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Abstract

This dissertation studies the role of government policies on environmental and safety exter-
nalities generated by the transportation sector. The first two chapters focus on the auto-
mobile industry in the United States, which is subject to a series of government-imposed
environmental regulations. The third chapter focuses on the alcohol regulations in India,
which affect traffic-related safety externalities.

Chapter 1 analyzes the effect of provisions such as deadlines and quotas that policy-
makers typically use to phase out subsidies for electric vehicles. Such provisions can create
dynamic incentives for car manufacturers. Most papers in the literature study the effect
of subsidy introduction on market outcomes in static settings, but there is little work that
addresses the dynamic effects of subsidy capping designs. This chapter explores these effects
in the US electric vehicle market. I develop a structural model of the consumer vehicle
choice and manufacturer’s pricing decisions in the US automobile industry and estimate it
using comprehensive data on new vehicle registrations, prices, characteristics, subsidies, and
demographics in 30 states between 2011-2017. Based on the primitives generated from the
model, I conduct counterfactual simulations to compare three subsidy capping designs: a
market-wide deadline, a per-manufacturer deadline, and a per-manufacturer quota. Coun-
terfactual simulations show that, given government expenditure, a per-manufacturer quota
leads to 32% lower EV sales than the policies with deadlines. Moreover, each subsidy capping
design influences the sales of conventional vehicles, consumer surplus, manufacturer profits,
and liquid fuel consumption differently.

Chapter 2, joint with Ying Fan, studies the effects of separating passenger cars and light-
duty trucks in the US Corporate Average Fuel Economy standards. The lower standard
for light trucks creates a perverse incentive for manufacturers to redesign large vehicles as
light-duty trucks instead of passenger cars to achieve compliance. We exploit a historical
change in the car-truck definitions to provide evidence that manufacturers change vehicle
characteristics to qualify for favorable regulatory treatment. To quantify the welfare effect
of such regulation gaming behavior, we develop and estimate a structural model of the US
automobile industry using data between 2001-2016 and conduct a counterfactual simulation

xi



where we change “marginal” truck SUVs to passenger cars for CAFE purposes. We find that
designing SUVs as light-duty trucks instead of passenger cars results in higher manufacturer
profits, higher consumer surplus, and higher fuel consumption.

Chapter 3 analyzes the effect of alcohol regulations on road traffic accidents, injuries, and
fatalities in India. Alcohol-related regulations in India are subject to intense scrutiny, but
there is little documentation on the effects of these policies on road safety. In this chapter,
I use state-level data on road accidents and the changes in alcohol regulations across states
and road types between 2004-2019 to identify the impact of two regulations on road traffic
accidents: (1) regulation of demographic access to alcohol through state-wide alcohol ban and
minimum legal drinking age and (2) regulation of location where alcohol is sold through sales
ban near highways. The results show that a state that moves from an alcohol prohibition to
a legal drinking age of 16 experiences roughly ten additional accidents per 10,000 vehicles, on
average, compared to other states. Moreover, the roads affected by the highway alcohol ban
experience six fewer accidents per 10,000 vehicles compared to other roads. Finally, there is
evidence of spillovers of neighboring states’ drinking age policies on a state’s road safety.
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Chapter 1

Roadblock or Accelerator? The Effect of Electric Vehicle

Subsidy Elimination

Nafisa Lohawala

1.1 Introduction

Consumer subsidies and rebates have become a successful means to promote electric vehicles
(EV) in several countries such as the United States, Canada, China, Japan, and Norway
(Beresteanu and Li, 2011; Chandra et al., 2010; Jenn et al., 2013). Policymakers typically
use provisions like quotas and deadlines to cap these subsidies. Despite the wide use of such
provisions, there is little work to understand their effect on market outcomes. This paper
extends the literature by considering the dynamic effects of subsidy-capping provisions. I
show that different provisions have different effects that can reinforce the intended policy
objectives or create unintended consequences that undo the benefits of the subsidy.

Several reasons may justify subsidizing plug-in EV purchases as part of optimal energy
and tax policy. First, EV adoption likely has a positive environmental externality due
to zero (or low) emissions of greenhouse gases and criteria air pollutants.1 It enhances
national energy security by not relying on gasoline. It has information spillovers to the
extent that EV consumers help spread information about the new technology. It also makes
entry attractive for charging stations, which is crucial for developing a charging network
and further encouraging demand. In addition to addressing these externalities, a policy goal

1Questions have been raised in the literature on the environmental benefits of driving electric vehicles
(see Babaee et al. (2014); Archsmith et al. (2015); Holland et al. (2016); Buekers et al. (2014), among others)
since charging the battery increases pollution at the power plant. The total emissions associated with driving
EVs are less than gasoline cars if the electricity is generated from renewable energy sources, and there may
be long-term environmental gains if electric vehicle adoption is complemented with renewable electricity
generation.
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may be to integrate EVs into the automobile industry by overcoming the most significant
barrier to their adoption – i.e., high upfront cost – by making EVs price competitive with
conventional vehicles.

The traditional Pigouvian solution to correct externalities is to subsidize the externality-
generating activity equivalent to the marginal external benefit at the optimal quantity. In
principle, governments could subsidize EVs forever; in practice, they allow these subsidies
to end after a certain amount of time. There may be several reasons for doing so. First,
subsidizing EVs can be prohibitively expensive as EV sales surge due to high administrative
costs or other political reasons. Second, marginal gains from informational spillovers are
likely to fade as EVs integrate into the auto industry. Finally, the marginal cost, hence the
price, is likely to come down with time as EV makers find cheaper ways to produce the
battery.

Policymakers worldwide use different strategies to cap the subsidies for EVs and other
green technologies, like limiting the total expenditure, imposing a deadline, or combining
both. For instance, the US federal tax-credit program caps the incentives by giving each
EV manufacturer a quota of 200,000 vehicles, following which the credit phases out for that
manufacturer. In contrast, Norway’s initial EV tax incentive and VAT exemption program
imposed a deadline of 2017 for all manufacturers together with a market-wide target of
50,000 EVs. China’s new energy vehicle (NEV) subsidy program plans to cut the subsidies
progressively between 2020 and 2022, with complete expiry in 2022, while Germany has
instituted a single deadline for their EV purchase subsidies and plans to cut them after
December 2025. Are these designs equally effective in raising EV penetration? What are
their implications for market outcomes like consumer surplus, EV manufacturers’ profits, and
overall gasoline consumption? This paper takes a step toward answering these questions.

I focus on the US federal EV tax-credit program, which provides non-refundable income
tax credits up to $7500 to EV consumers. The program combines a per-manufacturer quota
and a per-manufacturer deadline to cap these credits. Each EV manufacturer gets a quota of
200,000 vehicles, following which the credit phases out over a year as follows: it is unchanged
in the quarter in which the manufacturer delivers the 200,000th EV and in the next quarter,
and then reduces to half for that manufacturer. It then reduces to one-fourth of the original
value following a six-month deadline and then expires following another six-month deadline.
In this paper, I separately examine the per-manufacturer quota and the per-manufacturer
deadline and compare them with a popular alternative – i.e., a market-wide deadline, where
all manufacturers face a single deadline.

I first contrast the effects of different subsidy-capping provisions in an illustrative model
and show that a per-manufacturer quota can create an incentive to delay EV sales and

2



thereby undermine the effect of subsidy. The incentive results from the timing component in
the design. Specifically, by staying below the quota in any period, a manufacturer qualifies for
the subsidy for an additional period. Moreover, this incentive is reinforced by the oligopoly
structure of the automobile industry, as staying below the quota protects EV manufacturers
from fierce competition from others below the quota. In contrast, capping the subsidy using
a deadline does not create this incentive because manufacturers can not control when the
subsidy expires.

Next, to quantify the effects of each design, I develop and estimate a structural model
of the US automobile industry. The demand side follows a discrete-choice framework, where
consumers choose a vehicle among all available fuel types. The key feature of this model
is that consumers care about the number of EVs previously sold in their local geographic
area (network effect). As previously modeled by papers like Kalish and Lilien (1983), Heutel
and Muehlegger (2015), Springel (2021), Li et al. (2017), and Li (2018), such a network
effect is relevant to the EV industry due to information gains from early adopters and
mobility gains from the development of a charging network. In contrast, the supply side is
an oligopoly with product differentiation where car manufacturers compete in prices, and
the first-order conditions of profit-maximizing firms characterize the equilibrium. The key
feature of the supply model is that, in addition to current profits, vehicle manufacturers care
about the following year’s profits while choosing the prices. Such two-period pricing captures
manufacturers’ responses to the dynamic incentives induced by the subsidy caps, which a
static model would miss. The two-period model also allows manufacturers to internalize
the demand-side network effect. In the presence of a per-manufacturer quota, the network-
effect induced incentives work opposite to the quota-induced incentives; the overall effect is
apriori ambiguous and depends on market parameters like own- and cross-price elasticities
and network effect. I estimate these demand parameters using product-level data on vehicle
registrations, characteristics, and federal and state-level subsidies in 30 states between 2011-
2017. Based on the estimated demand parameters and the first-order conditions of the
manufacturers’ profit functions, I then recover the vehicle markups and marginal costs in 2017
– the last year in my sample. Finally, based on these primitives, I recompute pricing equilibria
under three subsidy-capping designs – (1) a market-wide deadline where all manufacturers
face the same deadline, (2) a per-manufacturer deadline where manufacturers face separate
deadlines, and (3) a per-manufacturer quota where manufacturers face separate quotas. I
compare these designs with a counterfactual with no subsidy.

Counterfactual simulations show that subsidy-capping designs have a consequential im-
pact on market outcomes. First, given government expenditure, even though all subsidy
designs boost the EV market penetration, a per-manufacturer quota leads to 32% lower EV

3



sales than the designs with deadlines. Two factors drive the reduction in sales: (1) Staying
below the quota in any period allows EV manufacturers to qualify for subsidies in the next
period, and (2) Because the subsidy is eliminated only for the EV-makers who exhaust the
quota, staying below the quota protects the manufacturers from fierce competition from other
EV-makers below the quota. As a result, subsidy programs that impose a deadline are more
cost-effective in increasing EV market penetration than a per-manufacturer quota. Moreover,
subsidy-capping designs may have spillovers on conventional vehicles’ sales and, therefore,
indirectly affect consumer surplus, manufacturers’ profits, and liquid fuel consumption.

Finally, the subsidy capping designs affect profit distribution across the manufacturers.
Compared to a market-wide deadline, a per-manufacturer deadline disproportionately shifts
profits away from the manufacturers that face the deadline. In contrast, a per-manufacturer
quota does not necessarily shift profits away from manufacturers facing a quota because it
allows them to control when the subsidy expires. This finding sheds light on the argument
made by the dominant EV manufacturers like Tesla, General Motors (GM), and Nissan, who
claim that the current US subsidy-capping design puts them at a competitive disadvantage
compared to newly entering rivals. EV subsidies became a topic of vigorous debate during
the tax reform of 2017 partly because of the per-EV manufacturer cap; the dominant EV-
makers and other EV supporters formed an EV-drive Coalition and argued (among other
reforms) to remove the cap. After the original design survived the tax reform of 2017, the
top EV makers who initially lobbied to preserve these incentives even started favoring their
removal altogether (Lambert, 2018). With the Biden administration’s recent proposal of
extending the federal EV subsidies (GREEN Act, 2021), subsidy capping is now a policy
issue again.

The paper adds to multiple strands of the literature. First and foremost, it contributes to
the emerging literature investigating the role of government in promoting green technology.
Some papers like Chandra et al. (2010); Gallagher and Muehlegger (2011); Jenn et al. (2013)
take a reduced-form approach to quantifying the effect of government support programs. For
instance, Jenn et al. (2013) use a spatial-autoregressive model and find that the federal tax
credits for hybrid EVs, on average, led to a 3-20% increase in hybrid market share in the US.
Others like Van Benthem et al. (2008); Beresteanu and Li (2011); Acemoglu et al. (2012);
Aghion et al. (2016) take a structural approach. For instance, Beresteanu and Li (2011) build
an equilibrium model of the new car market and estimate that federal income-tax credits
for hybrid vehicles accounted for about 20% of the hybrid vehicle sales in the US in 2006.
Most papers in this group study the effect of subsidy introduction on prices and welfare in
a static equilibrium while ignoring the dynamics of subsidy elimination. This paper adds to
the literature by explicitly modeling the responses of forward-looking producers to subsidy-
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capping designs in a micro-founded model. Comparing the market outcomes under different
subsidy designs allows systematic policy-making – one based on arraying alternative designs
and comparing the advantages and disadvantages of each. The analysis is relevant for other
eco-friendly products where policymakers use similar subsidy-capping designs. Examples
include fuel cell vehicles, solar panels, small wind turbines, and geothermal heat pumps.

In addition, this paper adds to the literature on the incidence effects of subsidy programs.
Some papers on the US clean energy subsidies include Sallee (2011a), Borenstein and Davis
(2016), Gulati et al. (2017), and Pless and Van Benthem (2019). Examples from other con-
texts include Cabral et al. (2018) on health insurance subsidies, Polyakova and Ryan (2019)
on Affordable Care Act subsidies, and Fan and Zhang (2022) on cellphone subsidies. This
paper adds to the incidence literature by highlighting that, for a given value of the subsidy,
the incidence depends on the design of the subsidy program. Unlike most papers that study
observed changes in the market outcomes surrounding the changes in subsidies, this paper
takes a structural approach that allows for a detailed analysis of mediating factors and a
simulation of market outcomes under counterfactual subsidy-capping designs. Sallee (2011a)
is closely related to the paper. He studies the incidence of hybrid vehicle tax credits enacted
through the Energy Policy Act (2005) and finds that the subsidy-exclusive transaction prices
of Toyota Prius did not increase in response to these tax credits. Sallee argues that Toyota
did not increase prices because it believed that raising prices could lower future demand for
hybrids. Such expectation may also be relevant for the nascent plug-in EV industry and
rationalizes the modeling of network effect in this paper.

Finally, the paper is a part of the broad empirical literature on automobile industry regu-
lation. In some papers, firms face certain constraints when choosing prices for their products.
For instance, in Goldberg (1995), firms are constrained by export quotas, while in Jacobsen
(2013), firms are constrained by the US corporate average fuel economy standards. In this
paper, firms face similar constraints in choosing product prices when facing per-manufacturer
quotas on the EV subsidies. This paper also complements recent papers focusing on the EV
segment, including Li et al. (2017); Li (2018); Gillingham (2022); Springel (2021).

The rest of the paper is organized as follows. Section 1.2 provides a brief background
of the US plug-in EV industry. Section 1.3 describes an illustrative example to provide
economic intuition and identifies the key parameters governing manufacturers’ responses to
subsidy capping designs. Section 1.4 outlines the utility specification and the supply-side
problem. Section 1.5 reports data and summary statistics. Section 1.6 discusses identifica-
tion, estimating algorithm, and results. Section 1.7 discusses the counterfactual experiments.
Section 1.8 summarizes the findings and concludes.
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1.2 Industrial Background

This section begins with a brief description of the US plug-in EV market and the federal EV
tax credit program that is the focus of this paper. It then describes the key mechanisms of
interest in the federal program. Finally, it describes other regulations that have influenced
the development of EVs.

1.2.1 Plug-in EV Market and Federal Tax Credits

Plug-in electric vehicles are road vehicles powered by batteries that can be recharged by
plugging into the electric grid. They come in two varieties: (i) battery electric vehicles
(BEVs), which are powered exclusively through electricity, and (ii) plug-in hybrid electric
vehicles (PHEVs), which use an electric motor as the primary power source, and the internal
combustion engine as a backup. BEVs and PHEVs differ from fuel-cell electric vehicles
(FCEVs) like Honda Clarity and conventional hybrids (HEVs) like the Toyota Prius, both
of which cannot be plugged into an electric grid.

The plug-in EV market in the US mostly developed after Nissan introduced Leaf in late
2010. Since then, with fuel efficiency and environmental regulations becoming increasingly
stringent, most vehicle manufacturers in the US have added plug-in technology to their
portfolios. The early entrants include Tesla, GM, Nissan-Mitsubishi, Ford, and Fisker Au-
tomotive. The relatively new entrants include BMW, Daimler, Fiat Chrysler, Volkswagen,
Honda, and (more recently) Hyundai, Kia, and Volvo. As of writing this paper in 2021,
Tesla is the highest-selling EV maker, followed by GM and Nissan-Mitsubishi.2

The US federal government started a tax credit program for PHEV and BEV pur-
chases under the Energy Improvement and Extension Act of 2008. The program offers
non-refundable tax credits for PHEV and BEV purchases made after 31st December 2009
(IRS, 2009). The credit varies by car model and is worth $2,500 plus $417 for each kilowatt-
hour of battery capacity over 4 kWh and capped at $7,500.3 BEVs qualify for a higher credit
than PHEVs due to their larger battery capacity. Popular BEVs such as all Tesla models
and Chevrolet Bolt qualify for the full $7,500 subsidy.

The US federal tax-credit program uses a unique phaseout provision. As summarized
in Figure 1.1, the phaseout is triggered for a manufacturer once it sells 200,000 subsidy-
qualifying cars for use in the United States after 31st December 2009. The credit is unchanged
in the quarter in which the manufacturer delivers the 200,000th subsidy-qualifying vehicle

2Nissan and Mitsubishi were independent entities during the sample period (2011-2017) and are treated
as such in the analysis.

3A consumer’s purchase must meet specific requirements in order to be eligible for the tax credit. See
Internal Revenue Code Section 30D for details.
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and in the next quarter. It reduces 50 percent of the original value for the next two quarters,
25 percent for the other two quarters, and then expires. All eligible plug-in vehicles sold
during the phaseout period qualify for the credit.

This program design followed suit of the tax credit program for conventional hybrid
vehicles (Energy Policy Act, 2005), allegedly designed to prevent dominant foreign manufac-
turers like Toyota and Honda from benefiting more than domestic manufacturers over the
program’s life (Lazzari, 2006; Leonhardt, 2006). Interestingly, the first two manufacturers
who hit the threshold (Tesla and GM) in the EV market are American. Tesla delivered the
200,000th qualifying vehicle in July 2018. Correspondingly, Tesla cars qualified for $7500
credit between July-December 2018, $3750 between January-June 2019, and $1875 between
July-December 2019 (IRS, 2018). General Motors delivered the 200,000th qualifying vehicle
in Nov 2018 and faced the subsidy expiration in April 2020 (IRS, 2019). As of 2021, no other
manufacturer has crossed 200,000 deliveries. Nissan is next in line, while others are trailing
far behind.

Because only two manufacturers have faced subsidy elimination in the US, I rely on
structural methods in this paper to understand the implications of different subsidy capping
designs. Specifically, I develop and estimate a structural model of the US automobile in-
dustry, explicitly accounting for the consumers’ and manufacturers’ decisions, and use the
estimated market parameters to simulate pricing equilibrium under counterfactual designs
and compare market outcomes. Appendix A.1 shows time-series evidence that EV sales re-
sponded differently to the per-manufacturer quota and the per-manufacturer deadline, based
on Tesla and GM’s experiences. In contrast to the EV tax credit program, the conventional
hybrid tax credit program has better data availability during and after the subsidy elimina-
tion because the program expired in 2010. Nonetheless, this paper focuses on the plug-in
EV tax credit program for two reasons. First, in contrast to the plug-in EVs, conventional
hybrids compared better than the dominant alternatives by combining the benefits of gaso-
line engines and electric motors. As a result, hybrid vehicles were already in high demand
before the tax credits started. Second, in contrast to the EV tax-credit program that offers
benefits up to $7500 and a 200,000 per-manufacturer cap, the hybrid tax-credit program
offered tax credits only up to $3150 with a much lower per-manufacturer cap of 60,000.
Toyota exhausted the quota within a few months of the program (IRS, 2006). Due to these
reasons, vehicle manufacturers are more likely to care about the consumer subsidies in the
EV market and, hence, more likely to respond to their elimination.
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Figure 1.1: Subsidy Capping Design Adopted in the US
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Notes: This figure explains the subsidy phaseout, which triggers in the second quarter after
the EV manufacturer delivers the 200,000th subsidy-qualifying vehicle. In the first six months
of the phaseout, any consumer who purchases a qualifying vehicle from that manufacturer
receives 50 percent of the original subsidy. In the second six months, the subsidy further
reduces to 25 percent and is completely eliminated thereafter. There is no limit to the
number of vehicles that can receive subsidies during the phaseout period. Panels (a) and (b)
show the subsidy evolution if the manufacturer exhausts the 200,000 threshold at the end of
quarter Q1 versus at the beginning of quarter Q2, respectively. A quick look indicates that
there substantial incentive to delay car sales at the end of Q1 because doing so prolongs the
subsidy for another quarter.

1.2.2 Key Features of the Federal Subsidy Design

The current subsidy capping design is a combination of a per-manufacturer quota of 200,000
vehicles and three per-manufacturer deadlines. The first two deadlines reduce the value
of the credit, while the final deadline eliminates it. Compared to the per-manufacturer
deadline, the per-manufacturer quota creates incentives to delay EV sales for two reasons:
First, the quota holds up the first deadline. The subsidy reduces to half in the second
quarter after the 200,000th subsidy-qualifying EV is delivered. Thus, pushing the sale of the
200,000th vehicle to the next quarter (e.g., in July instead of June) can push the subsidy
reduction ahead by three months. Second, the subsidy is eliminated only for the EV makers
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who exhaust the quota. As such, exhausting quota before others exposes an EV maker to
fierce competition because others continue to benefit from the subsidy. By delaying the
sales of subsidy-qualifying vehicles, EV-makers can avoid this situation. On the other hand,
the deadlines that follow the quota create no such incentive because manufacturers cannot
control when the subsidy expires.

An EV maker’s response to the per-manufacturer quota may be more complex if it an-
ticipates gains from selling early. Such gains may arise due to multiple reasons. On the
demand side, early sales may create a network effect that encourages later sales through
consumer learning and charging infrastructure development. Figure 1.2 demonstrates both
these mechanisms. Consumer learning creates a feedback effect on demand: potential con-
sumers experientially infer the quality of plug-in EVs as their exposure increases. This
mechanism is vital for the infant EV industry because, in the absence of information about
the quality of EVs, car drivers may be unwilling to purchase a technology different from the
dominant designs. Marketing literature extensively focuses on “word of mouth” effects that
consider uncertainty in product quality (Kalish and Lilien, 1983; Heutel and Muehlegger,
2015). Charging infrastructure creates a similar feedback effect: more charging stations al-
low more consumers to purchase an EV, and more EVs make entry more appealing for the
charging stations. The role of charging infrastructure may not seem obvious, considering
that consumers can charge EVs by plugging into an ordinary electric outlet. However, the
ordinary outlets are very slow and not viable for traveling long distances exceeding the ve-
hicle’s battery capacity. The presence of fast charging infrastructure is crucial to ensure the
vehicle’s mobility, especially for BEVs since they do not have a gasoline backup. In addition
to these demand-side gains, early sales may offer supply-side gains by helping manufacturers
reduce costs through innovation and self-perfection (learning by doing).

In the presence of such gains, EV makers facing a per-manufacturer quota face two con-
flicting forces. On the one hand, surpassing the quota means forgoing future subsidies. On
the other hand, staying below the quota means forgoing the network gains from additional
sales. As a result, EV makers’ response to a per-manufacturer quota is theoretically am-
biguous and depends on the relative strengths of the two channels. I discuss this mechanism
further in Section 1.3, and account for the network effect in my model by allowing consumers’
utility to depend on the cumulative EV sales by the manufacturer. For simplicity, I do not
model the supply-side gains separately.

9



Figure 1.2: Network Effect

Charging Infrastructure EV Adoption Consumer learning

Notes: The figure depicts the positive feedback effect (or network effect) of EV adoption on
future demand though two independent channels. EV adoption allows potential consumers
to experientially infer the quality plug-in EVs, which in turn increases future adoption.
Similarly, EV adoption makes entry more appealing for the charging stations, and more
charging stations allow more consumers to purchase an EV.

1.2.3 State-level Subsidies and ZEV Mandates

In addition to the federal subsidies, some state and local governments offer monetary or
non-monetary incentives for EV purchases. Monetary incentives, on top of the federal tax
credits, range from $250 to $7,500. The combined benefits can add up to $13,000 or more
per consumer in states like California. Examples of non-monetary incentives include access
to carpool lanes and free meter parking.

California’s zero-emission vehicle (ZEV) program has also significantly influenced the
development of the plug-in EV market. Designed by the California Air Resources Board
(CARB) in the 1990s to achieve the state’s long-term emission reduction goals, the program
requires a growing percentage of manufacturers’ overall sales to have low emissions. Nine
other states (collectively called ZEV states) also adopt the ZEV regulations and, together
with California, represent nearly 30 percent of the US car market.

Although ZEV mandates do not affect consumer decisions, they affect manufacturers’
profit function. The program works through a credit system, where each manufacturer
must show ZEV credits as a percentage of vehicle sales in the ZEV states in each model
year. Manufacturers with a shortfall can either use credits accumulated in other years or
buy credits from other manufacturers. Conversely, manufacturers that exceed their credit
requirements can bank excess credits for use in later years or sell them to other manufacturers.
For instance, Tesla and Nissan sold relatively higher BEV volumes than other manufacturers
starting in 2012 and gathered and sold credits to others. I discuss the ZEV program further
in Section 1.4 and incorporate it into my model by including the value of ZEV credits in the
firms’ profit functions.
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1.3 An Illustrative Model

This section demonstrates the effect of subsidy-capping designs on EV sales using a monopoly
example. Although the full model involves an oligopoly with strategic interactions, this
simple example provides economic intuition and identifies the key parameters governing the
effect of subsidy-capping designs. Section 1.4 generalizes the example to the full oligopoly
model that I estimate and use for counterfactual experiments.

Consider a monopolist that maximizes the sum of profits across two periods. The market
demand in the first period is linear in the price faced by the consumers:

Q1(P1) = A−BP1,

where A and B are positive scalars. The market demand in the second period is similar but
depends on the first-period adoption to account for the network effect:

Q(P1, P2) = (A−BP2) + ηQ1(P1).

Here, η represents the network effect. Higher the value of η, the more valuable the early
adopters. As described in the section 1.2, such network effect may be relevant for new
technologies such as EVs due to consumer learning or charging network development.

Let λt denote the purchase subsidy in period t. The price faced by the consumers is the
difference between the manufacturer-set price pt and the subsidy λt. The firm produces at a
constant marginal cost c in both periods and chooses the prices p1 and p2 to maximize the
sum of profits in both periods:

max
p1,p2

(p1 − c)Q1(p1 − λ1) + (p2 − c)Q2(p1 − λ1, p2 − λ2)

Consider two subsidy-capping designs inspired by the current US phaseout. The first
design introduces a deadline so that only the first-period buyers qualify for the subsidy.

