolution, biomedical 

researchers have developed infrastructures to collect medical data and methods to tackle the 

challenges of analyzing large, high-dimensional, or fragmented patient data. Studies have shown 

the benefits of applying machine learning algorithms to develop risk prediction tools using 

clinical data from the EHR system1. An asthma prevention study, for example, has shown that 

the integration of phenotyping algorithms built from EHR data for asthma care has significantly 

reduced severe asthma exacerbations compared to traditional symptom-based models for 

managing patients2. Aside from clinical prediction tools, the use of genetic data has been shown 

to improve disease prediction as well. Multiple studies have shown the benefits of summarizing 

genetic risk across the human genome to create a risk score that can enhance disease prediction 

and further improve early prevention3–7. Incorporating real-world, routinely collected medical 

records with genetic information could profoundly affect the ability to identify high-risk patients 

and make an important impact on patient care and disease prevention. 

In this chapter, I will introduce the rising opportunities in biomedical research to advance 

precision medicine approaches and the need to improve diversity in medical genomics study to 

truly achieve precision health for all. I will first describe the EHR system and its utility. Next, I 

will investigate how modern methodologies decipher the noise and sparseness in high 

dimensional EHR data to accomplish automated disease ascertainment. I will also discuss the 

current development of genetic study and global efforts collaboratively to better understand the 

human genome.  
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1.2 Electronic Health Records (EHR) 

Electronic health records provide a great opportunity to comprehensively study disease 

etiology and improve disease prediction accuracy. The data consist of large collections of 

longitudinal records from patients, and with the application of statistical methods, biomedical 

researchers can discover the clinical features co-occurring with outcomes of interest and 

interrogate how the features can contribute to outcome estimation. Moreover, since the 

establishment of the Medicare EHR Incentive Program by Centers for Medicare & Medicaid 

Services in 2011, the adoption of EHR systems by healthcare organizations has rapidly increased 

in the US8,9. According to Watzlaf et al., only 39% of the healthcare facilities surveyed in 2004 

had EHR modules installed or fully in place10. In 2015, the number had grown to 80.5% of 

hospitals across the country having at least a basic EHR system implemented9. Recently, 

utilizing high-dimensional EHR data to improve clinical care has been widely applied in 

biomedical science. 

1.2.1 Error-prone ICD code leads to low sensitivity for disease ascertainment 

 Traditionally, disease ascertainment relied solely on International Classification of 

Diseases (ICD) diagnosis code, but the simplistic nature of this classification has brought low 

sensitivity and low specificity for disease outcome identification11,12. Previous research had 

investigated the accuracy of ICD diagnosis code on identifying stroke and cardiovascular 

diseases (i.e., heart failure, coronary heart disease, hypertension, diabetes, etc.). In Birman-

Deych et al.’s study, they conducted manual chart abstraction on 23,657 individuals to ascertain 

the gold standard disease outcomes and compared these with their diagnosis code medical 

history. They reported that in general using ICD code to assign disease outcome has a low 

sensitivity, with the lowest sensitivity of 0.20 observed in arterial peripheral embolus and largest 
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in heart failure with a sensitivity of 0.7611. A similar study was conducted across various 

healthcare settings (i.e., academic hospital, community hospitals, medical centers, etc.) for 

venous thromboembolism (VTE) to evaluate the accuracy of ICD diagnosis code. Consistently, 

using EHR diagnosis code alone to identify disease status had low positive predictive values 

(PPV) in VTE. White et al. reported that the PPV ranged between 50% to 75% for VTE12.  

Furthermore, diseases with episodic symptoms often lead to a low report rate in health 

records and underdiagnosis. For example, asthma symptoms are often periodic, the disconnected 

symptoms and inflammation result in lower self-awareness and underreporting of respiratory 

conditions from patients to clinicians for correct diagnoses13,14. The aforementioned examples 

show that using ICD diagnosis code alone to define the outcome can potentially lead to low 

sensitivity and low PPV for cardiovascular diseases as well as underdiagnosed episodic disease. 

The low accuracy disease ascertainment can further affect the power of the subsequent analysis. 

Genetic association study, for instance, with disease outcome generated from ICD code alone 

may lead to inaccurate phenotype curation and further lower the power to identify association 

between traits and genetic variants. Hence, developing high-throughput phenotyping algorithms 

using EHR data to precisely curate the phenotype outcome is critical to provide high accuracy 

labels for analysis, improve healthcare plan, and increase sample size for studies15. In the future, 

automated phenotyping algorithms that can be implemented in large-scale population based 

EHR-linked biobanks can curate high quality disease outcomes in large cohorts. The increase in 

sample size will further aid to scale up the study cohort population and statistical power to 

identify novel genetic association.  
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1.2.2 Phenotype curation 

Phenotyping (disease ascertainment) algorithms using EHR has been widely applied in 

medical research for cohort identification, longitudinal cohort recruitment, epidemiological 

study, clinical trial recruitment, and adverse event monitoring16–22. However, these methods 

often require manual chart review to obtain gold-standard outcomes to train the phenotyping 

algorithm. For example, Lu et al.16 applied a rule-based model on 14.5 million patients from 11 

healthcare systems to select patients with high-risk of primary biliary cholangitis, then randomly 

selected 1,016 high-risk patients for chart review, which would then serve as gold-standard 

outcomes for a supervised phenotyping model. Obtaining gold-standard phenotype labels from 

manual chart review requires considerable labor and funding resources. Nevertheless, high 

quality phenotype labels can potentially yield stronger associations and more significant results 

from risk prediction models. In Chapter 3, I compared the strength of the association between 

heart failure genetic risk score and heart failure outcomes, derived from a data-driven 

phenotyping algorithm22 in the Michigan Medicine cohort and from PheCode23 in the Penn 

Medicine cohort.  

Despite the high accuracy of data-driven phenotyping models, current studies require 

tremendous effort from domain experts to assign gold-standard labels for supervised machine 

learning algorithms16–18,24–27. Teixeira et al.24 had five medical professionals (4 MD and 1 DDS) 

perform chart review and had an internist (1 MD) adjudicate undetermined cases. Wi et al.26 

reported that 384 hours were spent on abstracting 430 patients’ medical records. Ni et al.27 

recruited multiple trained nurses to review 8,131 patients from 128 screening sites for a large-

scale epidemiological study. The high demand of manual labor and time intensive processes 

hampered the breadth of high-throughput phenotyping. Developing an algorithm with minimal 
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data processing steps and labor efforts to accurately identify outcome status is critical for 

biomedical research.  

Currently, multiple studies have been conducted to decrease the labor requirements and 

leverage multiple domains of EHR to build data-driven unsupervised phenotyping algorithms 

that yield high accuracy24,25,28,29. Yu et al.28 built an unsupervised phenotyping algorithm, 

PheNorm, which can annotate disease status more accurately than using ICD codes to identify 

disease status, without human labor. The PheNorm algorithm normalizes all features collected in 

the EHR system by total number of healthcare visits then introduces denoise corruption to 

aggregate underlying relationships from the rest of the EHR data. For coronary artery disease 

(CAD) outcome ascertainment, Yu et al.28 showed a significant area under the receiver operating 

curve (AUC) improvement between using ICD code alone and PheNorm to ascertain the 

outcome. ICD code and PheNorm disease ascertainment yielded an AUC of 0.844 and 0.899, 

respectively. 

Moreover, previous studies have reported the improvement of the disease ascertainment 

accuracy using multiple sources of structured EHR and comorbid conditions to collectively 

estimate the phenotyping probability24. The benefits of leveraging multiple domains of EHR data 

(e.g., diagnosis code, procedure code, lab result, etc.) have been shown in previous studies, in 

which model performance was significantly improved by incorporating various input sources. 

Teixeira et al. showed that in addition to blood pressure, adding billing codes, medications, and 

medical concepts derived from clinical notes augmented their model for identifying hypertensive 

individuals from an AUC of 0.85 to 0.9824. Automated phenotyping algorithms utilizing multiple 

domains of EHR data to accomplish high-throughput phenotyping in large-scale populations to 

advance precision medicine can be expected in the future.  
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1.3 Genome-Wide Association Study (GWAS) 

Genome Wide Association Studies (GWAS) use statistical methods to understand the 

association between millions of genomic variants with the risk of developing a certain disease or 

having a specific trait. While studying a complex disease or trait (one caused by a combination 

of multiple variants), the effect of a single variant contributing to the outcome is relatively small, 

compared to an outcome controlled by a single gene (i.e., monogenic). Researchers have 

developed polygenic risk scores (PRS), weighted sums of genetic effects on particular diseases 

or traits across the human genome, to summarize the genetic risk of individuals for risk 

prediction. 

A well-powered PRS requires a GWAS with a large sample size to achieve high 

prediction accuracy. Additional limitations of generating PRS with high predictive power include 

the lack of data transparency and availability for published GWAS studies to reproduce the PRS. 

Studies have shown that only approximately 13% of published GWAS have stated the location of 

the full summary statistics30,31. The above limitations have hindered the translation of PRS 

utilization to clinical care and hampered the improvement of precision medicine. Therefore, it is 

crucial to conduct GWAS with large sample sizes to facilitate the prediction ability of PRS and 

produce results accessible for future scientific research to improve the reproducibility of the 

PRS. In the next section, I will introduce the current efforts led by multiple genetic consortia to 

improve study power and reproducibility by maintaining open-access GWAS summary statistics. 

1.3.1 Global consortium for genetic studies  

Scientists across the world have joined forces to enhance genetic discovery by meta-

analyzing genetic studies to increase study sample size. These efforts improve the power to fine-

map functional variants and discover novel causal genes. In particular, the global genetic 
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consortia were established to harness findings in underrepresented cohorts in medical genomics 

research and achieve precision medicine for all. 

The Global Biobank Meta-analysis Initiative (GBMI) consortium is the largest and most 

diverse global consortium for genetic research. It is a collaborative network of 23 biobanks 

spanning 4 continents and representing more than 2.2 million consented individuals with genetic 

data linked to electronic health records (Figure 1.1). The goals of GBMI are to improve power 

and increase in genetic diversity in GWAS and to foster a global collaboration. In addition, an 

important function of this group is to provide publicly available GWAS summary statistics. The 

GBMI consortium meta-analyzed summary statistics from GWAS generated using harmonized 

genotypes and phenotypes across multiple ancestries from multiple biobanks. Fourteen exemplar 

disease- and endpoint- GWAS were generated. The results showed that with the inclusion of 

non-European participants, an additional 165 significant loci were identified from the multi-

ancestry GWAS, which yielded a total of 508 loci across all endpoints, highlighting the 

importance and benefit of meta-analyzing multi-ancestry GWAS7,32–44. 

 In addition to the GBMI consortium studying multiple disease/ trait endpoints across the 

biobanks, various trait-specific consortia have also recruited large cohorts and contributed 

enormous findings to genetic research. The Global Lipids Genetics Consortium (GLGC) focuses 

on blood lipid traits and has conducted the largest lipid traits multi-ancestry GWAS to date. The 

lipid traits studied by GLGC include low-density lipoprotein cholesterol, high-density 

lipoprotein cholesterol, triglycerides, total cholesterol, and non-high-density lipoprotein 

cholesterol45,46. The GLGC consortium recruited over 1.65 million individuals with 21% 

genetically diverse participants and quantified the benefit of including underrepresented 

populations in genetic study. The International Stroke Genetics Consortium (ISGC) is a large-
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scale international collaboration studying stroke and stroke subtypes. The ISGC launched 

MEGASTROKE consortium and conducted the largest stroke and stroke subtypes multi-ancestry 

GWAS to date to dissect the complex etiology and the underlying genetic risk47. The Genetic 

Investigation of ANthropometric Traits (GIANT) consortium is another example of a global 

collaboration meta-analyzizing genetic loci associated with human body size and shape (e.g., 

height and weight)48–51. The Coronary ARtery DIseaseGenome wide Replication and Meta-

analysis (CARDIoGRAM) consortium is a worldwide collaboration meta-analyzing GWAS on 

myocardial infarction (MI) and other forms of coronary artery disease (CAD)52–55. Moreover, the 

HEart failure Molecular Epidemiology for Therapeutic targetS (HERMES) consortium studies 

the genomic and molecular basis of heart failure. The HERMES consortium published the largest 

heart failure GWAS to date among those with European ancestry and identified 11 loci 

associated with heart failure outcome56. 

These international efforts have significantly scaled-up GWAS and contributed novel 

findings related to how genetic loci modulate human traits. In Chapter 3 of this dissertation, I 

compared the association between heart failure outcomes with PRS calculated from GWAS with 

different sample sizes. This analysis showed that PRS derived from GBMI, with a larger case 

number, has significantly stronger association with the heart failure outcome, compared with the 

PRS derived from HERMES7,57. Despite the advances in genetics afforded by global consortia, 

there is a recognized need to build biobanks/ studies encompassing diverse individuals. At 

present, the lack of diversity in genetic study could potentially result to racial disparities as the 

population-specific knowledge is understudied. 
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1.3.2 Racial disparities 

 Although GWAS sample sizes have grown significantly throughout the years, 

disproportionate growth in non-European ancestry GWAS has hampered the improvement of 

medical genomics research for underrepresented populations58. The racial disparity in genetic 

research is a major concern, as studies have shown that genetic risks impact diseases differently 

by race and Eurocentric GWAS have poor generalizability across populations59 (Figure 1.2). 

Martin et al.60 summarized the population composition of studies available on the GWAS 

catalog, and found the overwhelming majority of publications were European GWAS. In 2018, 

close to 80% of the individuals in GWAS studies reported in GWAS catalog were of European 

descent. This is problematic given that only 16% of the world’s population are of European 

descent60. The disproportional research results derived from European ancestry has also led to 

low performance of disease risk prediction using PRS in underrepresented individuals. To 

provide precision health and more transferable genetic risk prediction methods for all, inclusion 

of a more diverse population in biomedical research is critical32,61.  

1.3.3 Global efforts on improving genetic diversity 

Recently, multiple efforts have been made to move research towards including more 

minority participants to advance precision health initiatives. It is well known that the genetic 

risks have different effects on individuals with different ancestral backgrounds62–65. In addition, 

multiple studies have shown the disproportionate disease prevalence (e.g., hypertension, lipid 

levels, kidney disease, etc.) between race/ethnicity and racial disparities in healthcare66–71. To 

better understand disease-causing genetic risk for minorities and better guide future preventive 

strategies, biobanks across the world are recruiting underrepresented individuals in biomedical 

studies to address this critical gap in knowledge.   
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The Michigan Racial Equality and Community Health (M-REACH) is a project hosted at 

the University of Michigan aiming to reach racially diverse populations and build a biobank 

focused on promoting genetic research for African-Americans72. The Human Heredity and 

Health in Africa (H3Africa) is an initiative targeted to grow genomic research capacity in Africa 

and focused on genetic and environmental study for diseases relevant to Africans73. Pan-African 

biobank is the first and largest Africa-focused genomics start-up based in Nigeria74. The goal of 

the pan-African biobank is to recruit participants across Nigeria’s 6 geopolitical zones and to 

ensure inclusion for future genetic study. The Uganda Genome Resource (UGR) biobank is 

another effort of promoting genetic diversity in biomedical research for Africans44. This is a 

population-based biobank focusing on the study of both communicable and non-communicable 

diseases, and the participant recruitment has reached 9 ethno-liguistic groups in Uganda. The 

OurHealth study aims to build a state-of-the-art, remotely-recruited, digitally engaged genomic 

and lifestyle cohort by which to study cardiometabolic disease in South Asians. South Asians are 

consistently recognized to be at a 2- to 3-fold increased risk for heart disease and up to 4-fold 

increased risk of diabetes (especially diabetes that occurs in the absence of obesity), which 

highlighted a glaring knowledge gap75–77. 

Scientists around the world are collectively working together to gain population-specific 

knowledge by pooling together resources. Only through this approach can precision medicine 

initiatives for all races and ethnicities be achieved. Advances in precision medicine to date have 

been achieved through abundant resources of research knowledge and infrastructure in high 

income countries only. With recent global efforts we can expect to further transform biomedical 

research and reach our goals of more precise and targeted therapeutic approaches across all races 

and ethnicities. 
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1.3.4 Multi-ancestry data power genetic discovery 

Global efforts investigating genetic risk in multi-ancestry populations have identified 

ancestry heterogeneity in loci effect sizes, discovered novel variants associated with disease 

outcomes, and continuously strengthened the need for the inclusion of racially diverse 

populations35,36,78. Surakka et al.35 meta-analyzed multi-ancestry GWAS (24.2% genetically 

diverse patients) for stroke from 16 biobanks with 1.37 million individuals (4.4% cases) and 

found a locus which showed significant ancestry heterogeneity, PDE3A. The lead variant in this 

region, rs12811752, showed consistent effects size and direction among European (EUR), East 

Asian (EAS), and African (AFR) ancestry populations. Conversely, variant effect size of this 

locus was in the opposite direction in South Asian ancestry participants and 4 times higher in 

admixed American ancestry individuals, compared to EUR, EAS, and AFR patients3. In addition, 

a multi-ancestry GWAS for VTE which meta-analyzed 9 biobanks with 1.06 million patients 

(2.6% cases) discovered a novel locus near the DHRS3 gene showing different allele frequency 

(AF) between ancestry populations. From gnomAD79, locus rs112106699 is reported to be a rare 

variant in European ancestry (AF=0.06%), but higher frequency in African ancestry (AF=9.0%), 

suggesting that the effect was driven by individuals of African descent.  

Furthermore, research led by the GLGC consortium on blood lipid level from 1.65 

million individuals meta-analyzed 201 primary studies. The studies recruited in GLGC were 

from 5 genetic ancestry groups: Admixed African or African, East Asian, European, Hispanic, 

and South Asian, with 21% non-European ancestry participants (Figure 1.3). This study 

quantified the benefit of the inclusion of non-European ancestries in genetic study. They reported 

923 significant loci associated with lipid traits, and 168 of those were not significant in ancestry-

specific analysis. Moreover, of the 168 loci discovered in multi-ancestry GWAS, 120 (71%) 



 13 

were novel findings. Graham et al. highlighted that improving the diversity of genetic studies can 

substantially enhance fine-mapping functional variants compared to recruiting more European 

ancestry participants45. This work highlighted the importance of including multi-ancestry 

populations in biomedical research to power genetic discovery. 

1.3.5 GWAS using phenotyping derived outcome to improve power 

Recent studies have also demonstrated the importance of EHR data utilization in large-

scale genetic association study3,5,80. A high-quality phenotyping algorithm derived from the EHR 

system could be used to serve as the disease outcome indicator for GWAS and expand cohorts 

across the health system to improve the power for variant discovery81. A study conducted by 

Thangaraj et al.29 used machine learning methods to build a phenotyping algorithm for stroke 

and assigned individuals with a continuous probabilistic score of having a stroke. In this study, 

they successfully replicated previous work and recovered known loci in stroke to show the 

validity of machine learning-derived phenotypes in genetic study82. Additionally, they identified 

novel locus in the ABCG8 gene was associated with intracerebral hemorrhage stroke. This 

finding strengthens the hypothesis that continuous outcomes and high-quality outcomes derived 

from phenotyping algorithms can advance study power and discover more novel findings82–85. 

 

1.4 Leveraging EHR with Genetic Data 

The completion of the Human Genome Project and the establishment of the Medicare 

EHR Incentive Program opened avenues for precision medicine8,86. Studies mining information 

from EHR data for use in medical research and genetic study have since grown 

exponentially87,88. Biomedical research traditionally relies on clinical prediction tools to identify 
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high-risk patients for preventive treatment initiation. For example, the use of Pooled Cohort 

Equation (PCE) to predict the risk of future atherosclerotic cardiovascular disease (ASCVD) 

events in 10 years. The PCE risk calculation used patients’ demographic information, lab 

measurements, medication history, and smoking status to estimate individuals’ risk of 

developing ASCVD89. The use of PCE, however, neglects the information contributed from 

genetics to advance disease risk prediction. 

