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ABSTRACT

This dissertation applies Vinberg theory to the problem of constructing 2-descent maps on

the Jacobians of hyperelliptic curves. In the first part, we construct, given a hyperelliptic

curve C with certain marked points P and tangent vectors t, a smooth, complete surface S.

Using the Picard group of S, we obtain a 2-graded simple adjoint Lie group (H, θ) of Dynkin

type An, where n depends on the genus of C and the nature of the marked points. Assuming

that H is split, we show that there exists an injective 2-descent map from the Jacobian of

C into the orbit spaces of the local and global Vinberg representations associated to (H, θ).

The approach is based on previous work of Thorne which addresses the cases where H is of

Dynkin type E6 or E7.

In the second part, we construct, given a polynomial f(x) of odd degree n and satisfying

certain properties, an explicit map ψ from J(C) into the orbit space of G = SO(V )×SO(V )

acting on End(V ), where C is the smooth, complete curve satisfying the equation y2 = f(x),

and V is an orthogonal space of dimension n with maximal index of isotropy and discriminant

1. The pair (G, V ) is exactly the degree 2 Vinberg representation of Dynkin type Dn. The

map ψ extends a previous construction of Thorne which gives an explicit descent map for

the degree 2 Vinberg representation of Dynkin type An.

In both parts, we work over an arbitrary field K of characteristic 0.

vi



CHAPTER I

Introduction

I.1: Rational Points on Abelian Varieties and Descent

Let K be a number field and A an abelian variety defined over K. The group A(K) of

K-rational points has a theoretically simple structure.

Theorem I.1 (Mordell-Weil, [Wei29]). The group A(K) is a finitely-generated abelian group,

i.e., there exists non-negative integers r0, r1, ..., rm and positive integers n1, ..., nm such that

A(K) ∼= Zr0 ⊕
m⊕
i=1

(Z/niZ)ri .

At the same time, there are no known effective proofs of this theorem, i.e., there exists

no known method for obtaining the generators in general, and the question of even deter-

mining the rj and nk also remains unsolved. The size of the torsion part, i.e., the subgroup

Ators(K) :=
⊕m

i=1 (Z/niZ)ri , is conjectured to be controlled by the dimension of A and the

degree of K over Q.

Conjecture I.2 (Torsion Conjecture, see [CT13] for background). Let d be the dimension

of A and δ be the degree of K over Q. There exists some N = N(d, δ) such that for all A,

we have

Ators(K) ⊂ A[N ](Q̄),

where the inclusion is of subgroups.

Understanding the rank is even more difficult. Even in the elliptic curve case d = 1,

where the torsion part is well understood and computable, it is not known if the rank is even

bounded, or which integers occur as the rank (see [RS02] for background on studying the

rank of elliptic curves).

One approach to addressing these questions is descent, which generally refers to comput-

ing the group A/pA(K) for some (usually) prime p. This computation is often easier than
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computing the group A(K) in general. By the Mordell-Weil Theorem, the group A/pA(K)

has the structure A/pA(K) ∼= (Z/pZ)r0+j, where j is determined by the structure of the

torsion part. If we have a good understanding of the torsion part of A, which is plausible in

many cases, we can determine the rank r0 given the size of the group A/pA(K).

We are often interested in understanding these questions in the case where A is the Jaco-

bian variety J(C) of some algebraic curve C defined overK. In this case, an understanding of

the arithmetic of J(C) leads to an understanding of arithmetic on C as well (see [Maz86] for

a useful survey). This thesis provides approaches to 2-descent for certain curves C based on

orbit parameterizations of representations arising in Vinberg theory; the following sections

give explicit details.

I.2: Vinberg Theory and Curves

One way to study a variety X is to construct an injection i : X → G\Y , where G\Y is

the orbit space, or set of orbits, of some algebraic group G acting on some variety Y . In

many cases, G\Y will have the structure of an algebraic variety, and the map i will be an

isomorphism of varieties. The variety Y will ideally be one with a thoroughly understood

structure and even a coordinate system; for example, Y may be a linear representation of G.

In this way, Y can be used to give an explicit parameterization of X. If we want to answer

arithmetic questions about X, we will stipulate that all the objects are defined over K, and

that the embedding is functorial with respect to base change.

The group actions we work with come from Vinberg theory. The setting is the following:

let H be a simple, adjoint split Lie group defined over K with simply-laced Dynkin type.

Let θ be a stable degree 2 involution of H, and dθ the induced involution on the Lie algebra

h of H. Define G to be the connected component of the subgroup Hθ, Y to be the connected

component of the inverted set of points h ∈ H such that θ(h) = h−1, and V to be the

(−1)-eigenspace of dθ, or equivalently the tangent space to Y at the identity. We can

show that V is stable under conjugation by G, and this group action is called the Vinberg

representation associated to the grading θ. One of the fundamental results of Vinberg theory

states that the invariant ring K[V ]G is free of finite rank; therefore the categorical quotient

B := V//G = Spec(K[V ]G) is an affine space. Further there is a (G-invariant) polynomial

function ∆ on V such that a vector v ∈ V is stable (in the sense of geometric invariant

theory) if any only if ∆(v) is non-zero.

The (non-unique) map π : G\V → B given by sending each point v to the vector

(f1(v), ..., fn(v)), where the fj are free, homogenous generators of K[V ]G, is in general not

bijective, even if K is algebraically closed. In particular, there can be distinct orbits on

2



which the fj all take the same value. Let Bs be the set of points in B where ∆ does not

vanish, and V s the set of points in V where ∆ doesn’t vanish. If K is algebraically closed

(but crucially, not in general), the restricted map G\V s → Bs is a bijection; in other words,

each orbit in V s is completely determined by the values of the invariant polynomials.

A connection to curves was studied by Thorne in [Tho13]. Specifically, Thorne shows that

there exists some subvariety X ⊂ V such that the restricted map π : X → B is a flat family

of reduced, affine curves. Further, if Xs is the pre-image in X of Bs, then π : Xs → Bs is

a flat family of smooth affine curves. In addition, Thorne shows that there exists a natural

Gm action on X and on B such that π is Gm-equivariant, and that we may pick coordinates

on X and B homogeneous with respect to this action such that each family π : X → B has a

simple equation, given below in Table 1.1; with respect to these equations, each fiber Xb can

naturally be seen as a curve in A2. We see directly from these equations that every Xb has

the same number of marked K-points at infinity (although we note that some families have

other marked points not at infinity), and that there exists a compactification π : Y → B

such that (i) Y is a flat family of projective curves, each curve smooth over an open subset

Bs of B, (ii) for b ∈ Bs, the fiber Yb is the unique smooth completion of Xb, and (iii) the

components of Y \X are disjoint, each isomorphic to B, and their number is the same as the

number of marked points at infinity.