λt =

s, if t = 1

0, if t = 2

In contrast, the second design introduces a cap Γ on the number of subsidy-qualifying sales.
All first-period buyers are eligible for the subsidy. Second-period buyers qualify for the
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subsidy only if first-period sales fail to exceed the quota.

λt =

s, if t = 1

sI[Q1(p1 − s) < Γ], if t = 2

The crucial distinction between the two designs is that the latter grants the firm control
over the second-period subsidy. Correspondingly, the privately optimal responses differ under
the two designs. Figure 1.3 illustrates this by comparing the optimal first-period sales under
the deadline and quota (Γ = 100) designs as a function of the subsidy s. Panel (1) uses
parameter values A = 300, B = 20, c = 5, and η = 0. A quick look at the figure indicates
that, in this situation, the first-period sales vary substantially under quota and deadline.
When facing a quota, the firm sells only Γ cars in the first period to secure subsidy in the
second period. When facing a deadline, the firm makes no such attempt as the second-period
subsidy does not depend on its actions.

The privately optimal prices and sales depend on the underlying parameters like price
elasticity and the network effect. Panels (2) and (3) demonstrate this by varying parameters
B and η. In panel (2), I reduce the price sensitivity to B = 10 while keeping the network
effect as 0 as in panel (1). In this situation, the gains from the subsidy are lower as compared
to panel (1). As a result, the firm facing a quota stays below the quota when the subsidy
exceeds a threshold s∗. When the subsidy is lower than s∗, the loss from selling fewer EVs in
the first period offsets the gains from the subsidy in the second period. As a result, the firm
behaves as if facing a deadline, and the two designs are equivalent. In panel (3), I increase
the network effect η to 0.3 while keeping the price sensitivity as in panel (2). The firm facing
a quota now faces a nontrivial dilemma: on the one hand, exhausting the quota shrinks the
future demand; on the other hand, attracting early adopters encourages the future demand.
In this situation, s∗ is even higher than case (2), implying that the firm stays below the
quota only when the subsidy is substantial.

Several lessons emerge from this simple analysis. First, a per-manufacturer quota can
create incentives to delay EV sales. In the monopoly example, this incentive results from
the timing component in the subsidy design – staying below the quota in any period allows
the firm to qualify for the subsidy in the next period. In an oligopoly, this incentive will
be reinforced because staying below the quota also protects the firm from fierce competition
from others below the quota. Second, the effect of subsidy-capping designs depends on
market parameters. In the monopoly example, it depends on the value of the subsidy, own-
price elasticity, and network effect. In an oligopoly, market outcomes like profit distribution
will also depend on the cross-price elasticities. By recovering the key market parameters, we
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Figure 1.3: Deadline vs Quota in a Monopoly

Notes: This figure shows the first period sales as a function of the subsidy s in three
different situations. Each panel fixes c = 5 and A = 300, but changes either the price
coefficient B or the network effect η.

Case (1): The price coefficient B = 20 and the network effect η = 0. Then, if sub-
sidy is below s∗, the firm sells fewer cars in presence of a quota as compared to a deadline
to secure future subsidy.

Case (2): The network effect is as in case (1) but the price coefficient is lowered to
B = 10. In this situation, s∗ is higher than before; the firm reduces the first-period sales
only when the subsidy is high.

Case (3): The price coefficient remains as in case (2) but network effect is raised to
η = 0.3. In this situation, s∗ is higher than in case (2).

can answer how subsidy-capping designs affect market penetration, gasoline consumption,
consumer surplus, and firms’ profits.

1.4 Full Model

I now describe the complete model with the consumer and manufacturers’ decision problems
in the automobile industry. I observe new vehicle sales in M geographic markets (indexed
by m = 1, 2, . . . ,M) over T years (indexed by t = 1, 2, . . . , T ). Each year has a fixed set of
firms that produce an exogenous set of products. I focus only on the new vehicle market
since used car sales are not relevant for manufacturers’ profit maximization.

The demand specification follows the discrete-choice framework of Berry et al. (1995)
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and Petrin (2002), where consumers choose a single vehicle from all available fuel types.
Including all the fuel types allows me to simulate what happens to the entire market of
automobiles under counterfactual scenarios. To ease computation, I assume that consumers
are myopic in that they do not consider the future evolution of prices or infrastructure while
deciding and only purchase if the vehicle serves their present driving needs. In contrast,
the supply side is an oligopoly with product differentiation where car manufacturers choose
prices for all vehicles in their portfolio. I first use the estimated demand elasticities to
recover the marginal costs in 2017 and then investigate what would have happened if the
elimination occurred in 2017 under different subsidy-capping designs. In practice, subsidy
elimination began in the US in 2018. However, as discussed below, I avoid this year in
the estimation to ensure that the demand elasticities are not influenced by intertemporal
substitution. While the 2017 data is imperfect to inform the effect of actual subsidy design
directly, it allows examining the dynamic tradeoffs highlighted in Section 1.3 and predict the
effect that different subsidy-capping designs would have had during 2017. I elaborate on the
consumer demand and the car manufacturers’ decision problems below.

1.4.1 Demand

Each period, the consumers arrive at the market to purchase a car. The products available
in market m in model year t are indexed by j ∈ Jmt. Consumer i’s indirect utility from
choosing vehicle j is a function of vehicle characteristics as well as individual characteristics:

Uijmt = αipjmt + xjtβi +Njmtη + ξjmt + εijmt (1.1)

where pjmt represents the price faced by the consumer, given by the manufacturer’s suggested
retail price (MSRP) minus all purchase incentives.

pjmt = MSRPjt − RDjt
Retail discount

− λ0
jt

Federal subsidy
− λjmt

local subsidy
.

In equation 1.1, xjt is a K × 1 vector of vehicle attributes, including size, performance,
cost of driving, battery range, fuel type indicators, and 14 vehicle segment indicators based
on market orientations. αi denotes the marginal utility from price, and βi is a K × 1

vector of taste coefficients. Njmt indicates a vector of network effect variables and includes
the interaction of BEV and PHEV indicators with the log cumulative EV sales by the
manufacturer of vehicle j in market m up to year t − 1. ξjmt represents the average, or
common, utility from the attributes of vehicle j in market m and year t that is unobservable
to the researcher but known to consumers and producers. Such attributes may include
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unobserved quality, promotional activity, or systematic demand shocks. I model ξjmt =

ξm+ξt+∆ξjmt. Econometrically, ξm is captured by market-specific dummies that control for
time-invariant market-level variations such as the quality of public transit or local inclinations
to be green. ξt is captured by time dummies that control for national factors that do not vary
across markets, such as national macroeconomic, climate, and global fuel price shocks. ∆ξjmt

is left as an econometric error term. Finally, εijmt represents idiosyncratic tastes assumed to
follow i.i.d. type-I extreme value distribution.

The specification allows for consumer heterogeneity in preferences by interacting car
attributes with household characteristics Dimt and unobserved preferences Vimt. Specifically,(

αi

βi

)
=

(
α

β

)
+ ΠDimt + ΣVimt.

where Π is a (K + 1)× d matrix of parameters, and Dimt is d× 1 vector of household char-
acteristics (including the number of children in the household and the age of the household
head). The distribution of Dimt comes from the Current Population Survey. For computa-
tional reasons, I restrict many elements of Π to equal zero. I include an interaction between
the number of children and vehicle size and interaction between the age of household head
and vehicle performance. These parameters are identified by the variation in the distribution
of demographics across different markets. Similarly, Σ is a (K+1)×(K+1) diagonal matrix
of parameters, and Vimt is a (K + 1) × 1 vector assumed to be standard normal. I allow
for heterogeneity in price sensitivity and tastes for driving cost and vehicle types (i.e., van,
SUV, and pickup). These parameters are identified by the variation in choice sets across
different markets. The parameters (Π,Σ) break the independence of relevant alternatives
(IIA) property of standard logit models by ensuring that a price increase for a vehicle model
will divert disproportionately more consumers to other similar vehicles. As such, they play
a valuable role in identifying cross-price elasticities.

The specification also incorporates the network effect in a reduced-form fashion by al-
lowing consumers’ utility from an EV to depend on the cumulative EV sales from the same
manufacturer. The rationale is that previous EV adoption from the same manufacturer in
a geographic area mitigates the uncertainty in quality in that area, as early adopters help
spread information about the quality of the products among the consumer pool. It also re-
flects the available charging infrastructure network vital to guarantee EV drivers’ mobility.
The rich dataset used in the study includes car registrations since the recent development
of the plug-in EV market in the US and allows calculating the cumulative EV sales in each
geographic market precisely.

Modeling the vehicle purchase decisions as static is reasonable for buyers of conventional
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gasoline-powered vehicles as these vehicles do not evolve substantially over time. However,
buyers of EVs may also care about the timing of their purchases to take advantage of better
prices. For instance, if consumers believe that subsidies will expire, they may advance their
EV purchases. To ensure that the demand parameters reflect actual purchase choices and
not an intertemporal substitution, I estimate the demand model using data unaffected by
the subsidy changes (i.e., 2011-2017). The static choice framework is a good approximation
for EV purchasing decisions during these years because the federal price incentives were put
in place in 2009 – well before the start of the EV market and did not phase out until 2018.
As a result, subsidy-induced timing effects are unlikely to be relevant, and the elasticities
will likely reflect the actual changes in the vehicle choice. Although subsidy elimination may
induce changes in the purchase timing, it is unlikely to affect the vehicle choice behavior. As
a result, I can later apply the demand parameters estimated from the 2011-2017 data in the
counterfactual experiments. EV buyers may also care about the timing of their purchases
if they believe that the charging network or quality will improve over time. The static as-
sumption imposes that consumers’ car purchase behavior is governed by their present driving
needs, which is reasonable because they may be limited in changing their residence or work-
place location in the short run. Moreover, as discussed in Section 1.5.2, the improvements in
battery range have been slow, suggesting the consumers would have to wait for a long time
to get significant improvements in the battery range.

Consumers make a vehicle purchasing decision by maximizing their utilities across all
vehicle models with the outside option of non-purchase or purchase of a used vehicle. Since
the consumers are myopic, the outside good does not include the option value of making the
vehicle purchase decision in the future. The utility from the outside choice is

Ui0mt = ξ0mt + εi0mt.

The mean utility of the outside good is not identified, so I normalize ξ0mt = 0. Consumer i
chooses a model j if and only if

Uijmt ≥ Uij′mt,∀j′ 6= j.

Since ε follows iid logit, the choice probability is a mixed logit:

Prijmt =

∫
I(ε|Uijmt ≥ Uij′mt ∀j′)dF (ε)

=
exp(αipjmt + xjtβi +Njmtη + ξjmt)

1 +
∑

j′∈Jmt
exp(αipj′mt + xj′tβi +Nj′mtη + ξj′mt)

.
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The individual choices can be aggregated into a market-level demand system by integrating
the choice probability over the distribution of demographics in the population. The share of
vehicle j in the market mt is

sjmt =

∫
exp(αipjmt + xjtβi +Njmtη + ξjmt)

1 +
∑

j′∈Jmt
exp(αipj′mt + xj′tβi +Nj′mtη + ξj′mt)

dP (D)dP (V ).

Let Hmt denote the number of households in market mt. The demand for vehicle j in market
m and period t is Qjmt = Hmtsjmt.

1.4.2 Supply

I model the vehicle market as served by a multi-firm, differentiated-product industry where
firms engage in Bertrand price competition and seek individually to maximize their profits
across all their products. Each firm f prices all vehicles in its portfolio to maximize profits
from the 30 US markets while taking the product mix as given. The price pjt is uniform
across all markets and equals the MSRP minus retail discounts:

pjt = MSRPjt − RDjt
Retail discount

.

MSRPs and retail discounts are constant across markets within a model year. I do not
observe and therefore do not consider market-specific discounts.

A multi-period pricing model is vital to examine how firms respond when the dynamics
of elimination become relevant. For instance, firms facing a per-manufacturer quota on
subsidies may increase EV prices to delay exhausting the quota. A static model will fail to
capture such adjustments. Multi-period pricing is also crucial for the firms to internalize the
network effect and react strategically to the subsidy elimination based on their expectations
of how current prices affect future demand. For instance, the model should allow the firms
facing a per-manufacturer quota to keep the prices low and surpass the quota if they believe
that raising current prices would diminish their future profits. Since a multi-period pricing
model is computationally challenging to estimate, I use the following strategy: I recover the
marginal costs in 2017 under the assumption of static Nash-Bertrand equilibrium and use a
two-stage pricing assumption only in the counterfactual analyses. Static pricing assumption
may be reasonable in 2017 because firms were still far from exhausting the subsidy, and the
dynamics of subsidy elimination were not relevant. In the absence of network effect, both
specifications will lead to similar estimates. This is not true in the presence of network
effect because firms maximizing static profits do not internalize network effect. Although

17



this simplification affects marginal cost estimates, it is not restrictive for the counterfactual
analysis because it does not affect the elimination-induced incentives. I elaborate firms’
profit-maximization problem under the static Nash-Bertrand assumption in this section,
and postpone the discussion of the two-stage game to Section 1.7.

In the static game, each firm f maximizes its current profit. In 2017, all the EV manu-
facturers in the US were way behind the quota of 200,000 vehicles. As a result, their profit
maximization problems in 2017 are not constrained by the quota. Given the demand system,
the profit for the firm f in year t is

Πft =
∑
m

∑
j∈Jft

[
pjt − cjt + hjmt

]
Qjmt, (1.2)

where cjt is the marginal cost and hjmt is the value of ZEV credits for model j in market
m. For non-ZEV states, hjmt takes value zero. For ZEV states, hjmt is the product of
the value of the credit for model j and the price of ZEV credit. In 2017, battery-electric
vehicles, plug-in hybrids, and hydrogen fuel cell vehicles earned ZEV credits depending on
their battery charge time and range. Vehicles with a range of fewer than 50 miles earned
one credit, while vehicles with a range of more than 300 miles and recharge time of less
than 15 minutes earned nine credits. In addition, conventional hybrids such as Honda Civic
and Toyota Prius (AT-PZEV) earned up to 0.8 of a ZEV credit, and gasoline vehicles with
lower emissions (PZEV) than federal standards earned up to 0.2 of a ZEV credit. Although
the ZEV credit market does not have price transparency, literature has backed out prices
from the revenues reported by the manufacturers. Following McConnell and Leard (2021), I
assume that the value of ZEV credits in 2017 was USD 2218.

Given the firms’ profit in equation 1.2, the optimal price for product j satisfies the
following first order condition:

∑
m

Qjmt +
∑
k∈Jft

(
(pkt − ckt + hkmt)

∂Qkmt

∂pjt

) = 0.

These first order conditions involve own and cross price derivatives of the demand for each
product, calculated as the weighted sums of individual derivatives:

∂Qkmt

∂pjt
= Hmt

∂skmt
∂pjt

=

Hmt

∫
sijmt(1− sijmt)αidP (D), if j = k

−Hmt

∫
sijmtsikmtαidP (D), otherwise.

(1.3)

Suppose there are J models available in period t. Then the first order conditions define a
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system of J simultaneous equations that are linear in marginal cost and must hold exactly
at equilibrium:

p.t = c.t + ∆−1
Q,t (Q.t + ∆H,t1J×1),

where p.t, c.t and Q.t are vector of of prices, marginal costs, and sales. ∆Q,t is defined as

∆Q,t(j, k) =

−
∑

m
∂Qkmt
∂pjt

, if j and k are produced by the same firm,

0 otherwise,
(1.4)

∆H,t is defined as

∆H,t(j, k) =

−
∑

m hjmt
∂Qkmt
∂pjt

, if j and k are produced by the same firm,

0 otherwise,
(1.5)

and ∆−1
Q,t (Q.t + ∆H,t1J×1) is the vector of markups that depends on the parameters of the

demand system and the observed price vector. I use this system of equations to recover the
marginal costs for all products in 2017.

Some caveats of the model are noteworthy. First, firms control sales only through short-
run price changes. Vehicle characteristics other than the price evolve exogenously, which
is reasonable because manufacturers typically make product decisions over a longer horizon
than pricing decisions. In practice, firms facing a per-manufacturer quota could also delay
sales by creating an artificial shortage. I do not model this mechanism in the absence of
such data. While such simplification does not affect the model estimation, it affects how
firms’ respond to counterfactual subsidy-capping designs. I discuss the implications of this
assumption further in Section 1.7. Second, throughout the analysis, I abstract from entry
and exit decisions. In practice, subsidy capping designs may also affect firms’ entry into the
EV market. While this concern was important when the subsidy was enacted in 2009, it is
less relevant today because most major manufacturers in the US already have some EVs in
their portfolio.

Finally, other overlapping regulations imposed on vehicle manufacturers, like federal cor-
porate average fuel economy (CAFE) and greenhouse gas (GHG) standards, also create
incentives to increase EV sales. CAFE and GHG standards influence the market on the
supply side by imposing limits on the average fuel economy and greenhouse emissions of the
vehicles that a manufacturer sells each year. Both regulations grant extra credits to EVs
and, hence, create incentives for manufacturers to sell more EVs. For simplicity, I ignore
the incentives created by both these regulations. One concern is that these incentives may
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interact with the dynamic incentives created by a per-manufacturer quota. For instance, a
manufacturer nearing its quota may want to sell more EVs to offset CAFE liabilities, ignoring
the quota-induced incentive to delay sales. Such concern is irrelevant for the estimation be-
cause it relies on the years before subsidy elimination. It is also unlikely to be restrictive for
counterfactual analysis because both CAFE and GHG programs allow additional flexibilities
like banking credits from over-compliance in one year to use for compliance in another model
year. As a result, a manufacturer facing a quota on EV subsidies can use such flexibilities
to meet their CAFE and GHG requirements and ignoring these regulations still provides a
good approximation of the market outcomes under different subsidy-capping designs.

1.5 Data

1.5.1 Data Sources

The data for this paper comes from various sources. First, the vehicle sales data, purchased
from IHS markit, contains new light-duty vehicle registrations in 30 states during the cal-
endar years 2011-2017. The selected states capture the market with the highest EV market
share in 2016. I use these states to define a geographic market. Since the EV market mostly
developed after 2010, the data captures this market from the outset. A vehicle is a unique
model year, make, model, and fuel type. I use the vehicle registrations for all fuel types to
account for substitution between all fuel types. For each market, I estimate the market size
using the US Census Bureau’s state-level annual estimates of housing units and calculate
the market shares by dividing the state-level sales volume by the number of households in
that year. The market share of the outside good is the difference between one and the sum
of inside goods market shares. I exclude the models with very low market shares.

The distinction between a calendar year and a model year presents a technical issue
in defining the choice sets. A model year is a manufacturer’s annual production period,
including 1st January of such calendar year. If the manufacturer has no annual production
period, the term model year represents the calendar year. Model years typically run from
October to September of the next year (e.g., 2016 models were released in October 2015.)
I define the choice sets based on model year, thus assuming that all vehicles released in a
given model year sell in the same model year and that model years perfectly align for each
manufacturer. Since I do not observe the 2011 models sold in the 2010 calendar year, I
only use 2011 data to calculate cumulative EV sales in each market but not in the demand
estimation. In total, there are 62,588 observations for vehicle shares over 30 states between
2012-2017.
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Second, vehicle-level characteristics come from the WARDS Intelligence Data Center,
Environmental Protection Agency, and publicly available database www.edmunds.com. Ad-
ditionally, market segmentation data comes from Automotive News. Although I observe
vehicle characteristics at the trim level, the vehicle registration data is at the make-model-
fuel level. Hence, I match the total vehicle registrations to the characteristics of the base
model. Vehicle characteristics include the MSRP, horsepower, curb weight, wheelbase, size-
related measures (length and width), fuel type, and fuel efficiency. The demand model allows
consumers’ utility to depend on the size, performance, cost of driving, and battery range
(for EVs). I measure size by the product of length and width, performance by the ratio
of horsepower and curb weight, and cost of driving by the state-level fuel price per gallon
divided by the vehicle’s fuel economy. The cost of driving varies with two sources: vehicle’s
fuel economy and market-level fuel prices. Thus, a high gas price in a state raises the cost of
driving all gasoline vehicles in that state. State-level fuel prices come from the US Energy
Information Administration (EIA).

Although average transaction prices are preferred in demand estimation, such data are not
readily available. Instead, I collect manufacturers’ retail discount discounts from Automotive
News and federal and state-level subsidies from the US Department of Energy to approximate
the prices faced by consumers and firms. Federal and state-level subsidies vary across models
and time. In the presence of purchase subsidies, the price that enters firms’ profit function
is different from the price faced by the consumer. The price that enters the profit function
is the difference between MSRP and the average discounts provided by the manufacturer in
that year. The price faced by consumers is the difference between MSRP and all the purchase
incentives, including manufacturer discounts, federal subsidies, and state-level subsidies. The
federal subsidies take the form of non-refundable tax credits, so in practice, the amount of
subsidy depends on the taxpayer’s income tax liability. For simplicity, I assume that all
customers can claim the full amount of the tax credit. The justification, here, is that the
new vehicle market is typically used by wealthy households with high income-tax liabilities.
I deflate all vehicle and fuel prices using the Bureau of Labor Statistics Consumer Price
Index and adjust them to 2015 US dollars.

In addition to the sales and product characteristics, I use the March Current Population
Survey (CPS) data to approximate each market’s empirical joint distribution of demograph-
ics. Specifically, I sample the age of the household head and the number of children in the
household. Finally, I obtain the list of makes for each manufacturer from the annual EPA
Auto trend reports. Different brands under the same manufacturer classify as a single firm as
consistent with the regulatory definitions. For example, Buick, Cadillac, Chevrolet, GMC,
Hummer, and Saturn are all part of General Motors.
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1.5.2 Summary Statistics

Table 1.1 summarizes the sales and the sales-weighted average characteristics of vehicles in
the sample. The first column reports the model year, and the subsequent columns show the
total models, the real price, total sales, size (length×width), performance (in HP per 10 lb),
cost of driving (in dollars per ten miles), and battery range (in miles) separately for plug-in
EVs and other fuel-type vehicles. The available EV models rose from 7 in 2012 to 32 in
2017; their total sales in the sample states rose from 46 thousand in 2012 to 221 thousand
in 2017. Models of other fuel types rose from 331 in 2012 to 365 in 2017; their total sales
in the sample states rose from 11.5 million in 2012 to 14.7 million in 2017. The average
vehicle size remained fairly stable across both types. The average vehicle performance for
EVs increased from 0.36 Hp/10 lbs in 2012 to 0.47 Hp/10 lbs in 2017, while that of other
fuel types remained stable at around 0.58 Hp/10 lbs. The average cost of driving for EVs
remained stable at around $0.05 per ten miles, while that of other fuel types reduced from
$0.16 in 2011 to $0.10 in 2017. The average cost of driving is much lower for EVs due to
high fuel economy and low electricity prices. Finally, the average battery range for EVs rose
from 53.26 miles in 2012 to 116.14 miles in 2017. Figure 1.4 shows the annual share of both
varieties of plug-in EVs in the sample states between 2011-2017. The sales and share of both
BEVs and PHEVs went up in the sample states. Together, they represented 1.5% of the
domestic automobile sales by 2017.

Figure 1.5 shows all the EV makers in the industry with their year of entry on the
horizontal axis and the total vehicles sold in the sample states of the US on the vertical axis.
Table 1.2 summarizes the plug-in EV models and the nominal value of federal EV subsidies
for each manufacturer in 2017. The subsidy ranged from $3793 for BMW I8 (PHEV) to
$7500 for pure BEVs. The subsidy remained unchanged for all models in the sample period.

Table 1.3 summarizes the plug-in EV sales, plug-in EV regulations, and demographics in
all 30 markets for 2017. Columns (1)-(4) summarize the total number and percentage of plug-
in EV sales and the presence of purchase incentives and ZEV mandates. The subsequent
columns show the average demographics in these states from the March CPS. Six of the
30 states provide some subsidies for plug-in EVs, and eight have the ZEV requirement. A
quick look shows that states with subsidies or ZEV mandates have higher plug-in EV sales.
The percentage of plug-in EV sales is highest in California (3.88%) and lowest in Oklahoma
(0.09%).
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Figure 1.4: Sales and Fraction of Light-duty Plug-ins in the Sample States

Notes: The figure shows the evolution of the plug-in EV industry in US in the first eight
years. The horizontal axis in each panel shows the model years. The left and the right panels
show the total plug-in sales and the fraction of plug-ins in the sample states.

Table 1.1: New Vehicle Sales and Characteristics in the Sample States

Year Models MSRP Sales Size Performance Driving Cost Battery Range
($’000) (’000) (’0000 in 2) (Hp/lb) ($/10 miles) (miles)

EV Other EV Other EV Other EV Other EV Other EV Other EV Other
2012 6 331 37.66 25.00 45 11523 0.74 0.80 0.36 0.58 0.05 0.16 53.26 0.00
2013 10 351 38.99 25.78 100 12957 0.76 0.81 0.42 0.58 0.05 0.15 83.52 0.00
2014 17 369 40.79 25.96 94 13202 0.76 0.82 0.42 0.58 0.05 0.14 83.80 0.00
2015 19 374 43.85 26.66 113 14420 0.76 0.81 0.48 0.58 0.04 0.10 102.36 0.00
2016 25 357 49.76 26.49 124 14159 0.82 0.82 0.56 0.58 0.04 0.09 133.12 0.00
2017 32 365 41.76 26.69 221 14725 0.79 0.82 0.47 0.58 0.04 0.10 116.14 0.00

Notes: This table shows the evolution of key variables in the sample states between 2012-2017, using vehicle registration data from IHS
Markit and vehicle characteristics data from Wards, EPA and Edmunds. Columns (6)-(9) show the sales-weighted average vehicle charac-
teristics. Size is length× width (in ’0000 in2), performance is Horsepower by curb weight (in 10 lb), driving cost is fuel cost (in dollars) per
ten miles, and battery range is the all electric range (in miles) for EVs.

