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ABSTRACT

This thesis develops and assesses new ways to study the conditional quantiles of a population
using a sample of data that represents the population. All methods presented here build on a
recently-proposed non-parametric approach to quantile regression that is analogous to local linear
regression in the least-squares setting. A major challenge is that the raw local quantile estimates
are cumbersome to interpret and gain insight from directly. Aiming to overcome this challenge,
there are four main contributions herein. First, we demonstrate how a low-rank additive regression
analysis can produce insight into a collection of local nonparametric quantile estimates. The low
rank structure regularizes the noisy quantile estimates and facilitates interpretation of the findings.
Second, we show how a multivariate dimension reduction approach provides a different type of
insight into a collection of estimated conditional quantile functions. The third contribution of the
thesis leverages the combination of nonparametric quantile estimation and low-rank regression in
the context of mediation analysis. We show that this produces a novel quantile-based approach
to mediation analysis that expresses direct and indirect effects in a concise and interpretable way.
The final methodological contribution of the thesis is a framework for moment-based estimation of
conditional covariance functions for stochastic processes. Throughout the thesis, we motivate our
work through analyses looking at the proximal and distal factors predicting human blood pressure.
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CHAPTER 1

Introduction

This thesis contributes novel and practical statistical methodology that can be used to assess asso-
ciations between multiple explanatory variables and the quantile structure of a single quantitative
response variable. We focus on both surface-level “regression effects” as well as on attaining
more mechanistic insights by considering hypothesized mediating relationships involving the set
of observed covariates. Quantile analysis is a central theme, as we argue that focusing only on
conditional means and conditional variances, as in linear and generalized linear modeling, fails
to capture the full set of relationships between explanatory variables and outcomes. While this
potential failing has been noted before, challenges remain in terms of practical methodology for
exploiting quantile structure, especially when moving beyond parametric linear models, and when
considering mechanistic hypotheses involving mediation.

1.1 Motivating Scientific Application

The methodological work in this thesis was motivated by a long line of research in human
biology considering the relationship between anthropometry (body size measures such as BMI
and height) and blood pressure. This is a setting where it is especially natural to consider the
full distribution of a response as opposed to considering only its conditional mean, as we are
especially interested in the upper quantiles of the conditional blood pressure distribution since this
part of othe distribution corresponds to the greatest risk for adverse health outcomes. As in much
previous work, we are interested in anthropometry as a primary risk factor (predictor) for elevated
blood pressure. We argue that quantile analysis, and especially nonparametric quantile analysis
may prove to be fruitful, as it is unclear whether the effects of variables such as BMI and height
are equal at different quantiles, or are linear throughout the their range.

The Dogon Longitudinal Study
Throughout this thesis, we will use data from the Dogon Longitudinal Study, led by Professor
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Beverly Strassmann [91] and based at the University of Michigan. This is a longitudinal cohort
study following (initially) around 1,800 children from the Dogon ethnic group in Mali, who were
born between the years 1992 and 1998. These children, referred to as the “F1 cohort”, are now
adults, and many of the F1 females have given birth to children of their own, referred to as the
“F2 cohort”. The study also captures limited, mostly retrospective data from the parents of the
F1 cohort, referred to as the “F0 cohort”. The dataset contains roughly annual observations for
the F1 cohort children beginning shortly after birth. However most individuals do not have highly
regular observations, which complicates the analysis. A vast set of measurements were collected
at each F1 assessment. Here we focus in particular on anthropometry measures including height,
weight, body mass index (BMI), weight-for-age Z-score (WAZ), height-for-age Z-score (HAZ),
and BMI-for-age Z-score (BAZ). Our key outcome variable is systolic blood pressure (SBP), which
is measured from age 11. For further details about the study and data please refer to [91].

The Dogon are a relatively isolated ethnic group living in a rural region of Mali. The Dogon
traditionally support themselves by subsistence farming, although in recent years substantial num-
bers of younger Dogon have moved to cities including to the capital city Bamako, where they may
engage in other forms of work. Undernutrition is common in the Dogon population, but exposure
to undernutrition varies between individuals. A primary reason for interest in this population is
that important research questions for the field of human biology center on the consequences of
undernutrition in early life for adult metabolic and cardiovascular health . This is the primary
substantive question addressed by the methods developed in this thesis.

We use systolic blood pressure (SBP) as an indicator of adult cardiovascular health, and our
main goal is to explain variation in this measure. Although the F1 cohort is currently too young to
exhibit much cardiovascular morbidity or disease, elevated systolic blood pressure (SBP) in young
adults (in their late teens and twenties) may track to cardiovascular problems later in life. Cross-
sectional relationships between anthropometry and SBP are well-established – taller and heavier
individuals tend to have greater current SBP, although the nature of this relationship may differ
based on genetic and environmental factors. More complex is the role of early life exposures in-
cluding undernutrition, and its observable surrogates captured through the anthropometry measure
that are collected as part of this study.

A basic hypothesis is that childhood growth relates to adult SBP via two antagonistic routes.
First, larger children “track” into being larger adults, and larger adults tend to have greater SBP.
In this way, well-nourished children are at greater risk for elevated adult SBP. However, well-
nourished children also have the capacity to develop healthy tissue and organ systems, which
may protect them from having high SBP as adults. One possible mechanism at work here is that
undernourished children may be at risk for having under-developed vascular and renal tissues,
putting them at risk for elevated SBP regardless of body size.
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These antagonistic relationships have been extensively considered in previous work with other
populations, leading to some controversies about proper analysis and interpretation of the data.
A so-called “reversal paradox” has been debated, in which early-life body size x is positively
associated with adult SBP y in marginal terms, but this becomes an inverse association when
conditioning on adult body size z. The paradox is resolved by recognizing that it may result from
a specific set of causal relationships among x, z, and y. This issue is discussed in more detail
in chapter 3 using methods of mediation analysis. In this chapter, we always condition on adult
anthropometry variables (z) and interpret the association of childhood body size with adult SBP
as a “direct effect” that controls for body size tracking. We note that these issues seem mainly to
have been considered through the conditional mean, making our analysis involving conditional
quantiles a novel contribution to this debate.

The National Health and Nutrition Examination Survey
We also use data from the 2015-2016 wave of the National Health and Nutrition Examination
Survey (NHANES) [14], [2] to benchmark our methods. NHANES is a high-quality study run
by the United States Centers for Disease Control (CDC), conducted in waves over many decades.
NHANES cross-sectionally surveys a probability sample of the US population, with the overall
goal of assessing the health and nutritional status of people within the United States of all ages.
NHANES is not longitudinal, so cannot be used to address the role of early-life exposures in
determining adult outcomes. However, NHANES has a larger sample size compared to the Dogon
longitudinal study (≈ 8, 000 versus ≈ 1, 400) and presents numerous opportunities to explore
cross-sectional relationships. We use the NHANES study to assess and benchmark the findings of
the frameworks developed here in a context where the ground truth is very well explored.

1.2 Literature review of quantile regression

Quantile regression is an extremely vast topic. It is outside the scope of this study to provide an
extensive literature review of this topic. For such reviews, some references include [53], [52]. Here
we provide a brief review of techniques relevant to the methods explored in this thesis.

Linear Quantile Regression

Linear Quantile regression is an effective analytic technique since it can drive inferences about
individuals in the tails of the population, and can focus on properties of the response beyond its
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central tendency. The linear quantile function can be written as follows

Yi = X ′
iβpi + ϵpi, ϵpi ∼ Hpi, i = 1, · · · , N, 0 < p < 1.

Here Hpi is some arbitrary distribution such that Hpi(0) = p, ie the distribution function is zero
equals p. This parametric model describes the conditional qunatile function of the outcome Yi

conditional on covariate(s) Xi at given quantile p ∈ [0, 1] as

QYi
(p|Xi) = F−1

Yi
(p|Xi) = X ′

iβpi + ϵpi, with Qϵpi ∼ Fpi.

Additive Quantile Regression

A semi-parametric extension of linear quantile regression to include non-linear terms led to addi-
tive quantile regression (AQR) [95]. A brief review of this can be found in [53]. In the classical
additive models, each covariate contributes through its own functions additively. The model is
obtained by minimizing

argmin
βp

N∑
i=1

ρp(yi −QYi|Xi,Zi
(p|xi, zi)),

and has the general form

QYi|Xi,Zi
(p|xi) =

J∑
j=1

fpj(xi),

where xi ∈ RJ . In these methods, the non-linear terms are generally estimated non-parametrically.
This is feasible because the additive structure of the model restricts the non-parametric components
to be low-dimensional, which helps overcome some aspects of curse of dimensionality. This was
extended by [51], who expanded the fitted functions into the sum of univariate and bivariate func-
tions. The model proposed in [51] was of the form

QYi|Xi,Zi
(p|xi, zi) = xT

i βp +
J∑

j=1

fpj(zi). (1.1)

The additive model above consists of a linear term in X and a sum of non-linear terms formed
of arbitrary functions fpj, j = 1, 2, · · · , J of Zi. The vector Z = (Z1, · · · , Zr) may consist of
additional terms; fpj could be any functions, such as a non-linear smooth function of some Zi ie
fpj(Zi) = fpj(Zi), or a bivariate function in Z, ie fpj(Zi) = fpj(Zir1

, Zir2
).

Generally f ′
· s are estimated via splines since they are non parametric. Quantile B-splines are not
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used as they requires determining the optimal number of b-splines in the basis. Instead, smoothing
splines are used along with a roughness penalty to prevent overfitting. The updated equation which
is minimize to obtain the estimates is

argmin
βp

N∑
i=1

ρp

(
Yi −XT

i βp −
J∑

i=1

(
fpi(Z)

))
+

J∑
j=1

λjV (f ′
pj), (1.2)

where V (f ′
pi) represents the total variation of f ′

pi, such that V (f ′
pi) =

∫
|f ′′

ip(Z)| ·dZ. The smooth-
ing penalties λj can be tuned using quantile regression adapted information criterion such as AIC
and Schwarz-type (SIC) [51], [55], or via bootstrap [27]. Alternate ways to estimate {fpk}qk=1

include backfitting [25], marginal integration [20], local polynomial splines [43].

Additive Quantile Regression for time-varying data

AQRs were originally extended to Longitudinal data by including fixed individual-specific inter-
cept and slopes in [27]. They were further extended by including multiple correlated random
effects to account for the individual-level correlation with a general covariance matrix, such that
the model allows for automatic data-driven selection of the smoothing penalty [32]. The general
form of the model is given below

Qyik|ui,xi,zi(p) = βp,0 +

q∑
j=1

f j
p (xijk) + z′ikup,i,

where Xi =


x′
ij1
...

x′
ijni

 ∈ Rni×q, Zi =


z′ij1

...
z′ijni

 ∈ Rni×p for the ith subject. f j
p (·) is a

centered, p-specific, twice differentiable smooth function of the jth component of x, and up,i is a
p × 1 vector of the random effect coefficients for zik and its distribution may contain p-specific
parameters. In their paper, they consider a spline model for the non-linear functions in each
component of x. They further assume that upi and vp follow zero-centered multivariate Gaussian
distributions which are independent of each other. For further details please refer to [32]. An
application of this method can be found in [100]. More on quantile mixed-effects models can be
found in [30], [33], [56].

AQRs have also been developed for time series data, such as Generalized Autoregressive Con-
ditional Heteroscedasticity (GARCH)-type models [96]. For time series data, another dimensional
reduction technique with functional-coefficients is the smooth coefficients model [13]. This model
assumes stationarity and has an additive form as follows
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Qp(Xt,Ut) =
J∑

j=1

ajp(Ut)Xj(t) = X ′
tap(Ut),

where Ut, called the smoothing variable, can contain some of the covariates Xt =

(X1(t), · · · , XJ(t)), or time, or other exogenous or lagged variables. Most importantly, ap(·) =

(a0p(·), · · · , aJp(·))′, where some of the smooth coefficient functions {ajp(·)} can be quantile-
specific (dependent on p). The smoothing functions are estimated non-parametrically using a local
polynomial fit. This setting covers many quantile regression models, such as autoregressive QAR,
a specific class of autoregressive conditional heteroscedasticity (ARCH) models and the ordinary
non-parametric quantile regression model if J = 0.

Non-parametric Quantile Regression

While linear quantile regression is easy to interpret and not intensive computationally, it is not
flexible due to the strict linearity assumption. Non-parametric quantile regression has become
a popular alternate to avoid restrictive parametric assumptions. [54] defined the class of Non-
parametric Quantile Regression models as close to the linear quantile model as possible. They
presented the following form

QYi
(p|Xi) = f(Xi, βi(p)),

where the pth non-parametric quantile regression estimate is obtained by

β̂i(p) = argmin
β

N∑
i=1

ρp(yi − f(xi, β(p))).

Several techniques have been proposed for non-parametric quantile regression modelings,
including smoothing techniques. Two broad categories of smoothing techniques are methods using
splines and kernels. Details on different strategies employed to obtain estimates in non-parametric
quantile regression can be found in many studies, including [19], [54].

Other models for non-parametric quantile regression include nearest-neighbour estimates [7],
[26], quantile random forests [69], [69] and estimates using neural nets [78].

1.3 Mediation analysis

Mediation analysis is a framework for exploring mechanistic hypotheses about the relationships
among measured variables. It aims to expand beyond what can be learned from conventional
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regression analysis. In the standard form of mediation analysis, we have three types of variables:
the exposure, the mediators, and the outcome. We hypothesize that the exposure causally affects
the mediators and the mediators causally affect the outcome, giving rise to an indirect effect from
the exposure to the outcome. In addition, a direct effect may exist in which the exposure directly
affects the outcome. The primary goal of mediation analysis is to estimate and quantify these direct
and indirect effects, and to assess the uncertainty in these estimates.

In early frameworks for mediation analysis, the exposure, mediator, and outcome were all
scalar-valued. More recently, methods have been developed in which any of the three types of
variables can be multivariate. In this thesis, we consider multivariate mediators but the exposure
and outcome are always scalars for us.

Guarantees about the causality of mediation structure generally require the exposure to be ran-
domized, in which case it may be referred to as a treatment. Our motivating data application
involves the life history of human beings which is impossible to randomize, so our mediation
analysis takes place in an observational setting. Therefore the causality of any findings cannot be
guaranteed from the data and statistical analysis alone.

In a conventional regression analysis with this type of data, we would regress the outcome on
the mediators and exposure using some form of multiple regression. This type of analysis does
not consider mechanistic relationships between the exposure and the mediators, as both are treated
as covariates predicting the outcome. In regression-based approaches to mediation analysis, two
separate regression models are fit, one regressing the mediators on the exposure (which could
involve separate models for each mediator), and another regressing the outcome on the mediators
and exposure. Mediation analysis integrates the point estimates and uncertainty information about
these models to produce an overall picture of the mediation structure. We note that there also exist
frameworks to mediation analysis that use a single integrated model such as a structural equations
model. The approaches we develop here build on the regression approaches so we focus on that
line of work here.

The earliest form of regression-based mediation analysis was based on linear models of the
form y = a+ b ·x+ c ·m+ ϵ and m = d+ e ·x+ η, where ϵ and η are random variables capturing
the unexplained variation. The product coefficient estimate of the indirect effect is simply ê · ĉ. In
a linear model, the product e · c is the expected change in y resulting from a one-unit change in
x if the direct effect captured by the slope parameter b is “blocked”. The slope parameter b itself
represents the expected increase in y resulting from a one-unit change in x if the indirect effect is
blocked. In this setting, we can also define a total effect b+ c · e capturing the expected change in
y resulting from a one-unit change in x through either direct or indirect routes.

The mediation structure captured by linear models is somewhat limited by the simple form
of these models. It is possible to attain more insight by introducing nonlinear relationships, for
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example with spline basis functions, or by including interactions in the regressions. Moreover
any approach based on least-squares targets conditional means, leaving unexplored any mediation
structure existing in the tails of the distribution that differs from the mediation at the conditional
mean. This has motivated a small number of researchers to consider mediation analysis involving
quantile regression. As noted above, this is especially pertinent for analyses involving variables
such as blood pressure, since the health consequences of high and low blood pressure are quite
distinct.

Much of the existing work on quantile-based mediation analysis has utilized linear quantile
regression, in which the conditional quantiles of the response are modeled as linear functions
of the explanatory variables. Here we leverage a recently-proposed non-parametric approach to
quantile regression. By utilizing this approach we aim to capture mediation effects that may be
non-linear and/or heterogeneous at different probability points.

An important conceptual challenge is the interpretation of quantile-based mediation analysis.
The conditional mean can be interpreted as a prediction of one observed value. Thus, when work-
ing with conditional means we can speak of the indirect and direct effects as corresponding to ex-
pected changes in the observed response that can be attributed to changes in the exposure variable.
Such an interpretation also can be made for the conditional median. However outer conditional
quantiles are not naturally viewed as predictions of the data, but rather as population parameters
describing collections of individuals (resulting from hypothetical perturbations to the overall pop-
ulation of interest). For example, we may find that the indirect effect of a one-unit change of the
exposure x on the 90th percentile of the outcome y through a mediator m is 0.5 units, while the
analogous effect at the median is 0.25 units. This means that among all people exposed to the one-
unit change in x, and blocking any direct effect of x on y, the indirect effect of this exposure is to
increase the 90th percentile by two times the increase in the median. This is a statement about the
heterogeneity of responses to the exposure across individuals in the population, rather than being
a statement about impacts on individual people’s outcomes.

1.4 Baseline analyses

To provide a reference point for the results of the novel analytic frameworks discussed in this thesis,
in this section we present a limited analysis of the Dogon anthropometry and blood pressure data
using conventional analytic methods. We use generalized estimating equations (GEE) for this
purpose although mixed effects regression or other established methods for repeated measures
data could also have been used. The results presented here are for a linear mean structure model
in which systolic blood pressure (SBP) is the dependent variable. The dataset includes repeated
SBP measures per person, taken from ages 11 to 27. The SBP measurements are irregular in

8



time, with subjects having between 1 and 12 longitudinal SBP measurements, with a median of
9 measurements. An exchangeable working correlation model is used in the GEE analysis to
accommodate residual correlation among the SBP values. We note that by using GEE, estimation
and inference for the mean structure parameters are robust to misspecification of the working
correlation model. Since this is a linear mean structure, this analysis can also be viewed as a
form of generalized least squares (GLS), and the mean structure parameters capture changes in the
conditional mean.

The mean structure includes both cross-sectional and longitudinal effects. The cross sectional
effects correspond to age, various anthropometry measures, and other relevant variables measured
at the same time that the SBP is measured. For example, we control for pregnancy status in
females, and we control for the number of prior occasions on which a subject’s blood pressure was
measured to control for “white coat hypertension”. Capturing the effects of early life exposures is
more difficult as these are measured at different ages and differing numbers of times in different
subjects. To accommodate this, we use data imputation based on a “process regression” model
discussed in detail in chapter 4. Details of this model are given in that chapter, but to briefly
summarize here, we estimate the conditional mean of a given childhood anthropometry measure at
ages 1, 2, . . . , 10, given all observed data for that individual and conditioned on the structure of the
fitted process regression model. We then used principal components analysis (PCA) to reduce these
10-dimensional trajectories to univariate scores. The dominant such score was included in the GEE
regression analysis as a covariate. We do not claim that only the dominant factor is informative, but
for simplicity only that term is considered here. We note that this is a single imputation analysis
and a full multiple imputation analysis would give a fuller picture of the uncertainty.

Due to profound sex effects, separate models were fit for female and for male subjects. We
considered a total of 24 models – 6 childhood anthropometry measures × two levels of covariate
adjustment × two sexes. The most relevant findings that provide context for the remainder of this
thesis are the direction, size, and significance levels of cross-sectional and longitudinal associa-
tions between SBP and anthropometry, therefore that is what we focus on here. These results are
summarized graphically in figure 1.1, with all model coefficients shown as standardized effects,
i.e. the estimated change in SBP corresponding to a 1-standard deviation change in an explanatory
variable. Note that the horizontal axis in this plot has units of mm Hg (the standard unit for SBP)
per standard deviation of body size.

Across the 24 models, we see that main effects for childhood body size are always negative,
although in a few cases, mainly for height variables, they are not statistically significantly different
from zero. This reflects the conditional inverse association that has been noted before and is the
subject of some debate, as discussed above. In contrast, and unsurprisingly, measures of adult
body size (height and BMI) obtained at the same time as the SBP measure always have positive
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point estimates that are statistically different from zero. In terms of effect sizes, for females BMI
shows a much stronger association with SBP than with height, but for males these two distinct
aspects of body size have similar associations with SBP. Also, the current body size measures have
coefficients with magnitude that are 3-5 times greater than those for childhood body size.

As discussed in detail in chapter 3 on mediation analysis, debate has taken place regarding the
proper interpretation of models such as these. Childhood body size is not independent of adult
body size, and while such independence is not a requirement for regression analysis, it compli-
cates reasoning about these models. An intervention that aims to raise childhood body size would
potentially also raise adult body size, resulting in an “indirect efect” that acts together with the “di-
rect effect” reflected in the estimated regression coefficient for childhood body size. The opposing
effects of these two plausibly mechanistic pathways may combine to do either harm or good de-
pending on their respective magnitudes. Here we interpret the coefficients for childhood body size
in these analyses as a type of “direct effect”. Strictly speaking, they may be viewed as correspond-
ing to an intervention that raises childhood body size (implying better nutrition during childhood),
while blocking the concomitant expected increase in adult body size. While not impossible, such
an intervention may be difficult to achieve in practice.
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Figure 1.1: Regression coefficients for adult height and weight, and for various measures of child-
hood body size, with adult Systolic Blood Pressure as the response variable. Each row corresponds
to a different fitted model. Coefficients for females are shown in orange above each axis line, and
coefficients for males are shown in purple below each axis line. The horizontal grey bars depict
95% confidence intervals. The specific body size variable included in each model is given to the
left of each axis, and to the right of each axis an “A” appears if the model is adjusted for village of
birth, the number of previous SBP measurements, and pregnancy status for females.
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CHAPTER 2

Additive Low Rank and Dimension Reduction
Approaches to Joint Nonparametric Quantile

Regression

2.1 Introduction

In this chapter we develop new tools leveraging recent advances in nonparametric quantile regres-
sion to understand complex conditional relationships between the full distribution of an outcome
variable Y ∈ R and multiple explanatory variables X ∈ RJ . Recent work in nonparametric quan-
tile regression permits estimation of the pth conditional quantile of an outcome Y given explanatory
variables X without specification of strong models. In this work we make use of a local method
for conditional quantile estimation that we refer to as the “Quantile Nearest Neighbor” (QNN)
method [99]. QNN is analogous to local polynomial least squares methods [36, 90], which have
been extensively explored. The ideas developed here should also be applicable when used in con-
cert with other nonparametric quantile regression approaches such as recently proposed tree-based
approaches [69].

Our goal is not prediction or forecasting, but rather attaining scientific insight, specifically in
the motivating human biology application discussed below. The main challenge we face is that
raw local estimates of conditional quantiles are both too voluminous and too imprecise to permit
direct interpretation. The main contribution of this chapter is the development of two practical
frameworks for post-processing and imposing structure on these raw quantile estimates to achieve
scientific insights.

The work presented in this chapter is motivated by questions arising in human biology about
the relationship between anthropometry (body size) and blood pressure. Background on this topic
was provided in section 1.1 of the Introductory chapter. To briefly review, while it is well-known
that cross-sectionally, individuals who are taller and/or have greater height and/or adiposity tend to
have greater blood pressure (BP), these relationships are modified in complex ways by other fac-
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tors, including by sex, age, and life history. Moreover, when considering longitudinal trajectories
of anthropometry variables as predictors of subsequent blood pressure (e.g. looking at anthropome-
try over the developmental span from birth to adulthood), there may be complex inter-relationships
among anthropometry variables taken at different ages, and among different types of anthropom-
etry variables (e.g. between height and adiposity). Most importantly for our goals here, factors
associated with either exceptionally high or exceptionally low blood pressure (i.e. outer BP quan-
tiles) may operate differently than factors associated with the mean or with inner BP quantiles such
as the median. This motivates our focus on conditional quantiles in this and subsequent chapters
of the thesis.

Let QY |X(p|x) denote the pth quantile of a response Y given J ≥ 1 explanatory variables X ∈
RJ . Absent a strong model, this function can exhibit very different behavior at different values of p
for fixed x, and at different values of x for fixed p. For example, the quantiles may depend strongly
on a specific variable xj at the median p = 0.5, but exhibit much weaker relationships with xj at
outer quantiles such as p = 0.1, 0.9 (or vice-versa). Similarly, the shapes of QY |X(p|x) viewed as
functions of p for fixed x may be simple translates of each other as in a “location family”, or may
be heterogeneous, having qualitatively different shapes at different values of x. Local estimates
of QY |X(p|x) have the potential to capture these and other forms of heterogeneity. However like
all local regression procedures, a bias/variance tradeoff is present. To achieve low bias in a local
estimate of QY |X(p|x), it will generally be the case that the individual point estimates will have
substantial variance.

Any multiple regression procedure faces trade-offs with regard to the handling of multiple ex-
planatory variables x. Fully nonparametric analysis allowing arbitrary non-additive and non-linear
covariate effects suffers from the “curse of dimensionality”. There is a rich body of methodology
that allows weak constraints to be introduced, enabling such modeling to proceed. Major advances
of this type include single index models [47], [39], [81], [24], dimensionally reduced models [64],
[18], [28], and additive models [41], [85], [12].

Quantile regression introduces the additional complexity that we have a model relating x to y

for each probability point p. Our goal here is to understand the joint behavior of the quantiles
over multiple probability points. One previously-explored issue is the so-called “quantile crossing
problem”, in which estimated quantiles violate the requirement that Q̂Y |X(p′|x) ≥ Q̂Y |X(p|x)
when p′ ≥ p. While important in some cases, this is not our main concern here. Regardless of
whether minor quantile crossings occur, it remains challenging to interpret the joint variation of
multiple conditional quantiles with respect to multiple explanatory variables. Therefore, our goal
here is to provide practical methods that permit accessible insights to be drawn about a collection
of conditional quantiles with respect to variation in multiple explanatory variables.

Specifically, we develop the following two frameworks for joint understanding of a collection
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of conditional quantiles:

• Additive Factor Quantile Regression (AFQR) – here we model the covariate effects addi-
tively, leading to a dramatic reduction in one form of complexity, permitting us to shift our
focus to another form of complexity. Specifically, by disallowing non-additive relationships
among the covariates, we are able to recover a wide range of easily-interpretable nonlin-
ear relationships between each covariate and the full range of conditional quantiles of the
response.

• Dimension Reduction Quantile Regression (DRQR) – here we treat the set of conditional
quantiles over multiple probability points at a covariate value x as a multivariate response,
and employ existing methods for nonparametric multivariate regression that leverage dimen-
sion reduction. These methods result in low-dimensional “multi-index” models that can
capture non-additive relationships between the covariates and the quantiles, at the cost of a
more complex representation (compared to AFQR) that is somewhat challenging to inter-
pret. We explore and illustrate some effective visualization techniques to ease the process of
interpretation.

Chapter organization : in this chapter we present two methods that are very different from each
other (AFQR, DRQR) but share the same aim, which is to jointly study the conditional quantiles of
an outcome in an interpretable manner. This chapter is best viewed as consisting of two subchap-
ters, one per technique. We start by describing the common motivation, aim and notation for both
the techniques in the remainder of this section. We then present AFQR in section 2.3 and DRQR
in section 2.4. Per method, we provide the outline of the technique and detail the estimation proce-
dure. We also describe the tools built to aid interpretation of the results, and explain the inference
procedure. We perform simulation studies to assess the performance of our methods, and illustrate
each method on a longitudinal dataset (from the Dogon longitudinal study) and a cross sectional
dataset (using the NHANES data). We end the chapter with common concluding remarks, and
future directions in section 2.5.

2.1.1 Motivation and basic setup

We are interested in modelling and visualising the associations between explanatory variables and
quantiles of an outcome variable, jointly at a given set of probability points. We adopt a quantile
based approach, since this allows us to study full conditional distributions of the outcome given the
predictors. This allows us to discover relationships in which, for instance, an exposure predicts the
median and the outer quantiles of an outcome differently. Furthermore, we wish to accommodate
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nonlinearity, as when a fixed increase in an exposure corresponds to different changes in a quantile
of the outcome based on the initial value of the exposure.

Why study quantiles?

Let us consider an example to illustrate the importance of modelling full distributions via quantiles
instead of means. To keep it easy, we present an example in which we focus on a single covariate.
We use this as a running example through-out the chapter. In the Dogon data, we consider adult
SBP among men, and model its relationship with childhood BMI while controlling for adult body
size via adult BMI and adult height (HT).

In fig (2.1) we can see that childhood BMI for males around age 3, impacts different quantiles
of adult SBP around age 21 differently. Subfigure (2.1a) contains the fit of a linear regression
model with kernel weights corresponding to age. In particular, we consider a smaller bandwidth of
0.5 years for childhood age and a larger bandwidth of 2 years for adult age. The second subfigure
(2.1b) presents a quantile regression fit at different quantiles of the outcome, with the same weights
as above. Both the models control for adult body size via the formula

Adult SBP ∼ childhood BMI + adult HT + adult BMI +

childhood Age + adult Age.

The predicted values in these images are calculated at median adult HT and BMI, across child-
hood BMI. As we can see, a least squares fit (2.1a) does not give us the full story. For instance, it
does not tell us (1) about the change in the shape of the SBP distribution across childhood BMI,
or (2) whether higher SBP (0.75) and lower SBP (0.25) quantiles vary similarly as functions of
childhood BMI. From fig (2.1b), while all the quantiles of adult SBP are decreasing functions of
childhood BMI, the median has a much steeper slope than the outer quantiles (both lower and up-
per), which means that there is more signal at median adult SBP, as compared to its outer quantiles.
We can see that the mean trend (obtained from OLS) is not able to capture this difference in shape
of the curve across different quantiles of the outcome, and does not give us all the information.
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Figure 2.1: Adult SBP between ages 21 ± 2.0 years as a function of childhood BMI around ages 3 ± 0.5
years, for males only.

Notation

Here we establish notation. We consider data that consists of an outcome Y and a set of J explana-

tory variables X =
[
X1 X2 · · · XJ

]T
∈ RJ , where Xj represents the jth covariate. If this is

longitudinal data, all variables would be functions of time with repeated measures per individual.
We omit time points in this subsection for ease of notation and generalizability. The data are of the
form {(yi,xi)}ni=1 =

{(
yi, {xij}Jj=1

)}n

i=1
, with total number of observations n. We will denote

the observed data by Xo short for X observed.
Throughout this document, all vectors will be bold and all matrices will be capital and bold.

Random variables are capital, and vector-values random variables will be capital and bold. It will
be easy to distinguish between vector-values random variables and matrices per context. Finally,
observed values of random variables will be denoted by small letters. A subtle distinction worth
noting is that xi represents the ith observation in the dataset, whereas xj represents an observed
value of the jth independent variable Xj , and x represents a generic observed value of X .

Our approach

We are interested in exploring the full distribution of the outcome and explaining its variation at all
quantiles in terms of explanatory factors. As we briefly discussed in the Introductory chapter, non-
parametric methods have been developed to flexibly estimate conditional quantiles of the outcome.
However, many of these methods are opaque, and thus provide results which may be difficult to
interpret. As explained earlier, QNN is one such non-parametric qunatile regression technique that
we use through-out this chapter to obtain non-parametric estimates.
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In particular, per observation xi, we obtain conditional quantile estimates of the outcome
over a grid of probability points, say p = [p1, · · · , pm], via QNN. This gives us a matrix of
estimated conditional quantiles Q̂ ∈ Rn×m. We discuss methods to understand and visualize
the association between this matrix Q̂ and the observed data Xo ∈ Rn×J . So our methods
treat the conditional quantile estimates obtained from QNN (which correspond to elements of
Q̂) as the dependent variable, and the dataset “used” by our proposed methods is of the form
{
(
Q̂i· ,xi

)
}ni=1 where the ith row of Q̂ corresponds to the conditional quantiles estimated at xi,

i.e. Q̂i· =
(
Q̂Y |X(p1|xi), · · · , Q̂Y |X(pm|xi)

)
instead of the observed data {(yi,xi)}ni=1. Thus,

obtaining the QNN estimates can be viewed as a pre-processing step to the proposed techniques
(AFQR/ DRQR) or the proposed techniques can be viewed as post-processing steps to the outcome
of QNN.

2.2 Properties of local non-parametric quantile estimates

Our main contribution is a data analysis framework that consists of a pipeline in which first the
data are first “transformed” to predictions of their conditional quantiles, and then these predicted
conditional quantiles are modeled and/or analyzed in various ways. Such pipelines may be diffi-
cult to analyze and justify from a theoretical perspective, since bias, variance, and other forms of
statistical uncertainty propagate through the pipeline in a complex manner. Consider for exam-
ple a two-stage procedure in which the observed data y are first transformed into fitted values ỹ

(e.g. quantile estimates) using a strong parametric model. The ỹ values would likely exhibit strong
global correlations – e.g. an observation ỹi may have strong dependence with every other observa-
tion ỹj , even if xi and xj are highly dissimilar. Furthermore, a strong model is almost certainly an
incorrect model, and therefore each ỹ value will potentially be strongly biased.

We argue that in the present setting, the challenge of adopting a two-stage approach to data
analysis is made less severe through the use of local non-parametric procedures in the first stage of
the pipeline. In a local approach, there should only be weak dependence between the ỹi, beyond
any dependence that was already present in the data (if not an independent sample). The pipeline
analysis method itself induces additional dependence only in small neighborhoods defined through
the covariates x. Furthermore, we will demonstrate that the ỹ are minimally biased in relation to
their target values, and thus behave more like “data” than like “estimates”. These properties follow
from the local, nonparametric nature of the quantile regression analysis employed here, and are
supported by simulation studies reported below. We employ a non-parametric quantile estimation
approach previously developed and analyzed in [99], which we refer to as the “QNN” (Quantile
Nearest Neighbor) procedure. The inventors of the QNN procedure provide asymptotic results
demonstrating that the quantile estimates concentrate around their target values. We augment this
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theoretical work with empirical studies presented below.
The goal is to estimate the pth conditional quantile of a random variable Y given explanatory

variables x, and we denote this target of estimation as QY |X(p|x). For each observation yi (i =
1, . . . , n), a free parameter θi is introduced, and the check function ρp(x) = (p − Ix<0)x is used
to assess the fit of the θi to the yi – that is,

∑
i ρp(yi − θi) should be small. However, minimizing

this loss function yields degenerate quantile estimates θ̂i ≡ yi which both overfit the data, and that
fail to unbiasedly estimate the target quantile (unless p = 0.5 where these degenerate estimates are
median unbiased).

Regularization is used to address this issue. Specifically, for each i a neighborhood Ni is con-
structed so that for a chosen dissimilarity function d(·), d(xi, xj) is small when j ∈ Ni. The overall
loss function becomes

∑
i

ρp(yi − θi) + λ
∑
i

∑
j∈Ni

|θi − θj|.

The regularization involves two tuning parameters – the neighborhood size |Ni| and the penalty
weight λ. The inventors of QNN claimed that a neighborhood size of 5 and penalty weight of
λ = 0.1 work well in a broad range of settings. For computation, the inventors of QNN favor a
proximal gradient type of algorithm for speed, but for moderate-sized data sets as we have here,
traditional linear programming methods are easy to implement and sufficiently fast, so that is
what we employ here. Our implementation of the QNN procedure is available at github.com/
kshedden/QuantileNN.jl.

In our pipeline, the goal of QNN is not to reduce variance – that goal is achieved through the
second stage of the pipeline (an additive factor-type model or multivariate dimension reduction
analysis). In fact, in a perfect world, QNN would transform the observed data yi into quantile
estimates ỹpi that are unbiased but that have approximately the same variance as the data – that is,
we would be willing to accept var(ỹip) being comparable or even somewhat greater than var(yi),
especially for extreme p, as long as E[ỹip] ≈ QY |X(p|X = xi). This would justify viewing the
ỹip as a “transformation” of the data, analogous to the use of a logarithm transformation in basic
regression.

