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Abstract 

 

In recent research investigations, Origami has shown great potential for creating 

reconfigurable structures for achieving various engineering functions.  Especially, origami can 

be designed to fold compactly into very small volumes and then deploy to become large 

structures, which has led to many deployable system applications. Despite their promising 

potentials, most origami studies have focused on their static or kinematic features, while the 

complex and yet important dynamic behaviors of the origami deployment process have remained 

largely unexplored and unknown. To discover the missing knowledge, this thesis research 

investigates the dynamics of origami structure deployments, with a focus on Miura origami 

sheets, fluidic origami tubes, and fluidic multi-tube origami structures as testbeds. We construct 

a dynamic model for origami structures that captures the combined panel inertial and flexibility 

effects, which are otherwise ignored in rigid folding kinematic models but are critical in 

describing the dynamics of origami deployment. Our non-dimensionalized models provide rich 

new insights on how the deployment dynamic response is influenced by structural properties and 

other input parameters. This research advances the state of the art with new findings that have 

not and many times cannot be derived with traditional analyses. 

Results from studying the Miura origami sheet show that the structure’s deployment path 

may substantially deviate from a nominal quasi-static unfolding path based on the rigid folding 

assumptions, especially when the panels are more flexible. Additionally, it is shown that the 

pattern geometry influences the effective system stiffness, and therefore subtle changes in the 
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geometric parameters can result in qualitatively very different dynamic behaviors, where the 

Miura origami sheet may snap into different stable equilibria during the deployment process.  

In the investigation of the fluidic origami tube, the ends of the tube are sealed and a 

space-invariant fluidic pressure field is first applied internally as a step function. The dynamic 

deployment results reveal that the internal pressure level can influence the structure’s transient 

response and the final tube configuration. Additionally, results indicate that adjusting the fluidic 

pressure varies the effective stiffness and damping ratio of the system, and thus affects the tube’s 

transient dynamic response during deployment. The multistability landscape of the fluidic 

tubular origami further enriches the deployment dynamics. By applying the fluidic pressure as a 

ramp function in time, we show that by controlling the pressurization rate, the tube can possess 

different transient behaviors and can settle at different stable configurations. 

For the fluidic multi-tube origami structure testbed, we build models with different 

designs of the interface between tube elements. Results show that the multi-tube structure could 

have more complex behaviors than the single tube structure. The pressurization method and 

boundary conditions can influence the deployment significantly, where the structure can achieve 

a different deployment extent and arch in different directions. Furthermore, it is shown that with 

depending on the interface designs, multi-tube structures can reconfigure among different stable 

equilibria under dynamic deployment. 
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Chapter 1 Introduction 

1.1 Introduction 

Origami is an ancient paper folding art that can transform two-dimensional (2-D) sheets 

into complex 3-D structures. It has recently emerged as a promising tool for the design of 

mechanical structures with various functionalities. Because origami principles are scale 

independent, they have been adopted for the design of systems in a wide range of dimensions, 

from large space structures1,2, mesoscale elements3,4, to micro-scale devices5-8. Origami-inspired 

systems can provide extraordinary mechanical properties, such as auxeticity10,11, nonlinear 

stiffness3,12-21, multi-stability15,22-31, and geometric reconfiguration32-37. By careful design of the 

origami, the system can also exhibit programmable mechanical properties38-41. Moreover, the 

ability of origami designs to be folded compactly into small volumes9 and then deployed to large 

structures has led to a large number of deployable system applications. Because of the enormous 

interest, there have been immense studies on the kinematics and mechanism of origami 

structures42-44, mostly focused on their static or quasi-static behaviors. 

Apart from static/quasi-static applications, recent work has explored the suitability of 

origami designs for dynamics applications such as noise mitigation45,46, acoustic metamaterials47, 

energy absorption48-52, impact mitigation53-57, and vibration control58-63. Even origami-based 

structures nominally designed for static applications may be subject to dynamic loads from the 

environment. Therefore, it is crucial to understand the dynamic characteristics of origami to 

achieve desired system performance. In the context of deployable origami, the system dynamic 

characteristics may affect the accuracy, reliability, and efficiency of the deployment process. In 
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fact, the compliance and the inertia of the system may cause the dynamic deployment process to 

deviate from an unfolding path predicted by a purely geometric or kinematics treatment of the 

origami with static/quasi-static unfolding. Additionally, fluidic actuation sometimes used in 

tubular origami deployments can result in inflation, which cannot be predicted with traditional 

kinematics analyses.  

From the above discussions, it is recognized that understanding the dynamic behavior of 

the deployment process of origami structures is critical for designing the systems and controlling 

their performance. In this research, we focus on three types of origami structures as testbeds, 

namely Miura origami sheets, fluidic origami tubes, and fluidic origami multi-tube structures, 

given that they are fundamental origami structural elements with many applications. More 

detailed reviews of these three classes of structures are in Sections 1.2, 1.3, and 1.4. 

1.2 Background for Origami Sheet 

Origami folding allows for easy fabrication of the deployable 3-D structures, because the 

process can start with flat sheets, which are often readily available. Thus, origami sheets may be 

considered as a fundamental building block for origami-based structures, even for advanced and 

complex 3-D geometries including curved surfaces35,64-66. Previous work has shown that origami 

sheets can be deformed to desired sophisticated shapes67,68, and if the folding protocol is 

modified, they can also be refolded into new patterns69. Origami sheets are employed in various 

applications such as origami-based solar arrays42,70, metamaterials71-74, and shelters2, with a focus 

on their static or kinematics features. Some recent research has explored the dynamic 

deployment of an origami flasher75, and focused on the reaction forces inside the joints and 

panels. While useful and informative, this work is limited in that the deployment process is not 

fully studied. In this thesis research, we select a Miura origami sheet as our platform. The Miura 
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pattern76 is a widely used origami pattern design77 and can achieve rigid-foldability and flat-

foldability, meaning that the origami structure can be folded to flat without panel deformation. 

Various actuation methods78-83 have been proposed for the deployment of origami structures, 

such as pneumatic actuation, stored strain energy, and thermal activation with shape-memory 

materials. Since the focus of this thesis research is on the deployment dynamics rather than the 

actuation methods, we select only the strain energy method as the deployment actuation for the 

Miura origami sheet. We consider a basic deployment concept powered by the stored strain 

energy of folded creases and controlled with a prescribed rate at the free end. 

1.3 Background for Fluidic Origami Tube 

It has been recognized that tubular origami design offers promising ideas for inflatable 

deployable structures84-89, due to their large internal volume change and expansion ratio when 

expanded from stowed states. Furthermore, origami tubes are shown to possess reprogrammable 

geometries, reconfigurable kinematics90, and high stiffness to weight ratios when stacked 

together91. The recent exploration of fluidic origami tubes demonstrated their great 

multifunctional potential - pressurized by an internal fluidic field allows for various 

functionalities such as adaptable shape and stiffness3, multistability15, and programmable and 

recoverable energy absorption16. Utilizing fluidics is especially attractive given that they are 

readily available in many engineering systems and are easy to realize and control92-94. 

As for deployable origami, their system dynamic characteristics would greatly affect the 

accuracy, reliability, and efficiency of the deployment process. There have been efforts to 

address the actuation performance and deployment behaviors79,83,95-97 of origami structures, 

however these previous works have focused primarily on their quasi-static or static properties. 

Recently, the dynamics of tubular origami deployment has gained people’s attention, such as for 
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the Kresling origami63,98 and Miura origami tubes99, but only the strain energy stored in their 

originally folded shape is harnessed for deployment actuation, which is in general less reliable 

and less controllable than fluidic pressure control. On the other hand, while the inflatable fluidic 

tubular origami with internal pressurization has great potential to enable better deployable 

structures, their rich deployment dynamics have not been explored or understood. 

1.4 Background for Origami Multi-Tube Structure 

Building on the origami tubular element discussed in Section 1.3, the assemblage of 

multiple origami tubes has attracted interests because it allows for easy deployment while 

restricts motions in unintended modes100, which can be desirable for some robotic and space 

boom applications that require very accurate and reliable deployment. In addition, comparing to 

single tube, they can possess enhanced mechanical properties, geometric versatility, and 

adaptivity91. It is shown that we can achieve programmable kinematics and tunable stiffness by 

changing the geometry of the cross section and folds90 of the origami tubes, and the types of 

connections between tubes. While the static reconfiguration and properties of multi-tube origami 

structures has been investigated, their actuation performance and deployment dynamics remain 

unexplored. Moreover, the behavior of coupled origami tubes subjected to different pressures has 

not been examined in detail.  

1.5 Research Goal and Problem Statement  

From the above reviews and discussions, the goal of this research is to advance the state 

of the art and study the deployment dynamics of origami structures, with a focus on three 

testbeds: origami sheets, fluidic origami tubes, and fluidic origami multi-tube structures. The 

outcomes of this research will enable a deeper understanding of the physics behind origami 
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deployment and pave the way for new applications of origami-based deployable structures.  In 

Chapters 2, 3, 4, and 5, we present our studies and results that provide us with insights and help 

us plan the path forward.   

In Chapter 2, the mathematical dynamic models of the elements and systems of the three 

testbeds are discussed.  In Chapter 3, we study the deployment of Miura origami sheets. We 

perform stiffness parametric study to explore how the panel compliance can influence the 

dynamic deployment behaviors. A geometric parametric study is performed to understand the 

influence of pattern geometries on structural properties as well as the multiple stable equilibria 

landscape of the structure. We also perform the deployment simulations with different control 

rates to gain more insights. 

In Chapter 4, we study the deployment of Miura origami tubes under fluidic actuation. 

We first perform quasi-static analysis to understand the influence of the internal pressure field on 

structural properties. Stable equilibria analysis is performed to understand the multiple stable 

equilibria landscape of the structure with different folding stiffness under different pressure 

magnitudes. We perform dynamic simulations to gain insights on the snap-through behaviors of 

the structure under different pressurization magnitudes and rates. 

In Chapter 5, we study the Miura origami multi-tube structures under fluidic actuation. 

We perform quasi-static and dynamic analysis to understand the structural properties and 

deployment behaviors. We perform a parametric study on the interface stiffness to understand its 

influence on the configuration and the deployment process. We also explore different interface 

designs and perform dynamic analysis on the deployment behaviors. 

Building upon these efforts and findings, we propose possible future research directions 

as described in Chapter 6. 
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Chapter 2 Model Formulation  

 

In this Chapter, we discuss how the origami structure models for sheets and tubes are 

developed for the purpose of analyzing deployment dynamics.  Inertial properties of the structure 

are represented by a system of point masses that reflect the translational and principal rotational 

inertias of each parallelogram panel in the Miura origami structures. Rather than assuming rigid 

panels as is common in kinematic origami models, we adopt the bar and hinge approach to 

capture the panel flexibility101-104 for both the Miura origami sheets and the tubes, which thereby 

allows us to capture dynamic behaviors associated with panel deformations, where bars capture 

in-plane stiffness while rotational springs capture out of plane stiffness related to panel bending 

and crease folding. Loading from the internal pressure field is represented by a nodal force 

system that reflect the first and second momentum of the pressure load on the panels. 

2.1 Geometry 

2.1.1 Miura Origami Sheet 

The Miura origami sheet is formed by repeating a pattern of mountain and valley creases 

(Figure 1a). A single repeating unit of the Miura origami pattern (Figure 1a) is composed of four 

identical parallelogram panels. It is defined by three independent geometric parameters: two 

crease lengths (𝑎, 𝑏), and the smaller interior angle, also known as the sector angle (𝛾). Under a 

rigid folding assumption, all the panels are fully rigid with no deformation during 

reconfiguration or folding. With this assumption, the Miura origami sheet possesses a single 
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degree of freedom (DOF). The 3-D folded configuration of the whole structure can then be 

determined by defining one of the dihedral angles inside the Miura origami unit (or sheet, or 

tube). In this study, the dihedral angle 𝜌 (Figure 1c and Figure 1a) is used to describe the 

configuration of origami sheets and tubes under the rigid folding assumptions. 

 

Figure 1. (a) A Miura origami unit, consisting of four panels connected with fold lines. The dashed line 

represents a valley fold while the solid lines represent mountain folds, or vice versa. (b) A Miura origami sheet 

consisting of three Miura origami units. Node numbering is denoted in the orange blocks. (c)  The folded 

configuration of the Miura origami sheet, with the dihedral angle 𝜌 in yellow. (d) The bar and hinge model 

representation for the Miura origami unit. The circular points represent nodes with nonzero mass, which are 

connected by massless bars (shown as lines). Torsional springs are placed at the rotational hinges, for both the fold 

creases (at both mountain and valley folds), and for the bend lines (within a panel). 

 

2.1.2 Miura Origami Tube 

To study the deployment dynamics of fluidic origami tube, we explore a 3-unit Miura 

origami tube, which is built by connecting two identical Miura origami sheets (Figure 2a) along 

their horizontal creases. The same as the sheet, the Miura origami tube has three independent 

geometric parameters [𝑎, 𝑏, 𝛾] (Figure 2b) and possesses a single DOF under the rigid folding 

assumption, which is denoted by the dihedral angle 𝜌 in Figure 2a. 
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Figure 2. (a) A 3-unit Miura origami tube consists of two identical Miura origami sheets, the upper sheet 

(c) and the lower sheet (d). (c-d) Node numbering in the upper and lower sheets. (b) A bar and hinge representation 

of a Miura origami unit. The blue dashed and solid lines represent the valley and mountain folds respectively (or 

vice versa). 

 

2.1.3 Miura Origami Multi-Tube Structure 

To study the deployment dynamics of fluidic origami multi-tube structure, we explore an 

aligned-tube structure, which consists of two identical 3-unit Miura origami tubes. We adopt 

different interface designs as shown in Figure 3. The same as the single tube, the multi-tube 

structure has three independent geometric parameters [𝑎, 𝑏, 𝛾] and possesses a single DOF under 

the rigid folding assumption, which is denoted by the dihedral angle 𝜌. 
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Figure 3. Different types of interface modeling for fluidic origami multi-tube structures, where the two tube 

elements are in blue and yellow, and the interface is in cyan. (a) Two tube elements are connected by elastic bars 

through corresponding vertices, which represent a solid material interface. (b) Two tube elements are connected by 

elastic bars, which allow rigid folding, representing a flexible interface. (c) Two tube elements are connected 

rigidly, which indicates there will be no displacement at the interface,  representing an integrated manufactured 

multi-tube structure. (d) Two tube elements are connected through flexible facets, which is a variant of the three-

element multi-tube structure. The interface can undergo bending and stretching deformation in each facet, and 

inter-facet folding deformation. 

 

2.2 Stiffness 

This Section and the following Section 2.3 apply to both the Miura origami sheet and the 

Miura origami tube. The stiffness of the structure is represented by a bar and hinge model, 

specifically the N5B8 representation where a node is placed in the middle of each panel. The bar 

and hinge model incorporates realistic material characteristics in its parameters, and reflects a 

reasonable approximation of scalable, isotropic, and realistic system behaviors, such as in-plane 

and out-of-plane deformations. For more details about the bar and hinge model, the reader is 

directed to REF101-107. The panel in-plane behavior is represented by bar elements with the 

stiffness of 𝑘𝑠 = 𝐸𝐴 𝐿⁄  where 𝐸 is the Young’s Modulus, 𝐿 is the length of the bar and 𝐴 is a 

representative cross section area of the bar as defined in Eq. 1. The values 𝐴𝑋 , 𝐴𝑌 , 𝐴𝐷 refer to the 
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cross-section areas of the bars located on the horizontal side, the vertical side, and the diagonal 

of the parallelogram respectively. The panel thickness is 𝑡, the lengths of the two sides of the 

parallelogram are   𝐻 and 𝑊 , and  𝜈 is the Poisson’s ratio, the nominal values for which are in 

Table 1. Equation 1 shows that changing panel thickness and the shape of the parallelogram such 

as the sector angle and side lengths will affect the bar cross-section areas and the resulting 

stretching stiffness. The in-plane stiffness of the panels scales linearly with the thickness of the 

sheet and is orders of magnitude higher than the bending or folding stiffness of the sheet which 

scale near cubically with the thickness, while here we have found that it does not influence the 

dynamic behavior of the Miura sheet. Changing the in-plane stiffness results in negligible 

quantitative, and no noticeable qualitative influence on structural dynamic behaviors. Therefore, 

in the following parametric analyses of the Miura sheet system, the stretching stiffness is kept 

constant, while other variables are systematically varied. 