1.6 Estimation and Results

The next step is to estimate the structural model described in Section 1.4. I first estimate
the demand system and then recover marginal cost assuming that the data are generated
by static Nash-Bertrand equilibrium behavior. The benefit of sequential estimation is that
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Figure 1.5: Major Players in the Plug-in EV Industry

Notes: This figure shows the major plug-in EV manufacturers in the US based on vehicle
registration data from IHS Markit. For each manufacturer, the x-coordinate shows the year
in which their first plug-in EV sale appears in the sample. The y-coordinate shows the total
plug-in sales between 2011-2017.
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Table 1.2: Federal Subsidies for Plug-in EVs

Manufacturer Plug-in EV Models Subsidy Range (USD)
BMW BMW 330, BMW 740, BMW I3, BMW I8,

BMW X5
3,793 - 7,500

DAIMLER MERCEDES-BENZ B-CLASS,
MERCEDES-BENZ GLE, SMART
FORTWO

4,460 - 7,500

FIAT CHRYSLER CHRYSLER PACIFICA, FIAT 500 7,500
FORD FORD C-MAX, FORD FOCUS, FORD FU-

SION
4,007 - 7,500

GENERAL MOTORS CADILLAC CT6, CHEVROLET BOLT,
CHEVROLET VOLT

7,500

HYUNDAI HYUNDAI IONIQ, HYUNDAI SONATA 4,919 - 7,500
KIA KIA OPTIMA, KIA SOUL EV 4,919 - 7,500
MITSUBISHI MITSUBISHI I-MIEV 7,500
NISSAN NISSAN LEAF 7,500
TESLA TESLA MODEL 3, TESLA MODEL S,

TESLA MODEL X
7,500

TOYOTA TOYOTA PRIUS PRIME 4,502
VOLKSWAGEN AUDI A3, PORSCHE CAYENNE, VOLK-

SWAGEN GOLF
4,502 - 7,500

VOLVO VOLVO XC90 4,585
Notes: This table summarizes the plug-in EV models and federal consumer subsidies in 2017 for each man-
ufacturer.
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Table 1.3: State-Level EV Sales, Incentives and Demographics

Market Plug-in Percent of Plug-in ZEV Age Nchild
sales Total sales Incentives State

ARIZONA 17,368 0.77 - - 47.7 1.1
CALIFORNIA 483,996 3.86 Yes Yes 47.3 1.1
COLORADO 19,173 1.12 Yes - 49.0 1.0
CONNECTICUT 10,641 0.92 Yes Yes 50.0 0.9
FLORIDA 38,977 0.47 - - 46.9 1.1
GEORGIA 33,682 1.07 - - 52.1 0.9
HAWAII 9,155 1.76 - - 47.8 1.1
ILLINOIS 22,209 0.52 - - 47.6 1.1
INDIANA 5,916 0.37 - - 49.0 1.0
MARYLAND 17,457 0.81 Yes Yes 48.9 1.0
MASSACHUSETTS 22,147 0.95 Yes Yes 49.0 1.0
MICHIGAN 23,507 0.58 - - 47.4 1.1
MINNESOTA 8,537 0.52 - - 47.8 1.1
MISSOURI 6,590 0.35 - - 47.1 1.1
NEVADA 6,100 0.68 - - 50.0 1.0
NEW HAMPSHIRE 3,302 0.55 - - 48.9 1.0
NEW JERSEY 25,418 0.67 - Yes 48.8 1.0
NEW YORK 45,861 0.70 Yes Yes 47.9 1.0
NORTH CAROLINA 12,618 0.45 - - 48.4 1.1
OHIO 12,598 0.32 - - 47.5 1.1
OKLAHOMA 4,574 0.09 - - 48.5 1.0
OREGON 20,653 1.95 - Yes 49.4 1.0
PENNSYLVANIA 17,805 0.42 - - 47.7 1.0
TENNESSEE 7,461 0.41 - - 46.5 1.1
TEXAS 32,472 0.34 - - 44.8 1.5
UTAH 6,548 0.82 - - 50.0 1.0
VERMONT 3,294 1.22 - Yes 47.8 1.1
VIRGINIA 15,995 0.62 - - 48.2 1.1
WASHINGTON 39,549 2.19 - - 48.7 1.0

Notes: Columns (1) and (2) shows the total plug-in EV sales and percent of plug-in EV
sales as a percentage of total new car sales during 2011-2017 based on IHS data for the 30
states in the sample. Column (3) and (4) shows the availability of state-level plug-in EV
incentives and ZEV requirement. The subsequent columns show the mean demographics
in 2017 based on March CPS. Age is the age of the household head. Nchild is the number
of children in the household.
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the demand estimation does not rely on the supply-side conduct. Section 1.6.1 describes
the estimation and identification of the demand parameters, and Section 1.6.2 reports the
results from estimating the structural model.

1.6.1 Estimation and Identification

The basic issue that motivates the demand estimation is price endogeneity arising from two
sources: first, the model implies that price and quantity are determined in equilibrium, so
the price partly depends on the unobservable product characteristics ∆ξjmt. For instance,
the characteristics such as comfort, smoothness of the ride, and expected resale value, cannot
be measured directly. However, the price will likely reflect these unobserved characteristics if
they are costly for the vehicle manufacturer or affect the demand for the vehicle. Similarly,
the advertisement efforts of the manufacturer, which are unobserved, may be correlated
with the pricing discounts. Second, I do not observe the average vehicle transaction price
and instead approximate the price using MSRP minus purchase incentives. As a result,
variations in the retail price across markets enter ∆ξjmt in equation 1.1. Both cases result
in price endogeneity.

Identification requires a set of exogenous instruments. Vehicle characteristics other than
price are valid instruments for themselves as they are a part of an exogenous development
process. Appropriate instruments for price include any factors that are correlated with the
price but not with ∆ξjmt. I follow Berry et al. (1995) and use the sum over all the firm’s
other vehicles’ characteristics and the sum over all the competing brands’ characteristics as
instruments for price. Specifically, for each vehicle characteristic k (constant, size, perfor-
mance, driving cost, and battery range), I include the following terms as instruments for
price:

zkjmt = (xkjt,
∑

r 6=j,r∈Jfmt

xkrt,
∑

r 6=j,r /∈Jfmt

xkrt) (1.6)

Overall, there are ten excluded instruments.
These instruments vary over vehicle models in each market and across time. They are

relevant as they proxy for the degree and closeness of competition that a brand faces, thus
affecting the firm’s markups. The rationale for separately including firms’ own vehicles and
other firms’ vehicles is that when a firm prices its vehicles, it would treat the substitution
with its vehicles to be different from the substitution with other firms’ vehicles. For instance,
consumers who will switch away to another of the same firm’s vehicles following a price
increase do not represent as much of a loss as the consumers who switch to other firms’
vehicles. The identifying assumption is that the demand unobservables ∆ξjmt are mean
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independent of the observed characteristics. The underlying timing assumption is that car
manufacturers do not observe ∆ξjmt when choosing vehicle characteristics.

The identification issues associated with including cumulative sales as a product char-
acteristic are similar to those involved in using a lagged dependent variable as a regressor.
Specifically, if demand unobservables are serially correlated, then the estimated network-
effect parameters are inconsistent. Here, I maintain the assumption that the demand unob-
servables are not serially correlated conditional on the market and year fixed-effects.

The demand estimation follows Berry et al. (1995) and Nevo (2000). I decompose the
indirect utility as

Uijmt = δjmt(pjmt, xjt, Njmt, ξjmt; θ1) + µijmt(pjmt, xjt, Dimt, Vimt; θ2) + εijmt (1.7)

where
δjmt = αpjmt + xjtβ +Njmtη + ξjmt

and
µijmt =

[
pjmt xjt

]
× [ΠDimt + ΣVimt] .

Here, δjmt represents the mean consumer valuation of the vehicle j in region m and period
t, and µijmt captures the consumer-specific deviations. θ1 = (α, β, η) includes linear param-
eters capturing mean consumer valuation, and θ2 = (Π,Σ) includes non-linear parameters
capturing variation in preferences across consumers.

I estimate demand parameters using simulated Generalized Method of Moments using
the population moment condition that is a product of instrumental variables Z and the
unobservable demand shocks ∆ξjmt. At each trial value of θ2, I first obtain the constants δjmt
by equating predicted shares to the observed market shares and use them to solve for ∆ξjmt.
The GMM objective function is M(θ1, θ2)ΩM(θ1, θ2)′ where M(θ1, θ2) denotes the empirical
moment conditions and the Ω denotes the weighing matrix. The demand estimation proceeds
in two steps. In the first step, I set Ω = 1

n
(Z ′Z)−1 to obtain initial consistent parameter

estimates. In the second step, I recompute the optimal weighting matrix based on the first-
step estimates and re-estimate the model. Finally, I compute the markups and marginal
cost of vehicles implied by the demand estimates and the first-order conditions of the firms’
profit functions.
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1.6.2 Results

Table 1.4 shows the results from the estimating demand derived from the indirect utility
specification in equation 1.1.4 The first eight rows show the coefficients measuring the mean
valuations. Most coefficients are precisely estimated and have expected signs. Price enters
with a negative coefficient indicating that consumers dislike high prices, all else held equal.
The size of the vehicle and the horsepower to weight ratio have positive coefficients, indicating
that consumers value size and power. The negative coefficient on the cost of driving per mile
implies that consumers prefer high fuel efficiency, which reduces the cost per mile. The signs
on the BEV and PHEV indicators are negative, indicating that in the absence of a network
(i.e., zero cumulative EV sales) and ceteris paribus, plug-in EVs are less preferred to the
conventional models. In addition, comparing the magnitudes of BEV and PHEV indicators
suggests that BEVs are less preferred to PHEVs, possibly because they do not have a gasoline
backup. The next two rows show the interactions between EV indicators and cumulative sales
that measure the network effect. These terms have positive signs, indicating that consumers
gain more utility from BEVs and PHEVs as the network develops. The subsequent rows show
the estimates of five random coefficients that measure the dispersion in households’ tastes.
These coefficients are the standard deviations of the tastes for the vehicle characteristics.
The final two rows show the interactions of performance with age and vehicle size with the
number of children. Both interactions are imprecisely estimated.

Table 1.5 presents a sample of own and cross-price elasticities, markups, and marginal
costs implied by the demand estimates. Price elasticities differ across markets for each
product. In contrast, marginal costs are identical across the markets for each product. Rather
than presenting elasticities for a particular market, I present the average across all markets
in 2017. The cross-price elasticities are larger among similar products. For instance, an
increase in the price of Chevrolet Silverado (pickup) shifts the consumers disproportionately
to Ford F-series (pickup). Table 1.6 summarizes the elasticities, markups, and marginal
costs for all vehicle models in 2017. The average own-price elasticity is -3.06. Among the
397 models, the marginal costs range from about $12,000 at the 25th percentile to about
$38,000 at the 75th percentile.

1.7 Counterfactual Experiments

The next step is to compare market outcomes under different subsidy-capping designs. I
examine three designs: a market deadline, per-manufacturer deadline, and per-manufacturer

4Appendix A.2 provides the details of the first stage estimation. The first-stage F-statistic for the excluded
instruments is 345.001.
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Table 1.4: Demand Estimates

Variable Coef SE
Mean Valuations
pjmt -0.886*** 0.107
Constant -11.020*** 2.485
Vehicle Size 4.161*** 0.722
Performance (Hp/wt) 1.113 2.262
Driving Cost -2.701 7.073
Battery Range 0.009*** 0.001
BEV -2.801*** 0.287
PHEV -0.936*** 0.342

Network Effects
BEV × Cumulative EV Sales 0.092*** 0.025
PHEV × Cumulative EV Sales 0.116** 0.046

Random Coefficients
Price 0.211*** 0.054
Driving Cost 2.993 10.457
Van 0.518 1.200
Pickup 0.279 11.171
SUV 4.339** 2.024

Demographic Interactions
Age × Performance 0.059 0.429
Nchild × Size -0.127 0.133

Fixed Effects
State FE Yes
Time FE Yes
Segment FE Yes
Obs 62588

Notes: This table shows the estimates from the flexible logit
model. A unit of observation is a available model, state, year.
Size is length× width (in ’0000 in2), performance is Horsepower
by curb weight (in 10 lb), driving cost is fuel cost (in dollars) per
ten miles, and battery range is the all electric range (in miles)
for EVs. Cumulative EV Sales shows total EVs sold by the man-
ufacturer in the geographic market until previous year.
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Table 1.6: Marginal Cost Estimates

Variable Mean 25% Median 75% Std Dev Obs
Price (before subsidy, $1000) 51,009 23,992 33,040 52,313 582,553 397
Own-price elasticity -3.06 -3.57 -2.49 -1.86 2.11 397
Markup, ($1000) 13,436 12,016 12,728 13,949 2,670 397
Marginal cost, ($1000) 37,572 11,938 21,295 38,213 56,008 397

Notes: This table summarizes the price elasticities, markups and vehicle marginal costs
calculated from the demand estimates in Table 1.4 and the first order conditions of firms’
profit maximization.

quota. In each case, I use the parameter estimates from Section 1.6 to recompute the pricing
equilibria under the two-stage game described in Section 1.7.2, and calculate the market
outcomes of interest, assuming that product offerings, marginal costs, demographics, and
state-level subsidies stay at the observed 2017 levels.

1.7.1 Counterfactual Subsidy-Capping Designs

I examine three counterfactual designs.

1. Market-wide deadline: This design institutes a single deadline for all firms. Con-
sumers who purchase EVs up to the end of 2017 qualify for the subsidy.

λ
(1)
jt = λ0

j1(t ≤ 2017)

where λ0
j is the initial federal subsidy for vehicle j as observed in the data.

2. Per-manufacturer deadline: This design institutes a deadline for Tesla and GM.
Consumers who purchase EVs manufactured by Tesla or GM up to the end of 2017
qualify for a subsidy. Consumers who buy other brands qualify in both 2017 and 2018.
The subsidy evolves as follows:

λ
(2)
jt =

λ0
j1(t ≤ 2017) if f ∈ {Tesla, GM}

λ0
j otherwise

3. Per-manufacturer quota: This design gives each manufacturer a quota κ. All
consumers qualify for a subsidy in 2017. Consumers who purchase a vehicle in 2018
qualify for a subsidy if the manufacturer sells fewer than κ subsidy-eligible vehicles
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Table 1.7: Features of Counterfactual Subsidy-Elimination Designs

Feature Market-wide Per-
Manufacturer

Per-
Manufacturer

Deadline Deadline Quota
Differential elimination 5 X X
Incentive to delay 5 5 X

between 2011-2017. The subsidy evolves as follows:

λ
(3)
jt = λ0

j

[ t−1∑
τ=2011

∑
j∈Jfτ ,j∈JEV

Q
(3)
jτ ≤ κ

]
where JEV is the set of all EVs and

∑t−1
τ=2011

∑
j∈Jfτ ,j∈JEV Q

(3)
jτ is manufacturer’s nation-

wide cumulative EV sales between years 2011 and t− 1.

Because I only observe annual vehicle sales, I allow counterfactual designs to affect the federal
subsidies at a yearly level. In practice, the US phaseout design affects the subsidies at a
quarterly level. The per-manufacturer deadline and per-manufacturer quota are inspired by
the US phaseout design, which is a combination of both these designs. The choice of Tesla
and GM for a per-manufacturer deadline is guided by the fact that these manufacturers had
the highest cumulative EV sales up to 2017, which allows for convenient comparison with
the per-manufacturer quota – a design that only affects Tesla and GM in the simulations.
In practice, per-manufacturer deadlines may also depend on the year of entry. Table 1.7
summarizes the features of each subsidy-capping design. Under a market-wide deadline, the
elimination coincides for all manufacturers. In addition, there is no incentive to delay EV
sales in 2017 because firms’ actions do not affect whether they qualify for a subsidy in 2018.
Under a per-manufacturer deadline, the elimination occurs for manufacturers according to
their individual deadlines. As before, there is no incentive to delay EV sales. Finally, under
a per-manufacturer quota, the elimination occurs for manufacturers based on when they
exhaust the quota. As a result, there is an incentive to delay EV sales in 2017.

1.7.2 Computing Equilibrium in the Two-Stage Game

To account for the dynamics of subsidy elimination, I allow firms to maximize the sum of
profits in the current and the following year, assuming that subsidies, once eliminated, will
not be reinstated in the future. I assume that firms’ product portfolios, demand shocks, and
marginal costs remain the same in both years and that firms do not discount the future.
The two-stage assumption is guided by computational simplicity. The assumption is not
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restrictive because if firms care about a longer horizon, that is similar to solving the same
problem with a higher discount factor. The total two-year profit is

Πft =
∑
m

∑
j∈Jft

[ (pjt − cjt + hjmt)Qjmt + (pj,t+1 − cjt + hjmt)Qjm,t+1] . (1.8)

Prices chosen in year t affect the profits in year t+ 1 by influencing only a set of commonly
observed state variables, i.e., the value of EV subsidies and the network effect. Given these
state variables, all firms simultaneously choose prices for all the products.

I derive the optimality conditions using backward induction. Given p.t, the optimal price
vector p∗.t+1(p.t) in period t+ 1 is the solution to the system of J first-order conditions:

Qj,t+1 +
∑
m

∑
k∈Jft

[
(pk,t+1 − ckt + hkmt)

∂Qkm,t+1

∂pj,t+1

]
= 0.

The optimal price vector p∗.t+1(p.t) can be used to simulate the optimal profit vector Π∗f,t+1(p.t)

as a function of p.t. In period t, the vector of prices p.t maximizes

Πft =
∑
m

∑
j∈Jf

(pjt − cjt + hjmt)Qjt + Π∗f,t+1(p.t).

Solving for the optimal price vector p∗.t introduces important computational challenges
because Π∗f,t+1(p.t) is not necessarily differentiable in p.t. Differentiability holds under a
market-wide deadline and a per-manufacturer deadline, where firms cannot control the sta-
tus of the subsidies in period t + 1. However, differentiability does not hold under a per-
manufacturer quota where the federal subsidy in period t + 1 depends on firms’ actions in
period t.

If Π∗f,t+1(p.t) is differentiable in p.t, the necessary optimality condition in period t with
respect to price of product j is

Qjt +
∑
m

∑
k∈Jft

(pkt − ckt + hkmt)
∂Qkmt

∂pjt
+
∂Π∗f,t+1(p.t)

∂pjt
= 0. (1.9)

In this case, I use a fixed point of equation 1.9 to compute the new pricing equilibrium,
calculating the partial derivative ∂Qkt

∂pjt
using equation 1.3 and

∂Π∗f,t+1(p.t)

∂pjt
numerically.

If Π∗f,t+1(p.t) is not differentiable in p.t, I use the following strategy to compute the
equilibrium5: First, based on the observation that manufacturers other than Tesla and GM

5Alternative solution is to use grid-search algorithms. However, these algorithms tend to be very slow.
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sold very few EVs up to 2016, I conjecture that these manufacturers do not cross the quota
in the equilibrium. I then consider four scenarios, depending on Tesla and GM’s choice of
whether to cross the quota in 2017 (discussed below). Finally, I confirm my conjecture by
verifying that cumulative sales by other manufacturers stay below the quota. The conjecture
holds in the counterfactual analysis.

When the conjecture holds, the original game can be reformulated as a two-player game
represented in the normal form by the following payoff matrix.

Tesla/ GM Cross Don’t Cross
Cross (πTCC , π

G
CC) (πTCD, π

G
CD)

Don’t Cross (πTDC , π
G
DC) (πTDD, π

G
DD)

The payoff vector in each cell of the matrix represents the sum of profits in periods t
and t + 1 for Tesla and GM. In each case, Tesla and GM solve a constrained maximization
problem in 2017. For instance, when Tesla plays “Don’t Cross”, it chooses prices to maximize
profits, subject to the constraint that its cumulative EV sales stay below the quota.

max
pjt,j∈JTesla,t

∑
m

∑
j∈JTesla,t

[pjt − cjt + hjmt]Qjmt + Π∗Tesla,t+1(p.t)

s.t.
2017∑

τ=2011

∑
j∈JTesla,t

Qjτ ≤ κ

In contrast, all other manufacturers solve for prices using equation 1.9. The final equilibrium
under the per-manufacturer quota is the Nash equilibrium in this 2× 2 game.

1.7.3 Outcomes of Interest

The relevant market outcomes include government expenditure, consumer surplus, firm prof-
its, sales of electric and conventional vehicles, and total gasoline consumption. Government
expenditure in period t under counterfactual c is

∑
j λ

(c)
jt Q

(c)
jt . Since expenditure changes

across the experiments, I report it to facilitate direct comparison between different elimina-
tion designs. Consumer surplus represents compensating variation (McFadden et al., 1973;
Small and Rosen, 1981). For household i, the compensating variation in any counterfactual
scenario (c) from a comparison scenario is given by

∆CSimt =
1

αi

[(
ln

J∑
j=1

exp(δ
(c)
j + µ

(c)
ij )

)
−

(
ln

J∑
j=1

exp(δ0
j + µ0

ij)

)]
, (1.10)
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where αi is household’s marginal utility of income. Given the compensating variation for
a specific household, the change in average surplus in market m is

∫
i
∆CSimtdP (D). The

total change in consumer surplus is the sum of changes in all markets
∑

m

∫
i
∆CSimtdP (D).

Profits are calculated using equation 1.2. Finally, the total gasoline consumption from the
vehicles sold in period t under counterfactual c is

∑
j

1
mpgj
×Q(c)

jt × VMTj where Q
(c)
jt is the

total sales of vehicle j and VMTj is the miles travelled during its lifetime. I assume that
vehicles travel 12,000 miles per year and have a life of 15 years.

1.7.4 Counterfactual Results

This section reports the market outcomes from simulating alternative subsidy-capping de-
signs. Overall, the results show that each elimination design has different implications for
the EV market penetration, environmental impact, and the distribution of gains across con-
sumers and manufacturers. I elaborate on the results below.

Figure 1.6 shows the cumulative EV sales for Tesla, GM, and Nissan under a market-wide
deadline, a per-manufacturer deadline, and a per-manufacturer quota of 150,000.6 Panel (a)
shows the cumulative EV sales between 2011-2017. The blue bars indicate the total EV sales
between 2011-2016, as observed in the data, and the orange bars indicate the EV sales in
2017 under the recomputed equilibria. Panel (b) adds yellow bars showing EV sales in 2018
under the recomputed equilibria.

The 2017 outcomes remain the same under the market-wide and the per-manufacturer
deadlines because, in either case, the manufacturers cannot control the status of subsidies
in 2018. In contrast, when facing a per-manufacturer quota, Tesla and GM stay below
the quota of 150,000 vehicles to ensure the subsidy in 2018. Note that although these
manufacturers get a quota of 150,000, their EV sales in equilibrium are strictly lower than
150,000 because of strategic responses by other manufacturers. As shown in Table 1.8, these
manufacturers lower EV sales in 2017 by raising the prices of and lowering the prices of
conventional vehicles in 2017. For instance, compared to the per-manufacturer deadline
(Column (2)), Tesla raises the price of Model X by 10% under a per-manufacturer quota
(Column (3)). Similarly, GM raises the prices of the Cadillac CT6 (PHEV) by 6% and
lowers the prices of the comparable gasoline version of Cadillac CT6 by 5.6%. Such effect on
prices is a consequence of the assumption that firms control the sales of their vehicles only
through prices and not any other mechanisms. In practice, manufacturers can also delay EV
sales by creating an artificial shortage, but such mechanisms are challenging to model due
to data limitations. Although the rise in EV prices is an outcome of model specification and

6Appendix table A.3 reports the EV sales separately for all manufacturers.

36



cannot be taken at face value, it demonstrates the strong incentive to delay EV sales that
is robust to the specification. Two factors drive this incentive: (1) Staying below the quota
in any period allows manufacturers to qualify for the subsidy in the next period, and (2) As
the subsidy is eliminated only for the EV makers who exhaust the quota, staying below the
quota protects the EV-maker from fierce competition from others below the quota.

The effect on EV sales in 2018 depends on who qualifies for subsidies in 2018. No man-
ufacturer qualifies for the subsidy under a market-wide deadline; all manufacturers except
Tesla and GM qualify under a per-manufacturer deadline. Figure 1.6 shows that, as a result,
Tesla and GM sell fewer EVs under a per-manufacturer deadline than under a market-wide
deadline. Meanwhile, other EV-makers like Nissan charge higher prices and sell more EVs.
In contrast to the first two designs, Tesla and GM qualify for subsidies in 2018 under the
per-manufacturer quota. As a result, they sell more EVs in 2018 than under either of the
deadlines. For instance, Appendix A.3 shows that Tesla’s EV sales rise by 86% under a
per-manufacturer quota compared to the per-manufacturer deadline. As a result, the higher
EV sales in 2018 offset the low sales in 2017.

As market outcomes differ among manufacturers and over time, I report the aggregate
market-level outcomes in Table 1.9 using no subsidy as the benchmark counterfactual. Since
the total government expenditure changes across these designs, I also report the total gov-
ernment expenditure for each design.7 Panel (a) shows the aggregate market outcomes in
the year 2017. The outcomes under the market-wide deadline and the per-manufacturer
deadline are similar, as expected. In contrast, the outcomes under the per-manufacturer
quota are governed by Tesla and GM trying to stay below the quota. Both manufacturers
charge higher prices for their plug-in EVs; GM additionally lowers the prices of conventional
vehicle alternatives. Because of these efforts, the subsidy-induced EV sales are around 70%
lower compared to the deadline designs. Moreover, the sales of conventional vehicles rise as
consumers substitute from EVs towards GM’s low-cost conventional alternatives. Due to the
reduction in GM’s conventional-vehicle prices, the incidence changes under the per manu-
facturer quotas compared to either deadline; the subsidy-induced consumer surplus rises by
137%, the aggregate manufacturer profits reduce by 42%, and the government expenditure is
34% lower. The outcomes under a per-manufacturer quota are striking because even though
the subsidies are meant to encourage EV sales, manufacturers’ efforts to delay the subsidy
elimination result in lower prices and higher sales of conventional vehicles. Again, this out-
come is partly driven by the modeling assumption that firms control the sales of their EVs

7Alternative strategies to compare the designs include fixing the government expenditure across the
experiments by changing subsidy duration or subsidy amount. Both approaches have limitations. Changing
the duration complicates equilibrium computation, and changing the subsidy amount changes firms’ decisions
under a per-manufacturer quota, as shown in Figure 1.3.
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only through prices. As a result, GM lowers the prices of conventional vehicles and raises
the prices of EVs in effort to stay below the quota. In practice, if manufacturers delay EV
sales by creating an artificial shortage of EVs, the conventional vehicle sales and consumer
surplus may not rise as much. Nonetheless, the results demonstrate the possible spillovers
on the other products in an oligopoly with product differentiation.

Panel (b) shows the aggregate market outcomes in the year 2018. The outcomes under the
market-wide deadline are close to the no-subsidy counterfactual. Although the government
expenditure in 2018 is zero, the EV sales are higher than the no-subsidy counterfactual
because of network effect gains from the 2017 subsidies. This outcome shows the long-term
impact of the EV subsidies. Specifically, by reducing the upfront cost of EVs, purchase
subsidies raise the sales of EVs in 2017. Because EV consumers care about the previous
EV adoption, the demand shifts right in 2018. Compared to the market-wide deadline,
the subsidy-induced EV sales, consumer surplus, and aggregate manufacturer profits are
substantially higher under a per-manufacturer deadline because all manufacturers other than
Tesla and GM continue to qualify for the 2018 subsidies. Similarly, compared to the per-
manufacturer deadline, the subsidy-induced EV sales, consumer surplus, and manufacturer
profits are substantially higher under a per-manufacturer quota because, in addition to other
manufacturers, Tesla and GM qualify for the 2018 subsidies.

