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ABSTRACT

This dissertation contains three essays on information economics that aim to understand

the value and cost of information in the context of individual decision making and strategic

interaction.

Chapter 1 investigates how a sender, by providing free information to a perfectly rational

receiver, can manipulate the receiver’s learning. Formally, I employ a Bayesian persuasion

model with the additional assumption that the receiver has costly opportunities to acquire

further information after receiving the information from the sender. It seems that the sender

should make the receiver end up knowing more than she would otherwise (I call this “encour-

agement”). However, as is shown in the paper, the sender may also make the receiver end up

knowing less (I call this “deterrence”) or knowing different things than she would otherwise

(I call this “diversion”). I identify the necessary condition for the feasibility of these manipu-

lations, where two properties of the receiver’s information acquisition cost function, that the

recent literature on information acquisition calls Sequential Learning Proofness (SLP) and

the more restrictive Indifference to Sequential Learning (ISL), play a vital role.

Chapter 2, which is joint work with Tilman Börgers, proposes a general theory of dom-

inance among choices that encompasses strict and weak dominance among strategies in

games, Blackwell dominance among experiments, and first or second order stochastic domi-

nance among monetary lotteries. One choice dominates another if in a variety of situations

the former choice yields higher expected utility than the latter. We then investigate whether,

in a finite set of possible choices, all undominated choices are optimal in some situation. We

present a formal framework in which the answer to this question is positive, and we show

that within this framework the set of undominated choices is the smallest set to which the

decision maker can restrict attention ex ante without running the risk of not having an op-

timal choice in the particular situation in which she finds herself. For this result it is crucial

that the dominating alternatives are allowed to be convex combinations (in games: mixed

strategies). A detailed analysis of dominance in game theory, Blackwell dominance, and first

or second order stochastic dominance in one common framework also allows us to compare

the properties of these concepts, and to obtain insights into why certain versions of our result

apply only to some, but not all of these concepts.
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Chapter 3, which is joint work with Tilman Börgers, investigates which joint distributions

of two signals are not Blackwell dominated among all the joint distributions with fixed

marginal distributions. For a special case with just two states and two signal realizations per

signal, we provide a complete characterization of joint distributions that are not Blackwell

dominated by any single joint distribution and the counterpart for any convex combination

of joint distributions. For the general case, we present a necessary condition for a joint

distribution not being Blackwell dominated by a convex combination of joint distributions.

In all cases, the conditionally independent joint distribution is Blackwell dominated.

ix



CHAPTER 1

Deterrence, Diversion, and Encouragement: How

Freely Provided Information May Distort Learning

1.1 Introduction

When one sends information to another, the receiver can sometimes carry out further learning

at some cost. Here are two examples. First, firms often publicly disclose some information

through websites, annual reports, press releases, and fact books. For instance, oil companies

reveal the test flow rates for new exploration wells. Their competitors can acquire further

information using some tactics. For instance, they can hire competitive intelligence com-

panies like Aqute, whose website claims, “Our original research helps you...learn about your

competitors’ wins, losses, ambitions, and concerns. You can understand the current reality

inside your key competitors, giving you the time and the knowledge to successfully outflank

your rivals.” Second, in some juridical systems, after the prosecutors present the evidence,

judges can conduct further investigation. For instance, Article 283 of the code of criminal

procedure of France (as of 2006) says, “The president1 may order any investigatory step he

deems useful if the investigations appear to him to be incomplete, or if further matters have

come to light since it was concluded. Such steps are taken either by the president, by one

of his assessors, or by an investigating judge he delegates for this purpose.” Article 196 of

the criminal procedure law of China says, “During a court hearing, if the collegial panel

has doubts about the evidence, it may announce an adjournment, in order to carry out an

investigation to verify the evidence.”

These examples motivate my research question: how can a sender, by providing free in-

formation to a perfectly rational receiver, manipulate the receiver’s learning (change the

receiver’s learning outcome)? Formally, I employ a Bayesian persuasion model with the ad-

ditional assumption that the receiver has costly opportunities to acquire further information

1“President” refers to the president of the court.
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after receiving the information from the sender. When the sender reveals no information,

the receiver learns by herself and ends up with a learning outcome. When the sender reveals

some information, the receiver learns further by herself and ends up with another learning

outcome. I investigate the treatment effect of information by comparing these two learning

outcomes. It seems that the latter should be strictly more Blackwell informative (Blackwell

(1951), Blackwell (1953))2 than the former (the receiver ends up knowing more than she

would otherwise), and I call this “encouragement”. However, as is shown in the paper, the

latter can be strictly less Blackwell informative than the former (the receiver ends up know-

ing less than she would otherwise), and I call this “deterrence”. The two learning outcomes

may also be Blackwell incomparable (the receiver ends up knowing different things than she

would otherwise), and I call this “diversion”. I also call these cases collectively “distortion.”

So surprisingly, more information does not necessarily make one more informed. Moreover,

even when the sender and receiver’s preferences are diametrically opposed, the sender may

benefit from revealing free information to the receiver.

Then a relevant question is: under what condition are these manipulations feasible? I find

that certain features of the receiver’s information cost function are crucial for the sender’s

ability to manipulate the receiver’s learning. Two properties that the recent literature on

information acquisition calls Sequential Learning Proofness (SLP) and the more restrictive

Indifference to Sequential Learning (ISL) play a vital role. I identify the necessary condition

for the feasibility of deterrence, diversion, and encouragement. When the cost function

satisfies ISL, deterrence is infeasible. With Uniformly Posterior Separable cost functions, if

there are two actions and two states, then diversion is infeasible. When the cost function

satisfies SLP, and the sender reveals all the information that the receiver would learn if the

sender revealed no information, encouragement is infeasible.

Related Literature.—The Bayesian persuasion framework has been extended to include

that the sender endogenously acquires costly information (Gentzkow and Kamenica, 2014)

and that the receiver has exogenous information (Kolotilin et al., 2017). My model enables

a receiver to adjust the information sent by the sender endogenously. The literature with

this framework includes Bloedel and Segal (2021), Lipnowski et al. (2020), Lipnowski et al.

(2022), Wei (2021), Matysková and Montes (2021), and Bizzotto et al. (2020). In Bloedel

and Segal (2021), Lipnowski et al. (2020), Lipnowski et al. (2022), and Wei (2021), the

receiver cannot digest all the information sent by the sender. In other words, the sender sets

an upper bound on the receiver’s information. In Matysková and Montes (2021), Bizzotto

et al. (2020), and my work, the receiver can digest all the information sent by the sender

2A signal is strictly more Blackwell informative than another signal if its resulting payoff is higher or
equal for any decision problem and higher for some decision problem.
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and can learn even more. In other words, the sender sets a lower bound on the receiver’s

information. But the research question of Matysková and Montes (2021) and Bizzotto et al.

(2020) is whether the receiver always benefits from a better learning technology, which is

different from the present study. In addition, they only consider specific cost functions while

I consider general cost functions.

The present study is also related to the literature on rational inattention (Sims, 2003).

Single-agent rational inattention decision problems with a Uniformly Posterior Separable

(UPS) cost function have been studied by Matějka and McKay (2015) and Caplin and Dean

(2013). This paper studies the counterpart with a partition cost function (non-UPS). There

is also literature considering rational inattention in a strategic context: Yang (2012) studies

a coordination game in which both players can costly acquire information; Martin (2017)

and Ravid (2019) study seller-buyer games in which the buyer can costly acquire information

but the seller does not directly send signals.

Morris and Strack (2019), Hébert and Woodford (2021), and Bloedel and Zhong (2021)

focus on the sequential sampling foundations for cost of information. This paper investi-

gates the strategic implication of an information cost with some features related to such a

foundation.

The rest of the paper is organized as follows. Section 1.2 introduces the model. Section 1.3

formally defines deterrence, diversion, and encouragement. Section 1.4 discusses the features

of information acquisition cost functions (SLP and ISL). Section 1.5 investigates the feasi-

bility of distortion in general, and then Section 1.6, Section 1.7, and Section 1.8 investigate

the feasibility of deterrence, diversion, and encouragement respectively. Finally, Section 1.9

discusses some additional points and concludes.

1.2 Model

Assume there are two players, a sender (he) and a receiver (she). The set of states of the

world is Ω = {ω1, ..., ωn}. Both players share the same prior µ ∈ ∆(Ω), where ∆ (Ω) indicates

the set of all probability distributions on Ω. The set of available actions is A = {a1, ..., am}.
The receiver’s gross utility is u (a, ω), while that of the sender is v (a, ω). Assume the values

of the gross utilities are all finite. In addition to her gross utility, the receiver incurs a cost

of information acquisition, which I will later specify in detail.

The timing of the game is as follows. First, the sender commits to a signal with finite

realizations and sends the realizations to the receiver, inducing her to form interim beliefs.

Unlike in the classical Bayesian persuasion model, the receiver can then choose whether to

costly acquire another signal. Her choice of the additional signal can be contingent on the

3



realizations of the signal from the sender. After observing the realizations of the new signal

and forming posterior beliefs, the receiver takes action.

Now I reformulate the sender’s strategies and the receiver’s information acquisition strate-

gies to simplify the problem. The distribution of the receiver’s interim beliefs induced by

the signal from the sender determines the receiver’s subsequent learning choices; thus, it

determines the final joint distribution of the receiver’s actions and the states, which matters

for the sender’s payoff. So from the sender’s perspective, any signals that induce the same

distribution of the receiver’s interim beliefs must imply the same payoffs. To utilize this idea,

I introduce some notation. Denote the set of distribution over beliefs by ∆ (∆ (Ω)) and a

generic element of it by I. Let ≿B denote “weakly more Blackwell informative than3,” and

B (I) denote the set of distributions over beliefs that are weakly more Blackwell informative

than I. Note that all the elements in B (I) have the same expected value with I. Use δγ

to denote the degenerated distribution over beliefs at γ ∈ ∆(Ω). Specifically, let I∅ ≡ δµ.

Therefore, the sender’s choice of the signal is equivalent to the choice of IS ∈ B (I∅).

For the receiver, given the sender chooses IS, observing the realization of the signal sent

by the sender implies the receiver updates her belief to ξ ∈ supp IS, where supp IS indicates

the support of IS. Then, similar to the analysis for the sender, for each ξ, the receiver’s

learning is equivalent to choosing a distribution over beliefs in B (δξ). So the receiver’s

learning strategy given IS can be characterized by a family of conditional distribution over

beliefs, that is, L : supp IS → ∆(∆ (Ω)). Note IS and L imply an unconditional distribution

over the posterior beliefs ISR ∈ B (IS).

In sum, the timing of the game is represented by Figure 1.1. For simplicity, this graph

only illustrates the two-state case. A point on the line segment represents a belief. First,

the sender chooses IS ∈ B (I∅). Then the receiver chooses L, which together with IS implies

ISR ∈ B (IS). Last, the receiver takes action for each γ ∈ supp ISR.

3A signal is weakly more Blackwell informative than another signal if its resulting payoff is higher or equal
for any decision problem.
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ω1 ω2

ω1 ω2

ω1 ω2

µ

ξ1 ξ2

γ1 γ2 γ3

I∅

IS ∈ B (I∅)

L (ξ2)

ISR ∈ B (IS)

sender

receiver

L (ξ1)

receiver

a1 a2 a3

Figure 1.1: The timing of the game

Next, I analyze the receiver’s optimization problem given that the sender reveals IS. We

know that for a profit maximization problem where the firm chooses the factors of production,

it can be solved in two steps: first, for a specific quantity, choose the factors of production to

minimize the cost; second, choose an optimal quantity. I can utilize a similar method here.

First, consider a specific unconditional distribution over beliefs ISR ∈ B (IS). On the one

hand, for every γ ∈ supp ISR, the receiver chooses the action to solve the following problem:

max
a∈A

∫
Ω

u (a, ω) dγ (ω)

Denote the resulting indirect gross utility function of γ as û (γ). Then, the corresponding

indirect gross utility function of ISR, denoted by U , is

U (ISR) ≡
∫
∆(Ω)

û (γ) dISR (γ)

On the other hand, there may be more than one L that leads to ISR. The receiver chooses

the one that minimizes the expected learning cost. The resulting minimal expected learning

cost for the receiver from IS to ISR is denoted by C (IS, ISR). I allow its value to be infinity,

which means it is infeasible to learn to the degree of ISR starting from IS
4.

Second, the receiver chooses ISR to solve the following problem:

max
ISR∈B(IS)

U (ISR)− C (IS, ISR)

I denote the set of solutions to the above problem as BR (IS).

4If ISR is strictly less Blackwell informative than IS or ISR is Blackwell incomparable with IS , then
C (IS , ISR) must be infinity. If ISR is weakly more Blackwell informative than IS , then C (IS , ISR) may be
infinity.
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Given the receiver’s best response for all IS, the sender chooses I
∗
S to maximize his payoff.

In sum, the equilibrium concept is perfect Bayesian equilibrium (henceforth referred to as

equilibrium for short): that is, beliefs are updated using Bayes’ rule, and each player chooses

strategies to maximize his or her expected payoff given the other player’s strategy and his

or her beliefs at the corresponding stage of the game.

As indicated above, the equilibrium involves the receiver’s best response and the sender’s

optimal choice. These two ingredients are relevant for the following two questions, respec-

tively. (i) The receiver’s best response addresses the question of whether it is feasible for

the sender to distort the learning outcome of the receiver by revealing information. (ii) The

sender’s optimal choice addresses a further question of whether it is optimal for the sender to

exert a distortion. In this paper, I mainly focus on the first question and address the second

question whenever relevant.

1.3 Three Types of Manipulations

Now I investigate how the receiver’s learning outcome varies with the freely provided infor-

mation by comparing the case where the sender reveals no information and the case where

the sender reveals some information. The receiver’s best response correspondence BR is the

building block of the following analysis. Let

P ≡
{
(I∅, IR, IS, ISR) ∈ (B (I∅))

4 |IR ∈ BR (I∅) and ISR ∈ BR (IS)
}

where (B (I∅))
4 represents the quaternary Cartesian power of B (I∅).

Definition 1.1 (Distortion). (I∅, IR, IS, ISR) ∈ P is a distortion if ISR /∈ BR (I∅).

IR indicates the distribution over beliefs the receiver ends up with if the sender reveals no

information, while ISR indicates the counterpart when the sender reveals information. So

distortion means the sender guides the receiver to a learning outcome that she would not

reach without this additional information. According to the relationship between ISR and

IR, I can further divide distortions into three types.

Definition 1.2 (Deterrence). (I∅, IR, IS, ISR) is a deterrence if it is a distortion and ISR ≺B

IR.

where ≺B means “strictly less Blackwell informative than.”

Definition 1.3 (Diversion). (I∅, IR, IS, ISR) is a diversion if it is a distortion and ISR
�
�≺≈
≻B IR.

where
�
�≺≈
≻B means “Blackwell incomparable with.”
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Definition 1.4 (Encouragement). (I∅, IR, IS, ISR) is an encouragement if it is a distortion

and ISR ≻B IR.

where ≻B means “strictly more Blackwell informative than.” The deterrence exists if there is

a signal such that, in response to it, the receiver ends up knowing less than what she would

learn if she did not get any signal. The counterparts for the diversion and encouragement

are knowing differently and more, respectively. Note that for a given best response corre-

spondence of the receiver, different types of distortion can exist simultaneously. That is,

(I∅, IR, IS, ISR) is one type of distortion, while (I∅, IR, I
′
S, I

′
SR) is another type of distortion.

The definitions of deterrence and diversion immediately imply the following results.

Lemma 1.1. If (I∅, IR, IS, ISR) is a deterrence, then IS ≺B IR.

Proof. By Definition 1.2, ISR ≺B IR. ISR ∈ BR (IS) implies IS ≾B ISR, where ≾B denotes

“weakly less Blackwell informative than.” So IS ≺B IR.

Lemma 1.1 means in a deterrence, the information revealed by the sender must be strictly

less Blackwell informative than what the receiver would acquire if she did not get any signal.

Lemma 1.2. If (I∅, IR, IS, ISR) is a diversion, then IS ≺B IR or IS
�
�≺≈
≻B IR.

Proof. Suppose IS ≿B IR. ISR ∈ BR (IS) implies ISR ≿B IS. Then ISR ≿B IR, which

contradicts Definition 1.3. So IS ≺B IR or IS
�
�≺≈
≻B IR.

Lemma 1.2 means in a diversion, the information revealed by the sender must be strictly less

Blackwell informative than or Blackwell incomparable with what the receiver would acquire if

she did not get any signal. There is not a similar constraint for encouragement. By definition,

the existence of the distortions only depends on the best response of the receiver, and I am

interested in how it is affected by the features of the cost function, which is a primitive

of the receiver’s optimization problem. In sum, the existence of a deterrence, diversion, or

encouragement implies it is feasible for the sender to distort the learning outcome of the

receiver by revealing information.

Accordingly, when (I∅, IR, I
∗
S, ISR) is a deterrence/diversion/encouragement, it implies a

deterrence/diversion/encouragement equilibrium.

1.4 The Features of the Information Acquisition Cost Func-

tions

The features of the cost function C, which stems from the receiver’s optimization prob-

lem, play an important role in distortion. Consider the following features of cost functions
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proposed by Bloedel and Zhong (2021).

Definition 1.5 (Sequential Learning Proofness, SLP). A cost function C satisfies Sequential

Learning Proofness if

C (I, I ′′) ⩽ C (I, I ′) + C (I ′, I ′′)

for all I, I ′, I ′′ ∈ B (I∅) such that I ′′ ≿B I ′ ≿B I.

One may be tempted to interpret this feature as “to learn in one shot is weakly less costly

than to learn sequentially,”but this is not completely right. In this interpretation, C (I ′, I ′′) is

treated as the subsequent cost to I ′′ after the receiver learns by herself to reach I ′. But in my

definition of the cost function, C (I ′, I ′′) refers to the cost of reaching I ′′ for the receiver when

the sender guides her to I ′. Example 1.3 below illustrates the difference between these two

costs. Under the additional condition that the subsequent cost of learning at a distribution

over beliefs is independent of how the receiver arrives at it, this interpretation works. But I

would also like to include the case where this condition does not hold in the paper, so this

interpretation is only partially correct. If this condition holds and thus C (I ′, I ′′) can also be

interpreted as the subsequent cost to I ′′ after the receiver learns by herself to reach I, then

as suggested in Bloedel and Zhong (2021), every cost function should satisfy this feature.

Otherwise, the receiver can find a sequential path from I to I ′′ with a lower cost, which

contradicts the notion of C (I, I ′′) being the minimum cost of reaching I ′′ from I.

Some cost functions may even have the following stronger feature.

Definition 1.6 (Indifference to Sequential Learning, ISL). A cost function C satisfies Indif-

ference to Sequential Learning if

C (I, I ′′) = C (I, I ′) + C (I ′, I ′′)

for all I, I ′, I ′′ ∈ B (I∅) such that I ′′ ≿B I ′ ≿B I.

That is, the inequality in SLP is always binding. Again, if the above condition holds, this

feature can be interpreted as “to learn in one shot is as costly as to learn sequentialy”. And

thus all different ways of learning sequentially are equally costly. In other words, the cost of

information acquisition is path-independent.