Our main concerns are bias and dependence, and we focus on bias here. Bias is the systematic
part of estimation error. We first consider by analogy local polynomial regression – QNN is most
analogous to local constant regression since the θi are shrunk together within each neighborhood
Ni without regard to local linear trends or curvature. Bias in this type of procedure is largely
determined by the trend and curvature of the target function f as measured by f ′ and f ′′. When
f is locally constant, there should be minimal bias as long as the bandwidth is small. Thus, one
contributor to the bias would be any component of the estimation error that varies systematically
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with Q′
Y |X(p|x) and Q′′

Y |X(p|x), where derivatives are taken with respect to x.
Local polynomial regression targets the conditional expectation while QNN targets conditional

quantiles. In quantile regression, an additional source of bias arises as the targeted quantile be-
comes more extreme (i.e. further from the conditional median p = 0.5). In our studies this form
of bias appears to dominate bias induced by the local trend and curvature in QY |X(p|x) (unless
p ≈ 0.5). We hypothesized that a component of the estimation error can be explained as bias
toward the conditional median – that is, upper quantiles (p > 0.5) are biased downward and lower
quantiles (p < 0.5) are biased upward. Specifically, we considered bias as the component of
prediction error that can be predicted from the following function:

g(p, x) ≡ QY |X(p|x)−QY |X(0.5|x). (2.1)

We assessed this hypothesis empirically using simulation studies, working with populations where
the population values of all conditional quantiles are known exactly.

2.2.1 Simulation Study

We conducted a simulation study to assess the bias in the QNN procedure. The bias in Q̂Y (p;x)

as an estimate of QY |X(p|x) will be denoted bias(p, x) ≡ EQ̂Y |X(p|x) − QY |X(p|x). We
simulated data from a heteroscedastic Gaussian population as follows. The explanatory variables
x are simulated as standard independent multivariate Gaussian values of dimension d. The
conditional mean of the simulated population is either x1 or x2

1 (to consider the effect of curvature
in the population conditional quantile functions), and the conditional variance is σ2(1 + x2

2). We
population design as well as the population quantile function are presented for both the cases
below, where Φ−1(p) is the quantile function of the standard normal distribution.

Linear:

Data Generation X = Nd(0d, I(d))

Y = X1 + ϵ

ϵ ∼ N (0, σ2(1 +X2
2 )).

Quantile function QY |X(p;x) = σ(1 + x2
2)

1/2 · Φ−1(p) + x1.
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Non Linear:

Data Generation X = Nd(0d, I(d))

Y = X2
1 + ϵ,

ϵ ∼ N (0, σ2(1 +X2
2 )).

Quantile function QY |X(p;x) = σ(1 + x2
2)

1/2 · Φ−1(p) + x2
1.

We generate m = 100 datasets from the population described above with sample size n = 1500,
considering dimensions d = 2 and d = 5. Note that we only sample X once per dimension d, and
generate m sets of Y from the same X , for each setting σ = 1 and σ = 2. We then use QNN to
estimate the conditional quantiles at p = 0.5, 0.75, and 0.9 for each simulated dataset. We do not
consider quantiles below 0.5 as the quantiles behave similarly based on their distance from 0.5, i.e.
p = 0.2 behaves similar to p = 0.8.

2.2.1.1 Estimate evaluation

The estimation error Q̂Y |X(p|xi) − QY |X(p|xi) reflects both the systematic effects (bias) and
purely random effects (variance). To disentangle these two sources of error, we use the estimation
errors as the dependent variable in a least squares regression, with the following mean structure

Q̂Y |X(p|xi)−QY |X(p|xi) ∼ gp(xi) + gp(xi)
2 + gp(xi)

3. (2.2)

This mean structure model is fit using ordinary least squares to a dataset consisting of simulated
values, pooling over the three values for p and over the m replicates (so the overall sample size
for the least squares fit was 3mn since we are considering three values for p). We adopt this
regression approach for two reasons. First, it requires fewer simulation runs than a direct approach
that estimates the bias as the sample mean of Q̂ − Q over Monte Carlo replicates. Second, and
more important, it helps us understand the structure of the biases, by identifying the factors that
predict the systematic component of the estimation errors. We do note that we cannot claim that
our empirical model 2.2 completely captures the bias, since systematic errors could result from
factors unrelated to gp.

Let β̂0, . . . , β̂3 denote the four parameters of model 2.2, and let r̂elbias(p;x) = β̂1 + β̂2gp(x)+

β̂3gp(x)
2 denote our estimate of the relative bias for probability point p at covariate value x, where

relbias(p;x) = bias(p;x)/gp(x). We treat β0 = 0 in this definition and consider the value of
this intercept separately. For a fixed value of p, we can now summarize the bias as relbias(p) =

median{|r̂elbias(p;xi)|; i = 1, . . . , n}, which we refer to as the median absolute relative bias.
Below we focus on the relative bias at p = 0.75.
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2.2.1.2 Simulation study findings

The fitted intercepts in model 2.2 capture the bias for estimating the conditional median. In our
results, these intercepts (table 2.1) were very small relative to the range of true conditional medi-
ans over x. All fitted intercepts were smaller in magnitude than 0.03, while the true conditional
medians had standard deviations (over the sample of x values) ranging from 0.98 to 1.46. This
suggests that the estimated conditional medians are nearly unbiased. Arguably, any bias in the
estimated conditional medians should result from oversmoothing that fails to capture the local cur-
vature of the true quantile function, and hence would only be present in the model where the true
conditional median is quadratic in x (when the true conditional median is linear in x there is no
local curvature). However in our simulation study, when the true quantile function was quadratic
versus linear, the intercepts of the regression model (equation 2.2) were very similar in magnitude,
suggesting that curvature and oversmoothing have minimal contributions to estimation bias of the
conditional quantiles.

Our simulation results support our hypothesis that the bias primarily takes the form of attenua-
tion toward the conditional median - that is, when gp(x) > 0 the bias is negative and with gp(x) < 0

the bias is positive. An example is presented in figure 2.2. Figure 2.2 displays the model fit at
p = 0.75 for the non-linear case (d = 5, σ = 2). Here g(0.75,x) = σ(1 + x2

2)
1/2 · Φ−1(0.75) > 0

for all values of x. The fitted curve corresponds to the estimate of the bias; each point on the curve
corresponds to the estimated bias at a point x, such that the x-axis value at that point corresponds
to g(0.75,x). As we can see, here g(0.75,x) > 0 everywhere and the estimated bias is negative
throughout.

To summarize the overall extent of bias, we report the median absolute bias (as defined above)
for p = 0.75. The results are presented in table 2.1. The median relative bias is found to increase
with σ, and with d. However in the situations that we consider (across all p), the relative bias tends
to be less than 10% when d = 2 and less than 20% when d = 5.

Form d σ Intercept R2 relbias(0.75)
Linear 2 1 0.002 0.04 0.06
Linear 2 2 0.005 0.06 0.06
Quadratic 2 1 −0.003 0.03 0.06
Quadratic 2 2 −0.004 0.03 0.06
Linear 5 1 −0.017 0.06 0.12
Linear 5 2 −0.027 0.14 0.13
Quadratic 5 1 −0.011 0.06 0.21
Quadratic 5 2 −0.028 0.12 0.17

Table 2.1: Simulation results for p = 0.75.
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Finally, we consider the magnitude of the bias in relation to the estimation variance, again
noting that we are only detecting the component of the bias that is predictable from gp as defined
above. We find that the estimation bias is a small fraction of the estimation error. This can be seen
in figure 2.2 for a specific data setting. The scaterplot in the figure 2.2 corresponds to the errors
(which are the dependent variable of the OLS model). This plot clearly indicates that the variance
of the estimates (captues by the vertical spread of the errors (points), per g(p,x)) is much larger
than the bias of the estimates, ofcourse when the bias is modelled in terms of g(p,x). Formally,
we do this using the R2 values from the linear regression defined above. The R2 values tend to
be less than 10% for d = 2 and less than 15% for d = 5. These small R2 values suggest that our
estimates are very unstable, and the estimation variance comprises atleast 85% of the estimation
error (bias comprises the remainder).

Figure 2.2: OLS fit of the estimation errors in the QNN estimates for the non-linear case with 5
features (d = 5) and variance parameter σ = 2.

2.3 Functional Low Rank Additive Regression

In this section we develop an analytic approach called Additive Factor Quantile Regression

(AFQR) to represent the collection of all conditional quantile functions in a coherent way us-
ing a rank-1 additive structure. We aim to demonstrate here that low rank additive regression is a
natural choice for post-processing and making sense of the QNN estimates, which constitute the
input to the AFQR approach.

An additive model for quantiles has the form QY |X(p;X = x) =
∑

j hj(xj, p), representing

22



the “effect” of each explanatory variable xj in terms of a function hj : R2 → R, mapping (x, p) to
the effect of x on the pth quantile of the response. Placing a rank-one constraint on each hj further
simplifies the representation so that hj(xj, p) = f(xj) · g(p). Now the role of a covariate xj is
completely represented through the function fj that maps the variable’s value to its score, and the
function gj that captures how changes in the score result in changes to each conditional quantile
of the response. The score functions fj and loading functions gj are all smooth functions from
R→ R.

We argue that the AFQR approach brings advantages in terms of both interpretability and statis-
tical power. With regard to interpretability, as discussed above AFQR provides an explicit closed-
form model for jointly representing all conditional quantiles of the outcome in terms of the ex-
planatory variables. In this way, it is able to reduce the voluminous output of QNN in terms of
two functions per covariate (the score function and the loading function) that are relatively easy
to interpret. With regard to the statistical power, an important property of AFQR is that the low
rank structure reduces the variance of estimates. This is particularly important since local non-
parametric techniques (which provide the input data to AFQR) exhibit high variability. This is in
fact the case with QNN; our simulation studies in section 2.2.1 produced estimates with variance
greater than the squared bias. Such low-bias/high-variance estimates are ideal for use as inputs to
AFQR, which can reduce sampling variance but is unlikely to reduce any bias that is present in
its inputs. The resulting estimates of these functions benefit from pooling information across all
outcome quantiles across the entire range of each covariate.

2.3.1 Introduction to AFQR

AFQR is an additive low rank model that is structured as a sum of products between smooth func-
tions of a single covariate and smooth functions of the outcome quantile (the latter indexed by
0 < p < 1). This structure allows the model to borrow information across quantiles of the out-
come, unlike most other quantile regression techniques which do not link the conditional quantile
functions for different probability points p ∈ (0, 1), except perhaps imposing the very weak and
necessary constraint that the estimated quantile functions do not cross. This “no crossing” con-
straint is a minimal form of regularization, and we argue that when working with modest amounts
of data, a stronger regularization is needed in order to gain more stable estimates, especially of the
outer quantiles.

The population version of the AFQR model has the form

QY |X(p|x) = µ(p) +
J∑

j=1

fj(xj) · gj(p), p ∈ (0, 1), x ∈ RJ , (2.3)
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where {fj, gj}Jj=1 are smooth functions such that fj(0.5) = 0 for each j. The additive structure
mitigates the curse of dimensionality, promotes model interpretability, and makes it feasible to vi-
sualize the association between the outcome and different covariates through the smooth functions
f, g. We refer to µ(p) as the central axis, as it is the conditional quantile function of the outcome
evaluated at the median of each component of X , i.e.

µ(p) = QY |X
(
p|X1 = median(X1), · · · , XJ = median(XJ)

)
. (2.4)

The constraints fj(0.5) = 0 are imposed to make the central axis identifiable. The reason for
fixing these functions at Xj = 0.5 is that in practice we quantile transform each covariate to be
uniform on (0, 1), so this amounts to constraining the score at the median value of each covariate to
be zero. With these constraints in mind, a natural interpretation of the model parameters {fj, gj}Jj=1

is in terms of deviations from the central axis. We discuss the interpretation of the model in more
detail in section 2.3.5.

Connections to multivariate regression

There are connections between our approach and the large body of work on low-rank methods for
multivariate regression. In that setting, a vector of outcomes Y ∈ Rq is regressed on a vector
of predictors X ∈ Rq. Focusing on linear relationships, a common model is E[Y |X] = BX ,
where B is a q × J matrix. Since the goal is to estimate conditional means, least squares methods
are appropriate, but to regularize the estimation it is common to impose rank constraints on the
coefficient matrix B. Moving to the functional setting, Y = Y (t) and X = X(t) may be viewed
as functions rather than as vectors, and the conditional mean can be modeled in linear form as
E[Y (t)|X] =

∫
B(s, t)X(s)ds. In our setting, the conditional quantile function plays the role of

Y , and is indeed a function of a continuous index (p). However we discretize the domain of p and
work with a gridded vector of conditional quantiles, establishing a connection between our work
and the setting of multivariate regression with vector responses.

Reduced rank approaches to multivariate regression are discussed in [3, 4, 74, 94], and have
been studied more recently by many [101, 71, 73, 15]. A brief review of recent work is included
in [16]. Our proposed method (AFQR) can be expressed as a low rank regression model, but we
partition the parameters into blocks and impose a rank-one constraint on each block, instead of
constraining the rank of the entire parameter matrix B as is typically done.

The AFQR model is fit by minimizing an objective function of the form given below in equation
2.5. This is developed in detail in section 2.3.3 (see in parrticular equations 2.10 and 2.12), but we
omit the full derivation here and adopt simpler notation to draw a parallel between AFQR and low
rank regression. Our approach minimizes the objective function
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∥Y −
J∑

j=1

Xjβjv
′
j∥2 + penalty, (2.5)

where Y is an n ×m matrix whose columns correspond to distinct quantiles, i.e. Y is a column-
centered version of Q̂, where the columns are centered around estimates of the marginal median
value of each variable (see section 2.3.3 for details). The matrix Xj is an n × dj matrix of basis
functions for the jth explanatory variable, allowing us to represent the smooth functions fj (see
section 2.3.3.2). The vector βj is a dj dimensional vector of regression coefficients and vj is a J

dimensional vector of loadings.
To establish a connection with low-rank regression, note that it is equivalent to view this prob-

lem as minimizing

∥Y −
J∑

j=1

XjFj∥2 + penalty

where Fj is a rank-1 matrix. If the Xj matrices are concatenated horizontally to produce
X = [X1,X2, · · · ,XJ ] and the Fj matrices are concatenated vertically to obtain F =

[F ′
1,F

′
2, . . . ,F

′
J ]

′ then the objective function can be written as ∥Y −XF ∥2F . This is similar to
a standard low-rank regression, however we constrain each Fj to have rank exactly 1 whereas a
standard low-rank regression would control the overall rank of F . We could constrain the rank of
F to be J , but this does not guarantee that each Fj will have rank one.

2.3.2 Model Structure

Let us start by motivating why the additive low rank structure is sensible to adopt in a quantile-
regression setting. By analogy with factor analysis, this model can be understood in terms of scores

and loadings. The score functions fj capture the role of each covariate and the loading functions
gj capture the manner in which these scores impact the response quantiles. Three properties of the
additive low-rank structure are discussed below.

• Additive Each covariate Xj has a distinct relationship with the conditional quantiles of the
outcome variable Y , and these effects are additive over the covariates. In other words, there
are no interactions among the covariates.

• Non-Linear Since the score functions fj are smooth but not necessarily linear, changes in a
covariate do not in general lead to linear changes in the quantiles. Further, non-linearity of
the loading functions gj implies that changes in a covariate may have heterogeneous effects
at different quantiles of the outcome variable, implying heteroscedasticity.
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• Low rank Each covariate is represented by a single term in the additive representation (2.3),
thereby simplifying and regularizing its contribution to the model. Equation 2.3 implies
that as we vary Xj , the quantile function varies exclusively in the direction gj , with the the
amount of variation given by fj .

We note that the setting gj ∝ 1 is a special case that corresponds to a location family in which
all quantiles move together with the median (and with the mean). Suppose that Y = α + βX + ϵ

for jointly distributed random variables X, ϵ. In this case, QY |X(p|X = x) = α + βX + Qϵ(p),
where Qϵ is the marginal quantile function of ϵ. This population follows an AFQR with J = 1, a
central axis µ(p) = α + β ·med(X) +Qϵ(p), a single score function f1(x) = β · (x−med(X)),
and corresponding loading function gj ≡ 1.

Example with anthropometry and blood pressure As an example foreshadowing our data
analysis below, recall the discussion from section 2.1.1. In this context, the low rank represen-
tation takes the form

QSBP2(p|x) = µ(p) + fBMI1(x1) · gBMI1(p) + fHT2(x2) · gHT2(p) + fBMI2(x3) · gBMI2(p).

(a) f1 for childhood BMI (b) g1 for childhood BMI

Figure 2.3: Adult SBP between ages [18, 22] years as a function of childhood BMI around ages [2.5, 3.5]
years for males.

The functional estimates corresponding to childhood BMI (f̂BMI1, ĝBMI1) are presented in fig-
ure 2.3. In this, f1 is essentially a straight line from −2 to 2, and g1 is U-shaped. This means
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that, at a specific x, the inner quantiles of Y (adult SBP in the figure) will always deviate from the
median curve {µ(p) : p ∈ [0, 1]} more than the outer quantiles (both lower and higher), regardless
of x. Recall that the “median curve” at each point p ∈ [0, 1] refers to the quantile of Y (adult
SBP) for median(Xj) (i.e. a person with median childhood BMI, and median adult BMI and HT).
The curve in fig 2.3b displays the direction of the deviation from the median curve for a person
with median adult body size; this only depends on childhood BMI due to the additive nature of the
AFQR.

So if we look at the distribution of adult SBP for individuals with low childhood BMI (x⋆ =

−1.5 z-score of childhood BMI) or high childhood BMI (x⋆ = 1.5 z-score of childhood BMI),
both distributions QY |X

(
p|X1 = x⋆,X−1 = median(X−1)

)
will vary from the the central axis

µ(p) in a similar way – they will vary most near the median and will vary less as we move to
the tails. The extent of deviation at a specific Xj is determined by the curvature of the curve
fj(xj) · gj(p) p ∈ [0, 1]. Since {gj}j are not necessarily linear, the curvature can be inflated or
deflated, and thus lead to conditional quantile curves of different shapes (as functions of outcome
probability points for a fixed X).

Focusing on the magnitude of change in the quantile function at any point p, if xj changes
from xj1 to xj2, then the conditional quantile function will change by an amount proportional to
fj(xj1)− fj(xj2), i.e.

QY |X(p|x2) = QY |X(p|x1) +
(
fj(xj2)− fj(xj1)

)
· gj(p).

2.3.3 Model Estimation

In this section, we provide a complete development of the estimation procedure. Our goal is to fit
the low rank representation given in (2.3) to the data.

2.3.3.1 Outline of the estimation pipeline

Let Qc
Y |X ≡ QY |X(p; · · · )−µ(p) denote conditional quantiles that are centered around the central

axis µ(p). The representation 2.3 now becomes

Qc
Y |X(p;x1, · · · , xJ) =

J∑
j=1

fj(xj)gj(p). (2.6)

Our estimation proceeds as follows

1. Estimate µ(p) as µ̂j = µ̂(pj) over a grid of m probability points p = (p1, . . . , pj).

2. Estimate QY |X(p|xi) for each observed xi for each p in p, yielding a n×m matrix Q̂.
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3. Construct the n×m array of centered quantiles Q̂c
ij ≡ Q̂− 1nµ̂

′.

4. Fit a smooth low-rank model to Q̂c.

The population version of our model (as in equation 2.6) evaluated at the observed covariate
values and the grid of m probability points takes the form

Qc
Y |X(p;xi) =

J∑
j=1

fj(xij)gj(p),

=⇒ Qc =
J∑

j=1


fj(x1j)

...
fj(xnj)

[gj(p1) · · · gj(pm)
]

=
J∑

j=1

uj · v′
j . (2.7)

We have now parameterized the infinite dimensional model (2.6), which was parameterized in
terms of smooth functions {fj, gj}Jj=1, in terms of finite-dimensional parameters uj ∈ Rn and
vj ∈ Rm, for j = 1, . . . , J . While in principle we may be able to fit this model directly to the data,
the number of parameters grows linearly with the sample size (specifically, it is J ·m · n). Further,
we would like uj to vary smoothly with xj . Therefore, the dimensionality of the model will be
further reduced and regularized as discussed in the subsequent two sections.

2.3.3.2 Basis representation

We use basis functions to nonparametrically represent the parameter spaces for smooth unknown
functions. Let X̃j ∈ Rn×dj denote a basis matrix of dimension dj for the jth additive term in (2.6).
Each column of X̃j is a smooth function evaluated at the observed covariate values x1j, . . . , xnj .
For example, a quadratic polynomial basis of order 2 would give us a matrix in which the first
column would consist of a constant, the second column would consist of the observed values
x·j ∈ Rn, and the third column would be the observed values squared. Spline bases are another
possibility. More generally, let the kth column of X̃j be formed by evaluating the basis function
hk on x·j . Then the fitted function f̂j corresponding to the parameter fj can be written

f̂j(·) =
dj∑
k=1

β̂jkhk(·) =⇒ ûj =


f̂j(x1j)

...
f̂j(xnj)

 =


∑dj

k=1 hk(x1j)β̂jk

...∑dj
k=1 hk(xnj)β̂jk

 = X̃jβ̂j. (2.8)
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Due to its lower dimensionality, we do not use basis functions for the loading vectors vj (al-
though it would be straightforward to do so). Equivalently, we are using Im×m as a collection of
non-smooth basis vectors for the loading functions. The additive low rank model now becomes

Qc ≈
J∑

j=1

X̃jβj︸ ︷︷ ︸
uj

v′
j, (2.9)

where βj ∈ Rdj and v′
j ∈ Rm are the parameters. vj is an m-dimensional vector whose kth

entry is gj(pk) and can be thought of as the loading corresponding to the jth additive factor. Each
observation i has a score fj(xij) for each component j, which are stacked in a vector to form
uj ∈ Rn. The loss function corresponding to the model in equation 2.9 is

∥Q̂c −
J∑

j=1

X̃jβjv
′
j∥2F , (2.10)

where the βj and vj are free variables.

2.3.3.3 Regularization

In order to obtain smooth estimates of the functions fj and gj , we utilize regularization analogous
to that used in various functional data analysis (FDA) tools and in Generalized Additive Models
(GAMs) [95]. The fact that the basis functions used to construct the matrices X̃j are smooth func-
tions of the underlying covariate whose scores they represent implies that the fitted basis functions
will be somewhat smooth. However an arbitrary linear combination of smooth functions may not
be sufficiently smooth, so in addition we penalize the curvature of each fitted score function and
loading function. Specifically, we impose an additive smoothing penalty equal to the integrated
squared second derivative of each functional parameter that we wish to be smooth. The penalty for
a twice differentiable function f̂ is

∫
f̂ ′′2(x)dx.

The penalty expressed above as an integral can be numerically approximated using the midpoint
rule, which amounts to constructing an equispaced grid, say of 100 points on the range of each
variable, and constructing the basis matrix X̃p

j corresponding to this grid (the same basis functions
used to construct X̃j are used here). Now let D2 ∈ Rn−2×n denote the second difference operator
(row j of D2 contains the stencil (1,−2, 1) beginning in column j). The quadratic form

β → β′X̃pT
j F TFX̃p

jβj = ∥D2X̃p
jβj∥2 (2.11)

approximates the integrated squared second derivative of the function represented (on a grid) by
X̃p

jβ.
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An additional complexity in specifying the regularization penalties is that the scores uj = X̃jβj

and loadings vj only impact the fitted values through the outer product ujv
′
j . Any representation

of the form c · uj , c−1 · vj is equivalent as long as c ̸= 0. Using ∥D2X̃p
jβj∥2 as a penalty

is problematic because the penalty is sensitive to the specific representation that is used (i.e. it
depends on c). To resolve this, we use a scaled version of the penalty that is invariant to the value
of c. Specifically, the smoothing penalty for βj is ∥vj∥2 · ∥D2X̃p

jβj∥2 and the smoothing penalty
for vj is ∥X̃p

jβj∥2 · ∥D2vj∥2.

2.3.3.4 Loss function and optimization

The overall objective function that we wish to minimize over {βj,vj}Jj=1 is

1

nm
∥Q̂c −

J∑
j=1

X̃jβjv
′∥2F +

J∑
j=1

cuj
∥vj∥2 · ∥D2X̃p

jβj∥2 +
J∑

j=1

cvj∥X̃
p
jβj∥2 · ∥D2vj∥2, (2.12)

where cuj
, cvj ∈ R are tuning parameters that determine the smoothness of the estimated curves.

We note that the loss function (2.12) is invariant to the ambiguity in the rank-one representation,
i.e. replacing βj with c ·βj and vj with c−1 ·vj does not change the value of the objective function
(2.12).

The loss function (2.12) is a quartic polynomial of the parameters {βj,vj} and hence smooth,
but is not convex. However if we fix all the βj parameters and view the loss in terms of the vj

parameters alone, the restricted loss becomes a convex quadratic function of {vj}Jj=1. Analogously,
if we fix all the vj parameters and view the loss in terms of the βj parameters alone, it becomes
a convex quadratic function of {βj}Jj=1. This motivates the use of alternating least squares (ALS)
to find a local minimum. This algorithm has a long history, including in the calculation of rank-
reduced approximations to arrays [92].

Since the loss function is not globally convex, there may be multiple local minima and we do
not aim here to find a global minimum. However it is important in practice to have good starting
values for any local optimizer. We accomplish this using a two-stage procedure in which the first
stage involves solving a least-squares problem and the second stage is a matrix factorization. To
accomplish the first stage, the following objective function can be easily minimized over the Bj

using least squares techniques, yielding estimates β̂j:

∥Q̂c −
J∑

j=1

X̃jβj∥2F . (2.13)

We then use the dominant singular values to approximate each β̂j ≈ β̂0
j v̂

0′
j in rank-1 form, for
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vectors β̂0
j and v̂0

j which become the starting values for the ALS procedure discussed above.

2.3.4 Inference

It is important to have a means for assessing the uncertainty in the estimated AFQR parameters.
This is made complicated in our setting for at least three reasons. First, the input data used to fit the
AFQR model is not the observed data, but rather results from “preprocessing” the observed data
into estimates of conditional quantiles. If Q denotes the true quantiles and Q̂ denotes the stage-
1 estimated conditional quantiles obtained from the QNN procedure, then the “errors” Q̂ − Q

play an important role in determining the uncertainty in the AFQR parameter estimates. These
errors are not independent or identically distributed. Specifically, the elements of Q̂ are correlated
through the QNN procedure, although these correlations should be local. Also, it is likely that the
magnitudes of the errors for quantiles at different probability points p differ.

A second reason that inference is difficult in this setting is that we are working with longitudinal
data. This will be discussed further below, but as a consequence, observations are correlated if they
are made on the same subject. This is an additional source of non-independence in the elements of
Q̂ that operates in tandem with the dependence induced by the QNN algorithm.

A third reason that inference is difficult in this setting is that the AFQR model in its simplest
form is not identified. To mitigate this, as discussed above, we use a loss function that is invariant
to choosing among different members of an equivalence class of parameter settings that yield
identical fitted values. Minimizing this loss function will reach one (arbitrary) member of such
an equivalence class. As a result of this ambiguity, it is generally more effective to interpret
the products X̃jβjv

′
j rather than attempting to interpret the scores parameters βj and loading

parameters vj in isolation. When it is desirable to interpret either the scores or the loadings, we
impose the constraint ∥vj∥ = 1 to make the parameters identifiable. However doing this makes vj

into a parameter whose domain is a manifold (the unit sphere), not a Euclidean space. Inference
procedures should respect the domain of a parameter and it is more complicated to consider notions
such as confidence sets and standard errors on a non-Euclidean domain.

We address these challenges using what is essentially a modified parametric bootstrap. The
conventional parametric bootstrap is used in a setting where we are fitting a generative model fθ to
the observed data. Since this is a generative model, we can simulate datasets from a fitted model
Fθ̂. This would allow us to generate datasets Y (j) ∼ Fθ̂(j) , where θ̂(j) is an estimate of θ. As long
as we have a means to obtain the θ̂(j), thereby yielding the Y (j), we can then fit the AFQR model
to each Y (j), yielding parameter estimates β̂(j), v̂(j), and standard errors of any function of the
parameters can be calculated empirically.

One popular way to obtain θ̂(j) is to set θ̂(j) ≡ θ̂ + η(j), where θ̂ is an estimate based on the
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observed data, and η(j) ∼ N(0,Ψ) where Ψ is the sampling variance/covariance matrix of θ̂. An
alternative approach is to use the nonparametric bootstrap (sampling from the observations with
replacement) to obtain θ̂(j).

The standard parametric bootstrap is not applicable in our setting for two reasons. One is that
the AFQR model is not a generative model, as it describes the conditional quantiles of Y but does
not capture the dependence among the observations which should be respected when using the
parametric bootstrap. In addition, we do not have a means to obtain the θ̂(j), as neither of the
two approaches presented above are applicable for us. Our procedure does not provide a means to
obtain Ψ (in fact, this is the very challenge being discussed here). Moreover, having longitudinal
data, the non-parametric bootstrap is not directly applicable, although we note that approaches for
non-parametric bootstrapping of longitudinal data do exist [89], [58], [49].

We resolve these challenges by using a surrogate model to “emulate” the data, and then proceed
with the remaining parametric bootstrapping steps outlined above. The surrogate model is a Gaus-
sian process regression model fit using parametric maximum likelihood techniques. This model is
discussed in chapter 4.

2.3.5 Interpretation

Most non-parametric quantile regression techniques are difficult to interpret because their output is
voluminous and unstable, and they often operate as black-box techniques designed for prediction
and not interpretation. We have repeatedly mentioned and motivates our techniques as producing
results that facilitate interpretation and visualization. In this section we explain how to interpret
AFQR, and what hypotheses it can be used to examine.

Since the conditional quantile function is broadly a function of two variables, p and x, it can
lead to two partial functions. Both these functions provide very different information about the
quantile structure of the data, and we discuss them in detail to understand how they can be used to
extract the information captured by our model.

2.3.5.1 Quantile curves

Quantiles curves are obtained directly from equation (2.3), by holding Xj fixed ∀j ∈ {1, · · · , J}.
These are functions of probability points at which we can compute outcome quantiles, at fixed
values of the covariate. In particular, the quantile curve tells us how all the quantiles of the outcome
will vary across the range of probability points from [0, 1], conditioned on a fixed value of x. We
always look at quantile curves in terms of one variable at a time; per covariate j, we fix all the
other covariates at their median values. In such a case, the quantile curve is a function with one
paarmeter, which is the fixed value of the the covariate being varied (xj). We define two forms of
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quantile curves. The first form includes the central axis and can be defined as follows

QC(xj) : [0, 1]→ R

QC(p|xj) = QY |X
(
p|Xj = xj,X−j = median(X−j)

)
= gj(p) · fj(xj) + µ(p).

The second form of quantile curves focuses on the residual quantiles by omitting the central
axis, defined as follows

QCresid(xj) : [0, 1]→ R

QCresid(p|xj) = QY |X
(
p|Xj = xj,X−j = median(X−j)

)
− µ(p)

= gj(p) · fj(xj).

The contrast of two quantile curves is a function of p ∈ [0, 1], which takes the following form.
For fixed x1,x2 ∈ X ,∀p ∈ [0, 1]

QC(p|x1)−QC(p|x2) = QY |X(p|x1)−QY |X(p|x2) =
J∑

j=1

gj(p) ·
(
fj(x1)− fj(x2)

)
.

We can see that the contrast is proportional to g(p), and thus lies in a one-dimensional subspace.
Recall that we discussed that g is a constant function for a location family in section 2.3.2; this
results in parallel quantile curves . Similarly for J > 1, if gj is constant ∀ 1 ≤ j ≤ J , then the
quantile curves at different x· will be parallel to each other, i.e. they will have the same shape (not
necessarily linear) with intercepts determined by the value of the conditioning x·. It is important
to note that for non-constant {gj(p)}Jj=1, the curves can have different shapes; the structure of the
model does not impose parallel quantile curves.

2.3.5.2 Effect curves

Effect curves view the conditional quantile estimates as functions of Xj at fixed quantiles of the
outcome. For instance, modelling the median outcome as a function of the independent variables
is an example of an effect curve at p = 0. This is most commonly of interest in classical quantile
regression analysis, and so is familiar to most of us. In fact most quantile regression techniques
model effect curves individually for each p ∈ [0, 1], as in linear quantile regression. Similar to
quantile curves, we always look at one covariate at a time and fix all the others at their median

33



values. The effect curve upon varying covariate j is defined as a function of xj with a parameter
that lies in [0, 1] as follows

EC(p) : Range(Xj)→ R

EC(xj|p) = QY |X
(
p|Xj = xj,X−j = median(X−j)

)
= gj(p) · fj(xj) + µ(p).

Note that we do not need another form of effect curves as the contribution of the central axis
µ(p) is a constant for fixed p, and so does not impact the interpretation or visualization of effect
curves much. Contrasting different effect curves at different values of p against the same range of
x, gives the form

Qy(p1|x)−Qy(p2|x) =
(
µ(p1)− µ(p2)

)
+

J∑
j=1

fj(xj) ·
(
gj(p1)− gj(p2)

)
. (2.14)

It is important to note that the difference in equation (2.14) is a function of x·. It lies in a two-
dimensional subspace which is spanned by 1 (the constant function in xj), and fj(xj) (estimated
by the data).

2.3.5.3 Example with anthropometry and blood pressure

We continue to discuss the example introduced in section 2.1.1. An example of effects curves
obtained from linear quantile regression was presented in fig (2.4b). The corresponding figure for
effect curves obtained from QNN is presented in fig 2.4. Note that effect curves are functions of
individual Xj’s but here we present the plots in terms of quantiles of Xj so that the median and
extreme values of the independent variable (corresponding to outer quantiles) are easily referenced.

Let us start by commenting on the shape of the two sets of curves presented above. We will
focus our attention on the subplots 2.4c, 2.4d, which correspond to the impact of X2 on Y . Recall
that in the example being discussed here, the outcome Y is adult SBP and X2 is adult HT. The other
covariates (X1, X3) are childhood BMI and adult HT respectively. Beginning with the quantile
curves in figure 2.4c, the green curve represents the median function µ(p). Each of the other
curves are quantile curves at different values of X2 (adult BMI), which deviate from the median,
but are similar in shape to the median function. We can see that the extreme outer quantiles are
quite similar for all X2, however quantiles between 0.20− 0.80 deviate from one another. They all
seem to have a sigmoidal shape, but with different curvatures. Change in curvature depends on the
value of f2(X2) which is multiplied by the direction of deviation given by g2(p) p ∈ [0, 1]. Larger
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(a) Quantile curves: SBP2 ∼ BMI1 (b) Effect curves: SBP2 ∼ BMI1

(c) Quantile curves: SBP2 ∼ BMI2 (d) Effect curves: SBP2 ∼ BMI2

Figure 2.4: Adult SBP between ages [18, 24] years as a function of (row 1) childhood BMI around ages
[1.5, 4.5] years, and (row 2) adult BMI. All cases are for males only.
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f2(X2) leads to greater deviations of the quantile curve from the central axis.
To understand the link between the quantile/ effect curves and f̂2, ĝ2 estimated from the low

rank structure, we present û2, v̂2, which are discretized vectors of f̂2, ĝ2 in image 2.5 below. The
heatmap in figure 2.5 represents f̂2(Y ) ∗ ĝ2(X2), where Y (adult SBP) varies along the x-axis and
the independent variable X2 (adult BMI) varies along the y-axis. Each point on this heatmap cor-
responds to a certain quantile of the outcome (say py) and independent variable (say px), and gives
the estimated deviation of the pthy quantile of SBP conditioned on the pthx quantile of adult BMI
from the yth quantile of SBP at median adult BMI. Recall that all other covariates (X1 (childhood
BMI), X3 (adult HT) and both childhood and adult ages) are held at their medians in the results
presented in fig 2.5.

(a) Estimated u2 (b) Estimated v2 (c) Estimated uv′

Figure 2.5: Low rank decomposition of adult SBP among males, in terms of childhood BMI and
adult body size (BMI, HT). Impact of adult BMI on adult SBP is displayed here. Childhood ages
∈ [2.5, 3.5] years, and adult ages ∈ [19, 23] years.