Panel (c) shows these market outcomes summed over the two years. The market-wide
deadline is the least expensive and results in the lowest EV sales, consumer surplus, and
manufacturer profits. The per-manufacturer deadline is more expensive and results in the
highest EV sales and lowest conventional vehicle sales and gasoline consumption. Finally,
the per-manufacturer quota is the most expensive and results in the highest conventional
vehicle sales, consumer surplus, and manufacturer profits due to the possible spillovers on
conventional vehicles. Moreover, consumers experience three-fourths of the gains due to
these spillovers.

Panel (d) shows the aggregate two-period outcomes normalized by the government expen-
diture. Because government expenditure is not held constant across different experiments,
such normalization is required to compare the cost-effectiveness of different designs. Panel
(d) shows that for a government expenditure of $1 million, EV subsidies with a market-wide
deadline sell around 69 more EVs and 11 fewer conventional vehicles than the counterfactual
with no subsidy. The program results in 0.8 million gallons lower fuel consumption, $0.54
million higher consumer surplus, and $0.58 million higher manufacturer profits. Similarly,
EV subsidies with a per-manufacturer deadline sell around 69 more EVs and 11 fewer conven-
tional vehicles than the counterfactual with no subsidy. The program results in 0.8 million
gallons lower fuel consumption, $0.53 million higher consumer surplus, and $0.60 million
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higher manufacturer profits. Finally, EV subsidies with a per-manufacturer quota sell 53
more EVs and 63 more conventional vehicles than the counterfactual with no subsidy. The
program results in 5.7 million gallons higher fuel consumption, $1.41 million higher consumer
surplus, and $0.53 million higher manufacturer profits. Note that the sum of consumer sur-
plus and manufacturer profits does not reflect welfare because of two reasons. First, economic
agents do not internalize the environmental effects of EVs. Second, elimination designs are
likely to have different long-term impacts due to the network effect, which are not captured
by aggregating the two-period outcomes.

Table 1.10 decomposes the profits across manufacturers under different counterfactuals.
Tesla earns at least $221 million (or 45%), GM earns at least $244 million (0.4%), and Nissan
earns at $23 million more profits from EV subsidies than the no-subsidy. EV subsidies have
a much higher impact on Tesla (as a percent of total profits) because it focuses exclusively
on EVs. Among the three counterfactuals with EV subsidies, Tesla and GM earn higher
profits under the per-manufacturer quota than the deadline designs because they qualify
for the 2018 subsidies under the per-manufacturer quota but not under the deadlines. For
instance, Tesla’s profits rise by 20% compared to the per-manufacturer deadline. In contrast,
other EV manufacturers like Nissan, Toyota, BMW, and Volkswagen earn the highest profits
under the per-manufacturer deadline because they qualify for subsidies in 2018 and face less
competition from Tesla and GM. These manufacturers earn lower profits under the market-
wide deadline as they do not qualify for the 2018 subsidies, and lower profits under the
per-manufacturer deadline as they face more competition from Tesla and GM.

Overall, the results show that there is a substantial incentive for manufacturers to de-
lay EV sales under a per-manufacturer quota, which can decrease the effectiveness of the
subsidy. This observation confirms the intuition from the monopoly example in Section 1.3.
Although the rise in EV sales in 2018 partially offsets the reduction in EV sales in 2017,
the combined normalized sales over the two years are 32% lower when compared to either
deadline design. This observation shows that deadlines are more cost-effective in aiding EV
market penetration. Moreover, because EV manufacturers are multi-product oligopolists,
the designs may also affect the sales of conventional vehicles. As a result, these designs
affect consumer surplus, manufacturer profits, and liquid fuel consumption. Finally, each
subsidy elimination design affects the profit distribution across manufacturers differently.
Compared to a market-wide deadline, a per-manufacturer deadline disproportionately shifts
profits away from the manufacturers that face the deadline. In contrast, a per-manufacturer
quota does not necessarily shift profits away from manufacturers facing a quota because it
allows them to control when the subsidy expires.
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Figure 1.6: Effect of Elimination Designs on EV Sales

Notes: This figure shows the cumulative plug-in EV sales under different elimination designs
for the three dominant EV-makers. Panel (a) shows the cumulative EV sales between 2011-
2017. The blue bars indicate the total EV sales between 2011-2016, as observed in the data,
and the orange bars indicate the EV sales in 2017 under the recomputed equilibria. Panel
(b) adds yellow bars showing EV sales in 2018 under the recomputed equilibria.
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Table 1.8: Effect of Elimination Designs on Vehicle Prices and Sales in 2017

Vehicle Outcome No Market Per-Mfr Per-Mfr
Subsidy Deadline Deadline Quota (150000)

TESLA MODEL X (BEV) Price (USD) 80,002 79,987 79,987 88,212
Sales 8,514 16,159 16,161 7,786

CHEVROLET VOLT (PHEV) Price (USD) 31,435 31,392 31,392 40,387
Sales 18,582 35,377 35,380 15,942

NISSAN LEAF (BEV) Price (USD) 26,161 26,155 26,221 26,218
Sales 5,643 10,712 10,650 10,652

HYUNDAI IONIQ (BEV) Price (USD) 30,087 29,934 30,259 30,258
Sales 257 493 479 480

CADILLAC CT6 (PHEV) Price (USD) 72,627 72,583 72,583 76,956
Sales 138 262 262 177

CADILLAC CT6 (GAS) Price (USD) 51,715 51,715 51,716 48,839
Sales 10,208 10,196 10,196 13,111

ACURA MDX (GAS) Price (USD) 42,597 42,594 42,594 42,587
Sales 63,596 63,516 63,518 63,414

TOYOTA TUNDRA (GAS) Price (USD) 27,528 27,529 27,529 27,519
Sales 49,145 49,100 49,102 48,993

CHEVROLET SILVERADO (GAS) Price (USD) 26,672 26,673 26,673 26,441
Sales 341,218 341,028 341,031 346,713

FORD F (GAS) Price (USD) 26,214 26,214 26,214 26,202
Sales 367,706 367,554 367,558 366,422

Notes: This table shows the equilibrium prices (before subsidy) and sales across the 30 sample states in 2017 for a
sample of vehicles using counterfactual simulations described in Section 1.7.
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Table 1.9: Effect of Elimination Designs on Aggregate Outcomes

Outcome Market Per-Mfr Per-Mfr
Deadline Deadline Quota (150000)

Panel (a): 2017 Outcomes

∆ EV Sales 89,810 87,628 26,017
∆ Conv Sales -14,223 -13,872 158,567
∆ Gas Consumption (Million Gallons) -1,039.98 -1,014.25 14,163.85
∆ Consumer Surplus (Million USD) 693.32 676.15 1,605.11
∆ Total Profits (Million USD) 749.13 751.5 433.35
Govt Expenditure (Million USD) 1,328.6 1,316.97 870.19

Panel (b): 2018 Outcomes

∆ EV Sales 2,489 45,874 96,230
∆ Conv Sales -398 -7,315 -15,259
∆ Gas Consumption (Million Gallons) -29.2 -532.81 -1,116.1
∆ Consumer Surplus (Million USD) 30.25 360.67 1,631.53
∆ Total Profits (Million USD) 21.3 413.37 787.9
Govt Expenditure (Million USD) 0 623.46 1,420.16

Panel (c): Total

∆ EV Sales 92,299 133,501 122,248
∆ Conv Sales -14,621 -21,187 143,308
∆ Gas Consumption (Million Gallons) -1,069.18 -1,547.06 13,047.75
∆ Consumer Surplus (Million USD) 723.57 1,036.82 3,236.64
∆ Total Profits (Million USD) 770.42 1,164.86 1,221.25
Govt Expenditure (Million USD) 1,328.6 1,940.44 2,290.36

Panel (d): Total (Normalized)

∆ EV Sales 69 69 53
∆ Conv Sales -11 -11 63
∆ Gas Consumption (Million Gallons) -0.8 -0.8 5.7
∆ Consumer Surplus (Million USD) 0.54 0.53 1.41
∆ Total Profits (Million USD) 0.58 0.6 0.53

Notes: This table shows the change in aggregate market outcomes under the counterfac-
tual simulations discussed in section 1.7 compared to the counterfactual with no subsidies.
Panel (a) shows the market outcomes in 2017, Panel (b) shows the outcomes for 2018, Panel
(c) shows the aggregate outcomes over the two years, and Panel (d) shows aggregate two-
period outcomes normalized by the government expenditure. All simulations assume that
the subsidy elimination began after 2017.
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Table 1.10: Effect of Elimination Designs on Profit Distribution

Manufacturer No Market Per-Mfr Per-Mfr
Subsidy Deadline Deadline Quota (150000)

ASTON MARTIN 32 32 32 32
BMW 7,869 7,943 8,024 8,013
DAIMLER 6,872 6,873 6,878 6,868
FERRARI 40 40 40 39
FIAT CHRYSLER 42,397 42,427 42,471 42,392
FORD 47,832 47,901 47,981 47,899
GENERAL MOTORS 61,737 61,991 61,981 62,335
HONDA 35,193 35,170 35,160 35,120
HYUNDAI 19,588 19,587 19,592 19,565
JAGUAR LAND ROVER 3,094 3,091 3,090 3,085
KIA 12,432 12,441 12,454 12,439
MAZDA 5,523 5,520 5,518 5,512
MITSUBISHI 2,370 2,369 2,369 2,366
NISSAN 36,072 36,106 36,150 36,095
ROLLS-ROYCE 48 48 48 48
SUBARU 14,537 14,529 14,525 14,509
TESLA 491 712 712 857
TOYOTA 55,208 55,297 55,409 55,336
VOLKSWAGEN 15,253 15,272 15,298 15,279
VOLVO 1,889 1,900 1,912 1,908

Notes: This table shows manufacturer-level profits (in million USD) during 2017-2018
from sales in the 30 geographic markets under the counterfactual simulations.
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1.8 Conclusion

This paper demonstrates the implications of subsidy-capping provisions in purchase-subsidy
programs designed to promote infant green technologies. I focus on the US plug-in EV mar-
ket, an important market to understand considering its potentially enormous environmental
benefits. Using a monopoly example, I first show that the subsidy-capping provisions may aid
or hinder the EV market penetration, and the magnitude of the effect depends on structural
primitives like own- and cross-price demand elasticities and network effect. Next, to compare
alternative subsidy-capping provisions, I develop a structural model of the US automobile
industry, where consumers choose vehicles to purchase by maximizing utility across all fuel
types, and firms choose prices for vehicles to maximize their profits. Then, I estimate the
demand-side parameters using product-level data on the newly registered vehicles, prices,
characteristics, and subsidies across 30 geographic markets in the initial years of the EV
market that were unaffected by the subsidy elimination. Using the demand parameters, I
recover vehicle markups under the assumption of static Nash-Bertrand equilibrium. Finally,
I use the market primitives and a two-stage pricing model to predict firms’ responses as they
face three counterfactual elimination designs: a market-wide deadline, a per-manufacturer
deadline, and a per-manufacturer quota.

Overall, the results show that all else being equal, per-manufacturer quotas create an
incentive to delay EV sales compared to the deadline designs. Two factors drive this in-
centive: (1) Staying below the quota in any period allows manufacturers to qualify for the
subsidy in the next period, and (2) As the subsidy is eliminated only for the EV makers
who exhaust the quota, staying below the quota protects the EV-maker from fierce compe-
tition from others below the quota. As a result, given government expenditure, subsidies
with deadlines are more cost-effective in increasing EV market penetration than subsidies
with a per-manufacturer quota. In addition, because EV manufacturers are multi-product
oligopolists, elimination designs also affect the sales of conventional vehicles and, hence, affect
the consumer surplus, manufacturer profits, and liquid fuel consumption. Finally, the results
show that subsidy-capping designs affect the distribution of profits across manufacturers.

These findings facilitate a deeper understanding of the role of policy in influencing tech-
nology change in three ways. First, it elucidates the effect of subsidy design on market
penetration in a theoretically motivated analysis. Because EVs offer a viable solution to
fuel efficiency and energy security, policymakers are eager to increase EV adoption. In the
US, the market share of EVs has remained limited despite several incentive programs; even
the consumers who buy EVs tend to use them as their secondary vehicle. Careful design is
therefore crucial, especially considering that EV tax incentives cost billions of dollars and
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receive much scrutiny. Second, the paper sheds light on the distributional impact of sub-
sidy design on manufacturers’ profits, which is helpful for subsidy targeting. For instance,
compared to a market-wide deadline, a per-manufacturer deadline disproportionately shifts
profits away from the manufacturers facing the deadline. Despite the penalty on dominant
manufacturers, a per-manufacturer deadline (rather than a market-wide deadline) may be
justified if there are significant barriers to manufacturers’ entry because there are positive
externalities from the entry in the form of environmental benefits, innovation spillovers, and
enhanced national energy security. Finally, the implications from the plug-in EV market
may also hold for other sustainable technologies such as solar panels and wind energy.
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Chapter 2

Differential Regulation and Firm Responses: A Study of

the CAFE Standard

Ying Fan and Nafisa Lohawala

2.1 Introduction

Major auto-industry regulations in the United States, such as Corporate Average Fuel Econ-
omy (CAFE) standards by the National Highway Traffic Safety Administration (NHTSA),
impose separate restrictions on passenger cars and light-duty trucks. Created in the 1970s,
CAFE regulations imposed less stringent targets for light-duty trucks as they were primarily
used for commercial and agricultural work and comprised less than 25% of the new vehicle
sales. Although light-duty trucks are now increasingly used as personal vehicles and account
for more than 50% of new vehicle sales, such differential treatment remains intact. The
favorable treatment of light trucks creates a perverse incentive for manufacturers to redesign
large vehicles as light-duty trucks instead of passenger cars to achieve compliance. In doing
so, manufacturers can increase the average fuel economy for both fleets since a redesigned
vehicle that would have fallen short of the car standard may exceed the truck standard. This
substitution can harm the efficacy of these regulations in reducing gasoline use.

What are the likely implications of these efforts on market outcomes? Should regulators
continue to treat cars and trucks separately? In this paper, we take a step towards answer-
ing these questions by examining the gaming opportunity that arises due to separate fuel
economy regulations for passenger cars and light-duty trucks and quantifying its welfare and
environmental effects.

We start with exploiting a historical change in the car-truck definitions to examine
whether and to what extent manufacturers change product characteristics to qualify for
favorable regulatory treatment. Before 2011, the NHTSA generally classified pickup trucks,
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vans, minivans, and SUVs as trucks for CAFE purposes, while sedans, coupes, and wagons as
cars. In 2011, the NHTSA reclassified all two-wheel-drive SUVs under 6,000 lb gross vehicle
weight as cars, reducing the total truck share by approximately 10%. This reclassification,
combined with the favorable treatment of light-duty trucks in CAFE standards, creates an
incentive to make heavier SUVs and equip them with four-wheel drive to classify them as
trucks. Our empirical strategy is to compare the change in the proportion of light-weight
SUVs equipped with a four-wheel drive after the policy change to that for non-SUVs to exam-
ine whether the drivetrain of SUVs changed disproportionately following the policy change.
We find that controlling for the year fixed effects and vehicle-type-specific linear time trends,
the probability of a light-weight SUV being equipped with four-wheel drive increased by 9.4
percentage points more than non-SUVs.

To quantify the welfare effects of the car-truck differential treatment, we develop and
estimate a structural model of the US automobile industry. The demand side is captured by
a discrete-choice model. The supply side is an oligopoly with product differentiation where
car manufacturers compete in prices. We estimate the model parameters using product-level
data on vehicle characteristics and sales.

Based on the estimated model, we quantify the welfare effect of the gaming behavior by
changing some “marginal” trucks to become cars, recomputing the pricing equilibrium, and
calculating changes in welfare measures as well as environmental measures. We find lower
consumer surplus, lower manufacturer profits, and lower fuel consumption in the counterfac-
tual scenario. Put it differently, the gaming behavior increases both consumer and producer
surplus at an environmental cost.

The paper adds to multiple strands of literature. First and foremost, it adds to the
growing literature on the impact of regulatory policies on transportation-related pollution
and greenhouse gas emissions, examples of which include Greene (1991); Goldberg (1998);
Kleit (2004); Klier and Linn (2012); Jacobsen (2013); Bento et al. (2017); Whitefoot et al.
(2017); Bento et al. (2018); Ito and Sallee (2018). Several studies describe CAFE as a
distortionary and costly way to conserve fuel as manufacturers can use a variety of loopholes
to relax the stringency of the standards, leading to lower fuel efficiency and higher emissions.
Multiple papers allude to the possibility that the car-truck loophole may have contributed
to the shift in the mix of vehicles on the road (Sallee, 2011b; Anderson et al., 2011). This
paper adds to the debate by providing evidence of such gaming and examining its welfare
impact.

Second, it contributes to the literature documenting tax-driven product innovation, ex-
amples of which include Sallee and Slemrod (2012); Slemrod (2013); Gillitzer et al. (2017);
Ito and Sallee (2018). Sallee and Slemrod (2012), for example, find that vehicle manufac-

47



turers respond to mandatory fuel economy labels by precisely manipulating fuel economy
ratings to qualify for favorable treatment. This paper examines producer responses to a
similar characteristic notch and quantifies the welfare effects.

Finally, the paper contributes to the literature on endogenous product choice, examples
of which include Fan (2013); Eizenberg (2014); Wollmann (2018); Chaves (2019); Fan and
Yang (2020). Chaves (2019) is closely related to our paper. He analyzes the impact of a
discontinuous tax schedule on product variety in the Brazilian automobile industry. We add
to this literature by studying how a regulatory differential treatment of products of different
categories affects manufacturers’ product choice and the welfare consequences.

The rest of the paper is organized as follows. Section 2.2 provides the institutional
background. Section 2.3 describes the data and provides evidence of firms’ gaming behavior.
Section 2.4 describes the demand and supply model. Section 2.5 explains estimation and
presents the estimation results. Section 2.6 explains the counterfactual design and reports
the results. Section 2.7 concludes.

2.2 Background

The fuel economy is regulated because the consumption of gasoline generates three distinct
externalities. First, greater demand for gasoline may threaten energy security, which can
have political consequences and increase economic volatility. Second, gasoline consumption
releases carbon dioxide into the atmosphere, contributing to climate change. The United
States is one of the largest greenhouse emitters, and vehicle emission counts for 27% of its
total emission1. Third, gasoline consumption releases local air pollutants that have envi-
ronmental and health implications. Fuel economy standards address the nation’s energy
security, climate change, and air pollution.2

In this section, we describe the Corporate Average Fuel Economy (CAFE). We also
describe two other policies regarding vehicle fuel economy: Gas Guzzler Tax (GGT) and
Greenhouse Gas Emission (GHG) standards. In this paper, we focus on manufacturers’
responses to CAFE because it is the oldest and most central to the US policy. Moreover,
GGT applies only to a few cars, while GHG regulations are analogous to CAFE.

1See https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
2A gasoline tax could be more cost-effective at reducing gasoline consumption than fuel economy stan-

dards. However, a high gasoline tax tends to be politically unpopular.

48



2.2.1 Corporate Average Fuel Economy Standards

Legislated in 1975 through the Energy Policy and Conservation Act (EPCA), CAFE stan-
dards are targeted toward reducing gasoline consumption. The standards are set by the
National Highway Traffic Safety Administration (NHTSA) every model year and impose a
limit on the average fuel economy of the vehicles sold by each manufacturer each year, with
separate limits for passenger cars and light-duty trucks.

To determine manufacturers’ compliance with CAFE standards, fuel economy values
are measured by the Environmental Protection Agency (EPA) through the “2-cycle” tests,
which comprise a “city” test that emulates the driving conditions in a city and a “highway”
test imitating highway travel. The final fuel economy rating mpgj (in miles per gallon) is
computed as a weighted harmonic average of the city (Cj) and highway (Hj) test ratings:
mpgj = 1

0.55
Cj

+ 0.45
Hj

. Alternative fuel vehicles such as battery-electric, fuel cell, hybrid, and

flex-fuel vehicles earn a higher fuel economy rating.3

Individual vehicles need not meet their target exactly. Instead, a manufacturer’s com-
pliance is determined by how its average fleet fuel economy compares to the average targets
of the manufactured vehicles. Manufacturers must individually meet the requirements in
three separate fleets: domestic passenger cars, import passenger cars, and light trucks. The
average fuel economy performance for manufacturer f in the fleet k is calculated by the
following harmonically weighted formula:

CAFE
(k)
f =

∑
j∈J (k)

f

qj∑
j∈J (k)

f

qj/mpgj
, (2.1)

where qj denotes the production volume of vehicle j and J (k)
f denotes set of vehicles produced

by manufacturer f in the fleet k. Manufacturer’s required fuel economy level for the fleet i
is calculated using a similar formula:

d
(k)
f =

∑
j∈J (k)

f

qj∑
j∈J (k)

f

qj/Tj
, (2.2)

where Tj is the target value for vehicle j.
CAFE first came into effect in 1978 for passenger cars and 1979 for light-duty trucks. The

3For example, the fuel economy of a dedicated E85 vehicle for CAFE compliance purposes is adjusted by
dividing its actual fuel economy rating by 0.15 (equivalent to multiplying by 6.67).
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target value for trucks has always been below the passenger car standards. This distinction
was made because when these regulations were enacted in the 1970s, the light-duty trucks
were mainly used for commercial and agricultural work and accounted for less than 25 percent
of total new car sales. Today, they account for more than 50 percent of all automobile
sales in the US and are increasingly used as personal vehicles. As such, the share of total
fuel consumption and emissions attributable to these vehicles steadily increased. Despite
this shift, the regulatory distinction between passenger cars and light-duty trucks remained
intact.

Manufacturers comply with the standards by reporting to the EPA and the NHTSA
annually with information regarding their model year fleet production and sales numbers,
fleet characteristics, and the fuel economy results from the EPA-approved test cycles. The
NHTSA compares each fleet’s mpg performance against the applicable standard. If manu-
facturers exceed CAFE requirements in a given year, they earn CAFE credits which may be
used to offset deficiencies three years before or the five years after the year in which they are
earned. Manufacturers with a shortfall pay a civil penalty, which is currently $5.5 per 0.1
mpg below the standard multiplied by the manufacturer’s total volume in the US domestic
market:

(
∑
j∈J (k)

f

qj) · 55 · (d(k)
f − CAFE

(k)
f ) (2.3)

Following the Energy Independence and Security Act (EISA) of 2007, the NHTSA also allows
a manufacturer with a shortfall to comply by transferring credits from one of its fleets (cars
or light-duty trucks) to the fleet with the shortfall or trading for credits (purchasing credits)
from another manufacturer starting from the model year 2011.4

Figure 2.1 plots the fleet-wide average fuel economy targets and performance during
2004-2017 separately for domestic passenger cars, imported passenger cars, and light-duty
trucks. Before 2011, the NHTSA set a single target for all vehicles in a fleet. The target for
both passenger car fleets was 27.5 mpg, while that for light-duty trucks increased from 20.7
in 2004 to 23.4 in 2010. After 2011, the EISA (2007) introduced targets based on vehicles’
footprint (wheelbase× trackwidth), with less stringent targets for larger vehicles. Although
targets for passenger cars and light-duty trucks are determined by a similar formula, they are
more stringent for passenger cars than light-duty trucks regardless of footprint.5 Figure 2.1
shows that the actual fuel economy for new vehicles has closely tracked the CAFE standard

4In addition to the footprint-based CAFE standard as explained above, each manufacturer must meet a
minimum standard of the higher of either 27.5 mpg for domestic passenger automobiles or 92% of the pro-
jected average for all manufacturers. Traded or transferred credits cannot be used to meet this requirement.
However, all manufacturers meet this latter reqruiement in our sample.

5Appendix B.2 summarizes the target formulas for passenger cars and light-duty trucks after 2011.
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Figure 2.1: Fuel Economy Performance v/s Standard

Source: NHTSA’s CAFE Public Information Center

for all the fleets. However, the fuel economy standards and performance have evolved quite
differently for cars and trucks. For example, between 2010 and 2017, the average fuel economy
standard for the light truck fleet increased by 26%, and the average fuel economy performance
increased by 13%. In contrast, the average fuel economy standard for the domestic passenger
car fleet increased by 40%, and the average fuel economy performance increased by 18%.

The fleet designation of a vehicle is determined by its characteristics. To be considered
a light-duty truck, a vehicle’s characteristics must meet certain criteria that enable off-road
driving, such as drivetrain, vehicle weight, as well as minor characteristics like approach and
break-over angle. Vehicles that do not meet these criteria are classified as passenger cars.
There was a change in the criteria in 2011, which we exploit in Section 2.3.3. Appendix B.1
documents the regulatory definitions of a passenger car and a light-duty truck used by the
NHTSA after 2011.
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Figure 2.2: Gas Guzzler Tax Schedule

2.2.2 Other Fuel Economy Policies

In 2009, the Obama administration introduced a national program for greenhouse gas emis-
sions (GHG) and fuel economy, requiring manufacturers to reduce tailpipe GHG emissions
and simultaneously increase the fuel economy of their vehicles starting from 2012. Like
CAFE standards, compliance with the GHG standards is assessed separately for car and
truck fleets at the end of each model year and uses the same harmonically weighted average
as in (2.1) and (2.2) where fuel economy measures is replaced by emissions. Again similar
to CAFE standards, the emission performance is measured through the 2-cycle test proce-
dure, and the target is based on the vehicle footprint so that larger vehicles receive a higher
CO2-equivalent emissions target. GHG standards have a separate credit program and credit
market than the CAFE standards. This program defines credits in terms of emissions (de-
noted in terms of the megagrams of CO2) reduced relative to the emissions allowed by the
standard. Manufacturers are allowed to bank, transfer credits across fleets, and trade credits
with other manufacturers. Overall, the CAFE and GHG regulations are similar in design.
Moreover, low fuel economy typically leads to high greenhouse gas emissions. Therefore, in
our model, we do not consider GHG as a separate constraint.