The preceding discussion is summarized in the following two tables. Our Table I.1, which

gives the equation of the families, is largely identical to the table in [Tho13, Theorem 3.8]

and to Table 1 in Jef Laga’s thesis [Lag22]. The coordinates (pd1 , ..., pdr) are homogeneous

generators of the invariant ring K[V ]G, and in each case r is equal to the rank of H; this

can be shown using Vinberg theory. In addition, the coordinates (pd1 , ..., pdr−1 , x, y) are Gm

homogeneous coordinates on X. The marked points correspond to special points on the

smooth curves Xb; we hope our descriptions will be understandable given the type of curve.

Explicit descriptions of the Vinberg representations can be found in Table 2 in [Lag22].

Dynkin Type Genus Equation of Family Marked Points at Infinity

A2g g y2 = x2g+1 + p2x
2g−1 + ... + p2g+1 1 (Weier.)

A2g+1 g y2 = x2g+2 + p2x
2g + ... + p2g+2 2 (same fiber)

D2g+1 g y(xy + p2g+1) = x2g + p2x
2g−1 + ... + p4g 2 (both Weier.)

D2g+2 g y(xy + p2g+2) = x2g+1 + p2x
2g + ... + p4g+2 3 (1 Weier., 2 same fiber)

E6 3 y3 = x4 + (p2x
2 + p5x + p8)y + (p6x

2 + p9x + p12) 1 (hyperflex)

E7 3 y3 = x3y + p10x
2 + x(p2y

2 + p8y + p14) + p6y
2 + p12y + p18 1 (flex + pt. on its tan.)

E8 4 y3 = x5 + y(p2x
3 + p8x

2 + p14x + p20) + p12x
3 + p18x

2 + p24x + p30 1 (simply-ram. pt.)

Table I.1: Equations of families

For a given b in Bs, let Vb denote the set of vectors in V which map to b under the map

π. Over some separable closure of K, the set Vb consists of a single G orbit. The problem,

as stated in [Tho13, Conjecture 4.16], is the following.

3



Problem I.3. Construct a map

ib : J(Yb)(K)/2J(Yb)(K) → G\Vb(K),

where G\Vb(K) is the set of all orbits which map to b. We want the construction to be

functorial with respect to base change, and to be “uniform” over b. Given the latter condition,

we can hope to study the images of the descent maps ib inside the total orbit space G\V in

order to understand something (for example, the size of the Selmer groups) about how the

Jacobians J(Yb) vary across the family.

In this thesis, we provide two different approaches to addressing this problem. To put

these approaches into context, we first review some previous work that has been done on

Problem I.3.

I.3: Previous Work

One set of approaches to Problem I.3 in the non-exceptional case uses the geometry of

the hyperelliptic curves involved, notably their connection to pencils of quadric surfaces, to

construct the descent maps ib. This was carried out by Bhargava-Gross in [BG13] for the

case where H is of Dynkin type A2g, by Shankar-Wang in [SW18] for the A2g+1 case, and

by Shankar in [Sha19] for the case where H is of Dynkin type D2g+1. In all these works, the

image of the descent maps ib is sufficiently understood to prove facts about the distribution

of the sizes of the Selmer groups of the Jacobians.

In addition, Thorne in [Tho14] provides an alternate construction of a 2-descent map

in the case A2g using the Mumford representation of a line bundle on a hyperelliptic curve.

He shows that the map he constructs is equivalent to the one constructed in [BG13]. An

advantage of the approach in [Tho14] is that given a genus g hyperelliptic curve C and a

degree 0 line bundle L on C, one can actually write down a matrix corresponding to the

image of L under the descent map.

In the exceptional cases E6 and E7, Thorne in [Tho16] approaches Problem I.3 by as-

sociating to the corresponding curves Cb a complete surface Sb. He shows that the Picard

lattice S contains a lattice Λ of the desired Dynkin type. Further he shows that given some

additional data on the curve, we can recover the split Lie group H as well as obtain a descent

map

ib : J(Cb)/2J(Cb)(K) → G\Vb(K).

This construction is interesting because it is a partial converse to the scenario in the previous

section; given the curve and some geometric data, we obtain a 2-graded split Lie group H.

4



In addition, the surfaces Sb are completions of the so-called Slodowy surfaces of type E6 and

E7, thus partially completing the circle of ideas which inspired [Tho13] (see [Tho13, Section

1]). Further, Thorne also constructs descent maps

ib : J(Cb)/2J(Cb)(K) → G\Yb(K),

where Y is a non-linear variety on which G acts; this is a “global” analogue of the “local”

Vinberg representation V . Unlike the works in the previous paragraph, the article [Tho16]

does not study use the descent maps constructed to study the Selmer groups of the Jacobians.

Kulkarni in [Kul17] has used the approach discussed in this paragraph to construct 2-descent

maps in the E8 case.

Recently, Jef Laga in his thesis [Lag22] has developed an approach which addresses all

the simply-laced Dynkin types uniformly. To explain his approach, we first recall a theorem

of Galois cohomology (see [BG14, Proposition 1] for proof; the statement there is given when

X is a vector space, but the theorem applies equally well when X is a variety).

Theorem I.4. Let G be an algebraic group and V an algebraic variety, both defined over

some number field K. Given x ∈ X, let Gx be the stabilizer group of x, and let Vx be the

points of V which become G-equivalent to x over Q̄. There is a bijection

ϕ : G\Vx(K) → ker(γ : H1(K,Gx) → H1(K,G)).

The bijection ϕ sends x ∈ Vx to the trivial cocycle in H1(K,Gx).

For each b ∈ B, we can choose a distinguished element in the pre-image Vb, namely

the point κb given by the intersection of Vb and the so-called Kostant section κ ⊂ V. The

connection to Jacobians arises due to the fact, proved by Thorne, that there exists an

isomorphism Gκb → J(Yb)[2], and due to existence of the map

ψ : J(Yb)/2J(Yb)(K) → H1(K, J(Yb)[2])

obtained from a certain long-exact sequence on Galois cohomology. Thus if one can show

that the image of ψ lies in the kernel of the map γ, we will have a 2-descent map ib :

J(Yb)/2J(Yb)(K) → G\Vκb(K). Laga proves this by studying a compactification of the rela-

tive Jacobian of the family Y → B. He is able to use his descent map to prove bounds on

the size of the 2-Selmer groups of the Jacobians in the family.