All the information in the quantile curves and effect curves is actually present in the u, v
estimates and can be inferred from figure 2.5. We explain this link in more detail below.

Quantile Curves
Recall that adult HT (X2) impacts the outcome quantiles in the form µ(p) + f2(X2) · g2(p) p =

py ∈ [0, 1], where µ(p) is the quantile function of adult SBP (Y ) conditioned on the median value
of all the covariates, including median adult HT. So if we look at the distribution of adult SBP for
those having low adult HT (px = 0.1 quantile of adult HT) or high adult HT (px = 0.9 quantile
of adult HT), all distributions will vary from the median µ(p) in a similar way - they will vary
most towards the middle and will vary less as we move to the tails. This is determined entirely by
the shape of v2. As seen in figure 2.5 v̂2 is close to 0.1 at the outer quantiles and around 0.4 at
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the median, implying that the quantile curves at different X2 will have smaller deviations from the
central axis at the tail probabilities, roughly 0.1/0.4 = 1/4th of the deviations at the inner quantiles
(py ∈ [0.4, 0.6]).

The extent of deviation at a specific X2 = x2 is determined by the curvature of
f2(x2) · g2(p), p ∈ [0, 1]. In general, as {gj}j are not necessarily linear, the curvature can
be inflated or deflated, and thus lead to conditional quantile curves of different shapes. The
curvature is determined by u2. By design, if X2 takes its median value, the quantile curve is the
same as the central axis; this is always satisfied and is the reason why f2, like all f functions,
crosses the x-axis at the median of X2. Lastly, unlike effect curves which are described in more
detail below, quantile curves do not need to be stacked one on top of the other. Going back to
our example in figure 2.5, û2 is an increasing function which crosses 0 at 0.5, and since v̂2 is
positive throughout, the deviations of quantile curves from the central axis at X2 < QX2(0.5) will
be negative and for X2 > QX2(0.5) will be positive. This means that for quantiles p1x < 0.5, the
quantile curves corresponding to X2 = QX2(p

1
x) will lie below the central axis µ, and vice-versa.

We see exactly this in subfigure 2.4c.

Effect curves
An effect curve is evaluated at a fixed p and is a function of Xj of the form µ(p)+fj(Xj) · gj(p) =
c1 + fj(Xj) · c2 for constants c1, c2 ∈ R. The shape of the effect curve is purely determined by
fj(Xj), the intercept is determined by µ(p) and the curvature by gj(p). In subfigure 2.5 we can see
that v̂2 is sigmoidal, which is why we’d expect the effect curves to be sigmoidal as well. Next, let
us explain the varying curvature and intercepts of the curve.

The intercept of the effect curves is exactly equal to µ(p) ∈ R. We expect µ(p) to be increasing
in p, which is indeed the case here and is why the effect curves are stacked one on top of the other
in increasing order of p. Lastly, the curvature is determined by g2(p). We can see in subfigure
2.5 that v̂2 (discretized ĝ2) has an inverted-U shape. This means that the curvature will be the
largest for the inner quantiles, and will become smaller as we move towards the outer quantiles
(a flat line has curvature 0), since v̂2 goes to zero towards both ends of its domain. Since v̂2 is
positive throughout, the slope of all effect curves (each at a distinct quantile of the outcome) will
be positive, however the effect curves will become more constant at the outer quantiles. This is
exactly what we see in 2.4d.

We would like to clarify that the regularization in AFQR does not prevent the quantile crossing
problem. Our hope is that the regularization brings the estimates close to the truth, and so we would
expect the quantiles to not cross. Also, we do not impose a monotonicity condition on the quantile
curves, i.e. the quantile curves at fixed x are not forced to be non-decreasing functions. Again,
we hope our estimates will achieve this due to the quality of our model. Both these conditions are
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met in our applications of this method on the Dogon and NHANES datasets, as well in simulation
studies.

2.3.6 Simulation study

In this section we discuss simulation studies conducted to assess the performance of AFQR. We
provide the integrated mean squared error for the low rank estimates. We consider homogeneous
as well as non-homogeneous data, and evaluate the estimates for both. We start by describing the
simulation setup, followed by the results.

2.3.6.1 Data generation

We consider two data types, a location family which gives homogeneous data, along with a scale
family which yields non-homogeneous data. Recall that the conditional quantile functions of the
outcome (per p) are parallel to each-other in the homogeneous case. The two data generating
models are given below. The distributions used to generate the data in this study have been picked
such that the conditional quantile function of the outcome has a closed form.

Case 1: Gaussian Case

X1 ∼ U(1, 2)

X2 = X1 + ϵX2 , ϵX2 ∼ U(−1, 1)

X3 = X1 + ϵX3 , ϵX3 ∼ U(−1, 1)

Y = a1X1 + a2X2 + a3X3 + ϵY , ϵY ∼ N (0, 0.5)

In this case, the conditional quantile function has a closed form given by

QY |(X1,X2,X3)(p|x1, x2, x3) = a1x1 + a2x2 + a3x3 + 0.5 ·Qp(N (0, 1)).

Case 2: Exponential Case

X1 ∼ U(1, 2)

X2 = X1 + ϵX2 , ϵX2 ∼ U(−1, 1)

X3 = X1 + ϵX3 , ϵX3 ∼ U(−1, 1)

Y ∼ exp(λ), 1/λ = X1 +X2 +X3

We selected the exponential distribution since it is among the few distributions that have a closed
form conditional quantile function
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QY |(X1,X2,X3)(p|x1, x2, x3) = −log(1− p)(x1 + x2 + x3),

that is not additive in the probability point (p), and the covariate values (x1, x2, x3). This is unlike
the conditional quantile function in the Gaussian case.

2.3.6.2 Simulation Design

We generate data with J = 3 covariates and an outcome variable. The number of observations per
setting varies along ns ∈ n = [2000, 4000]. Per sample size, we use the setup described above
to randomly sample ns iid copies of (X1, X2, X3, Y ). In this section, let X = (X1, X2, X3), and
denote the median z-scored simulated data by Xz = (Xz

1 , X
z
2 , X

z
3 ).

In step 1 of AFQR, we pick m to be an odd number so that the median along any grid of length
m is an entry in the grid, and not the average of two entries. In other words, m/2 ∈ N. In particular,
we set m = 9 and define p as [0.1, 0.2, 0.3, · · · , 0.9]. We use the same smoothing penalty for all
uj and all vj , i.e. cuj

= c1, cvj = c2, ∀j, where c1, c2 are picked via grid search over a sparse grid
of length 6. The results discussed here correspond to c1 = 1000, c2 = 1000.

2.3.6.3 Simulation Results

In the Gaussian case, we explore the performance of AFQR when the underlying structure is
homogeneous across quantiles. Good performance in this case demonstrates our method’s ability to
obtain consistent results even at the outer quantiles, which is often difficult due to limited data in the
tails. Our method provides more stable results (reduced variance) for outer quantiles by partially
pooling information from other quantiles, however our simulations show that this borrowing of
information does not induce bias on our estimates.

In the Exponential case, good performance demonstrates the method’s ability to model hetero-
geneous effects characterized by non-trivial {gj}j functions. We compare the parameter estimates
(β̂j , v̂j) with the underlying value of the parameters, which is easily derived.

We are able to estimate both βj and vj well in terms of bias and variance. The point-wise
average estimate along with standard deviation bands for both the Gaussian and Exponential
cases are presented in figure 2.6 below. The black dashed line or cross represents the population
parameter, and is labeled as“truth” in all the plots. These results correspond to a sample size of
n2 = 2000. The results for ns = 4000 were better and scaled by roughly 1/

√
2 as expected. We

present results for ns = 2000 since the sample size in one of our applications is of this order and
we want to illustrate that AFQR does not need a large sample size to work well. The relative
MSEs for the first entry of βj and v are summarized in table 2.2, which are all below 15% for the
exponential case and below 5% for the Gaussian case. Specifically v is estimated over a grid of
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m = 9 probability points, so we present the average pointwise absolute relative bias and average
pointwise relative mse.

(a) Gaussian: β̂j (b) Gaussian: v̂j

(c) Exponential: β̂j (d) Exponential: v̂j

Figure 2.6: Simulation results for flr reg. The figures present average estimates over 100 replicates,
with estimate standard deviation bands.

β1 v

Distribution Dimension rel bias rel mse Avg |rel bias| Avg rel mse

exp 1 0.037 0.144 0.074 0.033
exp 2 -0.136 0.109 0.132 0.011
exp 3 -0.099 0.098 0.131 0.011

normal 1 0.016 0.002 0.002 0.001
normal 2 -0.040 0.005 0.015 0.001
normal 3 -0.036 0.004 0.015 0.001

Table 2.2: Bias and variance of AFQR parameter estimates from the simulation study.
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2.3.7 Illustration using Dogon Longitudinal Study data

In this section, we apply AFQR to the Dogon data. We fit the model separately for men (n ≈ 2400)
and women (n ≈ 2250), across different feature settings. Recall that we are interested in exploring
how the quantiles of adult SBP vary with childhood body size and adult body size. Thus, our
primary features of interest are childhood and adult body size measures. We begin by describing
the variables used in the models in more detail. Note that we always include childhood and adult
ages in all fitted models, but omit mentioning them in model specification throughout this section.

2.3.7.1 Independent variables

Adult body size measures
We use adult height (HT) and adult BMI to control for adult body size as this accounts for the two
different drivers of SBP. Taller people generally tend to have higher blood pressure. This is also
true for heavier people. The advantage of using BMI over weight (WT) is that BMI by definition
controls for the expected increase/decrease in weight due to an individuals height. Thus, we
expect BMI to be less correlated with HT than WT.

Childhood body size measures
For childhood body size, we consider six different childhood body size measures namely childhood
height, weight, BMI, height adjusted z-score (HAZ), weight adjusted z-score (WAZ) and BMI
adjusted z-score (BAZ). In our dataset, all features (including the six childhood body size variables)
are observed at different ages for different individuals. Because there is no common age at which
all individuals have a measurement, we define childhood body size in the two ways presented
below, which allow us to model age functionally.

Fixed age via kernel smoothing The first way is by localizing to a childhood age and accom-
modating arbitrary non-temporal sampling via kernel smoothing. We pick a childhood age, say
age1 = 5 and consider all observations weighted by the difference between the age at which the
observation is recorded and age1. We have seen results from this model sprinkled throughout the
document as the running example, such as in figures 2.3, 2.4, 2.5.

Growth trajectory The second way aims at accounting for each child’s growth trajectory instead
of their body size at a specific age (age1). As mentioned in the introduction, there are two broad
steps involved in doing so. First, we use multiple imputation to impute the childhood body size
per individual at a grid of ages 1 through 10. We use an MLE-based Gaussian Process model to
impute the values. The details of the model can be found in Chapter 4. Second, we conduct PCA
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on the imputed childhood body size variable at the 10 ages, and report the dominant score. This
score is used as a summary variable capturing the growth trajectory of a child, and is referred to
as “pcscore”. For instance, if the growth trajectory is computed in terms of childhood body size
measure BMI, then the score will be referred to as BMI pcscore.

2.3.7.2 Working with longitudinal data

We adopt a marginal approach to obtain conditional quantile estimates via QNN on longitudinally
observed data. This entails three steps: (i) localize to two ages, e.g., age1 = 3 and age2 = 20 to
represent childhood and adult states with a caliper for each age, (ii) construct a long-format dataset
with all within-subject records obtained by combining data within the calipers, and (iii) use kernel
weights to focus the analysis on the target ages. For instance, in figure 2.5, the ages are 2, 21 and
the calipers are 0.5, 2 respectively. Table 2.3 displays the number of individuals retained in the
reformatted dataset(s) for which we provide results in this section. Notice that localizing to even
a small childhood age such as 1 does not lead to a drastic loss in the number of individuals; we
retain a bit less than 50% of the individuals in the filtered datasets for age1 = 1 and around 50%
for age1 = 3.

Childhood No. of No. of observations per ID
body size age1 age2 sex unique ID average sd maximum

WT 1 20 Female 339 4.811 2.916 15
WT 1 20 Male 393 4.463 2.965 15

BMI 1 20 Female 338 4.790 2.913 15
BMI 1 20 Male 392 4.436 2.942 15
WT 3 20 Female 390 5.818 3.510 18
WT 3 20 Male 426 5.603 3.408 18

BMI 3 20 Female 390 5.769 3.482 18
BMI 3 20 Male 426 5.601 3.411 18

Female 833 13.858 3.206 19
Raw data Male 866 13.708 2.851 20

Table 2.3: Number of individuals (No of unique IDs), and the average, standard deviation and max-
imum value of the number of observations per ID in the Dogon data with and without localizing
to specific ages. The last two rows of the table correspond to the raw Dogon data after removing
missing values for the childhood body size variable, HT, BMI and SBP (at all ages in the data).
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2.3.7.3 Incorporating binary variables

In our application, we consider whether females are pregnant at the time of their SBP measurement
since pregnancy is known to have an impact on SBP especially in the later months. Pregnancy is
a binary variable which takes a value of 1 for pregnant and 0 otherwise. For a binary variable in
AFQR, say Xb, there will be no score (uXb

) since the variable only takes two values. There is
a vector of loadings vXb

, which is equal to the additive component of the binary variable in the
low rank model, as (1 − 0) · vXb

= vXb
. Thus, in the additive model structure as in equation 2.3,

fXb
≡ 1. This means that the pth quantile of Y will be gXb

(p) units greater for pregnant women
(Xb = 1) as compared to non-pregnant women (Xb = 0), if for instance Xb is the indicator for
pregnancy among women.

2.3.7.4 Method parameters

We obtain the conditional quantile estimates for adult SBP via QNN using the recommended pa-
rameters - lasso penalty of λ = 0.1 and k = 5 neighbors. In AFQR, we consider a radial basis
transformation of dimension five. In particular, the first column is a linear transformation. The
other five radial transformations are based on the observed values of the variables. In particular,
for the jth variable, we consider an equi-spaced grid of five points through the range the x·j and
use these points as the centers of the radial transformations. We use the sample standard deviation
as the scale of the transformation. For instance, the kth radial transform for the jth variable is given
below, where 2s is the sample standard deviation of x·j .

hk : x·j → exp

(
− (x·j − ck)

2

2s2

)
− exp

(
−

c2j
2s2

)
,

ck = min(x·j) +
(k − 1)

4
(max(x·j)−min(x·j)), k = 1, · · · , 5.

In addition to this, We vary the smoothing bandwidth in AFQR along a grid of length three,
(cuj

, cvj) ∈ [(1, 500), (100, 1000), (200, 1000)] where the smoothing bandwidth per component is
the same. Here we present the results for a smoothing bandwidth with cuj

= 100 and cvj = 1000,
for all j = 1, 2, 3.

2.3.7.5 Results

In this section we exclusively present point estimates. We provide results for six varying childhood
body size measures (cbs) and for fixed adult body size measures (HT and BMI) across the two
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(a) SBP ∼ Adult HT (b) SBP ∼ Adult BMI

Figure 2.7: Impact of adult height (left) and adult BMI (right) on adult SBP for males, at ages 3
and 21.

genders. Thus, the general form of all models we will consider will be

SBP ∼ cbs + HT2 + BMI2 + age1 + age2,

where A1, A2 denote variable A measured at a childhood age (age1), adult age (age2) respectively.
We can divide the independent variables into two categories, adult body size and childhood body
size. The impact of adult body size onto adult SBP is expected to be positive (as they have a cross-
sectional relationship). This means that we expect bigger (taller and heavier) people to have higher
SBP (see figure 2.7b). We see this across all the six childhood body measures considered in this
data application.

The impact of childhood body size on adult SBP is less straightforward, and is more interest-
ing. We find that childhood body size has an inverse relationship with adult SBP. For instance
for childhood BMI, children with below-median BMI either at a specific age or at their BMI pc-
scores tend to have higher adult SBP and children with higher BMI tend to have lower adult SBP.
This can be clearly seen in the heatmaps presented in figure 2.8; the heatmaps display the fit-
ted low rank structure corresponding to childhood BMI. Every point on the heatmap displays the
deviation of the adult SBP quantile (at a probability point corresponding to the x-axis) for the
subpopulation of people whose childhood BMI was at some quantile (at a probability point on
the y-axis) from the same quantile of adult SBP among people who had median childhood BMI.
In both cases, all the other covariates are held at their median values. Thus, each point on the
heatmap (figure 2.8) is of the form (py, px) and corresponds to Qc

Y |X
(
py|X1 = QX1(px),X−1 =

median(X−1)
)
, which is the deviation of the conditional quantile from the central axis at py. Here
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(a) Childhood age ∈ [1.5, 4.5] (b) Childhood PC score

Figure 2.8: Effect of childhood BMI on adult SBP (a) when localizing to childhood age 3 and adult
age 20, and (b) by considering the BMI pcscores as a summary of childhood growth trajectory and
all adults above the age of 12. Results are for females.

X = (BMI1, HT2, BMI2, age1, age2).
Figure 2.8a displays the effect of childhood BMI on SBP when localizing to specific childhood

and adult ages. Plot 2.8b displays this effect when we do not localize to either childhood or adult
age, and instead use BMI pcscore to model childhood body size, and simply consider all individuals
above the age of 12. We can see that the direct effect is larger in magnitude if we do not restrict to
a specific adult age or childhood age. We would like to point out that the effect size is in between
the two presented here for the other case (with localized childhood age and all adult ages above
twelve).

Next, we note that the effect of childhood BMI (modelled by localizing to a specific childhood
age or via the BMI pcscore) is a lot more prominent in the inner and upper quantiles of adult
SBP than the lower quantiles. While this trend can already be identified in the heatmaps above,
it is more easily seen via quantile curves. In figure 2.9, we provide the quantile curves for the
impact of childhood BMI localized to ages 1, 3, and 5 on the adult SBP among females. It appears
that the lower quantiles of adult SBP are not affected as much by childhood BMI, but the upper
quantiles deviate more. For instance, at childhood age 3 (ref figures 2.9c, 2.9d), SBP quantiles at
any probability point beyond 0.2 deviate from each other as childhood BMI varies but they do not
vary as much below the 20th percentile of adult SBP. The same trend is observed at childhood age
5 with deviations after the 30th percentile of SBP (ref figures 2.9e, 2.9f).

This shows the adverse effect of being undernourished in childhood, which is relatively com-
mon in Mali. Undernutrition may lead to poor development of organs, which may affect adult
health in the form of SBP (lead to elevated SBP). The results in figure 2.9 show that upper SBP
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quantiles are substantially lower for bigger children than for smaller children. Bigger children
having a lower upper quantile of SBP shows that bigger children who grow up to be “unhealthier”
in terms of SBP (have high SBP), still have lower SBP than malnourished children who may grow
up to be small adults. This is against the cross-sectional effect of body size and SBP which is well
established, expected, and generally much stronger than the longitudinal-effect of childhood body
size on SBP. While the lower end of adult SBP is usually not of interest, we observe that bigger
children also have a lower low-quantile of adult SBP than smaller children, which is desirable.

In other words, for the subpopulation of malnourished children versus healthy children, not
only is the median SBP of the former subpopulation larger than the latter, but the upper end of
SBP quantiles for the undernourished subpopulation is also larger. Since high SBP is risky and
the main area of interest in most SBP-related studies, these results suggest that being bigger as a
child is only helpful and being undernourished can be dangerous in the long run. This provides
motivation for the mediation analysis approach in the next chapter of this thesis; we will come
back to this and explain it in further detail later.

For females at childhood age 1, we see the same pattern of lack of dispersion in the lower
quantiles of adult SBP. However, in this case, the lower and upper quantiles of SBP both have less
dispersion and most of the action is in the inner quantiles. For males, the impact of childhood BMI
is smaller but it too leads to more dispersion in the mid-upper quantiles of SBP with virtually no
impact of BMI on the lower quantiles.

So far we have discussed childhood BMI as the childhood body size measure, but childhood
weight has a greater impact on adult SBP than childhood BMI amongst females. The impact of
childhood WT is also a lot more dispersed at the mid-upper quantiles of adult SBP, while the
lower quantiles of adult SBP seem to not be affected by childhood WT (ref figure 2.10). Also,
cross sectional HT has a bigger impact on adult SBP, especially at the lower quantiles of adult HT
meaning shorter females of median BMI have lower adult SBP upon controlling for childhood WT
as opposed to controlling for childhood BMI. This can be seen in figure 2.11.

The impact of childhood WT on adult SBP among males is much weaker, however it captures
a different trend. In this case, it appears that the distribution of adult SBP for lighter children is
not as dispersed as the SBP distribution for heavier children. In particular, for lighter boys the
lower quantiles of adult SBP are high and the upper quantiles are low (less dispersion) whereas
heavier boys have lower low-SBP quantiles and higher upper SBP quantiles (meaning heavier tails
and more dispersion). Further, we see the opposite trend in terms of dispersion among the adult
SBP quantiles due to varying childhood weight, as compared to that seen among females in figure
2.10. We present quantile curves at ages 1, 3, and 5 to see the difference in patterns among males
in figure 2.12.

We can see that weight centered at age 1 has the opposite effect, wherein the lower quantiles
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(a) SBP : age 1 (b) SBP deviations : age 1

(c) SBP : age 3 (d) SBP deviations : 3

(e) SBP : age 5 (f) SBP deviations : age 5

Figure 2.9: Quantile curves capturing the effect of childhood BMI measured at age groups centered
at different childhood ages. Each row corresponds to a childhood age of 1, 3, or 5. The first column
(left) displays the SBP (with the central axis added to the deviations): µ(p)+fBMI1(bmi0)gBMI1(p)
and the second columns (right) displayed deviations from the central axis : fBMI1(bmi0)gBMI1(p)
at 5 fixed BMI values (bmi0).
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(a) SBP : age 1 (b) SBP deviations : age 1

(c) SBP : age 3 (d) SBP deviations : 3

(e) SBP : age 5 (f) SBP deviations : age 5

Figure 2.10: Quantile curves capturing the effect of childhood WT measured at age groups centered
at different childhood ages. Each row corresponds to a childhood age 1, 3, or 5. The first column
(left) displays the SBP (with the central axis added to the deviations): µ(p) + fWT1(wt0)gWT1(p)
and the second columns (right) displayed deviations from the central axis : fWT1(wt0)gWT1(p) at
5 fixed WT (wt0) values.
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(a) Childhood BMI (b) Childhood WT

Figure 2.11: Impact of adult height on adult SBP for females when controlling for childhood BMI
verses childhood weight at age 3.

of adult SBP deviate more while the upper quantiles converge for varying childhood WT among
males. At age 3, childhood WT no longer has an inverse relationship with adult SBP throughout
the SBP quantiles. Instead, variation is present in the childhood WT distribution; adult SBP is less
dispersed for lighter males and more dispersed for heavier males. This can be seen more easily
through effect curves, which are presented in figure 2.12f. Here, we can see that SBP quantiles are
less dispersed towards the lower quantiles of childhood WT (lighter males) and more dispersed at
the upper quantiles (heavier males).

Results for childhood body size height and HAZ were very weak especially for the across-time
association, which is why we do not include those results here.

2.3.7.6 Illustration of inference results

Here we present some limited results for applying the inference procedure discussed above to the
Dogon data. Figure 2.13 contain plots of the functional components in AFQR for the model

SBP ∼WT1 +HT2 + BMI2 + age1 + age2

at a childhood age age1 = 1 and adult age age2 = 20 for females. The point estimates of the effect
curves corresponding to this setting were previously seen in figures 2.10a, 2.10b.

Figure 2.13 contains “simultaneous” bands for the low rank vectors uj,vj for j = 1, 2, 3. The
simultaneous band for a vector w is constructed using the point-wise bootstrap estimates of w. In
particular, let µ̂(u) and σ̂(u) denote the point-wise bootstrap average value and standard deviation
of the u estimates. The simultaneous band is formed by finding the smallest value of γ > 0 such
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(a) Quantile curve : age 1 (b) Quantile curve : age 3

(c) Quantile curve deviations : age 1 (d) Quantile curve deviations : age 3

(e) Effect curve : age 1 (f) Effect curve : age 3

Figure 2.12: Results for childhood WT on adult SBP among males. The columns correspond to
childhood ages of 1 and 3 respectively. The first row presents the quantile curves obtained by fixing
WT values in the additive components of childhood WT in AFQR : µ(p) + fWT1(wt0) · gWT1(p).
The second row displays the deviations of quantiles curves at the same WT values from the central
axis µ(p). The last row displays the effect curves which are functions of childhood WT at fixed
SBP probability points : µ(p0) + gWT1(p0) · fWT1 .
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that with probability p, µ̂(u)± γ · σ̂(u) contains all the bootstrap estimates. The heatmaps in the
third column of figure 2.13 display the outer-product of the corresponding functional components
(in the first two columns of the same row). We use the point-wise bootstrap standard deviations to
construct (point-wise) 95% confidence intervals around each point estimate; the blank spots on the
heatmap correspond to the points for which the confidence interval contained 0.

The results in figure 2.13 mean (for row 1) that childhood WT impacts the upper quantiles of
adult SBP but not the lower quantiles, (for row 2) all quantiles of adult HT impact adult SBP “sig-
nificantly”, and (for row 3) lower quantiles of adult BMI have a “significant” impact on all quantiles
of adult SBP (above the 20th quantile), and the uppermost quantile of adult BMI (quantiles above
95%) seem to impact on the mid to upper quantiles of adult SBP.

2.3.8 Illustration using NHANES data

In this section, we apply AFQR to the NHANES dataset. We explore the relationship between
SBP and body size measurements such as a persons height and weight. Note that unlike the Dogon
study, this is a cross sectional dataset. We start by describing the models we fit, in terms of the
independent variables and the model parameters.

The NHANES data contains information of people of all ages. For confidentiality reasons, all
age above 80 are hard coded as 80. In this analysis, we only consider people above the age of 18,
since it’s not common to measure and analyze SBP for children. Further, we divide people of ages
18− 80 into three categories, young people below the age of 40, middle-aged people between ages
40 and 60, and old people above the age of 60.

We use the same model parameters as we did for the Dogon Longitudinal study 2.3.7.4. We
present results for a smoothing bandwidth of 1000 for f· and 5000 for g·.

2.3.8.1 Results

Results for young people are as expected, i.e. all quantiles of SBP increase with age, BMI and HT.
The results for young males are presented in figure 2.14c. The effect of height is the weakest and
BMI is undoubtedly the biggest driver of SBP in this sample. Most of the variation is seen across
different quantiles of the independent variables (for instance as BMI deviates from the median
BMI), and not much variation is present among the quantiles of SBP. Thus, we can look at the
estimates as a function of the exposure z-scored values at fixed quantiles of the outcome via effect
curves. We find that these are fairly parallel curves indicating that all outcome quantiles vary along
the range of the exposure in a similar manner. The heterogeneity among the exposure z-scores can
be seen via quantile curves, which are stacked one on top of the other indicating that all quantiles
of the outcome tend to be higher or lower together, based on the value of the exposure.
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(a) u1 (b) v1 (c) u1v
′
1

(d) u2 (e) v2 (f) u2v
′
2

(g) u3 (h) v3 (i) u3v
′
3

Figure 2.13: Emulation-based bootstrap confidence bands for the AFQR functional components
(u,v) corresponding to childhood WT, adult HT and adult BMI on adult SBP among females.
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(a) SBP ∼ Age (b) SBP ∼ BMI

(c) SBP ∼ HT

Figure 2.14: AFQR estimates for young males in the NHANES dataset. Each subplot corresponds to an
additive component µ(p)+fj(x)gj(p) in the low rank representation ( X = Age,BMI,HT clockwise from
2.14a). Per component j, the other 2 variables are held at their medians. Per subfigure, fj varies along the
y-axis and gj along the x-axis.
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(a) Age < 40 (b) Age ∈ [40, 60] (c) Age > 60

Figure 2.15: Effect curves measuring the impact of adult age on adult SBP via AFQR. The other
variables are held at their median values. Results for females.

Variation with age
For all age groups, older people have higher blood pressure. In addition, the outer quantiles of
SBP are impacted more by age than lower quantiles. This trend is missing among younger women;
besides them, it means that the upper quantiles of SBP increase sharply with age, but the lower
quantiles do not increase as steeply and that people with the lowest SBP among all ages tend to
have similar SBPs. This can be seen through effect curves. presented in figure 2.15.
Variation with height
This gets more interesting. A stark difference between middle-aged, and younger people is that
the cross-sectional effect of height on SBP gets flipped between the two groups. That is, among
people of median BMI and median age above 40, being taller leads is favorable in terms of SBP
and shorter people tend to have higher SBP and median-height or taller people tend to have lower
SBP. This trend is seen in both groups of people above the age of 40 (ages 40-60 and above 60),
but the opposite effect is seen among younger people (ref figure 2.14).

Another distinction between middle-aged and old people, and young people is that while the
effects seen among the older people are still mostly heterogeneous along the exposure distribution,
they are also heterogeneous along the outcome quantiles, unlike the corresponding effects for
young people. We present some results for older women (ages 40 and above) in figure 2.16 to
further explore this heteroscedasticity among the outcome quantiles. Figure 2.16 contains the
quantiles curves as a function of SBP quantiles points, at fixed values of BMI and HT.

Figure 2.16 displays opposite trends in heteroscedasticity along the outcome quantiles between
middle aged people and old age people. In particular, among old people (let’s focus on women,
as in figure 2.16b), the inner quantiles of adult SBP are more diverse as BMI varies whereas the
upper quantiles are similar regardless of the persons age or body size. The opposite trend is seen in
height (ref figure 2.16a), where lower-to-mid quantiles of SBP are similar across different heights,
but the upper quantiles fan out as the height z-score varies. This seems to imply that the upper
quantiles of SBP are more impacted by height, whereas the lower quantiles are more impacted by
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(a) Age above 60 (BMI) (b) Age above 60 (HT)

(c) Age 40-60 (BMI) (d) Age 40-60 (HT)

Figure 2.16: Quantile curves for old women (row 1) and middle aged women (row 2), at varying adult
BMIs (column 1) and varying adult HT (column 2).
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BMI. Looking at the variation in SBP at the lower end for BMI and upper end for HT, we observe
that lower quantiles of adult SBP are lower for smaller women (BMI zscore = -2 has the lowest
SBP towards the left of figure 2.16b), whereas the upper quantiles of adult SBP are lowest for taller
females (HT zscore = +2 has the lowest SBP towards the right of figure 2.16a). In other words, the
variation in SBP quantiles at different HT and BMI, seems flipped in terms of which SBP quantiles
(upper vs lower) are more similar or dispersed.

2.4 Dimension Reduction Regression

In this section we develop a second and independent framework for understanding the conditional
quantiles of a response variable in terms of a set of explanatory variables. This framework is based
on dimension reduction regression (DRR) and is completely distinct and complementary to the
AFRQ approach with the same goals that was discussed above.

Dimension reduction regression has been extensively studied; a review of this topic can be found
in [64, 18]. Dimension reduction regression is based on the premise that the relationship between
explanatory variables x and a response y can be simplified by reducing x to a few variates, which
are linear functions of x. If the sufficient dimension of the regression is k, then there exist basis or
“direction” vectors θ1, . . . ,θk such that y ⊥⊥ x |θ′

1x, . . . ,θ
′
kx. In one extreme case where k = 1,

we have a single index model wherein y only depends on x through a single linear predictor θ′
1x,

and in this case we write θ = θ1 for simplicity. In the opposite extreme, the sufficient dimension of
the regression is equal to the dimension of x, which leads us to a fully unconstrained nonparametric
analysis with resulting challenges due to the curse of dimensionality.

Linear regression and generalized linear models (GLMs) are well-known types of single index
models that require explicit specification of a link function g such that g(E[y|x]) = θ′x. In a
GLM or linear model, g is specified and the estimates of the coefficient vector θ depend on this
specification. In contrast to these parametric approaches to low-index regression, the methods
that we employ here aim to estimate the directions θ1, . . . ,θk without pre-specifying or explicitly
estimating the link function. While this strategy generally results in some loss of efficiency, it
reduces the risk that a specification error in the choice of link function will lead to biased or
inconsistent estimates of the basis vectors θk. We also note that absent a specific link function,
we can only identify the effective dimension reduction (EDR) subspace span(θ1, . . . ,θk), not the
individual basis vectors.

We can use the QNN approach to estimate each conditional quantile in a probability grid p ∈
Rm, for all n observations in our sample of data. This yields a n × m matrix Q̂ containing the
estimates Q̂p(yi;xi). Since each row of Q̂ and of Xo corresponds to an observation, and both Q̂

and Xo have multiple columns, it is natural to consider some form of multivariate regression. This
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provides the rationale behind the two approaches developed below. First, in the next section we
consider the classical approach of canonical correlation analysis (CCA). Then we consider a more
modern approach based on sliced inverse regression and the notion of “most predictable variates”.
This latter approach may better capture non-linear relationships compared to CCA. For ease of
notation, in this section we always mean X = Xo.

2.4.1 Canonical Correlation Analysis

CCA [29] seeks to find vectors β1, . . . ,βr and η1, . . . ,ηr such that (i) the vectors Xβj are pair-
wise uncorrelated, (ii) the vectors Q̂ηj are pairwise uncorrelated, and (iii) subject to (i)-(ii), the
correlation between each Xβj and Q̂ηj is maximized. That is, for each j = 1, . . . , d, CCA
optimizes

argmax
βj ,ηj

Corr(Xβj, Q̂ηj), (2.15)

subject to

Corr(Xβi,Xβj) = 0, Corr(Xηi,Xηj) = 0, ∀i < j.

To produce estimates from data, all instances of Corr above are replaced with the corresponding
sample correlation coefficient Ĉorr.

The solution to this constrained optimization problem is efficiently obtained using the singular
value decomposition (SVD). Let SXQ denote the cross-covariance between X and Q̂, and let SXX

and SQQ denote the covariance matrices of X and Q̂ respectively. The Cholesky decomposition
of the covariance matrices can be written SXX = R′

XRX and SQQ = R′
QRQ. The Cholesky

decomposition of the decorrelated cross-covariance matrix is R−T
X SXQR

−1
Q = USV ′, where U ,

V are orthogonal matrices and S is a diagonal matrix with non-increasing values along the main
diagonal. The CCA solution is given by the loading vectors βj = R−1

X Uj and ηj = R−1
Q Vj , where

Uj and Vj are the jth columns of U and V . The corresponding canonical scores given by Xβ

and Q̂η.
As described above, CCA can be intepreted as solving a sequence of constrained optimizations.

The dominant CCA loadings are two vectors β1 ∈ RJ ,η1 ∈ Rm that maximize the correlation
in equation 2.15. These are called the first set of canonical coefficients or canonical loadings.
The second canonical coefficients are obtained by maximizing the same correlation subject to the
constraint that Xcβ1 and Xcβ2 are uncorrelated and Q̂cη1 and Q̂cη2 are uncorrelated. These
properties hold up to a maximum of min(m, J) sets of loadings.
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CCA is defined in terms of correlation coefficients which are location and scale-invariant.
Therefore, without loss of generality the columns of X and Q can be taken to be centered to
have mean zero, and the magnitude of the loading vectors βj and ηj are scaled so that ∥βj∥ = 1

and ∥ηj∥ = 1 for all j. When required for emphasis, we write Q̂c and Xc to emphasize that we are
working with column-centered matrices. As a result of this centering, CCA can be seen as a way
to understand the deviation of each conditional quantile function from an overall average quantile
function. These “Q-side” deviations are explained in terms of the centered “X-side” residuals.

2.4.1.1 Combining CCA with PCA

One issue that can arise when applying CCA in moderate or higher dimensional settings is that the
variance for a CCA-optimal variate, say var(Q̂ηj), may be very small compared to var(Q̂η̃) for
some other unit vector η̃. That is, CCA may find relationships for which the correlations between
the X and Q̂ variates are strong, but where either variate is a very small part of the overall variation
(for X or Q̂ respectively). This is a form of overfitting that may lead to spurious results. To address
this, we can pre-process the data with Principal Components Analysis (PCA) as detailed in the next
section.