A recent published study showed that by establishing a two-stage screening system using 

the PCE score, then reclassifying patients’ with intermediate risk with a CAD PRS captured 

more at-risk patients. This study showed that by initiating early preventive treatment for 

reclassified patients, 50 additional ASCVD events can be averted over 10 years per 10,000 

patients screened5. In addition, Surakka et al.3 established an age-and-sex PRS interaction model 

to reclassify the low risk patients from ASCVD risk score. After the two-step screening process, 

an additional 8.5% of the incident CAD cases were identified in a population-based cohort in 

Norway. This study further validated their findings using the UK Biobank cohort, a population-

based cohort in the UK, and highlighted the need for incorporating genetic information to 

optimize disease risk stratification and preventive strategies3.   

 

1.5 Conclusions 

Global collaboration of biobanks utilizing harmonized EHR and genetic data is the key to 

improving statistical power and identifying novel findings in human genetics research. 

Integrating EHR- and GWAS-derived information to classify high-risk patients in the future is 

essential to advancing precision medicine. In this dissertation, I used EHR data to rapidly study 

COVID-19 risk and lifestyle changes with the potential to impact cardiovascular risk during the 
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‘Stay Home Stay Safe’ Executive Order in Michigan (Chapter 2). Next, I utilized the genetic 

data to investigate the power of genetic diversity on constructing PRS for heart failure risk 

estimation and found that PRS calculated from large samples and multi-ancestry GWAS have the 

best performance (Chapter 3). Finally, I integrated both EHR and genetic data by developing 

novel machine learning methods to summarize high-dimensional EHR data and leveraging 

genetic information to build prediction models with high accuracy (Chapter 4).  
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1.6 Figures and Tables 

 

 

Figure 1.1 Global Biobank Meta-analysis Initiative map 

Global Biobank Meta-analysis Initiative (as of April 2022) brings together 23 biobanks across 4 

continents with more than 2.2 million individuals from 5 ancestral populations. Figure courtesy 

of Wei Zhou32.  
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Figure 1.2 Ancestry of GWAS participants compared to the global population from 2006 to 

2018 

GWAS participants ancestry compositions distribution over time compared to global population. 

Figure from Martin et al. 201960. 
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Figure 1.3 Global Lipids Genetics Consortium map 

Global Lipids Genetics Consortium recruited 1.65 million participants from 201 primary studies 

across 5 continents with 21% of the individuals of non-European descent. White dots 

proportionally represent the sample size contributed from the corresponding country. 
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Chapter 2  

 

 

Exposure and Risk Factors for COVID-19 and the Impact of Staying Home 

on Michigan Residents 

 

2.1 Introduction 

SARS-CoV-2 is a novel coronavirus that appears to have infected the first individual in 

Mainland China in December 2019. The virus has spread rapidly and globally, with documented 

cases in nearly every country, resulting in 16.8 million confirmed COVID-19 cases as of July 26, 

202090. COVID-19 case numbers rapidly increased in the United States in March and April, 

particularly escalating in the states of New York, New Jersey, Connecticut, and Michigan. The 

rate of infection in Washtenaw County, Michigan, was 0.6% (2,035 confirmed cases/ 367,601 

individuals), as of July 26, 2020. Also on July 29, the State of Michigan reported 80,172 

confirmed COVID-19 cases (0.8% of the state’s population) and 6,172 deaths, representing 2% 

of COVID-19 cases and 4% of deaths in the United States91. 

Limited information is available to fully explain why certain individuals appear to be at a 

higher risk. Based on the currently available data, older adults, especially those 65 years of age 

and older, are at the highest risk for hospitalization, intensive care, ventilation, and death92–95. 

Individuals from some ancestry groups such as Native American, African American or Black, 

and Hispanic individuals appear to be at higher risk of both SARS-CoV-2 infection and severe 

COVID-1996. Individuals with underlying medical conditions: chronic kidney disease94, chronic 
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obstructive pulmonary disease, immunocompromised conditions, hypertension, and Type 2 

diabetes mellitus have been reported as having higher risk for severe illness from COVID-

1991,92,95,97–101. 

Other risk factors continue to emerge, but an unprecedented need remains for research to 

further understand COVID-19 risk factors and the impact of shelter in place or quarantine on 

long-term risks for other diseases. We developed the Michigan Medicine Precision Health 

COVID-19 Survey to evaluate SARS-CoV-2 exposure, COVID-19 symptoms and risk factors, 

and the impact of the 'Stay Home Stay Safe' Executive Order on previously enrolled Michigan 

Medicine biorepository participants. We aimed to answer three main questions with this study. 

First, which risk factors are associated with contracting COVID-19, and are they different from 

risk factors that are associated with a severe COVID-19 course? Secondly, why are African-

Americans at higher risk of COVID-19? And lastly, is there a potential impact of the 'Stay Home 

Stay Safe' executive order in Michigan on other health behaviors that may relate to the risk of 

developing long-term cardiometabolic disease? 

 

2.2 Methods 

Prior to March 2020, Michigan Medicine biorepository participants provided broad 

consent for biospecimen collection, electronic health data, future and ongoing use of data for 

undefined research, and re-contact in future studies102. On March 12, Michigan’s Governor 

Gretchen Whitmer ordered all schools to close after the first two confirmed cases of COVID-19 

in the state were reported on March 10. Then, on March 23, Governor Whitmer issued the 'Stay 

Home Stay Safe' Executive Order, which enforced school closures, ordered non-essential 

workers to work from home, enforced restaurant and bar closures (with the exception of 
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contactless take-out), and discouraged socializing, travel and unnecessary trips outside of the 

house. SARS-CoV-2 testing was limited, and typically only available to symptomatic individuals 

or frontline healthcare workers during the time prior to survey deployment.   

We developed the COVID-19 survey based on shared resources from the COVID-19 

Host Genetics Initiative (www.covid19hg.org)103 and Regeneron Pharmaceuticals and prior 

surveys sent to Michigan Medicine biorepository participants. The survey was designed in 

March and April 2020 to evaluate risk factors for COVID-19 and the impact of the 'Stay Home 

Stay Safe' executive order on health behaviors of biorepository participants, primarily from the 

Michigan Genomics Initiative (MGI, 74,194 enrolled to date)104 the Cardiovascular Health 

Improvement Project (CHIP, 5,708 enrolled to date)105–107, and the Michigan study of Racial 

Equality and Community Health (MREACH, ~300 enrolled to date, 85% of whom are African-

American or Black) (Supplementary Table 2.1, description of all biorepository cohorts). Of the 

>75,000 Michigan Medicine biorepository participants, 50,512 participants had a valid email 

address in their electronic health records. Up to 3 survey invitations were sent to each participant 

by email between May 26, 2020 and June 29, 2020, which was 10-15 weeks after schools were 

closed. Survey responses received prior to July 2, 2020 were included in analysis. Daily positive 

COVID-19 tests for the state of Michigan relative to the time of survey deployment are presented 

in Figure 2.1108. 

Of 50,512 participants with valid email addresses, 8,422 (17%) completed the survey. 

381 survey respondents (4.5%) were excluded from analysis for the following reasons: 

international location/ zip code (n=13), sex discrepancy between electronic health record and 

survey response (n=236), self-diagnosis of COVID-19 without test (n=134), and duplicated study 

ID (n=6). We were not able to confirm COVID-19 self-diagnoses and therefore, these were 
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excluded (Supplementary Table 2.2 provides descriptive statistics for these participants). A total 

of 8,041 survey respondents were included in analysis, 132 of whom were diagnosed with 

COVID-19 by a doctor or test (Figure 2.2). European-Americans were more likely to complete 

the survey (16.9% of those invited) relative to African-Americans (8.6% of those invited; 

Supplementary Table 2.3). 

2.2.1 Survey deployment  

The University of Michigan Data Office for Clinical and Translational Research 

(DOCTR) deployed the survey to biorepository participants’ email addresses by sending an 

individualized link to a Qualtrics electronic informed consent and survey. The DOCTR office 

maintained personal health information and created coded identifiers for researchers to access 

survey data109. The protocol and study procedures were approved by the University of Michigan 

Institutional Review Board (HUM00180827).  

2.2.2 Survey content 

The survey evaluated self-reported SARS-CoV-2 exposure, COVID-19 diagnosis, 

symptoms, and risk factors as well as health behaviors and overall concern during the Michigan 

'Stay Home Stay Safe' Order. Skip logic was applied, meaning most participants only answered 

50% of the 96 total questions, requiring approximately 8-10 minutes. A full version of the survey 

with branching logic is available (Supplementary Table 2.4).  

Participant characteristics 

The survey included basic demographics including sex, race/ethnicity, which were used 

for analysis. Electronic health records were utilized to verify self-reported sex, as well as 

demographics of survey non-respondents (Supplementary Table 2.3). Participants were asked to 
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report height and weight for calculation of body mass index. Socioeconomic status was assessed 

by self-reported average annual household income, which was categorized as low (<$40,000), 

middle ($40,000 to $100,000), or high (>$100,000)110. Socioeconomic indicators of health were 

evaluated, including current living situation (e.g., owned versus rented accommodations), zip 

code for ‘Stay Home Stay Safe’ shelter in place location, highest grade or year of school 

completed, cars/automobiles per household, primary mode of transportation111. 

COVID-19 exposure, symptoms, diagnosis, and severity 

All participants were asked whether they were diagnosed with COVID-19 with a test or 

by a physician without a test112. All participants responding “no” to being diagnosed with 

COVID-19 were classified as controls, with the exception of participants who thought they might 

have or have had COVID-19 but had not been tested or diagnosed by a physician. Possible self-

diagnosed individuals were excluded from all standard analyses (Supplementary Table 2.2, 

symptoms are reported). All participants were asked to recall potential COVID-19 exposure, 

including international and domestic travel history, current work as or living with an essential 

employee, and contact with family members or someone outside the house diagnosed with 

COVID-19. COVID-19 cases were asked to recall symptoms, duration of symptoms, 

hospitalization, and complications. Participants reporting symptoms and shortness of breath 

without hospitalization were categorized as mild-to-moderate whereas participants hospitalized 

due to COVID-19 were categorized as severe113.  

Medical and family history 

Participants were asked to recall history of chronic diseases including respiratory, 

immune, genitourinary/metabolic, cardiovascular, neurological, and oncological conditions.  
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Mental health 

Participants were asked to recall their level of concern about the COVID-19 pandemic 

and their concerns for contracting the virus, financial situation, and isolation. Participants were 

asked to recall personal precautions, where they obtained COVID-19, and whether family 

members have been diagnosed with or died from COVID-19.  

Health behaviors  

Participants were asked to recall how health behaviors may have changed during the 

‘Stay Home Stay Safe’ period relative to usual behavior. Specifically, participants were asked to 

recall whether they had increased moderate-to-strenuous exercise, alcohol consumption, drug 

use, and tobacco use or whether they had improved sleep habits and nutrition, and whether or not 

they had gained weight. These items were assessed using a Likert 5-point scale (Strongly 

Disagree to Strongly Agree). Participants were asked to recall for an average week (before and 

after COVID-19 ‘Stay Home Stay Safe’ recommendations), how many days they participated in 

a total of 30 minutes or more of physical activity114. Information related to smoking history was 

assessed. 

2.2.3 Statistical analysis 

The risk factors studied were demographic variables, socioeconomic indicators, 

environmental factors, health behaviors, workplace information, community exposure, 

precautions practiced, and comorbidities collected from the survey. P-values < 0.05 were applied 

to define statistical significance. 

To test for the association between risk factors and COVID-19 status, we performed 

logistic regression. When assessing the association with clinical risk factors, such as type 2 

diabetes, we included age and sex as covariates. We further categorized disease status into mild-
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to-moderate and severe patients (requiring hospitalization) as a secondary outcome to test for 

clinical and social risk factors associated with disease severity. To evaluate the effects of 

ethnicity (African American versus European American) on COVID risk factors, a chi-square 

test or t-test were applied for categorical and continuous risk factors, respectively. Lastly, to 

study the impact of the 'Stay Home Stay Safe' executive order on participants’ behavioral 

changes and level of concern -- differences by ethnicity, sex, and income groups were evaluated. 

Ordinal logistic regression was used to examine the association between ordinal behavioral 

change (disagree, same, and agree) as the dependent variable and ethnicity, sex, and income 

group as independent variable. Logistic regression was used to examine the association between 

binary outcomes of level of concern. Linear regression was applied to evaluate association 

between a continuous scale of concern level (range 1-10 where 10 is a high level of concern) and 

ethnicity, sex, and income group as the independent variable. 

For health behavioral change questions, participants were given five categories in the 

answer field. We collapsed “strongly disagree” and “disagree” into one group, kept “about the 

same”, and collapsed “strongly agree” and “agree” into another group as a three-group ordinal 

outcome to improve statistical power. Health behavior change on tobacco use was only evaluated 

on participants who are current users or switched tobacco/nicotine products from one to another, 

and drug use behavior change was only evaluated on individuals who answered they have used 

opioid, benzodiazepines, or marijuana/cannabis in the past 30 days. Level of concern categorical 

responses (not concerned, slightly concerned, very concerned, and extremely concerned) were 

dichotomized into “No” (not concerned and slightly concerned) and “Yes” (very concerned and 

extremely concerned) as a binary outcome.  
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2.3 Results 

Of 50,512 biorepository participants invited to participate in a COVID-19 survey, a total 

of 8,041 participants are included in this cross-sectional analysis (Supplementary Table 2.3) and 

132 (1.6%) participants responding “yes” to being diagnosed with COVID-19 by a test or a 

physician. Among all survey respondents, the mean age was 59 ± 15 (mean ± SD) years old and 

3,310 (41.5%) were male. Among survey respondents, 233 (2.9%) self-identified as Black or 

African American (hereafter referred to as African American), 7,387 (91.9%) as 

White/Caucasian (hereafter referred to as European American), and 421 (5.2%) as another 

category (American Indian or Alaska Native, Asian, Native Hawaiian or Pacific Islander, 

Unknown, or Prefer not to answer). 

Participants reported high socioeconomic status, with more than forty-two percent 

reporting an annual household income greater than $100,000, and 67% earned a bachelor's 

degree or higher. The average BMI was 29 ± 7 with 33.5% and 37.3% categorized as overweight 

and obese, respectively. The University of Michigan / Michigan Medicine is in Ann Arbor, 

which has higher rates of education and salary than national norms.  

2.3.1 Risk factors associated with developing COVID-19 

We examined demographic differences between COVID-19 confirmed cases and 

controls. Participants who self-reported as “African-American or Black” were significantly more 

likely to be diagnosed with COVID-19 compared to self-reported “White/Caucasian” individuals 

(5.6% versus 1.5%, p=5x10-6). This approximate 3-fold higher risk of developing COVID-19 we 

observed in African Americans is consistent with Washtenaw County demographics of COVID-

19 cases (as of July 16, 2020) where 32% of COVID-19 lab-confirmed cases are Black or 
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African-American whereas only 12.3% of the Washtenaw County population is Black or 

African-American (Supplementary Table 2.5). 

The data showed that people with any of the COVID-19 symptoms collected from the 

survey were at a significantly higher risk of contracting COVID-19. More than half of the 

COVID-19 cases reported having fatigue, muscle aches, shortness of breath, headache, cough, or 

fever (ordered by most common to less common). (Supplementary Table 2.2 for self-diagnosed).  

Next, we evaluated possible sources of exposure to SARS-CoV2 among the cases (Figure 

2.3.a, Supplementary Table 2.6). COVID-19 cases were younger (51±15 versus 59±15 years, 

p=1x10-9), had more social exposure to others with COVID-19 (family members [33.3% versus 

6.8%, p=6x10-8] and people outside of household [21.1% versus 9.9%, p=0.040]) than controls. 

COVID-19 cases were more likely to report their role as an essential employee (44.7% versus 

19.4%, p=9x10-12) and medical professional (24.2% versus 8.0%, p=4x10-10). Avoiding public 

transport (65.2% versus 76.2%, p=0.003) and self-isolation (17.4% versus 26.6%, p=0.019) were 

associated with significantly lower risk of contracting COVID-19, but most of the personal 

precautions were not found to be individually associated with reduced COVID-19 risk. However, 

not doing any of the precautions significantly increased the risk of contracting COVID-19 (2.3% 

versus 0.3%, p=0.002). Several precautions were reported to be used at high rates amongst all 

survey respondents (e.g., 95% report mask wearing, 96% report frequent hand-washing, and 92% 

report social distancing); therefore, there was little power to distinguish any difference in 

infection due to not taking these precautions. Despite high rates of self-reported personal 

precautions, 54.6% of COVID-19 cases reported no known exposure to a COVID-19-positive 

individual in the two weeks prior to their diagnosis. Using age and sex as covariates, clinical risk 

factors significantly associated with COVID-19 were: type 2 diabetes (15.2% versus 11.8%, 
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p=0.020), respiratory conditions (42.4% versus 36.0%, p=0.033), and congestive heart failure 

(6.1% versus 3.7%, p=0.033).  

2.3.2 Risk factors associated with a severe COVID-19 disease course 

Next, factors associated with a severe course of COVID-19 were examined (Figure 2.3.b, 

Supplementary Table 2.6). We classified 30 cases as severe based on being hospitalized for 

COVID-19 compared to 102 mild-to-moderate cases who did not require hospitalization. African 

Americans were more likely to have had a severe COVID-19 disease course compared to 

European American (53.8% versus 17.6%, p=0.005), however this sample size was limited. 

Severe cases were more likely to be male (60.0% versus 40.0%, p=0.011), older (57±14 versus 

49±15 years, p=0.014), and report social exposure to COVID-19 (family members diagnosed 

with COVID-19 (55.6% versus 24.2%, p=0.009). Severe cases reported that COVID-19 

symptoms persisted an average of 22±12 days compared to 17±11 days for mild-to- moderate 

cases (p=0.035). A higher proportion of patients with severe COVID-19 reported fever (83.3% 

versus 52.9%, p=0.005). Conversely, mild-to-moderate patients were more likely to report 

rhinorrhea (30.4% versus 6.7%, p=0.018) compared to severe patients. 

2.3.3 Possible explanations of why African-Americans at higher risk of COVID-19 

To attempt to understand why African Americans were at higher risk of COVID-19, we 

evaluated socioeconomic status, COVID-19 exposure, and environmental factors by ethnicity in 

the entire set of survey respondents (Figure 2.4, Supplementary Table 2.7). African American 

survey respondents were younger (53±15 versus 60±15 years, p=1x10-9), more likely to be 

female (69.4% versus 58.3%, p=0.001), have a higher BMI (32.5±8.1 versus 29.0±6.6, p=9x10-

10), and report higher rates of obesity (BMI of 30.0 or higher, 57.6% versus 36.8%, p=4x10-10). 
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African Americans reported a lower income (annual family income < $40,000; 28.2% versus 

13.4%, p=4x10-10), higher rates of living in rental housing (31.3% versus 9.0%, p=4x10-29), and 

more social exposure to COVID-19-positive individuals (family members [39.1% versus 13.5%, 

p=0.003]; people outside of the household with COVID-19 [38.9% versus 11.0%, p=0.002]). 

African Americans were more likely to report being an essential employee during ‘Stay Home 

Stay Safe’ (26.7% versus 19.4%, p=0.007), including being a medical professional (13.8% and 

8.0%, p=0.002). Self-reported precautions taken to avoid COVID-19 were not different between 

African and European Americans in this survey and could not explain the difference in rates of 

COVID-19. In fact, we observed (non-significantly) higher rates of precautions in African 

Americans than European Americans. 