5



I.4: Statement and Outline of Results

In Chapter II, we survey some of the necessary background on Lie theory and Vinberg theory.

In Chapter III, we generalize the approach of [Tho16] to the case where the group H is of

type An. Specifically, for each n, we define a category Sn of equivalence classes of curves C

with marked points P and tangent vectors t at P . The category Sn contains a subcategory

(to be defined in Chapter 3) S0
n. We prove the following theorem.

Theorem I.5. For every v = [(C,P, t)] ∈ Sn(K), we define

1. A complete surface S defined over K equipped with an involution ι such that C is

embedded into S as the fixed locus of ι,

2. a simply-laced root sublattice Λ of Pic(S)(Ks) defined over K and of type An,

3. and for each class A ∈ J(C)(K), a central extension ṼA of V = Λ/2Λ.

Given this data, we obtain a simple adjoint group H with Dynkin type An defined over K.

Assuming that H is split, we also obtain

1. a stable involution θ on H defined over K,

2. a split maximal torus T on which θ acts by inversion,

3. marked points κC ∈ V and µC ∈ Y, where V and Y are the local and global Vinberg

representations of the 2-graded Lie group H,

4. and for each A ∈ J(C), an element iC(A) in VκC (K).

Then the assignment A→ iC(A) descends to an injection.

iC : J(C)/2J(C)(K) → G\VκC (K).

Further, if v is in S0
n(K), there exists a similar injection

IC : J(C)/2J(C)(K) → G\YµC (K).

Our theorem is an analog of [Tho16, Theorem 3.6], which addresses the cases when H is

of types E6 or E7.

In Chapter IV, we extend the approach of [Tho14] to the case where H is type Dn, n

odd. More precisely, we prove the following theorem.

6



Theorem I.6. For n ≥ 3 odd and a hyperelliptic curve C of genus n−1
2

given by an equation

of the form,

y2 = xn+1 + ...+ c2,

where c is some constant in K, there is a canonical injection

ψ : J(C)/2J(C)(K) → G\End(V ),

where V is an orthogonal space of dimension n, maximal index of isotropy, and discriminant

1 and G = SO(V )× SO(V ) acts on End(V ) by (a, b) · T = aTb∗.

This theorem is an extension of [Tho14, Theorem 4.6], which is used as an intermediate

step in constructing the injection ψ.

As mentioned in the previous section, the articles [Tho16] and [Tho14] contain distinct

approaches to Problem I.3 which are each geometrically interesting; we hope that our work

will help generalize these approaches uniformly to all simply-laced Dynkin types.
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CHAPTER II

Background

In this chapter, we describe background information on Vinberg theory that forms the basic

technical material used in this thesis. Vinberg theory studies representations arising from

Lie algebras with a graded structure; these representations can be seen as generalizations of

the adjoint representation of a Lie group on its Lie algebra (this can be seen as the case of a

degree 1 grading). We begin by recalling some facts about the adjoint representation; these

give some intuition about the basic properties of Vinberg representations. Next, we state

some basic definitions related to graded Lie algebras and facts about Vinberg representations.

Finally, we end the chapter by describing the connections between Vinberg theory and the

arithmetic of curves.

Throughout this chapter, we fix a ground field K of characteristic 0, with a separable

closure Ks. We assume knowledge of Lie algebras and their representations, as contained

in [Hum72], with the caveat that this source does not cover the arithmetic aspects of the

theory. We will work with split Lie groups, which the unfamiliar reader may assume behave

similarly to Lie groups over algebraically closed fields.

II.1: The Adjoint Representation

For the rest of this chapter, we assume that G is a split, connected, reductive Lie group

defined over K with Lie algebra g. The results in this section are well-known and given

without proof.

Definition II.1. The adjoint representation is the representation of the group G acting on

the vector space g by conjugation.

As with any other representation, we naturally want to understand the invariant ring of

the adjoint representation. To do so, we may restrict to a linear representation of a finite

group on a simple subspace of g.

8



Definition II.2. Let c ⊂ g be a split Cartan subalgebra. We define Nc ⊂ G to be the

normalizer of c and Zc ⊂ G to be the stabilizer of of c. The Weyl group Wc is the quotient

group Nc/Zc.

The group Wc acts faithfully on c by conjugation. Suppose that f ∈ K[g]G is a G-

invariant polynomial. Then the restriction of f to c is a W -invariant polynomial, so that we

have a restriction map r : K[g]G → K[c]W .

Theorem II.3 (Chevalley Restriction Theorem). The restriction map r : K[g]G → K[c]Wc

is an isomorphism.

Proof. See [Hum72, p.127] for a proof.

Since the Weyl group Wc is a finite reflection group, the ring K[c]Wc is a free polyno-

mial ring with dim c = rkG homogeneous generators (see [Che55] for a proof of this fact).

The Chevalley restriction theorem thus says that K[g]G is freely generated by homogeneous

generators, and in many cases, we can use the theorem to help us compute these generators.

Example II.4. Let G = sl2(K). Then g = sl2(K) is the space of traceless, 2-by-2 matrices,

and we may choose c to be space of matrices of the form
[
λ 0
0 −λ

]
. By direct computation, we

can see that Nc consists of the subgroup of diagonal and off-diagonal matrices of determinant

1, and Zc consists of the the subgroup of diagonal matrices of determinant 1. Therefore Wc

is isomorphic to Z/2Z and acts on c by swapping λ and −λ. Identifying K[c] with K[λ],

Wc acts K[λ] by sending f(λ) to f(−λ), so that K[λ]Wc is generated by the restriction of

the determinant function on K[g]G. By the Chevalley restriction theorem, the determinant

function generates K[g]G.

II.2: Vinberg Representations

The material in this section can be found in [Pan05], and the statements of most results are

given here without proof.

II.2.1: Basic Notions

Definition II.5. An m-graded Lie algebra is a pair (g, θ) where g is the split, semisimple

Lie algebra of some split, adjoint simple Lie group G over K and θ is an automorphism of g

of pure degree m. We usually assume θ is clear by context, and also assume that K contains

a primitive m-th root of unity.
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Example II.6. Let g = sl2(K) be the Lie algebra of traceless 2-by-2 matrices. For a matrix

x ∈ g, let x∗ denote reflection over the antidiagonal. Let θ : g → g be defined by θ(x) = −x∗.
Then (g, θ) is a 2-graded Lie algebra.

After defining an m-graded structure on g, we often simply write g instead of (g, θ) to

refer to the graded Lie algebra.

Lemma II.7. Suppose that K contains a primitive m-th root of unity ζ. Given an m-graded

Lie algebra g, define

gi := {x ∈ g | θ(x) = ζ ix}.