The columns of Q̂ contain estimated conditional quantiles of the outcome, and as a result they
may vary in a somewhat constrained manner. Each row of Q̂ contains a sequence of quantiles
and hence must be non-decreasing, however we are working with a column-centered version of Q
and the resulting residuals need not be non-decreasing. Nevertheless, it is possible that a lower-
dimensional subspace of Rm contains most of the relevant variation in the conditional quantile
functions. In this case, the irrelevant part of the space could contribute to spurious overfitting in
the CCA as discussed above. To avoid such a circumstance, we conduct CCA on X relative to the
scores for a subset of dominant principal components of Q̂, instead of on Q̂ itself.

PCA is a dimension reduction technique, which provides an alternate basis for the space
spanned by the columns of Q̂c, such that the basis vectors are pairwise orthogonal to each other
and capture the directions of maximum variation within the data. Specifically, we have Q̃ = Q̂cP ,
where P is the m × k matrix of PCA loadings that maps the matrix Q̂c of column-centered con-
ditional quantile estimates to the principal component scores Q̃ ∈ Rn×k. Here k is a chosen
dimension for the reduced space of PC scores. The PCA loadings P can be obtained via the
spectral decomposition of the sample covariance matrix

Q̂⊤
c Q̂c = PΛP ′.

If η̃k is a CCA coefficient vector for Q̃ in this analysis, then ηk ≡ Pηk/∥Pηk∥ represents the
same loading vector expressed with respect to the original Q̂. Further, since ηk maps Q̂ into the
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span of its dominant k left singular vectors, the variance of Q̂ηk is no less than Λkk/n, where Λkk

is the kth largest singular value of Q̂⊤
c Q̂c. Thus the “PCA-CCA” pipeline can be seen as a way

to obtain direction vectors θ and η such that the corresponding variates Xcθ and Qcη are highly
correlated, while still reflecting a substantial fraction of the total variance.

2.4.2 Dimension reduction and most-predictable variates

Classical methods for dimension reduction including PCA and CCA are most effective when the
link function g is approximately linear. To better capture nonlinear structure, various nonparamet-
ric dimension reduction algorithms have been developed. While most of this literature has focused
on the familiar setting of a scalar response that is predicted by one or more explanatory variables,
a few approaches have been devised for the setting where both the response and explanatory vari-
ables are multivariate. Here we consider the “most-predictable variates” approach built on Sliced
Inverse Regression (SIR), denoted here as MP-SIR [60]. SIR [59] was the first dimension reduction
method to be proposed. It focuses on the “inverse regression function” E[x|y], and specifically on
its marginal covariance varE[x|y]. The goal is to find a matrix B ∈ Rp×d where x ∈ Rp, so that
B′x captures all of the information in x that is relevant for predicting y. Formally, we seek B so
that y ⊥⊥ x|B′x. Under certain conditions, the generalized eigenvalues of ĉovE[x|y] with respect
to ĉov(x) to estimate such a basis. In SIR, ĉov[x|y] is estimated using a simple slicing estimator,
and ĉov(x) is estimated using the standard moment estimator.

The MP-SIR approach generalizes SIR to accommodate multivariate responses. It is an alter-
nating approach that iteratively applies SIR to y as predicted by B′

x, and then to x as predicted
by B′

yy. Here, Bx ∈ RJ×r and By ∈ Rpy×r are current values of the basis matrices. The slic-
ing approach of SIR is extended to allow slicing on multiple columns. Under certain conditions,
x ⊥⊥ y|(B′

xx,B
′
yy), meaning that all of the dependence between x and y is captured through the

linearly reduced variates B′
xx, B′

yy. Unlike in CCA, the relationships among the reduced x and
reduced y variates may be substantially nonlinear.

2.4.3 Interpretation

2.4.3.1 Rotation

The loading vectors ηk for Q̂ correspond to factors in the space of conditional quantile functions
that are predictable from X . Note here that by “quantile function” we mean the deviation between
a specific conditional quantile function and the average of all conditional quantile functions. To
further aid interpretation, we note that if ηk ∝ 1, all quantiles change to the same extent as X

varies, as in a location family. We have found that data of interest often approximately exhibit such
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location behavior, although not always in the dominant component. Therefore, we have found
it useful to rotate the first few loading vectors to identify an approximate location relationship,
and then interpret this component in contrast to the remaining factors which capture non-location
effects (e.g. effects on quantiles at different probability points to different extents).

Rotations are an important part of classical factor analysis [1, 75]. In this spirit, we develop a
procedure to rotate the CCA or MP-SIR solutions so that the first factor loadings for Q̂ become
approximately constant, reflecting a location relationship as discussed above. This involves con-
structing a transformation matrix F and replacing η with ηF , and replacing β with βF . In doing
so, we wish to preserve the property that the scores Xβj remain pairwise uncorrelated. It is not
possible in general when rotating to also preserve pairwise uncorrelatedness of the scores Q̂ηj , but
this is arguably less important for interpretability.

Xβ ←→ Q̂η rotation−−−−−→ XβF ←→ Q̂ηF , F ′F = I.

Let β denote the matrix of all X-loadings βj and η denote the matrix of Q-loadings ηj , i.e.
β = (β′

1, · · · ,β′
r)

′ ∈ RJ×r and η = (η′
1, · · · ,η′

r)
′ ∈ Rm×r. Here r is the number of canonical

coefficients in the model, which is a tuning parameter.
Let us now discuss how to construct F = [fjk] ∈ Rr×r. The rotation algorithm begins by using

least squares to regress a column of 1′s onto the Q-loading vectors ηj which form the columns
on matrix η, i.e. 1m ∼ η1 =⇒ 1m =

∑r
j=1 fj1ηj. Let η̂1 denote the fitted values, and let

f1 = (f11, · · · , f1r) denote the coefficient vector such that η̂1 = ηf1. The vector f1 becomes
the first column of the transformation matrix F . Subsequent columns of F are obtained using the
Gram-Schmidt procedure to preserve pairwise uncorrelatedness among the X-side scores.

2.4.3.2 Support points

Interpreting the results of CCA or MP-SIR is a somewhat complex task in that we must understand
how (i) variation in the X-scores relates to variation in the observed X variables, (ii) variation
in the X scores relates to variation in the Q̂ scores, and (iii) variation in the Q̂ scores relates to
variation in the observed Q̂ variables. In CCA this process is somewhat simplified by two facts.
First, the relationships in (ii) are treated in CCA as linear. Also, in standard CCA there are no
“cross-relationships” in (ii), i.e. the X-scores for factor j are uncorrelated with the Q̂-scores for
factor j′ if j ̸= j′. However after rotating as discussed above the second property will no longer
hold. In MP-SIR neither of these properties holds.

To aid in the interpretation of the relationships uncovered by CCA or MP-SIR, we make use of
“support points” as recently developed [67]. Support points are a set of points that are distributed
over the important regions of a joint distribution. Using a distance-minimization approach, a set of
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support points of a chosen size can be constructed that optimally cover the support of a distribution.
For our purposes, we construct a limited set of support points in the joint space of X-scores,
consisting of say five points. We then identify a neighborhood of observed data points in the space
of X-scores that fall close to each support point, and average their corresponding quantiles in
Q̂. This produces a nonparametric estimate of the expected quantile function corresponding to a
given point in the X-score space. By considering 5-10 support points, the relationship between
explanatory variables X and quantiles Q̂ can be elucidated.

To provide sharper insight, we select a “focus variable”, say adult BMI, take each support point
P and then consider the points P+ and P− that correspond to one standard deviation changes
in BMI relative to P . Specifically, suppose that Bx is the MP-SIR or PCA-CCA basis matrix
for the explanatory variables X , and standardized BMI occupies column j∗ of X . Then P+ =

P + B′
xej∗ , where ej∗ ∈ {0, 1}J is the indicator vector of column j∗. We then identify the n∗

nearest neighbors of P+ and P− in the set of observed {B′
xxi} values, and let I+ and Ii denote

the indices of these nearest neighbors. Finally, we average the rows of Q̂ corresponding to I+

and I−. This is a nonparameteric estimate of the difference of connditional quantile functions
Qy(p;x = P+)−Qy(p;x = P−).

2.4.4 Inference for dimension reduction analysis of conditional quantiles

A natural goal is to assess how the conditional quantiles of Y given X vary with X . Since
the estimated quantiles in Q̂ were explicitly constructed using X , there is an inbuilt relationship
between Q̂ and X which may lead to spurious relationships. The question of interest is what form
of relationship exists in the population – that is, were we to have the true quantiles Q0, what would
be the relationship between X and Q0? In this section we discuss a simple method for addressing
this question when using CCA in the dimension reduction analysis. An extension of this approach
could be used with MP-SIR, but this requires us to quantify the relationship between the X-side
and Q-side variates in a way that captures non-linear as well as linear relationships. For simplicity,
we consider only the linear CCA setting here.

As noted above, Q̂ is a matrix of estimated quantiles that are constructed partially using X . Our
goal is to assess how the underlying true quantiles Q0 vary with X . To address this question in a
way that overcomes the inbuilt dependence between Q̂ and X , we use a randomization approach.
We randomize the rows of X holding Y fixed, re-estimate the quantiles in Q̂, then finally conduct
the CCA with rotation. We then consider the correlations between Q̂ηj and Xβj in the observed
and randomized data. To the extent that the correlations in observed data are greater than the
correlations in randomized data, the apparent relationship between X and Q̂ is unlikely to be
spurious.
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Specifically, we randomly permute the rows of X nrep times and ultimately obtain a set of nrep

correlations between Q̂ηj and Xβj . We use these to conduct a bootstrap one-sided hypothesis
test with a null hypothesis that the correlation between Q̂ηj and Xβj is zero, and the alternate
hypothesis that it’s greater than zero. We reject the null hypothesis if the correlation estimate
obtained from the data is greater than the empirical 95th quantile of correlations.

2.4.5 Illustration using NHANES data

In this section we analyze the NHANES data using the procedures described above, with systolic
blood pressure (SBP) as the dependent variable and age, BMI, and height as explanatory variables.
The NHANES data are cross-sectional and the covariates are all measured at the same time that
SBP is measured. We conduct the analysis twice, once including all subjects of age 18 and over
(2,757 females and 2,590 males), and the second time including subjects with age between 18
and 40 (1,064 females and 1,001 males), to better align with the demographics of the Dogon
Longitudinal Study participants.

We first consider the evidence that there is any linear relationship at all between the explanatory
variables X and the conditional SBP quantiles Q0. As discussed above, we approach this using
randomization. Table 2.4 contains the estimated loading parameters for the X-side variables and
the results of this randomization analysis. For each sex, we fit CCA with d = 1, 2, and 3 compo-
nents and report the results for each component, indexed by c in the table. For inference, we focus
on the columns labeled R and Rp. The values labeled R are the canonical correlations between
each X-side and corresponding Q-side component. As noted above, these are biased upward and
to assess the extent of bias we randomized the SBP values in Y 100 times and repeated the entire
procedure. The 95th percentiles of the randomized canonical correlation coefficients is shown in
the column labeled Rp. When R exceeds Rp, we interpret this as providing substantial evidence
that the component is not spurious.

The results shown in table 2.4 show that in the younger cohort for both females and males, only
one pair of variates are linearly related. However in the cohort with no age restriction, correlations
for at least three pairs of correlated variates are found in females, while the males have evidence
for only two pairs of correlated variates. This indicates that the relationship between explanatory
variables and SBP quantiles is more complex if we mix people across a wide age range.

Figure 2.17 shows the estimated loading patterns for the NHANES data. The first row of the
figure shows the loading patterns for the 18-40 age cohort, which are estimated to have only one
CCA component. These loading patterns essentially reflect a location relationship, in which some
people, based on their covariate values, have either higher or lower SBP quantiles across all prob-
ability points. The second row of the figure shows the loading patterns for the 18-80 age cohort,
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Figure 2.17: Loading patterns for the 18-40 year old (top row) and 18 and over (second row)
subsets of NHANES.
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18-40 18-80
Sex d c R Rp R Rp

Female 1 1 0.87 0.35 0.92 0.24
Female 2 1 0.87 0.37 0.92 0.24
Female 2 2 0.10 0.19 0.27 0.14
Female 3 1 0.89 0.45 0.93 0.30
Female 3 2 0.13 0.27 0.31 0.19
Female 3 3 0.08 0.13 0.09 0.07
Male 1 1 0.83 0.35 0.84 0.22
Male 2 1 0.83 0.39 0.84 0.27
Male 2 2 0.04 0.23 0.24 0.14
Male 3 1 0.89 0.41 0.85 0.31
Male 3 2 0.18 0.24 0.25 0.18
Male 3 3 0.03 0.11 0.02 0.09

Table 2.4: Randomization analysis of linear relationships between explanatory variables and quan-
tiles in the NHANES data. Models were fit with d components, indexed by c; R denotes the
observed correlation between corresponding variates and Rp denotes the 95th percentile of corre-
lations under randomization.

where the relationship between blood pressure and explanatory variables is more complex. The
first loading function was rotated to be approximately constant, as discussed above. The remaining
components (two for females and one for males) capture relationships in which some people have
more dispersed conditional quantiles than others.

2.4.6 Illustration using Dogon Longitudinal Study data

As in the previously-described AFQR analyses using the Dogon study cohort, our overall goal here
is to better understand the relationship between systolic blood pressure (SBP) and explanatory vari-
ables related to body size. For each observed SBP value, we used the QNN algorithm to estimate
9 conditional quantiles of SBP (spanning from probability points p = 0.1 to p = 0.9). These
conditional quantiles comprise the Q̂ matrix as defined above. The analysis was applied in a series
of configurations. Each analysis includes four explanatory (X) variables – age, current height,
current BMI, and one of six measures of childhood body size. The “current” height and BMI are
the height and BMI as measured at the time of SBP measurement. The childhood body size was
one of six variables – height, weight, BMI, HAZ, WAZ, and BAZ. The latter three variables are
age-specific Z-scores based on World Health Organization growth charts.

The analysis was conducted separately for females (n = 4, 910 observations) and males (n =

5, 178 observations), in a “marginal” mode, meaning that moment matrices required by PCA,
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CCA, and MP-SIR were constructed as simple aggregations over all observations. We note that
while repeated measures per-subject induce correlation among the values observed on one subject,
these marginal moments remain valid summaries when interpreted with respect to the marginal
distribution of observations, pooled over subjects.

We first reduced the 9 estimated conditional SBP quantiles to 4 dimensions using PCA, and we
then obtained the 3-dimensional MP-SIR fit. The results of the analysis are best appreciated visu-
ally. We start with childhood weight (PC scores for the trajectory from age 1-10) as the childhood
body size variable, use age as the focus variable, and consider the results for female subjects. The
three panels in the first column of figure 2.18 show scatterplots of the X-side variates. Biplotting
is used to show how the reduced variates relate to the original four variables. Text labels A, B, C,
D show the locations of four support points. Note that the coordinates of these support points are
computed in R3 and are then projected into each of the displayed two-dimensional views. Cor-
responding to each support point, we construct two opposing points labeled ⊕ and ⊖ – these are
constructed by displacing each support point by +1 or −1 standard deviation in the direction of
the focus variable (here age).

The distribution of observed points in the first panel of column 1 of figure 2.18 reveals an inho-
mogeneity in the joint distribution of body sizes and age – younger subjects “fork” into two nearly
disconnected subsets based largely on BMI. No such inhomogeneity is present for observations
made on older subjects. This is likely explained by the fact that the timing of puberty onset varies
by subject and generally takes place in the first few years after SBP measurements commence at
around age 11 (i.e. in the younger observations within this dataset). We identified four support
points, and each support point gives rise to one displacement in the positive age direction and one
displacement in the negative age directions.

Panel 1 of figure 2.19 shows the estimated conditional quantile functions for the four pairs of
displaced support points, plotted as deviations (residuals) of a specific conditional quantile function
relative to the mean conditional quantile function. The extremes in panel 1 are the D- trajectory,
which has high SBP quantiles, and the A+ trajectory, having low SBP quantiles. Referring to
panels 1-3 we see that the D- trajectory corresponds to younger females with higher BMI and the
A+ trajectory corresponds to older females with lower BMI.

To better understand how SBP quantiles vary when contrasting across ages, panel 2 of figure
2.19 shows the difference between the estimated conditional quantile function for each displaced
P+ support point relative to its displaced P− support point. These differences are always nega-
tive, showing that when holding BMI, height, and childhood weight fixed, an older female subject
always has lower SBP quantiles than a younger female subject. These differences are most pro-
nounced for the central quantiles. A key feature of interest is the heterogeneity in these differences.
The A support point has the least difference and the C support point has the greatest difference.
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Figure 2.18: Left column: X-side biplots with support points; Right column: heatmaps of inho-
mogeneity scores.
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This “effect heterogeneity” suggests that age does not operate in an equivalent manner at all levels
of the anthropometry variables.

To further probe the effect heterogeneity for age revealed in figure 2.19, we constructed 50
support points and contrasted their conditional quantile functions when translated by one unit in
the increasing or decreasing age direction. The mean of these 50 differences is shown as panel 3 in
figure 2.18. This mean is entirely negative and shows strongest contrasts at the central quantiles.
We then used PCA to find a dominant linear summary of the variation in these differences. We
call the corresponding PC scores “inhomogeneity scores” since they reflect the inhomogeneity in
the “age effects” as the other covariates are varied. Panel 4 of figure 2.19 shows the loadings from
which the inhomogeneity scores were derived. The pattern is entirely positive, meaning that the
inhomogeneity generally takes a form in which differences at all quantiles are either greater, or
lesser, based on the values of the covariates (excluding age). However the differences at the upper
quantiles are as much as four times greater than the differences at the lower quantiles, suggesting
greater inhomogeneity in the upper quantiles.

Next we sought to more systematically understand how the inhomogeneity scores vary with
respect to the covariates. Using the inhomogeneity scores calculated at the 50 support points, we
used local linear least squares regression to estimate the mean inhomogeneity score at each point
in the covariate space. These estimated inhomogeneity scores are plotted in the right column of
figure 2.18. Recall that a greater inhomogeneity score corresponds to a greater different in SBP
quantiles when contrasting an older to a younger subject. Using the original 4 support points la-
beled A-D as landmarks, we see that there is a pattern in which positions close to support point A
tend to have positive inhomogeneity scores. Since the mean quantile difference (panel 3 of figure
2.19 is negative, this means that positions close to support point A have the smallest differences in
SBP quantiles as age changes. In contrast, positions close to support point C tend to have negative
inomogeneity scores, and adding these negative scores to the mean results in a greater difference
between conditional quantiles as age changes. Considering that the maximum magnitude of in-
homogeneity score loadings (panel 4 of figure 2.19) exceeds 0.4, and the imhomogeneity scores
themselves (right column of figure 2.18) often exceed 6 in magnitude, we see that the age contrasts
often exceed 3 mm Hg, which is not a negligible effect size for SBP.

We applied the analysis framework described above using each of the six available childhood
body size variables, separately for females and males, and yielding results for each of the four
X covariates as the “focus variable”. We next give a brief overview of these results, which are
too voluminous to present in their entirety. Figure 2.20 shows the estimated differences in SBP
quantile functions corresponding to±1 SD differences in BMI and in height, separately for females
and males. The BMI and height variables are included in all analyses, along with one of the six
childhood anthropometry variables, but here we only show the results when using weight as the
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Figure 2.19: Panel 1: estimated conditional quantile functions corresponding to the support points;
Panel 2: difference of opposing pairs of estimated conditional quantile functions; Panel 3: mean
conditional quantile function over 50 support points; Panel 4: dominant PC loading over 50 support
points.
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childhood body size. Note that these are the “current” BMI and height measured at the same time
that SBP was measured. Most contrasts are positive, showing that greater BMI or height associates
with greater SBP, when holding the other variables fixed. However substantial heterogeneity is
suggested in these plots. For example, for males the A support point shows little responsiveness
to BMI changes and the D support point shows little responsiveness to height changes. Also, for
females the BMI responses are much stronger at the central quantiles, while in males the BMI
responses are approximately uniform over all quantiles.
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Figure 2.20: Estimated differences between quantile functions at four support points, in response
to ±1 SD changes in BMI or height. Results are shown separately for females and for males.

The greatest point of interest in these analyses is the relationship between childhood traits and
adult SBP. The Dogon Longitudinal Study is uniquely suitable for assessing this relationship, since
many other studies are cross sectional or have short follow-up times. Figure 2.21 shows selected
results for these effects, using the methodology developed here. This figure shows results for the
three variables related to adiposity (weight, BMI, BAZ). At most support points, the SBP quantiles
are lower when childhood body size is greater. However there is substantial heterogeneity in
these differences, and for some support points there is minimal relationship, or even an inverted
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relationship. For example, support point A for males shows an inverted relationship in which
larger childhood body size is associated with elevated adult blood pressure.
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Figure 2.21: Estimated differences between quantile functions at four support points, in response
to ±1 SD changes in childhood body size variables. Results are shown separately for females and
for males.

70



2.5 Conclusion

In this chapter we presented two methods to jointly model the conditional quantiles of an outcome
variable across the distribution of multiple explanatory variables. Both the methods are designed
to aid the interpretation of quantile-based analyses, unlike most existing quantile regression tech-
niques that are aimed at prediction. Among methods aimed at interpretation, our methods are
unique in that they can be applied as a post-processing step to any non-parametric (or paramet-
ric) quantile regression technique, and are thus flexible and able to accommodate non-parametric
methods to produce interpretable results. The first step for both our methods includes estimating a
collection of conditional quantiles that are low-bias, with potentially high variance. Our methods
then find the joint association between this collection of quantiles and the covariates, suing dimen-
sion reduction techniques that ultimately lead to low-variance estimates. Thus, the final estimates
are low-bias due to the non-parametric quantile regression in step 1, and low variance due to the
dimension reduction in step 2.

In general, modelling all conditional quantiles (in terms of the quantiles of the covariates) com-
pletely non-parametrically is very challenging. Our techniques prioritize different kinds of com-
plexities in order to achieve this goal flexibly (though not entirely non-parametrically). The key
distinction between the two methods is that AFQR models the additive rank-1 impact of each co-
variate (with no restrictions on the shape of the functional rank 1 components), but the additive
structure does not accommodate interactions. DRQR on the other hand can model interactions and
accommodate the joint behaviour of any number of features, but it is a bit tedious to interpret. We
develop tools for visualizing the results of both techniques, and demonstrate our methods on two
common datasets (one cross sectional and one longitudinal). We also perform simulation studies
for both techniques which display good performance of our methods.

As part of future work, the rank-1 model in AFQR can be extended to rank 2 or in general a
higher rank (say r) per covariate. Such a model would take the following form

QY |X(p|x) =
J∑

j=1

r∑
k=1

fjr(xj)gjr(p).

Additionally, our data-emulation based approach to inference for AFQR is cumbersome and there
remain many challenges to be solved. Currently both our methods are two-stage procedures, but
we could try to fit the AFQR model as a one-step process by minimizing the check function di-
rectly, eliminating the first step of estimating the conditional quantiles non-parametrically. Such
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an approach would involve minimizing the following expression

∫ n∑
i=1

τp
(
yi −

J∑
j=1

hj(xij · gj(p)
)
dp.

Lastly, the smoothing bandwidth optimization in AFQR can be formalized and potentially auto-
mated.
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CHAPTER 3

Quantile-Based Mediation Analysis Using
Factor-Structured Regression

3.1 Introduction

Mediation analysis is a framework for assessing structured hypotheses about associations and con-
ditional associations (see [6], [65] for representative early papers). The essential idea is that an
outcome can be influenced by explanatory variables at the same time that the explanatory variables
are influencing each other. The relationships among the explanatory variables induce dependence
among them, and through this dependence mediation analysis aims to assess hypotheses about
causal relationships in the population. Specifically, suppose that two explanatory variables x1 and
x2 are not only correlated, but it is thought that changes in x1 induce changes in x2, and not the
other way around. In this case, we can define direct and indirect effects of x1 on y, with the indirect
effects operating “through” the mediator x2 and the direct effects operating “independently” of the
mediator.

Scientific hypotheses about associations in longitudinal data are often expressed in terms of
mediation analysis. However with a few exceptions, mediation analysis has mostly focused on the
conditional mean value of the outcome, which may fail to capture effects that occur in the tails of
the outcome’s conditional distribution [66, 82]. Moreover, many conventional forms of mediation
analysis are linear in the exposure and mediators, meaning that the model treats a one-unit change
in an exposure or mediator as having the same consequences regardless of where within the overall
distribution of the variable this one-unit change occurs [6].

To address these challenges, in this chapter we introduce a novel framework for exploring me-
diation effects based on conditional quantiles of the relevant variables (the exposure, mediator, and
outcome). This approach to mediation analysis reveals the extent of direct and indirect effects at
every quantile of the outcome, through every quantile of the mediator(s). Perhaps the best way to
interpret this is through the lens of heterogeneity. Changes to the exposure variable do not impact
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the response variable deterministically, but rather alter the conditional distributions of the medi-
ators and the response. The changes in the conditional distributions can be different at different
quantiles – for example there may be strong direct effects at the median while the indirect effects
are stronger at the outer quantiles. To the best of our knowledge, no existing analysis approaches
allow a researcher to conduct mediation analysis across the quantiles of all exposure, mediator, and
outcome variables, accommodating continuous exposures and multiple mediators.

The work presented here builds on the QNN and AFQR methods discussed in detail in chapter 2
(sections 2.2, 2.3). A key insight is that the AFQR framework yields relatively simple expressions
for the direct, indirect, and total effects that can be seen as resulting from a “remapping” of the
AFQR score functions to reflect the way that an “intervention” changes the distribution of the
exposure, and the manner in which these changes propagate to change the marginal distributions
of the mediators.

Throughout this chapter we motivate our methods using data from the Dogon Longitudinal
study. Specifically, we consider the important question of how adult SBP is associated with growth
and development from childhood into adulthood. This analysis contributes to the ongoing debate
about the relationship between body size trajectories and adult SBP [17, 31, 46, 57]. On the one
hand, there is a well-established cross-sectional relationship between SBP and current body size
– larger (heavier and taller) people tend to have greater blood pressure [23, 5, 35, 93]. On the
other hand, undernourished children experience stresses that may directly increase adult SBP, for
example through impaired development of vascular tissues [68, 72, 86]. Yet a small child will
tend to be a smaller adult (due to “tracking”). Thus, it is plausible that there are two antagonistic
mechanisms connecting childhood undernutrition and adult SBP – larger children become larger
adults and as a result tend to have greater SBP, but larger children are protected from developmental
stresses which may result in lower adult SBP.

This chapter is organized as follows: we start by explaining the motivating application in detail,
as this clarifies the goals of our mediation approach. We then introduce the quantile mediation
model in section 3.2 and the direct, indirect and total effects. We establish notation in section
3.2.1, and navigate through the steps used to define a mediation model, in which (i) we establish
the conditional quantile models of the mediators and the outcome using AFQR in section 3.2.2,
then (ii) we introduce our hypothetical intervention in section, and redefine our conditional models
in terms of the perturbed densities in section 3.2.4. Finally (iii) we define the mediation effects in
section 3.2.5. We end this section by commenting on our marginal approach to model Longitudinal
data. Next we access the performance of the entire pipeline consisting of AFQR models used in
the quantile mediation analysis approach via a simulation study in section 3.3. We illustrate our
method by applying it to the Dogon data in section 3.4. We end with concluding remarks and
future directions in section 3.5.
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3.1.1 Motivating Data Application

The impact of childhood growth on adult health has multiple facets. On the one hand, body size
changes (growth) occur continuously throughout early life, often with strong “tracking”, where
tracking refers to temporal autocorrelation where small (big) children tend to become small (big)
adults [79]. This is a longitudinal association, and at the same time there is a cross-sectional
association between adult body size and adult health, i.e. at a fixed age, people who are taller
and/or have greater body mass tend to have higher SBP. Thus, an individual’s growth trajectory
influences their health outcomes as an adult via two routes, longitudinally and cross-sectionally.
The two associations at play here are summarized below

• Tracking: longitudinally, in an adverse environment under-nourished children grow up to be
smaller adults, i.e. small children (short/ low BMI) become small adults (short/ low BMI).

• Simultaneous Association: cross sectionally, smaller people (short/ low BMI) have lower
SBP.

Childhood
Body Size

Adult
Height

Adult
BMI

Adult
SBP

trac
king

tracking

direct effect

simultaneousassociation

sim
ulta

neou
s

asso
ciat
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indirect effect (HT)

indirect effect (BMI)

Figure 3.1: Direct and indirect effects in the motivating study.

Based on the tracking mechanism alone, we might expect undernourished children to have
lower adult SBP. This is an indirect effect of childhood under-nutrition which results from the
combined effects of tracking and simultaneous association. However, childhood under-nutrition
may also have direct effects on adult SBP. There is strong evidence that childhood under-nutrition
impacts mental and physical development, which in turn can have long-lasting health impacts
including increasing risk for hypertension, lower fat oxidation, and reduced capacity for manual
work, among other impairments [68, 86, 8, 42, 72]. Moreover, undernutrition is one of the leading
causes of childhood mortality [10, 86, 40]. Focusing on SBP as an adult health outcome, the
“direct effect” of childhood under-nutrition, which lacking direct measures of diet and nutrition
can be captured by the proxy variable of childhood body size, is anticipated to be an increase in
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SBP (hypertension). This direct effect may be partially or fully masked by the aforementioned
“tracking effect” in which smaller children tend to have lower adult SBP. One of the main insights
provided by a mediation analysis is to clarify whether these two antagonistic effects are in fact
present, and to what extent one dominates the other.

Looking more closely at the tracking effect, it is important to note that tracking effects via
different anthropometric attributes may have differing impacts on adult SBP. In this thesis we
focus on indirect effects through height and Body Mass Index (BMI). It is plausible that BMI and
height have independent contributions to adult SBP, and this is supported by the analysis using
GEE presented in chapter 1. Moreover, by design BMI is largely independent of height. While
out of scope for our analysis, we note that it may be argued that gains in SBP from increased
BMI have a different overall cost than gains in SBP from increased height. Especially in under-
resourced contexts, greater height is associated with benefits unrelated to SBP such as higher social
status, greater educational attainment, and lower mortality risk during childbirth. These beneficial
effects of greater height may possibly offset the adverse effects of greater SBP. On the other hand,
except at the extreme low end of the range, effects of increased BMI are mostly or entirely adverse.

The Dogon Longitudinal Study, like most real-world longitudinal studies, presents several fur-
ther complications that we wish to be able to address in a rigorous and principled way. First, we
wish to view our population as developing continuously in time, even though measurements for
each subject are taken at a finite number of time points. In the Dogon Longitudinal Study, indi-
viduals are assessed at roughly 1-year intervals, although there is substantial variation in the actual
timing. We therefore adopt a kernel method to focus the analysis on two pre-specified time points,
one in early childhood and one in adulthood. The subjects need not be observed at these exact
time points since continuity and pooling are used to borrow information from nearby time points
where observations were made. Second, we wish to quantify the uncertainty in our estimates in
a way that accounts for the presence of unbalanced repeated measures per subject. We take a
marginal approach, treating the observation rather than the person to be the unit of analysis for
estimation purposes, and then use data emulation and bootstrapping to quantify uncertainty in a
way that accounts for data correlations. Our mediation approach is used to decompose the impact
of childhood body size at a pre-specified childhood age (exposure) on adult blood pressure at a
pre-specified adult age (outcome), into its direct longitudinal effect and the indirect cross-sectional
effect through adult body size measures, such as height and BMI measured at the same adult age
(mediators).
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3.1.2 Literature review of quantile approaches to mediation analysis

Early efforts to consider quantiles in mediation analysis involved modelling the conditional quan-
tiles of only the outcome (our approach also considers quantiles of the exposure and mediators).
This was proposed in [48], [22], and applied in [88], [44], [50]. The general strategy is to define
parametric conditional models for the outcome given the mediator(s) and exposure Y |M,X and
the mediator(s) M |X , and then estimate the model parameters at a specific probability point by
minimizing the check-function ρτ (x) = (τ − Ix<0)x. The only departure from least squares anal-
ysis is that the check function is minimized instead of minimizing the L2 loss. Alternatively, some
researchers have used propensity score weighting rather than regression adjustment [87]. The ad-
vantages and disadvantages of these two approaches in a quantile estimation setting parallel what
occurs in the setting of mean estimation.

Quantiles have also been considered in the mediator instead of, or alongside those of the out-
come. In [34] they model the expected value of the outcome, and decompose the average indirect
effect based on the quantiles of the mediator. They refer to the indirect effect of the exposure on
the outcome at a specific quantile of the mediator as “u-specific” indirect effects. They show that
the average indirect effect can be conditioned on the quantiles of the mediator and can be written
as the average of the u-specific indirect effects. They also define u-specific total and direct effects,
which are the conditional expected total and direct effect respectively, conditioned on the quan-
tile of the mediator. The average total effect and average direct effect are similarly expressed as
averages consisting of the u-specific effects.

Quantiles of both the mediator and the outcome are considered in [9]. They specify a lin-
ear model with random intercepts for the mediator, and a linear random intercept model with an
exposure-mediator interaction for the outcome. Their method is also applicable to cross-sectional
data, by excluding the random intercept from the model. Since the mean structures of their mod-
els are linear, the direct and indirect effects have closed forms in the absence of the interaction.
They define direct effects as follows: for fixed quantiles of the outcome and mediator at pY , pM ,
the direct effect is defined as the contrast between the pthY quantile of the potential outcomes upon
varying exposure X = x, x⋆ while holding the mediator at it is pthM quantile under x⋆. The indirect
effect is defined as the contrast in the pthY quantile of the potential outcomes when the exposure is
fixed, say X = x, but the mediator changes from its pthM quantile conditioned on X = x⋆ to the pthM
quantile conditioned on X = x.

For a binary exposure, [21] propose a way to find the direct effect if the distribution of the
mediator (under the two categories of the exposure) can be made identical, referred to as residual
disparity. They do this by proposing hypothetical interventions applied to the mediator. They
use a Bayesian Linear Dependent Dirichlet Process model to estimate the density of the mediator,
and explain that only the density in one of the exposure categories is needed - the category who’s
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mediation distribution is to be matched (the more advantageous category). They show that residual
disparity is different from the natural expected total effect. While this is very different from our
analysis, it is worth noting since it is one of the few analyses that consider the entire distribution
of the mediator instead of focusing on its average value.

3.2 Mediation analysis using additive conditional quantiles

In this section we introduce our approach to mediation analysis using the additive functional quan-
tile models (AFQR) developed in chapter 2 (section 2.3. The key insight is that the low-rank and
additive structure of these models gives rise to very concise notions of direct and indirect effect
that can be interpreted as “remapping” the AFQR factor scores in response to a hypothetical inter-
vention.

3.2.1 Notation

The data consists of the outcome Y and a set of covariates measured for n subjects. Let Y denote
the outcome, X denote the exposure, Mk denote the kth mediator, and Z denote the set of other
covariates. The data consists of n observations and is of the form {(Yi, Xi, {Mk}i),Zi}ni=1. For
simplicity, we do not write Z anywhere but it is understood that all regression relationships adjust
for Z where appropriate. We focus on a mediation model with two mediators; a graph summarizing
the relationships among key variables is presented in figure 3.2.

Let M̃1, M̃2, and X̃ denote quantile-transformed versions of M1, M2, and X , so that P (M̃1 ≤
t) = P (M̃2 ≤ t) = P (X̃ ≤ t) = t. Also denote W = {M1,M2, X} and W̃ = {M̃1, M̃2, X̃}.

X

M1

M2

Y
direct effect

In our application
X : childhood body size
M1 : adult HT
M2 : adult BMI
Y : adult SBP

Figure 3.2: Directed acyclic graph representing the relationships between the variables in the me-
diation model. The nodes represent variables, and the arrows represent causal effects.
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3.2.2 Conditional quantile models with additive low-rank structure

In this section we describe the models that we use to represent the conditional quantiles of the
mediators given the exposure, M̃j|X̃ , and the conditional quantiles of the outcome given the medi-
ators and exposure, Y |(X̃, M̃1, M̃2) = Y |W̃ . These in turn are used to carry out a quantile-based
mediation analysis as discussed in subsequent sections.