In addition to the fuel economy regulations, a federal excise tax, i.e., Gas Guzzler Tax
(GGT), is levied on individual passenger car models with especially low EPA-estimated fuel-
economy ratings. The tax was enacted in 1978 as part of the Energy Tax Act to reduce
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negative externalities associated with fuel consumption. GGT does not cover pickup trucks,
minivans, and sport utility vehicles (SUVs) because these vehicle types were not widely
available in 1978 and were rarely used for non-commercial purposes. The tax was phased
in between 1980 and 1991. The schedule has not changed since then. However, because
the tax is not adjusted for inflation, its real value has gradually fallen over time. The tax
schedule is a step function in fuel economy. Vehicles with a fuel economy rating of at least
21.5 mpg are exempt from the tax. For vehicles with a fuel economy rating below 21.5 mpg,
the tax ranges from $1000 to $7700 (Figure 2.2), with higher values for lower mileages. The
vehicle’s manufacturer remits the tax to the IRS at the end of the model year based on the
total number of gas guzzler vehicles they sold that year. The tax is visible to consumers as a
line item on the window stickers of the new cars. Most mainstream cars are efficient enough
to avoid the tax. Roughly 60 vehicles were affected by the tax in 2017. These cars tend to
be high-priced and high-performance and include many Ferrari, Lamborghini, Maserati, and
Rolls-Royce models. We take the GGT into account in our model.

2.3 Data

2.3.1 Data Sources

We combine data from several sources. Vehicle sales come from Wards Intelligence. A
vehicle is defined by make/ model/ fuel type/ year. A market is a calendar year.6 Market
size is estimated by the US Census Bureau’s state-level annual estimates of total households,
and the market shares are calculated by dividing the total sales volume by the number of
households in a state in a year. We divide vehicles into four types: sedan/ wagons, vans,
pickup trucks, and SUVs. We further divide the sedan/ wagon type into small, middle, large,
and luxury segments and the SUV type into crossovers and SUV segments. In each year,
the sample includes all vehicles with more than 5000 sales in the US.

We also obtain vehicle characteristics from WARDS Intelligence and fill in missing values
based on the information from Edmunds. We collect data on the manufacturer’s suggested
retail price (MSRP), horsepower, curb weight, drivetrain (2WD or 4WD), vehicle size (foot-
print), and fuel type. To estimate the prices faced by consumers and manufacturers, we also
collect information on manufacturer discounts from the Autonews data center and federal
subsidies for alternative energy vehicles from the Department of Energy. We complement

6CAFE regulations are based on model year production instead of calendar year sales. A model-year
refers to the production cycle, which typically lasts one year and begins in August or September of the
previous calendar year. However, calendar-year sales closely follow model-year sales and still provide a good
approximation of CAFE requirements.
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these data with the EPA’s classification of vehicle trims into cars and trucks for CAFE
compliance and EPA’s fuel economy ratings.

Consumers care about the price, cost of driving, and other vehicle characteristics. We
measure the price faced by consumers as the difference between MSRP and all the purchase
incentives, including the federal subsidies and the average discounts provided by the manu-
facturer in that year. We measure size by length×width and cost of driving (dollars per 10
miles) as the price of fuel per gallon divided by fuel economy.7 Fuel prices come from the
US Energy Information Administration.8

Firms care about their profits, which includes GGT and CAFE liabilities. The price that
enters the profit function is the difference between MSRP and the average discounts provided
by the manufacturer in that year. We obtain the historical CAFE targets from the annual
reports published by the NHTSA and the GGT schedule from 26 US Code § 4064.

EPA calculates two types of fuel economy values from the city and highway test results:
the unadjusted CAFE values and the adjusted on-road values that reflect in-use performance.
CAFE values are used to determine manufacturers’ compliance with the applicable average
fuel economy standards and Gas Guzzler ratings. The adjusted on-road values are used in
the fuel economy guide and on new vehicle labels to enable consumers to make more informed
choices regarding fuel efficiency when purchasing a new vehicle. The two types of values are
generated in different ways and are not directly comparable, although, generally, unadjusted
CAFE values are higher than the adjusted on-road values. Therefore, we use the adjusted
on-road values to determine consumers’ cost of driving and the unadjusted CAFE values to
determine manufacturers’ CAFE compliance and Gas Guzzler Tax.

Although we observe vehicle characteristics at the trim level, the vehicle sales data are at
the make-model-fuel level. Therefore, we match the two datasets by taking the characteristics
of the cheapest trim for each vehicle. Note that different trims of a single model may
classify as either a passenger car or light-duty truck for CAFE compliance, depending on its
characteristics. For instance, the two-wheel-drive Honda CR-V qualifies as a passenger car,
and the four-wheel-drive CR-V qualifies as a light-duty truck. In our demand model, we
drive the demand for each vehicle-drivetrain, sum over different drivetrains within the same
vehicle to match the sales at the vehicle/year level.9

7We approximate the cost of driving for a dual fuel vehicle (e.g., PHEV) using a 50/50 arithmetic average
of the cost of driving under each fuel.

8EPA does not report fuel economy for larger vehicles exempt from fuel economy regulations. In such
cases, we use empirical data on fuel efficiency performance from a website www.fuelly.com used by drivers
to track their fuel usage.

9Accounting for the drivetrain almost perfectly predicts the regulatory fleet of a trim. For a few vehicle-
drivetrain combinations that classify as a passenger car or light-duty truck based on other characteristics,
we calculate manufacturers’ fleet-specific CAFE performances by approximating a vehicle’s car and truck
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Finally, we obtain the data on makes produced by each company from EPA. Consistent
with the regulatory definitions, we assume that different makes of the same parent manu-
facturer classify as a single firm. For example, Buick, Cadillac, Chevrolet, GMC, Hummer,
and Saturn are all part of General Motors.

2.3.2 Summary Statistics

Table 1.1 summarizes the sales and characteristics separately for cars and trucks (as classified
by NHTSA) for each year in the sample. There are 5,523 observations comprising 3,767
unique models/ year/ fuel type combinations, 1,756 of which have both two-wheel drive
(2WD) and four-wheel drive (4WD) variants. The first two columns report the model year
and sales, and the subsequent columns show the total vehicle-drivetrain combinations that
classify as car or truck,as well as the sales-weighted average of real price, size (length×width),
cost of driving (in dollars per ten miles), and the ratio of horsepower by weight (in hp/10lb)
— separately for light-duty trucks and passenger cars. Between 2001-2016, the total sales
in the sample rose from 16.7 million to 17.1 million. The number of trucks rose from 125 to
171 and passenger cars rose from 160 to 214. The average cost of driving varied across years
depending on the fuel prices, but was higher for light-duty trucks than passenger cars across
all years. The average vehicle size increased from 14.3 to 15.2 thousand in2 for trucks, and
from 12.9 to 13.2 thousand in2 for passenger cars. The average vehicle performance increased
from 0.48 to 0.59 hp/10lb for light-duty trucks, and from 0.56 to 0.62 hp/10lb for passenger
cars. The vehicle size was higher and average vehicle performance was lower for light-duty
trucks than passenger cars across all years.

Table 2.2 shows manufacturer compositions and CAFE performance in 2016 based on
NHTSA’s public information center. In 2016, Tesla had a much higher performance compared
to other manufacturers because it specializes exclusively in electric vehicles that garner extra
credits under CAFE. Fiat Chrysler paid a civil penalty of 77.3 million dollars due to the
CAFE shortfall. The remaining manufacturers with a shortfall complied by either banking
credits, trading with other manufacturers, or transfering across fleets.

2.3.3 Evidence on Vehicle Redesigning

The definition of light-duty trucks was revised by the NHTSA in 2011, which allows us to
examine firms’ responses to the favorable regulatory treatment of light-duty trucks through
vehicle redesigning. Before 2011, pickup trucks, vans, minivans, and SUVs were generally
classified as trucks under the regulatory definitions, while sedans, coupes, and wagons were

sales based on the fraction of this vehicle’s trims that qualify as a truck in a given year.
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Table 2.1: New Vehicle Sales and Characteristics

Year Sales Vehicle Counts Avg MSRP Avg $/10 miles Avg Size Avg Horsepower/Weight
(’000s) ($’000) (’0000 in 2) (Hp/10lb)

Truck Car Truck Car Truck Car Truck Car Truck Car
2001 16679 125 160 34.48 34.04 0.12 0.09 1.43 1.29 0.48 0.56
2002 17216 133 162 35.28 33.81 0.11 0.08 1.43 1.28 0.48 0.66
2003 16418 148 161 36.83 34.54 0.12 0.09 1.44 1.29 0.50 0.57
2004 16583 157 172 36.68 34.33 0.14 0.11 1.46 1.31 0.51 0.56
2005 17233 166 181 36.71 34.96 0.18 0.14 1.48 1.31 0.51 0.58
2006 16298 164 187 36.16 33.88 0.17 0.13 1.48 1.31 0.52 0.59
2007 16014 181 185 33.69 32.57 0.18 0.14 1.49 1.32 0.53 0.60
2008 14708 183 190 33.44 32.47 0.22 0.18 1.50 1.32 0.54 0.61
2009 10290 182 184 34.48 32.70 0.14 0.11 1.49 1.32 0.54 0.60
2010 10791 169 173 35.04 33.90 0.17 0.13 1.49 1.33 0.54 0.61
2011 12162 168 185 34.33 32.56 0.20 0.16 1.50 1.33 0.56 0.61
2012 13804 159 199 35.30 33.20 0.21 0.16 1.52 1.32 0.57 0.62
2013 15187 159 208 36.04 34.36 0.19 0.15 1.52 1.32 0.57 0.62
2014 15795 153 213 35.69 34.43 0.19 0.14 1.52 1.32 0.59 0.64
2015 16622 162 224 36.54 33.81 0.13 0.10 1.51 1.32 0.59 0.62
2016 17185 171 214 37.19 33.18 0.11 0.08 1.52 1.32 0.59 0.62

Notes: This table shows the evolution of key variables between 2001-2016, using vehicle sales and characteristics data from Wards,
EPA, and Edmunds. From left to right, we report the total sales, numbers of truck and car vehicles, and sales-weighted average
vehicle characteristics. Size is length× width (in ’0000 in2), performance is horsepower by curb weight (in 10 lb), and cost of driving
is fuel cost (in dollars) per ten miles. Vehicle counts show the total model-fuel-drivetrain combinations that are classified as cars
or trucks. Moreover, for the purpose of calculating the sales-weighted averages, we approximate the number of car and truck sales
based on the fraction of vehicle-drivetrain combinations that qualify as a car or truck in the EPA data.
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Table 2.2: Manufacturer Composition in 2016

Manufacturer Makes Outcome Passenger Car Light Truck

Domestic Import

BMW BMW, MINI
Performance 0 34.1 28.8

Standard 0 36.3 29.9
Sales 0 289036 99451

DAIMLER MERCEDES-BENZ, SMART
Performance 36.2 32.6 26.9

Standard 35.9 35.6 29.5
Sales 73807 146394 109864

FIAT CHRYSLER CHRYSLER, DODGE , FIAT , JEEP , RAM
Performance 31.8 32.4 26.4

Standard 35.7 38.1 29.0
Sales 577051 55808 1365868

FORD FORD, LINCOLN
Performance 36.2 30.7 25.9

Standard 36.5 37.7 27.2
Sales 977210 1290 1126877

GENERAL MOTORS BUICK, CADILLAC , GMC
Performance 34.6 38.8 25.2

Standard 36.1 39.9 26.9
Sales 1081698 141219 1354255

HONDA ACURA, HONDA
Performance 41.8 48.2 31.2

Standard 37.3 40.8 30.4
Sales 999276 72256 731659

HYUNDAI HYUNDAI
Performance 0 38.2 26.4

Standard 0 36.9 30.5
Sales 0 697914 19889

JAGUAR LAND ROVER JAGUAR, LAND-ROVER
Performance 0 27.7 24.9

Standard 0 34.2 29.7
Sales 0 16903 97650

KIA KIA
Performance 0 36.6 27.2

Standard 0 37.1 29.7
Sales 0 562133 157956

MAZDA MAZDA
Performance 0 42.1 34.2

Standard 0 37.3 31.4
Sales 0 305635 153192

MITSUBISHI MITSUBISHI
Performance 0 36.8 34.9

Standard 0 38.7 32.8
Sales 0 26172 49097

NISSAN CHEVROLET, INFINITI , NISSAN
Performance 41.8 37.1 30.1

Standard 37.3 36.9 30.1
Sales 706573 236761 409137

SUBARU SUBARU
Performance 0 36.9 36.5

Standard 0 38.0 32.5
Sales 0 153926 402071

TESLA TESLA
Performance 319.9 0 0

Standard 34.7 0 0
Sales 46058 0 0

TOYOTA LEXUS, SCION , TOYOTA
Performance 36.5 41.7 26.7

Standard 36.3 38.0 29.3
Sales 437646 917366 1022967

VOLKSWAGEN AUDI, PORSCHE , VOLKSWAGEN
Performance 0 0 0

Standard 0 0 0
Sales 0 0 0

VOLVO VOLVO
Performance 0 35.9 29.6

Standard 0 35.9 29.6
Sales 0 32207 57283

Notes: This table shows each manufacturer’s makes and CAFE performances in 2016 based on NHTSA’s public information center.

57



Table 2.3: SUV Car vs Truck Classification After 2011

GVWR 2WD 4WD
≥ 6000 lb Truck Truck
< 6000 lb Car Truck

Notes: This table summarizes EPA and NHTSA’s criteria for classifying SUVs into passenger cars
and light-duty trucks after 2011. In addition to drivetrain and GVWR, the classification also in-
cludes characteristics like approach and breakover angle that enable off-road driving. However, car
or truck classification almost always comes down to weight and drivetrain configurations.

classified as cars. In 2011, the NHTSA reclassified all 2WD SUVs under 6,000 lb GVWR
as cars. SUVs must now have a 4WD or GVWR above 6,000 lb to be classified as trucks
(see Table 2.3). The 2011 reclassification did not affect passenger cars, pickups, and vans.
The reclassification of SUVs, combined with the favorable treatment of trucks in CAFE
standards, creates an incentive for firms to use a 4WD in light-weight SUVs to classify them
as trucks. Figure 2.3 shows the number of SUV and sedan/ wagon trims with inertia weight
less than 4500 lb that were equipped with a 4WD.10 Panel (a) shows that the number of SUV
trims equipped with 4WD increased by a bigger margin than SUVs equipped with 2WD. In
contrast, panel (b) shows that this was not the case with sedans.11

We also estimate the following linear probability model:

Yht = λ× Treatht + δtype(h) + δt + κtype(h)t+ εht, (2.4)

where h is a vehicle/trim, type(h) indicates whether vehicle/trim h is a sedan/wagon, pickup,
SUV, or van, and t is the index of year. In the regression, Yht takes value one if vehicle/trim
h is equipped with a 4WD, and zero otherwise. Treatht is an indicator that takes value
one for SUVs after the year 2011 and zero otherwise. δtype(h) are vehicle-type fixed effects to
control for the inherent differences in vehicle categories that affect firms’ drivetrain choice
and δt are time fixed effects that control for year-specific differences in drivetrain preferences.
In addition, we allow for a vehicle-type-specific time trend as captured by κtype(h)t.

Table 2.4 reports the estimates from this regression. Controlling for year fixed effects
and a vehicle-type-specific linear time trend, the probability of a light-weight SUV being
equipped with 4WD increased by 10.7 percentage points more than that of non-SUVs. This
result suggests that firms redesign some SUVs to classify them into the favored light truck

10The Wards data on vehicle GVWR contain many missing values. Moreover, the regulatory agencies do
not record it. However, EPA records vehicles’ inertia weight (i.e., the weight of the empty vehicle + 300 lb),
and roughly anything over 4500 lb inertia weight is above 6,000 lb GVWR.

11Similarly, there is an incentive to bunch above GVWR of 6000 lb. EPA does not record vehicle GVWR,
so we are unable to check that.
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Figure 2.3: SUVs and Sedans by Drivetrain

Source: EPA
Notes: Sample consists of all vehicles with inertia weight ≥ 4500 lb.

fleet.
Note that there was another change in CAFE regulation in 2011, i.e., starting from 2011,

firms were allowed to transfer CAFE credit across fleets. This change leads to less incentives
for firms to game and thus should bias against our finding.

Designing large vehicles as light-duty trucks instead of passenger cars affect market out-
comes through several channels. Figure 2.4 describes these mechanisms. On the demand
side, the change in vehicle drivetrain would affect consumer utility directly, as well as indi-
rectly through their effect on the cost of driving (4WD vehicles consume more fuel and are
costlier to drive). On the supply side, the changes in vehicle drivetrain would affect the ve-
hicle’s CAFE mpg rating, CAFE fleet classification (i.e., car or truck), gas guzzler tax (since
trucks are exempt), and marginal cost. Together, the demand- and supply-side factors would
determine the price and sales in the equilibrium. To quantify the welfare effects of vehicle
redesigning, we next describe the structural model that incorporates these mechanisms.
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Table 2.4: Evidence of Regulation Gaming

VARIABLE 4WD

Treat 0.094***
(0.002)

Observations 14,576
R-squared 0.079
Vehicle Type FE Yes
Year FE Yes
Vehicle-Type Time Trend Yes

Notes: This table reports the outcome from estimating equation (2.4). Sample consists of all vehi-
cle/trims with inertia weight ≤ 4500 lb. The dependent variable is an indicator taking value one
if the trim is equipped with 4WD. Treat is an indicator taking value one for SUVs after 2011 and
zero otherwise. Standard errors clustered by vehicle type (sedan/wagon, pickup, SUV, and van) are
presented in the parenthesis. *** indicates 99% level of significance. ** indicates 95% level of signif-
icance. * indicates 90% level of significance.

Figure 2.4: How Redesigning Drivetrain and Weight Affect Market Outcomes

Drivetrain & GVWR

Consumer Demand

Marginal Cost

CAFE fleet

Fuel Economy

Price & Quantity
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2.4 Model

To quantify the effects of firms’ gaming behavior, we set up a demand and supply model of
the US auto market. Section 1.4.1 describes the demand side, in which consumers choose a
vehicle among all available vehicles in a year. Next, Section 1.4.2 describes the supply side, in
which firms choose prices to maximize their profits given consumer demand and fuel economy
policies. Finally, Section 2.4.3 describes the relationship between a vehicle’s drivetrain and
fuel economy, which indirectly affects consumers’ and firms’ decisions, as described in Figure
2.4.

2.4.1 Demand

Consumer i’s utility from choosing vehicle j and drivetrain d in time t is

uijdt = xjdtβi − pjdtαi + ξjt + εijdt, (2.5)

where xjdt is a K × 1 vector of vehicle characteristics such as horsepower per weight and
cost of driving. Price pjdt is MSRP less manufacturer discounts and federal tax credits.
ξjt represents the part of mean utility that is unobservable to the researcher but known
to consumers and producers. εijdt represents idiosyncratic tastes assumed to be i.i.d. and
follow type I extreme value distribution. The outside option represents the alternative of
non-purchase or purchase of a used vehicle. The utility from this choice is normalized to
Ui0t = εi0t.

The price coefficient αi is assumed to follow a log-normal distribution with parameters
α and σα. In other words, log(αi) = α + σαviα, where viα follows a standard normal distri-
bution. The random coefficients for product characteristics are assumed to follow a normal
distribution with parameters β and σβl for the lth dimension of βi.

Although we allow characteristics such as price and cost of driving to differ across the
drivetrains, we only observe sales at the model level. We, therefore, aggregate the predicted
shares across different drivetrains of a model and match them with the observed model share
in the data. The market share of product j in the market t is the sum of shares across
different drivetrains:

sjt =

∫ ∑
d

exp(xjdtβi − pjdtαi)
1 +

∑
j′d′∈Jt exp(xj′d′tβi − pj′d′tαi)

dF (αi, βi),

where Jt is the set of vehicle/drivetrain combinations available in market t. The aggregate
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demand for vehicle j is qjt = Mtsjt where Mt is market size in period t.

2.4.2 Supply

Firms observe the demand and marginal cost shocks and simultaneously choose prices, which
are the difference between MSRP and retail discounts. Note that the price in the demand
model is this price minus the federal tax credit. With an abuse of notation, we use the same
pjdt to represent both the price on the demand and the supply sides. Following (Jacobsen,
2013), we model two types of fleets: passenger car and light-duty truck.12 Firms choose
prices to solve

max
pjdt,jd∈Jft

∑
jd∈Jft

(pjdt −mcjdt −GGTjd)qjdt(pt) + 5.5
∑
k∈C,T

Credit(k)(−→q (k)
ft (pt)), (2.6)

where Credit(k)(−→q (k)
ft ) is equal to the difference, in tenths of a mile per gallon, between the

manufacturer’s achieved and required CAFE levels, multiplied by the number of vehicles in
the relevant fleet, i.e.,

Credit(k)(−→q (k)
ft ) =

[
CAFE(k)(−→q (k)

ft )− d(k)(−→q (k)
ft )
]
× (

∑
j∈J (k)

ft

qjt)× 10,

and CAFE(k)(−→q (k)
ft ) and d(k)(−→q (k)

ft ) are as defined in equations 2.1 and 2.2, respectively.13

As explained in Section 2.2, the CAFE program allows manufacturers to trade credits with
others and transfer credits across their fleets. Therefore, the profit function in (1.2) includes
the second term. When a manufacturer fails to meet the standard, it pays $5.5 for each
credit shortage, i.e., the penalty rate set by the NHTSA. Conversely, when a manufacturer

12In practice, the regulation subdivides the passenger car fleet into domestic and import fleets. A vehicle
is considered as part of the domestic fleet if 75% or more of it is produced domestically; else it is a part
of the import fleet. While this division may have had some impact initially, firms have since been able to
equalize the fuel economy of the two groups of passenger cars without major structural changes (National
Research Council, 2002).

13We use several approximations in calculating the CAFE performance. (1) While the EPA uses annual
production volume to compute CAFE, we use calendar year sales instead in the absence of actual production
data. (2) In practice, the Alternative Motor Fuels Act (AMFA) allows manufacturers to increase their fleet
fuel economy performance by producing dual-fueled or flex-fueled vehicles (FFV). We do not observe the
sales of advanced technology vehicles separately and, hence, ignore this flexibility. (3) The demand model
predicts sales at the model-drivetrain level, but different trims within a model-drivetrain combination may
still have different fuel economies. We average the fuel economy across all trims within a model-drivetrain
combination. Similarly, different trims within a model-drivetrain combination may classify as either passenger
cars or light-duty trucks, depending on other characteristics. In such cases, we approximate the number of
car and truck sales based on the fraction of trims that qualify as a truck as observed in the EPA data. (4)
In practice, the regulation subdivides the passenger car fleet into domestic and import fleets. Here, we treat
them as a single fleet.
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exceeds the standard, we assume it earns $5.5 for each surplus credit. We do not have the
data for the credit market. While not perfect, this assumption approximates the actual
credit market when markets are efficient so that manufacturers with surplus CAFE credits
can sell their credits to others at a price equal to the penalty rate set by the NHTSA.

The formulation in (1.2) reasonably represents CAFE standards after 2011. However,
before 2011, firms could not trade credits with others or transfer them across fleets, even
though they could save credits for future use. As a result, a firm that consistently exceeds
its fuel economy target had no use for its CAFE credits and, therefore, would not take into
account the second term in (1.2). In the later counterfactual analysis, we focus on the last
year of our sample, i.e., 2016. We only recover marginal costs for 2011 – 2016 based on the
first-order conditions that correspond to (1.2) as shown in Appendix B.3 and estimate the
marginal cost parameters using this reduced sample.

We parametrize marginal cost as mcjt = wjγ + ωjt where wj includes vehicle character-
istics such as fuel economy as well a time trend.

2.4.3 Fuel Economy

In addition to directly affecting consumers’ utility and vehicle’s marginal cost, the vehicles’
drivetrain and weight are likely to affect consumers’ cost of driving and vehicles’ CAFE mpg
rating. Consumers’ cost of driving, in turn, also affects consumers’ utility, while CAFE mpg
rating, in turn, affects vehicle manufacturers’ CAFE compliance. We need to pin down the
relationship between fuel economy and vehicle characteristics such as drivetrain and weight.
To this end, we regress vehicles’ cost of driving and CAFE mpg on vehicle characteristics,
including an indicator for 4WD, vehicle size, horsepower, curb weight (10 lb), indicators for
electric and hybrid vehicles, vehicle-segment fixed-effects, and year fixed-effects.14

2.5 Estimation and Results

2.5.1 Demand

To deal with the potential endogeneity issue regarding the price, we use the sum over all the
firm’s other vehicles’ characteristics and the sum over all the competing vehicles’ character-
istics as instruments for price. Vehicle characteristics include vehicle size, horsepower per

14Consumers’ cost of driving as the price of fuel per gallon divided by the EPA’s adjusted on-road mpg
values. CAFE mpg ratings are EPA’s unadjusted mpg values that do not necessarily reflect real-world
driving. As mentioned in Section 1.5.1, the unadjusted and adjusted mpg values are generated in different
ways and are not directly comparable. Therefore, we regress vehicles’ cost of driving and CAFE mpg rating
separately.
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weight, cost of driving, and indicators for 4WD, EV and hybrid vehicles. Following Berry
et al. (1995), we estimate the demand paramters using the Generalized Method of Moments
where the moments are constructed based on the instrumental variables mentioned above.

Table 2.5 reports the demand estimation results. The first panel shows the estimates of
the mean parameters α and β. Most coefficients are precisely estimated and have expected
signs. While the estimate of the coefficient for 4WD is only marginally significant, the
interaction between SUV and 4WD has a positive and statistically significant coefficient,
indicating that consumers like 4WD on SUVs. 4WD provides more traction and steering
control, which is valuable in snowy and rainy climates and also for rough roads and other
off-roading scenarios. That probably explains why consumers value it on SUVs. Vehicle
size and horsepower to weight ratio have positive coefficients, indicating that consumers
value size and power. The negative coefficient on the cost of driving per mile implies that
consumers prefer high fuel efficiency, which reduces the cost per mile.The second panel shows
the estimates of the random coefficients that measure the dispersion in households’ tastes.
These coefficients are the standard deviations of the tastes for the vehicle characteristics.

Table 2.6 shows a sample of own and cross price elasticities in the year 2016. Each row
in this table corresponds to a different vehicle; the first five rows correspond to the top five
passenger cars by sale, and bottom five rows correspond to the top five SUVs. Each entry
gives the percentage change in demand of the row vehicle associated with a 1% increase in the
price of the column vehicle. The cross-price elasticities are larger among similar products.
For instance, increase in price of Honda Accord shifts the consumers disproportionately to
Nissan Altima compared to Nissan Rogue. Table 2.7 summarizes the own price elasticities
for products between 2001-2016. The average own-price elasticity is -2.03, and ranges from
-2.37 at the 25th percentile to about -1.93 at the 75th percentile. The average marginal cost
is USD 16,852 and ranges from USD 7,926 at the 25th percentile to USD 21,743 at the 75th
percentile.

2.5.2 Marginal Cost

We back out mcjt based on the first-order conditions and then regress the marginal cost on
covariates wjt. The second rwo of Table 2.7summarizes the recovered marginal costs between
2011 and 2016. The average marginal cost is USD 16,852 and ranges from USD 7,926 at the
25th percentile to USD 21,743 at the 75th percentile.