Based on these two features, all the cost functions can be divided into three types: ISL

cost functions, non-ISL but SLP cost functions, and non-SLP cost functions. Below I present

one example for each type of cost function.

Example 1.1 (A cost function that satisfies ISL).
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Following the convention in the literature, I start with another form of cost function

C̃ (ξ, L) with ξ ∈ ∆(Ω) and L (ξ) ∈ B (δξ), which represents the cost from ξ to L (ξ). C̃ is

uniformly posterior separable (UPS, Caplin et al. (2019b)) if

C̃ (ξ, L (ξ)) = EL(ξ) (G (γ))−G (ξ)

where γ ∈ supp L (ξ) and G (·) is strictly convex. A notable example is the entropy cost

function, with a special G, that is, GE (γ) =
n∑

j=1

γj ln γj and extended to boundary points

using the limit condition lim
γj→0

γj ln γj = 0, where γj refers to the jth entry of the belief (the

probability of ωj). This is the most commonly used cost function in the literature of rational

inattention. Then I derive the corresponding cost function in the format of this paper. Let

each ξ ∈ supp I correspond to a conditional distribution L (ξ) over beliefs. I and L imply

an unconditional distribution I ′ over the beliefs. This implies

C (I, I ′) = EI

(
C̃ (ξ, L (ξ))

)
= EI

(
EL(ξ) (G (γ))−G (ξ)

)
= EI

(
EL(ξ) (G (γ))

)
− EI (G (ξ))

= EI′ (G (γ))− EI (G (γ))

Now I check whether a UPS cost function satisfies ISL.

C (I, I ′′) = EI′′ (G (γ))− EI (G (γ))

= EI′ (G (γ))− EI (G (γ)) + EI′′ (G (γ))− EI′ (G (γ))

= C (I, I ′) + C (I ′, I ′′)

So a UPS cost function satisfies ISL. ■

Example 1.2 (A cost function that does not satisfy ISL but satisfies SLP).

Assume there are three states and p1 > p2 > p3 > 0 where pi is the probability of ωi.

The receiver can choose any subset of her current information set and pay a fixed cost of c

to know whether the true state is in this subset or not. One can think of this as asking a

“yes or no” question. She can continue paying the cost for further refinement for as many

times as she wants. In other words, she can conduct sequential binary partitions. Next, I

illustrate that the cost function derived from this learning technology satisfies SLP but does

not satisfy ISL. Let I∅ = {{ω1, ω2, ω3}} and I ′′′ = {{ω1} , {ω2} , {ω3}}. If Ĩ is not a partition

of {ω1, ω2, ω3}, then C
(
I∅, Ĩ

)
= +∞. Let I = {{ω1} , {ω2, ω3}}, I ′ = {{ω2} , {ω1, ω3}},
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I ′′ = {{ω3} , {ω1, ω2}}. There are three feasible ways of reaching I ′′′ from I∅, as illustrated

in Figure 1.2.

{ω1, ω2, ω3}

{ω1} {ω2, ω3}

{ω2} {ω3}
cp1 + 2cp2 + 2cp3

{ω1, ω2, ω3}

{ω2} {ω1, ω3}

{ω1} {ω3}
2cp1 + cp2 + 2cp3

{ω1, ω2, ω3}

{ω3} {ω1, ω2}

{ω1} {ω2}
2cp1 + 2cp2 + cp3

Figure 1.2: Three ways from {{ω1, ω2, ω3}} to {{ω1} , {ω2} , {ω3}}

For the first alternative, the receiver first pays the cost to learn whether the true state is

ω1 or not. If it is ω1, she stops learning; if it is not, she pays the cost again to distinguish

ω2 and ω3. It can be treated as going from I∅ via I to I ′′′. Since the subsequent cost of

learning at I is independent of how the receiver arrives at it, the total expected cost is equal

to C (I∅, I) +C (I, I ′′′), where C (I∅, I) = c and C (I, I ′′′) = c (p2 + p3). The analyses of the

other two alternatives are similar. So

C (I∅, I
′′′) = min

Ĩ∈{I,I′,I′′}
C
(
I∅, Ĩ

)
+ C

(
Ĩ , I ′′′

)
It can be verified that I is optimal. So

C (I∅, I
′′′) = C (I∅, I) + C (I, I ′′′) (1.1)

Note C (I∅, I
′) = C (I∅, I

′′) = c, C (I ′, I ′′′) = c (p1 + p3) and C (I ′′, I ′′′) = c (p1 + p2). Then

C (I∅, I
′′′) < C (I∅, I

′) + C (I ′, I ′′′) (1.2)

and

C (I∅, I
′′′) < C (I∅, I

′′) + C (I ′′, I ′′′) (1.3)

(1.1), (1.2), and (1.3) indicate this partition cost function satisfies SLP but does not satisfy

ISL. ■
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Example 1.3 (A cost function that does not satisfy SLP).

Following Bizzotto et al. (2020), assume there are two states, and the receiver can perform

a binary test at a fixed cost of c′. The precision of this test is fixed, that is, P (s = ω|ω) =
e > 1

2
, where P is the probability and s is the result of the test. Suppose the receiver can

only access the test once. Now I illustrate that this cost function does not satisfy SLP.

ω1 ω2

Figure 1.3: Non-SLP cost function

In Figure 1.3, a point on the line segment represents a belief. Let the prior be 50-50, which

is represented by the black point. (It is half black half blue, which means a black point

overlaps with a blue point.) If the receiver accesses the test at the prior, she ends up with

a distribution over beliefs represented by the two red points. Denote it by I ′. If the sender

reveals I ′ and the receiver accesses the test at each realization of I ′, then the receiver ends up

with a distribution over beliefs represented by the three blue points. Denote it by I ′′. This

implies C(I∅, I
′) = c′, C(I ′, I ′′) = c′, and C(I∅, I

′′) = +∞. The last equation is because two

tests are required to reach I ′′ from I∅, but the receiver can only access it once. Therefore,

C (I∅, I
′′) > C (I∅, I

′) + C (I ′, I ′′)

which violates SLP. Finally, I clarify a possible confusion. When the sender reveals I ′ to the

receiver, the receiver can still access the test. But when the receiver learns to I ′ by herself,

she can no longer access the test. As a result, the cost from I ′ to I ′′ is +∞. So if one takes

the latter as C (I ′, I ′′), which is inconsistent with my definition, she may argue SLP holds in

this case by mistake. ■

In the following sections, I investigate how the features of the cost functions affect the

feasibility of distortion.

1.5 Distortion

First I establish some results regarding distortion.

Note SLP is characterized by a triangle inequality. Now I consider a special case of SLP

where the inequality is binding locally. That is, ∃I∅, IS, IR ∈ B (I∅) such that C (I∅, IS) +

C (IS, IR) = C (I∅, IR) with IR ≿B IS ≿B I∅.
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Lemma 1.3. Suppose the cost function C satisfies Sequential Learning Proofness. If

(I∅, IR, IS, ISR) satisfies IS ≾B IR and C (I∅, IS) + C (IS, IR) = C (I∅, IR), then it is not

a distortion.

Roughly speaking, this result means, with an SLP cost function, when the sender reveals a

specific part (the part making the SLP constraint binding) of the information that the receiver

would learn if the sender revealed no information, the receiver accepts the message and learns

exactly the same thing as before. Intuitively, the message sent by the sender saves weakly

more cost for the original optimal learning outcome than other learning outcome. Therefore,

the original optimal learning outcome remains optimal. So distortion is infeasible.

Lemma 1.3 implies that a binding SLP constraint makes the distortion infeasible. Since

the SLP constraint is binding globally for an ISL cost function, the following result applies.

Lemma 1.4. Suppose the cost function C satisfies Indifference to Sequential Learning. If

(I∅, IR, IS, ISR) satisfies IS ≾B IR, then it is not a distortion.

Informally, this result means, with an ISL cost function, when the sender reveals any part

of the information that the receiver would learn if the sender revealed no information, the

receiver accepts the message and learns exactly the same thing as before.

1.6 Deterrence

In this section, first I present a condition under which deterrence is impossible. Then I

demonstrate an example where the condition does not hold and thus deterrence is possible.

Observe that Lemma 1.1 and Lemma 1.4 imply the following result.

Theorem 1.1. If the cost function C satisfies Indifference to Sequential Learning, then de-

terrence is infeasible.

The reason why it is true is as follows. Lemma 1.1 indicates, to make the receiver learn

less, the sender must reveal less information than what the receiver would learn if the sender

revealed no information. But Lemma 1.4 suggests, with an ISL cost function, this kind of

information cannot induce any distortion, including deterrence. As a result, deterrence is

impossible when the cost function satisfies ISL.

On the other hand, if the cost function does not satisfy ISL, then deterrence is possible.

Here is an example.

Example 1.4 (Deterrence with a non-ISL but SLP cost function).
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Suppose there are three states, p1 = p = 0.8, p2 = p3 = q = 0.1. So there is one likely

state and two unlikely states, and the two unlikely states are of the same probability. Assume

there are three available actions, and u (ai, ωj) = 1 when i = j, u (ai, ωj) = 0 when i ̸= j.

The cost is the partition cost illustrated in Example 1.2 and c = 0.15.

When the sender reveals no information, one can verify that the receiver’s unique optimal

strategy is as follows. The receiver first pays the cost to learn whether the true state is the

likely state or not, because this minimizes the probability of paying the cost again. If the

partition indicates it is not the likely state, given that the remaining two states are of the

same probability, she has a strong enough incentive to further distinguish between the two.

This strategy is shown in Figure 1.4, where the big black dot indicates the likely state, while

the small grey dots indicate the unlikely states. As a result, the receiver learns the states

perfectly, that is, IR = {{ω1} , {ω2} , {ω3}}.

Figure 1.4: The receiver’s optimal learning strategy when the sender reveals no information

Next, I investigate the receiver’s optimal strategy when IS = {{ω2} , {ω1, ω3}}. Given

that c > q
p+q

, this implies ISR = IS. That is, as the likely state is much more probable than

the unlikely state, the receiver does not learn further and directly guesses the likely state.

As IR ≻B ISR, (I∅, IR, IS, ISR) is a deterrence. The intuition is that the order of learning

affects the extent of learning (this is because the partition cost does not satisfy ISL). So

the sender can make the receiver end up knowing less by disrupting the receiver’s order of

learning.

It is shown above that deterrence is feasible. Furthermore, assume the sender and re-

ceiver’s utility functions are “zero-sum”, that is, v (ai, ω1) = −u (ai, ωj), ∀ai, ωj. One can

verify that the sender has a higher payoff when revealing IS than revealing nothing. So

surprisingly, this example implies that even when the interests of the sender and the receiver

are diametrically opposite, revealing information may be better than withholding it for the

sender. ■
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1.7 Diversion

In this section, first I present a condition under which diversion is impossible. Then I

demonstrate examples where the condition does not hold and thus diversion is possible.

I focus on UPS cost. The analysis of the receiver’s optimal strategy is as follows, which

is discussed in Caplin and Dean (2013). Define the net utility function for action ai as

Nai (γ) =
n∑

j=1

γju (ai, ωj)−G (γ)

Given an interim belief ξ, it can be shown that the receiver solves the following optimization

problem:

max
L(ξ)∈B(δξ),σ:∆(Ω)→A

EL(ξ)

(
Nσ(γ) (γ)

)
where L (ξ) specifies the learning strategy, that is, a distribution over posteriors; σ specifies

the action strategy, that is, which action to take at each posterior. It can be shown that

in the optimal strategy, σ must be an injection. In other words, any action can be taken

at no more than one posterior in the optimal strategy. The geometric approach to finding

the optimal solution is to figure out the posteriors and actions whose associated net utility

functions support the highest chord above the interim belief. This concavification method is

familiar from Kamenica and Gentzkow (2011). Here is an example.

Example 1.5 (Receiver’s optimal strategies with a UPS cost function).

This example is illustrated in Figure 1.5. There are two states and two actions. The two

red points characterize an interval. When the interim belief is in the interior of this interval

(e.g., the left black point), the unique optimal strategy is to learn, and the two red points

are the resulting posteriors. At the left red point, a2 is taken. At the right red point, a1 is

taken. When the interim belief is outside the interval or on the boundary (e.g., the right

black point), the unique optimal strategy is not to learn and to take a1.
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Na2

Na1

γ2

Na

Figure 1.5: Receiver’s optimal strategies with a UPS cost function when there are two states
and two actions.

■

Based on the formulation of the receiver’s optimal strategy, here is a result about the

impossibility of diversion.

Theorem 1.2. Suppose the cost function C is Uniformly Posterior Separable. If there are

two states and two actions, then diversion is infeasible.

The reasoning of this result can be seen through Figure 1.5. When the prior belief is outside

the interval or on the boundary, IR = I∅ and thus ISR ≿B IS ≿B IR, which violates the

definition of diversion. When the prior belief is within the interval, the support of IR are the

two red points. No matter what IS is, all the elements in the support of ISR must be outside

the interval or on the boundary. As a result, ISR ≿B IR, which violates the definition of

diversion. In sum, diversion is infeasible.

But by relaxing the above conditions, diversion exists with the UPS cost. First, I introduce

a lemma that can facilitate the judgment of diversion.

Lemma 1.5. ∀I, I ′ ∈ B (I∅), if supp I ⊈ conv supp I ′ and supp I ′ ⊈ conv supp I, then I
�
�
≺
≈
≻B

I ′,
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where conv means the convex hull. This result is from Wu (2018). It indicates if the convex

hull of I and that of I ′ are not nested, then I and I ′ are Blackwell incomparable.

On the one hand, when there are two states and three actions, diversion is feasible with

the UPS cost. Here is an example.

Example 1.6 (Diversion with a UPS cost function when there are two states and three

actions).

This example is illustrated in Figure 1.6. The line touches three net utility functions

simultaneously. At the prior belief denoted by the black point (I∅), one of the optimal

strategies for the receiver is to choose the two red points (IR). When the sender reveals the

blue points (IS), one of the optimal strategies of the receiver is not to learn (so ISR is the

same as IS). According to Lemma 1.5, IR and ISR are Blackwell incomparable. So this is a

diversion. The intuition is that with two states and two actions, when the belief is between

the two red points, the receiver learns. But now I add a safe action (a3) whose payoff does

not vary severely with the states. As a result, this action is optimal when the probabilities

of the two states are close. So it is feasible for the receiver not to learn even when the belief

is between the two red points, which supports the diversion.

Na1 Na2Na3

γ2

Na

Figure 1.6: Diversion with a UPS cost function when there are two states and three actions

■
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On the other hand, when there are three states and two actions, diversion is also feasible

with the UPS cost. Here is an example.

Example 1.7 (Diversion with a UPS cost function when there are three states and two

actions).

Suppose u (a1, ω1) = 2, u (a2, ω1) = 0, u (a1, ω2) = 0, u (a2, ω2) = 1, u (a1, ω3) = 1, and

u (a2, ω3) = 0; the cost is entropy cost; a diversion can occur as illustrated in Figure 1.7.

The prior belief is the black point, and IR is denoted by the two red points. IS is the same

as ISR, which is denoted by the two blue points. According to Lemma 1.5, IR and ISR are

Blackwell incomparable. So this is a diversion. The intuition is that, similar to the case of

two states and two actions, the receiver learns when the interim belief is in the middle, but

the boundary is a line rather than a point. This additional dimension enables the diversion.

ω1

ω2 ω3

Figure 1.7: Diversion with a UPS cost function when there are three states and two actions

■

Note UPS cost functions satisfy ISL. So unlike deterrence, the ISL cost function is com-

patible with diversion.

There also exists a diversion equilibrium. Here is an example.

Example 1.8 (Diversion equilibrium).
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Suppose a headhunter, as a sender, tries to convince a recruiting firm, who is the receiver,

that a candidate is competent. There are three states: The candidate being good at tech-

nology, being good at sales, and being incompetent. There are three actions for the firm:

to hire the candidate as a technician, to hire the candidate as a salesperson, and to not to

hire. If its action matches the state, it gets a payoff of 1. Otherwise, it gets 0. As for the

headhunter, when the firm hires the candidate as either a technician or a salesperson, he gets

a payoff of 1 (commission). When the firm does not hire, he gets 0. The headhunter and

the firm share a prior belief, which is a uniform distribution over three states. The firm’s

information acquisition cost is entropy cost.

good at technology

good at sales incompetent

Figure 1.8: Firm’s optimal strategies

The firm’s optimal strategy is characterized in Figure 1.8 following Caplin et al. (2019a).

When its interim belief (the black point) is in the dark gray region, the firm reaches the

posterior beliefs represented by the three red points. This means that when it is not quite

sure about the true state, it learns about all the states partially. When its interim belief is

in the medium gray region, the firm reaches the posterior beliefs represented by the two red

points. This means that when it is fairly certain that the true state is not one of the states,

it learns more about the other two states. When its interim belief is in the light gray region,

which means it believes the true state is very likely to be one specific state, the firm does

not learn.

When the headhunter reveals no information, the firm acquires a signal with three real-

izations. In each of the realizations, the firm believes all three states are possible, but one

of them is more probable than the other two, so it takes the action matching that state.

As a result, the firm may make three types of mistakes: not to hire when the candidate
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is competent, to assign the wrong position (for example, hire a candidate who is good at

technology as a salesperson), to hire when the candidate is incompetent.

good at technology

good at sales incompetent

hire as a technician

hire as a salesperson reject

prior

Figure 1.9: The firm’s best response when the headhunter reveals no information

On the other hand, the optimal signal for the headhunter is as follows: he tailors the

evidence such that when the candidate is incompetent, the report suggests the candidate

is incompetent, good at technology, or good at sales; when the candidate is good at some

aspect, the report suggests the candidate is good at that aspect. So this signal also has three

realizations. The firm optimally chooses not to learn further after receiving this signal. In

one of the realizations, the firm knows for sure that the candidate is incompetent and it

rejects the candidate. So it never misses a competent candidate. In another realization, the

firm believes the candidate is either good at technology or incompetent, and the former is

more probable. So it hires the candidate as a technician. Note the firm knows for sure that

the candidate is not good at sales. So it never assigns the wrong position. However, it hires

an incompetent candidate more often. In sum, by providing free information, the headhunter

makes the firm make two mistakes less often but one mistake more often. That’s why this is

a diversion. The intuition is that, when the firm hires a candidate, the headhunter helps the

firm to make the mistake of assigning the wrong position less often, in exchange for the firm

tolerating more mistake of hiring an incompetent candidate. This is like a “cross subsidy”.
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good at technology

good at sales incompetent
reject

hire as a salesperson

hire as a technician

prior

Figure 1.10: The headhunter’s optimal signal

■

1.8 Encouragement

In this section, first I present a condition under which encouragement is impossible. Then I

demonstrate examples where the condition does not hold and thus encouragement is possible.

First, let’s revisit Lemma 1.3. The condition for it is IS ≾B IR and C (I∅, IS)+C (IS, IR) =

C (I∅, IR). Lemma 1.4 addresses the case they are satisfied by IS ≾B IR and ISL. IS = IR

can also make them hold. This implies

Lemma 1.6. Suppose the cost function C satisfies Sequential Learning Proofness. If

(I∅, IR, IS, ISR) satisfies IS = IR, then it is not a distortion.