𝐴𝑋 = 𝑡 
𝐻2 − 𝜈𝑊2

2𝐻(1 − 𝜈2)
 

(1) 𝐴𝑌 = 𝑡
𝑊2 − 𝜈𝐻2

2𝑊(1 − 𝜈2)
 

𝐴𝐷 = 𝑡
𝜈(𝐻2 + 𝑊2)3 2⁄

2𝐻𝑊(1 − 𝜈2)
 

As for the out-of-plane stiffness, Equation 2 shows the relationship between the bending 

angle 𝜃 and the reactive torque 𝑀𝑏 representing panel bending. In the linear region of hinge 

deformation 𝜃 ∈ [10°, 350°], the stiffness per length is denoted by 𝑘𝑏. 

𝑀𝑏 = 𝜃 ∙ 𝑘𝑏 = 𝜃 ∙ (0.55 − 0.42
2𝛾

𝜋
)

𝐸𝑡3

12(1 − 𝜈2)
(

𝐷𝑆

𝑡
)

1/3

 (2) 

Equation 2 includes the sector angle 𝛾, the length of short diagonal 𝐷𝑆, the thickness 𝑡 of 

the panel. The material constants included are Young’s modulus 𝐸 and Poisson’s ratio 𝜈. The 
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panel bending stiffness is computed to be 𝑘𝑏 = 406 [𝑁] for a Miura panel with nominal material 

and geometric parameters as stated in Table 1. In our study, the panel bending stiffness 𝑘𝑏 and 

the crease folding stiffness 𝑘𝑓will be varied to represent different types of folded origami 

structures, and to acquire insights into a wider range of origami dynamic behaviors. Here, we 

introduce a stiffness parameter 𝑟𝑘 ≜ 𝑘𝑏 𝑘𝑓⁄ , which is the ratio between panel bending stiffness 

and crease folding stiffness. This ratio is kept higher than 5, which is generally true for most 

folded origami structures. We perform the stiffness parametric study by varying  [𝑟𝑘, 𝑘𝑓] rather 

than [𝑘𝑏 , 𝑘𝑓]. 

Table 1. Nominal material and geometric properties of the Miura sheet 

Parameter Nominal value 

Young’s modulus (𝐸) 7 × 1010 [𝑁/𝑚2] 

Poisson ratio (𝜈) 0.33 [−] 

Panel size (side length of the parallelogram) 0.1 × 0.1 [𝑚] 

Sector angle (𝛾) 60° 

Panel thickness (𝑡) 0.001 [𝑚] 

Panel density (𝜌) 3000 [𝑘𝑔/𝑚3] 

 

2.3 Inertia 

To represent the inertia of the system in a manner compatible with the bar and hinge 

model, the parallelogram panels in the Miura origami are replaced by sets of lumped masses. The 

bars and hinges themselves are assumed to be massless. As a result, the Miura origami structure 

becomes a simplified finite-DOF structure, as shown in Figure 4a. 
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Figure 4. (a) The lumped mass system that represents the inertia of a Miura origami unit. Mass points are 

placed at the center and four corners of the parallelogram panels. (b) The lumped mass system for each panel, 

which is a quarter of the Miura origami unit. The vector 𝑥𝑛 is the axis parallel to the side 𝑏 of the parallelogram, 

and 𝑦𝑛 is a vector perpendicular to 𝑥𝑛. The vectors 𝑥𝑝 and 𝑦𝑝 are the principal axes of this parallelogram. The 

angle between these two coordinate systems is 𝛼. 

 

We arrange five mass points with prescribed values at the positions of the five nodes in 

the N5B8 model to represent the inertia of the panel, as in Figure 4b. The values of the mass 

points are denoted by 𝑚0 for the center mass point and 𝑚1 and 𝑚2 for the mass points at the two 

different corners of the parallelogram. The mass points along each diagonal share same value. To 

capture the inertia properties of the panel, we compute the values of the mass points 

(𝑚0, 𝑚1, 𝑚2) that make the first and second moments of inertia of the discretized representation 

equivalent to those of the continuous panel, as Eq. 3. The value 𝑚𝑐 is the mass of the whole 

panel, 𝐼𝑐 is the inertia of the panel, and 𝐼𝑚𝑝 is the second moment of inertia of the mass point 

system. 

𝑚0 + 2𝑚1 + 2𝑚2 = 𝑚𝑐 

(3) 

𝐼𝑚𝑝 = 𝐼𝑐 

The principal moments of inertia 𝐼𝑥𝑝
 and 𝐼𝑦𝑝

 of the homogeneous parallelogram panel are 

derived in Eq. 4. In Figure 4b, the coordinate system 𝑥𝑝 and 𝑦𝑝 are the principal axes of this 

continuum parallelogram. The angle 𝛼 is between the principal axis 𝑥𝑝 and the axis 𝑥𝑛 which is 

parallel with side 𝑏 of the parallelogram. The area of the parallelogram is defined as 𝑆. 
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𝐼𝑥𝐵
=

𝑚

24
(𝑎2 + 𝑏2 − √(𝑎2 + 𝑏2)2 − 4𝑆2) 

(4) 
𝐼𝑦𝐵

=
𝑚

24
(𝑎2 + 𝑏2 + √(𝑎2 + 𝑏2)2 − 4𝑆2) 

cos (α) = √
𝑎2 + 𝑏2 + √(𝑎2 + 𝑏2)2 − 4𝑆2 − 2𝑎2 sin2 𝛾

2√(𝑎2 + 𝑏2)2 − 4𝑆2
 

Equation 5 calculates the second moment of inertia of the mass point system in the 

principal directions of the continuum parallelogram. The position of the 𝑖𝑡ℎ mass point with 

respect to the origin is defined as 𝑟𝑖, and is used to compute the rotational inertia of the node 

𝐼𝑖.The inertia of the full mass point system is derived by summation of the rotational inertias of 

all the mass points. 

𝐼𝑖 = 𝑚𝑖(|𝑟𝑖|2 − 𝑟𝑖𝑟𝑖
𝑇) 

(5) 

𝐼𝑚𝑝 = 𝐼0 + 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 

When the values of the mass points are defined as in Eq. 6, the first and second moments 

of inertia of the model match those of the parallelogram plate. Thus, the inertia of a panel can be 

represented by the set of independent mass points with these designated values. 

𝑚0 =
2

3
𝑚𝑐 

(6) 

𝑚1 = 𝑚2 =
1

12
𝑚𝑐 

2.4 Non-Dimensional Equations of Motion 

Having established the stiffness and inertia elements of the system, the equations of 

motion (EOMs) are derived for each DOF of all the nodes by Lagrange’s equations (Eq. 7). In 

the bar and hinge model, if no constraints are imposed on the structure, then each node will have 

three degrees of freedom. 
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𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑥̇
) −

𝜕𝐿

𝜕𝑥
+

𝜕𝐷

𝜕𝑥̇
= 0 (7) 

The Lagrangian is defined by 𝐿(𝑥, 𝑥̇) = 𝑉(𝑥) − 𝑇(𝑥, 𝑥̇), where 𝑉(𝑥) is the strain energy 

of the system, and 𝑇(𝑥, 𝑥̇) is the kinetic energy. The nodal position is defined as 𝑥, and the nodal 

velocity is 𝑥̇. 

The total strain energy 𝑉 consists of contributions from crease folding (𝑉𝑓𝑜𝑙𝑑), panel 

bending (𝑉𝑏𝑒𝑛𝑑), and panel stretching (𝑉𝑠𝑡𝑟𝑒𝑡𝑐ℎ). The strain energy from crease folding 𝑉𝑓𝑜𝑙𝑑, 

results from bending of torsional hinges at folding creases. The panel bending strain energy 

𝑉𝑏𝑒𝑛𝑑, is due to bending of the torsional hinges at bend lines in the model. Finally, the strain 

energy from stretching in the panels 𝑉𝑠𝑡𝑟𝑒𝑡𝑐ℎ, is due to elongation and compression of bars. Strain 

energy from crease folding or panel bending is computed as in Eq. 8, where 𝜃𝑖 can be the folding 

angle 𝜃𝑓 or the bending angle 𝜃𝑏, and 𝑀 is the reactive torque. The force generated on related 

nodes from the torque 𝑀 is calculated by Eq. 9. Each dihedral angle 𝜃𝑖 is formed by its two 

adjacent triangular panels, containing a total of four nodes, therefore the partial derivative 

𝜕𝜃𝑖 𝜕𝑥⁄  results in four vectors.  

𝑉𝑖 = ∑ ∫ 𝑀(𝜃̂𝑖)𝑑𝜃̂𝑖

𝜃

𝜃0𝑖

    (𝑖 = 𝑓𝑜𝑙𝑑, 𝑏𝑒𝑛𝑑) (8) 

𝐹𝑖 =
𝜕𝑉𝑖

𝜕𝑥
= ∑

𝜕𝑉𝑖

𝜕𝜃𝑖

𝜕𝜃𝑖

𝜕𝑥
𝑖

= ∑ 𝑀(𝜃𝑖)
𝜕𝜃𝑖

𝜕𝑥
𝑖

     (𝑖 = 𝑓𝑜𝑙𝑑, 𝑏𝑒𝑛𝑑) (9) 

In the strain energy from panel stretching 𝑉𝑠𝑡𝑟𝑒𝑡𝑐ℎ, the variable 𝑊 is the strain energy 

density function as expressed in Eq. (11-12), in which 𝐸 is the Green-Lagrange strain tensor, 

with material constants 𝛼𝑖, 𝜇𝑖 , 𝑁, and axial stretch 𝜆1. The corresponding nodal force 𝐹𝑠 is 

derived by Eq. 13. 
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𝑉𝑠𝑡𝑟𝑒𝑡𝑐ℎ = ∑ ∫ 𝑊(𝐸𝑠)𝐴𝑠_𝑏𝑎𝑟𝑑𝑥

𝐿𝑏𝑎𝑟

0𝑠=𝑏𝑎𝑟

 (10) 

𝑊(𝐸) = ∑
𝜇𝑖

𝛼𝑖

(𝜆1
𝛼𝑖 − 1)

𝑁

𝑖=1

 (11) 

𝜆1 = √2𝐸 + 1 (12) 

𝐹𝑠 =
𝜕𝑉𝑠𝑡𝑟𝑒𝑡𝑐ℎ

𝜕𝑥
 (13) 

Our dynamic model considers damping due to crease folding and panel elastic 

deformations, including the panel bending and stretching. The damping from crease folding and 

panel bending are represented by damping at hinges in the bar and hinge model with equivalent 

linear damping coefficient 𝑐𝑓 (crease folding) and 𝑐𝑏 (panel bending). The nodal force 𝐹𝑑𝑖 of 

damping from crease folding or panel bending is derived in Eq. 14. The angular velocity 𝜃̇ is a 

function of the dihedral angle in the hinge (𝜃) and the translational velocity 𝑥̇: 𝜃̇ =
𝑑

𝑑𝑡
𝜃(𝑥) =

𝑑𝜃

𝑑𝑥

𝑑𝑥

𝑑𝑡
. The damping from panel stretching is represented by damping of bar deformation in the 

bar and hinge model with equivalent linear damping coefficient 𝑐𝑣𝑠. The nodal force 𝐹𝑑𝑠 from 

panel stretching is as shown in Eq. 15, where 𝑙 is the length of a bar, and 𝑙 ̇is the rate of length 

change of the bar. 

𝐹𝑑𝑖 = 𝑐𝑖𝜃̇
𝜕𝜃̇

𝜕𝑥̇
    (𝑖 = 𝑓𝑜𝑙𝑑, 𝑏𝑒𝑛𝑑) (14) 

𝐹𝑑𝑠 = 𝑐𝑣𝑠𝑙 ̇
𝜕𝑙

𝜕𝑥
 (15) 

The kinetic energy 𝑇(𝑥, 𝑥̇) is computed by a summation of kinetic energy of each 

individual node as in Eq. 16. The parameter 𝑚𝑖 is the mass of the 𝑖-th node, and 𝑥̇𝑖 is its nodal 

linear velocity. 



 

 16 

𝑇 = ∑
1

2
𝑚𝑖𝑥̇𝑖

2

𝑖

 (16) 

We perform non-dimensionalization to the EOMs. The general form of the EOM for a 

DOF 𝑢𝑖 is shown in Eq. 17, in which 𝑢𝑖 is the 𝑖-th non-dimensionalized nodal displacement. In 

this equation, the summation over 𝑝 = 𝑓𝑜𝑙𝑑 refers to all the fold creases that are related to this 

node; the summation over 𝑞 = 𝑏𝑒𝑛𝑑 refers to all bend lines at this node; the summation over 𝑟 =

𝑏𝑎𝑟 refers to all the bars that are connected to this node. The forces 𝐹̅𝑓𝑝
 and 𝐹̅𝑏𝑞

refer to the non-

dimensional nodal forces at this node generated by the 𝑝-th folding crease and the 𝑞-th bending 

line respectively. The force 𝐹̅𝑠𝑟
 is the non-dimensional force from panel stretching represented by 

deformation of 𝑟-th bar. The non-dimensional nodal forces generated from the damping are 𝐹̅𝑑𝑓𝑝
,

𝐹̅𝑑𝑏𝑞
 and 𝐹̅𝑑𝑠𝑟

, for the 𝑝-th folding crease, the 𝑞-th bending line, and the 𝑟-th bar respectively. 

Equation 18 shows a detailed expression.  

As for the external load, in the sheet analysis, 𝐹̅𝑒𝑥 = 0 because the deployment is fulfilled 

by the stored strain energy at the initially folded folding hinges from the structure itself. 

In the deployment of Miura origami tube, the deployment is driven by the applied fluidic 

field inside the tube. Here we assume a space-invariant fluidic field and use nodal forces at the 

three vertices of each triangular element of a facet to represent the force from the internal fluidic 

field. When the three nodal forces all take on value as 𝑃̅𝑖𝑆𝑖̅/3 with orientation perpendicular to 

the facet pointing to the outside of the tube, the first and second moments of the nodal forces 

match those of the pressure load. In the tube analysis, we keep fixed ratios 𝑐𝑓̅ 𝑘̅𝑓⁄  and 𝑐𝑏̅ (𝑟̅𝑘𝑘̅𝑓)⁄  

such that the damping ratios are constant for better observation of the deployment behaviors. 

𝑚̅𝑖𝑢̈𝑖 + ∑ (𝐹̅𝑓𝑝
+ 𝐹̅𝑑𝑓𝑝

)

𝑝=𝑓𝑜𝑙𝑑

+ ∑ (𝐹̅𝑏𝑞
+ 𝐹̅𝑑𝑏𝑞

)

𝑞=𝑏𝑒𝑛𝑑

 (17) 
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+ ∑ (𝐹̅𝑠𝑟
+ 𝐹̅𝑑𝑠𝑟

)

𝑟=𝑏𝑎𝑟

= 𝐹̅𝑒𝑥 

𝑚̅𝑖𝑢̈𝑖 + 𝑘̅𝑓𝐿̅𝑓 ∑ (
𝜕𝜃𝑝

𝜕𝑢𝑖

(𝜃𝑝 − 𝜃𝑝0) +
𝑐𝑓̅

𝑘̅𝑓

𝜕𝜃𝑝

𝜕𝑢𝑖

2𝜁0𝜃̇𝑝)

𝑝=𝑓𝑜𝑙𝑑

 

(18) +𝑟̅𝑘𝑘̅𝑓𝐿̅𝑏 ∑ (
𝜕𝜃𝑞

𝜕𝑢𝑖

𝜃𝑞 +
𝑐𝑏̅

𝑟̅𝑘𝑘̅𝑓

𝜕𝜃𝑞

𝜕𝑢𝑖

2𝜁0𝜃̇𝑞)

𝑞=𝑏𝑒𝑛𝑑

 

+ ∑ (
𝐿̅𝑟 − 𝐿̅𝑟0

𝐿̅𝑟

𝜕𝐿̅𝑟

𝜕𝑢𝑖

+ 𝐿̅𝑟

𝜕𝐿̅𝑟

𝜕𝑢𝑖

2𝜁0𝐿̅𝑟
̇ )

𝑟=𝑏𝑎𝑟

= 𝐹̅𝑒𝑥 

All the parameters and the variables are non-dimensionalized with the parameters found 

in Table 2. In this table, 𝑚0 is the mass of the central node in the parallelogram panel. The mass-

related variables (𝑚0, 𝑚1, 𝑚2) are non-dimensionalized by 𝑚0. The crease length 𝑎 depicted in 

Figure 1a and Figure 2a is used to non-dimensionalize the length-related variables (lengths of 

folding creases, bending lines, and bar elements). The variable 𝜏 is the non-dimensional time, 

and 𝜔0 is defined by 𝜔0 = √
𝐸∙𝐴𝐷

𝑎∙𝑚0
, in which 𝐴𝐷 is the cross-section area of the bar along the 

diagonal of the parallelogram as in Eq. 3. We introduce a stiffness parameter 𝑟̅𝑘, which is the 

stiffness ratio between panel bending and crease folding. The damping coefficient of torsional 

springs are non-dimensionalized by the viscous damping coefficient 𝑐𝑣𝑠 of bar deformation. The 

damping ratio is defined by 𝜁0 =
𝑎𝑐𝑣𝑠

2𝑚0𝜔0
. 