Table 2.8 summarizes the marginal cost parameters. The coefficients on vehicle size,
horsepower per weight, 4WD, curb weight, and the indicator for alternative energy vehicle
are positive and significantly different from zero, indicating that producing these features
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Table 2.5: Demand Estimates

Coefficients Est SE
Mean Parameters α and β

Price (’0000 USD) -0.230 0.476
Four Wheel Drive -3.353 2.812
SUV x Four Wheel Drive 1.994∗∗∗ 0.533
Dollar per 10 miles -7.112∗ 3.956
Vehicle Size (’0000 in2) 2.727∗∗∗ 0.464
Horsepower/weight (Hp/10lb) 0.490 0.502
Electric -1.370∗∗∗ 0.297
Hybrid -0.980∗∗∗ 0.130
Trend -0.056∗∗∗ 0.010

Std. Dev. parameters σα and σβ
Price (’0000 USD) 0.458 0.458
Four Wheel Drive 2.354 1.995
Dollar per 10 miles 5.144 4.612
Car 1.814∗ 1.050
Pickup 2.450∗ 1.403
SUV 0.237 2.367
Van 4.095∗ 2.358

Fixed Effects
Vehicle Manufacturer FE Yes
Vehicle Segment FE Yes
Obs 5523

Notes: This table shows the estimates of the demand param-
eters. *** indicates 99% level of significance. ** indicates
95% level of significance. * indicates 90% level of significance.

65



Ta
bl
e
2.
6:

O
w
n
an

d
C
ro
ss

P
ri
ce

E
la
st
ic
it
ie
s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
)

H
O
N
D
A

C
IV

IC
(2
W

D
C
A
R
)

-1
.2
89

0.
02

7
0.
02

5
0.
00

1
0.
00

1
0.
00

1
0.
00

1
0.
00

0
0.
00

1
0.
00

0
(2
)

T
O
Y
O
TA

C
A
M
R
Y

(2
W

D
C
A
R
)

0.
03

1
-1
.4
97

0.
03

1
0.
00

1
0.
00

1
0.
00

1
0.
00

1
0.
00

1
0.
00

1
0.
00
1

(3
)

T
O
Y
O
TA

C
O
R
O
LL

A
(2
W

D
C
A
R
)

0.
02

4
0.
02

5
-1
.2
18

0.
00

1
0.
00

1
0.
00

1
0.
00

1
0.
00

0
0.
00

1
0.
00

0
(4
)

FO
R
D

E
SC

A
P
E

(4
W

D
SU

V
*)

0.
00

2
0.
00

2
0.
00

2
-1
.6
22

0.
01
7

0.
01

5
0.
01

6
0.
01

0
0.
01

3
0.
00

8
(5
)

H
O
N
D
A

C
R
-V

(4
W

D
SU

V
*)

0.
00

2
0.
00

2
0.
00

2
0.
01
4

-1
.5
74

0.
01

5
0.
01

5
0.
01

0
0.
01

3
0.
00

8
(6
)

N
IS
SA

N
R
O
G
U
E

(4
W

D
SU

V
*)

0.
00

2
0.
00

2
0.
00

2
0.
01
3

0.
01

5
-1
.5
02

0.
01

4
0.
00

9
0.
01

2
0.
00

7
(7
)

T
O
Y
O
TA

R
AV

4
(4
W

D
SU

V
*)

0.
00

2
0.
00

2
0.
00

2
0.
01
4

0.
01

6
0.
01

4
-1
.5
45

0.
00

9
0.
01

2
0.
00

8
(8
)

JE
E
P

G
R
A
N
D
-C

H
E
R
O
K
E
E

(4
W

D
SU

V
)

0.
00

2
0.
00

3
0.
00

2
0.
02

0
0.
02

3
0.
02

0
0.
02

1
-1
.8
85

0.
01

9
0.
01

2
(9
)

FO
R
D

E
X
P
LO

R
E
R

(4
W

D
SU

V
)

0.
00
2

0.
00

3
0.
00

2
0.
01

9
0.
02

2
0.
01

9
0.
02

0
0.
01

4
-1
.8
48

0.
01

1
(1
0)

T
O
Y
O
TA

H
IG

H
LA

N
D
E
R

(4
W

D
SU

V
)

0.
00

2
0.
00
3

0.
00

2
0.
01

9
0.
02

2
0.
02

0
0.
02

0
0.
01

4
0.
01

8
-1
.8
63

N
ot

es
:
C
ol
um

ns
(1
)-
(1
0)

re
po

rt
av
er
ag
e
cr
os
s-
pr
ic
e
el
as
ti
ci
ti
es

fo
r
th
e
to
p
3
ca
rs
,t

he
to
p
4
m
ar
gi
na

lt
ru
ck
s
SU

V
s
(i
.e
.,
SU

V
s
w
it
h
4W

D
an

d
in
-

er
ti
a
w
ei
gh

t
≤

45
00

lb
,
m
ar
ke
d
w
th

a
*)
,
an

d
th
e
to
p
3
no

n-
m
ar
gi
na

l
tr
uc
k
SU

V
s
(i
.e
.,
SU

V
s
w
it
h
4W

D
an

d
in
er
ti
a
w
ei
gh

t
>

45
00

lb
)
in

20
16
,

ca
lc
ul
at
ed

fr
om

th
e
de
m
an

d
es
ti
m
at
es

in
T
ab

le
2.
5.

E
ac
h
en
tr
y

(i
,j

),
w
he
re
i
is

th
e
ro
w

an
d
j
is

th
e
co
lu
m
n,

re
fe
rs

to
th
e
pe

rc
en
ta
ge

ch
an

ge
in

de
m
an

d
fo
r
ve
hi
cl
e-
dr
iv
et
ra
in
j
w
he
n
th
e
pr
ic
e
of

ve
hi
cl
e-
dr
iv
et
ra
in
i
ch
an

ge
s
by

1%
.

66



Table 2.7: Own-price elasticities and Marginal Cost

Variable Mean 25% Median 75% Std Dev Obs
Own-price elasticity (%) -2.03 -2.37 -1.93 -1.57 0.65 5523
Marginal cost (USD) 16,852 7,926 13,387 21,743 13,435 2180

Notes: This table summarizes the own-price elasticities and marginal costs calculated
from the demand estimates in Table 2.5 on data between 2001-2016 and the first or-
der conditions of firms’ profit maximization on data between 2011-2016.

Table 2.8: Marginal Cost Estimates

Variable Coef SE
Vehicle Size (0000 in2) -6.614∗∗ 3.281
Horsepower 0.004∗ 0.003
Curb Weight 0.001∗∗∗ 0.000
Four Wheel Drive 0.132∗∗∗ 0.046
Electric 2.429∗∗∗ 0.413
Hybrid 0.293 0.199
Time Trend 0.021∗∗ 0.010
Obs 2180

Notes: This table summarizes the marginal cost pa-
rameters. Heteroskedasticity robust standard errors
are presented in the parenthesis. *** indicates 99%
level of significance. ** indicates 95% level of signif-
icance. * indicates 90% level of significance.

is costly for manufacturers. Controlling for the other covariates, the inclusion of 4WD is
estimated to raise the marginal cost per vehicle by around $1320 in the sample.

2.5.3 Vehicle Characteristics and Fuel Economy Rating

Table 2.9 summarizes the regression results governing the relationship between vehicle fuel
and other vehicle characteristics. Features such as 4WD, curb weight, and vehicle size reduce
a vehicle’s fuel economy rating and increase the cost of driving, ceteris paribus. Column (1)
shows that controlling for the other covariates, the inclusion of 4WD is estimated to reduce
the CAFE mpg rating of a vehicle by around 1.116. This estimate allows us to capture
the effect of drivetrain on manufacturers’ CAFE liability. Moreover, column (2) shows that
controlling for the other covariates, the inclusion of 4WD increases the cost of driving by $4
per ten thousand miles. This estimate allows us to capture the indirect effect of drivetrain
on consumers’ utility through cost of driving.
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Table 2.9: Fuel Economy and Cost of Driving Parameters

CAFE MPG Rating Dollar per 10 miles

Variable Coef SE Coef SE
4WD -1.116∗∗∗ 0.128 0.004∗∗∗ 0.000
Vehicle Size (0000 in2) -6.207∗∗∗ 0.782 0.001 0.003
Horsepower -0.017∗∗∗ 0.001 0.000∗∗∗ 0.000
Curb Weight (10 lb) -0.201∗∗∗ 0.021 0.002∗∗∗ 0.000
Electric 318.536∗∗∗ 1.038 -0.111∗∗∗ 0.004
Hybrid 19.678∗∗∗ 0.326 -0.052∗∗∗ 0.001
Year FE Yes Yes
Vehicle Segment FE Yes Yes
Obs 5523 5523

Notes: This table summarizes the fuel economy parameters. Standard errors are
presented in the parenthesis. *** indicates 99% level of significance. ** indicates
95% level of significance. * indicates 90% level of significance.

2.6 Counterfactual Experiments

2.6.1 Counterfactual Design

We quantify the effect of the regulation gaming by changing some “marginal” light-duty
trucks to passenger cars, recomputing the pricing equilibrium, and calculating the change
in market outcomes such as consumer surplus, manufacturers’ profits and fuel economy
performances, and vehicles’ liquid fuel consumption. We do so for the year 2016, the last
year of our sample.

As shown in Table 2.3, the NHTSA classifies 2WD SUVs with GVWR less than 6000 lb
as cars. Based on this definition, we define “marginal” light-duty trucks as SUVs with 4WD
and inertia weight less than 4500 lb. Table 2.10 shows the number of marginal trucks and
the fraction of vehicles in the light-duty truck fleet that are classifies as marginal trucks for
each manufacturer.

Changing marginal trucks to cars by changing their drivtrain to 2WD affects the market
outcomes through six channels. First, changing 4WD to 2WD affects demand directly.
Second, this change affects consumers’ cost of driving; we compute the cost of driving for each
redesigned vehicle using estimates from Table 2.9. Third, because the redesigned vehicles
classify as cars, they may also be subject to the gas guzzler tax; we compute the tax for
each redesigned vehicle using the gas guzzler schedule in Figure 2.2. Fourth, changing the
drivetrain affects the marginal cost; we compute the new marginal costs for the redesigned
vehicles based on the estimates of marginal cost parameters. Fifth, the change in vehicle’s
fuel economy affects its CAFE mpg rating; we compute the new CAFE fuel economy rating
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from Table 2.9. Lastly, having 2WD changes the compliance fleet from truck to car.
In our counterfactual simulation where we change the drivetrain of the marginal trucks

from 4WD to 2WD, we allow for all six channels and recompute the new price equilibrium.
The comparison of the outcomes in the data and those in this counterfactual scenario informs
us about the effects of the firms’ gaming behavior. In addition to prices and quantities, we
also report changes in consumer surplus, manufacturer profits, and fuel consumption. We
compute the total gasoline consumption as

∑
jd

1
mpgjd

×Qjd×VMTj wherempgjd is calculated
by dividing fuel price by dpmjd from Table 2.9. Qjdt is the total sales of vehicle j drivetrain
d and VMTj is the miles travelled during its lifetime. We assume that vehicles travel 12,000
miles per year and have a life of 15 years.15

Table 2.10: Marginal Trucks for Each Manufacturer

Manufacturer Marginal Trucks

Total Fraction
BMW 2 0.3
DAIMLER 2 0.3
FIAT CHRYSLER 7 0.3
FORD 3 0.2
GENERAL MOTORS 3 0.1
HONDA 4 0.4
HYUNDAI 1 0.5
JAGUAR LAND ROVER 2 0.4
KIA 2 0.5
MAZDA 2 0.7
MITSUBISHI 2 0.7
NISSAN 4 0.1
SUBARU 3 1.0
TESLA 0 0.0
TOYOTA 4 0.2
VOLKSWAGEN 3 0.6
VOLVO 2 0.4

Notes: This table shows the number of marginal
trucks and the fraction of vehicles in the light-duty
truck fleet that are classify as marginal trucks for
each manufacturer.

15Fuel economy regulations can create a “rebound effect” (Greene et al., 1999), where consumers increase
driving as a result of lower fuel costs caused by tighter standards. Here, we ignore such effects.
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2.6.2 Results

Table 2.11 shows the prices and sales for the top 3 cars, the top 4 marginal trucks SUVs (i.e.,
SUVs with 4WD and inertia weight ≤ 4500 lb, marked with a *), and the top 3 non-marginal
truck SUVs (i.e., SUVs with 4WD and inertia weight > 4500 lb) in the data and the coun-
terfactual. Comparing the prices and quantities in the data (Column (1)) to those in the
counterfactual simulation (Column (2)), we can see that the prices of popular cars remain
almost unchanged in the counterfactual, and the corresponding sales increase. In contrast,
the prices of redesigned light-weight SUVs increase while the sales decrease. These changes
result from a combination of several changes. On the demand side, removing 4WD from
the light-weight SUVs has a negative effect on consumer utility, ceteris paribus. However,
removing 4WD also reduces the cost of driving, which has an indirect positive effect on the
mean utility, ceteris paribus. On the supply side, removing 4WD reduces a vehicle’s marginal
cost. As for the CAFE standards, the redesigned SUVs have higher CAFE ratings and are
now counted as passenger cars with a less-favorable treatment in the CAFE standards. To
decompose the overall effects into those due to the traditional demand and supply consider-
ations, due to the change in CAFE ratings in the CAFE standards, and due to the change of
fleet in the CAFE standards, we conduct two additional counterfactual simulations, where
firms completely ignore CAFE credits in their profit function in one counterfactual simula-
tion (Column (3)) and firms ignore the fleet change but take into account the CAFE rating
changes (as well as the demand and supply changes) in the other (Column (4)). Based on
the comparison between the data and Column (3), we can see that under the traditional
demand-supply considerations, the prices and sales of the redesigned light-weight SUVs de-
crease. This is because demand for these products shifts to the left, and their marginal costs
decrease. Comparison between Columns (3) and (4) shows the effect of firms’ considera-
tion of changes in CAFE ratings. Because the redesigned SUVs earn higher CAFE ratings,
firms should have incentives to sell more of them to meet CAFE standards. Indeed, we find
lower prices for redesigned SUVs in Column (4) than in Column (3). Similarly, comparing
Columns (4) and (2) gives the effect of firms’ consideration of the fleet change. Because
these redesigned SUVs are now counted as passenger cars with a less-favorable treatment
in the CAFE standard, firms have an incentive to raise their prices and sell fewer of them.
We indeed find that the prices of redesigned SUVs in Column (2) are higher than those in
Column (4). As for the heavy-weight 4WD SUVs in the last three rows of Table 2.11, we
find that their prices and sales increase as consumers substitute to these vehicles.

Table 2.12 shows each manufacturer’s CAFE performance for the passenger car and light-
duty truck fleets based in the data and equilibrium in the counterfactual scenario. Note that
manufacturers’ compliance based on the sales in the data closely follows the NHTSA’s records
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Table 2.11: Counterfactual Vehicle Prices and Sales in 2016

Original Vehicle-Drivetrain Outcome (1) (2) (3) (4)
Data Counterfactual Decomposition

Ignore Rating & Ignore Fleet
Fleet Changes Changes

HONDA CIVIC (2WD CAR) Price (USD) 18,408 18,423 18,404 18,404
Sales 367,042 367,614 368,037 368,019

TOYOTA CAMRY (2WD CAR) Price (USD) 22,282 22,275 22,284 22,284
Sales 380,610 381,855 381,555 381,526

TOYOTA COROLLA (2WD CAR) Price (USD) 17,093 17,098 17,089 17,089
Sales 355,877 356,677 356,846 356,841

FORD ESCAPE (4WD SUV*) Price (USD) 26,615 23,391 23,152 23,106
Sales 202,138 104,208 105,909 106,238

HONDA CR-V (4WD SUV*) Price (USD) 25,622 22,586 22,336 22,274
Sales 237,682 122,342 124,440 124,969

NISSAN ROGUE (4WD SUV*) Price (USD) 23,901 20,520 20,469 20,433
Sales 214,639 114,644 115,025 115,310

TOYOTA RAV4 (4WD SUV*) Price (USD) 24,818 21,644 21,449 21,390
Sales 215,043 112,015 113,527 113,991

JEEP GRAND-CHEROKEE (4WD SUV) Price (USD) 32,875 33,919 33,934 33,938
Sales 129,665 165,049 164,889 164,846

FORD EXPLORER (4WD SUV) Price (USD) 32,042 33,563 33,569 33,569
Sales 170,612 210,233 210,135 210,122

TOYOTA HIGHLANDER (4WD SUV) Price (USD) 32,317 33,735 33,734 33,734
Sales 108,116 133,756 133,744 133,739

Notes: This table shows the equilibrium prices and sales for a sample of vehicles in the data as well as in the counterfactual scenario.

in Table 2.2. The differences in calculations arise from the different approximations made
in the model.16 The performance of the passenger car fleet reduces for most manufacturers
because SUVs, which are now a part of the passenger car fleet, are generally less fuel-
efficient than other passenger cars (i.e., sedans and wagons). Moreover, passenger car sales
rise because SUVs now count as passenger cars. Again because the light-weight SUVs are
a part of the passenger car fleet, the performance of light-duty truck fleet also reduces for
most manufacturers because the remaining vehicles (i.e., pickups, vans, and heavy-weight
trucks) in the light-duty truck fleet tend to be less fuel-efficient than light-weight SUVs.

Finally, Table 2.13 shows the aggregate outcomes and welfare measures. The total pas-
senger car sales rise by 1559 thousand, the light-duty truck (and the overall) sales fall by
2574 thousand, and the overall sales fall by 1016 thousand compared to the data. The
aggregate manufacturer profits falls by 16,283 million dollars, aggregate consumer surplus
falls by 21,519 million dollars, and gas consumption falls by 7,057 million gallons during the
lifetime of newly sold vehicles. In other words, firms’ gaming behavior due to the differential
treatment of cars and trucks in the CAFE standards leads to an increase in both consumer
and producer surpluses, however, at an environmental costs.

16See Footnote 13
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Table 2.12: Manufacturer Fuel Economy Performance for Passenger Cars and Light-Duty
Trucks

Manufacturer Outcome Passenger Cars Light Trucks

Data Counterfactual Data Counterfactual

BMW
Performance 35 34.7 27.1 25.1
Standard 36.4 36.4 29.9 29.3
Sales 284,225 311,175 79,865 58,642

DAIMLER
Performance 31.9 32.1 26.1 23.3
Standard 35.7 35.7 29.5 28.8
Sales 199,148 224,482 125,343 106,962

FIAT CHRYSLER
Performance 30.1 29.5 26.5 26
Standard 35.6 36.3 28.8 27.1
Sales 577,918 917,807 1,672,089 1,094,621

FORD
Performance 35.8 35 25.8 24.9
Standard 36.4 36.3 26.9 26.1
Sales 904,009 1,070,231 1,664,072 1,430,976

GENERAL MOTORS
Performance 29.4 29.8 24 23
Standard 36.1 36.3 26.9 26.3
Sales 290,745 332,768 631,069 597,942

HONDA
Performance 40 38.9 31.6 29.2
Standard 37.3 37.2 30.5 28.4
Sales 1,021,807 1,236,127 590,564 191,073

HYUNDAI
Performance 36.3 36.3 27.1 28.3
Standard 36.7 36.7 30.9 30.9
Sales 699,408 713,451 59,638 16,535

JAGUAR LAND ROVER
Performance 30.7 30.9 24.9 22.6
Standard 33.7 35.2 29.9 29.1
Sales 6,645 19,173 71,067 62,525

KIA
Performance 35.2 35 27.8 27.1
Standard 37 37 30.1 28.3
Sales 485,118 512,904 154,446 64,359

MAZDA
Performance 41.7 40.6 34.3 32.5
Standard 37.3 37.2 31.5 29.3
Sales 214,355 257,945 86,510 5,867

MITSUBISHI
Performance 41.8 39.3 34 36.5
Standard 39.7 39.3 32.8 32.8
Sales 47,933 68,833 48,778 8,640

NISSAN
Performance 37.7 37.4 25.6 23.9
Standard 36.9 36.9 27.3 26.4
Sales 1,890,203 2,090,546 1,667,450 1,380,209

SUBARU
Performance 35.4 35.7 34.9 0
Standard 38 38 32.5 0
Sales 160,128 399,552 429,786 0

TESLA
Performance 314.2 314.5 0 0
Standard 32.2 32.2 0 0
Sales 18,263 18,697 0 0

TOYOTA
Performance 39.8 39.2 26.7 25
Standard 37.3 37.3 29.3 28.5
Sales 1,397,399 1,522,127 1,042,356 822,594

VOLKSWAGEN
Performance 36.3 35.4 28 27.2
Standard 38 37.8 30.5 28.9
Sales 379,598 430,591 130,485 50,336

VOLVO
Performance 37.3 34.9 30.2 31.5
Standard 35.9 35.8 29.7 29
Sales 27,403 36,491 52,112 40,176

Notes: This table shows manufacturers’ fuel economy performances for passenger cars and light-duty trucks in
2016 in the data as well as in the counterfactual scenario.
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Table 2.13: Counterfactual Aggregate Outcomes

∆ Sales (000s) -1,016
∆ Car Sales (000s) 1,559
∆ Truck Sales (000s) -2,574
∆ Gas Consumption (Million Gallons) -7,057
∆ Consumer Surplus (Million USD) -21,519
∆ Total Profits (Million USD) -16,283

Notes: This table shows the change in aggregate mar-
ket outcomes in 2016 under the counterfactual scenario
compared to the data.

2.7 Conclusion

This paper examines the gaming opportunity that arises due to separate fuel economy regu-
lations for passenger cars and light-duty trucks in the US Corporate Average Fuel Economy
CAFE standards. The favorable treatment of light trucks creates a perverse incentive for
manufacturers to redesign large cars as trucks to achieve compliance. Thus, part of manu-
facturers’ compliance strategy could be to tweak the characteristics of existing vehicles so
that they qualify as light-duty trucks instead of passenger cars. This strategy requires little
effort on the part of manufacturers, and potentially worsens the vehicle’s fuel economy.

We first exploit the 2011 changes in the car-truck definitions to provide suggestive evi-
dence that firms change product characteristics to classify their vehicles as light-duty trucks
instead of passenger cars under the CAFE regulations. Next, we develop and estimate a
structural model of the US automobile industry to quantify the welfare and environmental
effects of regulation gaming. We find that designing SUVs as light-duty trucks instead of
passenger cars results in higher manufacturer profits, higher consumer surplus, and higher
fuel consumption. In this study, we quantify the equilibrium effects of changing “marginal”
trucks back to cars, while holding other vehicles in the market fixed. We plan to quantify
how the separate fuel economy regulations affect firms’ product choice as well prices in future
work.
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Chapter 3

Alcohol Regulations and Road Traffic Accidents in India

Nafisa Lohawala

3.1 Introduction

The motor vehicle population in India is growing faster than economic and population
growth. The surge in motorization and road network development has brought the chal-
lenge of addressing road accidents. Between 1970-2019, the reported road traffic accidents
increased from 114 thousand to 449 thousand, road injuries increased from 70 to 451 thou-
sand, and fatalities increased from 15 to 151 thousand (TRW, 2019). India ranks first in the
number of road accident deaths across the 199 countries reported in the World Road Statis-
tics (2018), accounting for almost 11% of the global accident-related deaths. Traffic-related
injuries significantly burden the health sector in pre-hospital and acute care and rehabilita-
tion. UNESCAP (2020) estimates India’s economic cost from road crashes at approximately
$58 billion. Another study by the Fumagalli et al. (2017) suggests that India could improve
its GDP by 16.3% by reducing road accident deaths over the next 24 years.

In the past decade, a primary goal of public policy has been to reduce road traffic accidents
and fatalities (TRW, 2019). Can alcohol regulations help? Driving under the influence of
alcohol is a leading cause of road traffic accidents worldwide (McLean et al., 1987; Fabbri
et al., 2002; Martin et al., 2017). In India, an average of nearly 12,000 drunk driving accidents
are recorded every year (TRW, 2019) – and this may be a gross underestimate because police
often lack the manpower and technology to measure drivers’ alcohol levels (Banerjee et al.,
2019). In addition, alcohol consumption in India has surged drastically over the past years.
Per-capita alcohol consumption increased from 2.4 liters of alcohol in 2005 to 4.3 liters in
2010 and further to 5.7 liters in 2016 (WHO, 2019). If drunk driving is an important cause of
road traffic accidents, then reducing alcohol availability may reduce the accidents. However,
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the effect of alcohol restrictions is not obvious because the target population can substitute
to the black market and low-quality products in the presence of weak law enforcement.
Moreover, because alcohol laws are nonuniform across states, people in the neighborhood of
states with more liberal alcohol policies can cross the border to buy and consume alcohol.
In that case, restricting alcohol could increase road-traffic accidents by raising the travel
distance required to obtain alcohol.

Despite these concerns, alcohol regulation as a strategy for reducing road traffic accidents
is worth examining because alcohol use is widely associated with road traffic accidents, and
there is wide latitude for changing such regulations. Additionally, these regulations come
with a nontrivial tradeoff because they affect state governments’ tax revenue and the tourism
industry. India provides an interesting context because of two reasons. First, drinking age
regulations are legislated at the state level, and there is no consensus among states about
the appropriate drinking age. Moreover, alcohol regulations are constantly evolving. For
example, in 2021 alone, Delhi and Haryana lowered the legal drinking age, and the Bihar
government is contemplating a relaxation of the ban it imposed in 2016 (Kumar, 2022). As a
result, state government regulations provide a large-scale policy experiment with substantial
variation across states and time. Second, although alcohol regulation is a subject of intense
scrutiny in India, there is little documentation of the effect of these regulations on road
traffic accidents.

This paper adds to the discussion by documenting the effects of two regulations on road
traffic accidents: (1) regulation of demographic access to alcohol through state-wide alcohol
ban and minimum legal drinking age and (2) regulation of location where alcohol is sold
through sales ban near highways. I combine the data on state-level alcohol regulations
with road traffic accidents, injuries, and fatalities in 27 states between 2004-2019 and take
advantage of two sources of variation: (1) differences in the timing of prohibition and age-
based alcohol regulation across states and (2) a nationwide alcohol sales ban near highways
that affected certain roads in non-prohibition states. The analysis rests on a fixed-effects
model using state-road type-level panel data from India stretching over almost fifteen years.
In some specifications, I also allow for spillovers of neighboring states’ drinking age policies
on a state’s road safety. Finally, because fixed effects regressions may be biased in settings
combining multiple treatment timings and treatment effect heterogeneity (De Chaisemartin
and D’Haultfoeuille, ming), I conduct additional robustness analysis to avoid comparing
treatment units to inappropriate controls.