Roughly speaking, this result means, with an SLP cost function, when the sender reveals

all the information that the receiver would learn if the sender revealed no information, the

receiver accepts the message and does not learn any further. This is the idea of the “non-

learning equilibrium” in Matysková and Montes (2021). They get this result using UPS

cost functions, which satisfy ISL. But my result suggests it is still true even when the cost

functions only satisfy SLP.

Note Lemma 1.1 and Lemma 1.2 indicate that IS = IR has already ruled out deterrence

and diversion. So the role played by SLP is to rule out encouragement.

Theorem 1.3. Suppose the cost function C satisfies Sequential Learning Proofness. If

(I∅, IR, IS, ISR) satisfies IS = IR, then it is not an encouragement.
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But by relaxing the above conditions, encouragement is possible. Here are examples.

Example 1.9 (Encouragement with an SLP cost function and IS ≺B IR).

Suppose there are four states, p1 = p = 0.5, p2 = p3 = w = 0.2, and p4 = q = 0.1. So there

is one likely state, two unlikely states, and one rare state. Assume there are four available

actions, and u (ai, ωj) = 1 when i = j, u (ai, ωj) = 0 when i ̸= j. The cost is the partition

cost and c = 0.26. In this case, I∅ = {{ω1, ω2, ω3, ω4}}, and IR = {{ω1, ω4} , {ω2} , {ω3}}.
When IS = {{ω1, ω2, ω4} , {ω3}}, ISR = {{ω1} , {ω2} , {ω3} , {ω4}}. It can be shown that

ISR /∈ BR (I∅). So (I∅, IR, IS, ISR) is an encouragement. ■

Example 1.10 (Encouragement with an SLP cost function and IS
�
�≺≈
≻B IR).

This example is illustrated in Figure 1.11. The cost function is the entropy cost. Suppose

the prior is µ. If the sender reveals no information, the receiver ends up with IR whose

support are γ1 and γ2. If the sender reveals IS, whose supports are γ3 and γ4, the receiver

keeps learning and ends up with ISR, whose supports are γ5, γ6, γ7, and γ8. According to

Lemma 1.5, it is clear that IS and IR are Blackwell incomparable. But the distribution over

beliefs, whose supports are γ5 and γ7, is a mean preserving spread of γ1, and the distribution

over beliefs, whose supports are γ6 and γ8, is a mean preserving spread of γ2. So ISR ≻B IR,

and thus it is an encouragement.

ω1

ω2 ω3

γ1 γ2

γ5 γ6

γ7 γ8

µ

γ3

γ4

Figure 1.11: Encouragement with an SLP cost function and IS being Blackwell incomparable
with IR

■
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Example 1.11 (Encouragement with a non-SLP cost function and IS = IR).

ω1 ω2

Figure 1.12: Encouragement with a non-SLP cost function and IS = IR

Consider the cost function illustrated in Example 1.3. Suppose e = 0.7, c′ = 0.05 and

µ = 0.5. Let the utility function of receiver be u (ai, ωj) = 1 when i = j, u (ai, ωj) = 0 when

i ̸= j. It turns out that if the belief is within the interval represented by the two bars, the

receiver pays the cost to access the test. If the belief is outside the interval, the receiver

does not learn. Note that the prior, which is represented by the black point, is within the

interval. So starting with it, the receiver accesses the test and ends up with the distribution

over beliefs that is represented by the two red points and denoted by IR. Now consider

IS = IR. At the realization represented by the left red point, it is outside the interval, so

the receiver does not learn further. At the other realization, the receiver accesses the test.

In sum, the receiver ends up with a distribution over beliefs represented by the three blue

points, denoted by ISR. Clearly ISR ≻B IR. So (I∅, IR, IS, ISR) is an encouragement. ■

1.9 Discussion and Conclusion

An interesting question remaining is whether the receiver is better off or not in a distortion.

On the one hand, the receiver may be worse off, as is shown in the following example.

Example 1.12 (receiver may be worse off in a distortion).

Suppose U (I1) = 6, U (I2) = 3, C (I, I ′) = +∞ for all I ̸= I ′ except C (I∅, I1) = 2 and

C (I∅, I2) = 1.

U (I1)− C (I∅, I1) > U (I2)− C (I∅, I2)

implies BR (I∅) = {I1}. C (I2, I1) = +∞ implies BR (I2) = {I2}. As a result, (I∅, I1, I2, I2)

is a distortion. The receiver is worse off because

U (I2) < U (I1)− C (I∅, I1)

■

On the other hand, here are some sufficient conditions for the receiver being weakly better

off in a distortion.
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Proposition 1.1. If (I∅, IR, IS, ISR) is a distortion with IS ≺B IR and C (IS, IR) ⩽ C (I∅, IR),

then the receiver is weakly better off.

Proposition 1.2. If (I∅, IR, IS, ISR) is an encouragement with IS ≿B IR, then the receiver is

weakly better off.

A natural avenue for future research is to characterize the condition under which the receiver

is better or worse off.

In sum, this paper investigates how a sender, by providing free information to a perfectly

rational receiver, can manipulate the receiver’s learning. The sender may make the receiver

end up knowing more than she would otherwise but, as is shown in the paper, the sender

may also make the receiver end up knowing less or different things than she would otherwise.

On the one hand, the above finding indicates the motivations for voluntary disclosure may

be to disrupt learning: a criminal suspect may take the initiative to reveal some clues to the

detective; a cheating cartel participant may turn itself in to the cartel facilitator5; a country

may voluntarily disclose intelligence to an enemy country. On the other hand, this paper

implies that mandatory disclosure does not necessarily make the stakeholders more informed

as the regulators expect.

I also find that the feasibility of distortions relies on two properties of the receiver’s

information acquisition cost function: Sequential Learning Proofness (SLP) and the more

restrictive Indifference to Sequential Learning (ISL). When the cost function satisfies ISL,

deterrence is infeasible. With Uniformly Posterior Separable cost functions, if there are two

actions and two states, then diversion is infeasible. When the cost function satisfies SLP,

and the sender reveals all the information that the receiver would learn if the sender revealed

no information, encouragement is infeasible.

5An entity that fosters collusion, for example, by providing a place to meet for the cartelists, collecting
and sharing market data, and working to secure compromises between members of the cartel.
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CHAPTER 2

Dominance and Optimality

joint work with Tilman Börgers

2.1 Introduction

Economic theory has developed many notions of “dominance” of some choice over another.

For example, in game theory the notions that one strategy “strictly dominates” another

one, or that it “weakly dominates” another one, are fundamental concepts (see, for example,

Pearce (1984)). In the theory of choice among monetary lotteries the concepts of “first order

stochastic dominance” (Quirk and Saposnik, 1962) and “second order stochastic dominance”

(Rothschild and Stiglitz, 1970) are frequently used. In the theory of information “Blackwell

dominance”among experiments (Blackwell (1951), Blackwell (1953)) is an important concept.

All these concepts of dominance provide partial orders of sets of alternatives among which

a decision maker chooses. One alternative dominates another alternative if it is the better

choice regardless of certain aspects of the decision maker’s decision problem. For example,

one strategy dominates another one if it is a better choice regardless of the player’s belief

about the other players’ strategy choices. One monetary lottery first order stochastically

dominates another lottery if it yields higher expected utility regardless of the decision maker’s

utility function, provided that this utility function is increasing. One monetary lottery second

order stochastically dominates another lottery if it yields higher expected utility regardless

of the decision maker’s utility function, provided that this utility function is increasing and

concave. One experiment Blackwell dominates another experiment if it allows the decision

maker to achieve higher expected utility regardless of which decision problem the decision

maker faces.1

1In this paragraph we have been deliberately vague about whether we refer to“strict”or“weak dominance”
and whether we mean by “higher expected utility” that the utility is strictly or weakly larger. We shall, of
course, be more precise about these issues later in the paper.
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Many famous results of economic theory provide equivalent characterizations of domi-

nance relations that are easier to check than the original definition. For example, to check

whether one lottery first order stochastically dominates another lottery one may equivalently

compare the two lotteries’ cumulative distribution functions (this is the main result in Quirk

and Saposnik (1962)). To determine whether one experiment Blackwell dominates another

experiment one may equivalently check whether the latter experiment can be obtained by

“garbling” the former experiment (Theorem 5 in Blackwell (1953)). Also, to check whether

one strategy dominates another one one can equivalently check whether for every pure strat-

egy combination that the other players might choose the former strategy yields higher utility

than the latter.2

When we eliminate dominated choices in a decision problem we narrow down the options

that a rational decision maker might choose without completely specifying all characteristics

of this decision maker. In this paper we will ask in a variety of contexts whether ruling out

dominated choices is the best we can do without specifying the decision maker’s characteris-

tics further, or whether there are other, not dominated choices that a rational decision maker

nonetheless will never choose. We prove an abstract theorem that shows that nothing more

than dominated choices can be ruled out. Our main result is of the following form: for every

not dominated alternative there exists some specification of the decision maker’s problem in

which a rational decision maker will choose this alternative.

The precise details matter for this result, however. In particular, the result is not true

unless we consider the possibility that an alternative is dominated by a convex combination

of the other alternatives. The potential relevance of convex combinations of alternatives is

familiar from game theory: A strategy is a best response to some belief if and only if it is

not strictly dominated by any of the other strategies nor by any convex combination of the

other strategies (i.e. nor by any mixed strategy). It is well-known that this result would

not be true if we had not included the possibility that the dominating strategy is a mixed

strategy. In other words: there are well-known examples of games in which a strategy is not

strictly dominated by any other pure strategy, yet it is not a best response to any belief of

the player. Our main theorem is built on this insight, but applies to a much more general

setting than just games.

One such setting is the choice among experiments where one might wish to use Blackwell

dominance to rule out some choices. Suppose a decision maker can choose one experiment

from a finite set of available experiments. Assume that all experiments are available at no

cost. Consider an experiment that is not Blackwell dominated by any other experiment.

2Unlike the other results mentioned in this paragraph, this last result is a trivial observation.
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Does there exist a decision problem in which it is optimal to choose this experiment from

the set of available experiments? It turns out that the answer to this question is “yes” only

if we allow for the possibility that the dominating experiment is an appropriately defined

convex combination of the other experiments. We give in Section 2.5 a counterexample that

demonstrates how the result otherwise fails. On the other hand, once convex combinations

of experiments are considered, the result is an immediate implication of our main theorem.

Other details matter. Our most general result will characterize those alternatives that

are, for some specification of the details of the decision problem, the only optimal choice

of the decision maker. We call such alternatives “uniquely optimal.” Thus, our main result

establishes an equivalence between an alternative not being dominated by convex combi-

nations of other alternatives, and an alternative being a uniquely optimal choice. We also

establish equivalences between an alternative not being dominated and the alternative be-

ing one optimal choice, or the alternative being an optimal choice in some “non knife-edge”

circumstances. These versions of our result are the ones that are familiar from game theory,

but they are only applicable under a set of assumptions that are satisfied in finite strategic

games, but that are not satisfied when, say, comparing experiments.

One might question our focus on uniquely optimal choices. Of course, sometimes decision

makers will face situations in which they are indifferent between several optimal choices.

But we shall show that, when there are multiple optimal choices in a decision problem, then

at least one of those choices is a uniquely optimal choice in some other decision problem.

Therefore, the set of uniquely optimal choices is the minimal set of alternatives to which a

decision maker may restrict attention such that this set includes an optimal choice regardless

of the specifics of the decision maker’s decision problem.

We expand in this paper on the argument explained in the previous paragraph. In a very

general decision problem we introduce “minimally sufficient” sets of alternatives, that is, sets

of alternatives that are sufficient in the sense that whatever the particulars of the decision

problem the sets always contain at least one optimal choice, and that are minimal in the

sense that they have no subset that is also sufficient. We prove that under some conditions

the set of uniquely optimal choices is the only minimally sufficient set of alternatives. We

motivate minimally sufficient sets as the sets of alternatives that a decision maker would

restrict attention to if attention is costly for the decision maker, but the decision maker is

not willing to give up any material payoff in the decision problem in return for lower attention

cost.

The general result on which we build our analysis is presented in Section 2.2. We motivate

a focus on uniquely optimal actions in Section 2.3. In the subsequent sections we apply our
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general analysis first to dominance relations in games, then to dominance relations among

experiments, and finally to dominance relations among monetary lotteries. We mention

related literature in each of the applications sections. The general framework in Section 2.2

is conceptually and formally related to some ideas that appeared in Fishburn (1975). In

particular, we use one of Fishburn’s separation theorems. Fishburn compared optimality of

sets of alternatives and dominance among the elements of sets of alternatives. In particular

he focused on choice among lotteries. His result specializes to ours in Section 2.6 if one

assumes in Fishburn’s setting that one of the two sets of alternatives consists of only one

element.

2.2 General Results

Let X and Y be two non-empty sets, and let u : X×Y → R. Here, X is the set of actions x

that a decision maker can choose from, while Y is the set of “situations” y that this decision

maker might find herself in. u(x, y) is the decision maker’s utility if choosing action x in

situation y. The decision maker first observes the situation y ∈ Y and then chooses an action

x ∈ X. Throughout this section we shall make the following assumption:

Assumption 2.1. X is finite. Y is a convex subset of a topological vector space. u is linear

and continuous in y.

The assumption that X is finite greatly simplifies the analysis below. In the applications

that we shall consider, Y is, depending on the context, the set of beliefs the decision maker

might hold, or the set of value functions corresponding to the decision problems the decision

maker might face, or the set of utility functions the decision maker might have. This is why

it is convenient to let Y be a subset of a topological vector space. Y will be convex in all

our applications. The linearity of u will reflect that decision makers in our applications are

expected utility maximizers. The convexity of Y together with the linearity of u will allow

us to use separating hyperplane theorems in our proofs.

Definition 2.1. An action x ∈ X is optimal if there exists a y ∈ Y such that:

u(x, y) ≥ u(x′, y) for all x′ ∈ X.
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We denote by XO the set of optimal actions.

Definition 2.2. An action x ∈ X is interior optimal if there exists a y ∈ ri(Y ) (where ri(Y )

denotes the relative interior of Y ) such that:

u(x, y) ≥ u(x′, y) for all x′ ∈ X.

We denote by XIO the set of interior optimal actions. It may not seem intuitively obvious

why it is relevant whether the situation y in which an action x is a best response is interior or

not. However, when Y represents a set of beliefs, then the relative interior of Y will represent

the set of full support beliefs. Having beliefs with full support has been interpreted in the

game theoretic literature as sign of caution by the decision maker. This is why interior

situations y will receive special attention in this section.

Definition 2.3. An action x ∈ X is uniquely optimal if there exists a y ∈ Y such that:

u(x, y) > u(x′, y) for all x′ ∈ X such that x ̸= x′.

We denote by XUO the set of uniquely optimal actions. It is not immediately obvious why

the set of uniquely optimal actions should receive special attention. We address this issue

therefore in detail in the next section.

Our objective in this section is to characterize the sets of optimal, interior optimal, and

uniquely optimal actions in terms of dominance notions. We therefore next introduce the

dominance notions that we are considering.

Definition 2.4. An action x ∈ X is strictly dominated if there are a set {x1, x2, . . . , xn}
⊆ X \ {x} and a vector (λ1, λ2, . . . , λn) ∈ Rn

+ with
∑n

i=1 λi = 1 such that:

n∑
i=1

(λiu(xi, y)) > u(x, y) for all y ∈ Y.

We denote by XNSD the set of all actions that are not strictly dominated. It is essential

that we consider the possibility here that an action is dominated not by a single action but

by a convex combination of actions. We shall illustrate this point in the applications that

we consider later in the paper. One may think of the convex combination of actions as a

“mixed action” in analogy to mixed strategies in game theory.
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Definition 2.5. An action x ∈ X is weakly dominated if there are a set {x1, x2, . . . , xn}
⊆ X \ {x} and a vector (λ1, λ2, . . . , λn) ∈ Rn

+ with
∑n

i=1 λi = 1 such that:

n∑
i=1

(λiu(xi, y)) ≥ u(x, y) for all y ∈ Y

with strict inequality for at least one y ∈ Y .

We denote by XNWD the set of all actions that are not weakly dominated.

Strict and weak dominance are standard notions that are familiar from game theory. We

will use a third concept that is less familiar, but that will prove crucial for some of our

results.

Definition 2.6. An action x ∈ X is redundant if there are a set {x1, x2, . . . , xn} ⊆ X \ {x}
and a vector (λ1, λ2, . . . , λn) ∈ Rn

+ with
∑n

i=1 λi = 1 such that:

n∑
i=1

(λiu(xi, y)) = u(x, y) for all y ∈ Y.

Thus, an action is redundant if it is equivalent in expected utility to a convex combination

of the other actions. Denote by XNR the set of actions that are not redundant.

We are now ready to state our main result in this section. This result generalizes a number

of results familiar from the literature on game theory.

Theorem 2.1. (i) If an action is optimal, then it is not strictly dominated: XO ⊆ XNSD.

(ii) If Y is compact, then an action that is not strictly dominated is optimal: XNSD ⊆ XO.

(iii) If an action is interior optimal then it is not weakly dominated: XIO ⊆ XNWD.

(iv) If Y is finite dimensional, then an action that is not weakly dominated is interior

optimal: XNWD ⊆ XIO.

(v) An action is uniquely optimal if and only if it is not weakly dominated and not redun-

dant: XUO = XNWD ∩XNR.
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Note that results (ii) and (iv) are based on assumptions regarding Y that go beyond those

made in Assumption 1. Our proofs use these additional assumptions. Of course, the theorem

does not claim that these additional assumptions are necessary.

Our proof of Theorem 1 below is based on elementary separating hyperplane theorems in

finite dimensional Euclidean space. Thus, it is a simple and geometric proof. The ideas on

which some parts of the proof are based are related to ideas in Fishburn (1975).

Proof. Step 1: We first prove that XO ⊆ XNSD. The proof is indirect. Suppose x were opti-

mal for some ȳ ∈ Y , but that x were strictly dominated. Let {x1, x2, . . . , xn} ⊆ X\{x} be the
actions in the support of the strictly dominating convex combination, and let (λ1, λ2, . . . , λn)

be the corresponding weights. We have:
∑n

i=1 (λiu(xi, y)) > u(x, y) for all y ∈ Y . But this

implies that for some i we have: u(xi, ȳ) > u(x, ȳ), contradicting that x is optimal in situation

ȳ.