As noted earlier, most methods for quantile regression estimate each conditional quantile func-
tion corresponding to a probability point p ∈ (0, 1) separately. In this type of approach, there
is no explicit consideration of the relationships between quantiles at different probability points,
and in some methods there can even be crossings of the estimated quantile functions that cannot
reflect the behavior of the population quantile functions. Our two-stage approach imposes a global
structure on the collection of all quantile functions indexed by p ∈ (0, 1). This approach partially
pools information for different probability points, providing more stable estimation especially for
the outer quantiles.

Our model for the conditional quantiles has an additive/multiplicative structure that focuses on
two-way interactions between a function of one covariate and a function of the outcome variable’s
probability points. Specifically, we represent the conditional quantiles of the outcome in the form
given below

QY |(M̃1,M̃2,X̃)(p | M̃1 = m̃1, M̃2 = m̃2, X̃ = x̃) =

µ(p) + f1(m̃1)g1(p) + f2(m̃2)g2(p) + f3(x̃)g3(p), (3.1)

where fj and gj are smooth functions and p ∈ (0, 1) are probability points. To ensure that the model
is identified, we impose the constraint fj(0.5) = 0, j = 1, 2, 3. Here M̃1, M̃2, and X̃ marginally
follow uniform distributions on the unit interval (0, 1), as they have been quantile transformed.
Thus the constraint is that the “score” function f at the unconditional median of its argument is
zero. In this model, the (functional) parameters of interest are {fj}3j=1 and {gj}3j=1.

In practice we will need to work on a finite grid of values, so we produce a tensor of order
4 containing gridded values of QY |(M̃1,M̃2,X̃) covering the support of W̃, which is (0, 1)3. Each
component of W̃ (i.e. X̃ , M̃1, M̃2) is represented by a grid of probability points 1/(m+1), 2/(m+

1), . . . ,m/(m + 1) for an integer m, taken to be odd so that p = 0.5 is in the grid. The values
of QY |(M̃1,M̃2,X̃) are represented through points in this m × m × m × m tensor, with the first
three axes of the tensor corresponding to probability points of X̃ , M̃1, and M̃2, and the final axis
corresponding to probability points of Y .

The conditional quantiles of the mediators given the exposure X̃ are also represented in a func-
tional rank-1 form
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QM̃1|X̃(p | X̃ = x̃) = µ1(p) + f4(x̃)g4(p)

QM̃2|X̃(p | X̃ = x̃) = µ2(p) + f5(x̃)g5(p), (3.2)

and an order 2 m ×m tensor (a matrix) can be used to represent each of these functions on their
natural domains on a finite grid of points.

3.2.3 Hypothetical intervention

Mediation analysis can be viewed as a way to understand how an observed, untreated population
would respond to a hypothetical intervention. We consider a hypothetical deterministic interven-
tion that changes the distribution of the exposure. Let

h0,θ(x) ≡ Φ(Φ−1(x) + θ), (3.3)

where θ is a parameter that determines the size of the intervention. Recall that our quantile trans-
formed exposure X̃ follows a uniform distribution on the interval [0, 1]. The random variable

X̃ ′ ≡ h0,θ(X̃) (3.4)

can be seen as the result of mapping uniform random values to normal scores, shifting the normal
scores by θ, and then converting back to the original scale. Thus, θ can be interpreted as an additive
effect size on a standard normal scale. Further, it is easy to see that the CDF of X̃ ′ is h−1

0,θ(·) and
the quantile function of X̃ ′ is h0,θ(·).

The parameter θ in equation 3.3 controls the mapping between the quantiles of X̃ and the
quantiles of X̃ ′. If θ > 0, X̃ ′ is stochastically greater than X̃ , and if θ < 0, X̃ is stochastically
greater than X̃ ′. If X and X̃ are anthropometric variables representing childhood body size in the
observed (unperturbed) population, then transforming X̃ using θ > 0 produces a new population
with greater body sizes at every quantile (analogous to a more “advantaged” population). This
could result from an intervention that provides nutritional support to the population. Conversely,
transforming X̃ using θ < 0 produces a new population with smaller body sizes at every quantile
(analogous to a less “advantaged” population). To understand the mediated relationship of the
exposure (childhood nutrition) on the outcome (adult SBP) through the mediators (adult body size
measures), we contrast two perturbed populations at values of θ and −θ, that are symmetrically
arranged with respect to the observed, unperturbed population.
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3.2.4 Quantile remapping induced by an intervention

The generative models given above for M̃j|X̃ and Y |X̃, M̃1, M̃2 (equations 3.1 and 3.2) are as-
sumed to hold in the observed population as well as following an intervention – the intervention
only changes the values (and hence the distribution) of X̃ . We also note that in our observed pop-
ulation, the exposure X̃ was transformed (from X) to become uniformly distributed on the unit
interval. This is simply a data transformation that is best viewed as a pre-processing step to our
mediation framework (to understand the essence of our approach, it may be best to focus on X̃ as
if it were the observed value). In contrast, when we transform X̃ to X̃ ′, this action changes the
actual value of a variable, which in turn changes the corresponding values of the mediators and the
outcome. Please note this subtle distinction between a transformation and a change in the variable
– the intervention is represented as a function which looks like a transformation (in equation 3.3),
but it is in fact not a transformation of the exposure or a change of units, it leads to a change in the
value of the exposure expressed in the same units as the unperturbed exposure.

Let X̃ ′ ≡ h(X̃) denote the value of a random variable after applying a given transforming func-
tion h : R→ R. It is important to note that we interpret X̃ and X̃ ′ as operating on the same scale,
i.e. the intervention does not change the scale or units of the measurements, but rather redistributes
the population along the same scale. Since X̃ is uniform on (0, 1), the quantile function of X̃ ′

is h. Thus, for a given probability point q ∈ (0, 1), the value of h(q) conveys (on the common
scale of X̃ and X̃ ′) the value of the qth quantile of the exposure following the intervention. If we
have a model fp(x) = QY |X̃(p|X̃ = x̃) for the quantiles of Y |X̃ = x̃, then fp(h(q)) expresses
the quantiles of Y (indexed by p) in terms of the quantiles of X̃ ′ (indexed by q). This fact is used
repeatedly below.

Based on this logic, and denoting the hypothetical intervention by h0 = h0,θ for ease of notation,
the conditional quantiles of M̃1 and M̃ ′

2 given X̃ ′ can be expressed as follows:

QM̃1|X̃′(p | X̃ ′ = QX̃′(q)) = µ1(p) + f4(h0(q))g4(p),

QM̃2|X̃′(p | X̃ ′ = QX̃′(q)) = µ2(p) + f5(h0(q))g5(p). (3.5)

Note that in the expression above, q represents a probability point for X̃ ′ and p represents a proba-
bility point for M̃1 or M̃2.

Our model for the observed population expresses the joint distribution of (X̃, M̃1, M̃2) in terms
of the marginal distribution of X̃ and the conditional distribution M̃j|X̃ , j = 1, 2 referring to 3.5???
. As noted above, in our framework the intervention does not impact the conditional distribution
M̃j|X̃ , but does change the marginal distribution of X̃ , and therefore also changes the marginal
distribution of each M̃j . Let M̃ ′

1 and M̃ ′
2 denote random values of M̃j that are generated in this way
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(i.e. following transformation of X̃). Again we emphasize that the scales of M̃j and M̃ ′
j have the

same meaning – the intervention leads to a redistribution of the population along these common
scales. Let h1 and h2 denote the marginal quantile functions of M̃ ′

1 and M̃ ′
2 (constructing h1 and

h2 is a minor technical challenge that we discuss below in section 3.2.6). The conditional quantile
function of Y with respect to quantiles of the perturbed X̃ ′ , M̃ ′

1 , and M̃ ′
2 is

QY |(M̃ ′
1,M̃

′
2,X̃

′)(p | M̃
′
1 = QM̃ ′

1
(r1), M̃

′
2 = QM̃ ′

2
(r2), X̃

′ = QX̃′(q)) = (3.6)

µ(p) + f1(h1(r1))g1(p) + f2(h2(r2))g2(p) + f3(h0(q))g3(p).

In the expression above, q is a probability point for the post-intervention exposure (X̃ ′), r1 and
r2 are marginal probability points for the post-intervention mediators (M̃1 and M̃2), and p is a
conditional probability point for the outcome. It is important to index the quantiles of the mediators
M̃ ′

j by marginal rather than conditional quantiles so that they have a common scale across all values
of the exposure.

3.2.5 Mediation effects

Mediation effects are of three types: total, direct, and indirect. The direct effect assesses how
changes to the exposure impact the outcome, while blocking any impact of the exposure on the
mediators (i.e. in assessing the direct effect the mediators are held fixed even though in reality
they may change in response to changes in the exposure). The indirect effect does the opposite;
it assesses how changes to the exposure impact the mediators, which thereby impact the outcome,
while blocking any direct effect of the changes to the exposure on the outcome. The total effect
is essentially the sum of the direct and indirect effects. Our proposed framework for mediation
analysis is compatible with these three notions, but achieves them in a novel way leveraging the
notion of quantile remapping discussed above.

We define the direct, indirect and total effects as the contrast between two populations
that have stochastically greater and stochastically smaller distributions of the exposure, such
that the observed population lies between these two hypothetical populations. All effects are
computed at fixed quantiles of the outcome at probability p, mediators at probabilities r1, r2

respectively, and the exposure at probability q. With h0,θ(x̃) as defined in equation 3.3, consider
two populations corresponding to h0,+α(x̃) and h0,−α(x̃), for some α > 0. In our application, we
use α = 0.5. Recall that the quantile function of the perturbed exposure X̃ ′

θ = h0,θ(X̃) is exactly
h0,θ. Let h1,θ and h2,θ denote the marginal quantile functions of M̃ ′

1,θ and M̃ ′
2,θ when X̃ ′

θ = h0,θ(X̃).

The total effect is defined as the contrast between the pth conditional quantile of the outcome at the
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marginal q, r1, and r2 quantiles of the exposure and mediators, respectively, contrasting between
the settings of the two hypothetical interventions. Using the additive rank-1 representation of the
conditional quantile functions, we obtain the following expression for the total effect:

QY |W̃ ′
+α
(p | M̃ ′

1,+α = QM̃ ′
1,+α

(r1), M̃
′
2,+α = QM̃ ′

2,+α
(r2), X̃

′
+α = QX̃′

+α
(q))−

QY |W̃ ′
−α
(p | M̃ ′

1,−α = QM̃ ′
1,−α

(r1), M̃
′
2,−α = QM̃ ′

2,−α
(r2), X̃

′
−α = QX̃′

−α
(q))

= f1(h1,+α(r1))g1(p) + f2(h2,+α(r2))g2(p) + f3(h0,+α(q))g3(p)−

f1(h1,−α(r1))g1(p)− f2(h2,−α(r2))g2(p)− f3(h0,−α(q))g3(p).

The direct effect in our framework is obtained by blocking the indirect effects, and consists of one
additive term in the expression for the total effect given above:

(f3(h0,+α(q))− f3(h0,−α(q)))g3(p). (3.7)

The indirect effect in our framework is as follows:

(f1(h1,+α(r1))− f1(h1,−α(r1)))g1(p) + (f2(h2,+α(r2))− f2(h2,−α(r2)))g2(p). (3.8)

To better understand the motivation for this construction, consider the setting where all quantiles
correspond to medians, i.e. q = r1 = r2 = 1/2. We first discuss the direct effects. A median person
under the +α intervention will have a value of the exposure equal to h0,+α(1/2). This in turn gives
them a “direct score” in our rank-1 model (corresponding to direct effects from X̃ to Y ) that is
equal to f3(h0,+α(q)). This direct score impacts the conditional quantiles of Y in proportion to the
loadings g3(p), which do not change under the intervention. We contrast this effect to what would
happen under the −α intervention, leading to a difference as given in (3.7).

The indirect effects are slightly more subtle and we focus on indirect effects through the first me-
diator. In the population of M̃1 values induced by the +α intervention, a median person will have
a mediator value of h1,+α(1/2), and an indirect score of f1(h1,+α(1/2)). This impacts the outcome
in proportion to the loading g1(p) (which is not altered by the intervention). Under the −α inter-
vention, the median mediator value is h1,−α(1/2), which has an indirect score of f1(h1,−α(1/2)).
The first term of (3.8) thus reflects the contrast between these two interventions when propagated
through the first mediator.
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3.2.6 Marginalizing a conditional quantile function

It remains to show how to obtain the marginal quantile functions hj,θ of M̃ ′
j,θ (j = 1, 2) required

above when constructing our proposed indirect effects. Recall that when X̃ (which is uniform on
(0, 1)) is transformed by an invertible function g : (0, 1) → R, the quantiles of X̃ ′ = g(X̃) are
simply given by g(q) for probability points q. Thus we easily obtain expressions for the marginal
quantiles of X̃ ′ when X̃ is transformed by either h−1,θ, h+1,θ, corresponding to two interventions.
It is more challenging to obtain expressions for the marginal quantiles of M̃ ′

j , although all relevant
information is encoded in the marginal quantiles of X̃ ′ and the conditional quantiles of M̃j|X̃ . A
method for accomplishing this is provided next.

A key fact is that the quantile function is the inverse of the cumulative distribution function
(CDF), with the latter being easier to marginalize. For jointly distributed random variables X , Z,
the conditional CDF of X given Z is h(t; z) ≡ P (X ≤ t|Z = z). Using the “smoothing theorem”,
the unconditional CDF of X is simply EZP (X ≤ t|Z), where EZ denotes expectation with respect
to the marginal distribution of Z. Access to the marginal quantiles of Z allows us to evaluate this
expectation, and then we invert the resulting function to obtain the marginal quantile function of
X . In practice, our representations of the relevant quantile functions are restricted to finite grids,
so we use the midpoint method from elementary numerical analysis to approximate all integrals.

3.2.7 Working with longitudinal data

While some researchers conduct mediation analyses using cross-sectional data, it is generally con-
sidered to be more rigorous to use longitudinal data for this purpose. The preference for longitudi-
nal data is motivated by the observation that when the exposure temporally precedes the mediators,
and similarly if the mediators temporally precede the outcome, then it is more plausible to argue
that the direct and indirect effects are causal – the temporal ordering of measurements precludes
overt reverse causation. We note however that unmeasured confounders could still induce spurious
associations even in longitudinal data.

Beyond the context of mediation analysis, there are two main bodies of methodology for lon-
gitudinal data [70]. One set of approaches known as “marginal modeling” aims to model only the
conditional mean structure, and utilizes only observed variables. Generalized Estimating Equa-
tions (GEE) and marginal regression using “robust” inference are popular ways to proceed in
this vein [38]. Importantly, these approaches do not deny that within-subject correlations exist,
but account for the correlations indirectly by adjusting the standard errors, and sometimes by re-
weighting or decorrelating the observations. In contrast, latent variable and multilevel approaches,
such as mixed effects regression, introduce random effects that allow a model to explicitly capture
the dependence in the data along with its mean structure. In our context, the local non-parametric
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quantile estimates provided by the QNN procedure are marginal since we estimate the quantiles by
pooling observations over all subjects.

The basis of a marginal approach to mediation analysis is that even when working with longitu-
dinal data, it still makes sense to consider marginal relationships among variables, e.g. as expressed
through a conditional quantile function QY |X(p|x). It is important to note that the proper interpre-
tation of this object in a marginal setting is that it provides the marginal pth quantile of Y among
all subjects with X = x. In this sense it is a “population averaged” rather than a “subject-specific”
quantity.

Statistical inference remains a challenge, since while we can justify ignoring the clustering
of data within subjects when constructing point estimates, this cannot be justified when carrying
out statistical inference. Our approach to inference is based on data emulation and is essentially
the parametric bootstrap. However we use a surrogate model for emulation, since emulated data
should aim to exhibit the dependence structure of the population as well as its mean structure, and
our quantile-based analysis deliberately excludes consideration of correlations or other forms of
within-subject dependence. In this thesis we only provide a limited exploration of this approach to
inference, focusing primarily on methods for obtaining point estimates and their interpretation.

A second challenge to working with longitudinal data is that some longitudinal covariates may
not be observed at a common set of time points for all subjects. We address this challenge using
kernel weighting as follows. Suppose that Yit, Xit are a response and predictor observed at time t

for subject i. Our goal is to estimate QY |X(p|Xt∗ = x∗), where t∗ is a given time value and x∗ is
a given covariate value. A regularized estimation approach based on the check function ρp would
minimize

L(θ; t∗, x∗) ≡
n∑

i=1

ni∑
j=1

wijρp(θ − Yitij) (3.9)

over θ, where p is a probability point, and the wij are weights of the form

wij = ωλ1(xitj − x∗) · ωλ2(tij − t∗), (3.10)

with ωλ(x) = exp(−x2/λ), and λ1, λ2 are bandwidth parameters. In principle this approach can be
extended to accommodate multiple covariates however the weights become very skewed leading
to high variance estimators unless the sample size is very large.
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3.3 Simulation

In this section we access the performance of our entire pipeline that uses QNN to obtain a tensor
of conditional quantile estimates, which is decomposed using AFQR to obtain the functional
components that are further used to obtain the mediation effects in the mediation analysis. We
consider three data settings, given below.

Case 1: Homoscedastic Data

Xj ∼ N (0, 1),

M1 = X + ϵM1 , ϵM1 ∼ N (0, 1)

M2 = X + ϵM2 , ϵM1 ∼ N (0, 1)

Y = a1X + a2M1 + a3M2 + ϵY , ϵY ∼ N (0, 0.5)

In this case, the conditional quantile function has a closed form given by

QY |(M1,M2,X)(p|m1,m2, x) = a1x+ a2m1 + a3m2 + 0.5 ·QN (0, 1)(p).

Case 2: Heteroscedastic Data (Gaussian)

X ∼ N (0, 1),

M1 = X + ϵM1 , ϵM1 ∼ N (0, 1)

M2 = X + ϵM2 , ϵM1 ∼ N (0, 1)

Y = a1X + a2M2 + σs(M1)ϵY ϵY ∼ N (0, 0.5)

σs(m1) =
√
(1 +m1)2

In this case, the conditional quantile function has a closed form given by

QY |(M1,M2,X)(p|m1,m2, x) = a1x+ a2m2 + 0.5σs(m1) ·QN (0,1)(p).

Case 3: Heteroscedastic Data (Exponential)

X ∼ U(1, 2),

M1 = X + ϵM1 , ϵM1 ∼ U(−1, 1)

M2 = X + ϵM2 , ϵM1 ∼ U(−1, 1)

Y ∼ exp(µ), µ = X +M1 +M2
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In this case too, the conditional quantile function has a closed form given by

QY |(M1,M2,X)(p|m1,m2, x) = −log(1− p)(x+m1 +m2).

In case 1 above, the direct and indirect effects are constant (derived later in the section). This is
in part due to the linearity of the low rank component g. In chapter 2 we discuss in detail that if the
conditional outcome belongs to a location family, then v (discretized g functions) in the low rank
decomposition are constant. This results in the conditional quantile curves being parallel to each
other at different values of the independent variable. Homoscedastic data (location family) leads
to simple (constant) mediation effects. This is why we consider non-homogeneous data in cases 2
and 3, which leads to non-trivial v functions, leading to non-constant mediation effects.

3.3.1 Simulation parameters

We evaluate and assess the mediation effects for each of the three cases above. Per case, we
generate iid samples of size 4000, and aggregate the results over 50 Monte Carlo replicates. First,
we perform QNN to obtain a tensor of conditional quantile estimates. QNN contains 3 tuning
parameters, the lasso smoothing penalty, the neighborhood size and the bandwidth for obtaining
smooth estimates; we use the recommended values for the first two (refer to chapter 2 section 2.2
for more details), and use a bandwidth of 1 for the last parameter. The results are not too sensitive to
this bandwidth for values between [0.5, 1.0]. Next, we decompose the estimated tensor of quantiles
into a low-rank functional additive model, using AFQR. This model contains a set of functional
components for each independent variable, i.e. for independent variable i, we obtain (ui,vi).
AFQR contains one tuning parameter which controls the degree of regularization (cu,j, cv,j . We
use cu,· = 0, cv,· = 1000 for cases 1 and 2, and cu,· = 1000, cv,· = 1000 for case 3. Lastly, we
estimate the mediation effects which are defined as contrasts of two perturbations expressed in
terms of the discretized functional components of AFQR (u,v). The only parameter here is the
degree of perturbation (α in section 3.2.5), and we use α = 0.5. This is discussed in more detail
towards the end of this section.

The true forms of the direct effects can be derived for all the 3 cases, but doing so for the indirect
effects is a lot trickier. This is because the latter involves finding the marginal quantile function
of the perturbed mediators which is tricky as it does not necessarily have a closed form. We do
however know the underlying forms of the {uj,vj; j = 1, 2, 3} functions for all the cases, which
can be used to compute the empirical true values of the indirect effects. In the simulation results
presented below, we compare the estimates with the empirical true values of the indirect effects
computed by using the theoretical values of {uj,vj; j = 1, 2, 3} in the code used to obtain the
mediation effects.
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3.3.2 Simulation study results

All mediation effects are bivariate functions of probability points. Thus, the direct and indirect
effects are functional matrices; we jointly model these matrices to find a rank-one estimate per
matrix. In reality, we evaluate the mediation effects on a discrete probability grid p ∈ Rm to
obtain discretized versions of the direct and indirect effects which are m×m matrices. Therefore,
estimating the mediation effects can be viewed as a matrix estimation problem. At the same time,
since each element of this matrix has its own meaning and properties, the estimate of each point of
the matrix is important (and not just the overall matrix estimate).

We consider two broad criterion to evaluate the performance of our method. First, we assess
the fit at a matrix level and consider two criterion. We report the relative Frobenius norm of the
error as defined in 3.11, and the correlation of the estimated curves with the functional matrix
(vectorized matrices). The Frobenius norm of the error gives us an idea about how “far” the
estimated functional matrix curve (vectorized matrix) is from the true functional matrix, and the
correlation gives us a sense for the similarity in the shape of the two curves.

Per replicate i, the Frobenius norm of the error, referred to as the Frobenius RMSE, of an effect
E ∈ Rm×m is given as follows, where E is the direct or indirect effect.

RMSEi =
∥vec(Ê)− vec(E)∥2

∥vec(E)∥2
=

m∑
i=1

m∑
j=1

(
Êij − Eij

)2
m∑
i=1

m∑
j=1

E2
ij

. (3.11)

Next, we evaluate the fit at a pointwise level. Note that the underlying values of the effects
are mostly very small, often close to 0, making a point-wise analysis harder to interpret than the
Frobenius RMSE which integrates over all points (regardless of how small the underlying value
is), providing a one-number summary of the fit.

The simulation results assessed at the matrix level are presented in table 3.1. As we can see, the
relative integrated MSE is less than 10% for all the mediation effects (DE, IDE1, IDE2) in case 1,
and below or around 20% for cases 2 and 3. The correlation of the curves is above 90% for case
3, and above 55% for the other cases. This is not a matter of concern because we know that our
estimates are close to the truth (implied by low integrated RMSE), but they are a bit less smooth
in that they are more bouncy. This can be controlled by the regularization penalty in AFQR if one
wishes.

Next, we present the point-wise RMSE and point-wise relative bias (rbias) of the mediation
effects. Specifically for any mediation effect ME(py, pw) (where W = X for direct effect and W =

M1(M2) for indirect effect 1(2) ), the estimation error r(py, pw) := M̂E(py, pw)−ME(py, pw) has
a systematic component (bias) and a random component (variance). But the systematic component
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Mediation RMSE Correlation
effect Mean SD Mean SD

Simulation Case 1
DE 0.085 0.017 0.842 0.125
IDE1 0.073 0.020 0.584 0.350
IDE2 0.070 0.021 0.615 0.262

Simulation Case 2
DE 0.103 0.024 0.585 0.090
IDE1 0.217 0.049 0.981 0.008
IDE2 0.094 0.023 0.552 0.260

Simulation Case 3
DE 0.184 0.092 0.983 0.017
IDE1 0.181 0.065 0.977 0.021
IDE2 0.178 0.060 0.967 0.029

Table 3.1: Results of simulation study for the mediation analysis pipeline (at a matrix level).

of the error can be modelled, and we consider a least squares model with the estimation errors as
the dependent variable, as follows

M̂E(py, pw)−ME(py, pw) ∼
(
(py − 0.5)− (pw − 0.5)

)2
+ME(py, pw)+

ME(py, pw)
2 + hz

(
ME(py, pw)

)
+ hz

(
ME(py, pw)

)2
where hz(X) = X − median(X). This model helps us understand the factors that drive the bias.
Naturally, it is not a complete model for the bias, since the systematic errors could depend on
other factors, however the adjusted R2 values of the regression models for different mediation
effects (MEs) are quite high suggesting that this model can be used for predicting the bias. The
model is fit using ordinary least squares to a dataset that consist of m2 estimates of the ME per
Monte Carlo replicate stacked together, along with the corresponding probability points (py, pw) at
which the ME in each row is evaluated. The fitted value at each point (py, pw) is an estimate of
E[M̂E(py, pw) −ME(py, pw)], which is the bias at that point. Diving the fitted value by the true
underlying value ME(py, pw) yields an estimate of the relative bias.

We wish to report a one-number summary of the relative bias and relative mse for the mediation
effects. However, we get a relative measure per observation, giving us a total of m2 estimates. So
we can report the average or median value of these estimates, and we go with the former. While
computing the average, positive and negative biases cancel out which may mislead us into thinking
that the relative bias is lower than it actually is. To avoid this, we compute the average of the

89



squared bias, and report it is square root so that it is on the same scale as the relative bias. To
compute the mse, we denote the fitted value of the error at (py, pw) for the ith replicate by

r̂(i)(py, pw) = E
[
M̂E

(i)
(py, pw)−ME(py, pw)

]
. (3.12)

We can compute the sample variance of {r̂(i)(py, pw) : p· ∈ p, i = 1, · · · , n}, and obtain
the bias square from below, to compute the MSE and relative MSE. The formulae for all these
measures are given below

Avg bias = mean
i,py ,pw

(
r̂(i)(py, pw)

)
Avg rbias = mean

i,py ,pw

(
r̂(i)(py, pw)

ME(py, pw)

)

Avg rbias2 =

√√√√mean
i,py ,pw

(
r̂(i)(py, pw)

ME(py, pw)

)2

Av rel MSE = mean
i,py ,pw

(
r̂(i)(py, pw)

2 + varpy ,pw,i

(
r(i)(py, pw)

)
|ME(py, pw)|

)

Another advantage of modeling the bias aside from obtaining a one-number summary of the
relative bias and relative MSE is that it requires fewer simulation runs than a direct approach that
estimates the bias as the sample mean of M̂E−ME over Monte Carlo replicates, since each Monte
Carlo replicate contributes m2 estimates instead of a single one.

Mediation
Effect

Sim.
Case

Avg
R2

Avg
rbias

Avg rel
bias2

MSE

DE 1 0.04 0.084 0.085 0.009
IDE1 1 0.07 −0.052 0.056 0.005
IDE2 1 0.07 −0.057 0.060 0.005
DE 2 0.09 −0.076 0.088 0.032
IDE1 2 0.44 −0.058 0.149 0.148
IDE2 2 0.13 −0.070 0.084 0.015
DE 3 0.06 0.142 0.162 0.092
IDE1 3 0.70 −0.116 0.156 0.045
IDE2 3 0.72 −0.080 0.144 0.047

Table 3.2: Model-based Monte-Carlo estimates of sampling bias and MSE for estimates in the
mediation analysis pipeline.
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The average relative bias for the homoscedastic Gaussian case (case 1 ) is below 10% and for
the other two cases is roughly below 17%. The average relative MSE appears to be below 15% for
all cases. The point-wise heatmaps of all the estimates (direct effects and indirect effects) for the
3 cases are included in appendix A.

3.3.3 Remarks

Statistical bias : Statistical estimates of regression effects based on local fitting tend to be biased
toward zero (“attenuation bias”) due to oversmoothing. This means that the relative bias will
generally be negative. The effect of covariate j in our model is represented by the matrix ujv

′
j , and

we note that the relative bias for the estimates presented above is not always negative, although
the magnitude of any positive bias is less than 10% in most cases. Estimates of the score vector
(u) are biased towards zero, consistent with attenuation bias. However the loading vector v is a
norm-1 direction vector, so it has a non-Euclidean domain which complicates interpretation of its
bias. This is displayed in figure 3.3 which contains the estimates of v for case 2. Recall that v is a
function of probability points evaluated at a probability grid p; regions of p for which v̂ is biased
away from 0 may lead to mediation effects also biased away from 0. Since AFQR performs well
and leads to good estimates for u,v, the bias away from 0 (or positive relative bias) in v is quite
small, leading to small positive relative bias in the mediation effects.

(a) V̂1 (b) V̂2 (c) V̂3

Figure 3.3: AFQR estimate V for simulation case 2.

Discretization bias : One source of bias in our analysis seems to arise from discretization effects.
All quantile functions studied here are represented with vectors that are their evaluations on a grid
of probability points. In calculating the indirect effect, we use a marginalization procedure that
involves inverting the quantile function to a cumulative distribution function, marginalizing the
conditional CDF over a covariate, then inverting back to a quantile function. It appears that coarse
discretization induces bias in this marginalization.
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If we evaluate the direct and indirect effects using the true forms of u,v on a probability grid
p, then due to the discretization we do not get the exact same mediation effects as their underlying
theoretical values. Recall that the direct and indirect effects at fixed probability points of the
(exposure/mediator, outcome) (p, py), are simply the outer products of V with the contrast of the
u functions evaluated at two distinct probability points p1 < p < p2. Obtaining the probability
points p1, p2 is relatively straightforward for the direct effect, but more complicated for the indirect
effect. This is because the perturbed probability points are obtained from the marginal quantile
function of the perturbed mediator which is tricky to calculate. As an example, let us consider one
specific simulation case.

For the homoscedastic simulation case 1, the mathematical error for the direct and indirect
effects is presented in figure 3.4. In this case, the theoretical value of the direct and indirect effects
is equal to 1, which is 2θ where θ = 0.5 is the parameter of perturbation. These underlying values
of the mediation effects can be derived analytically for this simple case. Since we perturb the
exposure by ±θ, and the mediators are linear in the exposure, they too get perturbed by ±θ, and
as a result the outcome gets perturbed by ±3θ. The mediation effects are defined as the contrast of
two perturbations corresponding to +θ = 0.5 and −θ = −0.5. Therefore, the direct effect, which
is the contrast of the two perturbed outcomes due to the exposure (blocking the impact of the
mediators) will be θ − (−θ) = 2θ. Similarly the indirect effects are the contrasts in the perturbed
outcomes due to each mediator, which will also be α− (−α) = 2θ. Since we use θ = 0.5, the true
mediation effects in case 1 are equal to one (for all DE, IDE1, IDE2).

(a) Mathematical bias (DE) (b) Mathematical bias (IDE)

Figure 3.4: Mathematical error in the direct and indirect effect estimates for simulation case 1.

We can combat this by using a finer grid of probability points along which the estimates of u,v
are computed. This is denoted by m in the plots above. A probability grid of length above m ≥ 200
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points seems to have less than 10% mathematical bias, however using such a fine probability grid
is not computationally feasible. This is because our low rank decomposition takes place on a
cartesian product of these probability grids. Recall that we construct a tensor of quantile estimates,
where each dimension of the tensor is indexed by p and is thus of length m. The dimension of
the low rank optimization problem is m4 in the case of 2 mediators, which grows exponentially
with m. In particular, as we go from m = 21 to m = 41, the optimization problems grows from
214 = 194, 481 parameters to 414 = 2, 825, 761 parameters, which is ∼ 24 = 16 times bigger.
This is why in the simulation study above we have presented results for m = 21 and evaluated
their performance based on the oracle.

3.4 Illustration using Dogon Longitudinal Study data

In this section we present the results of the entire mediation analysis pipeline on data from the
Dogon Longitudinal study. As previously described in section 3.1.1, our goal is to disentangle the
effects of childhood and adult body size measures onto adult systolic blood pressure (SBP). We
apply the entire mediation analysis pipeline starting from QNN to AFQR to the mediation analysis,
in order to get the direct effect of childhood body size on adult SBP, and the indirect effects of adult
body size (adult height and adult BMI) on adult SBP. Please note that in our application, the adult
body sizes are measured at the same time (age) as adult SBP. The unit of time in this longitudinal
data set is the age at which individuals are measured.

To get “childhood” and “adult” measures, we focus on two ages, one in childhood (age1 < 10)
and one in adulthood (age2 > 12). While individuals aged 12− 16 years are generally not consid-
ered adults, we refer to them as adults here since we have SBP measurements after the age of 12.
Note that every individual is measured at a different set of time points (ages), which are noted as
floats (and not rounded to the nearest integer). Thus, upon fixing a childhood age, almost no one
in the dataset will be measured at exactly that age. As mentioned earlier, we use kernel methods to
incorporate measurements taken at nearby ages to the fixed target ages. In particular, we consider
a childhood caliper of 1.5 years, and an adult caliper of 2 years around the target ages. We only
consider observations within these neighborhoods (for instance consider observation at time t if
t ∈ [age1 − 1.5, age1 + 1.5], or t ∈ [age2 − 2, age2 + 2] ), and use all within individuals pairs of
observations (each pair contains one childhood and one adult observation). So if an individual
only has one (or multiple) childhood observations without any adult observations in the desired
neighborhoods, they will not contribute to the mediation estimates.

We conduct the entire analysis pipeline for multiple settings. We consider 3 different measures
for childhood body size, namely Body Mass Index (BMI), Height adjusted z-score (HAZ), and
weight adjusted z-score (WAZ). These variables form the exposure (X). The mediators are the
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adult body size measures, which are always fixed to adult HT (M1), and adult BMI (M2). We
consider all childhood body size measures across 3 different childhood ages – 1, 3, and 5 years.
The analysis is conducted independently for females and males.

Estimation pipeline

Per setting, we start by estimating a tensor of conditional quantiles using QNN. The tensor is
indexed by probability points along a grid p = {pi}mi=1 of length m = 21. We consider an
equispaced grid spanning points from p = 1/m to p = 1 − 1/m. The tensor is then of dimension
m × m × m × m, such that its axes corresponds to probabilities of the exposure, each of the
adult body sizes (HT and BMI resp), and the outcome respectively. We use default values of
the tuning parameters in the QNN algorithm to obtain the m4 estimates that form this tensor. In
particular, cell (i1, i2, i3, i4) contains the estimate of the pthi4 quantile of the outcome, conditioned on
the pthi1 quantile of observed X , pthi2 quantile of observed M1, and pthi3 quantile of observed M2, i.e.,
Q̂(Y |M1,M2,X)(QX(pi1), QM1(pi2), QM2(pi3)). The marginal quantiles of the independent variables
are their order statistics.

We then fit the AFQR model to this tensor of quantiles, and compute the mediation effects
using the AFQR functional component estimates. We present the direct and indirect effects for
select cases below.

3.4.1 Results

The direct effect is a bivariate function of the probability points for the exposure quantiles (child-
hood body size, e.g. as measured by BMI), which are denoted by px, and the probability points
for adult SBP quantiles, which are denoted by py. The direct effect at px, py reflects how the pthy

conditional quantile of adult SBP at age age2 for someone who is at the marginal pthx quantile of
childhood BMI at age age1 differs between the two intervention populations, when blocking any
indirect effects through the mediators.

Direct effects Figure 3.5a displays the direct effect of childhood BMI at age 1 on adult SBP at
age 20, among females. We can see that the direct effect is negative for the mid-upper quantiles of
adult SBP (0.4 ≤ py ≥ 0.75) whereas it is almost 0 elsewhere. This means that the lower quantiles
of adult SBP are practically not affected by these hypothetical interventions, and people who are
at the lower spectrum of adult SBP potentially have other factors besides childhood body size that
determine their adult SBP. On the other hand, the mid-upper quantiles of adult SBP which are of
more interest in any case, are lowered by such a hypothetical contrast. Regardless of childhood
BMI at age 1, if the females in the observed population had higher childhood BMI rather than
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(a) Direct Effect at age1 = 1 (b) Direct Effect at age1 = 3

Figure 3.5: Direct effects for childhood body size variable BMI measured at ages 1 and 3 on adult
SBP at age 20 among females.

having lower childhood BMI, the mid-upper quantiles of adult SBP for women would have been
between 1 and 1.2 mm Hg lower than in the observed population.