We have the direct sum decomposition

g = ⊕m−1
i=0 gi.

Proof. Since θ is a linear transformation, g is the direct sum of the generalized eigenspaces

of θ. Since θm = I, we can further deduce that g is the sum of the eigenspaces of θ.

Lemma II.8. For any 1 ≤ i, j ≤ m− 1, we have

[gi, gj] ⊂ gi+j.

Proof. If x and y satisfy θ(x) = ζ ix and θ(y) = ζjy, then we have

θ[x, y] = [θ(x), θ(y)] = [ζ ix, ζjy] = ζ i+j[x, y],

which finishes the proof.

Example II.9. The only primitive second root of unity is −1. In the preceding example, we

have that g0 consists of the matrices such that x = −x∗ and g1 consists of the matrices such

that x = x∗. In this case, the lemma restates the familiar fact that every (traceless) matrix

an be written as the sum of a (traceless) skew-adjoint matrix and a (traceless) self-adjoint

matrix.

Definition II.10. Let (g, θ) be an m-graded Lie algebra. Let G0 be the connected compo-

nent of the fixed subgroup Gθ (observe that g0 is the Lie algebra of G0 Since [g0, g1] ⊂ g1,

the adjoint action of G0 is a vector space automorphism of g1. The Vinberg representation

associated to (g, θ) is the representation Ad : G0 → Aut(g1).

Example II.11. In the g = sl2(K) example, we have that G0 is the space SO2(K) of 2x2

matrices X of determinant 1 such that XX∗ = I and g1 is the space so2(K) of traceless

10



self-adjoint transformations. The Vinberg representation is thus SO2(K) acting on so2(K)

by conjugation.

Explicitly, a general element of G0 can be written X =
(
a 0
0 1

a

)
with a ̸= 0 and a general

element of g1 can be written x = ( 0 b
c 0 ). The action of X on x sends x to

(
0 a2·b
c
a2

0

)
.

II.2.2: Stable Involutions

In order to obtain representations whose properties (e.g. invariant ring, sections) we can un-

derstand, we restrict ourselves to a class of gradings which satisfy certain stability conditions.

In order to discuss these conditions, we first recall some terminology.

Definition II.12. For x ∈ g, define the centralizer of x in g, which we denote by Zg(x), to

be the subalgebra of all y ∈ g such that [x, y] = 0.

It can be shown that dimZg is at least rk g. If dimZg(x) = rk g, we say that x is regular.

If dimZg(x) = rk g+ 2, we say that x is subregular

If ad(x)m = 0 as a linear transformation on g for some m, x is nilpotent.

If ad(x) is diagonalizable as a linear transformation on g, then x is semisimple

Example II.13. In the g = sl2(K) example, the element 0 is not regular, since all of g is

in the centralizer of 0, but it is nilpotent and semisimple.

The vector x0 = [ 0 1
0 0 ] in g1 is regular; its centralizer consists of all the multiples of x0

and is thus one-dimensional. It is also nilpotent, since ad(x0)
2 = 0. We can check directly

by choosing a basis of g that ad(x0) is not diagonalizable, so that x0 is not semisimple.

Similarly, we can see that the vector x1 = [ 0 1
2 0 ] in g1 is regular and semisimple, but not

nilpotent.

Lemma II.14 (Graded Jordan Decomposition). Let x = xs + xn be the Jordan decomposi-

tion, i.e., xs is semisimple and xn is nilpotent. If x is in gi for some i, then xs and xn are

in gi as well.

Proof. See the discussion in Section 1.4 of [Vin76].

Example II.15. In the g = sl2(K) example, if x is in g0 or g1, then x is nilpotent if it is

not semisimple, so the preceding lemma holds (note that this is a very special case, and in

general the elements of gi are neither nilpotent nor semisimple.

Definition II.16. Let (g, θ) be an m-graded Lie algebra, and suppose that K contains a

primitive m-th root of unity ζ. We say that a vector x ∈ g1 is stable if the orbit G0(K
s) ·x is

closed in g1(K
s) and the stabilizer subgroup ZG0(Ks)(x) of x in G0 is finite. (Note that this
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follows the general definition of a stable element of a representation of an algebraic group on

a variety.)

Example II.17. In the g = sl2(K) example, the vector 0 in g1 is not stable since every

element of G0 stabilizes 0, so the stabilizer subgroup is infinite.

The vector x0 = ( 0 1
0 0 ) in g1 is is not stable. A group element X =

(
a 0
0 1

a

)
acts on x0 by

conjugation and sends x0 to
(
0 a2
0 0

)
, with a ̸= 0. Therefore the orbit G0 · x0 does not contain

0 but does contain 0 in its closure, so it is not closed.

The vector x1 = ( 0 1
2 0 ) in g1 is stable. A group element X =

(
a 0
0 1

a

)
sends x1 to

(
0 a2
2
a2

0

)
with a ̸= 0. Therefore the stabilizer group ZG0(x1) has exactly two elements, corresponding

to a = ±1. In addition, the orbit G0 · x1 is closed in g1; it is the subvariety bc = 2.

Of the three vectors, x1 is the only stable vector. Recall that x1 is also the only vector

which is both regular and semisimple; we will see later that this is no coincidence.

Definition II.18. The automorphism θ is called stable if g1 contains stable elements. We

are specifically interested in stable involutions, i.e., degree 2 stable automorphisms.

Example II.19. As we say in the previous example, the involution θ(x) = −x∗ on sl2(K)

is stable.

Suppose thatG is a split adjoint group of simply-laced Dynkin type. By [Tho13, Corollary

2.15] and the discussion preceding it, there is a unique class of stable involutions with nice

properties.

Lemma II.20 (Lemma 2.7 of [Tho13] and Proposition 1.9 of [Tho16]). If G is a split

adjoint group of simply-laced Dynkin type, there is a unique G(K)-conjugacy class of stable

involutions θ on G satisfying the following:

1. tr(dθ : g → g) = −rk(G),

2. G0 is split, and

3. g1 contains a regular nilpotent element.

Further, the first two conditions imply the third, and the first and third conditions imply the

second.

Lemma II.21. If G is a split adjoint group of simply-laced Dynkin type, there is a unique

G(K)-conjugacy class of stable involutions θ on G satisfying the following:

1. tr(dθ : g → g) = −rk(G),

12



2. G0 is split, and

3. g1 contains a regular semisimple element.

Further, the first two conditions imply the third, and the first and third conditions imply the

second.