African Americans were more likely to suffer from a severe COVID-19 response (53.8% 

hospitalized versus 17.6% for European-American, p=0.005) in this dataset, but the sample size 

of hospitalized patients was small (N=30). We next evaluated self-reported disease risk factors 

by ethnicity that may increase risk of a severe course of COVID-19, or other cardiometabolic 

diseases (Figure 2.4, Supplementary Table 2.7). African American survey respondents reported a 

significantly higher (p-value < 0.05) incidence of: type II diabetes mellitus (26.6% versus 

11.2%), sleep apnea (30.0% versus 21.9%), use of CPAP (23.2% versus 17.3%), asthma (21.0% 

versus 14.4%), chronic kidney disease (13.7% versus 6.1%), hypertension (45.1% versus 

32.4%), and obesity (57.6% versus 36.8%), while European Americans reported a higher 

incidence of cancer (4.8% versus 0.9%).  

2.3.4 Health behaviors during statewide ‘Stay Home Stay Safe’ order 

We also examined the impact of the 'Stay Home Stay Safe' period in Michigan on health 

behaviors, lifestyle changes, and level of concern of survey participants. We examined if there 
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were differences in health behaviors within groups divided by sex, by three income groups, and 

by ethnicity (Figure 2.5, Supplementary Table 2.8, 2.9, and 2.10). We excluded the 132 

individuals diagnosed with COVID-19 because their lifestyle may have been greatly impacted by 

the disease itself. This comparison was meant to help us understand the potential increase in risks 

for cardiometabolic or other diseases imposed by the 'Stay Home Stay Safe' period and to 

determine if the restrictions impacted some groups more than others.  

First, across all participants without COVID-19, we found that a reasonable proportion of 

participants developed less-healthy behaviors during the 'Stay Home Stay Safe' period: 23.1% 

report worsened nutrition, 31.9% report weight gain, 30.1% report poorer sleep habits, 38.6% 

report decreased moderate-to-vigorous exercise, 18.2% report increased alcohol consumption, 

35.9% of current smokers report increased smoking, and 12.7% of current drug users report 

increased drug use. On the other hand, a substantial proportion reported healthier behaviors: 

26.1% reported better nutrition, 32.4% reported weight loss, 15.2% reported improved sleep 

habits, 23.0% reported increased moderate-to-vigorous exercise, 52.7% reported decreased 

alcohol consumption, 28.2% reported decreased smoking, and among drug users, 68.3% reported 

decreased drug use. 

During 'Stay Home Stay Safe’, when compared to men, women were significantly more 

likely to report behavioral changes that could increase the risk of cardiometabolic diseases: 

worsened nutrition (26.4% versus 18.3%, p=4x10-12), weight gain (36.6% versus 25.1%, p=6x10-

21), poorer sleep habits (33.2% versus 25.6%, p=1x10-5), increased tobacco use among tobacco 

users (43.7% versus 25.3%, p=6x10-4), and decreased moderate-to-vigorous exercise (43.7% 

versus 25.3%, p=6x10-4). Conversely, men were significantly more likely to report improved 

nutrition and weight maintenance. The majority of the men reported that they kept their exercise, 
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sleep habits, and tobacco use the same during the 'Stay Home Stay Safe' executive order (Figure 

2.5, Supplementary Table 2.8).  

We also examined the association between household income and health behavior 

changes during 'Stay Home Stay Safe' (Figure 2.5, Supplementary Table 2.9). People with higher 

income were more likely to report increased exercise (28.3% versus 19.4% versus 17.1%, 

p=2x10-17), increased alcohol consumption (23.4% versus 15.2% versus 13.5%, p=5x10-38), and 

also improved sleep habits (19.1% versus 12.8% versus 12.0%, p=1x10-16) and nutrition (27.4% 

versus 25.8% versus 23.4%, p=7x10-5). People with higher income were also more likely to 

report working from home during ‘Stay Home Stay Safe’ (53.6% versus 27.9% versus 17.2%, 

p=8x10-148). People with lower income were more likely to report weight gain (36.7% versus 

31.5% versus 31.7%, p=0.027). 

Of the behavioral changes made, there were few statistically significant differences by 

ethnic group (Figure 2.5, Supplementary Table 2.7 and 2.10). Of all behavioral categories 

surveyed, we only observed a significant difference for exercise between African Americans 

relative to European Americans. African Americans reported less exercise per week (days of 30 

minutes or more of physical activity in an average week) from both before (3.3±1.8 versus 

3.7±1.8 days, p=0.006) and after the COVID-19 pandemic (3.2± 1.9 and 3.8± 2.1 days, p=3x10-

4). African Americans were also more likely to report to have poorer sleep habits during 'Stay 

Home Stay Safe' than European-Americans (40.9% versus 29.7%, p=0.004). 

When asked about overall concern (range 1-10 where 10 is a high level of concern), the 

population mean was 5.57±2.95. When asked about specific aspects, 47.4% reported concern 

about contracting COVID-19, 62.3% had concern of someone close to them contracting COVID-

19, 18.3% had concern about serious financial problems, 10.6% were concerned about losing 
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their job, 51.4% were concerned that it will be a long time before life returns to normal, and 

53.6% were concerned about not seeing friends and family.  

Women report higher levels of overall concern than men (5.69±2.88 versus 5.39±3.05 

p=7x10-6), and more women report concern about people close to them contracting COVID-19 

(64.4% versus 59.4%, p=7x10-6), developing serious financial trouble (20.3% versus 15.3%, 

p=3x10-8), losing their job (12.4% versus 8.1%, p=1x10-9), concern that it will be a long time 

before life returns to normal (54.8% versus 46.6%, p=8x10-13), and not seeing friends and family 

(56.8% versus 49.1%, p=2x10-11) (Supplementary Table 2.8). 

Relative to the high income group (>100K), people with lower or medium income (<40K 

or 40K-100K) had higher levels of concern about (Supplementary Table 2.9): contracting 

COVID-19 (49.3% versus 48.4% versus 44.9%, p=0.006), getting into serious financial trouble 

(34.7% versus 20.4% versus 11.8%, p=1x10-58), losing their job (13.7% versus 11.4% versus 

9.3%, p=1x10-4), and that it will be a long time before life returns to normal (55.1% versus 

51.3% versus 50.6%, p=0.038). When we examined groups by self-reported ethnicity 

(Supplementary Table 2.10), African Americans report higher overall concern (6.74±3.01 versus 

5.53±2.94 p=2x10-9) as well as concerns about: contracting COVID-19 (63.3% versus 47.0%, 

p=2x10-6), people close to them contracting COVID-19 (71.8% versus 62.1%, p=0.004), 

developing serious financial problems (34.1% versus 17.5%, p=9x10-10), losing their job (20.5% 

versus 10.1%, p=1x10-6), and concern that it will be a long time before life returns to normal 

(58.6% versus 51.3%, p=0.032).  
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2.4 Discussion 

In this study, we first sought to determine which demographic, clinical or behavioral risk 

factors might predispose individuals to COVID-19, and determine if the same or different risk 

factors might predispose to a severe COVID-19 disease course. Based on this survey of 132 

COVID-19 cases and 7,909 controls, we were able to identify significant risks of COVID-19 for 

individuals who are: African American, younger age, essential employees and those who report 

being exposed to other COVID-19 cases including family and others outside the household. The 

most common symptoms among cases were fatigue (78.8%), muscle aches (66.7%), and 

shortness of breath (65.2%), whereas sneezing (16.7%) and runny nose (25.0%) were less 

common. Personal precautions against transmission appeared to decrease spread of SARS-CoV2, 

and individuals who reported using no precautions were at higher risk of COVID-19. 

African Americans account for 14% of the state of Michigan’s population, but 33% of 

COVID-19 cases and 41% of deaths (data as of July 16, 2020), which is consistent with 

observations at the national level115. Given the alarming disparity, we examined potential risk 

factors that may explain the higher rates of COVID-19 observed among African American 

individuals. Our data identified a number of clinical and social risk factors that were different 

between African American and European American participants. Several chronic diseases 

(obesity, hypertension, type II diabetes, and chronic kidney disease) had higher rates in African 

Americans by self-report. Based on significant differences between African Americans and 

European Americans in annual income, designated essential employees, and different rates of 

living in rented accommodation, we hypothesize that African Americans were at a higher risk of 

contracting COVID-19 because of economic pressure to continue working and interacting with 

people outside the household during the 'Stay Home Stay Safe' order in Michigan (Figure 2.6). 
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Larger studies are needed to tease apart which risk factors are explicitly driving the higher 

incidence rates of COVID-19 in African Americans. 

The long-term effects of the pandemic may further exacerbate the higher incidence and 

severity of chronic and cardiometabolic diseases in some demographic groups. Given this 

possibility, we evaluated the impact of COVID-19 on self-reported health behaviors. 

Interestingly, the impact on health behaviors were variable, but on average, we found that men 

were more likely to stay the same or improve health behaviors such as, exercise, sleep habits, 

tobacco use, and nutrition. Conversely, women were more likely than men to report less-healthy 

behaviors, including worsened nutrition, weight gain, poorer sleep habits, and decreased 

exercise. Similarly, Nienhuis and Lesser reported significantly less physical activity among 

women than men and reported more barriers to physical activity participation, and thus, women 

also reportedly experienced more anxiety than men116. In this study, women and African 

Americans report higher levels of overall concern, concern about people close to them 

contracting COVID, developing serious financial trouble, losing their job, concern that it will be 

a long time before life returns to normal, and not seeing friends and family. Other reports 

corroborate our findings showing an increased prevalence of depressive, anxious, and acute 

stress/posttraumatic symptoms in women than men117 during of COVID-19 outbreak in China118 

and Spain119. People with higher income were more likely to increase exercise, increase alcohol 

consumption, and also improve sleep habits and nutrition. People with lower income were more 

likely to gain weight and also had higher levels of concern about contracting COVID-19, getting 

into serious financial trouble, losing their job, and that it will be a long time before life returns to 

normal. In line with our findings, Ettman et al., reported that participants with lower social-

economic resources and greater exposure to stressors (e.g., job loss) had an increase prevalence 
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of depressive symptoms reported a greater burden of depression symptoms. Post-COVID-19 

plans should account for the probable increase in mental illness to come, particularly among at-

risk populationse120. 

2.4.1 Limitations 

This study has several limitations that should be considered when reviewing the findings. 

First, this study was conducted at a single center with a limited geographic area and relatively 

higher standard of living. As such, the generalizability of the findings may be limited to the 

geographic area rather than United States. This study reflects limitations associated with all 

retrospective study designs. The study design engaged previously consented biorepository 

participants to enroll and recall their COVID-19 exposures, symptoms, diagnosis, precautions, 

and experience. It is possible that there is respondent bias as participants from the various 

biorepositories may have responded differently. The study data may not adequately represent the 

most severe COVID-19 cases as those who expired or were hospitalized during the study 

timeframe likely did not participate. Furthermore, this study excluded 134 individuals who were 

self-diagnosed with possible COVID-19 but were not diagnosed by a doctor or a test. We cannot 

determine the impact of personal precautions reported to be used at high rates, such as mask 

wearing and frequent hand washing because of lack of power. Additionally, we do not have 

power to distinguish which socioeconomic, employment exposure or health factors that differ 

between ethnic groups may be the cause of higher COVID-19 rates in African-American. Lastly, 

because our survey was only taken once, we did not capture longitudinal data, or information on 

pre-symptomatic individuals who later tested positive. 
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2.4.2 Conclusion 

Understanding exposure risks are critical to educating the public and to saving lives. Our 

data provides insight into exposure risks, confirms that precautions work, although being an 

essential worker or medical professional increases the susceptibility of transmission. Overall, 

African Americans, women, and those with low household income reported less healthy 

behaviors during the ‘Stay Home Stay Safe’ (post-COVID) period in Michigan, while also 

reporting more overall concern for possible economic, health and societal decline related to the 

global COVID-19 pandemic. There is an undeniable need to focus continued efforts on 

prevention and mitigation strategies for COVID-19, and begin to more comprehensively address 

the inequality gaps in disease risks by ethnic group that the COVID-19 pandemic has 

highlighted. 
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2.5 Figures and Tables 

 

 
 

 

Figure 2.1 Confirmed and probable COVID-19 cases for the state of Michigan from March 1, 

2020 to July 29, 2020.  
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Figure 2.2 COVID-19 Survey study enrollment. 

 

  

Figure 2. Participant Enrollment  
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Figure 2.3 Forest plots comparing COVID-19 risk factors. 

a) Risk factors associated with COVID-19 in comparison to those without COVID-19, and b) 

risk factors associated with a severe course of COVID-19 in comparison to those with a mild or 

moderate course of COVID-19.  
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Figure 2.4 Forest plots comparing COVID-19 risk factors between African American and 

European American. 

 

Differences in clinical and social risk factors between African American and European American 

survey respondents. 
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Figure 2.5 Bar plot comparing behavioral changes by demographic variables 

Behavioral change by sex (Female versus Male), income (<$40,000 versus $40,000-100,00 versus >$100,000 annual house income), 

and race (African versus European American). 
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Figure 2.6 COVID-19 status, COVID-19 risk factors, and chronic disease differences by race. 
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2.6 Supplementary Materials 

2.6.1 Figures and tables 

Supplementary Table 2.1 Biorepository studies 

Please access the table at https://doi.org/10.1371/journal.pone.0246447.s001 

 

Supplementary Table 2.2 COVID-19 risk factors by types of diagnosed 

Please access the table at https://doi.org/10.1371/journal.pone.0246447.s002 

 

Supplementary Table 2.3 Descriptive characteristics of the COVID-19 tested/diagnosed central 

biorepository and COVID-19 survey participants 

Please access the table at https://doi.org/10.1371/journal.pone.0246447.s003 

 

Supplementary Table 2.4 Michigan Medicine Precision Health COVID-19 Survey  

Please access the table at https://doi.org/10.1371/journal.pone.0246447.s004 

 

Supplementary Table 2.5 Lab-confirmed COVID-19 cases in Washtenaw County by race (as of 

7/16/20; in percentage) 

Please access the table at https://doi.org/10.1371/journal.pone.0246447.s004 

 

Supplementary Table 2.6 Demographic, social economic status, environmental factors, and 

self-reported health conditions by COVID status and severity  

Please access the table at https://doi.org/10.1371/journal.pone.0246447.s006 

 

Supplementary Table 2.7 Differences in clinical and social risk factors between African 

American and European American survey respondents 

Please access the table at https://doi.org/10.1371/journal.pone.0246447.s007 

 

Supplementary Table 2.8 Health behavioral change by sex 

Please access the table at https://doi.org/10.1371/journal.pone.0246447.s008 

 

Supplementary Table 2.9 Health behavioral change by income group 

Please access the table at https://doi.org/10.1371/journal.pone.0246447.s009 

https://doi.org/10.1371/journal.pone.0246447.s001
https://doi.org/10.1371/journal.pone.0246447.s002
https://doi.org/10.1371/journal.pone.0246447.s003
https://doi.org/10.1371/journal.pone.0246447.s004
https://doi.org/10.1371/journal.pone.0246447.s004
https://doi.org/10.1371/journal.pone.0246447.s006
https://doi.org/10.1371/journal.pone.0246447.s007
https://doi.org/10.1371/journal.pone.0246447.s008
https://doi.org/10.1371/journal.pone.0246447.s009
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Supplementary Table 2.10 Health behavioral change by race 

Please access the table at https://doi.org/10.1371/journal.pone.0246447.s010 

 

2.7 Publication 

The work presented in this chapter has been published in PLoS One72: Wu, K.H. et al. 

(2021). Exposure and risk factors for COVID-19 and the impact of staying home on Michigan 

residents. 

 

https://doi.org/10.1371/journal.pone.0246447.s010
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Chapter 3  

 

 

Polygenic Risk Score from a Global Biobank Multi-ancestry GWAS Uncovers 

Susceptibility to Heart Failure 

 

3.1 Introduction 

More than 26 million individuals globally are living with heart failure, which is a highly 

heterogeneous and progressive syndrome, resulting in the heart’s inability to deliver adequate 

blood flow to the body at normal filling pressures121,122. Heart failure is typically classified into 

phenotypic subtypes: i) heart failure with a reduced ejection fraction (HFrEF) and ii) heart failure 

with a preserved ejection fraction (HFpEF), based upon the left ventricular ejection fraction 

(LVEF) as a key distinction22. This classification provides a useful clinical distinction when 

diagnosing and managing patients with heart failure, given evidence-based therapies unique to 

each subtype. 

Identifying individuals at a high risk of heart failure at early or precursor stages could 

allow for earlier initiation of treatments to modify disease progression22. Prior work suggests a 

genetic basis for heart failure secondary to varied etiologies, ranging from ischemic disease, 

hypertension, or cardiac arrhythmias123, but the genetics of heart failure is not fully understood. 

Utilization of large biobanks with genetic data, integrated with electronic health records (EHR), 
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has the potential to identify large numbers of cases to improve statistical power, introduce 

greater genetic diversity, and balance varying etiologies32. 

The largest published heart failure genome-wide association study (GWAS) was 

conducted by the Heart Failure Molecular Epidemiology for Therapeutic Targets (HERMES) 

Consortium56. HERMES comprises 977,323 individuals of European ancestry. To expand upon 

our current understanding of the genetics underpinning heart failure, and evaluate the impact that 

global biobanks may play in this expansion, a new GWAS for overall heart failure from the 

Global Biobank Meta-analysis Initiative (GBMI) was conducted to improve genetic discovery32. 

GBMI is a global collaboration among 19 biobanks (data freeze 1) across the world with 

moderate diversity of ancestries. Next, we subtyped heart failure cases using a previously 

validated phenotyping algorithm to separately evaluate the association between the heart failure 

PRS and subtypes (HFrEF and HFpEF) in a large EHR-linked biobank22. Findings from this 

study will elucidate the potential need for heart failure subtype-specific GWAS studies. 

 

3.2 Methods 

3.2.1 Multi-ancestry meta-analysis 

Global Biobank Meta-analysis Initiative (GBMI) is a global collaboration among 19 

biobanks across the world that aims to equitably impact people of diverse ancestries. Biobanks in 

GBMI reach across 4 continents and have more than 2.1 million individuals with EHR-linked 

genetic information32. Biobanks that contributed to heart failure study include BioBank Japan, 

BioMe, BioVU, China Kadoorie Biobank, Estonian Biobank, FinnGen, Genes & Health, HUNT, 

Lifelines, Michigan Genomics Initiative, Partners Biobank, UCLA Precision Health Biobank, 

and UK Biobank (Supplementary Figure 3.1). Heart failure cases in the GBMI training dataset 
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were defined based upon ICD codes (phecode 428.2: heart failure, not otherwise specified), 

which did not distinguish between heart failure subtypes23. In the GBMI dataset, genetic data 

was analyzed from a total of 68,408 heart failure patients from 1,354,739 samples from 6 

ancestral populations: 24.7% of the samples were of non-European ancestry (Supplementary 

Figure 3.1; Supplementary Table 3.1)32. 

3.2.2 Polygenic Risk Score (PRS)  

We aimed to compare the risk-increasing effect of PRS derived from GBMI heart failure 

GWAS and the largest published heart failure GWAS conducted by Heart Failure Molecular 

Epidemiology for Therapeutic Targets (HERMES) Consortium in EA cohort56. Three PRSs were 

generated to compare the performance between GBMI and HERMES in European American: i) 

GBMI with multi-ancestries cohort (GBMI-ALL; N=1,305,592 [5.1% cases]), ii) GBMI with 

European-ancestry cohort (GBMI-EUR; N=974,174 [5.3% cases]), and iii) HERMES with 

European-ancestry cohort (HERMES-EUR; N=977,323 [4.8%]) (Supplementary Figure 3.2; 

Supplementary Table 3.2). 

Additional analysis on PRS transferability was performed in the AA subset of MGI/CHIP 

to compare the association of PRS built from ancestry-specific and trans-ancestry meta-analysis. 