The direct effect of childhood BMI at age 3 among females is even stronger, and is much
more concentrated toward the lower quantiles of childhood BMI, as seen in figure 3.5b. The
impact of making smaller children bigger vs even smaller on the mid-upper quantiles of adult SBP
(py ≥ 0.3), blocking any indirect impact on SBP through adult body size, will be a decrease in
SBP by an amount between 1 and 1.75 mm Hg.

The mediation effects for females at childhood age 1, using childhood body size measures
HAZ and WAZ have similar trends to those using childhood BMI (figure 3.5). The direct effects
are negative in the upper quantiles of adult SBP throughout the range of childhood body size, and
are between -1 and -1.2 around 0.6− 0.7 quantiles of adult SBP. The indirect effects through both
adult body size variables are positive, and very small (between 0 and 0.4).

Indirect effects The indirect effect is a bivariate function of the probability points of the me-
diator quantiles (e.g. adult HT or BMI), denoted pm, and the probability points for quantiles of
adult SBP outcome, denoted py. The indirect effect at pm, py captures the intervention effects that
propagate through a mediator. Specifically, it tells us something about individuals who end up at
the pthm quantile of the mediator distributions, under the two interventions. For these people, the pthy
quantiles of their SBP distributions will differ by the amount given by the indirect effect.

The indirect effects for all three childhood body size measures as exposure are always either
positive or essentially zero. This is expected in our analysis as we know that cross-sectionally
bigger (smaller) people have higher (lower) SBP, referred to as simultaneous correlation. A hypo-
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(a) IDE1 (HAZ) (b) IDE2 (HAZ)

(c) IDE1 (BMI) (d) IDE2 (BMI)

Figure 3.6: Indirect effects through adult HT (IDE1, left) and adult BMI (IDE2, right) when the
exposure is childhood HAZ (top row) and childhood BMI (bottom row), both measured at 1 year,
on adult SBP at 20 years for females.

thetical intervention that increases the childhood body size of the entire population will also lead
to an increase in the adult body size due to tracking. The impact of this increase in the adult body
size on adult SBP is captured by the indirect effect. We consider two adult body size measures
as mediators, namely HT and BMI. The indirect effect due to each of them is referred to as the
indirect effect through mediator (HT/BMI).

Figure 3.6 presents the indirect effects of HT and BMI on adult SBP when the childhood mea-
sure is HAZ and BMI for females at age one. The first row corresponds to childhood HAZ and
the second to BMI. In the first case, the indirect effect through HT is more than double the indirect
effect through BMI almost everywhere, as HAZ tracks stronger with adult HT than adult BMI.
The reverse is seen for childhood BMI, which naturally tracks stronger with adult BMI than adult
HT. In fact this can be confirmed by fitting marginal AFQR models for the quantiles of adult BMI
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and HT, each regressed on childhood BMI and HAZ. Upon doing so, we find that all the trends
are positive, but the effects are much larger for BMI to BMI and HAZ to HT than the other way
around.

Note that the change in the distribution of adult body size due to the hypothetical intervention
will likely not be proportional to the change in the exposure distribution. Moreover, the two medi-
ators (HT, BMI) will track to varying degrees for different childhood body size measures, leading
to unequal and differently distributed indirect effects. For instance, childhood BMI tracks more
strongly to adult BMI than adult HT, and vice-versa for childhood HAZ.

Understanding the effects and the perturbed scores contrast Next, we explore the workings/
details of the statistical method behind the direct and indirect effects, with the help of an example.
We note that the direct effect of BMI at age one on adult SBP at age 20 for males is postive, unlike
the corresponding result for females (presented in figure 3.5). The anthropometric implication
of this is that among all children of age one, females will benefit from a food intervention that
increases their BMI more than males. In fact, this is also the case for childhood HAZ since the
direct effect of HAZ at age one was weaker amongst males than females.
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(a) Females : Perturbed scores (b) Females : loading

(c) Males : Perturbed scores (d) Males : loading

Figure 3.7: Perturbed score vectors (u+,u−) and common loadings (v) for childhood BMI at age
1 on adult SBP at age 20, among females (first row) and males (second row). The score vector for
the observed population is u. The direct effect is defined as (u+ − u−)⊗ v.

Focusing on the statistical side of the results, let us explore why we are getting opposite effects
for different genders, while all other variables/parameters in the model are the same. Figure 3.7
presents the plots for the perturbed scores and the common loadings they are multiplied with for
both genders. Recall that our effects are defined as the contrast between u+ and u− at every
quantile of the exposure (px). The impact of such a contrast on the pthy quantile of the outcome
is obtained by multiplying u+ − u− at probability point px by the value of the loading (v) at py.
In terms of the definition of direct effect given in equation 3.7, u+,u− reference u+

3 ,u
−
3 , which

are the discretized versions of f3(h0,+α(q)), f3(h0,−α(q)) on p respectively, while v references v3

which is the discretized version of g3 on p. As an example, the direct effect at median childhood
BMI onto the 0.7 quantile of adult SBP is

(
1.7 − (−1.5)

)
× 0.38 = 1.2 mmHg for females (ref

figures 3.7a, 3.7b) and
(
0.5− (−2.4)

)
×−0.02 ≈ 0 mmHg for males (ref figures 3.7c, 3.7d).
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In general, if u+(px) > u−(px) then v(py) > 0 =⇒ DE(px, py) > 0 and v(py) < 0 =⇒
DE(px, py) < 0, and vice verse. This is summarized in figure 3.8.

u+(px)− u−(px)

V (py)

(
+
)(

−
)

(
+
) (

−
)

Figure 3.8: Sign of DE(px, py) based on the signs of the score contrast (sign(u+(px)− u−(px)))
and the loading (V (py)) that are multiplied to obtain the direct effect (DE) at the point (px, py).

Lastly, we comment on the trends in u+,u−,u. One might expect u to be between u+ and
u− as the hypothetical interventions are designed in a way that h0,+ corresponds to a more
advantaged population in which all the exposure quantiles are higher, and h0,− corresponds to
a population with lower exposure quantiles than the observed population (at every probability
point). This design leads to two populations that have stochastically greater and stochastically
smaller distributions of the exposure than the observed population, and u−,u,u+ are the scores
corresponding to the less advantaged (h0,−), observed, and more advantaged (h0,+) populations
respectively. However, we can see that u+ > u > u− need not necessarily be the case as seen in
figures 3.7c, 3.9a and 3.9c. Let us understand why this happens. There are different mechanisms
at play for the direct and indirect effects, and thus different reasons for the trends in u+,u−,u for
the exposure and mediator variables.

For the exposure (and direct effect), we expect u+ ≥ u ≥ u− if u is an increasing function.
We explain u+ ≥ u, and u ≥ u− follows by the same logic. Recall that by definition,

u(px) = fx(px) = fx(x̃)
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for some smooth function fx. Further, perturbed x corresponding to +θ

x̃′
+θ = ϕ(ϕ−1(x̃) + θ),

and then u+ is
u+ = u(x̃+θ = fx(ϕ(ϕ

−1(x̃) + θ)) = ϕ(ϕ−1(p̃x) + θ).

Note that hθ(x) = ϕ(ϕ−1(·) + θ) is an increasing function. Thus, u+ > u if and only if fx is an
increasing function. Similarly u− ≤ u if and only if fx is a decreasing function. We can see in
figure 3.7a that whenever u is monotone, we observe this trend (this was true for all direct effect
results, across all childhood body size measure, but we only provide limited examples here).

The same logic does not follow for the score functions (u+,u−,u) for the mediators (which
define the indirect effect). This is due to the extra setup involving the estimation of the marginal
distribution of the perturbed mediation (M̃ ′). As a result, we no longer only require u to be
a monotone function but also require M̃ ′ to be a monotone function of x̃′(= px) in the same
direction as u. If both u+ and M̃ ′ are increasing then u+ ≥ u ≥ u−, and vice versa. Looking
at some examples, we can see that the perturbed scores for the indirect effect through adult HT
(IDE1) in figures 3.9a and 3.9c do not sandwich u (the score for the observed data), even thought
u is increasing. This is because M1 is not an increasing function of x (childhood BMI). This
can be seen from a marginal AFQR model with outcome adult HT, regressed on childhood BMI
controlling for childhood and adult ages giving a model of the form

HT2(p) = u1(BMI1)v1(p) + u2(age1)v2(p) + u3(age2)v3(p).

The AFQR models for both males and females confirmed that u1 is not an increasing function as
HT does not track strongly to BMI.

Looking at the indirect effects through BMI (ref figures 3.9b, 3.9d), the perturbed u’s sandwich
u nicely for females, as adult BMI tracks strong with childhood BMI (ref figure 3.9b), i.e. adult
BMI is an increasing function of childhood BMI. Since u is increasing, we get that u+ ≥ u ≥ u−

as argued above.
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(a) Females : IDE 1 (b) Females : IDE 2

(c) Males : IDE 1 (d) Males : IDE 2

Figure 3.9: Perturbed score vectors (u+,u−) for the indirect effects through adult HT (IDE1) and
adult BMI (IDE2) for exposure childhood BMI at age 1 on adult SBP at age 20, among females
(first row) and males (second row). The score vector for the observed population is u.

For males, we see a similar trend in the lower quantiles of audlt SBP but not in the upper
quantiles (ref figure 3.9d). A possible explanation for this is that lower quantiles of adult BMI
track childhood BMI more strongly but not the upper quantiles. This would mean that children who
grow up to be above-median sized adults in terms of BMI have factors besides childhood body size
influencing their adult BMI. A potential influencing factor could be migration to Bamoko. People
who migrate to Bamoko tend to experience weight gain due to a change in lifestyle. To explore the
extent of tracking, we fit a marginal AFQR model of the form

adult BMI(BMI2) ∼ childhood BMI(BMI1) + age1 + age2.

The impact of BMI1 on BMI2 is presented in figure 3.10, and we can see that the tracking is
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Figure 3.10: Marginal AFQR model for adult BMI regressed on childhood BMI and ages, to assess
how BMI tracks from age 1 to age 20 along males.

stronger for all lower quantiles of adult SBP, but is weaker among the upper quantiles. While the
upper quantiles of adult SBP still track positively, the indirect effects involve multiple non-linear
transformations, due to which weak association between M ′

1 and X1 may not propagate through to
M ′

1 and X ′
1 leading to crossing of the perturbed u curves over observed u as seen in figure 3.9d.

3.5 Conclusion and Future Directions

In this chapter we proposed a novel framework for studying, defining and interpetting mediation
effects through-out the distributions of the features involved. We do so by using a novel additive
low rank model (AFQR) for the joint estimation of all conditional quantiles in the data generating
models for the outcome given the mediators and exposure, and the mediators given the exposure;
AFQR is a structured non-parametric method presented in chapter 2. We showed that the additive
nature of AFQR yields simple expressions for the mediation effects, while the non-parametric
nature of the functional components allows for flexible mediation estimates.

Our method for mediation analysis can accommodate continuous and time-varying variables
(exposure, mediators and outcome) as well as multiple mediators. This was illustrated through a
data application.

As part of future work, alternate hypothetical interventions can be explored. We propose one
form for such an intervention (in equation 3.3), but other definitions could be constructed, espe-
cially based on the aim of the analysis. A general guideline for alternate interventions (using our
intervention definition) is given below in table 3.3.

In the table above, x̃ ∈ [0, 1] denotes the quantile transformed observed exposure, and θ is the
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Intervention Impact of intervention

Φ(Φ−1(x̃) + θ) uniformly boosts everyone by θ
Φ(Φ−1(x̃) + |1

2
− x̃|θ) boosts outer quantiles more and inner quantiles less

Φ(Φ−1(x̃) + (1− x̃)θ) boosts lower quantiles more and upper quantiles less
Φ(Φ−1(x̃) + x̃θ) boosts upper quantiles more and lower quantiles less

Table 3.3: Guideline for alternate interventions based on the desired impact of the hypothetical
intervention. All interventions lead to perturbations in the same direction as the sign of θ.

parameter of the perturbation function. Also, currently the mediation effects are defined in terms
of the rank one behaviour of the covariates, since AFQR provides an additive rank-1 representa-
tion. AFQR can potentially be extended to higher ranks, giving us mediation effects as a sum of
differences over the rank of the model.

Immediate future work involves performing the inference procedure for the mediation effects,
and reducing the discretization bias in the mediation effects. We believe the discretization bias may
be reduced substantially by estimating the conditional quantile models in the mediation analysis
via the regression-based AFQR, instead of evaluating them on a tensor of dimension 4. Thus,
incorporating the regression-based AFQR in the mediation analysis estimation procedure is the
immediate next task.
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CHAPTER 4

Process Regression Data Emulator

4.1 Introduction

The majority of this thesis focuses on quantile regression, but in this work we also made use of
another flexible regression approach based on Gaussian processes. The purpose of introducing
this approach is to support statistical inference for the methods developed in other chapters of the
thesis. Specifically, we take a data emulation approach to inference, mimicking what is done in
the parametric bootstrap. Consider any of the techniques from chapters 2 or 3, where the goal is
to estimate a quantity, say a direct or indirect effect in a mediation analysis, based on some math-
ematical processing of nonparametric quantile estimates. Statistical inference for these analyses
is challenging for at least two reasons. First, inference for multi-step estimators is often difficult
due to challenges in propagating uncertainty through the steps. In some cases analytic approaches
to variance propagation are possible, but it is unclear how to do that in our setting. Second, as
discussed in earlier chapters we are taking a marginal perspective to analyzing longitudinal data.
We model the data at the level of observations, but the fact that there are dependencies among the
observations cannot be ignored when assessing uncertainty.

The population of interest here is one in which a stochastic outcome Yi(t) varies continuously
in time t for each observed unit i (t is a subject’s age in our setting). In addition we have covariates
Xi(t) which determine the distribution of the Yi(t). The data for unit i consists of Yi(t) evaluated
at finitely many time points ti1, . . . , tini

, and different subjects are observed at different time points
tij , which are positive real numbers. Since Yi(t) is taken to be continuous in t, the dependence
between Yi(s) and Yi(t) is strongly influenced by the magnitude of s − t, with the dependence
becoming very strong as s−t tends to zero. The main idea is that we would like the covariates X to
determine the conditional mean of Y , the conditional variance of Y , and the degree of smoothness
in the random functions Y (t).

The model considered below has a Gaussian form with distinct specifications for the con-
ditional mean and conditional variance/covariance structures. The mean structure is simply
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E[Y (t)|X = x] = bµ(t, x)
′β, where bµ(t, x) consists of basis functions in time. The vari-

ance/covariance structure is harder to specify in a way that guarantees a valid (positive-definite)
covariance model. This is resolved using methods introduced by [77] as discussed in detail be-
low. We refer to the procedure here as “Gaussian Process Regression” (GPR) but note that it is
somewhat different from the GPR used in machine learning, since we parameterize the family of
covariance matrices and use likelihood-based approaches for fitting the models.

4.2 Structure of the model

The population model is expressed explicitly in terms of the finite-dimensional observations. It
was shown in [77] that the finite-dimensional models discussed below are proper marginalizations
of a common parent model for Y (·) | X(·) for time t inR+. The model depends on four quantities
that can be obtained from the covariates xt and unknown parameters βµ, βλ, βs, and βu:

Mean µ(xt) = β′
µbµ(xt, t)

Scale λ(xt) = exp(β′
λbλ(xt, t))

Smoothing s(xt) = exp(β′
sbs(xt, t))

Unexplained u(xt) = exp(β′
ubu(xt, t)). (4.1)

Since this is a Gaussian model we can specify the mean and variance separately. The mean
is simply µ(·) as defined above. The covariance matrix of the finite dimensional observed vector
(Y (tk1), . . . , Y (tkd)) is given by

Ψ(k1, k2) = λ(ztk1
)λ(ztk2

) exp

(
−2(tk1 − tk2)

2

s(ztk1
) + s(ztk2

)

)
·
s(ztk1

)−
1
4 s(ztk2

)−
1
4[

s(ztk1
)+s(ztk2

)

2

]1/2 +1k1=k2u(ztk1
). (4.2)

If u(·) ≡ 0 then the trajectories Y (t) are Gaussian processes and in this case are also infinitely
differentiable due to the specification of 4.2. For some variables like height it is reasonable to adopt
such a model since the true value of height varies smoothly in time and there is little measurement
error for this variable. For variables such as blood pressure, however, it is arguably essential to use
a non-continuous model. While there may be a latent “true” blood pressure that varies smoothly in
time, the observed blood pressure can deviate from this value due to occasion-specific factors. For
that reason we have introduced the “white noise” or “unexplained” term determined by u(·). This
is intended to capture, for example, independent occasion-specific measurement error or transient
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perturbations of the true blood pressure.

4.3 Parameter estimation

We use a penalized maximum likelihood estimator, with a finite dimensional approximation to the
squared second derivative as the penalty. Each of the four functional parameters µ(·), λ(·), s(·),
u(·) is subject to the penalty. At the population level, the penalty for, e.g. µ(·) is

∫
µ′′(t)2dt. In

practice, we define a grid t∗1, . . . , t
∗
q and penalize the finite dimensional vectors µ(t∗) ≡ (µ(t∗1), . . . ,

µ(t∗d))
T . The penalty has the structure of a quadratic form µ(t∗)TGµ(t∗), where G is a d×d positive

semi-definite matrix. Specifically, if F is a d − 2 × d matrix with ith row equal to the discretized
second difference operator with values (1,−2, 1) at positions i, i+1, and i+2, and zeros elsewhere,
then G = F ′F . In practice we make use of a hybrid penalty Gη = ηG+(1−η)Id×d which combines
the functional smoothing penalty and a ridge-type penalty.

The model parameters βµ, βλ, βs, and βu are estimated using penalized maximum likelihood es-
timation. Gradients of the log-likelihood and penalty terms can be analytically derived, permitting
conjugate gradient-type algorithms to be used for likelihood optimization.

4.4 Data emulation and inference

As noted above, the purpose of introducing this model is to support statistical inference for the pro-
cedures developed elsewhere in this thesis. The approach is analogous to parametric bootstrapping.
Here we focus on the setting of mediation analysis (and the corresponding AFQR models) where
we have three time-varying quantities: the exposure X(t), two mediators M1(t), M2(t), and the
outcome Y (t). Concretely, in our application X(t) and M1(t) are both BMI, M2(t) is height, and
Y (t) is systolic blood pressure. Thus there are three variables to consider, and the time variable t is
age. Note that BMI = 10000×WT/HT2, and so we always only have three independent variables
in our application, regardless of which feature we consider for measuring childhood body size. The
goal is to emulate m independent copies of [(X(t),M2(t), Y (t)); t = ti1 , . . . , tidi ]

n
i=1, evaluated at

the same time points as the observed data.
To emulate the data, we use a factorized form of the joint distribution of X , M , and Y :

P (X,M, Y ) = P (X) · P (M |X) · P (Y |X,M). Each of the three factors in the factored joint
distribution is estimated using the GPR technique discussed above using all observed data. We
then simulate X

(j)
i ∼ P̂ (X), M (j)

2i ∼ P̂ (M2|X), and Y
(j)
i ∼ P̂ (Y |X,M), where i indexes people

and j indexes emulated data sets. Finally, for each emulated data set we estimate the AFQR func-
tional parameters {fj, gj}Jj=1, then obtain point-wise standard deviations for these estimates that
can be interpreted as standard errors of the effects of interest.
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4.4.1 Illustration using the Dogon Longitudinal Study

Here we present the estimated parameters used to emulate datasets mimicking the Dogon Logitu-
dinal Study, for the variables height (HT), weight (WT), and systolic blood pressure (SBP). The
simulation proceeds by factoring the joint distributions, first sampling HT, then sampling WT given
HT, then sampling SBP given HT and WT. All conditional models also take account of age. The
four model parameter vectors βµ, βλ, βs, and βu inform the mean and variance functions in the
model as given in equation 4.1.

Figure 4.1 presents the fitted mean functions for the male subpopulation, and the temporal
correlation matrices for the unexplained variation in these variables. The parameters correspond
to a spline basis of age, with interactions used to capture conditional relationships among the
variables. In particular, βu consists of a basis of dimensions seven, βλ, βs a basis of dimension
two and the unexplained variance parameter βu is modeled using a basis of dimension one. The
full specification of the parameter basis and the fitted regression coefficients for this example are
provided in the appendix B, along with plots of simulated data.
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(a) HT|Age : Estimated Mean (b) HT|Age : Estimated Covariance

(c) WT|(HT, Age) : Estimated Mean (d) WT|(HT, Age) : Estimated Covariance

(e) SBP : Mean (f) SBP : Estimated Covariance

Figure 4.1: Fitted conditional mean functions for height (HT), weight (WT), and systolic blood
pressure (SBP) for males in the Dogon Longitudinal Study, estimated using the GPR procedure.
The conditional mean functions are modelled using a spline basis of age.
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CHAPTER 5

Conditional Covariance Estimation for Multivariate
Functional Data

5.1 Introduction

The methods developed here aim to understand the properties of a vector-valued random function
of time denoted X. For a time point t, X(t) ∈ Rp is a vector containing the quantitative states
of several attributes at time t. The primary focus is on conditional correlations involving specific
attributes and time points in X, as discussed in detail below. The data have the form {Yij}, where
Yij = Xi(Tij) + ϵij, where i = 1, 2, .., n indexes subjects, Tij is the jth observation time point
for the ith individual, Xi is the realization of X for the ith individual, and the ϵij are mean zero
homoscedastic errors.

This setting has connections to important branches of statistics including longitudinal data
analysis, functional data analysis and stochastic process modelling. Our work focuses on semi-
parametric and non-parametric estimation of conditional correlations involving Y, which has not
received much attention in the literature. These covariance estimators are worth investigating as
they provide a means for assessing correlations of high relevance for science and policy while
avoiding strong modeling assumptions.

This report is organized as follows: in Section 2, we review local polynomial regression for
mean estimation in functional data and provide the details for applying this method to marginal
covariance estimation. Section 3 explains the plug-in inference procedure for the marginal covari-
ance estimates. Two methods to model conditional covariances and correlations are introduced in
Section 4, along with the inference procedures for both these methods. In Section 5, we evaluate
the performance of one of these techniques on simulated data, and finally conclude with Section 6
which includes the summary, limitations and future work.
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5.1.1 Motivating Application

Our motivation stems from fundamental questions in human biology relating to the interplay be-
tween growth during childhood and blood pressure in adulthood; specifically, X(t) ∈ R2 rep-
resents body size (height or weight) and blood pressure of individual i measured at age t. It is
well-established that blood pressure and body size are correlated within subjects when measured
at a single time point, for instance, people who are overweight tend to have substantially higher
blood pressure than people of healthy weight, and to a lesser extent, people who are tall tend to
have higher blood pressure compared to people of average height. However, more interesting is
the role of life history as a possible driver of adult blood pressure, which is just beginning to be
explored. In this setting, we can ask whether growth and body size in childhood are correlated
with adult blood pressure when controlling for adult body size. This can be formalized as the
conditional correlation

Cor(HT(s),SBP(t)|HT(t)), (5.1)

where height (HT) and systolic blood pressure (SBP) are measured at time points s < t ∈ R. This
correlation helps us single out the possible direct impact of undernourishment during early child-
hood on adult blood pressure. Undernourishment remains common in the developing world, and
we will be illustrating our methods using data from a longitudinal study of around 1800 children
born in a rural part of Mali, a resource-poor country in Africa.

We would like to draw attention to the importance of conditioning here. It is well-established
that weight and height “track” within subjects. Due to this autocorrelation, taller children tend
to become taller adults and heavier children tend to become heavier adults. This can be seen in
the second moment structure of the data, in that we anticipate Cor(HT(s),HT(t)) ≫ 0 for ages
s < t ∈ R (years). As mentioned above, Cor(HT(t), SBP(t)) ≫ 0 is an anticipated relation-
ship that is commonly referred to as simultaneous correlation. By this logic, it may follow that
Cor(HT(s), SBP(t)) > 0 for s < t years, i.e. being smaller (physically) in childhood is good if
the goal is to moderate adult blood pressure. Our goal is to isolate the “direct effect” of childhood
growth and nutrition, net of any impacts of tracking. This would capture physiological phenomena
such as children with poor childhood nutrition having underdeveloped organs (especially kidney
and heart) that may place them at risk for elevated adult blood pressure.

In the literature in this area, there is discussion of a “reversal paradox”, in which the relationship
between childhood height and adult blood pressure flips from a positive to a negative association
when conditioning on adult height. The methods proposed and developed here can be used to
understand both the direct and total effects of childhood undernutrition in relation to adult blood
pressure, and can more fully explain why the reversal “paradox” arises.
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5.1.2 Flexible covariance estimation

The work in progress presented here aims to develop new methodology for estimation and infer-
ence of conditional correlation functions when the available data are observed at finite and irregular
time points for a collection of independent subjects. The data are conceptualized as a finite col-
lection of observations made on a collection of random continuous functions of time (with each
subject being one realization from the distribution of random functions). Since we are interested
in multiple attributes (e.g. height and blood pressure), these functions are multivariate at each time
point, in addition to being repeated observations over time. Finally, it may happen that at some
time points, some but not all of the attributes are observed. This is referred to as “missing data”
below.

(a) Cor(HT (t1), HT (t2)) (b) Cor(HT (s), SBP (t)) (c) Cor(HT (s), SBP (t)|HT (t))

Figure 5.1: Data exploration: plots L-R are to motivate tracking, simultaneous correlation and
finally reversal in the conditional correlation of interest.

The covariance function Cov(s, t) ∈ Rp×p of a random vector-valued function with p attributes
is a complex object and it is desirable in practice to be able to adapt to many different possible
population structures. Moreover, it is desirable to also accommodate various forms of data collec-
tion. In particular, X(t) will never be observed in entirety. Rather, we will observe X(t) at a finite
set of time points which may vary between subjects, both in terms of the number and locations of
the time points. Furthermore, what we observe is a noisy version of X(t).

Much existing work on covariance function estimation exploits structural constraints. Our goal
is to estimate the covariance function without any such constraints. Here we briefly review some
of the more common structural constraints and comment on why they would not be likely to hold
in our application of interest.

• Homoscedasticity: A covariance function is homoscedastic if diag(Cov(t, t)) does not de-
pend on t. This condition states that the marginal variance of each attribute is the same at
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each time point. Growth data do not normally satisfy this condition, and instead often exhibit
a mean/variance relationship in which the variance is greater when the mean is greater.

• Stationarity: A covariance function is stationary if Cov(s, t) ≡ Cov(s − t, 0). This means
that the covariance between X(s) and X(t) depends only on the time displacement t − s.
This is very unlikely to hold in our setting, since growth of very young children, say of ages
2-4, is quite unlike growth of older children, say of ages 8-11.

• Symmetry: A covariance function is symmetric if

Cov(X(s),X(t))jk = Cov(X(t),X(s))jk.

In our setting, this would imply, for example, that the correlation between the height of
younger person and the blood pressure of an older person would be equal to the correlation
between the blood pressure of a younger person and the height of an older person.

• Separability: A covariance function in our setting is separable if Cov(s, t) = c(s, t) · A,
where A is a fixed p× p matrix defining the covariances among the p attributes, and c(s, t) :

R2 → R is a continuous function defining the role of time. This is unlikely to hold in our
setting, since it implies that the conditional correlation of interest is always zero (see section
5.1.6 for details).

With this in mind, we develop covariance and conditional covariance estimators that can capture
a variety of smooth covariance functions, using irregularly sampled data with missingness.

5.1.3 Introduction to Methodology

Our approach can be seen as a form of the method of moments in that it matches empirical
moments of the observed data to the unknown second moment structure of the process of interest.
However due to the irregularity of the observation times, there is no evident low-dimensional
summary statistic that can be used to construct a small number of moment equations to solve.
Within-individual products of observed values, for example, Y 2

ij and YijYik, are informative about
the covariance function evaluated at specific points, here, (Tij, Tij) and (Tij, Tik) respectively. We
use local polynomial regression to estimate the marginal variances and covariances as continuous
functions of time. Local polynomial regression is widely used for estimating mean functions,
but is much less commonly used for estimating covariances and correlations. Here we use local
polynomial regression to integrate the information in a large collection of products and squares of
data to obtain a coherent estimate of the underlying covariance function.
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Local regression for covariance estimation
Let us start by building some intuition for variance and covariance estimation using local

polynomial smoothing in univariate data. Covariance estimation in data with multiple attributes,
arbitrary missingness and subject-specific time points, as we are interested in modelling, is harder
to visualize and comes with additional complexity.

We start with the simplest case of estimating the variance function for univariate Gaussian data
with mean zero. The data were simulated from a population with heteroscedastic variance given
by Var[Y (t)] = (1 + t)2. Figure 5.2 shows a scatterplot of the squared data Y (t)2 against time
t. Local linear regression was used to estimate E[Y (t)2] = Var[Y (t)], using the loess function
in R. Note that the values of Y (t)2 are skewed as they follow scaled χ2 distributions. The figure
shows that the local linear estimate of the variance function lies quite close to the true variance
function.

Figure 5.2: Variance estimation using local linear smoothing

Going one step further, figure 5.3 illustrates covariance estimation in stationary univariate data.
The simulated dataset consists of 500 iid copies of a mean 0 stationary function with covariance
Cov(Y (s), Y (t)) = exp (s− t)2/5, each being observed at 10 distinct time points normalized to
lie in [1, 10]. Estimating the covariance surface is equivalent to estimating the second moments
of the underlying function. Thus, local linear regression now considers all 500 × 102 pair-wise
products and smooths over these points (in 3D space) to find the mean surface, which estimates
the covariance function. This becomes much harder to visualize directly, as can be seen in figures
5.3a and 5.3b. Subfigures 5.3c and 5.3d show that the method is able to recover the underlying
covariance surface.
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(a) (b)

Covariance surface

(c) (d)

Figure 5.3: Local linear covariance estimation in univariate stationary data

When estimating covariance functions of multivariate longitudinal data such as ours, the ‘prod-
uct data’ now consists of all within-individual between time and between attribute pairwise prod-
ucts of the original data. Thus, the sample size for the local regression is much larger than the
sample size of measured data points. Combined with the well-known computational challenges
of large-scale local regression, this can lead to a very demanding computation. We also note that
the within-individual products of observed data values are unbiased for the underlying variances
and covariances, but have high variance, and may also exhibit skewed distributions and complex
patterns of interdependence. These factors do not produce bias in the local regression estimates,
but they do make it difficult to achieve high statistical efficiency, and to conduct rigorous statistical
inference for the resulting estimates.
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There are some theoretical results on convergence rates and the asymptotic properties of
marginal covariance estimates in similar settings, e.g. [102]. However, we are not aware of any
work focusing specifically on the computational aspects of this approach. Also, we are not aware
of prior work examining the estimation of conditional covariances and correlations. The limited
existing work is summarized in section 5.1.4 below.

5.1.4 Literature review

This section includes some relevant work on covariance/ correlation estimation using moment-
based kernel regression in functional data. This is by no means an exhaustive literature review. As
far as we are aware, there is no prior work on estimating the conditional covariance function in
longitudinal data.

[103] estimate the Pearson correlation for paired longitudinal data (that is, bivatiate data
wherein both variables are observed at the same subject-specific time points) and provide asymp-
totic results for the same. They model the Pearson correlation between the two random functions
at the same time point by estimating the marginal variances and cross-covariances at the same
time point using local linear regression. This means that their kernel weights are univariate, cor-
responding to one-dimensional smoothing. We are interested in modelling cross-time covariances
and correlations, which involves two-dimensional smoothing.

A non-parametric estimator of the covariance function in multivariate longitudinal data using
linear smoothing is established in [62]. They model stationary covariances and impose a symmetry
constraint. Under this setting, they provide asymptotic results for both separable and non-separable
cases, however, their simulation and data application explore a seperable covariance structure.

Marginal covariance estimation for longitudinal data is often studied as part of functional prin-
cipal component analysis (FPCA). FPCA is a common tool used to analyze functional data which
involves modelling the mean and covariance functions of the random process, before performing
PCA on the data. Many have used local polynomial regression for covariance estimation in FPCA,
including [98, 37, 61]. Both [98] and [61] estimate the covariance surface of non-gridded uni-
dimensional functional data using local linear regression. These papers provide theoretical results
on the covariance estimates and consequently the functional principal components. While we are
interested in modelling the marginal covariance function, our ultimate aim, as mentioned in section
5.1.1 is to extend this to model the conditional covariance and correlation function (across attribute
across time), and to perform inference on these estimates.

Theoretical findings on covariance estimation using local regression have been established in
the literature. Asymptotic results and convergence rates for both mean and covariance estimation
in noisy functional data were studied by [61, 97, 102], among others. [97] provide asymptotic
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normality results for one and two-dimensional smoothers for noisy functional data. They also apply
these to the Nadaraya-Watson and local linear estimators to give expressions for their asymptotic
means and variances (respectively). [102] improve upon their results by increasing the convergence
rates for the asymptotic estimates. They derive the theoretical expressions for asymptotic bias and
variance of covariance estimates in uni-dimensional data common to sparse, dense and ultra-dense
data. Under the sparse setting, which is what we’re interested in, both mean and variance estimation
attain the classical non-parametric rates for univariate and bivariate functions respectively.

The convergence rates for both mean and covariance estimation improve as the degree of
smoothness increases, as explained in [61]. However, we are not aware of convergence rates for
multidimensional data.

5.1.5 Alternative approaches

In this section we discuss some of the existing techniques for estimating covariance functions.
This is a brief survey of such techniques and is by no means an exhaustive review.

Parametric covariance models
Parametric covariance estimation can proceed by specifying a model Σθ(s, t) : R2 → Rp×p for
the covariance between observations taken on the same individual at times s and t, in terms of a
finite dimensional parameter θ ∈ Θ ⊂ Rq. Relatively few such forms exist since it is difficult to
parametrize a family of functions that are positive semidefinite (PSD). Familiar covariance models
of this type include the first order autoregressive model Σθ(s, t) = θ|s−t|, and the exchangeable co-
variance model Σθ(s, t) = θ, both for 0 ≤ θ ≤ 1. A more flexible and realistic parametric model
is the Matérn covariance. A non-stationary covariance function for data indexed by multiple vari-
ables was provided by [76]. All of these parametric covariance models are finite dimensional and
are unable to capture any covariance structure that cannot be expressed in the specified parametric
form.

If the data are Gaussian and have zero mean, then maximum likelihood estimation can be used
to estimate θ based on data observed from one or multiple independent replicates of the process,
each observed at a finite set of time points. Non-Gaussian likelihood-based analysis is sometimes
possible but presents additional difficulties.

Kronecker products and sums
We are interested in covariance models for data with multiple attributes, indexed by time. This
opens up the possibility of using Kronecker products and Kronecker sums to create large fami-
lies of covariance functions from simple building blocks. The Kronecker product has the form
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Cov(X(s),X(t)) = c(s, t) · F , where c(·, ·) : R2 → R is a covariance function and F is a p × p

covariance matrix. Kronecker products are said to be separable with respect to the covariance for
time and the covariance among attributes. The Kronecker product model turns out to be too strong
for our purposes, since it implies that the conditional covariances of interest are always zero under
Gaussianity.

Kronecker sums generalize Kronecker products and are potentially more useful to us. In the
Kronecker sum model, Cov(X(s),X(t)) =

∑K
k=1 ck(s, t) · Fk, where ck(·, ·) : R2 → R are

covariance functions and Fk ∈ Rp×p are covariance matrices. In general if K > 1 the conditional
covariances of a Kronecker sum are not necessarily equal to zero.