Table 2. Non-dimensionalization parameters. 

Scales ND parameters 

Mass 𝑚̅ = 𝑚𝑖 𝑚0⁄  (𝑖 = 0,1,2) 

Length 𝐿𝑖̅ = 𝑙𝑖 𝑎⁄  (𝑖 = 𝑝, 𝑞, 𝑠) 

Time 𝜏 = 𝜔0𝑡 
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Stiffness 

𝑘𝑖̅ = 𝑘𝑖 𝐸𝐴𝑏𝑎𝑟⁄  (𝑖 = 𝑓, 𝑏) 

𝑟̅𝑘 = 𝑘̅𝑏 𝑘̅𝑓⁄  

Damping 𝑐𝑖̅ = 𝑐𝑖 𝑎2𝑐𝑣𝑠⁄  (𝑖 = 𝑓, 𝑏)  
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Chapter 3 Deployment Dynamics of Miura Origami Sheets  

 

We utilized the models described in Chapter 2 to analyze the deployment dynamics of the 

origami structures. The investigation on the Miura origami sheet deployment is presented in 

Chapter 3, covering discussions of how the problem is set up (Section 3.1) and the effects of 

stiffness (Section 3.2), geometry (Section 3.3), and control rate (Section 3.4) on the deployment 

dynamics of the Origami sheet. 

3.1 Deployment Setup 

In the sheet analysis, the deployment occurs because there is strain energy stored in the 

initially folded stage, thus we fix the structure on one end, and then the free end can deploy 

automatically if set free. One common way to control deployable structures is to apply a pulling 

force or a displacement control on the free end39. In this study, we apply a time-dependent 

displacement control at the free end of the structure to mimic a common method where cables or 

cords are used to control the deployment of the structure. We set up three sets of different 

boundary constraints for the Miura origami sheet, one at the initial folded stage, the second for 

during the deployment process, and the third at the post-deployment stage. These constraints are 

applied at the relevant nodes, which are numbered according to Figure 1b.  

At the initially folded stage, to ensure compact folding with internally stored energy, we 

fix all the vertices so that they will remain at prescribed positions. During deployment, to 

achieve smooth deployment and avoid additional panel deformation due to boundary constraints, 

we only fully constrain nodes 2 and 3 at the left end of the Miura origami sheet, denoted by the 
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pink squares in Figure 5. For the right end, we restrain node 32 in the y and z direction and 

control its position in the x direction. We perform a rate analysis in Section 3.4, in which we 

deploy the structure with different values of the rate. The default deployment control rate is 0.6 [-

/sec] if not otherwise specified, e.g., in Section 3.2 and Section 3.3. Under these boundary 

constraints, the structure will be able to follow the kinematic path if panels are rigid. If we fixed 

all three nodes (node 1, 2, 3) on the left end, these nodes would form a V shape (colored in 

yellow in Figure 5) that remains fixed and prevents full deployment to a flat state. Deployment is 

controlled by prescribing the motion of the middle node on the right end (denoted with a green 

triangle) along a straight path, as shown by the green arrow in Figure 5. When the structure 

reaches its deployed stage, in which the sheet is fully flat, the displacement control will stop, and 

the controlled node will be fixed at the final position. In our analysis, the stress-free state is the 

flat configuration. Before deployment starts, the Miura origami sheet is folded into a compressed 

state with a fold angle of 𝜌 = 80°. Once the Miura origami sheet is released, the deployment will 

occur by the releasing of the strain energy initially stored at the folded creases. The three 

different kinds of boundary constraints are shown in Table 3. Nodes which are not included in 

the table are only constrained before the deployment begins. 

 

Figure 5. A Miura origami sheet at a mostly folded stage for illustration of boundary constraints. The 

nodes with pink squares are fixed in all three directions. The node with a green triangle is controlled during 

deployment and fixed after deployment. The arrow shows the path of displacement control. 
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Table 3. Boundary constraints before, during, and after the deployment process. 

        DOF 

Stage 

Node 2 Node 3 Node 32 

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 

Before 

deployment 
All vertices fully fixed 

During 

deployment 
fixed fixed fixed fixed fixed fixed controlled fixed fixed 

After 

deployment 
fixed fixed fixed fixed fixed fixed fixed fixed fixed 

 

3.2 Influence of Stiffness Coefficients on Deployment Dynamics 

In this Section, we investigate the role of the crease folding stiffness and the ratio 

between the panel bending stiffness and crease folding stiffness on the structural dynamic 

response. We perform numerical simulations on the non-dimensional model. The structure starts 

to deploy when the Miura origami sheet is released, and a displacement control with a constant 

velocity 0.6 [-/sec] is applied to the right end to guide the deployment process (Figure 5a). 

Unlike the single DOF rigid kinematic unfolding process, the panels undergo bending and 

stretching deformations, and the entire Miura origami sheet shows transient oscillation during the 

deployment. 

In Figure 6, we use yellow color to represent the dynamic deployment configuration of 

the sheet, while blue color refers to the corresponding rigid unfolding configuration at the same 

stage of deployment. The deployment stage is defined using the distance between the fixed node 

2 and the controlled node 32 in the x direction, denoted by 
axL  in Figure 5b. We represent the 
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deployment stage using a percentage of the length of the current configuration, 
axL , with respect 

to that of the fully deployed flat configuration (Figure 5b). To quantitatively evaluate the 

dynamic behaviors of the Miura origami sheet, we compare the dynamic configuration with the 

corresponding kinematic configuration at the same deployment stage, and compute the deviation 

for each of the nodes (four sample node deviations are shown with pink arrows in Figure 5b). 

The average of the magnitude of the deviation among all the nodes is used to evaluate the 

difference between the dynamic deployment configuration and the rigid kinematic unfolding 

configuration, which is presented as a function of time in Figure 5c. To characterize the 

performance of the deployment process, we employ the peak value of the averaged nodal 

deviation   that occurs during the deployment time history (e.g., 3.8 sec in Figure 5c) as an 

index for comparison. 

From the normalized stiffness terms in Eq. (20), we vary the effective stiffness by 

changing the stiffness variables ( ),k fr k , where the structure may exhibit qualitatively very 

different deployment behaviors. The deployment processes of three structures with different 

stiffness ratios 
kr  are shown with snapshots in Figure 6. In cases where the panel stiffness is 

similar in magnitude to the fold stiffness, the structure undergoes a large global bending and 

snaps into a ‘pop-up’ configuration. This pop-up occurs at different stages depending on the 

stiffness ratio. In Figure 6, the structure with 5kr =  undergoes pop-up earlier during deployment 

than structure with 7kr = . However, as the stiffness ratio 
kr  increases, the dynamic deployment 

starts to follow closer to the rigid kinematic unfolding, and as with 10kr =  and higher, the pop-up 

does not occur throughout the deployment process. Experimentally, we observe similar 

behaviors through studying a proof-of-concept prototype as shown in Figure 7. The facets are 

built by two layers of paper, and are connected by a thin 0.5 [mm] plastic sheet in the middle 
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(Figure 7i). The dimensions are the same as listed in Table 1. The deployment is guided by 

stored strain energy and a displacement control on the right end denoted by the white arrow. The 

structure can stabilize at configurations similar to those captured in the snapshots of the dynamic 

process from the analysis, indicating that the different dynamic configurations are the results of 

the different stable equilibria of the structure at different deployment stages. In Figure 6, the 

model exhibits the squeezed configuration (Figure 6a), a pop-up configuration (Figure 6b,c,f), a 

less distorted shape at a more deployed stage (Figure 6d,g,h), and the stress-free flat state (Figure 

6e). 

 

Figure 6. Snapshots of the deployment process of the 3-unit Miura origami sheet structure with different 

stiffness ratios: (a-d) 5kr = ; (e-g) 7kr = ; and (h-k) 10kr = . The fold stiffness is the same for all cases with 

73.8 10fk −=  ( 0 1f fk k = ). 
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Figure 7. Experimental investigation: snapshots of the configurations at different deployment stages of a 3-

unit Miura origami sheet prototype. The upper crease on the left end is fixed, and the central vertex on the right end 

is controlled, denoted by the white arrow. (a) refers to a folded state, (b) refers to a pop-up state, with (c) and (f) 

showing a front view and side view of the pop-up state, respectively. (d) refers to a more deployed state with (g) and 

(h) showing a front view and side view. (e) refers to the flat configuration. (i) shows a detailed view of the crease. 

 

The global pop-up motion in the snapshots (Figure 6) result in large nodal deviations and 

are dependent of stiffness. We perform a parametric study on the stiffness coefficients ( ),k fr k  

and compute the corresponding   for each of the deployment processes (Figure 8). We use a 

normalization value 7

0 3.8 10fk −=   to allow for simpler representation of the folding stiffness. 

The structures with higher fk , meaning stiffer fold lines, results in slightly higher δ than those 

with lower fold stiffness but the same ratio 
kr . Because the deployment is facilitated by strain 

energy stored in the fold creases, systems with higher fk  have more energy stored initially, 

which results in more reactions among units during the dynamic motion and more panel 
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deformation, and thus higher overall deviation. The stiffness ratio 
kr  has more significant effects 

on the structural dynamic behaviors. As the ratio 
kr  increases, meaning that the panels become 

stiffer relative to the folds, there is less panel bending, and the deviation   decreases to zero 

where the structure follows the nominal rigid unfolding path. Three sharp declines are observed 

in the averaged nodal deviation peak, the first between 7kr =  and 8kr = , the second between 

9kr =  and 10kr = , and the last between 78kr =  and 100kr = , depending on the fold stiffness fk . 

These three drops happen due to distinct changes in the structural behaviors. Before the first drop 

of   in Figure 8, the stiffness of the panels is similar to the stiffness of the folds. The 

corresponding structure snaps into the “pop-up” state as soon as it is released from the initial 

boundary constraints (Figure 6(a-d)) which results in the highest nodal deviations. As the panel 

to fold stiffness ratio increases to 7kr = , there is a drop in the deviation, because the structure 

only pops up later during the deployment process (see difference between Figure 6(b) and Figure 

6(f)). This later occurrence of the pop-up deformation results in a relatively smaller   than if the 

pop-up occurs at the beginning of the deployment process. The second drop in deviation in 

Figure 8 occurs when the panels are further stiffened with a ratio of 10kr = . In this case, despite 

some modest deviations, the system remains close to the rigid kinematic unfolding configuration, 

and no pop-up occurs throughout the deployment process. As the panel to fold stiffness ratio 

increases beyond 10kr = , the origami sheet will not pop up, indicating the existence of a critical 

value for the stiffness coefficient 
kr , beyond which large global deviations can be avoided. We 

define the minimum stiffness ratio that keeps the structure from pop-up as 
kmr . In Section 3.3.2, 

we will discuss that this critical value 
kmr  also depends on the number of units in the Miura 

origami sheet. The nodal deviations undergo the third drop around 78kr =  with 0 1f fk k = , and at 
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successively higher ratios for structures with stiffer folds (up to 100kr =  for structures with 

0 50f fk k = ). We select the curve with 0 1f fk k =  for illustration and compare the case 78kr =  with 

80kr = , as shown in Figure 9. When released, the softer structure ( 78kr = ) snaps into a 

configuration with uneven deviations among the different units, where the rightmost unit is more 

compressed, while the left and middle units are more deployed than the rigid unfolding 

configuration (Figure 9a). Later in the deployment process the structure snaps back to a more 

uniform configuration that closely follows the rigid configuration, as shown in Figure 9c. As for 

the stiffer case ( 80kr = ), the structure always stays at near the rigid unfolding configuration 

throughout deployment, and the deviations are thus much smaller. 

 

 

Figure 8. A parametric study of the stiffness coefficients for a 3-unit Miura origami sheet. We vary the 

stiffness ratio 𝑟̅𝑘 ∈ [5,1000], where 5 refers to a system where panels and folds have a similar stiffness (e.g., a 

paper prototype), and 1000 refers to a system where the panels are much stiffer (e.g., metal panels connected with 

hinges). The x-axis is the stiffness ratio 
kr  in log scale, and the y-axis is the peak value of the averaged nodal 

deviations   on a linear scale. The curves in different colours indicate different fold stiffness fk . We vary the fk  

with respect to 
7

0 3.8 10fk −=  , and present a normalized ratio. In the regions [10,70]kr   and 200kr  , the 

difference between results is small, and the curves overlap each other. 
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Figure 9. Snapshots of the deployment process of structures with (a-c) 78kr = ; and (d-f) 80kr = . Both 

structures have 0 1f fk k = . These two deployment processes correspond to directly before (a-c) and after (d-f) the 

third drop in the 0 1f fk k =  curve in Figure 8. The two systems have different extents of deviation from the rigid 

path. 

 

This study shows that the structure can exhibit significantly different behaviors as a 

function of stiffness. The fold stiffness fk  directly affects the initially stored strain energy, and a 

higher fold stiffness can slightly increase the deviation between systems with the same ratio 
kr . 

The ratio 
kr  plays a more important role than the absolute value of the fold stiffness. Low 

kr  

values result in large panel deformations and possibly a global pop-up type motion. When the 

ratio 
kr  is increased beyond a critical value 

kmr  the pop-up behavior is inhibited, and the structure 

eventually follows the rigid kinematic unfolding configuration. 

 

3.3 Influence of Geometry on the Deployment Dynamics 

According to Section 3.2, the structural dynamic deployment behaviors can be greatly 

influenced by changing the material stiffness coefficients, especially the stiffness ratio 
kr . Large 

kr  represents stiffer panels compared to the fold lines, and thus less deformation and deviation 

occurs during the deployment when compared to the rigid unfolding case. In this Chapter, we 
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will show that, other than the material stiffness coefficients, the number of units and geometry of 

the origami can also change the effective stiffness of the structure (Sections 3.3.1 and 3.3.2), and 

thus will affect the dynamic deployment process (Sections 3.3.3 and 3.3.4). 

3.3.1 Influence of Geometry on Structural Stiffness Properties 

The EOM in Eq. (20) reveals that the nodal force can be affected by the crease length L  

and partial derivative u  , which implicitly contain other geometric parameters and thereby 

affect the overall stiffness of the crease. Here, we first examine one unit to show how the 

effective stiffness ratio between a fold line and bend line (Figure 10a), defined as 

p q

eff p q

i j

r L L
u u

  
=

 
, is affected by the geometric parameters. The contour plot in Figure 10b 

shows the effective stiffness ratio with respect to the crease length ratio and the sector angle. The 

crease length ratio is the ratio between the length of the horizontal folds versus the length of the 

vertical folds: b b a=  (Figure 10a). A unit with a low sector angle of 30  and a high crease 

length ratio of 2 (Figure 10f) has an effective stiffness ratio that is about 5 times higher than that 

of the unit with a sector angle of 80  and a crease length ratio of 0.5 (Figure 10c). These large 

differences in the effective stiffness ratio indicate that the geometric parameters can have a 

significant effect on the global stiffness properties, and thus may influence the deployment 

dynamics. 
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Figure 10. (a) A unit of the Miura with the fold line (yellow) that is related to the movement of nodes 6-7-4-

9, and the bend line (pink) related to nodes 4-7-2-6. (b) Contour plot of the effective stiffness ratio 
kr , which is 

shown in the z-direction with colored shading. The parameter space is spanned by the crease length ratio b  in the 

x-axis and the sector angle   in the y-axis. (c, d, e, f) show the extreme cases of geometric parameters at the four 

corners of the contour plot. 