Three sets of PRS were derived from GBMI i) multi-ancestry, ii) European-ancestry, and iii) 

African-ancestry (GBMI-AFR; N=28,322 [4.3% cases]) meta-analysis (Supplementary Figure 

3.2; Supplementary Table 3.2). 

Polygenic risk score weights were calculated using PRS-CS124 with a reference panel 

from the combined cohort of 1000 Genomes and UK Biobank125,126. For multi-ancestry and 

European-ancestry GWAS, a LD panel from individuals of European-ancestry was used. For 

African-ancestry GWAS, a LD panel from the African-ancestry cohort was used. The summary 



 48 

statistics used to generate PRS weights in our main analysis excluded our testing cohort, MGI, 

and in phenome-wide association study to evaluate the pleiotropic effect of heart failure genetic 

risk excluded UK Biobank (Supplementary Table 3.2). To control for possible population 

structure, each of the six raw PRSs were further regressed on the top 10 principal components 

(PC) derived from the genotype data of the overall population. The resulting residuals were 

further transformed to normal distribution using inverse normalization within each ancestry 

group to generate the final heart failure PRSs for each individual. 

3.2.3 Statistical analysis 

 The association of PRS derived from GBMI heart failure GWAS to one derived using 

the previously largest published summary statistics from HERMES was compared using 

European ancestry samples in MGI/CHIP. PRS ancestral transferability was tested in African 

American subset of MGI/CHIP by comparing the model performance between trans-ancestry, 

ancestry-matched, and ancestry-mismatched PRSs. 

We fit logistic regression models with PRS as predictive variable adjusted for age, sex, 

and PCs separately for both HFrEF and HFpEF phenotypes to compare the adjusted odds ratio of 

different PRSs. The significance level of 0.00625 (0.05/8) accounted for multiple comparison 

using Bonferroni correction, which acknowledges the number of outcomes (2 subtypes; HFrEF 

and HFpEF) and the number of GWAS summary statistics (2 GWAS; GBMI and HERMES) and 

the number of ancestry-specific cohort (2 cohorts; European American and African American). 

3.2.4 Phenome-Wide Association Study (PheWAS) 

Phenome-wide association study was conducted in 408,155 white British individuals 

from United Kingdom Biobank (UKBB)126. Logistic regression was performed to examine the 
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association between disease status for 1,685 phecodes23 as dependent variable and heart failure 

PRS as independent variable. Models were adjusted for sex, birth year, and top four PCs derived 

from genotype file of the participants. Heart failure PRS calculated in UK Biobank was derived 

from leave UK Biobank cohort out meta-analysis in European ancestry individuals from GBMI. 

Bonferroni correction was applied to account for multiple tests in PheWAS. Significance level 

was set to 2.96x10-5 for adjusting 1,685 tests (0.05/1685) in total. 

3.2.5 Michigan Medicine cohort  

Michigan Genomics Initiative (MGI) is a longitudinal biorepository within Michigan 

Medicine from 2014 to 2021. MGI has integrated genetic data with electronic health records on 

adult patients (≥18 years) undergoing surgery within Michigan Medicine40. The Cardiovascular 

Health Improvement Project (CHIP) Biorepository is a longitudinal observational cohort study of 

patients at Michigan Medicine, from 2013 to 2021, with a clinical diagnosis of cardiovascular 

disease (predominantly thoracic/abdominal aortic disease or HFpEF)106. The University of 

Michigan’s Institutional Review Board approved these protocols (HUM00128472 and 

HUM00052866) and all study participants signed informed consent. 

Individuals in the combined cohort with both electronic health records and genetic 

information available were included in our study. Patients with age or sex missing data were 

excluded. GWAS summary statistics were used to generate PRSs in the combined MGI/CHIP 

cohort. A total of 35,351 EA individuals (453 HFrEF cases and 544 HFpEF cases) were included 

in the primary analysis to compare the model performance among PRS built from GBMI-ALL, 

GBMI-EUR, and HERMES-EUR. For PRS transferability analysis, 1,900 AA samples (53 

HFrEF and 47 HFpEF) were included to compare the PRS built from GBMI-ALL, GBMI-EUR, 

and GBMI-AFR (Supplementary Table 3.3). 
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3.2.6 Penn Medicine cohort 

The Penn Medicine BioBank (PMBB) contains approximately 100,000 consented 

participants, all patients of the Penn Medicine hospitals, for whom DNA samples were obtained 

and on whom extensive phenotypic information was generated from the EHR. A total of 42,298 

participants were genotyped using the Illumina Global Screening Array v.2.0 and further 

imputed using the TOPMed Imputation Server. SNPs with a call rate <1%, minor allele 

frequency (MAF) <1% or imputation info score <0.3 were excluded from further analysis. To 

define each ancestral group, principal component analysis (PCA) was performed after merging 

the PMBB data with the 1000 Genomes Project reference dataset using the smartpca module of 

the Eigensoft package (version 7.2). We performed quantitative discriminant analysis on all 

samples using the 1000 Genomes Project samples as a training set to generate ancestry calls for 

all PMBB samples included in the analysis. Among EA individuals, a total of 1,782 HFrEF cases 

(N=18,300) and 2,303 HFpEF cases (N=18,846) were included for replication analyses. 

Similarly, 999 HFrEF cases (N=6,769) and 1,082 HFpEF cases (N=6,881) from AA cohort were 

included (Supplementary Table 3.4). The heart failure subtypes were defined using phecode 

428.3 for HFrEF and 428.4 for HFpEF. Individuals with two or more instances for each phecode 

were defined as cases, whereas those with no instance of the phecodes were defined as controls. 

Additional exclusion criteria were applied on the controls and individuals with ICD-9 codes for 

heart failure, cardiovascular symptoms, and history of conditions detrimental to health were 

excluded from the control group (Supplementary Table 3.5). 

3.2.7 Subtype definition 

We integrated two sources of label curation from MGI and CHIP to define a total of 506 

HFrEF cases and 591 HFpEF cases. Electronic health record data enabled further classification 
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of the patients into HFrEF, HFpEF, and healthy controls; using the previously validated 

methodology22. In MGI, we used the previously published phenotyping algorithm and defined 

506 and 308 patients with HFrEF and HFpEF, respectively. In CHIP, 283 HFpEF patients were 

assigned with a gold-standard label by manual label curation from HFpEF specialists at 

Michigan Medicine (Drs. Scott L. Hummel and Matthew C. Konerman). 

The inclusion criteria for methodology applied in MGI for heart failure subtype definition 

was adult patients, > 40 years of age, who had at least 2 episodes of care at Michigan Medicine 

from 2010 to 2019, and who were enrolled within MGI. In brief, patients with a qualifying heart 

failure ICD-9/10 code (or code for cardiomyopathy or cardiomegaly) and LVEF < 40% on 

cardiac imaging were classified as HFrEF. Patients with i) a qualifying heart failure diagnostic 

code,* ii) all LVEF > 50% (at least one LVEF available), and iii) positive mention of heart 

failure keyword** within the EHR were classified as HFpEF. Patients with i) no qualifying ICD-

9/10 codes*, ii) LVEF > 50% on all available cardiac imaging (no requirement for LVEF study), 

iii) no mention of heart failure keywords in EHR, and iv) not on any uniquely heart failure 

medications*** were classified as healthy controls. Data quality and heart failure subtype 

veracity were confirmed with adjudication by expert clinician at Michigan Medicine (Drs. 

Nicholas J. Douville and Michael R. Mathis)22. 

The diagnosis of HFpEF in CHIP was made by cardiologists, sub specializing in HFpEF, 

based on the 2016 European Society of Cardiology guidelines: i) signs and/or symptoms of heart 

failure, ii) left ventricular ejection fraction ≥50%, at least mild elevation in natriuretic peptide 

levels, and iii) cardiac structural (e.g. left atrial enlargement) and/or functional abnormalities 

(e.g. diastolic dysfunction) associated with HFpEF127. Participants may have been diagnosed 

with HFpEF following hospitalization for decompensated heart failure requiring intravenous 
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diuresis and/or if increased left ventricular filling pressures were documented on catheterization, 

regardless of natriuretic peptide level. 

 

3.3 Results 

The GBMI multi-ancestry heart failure meta-analysis marks the largest and most diverse 

heart failure genome-wide association study to date56,128. The meta-analysis included a total of 

68,408 patients with heart failure and 1,286,331 controls (5.1% cases) from 13 biobanks across 

six ancestral populations: 24.7% of the samples were of non-European ancestries. The six 

ancestral populations included African (AFR; 2.3%), Admixed/ Latino American (AMR; 1.1%), 

East Asian (EAS; 19.0%), Finnish (FIN; 16.1%), Non-Finnish European (NFE; 59.2%), and 

South Asian (SAS; 2.3%) (Supplementary Table 3.1). The prevalence of heart failure in our 

study cohorts ranged from 0.36% to 22.83%, with hospital-based biobanks contributing a larger 

number of cases (e.g., Mass General Brigham: 22.83%), compared to population-based cohorts 

(e.g., UKBB: 1.79% and HUNT: 0.36%), which are more representative of heart failure rates in 

the general population (0.3% to 2.1%, Supplementary Figure 3.1)121,127,129. 

We expect that biobanks recruiting study participants from cardiovascular clinics would 

have higher rates of heart failure in their study. Furthermore, heart failure subtype preferencing 

was observed in GBMI participating biobanks. Case definition for heart failure GWAS in GBMI 

was defined by phecode 428.2 (heart failure, not otherwise specified)23. The proportion of HFrEF 

and HFpEF within two GBMI study cohorts from Mount Sinai Health System (BioMe) and 

Vanderbilt University (BioVU) was further investigated, using phecode 428.3 and 428.4, 

respectively. Consistently, BioMe and BioVU reported a higher percentage of HFrEF patients 

(58%) using phecode classification. 
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3.3.1 GBMI meta-analysis yields 12 potentially novel loci for heart failure 

Twenty-two independent loci reached genome-wide significance (p-value < 5x10-8) in the 

meta-analysis of 68,408 heart failure cases from 13 biobanks. Of the 22, 12 are putatively novel 

loci (Table 3.1) based on literature review and physical distance from heart failure-associated 

variants in the NHGRI-EBI GWAS Catalog130. Two of these loci, rs147288039 and 

rs373205748, were significant only in the multi-ancestry meta-analysis, likely due to a higher 

allele frequency in East Asians (rs147288039: 0.23%) and South Asians (rs147288039: 0.75%; 

rs373205748: 0.08%) according to gnomAD79. The inclusion of non-European ancestry samples 

has aided the genetic discovery for heart failure, demonstrating the power of genetic diversity 

and the importance of including multi-ancestry individuals to account for the genetic 

heterogeneity across populations. 

3.3.2 GBMI polygenic risk score  

We compared a heart failure PRS generated from the present GBMI leave Michigan 

Medicine cohort out multi-ancestry meta-analysis (67,049 cases and 1,238,543 controls; 74.6% 

European ancestry and 25.4% non-European ancestry) and European-ancestry meta-analysis 

(51,274 cases and 922,900 controls; European ancestry only) with the PRS generated from the 

previous HERMES GWAS (47,309 cases and 930,014 controls; European ancestry only)56. The 

intent was to examine the improvement in heart failure PRS performance due to increased 

GWAS case numbers and to evaluate the performance of genetic research utilizing large scale 

EHR-linked biobank. Both European-ancestry meta-analysis GWAS have approximately the 

same number of total sample size from GBMI (N=974,174) and HERMES (N=977,323), but 

higher case number and prevalence were observed in GBMI (51,274 heart failure cases; 5.3%) 

compared to HERMES (47,309 heart failure cases; 4.8%). The results showed that the GBMI 
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PRS outperformed the HERMES PRS56. To allow for an appropriate comparison with the 

European HERMES score, we restricted our validation cohort to European American (EA) 

individuals in the Michigan Genomics Initiative (MGI)/ Cardiovascular Health Improvement 

Project (CHIP) combined cohort (n= 453 HFrEF, 544 HFpEF)40,106. We compared the adjusted 

odds ratios (aOR) of ancestry-matched PRS from i) GBMI (GBMI-EUR) and ii) HERMES 

(HERMES-EUR) and iii) multi-ancestry PRS from GBMI (GBMI-ALL) in the European 

American cohort. Both HFrEF and HFpEF outcomes were significantly associated with all three 

heart failure PRSs in EA (aOR range from 1.15 to 2.33); furthermore, the ancestry-matched PRS 

built from GBMI meta-analysis performed best (Figure 3.1). For HFrEF, the GBMI-EUR PRS 

yielded an aOR of 2.33 (95% CI: [2.11; 2.57], p-value: 1.79x10-63) per one standard deviation of 

normalized PRS increased, a significantly stronger association compared to HERMES-EUR PRS 

(aOR: 1.33 [1.21; 1.46], p-value: 2.74x10-9). Similar results were obtained in HFpEF: GBMI-

EUR PRS had an aOR of 1.60 [1.47; 1.75] (p-value: 4.07x10-26), compared to the HERMES-

EUR PRS (aOR: 1.15 [1.06; 1.25], p-value: 0.0012). We observed that all PRSs demonstrated 

stronger association with HFrEF than HFpEF (Figure 3.1). For example, the PRS derived from 

GBMI-EUR had a significantly stronger association with HFrEF (aOR: 2.33 [2.11; 2.55]) than 

with HFpEF (aOR: 1.60 [1.47; 1.75]). 

We further evaluated these PRS findings in an independent cohort: Penn Medicine 

BioBank (PMBB). Only the GBMI-EUR and GBMI-ALL scores were tested for replication due 

to overlap between PMBB participants with the HERMES consortium131,132. Consistently, we 

observed that in EAs, both HFrEF and HFpEF outcomes were significantly associated with the 

GBMI heart failure PRSs. An aOR of 1.30 [1.23; 1.38] (p-value: 1.79x10-23) and 1.29 [1.23; 

1.36] (p-value: 1.14x10-22) were observed from GBMI-ALL and GBMI-EUR PRSs, respectively, 
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for HFrEF outcome. Similarly, less strong associations were reported for HFpEF in the PMBB 

cohort; GBMI-ALL PRS yielded an aOR of 1.16 [1.10; 1.21] (p-value: 1.55x10-9) and GBMI-

EUR PRS yielded an aOR of 1.16 [1.11; 1.22] (p-value: 3.24x10-10). Overall, both Michigan 

Medicine and Penn Medicine cohorts showed significant association between the GBMI PRSs 

and both heart failure outcomes. Furthermore, we have higher confidence of possible predictive 

utility of PRS for HFrEF outcome, but notably less for HFpEF outcome, given that both cohorts 

showed more significant association between heart failure PRS and the HFrEF outcome. 

3.3.3 The effect of genetic diversity in GWAS of heart failure 

Given the determination that the GBMI PRS performed reasonably well in Americans 

with primarily European ancestry, we opted to further evaluate the ancestry transferability of 

PRS in the African American (AA) cohort (n= 53 HFrEF, 47 HFpEF). Three separate PRSs were 

created using the GBMI meta-analysis from different ancestral populations: i) multi-ancestry 

cohort (GBMI-ALL), ii) European ancestry-only cohort (GBMI-EUR), and iii) African ancestry-

only cohort (GBMI-AFR, which includes individuals with admixed African ancestry) GWAS 

meta-analyses. We observed that the multi-ancestry score improved the observed association in 

the AA cohort (Figure 3.2). The same trend of ancestry-matched PRS yielding the strongest 

association in the EA cohort was not observed in the AA cohort, likely due to smaller sample 

size in GBMI-AFR GWAS (N=31,202) (Supplementary Figure 3.2; Supplementary Table 3.1 & 

3.2). The PRS with highest effect in the AA cohort was the multi-ancestry score, which had a 

significant aOR of 1.61 [1.23; 2.11] (p-value: 0.0005) in HFrEF and a positively associated, 

although nonsignificant aOR of 1.26 [0.93; 1.70] (p-value: 0.1374) in HFpEF. Neither the 

ancestry-matched score (GBMI-AFR) nor the EA-best performing score (GBMI-EUR) were 
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significantly associated with the heart failure outcome in AA at a multiple tests corrected p-value 

threshold of 0.00625. 

Next, we validated these findings in PMBB, a cohort with a larger AA sample size 

(N=6,881) compared to MGI/CHIP (N=1,900). The PRS generated using GBMI multi-ancestry 

meta-analysis showed a significant association with the HFrEF outcome (aOR: 1.18 [1.10; 1.26], 

p-value: 4.06x10-6) in AAs. Moreover, GBMI-ALL PRS had a nominally significant association 

with HFpEF in the PMBB cohort (aOR: 1.10 [1.03; 1.18], p-value: 0.0064), not significant after 

the Bonferroni threshold of 0.00625. These findings suggest that the trans-ancestry based PRS 

might be useful in predicting both subtypes of heart failure (HFrEF and HFpEF) in both EA and 

AA cohorts. Furthermore, the multi-ancestry GWAS provided the optimal PRS for prediction in 

admixed individuals with African ancestry. Larger sample sizes are needed to validate the 

African ancestry-specific findings. 

3.3.4 Pleiotropic effect of heart failure genetic variants  

Phenome wide association study (PheWAS) in the UK Biobank white British cohort 

revealed an association between the heart failure PRS and other cardiovascular diseases126. The 

results showed that the heart failure PRS was associated with increased odds of hypertension 

(aOR: 1.15, p-value: 1.22x10-262), coronary atherosclerosis (aOR: 1.20, p-value: 1.17x10-134), and 

atrial fibrillation (aOR: 1.13, p-value: 7.09x10-47). Additionally, the PheWAS demonstrated 

pleiotropy between the PRS for heart failure and increased odds of complex, systemic disease 

processes including obesity (aOR: 1.18, p-value: 4.42x10-67) and diabetes mellitus (aOR: 1.15, p-

value: 1.70x10-82). These PRS associations could be due to shared risk factors for the outcome 

traits (e.g., obesity) or could point to shared biological processes (Figure 3.3). 
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3.4 Discussion 

Genome-wide discovery for heart failure traits based on 68,408 cases and 1,286,331 

controls from six ancestry groups identified 22 index variants (12 novel) reaching genome-wide 

significance. A high proportion of the 22 index variants identified were previously reported in 

GWAS Catalog130 to be associated with cardiovascular diseases. We further investigated the 

association of genetic burden of heart failure on other diseases and conditions by assessing a 

heart failure PRS in a PheWAS of UK Biobank, and confirmed known pleiotropic associations 

with other cardiovascular phenotypes, such as hypertension, atrial fibrillation, and coronary 

atherosclerosis (Figure 3.3). These likely occur through a combination of both biological 

pleiotropy (the genetic underpinning influences more than one phenotype) and mediated 

pleiotropy (the phenotype itself is causally related to a second phenotype)133.  

Heart failure may result from varied etiologies, including ischemic disease, valve 

abnormalities, arrhythmias, hypertension, diabetes, and primary cardiomyopathy134. Therefore, 

the observed associations with each of these diseases likely mediating heart failure is plausible. 

Additionally, identified phenotypes may themselves be both precipitating and secondary 

processes, as with the pathophysiologic cycle between atrial fibrillation and heart failure135. The 

link between diabetes mellitus, obesity, and disorders of lipid metabolism with heart failure 

likely results from biological pleiotropy136. Evidence from genetic epidemiology suggests that 

genomic loci exert pleiotropic effects on multiple cardiovascular risk factors, including i) 

diabetes mellitus137–139, ii) obesity140,141, and iii) dyslipidemia142,143. Therefore, the observed 

associations in the PheWAS between heart failure and a variety of cardiovascular diseases (and 

risk factors for cardiovascular diseases) are expected and explainable through overlapping 

biological mechanisms. 
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Next, in comparison with the PRS constructed from HERMES, we show that increased 

GWAS case number generates a heart failure PRS that is more significantly associated with heart 

failure cases, highlighting the additive power of higher prevalence and large sample sizes57,144. 