Multilevel modeling
A different type of parametric covariance model can be obtained using random effects. This is
a large topic, and we will only discuss it here to the extent that it is related to the approaches
developed below. Suppose that the data for the ith replicate are generated as Ziγi + ϵi, where Zi is
a fixed m× q matrix, γi ∼ [0,Ψ] is a random q-vector, and ϵi ∼ [0q, σ

2Iq×q] is a random m-vector.
Then the covariance matrix of our data is ZiΨZ ′

i+σ2Im×m. This is a finite dimensional parametric
model with parameter θ = (Ψ, σ2). A common choice for Zi would be Zi(j, k) = tk−1

ij , where tij

is the time at which observation j was made for subject i. Thus, the value for the trait of interest
is a random polynomial of the form

∑q
j=1 γjt

j−1 + ϵ. This longitudinal multilevel model does not
require the data to be observed at a common set of time points for all subjects.

Multilevel modeling is usually fit using maximum likelihood (or restricted maximum likeli-
hood), which is efficient if the model is correctly-specified but may perform poorly otherwise.
Also, the likelihood function for a multilevel model can be strongly non-convex, nearly flat, and
multi-modal. An earlier approach to estimating multilevel models called MINQUE (minimum
quadratic unbiased estimation) [84] is more similar in spirit to the approach that we develop
below. MINQUE is based on the fact that the product of any two observations for the same subject
has an expected value that is a linear combination of the model parameters. Equating all observed
products to their expectations yields an overdetermined system of equations that can be solved
using least squares.

Efficient moment-based approaches
Generalized Estimating Equations (GEE) is an approach for estimating mean parameters based
on efficient estimating equations that involve moments of the data. GEE can estimate the mean
structure in the presence of arbitrary covariance, but does not estimate the covariance structure
itself efficiently. An extension to GEE known as GEE2 [63] estimates both the mean and
covariance structures efficiently using efficient estimating equations. Another approach of this
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type is the approach for joint estimation of mean and covariance parameters based on the quadratic
exponential quasi-likelihood, due to [83]. These approaches are notable since they indicate how
moments can be used to efficiently estimate covariance structures. However it is not clear how to
generalize any of these approaches to the problem of estimating covariance functions, which is
our goal here.

Non-parametric techniques
Kernel regression is often applied to model the covariance function in longitudinal data. Section
5.1.4 talks about previous work relating to this technique.

An alternate set of techniques model matrix decompositions instead of the covariance matrix
itself. For instance, instead of estimating the covariance matrix directly, [45] propose estimating
its modified cholesky decomposition for univariate data. This diagonalizes the covariance matrix
with a lower triangular matrix with unit diagonal entries. The elements of both these matrices (the
diagonal and lower triangular matrices) can be estimated as they are associated with a varying-
coefficients regression model [80]. The estimated covariance matrix thus obtained is guaranteed
to be PSD. [11] generalize this to incorporate non-regular time points on multidimensional data.
They extend the varying-coefficients linear model corresponding to the Cholesky decomposition
and use smoothing splines to estimate the parameters in the regression by normal maximum
likelihood. The extended linear model involves regressing each observation per individual on all
previous observations (for that individual) with universal (non-subject specific) coefficients given
by the autoregressive function evaluated at the two time-points. We do not believe this applies to
our setting, since the number of times an individual is sampled prior to a specific time point, say
t0, should not relate to their measurements at t0. That is, Yij =

[
HTi(Tij) SBPi(Tij)

]
should

not depend on j and should only depend on the value of Tij .

5.1.6 Separability and conditional covariance

We show here that separable covariance functions have diagonal conditional covariances, and thus
are unsuitable for our goal which is to flexibly model the conditional covariance and conditional
correlation functions. As per our motivating application (5.1), we want to model the conditional
correlation

Cor(X1(s), X2(t)|X1(t)) =
Cov(X1(s), X2(t)|X1(t))

[Var(X1(s)|X1(t)) · Var(X2(t)|X1(t))]1/2
. (5.2)

where Xk(t) is the random function for attribute k evaluated at time t. A subtle clarification in no-
tation is the distinction between Xi, the realization of X for the ith individual, and Xi, which refers
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to the ith component of the random function X. Thus, X(Tij) =
[
X1(Tij) X2(Tij) · · ·Xp(Tij)

]T
.

For a mean-zero p-dimensional process X(t) = {[X1(t) · · ·Xp(t)]
T : t ∈ Rp}, a separable covari-

ance function leads to the conditional correlation of interest (5.2) always being zero, at any set of
time points s, t ∈ R. We show this result by first deriving an expression for the correlation in (5.2)
when the covariance function can be expressed as a Kronecker sum. Since a separable covariance
is representable as a Kronecker product, and a Kronecker product is a special case of a Kronecker
sum, the result will follow directly.

Suppose we observe a 2-dimensional random function at n points to obtain a random vector

Z ≡
(
Z1(t1), Z2(t1), · · · , Z1(tn), Z2(tn)

)
= (z11, z12, · · · , zn1, zn2) ∈ R2n.

We express the covariance matrix of Z as the Kronecker sum

K∑
k=1

Ak ⊗Bk,

where Bk is a 2 × 2 exchangeable matrix with correlation θ(k)and Ak is a positive semidefinite
(PSD) matrix with parameter η(k), i.e.

Bk =

[
1 θ(k)

θ(k) 1

]
; Ak(l1, l2) = η(k)(l1, l2).

For instance, if Ak is stationary, then Ak(l1, l2) = η
(k)
|l1−l2|. Then, for Gaussian data,

Cov(Z1(s), Z2(t)|Z1(t)) = Cov
(
Z1(s), Z2(t)

)
− Cov

(
Z1(s), Z1(t)

)
· Cov

(
Z2(t), Z1(t)

)
/Var

(
Z1(t)

)
=
∑
k

θ(k)η(k)(s, t)−
∑
k

θ(k) ·
∑
k

η(k)(s, t)/K

Define u = [η(k)(s, t); k = 1, 2, · · · , K]T , v = [θ(k); k = 1, 2, · · · , K]T and u· = 1Tu, v· = 1Tv.
Then, the relevant relative conditional variances are

Cov(Z1(s), Z2(t)|Z1(t)) =
∑
k

θ(k)η(k)(s, t)−
∑
k

θ(k)
∑
k

η(k)(s, t)/K = u′v − u·v·/K,

Var(Z2(t)|Z1(t)) = K −
(∑

k

θ(k)
)2
/K = K − u2

· /K,

Var(Z1(s)|Z1(t)) = K −
(∑

k

η(k)(s, t)
)2
/K = K − v2· /K.
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Hence, with −1 ≤ uk, vk ≤ 1 ∀k, the conditional correlation of interest as in (5.2),

Cor(Z1(s), Z2(t)|Z1(t)) =
u′v − u·v·/K

[(K − u2
· /K) · (K − v2· /K)]1/2

. (5.3)

As we can see, a separable covariance function implies K = 1 which would make the condi-
tional correlation zero (since u· = u, v· = v and u′v = uv). For non-zero conditional correlation,
we can optimize the expression in (5.3) over all feasible u and v, with the only constraints being
−1 ≤ uk ≤ 1 and −1 ≤ vk ≤ 1 ∀k. More details in Section 5.5.

5.2 Local Polynomial Regression for Covariance Estimation

In this section we introduce local polynomial regression applied to functional data. We start by
reviewing mean estimation in functional data and then introduce the more challenging problem of
covariance estimation.

In local polynomial regression, weighted least squares (WLS) is used to fit a polynomial mean
structure model locally at each point in the domain. This allows familiar polynomial regression
methods to be used to estimate non-linear regression functions. We start by presenting the model
for mean estimation in functional data. Let {X(t) : t ∈ R} be a p-variate random function with
mean function µ(t) = E(X(t)) ∈ Rp and covariance function Σ(s, t) = Cov(X(s),X(t)) ∈ Rp×p

for time points s, t ∈ R. The p components of X(t) correspond to the p measured attributes of
interest. We can then decompose X(t) as follows:

X(t) = µ(t) +U(t)

where µ(t) is a deterministic function and U(t) is a centered random function, i.e. E(U(t)) =

0 ∀t ∈ R, which also has covariance function Cov(U(s),U(t)) = Σ(s, t).
If our dataset has n individuals, then each subject has a realization of the underlying random

function X(t), i.e. for individual i = 1, 2, · · · , n,

Xi(t) = µ(t) +Ui(t). (5.4)

However, since the entire random function X(t) is not directly observable, for each individual i,
we observe Xi(t) at a finite number of subject-specific time points. Further, these observations are
contaminated with some additive measurement errors ϵ. In particular, if there are n iid individuals,
with the ith individual having ni number of observations at time points {Ti1, Ti2, · · · , Tini

}, we
observe {Yij}ni

j=1, which is a noisy version of Xi(t) at these ni distinct points. Here, we can
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decompose Yij as follows:

Yij = Xi(Tij) + ϵij = µ(Tij) +Ui(Tij) + ϵij, (5.5)

where ϵi = [ϵij]
ni
j=1, with ϵij are iid copies of measurement error ϵ, so that ϵi ∼ [0, σ2

ϵ I].

5.2.1 Mean estimation

Local polynomial regression is used to estimate the mean structure µ(t), motivated by Taylor’s
expansion

µ(t) ≈ µ(t0) + µ′(t0)(t− t0) + · · ·+
µ(m)(t0)

m!
(t− t0)

p.

Thus we can estimate µ(t) by estimating the terms in the truncated Taylor expansion above. This
can be done using weighted least squares by solving the following,

(β̂0, β̂−0) = argmin
β0,··· ,βm∈Rp

n∑
i=1

ni∑
j=1

||Yij − β0 −
m∑
l=1

βl(Tij − t)l||22Kh(Tij − t), (5.6)

where Kh = K( ·
h
)/h, h controls the size of the neighbourhood around t and K(·) is a kernel

function that determines the weights of the data points in WLS based on their distance from
the point of interest. In this case, K is a function of the difference between the times of the
observations (Tij) and the time point of interest (t). Then for l = 1, 2, · · · ,m, µ̂(l)(t0) ≡ l!β̂l.
Using this, we can obtain the estimate for µ̂(t) = β̂0.

The WLS problem above is more easily understood in matrix notation. A design matrix for
subject i can be expressed as

Xi =


Ip (Ti1 − t)Ip (Ti1 − t)2Ip · · · (Ti1 − t)mIp
...

...
...

...
Ip (Tini

− t)Ip (Tini
− t)2Ip · · · (Tini

− t)mIp


pni×p(m+1).

(5.7)

The weight matrix Wi for subject i is the ni×ni diagonal matrix with entries Wi|j,j = Kh(Tij−t).
Yi is a vector of length ni which contains the observations for individual i. Since the subjects are
independent, the minimization problem (5.6) becomes

argmin
β

n∑
i=1

(Yi − Xi(t)β)
TWi(t)(Yi − Xi(t)β). (5.8)

This can also be expressed as
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argmin
β

(Y − X(t)β)TW(t)(Y − X(t)β), (5.9)

where X(t) is the (p
∑

i ni)× p(m+ 1) dimensional design matrix obtained as a vertical stacking
of the design matrices per individual Xi(t) as follows

X(t) =
[
XT

1 (t) XT
2 (t) · · · XT

i (t) · · ·XT
n (t)

]T
, (5.10)

The weight matrix W(t) is the block diagonal concatenation of individual weight matrices Wi(t).
Lastly, Y is simply a length

∑n
i=1 ni vector containing all the observations for all individuals. The

solution to (5.9) is given by

β̂ =
( n∑

i=1

XT
i WXi

)−1
n∑

i=1

XT
i WiYi = (XTWX)−1XTWY = AY. (5.11)

Note that we can decompose β̂ = [β̂T
0 , β̂

T
1 , · · · , β̂T

m]
T ∈ Rp(m+1). Finally, we can obtain µ̂(t)

by taking the first p elements of β̂ which exactly corresponds to β̂0.

5.2.2 Marginal covariance estimation

From (5.4) we note that all individuals have the same mean structure and individual-specific de-
viations are captured by Ui(t). Thus, in order to estimate the covariance function Σ(s, t), also
denoted by Cov(s, t), we need to isolate Ui(t) for each individual. We can do just this since we
now know how to estimate µ ! In this subsection we describe how to obtain covariance estimates
using the residuals which can be obtained using our estimated µ̂.

Before proceeding further we clarify what we mean by ‘residual’ here and establish some nota-
tion. If we knew the true underlying mean function common to all individuals µ(t), we could get
ideal residuals per individual (i = 1, 2, · · · , n) per observation (j = 1, 2, · · · , ni),

rij = Yij − µ(Tij).

These residuals can be used to estimate the covariance function of interest since E(rijrik) =

Cov(Tij, Tik). In practice, we instead use the estimated µ̂(t) to obtain observed residuals

r̂ij = Yij − µ̂(Tij).

and rely on the approximation E(r̂ij r̂ik) ≈ Cov(Tij, Tik).
In the remainder of this document we take the population mean to be zero, µ = 0. Further,

in this subsection we we omit the measurement error term, i.e. ϵ ≡ 0 which means that the
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underlying random function Xi(t) is directly observed for every individual i at a finite number of
subject-specific time points. In this setting, we describe joint variance and covariance estimation
as below. The next subsection provides particulars on covariance estimation in the more realistic
case of non-zero measurement error.

In order to estimate the covariance function, we perform local polynomial regression on prod-
ucts of the observed residuals within individuals, which arise from elements of the outer product
matrices r̂ij r̂

T
ik for all j, k = 1, 2, · · · , ni. Since we are taking the population mean to be 0, we

solve the following optimization problem to obtain an estimate of Cov(s, t)

(β̂0, β̂−0) = argmin
β0,β−0

n∑
i=1

ni∑
j,k=1

||YijY
T
ik − β0 − β1(Tij − s)− β2(Tik − t)−

β3(Tij − s)2 − β4(Tik − t)2 − β5(Tij − s)(Tik − t)||2FKh(Tij − s)Kh(Tik − t).
(5.12)

The optimization problem above corresponds to quadratic local smoothing, whereas the ex-
pression without the red terms corresponds to linear smoothing. In this report we only model local
linear and quadratic smoothers, however this can be trivially extended to any polynomial of degree
m by simply adding the corresponding smoothing terms. We can re-express (5.12) in conventional
WLS notation, as in (5.8), by defining

Yi
∼

= [vec(YijY
T
ik)]j,k=1,2,··· ,ni

. (5.13)

We denote Y by Y
∼

and correspondingly Yi by Yi
∼

to highlight the involvement of products. Yi
∼

here is a vector of length p2×
∑

i n
2
i containing the vectorized sample covariance matrices between

all possible sets of time points observed for the ith individual. The design matrix per individual is
now

Xi =



Iq (Ti1 − s)Iq (Ti1 − t)Iq (Ti1 − s)2Iq (Ti1 − t)2Iq (Ti1 − s)(Ti1 − t)Iq
Iq (Ti1 − s)Iq (Ti2 − t)Iq (Ti1 − s)2Iq (Ti2 − t)2Iq (Ti1 − s)(Ti2 − t)Iq
...

...
...

...
...

...
Iq (Tij − s)Iq (Tik − t)Iq (Tij − s)2Iq (Tik − t)2Iq (Tij − s)(Tik − t)Iq
...

...
...

...
...

...
Iq (Tini

− s)Iq (Tini
− t)Iq (Tini

− s)2Iq (Tini
− t)2Iq (Tini

− s)(Tini
− t)Iq


j,k=1,2,··· ,ni

which is a matrix with q × n2
i rows where q = p2. Lastly, the weight matrix per individual is a
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diagonal matrix of dimension n2
i q × n2

i q of the form

Wi = diag
(
{Kh(Tij − s)Kh(Tik − t)}j,k=1,2,··· ,ni

)
⊗ Iq.

The parameters in (5.9) for covariance estimation include Y, now denoted by Y
∼

, which is a
length p2 ×

∑
i n

2
i vector formed by vertically stacking the n vectors Yi

∼
as

Y
∼
=
[
Y1
∼

T Y2
∼

T · · · Yn
∼

T
]T

. (5.14)

The design matrix X is formed by stacking Xi as in (5.10) and the weight matrix W is a diagonal
weight matrix which can be thought of as containing n diagonal blocks, where the ith block Wi

corresponds to the ith individual.

The covariance estimate Σ̂(s, t) is then obtained by taking the first q elements of β̂, as in (5.11),
and reshaping them to form a p× p matrix.

5.2.3 Variance estimation

In this subsection, we describe covariance estimation in the presence of additive measurement
noise (ϵ ̸= 0). Start by noting that in the previous section, we estimated both variances and
covariances using the exact same algorithm. It might, however, make more sense to treat variances
and covariance estimation separately (as previously modelled by [98]). This is because, from (5.5)
we know that for any individual i with observations j, k,

Cov(Yij,Yik) = Cov(Xi(Tij),Xi(Tik)) = Cov(Ui(Tij),Ui(Tik)) + Cov(ϵij, ϵik)

= Σ(Tij, Tik) + δjkσ
2
ϵ Iq,

where δjk = 1 if j = k and 0 otherwise. Hence, for s, t ∈ R, if some individual i is observed at
distinct time points s and t with Tij = s and Tik = t, then

Cov(s, t) = Cov(X(s),X(t)) = Cov(Yij,Yik) = Σ(s, t) and

Cov(s, s) = Var(Yij) = Σ(s, s) + σ2
ϵ Iq = Var(X(s)) + σ2

ϵ Iq.

If we estimate variances and covariances separately, the norm in (5.12) changes and conse-
quently the definitions of parameters (X,Y

∼
,W) in (5.9) change. In particular, for s = t, the

Frobenius norm is replaced by the diagonal-only Frobenius norm in (5.12) which leads to the
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following

Yi
∼

= [vec(YijY
T
ij)]j=1,2,··· ,ni

, (5.15)

Xi =


...

...
...

Iq (Tij − s)Iq (Tij − s)2Iq
...

...
...


j=1,2,··· ,ni

and
Wi = diag

(
{Kh(Tij − s)Kh(Tij − t)}j=1,2,··· ,ni

)
⊗ Iq.

For s ̸= t, we consider the hollow Frobenius norm in (5.12). Yi
∼

, Xi and W are now defined as

in the case of the joint estimation except only sets of distinct time-points are considered, i.e. the
term n2

i anywhere in the expression for the dimensions of either Yi
∼

or Xi is replaced by ni(ni−1).

For the remainder of this report, we will only refer to and focus on the separate estimation case.
The implementation of the method includes only this case as well.

5.3 Inference

In this section we propose a plug-in based method to estimate the standard error (SE) of the
marginal covariance estimate obtained from local polynomial regression, as described in Section
2. Since the marginal estimates (Σ̂s,t) are linear functions of the collection of product data Y

∼
, the

standard errors for these can be estimated using simple moment calculations, leading to familiar
“sandwich expressions”. That is, recall from (5.11) that β̂ = AY

∼
and Σ̂st = β̂|1:q reshaped into a

p× p matrix. Therefore,

Var(β̂) = ACov(Y
∼
)AT =

n∑
i=1

AiCov(Yi
∼
)AT

i (5.16)

The sandwich term Cov(Y
∼
) contains fourth moments, which can be calculated purely non-

parametrically, or via plug-in, by expressing the fourth moments in terms of second moments.
Here we use a plug-in procedure.

The plug-in procedure for obtaining standard errors that is developed here requires that the
fourth and second moments are related just as they are in a Gaussian distribution. Previous work
in this area has either estimated the higher-order moments directly from the data, which requires
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a large sample size to obtain stable results, or linked the higher-order and lower-order moments,
as we do here. Some work has used asymptotic approximations to isolate the dominant terms,
somewhat simplifying the implementation. Notably however, most published work in this area uses
the bootstrap for inference, possibly due to the difficulty of implementing any of the analytically-
derived inference procedures. As far as we are aware, there are no empirical results assessing
the performance of non-asymptotic analytic approaches to inference such as those that we are
implementing. Thus, our work will provide a useful assessment of the tradeoffs between analytic
approaches and alternatives such as the bootstrap. It has been proven that the covariance estimates
obtained as described in section 2 are asymptotically Gaussian ([102]), justifying the use of these
standard errors for forming confidence intervals and conducting hypothesis tests.

As discussed in section 5.1.4, there are theoretical results on the consistency, asymptotic dis-
tributions and the rates of convergence of the covariance estimates obtained using local linear
regression. However, we are not aware of computational methods for performing inference on
such estimates, besides bootstrap techniques to obtain standard errors. Our inference technique
models these (standard errors) mathematically, which allows us to understand the intricacies of the
SE, for eg. to understand which aspect of estimation contributes most to the standard error, and
how this can be modelled better/ improved via tuning.

Plug-in inference procedure

We start by describing the setup and the assumption. We assume that X(t) is a p-dimensional
Gaussian process with mean 0 and covariance function Cov(X(s),X(t)) = Cov(s, t) = Σ(s, t),
and that Yij denotes the observed value of Xi(Tij) corresponding to observation j = 1, 2, · · · , ni

for individual i = 1, 2, · · · , n which is contaminated with measurement errors. That is, the setup
remains as in (5.5) with the added assumption that U(t) ∼ Np(0p,Σ(t, t)) for any t ∈ R+. Denote

Σ(s, t) by Σst and recall that Yij =
(
Yij1 Yij2 · · · Yijp

)T
. Again, we know Σ̂st = β̂|1:q

reshaped into a p× p matrix, i.e. vec(Σ̂st) = β̂|1:q where β̂ = AY
∼

. (recall p2 = q)

To get the standard error of an arbitrary estimate Σ̂st , we perform the following steps:

1. Find the variance of β̂, denoted by Var(β̂).

2. Extract the 1 : q × 1 : q submatrix of Var(β̂) corresponding to the first q elements of β̂
(recall that these first q elements exactly constitute the vectorized form of Σ̂st, i.e. β̂|1:q =

vec(Σ̂st)).

3. Take the diagonal elements of this matrix to obtain the variances of each of these elements,
Diag(Var(β̂)|1:q×1:q).
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4. Reshape this vector of length q(= p2) into a p× p matrix to obtain Var(Σ̂st) which is a p× p

matrix that contains the estimated variance of each element of Σ̂st and take the square root.

This seems fairly straightforward, however the difficulty arises in estimating Var(β̂). This is be-
cause estimating Var(β̂) involves finding the variance of products of the original variables which
is equivalent to computing the fourth-order moments of the original variables. This will become
clear in a moment. From (5.16) we know that

Var(β̂) = ACov(Y
∼
)AT =

n∑
i=1

AiCov(Yi
∼
)AT

i , (5.17)

where each element of the vector Y
∼

is a product of observed values of the form Yijp1Yikp2 where
pm = 1, 2, · · · , p and j, k = 1, 2, · · · , ni for some subject i = 1, 2, · · · , n (recall from (5.15)).
Then Y = Cov(Y

∼
) is a len(Y

∼
)× len(Y

∼
) matrix whose entires are of the form

Cov(Yijp1Yikp2 , Yi′j′p3Yi′k′p4), (5.18)

for possibly distinct subjects i, i′ and attributes pm = 1, 2, · · · , p. Note that Y is block diagonal
due to the assumption of different individuals being independent, thus we need only consider the
case when i = i′ in (5.18).

In order to estimate terms of the form given by (5.18), we can decompose these into simpler
forms using the definition of covariance as follows

Cov(Y ijp1Yikp2 , Yi′j′p3Yi′k′p4)

= E(Yijp1Yikp2Yi′j′p3Yi′k′p4)− E(Yijp1Yikp2)E(Yi′j′p3Yi′k′p4)

= E(Yijp1Yikp2Yi′j′p3Yi′k′p4)− Cov(Yijp1 , Yikp2)Cov(Yi′j′p3 , Yi′k′p4)

since the data are centered (so E(Ypm(tij)) = 0 ∀i, j,m)

= E(Yijp1Yikp2Yi′j′p3Yi′k′p4)− [Cov(tij, tik)]p1,p2
[
Cov(ti′j′ , ti′k′)

]
p3,p4

. (5.19)

To estimate Y we must estimate all terms of the form (5.18) which corresponds to the LHS of
(5.19). Estimates for the latter part of the RHS of (5.19) can be obtained directly from local
polynomial regression. Estimating the fourth-order moment term is the main challenge which is
solved by further decomposing this term using higher-moment formulae and Gaussianity. Since
we have assumed that Y(t) is Gaussian for any t ∈ R, we know that (Yijp1 , Yikp2 , Yi′j′p3 , Yi′k′p4)

T
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will be jointly Gaussian. For any multivariate Gaussian vector

(X1, X2, X3, X4)
T ∼ N (04,Σ)

with Cov(Xi, Xj) = σij , the following hold from Isserlis’ theorem

E(X4
i ) = 3σ2

ii

E(X3
i Xj) = 3σiiσij

E(X2
i X

2
j ) = σiiσjj + 2σ2

ij

E(X2
i XjXk) = σiiσjk + 2σijσik

E(XiXjXkXn) = σijσkn + σikσjn + σinσjk

Thus, using the above decomposition of fourth-moments in terms of second-order moments for
multivariate Gaussian variables with mean 0, we can decompose the fourth-order term in the RHS
of (5.19) in terms of second-order moments. Since all the second-order terms can be estimated
directly by our non-parametric method, we can estimate Y directly from our lower-order covariance

estimates. We can then plug-in Ŷ into (5.16) to obtain V̂ar(β̂). Once we have this, steps 2-4 of
finding the SE(Σ̂st) are straight-forward.

5.3.1 Computation

5.3.1.1 Computational complexity

Marginal covariance estimates:
While the scale of the problem is not large, i.e. the regression is still very optimized, the
formation of design matrices requires book-keeping which is the main challenge. Tracking how
sample and population moments are linked leads to a combinatorial explosion. Additionally,
implementing the technique in a way that can be generalized to other data settings, including
multiple attributes, multiple-indices, different data designs etc, means abstracting the moment
matching process, which makes it harder to simplify this/ reduce it to a simpler form. To find a
way around this, we plan on finding estimates element-wise (instead of estimating the entire p× p

covariance matrix) when we re-implement this technique. To put this is context, obtaining a co-
variance estimate for a dataset with 1500 individuals, each having 10 entries takes about 7 seconds.

Consequent challenges in estimating the SE:
SE estimates involve computing Cov(Yi

∼
) per individual i, which corresponds to finding p2n2

i (n
2
i +

1)/2 fourth order moments. These in turn require Cov(s, t) ∀s, t ∈ {Ti1, · · · , Tini
} (about n2

i esti-
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mates). Therefore, a single SE estimate requires obtaining p2
∑n

i=1 n
4
i estimates which implicitly

depend on a total of p2
∑n

i=1 n
2
i marginal estimates themselves. This is on the order of n4

i which
increases very fast as ni increases. For instance, for a dataset with 1500 individuals, each having 10
entries, obtaining a single SE estimates involves finding 3, 030, 000 fourth order moments, which
depend on a total of 150, 000 marginal estimates in different ways.

Note that the above corresponds to a single set of values for (s, t) and the entire procedure needs
to be repeated for every different (s, t) pair, i.e. for every ŜE(Σ̂st). Thus, to make the computation
of standard errors more feasible, we adopt two techniques in additional to parallelism. First, we
calculate selective marginal estimates. We simply don’t compute those marginal estimates whose
associated kernel weights are negligible, i.e. to obtain ŜE(Σ̂st), skip computing Cov(s0, t0) if
Kh(t− t0)Kh(s− s0) is negligible.

Next, we use a plug-in approach along with an approximation technique similar to memoiza-
tion. In particular, we plug-in an already computed estimate, say Ĉov(s0, t0), for Ĉov(s, t) in the
formation of Cov(Yi

∼
), provided (s− s0), (t− t0) < δh simultaneously for some prefixed δh > 0.

We are able to do this because the covariance surface being estimated here is a smooth function on
a compact set.

This significantly reduces the computational burden and speeds up the process. The idea is that
since Cov(Yi

∼
) is sandwiched in equation 5.17, a majority of the terms probably cancel out with

each other and thus an approximate estimate works quite as well. Preliminary tests show that the
SE estimates obtained by computing 1000 − 2000 distinct marginal estimates are essentially the
same as those obtained by computing marginal estimates at 10, 000 points and then interpolating.

5.3.1.2 Treating missing data

Regardless of the missingness pattern, no information from any of the observations is thrown away.
For instance, if one of the attributes is not observed at a time point, say the jth > 1 time point for an
individual i, then the other attributes measured at tij will still be considered in forming the sample
second moments and thus, will contribute to the model-fitting regression.

For instance, if p2 is the only missing attribute, i.e. Yij = [Yij1 ? Yij3 · · ·Yijp], then the parame-
ters in the regression for covariance estimation (5.12) will incorporate the missingness as follows.
For ease of explanation, we describe the parameters assuming only one missing entry for individ-
ual i. Starting with Yi

∼
, all products corresponding to Yij2 will be omitted. This means that first

entry omitted in Yi
∼

as compared to its form in (5.13) will be the p2(j − 1) + 2th entry. In general,

missing entries among the first p2ni entries of Yi
∼

as in (5.13), corresponding to products with Yi1

will be at positions p2(j − 1) + 2 + (m − 1)p where m = 1, 2, · · · , p. For each missing entry in
Yi
∼

, the corresponding row in Xi and Wi is omitted as well. For instance, corresponding to the first
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missing entry in Yi
∼

which is at the p2(j − 1) + 2th position, the 2nd row in the jth row-block of Xi

and Wi will be omitted. This is precisely the p2(j − 1) + 2th row.

5.4 Conditional covariance

The general form of the conditional correlation function for a random function X with p attributes,
(recall X(t) = [Xpm(t)]

T
m=1,··· ,p ∈ Rp is given by

Cor(Xp1(t1), Xp2(t2)|Xp3(t3)) =
Cov(Xp1(t1), Xp2(t2)|Xp3(t3))

[Var(Xp1(t1)|Xp3(t3)) · Var(Xp2(t2)|Xp3(t3))]
1/2

. (5.20)

Motivated by our application, we focus on a specific form of this conditional correlation. This is
precisely (5.2), which is reproduced below

Cor(X1(s), X2(t)|X1(t)) =
Cov(X1(s), X2(t)|X1(t))

[Var(X1(s)|X1(t)) · Var(X2(t)|X1(t))]1/2
. (5.2)

To estimate (5.2) and its standard error, we propose two techniques, both of which use kernel
regression. The first technique directly models the conditional covariance, whereas the second
technique estimates the marginal covariances, and uses the conditional Gaussian identity to obtain
an estimate of the conditional covariance. Both approaches use the variance estimation techniques
from Section 5.2.3. We present these methods in detail below, and briefly comment on their
ability to estimate the broader conditional correlation (5.20). As for the inference, we extend the
technique from Section 5.3 to find the SE of the conditional estimates using linearization.

5.4.1 Technique 1: indirect kernel estimation

This technique models the conditional covariances required in estimating (5.2) for a p-dimensional
Gaussian process X(t). Specifically, using the decomposition of conditional covariances for Gaus-
sian data, we have

Cov
([

X1(s)

X2(t)

]
|X1(t)

)
=


Σ11

ss −
(Σ11

st )
2

Σ11
tt

Σ12
st −

Σ11
stΣ

12
tt

Σ11
tt

Σ12
st −

Σ11
stΣ

12
tt

Σ11
tt

Σ22
tt −

(Σ12
tt )

2

Σ11
tt

 , (5.21)

where
Σp1p2

t1t2 = Cov(Xp1(t1), Xp2(t2)) = Cov(X(t1),X(t2))|p1p2 .
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We can easily obtain an estimate for Cov([X1(s)X2(t)]
T |X1(t)), denoted by Σ̂s1t2|t1 by plugging-

in marginal estimates for terms in the RHS of (5.21), obtained using the technique described in
Section 5.2.3. Note that using this notation, our correlation of interest, as in (5.2), can be denoted
by Cor12s1t2|t1 .

5.4.2 Technique 2: direct kernel estimation

Note that each of the covariances in (5.2) is of the form Cov(Z1(t1), Z2(t2)|Z3(t3)) for some com-
bination of time-points t1, t2 ∈ {s, t} and random functions Z1, Z2 ∈ {X1, X2} with Z3 ≡ X1

and t3 = t. With this in mind, we wish to use kernel regression to directly estimate the specific
conditional covariances

Cov(Z1(t1), Z2(t2)|Z3(t3) = c), (5.22)

to estimate directly

Corr(Z1(t1), Z2(t2)|Z3(t3) = c)) =
Cov(Z1(t1), Z2(t2)|Z3(t3) = c)

Var(Z1(t1)|Z3(t3) = c)Var(Z2(t2)|Z3(t3) = c)
. (5.23)

For a Gaussian process, this conditional correlation does not depend on the value of c. However
for non-Gaussian data, the conditional covariances, and hence the conditional correlation can vary
with c. To attain an overall summary, we average (5.23) over the marginal distribution of Z3(t3) to
obtain estimates for the averaged conditional correlation of interest:

EZ3(t3)[Corr(Z1(t1), Z2(t2)|Z3(t3))]. (5.24)

Below we provide a local regression approach that provides an estimate Ĉov(Z1(t1), Z2(t2)|
Z3(t3) = c) of (5.22). This can then be averaged with weights to obtain an estimate of (5.24), via

δ−1
∑
c

Ĉorr(Z1(t1), Z2(t2)|Z3(t3) = c) · π̂(c), (5.25)

where π̂ is an estimate of the marginal density of Z3(t3), obtained, for example, using kernel
density estimation, and c runs over a grid with mesh δ.

The approach for estimating (5.22) using kernel regression is similar to that in section 5.2.2, ex-
cept that we now need a kernel with three terms. Let zijk represent the observed value of Zk(Tij) for
the ith individual. Then an estimate β0 of the conditional covariance Cov(Z1(t1), Z2(t2)|Z3(t3) =

c) is obtained by solving the following minimization problem
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argmin
β0,β−0

n∑
i=1

ni1∑
k1=1

ni2∑
k2=1

ni3∑
k3=1

||zi1k1zi2k2−β0−β1(Ti1k1−t1)−β2(Ti2k2−t2)−β3(Ti3k3−t3)−β4(zi3j3−c)||2FWik1k2k3

(5.26)
where the weight

Wik1k2k3 = Kh(Tik1 − t1)Kh(Tik2 − t2)Kh(Tik3 − t3)Kh(Z3(Tik3)− c). (5.27)

The important thing to note here is that, all conditional covariances in (5.2) have at most two
distinct time points. Thus, in estimating E(Z1(t1), Z2(t2)|Z3(t3) = c) above, there are at most two
distinct time points, say t′1 and t′2 and t1, t2, t3 ∈ {t′1, t′2}. Thus, the kernel weight (5.27) reduces
to the 3-way product

Wikskt = Kh(Tikt′1
− t′1)Kh(Tikt′2

− t′2)Kh(Z3(Tikt3
)− c), (5.28)

where again, t3 ∈ {t′1, t′2}.

Specifically, for estimating the cross covariance of interest Cov(X1(s), X2(t)|X1(t)) using our
data, (5.26) becomes

argmin
β0,β−0

n∑
i=1

ni∑
k1=1

ni∑
k2=1

ni∑
k3=1

||Yi1k1Yi2k2−β0−β1(Tik1−s)−β2(Tik2−t)−β3(Tik3−t)−β4(Yi1k3−c)||2FWik1k2 ,

(5.29)
where the weight has a similar form to (5.28), which is,

Wik1k2,k3 = Kh(Ti1k1 − s)Kh(Ti2k2 − t)Kh(Ti3k3 − t)Kh(X1(Ti1k3)− c).

The other conditional covariances in (5.2) can be computed in a similar manner. Note that both
(5.26,5.29) correspond to local linear smoothing. Additional product terms can be added, just as
in (5.12), for different degrees of smoothing.

Instead of using polynomials in the local linear regression which are increasing functions of
the distance between time points, we can form polynomials of functions which are decrease with
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increase difference in time. One such example is as follows:

finv(T − t) =

2 ∗ sign(T − t) if T − t < 1
thr

1
(T−t)

∗ 2
thr

if T − t > 1
thr

for some pre-determined threshhold thr, for instance, thr = 100. This definition ensures that the
polynomial arguments lie between ±2.