We next prove that XIO ⊆ XNWD. The proof is indirect. Suppose x were optimal for

some ȳ ∈ ri(Y ), but that x were weakly dominated. Let {x1, x2, . . . , xn} ⊆ X \ {x} be the

actions in the support of the weakly dominating convex combination, and let (λ1, λ2, . . . , λn)

be the corresponding weights. We then have:
∑n

i=1 (λiu(xi, y)) ≥ u(x, y) for all y ∈ Y and∑n
i=1 (λiu(xi, y

∗)) > u(x, y∗) for some y∗ ∈ Y . Because x is optimal at ȳ, we must have:∑n
i=1 (λiu(xi, ȳ)) − u(x, ȳ) = 0. Define: ŷ ≡ (1 + ε)ȳ − εy∗. Because ȳ is in the relative

interior of Y , we have ŷ ∈ Y for sufficiently small ε > 0.. Now note that:

n∑
i=1

(λiu(xi, ŷ))− u(x, ŷ)

= (1 + ε)

(
n∑

i=1

(λiu(xi, ȳ))− u(x, ȳ)

)
− ε

(
n∑

i=1

(λiu(xi, y
∗))− u(x, y∗)

)

= −ε

(
n∑

i=1

(λiu(xi, y
∗))− u(x, y∗)

)
< 0,

This contradicts the assumption that the convex combination weakly dominates x.

We finally prove that XUO ⊆ XNWD ∩ XNR. The proof is indirect. Suppose x

were uniquely optimal for some particular ȳ ∈ Y . but that x were weakly dominated.

Let {x1, x2, . . . , xn} ⊆ X \ {x} be the actions in the support of the weakly dominat-

ing convex combination, and let (λ1, λ2, . . . , λn) be the corresponding weights. We have:∑n
i=1 (λiu(xi, y)) ≥ u(x, y) for all y ∈ Y . But this implies that for some i we have:

u(xi, ȳ) ≥ u(x, ȳ), contradicting that x is uniquely optimal in situation ȳ. The same ar-

gument proves that a uniquely optimal action cannot be redundant.
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Step 2: We now prove the converses of the statements in Step 1. We first prove that

XNSD ⊆ XO if Y is compact. The proof is indirect. Suppose x were not optimal for any

y ∈ Y . We prove that then a convex combination of actions strictly dominates x. Consider

the following set.

C ≡ {(u (x1, y)− u (x, y) , u (x2, y)− u (x, y) , ..., u (xn, y)− u (x, y)) |y ∈ Y } ,

where we take x1, x2, . . . , xn to be an enumeration of the set X \ {x}. If x is not optimal in

any situation y ∈ Y , then:

C ∩Rn
− = ∅.3

Observe that Rn
− is a closed and convex set, and that C is convex and compact (convex

because of the linearity of u and the convexity of Y and compact because of the continuity

of u and the compactness of Y ). We can then apply the following hyperplane theorem:

Separating Hyperplane Theorem 1: Suppose C ⊆ Rn is convex and compact. If C∩Rn
− =

∅ then there exists λ ∈ Rn
+ with λ ̸= 0 such that λ · x > 0 for all x ∈ C.

For completeness, we briefly derive this result from a standard separating hyperplane

theorem:

Proof. The strict separating hyperplane theorem (for example Theorem 3.7 in Vohra (2005))

implies that there are λ ∈ Rn with λ ̸= 0 and ε ∈ R such that λ · x < ε for all x ∈ Rn
− and

λ · x > ε for all x ∈ C. It easily follows that λ ∈ Rn
+ and that ε > 0. Therefore, λ · x ≥ ε for

all x ∈ C implies λ · x > 0 for all x ∈ C.

Obviously, we may normalize the vector λ to which the theorem refers so that its com-

ponents add up to 1. Applying the theorem to our setting, we therefore find that there is a

convex combination of actions such that:

n∑
i=1

[λi (u(xi, y)− u(x, y))] > 0 for all y ∈ Y.

This means that the convex combination of the actions x1, x2, . . . , xn with weights

λ1, λ2, . . . , λn strictly dominates x.

Next we prove that XNWD ⊆ XIO if Y is finite dimensional. If Y is finite dimensional

then it is without loss of generality to assume that it is a subset of a finite dimensional

3We denote by Rn
− the set of all vectors x = (x1, x2, . . . , xn) ∈ Rn such that xi ≤ 0 for all i.
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Euclidean space. Our proof of the result is again indirect. Suppose x were not optimal for

any y ∈ ri(Y ). Define the set C as before. Because u is linear in y, the relative interior of

C is the image of the relative interior of Y . Therefore we have:

ri(C) ∩Rn
− = ∅.

We now apply the following separating hyperplane theorem:

Separating Hyperplane Theorem 2: Suppose C ⊆ Rn is convex. If ri(C)∩Rn
≤0 = ∅ then

there exists λ ∈ Rn
+ with λ ̸= 0 such that λ · x ≥ 0 for all x ∈ C and λ · x > 0 for at least

one x ∈ C.

Proof. By Theorem 6.2 of Rockafellar (1970), ri(C) is non-empty and convex. By Lemma 5

in Fishburn (1975), there exists a λ ∈ Rn
+ with λ ̸= 0 such that λ · x ≥ 0 for all x ∈ ri(C)

and λ · x > 0 for at least one x ∈ ri(C). By continuity, λ · x ≥ 0 for all x in the topological

closure of ri(C), and by Theorem 6.3 in Rockafellar (1970), the topological closure of ri(C)

is a superset of C. Therefore, λ · x ≥ 0 for all x ∈ C. Finally, because ri(C) ⊆ C, we have

λ · x > 0 for at least one x ∈ C.

Normalizing again the vector λ to which the theorem refers so that its components add

up to 1, we find that there is a convex combination of actions such that:

n∑
i=1

[λi (u(xi, y)− u(x, y))] ≥ 0 for all y ∈ Y,

with strict inequality for at least one y ∈ Y . This means that the convex combination of the

actions x1, x2, . . . , xn with weights λ1, λ2, . . . , λn weakly dominates x.

We finally prove that XNWD ∩ XNR ⊆ XUO. The proof is indirect. Suppose x were not

uniquely optimal for any y ∈ Y . Defining the set C as before, this means that:

C ∩Rn
<0 = ∅.4

We now apply the following separating hyperplane theorem:

Separating Hyperplane Theorem 3: Suppose C ⊆ Rn is convex. If C ∩ R+
<0 = ∅ then

there exists λ ∈ Rn
+ with λ ̸= 0 such that λ · x ≥ 0 for all x ∈ C.

4We denote by Rn
<0 the set of all vectors x = (x1, x2, . . . , xn) ∈ Rn such that xi < 0 for all i.
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Proof. Minkowski’s separating hyperplane theorem (for example Theorem 3.6 in Vohra

(2005) implies that there are λ ∈ Rn with λ ̸= 0 and ε ∈ R such that λ · x ≤ ε for all

x ∈ Rn
<0 and λ · x ≥ ε for all x ∈ C. It easily follows that λ ∈ Rn

+ and ε ≥ 0. Therefore,

λ · x ≥ ε for all x ∈ C implies λ · x ≥ 0 for all x ∈ C.

Normalizing again the vector λ to which the theorem refers so that its components add

up to 1, we find that there is a convex combination of actions such that:

n∑
i=1

λiu(xi, y) ≥ u(x, y) for all y ∈ Y.

Thus, the convex combination of {x1, . . . , xn) with weights λ1, . . . , λn either weakly dominates

x or is equivalent to x, which contradicts the assumption with which we began this indirect

proof.

2.3 Limited Attention Without Loss of Optimality

We now provide a rationale for focusing on uniquely optimal actions as defined in the previous

section. We provide conditions under which the set of uniquely optimal actions is the smallest

set that the decision maker can limit attention to if she wants to choose an optimal action

in every situation. We thus envisage the following scenario: the decision maker first restricts

attention to some subset X̂ of the set of all actions. Then she observes the situation y, and

then she picks an action x from the subset of actions to which she has restricted attention. We

assume that attention is costly: the decision maker wants to restrict attention to a set that

is small (in terms of set-inclusion). Finally, attention cost are of second order importance:

the decision maker’s first priority is to take an optimal action in every situation.

To formalize this, we introduce some additional notation. For every y ∈ Y the set of

optimal actions is:

O (y) = {x ∈ X|u (x, y) ≥ u (x′, y) for all x′ ∈ X} .

In the following definition, the key term that we wish to define is “minimal sufficiency,”
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Definition 2.7. A set X̂ ⊆ X is sufficient if for every y ∈ Y :

O(y) ∩ X̂ ̸= ∅.

A set X̂ ⊆ X is minimally sufficient if it is sufficient and there is no sufficient set X̄ ⊆ X

such that:

X̄ ⊊ X̂.

A minimally sufficient set of actions is thus a smallest set of actions to which the decision

maker may restrict attention if she wants to choose optimally in every situation y.

The following result provides sufficient conditions for the set of uniquely optimal actions

to be the unique minimally sufficient subset of the set of all actions. We emphasize that this

result does not rely on Assumption 2.1.

Theorem 2.2. If X is finite, if for any x, x′ ∈ X with x ̸= x′ there is a y ∈ Y such that

u(x, y) ̸= u(x′, y), and if:

XUO = XNWD ∩XNR,

then XUO is the unique minimally sufficient subset X̂ of X.

Among the three assumptions of this theorem, the condition XUO = XNWD ∩XNR is not

formulated in terms of the primitives of our model. However, Theorem 2.1 shows assumptions

for the primitives of our model that imply that XUO = XNWD ∩XNR holds.

Proof. It is obvious that every sufficient set must include XUO. What remains to be shown

is that XUO contains for every situation y ∈ Y an optimal action. Because the proposition

assumes that XUO = XNWD ∩XNR, this is equivalent to the statement that XNWD ∩XNR

contains for every situation y ∈ Y an optimal action.

To prove this, we first observe that XNWD ∩ XNR can be constructed by the following

algorithm. SetX0 = X. For k = 1, 2, . . . , n, if no action x ∈ Xk−1 is either weakly dominated

by, or equivalent to, a convex combinations of the actions in Xk−1\{x}, then set Xk−1 = Xk.

Otherwise, pick arbitrarily some such x ∈ Xk−1, and set Xk = Xk−1 \ {x}. Note that this

algorithm ends after at most n steps. We claim that the final set is Xn = XNWD ∩ XNR.

It is clear that Xn includes all actions in XNWD ∩XNR. It thus remains to show that any

action x /∈ XNWD ∩XNR is eliminated in some step of this algorithm.
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To prove the claim we show that if x is weakly dominated by or equivalent to a convex

combination of the actions in Xk \ {x}, and if x ∈ Xk+1, then x it is also weakly dominated

or equivalent to a convex combination of the actions in Xk+1 \{x}. Suppose that the convex
combination of actions in Xk \ {x} that weakly dominate x include xk. Without loss of

generality let the elements of Xk \ {x} be {x1, x2, . . . , xm}, and let the weights of the convex

combination be λ1, λ2, . . . , λm. Without loss of generality assume that x1 is eliminated in

step k. This means that x1 is either weakly dominated or equivalent to, a convex combination

of the elements of the set {x2, . . . , xm}∪ {x}. Let the weights of the convex combination be:

λ̂2, . . . , λ̂m, λ̂x. It is then obvious that x is also weakly dominated, or equivalent to, a convex

combination of {x2, . . . , xm} ∪ {x} with weights: λ2 + λ1λ̂2, . . . , λm + λ1λ̂m, λ1λ̂x.

It remains to show λ1λ̂x < 1. Suppose the opposite: λ1λ̂x = 1, hence λ1 = λ̂x = 1. This

means that x1 is either weakly dominated or equivalent to x, and that x is either weakly

dominated or equivalent to x1. But this means that x1 and x are duplicates, which is a case

that we ruled out in the assumptions of Theorem 2.2.

We can now infer that, if x is weakly dominated by, or equivalent to, a convex combination

of {x2, . . . , xm} ∪ {x} with weights:

λ2 + λ1λ̂2, . . . , λm + λ1λ̂m, λ1λ̂x

it is also weakly dominated by , or equivalent to, a convex combination of {x2, . . . , xm} with

weights:
λ2 + λ1λ̂2

1− λ1λ̂x

, . . . ,
λm + λ1λ̂m

1− λ1λ̂x

.

Now consider any situation y ∈ Y and suppose x ∈ X is optimal in situation y. Obviously,

x ∈ X0. Also, either x ∈ X1, or x is weakly dominated by, or equivalent to, a convex

combination of the actions in X1. Then one of the actions in X1 must also be a best

response to y. Iterating this argument leads to the conclusion that one of the actions in Xn

is optimal in situation y.

2.4 Dominance and Optimality of Strategies in Games

We now explain how to apply the results of Section 2.2 to games. We focus on a player i

in a strategic game who has to choose one strategy from a finite set of strategies Si. There
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are finitely many other players j ̸= i and the Cartesian product of their strategy sets is S−i.

Player i’s utility function is ui : Si × S−i → R. Player i’s belief about the other players’

choices is a probability measure µi on S−i. Denote the set of all such probability measures

by ∆(S−i).
5 Player i’s expected utility when she has belief µi and chooses strategy si is:∑

s−i∈S−i

ui(si, s−i)µi(s−i).

In the notation of Section 2.2 in this application the set X of actions is the set Si of

strategies, and the set Y of situations is the set ∆(S−i) of beliefs. Note that the set of

beliefs is a compact and convex subset of R|S−i|, and that the utility function ui is linear

(and therefore continuous) in a player’s beliefs.

The notions of strict and weak dominance introduced in Section 2.2 correspond to the

thus named notions in game theory. Note that when checking dominance relations among

two strategies si and sj in games we typically only compare expected utility for any given

pure strategy combination of the other players, that is, we only consider beliefs that are

Dirac measures on S−i. This is sufficient because ∆(S−i) the convex hull of the set of Dirac

measures on S−i and because of the linearity of expected utility. This is a general point:

The properties of actions x ∈ X defined in Definitions 2.4, 2.5, and 2.6 would not change if

one replaced the expression “for all y ∈ Y ” by the expression “for all y ∈ Y ∗” where Y ∗ is a

subset of Y such that the convex hull of Y ∗ equals Y .

All parts of Theorem 2.1 hold in this setting. In particular, note that part (ii) applies

because the set ∆(S−i) is compact. Parts (i) and (ii) of Theorem 2.1, if applied to finite

strategic games, are the same as Lemma 3 in Pearce (1984) whose proof was different from

ours, however. Pearce’s proof was built on the existence of Nash equilibria in zero sum

games. As regards parts (iii) and (iv) of Theorem 2.1 note that an element of the relative

interior of ∆(S−i) is a full support belief, and therefore parts (iii) and (iv) of Theorem 2.1

correspond to Lemma 4 in Pearce (1984). Again, the proof in Pearce (1984) is different from

ours. Finally, part (v) of Theorem 2.1, if applied to strategic games, is a special case of

Proposition 3 in Weinstein (2020), who, like Pearce, presents a proof that is built on the

theory of zero-sum games.

It is well-known that the results listed above for strategic games would not be true if one

considered dominance by pure strategies only, not by mixed strategies. Mixed strategies are

5From now on, for any finite or compact set A, we denote by ∆(A) the set of all (Borel-) probability
distributions on A.
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the equivalent of the “convex combinations” in Section 2.2. As an example, consider the two

player game in Table 2.1, where only player 1’s utility is shown. Player 1’s strategy B is

strictly dominated, but not by any pure strategy. It is strictly dominated by, for example,

the mixed strategy that places probability 0.5 on T and M .

L R

T 3 0

M 0 3

B 1 1

Table 2.1: A strategy that is not strictly dominated by any pure strategy may be strictly
dominated by a mixed strategy

2.5 Dominance and Optimality of Experiments

In this section we apply the results of Section 2 to experiments. Let Ω be a finite set of

states of the world, and let µ ∈ ∆(Ω) be a decision maker’s prior belief about the state. The

decision maker can observe a signal about the state of the world before making a decision.

Here, we mean by a signal a mapping: s : Ω → ∆(Ms) a signal, where Ms is a finite set of

signal realizations and s(ω) ∈ ∆(Ms) is the distribution of signal realizations conditional on

ω. There is a finite set S of such signals from which the decision maker must choose one.

Signals are costless.

The decision maker faces a decision problem (A, u). Here, A is a finite set of actions and

u : A× Ω → R is a von Neumann Morgenstern utility function. We denote by A the set of

all such decision problems.

For every signal s ∈ S we denote by µs ∈ ∆(∆(Ω)) the corresponding distribution of

posterior beliefs. For every decision problem (A, u) we denote by vA,u : ∆(Ω) → R the value

function:

vA,u(ν) = max
a∈A

∑
ω∈Ω

(u(a, ω)ν(ω)) .

Here, ν stands for an arbitrary posterior belief of the decision maker. If the decision maker

faces decision problem (A, u), has access to signal s before choosing an action, and chooses
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an action that maximizes her expected utility, she obtains ex ante expected utility:∫
∆(Ω)

vA,u(ν)dµs.

Blackwell introduced a partial order over signals. Blackwell (1951) and Blackwell (1953)

showed various conditions all to be equivalent to the original definition of the Blackwell

order. In Definition 2.8, we don’t present Blackwell’s original definition of the order, but we

use one of the conditions that Blackwell showed to be equivalent to the original definition to

define the Blackwell order. This is more in line with the way in which dominance orders in

other areas of economics are conventionally defined.

Definition 2.8. Signal s Blackwell dominates signal ŝ if for every decision problem (A, u) in

A: ∫
∆(Ω)

vA,u(ν)dµs ≥
∫
∆(Ω)

vA,u(ν)dµŝ.

We now explain how to fit Blackwell dominance into our framework. The set X is the

set of signals among which the decision maker can choose. The set Y is the set of all value

functions that correspond to a decision problem in A. We endow this set with the standard

vector space structure and with the topology of uniform convergence. Observe that the set Y

is convex. To see this note that the convex combination of two value functions corresponding

to decision problem (A, u) and decision problem (A′, u′) with weights λ and 1−λ is the value

function for the decision problem in which the decision maker chooses from A×A′ and with

probability λ the first choice matters, and utility is given by u, and with probability 1 − λ

only the second choice matters, and utility is given by u′.

The utility function u(x, y) from Section 2 is in the setting of this section the expected

utility
∫
∆(Ω)

vA,u(ν)dµs. Note that this utility function is linear and continuous in the value

function.

We explain next how in this setting convex combinations of signals can be interpreted as

signals in themselves. For the purposes of this discussion we assume that no two signals in

S have overlapping message sets: Ms ∩ Mŝ = ∅ for every s, ŝ ∈ S with s ̸= ŝ. This is not

a substantial assumption. Rather, this assumption allows us to simplify the notation in the

following definition.
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Definition 2.9. Suppose {s1, s2, . . . , sn} ⊆ S∗ and assume that the vector (λ1, λ2, . . . , λn) ∈
R+ satisfies

∑n
i=1 λi = 1. The convex combination of the signals {s1, s2, . . . , sn} with weights

(λ1, λ2, . . . , λn) is the signal

s : Ω → ∆

(
n⋃

i=1

Msi

)
such that for every ω ∈ Ω, every i ∈ {1, 2, . . . , n}, and every msi ∈ Msi, we have:

s(msi |ω) = λisi(msi |ω).

Intuitively, a convex combination of the signals in set {s1, s2, . . . , sn} with weights

(λ1, λ2, . . . , λn) is the following signal: The decision maker observes the message of signal si

with probability αi. This signal yields for the decision maker the expected utility that we

attribute to the convex combination of actions in Section 2. Therefore, in our context, we

can interpret a convex combination of signals as another signal.