Proof. This follows from the preceding lemma and the fact that when θ is an involution,

the presence of a regular semisimple element in g1 implies and is implied by the presence

of a regular nilpotent elment (see the remark about the equivlance of S-regularity and N -

regularity in [Pan05, p.656]).

For the rest of the chapter, we assume that G and θ satisfy the properties listed in the

previous lemma.

We have the following helpful characterization of a stable vector.

Lemma II.22 (Theorem 1.10 of [Tho16]). There exists a G0-invariant polynomial ∆ such

that for all x in g1, the following are equivalent:

1. x is regular semisimple,

2. x is stable,

3. ∆(x) is non-zero.

In addition, it is possible to compute the dimensions of the given spaces gi

Definition II.23. For a graded, semisimple Lie algebra g of rank l, the exponents d1, ..., dl

are the degrees of the fundamental invariants of g, ordered to be non-decreasing. Given a

natural number m, we define for any integer j

kj = #{r | dr − 1 ≡ j mod m}.

Lemma II.24. We have the equality

dim g1 − dim g0 = k1 − k0.

Proof. See Theorem 3.3 of [Pan05].

Using the preceding lemma and the fact that dim g0 + dim g1 = dim g, we can compute

the dimensions of all the gi.

13



Example II.25. The g = sl2(K) example, our involution θ is in fact of the type given above.

In that case, we have k0 = 0 and k1 = 1. Applying the preceding lemma, we get the equation

dim g1 − dim g0 = k1 − k0 = 1.

In addition, we have the equation

dim g1 + dim g0 = dim g = 3.

Solving these two equations, we obtain

dim g0 = 1, dim g1 = 2,

which we can verify directly.

Next, we move on to discussing the invariant theory of the Vinberg representation induced

by θ. As in the case of the adjoint representation, this theory is simplified by passing to a

subspace of g1.

Definition II.26. A Cartan subspace is a maximal abelian, semisimple subspace of g1.

Example II.27. In the g = sl2(K) example, the subspace [ 0 bb 0 ] of g1 is a Cartan subspace.

We can compute directly that this subspace is abelian and semisimple and no vector outside

this subspace commutes with it.

Definition II.28. Suppose that c a Cartan subspace. Define NG0(c) to be the subgroup of

G0 which normalizes c and ZG0(c) to be the subgroup of G0 which stabilizes c. Define the

little Weyl group of c to be the group

W (c, θ) := NG0(c)/ZG0(c).

Example II.29. In the g = sl2(K) example, we can see directly by our previous computations

that the normalizer subgroup NG0(c) of our chosen Cartan subpsace c, which is given by

matrices of the form [ 0 bb 0 ], is the group
[ ±1 0

0 ±1

]
. Further, we can check directly that this

entire group acts trivially on c. Therefore NG0(c) = ZG0(c), and the Weyl group W (c, θ) is

trivial.

Theorem II.30 (Little Chevalley Theorem, Theorem 7 of [Vin76]). If K = Ks, the restric-

tion map r : K[g1]
G0 → K[c]W (c,θ) is an isomorphism.
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Note that the “Little” Chevalley Theorem is not true in general if K is not algebraically

closed.

As before, W (c, θ) is a finite reflection group, so that K[c]W (c,θ) is free with k1 homoge-

neous generators. In practice, if we know the invariants K[g]G of the adjoint representation,

we can often compute the invariants K[g1]
G0 of the Vinberg representation. To do this, we

need introduce some terminology.

Definition II.31. Let (g, θ) be an m-graded Lie algebra. Let F1, ..., Fl be homogeneous,

algebraically independent generators of K[g]G. Recall

1. the integers di = deg(Fi) are the degrees of g, and

2. the integers mi = di − 1 are the exponents of g.

The Fi may be chosen so that θ(Fi) = ϵiFi for some m-th root of unity ϵi. The ϵi are

called the factors of θ.

Theorem II.32 (Theorem 3.5 of [Pan05]). There is a restriction homomorphism

s : K[g]G → K[g1]
G0 .

The map s is onto, and K[g1]
G0 is freely generated by the restriction of the homogeneous

generators Fj of K[g]G satisfying ζdjϵj = 1.

Example II.33. We use the preceding material to calculate the invariant ring of the Vinberg

representation in our g = sl2(K) example. We have previously seen that we may choose

K[g]G to be generated by the determinant function F1, and thus θ acts trivially on F1, so

that d1 = 2 and ϵ1 = 1. Since the degree is 2, we have ζ = −1, so that ζd1ϵ1 = (−1)2 · 1 = 1.

Therefore K[g1]
G0 is freely generated by the restriction of the determinant function.

II.3: Connections to Curves

In this section, we describe associate to each stable 2-grading of a split, simple adjoint group

of simply-laced Dynkin type a family of curves. The material in this section comes from

[Tho13], to which we refer for proofs. Before proceeding, we recall that Lemma II.20 states

our choice of grading is unique up to a G(K)-change of coordinates.

In order to explain how the families arise, we will define a refinement of an sl2-triple.

Definition II.34. An sl2-triple (e, h, f) is called θ-adjusted if e is in g1, h is in g0, and f

is in g−1. It is called (sub)regular/nilpotent if e is (sub)regular/nilpotent.
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Lemma II.35 (Weighted Jacobson-Morozov). Every nilpotent e in g1 is contained in some

θ-adjusted sl2-triple.

Proof. See Lemma 2.17 of [Tho13].

Next, we will define the Kostant section, as well as our families of curves. It is natural to

introduce the Kostant section here, since the construction is similar to that of the families

of curves; the Kostant section gives a natural choice of K-orbit among each stable Ks-orbit.

Our construction of the Kostant section as well as of our families involves the choice of some

(sub)regular element; the next lemma describes how well this choice is determined.

Lemma II.36 (Lemma 2.17 and Proposition 2.29 of [Tho13]). Given θ, there is a unique

Gθ(K)-conjugacy class of regular nilpotent elements E in g1 (recall that G0 is the connected

component of Gθ).

1. If G is of type Dr or Er, there is a unique Gθ(K)-conjugacy class of subregular nilpotent

elements in g1.

2. If G is of type A2r, the G0(K)-conjugacy classes of subregular nilpotent elements in g1

are in bijection with K×/(K×)2.

3. If G is of type A2r+1, there is a unique G0(K)-conjugacy class of subregular nilpotent

elements in g1.

Further, given E, a θ-adjusted sl2-triple containing E is determined up to ZG0(E)(K)-

conjugacy.

Definition II.37. For a graded Lie algebra g, we define

g1//G0 := Spec(K[g1]
G0).