Comparison of the two approaches
An advantage of technique 2 over technique 1 is that it allows us to directly model the conditional
covariances, and thus the conditional correlation of interest, without any Gaussianity assumption.
However, the drawback is that the smoothing now involves a 3-way kernel. This is not only harder
to tune but also results in a less efficient estimator as compared to technique 1. We thus need a
larger dataset to obtain the an estimate with the same efficiency (SE) as that of the estimate obtain
assuming Gaussinaity under technique 1 from a smaller dataset.

Technique 1 can be easily generalized to model (5.20) by decomposing the relevant conditional
covariance matrix in terms of marginal covariances. On the other hand, while technique 2 can
theoretically be used to model the underlying covariances in (5.20), for distinct t1 ̸= t2 ̸= t3,
the weights would be products of 4 kernel functions, as in (5.27), which is not desirable. Due
to the curse of dimensionality, we would need a sample size exponential in base 4 to obtain the
desired estimates. We are in the process of implementing this technique. It would be interesting to
compare the two techniques via simulations, both in terms of accuracy and relative efficiency, in
the future.

5.4.3 Inference

Here, we extend the inference procedure from section 5.3 to the conditional estimates obtained
using technique 1, and we provide the details for both conditional covariance and conditional
correlation estimates. Note that this does not apply to estimates obtained from the direct kernel
technique.

5.4.3.1 Conditional covariance

In order to calculate SE(Σ̂s1t2|t1), we use the Delta method to get a linear approximation of the
variance of each term of Σ̂s1t2|t1 (given by (5.21)). For each of the four terms, the Delta method re-
quires finding the joint covariance matrix of the elements constituting each term. These elements,
ofcourse, are the estimated covariances Σ̂p1p2

t1t2 , for some time points t1, t2 ∈ R, whose joint covari-
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ance matrix is obtained by element-wise plug-ins using estimates of the marginal standard errors
as described in the previous section. Here, we present the details involved in finding the variance
of Ĉov(X1(s)X2(t)|X1(t)), i.e. Σ̂12

s1t2|t1 = Σ12
st −

Σ11
stΣ

12
tt

Σ11
tt

and the procedure for the other terms is
similar.

Details of the multivariate Delta method

To find the variance of Σ̂12
s1t2|t1 = Σ̂12

st −
Σ̂11

st Σ̂
12
tt

Σ̂11
tt

, define

f(Σ̂12
st , Σ̂

11
st , Σ̂

12
tt , Σ̂

11
tt ) = Σ̂12

st −
Σ̂11

st Σ̂
12
tt

Σ̂11
tt

.

Then
∇f =

(
1 − Σ̂12

tt

Σ̂11
tt

− Σ̂11
st

Σ̂11
tt

Σ̂11
st Σ̂

12
tt

(Σ̂11
tt )

2

)
.

Then by the Delta method,

Var(f) = ∇fCov


Σ̂12

st

Σ̂11
st

Σ̂12
tt

Σ̂11
tt

∇fT .

We now describe how to estimate the covariance matrix above. Note that each element of this
matrix is of the form

Cov(Σ̂p1p2
t1t2 , Σ̂

p′1p
′
2

t′1t
′
2
) = Cov(vec(Σ̂t1t2), vec(Σ̂t′1t

′
2
))|p(p1−1)+p2,p(p′1−1)+p′2

(5.30)

for some time points ti, t
′
i ∈ R and some attributes pi, p

′
i = 1, 2, · · · , p and here p = 2. Recall

from section 2.1 that

vec(Ĉov(t1, t2)) = vec(Σ̂t1t2) = β̂|1:q where β̂ = AY
∼

and let vec(Σ̂t′1t
′
2
) = β̂′|1:q where β̂′ = A′Y

∼
,

which gives
Cov(β̂, β̂′) = Cov(AY

∼
,A′Y

∼
) = ACov(Y

∼
)A′T = AYA′T .

We can then estimate (5.30) by extracting the (p(p1 − 1) + p2, p(p
′
1 − 1) + p′2)

th term from the
following estimate

Ĉov(vec(Σ̂t1t2), vec(Σ̂t′1t
′
2
)) = Ĉov(β̂, β̂′)|1:q,1:q = AŶA′T ,
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where Ŷ can be obtained as described in Section 5.3. In this way, we can get each term in the
required covariance matrix for the Delta method and plug-in the values to obtain the required
variance estimate.

Inference for estimates obtained using technique 2 is part of future work.

5.4.3.2 Conditional correlation

For technique 1, the conditional correlation of interest is of the form

Cor(X1(s), X2(t)|X1(t)) =
Cov(X1(s), X2(t)|X1(t))

[Var(X1(s)|X1(t)) · Var(X2(t)|X1(t))]1/2

=
Σ12

st −
Σ11

stΣ
12
tt

Σ11
tt√(

Σ11
ss −

(Σ11
st )

2

Σ11
tt

)(
Σ22

tt −
(Σ12

tt )
2

Σ11
tt

)
We follow the exact same strategy as the one outlined above for obtaining the SE of conditional

covariance estimates, i.e. we use the delta method.

Details of the multivariate Delta method

To find the variance of the conditional correlation, define
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Then by the Delta method,

Var(f) = ∇fCov


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∇fT .

We now describe how to estimate the covariance matrix above. Note that each element of this
matrix is of the form

Cov(Σ̂a1a2
t1t2 , Σ̂

a3a4
t3t4 ) (5.31)

Recall that we obtain each estimate directly as follows

Ĉov(Xa1(t1), Xa2(t2)) = Σ̂a1a2
t1t2 = β̂|1 where β̂ = Σn

i=1Ai(t1, t2)Yi
∼
(a1, a2) = AY

∼

and let Σ̂a3a4
t3t4 = β̂′|1 where β̂′ = Σn

i=1Ai(t3, t4)Yi
∼
(a3, a4) = A′Y′

∼
,

which gives

Cov(β̂, β̂′) = Cov(AY
∼
,A′Y′

∼
) = ACov(Y

∼
,Y′

∼
)A′T = Σn

i=1AiCov(Yi
∼
,Y′

i
∼
)A′T

i .

In obtaining Cov(Yi
∼
,Y′

i
∼
), it is important to note that Yi = Yi(a1, a2) and Y′

i = Y′
i(a3, a4) may

be of different lengths. Regardless, the cross-covariance matrix will contain higher order moments
as it consists of terms of the form

Cov(Y ia1k1Yia2k2 , Yia3k3Yia4k4)

= E(Yia1k1Yia2k2Yia3k3Yia4k4)− [Σa1a2
tik1 tik2

][Σa3a4
tik3 tik4

]

= [Σa1a3
tik1 tik3

][Σa2a4
tik2 tik4

] + [Σa1a4
tik1 tik4

][Σa2a3
tik2 tik3

]

5.5 Simulation study

In this section, we evaluate the statistical performance of the marginal and the conditional covari-
ance estimates obtained using technique 1 (section 5.4.2). We assess the performance for non-
separable stationary data, both with and without missingness. For all the estimates, we provide
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plots of the root mean squared error (RMSE) and the standard deviation, as the number of sub-
jects increases. We are in the process of implementing technique 2 (section 5.4.1) for covariance
estimation and therefore have no simulation results for it yet.

5.5.1 Data Generation

We start by describing the data-generating model used for this simulation study. We aim to mimic
the main features of the Dogon Longitudinal Study. For simplicity, we only consider gridded data,
that is, we take all individuals to be observed at the same time points. Under this gridded setting,
we generate non-separable stationary Gaussian data as described below.

Optimization of non-separable covariance in simulation
Recall from Section 5.1.6 that a separable covariance function results in a trivial conditional
correlation of interest (5.2), i.e. Cor12s1t2|t1 = 0. Since we’d like to evaluate our models ability
to estimate non-zero conditional covariances, the underlying convariance function must be
non-separable. To construct a non-separable covariance matrix for our simulation, we take the
simplest case of a Kronecker sum with K = 2 (notation as in Section 5.1.6). We consider a
stationary process and take Ak to be an autoregressive matrix with correlation sequence η(k), i.e.
Ak(l1, l2) = η

(k)
|l1−l2|. In practice, since simulating data corresponding to uk = η(k) < 0 is tricky,

we instead optimize the problem within the following framework,

0 ≤ η
(1)
|t−s| ≤ 1, η(2) = 0 and θ(2) = −θ(1) =⇒ u =

[
η|t−s| 0

]
, v =

[
θ −θ

]
.

Recall that we derived a closed form for the conditional correlation of interest, Cor12s1t2|t1 in (5.3).
Under the given framework, the expression for this conditional correlation reduces to

Cor12s1t2|t1 =
θη|t−s|√
4− η2|t−s|

,

which attains a maximum of 1/
√

(3) = 0.58. To see this, note that |Cor12s1t2|t1 | is an increasing
function of both η|t−s| and θ. Therefore, Cor12s1t2|t1 has a maximum magnitude of ±1/

√
(3) = 0.58

corresponding to max η|t−s| = 1 and max |θ| = 1 =⇒ θ = ±1. Since we only expect the
conditional correlation in our application to be at most in the range of 0.1 to 0.3, we are satisfied
with doing simulations and checking the performance of our method on conditional correlations
ranging between 0 and 0.52.

Particulars of data generation
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Starting with the time grid, we normalize the time points to lie between 0 and 1, and consider
the time grid 0, 0.1, . . . , 0.9, 1 for all individuals. Since we are interested in two-dimensional
Gaussian data, each individual has 11 2-dimensional observations which are generated as an
instance of a 22-dimensional multivariate Gaussian variable with mean 0 and a non-separable
covariance matrix Σ, taken as a 2-Kronecker sum, as described above. We conduct simulations for
the conditional correlation of interest (5.2), i.e. Cor12s1t2|s1 being 0, 0.1, 0.2, 0.3, 0.4 and 0.51, for
fixed s = 0.2 and t = 0.6. Here we present results only for Cor120.210.62|0.61 = 0.51. Results for the
other correlations are similar.

The true underlying marginal and conditional correlation matrices for the simulated data are

Σ0.2,0.6 =

[
0.95 0.90

0.90 0.95

]
and Cor0.21,0.62|0.61 =

[
1 0.51

0.51 1

]
. (5.32)

Note that here Σ0.2,0.6 is symmetric, but this need not be the case and we make no such assumptions
anywhere.

5.5.2 Simulation design

We fix two time points, s = 0.2, t = 0.6 and estimate the marginal covariances
Σ̂0.2,0.6 = Ĉov(0.2, 0.6), Σ̂0.2,0.2 and Σ̂0.6,0.6 along with the conditional correlation matrix
Ĉor0.21,0.62|0.61 for non-separable stationary data, as described above, both with and without
missingness. The estimates are averaged over 500 Monte Carlo replicates per data setting. We
present plots for the root MSE, the bias and the standard deviation of the estimates as the number
of subjects increases from 200 to 1000 along [200, 400, 800, 1000], only under the missing data
setting.

Model parameters
We only present results for local linear regression, using a fixed bandwidth of h = 0.05, which
corresponds to 1 year in the application of interest where the data span 20 years. We use the
squared exponential (Gaussian) kernel to assign weights in the local regression.

Induced missingness pattern
The pattern of missingness mimics that in the Dogon Longitudinal Study. We assume that all
entries for the second attribute of the Gaussian process are missing at time points less than 0.5.
That is, Y2(t) is missing for t < 0.5. Again, this is similar to our motivating dataset wherein blood
pressure (SBP) is not available for subjects until age 11.
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5.5.3 Simulation results

Marginal estimates
For marginal covariances, it is important to note that there are essentially four covariances we’re
trying to estimate, (a) between-time within attribute (of the form Cov(Y1(s), Y1(t))), (b) within
time between attribute (of the form Cov(Y1(s), Y2(s))), (c) between time between attribute (of the
form Cov(Y1(s), Y2(t))) and finally (d) the variance (of the form Cov(Y1(s), Y1(s))).

In particular, the 4 marginal estimates in figure 5.4 corresponding to s = 0.2 and t = 0.6 are:

(a) Between time within attribute [̸= t; = q]: this is taken as the average between estimates of
Cov(Y1(0.2), Y1(0.6)) and Cov(Y2(0.2), Y2(0.6)).

(b) Within time between attribute [= t; ̸= q]: this is taken as the average between estimates of
Cov(Y1(0.2), Y2(0.2)) and Cov(Y1(0.6), Y2(0.6)).

(c) Between time between attribute[̸= t; ̸= q]: this is taken as the average between estimates of
Cov(Y1(0.2), Y2(0.6)) and Cov(Y1(0.6), Y2(0.2)).

(d) Variance (within type within attribute) [= t; = q]: this is taken as the average between
estimates of Cov(Y1(0.2), Y1(0.2)) and Cov(Y2(0.6), Y2(0.6)).

(a) (b)

Figure 5.4: Standard deviation and bias in the 4 types of marginal covariance estimates correspond-
ing to s=0.2, t=0.6.

We notice here that the marginal estimates simultaneously achieve quite low standard deviation
(∼ 10%) and bias (∼ 0.4%). Note that since the true marginal values to be estimated are 0.95, 2, 0

and 0.9, the bias is almost negligible and the standard deviation, and hence the Root MSE, are
roughly between 5− 10% for 1000 subjects. Thus, the method seems to perform well for marginal
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covariance estimates.

Conditional estimates
For conditional covariances, there are 3 different types of covariances we’re trying to estimate
as well; these correspond to the 3 different elements of the conditional covariance matrix (ref to
RHS of (5.21)). Since our primary interest is in the off-diagonal term of the correlation matrix, we
discuss the estimates for that in some detail here.

We start with the estimate for the conditional correlation of interest, illustrated in figure 5.5. Fig
5.5a compares the Root MSE of the conditional correlation estimates obtained using our technique
(labelled ker LM ) and using the standard method of moments. Since the conditional correlation
involves both time points that are observed (s, t = 0.2, 0.6 ∈ [0, 0.1, 0.2, · · · , 1] which is the grid
of 11 time points used to simulate the data), the empirical correlation can be calculated by simply
considering the data at these two time-points. This is labelled as MOM in the plot. The RMSE of
both the kernel and MOM estimates are presented for the true underlying conditional correlation,
Cor120.210.62|0.61 being −0.1 and 0.51. Fig 5.5b provides the standard deviation of the same set of
estimates. There plots indicate that the estimates obtained using our method perform atleast as
well as the naive method of moments estimates.

Figures 5.5c and 5.5d show the distribution of the estimates corresponding to an underlying
conditional correlation of −0.1 and 0.5 respectively. We clearly see that the estimates converge to
the truth as the number of subjects increases.

Note that the conditional correlation of interest here is a non-linear function of the elements
of the conditional covariance matrix, which means it is fairly complex to estimate. We take one
step back and look at the estimates for the conditional covariance, which by itself is a non-linear
function of 4 marginal covariances. Fig 5.6 presents the element-wise RMSE for the three ele-
ments of the conditional covariance matrix, Σ̂0.210.62|0.61 . Since the underlying covariance matrix
corresponding to a cross conditional correlation of 0.52 is

Σ0.210.62|0.61 =

[
1.59 0.90

0.90 2.00

]
,

we note that the relative RMSEs for the diagonal terms, columns 2 and 3 of figure 5.6, reduce by
half upon taking the square root, which is what is used in the conditional correlation estimation
(they reduce from 4.7, 5.3% to 2.2− 2.5%). This illuminates that it is okay for the relative RMSE
of certain terms of the conditional covariance matrix to be higher than those of the conditional
correlation of interest, even though the latter is a slightly complicated (non-linear) function of the
former.
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(a) (b)

(c) (d)

Figure 5.5: Conditional correlation of interest, Ĉor
12

0.210.62|0.61 .

Overall, we conclude that the method performs well on the scale of the motivating dataset. That
is, it works well as long as the number of observations per individual comply with the bound
maxi n

4
i < 10, 000. For datasets of larger scale, while the covariance estimates can be obtained,

the standard errors become infeasible to calculate. This is because the problem blows up (recall
the discussion on computational complexity from section 5.3.1.1).

5.6 Summary and future directions

In this report we implement a non-parametric technique to estimate the covariance structure of
longitudinal data. There are no restrictions imposed on the data or the covariance function to be
estimated which make this technique very broad and enables it to model any kind of covariance
structure. In particular, we carry out local polynomial regression on products of residuals within
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Figure 5.6: Term-wise RMSE for the estimates of the conditional covariance matrix of interest
Σ̂0.210.62|0.61 in row 1. Row 2 contains the RMSE of the estimates of the square of the diagonal
terms in the conditional covariance matrix.

each individual to model the covariance structure. Under the Gaussianity assumption, we extend
this technique to model the conditional covariance matrix in longitudinal data and propose a plug
in inference procedure for both the marginal and conditional estimates. We provide simulation
studies to assess the performance of the estimates and finally apply it to a real world dataset to
obtain covariance and correlation estimates on the same.

One of the major drawbacks of kernel regression is that it does not give a functional form for
the estimate. That is, for each new estimate (at a different time-point) the entire method needs
to be refitted at the end of which an estimate is produced. This makes the technique extremely
computationally heavy. Thus in the future, we need to re-implement this technique to make it run
faster! Also, due to a fixed (global) bandwidth, local polynomial regression can be a bit too local
in certain cases, rendering it unable to model a global trend, if one exists. Future work includes
exploring bandwidth selection for covariance estimation.

A common difficulty in estimating covariances is the PSD constraint. We impose no such
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constraint in the local regression here. This is because we are ultimately interested in modelling the
conditional covariance and as long as we can get meaningful estimates for these, we do not mind it
if some of the intermediate marginal covariance estimates are non-PSD. Our belief is that, as long
as the marginal estimates are consistent and reasonably accurate, they will eventually be PSD as
the sample size grows. This is definitely a limitation especially in using this technique for marginal
covariance estimation, however the flexibility of the method which gives meaningful estimates is
still very attractive and powerful, due to lack of other such broad techniques. Improving upon this
and including a PSD constraint is part of future work.

In the inference procedure, we realise that the Normal formulae for relating the fourth order
moments to the second order moments may be too stringent, and would like to consider alterna-
tives to this, such as parametrizing this relationship using some broader distribution, perhaps the
spherical distribution, and carrying out sensitivity analysis.

Motivated by our data application, we would like to expand the analysis to model the covariance
between a linear functional of the variables (height in this case, which captures a persons growth
trajectory) instead of computing the correlation at specific, distinct time points. That is, modelling∫ 10

0

Cov(HT (s), SBP (t)|HT (t))w(s)ds = Cov(
∫ 10

0

HT (s)w(s)ds, SBP (t)|HT (t)).

This will be possible, along with exploring bandwidth selection once we have a more efficient
implementation of this technique.

As mentioned in section 2, we would like to model uncertainty due to mean estimation into our
covariance estimator. Future work also includes incorporating cluster analysis into this technique
to model the heirarchical structure of the underlying data.
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APPENDIX A

Mediation Simulation

We provide the underlying form of the direct and indirect effects for simulation cases 2 and 3 in
the simulation study presented in section 3.3.

For case 2 (heteroscedastic Gaussian), the direct effect is constant at 1, as derived in section
3.3. Both the indirect effects are presented in figure A.1. The case 3 (exponential), indirect effects
1 and 2 are identical, which is why indirect effect 2 is omitted in figure A.2.

(a) Indirect effect 1 (b) Indirect effect 1

(c) Indirect effect 1 (d) Indirect effect 1

Figure A.1: Underlying values of the indirect effects for case 2.
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(a) Indirect effect 1 (b) Indirect effect 1

(c) Indirect effect 1 (d) Indirect effect 1

Figure A.2: Underlying values of the direct and indirect effects for case 3.

A.0.1 Pointwise Results

The pointwise estimates for the mediation effects, across all three settings take the form of
m]timesm heatmaps which are included below. We do not compute the realative measures (rbias,
rrmse) for points which have a true underlying value of less than 0.1, and these points are blank in
the heatmaps.
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(a) DE : Relative bias (b) DE : Relative MSE

(c) IDE1 : Relative bias (d) IDE1 : Relative MSE

(e) IDE2 : Relative bias (f) IDE2 : Relative RMSE

Figure A.3: Pointwise evaluation of the simulation results for the entire mediation pipeline corre-
sponding to simulation case 1.
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(a) DE : Relative bias (b) DE : Relative MSE

(c) IDE1 : Relative bias (d) IDE1 : Relative MSE

(e) IDE2 : Relative bias (f) IDE2 : Relative MSE

Figure A.4: Pointwise evaluation of the simulation results for the entire mediation pipeline corre-
sponding to simulation case 2.
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(a) DE : Relative bias (b) DE : Relative MSE

(c) IDE1 : Relative bias (d) IDE1 : Relative MSE

(e) IDE2 : Relative bias (f) IDE2 : RelMSE

Figure A.5: Pointwise evaluation of the simulation results for the entire mediation pipeline corre-
sponding to simulation case 3.

In case 1, both the relative bias and RRMSE are less than 15% for all the 3 mediation effects. In
case 2, the relative bias and RRMSE for the direct effect are mostly below 20%. They get as high
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as 35% in the extreme lower quantile of the the outcome (py = 0.1) and extreme outer quantiles of
the exposure (px = 0.1, 0.9), but are below 20% everywhere else, including outer quantiles (which
are no as extreme) around px, py ∈ [0.2, 0.8]. For indirect effect 1, we must note that IDE1 consists
of smooth functions that cross 0 at py = 0.5. Due to this, the values of IDE1 around the inner
quantiles of the outcome (py ∼ 0.5) are very small. The relative bias is mostly below 20% and the
RRMSE is below 30% for the most part of IDE1; both values are high (rbias and RRMSE) around
65% for py = 0.42. It is important to note that the underlying value of IDE1 in this region is very
small and is about 0.15, and so an error of 70% means the average estimate at this point would be
around 0.05. We observe similar but less extreme patterns in case 3. IDE2 estimates have below
15% rbias and RRMSE (IDE2 is never equal to 0 in this setup).

In case 3, we see that that the relative bias for the direct effect is always less than 20%. The
RRMSE gets as big as 42%, but this is when the underlying value of the direct effect is between
0.1 and 0.2. Note that relative RMSE of around 40% means that on average, the estimated value
of 0.15 might be 0.21. The relative errors seem big as the underlying values are so small, but
the estimates are infact close to the truth. This is also captured by the Frobenius RRMSE of the
estimates presented in table 3.1. The indirect effect estimates are of similar quality. For both
IDE1 and IDE2, the relative bias is mostly below 20%; it is between 30-40% at the extreme outer
quantiles of both the outcome and the mediator. Due to less data in this region, these estimates are
already very difficult to compute.

A.1 Simulation study for conditional quantile models

In this section we conduct a simulation study to assess the performance of the analysis pipeline
that uses QNN and FLR to understand the conditional quantile structure of a population. We use
this to model the conditional quantiles of Y |M1,M2, X , and Mj|X in the mediation analysis (ref
sections 3.2.2, 3.2.4) and the functional components of these models are further used to define
the mediation effects. Since we have presented simulation studies to evaluate the performance of
QNN in the previous chapter, we do not access the fit of the QNN estimates and instead focus our
attention on the results of the FLR, which are the final results from the joint pipeline.

Please note that the simulation study presented in chapter 3 section 3.3 relies on the results of
the conditional quantile models, and so it implicitly checks the quantile of the conditional quantile
estimates. So the simulation presented here tests 2/3rd of the mediation pipeline. Also note that
we already conducted a simulation study for the AFQR model in chapter 2 section 2.3.6, which
assesses the same pipeline. The distinction between that and this is that here we apply AFQR to a
tensor of quantiles evaluated on a much sparser grid for the covariates (X,M1,M2).
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A.1.0.1 Data Generation

We consider a Gaussian outcome with covariate-dependent mean and variance functions; this
has location and scale behaviour. Thus, the generated data will have a homogeneous component
determined by the mean structure, and a non-homogeneous component (meaning a non-trivial
g function) corresponding to the variable that determines the variance. We will explain this in
more detail later. We pick a Gaussian distribution for the outcome since its quantile function has a
closed form, and so the components of the low rank decomposition can be derived mathematically.

If the model has p covariates,

Xj ∼ N (0, 1) j = 1, · · · , p

Y = µs(X1) + σs(X2)ϵY ϵY ∼ N (0, 1)

µs(x1) = xq
1 q ∈ {1, 2, 3}

σs(x2) =
√

(4 + x2)2

In this case, the conditional quantile function has a closed form given by

QY |X(p|X1 = x1, X2 = x2, · · · , Xp = xp) = µ(x) + σ(x2) ·QN (0,1)(p).

(a) µs(x1) = x1 (b) µs(x1) = x21 (c) µs(x1) = x31

Figure A.6: Simulated data corresponding to q = 1, 2, 3

A.1.0.2 Simulation Design

We generate data with q = 2 and q = 4 covariates. The number of observations per setting is
1500. For each number of covariates, we vary the mean function µs which is a monomial of X1, by
varying its degree along [1, 2, 3]. Per setting, we use the setup described above to randomly sample
10 iid copies of (X1, · · · , Xq, Y ). As in previous sections, let X = (X1, · · · , Xq).
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We evaluate the conditional quantiles along a probability grid of length m = 11. This is done
so that that the median value corresponds to an entry on the probability grid, and does not have to
be evaluated as the mean of two estimates. The probability grid, (p) = [0.1, · · · , 0.9]. We use the
same smoothing penalty for all uj and all vj , ie cuj

= 1, cvj = 1, ∀j.

A.1.0.3 True parameters

In this section we give the form of µ, hj, gj in the low rank decomposition as per the data generating
model. Recall that the quantile function takes the form

QY |X(p|X1 = x1, · · · , Xq = xq) = µs(x) + σs(x2) · Φ−1(p).

The central axis is defined as the conditional quantile function evaluated at the median value of all
the covariates. Since Xj ∼ N (0, 1), median(Xj) = 0. And so

µ(p) = QY |X
(
p|median(X)

)
= µs(0) + σs(0) · Φ−1(p) = 4Φ−1(p).

So the centered conditional quantile function is of the form

Qc
Y |X(p|x1, · · · , xq) = µs(x1) +

(
σs(x2)− 4

)
Φ−1(p).

The low rank functional components are then

f1(x1) = µs(x1) g1(p) ≡ 1

f2(x2) = σs(x2)− 4 g2(p) = Φ−1(p)

fj ≡ 0 gj ≡ 0 ∀j > 2.

Since V·’s are constraint to be norm 1, the low rank discretized components U·, V· ∈ Rm take the
following form

U1 = µs

(
QX1(p)

)
·
√
m V1 = 1m/

√
m,

U2 = σs

(
QX2(p)− 4

)
· ∥Φ−1(p)∥2 V2 =

Φ−1(p)

∥Φ−1(p)∥2
,

where QX·(p) = Φ−1(p).

A.1.0.4 Simulation Results

As mentioned earlier, we are able to get both location and scale effects here. The first dimension in
the additive low rank model is homogeneous across quantiles. This case tests our methods ability
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to obtain good quality estimates at the outer quantiles, and explores if our method has any inherent
bias at the outer quantiles. This is possible as there is limited data in the outer tails, and so the
model structure could impose bias. The second dimension of the additive low rank form has a
non-trivial g2 function. This tests our methods ability to detect non-homogeneous effects.

We present the results for the simulation study in table A.1. For each Monte Carlo replicate,
we get an estimate of the central axis µ, and the low rank components fj, gj where j = 1, · · · , q
and q ∈ {2, 4}. For the central axis, we consider the relative integrated root mean squared error
(RRMSE) over the grid of probabilites p, and present the mean and the standard deviation of the
same over the MC replicates. If µ̂j(p) ∈ Rm denotes the m-vector estimate of the central axis for
the ith replicate, then we define RRMSE of the central axis as

RRMSEi =

√
mean

[(
µ̂i(p)− µ(p)

)2]
∥µ(p)∥2

=

√
1
m

m∑
k=1

(
µ̂i(pk)− µ(pk)

)2
m∑
k=1

µ(pk)2
.

For the score and loading vector estimates over discrete probability grid p, uj = ĥj,vj = ĝj

we consider the RRMSE of the outer product - fj(p)⊗ gj(p)
′ which is an estimate for the slice of

the tensor of quantiles along the jth axis and the last axis, while all the other axes are held at their
⌋m/2 = 5th entries (corresponding to median of the variables along those dimensions). This is the
estimated surface for the conditional quantile function QY |X

(
p|Xj,X−j = median(x−j)

)
. We

evaluate the outer product of the components hj, gj instead of individually evaluating them since
they are sign invariant.

For the outer product per covariate, we compute the RRMSE of the vectorized matrix per it-
eration, similar to the definition for the central axis above. We present the average value and the
standard deviation of the estimated RRMSE measures. Note that we can do this for a small number
of Monte Carlo replicates, since each RRMSE measure in itself depends on either m (for µ), or m2

(for fj ⊗ gj) estimates. In addition to this, we access the similarity in the shape of the vectorized
matrix curves by reporting the correlation between the vectorized estimated outer products and the
underlying value. The results are summarized in the table A.1.
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µ f1 ⊗ g1 f2 ⊗ g2

RRMSE Correlation RRMSE Correlation RRMSE

q p Mean SD Mean SD Mean SD Mean SD Mean SD

1 2 0.086 0.031 0.983 0.007 0.009 0.006 0.928 0.059 0.0027 0.0030
1 4 0.064 0.026 0.952 0.014 0.005 0.004 0.887 0.031 0.0007 0.0011
2 2 0.083 0.034 0.808 0.285 0.015 0.020 0.972 0.016 0.0006 0.0006
2 4 0.064 0.026 0.714 0.098 0.043 0.007 0.815 0.094 0.0021 0.0027
3 2 0.097 0.042 0.924 0.003 0.004 0.004 0.916 0.105 0.0051 0.0113
3 4 0.056 0.015 0.896 0.005 0.001 0.001 0.888 0.049 0.0012 0.0012

Table A.1: Results of simulation study for tensor functional low rank decomposition

The average RRMSE is below 10% for the central axis, below 5% for the first dimension which
determines the mean structure, and below 0.5% for the second dimension which determines the
variance structure. The correlation is above 70% for the first dimension and above 80% for the
second dimension. Overall for the mean and the first dimension, the average RRMSE is greater
than its SD. This shows that the variance of the FLR estimates is very low, which is exactly what
we expect.
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APPENDIX B

Gaussian Process Emulator Fit

We fit the Gaussian Process Emulator to the Dogon data for varying settings. Specifically, we
explore the fit for Males with SBP as the outcome, and height (HT) and weight (WT) as the
independent variables. Note that the other 4 measures of childhood body size considered by us
throughout this document are BMI, HAZ, WAZ, and BAZ, and these are all functions of HT and
WT. Thus we can simulate data for any combination of features among males using the model
discussed here.

Recall that the emulator has four parameters, each of which may consists of a basis of po-
tentially time-varying features. In our models, we use a basis of dimension nine for the mean
parameter; the basis consists of six functions of age – a constant and linear term, along with a
radial basis of dimension five. The scale and smoothing parameters consists of a basis of dimen-
sion two, containing only the constant and linear terms in age, and the white noise parameter only
consists of a linear term in its basis. The fitted coefficients are printed in tables B.1, B.2. Note that
the number of mean parameters increase as the models condition on more independent variables.
For instance, the model P(WT|(HT,Age)) has nine instead of seven mean basis functions (refer
to table B.2). This is because we add two interactions to the basis for the mean parameter with
every additional covariate that is conditioned on in the model; the observed value of the variables
being conditioned on are interacted with the constant and linear terms of age in the original basis.
So in this case, the original model is P(HT|Age) with a mean basis of dimension seven, and the
next model P(WT|(HT,Age)) add two terms to the mean basis, observed HT and HT× Age. The
model corresponding to P(SBP|(WT,HT,Age)) will further add WT and WT×Age to the mean
basis making its dimension eleven (refer to table ).

Ten simulated copies for afew randomly sampled individuals are presented in figure B.1. As we
can see, our estimates are close to the population mean, and seem to be of good quality.
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Parameter Coef Std. Error z Pr(> |z|) Lower 95% Upper 95%

mean 1 111.08 1.27 87.52 < 10−99 111.08 111.08
mean 2 101.48 1.94 52.23 < 10−99 101.48 101.48
mean 3 0.65 1.24 0.53 0.59 0.65 0.65
mean 4 20.35 0.94 21.55 < 10−99 20.35 20.35
mean 5 25.78 0.89 28.94 < 10−99 25.78 25.78
mean 6 28.83 0.92 31.32 < 10−99 28.83 28.83
mean 7 14.35 1.01 14.22 < 10−45 14.35 14.35
scale 1 1.45 0.11 13.56 < 10−41 1.45 1.45
scale 2 0.11 0.04 3.29 0.001 0.11 0.11
smooth 1 -2.83 0.29 -9.71 < 10−21 -2.83 -2.83
smooth 2 1.53 0.09 16.82 < 10−62 1.53 1.53
unexplained 1 0.02 0.02 1.38 0.167 0.021 0.021

Table B.1: Summary table for the fitted parameters in the model corresponding to HT|Age

Parameter Coef Std. Error z Pr(> |z|) Lower 95% Upper 95%

mean 1 -0.05 1.054 0.55 0.58 -0.05 -0.052
mean 2 11.50 1.564 -5.32 < 10−6 11.50 11.50
mean 3 -0.07 0.701 -17.18 < 10−65 -0.07 -0.07
mean 4 -6.71 0.625 -23.23 < 10−99 -6.71 -6.71
mean 5 -10.96 0.601 -27.76 < 10−99 -10.96 -10.96
mean 6 -7.39 0.589 -14.80 < 10−48 -7.39 -7.39
mean 7 -7.71 0.605 -12.49 < 10−35 -7.71 -7.71
mean 8 0.35 0.006 64.94 < 10−99 0.35 0.35
mean 9 0.27 0.013 17.84 < 10−70 0.27 0.27
scale 1 -5.95 0.012 -22.97 < 10−99 -5.95 -5.96
scale 2 2.22 0.037 31.54 < 10−99 2.22 2.22
smooth 1 1.20 Inf 0.00 < 10−99 1.20 1.20
smooth 2 0.34 Inf 0.00 < 10−99 0.34 0.34
unexplained 1 0.19 0.011 21.68 < 10−99 0.19 0.19

Table B.2: Summary table for the fitted parameters in the model corresponding to WT|(HT,Age)
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Parameter Coef Std. Error z Pr(> |z|) Lower 95% Upper 95%

mean 1 104.16 0.593 175.73 < 10−99 102.993 105.317
mean 2 0.07 0.595 -0.13 0.900 -1.092 1.242
mean 3 -0.41 0.291 -1.42 0.157 -0.984 0.158
mean 4 -0.57 0.270 -2.12 0.034 -1.101 -0.043
mean 5 -0.77 0.280 -2.74 0.006 -1.319 -0.219
mean 6 -0.61 0.262 -2.34 0.012 -1.127 -0.099
mean 7 -0.44 0.240 -1.84 0.065 -0.914 0.028
mean 8 -0.23 0.011 -21.15 < 10−98 -0.255 -0.212
mean 9 -0.43 0.049 -8.79 < 10−17 -0.523 -0.332
mean 10 0.85 0.035 24.22 < 10−99 0.783 0.921
mean 11 0.79 0.142 5.57 < 10−7 0.513 1.070
scale 1 -3.45 0.544 -6.35 < 10−9 -4.521 -2.387
scale 2 1.67 0.163 10.26 < 10−23 1.355 1.995
smooth 1 0.81 Inf 0.00 1.000 -Inf Inf
smooth 2 7.24 0.980 7.39 < 10−12 5.321 9.162
unexplained 1 1.95 0.013 149.67 < 10−99 1.925 1.976

Table B.3: Summary table for the fitted parameters in the model corresponding to
SBP|(WT,HT,Age)
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Figure B.1: Simulated datasets for afew individuals
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APPENDIX C

Moments Standard Error

Some primary simulation results on marginal SE are presented below. We obtain SE estimates for
the 4 kinds of marginal covariances as mentioned in section 5.5.3, again corresponding to s = 0.2

and t = 0.6, using 200 MC replicates. The relative SE is around 0.5%.

(a) (b)

(c) (d)

Figure C.1: SE estimates of the four kinds of marginal covariance estimates.
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