Observe that, in the terminology of Section 2.2 a signal is Blackwell dominated if and only

if it is either weakly dominated by a convex combination of other signals or is redundant.

Items (i), (iii) and (v) of Theorem 2.1 apply directly to our setting. By contrast, items

(ii) and (iv) do not apply. This is because the set of all value functions generated by finite

action problems is neither compact nor finite dimensional. Observe that claims (i) and (ii)

are, however, vacuously true for the Blackwell order. This is because no signal ever strictly

dominates another signal. This is because we have not ruled out from consideration those

decision problems (A, u) ∈ A in which the utility function u does not depend on the state

ω. All signals are useless in such decision problems, and therefore, no signal is ever strictly

better than another signal in all decision problems. Parts (iii) and (iv) are in our setting in

this section of no interest because in the setting of this section it is easily checked that the

relative interior of the set Y with respect to the topology of uniform convergence is empty.

We therefore focus now on part (v) of Theorem 2.1.

For maximum clarity we translate the definition of unique optimality, and the assertion

of part (v) of Theorem 2.1 to our setting.

Definition 2.10. A signal s ∈ S is a uniquely optimal choice in decision problem (A, u) if:∫
∆(Ω)

vA,u(ν)dµs >

∫
∆(Ω)

vA,u(ν)dµŝ for all ŝ ∈ S with ŝ ̸= s.

Part (v) of Theorem 2.1 says in our setting:
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Proposition 2.1. Signal s ∈ S is a uniquely optimal choice in some decision problem (A, u)

if and only if it is not Blackwell dominated by any convex combination of signals in S \ {s}.

We now show by means of an example that the result would not be true if we replace did

not allow the Blackwell dominating signal to be a convex combination of the other signals, but

required the Blackwell dominating signal to be one of the other signals. Consider the following

example: Ω = {ω1, ω2, ω3}, µ(ω) = 1
3
for all ω ∈ Ω, S = {s1, s2, s3, s4}. Mi = {m1

i ,m
2
i } for

i = 1, 2, 3, and M4 = {m1
4,m

2
4, . . . ,m

6
4}. For each of the signals s1, s2, and s3, and for

each state of the world, the corresponding row in Table 2.2 below indicates the conditional

probability of observing each signal realization.

s1 m1
1 m2

1

ω1 1 0

ω2 0 1

ω3 0 1

s2 m1
2 m2

2

ω1 0 1

ω2 1 0

ω3 0 1

s3 m1
3 m2

3

ω1 0 1

ω2 0 1

ω3 1 0

Table 2.2: Conditional distributions of s1, s2, and s3

Table 2.3 provides the same information for signal 4.

s4 m1
4 m2

4 m3
4 m4

4 m5
4 m6

4

ω1
1
4

0 0 3
8

3
8

0

ω2 0 1
4

0 3
8

0 3
8

ω3 0 0 1
4

0 3
8

3
8

Table 2.3: Conditional distributions of s4
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We claim that s4 is not Blackwell dominated by any of s1, s2, s3, but that it is Blackwell

dominated by the convex combination of these three signals that places weight 1/3 on each

of these signals. To see that s4 is not Blackwell dominated by s1 note that signal s4 has a

realization (m2
4) which reveals that the true state is ω2, whereas s1 has no such realization.

This implies that s4 cannot be Blackwell dominated by s1. Analogous arguments show that

s4 is not Blackwell dominated by s2 or s3.

To see that s4 is Blackwell dominated by the convex combination of signals s1, s2, s3 that

places probability 1/3 on each of these signals we consider the distribution of posterior beliefs

generated by s4 and compare it to the distribution of posterior beliefs generated by the convex

combination. For each state in Ω signal 4 generates with probability 1/12 a posterior belief

that is a Dirac measure on this state. For each state in Ω the convex combination of signals

s1, s2, s3 generates with probability 1/9 (> 1/12) a posterior belief that is a Dirac measure

on this state. Also, for each pair of states in Ω, signal 4 generates with probability 1/4 a

posterior belief that places probability 1/2 on each of the two states in this pair. For each

pair of states in Ω the convex combination of signals s1, s2, s3 generates with probability 2/9

(< 1/8) a posterior belief that places probability 1/2 on two of the three states. One can

now easily show that the distribution of posterior beliefs under the convex combination of

signals is a mean-preserving spread of the distribution of posterior beliefs that is generated

by signal s4. By standard results, this implies that s4 is Blackwell dominated by the convex

combination of signals s1, s2, s3 that places probability 1/3 on each of these signals.

Because s4 is Blackwell dominated by a convex combination of s1, s2 and s3 in every

decision problem one of signals s1, s2, or s3 yields at least as high expected utility as s4.

Yet s4 is not Blackwell dominated by any single of the signals s1, s2 and s3. The example in

Tables 2.2 and 2.3 is therefore the analogue for signals of the example in Table 2.1.

We conclude this section by briefly considering briefly some alternatives to the Blackwell

order and the applicability of the results in Theorem 2.1 to these orders. Suppose that the

set of states Ω is a lattice. We can then restrict attention to decision problems such that

set of actions A is a finite lattice and the utility function u is supermodular in the product

lattice on Ω × A. Let us call such decision problems “monotone,” and let us denote the set

of all such decision problems by M.

Definition 2.11. Signal s monotonically dominates signal ŝ if for every monotone decision

problem (A, u) ∈ M: ∫
∆(Ω)

vA,u(ν)dµs ≥
∫
∆(Ω)

vA,u(ν)dµŝ.
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We can apply part (v) of Theorem 2.1 to conclude:.

Proposition 2.2. Signal s ∈ S is a uniquely optimal choice in some monotone decision

problem (A, u) if and only if it is not monotonically dominated by any convex combination

of signals in S \ {s}.

The order that we have introduced in Definition 2.11 is closely related to the orders

introduced in Lehmann (1988) and Athey and Levin (2018) but it does not coincide with

either of these. Lehmann, and also Athey and Levin, assume the action set to be a subset of

the set of real numbers, and thus they assume the action set to be completely ordered. With

this assumption the argument that we used above to show that the set of value functions is

convex no longer applies. This is because that argument involved creating a new decision

problem from two given decision problems in which the decision maker’s action set was

the Cartesian product of the original action sets. It was important that this new decision

problem was included in the set of admissible decision problems. But if action sets have to be

one-dimensional, this argument no longer holds. Kim (2022) allows multi-dimensional action

sets but imposes joint conditions on signals and decision problems. A detailed consideration

of his order is outside of the scope of this paper.

One might also modify the Blackwell order by considering not only the value functions

that are generated by finite decision problems, but instead all value functions that are convex

in the posterior, and in addition normalize value functions, so that every value function must

assume 0 as the minimum expected utility and 1 as the maximum expected utility. Note

that this rules out constant value functions. With this construction, the concept of strict

dominance among signals is no longer vacuous. For example, a perfectly informative signal

will strictly dominate a completely uninformative signal. A statistical characterization of

this dominance relation among signals is left for future work.

2.6 Dominance and Optimality of Monetary Lotteries

Consider an expected utility maximizer who chooses one lottery from a finite set of lotteries.

Here, a lottery is a probability distribution over R. One lottery first order stochastically

dominates another lottery if the former lottery yields at least as high expected utility as the

latter provided that the decision maker’s utility is non-decreasing in money. One lottery

second order stochastically dominates another lottery if the former lottery yields at least as

42



high expected utility as the latter provided that the decision maker’s utility is non-decreasing

and concave in money.6

To apply the results of Section 2.2 we let the set X of actions be the set of monetary

lotteries that the decision maker can choose from, and we let the set Y be the set of non-

decreasing (in the case of first order stochastic dominance), or the set of non-decreasing and

concave (in the case of second order stochastic dominance) utility functions with domain R.

The utility function u from Section 2 is then the expected utility, that is, if x is the lottery

with cumulative distribution function F , and y is the utility function u : R→ R, then

u(x, y) =

∫
u(z)dF.

In this specification, the set Y is a convex set, although it is not compact, and has an empty

relative interior. The utility function u is linear in u and continuous in the topology of

uniform convergence.

As was the case with signals, convex combinations of lotteries have again an intuitive

interpretation. The convex combination that attaches weight λ to the lottery with cumulative

distribution function F1 and weight 1−λ to the lottery with cumulative distribution function

F2 is the lottery with cumulative distribution function λF1 + (1 − λ)F2. This new lottery

yields exactly the expected utility specified in Section 2 for convex combinations.

A lottery is first or second-order stochastically dominated by a convex combination of

other lotteries if it is either weakly dominated by the convex combination, or if it is made

redundant by the convex combination of the other lotteries.

We can apply parts (i), (iii) and (v) of Theorem 2.1. As in the previous section, strict

dominance among lotteries is a vacuous notion because we have allowed the constant utility

function. Interior optimality is vacuous because the relative interior of Y is empty. Therefore,

we focus on part (v) of the Theorem.

We illustrate in Table 2.4 why part (v) of the Theorem would not hold if we had not

considered convex combinations. We display three lotteries, ℓ1, ℓ2 and ℓ3. Each row corre-

sponds to a Dollar amount, each column corresponds to a lottery, and the entry in the table

indicates the probability of the given dollar amount.

6Our definitions of the stochastic dominance orders are taken from Mas-Colell et al. (1995), where they
are Definitions 6.D.1 and 6.D.2. The definitions differ slightly from the original definition of first order
stochastic dominance in Quirk and Saposnik (1962) and second order stochastic dominance in Rothschild
and Stiglitz (1970).
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ℓ1 ℓ2 ℓ3
0$ 1

2
0 4

9

1$ 0 1 1
3

2$ 1
2

0 2
9

Table 2.4: Payoffs of three lotteries

Note that neither lottery 1 nor lottery 2 first order stochastically dominates lottery 3.

However, the convex combination of lotteries 1 and 2 that attaches weight 2/3 to lottery

1 and weight 1/3 to lottery 2 attaches probability 1/3 each to 0 Dollars, 1 Dollar, and 2

Dollars. This convex combination first order stochastically dominates lottery 3. Indeed, a

decision maker with a strictly increasing utility function will choose either lottery 1 or lottery

2, depending on the particular utility function, but will never choose lottery 3.

Our discussion suggests that it would be interesting to modify the framework by consider-

ing only lotteries with some given compact support, and then to allow only strictly increasing

utility functions that assume 0 as the minimum value and 1 as the maximum value. The

notion of strict dominance would then not be vacuous, and in addition one might try to

adapt the framework so that part (ii) of Theorem 2.1 applies. We leave this to future work.

2.7 Conclusion

This paper has uncovered both shared properties of dominance orders in economics as well

as differences among these orders. The differences that we have found might motivate the

introduction of new orders of experiments and of monetary lotteries.

Our paper has emphasized the important role of convex combinations of actions in dom-

inance relations. In the theory of the optimal choice of investment portfolios it might be

of interest to investigate “efficient” portfolios as those that are not dominated by convex

combinations of other portfolios. In the theory of information acquisition, it might be of

interest to investigate signals that are not Blackwell dominated by convex combinations of

other signals. In a companion paper we tackle this latter problem in a setting in which a

signal is two-dimensional, and the marginal distributions of signals are given and fixed. We

characterize joint distributions are not Blackwell dominated by convex combinations of other

signals. Results of this type yield insight into optimal choices of decision makers without

relying on specific assumptions about their environment or their preferences.
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CHAPTER 3

Blackwell Undominated Joint Distributions of

Signals

joint work with Tilman Börgers

3.1 Introduction

Decision makers often have access to multiple information sources. Investors in financial

markets can obtain information from corporate disclosures, news media, and social networks.

After the first diagnosis, patients may approach another doctor for a second opinion. Before

buying a car, a consumer may gather information from dealers, friends, and reviews on the

internet. Health authorities may require the residents to have both molecular and antigen

tests for COVID-19.

The opinion that independent information sources are favorable is prevalent across disci-

plines. In philosophy: “The general point is that an additional outside opinion should move

one only to the extent that one counts it as independent from opinions one has already

taken into account.”(Elga, 2010) In journalism: “...good journalism rests on sources who

are independent, multiple, verified, authoritative, informed and named.”(O’Connor, 2014)

On the other hand, economic models often assume that different information sources are

stochastically independent conditional on the true state.

However, dependence may be helpful. Blom (1975) indicates that random sampling with-

out replacement is better than random sampling with replacement in the sense that the

estimator resulting from the former has a lower variance than the estimator resulting from

the latter. Note that the samples are correlated in random sampling without replacement

while the samples are independent in random sampling with replacement. As we will illus-

trate later, another way of presenting that random sampling without replacement is better

than random sampling with replacement is that the signal resulting from random sampling
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without replacement Blackwell dominates (Blackwell (1951), Blackwell (1953)) the signal

resulting from random sampling with replacement.

These observations inspire us to investigate the relationship between correlation among

signals and informativeness of pooled signals. Formally, the research question is: among all

the joint distributions of two signals with fixed marginal distributions, which ones are not

Blackwell dominated? For a special case with just two states and two signal realizations per

signal, we show that under a specific condition, more negative correlations in both states

increase Blackwell informativeness. In addition, we provide a complete characterization

of joint distributions that are not Blackwell dominated by any single joint distribution or

any convex combination of joint distributions. That is, the joint distribution which is as

negatively correlated as possible in both states, or is as positively correlated as possible in one

state and as negatively correlated as possible in the other state is not Blackwell dominated.

On the other hand, for the general case, we prove that every joint distribution that has full

support conditional on each state is Blackwell dominated by a convex combination of some

joint distributions. In all cases, the conditionally independent joint distribution is Blackwell

dominated.

The only closely related paper that we are aware of is Clemen and Winkler (1985). It

uses a normal distribution model and assumes that the degrees of correlation among signals

are the same in all states. It finds that a more negatively correlated joint distribution

Blackwell dominates a less negatively correlated joint distribution. In our two-state-two-

realization model (a Bernoulli distribution model), when the degrees of correlation among

signals are the same in both states, there is a similar result. But we find that when the

degrees of correlation among signals are different across states, more negative correlations in

both states may increase or decrease Blackwell informativeness.

This paper is organized as follows. Section 3.2 presents the general model and Section 3.3

presents the two-state-two-realization model. Section 3.4 illustrates an example of sampling.

Section 3.5 provides a complete characterization of joint distributions of signals that are not

Blackwell dominated by a single joint distribution for the two-state-two-realization model.

Section 3.6 presents a necessary condition for a joint distribution not being Blackwell dom-

inated by a convex combination of joint distributions in the general model. Section 3.7

provides a complete characterization of joint distributions that are not Blackwell dominated

by a convex combination of joint distributions for the two-state-two-realization model. Fi-

nally, Section 3.8 concludes.
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3.2 General Model

Let Ω be a finite set of states of the world and a generic state is denoted by ω. A signal is

a mapping s : Ω → ∆(M), where M is a finite set of signal realizations, ∆(M) is the set of

all probability distributions over M , and sω ∈ ∆(M) is the distribution of signal realizations

conditional on ω.

Given finite signals s1, s2, ..., sn with realizations in M1, M2, ..., Mn, let βi ∈ R+ and∑n
i=1 βi = 1. A convex combination of these signals with weights (β1, β2, ..., βn) is the signal

sβ : Ω → ∆
(
M1 ∪M2 ∪ ... ∪Mn

)
such that for every ω ∈ Ω, every i = 1, 2, . . . , n, and every mi ∈ M i, we have:

sβω(m
i) = βis

i
ω(m

i).

Consider two (marginal) signals s1 and s2 with corresponding sets of signal realizations

M1 and M2. We now consider a joint signal s̃ with realizations in M1 × M2. Denote for

every m1 ∈ M1, m2 ∈ M2 and every ω ∈ Ω the marginal distributions of s̃ by:

s̃1ω(m
1) =

∑
m̃2∈M2

s̃ω(m
1, m̃2) and s̃2ω(m

2) =
∑

m̃1∈M1

s̃ω(m̃
1,m2).

Denote by J (s1, s2) the set of joint signals that satisfy for every ω ∈ Ω and for all m1 ∈ M1

and m2 ∈ M2:

s̃1ω(m
1) = s1ω(m

1) and s̃2ω(m
2) = s2ω(m

2).

Denote by ∆(Ω) the set of all probability distributions over Ω. The decision maker has

a prior belief µ ∈ ∆(Ω). A decision problem D consists of a finite set of actions A and a

Bernoulli utility function u : A×Ω → R. If the decision maker faces decision problem D, has

access to signal s before choosing an action, and chooses actions to maximize her expected

utility, she obtains ex ante expected utility::

V (D, s) =
∑
m∈M

max
a∈A

∑
ω∈Ω

µ (ω) sω (m)u (a, ω) (3.1)

Definition 3.1. Signal s weakly Blackwell dominates signal s′ if for all decision problems D:

V (D, s) ≥ V (D, s′).

Definition 3.2. Signal s strictly Blackwell dominates signal s′ if s weakly Blackwell dominates
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s′ and there exists a decision problems D such that

V (D, s) > V (D, s′).

The notions of “strictly” and “weakly” are different from those in game theory. The reason

is as follows. Essentially there are three cases when comparing signals (resp. strategies).

The first is that one signal (resp. strategy) leads to a higher payoff compared with the other

signal (resp. strategy) for all decision problems (resp. strategy profiles of other players).

The second is that one signal (resp. strategy) leads to a higher or equal payoff compared

with the other signal (resp. strategy) for all decision problems (resp. strategy profiles of

other players), and a higher payoff for at least one decision problem (resp. strategy profile of

other players). The third is that both signals (resp. strategies) lead to the same payoff for

all decision problems (resp. strategy profiles of other players). In game theory, “dominance”

refers to only the first and the second case, and thus the first case is called“strict dominance”

while the second“weak dominance”. However, for signals, the first case is impossible because,

for a decision problem where the optimal action does not vary with the states of the world,

all signals lead to the same payoff. So only the second and third cases are considered, and

thus the second case is called “strict Blackwell dominance” while the third is called “weak

Blackwell dominance”.

A well-known result is that s strictly Blackwell dominates s′ if and only if the distribution

over posteriors induced by s is a mean preserving spread of the distribution over posteriors

induced by s′.