The GBMI PRS outperformed HERMES PRS by showing significantly higher odds ratio with 

heart failure cases for HFrEF and HFpEF subtypes. The increment of aOR in GBMI-EUR PRS 

could potentially be explained by the higher prevalence reported in GBMI European-ancestry 

meta-analysis (5.3%) compared to HERMES (4.8%) as well as the more advanced genotyping 

imputation reference panel used in GBMI participating biobanks32,56,57. Also, we observed 

stronger associations between PRS to HFrEF compared to HFpEF outcomes within the 

validation dataset. This could be due to the GBMI heart failure phenotype capturing HFrEF over 

HFpEF or a stronger genetic association with HFrEF versus HFpEF (i.e., greater genetic 

heterogeneity in the HFpEF population)145–147. The hypothesis of phenotype preferencing is 

supported by a higher proportion of HFrEF patients among general heart failure observed in 

BioVU and BioME biobanks (GBMI study cohorts) where approximately 58% of the heart 

failure cases were HFrEF patients. 

Furthermore, studies have shown that disease subtypes could potentially have distinct 

genetic risk or different effect sizes among disease sub-categories148,149. According to Pividori et 

al.148, genetic variants identified from an adult-onset asthma GWAS overlap with loci identified 

from childhood-onset asthma GWAS, but the effect sizes were significantly different by asthma 

endotypes. They observed larger genetic effects related to childhood-onset asthma, suggesting 

that genetic risk plays an important role in childhood-onset asthma, whereas environmental risk 

contributes to adult-onset asthma148. Disease endotypes having distinct genetic architecture were 

also reported for polycystic ovary syndrome by Dapas et al.149. GWAS findings show 
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independent loci associated with reproductive (4 loci) and metabolic (1 locus) polycystic ovary 

syndrome subtypes, respectively149. These studies highlight the importance of using phenotypic 

subtyping to understand genetic heterogeneity underlying various diseases and have implications 

for precision medicine based on genetics or PRSs. Thus, we postulate that there may be a 

stronger genetic association with HFrEF than HFpEF (or greater genetic heterogeneity in the 

HFpEF population). 

 HFpEF is a heterogeneous disease with multiple different phenotypes146,147. First, several 

comorbid conditions such as hypertension, diabetes mellitus, obesity, and others have been 

implicated in the pathophysiologic mechanisms driving HFpEF development and 

progression145,150,151. Patients with HFpEF can have some, but not all, of these comorbid 

conditions. These conditions each may have their own genotypic characteristics that could make 

isolating HFpEF-specific genetic risk more difficult. Second, numerous pathophysiologic 

mechanisms have been implicated in the disease involving abnormalities in the left ventricular 

myocardium, left atrium, pulmonary vasculature, arterial stiffness, and skeletal muscle150,152–157. 

Lastly, the diagnostic criteria used in guidelines and clinical trials have varied158. Patients can 

have HFpEF despite not meeting all diagnostic criteria for the disease159,160. For example, 

patients with obesity may have HFpEF without elevated natriuretic peptide levels161–163. Unlike 

HFrEF, the diagnosis of HFpEF cannot rely on a reduced ejection fraction as a defining 

characteristic of the disease. For all of the above reasons, many have argued that treatments for 

this heterogeneous disease must be targeted to specific phenotypes145–147. Thus, it is reasonable 

to conclude that specific HFpEF phenotypes may have specific genetic causes. However, 

identifying these genotypes requires a granular classification of HFpEF phenotypes not easily 

achieved in retrospective analyses of large datasets. Taken together, any or a combination of 
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these factors may have contributed to the PRS in our study being less powerful in predicting 

HFpEF. 

3.4.1 Limitations 

Beyond the limitations noted above, this study is limited by the sample size in the GBMI 

African ancestry meta-analysis (Supplementary Figure 3.2). Moreover, the sample sizes of 

individuals of East Asian, South Asian, or Admixed/ Latino American ancestry is somewhat 

limited in our dataset to validate PRS transferability in these ancestral cohorts. The low 

performance of ancestry-matched PRS score in AA (AFR meta-analysis [1,230 cases; 27,092 

controls]; AA individuals in MGI/CHIP [n= 53 HFrEF, 47 HFpEF]) could potentially be due to 

smaller sample size, compared to EA ancestry (EUR meta-analysis [51,274 cases; 922,900 

controls]; EA individuals in MGI/CHIP [n= 453 HFrEF, 544 HFpEF]). Studies with comparable 

sample sizes in both training and testing sets are needed to examine the effect from ancestry-

match and multi-ancestry PRS. 

Also, the less significant finding in association between the HFpEF outcome and PRS for 

AA could potentially be due to lower proportion of HFpEF in AA. We observed that AA has a 

higher proportion of HFrEF (53% HFrEF) compared to EA (46% HFrEF) in the Michigan 

Medicine cohort. BioVU and BioME biobanks consistently contributed a higher proportion of 

HFrEF cases in AA than EA, as well.  

3.4.2 Conclusion  

This study investigated the possible applicability of genetic-based prediction of heart 

failure within subtypes and the power of sample size and diverse ancestry in GWAS. In the 

future, generating higher quality phenotypes (incorporating clinical notes, imaging, and ICD-
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9/10 codes) could further unravel the genetic underpinnings of subtype-specific genetic burden. 

This may be particularly applicable for heart failure, where phenotypic subtypes show 

differences in the overall genetic predisposition. Secondly, GWAS with larger sample sizes 

could likely increase the loci discovered and improve our understanding of the biology at 

established loci. Together, these approaches may more efficiently identify traits in early or 

precursor stages, allowing for early initiation of treatments to augment disease progression 

and/or PRS-guided precision medicine approaches. 
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3.5 Figures and Tables 

 

 
Figure 3.1 Forest plot of adjusted odds ratio comparison between heart failure PRS derived from 

GBMI-ALL, GBMI-EUR, and HERMES-EUR meta-analysis for HFrEF and HFpEF in 

European American. 

The GBMI PRS outperformed the HERMES PRS. Both HFrEF and HFpEF outcomes were 

significantly associated with heart failure PRS in European American; furthermore, ancestry-

matched PRS built from GBMI meta-analysis performed optimally. GBMI-EUR PRS predicts 

cases of HFrEF, but notably less for cases of HFpEF. 
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Figure 3.2 Forest plot of adjusted odds ratio comparison between heart failure PRS derived from 

GBMI-ALL, GBMI-EUR, and GBMI-AFR meta-analysis for HFrEF and HFpEF in African 

American. 

 

Multi-ancestry score improved the model performance in the African American cohort, 

compared among i) multi-ancestry cohort (GBMI-ALL), ii) European ancestry-only cohort 

(GBMI-EUR), and iii) African ancestry-only cohort (GBMI-AFR) meta-analysis GWAS results. 
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Figure 3.3 Manhattan plot of heart failure PRS PheWAS presenting the association between 

heart failure PRS and 1,685 phecode. 

 

Phenome-wide association study in the UK Biobank white British cohort revealed pleiotropic 

associations between the heart failure PRS and other cardiovascular diseases. Positive 

associations were indicated by upward pointing triangles and negative associations were 

indicated by downward pointing triangles. Phecode 428.2 (heart failure), primary outcome of this 

study, was highlighted in red.  
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Table 3.1 Variants significantly associated with heart failure outcome in GBMI multi-ancestry meta-analysis.  

 

rsid chr pos (hg38) ref alt nearest gene function beta se p-value novel 

 1 10736490 G A CASZ1 intronic 0.037861 0.0066375 1.17E-08 1 

rs74853338 2 200306928 C T SPATS2L intronic 0.043398 0.0077942 2.58E-08 1 

 3 27450659 G C SLC4A7 intronic -0.035517 0.0064919 4.48E-08 1 

 4 45173674 C T GNPDA2;GABRG1 intergenic 0.040491 0.0067802 2.34E-09 1 

rs201194999 4 65801177 C T EPHA5-AS1;MIR1269A intergenic 0.11876 0.017742 2.18E-11 1 

rs59788391 4 110780277 A G PITX2;MIR297 intergenic 0.084207 0.0082364 1.55E-24 0 

rs144757939 6 32638945 A G HLA-DQA1 intronic 0.17803 0.028075 2.28E-10 1 

 6 36665292 A G MIR3925;PANDAR intergenic 0.053251 0.0066481 1.15E-15 0 

rs10455872 6 160589086 A G LPA intronic 0.11551 0.015208 3.08E-14 0 

rs7857118 9 22124141 A T CDKN2B-AS1;DMRTA1 intergenic 0.043202 0.0064814 2.64E-11 0 

rs147288039 9 95006476 A G AOPEP intronic 0.40002 0.070586 1.45E-08 0 

rs600038 9 133276354 C T ABO;SURF6 intergenic -0.051976 0.0074204 2.48E-12 0 

rs373205748 10 103575604 C T NEURL1 intronic 0.46961 0.081342 7.77E-09 1 

 10 119665450 A T BAG3 intronic -0.051487 0.0086631 2.79E-09 0 

rs10774624 12 111395984 G A PHETA1;SH2B3 intergenic -0.043648 0.0074662 5.03E-09 0 

 12 131295306 C T LINC02415 downstream 2.0587 0.35494 6.62E-09 1 

rs62048402 16 53769311 G A FTO intronic 0.050284 0.0065836 2.21E-14 0 

rs61208973 16 72991194 C T ZFHX3 intronic 0.045775 0.0073977 6.10E-10 0 

 18 1821016 A T LINC00470;METTL4 intergenic 0.066938 0.012151 3.61E-08 1 

rs1788784 18 23579666 A G NPC1 intronic -0.044129 0.0072417 1.10E-09 1 



 66 

rs145478347 19 49671626 G A BCL2L12 intronic 0.72167 0.11751 8.17E-10 1 

rs558658474 20 49472840 TC T   -0.2957 0.050571 5.00E-09 1 

 

Twenty-two independent loci reached genome-wide significance, and of those, 12 are putatively novel loci. 
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3.6 Supplementary Materials 

3.6.1 Figures and tables 

 
 

Supplementary Figure 3.1 Sample sizes and heart failure prevalence across studies and 

ancestries 

 

Left panel: prevalence of heart failure by biobank, recruitment strategies were indicated by the 

colors. Right panel: sample size within each ancestry by biobank. Biobanks were sorted by heart 

failure prevalence.  
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Supplementary Figure 3.2 Barplot of GWAS sample sizes and proportion of heart failure cases, 

total numbers of individuals in GWAS were indicated on the top of the bar. 

 

Comparison between sample size for GBMI i) multi-ancestry, ii) European-ancestry, iii) African-

ancestry, and HERMES iv) European-ancestry meta-analysis. 
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Supplementary Table 3.1 Sample size across ancestries in all biobanks which contributed to 

heart failure GWAS. 

 

Ancestries 

GBMI* 

Cases1 Controls1 Total2 

African (AFR) 1,367 (4.4%) 29,835 (95.6%) 31,202 (2.3%) 

American (AMR) 1,179 (8.1%) 13,217 (91.9%) 14,387 (1.1%) 

East Asian (EAS) 12,665 (4.9%) 245,263 (95.1%) 257,928 (19.0%) 

Finnish (FIN) 23,701 (10.8%) 195,091 (89.2%) 218,792 (16.1%) 

Non-Finnish European (NFE) 28,795 (3.6%) 772,854 (94.4%) 801,649 (59.2%) 

South Asian (SAS) 710 (2.3%) 30,071 (97.7%) 30,781 (2.3%) 

Total 68,408 (5.1%) 1,286,331 (94.9%) 1,354,739 

 

* GBMI cohorts which contributed to heart failure GWAS: BioBank Japan, BioMe, BioVU, 

China Kadoorie Biobank, Estonian Biobank, FinnGen, Genes & Health, HUNT, Lifelines, 

Michigan Genomics Initiative, Partners Biobank, UCLA Precision Health Biobank, and UK 

Biobank. 

1 Percentage by total number of samples within each ancestry 

2 Percentage by total number of individuals across all ancestries   
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Supplementary Table 3.2 Sample size across ancestries in all biobanks, but MGI, contributed to 

heart failure GWAS. 

 

Ancestries 

GBMI (leave MGI out)* 

Cases1 Controls1 Total2 

African (AFR) 1,230 (4.3%) 27,092 (95.7%) 28,322 (2.1%) 

American (AMR) 1,179 (8.1%) 13,217 (91.9%) 14,387 (1.1%) 

East Asian (EAS) 12,665 (4.9%) 245,263 (95.1%) 257,928 (19.8%) 

Finnish (FIN) 23,701 (10.8%) 195,091 (89.2%) 218,792 (16.8%) 

Non-Finnish European (NFE) 27,573 (3.7%) 727,809 (96.3) 755,382 (57.8%) 

South Asian (SAS) 710 (2.3%) 30,071 (97.7%) 30,781 (2.4%) 

Total 67,049 (5.1%) 1,238,543 (94.9%) 1,305,592 

 

* Leave MGI out GBMI cohorts which contributed to heart failure GWAS: BioBank Japan, 

BioMe, BioVU, China Kadoorie Biobank, Estonian Biobank, FinnGen, Genes & Health, HUNT, 

Lifelines, Partners Biobank, UCLA Precision Health Biobank, and UK Biobank. 

1 Percentage by total number of samples within each ancestry 

2 Percentage by total number of individuals across all ancestries   
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Supplementary Table 3.3 Sample size by heart failure subtypes and demographic 

characteristics in Michigan Medicine cohort. 

 

 Overall (N=37,251) AA (N=1,900) EA (N=35,351) 

HFrEF 506 (1.5%) 53 (3.2%) 453 (1.4%) 

HFpEF 591 (1.7%) 47 (2.9%) 544 (1.7%) 

Age 60.78 ± 11.20 56.95 ± 10.53 60.99 ± 11.19 

Female 18,669 1,108 17,561 

Male 18,582 792 17,790 

 
 

  



 72 

Supplementary Table 3.4 Sample size by heart failure subtypes and demographic 

characteristics in the Penn Medicine cohort. 

 

 Overall (N=25,725) AA (N=6,881) EA (N=18,846) 

HFrEF 2,781(10.8%) 999 (14.5%) 1,782 (15.7%) 

HFpEF 3,385 (13.1%) 1,082 (15.7%) 2,303 (12.2%) 

Age 54.52 ± 16.95 50.55 ± 16.35 55.97 ± 16.93 

Female 13,405 4,373 9,032 

Male 12,322 2,508 9,814 
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Supplementary Table 3.5 Heart failure subtypes phecode definition using International Classification of Disease, ninth version (ICD-

9). 

 

Phecode Description Inclusion criteria Exclusion criteria 

428.3 Heart failure with reduced 

EF [Systolic or combined 

heart failure] 

428.2,428.20,428.21,428.22,428.23,4

28.4,428.40,428.41,428.42,428.43 

398.91,414.06,414.07,428,428.0,428.00,428.1,

428.3,428.30,428.31,428.32,428.33,428.9,429.

4,429.81,429.82,785,785.9,794.3,794.30,794.3

9,996.83,997.1,V15.1,V42.1,V43.2,V43.21,V4

3.22,785.0,785.1,785.2,785.3,785.4,785.5,785.

6 

428.4 Heart failure with preserved 

EF [Diastolic heart failure] 

428.3,428.30,428.31,428.32,428.33 398.91,414.06,414.07,428,428.0,428.00,428.1,

428.2,428.20,428.21,428.22,428.23,428.4,428.

40,428.41,428.42,428.43,428.9,429.4,429.81,4

29.82,785,785.9,794.3,794.30,794.39,996.83,9

97.1,V15.1,V42.1,V43.2,V43.21,V43.22,785.0

,785.1,785.2,785.3,785.4,785.5,785.6 

 

Phecode definition using ICD-9 code in Penn Medicine BioBank for heart failure subtypes. 
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3.7 Publication 

The work presented in this chapter has been submitted and is accessible in medRxiv7: Wu, 

K.H. et al. (2021). Polygenic risk score from a large global biobank multi-ancestry GWAS 

uncovers susceptibility to heart failure. 
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Chapter 4  

 

 

Integrating Large Scale Genetic and Clinical Information to Predict Cases of Heart Failure 

 

4.1 Introduction 

 Heart failure affects an estimated 64 million patients worldwide with a growing burden 

anticipated as the population ages122,164. Echocardiographic screenings in the general population 

have revealed that as many as half of individuals living with heart failure may be undiagnosed, 

preventing earlier access to mortality-reducing treatments22,165. Applying risk prediction tools 

enables earlier identification of diseases, thereby shifting the trajectory of disease progression 

towards prevention. Additionally, a better understanding of which risk factors play the largest 

role in the development of heart failure could shed insight into the mechanisms of disease 

progression and guide therapeutic management, either generally or on a per-individual basis. We 

sought to evaluate the predictive accuracy of a modern risk assessment tool that incorporates 

diverse clinical and genetic data compared to genetic or clinical prediction models alone4,22,123. 

Clinical prediction tools for cardiovascular disease (CVD) such as Framingham and 

atherosclerotic cardiovascular disease (ASCVD) risk score (also the Pooled Cohort Equation 

[PCE]) have been widely applied and updated over time to include a variety of demographic, 

laboratory, hemodynamic, and medical details166–170. Researchers have established risk scores to 

predict the risk of developing heart failure171. However, due to the heterogeneous nature of heart 
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failure, it is difficult to fully capture the risk using clinical data alone as these scores fail to 

leverage genetic data, which accounts for a portion of the unexplained risk172–174. Novel risk 

scores incorporating diverse clinical data integration with well-powered genetic data are needed 

to more precisely account for heart failure risk. 

Genome-wide polygenic risk scores (PRS) estimate an individual’s genetic risk using 

millions of genetic polymorphisms validated across hundreds of thousands of patients175,176. 

Multiple studies have shown that using a PRS – a weighted sum of genetic effects on certain 

diseases or traits across the human genome – can enhance disease prediction and further improve 

early prevention4,6. Multiple efforts have been made to summarize genetic and clinical 

information to identify high risk patients, but integrating high-dimensional genome-wide 

association study (GWAS) and electronic health record (EHR) in heart failure prediction models 

has not been previously evaluated3,5,177. 

We explore approaches to enhance the prediction of future heart failure events leveraging 

both genetic and clinical data. Our study integrates recent insight on the genetic underpinning of 

heart failure with a novel EHR-based clinical scoring system, referred to as the clinical risk score 

(ClinRS), to predict future heart failure. The polygenic risk scoring was powered by the largest-

to-date heart failure GWAS7 and the clinical risk assessment used Natural Language Processing 

(NLP) to capture co-occurrence patterns of medical events within the structured EHR data. From 

the proposed approaches above, we summarized 907,272 genetic variants into a PRS and 29,346 

medical diagnosis codes into a ClinRS. We hypothesized that the additive power of integrating 

PRS and ClinRS would result in the most powerful heart failure prediction model. 
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4.2 Methods 

To generate the most powered genetic predictor, we meta-analyzed multiple biobank 

datasets within the Global Biobank Meta-analysis Initiative (GBMI) consortium to generate a 

heart failure GWAS7,32. The GBMI consortium aims to enhance GWAS power and improve 

disease risk prediction via collaborative efforts through biobanks across the world and making all 

GWAS summary statistics open-access for researchers. The case count of the heart failure 

GWAS from GBMI is the largest-to-date and the PRS generated from GBMI meta-analysis 

GWAS is expected to have higher accuracy in predicting future heart failure events.  

To extract clinical information from EHR, we developed novel machine learning methods 

that efficiently summarized large scale structured EHR data into a heart failure ClinRS. We 

treated medical diagnosis codes (i.e., International Classification of Diseases [ICD] code) as 

‘words’ in human language and adapted NLP methods to capture the co-occurrence pattern 

between codes in the high-dimensional medical records. The co-occurred relationship among 

codes was later used to extract independent information and converted into low-dimensional 

numeric vectors resembling the context and semantics of medical events. The University of 

Michigan’s Institutional Review Board approved these protocols (HUM00128472 and 

HUM00143523). 