Overall, the results suggest that both regulations affect road safety. The most conserva-
tive estimates show that a state that moves from alcohol prohibition to legal drinking age of
16 experiences roughly ten additional accidents per 10,000 vehicles, on average, compared to
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other states. Moreover, the roads affected by the highway alcohol ban experience six fewer
accidents per 10,000 vehicles compared to other roads. The highway ban possibly works
by reducing distractions on the roads, suggesting that it can be an effective policy tool to
prevent road traffic accidents. Given that a highway ban is much less disruptive than other
regulations like total prohibition, the policy can also be promising in other countries. Finally,
there is evidence of spillovers of neighboring states’ drinking age policies on a state’s road
safety, suggesting potential gains from equalizing the legal drinking age across states.

This paper adds to the literature in two ways. First, it contributes to the literature
examining the effect of alcohol regulations on road safety and public health. Some papers
on road safety include Chaloupka et al. 1993; Miron and Tetelbaum 2009; Lovenheim and
Slemrod 2010; Lovenheim and Steefel 2011; Marcus and Siedler 2015. Papers on other
outcomes include Carpenter and Dobkin (2011) on public health, Luca et al. (2015) on
violence against women, and Carpenter and Dobkin (2010); Chaudhuri et al. (2018) on
crimes. Most papers in the literature study regulations in developed countries. This paper
focuses on a developing country instead, where weaker institutions warrant the need for
a closer examination. Second, the paper adds to the literature on road safety in India,
examples of which include Kanchan et al. (2012), Farooqui et al. (2013), Singh (2017), Luca
et al. (2019), and Banerjee et al. (2019). Most work on road safety in India is descriptive, and
not much written on combating drunk driving. This paper is closely related to Luca et al.
(2019), who provide suggestive evidence that stricter alcohol control is associated with lower
rates of motorbike accidents, and Banerjee et al. (2019), who study the efficient deployment
of police resources to combat drunk driving.

The rest of the paper is organized as follows. Section 3.2 gives a background on the
cultural context and alcohol policies adopted in India. Section 3.3 describes the data. Section
3.4 describes the empirical strategy, identification and results. Section 3.5 concludes.

3.2 Background

Alcohol consumption leads to a loss of driving ability due to several reasons. Physiological
effects include impairments in coordination, concentration, reflexes, reaction time, depth
perception, and peripheral vision. Excessive doses of alcohol may also lead to sedation.
Psychological effects include an increase in aggression. In addition to the above, the use of
safety devices is known to be negatively associated with alcohol use (Kweon and Kockelman,
2003).

Alcohol regulation policies are typically justified on externality grounds: alcohol con-
sumption can compromise others directly (e.g., in the case of crime or traffic accidents) or
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indirectly (e.g., through higher costs for the health care system). In general, regulation can
take several forms: (i) regulating demographic access (e.g., minimum legal drinking age), (ii)
regulating the location of alcohol sale, (iii) regulating temporal access (e.g., hours and days
of sale); and (iv) regulating economic access (e.g., alcohol taxes). India implemented some
versions of each in the past years, at state or national levels. This section summarizes the
implemented regulations.

3.2.1 State-wide Alcohol Ban and Legal Drinking Age Policies

The Indian constitution grants each state legislature the power to draft rules governing the
sale and consumption of alcohol in the state. As a result, every state has different laws,
including minimum legal drinking age and excise policy. Some states impose a blanket
prohibition, while others fix a minimum legal drinking age (MLDA) ranging between 18 to
25. Figure 3.1 shows the distribution of the legal drinking age across states in 2019. While
Bihar, Gujarat, Manipur, Mizoram, and Nagaland banned alcohol, Goa, Himachal Pradesh,
Karnataka, and Sikkim, imposed a legal drinking age of 18, Kerala imposed 23, and Haryana,
Maharashtra, Meghalaya, and Punjab imposed 25.1 The remaining states imposed a drinking
age of 21 years.

Motivations for alcohol prohibition and legal drinking age typically include curbing do-
mestic violence and road accidents, cultural attitudes, and health issues linked with excessive
drinking. While blanket prohibition restricts all age groups, the minimum legal drinking age
limits underage drinking, which is typically linked with long-lasting adverse consequences on
adolescents, such as crimes (Carpenter and Dobkin, 2010), teenage pregnancy (Carpenter,
2005), alcohol dependence (Guttmannova et al., 2011), neural abnormalities (Squeglia et al.,
2014), academic performance (Lindo et al., 2013) and risky driving (Zakrajsek and Shope,
2006). From the perspective of road safety, restricting underage drinking can be helpful be-
cause adolescents are more likely to binge drink, i.e., consume a large amount of alcohol in a
short time, making them more dangerous drivers. In India, 22% percent of the road-accident
deaths in 2019 involved drivers in the age-group 18-25 (TRW, 2019).

However, the effect of these policies on road safety is ambiguous. From a restricted
individual’s perspective, alcohol ban and legal drinking age increase the search costs of ob-
taining alcohol, including time, transportation cost, and the risk associated with obtaining
alcohol. Therefore, the effectiveness of alcohol regulation depends on the increase in search
costs associated with the regulation. A regulation will work if it increases the search cost
significantly among the target age group; else not. For instance, it may be ineffective if

1Manipur imposed a prohibition in almost half of its districts. Maharashtra imposed a prohibition in 3
out of 36 districts.
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the target population can easily substitute to the black market, lower quality alternatives,
or other liberal states. Substitution to black markets is possible in the presence of weak
law enforcement because state borders are porous, and alcohol can be smuggled. For in-
stance, alcohol prohibition has proven ineffective in Manipur because of alcohol smuggling
and thriving black markets (Kamei, 2014). Substitution to low-quality alternatives such as
indigenous alcohol is similarly possible. For instance, the dry state of Gujarat has witnessed
several occasions of alcohol poisoning. Finally, substitution to other states with liberal alco-
hol laws is possible for people residing in proximity to other states with liberal alcohol laws
as they may start driving to those states to consume alcohol. This substitution can make
alcohol-related accidents more likely.

More generally, alcohol ban and legal drinking age policies present a nontrivial tradeoff
for the states as they prevent states from collecting tax revenue on alcohol sales. The
revenue losses can be significant. For example, just before the ban, in 2014-15, Bihar made
over Rs 3,100 crore from excise duty on alcohol sales, according to the Economic Survey
of 2016. Moreover, black marketing in the absence of proper enforcement leads to further
social issues as well—for instance, the media has reported a rising involvement of Bihar’s
unemployed youth in bootlegging and school children in alcohol smuggling (Parth, 2017).
Several states that implemented a ban later revoked it, claiming that smuggling rendered
the ban ineffective; examples include Andhra Pradesh, Haryana, and Manipur.

Despite nontrivial law evasion, legal drinking age policies have been shown to significantly
affect the likelihood of alcohol consumption. Luca et al. (2019) find that men of the legal
drinking age are almost 30% more likely to drink alcohol. In addition, alcohol prohibition
has been shown to reduce violence against women (Luca et al., 2015). So it is possible that
such regulations may reduce road traffic accidents as well.

3.2.2 Alcohol Ban near Highways

Highways comprise about 5% of the total road network but witness 52% of the accidents
(TRW, 2019). Prompted by the high number of deaths caused due to drunken driving, the
Supreme court banned the sale of alcohol within 500 meters of national and state highways,
effective April 1, 2017. The ban did not hold for highways within city limits. The court also
banned all signages indicating the presence of alcohol vends on national and state highways,
arguing that they distracted the drivers.2

Like other policies related to alcohol, the effect of highway bans is ambiguous. On the
2The orders have been gradually relaxed for some states based on the appeals by the respective state

governments (Ananthakrishnan, 2018). For example, the distance in Himachal Pradesh, Meghalaya, and
Sikkim was reduced to 220 meters instead of 500 meters due to their unique geography.
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Figure 3.1: Legal Drinking Age Policies across States in 2019

Notes: The figure shows the state-wise minimum legal drinking age in 2019. Darker shades
indicate higher values. P indicates the states that prohibited alcohol in 2019.
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one hand, the ban (if enforced properly) may work if the visual cues from the alcohol shops
and signage distract drivers and induce impulsive drunk driving. On the other hand, it may
have little impact on highway road safety since people can easily evade the ban by buying
alcohol before starting their journey. Moreover, limiting alcohol availability near highways
will induce people to substitute to buying and consuming alcohol within city limits. Even
if accidents decrease on highways, accidents on other roads may increase. However, since
city roads have lower speed limits, fatalities may be lower. Finally, black markets and weak
law enforcement may render the regulation ineffective. Even if licensed shops shut down,
branded alcohol may still be available on highways through informal channels without proper
law enforcement.

Like other regulations, highway bans have received public scrutiny. Food and beverage
businesses that made investments across the highways opposed the ban because it affected
their livelihoods. The ban was also unwelcome by several state governments because they
lost excise revenue. For example, the ban majorly impacted Mahe (Puducherry), which
closed 64 alcohol shops that contributed Rs 67 crore in 2015 (Harigovind, 2016).

3.2.3 Other Regulations

Apart from the two policies mentioned above, states also put alcohol excise taxes, which raise
the consumer-facing price of alcohol, reduce alcohol consumption by the law of demand, and
reduce drunk driving. Some states also regulate the hours and days of sales. Due to data
limitations, I exclude these regulations from this analysis. I discuss the implications of
excluding alcohol taxes in Section 3.4.

Numerous national-level policies have also been implemented over the years. For instance,
Cable Television Network Regulation (Amendment) Bill (2000) banned the advertising of
alcoholic beverages across India. Alcohol companies still advertise using surrogate means
like selling the brand name for soda or water or music. Similarly, section 185 in the Motor
Vehicles Act, 1988 makes driving under the influence a criminal offense in India. In 2019, an
amendment to the Motor Vehicle Act (among other reforms) raised the fine for drunk driving
from INR 2,000 to INR 10,000 and imprisonment from six months to four years. Penalties
are assessed based on the blood alcohol content at the time of the offense. I exclude these
policies since the changes affected the entire nation simultaneously.
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3.3 Data

The data on road traffic accidents comes from the “Road Accidents in India” publications
by the Transport Research Wing (TRW) of the Ministry of Road Transport and Highways,
which include road accidents broken by road type in all states between 2004-2019. I match
the accident data with the legal drinking age policies from state-specific excise records. I
also match the total registered motor vehicles for each state from the TRW Road Transport
Yearbook.3 I obtain state-level lengths of different types of roads and state-level GDP for the
years 2004-2019 from the Reserve Bank of India’s handbook of statistics on Indian states.
Finally, I obtain the age-wise district-level population from the 2001 census of India and the
state-level population from the 2001 and 2011 censuses.

Four states changed the demographic regulation of alcohol during the sample period.
Bihar banned alcohol in 2016. Mizoram repealed its 17-year-old alcohol ban in 2014 and
banned alcohol again in 2019. Kerala banned alcohol in 2014 but lifted it in 2017, raising
the minimum legal drinking age from 18 to 23 in 2017. Finally, Maharashtra lowered its
MLDA (for hard liquor) to 21 from 25 for one year (2005). The highway ban only affected
the states that legalized alcohol when the ban was implemented but did not affect the states
that already banned alcohol.

I make three simplifications in the analysis. First, I exclude Manipur in the absence of
reliable data on the legal drinking age. Manipur imposed a blanket prohibition before 2002
but lifted it in half of its districts through Manipur Liquor Prohibition (amendment) bill
(2002). However, I was unable to find reliable data on the legal drinking age in the districts
that legalize alcohol. Moreover, for 2014-2019, I aggregate the accidents in Telangana state
with Andhra Pradesh, as the two states split in 2014 but retained the same drinking age
policies. Finally, I assume the legal drinking age in Karnataka to be 18. In practice, there was
a lack of clarity within the state regarding the minimum drinking purchase age. The legal
drinking age is 21 as per Karnataka Excise Department (1967) and 18 as per the Karnataka
Excise Act (1965). Some bars serve those above 18, while others refuse service to anyone
below 21 (Yadav, 2016; The Hindu, 2016).

3When vehicle registrations are unavailable, I linear-interpolate them from the adjacent years.
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3.4 Empirical Model and Results

3.4.1 Empirical Model

I begin by estimating the following specification using accident data broken by road classi-
fication and incorporating different alcohol policies as regressors.

RTArst = β0 + β1Drinkst + β3HwyBanrst + β4Xrst + δr + δs + δt + δst + εrst (3.1)

where RTAst denotes accident rate defined as

RTArst =
Accidents of road type r in state s in year t

vehicle registration in state s in year t
× 1000. (3.2)

Because accidents increase with total vehicles on road, accident rate is a better indicator to
assess road safety when compared to accidents. This model specification captures alcohol
regulations through a combination of variables. First, Drinkst captures the effect of alcohol
age restrictions and equals the fraction of drivers in the age group 18-45 that are legally
eligible to drink:

Drinkst =
Population in state s with age ∈ [MLDA, 45]

Population in state s with age ∈ [16, 45]
. (3.3)

I approximate Drinkst using age-wise 2001 census population. This variable takes a value
of zero for states with a drinking age of 45 and above, including the prohibition states. It
would take a value of one if a state (hypothetically) imposed a drinking age of 16. Thus,
a change in Drinkst from 0 to 1 is equivalent to moving from alcohol prohibition to a legal
drinking age of 16. This variable varies across states due to differences in legal drinking age
and demographic composition. However, because the population is only approximated using
the 2001 census, the variation within a state across time is entirely driven by changes in
the drinking age of alcohol. I use the age group 16-45 because 16 is the legal driving age in
India, and drivers below 45 years are the most susceptible to accidents. In 2019, 81% of the
drivers killed in road accidents were younger than 45 years (TRW, 2019), even though the
age group 16-45 comprised only 46% of the total population in the 2011 census. For a state s,
Drinkst increases when the state reduces its legal drinking age. The coefficient β1 indicates
the effect of a state’s demographic regulations and can be interpreted as the change in the
state’s accident rate associated with moving from alcohol prohibition to a legal drinking age
of 16, conditional on other covariates.

The presence of liberal alcohol regulations just across the state border can compromise
the impact of the state’s policies for two reasons. First, residents living close to states
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with liberal alcohol policies can drive to these states to consume alcohol. Such effects have
been found in developed countries (Lovenheim and Slemrod, 2010). Second, because state
borders are porous, variations in alcohol policies can create grey markets where smuggled
alcohol is readily available to the population. To capture this effect, replace Drinkst in some
specifications with the fraction of the state population within the age group 16-45 that can
legally obtain alcohol in their own or nearby district. Specifically, let S denote the set of
districts in a state s, and Nd denote the set of districts bordering a district d. Then,

DrinkNst =

∑
d∈S (Population in district d with age ∈ [min{MLDAd′}d′∈d∪Nd , 45])

Population in state s with age ∈ [16,45]
.

(3.4)
Like Drinkst, this variable also varies across states and time. However, the variation comes
from two sources: DrinkNst increases when the state s reduces its legal drinking age or
when a state bordering s reduces its legal drinking age. For example, when Kerala banned
alcohol in 2014, DrinkNst reduced in Tamil Nadu because it shares a border with Kerala
and had a higher drinking age than Kerala in 2014. The coefficient β2 indicates the effect
of the own and neighboring state’s demographic regulations and can be interpreted as the
change in the accident rate associated with the change in the own or neighboring district’s
legal drinking age from 45 to 16, conditional on other covariates.

Finally, HwyBanrst takes value one for highways in non-ban states after 2016 and zero
otherwise. The effect of the highway alcohol ban depends on the alcohol prohibition laws
and the road type. For instance, the ban did not affect Gujarat because it already prohibited
alcohol throughout the state. Among the states that legalize alcohol, only the roads that
classify as highways are affected. The coefficient β3 indicates the effect of the highway ban
and can be interpreted as the change in the accident rate from being affected by the highway
ban, conditional on other covariates.

In addition to alcohol policies, I include state-level characteristics Xrst, i.e., the state’s
GDP per capita, vehicle density, road density, and population density, to control for time-
variant differences across states that may affect road traffic accidents. GDP per capita is state
GDP by population projected from the 2001 and 2011 censuses. Vehicle density is proxied
by the total vehicles registered in the state divided by the length of roads in the state. Road
density is road length divided by the area of the state (in sq km), and population density
is the projected state population divided by the area of the state (in sq km). In addition,
I include a road-type indicator δr that takes value one for a highway to control for time-
invariant differences across road types, such as differences in speed limits. I also include state
fixed-effects δs to capture the time-invariant differences across states, such as local attitudes
towards alcohol and drunk driving. For instance, the Muslim-majority state of Jammu &
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Kashmir is likely to have low alcohol consumption, irrespective of the regulation permitting
alcohol. State fixed effects ensure that identification is obtained from the policy variation
within the states. Finally, I include time fixed-effects δt to control for time-varying changes
that affect all states and road types. For instance, δt captures the effect of the Cable TV
advertisement ban and the Motor Vehicle Amendment Act (2019).

These regressions use the total road traffic accidents, including accidents from causes
other than drunk driving.4 The identification assumption is that the change in road traffic
accidents following a change in demographic access or highway ban is solely due to the change
in drunk driving. The effect of the drinking age is identified by comparing the rate of road
traffic accidents in a state before and after the change in the legal drinking age relative to
other states. The effect of the highway ban is identified by comparing road traffic accidents
on the affected and the unaffected roads after controlling for the state, year, and road-type
fixed effects.

3.4.2 Summary Statistics

Table 3.1 reports the summary statistics of all the variables used in the analysis, broken by
road type. There are 864 observations comprising 27 states, 16 years, and two road types.
The table also summarizes the variables broken by road type for variables that vary by road
type. Panel (a) shows the road-safety outcomes. An average state witnessed 22 accidents,
18 road injuries, and 5 deaths per 10,000 vehicles. Moreover, on average, accident, injury,
and death rates are higher on highways than on other roads. The average fraction of the
drinking age population (Drink) in the age group 16-45 in the sample is 0.7 because most
states have a legal drinking age of 21. In contrast, the fraction of the drinking age population
accounting for neighboring states’ policies (DrinkN) is 0.8. The HwyBan indicator takes
a value of one for 10% of observations. On highways, it takes a value of one for 20% of
observations. On other roads, it is always zero. An average state in the sample has GDP
per capita of INR 52 thousand. Moreover, the average vehicle density is 38 vehicles per km
of road length, and the average population density is 378 per sq km. Finally, the average
road density is 0.8 km per sq km; it is lower for highways than other roads.

Figure 3.2 shows the trend in Drink for the states that changed their legal drinking age
or prohibition policy. The dashed lines mark the year of change. Panel (a) shows Bihar,
which banned alcohol in 2016. Correspondingly, the fraction of the drinking age population

4Although TRW recorded the accidents reported due to driving under the influence of alcohol between
2008-2019, these data are very likely to be underreported for two reasons. (1) Police often lack the manpower
and technology to measure blood alcohol levels, and most crashes are not forensically investigated. (2), The
role of alcohol is difficult to measure in hit-and-run cases where the offender is missing. In 2019, such cases
comprised 15.5% of the total accidents. Because of these reasons, I rely on the total accidents for the analysis.
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Figure 3.2: Trends in the Fraction of Drinking-Age Population

Notes: The figure shows fraction of drinking age population in the age-group 16-45 in the
states that changed their legal drinking age or prohibition policy. The dashed lines mark the
year of policy change.

reduced from 0.76 to 0. Panel (b) shows Kerala, which banned alcohol in 2014 but lifted it in
2017 and raised the minimum legal drinking age from 18 to 23. Panel (c) shows Maharashtra,
which lowered MLDA (for hard liquor) to 21 from 25 for one year (2005). Finally, Panel
(d) shows Mizoram, which repealed its alcohol ban in 2014 and a legal drinking age of 18.
Mizoram banned alcohol again in 2019.

Figure 3.3 shows the histograms of Drink, DrinkN , and HwyBan in the sample. The
distribution of DrinkN is shifted to the right as compared to the distribution of Drink
because it accounts for the population living close to states with liberal alcohol policies.
Unlike Drink which takes a value of zero for prohibition states, DrinkN is always positive
because all prohibition states have some liberal neighbors where residents can legally access
alcohol.

3.4.3 Baseline Analysis

Table 3.2 reports the results from equation 3.1. In each column, the standard errors are
clustered at the state level. Column (1) presents the relationship between alcohol policies
and road traffic accidents conditional on road type. Column (2) includes additional controls,
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Table 3.1: Summary Statistics

mean sd min max obs
Panel (a): Outcome Variables

Accidents per 1000 vehicles 1.8 1.5 0.0 12.8 864
Highways 2.2 1.6 0.1 12.8 432
Other roads 1.4 1.3 0.0 8.9 432

Persons injured per 1000 vehicles 2.1 2.1 0.0 16.9 864
Highways 2.6 2.3 0.1 16.9 432
Other roads 1.7 1.8 0.0 12.8 432

Persons killed per 1000 vehicles 0.5 0.4 0.0 2.8 864
Highways 0.7 0.4 0.0 2.8 432
Other roads 0.4 0.2 0.0 2.0 432

Panel (b): Alcohol regulations

Drink 0.7 0.3 0.0 0.9 864
DrinkN 0.8 0.1 0.4 0.9 864
Highway Ban 0.1 0.3 0.0 1.0 864

Highways 0.2 0.4 0.0 1.0 432
Other roads 0.0 0.0 0.0 0.0 432

Panel (c): Other covariates

GDP per capita (INR) 52411.2 31735.9 8566.3 220730.6 864
Vehicles density (per km road) 37.7 33.5 2.3 178.1 864
Population density (per sq km) 378.2 280.7 13.6 1139.4 864
Road length (km) per sq km 0.8 1.1 0.0 6.5 864

Highways 0.1 0.0 0.0 0.2 432
Other roads 1.5 1.2 0.1 6.5 432

Notes: This table summarizes accidents, alcohol policies and other state-level covari-
ates used in the analysis.
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Figure 3.3: Histograms of Alcohol Regulations

Notes: The figure shows the histograms ofDrink, DrinkN andHwyban variables (as defined
in Section 3.4 ) in the sample.

i.e., GDP per capita, vehicles per km, population density, and road density. Drink has
a positive coefficient, meaning that conditional on the covariates, the states with a higher
fraction of the drinking age population witness higher road traffic accidents per 1000 km,
on average. HwyBan has a negative coefficient, meaning that conditional on the covariates,
the roads affected by the highway ban witnessed fewer traffic accidents per 1000 km, on
average. Finally, the highway indicator has a positive coefficient, indicating that highways
witness more accidents than other roads. Column (3) includes state fixed-effects, ensuring
that comparisons identifying the effect of alcohol policies are only made within (and not
across) states. Finally, Column (4) includes year fixed-effects. The coefficient for Drink
remains positive and significant while that of HwyBan remains negative and significant.
The coefficient on Drink in the full specification (i.e., Column (4)) indicates that a state that
moves from alcohol prohibition to legal drinking age of 16 experiences roughly one additional
accident per 1000 vehicles (or ten accidents per 10,000 vehicles) on average, compared to
other states. This finding is in line with Luca et al. (2019), who also find suggestive evidence
that stricter alcohol control in India is associated with lower rates of motor vehicle accidents.
Moreover, the coefficient on HwyBan in Column (4) indicates that traffic accidents on the
roads affected by the highway ban reduced by six per 10,000 vehicles on average, compared
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to the roads unaffected by the highway ban. Both estimates suggest that regulating alcohol
sales can effectively reduce road traffic accidents.

Columns (5)-(8) report analogous regressions replacing Drink with DrinkN . In addition
to own states’ drinking age policies, these specifications also account for the neighboring
states’ drinking age policies. The results show that the coefficient on DrinkN is almost
double the coefficient on Drink across all specifications. The coefficient on DrinkN in the
full specification (Column (8)) indicates that the reduction in own or neighboring district’s
legal drinking age from 45 to 16 is associated with twenty additional accidents per 10,000
vehicles in that state, on average. The coefficients onHwyBan in Columns (4)-(8) are similar
to those in Columns (1)-(4). Together, these estimates provide evidence of a significant
relationship between alcohol regulations and road safety.

Tables 3.3 and 3.4 replicate the analysis in Table 3.2 for persons injured and killed in road
traffic accidents. In both cases, the coefficients on the alcohol policy measures have the same
signs as in Table 3.2, lending additional support to the finding that alcohol regulations affect
road safety. However, the coefficients on drinking age policies in Table 3.4 are imprecisely
estimated, possibly because road fatalities are likely to be noisy indicators of road safety
for several reasons. First, a single bus accident may lead to more deaths than ten accidents
involving two-wheelers. Second, fatalities may be underreported in the police data because
fatalities in which the offender cannot be identified go unreported. Similarly, the deaths in
hospitals following a road accident may be unreported if the police and hospital data are
not linked. Finally, the accident-related fatalities also depend on the post-accident response
systems, such as the availability of ambulances and first-responder training.

It is worth noting that there could be potential biases in these estimates because of
uncontrolled factors such as state-level alcohol taxes. However, the direction of the bias is
unclear. On the one hand, the decreases in the MLDA may be associated with an increased
need for tax revenue (i.e., higher taxes on alcohol). If this were the case, estimates from
the panel approach would downward bias the actual effect of the minimum legal drinking
age because the estimates would confound the effects of the legal drinking age and alcohol
taxation. On the other hand, the increase in MLDA could be associated with the need to
reduce alcohol consumption in the state (i.e., higher taxes on alcohol). If this were the case,
estimates from the panel approach would upward bias the actual effect of the minimum legal
drinking age.
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3.4.4 Robustness

New literature on two-way fixed effects (TWFE) difference-in-differences (DID) shows that
estimates obtained through TWFE regressions identify weighted sums of the average treat-
ment effects (ATE) in each group and period, with weights that may be negative (Goodman-
Bacon, 2021). DID estimates are unbiased in settings with a single treatment period and
settings with homogeneous treatment effects across groups and over time. However, when
research settings combine multiple treatment timings and treatment effect heterogeneity
(across groups or over time), the TWFE estimates are likely to be biased. Identification is
even more nuanced in cases with non-binary treatments, multiple treatments, and treatment
spillovers (see De Chaisemartin and D’Haultfoeuille (ming) for a survey of this literature).