3.3 Two-State-Two-Realization Model

In this section, we describe a notable special case of the general model. There are two states,

that is, Ω = {ω1, ω2}. Consider two identical signals whose sets of signal realizations are

both M = {m, m̂}. Conditional on ω1 (resp. ω2) each signal has realization m (resp. m̂)

with probability α and realization m̂ (resp. m) with probability 1 − α. Without loss of

generality, we assume α ∈
(
1
2
, 1
)
. So observing m (resp. m̂) alone raises the decision maker’s

belief that the state is ω1 (resp. ω2). α represents the informativeness of both signals which

is assumed to be the same in each state. The higher α is, the more informative the signals

are. When α approaches 1
2
, the signals convey almost no information. When α approaches

1, the signals are almost perfectly informative. Denote each signal by sα. Each s̃ ∈ J (sα, sα)

can be characterized by (x, y) in Table 3.1 where x ∈ [0, 1− α] and y ∈ [0, 1− α]. As x

(resp. y) increases, the signals are more positively correlated conditional on ω1 (resp. ω2).
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m m̂

m x+ 2α− 1 1− α− x

m̂ 1− α− x x

ω1

m m̂

m y 1− α− y

m̂ 1− α− y y + 2α− 1

ω2

Table 3.1: A generic joint signal distribution

We represent J (sα, sα) as the points inside the square in Figure 3.1.

x

y

s̃I

s̃NN

s̃NP

s̃PN

s̃PP

1− α0

1− α

Figure 3.1: The representation of J (sα, sα)

Denote the joint signal in which the marginal signals are as positively correlated as possible

in both states by s̃PP (the upper right corner), the joint signal in which the marginal signals

are as positively correlated as possible in ω1 while as negatively correlated as possible in

ω2 by s̃PN (the lower right corner), the joint signal in which the marginal signals are as

negatively correlated as possible in both states by s̃NN (the lower left corner), the joint

signal in which the marginal signals are as negatively correlated as possible in ω1 while as

positively correlated as possible in ω2 by s̃NP (the upper left corner), and the joint signal in

which the marginal signals are independent in both sates by s̃I (on the diagonal connecting

the lower left and upper right corner, corresponding to x = (1− α)2 and y = (1− α)2).

3.4 Example

In this section, we state some conventional wisdom in statistics and then formalize it using

the model we propose.
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In a probability sample, each unit in the population has a known probability of selection,

and a random number table or other randomization mechanism is used to choose the specific

units to be included in the sample. Consider the following forms of probability sampling.

A simple random sample with replacement of size n from a population of N units can be

thought of as drawing n independent samples of size 1. One unit is randomly selected from

the population to be the first sampled unit, with probability 1
N
. Then the sampled unit is

replaced in the population, and a second unit is randomly selected with probability 1
N
. This

procedure is repeated until the sample has n units, which may include duplicates from the

population.

If after each draw, the sampled unit is not replaced in the population, it is a simple

random sample without replacement.

Certain population units may be associated with each other or belong to a particular

group, called clusters. In a two-stage cluster sampling, some clusters are sampled in the first

stage, and then within each sampled cluster, units are sampled.

There is received wisdom about the comparison of these samplings (Lohr, 2021). On the

one hand, in finite population sampling, sampling the same unit twice provides no additional

information. So sampling without replacement is more informative than sampling with

replacement. On the other hand, units in the same cluster are not as likely to mirror the

diversity of the population as well as units chosen randomly from the whole population.

Thus, cluster sampling results in less information per observation than sampling from the

population. In this paper, we propose a new perspective for this conventional wisdom by

comparing these samplings in terms of Blackwell-informativeness and point out that their

difference lies in the correlation between samples.

Specifically, we apply the model in Section 3.3. A researcher is investigating the political

leanings of the population (6 persons). In ω1, there are 3 female Democrats, 1 female

Republican, 1 male Democrat, and 1 male Republican. In ω2, there are 1 female Democrat,

3 female Republicans, 1 male Democrat, and 1 male Republican. The researcher’s prior

belief is that these two states are equally likely. An agent implements sampling and presents

the selected samples to the researcher for investigation. The researcher can get two samples

from the agent. Out of consideration of privacy, the agent refuses to provide any information

about gender and inhibits the researcher from inferring it. (For example, the researcher must

use an online questionnaire rather than phone calls.)

First consider simple random sampling with replacement, whose conditional distributions

are shown in Table 3.21 where D represents that the sample is a Democrat while R represents

that the sample is a Republican.

1In this case, α = 2
3 , x = y = 1

9 .
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D R

D 4
9

2
9

R 2
9

1
9

ω1

D R

D 1
9

2
9

R 2
9

4
9

ω2

Table 3.2: The conditional distributions of simple random sampling with replacement

In this case, two draws are conditionally independent. It implies the following posterior

distribution: the probability of the posterior probability of ω1 being
4
5
(observing DD) equals

5
18
, the probability of the posterior probability of ω1 being 1

2
(observing DR or RD) equals

8
18
, and the probability of the posterior probability of ω1 being 1

5
(observing RR) equals 5

18
.

Then consider simple random sampling without replacement, whose conditional distribu-

tions are shown in Table 3.32.

D R

D 6
15

4
15

R 4
15

1
15

ω1

D R

D 1
15

4
15

R 4
15

6
15

ω2

Table 3.3: The conditional distributions of simple random sampling without replacement

In this case, two draws are conditionally correlated. For example, given that the first draw

is a Democrat, the probability of the second draw being a Democrat is lower than the

original proportion of Democrats in the population because the first draw is ruled out. The

same logic applies to the first draw being a Republican. So the two draws are negatively

correlated in both states. It implies the following posterior distribution: the probability of

the posterior probability of ω1 being 6
7
(observing DD) equals 7

30
, the probability of the

posterior probability of ω1 being 1
2
(observing DR or RD) equals 16

30
, and the probability

of the posterior probability of ω1 being 1
7
(observing RR) equals 7

30
. This distribution over

posteriors is a mean preserving spread of the counterpart for simple random sampling with

replacement. So the joint distribution from sampling without replacement strictly Blackwell

dominates the joint distribution from simple random sampling with replacement.

Finally, consider two-stage cluster sampling with probability proportional to size. In the

first stage, the female cluster or male cluster is chosen where the probability of the female

2In this case, α = 2
3 , x = y = 1

15 .
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cluster being chosen is the proportion of females. In the second stage, two samples are

drawn with replacement in the chosen cluster. This two-stage sampling can be implemented

as follows. First, randomly select a sample. Second, pick the samples who are of the same

gender as the selected sample in the first stage and replace the first selected sample in this

sub-population. Then randomly select a sample from the sub-population. Note that the

agent can observe the genders so that this sampling is feasible. But the agent does not

reveal the genders of the samples to the researcher even though the agent ensures that the

two samples are of the same gender. The conditional distributions are shown in Table 3.43.

D R

D 11
24

5
24

R 5
24

3
24

ω1

D R

D 3
24

5
24

R 5
24

11
24

ω2

Table 3.4: The conditional distributions of two-stage cluster sampling with probability pro-
portional to size

In this case, two draws are conditionally correlated. Take ω1 and the first draw being a

Democrat as an example. Given that the first draw is a Democrat, the posterior probability

of the first draw being a female is higher than the proportion of females in the population

because the proportion of Democrats is higher in females than in males. As a result, the

probability of the second draw being a Democrat is higher than the proportion of Democrats

in the population. The same logic applies to ω2 or the first draw being a Republican. So

the two draws are positively correlated in both states. It implies the following posterior

distribution: the probability of the posterior probability of ω1 being 11
14

(observing DD)

equals 7
24
, the probability of the posterior probability of ω1 being 1

2
(observing DR or RD)

equals 10
24
, and the probability of the posterior probability of ω1 being 3

14
(observing RR)

equals 7
24
. The distribution over posteriors for simple random sampling with replacement is

a mean preserving spread of the counterpart for two-stage cluster sampling with probability

proportional to size. So the joint distribution from simple random sampling with replacement

strictly Blackwell dominates the joint distribution from two-stage cluster sampling with

probability proportional to size.

We can draw the joint distribution resulting from the above samplings within the square,

as is shown in Figure 3.2, where s̃I represents the simple random sampling with replacement

(the signals are independent conditional on each state), s̃N represents the simple random

3In this case, α = 2
3 , x = y = 1

8 .
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sampling without replacement (the signals are negatively correlated conditional on each

state), s̃P represents the two-stage cluster sampling with probability proportional to size

(the signals are positively correlated conditional on each state), and α = 2
3
. It turns out that

in this case all of them are on the diagonal connecting the lower left and upper right corner

of the square, which implies their posterior beliefs of ω1 after observing DR or RD are all 1
2
.

x

y

s̃I

s̃N

s̃P

1− α0

1− α

Figure 3.2: The representation of samplings

3.5 Blackwell Dominance by a Single Joint Signal: the Two-

State-Two-Realization Model

In this section, we present a characterization of the joint signals in J (sα, sα) that are not

strictly Blackwell dominated by any joint signal in J (sα, sα).

First, we present a result that generalizes the observation from the example of sampling

in Section 3.4. Let

L =
{
(x, y) ∈ [0, 1− α]2 |x = 0 or y = 0

}
For all (x, y) ∈ L, let

C (x, y) =
{
(x′, y′) ∈ [0, 1− α]2 | (x, y) = β (1− α, 1− α) + (1− β) (x, y) , β ∈ [0, 1]

}
Denote by SC(x,y) the set of joint signals corresponding to elements in C (x, y).

Lemma 3.1. For all (x, y) ∈ L, for any two joint signals in SC(x,y) corresponding to β and β′

with β′ < β, the one corresponding to β′ strictly Blackwell dominates the one corresponding

to β.

53



We prove it by showing that the distribution of posteriors implied by β′ is a mean preserving

spread of the distribution of posteriors implied by β. The details are in the appendix.

This result indicates that on any line segment with one end at the upper right corner and

the other end on the left or lower side of the square, the joint signal that is farther away

from the upper left corner strictly Blackwell dominates the joint signal that is closer to the

upper left corner. For example, in Figure 3.3, s̃′ strictly Blackwell dominates s̃. It implies

that Blackwell order is complete within SC(x,y) ⊊ J (sα, sα).

x

y

1− α0

1− α

s̃

s̃′

Figure 3.3: The representation of Lemma 3.1

It follows from Lemma 3.1 that

Corollary 3.1. The conditionally independent joint signal is strictly Blackwell dominated by

some joint signal in J (sα, sα).

Note that a smaller β implies a smaller or equal x and a smaller or equal y. That is, the

marginal signals of the joint signal with a smaller β are more negatively correlated in both

states. The intuition of why more negative correlations in both states are good is as follows.

s̃PP is inferior because it is just a repetition of the marginal signals and thus provides no

additional information. It is like “buy (ing) several copies of today’s morning paper to assure

himself that what it said was true.” (Wittgenstein, 2009) As a result, the farther away the

joint signal is from s̃PP , the more informative the joint signal is.

Clemen and Winkler (1985) assumes the true states follow a normal distribution and each

signal is a sum of the true state and a normal error. The conditional covariance matrices

of errors do not vary with states. If all the variances of errors are the same and all the

covariances of errors are the same, then the more negatively correlated the errors are, the

more Blackwell informative the joint signal is. Since the degrees of correlation of signals are
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the same in all states, it corresponds to x = y in our model. So their result echoes Lemma 3.1

for SC(0,0), that is, the line connecting s̃PP and s̃NN .

Although Lemma 3.1 implies more negative correlations increase Blackwell informative-

ness (also for the case where x ̸= y, which is beyond the scope of Clemen and Winkler

(1985)), it relies on the condition that one end of the line is s̃PP . For example, let α = 2
3
.

Consider s̃ corresponding to
(
1
9
, 1
9

)
(two marginal signals are conditionally independent) and

s̃′ corresponding to
(
1
3
, 1
6

)
. Since 1

9
< 1

3
and 1

9
< 1

6
, the marginal signals of s̃ are more nega-

tively correlated than the marginal signals of s̃′ in both states. However, s̃′ strictly Blackwell

dominates s̃ (The proof is in the appendix.). These two joint signals are shown in Figure 3.4,

and we can see the line segment connecting them does not pass through s̃PP .

Example 3.1. More negative correlations in both states do not guarantee strict Blackwell

dominance.

x

y

1− α0

1− α

s̃

s̃′

s̃PP

Figure 3.4: s̃′ strictly Blackwell dominates s̃ even though the marginal signals of s̃ are more
negatively correlated than the marginal signals of s̃′ in both states

Denote by SL the set of joint signals corresponding to elements in L. Lemma 3.1 im-

plies that a necessary condition for a joint signal in J (sα, sα) not being strictly Blackwell

dominated by any joint signal in J (sα, sα) is that it belongs to SL, as is shown in Figure 3.5.
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x

y

1− α0

1− α

Figure 3.5: The representation of SL

Then we further refine this condition to get a necessary and sufficient condition.

Proposition 3.1. When α ∈
(
1
2
, 3
4

]
, only s̃PN and s̃NP are not strictly Blackwell dominated

by any joint signal in J (sα, sα).

When α ∈
(
3
4
, 1
)
, only s̃PN , s̃NP , and joint signals with xy = 0, x < x∗, and y < x∗ are

not strictly Blackwell dominated by any joint signal in J (sα, sα), where x∗ = (1−α)(4α−3)
2α−1

.

This result is illustrated in Figure 3.6 and Figure 3.7.

x

y

s̃NP

s̃PN

1− α0

1− α

Figure 3.6: The joint signals in J (sα, sα) that are not strictly Blackwell dominated by any
joint signal in J (sα, sα) when α ∈

(
1
2
, 3
4

]
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x

y

s̃NN

s̃NP

s̃PN

1− α0

1− α

(1−α)(4α−3)
2α−1

(1−α)(4α−3)
2α−1

Figure 3.7: The joint signals in J (sα, sα) that are not strictly Blackwell dominated by any
joint signal in J (sα, sα) when α ∈

(
3
4
, 1
)

Sketch of the proof. According to Lemma 3.1, for any joint signals in SL, if it is strictly

Blackwell dominated by a joint signal in J (sα, sα), then it must be strictly Blackwell dom-

inated by a joint signal in SL. In other words, if a joint signal in SL cannot be strictly

Blackwell dominated by any joint signal in SL, it cannot be strictly Blackwell dominated by

any joint distributions in J (sα, sα). Specifically, we prove that there are no distributions of

posteriors implied by joint signals in SL that are mean preserving spreads of the distribu-

tions of posteriors implied by the joint signals mentioned in the result. The details are in

the appendix. ■

Note that the maximum of x (resp. y) is 1−α, x∗

1−α
is increasing in α, and lim

α→1−

x∗

1−α
= 1.

3.6 Blackwell Dominance by a Convex Combination of Joint

Signals: the General Model

In this section, we derive a necessary condition for a joint signal in J (s1, s2) not being strictly

Blackwell dominated by any convex combination of joint signals in J (s1, s2).

Proposition 3.2. Suppose there exist states ω̄, ω̂ ∈ Ω where ω̄ ̸= ω̂, messages m̄1, m̂1 ∈ M1

where m̄1 ̸= m̂1, and messages m̄2, m̂2 ∈ M2 where m̄2 ̸= m̂2, such that s̃ω̄ assigns positive

probability to all elements of {m̄1, m̂1} × {m̄2, m̂2} and s̃ω̂ assigns positive probability to at

least one element of {m̄1, m̂1}×{m̄2, m̂2}. Then s̃ is strictly Blackwell dominated by a convex

combination of some joint signals in J (s1, s2).
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Proof. We first characterize the joint signals associated with s̃ which we will use later to

construct a convex combination to strictly Blackwell dominate s̃. We modify s̃ as follows:

we change only the conditional probabilities of signal realizations in {m̄1, m̂1} × {m̄2, m̂2}
conditional on ω̄, leaving all other conditional probabilities unchanged. The modification is

shown in Table 3.5. Let z ∈ [z, z̄] where

z = max
{
−s̃ω̄(m̄

1, m̄2),−s̃ω̄(m̂
1, m̂2)

}
z̄ = min

{
s̃ω̄(m̄

1, m̂2), s̃ω̄(m̂
1, m̄2)

}
so that no entry in Table 3.5 is smaller than 0 or larger than 1.

m̄2 m̂2

m̄1 s̃ω̄(m̄
1, m̄2) + z s̃ω̄(m̄

1, m̂2)− z

m̂1 s̃ω̄(m̂
1, m̄2)− z s̃ω̄(m̂

1, m̂2) + z

Table 3.5: Modification of s̃

Denote the joint distribution corresponding to z by s̃z. Clearly s̃ is s̃0.

Consider a convex combination of s̃zL and s̃zH with z ≤ zL < 0 < zH ≤ z̄ and the weight

for s̃zL is |zH |
|zH |+|zL|

and the weight for s̃zH is |zL|
|zH |+|zL|

.

We first prove that for any decision problem, the convex combination of joint signals leads

to a higher or equal payoff. Consider any decision problem D. Let us denote by ϑ(z) those

terms in the decision maker’s expected utility that depends on z. We have:

ϑ (z)

= max
a∈A

µ(ω̄) (s̃ω̄(m̄1, m̄2) + z
)
u(a, ω̄) +

∑
ω∈Ω\{ω̄}

µ(ω)s̃ω(m̄
1, m̄2)u(a, ω)


+max

a∈A

µ(ω̄) (s̃ω̄(m̄1, m̂2)− z
)
u(a, ω̄) +

∑
ω∈Ω\{ω̄}

µ(ω)s̃ω(m̄
1, m̂2)u(a, ω)


+max

a∈A

µ(ω̄) (s̃ω̄(m̂1, m̄2)− z
)
u(a, ω̄) +

∑
ω∈Ω\{ω̄}

µ(ω)s̃ω(m̂
1, m̄2)u(a, ω)


+max

a∈A

µ(ω̄) (s̃ω̄(m̂1, m̂2) + z
)
u(a, ω̄) +

∑
ω∈Ω\{ω̄}

µ(ω)s̃ω(m̂
1, m̂2)u(a, ω)
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Observe that ϑ is the sum of four functions, where each of these four functions in turn is the

maximum of a finite set of functions that are linear in z. This implies that ϑ is convex in z.

As a result,

ϑ (0) ≤ |zH |
|zH |+ |zL|

ϑ (zL) +
|zL|

|zH |+ |zL|
ϑ (zH)

Then we prove that there is a decision problem for which the convex combination of

joint signals leads to a higher payoff. Without loss of generality, suppose s̃ω̂ assigns positive

probability to (m̄1, m̄2). Consider the following decision problem. A = {a1, a2}. u (a1, ω) =
u (a2, ω) for all ω ∈ Ω\ {ω̄, ω̂}. u (a1, ω̄) ̸= u (a2, ω̄), u (a1, ω̂) ̸= u (a2, ω̂), and

µ (ω̄) s̃ω̄
(
m̄1, m̄2

)
[u (a1, ω̄)− u (a2, ω̄)] = −µ (ω̂) s̃ω̂

(
m̄1, m̄2

)
[u (a1, ω̂)− u (a2, ω̂)]

which implies

µ(ω̄)s̃ω̄(m̄
1, m̄2)u(a1, ω̄) + µ(ω̂)s̃ω̂(m̄

1, m̄2)u(a1, ω̂)

= µ(ω̄)s̃ω̄(m̄
1, m̄2)u(a2, ω̄) + µ(ω̂)s̃ω̂(m̄

1, m̄2)u(a2, ω̂)

The expected utility of choosing a1 observing (m̄1, m̄2) is

µ(ω̄)
(
s̃ω̄(m̄

1, m̄2) + z
)
u(a1, ω̄) + µ(ω̂)s̃ω̂(m̄

1, m̄2)u(a1, ω̂) +
∑

ω∈Ω\{ω̄,ω̂}

µ(ω)s̃ω(m̄
1, m̄2)u(a1, ω)

which is linear in z and the slope is µ(ω̄)u(a1, ω̄). The expected utility of choosing a2

observing (m̄1, m̄2) is

µ(ω̄)
(
s̃ω̄(m̄

1, m̄2) + z
)
u(a2, ω̄) + µ(ω̂)s̃ω̂(m̄

1, m̄2)u(a2, ω̂) +
∑

ω∈Ω\{ω̄,ω̂}

µ(ω)s̃ω(m̄
1, m̄2)u(a2, ω)

which is linear in z and the slope is µ(ω̄)u(a2, ω̄). So the payoffs of choosing a1 and a2

observing (m̄1, m̄2) are the same when z = 0 and their payoffs have different slopes.