 

As the origami sheet deploys, its overall geometric shape changes with the folding angle, 

which will affect the effective stiffness of the system. This shape change occurs even though the 

base geometric parameters   and b  are kept constant. Because the mass of the structure remains 

proportional to the size of the structure, the modal natural frequencies derived from an eigen-

analysis can provide a direct representation of the effective structural stiffness. Here, we perform 

an eigen-analysis on the static equilibrium state of the system at different points along the 

deployment path. We apply the same boundary constraints as in the dynamic analysis except that 

we fix node 32 at each stage along the deployment path. The static equilibrium state is obtained 

by allowing the nodal position of the origami to converge to a new configuration through an 

iterative process of the static governing equations (delete the time varying variables and inertial 

and damping terms from the dynamic EOM) which minimizes the sum of internal forces within 

the system. An eigen-analysis using the mass and stiffness matrices of the structure is then 

performed to find the natural frequencies and the corresponding fundamental modes. Figure 11 

shows results from this analysis for different points along the deployment path of the origami. 
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This 3-unit sheet has a crease length ratio at 1b = , sector angle at 60 =  , and stiffness 

parameters ( 0100, 1k f fr k k= = ). The natural frequencies of the structure increase with 

deployment, and reach a peak value followed by a sharp decline near the fully deployed stage 

(Figure 11g). At a low deployment extent of 5%, the first two eigenmodes refer to deployment 

mainly in the longitudinal direction (Figure 11(b, c)), while the third eigenmode refers to a near 

pop-up transverse or bending configuration (Figure 11a). As the deployment increases to 20%, 

the second (Figure 11e) and third (Figure 11c) eigenmodes switch in order. As the structure 

becomes more deployed, the eigenmodes become significantly different (Figure 11(h-j)). A sharp 

reduction in the natural frequencies is observed around the deployment extent of 100%. By 

comparing the shape of the eigenmodes at 99% and 100% we see that the behavior changes 

drastically, and the origami sheet at a flat state has modes that resemble the transverse bending 

modes of an elastic beam (Figure 11(l-m)). In these modes, the deformation concentrates at the 

creases, which results in less energy and a lower natural frequency. 

 

Figure 11. The first three natural eigenmodes of the sheet. (g) The natural frequencies as a function of the 

deployment stage. In the snapshots, the dark blue configurations refer to the quasi-static equilibrium position, and 

the remaining colors (cyan, magenta, and green) refer to the shape of the first three eigenmodes. Each row 

corresponds to a certain mode, while each column corresponds to a certain extent of deployment. 

 

To obtain a more comprehensive understanding, these eigenvalue analyses are performed 

for the sheet with different geometric parameters and with different numbers of units. Figure 12 
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shows contour plots of the first mode natural frequency 
n  for structures with different 

parameters (crease length ratio b , sector angle  , and number of units) presented in the 

horizontal axis and the deployment stage in the vertical axis. Structures with higher b  appear 

softer (lower natural frequency) given the same stage of deployment Figure 12a). From Figure 

12b, we see that the maximum natural frequency (and stiffness) occurs for structures with a 

sector angle   of around 65 . For low deployment stages, structures with 57   , have a 

discontinuity in the natural frequency values which is due to the stable quasi-static state entering 

another equilibrium state as will be discussed in 4.3.3. In Figure 12c, we perform the eigenvalue 

analysis on sheets with different numbers of units and show that the Miura origami sheets 

consisting of more units tend to be softer (lower natural frequency) because more creases and 

panels in the structure allow for more global deformation. Note that with more units, the internal 

mass and stiffness of the structure both increase proportionally, but the overall effective stiffness 

decreases. The apparent discontinuities in Figure 12c occur because the contour lines have fixed 

values, and there is sparse data in the horizontal direction corresponding to discrete values for the 

number of units. With all different parameter variations, as the structures become more deployed 

(i.e., around 80-99%), they exhibit a higher natural frequency and effective stiffness similar to 

the results observed in Figure 11g. 
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Figure 12. The first mode natural frequency n  of the Miura sheet structure with different geometric 

parameters. The geometric parameter is varied with the x axis and the deployment stage with the y axis.  (a) 

Different crease length ratios b , where the sector angle is kept at 60 =  , and there are 3 units in the sheet. (b) 

Different sector angles, where the crease length ratio is kept at 1b = , and there are 3 units in the sheet. (c) A 

different number of units in the sheet, while the crease length ratio is kept at 1b = , and the sector angle is kept at 
60 =  . (Note: a continuous contour is presented, but only discrete values of the number of units are used in c). 

 

3.3.2 Influence of Number of Units on the Dynamic Deployment Process 

The eigen analysis in Section 3.3.1 showed that origami sheets consisting of more units 

have a lower natural frequency and lower effective stiffness (Figure 12c). In this Section, we 

investigate the dynamic deployment behavior of origami sheets with different numbers of units. 

Figure 13 shows that the nodal deviation   increases with the number of units, indicating that 

the longer and more flexible structures experience more deformation as can be expected. 
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Figure 13. Nodal deviation   increases with the number of units in the origami sheet. The Miura sheet 

has the geometry of ( 1, 60b = =  ), and stiffness parameters of ( 0100, 1k f fr k k= = ). With these stiffness 

parameters, the structures do not experience the pop-up deformation observed earlier in Chapter 3. 

 

The value of the critical stiffness ratio 
kmr  at which the structure will no longer experience 

a pop-up deformation (Figure 6(b, c, g)) also varies with the number of units in the structure. We 

vary the number of units and perform dynamic analyses on structure with different stiffness 

parameters ( 0,k f fr k k ), and show the relationship between the nodal deviation   and stiffness 

parameters ( 0,k f fr k k ) for systems with 5, 7 and 10 units (Figure 14(a-c)). As discussed in 

Chapter 3, the ratio   plays a more significant role than the fold stiffness in affecting the 

qualitative deployment behavior. For stiffness ratios lower than 
kmr , the structure undergoes a 

pop-up and results in high nodal deviation, while for higher stiffness ratios, the pop-up is 

avoided, and the structure follows the rigid kinematic configuration more closely. The analyses 

on structures with 5, 7, and 10 units show the same qualitative behaviors (Figure 14(a-c)). 

Moreover, the critical ratio 
kmr  increases as we increase the number of units, and a higher 

stiffness ratio 
kr  is needed to avoid pop-up in the longer and more flexible structures (Figure 

14d). In other words, stiffer panels are needed to avoid the pop-up deformation for longer sheets.  
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Figure 14. Stiffness ratio with respect to the nodal deviation for (a) a 5-unit, (b) a 7-unit, and (c) a 10-unit 

Miura origami sheet. In (a-c), the 
kmr  is circled for the case where 0 1f fk k = . (d) The critical value 

kmr  for 

0 1f fk k = , which is the minimum stiffness ratio to avoid a “pop-up” deformation, is higher as more units are used 

in the Miura origami sheet. 

 

3.3.3 Influence of Geometry on the Dynamic Deployment Process 

In this Section, we present numerical simulation results to illustrate how the geometric 

parameters of the Miura origami sheet affect the dynamic deployment process. We specifically 

explore the influence of the sector angle   and the crease length ratio b . The geometric 

parameters under investigation are varied while the other parameters remain at their nominal 

values. In the nominal pattern, the sector angle 60 =  , crease length ratio 1b = , and the number 

of units in the sheet is three. In this geometric parametric study, the stiffness parameters are (

0100, 1k f fr k k= = ) and the deployment control rate is set to be 0.6 [-/sec]. 
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With the given stiffness parameters, the study in Chapter 3 showed that the structure 

would deploy with little deviation from the rigid kinematic configuration ( 0100, 1k f fr k k= =  in 

Figure 8). By changing the geometric parameters, the effective stiffness will change, thus 

affecting the dynamic deployment behavior. In Figure 15 we show the deviation of dynamic 

deployment of a 3-unit Miura origami sheet with different sector angles and crease length ratios. 

We find that the peak nodal deviation   increases with the increasing crease length ratio b . 

This phenomenon can be explained by the increase of structural flexibility as reflected by the 

decreasing natural frequency shown in Figure 12a. By increasing the sector angle  , the nodal 

deviations remain constant or increase slightly until they reach a boundary marked by a white 

dash-dot line in Figure 15. To the left and above the boundary line, the nodal deviations are 

much higher than that to the lower right side on the contour plot, indicating a qualitative change 

in the deployment behavior. To gain more insight into this discontinuity, we first perform two 

case studies: in Section 3.3.3.1, we fix the crease length ratio at 1 and vary the sector angle 

(yellow line in Figure 15), and in Section 3.3.3.2 we fix the sector angle at 60  and vary the 

crease length ratio (magenta line in Figure 15). In Section 3.3.4, we further explore the geometric 

influence, and show that this discontinuity is due to a second stable equilibrium of the structure. 
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Figure 15. The nodal deviation of the dynamic deployment process of the Miura sheet structure with 

different geometric parameters. The sector angle   is varied with the x axis and the crease length ratio b  with the 

y axis. The magenta line shows the case when the crease length ratio is varied with a fixed sector angle at 60 ; the 

yellow line represents the case when the sector angle is varied with a crease length ratio fixed at 1. 

 

3.3.3.1 Case study on the sector angle   when 1b =  

In this Section, we discuss the influence of the sector angle   on the deployment 

dynamics when the crease length ratio b  is set to 1. Figure 15a shows that the nodal deviation 

  slightly increases as the sector angle increases in the range of [30 ,59.4 ]    . A sharp decrease 

in nodal deviation occurs between 59.4 =   and 59.6 ,which corresponds to the intersection of 

the contours near the white curve in Figure 15. This decrease occurs because the deployment 

process is qualitatively different between the structures with a sector angle of 59.4    and those 

with 59.4    (Figure 16). During the deployment process, the structure with 59.4 =   first snaps 

into a distorted configuration with a high deviation (Figure 16c). As the structure deploys, it first 

becomes more distorted (Figure 16d), and then, around the middle of the deployment process, it 

returns to a configuration that is near the rigid folded state. The structure then has little deviation 

until it becomes fully deployed (Figure 16e). The structure with 59.6 =   also deforms into a 

distorted configuration when it is first released (Figure 16f), but quickly returns near to the rigid 
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unfolding configuration (Figure 16g) and maintains little deviation until fully deployed (Figure 

16h). This sharp drop in nodal deviation and the corresponding change in deployment behavior 

indicate that a slight change in sector angle can cause a qualitative change to the dynamic 

deployment process. 

 

Figure 16. (a) Nodal deviation   during the deployment process with respect to the sector angle (each dot 

represents the result of an individual deployment analysis). The two embedded images show the extreme values of 

sector angle 30 =   and 80 =  . (b) Time history of the nodal deviation for the structures with different sector 

angles. The yellow color refers to the dynamic deployment configuration, while the blue color refers to the 

corresponding rigid unfolding configuration at the same stage of deployment. (c-e) are snapshots of the 

configuration during deployment for 59.4 =  , in which (c) refers to 0.069 sec, (d) to 0.709 sec, and (e) to 1 sec, 

corresponding to the pink squares on the blue curve in (b). (f-h) are snapshots of the configuration during 

deployment for 59.6 =  , in which (f) refers to 0.044 sec, (g) to 0.2 sec, and (h) to 1 sec, corresponding to the 

green triangles on the red curve in (b). The structures here have a crease length ratio of  1b = . 

 

3.3.3.2 Case study on the crease length ratio b  when 60 =   

In this Section, we discuss the effect of the crease length ratio b  on the dynamic 

deployment behaviors of the Miura origami sheet, when the sector angle   is kept at 60 . 

Results in Figure 17a show that the nodal deviation   increases and eventually approaches a 

constant value as the crease length ratio b  increases.  However, the curve shows a discontinuity 

in its middle part, which corresponds to the two intersections between the magenta line and the 

white curve in Figure 15. The overall increase of   with b  is because the structure becomes 

wider and thus softer with higher b , which is consistent with the results in Figure 12a. We then 
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investigate the discontinuity in the relationship between   and b , which are the sudden 

increase of 41.5% in   at [1.051,1.052]b =  and the drop of 23.1% at [1.375,1.380]b = . The 

deployment process is illustrated by the time history of deviation   in Figure 17b. For 

[1.052,1.375]b  , the structure will be in a distorted configuration (distorted from the rigid 

kinematic configuration) at the beginning of the deployment process (shown in Figure 17b, 

Figure 17(f-g) and Figure 17(i-j)).  This distortion will result in higher deviation   than the 

structure with crease length ratio of [0.6,1.051] [1.380,1.7]b   , in which the structure is mostly 

close to the rigid kinematic configuration during the deployment process (Figure 17b, Figure 

17(c-e) and Figure 17(l-n)). The qualitative change in configuration indicates the existence of 

multiple equilibria of the Miura Origami sheet. The structure can approach different equilibrium 

configurations during deployment, depending on the shape of the origami pattern resulting in 

different levels of deviation from the rigid kinematic deployment path. The nodal deviation for 

different geometric patterns can differ by more than a factor of ten as shown in Figure 17a, 

which confirms the importance of the origami geometric effect on deployment dynamics. 

 

Figure 17. (a) Nodal deviation   with respect to the crease length ratio b  (each dot represents the result 

of an individual deployment analysis). (b) Time history of the nodal deviation for structures with crease length 

ratios of [1.051,1.052,1.375,1.380]b = . Snapshots of the sheet configuration during deployment, where the yellow 

color refers to the dynamic deployment configuration, and the blue color refers to the corresponding rigid unfolding 
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configuration at the same stage of deployment. (c-e) are for 1.051b =  at (c) 0.082 sec, (d) 0.35 sec, and (e) 1.5 sec, 

corresponding to the pink squares in (b). (f-h) are for 1.052b =  at (f) 0.1 sec, (g) 0.71 sec, and (h) 1.5 sec, pink 

triangles in (b). (i-k) are for 1.375b =  at (i) 0.116 sec, (j) 0.796 sec, and (k) 1.5 sec, green rhombi in (b). (l-n) are 

for 1.380b =  at (l) 0.116 sec, (m) 0.65 sec, and (n) 1.5 sec, green triangles in (b). The structures here have a sector 

angle of 60 =  . 

 

3.3.4 Localized multistability during the dynamic deployment 

The dynamic analyses in Section 3.3.3 show significantly different deployment behaviors 

for origami sheets with different geometric designs. In this section, we will demonstrate that 

these deviations occur because the structure can snap between different stable states during the 

deployment process.  

We start with a case study to investigate the structural multistability by analyzing the 

structure with a crease length ratio 1.2b =  and a sector angle of 60 =   where we observe the 

distinct increase in deviation as shown in Figure 17a. We use a quasi-static simulation to find 

stable equilibrium states of the structure and to verify that there do in fact exist multiple stable 

states. We use an iterative process on the static governing equations (delete the time varying 

terms and inertial/damping effects from the dynamic EOM), similar to Section 3.3.1, where the 

nodal positions of the origami are updated until we converge to a configuration that minimizes 

the sum of the internal forces in the structure. When we start the iterative process from the rigid 

folding configuration, we consistently converge to the first stable equilibrium state which has 

little deviation from the rigid folding orientation (dark blue images in Figure 18). To search for a 

second stable equilibrium state, we need to begin the iterative process from another initial state 

where the structure is already deformed. We pick an initial deformed state corresponding to the 

shape of the origami during a transient dynamic deployment (magenta images in Figure 18). 