Definition II.38. An affine subspace κ ⊂ g1 is called a Kostant section if

1. the restriction of π : g1 → g1//G0 to κ induces an isomorphism of κ and g1//G0 and

2. over K = Ks, κ meets every regular semisimple orbit exactly once.

Lemma II.39 (Lemma 3.5 of [Tho13]). Let (e, h, f) be a θ-adjusted, regular nilpotent sl2(K)-

triple. Let Zg(f)1 denote the intersection of the centralizer of f in g with g1. Then κ =

e+ Zg(f)1 is a Kostant section.

Theorem II.40 (Theorem 3.8, Lemma 4.9, and Corollary 4.12 of [Tho13]). Let (e, h, f) be

a θ-adjusted, subregular nilpotent sl2(K)-triple. Then X = e+Zg(f)1 satisfies the following:
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1. the map π : X → g1//G0 is a flat family of reduced, affine curves,

2. the fibers over the stable locus (g1//G0)
s are smooth curves, and

3. X0 = π−1(0) ⊂ X has a simple singularity of the same Dynkin type as G.

Further, there exists a compactification π : Y → g1//G0 satsifying the following:

1. Y is a flat family of projective curves,

2. the fibers over the stable locus (g1//G0)
s are smooth curves,

3. the components of Y/X are disjoint, each isomorphic to B = g1//G0, and

4. for each b ∈ Bs and xb in the fiber over b, there is a canonical isomorphism

(G0)xb → J(Yb)[2].

We recall an explicit description of the families of curves given a choice of coordinates is

given in Table I.1 of our Introduction.

We note that there is a global, non-linear analog of the representations described in this

chapter, namely the action of the group G0 on the connected component Y of the subvariety

of elements g in G such that θ(g) = g−1. These “global” Vinberg representations are studied

in [Ric82], but our impression is that as of this writing, their properties are not as well-

understood as those of the “local” Vinberg representations we just described. A helpful task

would be to prove results for the global representations analogous to those we have stated

for the local representations. The global Vinberg representations appear in our Chapter III,

although we use little more than their definition.
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CHAPTER III

Surfaces and the Orbit Problem for An

III.1: Introduction

Let K be a field of characteristic 0 with separable closure Ks. Suppose that C is a hyperel-

liptic curve of genus g with a marked points and tangent vectors. Our goal is to construct

functorially, given certain types of data (C,P, t), where P is a point on C and t a tangent

vector at P , a split, simple adjoint Lie group H of type An equipped with a stable involution

θ such that

1. if G = H0 acting on V = h1 is the local Vinberg representation associated to (H, θ), if

B = V//G := Spec(K[V ]G), and if π : X → B is the family of curves in Theorem II.40,

then C is isomorphic to Xb for some b ∈ B, and the marked points on C correspond

to the points at infinity of Xb, and

2. if Y is the global Vinberg representation associated to (H, θ), then there are injections

ϕ : J(C)/2J(C)(K) → G\V (K) and Φ : J(C)/2J(C)(K) → G\Y (K).

Recall that (2) is the 2-Descent Problem. The goal of this chapter is to prove Theorem

I.5, which provides an approach to this problem when H is of type An.

Proposition III.1 (see [BG14], Proposition 1). Using the preceding notation, given an orbit

v with invariant set f , there is a bijection between the orbit set G\Vf (k) and the kernel of

the map

γ : H1(k,Gx) → H1(k,G).

As stated in the Introduction, the work in this chapter is based on work by Romano and

Thorne in the En case as outlined in the papers [RT21], [Rom21], and especially [Tho16]. It

differs from other work addressing the 2-Descent Problem in the An case in that we study

both the local and global Vinberg representations, whereas previous works focus on the local

representation. In addition, we address not only the descent step (2), but also step (1);

that is, we do not assume that (H, θ) is given, but rather construct the group H and the

automorphism θ from the data (C,P, t).
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III.2: Constructing the Surface S

Let C be a hyperelliptic curve of genus g defined over K. There exists a degree 2g + 2

polynomial f(x) such that we can write C as the unique smooth completion of the affine

curve C given by

y2 = f(x).

The choice of f can vary up to a projective change of coordinates in x; later in this chapter,

we discuss the implications of this choice. We will also see that given marked points and

tangent vectors on C, we may conclude properties of the form of f.

Given f(x), we also obtain an affine surface S in A3 given by the equation

y2 − z2 = f(x).

One smooth, complete model S for S is a conic bundle over P1
K with 2g + 2 nodal fibers.

We begin by defining S and note that a different choice of f induced by a projective change

of coordinates in x yields an isomorphism between surfaces via a map changing x and fixing

all other coordinates. From our definition, it will be clear that S has a map to P1
K such that

the fibers of this map are generically smooth genus zero curves.

We construct S by gluing together two surfaces defined over A1
k. Let m = g + 1. Define

the surface S1 in P2
k × A1

k, with coordinates [w : y : z]× u by the equation

y2 − z2 = w2F (u, 1),

where F (u, v) is a degree 2m homogeneous polynomial such that F (u, 1) = f(u). Define the

surface S2 in P2
k × A1

k, with coordinates [w′ : y′ : z′]× v by the equation

y′2 − z′2 = w′2F (1, v).

We can check by directly computing the Jacobians of their defining equations that S1 and

S2 are smooth, that the fibers above each point of A1
k are conics, and that the singular fibers

lie above the 2m roots of F and are (over Ks) unions of lines intersecting transversely.

We may identify the open subsets U1 ⊂ S1 and U2 ⊂ S2 where u and v, respectively, are

non-zero, via the isomorphism ϕ : U1 → U2 given by

ϕ([y : z : w]× u) → [y, z, umw]× 1

u
.

Let S be the surface obtained from gluing the Si along the Ui.
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Remark III.2. Note that S comes equipped with an involution θ : S → S given on each chart

by sending z to −z and fixing all other coordinates.

In summary, we have constructed, given the polynomial f(x), a conic bundle S above P1

with 2g + 2 reducible nodal fibers.

As seen in Table I.1, to each Dynkin type An, we have associated a family of hyperelliptic

curves, each with a certain number of marked points. In what follows, we show that we may

use the Picard group of S to construct in a functorial way a Lie algebra of type An, with n

depending on the genus of our hyperelliptic curve C and the marked rational points on C.

III.3: Picard Group of S

In order to describe the Picard group of S, we provide an alternate description of S as a

Hirzebruch surface.

Lemma III.3 (Classical, see 1.2.3 of [Dol82]). The Hirzebruch surface Fm is isomorphic to

the blowup of the weighted projective space P(1,m, 1) at its singular point.