Previously, we show that those terms in ϑ relevant for (m̄1, m̂2), (m̂1, m̄2), and (m̂1, m̂2)

are all convex in z.

In sum, for this decision problem,

ϑ (0) <
|zH |

|zH |+ |zL|
ϑ (zL) +

|zL|
|zH |+ |zL|

ϑ (zH)
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So s̃ is strictly Blackwell dominated by a convex combination of s̃zL and s̃zH .

Note that if a joint signal has full support conditional on each state, it satisfies the condition

in Proposition 3.2. Specifically, we have

Corollary 3.2. The conditionally independent joint signal is strictly Blackwell dominated by

a convex combination of some joint signals in J (s1, s2).

3.7 Blackwell Dominance by a Convex Combination of Joint

Signals: the Two-State-Two-Realization Model

In this section, we present a characterization of the joint signals in J (sα, sα) that are not

strictly Blackwell dominated by any convex combination of joint signals in J (sα, sα).

When α ∈
(
1
2
, 3
4

]
, in the proof of Proposition 3.1, we show that any joint signals in

J (sα, sα) other than s̃PN and s̃NP is strictly Blackwell dominated by s̃PN or s̃NP . As a

result, for s̃PN (resp. s̃NP ), if it is strictly Blackwell dominated by a convex combination of

joint signals in J (sα, sα), then it must be strictly Blackwell dominated by s̃NP (resp. s̃PN).

But we show in the proof of Proposition 3.1 that s̃PN does not strictly Blackwell dominate

s̃NP and vice versa. So both of them are not strictly Blackwell dominated by any convex

combination of joint signals in J (sα, sα).

When α ∈
(
3
4
, 1
)
, according to Proposition 3.1, joint signals with x ∈

(
0, (1−α)(4α−3)

2α−1

)
and y = 0 or x = 0 and y ∈

(
0, (1−α)(4α−3)

2α−1

)
are not strictly Blackwell dominated by any

single joint signal in J (sα, sα). But according to the proof of Proposition 3.2, they are

strictly Blackwell dominated by a convex combination of s̃PN and s̃NN or s̃NP and s̃NN . For

example, in Figure 3.8, s̃ is strictly Blackwell dominated by the convex combination of s̃PN

and s̃NN .
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x

y

s̃NN

s̃NP

s̃PN

1− α0

1− α

s̃

Figure 3.8: The joint signals that are not strictly Blackwell dominated by any single joint
signal in J (sα, sα) may be strictly Blackwell dominated by a convex combination of joint
signals in J (sα, sα)

So we get a necessary condition for a joint signal not being strictly Blackwell dominated

by any convex combination of joint signals in J (sα, sα) when α ∈
(
3
4
, 1
)
, that is, the joint

distribution must be s̃PN , s̃NP , or s̃NN , as is shown in Figure 3.9.

x

y

s̃NN

s̃NP

s̃PN

1− α0

1− α

Figure 3.9: A necessary condition for a joint signal not being strictly Blackwell dominated
by any convex combination of joint signals in J (sα, sα) when α ∈

(
3
4
, 1
)

As a result, for any of s̃NN , s̃NP and s̃PN , if it is strictly Blackwell dominated by a convex

combination of joint signals in J (sα, sα), then it must be strictly Blackwell dominated by

a convex combination of the other two joint signals. In other words, if any of them cannot

be strictly Blackwell dominated by any convex combination of the other two, it cannot be

strictly Blackwell dominated by any convex combination of any joint signals in J (sα, sα).
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Since there are only three candidates, by checking them one by one, we get a characterization

of the set of joint signals that are not strictly Blackwell dominated by any convex combination

of joint signals in J (sα, sα).

Proposition 3.3. When α ∈
(
1
2
, 4
5

]
, only s̃PN and s̃NP are not strictly Blackwell dominated

by any convex combination of joint signals in J (sα, sα).

When α ∈
(
4
5
, 1
)
, only s̃PN , s̃NP and s̃NN are not strictly Blackwell dominated by any

convex combination of joint signals in J (sα, sα).

Sketch of the proof. We prove the following statements, which are enough for the claim in

this proposition to hold.

(1) For α ∈
(
1
2
, 2
3

)
∪
(
2
3
, 1
)
, there is a decision problem in which s̃PN leads to a higher

expected payoff than s̃NP and s̃NN . For α = 2
3
, s̃PN and s̃NP have the same distribution over

posteriors, and there is a decision problem in which s̃PN leads to a higher expected payoff

than s̃NN .

(2) For α ∈
(
1
2
, 2
3

)
∪
(
2
3
, 1
)
, there is a decision problem in which s̃NP leads to a higher

expected payoff than s̃PN and s̃NN . For α = 2
3
, s̃NP and s̃PN have the same distribution over

posteriors, and there is a decision problem in which s̃NP leads to a higher expected payoff

than s̃NN .

(3) For α ∈
(
1
2
, 4
5

]
, s̃NN is strictly Blackwell dominated by a convex combination of s̃PN

and s̃NP .

(4) For α ∈
(
4
5
, 1
)
, there is a decision problem in which s̃NN leads to a higher expected

payoff than s̃PN and s̃NP .

The details are in the appendix. ■

Note when α ∈
(
3
4
, 4
5

]
, s̃NN is not strictly Blackwell dominated by either of s̃PN and s̃NP ,

but is strictly dominated by the convex combination of them.

The analysis of this proposition is as follows. First, consider why s̃PN , s̃NP , and s̃NN are

informative signals. s̃PN and s̃NP being informative is intuitive. In one state, the realizations

are as positively correlated as possible. In the other state, the realizations are as negatively

correlated as possible. So whether or not the two realizations are the same can help to

distinguish between two states. But this makes the fact that s̃NN is not strictly Blackwell

dominated surprising. The realizations are as negatively correlated as possible in both states.

So whether or not the two realizations are the same cannot help to distinguish between two

states. As a result, we need a more careful examination, which is given below.

Note when the true state is ω1 (resp. ω2), it is more likely to observe m (resp. m̂). First

consider s̃PN . When the true state is ω1, the realizations are as positively correlated as

possible (in fact, perfectly positively correlated). So only mm and m̂m̂ are possible. When

62



the true state is ω2, the realizations are as negatively correlated as possible. Note they

cannot be perfectly negatively correlated because that implies the probability of m is the

same as m̂, but the latter should be higher than the former at ω2. Within mm and m̂m̂,

mm becomes impossible since the realization tends to be m̂ at ω2. Therefore, mm indicates

the true state must be ω1, and mm̂ or m̂m indicates the true state must be ω2. The only

realization that does not indicate the true state for sure is m̂m̂. So the intuition that “the

realizations being different indicates ω2” is correct, while the intuition that “the realizations

being the same indicates ω1” is partially correct (only applies to mm). s̃NP is similar.

Then consider s̃NN . The above analysis suggests that when the true state is ω1, the

realizations can be mm, mm̂, and m̂m. When the true state is ω2, the realizations can be

m̂m̂, mm̂, and m̂m. Therefore, mm indicates the true state must be ω1, and m̂m̂ indicates

the true state must be ω2. mm̂ or m̂m cannot reveal much information about the true state.

In sum, when the realizations are as negatively correlated as possible in both states, the

realizations being the same is very informative.

Then consider why as the marginal signals become more informative, s̃NN stands out.

The above analysis suggests that the drawback of s̃PN is m̂m̂ while the drawback of s̃NN is

mm̂ and m̂m. When comparing them, two aspects matter: the extremeness of the posteriors

and the probabilities of these realizations. On the one hand, the posterior of m̂m̂ in s̃PN is

more extreme than the posteriors of mm̂ and m̂m in s̃NN .4 On the other hand, when the

marginal signals are not very informative (resp. very informative), the probability of m̂m̂ in

s̃PN is lower (resp. higher) than the probability of mm̂ and m̂m in s̃NN .5 As a result, when

the marginal signals are not very informative, s̃PN is better than s̃NN on both aspects. So

s̃NN is strictly Blackwell dominated. When the marginal signals are very informative, s̃PN

and s̃NN each has its advantage. So both of them are not strictly Blackwell dominated.

The above analysis reveals that when the marginal signals are very informative, s̃PN is

better in some decision problems while s̃NN is better in other decision problems. We further

illustrate the features of decision problems for which they are better respectively.

Figure 3.10 illustrates a decision problem with two actions (a1 and a2) where s̃
PN is better

than s̃NN .

4For m̂m̂ in s̃PN , the posterior probability of ω1 is 1−α
α . For mm̂ or m̂m in s̃NN , the posterior probability

of ω1 is 1
2 .

5The probability of m̂m̂ in s̃PN is α
2 . The probability of mm̂ and m̂m in s̃NN is 2 (1− α). The cutoff of

their relative size is 4
5 , which is exactly the cutoff for s̃NN not being strictly Blackwell dominated.
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Pr (ω1)

expected payoff

a1 a2

Figure 3.10: A decision problem where s̃PN is better than s̃NN

The solid lines indicate the expected payoffs of actions in a specific decision problem. The

red points indicate the posteriors of s̃PN while the blue points indicate the posteriors of s̃NN .

A half red half blue point means it is a posterior for both s̃PN and s̃NN .

If we add a safe action a3 to the above decision problem, we can increase the expected

payoff of s̃NN while keeping the payoff of s̃PN the same. As a result, s̃NN becomes better

instead, which is shown in Figure 3.11:

Pr (ω1)

expected payoff

a1 a2

a3

Figure 3.11: A decision problem where s̃NN is better than s̃PN
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3.8 Conclusion

We investigate which joint distributions of signals are not strictly Blackwell dominated among

all the joint distributions of two signals with fixed marginal distributions. For a special

case with just two states and two signal realizations per signal, we provide a complete

characterization of joint distributions that are not Blackwell dominated by any single joint

distribution or any convex combination of joint distributions. For the general case, we

prove that every joint distribution that has full support conditional on each state is strictly

Blackwell dominated by a convex combination of some joint distributions. In all cases, the

conditionally independent joint distribution is strictly Blackwell dominated. Nelson Mandela

said “I like friends who have independent minds because they tend to make you see problems

from all angles.” (Mandela, 2011) But our paper implies that friends who have dependent

minds may help you even more.

Our work can be extended in the following ways. First, this paper does not provide any re-

sults regarding strict Blackwell dominance by a single joint distribution in the general model,

so it is a natural next-step. Second, it would be interesting to make the necessary condition

for a joint distribution not being strictly Blackwell dominated by a convex combination of

joint distributions in the general model tighter, or even to strengthen it to a sufficient and

necessary condition.
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APPENDIX A

Appendix for Chapter 1

Proof of Lemma 1.3

Lemma A.1. If I ′ ∈ BR (I), then C (I, I ′) < +∞.

Proof. If C (I, I ′) = +∞, then

U (I ′)− C (I, I ′) = −∞

But

U (I)− C (I, I) > −∞

Then I ′ /∈ BR (I). So I prove the contrapositive of the lemma.

Proof. Suppose (I∅, IR, IS, ISR) is a distortion.

According to Lemma A.1, IR ∈ BR (I∅) and ISR ∈ BR (IS) imply C (I∅, IR) < +∞ and

C (IS, ISR) < +∞. Given C (I∅, IS) ⩾ 0, C (IS, IR) ⩾ 0, and

C (I∅, IR) = C (I∅, IS) + C (IS, IR) (A.1)

C (I∅, IR) < +∞ implies C (I∅, IS) < +∞ and C (IS, IR) < +∞. That C satisfies SLP

suggests

C (I∅, ISR) ⩽ C (I∅, IS) + C (IS, ISR) (A.2)

Then C (I∅, IS) < +∞ and C (IS, ISR) < +∞ suggest C (I∅, ISR) < +∞. So all the costs

involved here are finite, and thus the conventional algebraic properties hold. ISR ∈ BR (IS)

implies

U (ISR)− C (IS, ISR) ⩾ U (IR)− C (IS, IR) (A.3)
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It follows that

U (ISR)− C (I∅, ISR)

⩾ U (ISR)− C (IS, ISR)− C (I∅, IS)

⩾ U (IR)− C (IS, IR)− C (I∅, IS)

= U (IR)− C (I∅, IR)

where the first inequality is due to (A.2), the second inequality is due to (A.3), and the third

equation is due to (A.1). It implies ISR ∈ BR (I∅). So (I∅, IR, IS, ISR) is not a distortion.

Proof of Theorem 1.2

Proof. According to Matysková and Montes (2021), there exists 0 ⩽ γ2 ⩽ γ2 ⩽ 1 such that

the receiver does not learn and takes a1 when the belief is in
[
0, γ2

]
, does not learn and takes

a2 when the belief is in [γ2, 1], and learns to end up with a distribution over beliefs whose

support is
{
γ2, γ2

}
when the belief is in

(
γ2, γ2

)
.

First consider the case where 0 < γ2 < γ2 < 1.

When µ ∈
[
0, γ2

]
∪ [γ2, 1], it means that IR = I∅. Since IS ≻B I∅, then ISR ≿B IS ≻B IR,

which violates the definition of diversion.

When µ ∈
(
γ2, γ2

)
, it means that supp IR =

{
γ2, γ2

}
. According the this format of

receiver’s optimal strategy, it can be seen that whatever IS the sender chooses, the elements

in the support of resulting ISR must be in
[
0, γ2

]
∪ [γ2, 1]. Let supp ISR = {γ1, ..., γs, ..., γt}

where γ1, ..., γs ∈
[
0, γ2

]
and others in [γ2, 1]. Denote the probability of γi as ri. It follows

that

µ =
t∑

i=1

riγ
i

=

(
s∑

i=1

ri

) s∑
i=1

riγ
i

s∑
i=1

ri

+

(
t∑

j=s+1

rj

) t∑
j=s+1

rjγ
j

t∑
j=s+1

rj

≡ rLγL + rRγR

where rL ⩽ γ2 and rR ⩾ γ2. Consider a distribution over beliefs Ĩ whose support is {γL, γR}
and the corresponding probability is rL and rR. By construction, ISR ≿B Ĩ.
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Lemma A.2. ∀I, I ′ ∈ B (I∅) such that supp I is affinely independent, if supp I ′ ⊆
conv supp I, then I ≿B I ′.

This result is from Lipnowski et al. (2020). Since |supp Ĩ| = 2, supp Ĩ is affinely indepen-

dent. rL ⩽ γ2 and rR ⩾ γ2 imply supp IR ⊆ conv supp Ĩ and thus Ĩ ≿B IR according to

Lemma A.2. In sum, ISR ≿B IR, which violates the definition of diversion.

It is easy to verify that the theorem holds when any of 0 = γ2, γ2 = γ2, and γ2 = 1 holds.

Proof of Proposition 1.1

Proof. According to Lemma A.1, IR ∈ BR (I∅) and ISR ∈ BR (IS) imply C (I∅, IR) < +∞
and C (IS, ISR) < +∞. Then C (IS, IR) ⩽ C (I∅, IR) implies C (IS, IR) < +∞. So all the

costs involved here are finite, and thus the conventional algebraic properties hold. ISR ∈
BR (IS) implies

U (ISR)− C (IS, ISR) ⩾ U (IR)− C (IS, IR)

Together with C (IS, IR) ⩽ C (I∅, IR), it implies

U (ISR)− C (IS, ISR) ⩾ U (IR)− C (I∅, IR)

So the receiver is weakly better off.

Proof of Proposition 1.2

According to Lemma A.1, IR ∈ BR (I∅) and ISR ∈ BR (IS) imply C (I∅, IR) < +∞ and

C (IS, ISR) < +∞. So all the costs involved here are finite, and thus the conventional

algebraic properties hold. ISR ∈ BR (IS) implies

U (ISR)− C (IS, ISR) ⩾ U (IS)− C (IS, IS) = U (IS)

Together with U (IS) ⩾ U (IR) (implied by IS ≿B IR) and C (I∅, IR) ⩾ 0, it implies

U (ISR)− C (IS, ISR) ⩾ U (IR)− C (I∅, IR)

So the receiver is weakly better off.
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APPENDIX B

Appendix for Chapter 3

Proof of Lemma 3.1

Proof. Without loss of generality, assume the prior is the uniform distribution. First consider

y = 0.

β implies the following posterior distribution: the probability of the posterior probability

of state 1 being
β (1− α) + (1− β)x+ 2α− 1

2β (1− α) + (1− β)x+ 2α− 1

(observing mm) equals
2β (1− α) + (1− β)x+ 2α− 1

2

the probability of the posterior probability of state 1 being

1− α− x

2 (1− α)− x

(observing mm̂ or m̂m) equals

(1− β) [2 (1− α)− x]

and the probability of the posterior probability of state 1 being

β (1− α) + (1− β)x

2β (1− α) + (1− β)x+ 2α− 1

(observing m̂m̂) equals
2β (1− α) + (1− β)x+ 2α− 1

2

β′ implies the following posterior distribution: the probability of the posterior probability
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of state 1 being
β′ (1− α) + (1− β′)x+ 2α− 1

2β′ (1− α) + (1− β′)x+ 2α− 1

(observing mm) equals
2β′ (1− α) + (1− β′)x+ 2α− 1

2

the probability of the posterior probability of state 1 being

1− α− x

2 (1− α)− x

(observing mm̂ or m̂m) equals

(1− β′) [2 (1− α)− x]

and the probability of the posterior probability of state 1 being

β′ (1− α) + (1− β′)x

2β′ (1− α) + (1− β′)x+ 2α− 1

(observing m̂m̂) equals
2β′ (1− α) + (1− β′)x+ 2α− 1

2

Suppose that, conditionally on the posterior resulting from β being

β (1− α) + (1− β)x+ 2α− 1

2β (1− α) + (1− β)x+ 2α− 1
,

we create a new posterior distribution where the posterior equals

β′ (1− α) + (1− β′)x+ 2α− 1

2β′ (1− α) + (1− β′)x+ 2α− 1

with probability
2β′ (1− α) + (1− β′)x+ 2α− 1

2β (1− α) + (1− β)x+ 2α− 1
> 0

and the posterior equals
1− α− x

2 (1− α)− x

with probability
(β − β′) [2 (1− α)− x]

2β (1− α) + (1− β)x+ 2α− 1
> 0
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The expected value of this new posterior distribution is

β (1− α) + (1− β)x+ 2α− 1

2β (1− α) + (1− β)x+ 2α− 1
,

Similarly, conditionally on the posterior resulting from β being

β (1− α) + (1− β)x

2β (1− α) + (1− β)x+ 2α− 1
,

we create a new posterior distribution where the posterior equals

β′ (1− α) + (1− β′)x

2β′ (1− α) + (1− β′)x+ 2α− 1

with probability
2β′ (1− α) + (1− β′)x+ 2α− 1

2β (1− α) + (1− β)x+ 2α− 1
> 0

and the posterior equals
1− α− x

2 (1− α)− x

with probability
(β − β′) [2 (1− α)− x]

2β (1− α) + (1− β)x+ 2α− 1
> 0

The expected value of this new posterior distribution is

β (1− α) + (1− β)x

2β (1− α) + (1− β)x+ 2α− 1

The distribution over posteriors after the mean preserving spread is the same as the posterior

distribution resulting from β′. So the joint distribution resulting from β′ strictly Blackwell

dominates the joint distribution resulting from β.