With these initial conditions, the structure can converge to another stable equilibrium (yellow 
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images in Figure 18), which is markedly different from the first (blue images), and has a 

substantial deviation. Figure 18 shows the two stable states of the origami sheet and the transient 

shape of the sheet at different stages of the deployment process. When the dynamic process 

begins the structure snaps into the second stable equilibrium (0 to 0.06 sec Figure 18(a-c)) where 

it has a large deviation from the rigid folded state (Figure 18d). Furthermore, as the structure 

becomes more deployed this second equilibrium state deviates more from the rigid folded state 

(0.06 to 0.75 sec Figure 18(c, e)), which leads to a further increase in the nodal deviation (Figure 

18d). As the origami reaches a more deployed state (0.8 sec Figure 18f) we can no longer find 

the same second stable equilibrium, even when we start the iterative process with a deformed 

initial configuration. While other stable equilibria may exist, the nearest stable equilibrium is the 

same as the first, and thus the structure snaps back to the first stable equilibrium during the 

dynamic deployment (0.8 to 1.1 sec Figure 18(f-g)). The dynamic deployment process 

experiences some transient oscillations after each time the structures snaps into a new 

configuration (~0.06 sec and ~0.9 sec in Figure 18d). For higher states of deployment, the 

transient dynamics closely follow the first stable equilibrium (Figure 18h). 

 

Figure 18. Stability analysis of a 3-unit origami sheet with crease length ratio 1.2b =  and sector angle 

60 =  . (d) Time history of nodal deviation  . (a-c, e-h) Configurations of the stable equilibria and snapshots of 

the transient dynamic deployment at selected deployment stages. The yellow and blue refer to the two stable 
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equilibria, and the magenta refers to the snapshot in dynamic deployment. The stiffness parameters are (

0100, 10k f fr k k= = ). 

We next extend this same multistability analysis to other origami sheets with different 

sector angles and crease length ratios. The yellow region in Figure 19a shows the geometries 

where the structure snaps into and stays near the second stable equilibrium during the dynamic 

deployment process. The boundary of this region is also similar to the white curve in Figure 15, 

to the left of which the structure undergoes higher nodal deviation. We find that during the 

dynamic deployment structures with some geometries (Figure 19(b, d)) snap and oscillate near 

the second stable equilibrium, but structures with other geometries may not (Figure 19(c, e)). 

The structure is still multistable to the right of the boundary (i.e., two stable equilibria can be 

found in Figure 19(c, e)) but a snap does not occur during deployment. This different behavior is 

because the snap-through depends not only on the existence of multistability, but also other 

factors such as the initial strain energy that drives the deployment and the initial conditions of the 

system. Both quantities are well known to influence the response in nonlinear structural 

dynamics. 

 

Figure 19. Dynamic behaviors and multistability of a 3-unit origami sheet with different crease length 

ratios and sector angles. (a) The yellow region represents the parameter sets with which the origami sheet snaps 

into and stays at the second stable equilibrium during the dynamic deployment process. (b-e) Configurations of the 
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two stable equilibria, blue and yellow, for selected pattern geometries. The magenta-colored shape is the deformed 

state of a snapshot from a transient deployment analysis that was used to find the second stable equilibrium. The 

stiffness parameters are ( 0100, 10k f fr k k= = ). 

From this parametric study, it is shown that the geometry, including pattern shape and 

number of units in the sheet, can affect the structural effective stiffness and modal eigenvalues, 

indicating that the structure properties can be varied by designing the origami pattern. Numerical 

simulation further shows significantly different dynamic response of the Miura origami sheet 

with different geometries. Under the same displacement control, structures with certain 

geometric designs are shown to be able to follow the rigid kinematic path better, which is 

explained by the multistability analysis, indicating that the origami geometry can be designed for 

more desirable deployment behavior. These results will provide a foundation for the exploration 

and understanding of origami design for desired deployment performance. 

 

3.4 Influence of Deployment Control Rate 

Prior Sections have illustrated how the stiffness and geometry of the structure affect the 

dynamic deployment process when the deployment rate is fixed to 0.6 [-/sec]. However, the 

deployment behavior also depends on how fast the structure is controlled to deploy. In our study, 

the structure is deployed while controlling the horizontal displacement at the right end with a 

constant velocity. Without loss of generality, we vary the deployment control rate from 0.05 [-

/sec] to 1000 [-/sec]. To understand the influence of the deployment control rate, we perform 

analysis where we change the rate, and compute the average nodal deviations. In these studies, 

the nodal deviations are computed both with respect to the nominal rigid kinematic unfolding 

configuration, and with respect to a quasi-static deployment configuration (prediction 

considering the panel flexibility but not the inertial effect).  The structure is a 3-unit Miura 
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origami sheet with geometric parameters ( 60 , 1b =  = ). We perform this rate analysis on 

structures with different stiffness parameters ( 0,k f fr k k ) and present the results in Figure 20. 

 

3.4.1 Comparison between Dynamic Deployment and Rigid Kinematic Unfolding 

 

Figure 20. Nodal deviation with respect to the deployment control rate. A logarithmic scale is used for the 

deployment control rate in the x axis. The red curve shows the nodal deviation   between the dynamic and rigid 

kinematic unfolding process. The blue curve shows the nodal deviation 
q  between the dynamic and quasi-static 

deployment The stiffness parameters are: (a) ( )010, 1k f fr k k= = , (b) ( )010, 10k f fr k k= = , (c) 

( )0100, 1k f fr k k= = , and (d) ( )0100, 10k f fr k k= = . 
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In this Section, we derive the peak averaged nodal deviation   between the dynamic 

deployment process and the nominal rigid kinematic unfolding to explore the rate effect. In 

Figure 20a, under extremely low and high deployment control rates, the structure deviates from 

the rigid unfolding configuration the most. When deployed slowly, the units inside the Miura 

origami sheet experience non-uniform deformation where the left units are stretched, and the 

right unit is compressed. This deformation occurs especially at the beginning stage when the 

structure is near folded, and the strain energy is high (Figure 21a-c). As the deployment control 

rate is increased, the sheet deploys more uniformly and the deviation decreases. There exists a 

critical value 
rv  for the control rate, where the structure experiences a minimum deviation. For 

the system with stiffness parameters of ( )010, 1k f fr k k= =  the critical rate is 17rv = [-/sec] with 

snapshots of the deployment process shown in Figure 21(e-g). If the deployment control rate 

continues to increase, then δ will increase again. At deployment rates that are much higher than 

rv  the structure will be stretched during the deployment (Figure 21(j-l)), and after it reaches a 

fully deployed state it will continue to undergo oscillations that deviate from the rigid unfolding 

path (Figure 21(k)). This type of analysis can provide guidance for selecting a deployment 

control rate which minimizes the deformation and deviation from the rigid kinematic deployment 

configuration. 
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Figure 21. The deployment process of the structure with stiffness parameters ( )010, 1k f fr k k= =  with the 

deployment control rate of (a-d) 1 [-/sec]; (e-g) 17 [-/sec]; and (h-k) 500 [-/sec]. The structure exhibits significantly 

different behaviors under the different deployment control rates. The yellow color refers to the dynamic deployment 

configuration, while the blue color refers to the corresponding rigid unfolding configuration at the same stage of 

deployment. 

 

The critical value of the deployment control rate 
rv  under which the structure achieves 

minimum deviation is affected by the stiffness properties. Rate control analyses are performed 

for structures with different stiffness parameters, and the results are presented in Figure 20(c-d). 

These results show a similar tendency as in Figure 20a where   will first decrease to a 

minimum deviation at a critical rate 
rv , and then increase with the increase in deployment 

control rate. By comparing Figure 20a with Figure 20b, and Figure 20c with Figure 20d where 

the stiffness ratios are kept constant ( 10kr =  and 100kr =  respectively), but the fold stiffness 

0f fk k  is increased, it can be seen that the structures with stiffer creases (b, and d) have a higher 

rv  than those with softer creases (a and c). The higher 
rv  is because structures with stiffer 

creases possess more strain energy and will undergo more non-uniform deformation induced by 



 

 46 

the higher strain energy. Thus, the structure needs to be deployed faster to avoid the non-uniform 

deformations. Additionally, by comparing Figure 20a with Figure 20c  and Figure 20b with 

Figure 20d where the creases stiffness is kept constant ( 73.8 10fk −=   ( 0 1f fk k = ) and 63.8 10fk −=    

( 0 10f fk k = ), respectively), but the stiffness ratio is increased, we can see that the structures with 

a higher ratio 
kr  have lower 

rv . This lower deployment rate for the structures with a higher 

stiffness ratio is because their relatively stiffer panels can better restrain the squeezing 

deformations among units and thus the structure can be deployed at a lower rate. Additionally, 

the higher stiffness ratio 
kr  (closer to the rigid kinematics unfolding scenario) results in an 

overall lower   because there is less panel deformation and less deviation (i.e., similar to results 

from Chapter 3). 

Under very fast deployment, there exists an upper limit on  . For the structure in Figure 

20a ( )010, 1k f fr k k= =  we approach the upper limit with the deployment rate close to 1000 [-

/sec]. For that case, the maximum deviation   occurs at a time of 0.004 sec during the 

deployment and the corresponding snapshot is shown in Figure 21j. The comparison between the 

snapshot of the dynamic deployment and the corresponding rigid configuration shows squeezing 

among the units, where the leftmost unit is compressed while the rightmost unit is stretched by 

the displacement control. The upper limit in deviation exists because of this large distortion 

between units. As the deployment control rate keeps increasing, the leftmost unit will become 

less compressed and the total   will start decreasing slightly (Figure 20a). 

 

3.4.2 More Insight on the Role of Inertia and Flexibility in Dynamic Deployment 

The deviation of the origami dynamic deployment from the nominal rigid kinematic 

unfolding configuration originates from both the panel flexibility and the inertial effects. In this 
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Chapter, the dynamic deployment is compared with the quasi-static deployment process (which 

includes the panel flexibility but not the inertial effect) to understand more about the role of 

inertia. The nodal deviation between the dynamic and the quasi-static deployment configurations 

is denoted by 
q . At low deployment control rate, 

q  remains constant, meaning that the inertial 

effect on the dynamic deployment process does not change much with the rate. As the control 

rate exceeds a turning point 
qv , shown as a blue square in Figure 20, the nodal deviation 

q  

increases corresponding to an increase of the inertial effects.  

To gain more insight on the effects of the panel flexibility and system inertia, we 

compare the two types of deviation,   and 
q .  Both the effects of flexibility and inertia are 

reflected in δ while only the inertial effect is reflected in 
q . At low control rate, the cases with 

inertia have a larger deviation (
q  ) because inertia dependent oscillations occur after the 

initial release of strain energy which drives the structure into a non-uniform squeezed shape, 

(Figure 21a). At higher control rates, 
q  , due to the combined inertia and flexibility effects.  

Additionally, the turning point changes with the stiffness of the structure. By comparing 

Figure 20a with Figure 20b, as well as Figure 20c with Figure 20d, the structure with stiffer 

folding creases (b and d) has a higher 
qv , meaning that the quasi-static panel deformation 

dominates the overall nodal deviation for a wider range of deployment rates. On the other hand, 

the stiffness ratio 
kr  has relatively low influence on 

qv , as can be seen by comparing Figure 20a 

with Figure 20c, as well as Figure 20b with Figure 20d. 
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3.5 Conclusion 

In Chapter 3, we investigate the dynamics of deployment of a Miura origami sheet. For 

the first time, through analyzing a dynamic model that includes the combination of panel inertia 

and flexibility, we uncover new phenomena and qualitative features that have not been observed 

previously and cannot be derived via traditional quasi-static and rigid kinematic unfolding 

analyses.  Some of the system behaviors observed in the analysis are also shown experimentally 

on a test prototype. By analyzing the deviation of the dynamic deployment configurations from 

those of the traditional approaches, the tools we developed as well as the outcomes can provide 

quantitative information (e.g., parametric space) of where the deployment dynamics would 

become important for better system design and control. 

We develop the dynamic model by considering panel inertia and flexibility, where we 

discretize the structure by using equivalent lump mass elements. We derive the 

nondimensionalized equations of motion and perform analysis to gain general understanding of 

the system dynamic behaviors during deployment. The deployment of the origami sheet is 

facilitated by the stored strain energy in the creases when the structure is folded and a 

displacement control on one end point of the sheet. 

With different stiffness, the structure may exhibit qualitatively very different deployment 

behaviors. In cases where the fold stiffness to panel stiffness ratio (
kr ) is low, the structure may 

undergo a large global bending ‘pop-up’ state. This pop-up occurs at different stages depending 

on the stiffness ratio 
kr .  As 

kr  becomes sufficiently large, the dynamic deployment would be 

closer to the rigid kinematic unfolding configuration without pop-ups. Specifically, there exists a 

critical value 
kmr , below which the structure would undergo large pop-up motion. Such 

kmr  value 
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can vary with the number of units in the origami sheet, and in particular the 
kr  value needs to be 

higher for origami sheets with more units to avoid pop-up. 

It is shown that apart from the material stiffness parameters, the pattern geometry 

including the crease length ratio and the sector angle, can influence the structural effective 

stiffness properties, and thus affect the transient dynamics of the deployment process. It is 

discovered that the origami sheet possesses multiple stable equilibria under different geometric 

parameters and may reconfigure between the stable equilibria during dynamic deployment.  

We found that the dynamic deployment performance can also be affected by changing the 

control deployment rate.  Under slow rates, the origami sheet undergoes squeezing among its 

units, while it undergoes stretching under fast rates. The structure can best follow the rigid 

kinematic configuration under a certain value of the control rate, which also varies with the 

structure properties, such as fold stiffness. These results indicate that the displacement control 

can be utilized to obtain more desirable dynamic deployment performance.  

Overall, this research provides a foundation for the exploration and understanding of the 

dynamic characteristics of origami sheet deployment.  The tools and insights developed can be 

utilized to design for desired (e.g., smooth and fast) deployment or intentional reconfiguration of 

origami sheet structures. Moreover, they are especially valuable in raising awareness of new 

phenomena that have not been observed in the past, and providing original guidelines to create 

origamis with design parameters (e.g., material and geometric properties) and operating 

conditions (e.g., deployment rate) that are outside the traditional range of consideration.  In other 

words, this basic research is impactful in extending our fundamental knowledge and expanding 

our comfort zone with the deployment dynamics of origami.    
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Chapter 4 Deployment Dynamics of Fluidic Origami Tubes  

 

Building on the model presented in Chapter 2, we performed analysis to investigate the 

deployment dynamics of a single Miura origami tube and present the finding in this chapter 

(Chapter 4). Chapter 4 covers the problem setup (Section 4.1) and the discussions of the 

influence of fluidic pressure and structural stiffness (Section 4.2 and Section 4.3), multistability 

landscape (Section 4.4), deployment rate (Section 4.5), on the deployment dynamics of the 

Origami single tube structure.  

4.1 Deployment Setup 

In the deployment of fluidic origami tubes, we assume that the two ends of the tube are 

sealed off. The structure initially rests at its folded state (33.2% of full deployment as in Figure 

22e) and is deployed by increasing the internal pressure. The deployment extent is defined by the 

ratio between the axial projection of the tube 𝐿𝑎𝑥 and the length of the tube when it is deployed 

flat (Figure 22e). We restrict axial movement on the left end of the tube and release the other end 

to move freely. In the following analysis, the fixed left end is achieved by fixing node 8 and 15 

in all directions and fixing the axial movement of node 1 and 22 (Figure 22 (c-d)). 
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Figure 22. (a) A 3-unit Miura origami tube consists of two identical Miura origami sheets, the upper sheet 

(c) and the lower sheet (d). (c-d) Node numbering in the upper and lower sheets. (b) A bar and hinge representation 

of a Miura origami unit. The blue dashed and solid lines represent the valley and mountain folds respectively (or 

vice versa). (e) 𝐿𝑎𝑥 is defined to be the length of axial (𝑥 direction) projection of the origami tube. (f) The pink 

arrows show the nodal displacement between the dynamic configuration and the corresponding rigid configuration. 

s 

4.2 Quasi-Static Deployment 

We first explore the deployment behavior using a quasi-static analysis. The analysis will 

provide us with information on the deployed configuration under pressurization, which are 

affected by the magnitude of the internal fluidic field pressure and the structural stiffness. This is 

because the deployed configuration is the result of force balance between the pressure load and 

reactive forces of the structure. We assume a space-invariant fluidic field inside the tube and 

perform quasi-static analysis on the deployment. We vary the pressure magnitude P  in our 

numerical analysis and derive the configuration of the tube under each pressure magnitude, with 

different stiffness parameters ( ),k fr k . For each case with a certain set of stiffness parameters, we 

increase the pressure magnitude over multiple incremental steps, and for each step we iterate to 

find the configuration under force balance, which is the so-called incremental and iteration 
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method. For each step, the structure inherits the converged configuration from the previous step 

0nr  and is then simulated with an increased pressure magnitude, where the first step takes on the 

rest configuration where the deployment starts. The structure configuration numerically 

converges after several iterations, where we use ( )1

ex inU K F P F−  = − 
 to equilibrate the resultant 

reactive force, where U is the nodal displacement; K  is the stiffness matrix; ( )exF P  is the 

external load from fluidic field and is a function of pressure magnitude P  (note that the word 

external here refers to loads applied onto the numerical model, rather than the location of 

pressure within the tube); 
inF is the internal reactive force from panel and crease deformation. The 

structure takes on an updated configuration , , ( 1)n i n ir r U−= +  in the i-th iteration. Because the 

external load from pressure is always perpendicular to the panels, the term 
exF  is updated after 

each iteration when the configuration 
nr  changes. The internal reactive force 

inF is also iteratively 

updated through the process. For better presentation and illustration, in the rest of the paper, we 

normalize the applied pressure ( )P  using ( )0
P P , where 6

0 3.8 10P −=  .  
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Figure 23. (a-d) The quasi-static deployment extent of the origami tube versus pressure for different folding 

stiffness 𝑘̅𝑓 and stiffness ratios 𝑟̅𝑘. The pressure is in log scale as shown by the lower x-axis. The stiffness ratio in (a, 

b) is constant at 10kr = , and the folding stiffness in (c, d) is constant at 0 1f fk k = . The deployment extent is 

described by the volume (a, c) and the end-to-end length (b, d), which are represented by the groups of solid and 

dotted lines respectively. (e) The deformation of the entire structure, including the panel stretching deformation 

represented by bar elongation of the model, the panel bending deformation by angular rotation at hinges, the crease 

folding deformation by angular rotation at folding creases. (f) The strain energy decomposed into the energy from 

panel stretching and bending deformation, and the crease folding deformation. 