Theorem III.4. Suppose that f is a degree 2m polynomial defined over K with distinct

roots in Ks, and let S be the completion of the affine surface

y2 − z2 = f(x)

constructed in the previous section. Let u1, ..., u2m be the roots of f, let [u : v : w] be

coordinates on P(1,m, 1), let Fm = Bl[0:1:0]P(1,m, 1), and let Pi be the the point [ui, 0, 1] in

P(1,m, 1) ⊂ Fm. Then S is isomorphic over K to BlP1,...,P2mFm (note that BlP1,...,P2mFm is

defined over K since the Galois action permutes the Pi).

Proof. We prove this theorem by explicitly constructing an isomorphism ϕ from X =

BlP1,...,P2mFm to S. To do this, we recall that Lemma III.3 states that Fm is the Bl of

P(1,m, 1) at [0 : 1 : 0].

On the open subset [a : b : 1] of P(1,m, 1) where a ̸= 0, we set

ϕ([a : 1 : b]) = [−2 : −(b+ F (
b

a
, 1)) : b− F (

b

a
, 1)]× b

a
∈ S1,

where S1 is open subsurface of S defined in the preceding section. Geometrically, on each

line Lλ given by the equation b = λa, this map is the classical isomorphism, sending the

point [a : 1 : b] to the intersection of the line of slope b through [1 : 1 : 0] and the conic Sλ in

S lying over x = λ, between Lλ and Sλ. From this description, one can readily deduce that

ϕ extends to a morphism on all of X and is an isomorphism.
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Next, we record some facts about the Picard group of S.

Lemma III.5. Let the Pi be given as above, and let S = BlP1,...,P2mFm. Let F be the

exceptional curve over [0 : 1 : 0]. Let D be the curve u − u0w = 0, where u0 is not equal to

any of the ui for 1 ≤ i ≤ 2m. Let E ′
i be the strict transform of the curve u − uiw = 0. Let

Ei be the exceptional curve over Pi. Let F
′ be the strict transform of v = 0.

1. If θ is the involution of S in Remark III.2, then we have θ(F ) = F ′ and θ(Ei) = E ′
i.

2. The group Pic(S)(Ks) is freely generated by F, D, and the Ei for 1 ≤ i ≤ 2m (note

that D corresponds to a fiber of the conic bundle). The intersection numbers are given

by the following:

F 2 = −m, D2 = 0, E2
i = −1,

F.D = 1, F.Ei = 0,

D.Ei = 0, Ei.Ej = 0

for i ̸= j.

3. The anticanonical class of S is given by

−KS = 2F + (m+ 2)D − E1 − E2 − ...− E2m.

(Note that the Galois action fixes F and D permutes the Ei, so that KS is defined over

K.)

Proof. (1) This follows from the isomorphism between BlP1,...,P2mFm and S given in proof of

the preceding theorem and the explicit formula for θ given in Section 3.2.

(2) By [Bea96, IV.1], the Picard group of Fm is ZF ⊕ ZD with intersection matrix[
−m 1

1 0

]
.

The rest follows from the fact that the Pi lie on neither F nor D.

(3) By the remark after 2.7 in [Rei97], the anticanonical class of Fm is given by 2F +

(m+ 2)D. Again, the rest follows from the fact that the Pi lie on neither F nor D.

Now we record some facts about root lattices contained in Pic(S)(Ks).

Lemma III.6. 1. The orthogonal complement of −KS in Pic(S)(Ks) is generated by

e−1 = F + (m− 1)D − E1 − E2 − ...− E2m, e0 = D − E1 − E2,
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e1 = E1 − E2, ..., e2m−1 = E2m−1 − E2m.

2. The orthogonal complement of −KS and D is generated by ej for 0 ≤ j ≤ 2m− 1. The

intersection matrix of these ej is

−2 0 1 0 ... 0 0

0 −2 1 0 ... ... ...

1 1 −2 1 ... ... ...

0 0 1 −2 ... ... 0

... ... ... ... ... 1 0

0 ... ... ... 1 −2 1

0 ... ... 0 0 1 −2


,

so that the ej generate a D2m root lattice.

Proof. (1) Suppose that L in Pic(S)(Ks) is given by L = aF + bD+
∑2

i=1mciEi. By Lemma

III.5, we have

−KS.L = (2−m)a+ 2b+
2m∑
i=1

ci.

From this equation and the formula for the ej, we see that for −1 ≤ j ≤ 2m − 1, we have

ej.Ks = 0 For

L = aF + bD +
2m∑
i=1

ciEi

in K⊥
S , we have that

L = ae−1 + (b− (m− 1))e0 +
2m−1∑
k=1

dkek,

where the dk are undetermined coefficients which can be solved given the equality (2−m)a+

2b+
∑2m

i=1 ci = 0

(2) This follows from part (1) and the fact that if L = aF+bD+
∑2m

i=1 ciEi is perpendicular

to KS and D, then a = 0. The intersection numbers can be directly computed using the

presentation of the Picard group of S given in Lemma III.5.

Later, we will use two important anti-canonical curves in S whose properties are described

in the following lemmas.

Lemma III.7. Let S, F , and F ′ be as above, and let D1 and D2 be the strict transforms of

the lines a1u − b1w = 0 and a2u − b2w = 0, respectively, which do not intersect any of the

exceptional loci. Let C ′ be the union of F , F ′, D1, and D2. Then
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1. C ′ is an anticanonical divisor,

2. Pic(C ′) = G4
m (where the first two factors correspond to D1 and D2, respectively, and

the second two factors correspond to F and F ′, respectively), and

3. the subgroup of elements of Pic(C ′) negated by the involution θ of Remark III.2 is

isomorphic to Gm.

Proof. (1) Write C ′ = aF + bD +
∑2

i=1mciEi. Then we have

C ′.D = 2, C ′.F = −m+ 2, C ′.Ei = 1.

From this and Lemma III.5, we obtain a = 2, b = m + 2, and ci = −1. Therefore C ′ is

anticanonical.

(2) This follows from Chapter 9 of [BLR90].

(3) The explicit isomorphism between S and BlP1,...,P2mFm given in the proof of Theorem

III.4 shows that θ acts on Pic(C ′) by the identity on the first two Gm factors and swaps the

second two Gm factors. Therefore the subgroup negated by θ is isomorphic to Gm.

Lemma III.8. Let S, F , and F ′ be as above, and let D′ be the strict transform of the line

au− bw = 0, chosen to not intersect any of the exceptional loci. Let C ′′ be the union of F ,

F ′,and D′. Then

1. C ′′ is an anticanonical divisor,

2. Pic(C ′′) = G2
a (where the two factors correspond to F and F ′, respectively), and

3. the subgroup of elements of Pic(C ′′) negated by the involution θ of Remark III.2 is

isomorphic to Ga.