4.2.1 Michigan Medicine EHR system and biobank 

Three cohorts of Michigan Medicine (MM) patients were used in this study: 1) Primary 

Care Provider cohort (MM-PCP; N=61,849), 2) Heart Failure cohort (MM-HF; N=53,272), and 

3) Michigan Genomics Initiative cohort (MM-MGI; N=60,215) (Supplementary Figure 4.1). 

Individuals in all three cohorts underwent at least one surgical procedure within the MM 
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healthcare system. The data were recorded between 2000 to 2022 in the Michigan Medicine 

EHR system, which includes both ICD-9 and ICD-10 diagnosis codes.  

Inclusion criteria for MM-PCP cohort include i) patients with primary care providers 

within Michigan Medicine, ii) had received an anesthetic, iii) most recent visit was in 2018 or 

later, and iv) had 5 or more years of medical encounter history (difference between last and first 

encounter year greater or equal to five) within Michigan Medicine. Exclusion criteria for this 

cohort include i) patients recruited in Michigan Genomics Initiative and ii) patients predefined in 

the Heart Failure cohort to ensure no sample overlap with datasets used to validate the clinical 

predictor. 

 The MM-HF cohort was defined by a previously validated heart failure phenotyping 

algorithm22. The phenotyping algorithm incorporated ICD diagnosis codes, medication history, 

cardiac imaging, and clinical notes (free text) to assign the disease outcome for each individual. 

Clinical expert adjudication was performed on 279 individuals to serve as the gold-standard label 

for algorithm validation.  

The Michigan Genomics Initiative (MGI) is an EHR-linked biobank hosted at the 

University of Michigan with genotype data linked to EHR information to facilitate biomedical 

research. With both genetic and clinical data for all individuals in MM-MGI, we are able to 

validate the prediction models using genetic and/or clinical information. The MM-MGI cohort 

used in this study is from data freeze 4 (release date: July 2021)40.  

The study cohorts were subset to individuals who self-reported as European American in 

MM-HF and MM-MGI cohorts, to avoid having reduced performance of genetic predictors in 

non-white ancestries thereby biasing the model evaluation towards favoring clinical predictors. 
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The proportion of European American individuals in MM-HF and MM-MGI cohorts is 90% and 

86%, respectively.  

We refer to MM-PCP cohort as code embedding derivation set, MM-HF cohort excluding 

individuals in MM-MGI cohort as ClinRS weights derivation set, and the interaction of MM-

MGI and MM-HF cohort as model validation set (Supplementary Figure 4.1). First, the code 

embedding derivation set was used to learn EHR code patterns and build medical code 

embeddings for downstream analysis. Patients with a rich medical history and active records 

within the system were included for code co-occurrence pattern learning in the code embedding 

derivation set. Next, the labels curated in the MM-HF cohort served as the outcome in the 

ClinRS weights derivation set to obtain the weights to calculate ClinRS for heart failure cases 

prediction. The ClinRS weights derivation set included 7,120 individuals from MM-HF which 

excluded individuals in MM-MGI. Last, the model validation set (independent from ClinRS 

weights derivation set) was used to validate the prediction ability of PRS and ClinRS. The model 

validation set consisted of 20,279 participants, representing the intersection of individuals from 

both MM-MGI and MM-HF cohorts. All patients in the model validation set had a phenotyping 

algorithm assigned label for heart failure outcome, were fully genotyped to calculate PRS, and 

with EHR data to generate ClinRS (Supplementary Figure 4.1).  

4.2.2 Polygenic Risk Score (PRS) 

The polygenic risk score was calculated using the heart failure GWAS from the Global 

Biobank Meta-analysis Initiative. GBMI is a global collaboration network of 23 biobanks, across 

4 continents and with more than 2.2 million participants (as of April 2022)32. The summary 

statistics from nine of the GBMI heart failure contributing cohorts (BioMe, BioVU, Estonian 

Biobank, FinnGen, HUNT, Lifelines, Partners Biobank, UCLA Precision Health BioBank, and 
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UK Biobank) were meta-analyzed resulting in 974,174 individuals of European ancestry in the 

combined GWAS. These nine biobanks contributed a total of 51,274 heart failure cases and 

922,900 healthy controls, defined by phecode 428.2 (heart failure, not otherwise specified)23,80. 

The GBMI heart failure study has the highest heart failure case number in a published GWAS 

study to date and more advanced genotyping imputation reference panels were used in the 

participating cohorts. The advancement in GBMI heart failure GWAS improved the statistical 

power to more precisely identify the genetic risk associated with the outcome45,57. In this study, 

we used the GBMI European-ancestry meta-analysis GWAS to generate a heart failure PRS, 

which is the current best performing heart failure PRS for European American individuals. 

The weights used to create PRS were calculated with PRS-CS124, using European 

individuals from the 1000 Genome and UK Biobank combined cohort as the LD reference 

panel125,126. The meta-analyzed heart failure GWAS summary statistics from GBMI used in this 

study excluded the MGI cohort, which is independent from the validation set used in the analysis 

to compare the effect contribution between genetic and clinical information for predicting heart 

failure. Possible population substructure was controlled by regressing the raw PRS on the top 10 

principal components (PC) derived from the patient's genotype file. The resulting residuals were 

inverse normalized to transform the final PRS score into a standard normal distribution.  

4.2.3 Clinical Risk Score (ClinRS) 

To extract information from high-dimensional EHR data, we developed a novel clinical 

risk score, ClinRS, to summarize a patient’s longitudinal medical records into one single risk 

score via NLP techniques. The overall procedure is as follows. First, we treated 29,346 EHR 

diagnosis ICD codes as ‘words’ and concatenated all codes documented in a patient’s whole 

medical history into an ‘article’ using the MM-PCP cohort. After we created the article from all 
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patients, we applied an adapted NLP technique to obtain numeric vector representations that 

captured the semantic meaning and context of medical codes178–180. These vector representations 

were subsequently validated to be clinically meaningful, in the sense that it captured the concept 

of each code and showed high concordance with expert manually curated phenotypic grouping 

labels. We refer to these representations as medical code embeddings in the remainder of this 

manuscript. 

We leveraged the medical code embeddings to generate patient-level latent phenotypes 

according to a patient’s code utilization, using MM-HF cohort. Next, the latent phenotypes were 

used to predict disease outcome and the model coefficients were utilized as weights (effect sizes) 

for calculation of the ClinRS. Finally, a ClinRS was created, which is a linear combination of i) 

coefficients learned from the ClinRS weights derivation set (MM-HF, excluding MM-MGI) and 

ii) patients’ latent phenotypes in the model validation set (intersection of MM-MGI and MM-

HF) (Supplementary Figure 1). With these steps, we successfully reduced the data dimension 

from 29,346 unique ICD codes to 350 latent phenotypes, then to a single risk score. See below 

sections for details of latent phenotypes and ClinRS curation. 

Extraction of medical code embeddings using NLP 

The first step to summarizing the EHR data using NLP was to convert a patient's EHR 

medical codes from all healthcare encounters to paragraphs, then concatenate the patient’s 

paragraphs of medical codes to create an article. After converting EHR data to an article, we 

were able to derive the co-occurrence patterns of each pair of medical codes. We extracted the 

semantic meaning of each code into numeric vector representations (medical code embeddings) 

that contain clinically meaningful information. See curating medical code embedding section in 
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the supplementary materials for details on the NLP approach to generate vector representation of 

medical codes.  

Evaluation of NLP derived medical code embeddings and parameter tuning 

The algorithm for obtaining the medical code embeddings as described above has two 

tuning parameters including the time window t and embedding dimension d (i.e., the number of 

features/ elements in a code embedding). The principle used in parameter tuning is to optimize 

the clinical meaningfulness of the medical code embedding. The code embeddings should 

capture similarity of the codes and thus be able to identify whether two specific codes describe 

the same overall medical concept (i.e., grouping of ICD codes). 

To select the optimal time window t and embedding dimension d, we developed a set of 

true labels for ICD code grouping using an expert curated ontology named phenow-wide 

association study code (phecode)80. Next, we evaluated whether code pairs that are mapped to 

the same phecode have larger cosine similarity (i.e. the cosine value of the angle between the 

corresponding medical code embedding vector pairs) than randomly selected pairs. The cosine 

similarity is a distance metric measuring how close the two codes are alike in terms of their 

concepts and meanings. It ranges from -1 to 1, with high cosine values representing that the 

selected pair of two codes have more similar semantic meaning and utilization context. These 

evaluations aid in the search for the most ‘clinically meaningful’ yet efficient version of medical 

code embedding with the smallest necessary dimension.  

In this analysis, phecodes are rolled up to the integer level23. For example, ICD-9 code 

428.2 (systolic heart failure) and 428.3 (diastolic heart failure) are mapped to the phecode 428.3 

(heart failure with reduced EF) and 428.4 (heart failure with preserved EF), respectively. After 

rolling phecode 428.3 and 428.4 up to 428 as an integer, these two ICD-9 codes (i.e., 428.2 and 
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428.3) belong to the same phecode group (i.e., 428). Moreover, both ICD-9 and ICD-10 codes 

can be mapped to the same phecode. For example, ICD-9 code 428.1 (left heart failure) and ICD-

10 code I50.1 (left ventricular failure) are both mapped to phecode 428.2 (heart failure) and 

further rolled up to the integer 428.  

To search for the most clinically meaningful medical code embeddings, we performed a 

classification task using phecode label and cosine scores. The classification label was the binary 

indicator of whether the two codes shared the same phecode. The classification score was the 

cosine distance score calculated between vector representations for two codes. This classification 

task showed whether a pair of codes mapped to the same phecode have higher cosine similarity 

(similar semantic representations). The classification results were evaluated using Area Under 

the Receiver Operating Characteristics (AUC). To distinguish the AUC used in the subsequent 

evaluation of the heart failure prediction model, we refer to the AUC aiding grid search for 

optimal NLP derived medical code embeddings based on existing clinical concept ontology as 

concept-AUC. Concept-AUC is used throughout the remainder of this article for evaluating 

whether the medical code embeddings derived from NLP is clinically meaningful, in the sense 

that it can aid identifying whether arbitrary pairs of codes are describing the same concept or 

belonging to the same general group. The time window t and embedding dimension d 

combination that achieves the highest concept-AUC was selected, the corresponding code 

embeddings were generated accordingly. 

In the grid search for time windows t and embedding dimension d, cosine similarity for 

430,579,185 pairs of codes among 29,346 unique codes were calculated for each time window 

and embedding dimension combination. Ten t time windows (1, 2, 7, 10, 14, 20, 30, 40, 50, and 

60 days) and twelve d embedding dimensions (10, 30, 50, 100, 150, 200, 250, 300, 350, 400, 
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450, and 500) were evaluated. This results in a total of 120 concept-AUC calculated to evaluate 

the concept derived from NLP in EHR data that are clinically applicable.  

Calculation of patient-level latent phenotypes 

To create latent phenotypes for each patient, we used the medical code embeddings 

derived from the MM-PCP cohort curated from the previous step and applied this information to 

the diagnosis codes documented in medical records of patients in the MM-HF cohort. 

Specifically, we summed up medical code embeddings corresponding to all codes present within 

a patient’s medical record. These latent phenotypes summarize the information of a patient's 

medical diagnosis history. See details for creating patient-level latent phenotypes in 

supplementary material. 

Time point specific latent phenotypes 

We sought to evaluate how far in advance we could predict heart failure and avoid label 

leakage. The rationale of avoiding label leakage is to not use the information not existing in the 

prediction period to predict outcome, which could lead to overestimating the model performance. 

For example, we would like to avoid using the disease treatment or procedure information that is 

only available after disease diagnosis. To do this, we removed all ICD codes a year prior to the 

heart failure diagnosis date and then calculated the latent phenotypes. We repeated this procedure 

by excluding all ICD codes two years prior, in intervals of one year up to ten years prior to 

disease diagnosis. A total of ten sets of latent phenotypes using different time point cutoffs to 

remove the medical history were generated. Patients with no medical history recorded within the 

healthcare system prior to the cutoff time point were removed from the analysis. See 

Supplementary Table 1 for sample size in each time point. 
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Supervised training for ClinRS using LASSO 

To summarize the multi-dimensional patient-level latent phenotypes into a single risk 

score, we applied the Least Absolute Shrinkage and Selection Operator (LASSO) for feature 

selection with 10-fold validation for shrinkage parameter tuning181. The LASSO leverages the L1 

penalty on the regression coefficients to eliminate non-important variables, avoid overfitting, and 

achieve better prediction. Next, the coefficients yielded from the LASSO model were used as 

weights (effect sizes) to calculate a weighted sum of patients’ clinical risk. In the ClinRS weights 

derivation set (individuals in MM-HF excluding MM-MGI), the patients' latent phenotypes were 

calculated using EHR records one year prior to heart failure diagnosis (Supplementary Figure 

4.1). The heart failure outcome was regressed on 350 latent phenotypes and adjusted for age, sex, 

and healthcare utilization using logistic regression with L1 regularization. Three patient 

characteristics known to be predictive of the outcome (age, sex, and healthcare utilization) were 

forced in the model with no shrinkage. Patients’ healthcare utilizations were summarized by the 

number of months of encounters recorded in the EHR. 

Calculate ClinRS for patients in model validation set 

To validate the prediction accuracy of ClinRS, we applied the ClinRS weights obtained 

from the ClinRS weights derivation set to an independent model validation set to summarize the 

entire EHR diagnosis records into one score (Supplementary Figure 4.1). The score was further 

used in the heart failure prediction model to predict patients disease outcome in the future. For 

each participant in the model validation set, ten ClinRS were calculated using time point specific 

latent phenotypes from one year up to ten years prior to disease diagnosis. Next, we performed 

inverse normalization to convert the ClinRS score into standard normal distribution. 
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4.2.4 Statistical analysis 

We conducted analyses within cohorts of 20,279 individuals in the model validation set 

(intersection of MM-MGI and MM-HF) with at least 1 year of medical history prior to a heart 

failure diagnosis in the Michigan Medicine health system. Ten different datasets with time point 

cutoffs, one year apart from one year to ten years prior to disease diagnosis, were applied to the 

analysis. Individuals with no medical history prior to the time point cutoff were removed from 

the respective year specific analysis. Sample size in each time point-specific dataset decreased 

from one year to ten years prior to disease diagnosis, ranging from 20,279 (576 cases) to 10,391 

(332 cases) participants, respectively (Supplementary Table 4.1). 

We fit four logistic regression models to predict whether patients have heart failure and 

further evaluated the accuracy among models with different risk predictor(s) for all ten time 

points, one year apart from one year to ten years prior to disease diagnosis. The baseline model 

included patients’ demographic information (age at diagnosis and sex), and three additional 

models with the risk score added: i) PRS, ii) ClinRS, and iii) PRS+ClinRS were created to 

compare the improvement in model accuracy from the baseline model. In the PRS and 

PRS+ClinRS models, the top ten PCs derived from patients’ genotype data were adjusted to 

account for the population structure. Model performances were compared using 10-fold cross 

validated AUC. The analysis was performed using European ancestry samples only. 

4.2.5 Sensitivity analysis removing circulatory system diagnosis codes 

Additional analyses on ClinRS validity were conducted to examine the robustness of the 

co-occurrence patterns captured by the unsupervised NLP algorithm. We created a ClinRS 

without circulatory system information (ClinRS-NoCirc) by excluding ICD diagnosis codes 

belonging to ICD-9 Seventh Chapter (390-459) and ICD-10 Chapter IX (I00-I99): Diseases of 
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the Circulatory System. The ClinRS without circulatory system was further used in model 

prediction to evaluate the ability of the proposed method to predict disease outcome (heart 

failure) without directly associated diagnosis information (circulatory system diagnosis codes). 

We excluded 1,340 circulatory system diagnosis codes (459 from ICD-9 and 881 from ICD-10) 

and used the rest of the 28,006 codes to create patient-level latent phenotypes, and applied the 

newly derived latent phenotypes with ClinRS weights derived previously to generate ClinRS-

NoCirc. We demonstrated that using pre-trained co-occurrence patterns from an independent 

dataset could be useful for disease prediction and the co-occurrence patterns aided capturing 

disease risks through indirect associations. 

 

4.3 Results 

In this paper, we utilized three independent datasets (Supplementary Figure 4.1) at 

Michigan Medicine to achieve two main goals in this study: 1) obtain medical code embeddings 

using NLP in EHR data and 2) improve heart failure prediction using PRS and ClinRS. First, we 

used MM-PCP cohort with a total of 61,849 individuals and 159,273,800 ICD diagnosis codes 

recorded from 2000 to 2022 to learn the medical code co-occurrence patterns and to extract 

medical code embeddings representing the clinical meaning of each code. The medical code 

embeddings trained from MM-PCP were validated using phecodes to demonstrate that vector 

representations derived from unsupervised NLP method contextually are clustered in similar 

ways compared to expert manually curated code grouping (Supplementary Figure 4.2).  

Next, we built two risk scores, PRS and ClinRS, in the model validation set (intersection 

of MM-MGI and MM-HF) to predict future heart failure cases. The PRS was calculated using 

heart failure GWAS summary statistics, meta-analyzed from nine biobanks in GBMI 
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(independent from Michigan Medicine)7. We chose the European ancestry GWAS summary 

statistics (51,274 cases and 922,900 controls) as the base of our PRS due to its superior 

performance in the European ancestry individuals in the original publication. The ClinRS 

calculation required two steps: i) create patient-level latent phenotypes and ii) derive weights 

(effect sizes) to calculate ClinRS. We generated medical code embeddings for 29,346 medical 

codes from MM-PCP, and then used the medical code embeddings to create 350 latent 

phenotypes for each patient in MM-HF. To derive weights for the ClinRS, we regressed heart 

failure outcome on latent phenotypes in ClinRS weights derivation set (MM-HF, excluding MM-

MGI) and extracted the effect sizes as ClinRS weights. The ClinRS weights derivation set had a 

heart failure incidence of 330 out of 7,120 patients (4.6%) whereas in the model validation set 

we observed 576 (2.8%) heart failure cases out of 20,279 patients (Supplementary Figure 4.1). 

From these summary statistics, a total of 907,272 genetic variants were integrated into a 

polygenic risk score. In analogy, 29,346 medical diagnosis codes were integrated into a clinical 

risk score. Below we summarize our findings. 

4.3.1 NLP extracted medical code embeddings are clinically meaningful 

First, we validated whether the medical code embeddings generated in MM-PCP cohort 

were clinically meaningful and that NLP could capture the information hidden in the complex 

EHR dataset. We used the cosine distance between a pair of codes to classify whether a code pair 

shared the same phecode (i.e., have similar clinical concept) and calculated the concept-AUC. 

The results here served as a proof of concept of whether the medical code embeddings derived 

from the MM-PCP cohort is suitable to be used for generating a ClinRS. 

We discovered two main findings: 1) smaller time window size t and 2) inclusion of more 

features d in a code embedding yielded higher accuracy on identifying code pairs in the same 
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phecode group. Supplementary Figure 4.2 showed that holding constant embedding dimension d 

while varying time window size t, the highest concept-AUC was consistently found from co-

occurrence matrices constructed based on codes that appeared on the same day (within 1 day). 

The accuracy attenuated linearly when the window size increased. For example, concept-AUC 

calculated from embedding dimension of 350 was the highest for codes co-occurred on the same 

day (1 day) with concept-AUC of 0.78, decreased to 0.76 for codes co-occurred within 1 week (7 

days), and dropped to the lowest of 0.73 for codes that co-occurred within 2 months (60 days). 