Figure 23(a-d) show the deployed configuration of the origami tube derived from the 

quasi-static analysis, in which the lower horizontal axis is the normalized pressure magnitude in 

log scale, and the vertical axis is the deployment extent. We use both the volume denoted by 



 

 54 

solid lines and the axial length denoted by dotted lines to describe the deployment configuration. 

Specifically, instead of the absolute value of the volume the ratio is shown as a percentage of the 

tube volume under elastic deformation over the maximum volume without considering panel 

deformation. For axial length, the ratio of the tube axial length over the length at a fully deployed 

flat state is selected. 

In Figure 23a, curves in color from blue to red represent tube with stiffer folding creases. 

They all share a similar tendency that the tube has a greater deployment extent when a higher 

pressure is applied. The deployment extent in volume (Figure 23a) can exceed the maximum 

volume under rigid folding assumption under high pressure, indicating that tube considering 

panel elastic deformation can be inflated. The maximum deployment extent in length (Figure 

23b) is around 89% regardless of the pressure, which corresponds to the length of the maximum 

volume state. The tube length and volume together show that by increasing the internal pressure 

0
P P , the tube is deployed until its maximum length is reached and cannot be further deployed in 

length even when higher pressure is applied. The increasing volume in the inflated tube is due to 

panels stretching instead of elastic deformation at fold creases, which can be seen from the strain 

energy in Figure 23(e, f). In Figure 23(e, f), at low pressure magnitudes the majority of the 

deformation and the strain energy are from crease folding, because the structure undergoes 

deployment with little panel stretching or bending deformation. As the pressure continues to 

increase, the length levels off at around 89% and the volume starts to exceed the maximum 

volume. From the deformation and strain energy plots, the crease folding deformation and the 

corresponding strain energy also level off, while the stretching deformation increases with a 

sharp slope, and the stretching energy exceeds the folding energy, indicating the structure 

inflates rather than deploys. Additionally, comparing the curves in Figure 23ashows that for 
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structures with a higher folding stiffness 𝑘̅𝑓, a higher pressure is needed to reach the same extent 

of deployment as a structure with a lower k̅f. On the other hand, the stiffness ratio 
kr  does not 

affect the deployment because there is almost no panel deformation during the quasi-static 

deployment (Figure 23c, d).  

 

4.3 Influence of Pressure Field on Structural Properties 

For the dynamic deployment, we assume a space-invariant fluidic field with pressure 

applied as a step function in time.  

 
Figure 24. (a) Time history of the dynamic deployment process for different pressure magnitudes. The 

deployment stage is represented in percentage of the ratio between the axial projection axL of the structure at that 

stage over that of a fully deployed flat tube. (b) The first mode natural frequency and damping ratio vary with 

internal pressure magnitude. The eigen analysis is performed to the stable configuration at each pressure 

magnitude. The stiffness parameters of this structure are 010, 10k f fr k k = =  . 

From the dynamic analysis, it can be observed that the internal fluidic field affects both 

the extent of deployment and the transient process. Figure 24a shows the time history of the 

dynamic deployment of the structure with stiffness parameters 010, 10k f fr k k = =   and damping 

coefficients 5, [2.6,1.3] 10b k f f fc r k c k  =   . For low pressure magnitudes, the structure exhibits 

an overdamped behavior, as shown by the smooth curve in blue. When the pressure increases to 

0
100P P = , there is an overshoot in the axial direction, where the tube first deploys to an 

overstretched state and then comes back without much oscillation to the settled state 
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corresponding to the applied pressure. When the pressure magnitude further increases, more 

axial oscillations are observed, showing that the structure is underdamped. The switch from an 

overdamped system into an underdamped system with increased pressure magnitude indicates 

that the internal fluidic field can influence the effective structural stiffness which in turn affects 

the effective system damping and the resulting deployment behavior. An eigen analysis on the 

stable equilibria of this structure under different pressure magnitudes is shown in Figure 24b. It 

shows that the natural frequency increases and the damping ratio decreases as the internal 

pressure increases.  

To get further understanding of the structural properties, we perform analysis on 

structures with different stiffness under varied pressure fields. In Section 4.2, it shows that 

structural folding stiffness has a more significant influence than the stiffness ratio on the 

deployment configurations, thus in this analysis we select the folding stiffness as the varied 

stiffness parameter. Figure 25 shows an eigen study with varied stiffness and pressure 

parameters. Each point on this contourplot corresponds to a stable equilibrium of a structure with 

certain fold stiffness under designated pressure magnitude, the shape of which can be affected by 

both the pressure and the stiffness parameters. Figure 25c shows the deployment extent of each 

configuration of the structure with certain folding stiffness under a certain pressure magnitude. 

The structure with softer folding creases under higher pressure magnitude settles at a greater 

deployment extent. Figure 25b shows the effective damping ratio where the region in white 

represents the overdamped systems, while the colored region stands for the underdamped 

systems. Dynamic simulations for four selected sets of parameters have been performed and the 

time history in Figure 25 shows these four cases. For the datapoint selected from the overdamped 

region, the time history shows a smooth but slow deployment process; for the data point selected 
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in the underdamped region, the structure will have overshoot and possibly oscillations during the 

deployment; for the datapoint selected at the boundary between the overdamped and 

underdamped regions, the structure undergoes fast and smooth deployment, which is close to a 

critically damped system. The change of structural properties under varied pressure fields 

implies the possibility to achieve certain deployment performance by controlling the applied 

pressure field instead of changing the structure itself. Even though this eigen analysis is 

performed on the stable equilibria, it can still shed light on the parametric design for the structure 

to achieve desired dynamic deployment behavior.  

 

 
Figure 25. The first mode natural frequency 

n  (a) and the damping ratio   (b) of the Miura origami tube 

with different stiffness parameters under different pressure magnitudes. The stiffness parameter is varied with the x-

axis and the pressure magnitude with the y axis. (c) The configuration of each stable equilibrium that the eigen 

analysis is performed on is represented by the deployment extent. (d) Time history of the dynamic deployment of the 

four (stiffness, pressure) sets from (b). 
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4.4 Multiple Stable Equilibria 

The magnitude of pressure can also change the deployment behaviors qualitatively. Here 

we introduce the average nodal deviation   to describe the distortion or system deformation for a 

certain dynamic configuration as compared to the rigid-folded configuration derived based on 

rigid kinematics assumptions. We select the rigid-folded configuration with the same axial length 

Lax to be the baseline (blue configuration in Figure 22) and calculate the differences between the 

corresponding nodes from the dynamic (yellow configuration in Figure 22f) and rigid-folded 

configurations denoted by the pink arrows. The   is then defined as the average of the difference 

among all the corresponding nodes.  

For the origami tube with stiffness parameters 010, 1k f fr k k = =   and damping 

coefficients 4, [7.8,3.9] 10b k f f fc r k c k  =   , we find three very different groups of deployment 

behaviors depending on the amplitude of the pressure: (1) When the pressure is low (
0

12P P  ), 

the structure expands (Figure 26c), oscillates in the axial direction (Figure 26d), and comes to 

rest at configurations with little deviation from the rigid-folded state (Figure 26e). The average 

deviation shown in Figure 26b remains low throughout the deployment. As the pressure 

increases, the deployment extent of the settled configuration increases when comparing the 

dashed and dotted blue curves in Figure 26a. Results also show that when the pressure is within 

this range, the structural oscillation frequency and stiffness increase with increased fluidic 

pressure. (2) When the normalized pressure 
0

P P  takes on value in the range of [12, 30], the 

structure snaps (Figure 26f) and oscillates around a configuration that is highly distorted from the 

rigid-folded configuration with significant global bending (Figure 26g-h). Such different 

deployment behaviors are also reflected in Figure 26b where the deviation   jumps to a peak 

value and remains high throughout the dynamic simulation, meaning the structure does not 
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deploy along the nominal rigid-folding path and remains distorted. (3) When 
0

P P  is higher than 

30, the structure initially snaps to a highly distorted and bent configuration (Figure 26i) like in 

Group (2), but then snaps back to the undistorted or nominal shape. When it snaps back to the 

nominal shape, it temporarily reaches a configuration that is stretched out, as shown in Figure 

26j. This transient configuration, also denoted by a blue square in Figure 26a, is more deployed 

and flatter than the maximum volume state (Figure 23a). The deployment extent among the three 

units of the tube is uneven, indicating non-negligible panel deformation with a relatively higher 

average nodal deviation   as shown in Figure 26b. The structure finally settles near the rigid 

state with a low   (Figure 26k).  

 

Figure 26. (a) Time history of the dynamic deployment process under a step input of the pressure with 

different magnitudes. The snapshots are shown by (c-k) for 0
[2,20,40]P P =  respectively. (b) Time history of the 

nodal deviation   for the structure under different magnitudes of the pressure. The stiffness parameters for this 

structure are 
010, 1k f fr k k = =  . 

 

In order to explain the three types of deployment behaviors, we explore the multiple 

stable equilibria of the origami tube. To derive the stable equilibria, we perform an energy 

minimization process where we apply a certain internal pressure 
0

P P  and allow the structural 

configuration to converge to a stable equilibrium starting from a given perturbed initial 

configuration 
0nr . We iterate by usingU = K-1(Fex-Fin) ( )1

ex inU K F P F−  = − 
 to equilibrate the 
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resultant reactive force and update the configuration by , , ( 1)n i n ir r U−= + . We derive two stable 

equilibria using this approach. For the first stable equilibrium, we start the process from the 

rigid-folded state of the tube and converge to a stable state with slight panel deformation, but no 

significant nodal deviation. For the second stable equilibrium, we start with an initial condition 

sufficiently different from the rigid-folded state, which we take from the transient process in this 

analysis, and we converge to a second stable state with a high level of distortion. In addition to 

the pressure field, the structural properties can also exert an influence on the multistability 

landscape. In the following Sections, we discuss the influence of both the pressure field and the 

structural stiffness on the multistability landscape. 

 

4.4.1 Influence of Pressure Field on Stable Equilibrium 

In this Section, we vary the internal pressure magnitude and perform equilibrium stability 

analysis on the structure. Figure 27a shows that two stable equilibria exist for all the different 

internal pressures explored. For the first stable equilibrium, the structure deploys more with an 

increased pressure magnitude. For the second stable equilibrium, the percent deployment first 

decreases and then increases again. This is because the second stable equilibrium has global 

bending in the y and z-direction. With the pressure 
0

0.4P P  , the second stable equilibrium 

bends and rotates in the transverse direction (Figure 27b-c), resulting in a decrease in the length 

of the axial projection. When 
0

0.4P P  , the second equilibrium configuration does not bend 

further, and increases in length as the pressure increases. In the dynamic scenario, the structure 

starts from and stays around the first branch during the deployment when pressure 
0

12P P   is 

applied. When 
0

P P  is within [12, 30], the dynamic deployment of the tube settles at the highly 
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distorted equilibrium. In this range, the initial excitation of applying the step fluidic pressure 

provides sufficient energy to overcome the energy barrier between the two stable equilibria, 

which causes the structure to snap and settle at the second stable equilibrium. When 
0

P P  is 

higher than 30, the structure initially snaps into the second stable equilibrium, then it snaps back 

and settles at the first stable equilibrium. This indicates that after the initial impact, the fluidic 

pressure field provides enough energy for the structure to overcome the energy barrier twice to 

snap through and snap back during the transient oscillation. 

 

Figure 27. (a) The two stable equilibria and the settled dynamic configuration of the structure under 

different magnitudes of pressure are shown with respect to the length of the tube axial projection. (b-e) The 

comparison among the two stable equilibria and the settled dynamic configuration in different colors under 

pressures of 
0

[0.04, 0.25, 16, 100]P P =  respectively. 

 

4.4.2 Influence of Stiffness on Stable Equilibria 

Since both the pressure field and structural stiffness can affect the energy barrier that the 

structure needs to snap through, we perform a thorough investigation on structures with various 

stiffness under different pressure fields. Based on the pressure field study in Section 4.3, in 

Figure 28(a-d) the pressure magnitudes are selected such that the structure exhibits snap-through 

or snap-back behaviors under certain stiffness parameters.  
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Figure 28(a, b) show the settled configurations of structure with different folding stiffness 

𝑘̅𝑓. From dynamic analysis in Section 4.3, the structure with folding stiffness 𝑘̅𝑓 = 1 snaps 

though when 𝑃̅/𝑃̅0 = [20,30]. By varying the folding stiffness as in Fig. 21(a-b), the structure 

with different folding stiffness still possesses these two distinct stable equilibria. With stiffer 

folding creases, under a certain magnitude of pressure, both the two stable equilibria and the 

settled dynamic configuration become less deployed because of the higher reactive forces at the 

folding creases. The dynamic deployment process shows that structure with low folding stiffness 

tends to snap through under fixed pressure magnitude, while those with stiffer folding stiffness 

are less likely to snap through due to the relatively higher energy barrier. There exists a critical 

value for the folding stiffness 𝑘̅𝑓𝑐𝑟, under which the structure has the first type of deployment 

with snap-through, otherwise the structure undergoes the second type of deployment without 

snap-through. This critical folding stiffness increases with the magnitudes of the internal 

pressure, for example 𝑘̅𝑓𝑐𝑟 𝑘̅𝑓0⁄ = 3 for 𝑃̅/𝑃̅0 = 20 and 𝑘̅𝑓𝑐𝑟 𝑘̅𝑓0⁄ = 4 for 𝑃̅/𝑃̅0 = 30. On the 

other hand, Figure 28(c, d) show that the stiffness ratio between panel bending and crease 

folding can hardly influence the shape of the two stable equilibria. The structure also tends to 

stay at the same stable equilibrium during the dynamic deployment process by changing the 

panel bending stiffness, indicating that changing the panel bending stiffness can result in little 

influence on the dynamic performance. This analysis shows that the dynamic deployment 

behaviors, as well as the stable equilibria, can be affected by changing the stiffness of origami 

tubes. We can design the deployment process by selecting a certain set of stiffness parameters 

and pressure magnitudes. 