The current paper leverages multiple treatment units, multiple periods, and two treat-
ments. The first treatment from legal drinking age and prohibition policies is non-binary,
varies at the state level (i.e., sharp design), and has potential spillovers to neighboring states.
The second treatment from the highway ban is binary and varies across road types within a
state (i.e., fuzzy design). There can be multiple biases in such a setup. (1) When the treat-
ment is non-binary, some DIDs compare accidents in states whose MLDA increases more to
states whose MLDA increases less. As a result, the Wald-DID may not estimate a convex
combination of effects if the treatment effect is heterogeneous across states (De Chaisemartin
and d’Haultfoeuille, 2020a). In the current setup, heterogeneity in treatment effects may arise
across states due to differences in law enforcement. For instance, black marketing of alcohol
may be easier in some states than in others. Second, in cases with multiple treatments,
the coefficient on one treatment may be contaminated by the effect of other treatments
(De Chaisemartin and d’Haultfoeuille, 2020b). For example, in the current setup, the co-
efficient on Drink may leverage a DID comparing the road accidents of Mizoram, which
was affected by both policies, to the accidents of Madhya Pradesh, which only received the
highway-ban treatment. However, if the effects of the highway ban differ in the two groups,
they do not cancel each other out and contaminate the coefficient on the Drink variable.
Finally, because MLDA policies can create spillovers on neighboring states, adding the neigh-
boring states as controls in the sample will downward bias the estimated effect of MLDA on
the states that changed their policy.

The literature currently lacks an alternative DID estimator that addresses all the above
issues. Therefore, I modify the units that can act as effective comparison units to avoid
comparing treatment units to inappropriate controls as follows. First, to avoid contaminating
the coefficient on one treatment due to the effect of another treatment, I separately evaluate
the impact of each treatment. Specifically, because the highway ban only came into effect
in 2017, I use data between 2004-2017 to evaluate MLDA policy. Similarly, to assess the
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highway ban policy, I use data between 2004-2019 and the sample of states that did not
experience a change in the drinking age population in the sample. Thus, I exclude Kerala,
Mizoram, Maharashtra, Bihar, and their neighbors.

Second, to accommodate heterogeneity in the effect of demographic regulations across
states, I run separate regressions for each state that changed its MLDA policy. In each
case, the outcome variable is the road accident rate as defined in equation 3.2. The control
states are those that did not change their drinking age between 2004-2019. Moreover, to
accommodate the spillover effects of demographic regulation, I exclude the neighbors of all
states that changed their drinking age from the control group. Table 3.5 shows the results
from this analysis. Each column represents a different treatment unit and, hence, a different
sample. For example, Column (1) excludes the states that border Bihar (i.e., Jharkhand,
Uttar Pradesh, and West Bengal) or experience a change in the fraction of the drinking
age population (i.e., Kerala, Maharashtra, Mizoram, and their neighbors). Columns (2),
(3), and (4) perform the same analysis for Kerala, Maharashtra, and Mizoram, respectively.
Overall, these results reinforce the baseline results. For instance, the coefficient in Column
(2) indicates that if Kerala moves from alcohol prohibition to legal drinking age of 16, it would
experience roughly fourteen additional accidents per 10,000 vehicles, on average, compared
to other states. Moreover, the difference in coefficients across the four columns indicates
heterogeneity across states. The insignificant coefficient for Bihar may be due to excessive
black marketing of alcohol (Parth, 2017; Kumar, 2022).

Table 3.6 shows the results of evaluating the highway ban policy. Treatment units are
highways in the states that legalize alcohol. Control units comprise all roads in the states
that banned alcohol between 2004-2019 and non-highway roads in states that legalized al-
cohol between 2004-2019. Column (1) shows the effect of the highway ban on accident rate
conditional on road type. Columns (2), (3), and (4) sequentially include additional covari-
ates, state fixed effects, and year fixed effects. Like Table 3.2, the coefficients on Hwyban
are negative and significant. Column (4) indicates that the roads affected by the highway
alcohol ban experience roughly six fewer accidents per 10,000 vehicles, on average, compared
to other roads.

3.5 Conclusion

This paper is motivated by the alarming trend of road traffic accidents, fatalities, and injuries
in India and investigates the role of alcohol regulation on road safety. I document the effects
of drinking age regulations and highway alcohol ban using state-level panel data between
2004 and 2019, taking advantage of two sources of variation: (1) differences in the timing of
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Table 3.5: Road Traffic Accidents

(1) (2) (3) (4)
VARIABLES BIHAR KERALA MAHARASHTRA MIZORAM

Drink 0.539 1.432*** 6.211*** 0.823***
(0.463) (0.146) (0.928) (0.228)

Highway 1.090*** 1.046*** 0.925** 0.910***
(0.320) (0.253) (0.377) (0.257)

GDP per capita (INR) -0.001 -0.003 -0.003 -0.002
(0.006) (0.005) (0.010) (0.005)

Vehicles density (per km road) -0.003 -0.006 -0.005 -0.008**
(0.008) (0.004) (0.004) (0.004)

Population density (per sq km) 3.390 4.250 7.270 5.562
(3.940) (4.077) (4.940) (3.700)

Road length (km) per sq km 0.319* 0.295** 0.106 0.145
(0.168) (0.112) (0.195) (0.153)

Constant 0.068 -0.850 -5.403** -0.585
(1.430) (1.507) (2.032) (1.370)

Observations 504 560 420 588
R-squared 0.730 0.730 0.672 0.738
State FE YES YES YES YES
Year FE YES YES YES YES

Notes: This table shows separate regressions with each state that changed its legal drinking age as
the only treatment unit. The control states are those that did not change their drinking age and
whose neighbors did not change their drinking age between 2004-2019. Accidents in Telangana state
are aggregated with Andhra Pradesh, as the states split in 2014 but retained the same alcohol poli-
cies. Robust standard errors clustered by the state are presented in the parenthesis. *** indicates
99% level of significance. ** indicates 95% level of significance. * indicates 90% level of significance.
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Table 3.6: Road Traffic Accidents

(1) (2) (3) (4)
VARIABLES No Controls + Controls + State FE + Year FE

Highway ban -1.231*** -1.183*** -0.631*** -0.592***
(0.214) (0.219) (0.132) (0.133)

Highway 0.928*** 0.735** 0.857*** 0.912***
(0.183) (0.344) (0.249) (0.256)

GDP per capita (INR) 0.001 -0.023*** -0.006
(0.005) (0.005) (0.005)

Vehicles density (per km road) -0.009** -0.009* -0.006
(0.004) (0.004) (0.004)

Population density (per sq km) -0.213 -2.319 6.281*
(0.621) (2.814) (3.475)

Road length (km) per sq km -0.170 0.028 0.084
(0.268) (0.126) (0.129)

Constant 1.412*** 1.996*** 3.712*** -0.213
(0.218) (0.564) (0.903) (1.252)

Observations 640 640 640 640
R-squared 0.109 0.168 0.670 0.729
State FE NO NO YES YES
Year FE NO NO NO YES

Notes: Sample includes that states that did not experience a change in the drinking age popu-
lation between 2004-2019. Accidents in Telangana state are aggregated with Andhra Pradesh,
as the states split in 2014 but retained the same alcohol policies. Robust standard errors clus-
tered by the state are presented in the parenthesis. *** indicates 99% level of significance. **
indicates 95% level of significance. * indicates 90% level of significance.
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prohibition and age-based alcohol regulation across states and (2) a nationwide alcohol sales
ban near highways that affected certain roads in non-prohibition states.

The results provide evidence of a significant relationship between alcohol regulations
and road safety. The most conservative estimates show that a state that moves from alcohol
prohibition to legal drinking age of 16 experiences roughly ten additionals accident per 10,000
vehicles, on average, compared to other states. Moreover, the roads affected by the highway
alcohol ban experience six fewer accidents per 10,000 vehicles than other roads. Finally,
there is evidence of spillovers of neighboring states’ drinking age policies on a state’s road
safety.

As previously noted in the literature, the effect of the legal drinking age suggests signif-
icant benefits from restricting underage drinking from the perspective of road safety. The
impact of the highway ban noted in this paper also suggests regulating the location of al-
cohol sales as an effective policy tool to prevent road traffic accidents. The highway ban
possibly works by reducing distraction on the roads and appears a promising policy for other
countries as well, given that it is much less disruptive than other regulations like state-wide
prohibition. Finally, the evidence of spillovers of neighboring states’ drinking age policies
suggests potential benefits from equalizing the legal drinking age with the neighbors.
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Appendix A

Appendix for Chapter 1

A.1 EV-makers and Buyers Respond to Elimination

This section offers evidence that EV-makers and buyers respond to subsidy elimination based
on Tesla Motors’ and General Motors’ experiences with subsidy elimination. Tesla and
General Motors surpassed 200,000 plug-in sales in July and November 2018, respectively.

Figure A.1 compares the monthly nationwide sales of Tesla’s most affordable model (i.e.,
Model 3) with General Motors’ most popular plug-in hybrid (i.e., Chevrolet Volt) during
March 2018- June 2019. Three observations are worth noting. First, the subsidy affects con-
sumers’ purchase decisions, as evident from the intertemporal bunching surrounding changes
in the federal tax credit. The credit available for Tesla Model 3 in January was half as gen-
erous compared to the credit in December, and correspondingly the car sales in January
plummeted to 50% of the December sales volume. Such bunching does not appear for Chevy
Volt, which did not face a reduction in tax credits in January 2019, pointing to the possibil-
ity that the changes in federal subsidy affected consumers’ buying decisions. Note that this
bunching conflates the changes in purchase choice and purchase timing since some consumers
aware of the looming change may have advanced their purchases to take advantage of the
more generous subsidy. Such timing effects pose a challenge in estimating demand elastic-
ities, which I discuss in Section 1.4. Second, deadlines are effective in inducing car sales.
Once Tesla exhausted the threshold, it faced a six-month deadline: all vehicles delivered by
December 2018 qualified for a $7500 subsidy. Tesla used this opportunity by setting new
production and delivery records between July and December. Third, manufacturers likely
respond to quota by delaying EV sales, as evident by the 130% spike in Tesla Model-3 sales
in July 2018. If Tesla reached the 200,000-threshold in June instead of July, the phaseout
would have initiated in October 2018 instead of January 2019. The low sales volume in
June is consistent with the incentive to push the delivery of the 200,000th vehicle to July.
Comparing Chevy Volt sales shows that seasonality in demand is not enough to explain the
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Figure A.1: Tesla Car Sales in 2017-18

Notes: This figure plots the total nationwide sales of Tesla model 3 and GM Chevrolet Volt
between March 2018 - June 2019 based on the monthly sales estimates by Automotive News
Data Center. The black vertical line indicates the month July 2018 – the month in which
Tesla exhausted the 200,000 quota. GM exhausted the quota in Nov 2018. The shades of grey
indicate the value of Tesla’s federal subsidy; darker shades indicate higher values. Tesla’s
subsidy phaseout began in January 2019 and the subsidy for all its models was reduced from
$7500 to $3750. GM faced the subsidy reduction in April 2019.

difference between the June and July sales volumes.
To quantify the effect of quota and deadlines on the quarterly sales volume, I also estimate

the following regression:

Salesjft = β0 + β1.t+ β2.I
D
ft + β3.I

Q
ft + δj + δqtr + εjft

where IDft takes value one if firm f faces a deadline within next two quarters, IQft is one if
firm f faces the 200,000 quota in quarter t. δjand δqtr indicate product and quarter fixed
effects. The coeffcient β2 indicates the effect of deadline, while β3 indicates the effect of
quota on the EV sales. The variation comes only from Tesla and GM, since no other firm
has exhausted the quota yet. Controlling for product and quarter fixed effects, these firms,
on average sell 3000 more EVs when facing the two-quarter deadline and 3000 less EVs when
facing the 200,000 quota.

While these findings inform us of the importance of subsidy elimination designs, they do
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Table A.1: Evidence: EV Sales Depend on the Type of Elimination

(1) (2) (3) (4)
VARIABLES Sales (1000s) Sales (1000s) log(Sales) log(Sales)

Approaching Deadline 2.797*** 5.171*** 0.432 0.593
(0.926) (1.011) (0.477) (0.498)

Quota Constrained -3.076*** 0.649 -0.240 -0.580
(0.876) (1.478) (0.451) (0.728)

trend 0.004 -0.007
(0.020) (0.010)

Constant 4.323*** 0.813 6.213*** 6.430***
(0.973) (1.410) (0.501) (0.694)

Observations 836 836 836 836
R-squared 0.376 0.425 0.266 0.380
Product FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes
Firm-level trend Yes Yes
Source: WardsAuto U.S. Light Vehicle Quarterly Sales Notes: Standard errors in
parentheses. *** indicates 99% level of significance. ** indicates 95% level of signifi-
cance. * indicates 90% level of significance.

not explain what happens in the presence of alternative policies. Moreover, the variation
is only driven by Tesla and GM, since no other firms faced subsidy elimination in 2018.
Therefore, to compare different subsidy-elimination policies, I rely on structural methodology
in the paper.

A.2 First-Stage Regression Results

Table A.2 reports the results of the first-stage regression. IVs 1-5 are the sum over firm’s
other vehicles’ characteristics. IVs 6-10 are sum over all the firms’ competing vehicles’ char-
acteristics. Vehicle chanaracteristics include a constant, vehicle size, performance, driving
cost and battery range, repspectively.
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Table A.2: First-Stage Regression Results

Dependent Variable: Price (pjmt, in $’0000)

Variable Coef SE
Included IV

Constant -8.995*** 1.453
Size 6.674*** 0.172
Performance 2.977*** 0.048
Driving Cost 25.538*** 0.499
Battery Range 0.002* 0.001
BEV 2.232*** 0.188
PHEV 4.704*** 0.148
BEV × Cumulative EV Sales -0.228*** 0.031
PHEV × Cumulative EV Sales -0.440*** 0.028

Excluded IV

IV1 0.327*** 0.037
IV2 -0.493*** 0.043
IV3 0.099*** 0.008
IV4 0.079*** 0.024
IV5 0.003*** 0.000
IV6 -0.073** 0.035
IV7 0.095** 0.040
IV8 0.008 0.008
IV9 -0.075*** 0.013
IV10 -0.000 0.000

Obs 62588
R-squared 0.675
F test
F(65, 62522) 2000.846
F test of excluded IV
F(10, 62522) 345.001
Notes: Size is length× width (in ’0000 in2), performance is Horsepower by curb weight
(in 10 lb), driving cost is fuel cost (in dollars) per ten miles, and battery range is the
all electric range (in miles) for EVs. Cumulative EV Sales shows total EVs sold by the
manufacturer in the geographic market until previous year. Excluded instruments that
are assumed uncorrelated with demand error ∆ξjmt include the sum of firm’s other
vehicles’ characteristics (constant, size, performance, driving cost, and battery range)
and the sum over all the firms’ competing brands’ characteristics. *** indicates 99%
level of significance. ** indicates 95% level of significance. * indicates 90% level of
significance.
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A.3 Counterfactuals

Table A.3: Effect of Elimination Designs on EV Sales

Manufacturer Year No Market Per-Mfr Per-Mfr
Subsidy Deadline Deadline Quota (150000)

BMW 2011-2016 15,140 15,140 15,140 15,140
2017 10,018 16,716 16,162 16,165
2018 11,371 11,693 19,246 19,217

DAIMLER 2011-2016 9,312 9,312 9,312 9,312
2017 1,000 1,787 1,774 1,775
2018 1,022 1,030 1,841 1,838

FIAT CHRYSLER 2011-2016 18,115 18,115 18,115 18,115
2017 4,711 9,137 8,805 8,808
2018 5,489 5,669 10,723 10,706

FORD 2011-2016 73,611 73,611 73,611 73,611
2017 16,914 24,220 23,950 23,938
2018 17,913 18,093 25,851 25,822

GENERAL MOTORS 2011-2016 97,052 97,052 97,052 97,052
2017 31,973 60,870 60,875 24,164
2018 33,944 34,739 34,697 63,830

HONDA 2011-2016 2,091 2,091 2,091 2,091
2017 1,420 1,415 1,415 1,417
2018 1,577 1,577 1,574 1,571

HYUNDAI 2011-2016 1,350 1,350 1,350 1,350
2017 1,215 1,969 1,912 1,914
2018 1,395 1,437 2,295 2,291

KIA 2011-2016 3,664 3,664 3,664 3,664
2017 1,882 3,241 3,149 3,150
2018 2,158 2,220 3,758 3,753

MITSUBISHI 2011-2016 1,886 1,886 1,886 1,886
2017 1 2 2 2
2018 1 1 2 2

NISSAN 2011-2016 100,875 100,875 100,875 100,875
2017 5,643 10,712 10,650 10,652
2018 5,729 5,766 10,949 10,937

TESLA 2011-2016 105,728 105,728 105,728 105,728
2017 23,500 44,614 44,618 19,717
2018 24,450 24,796 24,761 46,139

TOYOTA 2011-2016 43,470 43,470 43,470 43,470
2017 21,263 31,413 30,795 30,800
2018 23,526 23,952 35,144 35,105

VOLKSWAGEN 2011-2016 18,829 18,829 18,829 18,829
2017 4,257 6,760 6,661 6,662
2018 4,489 4,541 7,195 7,184

VOLVO 2011-2016 2,025 2,025 2,025 2,025
2017 1,499 2,253 2,158 2,156
2018 1,775 1,816 2,680 2,676

Notes: This table shows the EV sales for each manufacturer. Sales in years 2011-2016 are
reported as observed in the data. Sales in years 2017 and 2018 are computed under the coun-
terfactual policy simulations discussed in Section 1.7.
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Table A.4: Effect of Elimination Designs on Vehicle Prices and Sales in 2018

Vehicle Outcome No Market Per-Mfr Per-Mfr
Subsidy Deadline Deadline Quota (150000)

TESLA MODEL X (BEV) Price (USD) 79,756 79,756 79,758 79,776
Sales 8,864 8,989 8,976 16,723

CHEVROLET VOLT (PHEV) Price (USD) 31,137 31,132 31,131 31,148
Sales 19,764 20,262 20,240 37,155

NISSAN LEAF (BEV) Price (USD) 26,082 26,084 26,085 26,085
Sales 5,729 5,766 10,949 10,937

HYUNDAI IONIQ (BEV) Price (USD) 29,403 29,402 29,401 29,398
Sales 291 298 565 564

CADILLAC CT6 (PHEV) Price (USD) 72,291 72,285 72,284 72,304
Sales 146 150 150 275

CADILLAC CT6 (GAS) Price (USD) 51,715 51,715 51,714 51,715
Sales 10,207 10,206 10,202 10,194

ACURA MDX (GAS) Price (USD) 42,596 42,596 42,595 42,594
Sales 63,588 63,585 63,548 63,503

TOYOTA TUNDRA (GAS) Price (USD) 27,528 27,528 27,529 27,529
Sales 49,140 49,138 49,112 49,092

CHEVROLET SILVERADO (GAS) Price (USD) 26,672 26,672 26,672 26,673
Sales 341,200 341,195 341,127 340,997

FORD F (GAS) Price (USD) 26,214 26,214 26,214 26,214
Sales 367,688 367,684 367,602 367,525

Notes: This table shows the equilibrium prices (before subsidy) and sales across the 30 sample states in 2018 for a
sample of vehicles using counterfactual simulations described in Section 1.7.
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Appendix B

Appendix for Chapter 2

B.1 Definitions

Vehicle classifications, as defined at 49 CFR part 523, are below:

1. A passenger automobile is any automobile (other than an automobile capable of
off-highway operation) manufactured primarily for use in the transportation of not
more than 10 individuals.

2. A non-passenger automobile means an automobile that is not a passenger automo-
bile or a work truck and includes vehicles described in paragraphs (a) and (b) of this
section:

(a) An automobile designed to perform at least one of the following functions:

i. Transport more than 10 persons;

ii. Provide temporary living quarters;

iii. Transport property on an open bed;

iv. Provide, as sold to the rst retail purchaser, greater cargo-carrying than passenger-
carrying volume, such as in a cargo van; if a vehicle is sold with a second-row
seat, its cargo-carrying volume is determined with that seat installed, regard-
less of whether the manufacturer has described that seat as optional; or

v. Permit expanded use of the auto- mobile for cargo-carrying purposes or other
nonpassenger-carrying purposes through:

A. For non-passenger automobiles manufactured prior to model year 2012,
the removal of seats by means installed for that purpose by the auto-
mobile’s manufacturer or with simple tools, such as screwdrivers and
wrenches, so as to create a at, floor level, surface extending from the
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forwardmost point of installation of those seats to the rear of the auto-
mobile’s interior; or

B. For non-passenger automobiles manufactured in model year 2008 and
beyond, for vehicles equipped with at least 3 rows of designated seating
positions as standard equipment, permit expanded use of the automobile
for cargo- carrying purposes or other non-passenger-carrying purposes
through the re- moval or stowing of foldable or pivoting seats so as to
create a at, leveled cargo surface extending from the forwardmost point
of installation of those seats to the rear of the automobile’s interior.

(b) An automobile capable of off highway operation, as indicated by the fact that it:

i. Has 4-wheel drive; or is rated at more than 6,000 pounds gross vehicle weight;
and

ii. Has at least four of the following characteristics calculated when the automo-
bile is at curb weight, on a level surface, with the front wheels parallel to the
automobile’s longitudinal center-line, and the tires inflated to the manufac-
turer’s recommended pressure

A. Approach angle of not less than 28 degrees.

B. Breakover angle of not less than 14 degrees.

C. Departure angle of not less than 20 degrees.

D. Running clearance of not less than 20 centimeters.

E. Front and rear axle clearances of not less than 18 centimeters each.

3. Pickup truck means a light truck which has a passenger compartment and an open
cargo bed.

4. Minivan means a light truck which is designed primarily to carry no more than eight
passengers, having an integral enclosure fully enclosing the driver, passenger, and load-
carrying compartments, and rear seats readily removed, folded, stowed, or pivoted to
facilitate cargo carrying. A minivan typically includes one or more sliding doors and a
rear liftgate. Minivans typically have less total interior volume or overall height than
full sized vans and are commonly advertised and marketed as “minivans”.

5. Sport utility vehicle (SUV) means a light truck with an extended roof line to
increase cargo or passenger capacity, cargo compartment open to the passenger com-
partment, and one or more rear seats readily removed or folded to facilitate cargo
carrying. Generally, 2-wheel drive SUVs equal to or less than 6000 lbs GVWR are
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Table B.1: CAFE Targets

Year Car Truck

a b c d a b c d
2011 31.2 24 51.41 1.91 27.1 21.1 56.41 4.28
2012 35.95 27.95 .0005308 .0060507 29.82 22.27 .0004546 .0149
2013 36.8 28.46 .0005308 .00541 30.67 22.74 .0004546 .013968
2014 37.75 29.03 .0005308 .004725 31.38 23.13 .0004546 .013225
2015 39.24 29.9 .0005308 .003719 32.72 23.85 .0004546 .01192
2016 41.09 30.96 .0005308 .002573 34.42 24.74 .0004546 .010413

Notes: This table summarizes the parameter values in CAFE targets for years 2011-2016.

passenger cars for CAFE and GHG standards compliance, but continue to be labeled
as SUVs.

6. Station wagon means cars with an extended roof line to increase cargo or passenger
capacity, cargo compartment open to the passenger compartment, a tailgate, and one
or more rear seats readily removed or folded to facilitate cargo carrying.

7. Van means any light truck having an integral enclosure fully enclosing the driver
compartment and load carrying compartment. The distance from the leading edge of
the windshield to the foremost body section of vans is typically shorter than that of
pickup trucks and SUVs.

B.2 CAFE Target Formulas

The target equation for the passenger car and light trucks for MY 2011 is

Tj =
1

1
a

+ (1
b
− 1

a
) e(footprintj−c)/d

1+e(footprintj−c)/d

(B.1)

where a, b, c and d are parameters taking different values for passenger car and the light
trucks, with less stringent targets for light trucks. The target equation for MYs 2012-2016 is

Tj =
1

min {max {c× footprintj + d, 1/a} , 1/b}
. (B.2)

The parameter values for each are summarized in table B.1.
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B.3 Firms’ First-Order Conditions

Given the firms’ profit in equation 2.6, the optimal price for product j and drivetrain d

satisfies the following first order condition:

qjdt(pt) +
∑

j′,d∈Jft

(pj′dt −mcj′dt −GGTj′d)
∂qj′dt(pt)

∂pjdt

−55
∑
k=C,T


∑

j′,d∈J (k)
ft

∂qj′dt(pt)

∂pjdt
/mpgj′(∑

j′,d∈J (k)
ft
qj′dt/mpgj′d

)2 −

∑
j′,d∈J (k)

ft

∂qj′dt(pt)

∂pjdt
/Tj′(∑

j′∈J (k)
ft
qj′dt/Tj′

)2

 (
∑

j,d∈J (k)
ft

qjdt)
2

+110
∑
k=C,T

 1(∑
j′,d∈J (k)

ft
qj′dt/mpgj′d

) − 1(∑
j′d∈J (k)

ft
qj′dt/Tj′d

)
 (

∑
j,d∈J (k)

ft

qjdt)

 ∑
j′,d∈J (k)

ft

∂qj′dt(pt)

∂pjdt

 = 0.

(B.3)

B.4 First-Stage Regression

Table B.2 reports the results of the first-stage regression. IVs 1-7 are the sum over firm’s other
vehicles’ characteristics, while IVs 8-14 are the sum over all the firms’ competing vehicles’
characteristics. Vehicle characteristics include a constant, vehicle size, performance, cost of
driving, and indicators for 4WD, hybrid and electric vehicles, respectively.
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Table B.2: First-Stage Regression Results

Dependent Variable: Price (pjt, in $’0000)

Variable Coef SE
Included IV

Four Wheel Drive 0.345∗∗∗ 0.038
SUV x Four Wheel Drive -0.020 0.051
Dollar per 10 miles 12.115∗∗∗ 0.786
Vehicle Size (0000 in2) 2.931∗∗∗ 0.111
Horsepower/weight (Hp/10lb) 2.302∗∗∗ 0.093
Electric 2.225∗∗∗ 0.317
Hybrid 1.433∗∗∗ 0.079
Trend -0.071∗∗ 0.032

Excluded IV

IV1 -0.002 0.031
IV2 0.027∗∗ 0.011
IV3 -0.088∗∗∗ 0.016
IV4 0.003 0.021
IV5 -0.014 0.014
IV6 0.177∗ 0.092
IV7 -0.001 0.014
IV8 -0.005 0.022
IV9 0.004 0.006
IV10 -0.031∗∗∗ 0.003
IV11 0.004 0.014
IV12 -0.003 0.004
IV13 0.068 0.043
IV14 0.008 0.009

Obs 5523
R-squared 0.716
F test
F(48, 5474) 287.929
F test of excluded IV
F(14, 5474) 21.617

Notes: Size is length× width (in ’0000 in2), performance is Horsepower by
curb weight (in 10 lb), and cost of driving is fuel cost (in dollars) per ten miles.
Excluded instruments that are assumed uncorrelated with demand error ∆ξjt
include the sum of firm’s other vehicles’ characteristics (constant, vehicle size,
performance, cost of driving, and indicators for 4WD, hybrid and electric ve-
hicles) and the sum over all the firms’ competing vehicles’ characteristics. ***
indicates 99% level of significance. ** indicates 95% level of significance. *
indicates 90% level of significance.
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