These results indicated that diagnosis codes recorded on the same day provided the most 

information about code relationships. One possible explanation could be that diagnostic codes 

were often all billed on the same day, likely the last day of the hospitalization. Additionally, by 

increasing the time window of codes considered for co-occurrence, it could also potentially 

introduce noise (e.g., diagnosis code not related to the same medical event) and lower the ability 

to construct meaningful semantic vector representations. Next, we evaluated the concept-AUC 

variation across different numbers of features d in a code embedding. In general, the higher the 

embedding dimension d, the higher the concept-AUC was observed. The concept-AUC 

plateaued with up to embedding dimensions of 300 to 500, depending on the time-window. This 

finding is similar to previous reports182–186. The optimal embedding dimension found in this 

study using Michigan Medicine EHR data was d = 350 (Supplementary Figure 4.2).  

The medical code embeddings generated from time window t = 1 day with embedding 

dimension d = 350 yielded a concept-AUC of 0.78 (Supplementary Figure 4.2). This result 

supports that the medical code embeddings derived via unsupervised learning were clinically 

meaningful validated by expert manually curated phenotypic grouping. The medical code 
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embeddings corresponding to the above chosen tuning parameters were further used to calculate 

patient-level latent phenotype in this analysis. 

In addition to numerically evaluating the semantic resemblance of vector representations 

using concept-AUCs, we further assessed the semantic relationship graphically using a heatmap 

of the cosine similarity scores (Supplementary Figure 4.3). In this study, we used ICD-9 Second 

Chapter (140-239): Neoplasms as an example to discern how the similarity patterns were 

formulated among each cancer code. Cancer codes were selected to demonstrate the similarity 

patterns of code pairs due to its distinct organ system specific sub-chapter within the cancer 

codes. For example, codes from cancer of digestive organs (ICD: 150-159) and cancer of 

respiratory organs (ICD: 160-165) are both cancer codes, but for different organs and were 

expected to have different patterns and concepts. 

As anticipated, we observed that the same ICD-9 diagnosis codes and/or nearby codes 

(off-diagonal line in Supplementary Figure 4.3) had higher cosine values between their 

embeddings, indicated by the darker color on the off-diagonal line and the band surrounding it. 

Furthermore, clear distinctions crossing different sub-chapters were found. These results suggest 

the contextual representations were clinically meaningful since related types of cancers from the 

same organ system had more similar context and patterns of co-occurred comorbidities, 

treatments, or procedures. Conversely, lower cosine scores were found in code pairs between 

different sub-chapters of cancer diagnosis ICD codes.  

4.3.2 PRS and ClinRS each predict heart failure cases up to eight years in advance 

We evaluated the prediction ability of using genetic and clinical information, separately, 

to identify heart failure patients in the future. We used 10-fold cross validated AUC to assess 

how well each risk score predicted the event of heart failure at ten different time points prior to 
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the disease diagnosis date. Ten different time points used were one year apart from one year to 

ten years prior to disease diagnosis; for simplicity, we refer to the ten cutoffs prior to disease 

diagnosis as ten time points.  

We summarized the AUCs of ten time points from different models (baseline, PRS, 

ClinRS, and PRS+ClinRS model) in Figure 4.1. In this study, we found that PRS and ClinRS 

each and separately were able to predict heart failure outcomes significantly better than the 

baseline model (age and sex only), up to eight years prior to heart failure diagnosis. Results from 

one year prior to the diagnosis, significantly higher AUC was observed in the PRS model (AUC: 

0.76 [95% CI: 0.74-0.83]) and ClinRS model (AUC: 0.85 [0.83-0.87]), compared to the baseline 

model with AUC of 0.70 (0.68-0.72). See Supplementary Table 4.1 for the specific AUC values 

across all ten time points and four different models. As expected, we observed that the benefit of 

ClinRS prediction was attenuated by censoring EHR data with increasing time thresholds prior to 

the event, and the model accuracy decreased when sample size is smaller due to earlier 

censoring. Nevertheless, better performance in both PRS and ClinRS models were continuously 

observed in the analysis until eight years prior to the disease diagnosis. For example, in a cohort 

with at least eight years or more of medical history within Michigan Medicine, the PRS and 

ClinRS models yielded an AUC of 0.76 (0.74-0.78) and 0.77 (0.74-0.79), respectively, 

significantly higher compared to baseline model with AUC of 0.71 (0.68-0.73). 

In models given data from nine years prior to disease diagnosis, no significant difference 

was observed among PRS (AUC: 0.77 [0.74-0.79]), ClinRS (AUC: 0.77 [0.74-0.79]), and 

baseline (AUC: 0.72 [0.69-0.75]) models. Lack of significant difference between PRS (does not 

change over time because genetics is fixed at conception), ClinRS, and the baseline model from 

such a limited dataset from nine years before the event could potentially be due to the smaller 
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sample size. The sample size for the ten-year censored data was 51% of that for the one-year 

censored data. In addition, EHR data nine- and ten-year prior to disease diagnosis provided 

insufficient information for complex prediction tasks.  

4.3.3 Integrating PRS and ClinRS enhances heart failure prediction 

 In addition to evaluating the risk score separately, we further studied the additive power 

of including both risk scores together in the heart failure prediction model. Consistently across 

all ten time points, the highest accuracy was found in the PRS+ClinRS model. See Figure 4.1 

and Supplementary Table 4.1. Significantly higher AUC was continuously found in the 

PRS+ClinRS model even at ten years prior to disease diagnosis with an AUC of 0.79 (95% CI: 

0.77-0.82), compared to baseline model (AUC: 0.72 [0.69-0.75]). Compared to the single risk 

predictor models predicted heart failure eight years prior to disease diagnosis, the model 

including both predictors predicted disease two years earlier than using either single risk 

predictor alone. 

 As expected, we observed that the prediction accuracy of the PRS+ClinRS model 

outperformed single risk score models throughout the entire one to ten years time horizons. In 

Supplementary Figure 4.4, we showed that by using both clinical and genetic risk scores to 

predict which individuals have high risk of future heart failure, the combined score discovered 

the highest proportion (28%) of individuals who had heart failure. 

4.3.4 Sensitivity analysis on removing circulatory system diagnosis code  

To examine the robustness of ClinRS and to eliminate the concerns of overfitting, we 

conducted a sensitivity analysis by removing all circulatory system diagnosis codes to create 

ClinRS-NoCirc. In Supplementary Figure 4.5, we presented the model performances of using 
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ClinRS-NoCirc as the clinical risk predictor and compared to the ClinRS model. The results 

were largely similar with and without removing circulatory system codes, which demonstrated 

that we successfully built a risk score that leveraged the high-dimensional EHR records and 

apprehended underlying patterns to reveal disease associations. Specifically, the models using 

ClinRS-NoCirc to predict future heart failure events yielded significantly higher accuracy than 

baseline models, up to six years in advance of disease diagnosis. We observed an AUC of 0.77 

(0.75-0.80) from ClinRS-NoCirc model at six years prior to disease diagnosis, which was 

significantly higher than baseline model at six years in advance of heart failure diagnosis (AUC: 

0.72 [0.69-0.74]) (see Supplementary Figure 4.5 and Supplementary Table 4.1). Although the 

results derived from ClinRS-NoCirc could not predict the outcome as many years in advance as 

the ClinRS model, the additive power of integrating genetic and clinical information in disease 

risk prediction remains evident through ClinRS-NoCirc. By including both PRS and ClinRS-

NoCirc in the heart failure prediction model, we were still able to distinguish patients with high 

risk of heart failure a decade in advance of the disease diagnosis. The model with PRS and 

ClinRS-NoCirs predictors showed a significantly higher AUC of 0.78 (0.76-0.81) at ten years 

prior to heart failure diagnosis, compared to the baseline model with AUC of 0.72 (0.69-0.75). 

4.3.5 ClinRS insights 

We dissected the composition of ClinRS for heart failure prediction and further studied 

the risk and protective factors associated with disease outcome in Supplementary Figure 6. In 

Supplementary Figure 6, we showed the ClinRS weights of risk and protective factors 

contributing to the heart failure outcome. The diagnoses prioritized in the ClinRS score can 

generally be classified by 1) organ system (cardiac versus non-cardiac) and 2) etiology (potential 

causal mechanism, associated comorbidity, or unclear link). As expected, 7 out of the top 10 risk 
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factor for heart failure in ClinRS were cardiac diagnoses, exhibiting potential causal 

mechanisms; for example, ICD codes associated with acute myocardial infarctiona 

(Supplemental Table 4.2). Additional potential cardiac-causal diagnoses including: i) stenosis, 

mitral and aortic valves (ICD: 396.0), ii) acute myocarditis (ICD: 422.0), and iii) defect, acquired 

cardiac septal (ICD: 429.71) were highly prioritized by the ClinRS algorithm. Also, ClinRS 

incorporates many associated-cardiac diagnoses including i) malfunction, cardiac pacemaker 

(ICD: 996.01) and ii) mechanical complication of automatic implantable cardiac defibrillator 

(ICD: 996.04). These codes are likely to co-occur in patients with heart failure, but may have 

limited utility in predicting new or previously undiagnosed cases - although it is noteworthy that 

all diagnoses included in ClinRS were documented prior to the heart failure diagnosis. Diagnoses 

identified by ClinRS including: i) Marfan syndrome (ICD: 759.82, 754.82)187, ii) alcohol abuse 

(ICD: 303.01, 790.3, 980.0)188, and iii) viral infection (ICD: 74.8)189 may reflect non-cardiac, 

causal mechanisms of heart failure pathogenesis. Notably, non-cardiac diagnoses, unclear link 

with a protective effective against heart failure in the ClinRS score included a cluster of 

pregnancy-related conditions (ICD: 765.14, 765.25, 656.43, 678, etc) and another cluster of 

ophthalmologic diagnoses (ICD: 371.03, 370.03, 370.63, 374.23, 370.35, etc). No causal or 

mechanistic relationship should be inferred -- instead this correlation likely results from the 

lower-risk baseline population (childbearing females) for pregnancy related-conditions and more 

focused, clinical ophthalmologic assessment being less likely to diagnose heart failure, for the 

ophthalmologic-conditions. 

 
a 410.91 = Acute myocardial infarction of unspecified site, 410.21 = ST elevation (STEMI) myocardial infarction 

involving other coronary artery of inferior wall, 410.41 = Acute myocardial infarction, of other inferior wall, 410.01 

= Acute myocardial infarction, anterolateral wall, initial, 410.51 = Acute myocardial infarction, lateral wall, initial, 

410.71 = Acute myocardial infarction, subendocardial, initial, and 410.61= True posterior wall infarction, initial 
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4.4 Discussion 

 This study sought to improve the accuracy of heart failure prediction by integrating high-

dimensional genetic data with clinical information to advance heart failure prevention initiatives. 

Genetic risk was summarized by a PRS, calculated from the largest-to-date heart failure GWAS7, 

and clinical risk was summarized by a ClinRS, a novel EHR-based risk score. The combined 

PRS and ClinRS score prediction model identified patients with a high risk of heart failure a 

decade in advance of the disease diagnosis (Figure 4.1 and Supplementary Table 4.1). 

Specifically, the PRS+ClinRS prediction model showed a significantly higher AUC at ten years 

prior to heart failure diagnosis with AUC of 0.79 (0.77-0.82) compared to the baseline model 

with AUC of 0.72 (0.69-0.74). In contrast, models with a single risk score alone can only 

identify heart failure cases eight years in advance, by integrating genetic and clinical information 

we are able to identify heart failure cases two years earlier. These findings reveal the power of 

integrating PRS and ClinRS to enhance disease prediction and the potential to inform heart 

failure prevention efforts. More broadly, this study highlights the methods and opportunity to 

curate ClinRS for other complex diseases and integrate with PRS to improve disease prediction 

accuracy. 

4.4.1 Advances in comprehensively utilizing longitudinal and high-dimensional EHR data 

The critical challenges of incorporating EHR data are its high dimensionality and 

longitudinal nature. We successfully developed a risk score summarizing the clinical information 

despite the complexity of EHR data and validated its utility in an independent dataset from an 

EHR-linked biobank cohort. This study treated structured EHR diagnosis codes as human 

language and converted the diagnosis code into paragraphs. This enabled learning the coding 

patterns for patient records with any dimensionality and longitudinal history. By focusing on co-
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occurrence patterns of medical codes within a specified time window, we were able to utilize 

data from all individuals regardless of the length of healthcare utilization. Patients with only one 

visit to decades of medical history within the healthcare system all contributed to the medical 

code embedding construction. In addition, by applying NLP to transform codes to medical code 

embeddings, we successfully reduced the high-dimensional EHR dataset into low-dimensional 

features. The results present an avenue to incorporate other domains of structured EHR datasets, 

such as medical procedures and laboratory tests, to create a clinical risk score that could more 

comprehensively capture the risk of having the disease. 

4.4.2 An integrated model (PRS+ClinRS) enables improved prediction of heart failure 

We previously developed a heart failure GWAS with the largest number of cases to date 

to build heart failure risk prediction models7. We successfully reduced high-dimensional GWAS 

into a single predictor – PRS. Furthermore, we implemented adapted NLP techniques to capture 

latent phenotypes in EHR data and summarized it into a new predictor – ClinRS. Analysis results 

showed that both risk scores were significantly better predictors of heart failure compared to 

baseline demographic information alone. Additionally, adding both PRS and ClinRS together 

into prediction models yielded superior accuracy for predicting future heart failure outcomes. 

This result demonstrated the additive predictive power of leveraging genetic and clinical 

information in risk prediction.  

In alignment with our findings, Mujwara et al., used CAD-PRS to reclassify high genetic 

risk patients from patients in the borderline or intermediate of PCE clinical risk pool5. Findings 

showed that using the combined PCE and CAD-PRS approach risk screening methods to initiate 

early preventive treatment per 10,000 individuals screened could potentially avert 50 ASCVD 

events over 10 years and lead to substantial cost saving per averted event. It is promising that we 
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have the potential to achieve more accurate prediction by using PRS and ClinRS together into 

prediction models. Such strategies could then inform guidelines for patient care to aid in earlier 

initiation of prevention treatment.  

4.4.3 Medical code embeddings filled in missing information/ incomplete EHR history 

We strengthened the evidence that leveraging genetic and clinical information improves 

precision health by performing a sensitivity analysis with all circulatory system diagnosis codes 

removed. Even though clinical information from the EHR system was partially missing, we were 

still able to reach high prediction accuracy one decade prior to disease diagnosis by incorporating 

a genetic risk score in the model (Supplementary Figure 4.5 and Supplementary Table 4.1). This 

analysis also indicated the potential benefit for patients with short medical history within the 

same healthcare system, missing information and/or unrecorded diagnosis would be able to 

reveal from the incomplete health records using pre-trained medical code embedding28. 

4.4.4 Limitations 

 Heart failure is known to have separate subtypes caused by different mechanisms or 

genetic risk factors, with distinct treatments and phenotypic symptoms7. In the future, ClinRS for 

heart failure subtypes needs to be further validated in cohorts with larger sample sizes. 

Moreover, the curation of ClinRS and utilization of integrating genetic and clinical information 

for disease risk prediction needs to be benchmarked in other complex diseases. 

Despite the high fidelity, validated clinical outcome assessed across a relatively long 

surveillance window in a large population, the retrospective study design imposes some intrinsic 

limitations. While including full diagnostic codes from the EHR, potential selection bias in both 

timing and medical specialty, may limit clinical relevance and applicability. Furthermore, the 
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retrospective nature of the study has inherent limitations including the possibility of yet 

unidentified confounding variables. 

This study solely utilized the diagnosis information derived from EHR data, however, 

leveraging other domains of structured and unstructured EHR data (e.g., procedure, medication, 

clinical notes, etc.) to assist disease prediction is needed to fully understand the additive power 

of integrating genetic and clinical data. 

Furthermore, the limitation of any EHR-based study also includes the low transferability 

across different healthcare systems due to the heterogeneity of EHR data. Methodology in 

language models could potentially be borrowed to improve transferability of medical code 

embeddings and the derived latent phenotypes. Applying transfer learning techniques could also 

produce a more generalizable ClinRS to be applied across different healthcare systems. 

4.4.5 Conclusion 

In conclusion, the amalgamation of GWAS- and EHR-derived risk scores predicted heart 

failure cases 10-years prior to diagnosis. These findings highlight how application of natural 

language processing to complex datasets such as medical records and incorporating genetic 

information may enhance the identification of patients with a higher susceptibility to heart 

failure. Application of this approach at scale may enable physicians to introduce preventive 

therapies at a much earlier stage, which may prevent the onset of overt heart failure. 
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4.5 Figures and Tables 

 

 

Figure 4.1 Forest plot comparing models’ accuracy of predicting heart failure at one to ten years prior to disease diagnosis.  

Four models were compared with each time point: baseline (age and sex), PRS (polygeneic risk score), ClinRS (clinical risk score), 

and PRS+ClinRS. Numbers at the bottom of the plot indicate the sample size for each time point. Results showed that PRS and 

ClinRS, separately, can predict heart failure outcomes eight years in advance, and adding both risk predictors in the model can predict 

disease ten years in advance. 
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4.6 Supplementary Materials 

4.6.1 Curating medical code embedding 

The medical code embeddings were created by learning vector representations of ICD 

codes based on their co-occurrence patterns in the EHR, which were obtained through adapted 

NLP method178. More specifically, the medical code embeddings were extracted by performing 

truncated singular value decomposition (SVD) on the shifted positive pointwise mutual 

information (SPPMI) matrix, which is derived from codes’ co-occurrence matrix. The pipeline 

we developed to extract medical code embedding was based on Hong et al.179 and it is publicly 

available at https://github.com/The-Shi-Lab/CodeEmbedding. 

Co-occurrence matrix 

A co-occurrence matrix is defined with a selected time window t, within which the co-

occurrence instances of codes are counted. Since there are 29,346 codes, the dimension of this 

matrix is 29,346-by-29,346, with each entry counting the number of co-occurrence instances in 

the EHR between the corresponding pair of codes. By this definition, the co-occurrence matrix is 

a symmetric matrix. Assuming that the selected time window t is co-occurred within 7 days, for 

each code (which we denote by 𝐶) and each patient, we first identify the dates when the code 

was assigned to the patient. Then, for each of these identified dates, we scan the EHR of the 

patient within the day and the following 6 days; each code assignment found is counted as an 

instance of co-occurrence with code 𝐶. In such a fashion, the co-occurrence matrix is obtained by 

aggregating the co-occurrence instances over all patients and all codes.  
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Calculation of medical code embedding 

The medical code embeddings were obtained through dimension reduction of the SPPMI 

matrix, which is derived from the co-occurrence matrix, which we denote by 𝐶𝐶. Specifically, 

the SPPMI matrix share the size of 𝐶𝐶 which is 29,346-by-29,346 and for each code pair 𝐶1, 𝐶2, 

                          𝑆𝑃𝑃𝑀𝐼(𝐶1, 𝐶2) = 𝑚𝑎𝑥{𝑙𝑜𝑔
𝐶𝐶(𝐶1,𝐶2)

𝐶𝐶(𝐶1,⋅)𝐶𝐶(𝐶2,⋅)
− 𝑙𝑜𝑔(𝑘),0} 

where 𝐶𝐶(𝐶1,⋅) represents the row sum of 𝐶𝐶 on the row corresponding to 𝐶1. The tuning 

parameter, negative sample 𝑘 was set to 10 based on results shown in previous studies180,186,190. 

Given a SPPMI matrix and a desired semantic vector representation (SEV) dimension 𝑑, the 

SEVs are obtained through the truncated singular value decomposition of the SPPMI matrix, 

which we denote by 𝑈𝑑𝑑𝑖𝑎𝑔(𝜎1,⋯ , 𝜎𝑑)𝑈𝑑
𝑇, where 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑑 are the 𝑑 largest singular 

values of the SPPMI matrix. Specifically, the 𝑑 SEVs are the columns of 𝑈𝑑𝑑𝑖𝑎𝑔(√𝜎1,⋯ , √𝜎𝑑), 

which are all vectors with 29,346 entries (one for each ICD code). 