To obtain further understanding, Figure 28e considers both factors including the structure 

stiffness and pressure field. Each color block corresponds to a structure with certain folding 



 

 63 

stiffness and under certain magnitudes of step input pressure. We use different colors to 

represent the dynamic deployment behaviors. The horizontal direction of this contourplot 

corresponds with Figure 28(a, b), where the structure with soft folding creases tends to snap 

through under fixed pressure magnitudes. The vertical direction of this contourplot shows that 

structures with fixed folding stiffness will have regular deployment with a low level of distortion 

under low pressure magnitudes (shown by the blue blocks). The structure will snap through and 

stay at the distorted stable equilibrium when the pressure magnitude increases (shown by the 

yellow blocks).  In this scenario, the structure obtains energy from the pressure field to overcome 

the energy barrier. When the pressure becomes high enough, the structure will undergo snap 

through twice and settle at the regular less-distorted state, as shown by the magenta blocks. The 

two critical values of the pressure magnitude increase as the folding creases become stiffer,  as 

also shown in Figure 28(a, b). 

 

Figure 28. (a, b) The two stable equilibria and the settled dynamic configuration of structure with different 

folding stiffness with pressures of 𝑃̅/𝑃̅0 = [20,30] respectively. The stiffness ratio is kept constant at 𝑟̅𝑘 = 10.  (c, d) 

The two stable equilibria and the settled dynamic configuration of structure with different stiffness ratios with 



 

 64 

pressures of 𝑃̅/𝑃̅0 = [20, 50] respectively. The folding stiffness is kept constant at 𝑘̅𝑓 𝑘̅𝑓0⁄ = 1. (e) The contourplot 

of the dynamic deployment behaviors of structures with different folding stiffness under varied pressure magnitudes. 

 

4.5 Deployment Dynamics via Ramp Input 

In previous Sections, the pressure is applied as a step input, while here we pressurize via 

a ramp function (Figure 29b). We define 
0t  as the time it takes to reach the final pressure 

magnitude. In this case study, the system is pressurized to 
0

20P P =  where we had observed the 

distorted deployment. We vary 
0t  such that the pressure is applied with different rates and 

perform dynamic analysis. When the pressure is applied rapidly, in this case at a rate faster than 

0 5t   ms, the high distortion occurs, where the structure snaps and stays at the second stable 

equilibrium without further deployment as shown in Figure 29d. On the other hand, when we 

apply the pressure at a lower rate, the structure roughly follows the rigid folding shape with some 

axial oscillation and settles with little distortion (Figure 29c).  

 

Figure 29. (a) Time history of the dynamic deployment under different rates of pressurization. The stiffness 

parameters are 010, 1k f fr k k = =  . The final value of the pressure magnitude is 
0

20P P = . (b) We define the 

pressurization rate by the time 
0t . (c-d) The settled configurations of the dynamic deployment under 

0t = 50 and 5 

ms, respectively. 

Since both the pressurization rate and the ending pressure magnitude can influence the 

dynamic deployment behaviors, to understand the dynamic deployment under ramp input of the 
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pressure field, we vary both the ending pressure magnitude and the pressurization rate, as shown 

in Figure 30. These contourplots (Figure 30 (a, c)) show three types of the dynamic deployment 

process based on the parameters of the pressure field, the time history of which are in Figure 

30d. When the pressurization rate is high enough as in the magenta region, the structure can snap 

through into the distorted shape (Figure 30f) and then snap back. This deployment behavior is 

shown by the time history with the blue curve in Figure 30d. Under a certain range of 

pressurization rate, the structure will snap into the distorted shape and stop without further 

deployment (Figure 30e). The volumes of the corresponding configurations are shown in Figure 

30b. In the lower right triangle as well as the upper left triangle of this parameter space, the 

volume increases with pressure, while the middle blue region shows discontinuity, which refers 

to the snap-through region. Figure 30a shows that for a designated ending pressure magnitude, 

the structure can follow different dynamic deployment paths based on the pressurization rate. 

Figure 30b shows that there exist relatively constant critical values for the pressurization rate at 

different ending pressures to achieve different deployment paths. This indicates that we can 

achieve adaptable deployment behaviors by controlling the pressure rate and pressure field. 
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Figure 30. (a, c) The three types of dynamic deployment paths are denoted by three color blocks.. The 

parameter space is spanned by the ending pressure magnitudes in the y-axis, and the pressurization rate, in the x-

axis, is represented by the time to achieve ceratin ending pressure in (a, b) and the pressurization rate in (c).  (b) 

shows the contourplot of the volume of the settled state from the dynamic deployment process. (d) Time history of 

three typical dynamic deployment paths with pressure magnitude 25 and different deployment times. (e-g) Snapshot 

of the dynamic configurations during the dynamic deployment process denoted in (d) respectively. 

 

4.6 Conclusion 

In Chapter 4, we advance the state of the art by studying the deployment dynamics of 

fluidic origami tubular structures. We uncover new phenomena that have not been observed 

previously and cannot be derived via traditional quasi-static analysis. It is shown that the fluidic 

pressure will not only control the final deployed configuration and volume of the tube, but it will 

also change the effective stiffness and damping ratio of the system, and thus will affect the 

transient dynamics of the deployment process. It is also discovered that the fluidic origami tube 

possesses multiple stable equilibria under different pressure levels of the internal fluidic field and 

could reconfigure among different stable equilibria during dynamic deployment. When 
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pressurized with a step input or a ramp input with a sufficiently fast rate, for certain pressure 

amplitudes, the tube could snap into a stable equilibrium with a highly distorted configuration. 

At lower pressure, the structure cannot overcome the energy barrier to snap through, while at 

higher pressure the tube experiences snap through and then may snap back to the nominal state 

near the rigid-folded configuration. The tools and insights developed in this research show the 

potentials that structural parameter design and pressure rate control can be utilized to achieve 

smooth and fast deployment, correct for distortions, or reconfigure the structure intentionally to 

different stable states as desired. These discoveries can be harnessed for potential applications in 

space booms, morphing surfaces, to soft robotics. 
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Chapter 5 Deployment Dynamics of Fluidic Origami Multi-Tube Structures  

 

In Chapter 5, we build on the models presented in Chapter 2 and the analysis of the single 

tube structures from Chapter 4 to investigate the deployment of fluidic Origami multi-tube 

structures. The problem setup is described in Section 5.1, follows by discussions of findings 

from the quasi-static (Section 5.2) and dynamic (Section 5.3) analyses, and ends with insights on 

the effect of the inter-tube interface on the structure deployment characteristics (Section 5.4). 

5.1 Deployment Setup 

We assume the multi-tube structure initially rests at its folded state and is deployed by 

increasing the internal pressure, pressurizing either one or both of the tube elements. The 

pressurized tube element has its two ends sealed off, and the unpressurized tube element can 

have either sealed or open ends. The deployment extent can be described by both the length of 

the tube and the internal volume. The length ratio is defined as the ratio of the end-to-end length 

of the tube over the length of the tube when it is deployed flat. The volume ratio is defined as the 

ratio of the deformed shape volume over the max volume derived from rigid kinematics. We 

restrict axial movement on the left end of the tube and release the other end to move freely. 
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Figure 31. Different types of interface modeling for fluidic origami multi-tube structures, where the two 

tube elements are in blue and yellow, and the interface is in cyan. (a) Two tube elements are connected by elastic 

bars through corresponding vertices, which represent a solid material interface. (b) Two tube elements are 

connected by elastic bars, which allow rigid folding, representing a flexible interface. (c) Two tube elements are 

connected rigidly, which indicates there will be no displacement at the interface,  representing an integrated 

manufactured multi-tube structure. (d) Two tube elements are connected through flexible facets, which is a variant 

of the three-element multi-tube structure. The interface can undergo bending and stretching deformation in each 

facet, and inter-facet folding deformation. (e) The upper tube elemnt in yellow is referred to as element 1 and the 

lower tube element in blue is referred to as element 2 in the following figures. We use the arch shape to describe the 

bulge-out configuration, as shown by the deformed state 

 

5.2 Quasi-Static Deployment 

We first perform quasi-static deployment analysis on the multi-tube structure under 

different pressurization methods and boundary constraints. Figure 32 shows the quasi-static 

deployment process with both elements sealed at two ends, where the internal pressure 

magnitude of the unpressurized tube element varies with the configuration change according to 

the ideal gas law.  

The overall structure deploys as the pressure in the pressurized tube gradually increases 

(Figure 32a). The pressurization method can influence the deployment configuration. By 

comparing the blue and green lines in Figure 32 (a, b), it is shown that the pressurized tube 
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element will be deployed more than the unpressurized one, which is due to the deformation of 

the flexible interface in this design. In Figure 32c, the structure can form two different arch 

shapes under different pressurization methods, the configurations of which are shown in Figure 

32 (d, e). We quantify the arch shape by comparing the nodal distances shown in Figure 31e. In 

the undeformed state, the distances spanned by the red lines and the purple lines maintains the 

ratio of 4:3. We use the change of the ratio in percentage of the extended tube element to 

describe the arch shape. The arch shapes in different directions are the two modes according to 

the eigen analysis on single tube structures. For example, as in the blue lines in each plot of 

Figure 32, the upper element is fixed on the left end and pressurized, with the lower element 

unpressurized. During the deployment, the pressurized element will deploy and force the 

unpressurized element to also deploy. The upper element takes on the arch shape in the positive 

direction because its lower layer is constrained by the interface and the less-deployed lower 

element, while the lower element takes on the arch shape in the same direction because its upper 

layer is driven to expand due to the force balance at the interface and the more-deployed upper 

element. The difference between the tube elements also grows with the pressure magnitude. 

Additionally, when the lower tube element is pressurized, the entire structure will acquire a 

greater deployment extent than when the upper tube element is pressurized, and consequently 

greater difference between the two elements. Through eigen analysis on the configurations of 

these two cases at the same overall deployment stage, the former case has a lower natural 

frequency in the deployment mode than the latter case, which means the structure requires less 

energy to deploy and arch in the situation where the lower element is fixed and pressurized. 

The multi-tube structure deploys the most when both elements are pressurized, and 

maintains the highest strain energy (Figure 32d). The two tube elements stay at different 
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deployment stages under the same pressure field, which is because of the asymmetry in origami 

geometry. The influence from the boundary constraints can be less significant when comparing 

the yellow and cyan lines in Figure 32. Additionally, Figure 32b shows that the lower tube 

element deploys more regardless of the boundary constraints, which results in non-negligible 

arch shapes, where the two elements form arch shapes in the opposite directions.  

 

Figure 32. Quasi-static analysis of multi-tube structure with interface modeled by springs. Each line color 

corresponds to a pressurization method and boundary constraints: blue denotes the case when the upper element in 

Figure 312e is fixed and pressurized, while the lower element is set free and unpressurized; the green line shows the 

opposite; with the yellow line, both elements are pressurized, and the upper element while the lower element is fixed 

with the cyan line. (a) shows the deployment process by the volume of the entire structure. (b) shows the difference 

in deployment between the two tube elements, with a positive value meaning the upper element is greater in volume. 

(c) shows the arch shape formed during the deployment due to panel deformation. The positive arch shape is defined 

as concave up and is shown in (e). In (c), the solid line denotes the upper tube element and the dashed line denotes 

the lower element. (d) shows the total strain energy in the structure including crease folding, panel stretching and 

bending, and interface deformation. 

 

We describe the deformation of the multi-tube structure by the average and the difference 

in strain energy between the two tube elements. In Figure 33, the multi-tube structure is fixed 

and pressurized at the upper tube element, and the lower element is unpressurized and free to 
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move. Figure 33a shows that the strain energy increases with the deployment, and the strain 

energy from the interface is the greatest among all kinds of deformation, which is twice as high 

as the bending energy even though the stiffness at the interface is only 10% of the panel 

stiffness. This shows that in the origami multi-tube structure connected by a solid material the 

interfaces have a significant influence on the overall behavior because it experiences the highest 

strain energy. From the difference in strain energy between the two tube elements in Figure 33b, 

the pressurized tube element shows a higher strain energy from pressurization which corresponds 

with the fact that the pressurized tube element will also be more deployed. The pressurized 

element also undergoes more tube distortion such as facet bending and stretching. This analysis 

can provide insight into the deformation behaviors and precision of the system when actuating 

multi-tube structures. 

 

Figure 33. Deformation in the multi-tube structure during quasi-static deployment with the upper element 

fixed on the left end and pressurized from the left end while the lower element is free and unpressurized. Both tube 

elements are sealed off on both ends. (a) shows the strain energy from interface deformation and tube deformation 

including tube crease folding, facet bending, and stretching. (b) shows the difference in the strain energy between 

the two tube elements. The default positive value means the upper element has greater strain energy than the lower 

element. 
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5.3 Dynamic Deployment 

We perform dynamic analysis on the deployment of the multi-tube structure under 

different pressurization methods and boundary conditions. We fix the left end and pressurize the 

different tube elements, denoted by different line colors in Figure 34 and Figure 35. Similar to 

the quasi-static deployment, the pressurized tube element is always more deployed than the 

unpressurized tube. The tube elements take on arch shapes in the same direction, for example, 

when the upper element is pressurized, the two elements in the structure will form arch shapes in 

the positive direction, which is due to the constraints from the interface. By comparing the solid 

and the dotted lines, where the unpressurized tube element is sealed vs. open, the structure 

deploys more in the latter case. This is because when the two ends of the unpressurized tube are 

sealed, a pressure field forms that forces this tube element to stay less deployed. This type of 

negative pressure field results in more significant arch shapes for both pressurization methods 

because the pressure field together with the interface apply force in the opposite direction to the 

pressurized tube element, which causes distortion in the tube body and results in higher strain 

energy as shown by Figure 35(c, d). The greater deployment extent results in higher strain 

energy at folding creases and the interface deformation (Figure 35(a, b)). By considering the 

pressurization method and boundary conditions, this analysis can provide insight into the design 

for desired reconfiguration or deployment performance. 
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Figure 34. The dynamic deployment of the multi-tube structure. Each point corresponds to a settled 

configuration from the dynamic deployment simulation. The solid lines refer to the case when the unpressurized tube 

element is also sealed at the two ends, indicating a varying pressure field with the deployment process. The dotted 

lines refer to the case when the unpressurized tube element has an open end, meaning that its pressure will not 

change. In the red lines, the upper element is fixed and pressurized, while in the blue lines the lower element is fixed 

and pressurized. We use deployment extent as a percentage by volume (a) and the difference in deployment stage in 

length??????? (b) between the two elements to describe the dynamic deployment process. We also compute the arch 

shape (c, d) formed in each of the elements respectively to describe the configuration. 
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Figure 35.  Strain energy from structure deformation at the end of the dynamic deployment process. Each 

point corresponds to a settled dynamic configuration. The color and line styles are the same as in Figure 34. The 

strain energy is decomposed into the strain energy from interface deformation (a), tube crease folding deformation 

(b), tube facet bending (c), and stretching (d) deformation.  

 

5.4 Influence of the Interface 

In addition to the pressure field and boundary conditions, the interface design can 

significantly influence the deployment behavior of a multi-tube structure. In this Section, we 

perform a parametric study on the interface stiffness and then explore different interface designs. 
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5.4.1 Influence of Interface Stiffness 

Based on previous quasi-static and dynamic deployment analysis on the multi-tube 

structure (Figure 31a), we vary the interface stiffness to explore how it influences the 

deployment characteristics. We vary the interface materials such that the ratio of the Young’s 

modulus of the tube body over the interface is [10,50,100].  

By decreasing the interface stiffness, the overall structural stiffness decreases, and 

therefore the overall structure achieves greater deployment under the same pressure magnitude. 

The structure also deploys more when both elements are pressurized by comparing the group of 

yellow and blue lines (Figure 36(a, b)). The group of yellow lines shows that when the pressure 

is high enough, the difference between the tube elements first increases with the deployment, and 

then decreases because the tube elements reach the deployed state sequentially. The extent of the 

arch shape also first increases and then decreases with the deployment, because the arch shape is 

a result of the deployment stage difference.  