The case for x = 0 is similar.

Proof of Example 3.1

Proof. Without loss of generality, assume the prior is the uniform distribution.

x = 1
9
and y = 1

9
imply the following posterior distribution: the probability of the

posterior probability of state 1 being 4
5
(observing mm) equals 5

18
, the probability of the

posterior probability of state 1 being 1
2
(observing mm̂ or m̂m) equals 4

9
, and the probability

of the posterior probability of state 1 being 1
5
(observing m̂m̂) equals 5

18
.

x = 1
3
and y = 1

6
imply the following posterior distribution: the probability of the
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posterior probability of state 1 being 4
5
(observing mm) equals 5

12
, the probability of the

posterior probability of state 1 being 0 (observing mm̂ or m̂m) equals 1
6
, and the probability

of the posterior probability of state 1 being 2
5
(observing m̂m̂) equals 5

12
.

Suppose that, conditionally on the posterior resulting from
(
1
9
, 1
9

)
being 1

2
, we create a new

posterior distribution where the posterior equals 4
5
with probability 5

16
, the posterior equals 2

5

with probability 10
16
, and the posterior equals 0 with probability 1

16
. The expected value of this

new posterior distribution is 1
2
. Similarly, conditionally on the posterior resulting from

(
1
9
, 1
9

)
being 1

5
, we create a new posterior distribution where the posterior equals 2

5
with probability

1
2
and the posterior equals 0 with probability 1

2
. The expected value of this new posterior

distribution is 1
5
. The distribution over posteriors after the mean preserving spread is the

same as the posterior distribution resulting from
(
1
3
, 1
6

)
. So the joint distribution resulting

from
(
1
3
, 1
6

)
strictly Blackwell dominates the joint distribution resulting from

(
1
9
, 1
9

)
.

Proof of Proposition 3.1

(1) We prove that there are no distributions of posteriors implied by joint signals in SL that

are mean preserving spreads of the distributions of posteriors implied by s̃PN .

In the posterior distribution implied by s̃PN , the probability of the posterior probability

of state 1 being 1 (observing mm) equals α
2
and the probability of the posterior probability

of state 1 being 0 (observing mm̂ or m̂m) equals 1− α. To be a mean preserving spread of

this distribution, the probability of the posterior probability of state 1 being 1 must be at

least α
2
and the probability of the posterior probability of state 1 being 0 must be at least

1−α. When x ∈ [0, 1− α) and y = 0, the posterior probability of state 1 being 1 (observing

mm) equals x+2α−1+y
2

< α
2
. When x = 0 and y ∈ (0, 1− α), the posterior probability of

state 1 being 1 equals 0 < α
2
. When x = 0 and y = 1 − α, the probability of the posterior

probability of state 1 being 1 (observing mm̂ or m̂m) equals 1−α and the probability of the

posterior probability of state 1 being 0 (observing m̂m̂) equals α
2
. So if α ∈

(
1
2
, 2
3

)
∪
(
2
3
, 1
)
,

either 1 − α < α
2
or α

2
< 1 − α. If α = 2

3
, s̃PN and s̃NP have the same distribution over

posteriors. In sum, there are no distributions of posteriors implied by joint signals in SL

that are mean preserving spreads of the distributions of posteriors implied by s̃PN .

(2) The proof that there are no distributions of posteriors implied by joint signals in SL

that are mean preserving spreads of the distributions of posteriors implied by s̃NP is similar

to (1).

(3) We prove that, for α ∈
(
1
2
, 3
4

]
, the joint signals corresponding to x ∈ [0, 1− α) and

y = 0 are strictly Blackwell dominated by s̃PN and the joint signals corresponding to x = 0

and y ∈ [0, 1− α) are strictly Blackwell dominated by s̃NP .
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First consider joint signals with x ∈ [0, 1− α) and y = 0. In the implied posterior

distribution, the probability of the posterior probability of state 1 being 1 (observing mm)

equals x+2α−1
2

, the probability of the posterior probability of state 1 being 1−α−x
2(1−α)−x

(observing

mm̂ or m̂m) equals 2 (1− α)− x, and the probability of the posterior probability of state 1

being x
x+(2α−1)

(observing m̂m̂) equals x+2α−1
2

.

Note in the posterior distribution implied by s̃PN , the probability of the posterior proba-

bility of state 1 being 1 (observing mm) equals α
2
, the probability of the posterior probability

of state 1 being 0 (observing mm̂ or m̂m) equals 1− α, and the probability of the posterior

probability of state 1 being 1−α
α

(observing m̂m̂) equals α
2
.

The posterior distribution implied by s̃PN is a mean preserving spread of the posterior

distribution implied by a joint signals with x ∈ [0, 1− α) and y = 0, if and only if there

exists βi ∈ R+, i = 1, 2, ..., 6 such that

β1 + β2 + β3 = 1

β4 + β5 + β6 = 1

1− α− x

2 (1− α)− x
= β1 · 1 + β2

1− α

α
+ β3 · 0

x

x+ 2α− 1
= β4 · 1 + β5

1− α

α
+ β6 · 0

α

2
=

x+ 2α− 1

2
+ β1 [2 (1− α)− x] + β4

x+ 2α− 1

2
α

2
= β2 [2 (1− α)− x] + β5

x+ 2α− 1

2

1− α = β3 [2 (1− α)− x] + β6
x+ 2α− 1

2

It is equivalent to

β1 =
1− α− x

2 (1− α)− x
− 1− α

α
β2

β3 =
1− α

2 (1− α)− x
− 2α− 1

α
β2

β4 =
2 (1− α) [2 (1− α)− x] β2 − α (1− α− x)

α (x+ 2α− 1)

β5 =
α− 2 [2 (1− α)− x] β2

x+ 2α− 1

β6 =
2 (2α− 1) [2 (1− α)− x]

α (x+ 2α− 1)
β2

where β2 is the free variable.
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β1 ≥ 0 is equivalent to

β2 ≤
α (1− α− x)

(1− α) [2 (1− α)− x]

β3 ≥ 0 is equivalent to

β2 ≤
α (1− α)

(2α− 1) [2 (1− α)− x]

β4 ≥ 0 is equivalent to

β2 ≥
α (1− α− x)

2 (1− α) [2 (1− α)− x]

β5 ≥ 0 is equivalent to

β2 ≤
α

2 [2 (1− α)− x]

β6 ≥ 0 is equivalent to

β2 ≥ 0

Note
α (1− α− x)

(1− α) [2 (1− α)− x]
≥ α (1− α− x)

2 (1− α) [2 (1− α)− x]

and
α

2 [2 (1− α)− x]
≥ α (1− α− x)

2 (1− α) [2 (1− α)− x]

So β2 exists if and only if

α (1− α− x)

2 (1− α) [2 (1− α)− x]
≤ α (1− α)

(2α− 1) [2 (1− α)− x]

which is equivalent to

x ≥ (1− α) (4α− 3)

2α− 1
≡ x∗

For α ∈
(
1
2
, 3
4

]
, x∗ ≤ 0, so the joint signals corresponding to x ∈ [0, 1− α) and y = 0 are

strictly Blackwell dominated by s̃PN .

The proof that the joint signals corresponding to x = 0 and y ∈ [0, 1− α) are strictly

Blackwell dominated by s̃NP is similar.

(4) We prove that, for α ∈
(
3
4
, 1
)
, there are no distributions of posteriors implied by joint

signals in SL that are mean preserving spreads of the distributions of posteriors implied by

joint signals with xy = 0, x < x∗, and y < x∗.

First consider any joint signal with x ∈ [0, x∗) and y = 0.

(a) The proof in (3) illustrates that it is not strictly Blackwell dominated by s̃PN .

(b) It is also not strictly Blackwell dominated by joint signals with x′ ∈ [x∗, 1− α) and

y′ = 0, otherwise it is strictly Blackwell dominated by s̃PN .
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(c) We prove that the posterior distribution implied by x′ ∈ (x, x∗) and y′ = 0 is not a

mean preserving spread of the posterior distribution implied by (x, y).

In the posterior distribution implied by (x, y), the probability of the posterior probability

of state 1 being 1 (observing mm) equals x+2α−1
2

, the probability of the posterior probability

of state 1 being 1−α−x
2(1−α)−x

(observing mm̂ or m̂m) equals 2 (1− α)− x, and the probability of

the posterior probability of state 1 being x
x+(2α−1)

(observing m̂m̂) equals x+2α−1
2

.

In the posterior distribution implied by (x′, y′), the probability of the posterior probability

of state 1 being 1 (observing mm) equals x′+2α−1
2

, the probability of the posterior probability

of state 1 being 1−α−x′

2(1−α)−x′ (observing mm̂ or m̂m) equals 2 (1− α)− x′, and the probability

of the posterior probability of state 1 being x′

x′+(2α−1)
(observing m̂m̂) equals x′+2α−1

2
.

Since

x∗ <
(1− α) (2α− 1)

α

we have
x

x+ (2α− 1)
<

1− α− x

2 (1− α)− x

and
x′

x′ + (2α− 1)
<

1− α− x′

2 (1− α)− x′

So the lowest posterior probability of state 1 in the posterior distribution implied by (x, y) is
x

x+(2α−1)
, while the lowest posterior probability of state 1 in the posterior distribution implied

by (x′, y′) is x′

x′+(2α−1)
. Note

x′

x′ + (2α− 1)
>

x

x+ (2α− 1)

As a result, the posterior distribution implied by (x′, y′) is not a mean preserving spread of

the posterior distribution implied by x ∈ [0, x∗) and y = 0 because a mean preserving spread

does not increase the lowest posterior probability of state 1.

(d) We prove that the posterior distribution implied by x′ ∈ [0, x) and y′ = 0 is not a

mean preserving spread of the posterior distribution implied by (x, y). (This case is trivial

when x = 0)

In the posterior distribution implied by (x, y), the probability of the posterior probability

of state 1 being 1 (observing mm) equals x+2α−1
2

.

In the posterior distribution implied by (x′, y′), the probability of the posterior probability

of state 1 being 1 (observing mm) equals x′+2α−1
2

. Note

x′ + 2α− 1

2
<

x+ 2α− 1

2
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As a result, the posterior distribution implied by (x′, y′) is not a mean preserving spread

of the posterior distribution implied by (x, y) because a mean preserving spread does not

decrease the probability of the posterior probability of state 1 being 1.

(e) We prove that the posterior distribution implied by x′ = 0 and y ∈ (0, 1− α) is not a

mean preserving spread of the posterior distribution implied by (x, y).

In the posterior distribution implied by (x, y), the probability of the posterior probability

of state 1 being 1 (observing mm) equals x+2α−1
2

.

In the posterior distribution implied by (x′, y′), the probability of the posterior probability

of state 1 being 1 equals 0. Note

0 <
x+ 2α− 1

2

As a result, the posterior distribution implied by (x′, y′) is not a mean preserving spread of

the posterior distribution implied by (x, y).

(f) We prove that the posterior distribution implied by s̃NP is not a mean preserving

spread of the posterior distribution implied by (x, y).

In the posterior distribution implied by (x, y), the probability of the posterior probability

of state 1 being 1 (observing mm) equals x+2α−1
2

.

In the posterior distribution implied by s̃NP , the probability of the posterior probability

of state 1 being 1 equals 1− α. Note

1− α <
x+ 2α− 1

2

when α ∈
(
3
4
, 1
)
. As a result, the posterior distribution implied by s̃NP is not a mean

preserving spread of the posterior distribution implied by (x, y).

In sum, there are no distributions of posteriors implied by joint signals in SL that are mean

preserving spreads of the distributions of posteriors implied by joint signals with x ∈ [0, x∗)

and y = 0. So the joint signals with x ∈ [0, x∗) and y = 0 are not strictly Blackwell dominated

by any joint signal in SL.

The proof that the joint signals with x = 0 and y ∈ (0, x∗) are not strictly Blackwell

dominated by any joint signal in SL is similar.

Proof of Proposition 3.3

Proof. We show the statements in the sketch of the proof one by one.

(1) Consider the following decision problem, denoted by Dδ, where the set of actions

A = {a1, a2} and the utility function u is as follows.
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ω1 ω2

a1 0 − (1 + δ)

a2 −1 0

Table B.1: A class of decision problems: Dδ

According to (3.1), the payoffs of s̃PN , s̃NP , and s̃NN are as follows.

V (Dδ, s̃
PN) = max

{
−1

2
(2α− 1) (1 + δ) ,−1

2
(1− α)

}

V (Dδ, s̃
NP ) = max

{
−1

2
(1− α) (1 + δ) ,−1

2
(2α− 1)

}

V (Dδ, s̃
NN)

= 2max

{
−1

2
(1− α) (1 + δ) ,−1

2
(1− α)

}
+max

{
−1

2
(2α− 1) (1 + δ) , 0

}
For α ∈

(
1
2
, 2
3

)
, let δ ∈

(
3α−2
1−α

, 0
)
, then

V (Dδ, s̃
PN) = −1

2
(2α− 1) (1 + δ)

V (Dδ, s̃
NP ) = −1

2
(2α− 1)

V (Dδ, s̃
NN) = − (1− α) (1 + δ)

α > 1
2
implies δ > 3α−2

1−α
> −1. So 1 + δ ∈ (0, 1). As a result, V

(
Dδ, s̃

PN
)
> V

(
Dδ, s̃

NP
)
.

α < 2
3
implies −1

2
(2α− 1) > − (1− α). As a result, V

(
Dδ, s̃

PN
)
> V

(
Dδ, s̃

NN
)
.

For α = 2
3
, s̃PN and s̃NP have the same distribution over posteriors. Let δ = 0, then

V (Dδ, s̃
PN) = −1

6

V (Dδ, s̃
NN) = −1

3

As a result, V
(
Dδ, s̃

PN
)
> V

(
Dδ, s̃

NN
)
.
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For α ∈
(
2
3
, 1
)
, let δ ∈

(
0, 3α−2

1−α

)
, then

V (Dδ, s̃
PN) = −1

2
(1− α)

V (Dδ, s̃
NP ) = −1

2
(1− α) (1 + δ)

V (Dδ, s̃
NN) = − (1− α)

It is easy to see V
(
Dδ, s̃

PN
)
> V

(
Dδ, s̃

NP
)
and V

(
Dδ, s̃

PN
)
> V

(
Dδ, s̃

NN
)
.

(2) Again we consider Dδ. For α ∈
(
1
2
, 2
3

)
, let δ ∈

(
0, 2−3α

2α−1

)
, then

V (Dδ, s̃
PN) = −1

2
(2α− 1) (1 + δ)

V (Dδ, s̃
NP ) = −1

2
(2α− 1)

V (Dδ, s̃
NN) = − (1− α)

δ > 0 implies V
(
Dδ, s̃

NP
)
> V

(
Dδ, s̃

PN
)
. α < 2

3
implies −1

2
(2α− 1) > − (1− α). As a

result, V
(
Dδ, s̃

NP
)
> V

(
Dδ, s̃

NN
)
.

The case of δ = 2
3
is the same as (1).

For α ∈
(
2
3
, 1
)
, let δ ∈

(
2−3α
2α−1

, 0
)
, then

V (Dδ, s̃
PN) = −1

2
(1− α)

V (Dδ, s̃
NP ) = −1

2
(1− α) (1 + δ)

V (Dδ, s̃
NN) = − (1− α) (1 + δ)

α < 1 implies δ > 2−3α
2α−1

> −1. So 1 + δ ∈ (0, 1). As a result, V
(
Dδ, s̃

NP
)
> V

(
Dδ, s̃

PN
)
.

It is easy to see V
(
Dδ, s̃

NP
)
> V

(
Dδ, s̃

NN
)
.

(3) s̃PN implies the following posterior distribution: the probability of the posterior prob-

ability of ω1 being 1 (observing mm) equals α/2; the probability of the posterior probability

of ω1 being 0 (observing mm̂ equals 1 − α or m̂m), and the probability of the posterior

probability of ω1 being (1− α) /α (observing m̂m̂) equals α/2.

s̃NP implies the following posterior distribution: the probability of the posterior proba-

bility of ω1 being (2α − 1)/α (observing mm) equals α/2; the probability of the posterior

probability of ω1 being 1 (observing mm̂ or m̂m) equals 1 − α, and the probability of the
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posterior probability of ω1 being 0 (observing m̂m̂) equals α/2.

s̃NN implies the following posterior distribution: the probability of the posterior probabil-

ity of ω1 being 1 (observing mm) equals α−(1/2); the probability of the posterior probability

of ω1 being 1/2 (observing mm̂ or m̂m) equals 2 (1− α), and the probability of the posterior

probability of ω1 being 0 (observing m̂m̂) equals α− (1/2).

Suppose that, conditionally on the posterior resulting from s̃NN being 1/2, we create a new

posterior distribution according to which the posterior is 0 with probability (4−4α)/(8−8α),

and equal to (2α − 1)/α with probability α/(8 − 8α), equal to (1 − α)/α with probability

α/(8 − 8α), and equal to 1 with probability (4 − 5α)/(8 − 8α). One can verify that the

expected value of this new posterior distribution is 1/2. If sNN results in posteriors 0 or 1,

we do not change the posterior distribution. The new posterior distribution that we have

created is exactly the posterior distribution of the 50-50 convex combination of s̃PN and

s̃−NP . Note that α ≤ 4
5
ensures (4− 5α)/(8− 8α) ≥ 0. So the joint distribution resulting

from the 50-50 convex combination of s̃PN and s̃NP strictly Blackwell dominates the joint

distribution resulting from s̃NN .

(4) Consider the following decision problem, denoted by Dα:

ω1 ω2

a1 0 −1

a2 −1 0

a3 −1−α
α

−1−α
α

Table B.2: A class of decision problems: Dα

The expected payoff of each action in the above decision problem is illustrated in Figure B.1:
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1−α
α

2α−1
α

Pr (ω1)

expected payoff

0 1

0
−1−α

α

-1

a1 a2

a3

Figure B.1: The expected payoff for each action in Dα

So

V (Dα, s̃
PN) = V (Dα, s̃

NP ) =
α

2
· 0 + (1− α) · 0 + α

2
·
(
−1− α

α

)
= −1− α

2

while

V (Dα, s̃
NN) =

(
α− 1

2

)
· 0 + (2− 2α) ·

(
−1− α

α

)
+

(
α− 1

2

)
· 0

Note that α > 4
5
implies 2 − 2α < α

2
. So V

(
Dα, s̃

NN
)
> V

(
Dα, s̃

PN
)
and V

(
Dα, s̃

NN
)
>

V
(
Dα, s̃

NP
)
.
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