4.6.2 Creating patient-level latent phenotypes 

To create latent phenotype using EHR data for individuals, we took the product of the 

patient-level EHR record D, a dataset recorded whether patients had the diagnosis code in the 

past, and code embedding C, a semantic vector representation of the EHR codes. D is a n by p 

matrix, where n is the number of patients and p is the number of unique diagnosis codes. C is a p 

by k matrix, where p is the number of unique diagnosis codes and k is the embedding dimension 

selected from the code embedding curation step. The final product of D and C will be the patient-

level latent phenotypes with dimension of n by k. See Supplementary Figure 4.7 for illustration. 
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4.6.3 Figures and tables 

 

 
 

Supplementary Figure 4.1 Study cohort description. 

Three cohorts within Michigan Medicine (MM) were used in this analysis: i) Primary Care Provider (MM-PCP), ii) Heart Failure 

(MM-HF), and iii) Michigan Genomics Initiative (MM-MGI). MM-PCP cohort with 61,849 individuals was used to build medical 

code embeddings. Subset of MM-HF (N=7,120), participants of European descent and not in MM-MGI, was used to derive the 

weights (effect sizes) of clinical risk score (ClinRS). Subset of MM-MGI (N=20,279), patients fully genotyped and disease outcome 

was predefined using Mathis et al. phenotyping algorithm22 in MM-HF, was used to validate heart failure prediction accuracy using 

polygenic risk score and clinical risk score.   
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Supplementary Figure 4.2 Heatmap of concept-AUC across medical code embeddings derived from using 10 time windows and 12 

embedding dimensions to summarize a medical code. 

Concept Area Under the Receiver Operating Characteristics (concept-AUC) summarized how well medical code embeddings 

generated from the adapted natural language (NLP) processing method capture the clinical meaning of each code. Medical code 

embedding built on code oc-occurred within 1 day with embedding dimension of 350 yielded the highest concept-AUC.  
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Supplementary Figure 4.3 Heatmap of cosine similarity score between a pair of codes within ICD-9 cancer codes. 

Cosine similarity score between a pair of codes within ICD-9 140 to 239 (Neoplasms) and sorted by its order. Every dot in this plot 

represents a pair of codes and its cosine similarity score, with the darker the red representing the closer the distance (more similar) 

between these 2 codes. 
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Supplementary Figure 4.4 Scatter plot and boxplot of patients’ polygenic risk score (PRS) and 

clinical risk score (ClinRS). 

Patients’ PRS and ClinRS at one year prior to heart failure diagnosis, colored by disease status. 

Dotted gray lines indicates the cutoff of high and low risk of corresponding risk predictor. 

Percentage in each quadrant indicates the percentage of heart failure cases among patients 

classified in the corresponding risk group. 
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Supplementary Figure 4.5 Forest plot comparing models accuracy of predicting heart failure at one to ten years prior to disease 

diagnosis in the sensitivity analysis. 

Six models were compared with each time point: baseline (age and sex), PRS (polygeneic risk score), ClinRS (clinical risk score), 

ClinRS-NoCirc, PRS+ClinRS, and PRS+ClinRS-NoCirc. ClinRS-NoCirc was calculated by removing circulatory system diagnosis 

code in patients’ medical records to validate the validity of ClinRS generated using the adapted natural language processing method. 

Numbers at the bottom of the plot indicate the sample size for each time point. Results showed that ClinRS-NoCirc can predict heart 

failure outcomes six years in advance, shorter than using ClinRS as a predictor. Adding both PRS and ClinRS-NoCirc in the model, 

the model accuracy is comparable to PRS+ClinRS model, which predicts disease ten years in advance.  
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Supplementary Figure 4.6 Manhattan plot of clinical risk score (ClinRS) weights for each ICD-9 diagnosis code by disease class.  

X-axis indicates the exponential of the absolute weights in ClinRS. The left panel showed the weights of the protective (negative 

weights; decreased risk) factor and the right panel showed the weights of the risk (positive weights; increased risk) factor.  
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Supplementary Figure 4.7 Illustration of creating latent phenotype from individual level electronic health records. 
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Supplementary Table 4.1 Sample size of heart failure cases and controls included in analysis for one to ten years prior to disease 

diagnosis. 

 

 

Ten-fold cross-validated Area Under the Receiver Operating Characteristics (AUC) of six models predicting heart failure outcome 

across 10 time points. Model performances were calculated for baseline (age and sex) model and 5 models with risk score(s) added: i) 

polygenic risk score (PRS), ii) clinical risk score (ClinRS), iii) PRS+ClinRS, iv) clinical risk score calculated without circulatory 

system diagnosis code (ClinRS-NoCirc), and v) PRS+ClinRS-NoCirc. 
 

  

year 
Sample Size  10-fold Cross-Validated AUC 

cases controls  baseline PRS ClinRS PRS+ClinRS ClinRS-noCirc PRS+ClinRS-noCirc 

1 576 19,703  0.70 (0.68-0.72) 0.76 (0.74-0.78) 0.85 (0.83-0.87) 0.87 (0.85-0.88) 0.84 (0.82-0.86) 0.86 (0.84-0.87) 

2 539 17,758  0.70 (0.68-0.72) 0.77 (0.75-0.79) 0.82 (0.80-0.85) 0.84 (0.82-0.86) 0.81 (0.79-0.84) 0.83 (0.81-0.85) 

3 515 16,365  0.70 (0.68-0.73) 0.77 (0.75-0.79) 0.81 (0.79-0.84) 0.83 (0.81-0.85) 0.80 (0.78-0.83) 0.83 (0.80-0.85) 

4 494 15,152  0.70 (0.68-0.73) 0.77 (0.74-0.79) 0.80 (0.78-0.83) 0.82 (0.80-0.85) 0.79 (0.76-0.81) 0.81 (0.79-0.84) 

5 459 14,153  0.71 (0.69-0.73) 0.77 (0.75-0.79) 0.80 (0.77-0.82) 0.82 (0.80-0.84) 0.78 (0.76-0.81) 0.81 (0.79-0.83) 

6 427 13,239  0.72 (0.69-0.74) 0.78 (0.76-0.90) 0.79 (0.76-0.81) 0.82 (0.79-0.84) 0.77 (0.75-0.80) 0.80 (0.78-0.83) 

7 407 12,394  0.71 (0.69-0.74) 0.77 (0.75-0.80) 0.78 (0.75-0.80) 0.81 (0.78-0.83) 0.76 (0.73-0.79) 0.79 (0.77-0.82) 

8 376 11,601  0.71 (0.68-0.73) 0.76 (0.74-0.78) 0.77 (0.74-0.79) 0.80 (0.77-0.82) 0.75 (0.73-0.78) 0.78 (0.76-0.81) 

9 353 10,831  0.72 (0.69-0.75) 0.77 (0.74-0.79) 0.76 (0.74-0.79) 0.80 (0.77-0.82) 0.75 (0.73-0.78) 0.79 (0.76-0.81) 

10 332 10,059  0.72 (0.69-0.75) 0.77 (0.74-0.80) 0.76 (0.73-0.78) 0.79 (0.77-0.82) 0.75 (0.72-0.77) 0.78 (0.76-0.81) 
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Supplementary Table 4.2 Top 20 protective and risk factors yielded from clinical risk score (ClinRS). 
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4.7 Publication 

The work presented in this chapter has been submitted and is accessible in medRxiv191: 

Wu, K.H. et al. (2022). Integrating large scale genetic and clinical information to predict cases of 

heart failure.  
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Chapter 5  

 

 

Discussion 

 

The overarching theme of this dissertation was to improve precision medicine by 

comprehensively integrating clinical and genetic information for improving the diagnosis and 

treatment of heart diseases. Heart disease is the leading cause of death globally, among all sex 

and ancestry groups121,192. Earlier initiation of treatment remains the cornerstone for modifying 

disease progression, but more can be done to initiate therapy in time to prevent disease. The 

growth of electronic health record (EHR)-linked biobanks globally has led to the development of 

scalable disease screening systems integrating clinical information with genetic risk to 

effectively identify patients with higher disease susceptibility and further prevent cardiovascular 

death. 

This research work utilized the EHR system, an EHR-linked biobank, and the Precision 

Health COVID-19 Survey within Michigan Medicine to comprehensively study cardiovascular 

disease risk and examine how to advance preventive approaches in a large diverse healthcare 

system. Thus far, I identified populations more likely to have health behavior changes during the 

COVID-19 global pandemic that would potentially increase the risk of cardiovascular disease in 

the future. Moreover, I have evaluated the power of genetic diversity in constructing genetic risk 

scores and developed a novel algorithm using natural language processing (NLP) to leverage 

high-dimensional EHR data in constructing clinical risk scores for identifying heart failure cases. 
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5.1 Demonstrated Rapid Utilization of Biorepository 

In the spring of 2020, limited information was available to explain why certain 

individuals appeared to be at a higher risk for SARS-CoV-2 infection. There was also an 

unprecedented need, which remains, to understand COVID-19 risk factors and the impact of 

quarantine on future cardiovascular disease risk.  

On March 24th 2020, Governor Whitmer of Michigan issued the ‘Stay Home Stay Safe’ 

Executive Order, which forced non-essential workers to work from home and implemented 

school closures. After the executive order was announced, our research team developed the 

Michigan Medicine Precision Health COVID-19 Survey to address these pertinent questions and 

tested the validity of the survey in 30 individuals between March 25th and April 24th 2020. The 

survey was deployed between May 26, 2020 and June 29, 2020 to biobank participants in 

Michigan Medicine. The rapid development of the survey and implementation of healthcare 

system biorepository resources in our study contributed valuable information to react to the 

global pandemic (Figure 5.1). 

A total of 8,041 biobank participants responded to the survey and were included in this 

cross-sectional analysis, with 132 (1.6%) participants responding “yes” to being diagnosed with 

COVID-19 by a test or a physician. African Americans, women, and the lowest income group 

reported worsening health behaviors during the Stay Home Executive Order in Michigan. The 

worsening health behaviors include decreasing exercise, increasing alcohol consumption, 

worsening sleep habits, and worsening nutrition dietary habits. This finding has potential 

implications for long-term cardiovascular disease risk. Moreover, we found that 55% of COVID-

19 cases reported no known exposure to individuals diagnosed with COVID-19. A significantly 

higher rate of COVID-19 cases were employed among essential workers. We postulated that the 
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higher incidence of contracting COVID-19 among African Americans may have been due to 

working as essential employees, lower socioeconomic status, and exposure to known positive 

cases. This manuscript addressed the need for continued focus on COVID-19 prevention and 

mitigation strategies, as well as highlighted the importance of addressing inequality gaps that 

may increase long-term cardiovascular disease risk72.  

Future analysis on whether patients who reported worsening health behavior during ‘Stay 

Home Stay Safe’ Executive Order have developed a higher rate of cardiovascular disease needs 

to be conducted. The results from the future study could be used to validate the hypothesis of 

increased cardiovascular risk in the future for individuals with worsening health behavior. 

Survey participants of this study were all enrolled in Michigan Medicine biorepository; hence, 

data extraction from Michigan Medicine EHR in the future would be accessible to validate the 

hypothesis made in this current study.  

 

5.2 Identified the Power of Genetic Diversity 

To evaluate the value of polygenic risk prediction in heart failure, I tested the association 

between a heart failure polygenic risk score (PRS) and phenotypic subtypes (heart failure with 

reduced ejection fraction [HFrEF] and heart failure with preserved ejection fraction [HFpEF]). 

The PRS was calculated from the Global Biobank Meta-analysis Initiative (GBMI) multi-

ancestry Genome-Wide Association Study (GWAS). 

The GBMI consortium is currently the largest and most diverse global consortium for 

genetics32. The multi-ancestry heart failure GWAS from GBMI marked the largest sample size of 

heart failure GWAS to date. The PRS constructed from GBMI heart failure GWAS uncovered 

susceptibility to both heart failure subtypes, and outperformed the PRS derived from previous 
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GWAS with the largest HF cohort. My findings also showed that the multi-ancestry PRS is 

useful in predicting HFrEF, but less powerful in predicting HFpEF, suggesting that the HFpEF 

phenotype could potentially have greater genetic heterogeneity. These findings highlight the 

potential for identifying high risk individuals during precursor stages, which could lead to earlier 

initiation of treatments to modify disease progression7. 

The discovery of different magnitudes of association between HFrEF and HFpEF with 

heart failure PRS suggests that heart failure subtypes potentially have different genetic risks. The 

next step for heart failure genetic study will be to create subtype specific GWAS to identify 

distinct genetic risk among sub-categories of heart failure. With the success of harmonizing 

genotypic and phenotypic data among biobanks in GBMI, it is promising that future studies 

could be completed using phecode 428.3 for HFrEF and 428.3 for HFpEF to define the disease 

outcomes and conduct well-powered GWAS for heart failure subtypes.  

  

5.3 Developed Novel Clinical Risk Score Using NLP in EHR Data 

Currently, multiple efforts have been made to link EHR and biobank datasets. However, 

an unmet need is the integration of GWAS- and EHR-derived risk scores to improve early 

detection of diseases. We have explored methods to enhance the prediction of future heart failure 

events by leveraging clinical and genetic information from an EHR-linked biobank hosted at the 

University of Michigan. 

We applied NLP to summarize International Classification of Diseases (ICD) diagnosis 

code from high-dimensional EHR data into low-dimensional latent phenotypes. Next, we used 

the latent phenotypes to further create a Clinical Risk Score (ClinRS) that yielded significantly 

higher accuracy in predicting future heart failure cases, compared to using demographic 
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information alone. Traditionally, NLP techniques are applied to human readable language to 

predict the next word in a sentence or the topic/ contents of a document. Here, I adapted the same 

principles to ‘articles’ consisting of EHR codes, and extracted the co-occurring patterns among 

EHR codes to summarize clinical information into an EHR-derived risk score, ClinRS. The risk 

score successfully reduced the noise and sparseness in high dimensional data and improved 

statistical power for a disease risk prediction model. 

I validated that the quality of the extracted medical code concepts, trained on the 

Michigan Medicine EHR data, were clinically meaningful. This result demonstrated the high 

concordance between unsupervised method-derived medical code concepts with manually 

curated labels, and the ability to develop a scalable algorithm integrating all domains of the EHR 

system to capture healthcare utilization. Furthermore, I evaluated the model prediction accuracy 

using 10-fold cross-validated Area Under the Receiver Operating Characteristic Curve (AUC). I 

compared the model accuracy when predicting heart failure outcome using i) demographic 

characteristics, ii) polygenic risk score (PRS; GWAS-derived risk score), iii) clinical risk score 

(ClinRS; EHR-derived risk score), and iv) both PRS and ClinRS. The results showed that both 

models with PRS and ClinRS as the predictors separately yielded significantly higher AUC, 

compared to the model with demographic information as the predictors alone, up to 8 years in 

advance of heart failure diagnosis. In addition, the accuracy improvements were additive when 

incorporating both PRS and ClinRS into model prediction. Results showed that the model 

including both PRS and ClinRS yielded higher accuracy compared to models with PRS or 

ClinRS alone, which could predict the disease outcome up to 10 years in advance. 

This study has demonstrated the utility of summarizing high-dimensional EHR diagnosis 

data using adapted NLP methods. Aside from diagnosis codes in the EHR system, other domains 
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of the EHR data (i.e., procedure code, abnormal lab test, medication history, etc) contain 

enormous amounts of information as well. In the future, other domains of EHR data need to be 

included in the latent phenotype curation to summarize patients’ medical history and capture 

healthcare utilization patterns more comprehensively.  

 

5.4 Blueprint for the Future Healthcare 

As we are stepping into the modern era of precision medicine, prediction tools leveraging 

longitudinal medical records and genetic information are needed to develop personalized 

healthcare plans. Furthermore, the implementation of the EHR system across most of the 

healthcare systems in the US provides an opportunity to scale up the biomedical research using 

EHR data and improve disease prediction accuracy for large-scale populations9. 

In the future, building automated disease screening systems is plausible with the vast 

amount of clinical data collected through EHR systems and NLP algorithms implemented in this 

study, which benchmarked the utility of using high-dimensional data to generate powerful risk 

predictors. The expansion of risk scores built upon EHR and GWAS data to all diseases and 

conditions (phenome-wide) is needed to meet broader needs for the population. 

With the advancement of genetic sequencing technology and the improvement of clinical 

information utilization, the proposed automated phenome-wide disease screening system can be 

envisioned. Furthermore, the risk prediction model will be transferable across different 

populations. In Chapter 3, I showed the benefits and increment in model accuracy of adding 

diverse population to generate genetic risk score. This result indicated that by emphasizing the 

recruitment of racially diverse participants in genetic study in the future, it can achieve 

comparable prediction ability using PRS for disease screening in all individuals. For clinical risk 
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score transferability, I discussed in Chapter 4 the potential of borrowing transfer learning 

methodology in language models to apply in clinical risk scores curation. Similar to transferring 

the meaning of words between different languages, transfer learning can be adapted to transfer 

the concept of medical codes between different healthcare systems. This method will provide the 

opportunity to create highly accurate ClinRS in diverse cohorts and across healthcare systems. 

Together, disease risk prediction models will be able to transfer to larger populations and achieve 

precision health for all. 

I envision that in the future accurate and clinical actionable PRS and ClinRS will be 

developed and embedded in routine healthcare screening to inform the risk of disease and initiate 

personalized prevention. Individuals’ genetic information could be extracted at birth and used to 

profile disease risk and disease onset to tailor the targeted interventions in their lifetime. 

Currently, preventive screening strategies are mostly one size fits all or only using age and sex to 

suggest the needs of certain disease screening procedure. For instance, individuals are 

recommended to have routine teeth cleaning every six months to prevent cavity. Other age and 

sex stratified screening procedures include annual mammography for women aged 50 to 74 to 

screen for breast cancer193 and colonoscopy exam every ten years starting from age 45 years to 

screen for colorectal cancer194. The screening guideline for future healthcare could potentially 

shift towards personalized plan in the era of precision medicine. The risk of developing disease 

will be reclassified using patients’ genetic information to create informative predictor in addition 

to demographic and clinical information. With the improved strategy to identify patients’ risk, 

individuals with low risk could decrease the frequency of invasive examination (e.g., 

colonoscopy), avoid unnecessary procedure, and reduce the cost of care. On the other hand, more 



 119 

individualized care plan will be established for patients with high genetic and clinical risk and 

perform screening process more often to initiate treatment in time. 

 

5.5 Conclusions  

This dissertation work incorporated large EHR-linked biobanks with genetic information 

to advance precision medicine through methods development and improved disease prediction, 

which could lead to earlier initiation of preventive care to modify disease progression. My 

dissertation work identified individuals with potentially increased risk for cardiovascular disease 

during COVID-19 “Stay Home Stay Safe” Executive Order (Chapter 2), revealed the power of 

genetic diversity for constructing polygenic risk score (Chapter 3), and demonstrated the utility 

of EHR and biobank data integration for risk prediction (Chapter 4). 

Through worldwide biobank collaborations harmonizing genotypic and phenotypic data, 

large scale phenome-wide GWAS- and EHR-derived risk scores development will be achievable 

and precision healthcare could be improved in a large clinical setting. Moreover, implementing 

the automated processes to embed phenome-wide genetic and clinical risk scores into the 

healthcare software (i.e., Epic System) can aid medical professionals to precisely identify high 

risk individuals for multiple traits and diseases. In the future, the large-scale automated disease 

screening system embedded in the healthcare software can guide medical providers to initiate the 

most beneficial treatment plans for patients and enable more individualized healthcare plans. 
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5.6 Figures and Tables 

 

  

 

Figure 5.1 Timeline of Michigan Medicine Precision Health COVID-19 Survey curation and 

deployment 
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