Similar to Section 5.2, Figure 36(c, d) show that the different directions of the arch shape 

also apply to structure with different interface stiffness under different pressurization methods. In 

the case with two elements in the structure where only a single element is pressurized will form 

an arch shape in the positive direction, while the element in the structure with both elements 

pressurized will form an arch shape in the negative directions. On the other hand, the extent of 

the arch shape under different pressurization methods can be influenced by the interface stiffness 

in different ways. The arch shape is more significant in the pressurized tube element with a 

stiffer interface as shown by the blue lines in Figure 36c and yellow lines in Figure 36(c, d), 

while arching becomes less significant in the unpressurized tube element as shown by the blue 

lines in Figure 36d for deployment stage in the range of [30, 60]. As for the pressurized tube, 
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when the interface is stiffer there is a larger constraining force, which results in higher arch 

shape. On the other hand, the unpressurized tube element is under the combined effect of the 

interface deformation and the negative pressure force from the internal pressure field. At certain 

deployment stage, the structure has a greater deployment stage difference with respect to the 

deployment stage on the x axis as shown by the group of green lines in Figure 36e, which share 

the same tendency as the extent of arch shape depicted by the group of blue lines. This indicates 

that the arch shape is formed to accommodate the configuration difference between the tube 

elements. 
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Figure 36. Quasi-static deployment of the multi-tube origami structure (Figure 31a). We vary the interface 

materials such that the ratio of the Young’s modulus of the tube body over the interface is [10,50,100], denoted by 

different line styles in this figure. This figure also includes two types of pressurization methods under the same 

boundary condition where the upper tube element is fixed on the left end and both elements are sealed off: the group 

of blue lines refers to the upper tube element pressurized only, and the group of yellow lines refers to both tube 

elements pressurized. We use these metrics to describe the deployment: (a) the deployment stage represented by the 

volume in percentage; (b) the difference in deployment stage between the two tube elements with respect to the 

overall (average) deployment length in the x-axis; the arch shape formed in the upper tube element (c) and lower 

tube element (d) with respect to the deployment stage of the pressurized tube element in the x-axis. We relate the 

arch shape in the unpressurized tube element with the deployment stage difference in (e) and is plotted against the 

deployment stage of the unpressurized tube element in the x-axis. 
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Figure 37 shows the strain energy generated from structural deformation. The total strain 

energy (Figure 37a), the strain energy from interface deformation (Figure 37b), tube deformation 

including tube facet bending (Figure 37e) and stretching deformation (Figure 37f), increase with 

a stiffer interface. The strain energy within hinges at fold creases, decreases with a stiffer 

interface, which is because of the tube elements deploy less with stiffer interfaces. Figure 37c 

shows the energy difference between tube elements. The group of blue lines shows that the 

pressurized tube element has more strain energy than the unpressurized one. The higher strain 

energy is because the two elements have the same stiffness, yet the pressurized element deforms 

more, which agrees with the configurations described in Figure 36. 

 

 

Figure 37. Strain energy from deformation during quasi-static deployment. The deployment setup is the 

same as in Figure 36. The energy distribution is described by the total energy of the entire structure (a); the energy 

from interface deformation (b), the difference of strain energy between the two tube elements (c); crease folding 

deformation (d), tube facet bending (e), and tube facet stretching deformation (f). 
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We also perform dynamic analysis on the deployment process of structure with different 

interface stiffness, as shown in Figure 38. The dynamic result denoted by points is compared 

with the quasi-static results denoted by lines. Similar to results from Section 5.2 and Section 5.3, 

the structure deploys more when the lower tube element is pressurized rather than the upper tube 

element. The multi-tube structure with a softer interface gains greater deployment, while the 

overall behaviors are qualitatively the same. It is shown that the points all fall on the 

corresponding lines, indicating that under this type of interface design, the structure will stay at a 

single stable equilibrium, and will not undergo snap-through during the dynamic process even 

when the material of the interface becomes flexible. The consistency between the dynamic and 

quasi-static analyses also indicates that the models developed in this research are valid for both 

dynamic and quasi-static analyses. 

 

Figure 38. The comparison between the configuration from quasi-static deployment analysis shown by the 

lines, and that from the settled state in the dynamic deployment process denoted by points. Lines and points in 

different colors represent different pressurization methods, where blue refers to the upper tube element being fixed 

and pressurized, and red refers to the lower tube element being fixed and pressurized. Lines in different styles 

represent different interface stiffness ratios, denoted by solid, dashed, and dotted lines. Points in different shapes 

also represent different interface stiffness ratios, denoted by circular, rectangular, and diamond shapes.  

 

5.4.2 Influence of Interface Design 
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In this Section, we explore different interface designs as shown in Figure 31. In the first 

design (Figure 31a), we use elastic bars to link the tube elements at the hinges. The bars placed 

in the diagonals restrict the relative displacement between the corresponding panels, which can 

also represent a solid material for connection. We change the bar arrangement in the second 

design (Figure 31b) such that the interface allows one degree of freedom in the multi-tube 

structure and represents connecting the two tube elements through hinges. The third design 

(Figure 31c) represents a rigid connection that does not allow displacement variations between 

the two connecting layers, while still allowing for the rigid folding and deployment motions. The 

fourth interface design (Figure 31d) adopts the flexible origami panels placed between the two 

tube elements, which can have varied widths showing the distance between the tube elements. 

This design allows for rigid folding and deployment motions with flexible panels as the 

connection. This design can also refer to an interleaved origami tubular structure.  

Figure 39 shows the dynamic deployment of the tubes with different interfaces, different 

pressure magnitudes, and different pressurization methods. In the low-pressure region [0, 10], the 

difference between pressurization methods is negligible. In the high-pressure region, the 

structure in the first design (Figure 31a) follows the same branch of the stable equilibrium while 

the three other designs (Figure 31 (b-d)) undergo snap-through into other branches of the stable 

equilibrium as shown in Figure 39a, which corresponds to high strain energy levels (Figure 39b). 

The configurations of the tube element at the highly distorted stable equilibrium (Figure 39(c-e)) 

have been discussed in detail in the single tube analysis in Section 4.4. The tube element in 

Figure 39f corresponds to an eigenmode of the single tube structure. These results indicates that 

the analysis on the single tube can be useful for the multi-tube structure. 
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Figure 39. The dynamic deployment of multi-tube structures with different interface designs listed in Figure 

31. The line colors refer to different interface designs, and the point shapes represent different pressurization 

methods. Pressurize 1 means the upper tube element is fixed and pressurized, and pressurize 2 means the lower tube 

element is fixed and pressurized. (a) shows the settled configuration of each dynamic deployment process, and the 

corresponding strain energy at that configuration is shown in (b). (d-f) shows the snapshot of the configuration 

denoted by different points in (a). 

 

5.5 Conclusion 

In Chapter 5, we advance the state of the art through studying the deployment dynamics 

of fluidic origami multi-tube structures. We adopt four different interface designs and perform 

quasi-static and dynamic analyses to understand the effect of structural properties and to explore 

the dynamic deployment behaviors. It is discovered that the multi-tube structure can process 

more complex behaviors than the single tube structure such as the arch shapes. It is shown that 

the tube element can take on different configurations, and such differences vary with the internal 

pressure field and the inter-tube interface stiffness. The pressurization method and boundary 

conditions can influence the deployment significantly. By pressurizing different tube elements, 

the multi-tube structure can achieve different deployment extent and arch shapes in positive and 

negative directions as shown in Figure 32(e, f). Depending on whether the unpressurized tube 

element is sealed, the overall deployment extent and the extent of arch shape could be very 

different. Furthermore, it is discovered that with the same material stiffness of the interface, the 
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multi-tube structure with certain interface designs possesses multiple stable equilibria and could 

reconfigure among different stable equilibria during dynamic deployment. The tools and insights 

developed in this research show the potential that the structural design and pressure field control 

can be utilized to achieve reconfigurations of the structure as desired. The work presented in this 

chapter can serve as a foundation for future research on even more complex structural 

architecture of integrating multiple tubes with different orientations and pressurization schemes.  
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Chapter 6 Conclusions and Future Directions 

 

In this concluding Chapter, we summarize the scholarly contributions and broader impact 

of this thesis research, follow by a discussion of the possible future research directions. 

6.1 Scholarly Contributions 

Origami has great potential for creating deployable, reconfigurable, and functional 

structures. However, it is crucial to understand the dynamic characteristics of origami to achieve 

desired system performance. This dissertation investigates the deployment of origami structures, 

including Miura origami sheets, fluidic origami tubes, and fluidic origami multi-tube structures. 

We develop a dynamic model by considering panel inertia and compliance, where we discretize 

the structure by using equivalent lump mass elements. We also create a discretized force system 

to represent the internal pressure field in origami tubes. We derive the nondimensionalized 

equations of motion and perform analysis to gain insight on the system dynamic behaviors 

during deployment. We perform quasi-static and dynamic analysis on the deployment process of 

the origami sheet and tube structures to understand the effects of various system parameters and 

inputs on the overall dynamic deployment performance. We uncover new phenomena and 

qualitative features that have not been observed previously and cannot be derived via traditional 

quasi-static and rigid kinematic unfolding analyses.   

In Chapter 3, we investigate the deployment dynamics of Miura origami sheets. Results 

show that structural stiffness can influence the dynamic deployment behaviors qualitatively, as 

compared to rigid kinematics analysis. For origami sheets built by panels with finite compliance, 
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pop-ups can occur at different stages depending on the stiffness ratio between panel bending 

stiffness and crease folding stiffness 
kr . There also exists a critical value for the stiffness ratio. 

kmr , below which the structure would undergo large pop-up motion. Apart from the material 

stiffness parameters, the pattern geometry can influence the effective structural stiffness 

properties, and thus affect the transient dynamics of the deployment process. It is discovered that 

the origami sheet possesses multiple stable equilibria under different geometric parameters and 

may reconfigure between the stable equilibria during dynamic deployment. We also study the 

inertia effect by changing the controlled deployment rate, and uncover the potential of tunable 

deployment behavior by utilizing deployment control.  

In Chapter 4, we study the dynamics of deployment of Miura origami tubes under fluidic 

actuation. Results in the quasi-static analysis show that the folding stiffness plays a more 

significant role than the panel bending stiffness in deployment process. Eigen analysis also 

shows that both the folding stiffness and the internal pressure field can influence the structural 

properties, which indicates the possibility to design the structure and pressure to achieve a 

desired dynamic deployment path. It is discovered that the structure maintains different stable 

equilibria over a wide range of pressure magnitudes. Dynamic simulations show that the 

structure can undergo snap-through under certain pressure magnitudes and pressurization rates, 

which means that the structure can achieve desired reconfiguration by proper design and tuning 

of the internal pressure field. 

In Chapter 5, we extend our knowledge on fluidic origami tubes by investigating fluidic 

origami multi-tube structures. It is shown that the multi-tube structure can have more complex 

behaviors than the single tube structure, where the tube elements can take on different 

configurations. The multi-tube structure can achieve different deployment extents and arch 
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shapes based on the pressurization method and boundary conditions. Whether or not the 

unpressurized tube element is sealed can influence the overall deployment extent and the amount 

of distortion. By analyzing different designs of the interface, it is discovered that with the same 

material stiffness, certain interface designs can lead to snap-through between different stable 

equilibria during dynamic deployment, which enriches the reconfiguration behaviors of the 

fluidic origami tubular structures. 

The modeling, analysis and design tools developed for the origami platform in this 

research will enable the dynamic analysis of origami structures considering material compliance 

and inertia effects. These observations are original and these phenomena have not and cannot be 

derived using traditional approaches, which enables a deeper understanding of the physics 

behind the Origami deployment dynamics. The tools and outcomes developed from this research 

will contribute to the scholarly literature and advance the field of origami engineering. 

6.2 Broader Impact 

The concept of origami has been adopted in many applications, such as space structures, 

civil structures, robotics, and medical devices. Origami is often chosen as it enables deployment 

and reconfiguration, while it can also expand the geometric and physical functionality of the 

system. Because the deployment process is an inherently dynamic process, and certain 

deployment performance such as fast and smooth deployment are desired, the tool to investigate 

the dynamic behaviors becomes necessary. In practice, there are circumstances under which the 

deployment dynamics need to be considered, for example, when fast reconfiguration is desired, 

or when the origami sheet is flexible due to soft material or low thickness. In this work, we for 

the first time proposed a dynamic model considering panel inertia and flexibility to analyze the 

dynamic deployment process, while most of the past attention has been on only the kinematic or 
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the quasi-static process. More importantly, our research is not limited to any specific origami or 

dynamic cases. While the Miura origami pattern and tubes are discussed in this work, the tools 

that we proposed can be generalized to other origami patterns, and our analysis can lay the 

foundation for future research. 

Another valuable contribution of this work is that it provides insights to design structures 

for applications and operations outside our current practice.  For example, from our analyses, we 

have shown dynamic responses of the origami during deployment that have not and cannot be 

observed in traditional quasi-static and kinematic analyses, even qualitatively, like the pop-up 

phenomenon in origami sheets, the snap-through behaviors between the stable equilibria of 

fluidic origami tubes, and the arch shapes in different directions in the multi-tube structure. 

Therefore, the tools we developed and the outcomes are valuable in raising awareness and 

helping the community to design future origamis that can deploy successfully with design and 

operating conditions that are outside the traditional range of consideration in the past.  In other 

words, this work is impactful in extending our fundamental knowledge and comfort zone.  

6.3 Future Directions 

6.3.1 Dynamics of Single Fluidic Origami Tube Harnessing Fluidic Field Pressure Design 

In Section 4.5, we have shown that the dynamic deployment behaviors of fluidic origami 

tubes can be controlled by changing the rate and level of pressurization. Based on these 

observations, one future direction is to understand such system dynamics with deeper insight and 

develop methods to design the pressure profile such that the fluidic origami dynamic 

reconfiguration process would follow a certain path and converge to a desired final 

configuration. For example, researchers can design the input fluidic pressure function such that 

the structure will avoid the highly distorted configuration (such as the second stable equilibrium 
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observed in this thesis study) and achieve smooth deployment and folding, or they may design 

the structural parameters and the input pressure function to reconfigure the structure so that it 

converges to and stays at the second stable equilibrium by design.  

In addition to deployment, it also shows that we can design the pressure profile such that 

the structure can follow a certain path and fold into the certain configuration, as in Figure 40. 

Similar to the dynamic deployment process, by removing the internal pressure field with 

different rates, the structure can either fold to the rest configuration (Figure 40d) or snap into 

another stable equilibrium (Figure 40c). The outcomes of the dynamic folding analysis can 

enrich the profound reconfigurations of fluidic origami, and be useful for applications requiring 

contraction such as recycling of structures. 

 

Figure 40. Dynamic folding of fluidic origami tubes via ramp function for releasing the internal pressure. 

(a) shows whether a structure will snap or not for different pressures and pressurization rates. (b) shows the time 

history of the structure folding from the same configuration (stable equilibrium under 𝑃 = 20 kPa) while under 

different rates with which the pressure field is removed. (c) shows the comparison between the settled dynamic 

configuration from the red path in (b) and the rest configuration. (d) shows the comparison between the settled 

dynamic configuration from the blue path in (b) and the initial pressurized and deployed configuration. 
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6.3.2 Deployment Dynamics of Interconnected Fluidic Origami Tubes with Complex 

Geometries 

It is shown that we can achieve programmable kinematics and stiffness by changing the 

geometry of the cross-section and folds90 of the origami tubes, and multiple origami tubes can be 

integrated and interconnected in a variety of ways and exhibit tunable stiffness91. Building upon 

these previous efforts90,91 and our studies discussed in Chapter 4 and Chapter 5, it is worthwhile 

to explore the deployment dynamics of interconnected fluidic origami tubes and origami tubes 

with various cross-sections. For the interconnected fluidic origami tube, based on the developed 

model and the results from the quasi-static and dynamic analysis in Chapter 5, researchers can 

design the structural properties and the pressure field to achieve the deployment dynamics 

beyond what can be achieved with the single fluidic origami tube structure discussed in Chapter 

4. For example, they may advance the structure’s adaptivity and versatility by designing the 

geometric and stiffness parameters for both the tube body and the interface. For tubular origami 

with specially designed cross-sections, the fluidic pressurization may be designed to achieve 

deployment dynamics with more sophisticated transient behaviors and configurations in bending, 

twisting, and shear.  

6.3.3 Validation with Physical Model Experiment 

In this thesis, we have used paper and 3D printed prototypes to shown that the origami 

structure can possess multiple stable equilibria. However, most of the conclusions on origami 

dynamics we draw are from numerical studies. For example, the influence of stiffness and inertia 

on the Miura sheet deployment dynamics, or the influence of pressure inside the tubular 

structures are only observed through simulations.   Therefore, one future direction is to design 

and manufacture different prototypes and perform experiments to validate the numerical analysis 
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findings we concluded in analyzing the Origami sheet, fluidic-tube, and multi-fluidic tube 

configurations, in terms of their deployment dynamic characteristics.  
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