Proof. The proof is similar to that of the previous lemma.

III.4: Summary of Special Sublattices

We have seen that orthogonal complement of KS and D, which are both defined over K,

in the Picard lattice is a D2g+2 lattice Λg, which has a K-structure. This has a unique

A2g+1 sublattice with a K-structure, which we call Λ′
g. Using the notation above, this A2g+1

sublattice is generated by the ei for 1 ≤ i ≤ 2g+1 and is given by the orthogonal complement

of KS, D, and F . In the case that we have a marked reducible fiber E1 ∪ E ′
1 defined over

K, we obtain an A2g sublattice with a K-structure, which we call Λ′′
g . Using the intersection
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matrix in the previous section, we see that the lattice Λ′′
g is the complement of E1−E ′

1 in Λ′
g.

The Galois action sends E1 − E ′
1 to E ′

1 − E1, so this complement is defined over K. Using

the notation above, the lattice Λ′′
g is generated by the ei for 2 ≤ i ≤ 2g + 1.

We note in particular that given a hyperelliptic curve C of genus g and a marked Weier-

strass point P , we may choose and equation f(x) with a root at x = 0, which leads to a

marked reducible fiber defined over K. Thus we may obtain an A2g sublattice. Without the

marked Weierstrass point, we can always obtain a D2g+2 lattice and an A2g+1 lattice with

K-structures.

III.5: Lie Groups with Involutions and Extensions of Root Lattices

In order to perform our construction of a Lie group plus additional data, we use a result of

Lurie extended by Thorne and Kaletha in [Tho16] which connects Lie groups with stable

involutions to extensions of root lattices. To describe this result, it is helpful to first define

two categories.

Definition III.9. Let L be the category consisting of tuples (H, θ, T, π), where

1. H is a simple adjoint Lie group defined over K,

2. θ is a stable involution of H with trace −rk(H), T is a maximal torus of H on which

θ acts by inversion,

3. and π : g = hθ → gl(W ) is a representation defined over K.

A morphism from (H, θ, T, π) to (H ′, θ′, T ′, ϕ′) consists of

1. an isomorphism ρ : H → H ′ sending T to T ′ such that θ′ ◦ ρ = ρ ◦ θ

2. and a K-vector space isomorphism ϕ : W → W ′ such that if Φ : gl(W ) → gl(W ′) is

defined by Φ(m) = ϕ ◦m ◦ ϕ−1, then Φ ◦ π = π′ ◦ dρ.

Definition III.10. Let R be the category consisting of tuples (Λ, ψ, Ṽ , µ, γ), where

1. Λ is a simply laced root lattice defined over Ks with associated quadratic form q and

V := Λ/2Λ (we will also use q to denote the F2-valued quadratic form on V ),

2. ψ : ΓK → W (Λ) is a continuous homomorphism from the absolute Galois group ΓK of

Ks/K to the Weyl group of Λ,
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3. Ṽ is a central extension

1 {±1} Ṽ V 1

such that ṽ2 = (−1)q(v) for any ṽ ∈ Ṽ lying above v in V .

4. µ : ΓK → Aut(Ṽ ) is a continuous homomorphism such that µ(ΓK) leaves the subgroup

{±1} of Ṽ invariant and that the maps

ΓK W (Λ) ⊂ Aut(Λ) Aut(V )
ψ

and

ΓK Aut(Ṽ ) Aut(V )
µ

coincide,

5. and γ : Ṽ → GL(W ⊗ Ks) is a ΓK-invariant group homomorphism from Ṽ into the

automorphisms of some K-vector space W such that γ(−1) = −idW .

A morphism from (Λ, ψ, Ṽ , µ, γ) to (Λ′, ψ′, Ṽ ′, µ′, γ′) is

1. an isomorphism ρ : Λ → Λ′ of simply laced root lattices which commutes with the

actions of ψ and µ

2. an K-vector space isomorphism ϕ : W → W ′ which agrees with the maps γ and γ′.

Theorem III.11 (Section 2 and Appendix of [Tho16]). There is a functor F : R → L which

induces an equivalence of of categories.

Definition III.12. An object of L such that h and hdθ are both split is called a split object.

Finally, we will use the following results on involutions of split Lie algebras.

Theorem III.13. Suppose that H and H0 are split, simple adjoint Lie groups over K of

Dynkin type An equipped with involutions θ and θ0, respectively. There exists an isomorphism

ψ : H → H0 satisfying

θ0 ◦ ψ = ψ ◦ θ,

and ψ is unique up to Hθ(K)-conjugacy and multiplication by θ in the sense that if an

isomorphism ψ′ : H → H0 has the same property, then ψ−1 ◦ ψ′ is of the form θ ◦Ch, where
Ch : H → H is conjugation by some element h of Hθ.
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Let V0 be the standard representation of h0 ∼= sl(n+1). We may choose ψ so that ψ∗(V0)

is the standard representation of of h, and with this assumption, the map ψ is unique up to

Hθ-conjugacy.

Let W0 be the standard representation of g0 = hθ0 = so(n + 1). We may choose ψ so

that in addition, ψ∗(W0) is the standard representation of g = hθ, and with this additional

assumption, the map ψ is unique up to (Hθ)◦-conjugacy.

The proof of this theorem utilizes the following lemma.

Lemma III.14 (Proposition 1.9, [Tho16]). Let H be a simple, adjoint split Lie group defined

over K of type An. The class of involutions θ satisfying

1. tr(dθ : h → h) = −rkH and

2. the identity component (Hθ)◦ of Hθ is split

is unique up to H(K)-conjugacy.

Proof of Theorem III.13. Since H and H0 are simple, adjoint, split Lie groups over K with

the same Dynkin type, there exists some isomorphism ψ : H → H0. We can check that

ψ−1 ◦ θ0 ◦ψ is an involution on H satisfying the conditions in Lemma III.14. Therefore there

exists some h in H such that

(ψ ◦ Lh)−1 ◦ θ0 ◦ (ψ ◦ Lh) = θ,

where Lh : H → H is left multiplication by h. Replacing ψ with ψ ◦ Lh, we have shown the

existence of an isomorphism ψ such that θ0 ◦ ψ = ψ ◦ θ.
To show uniqueness, it suffices to show that the commutator of θ in Aut(H) is given by

elements of the form θ ◦ Ch, where h is in Hθ; indeed, when H is of type An, then Aut(H)

is a semidirect product of the inner automorphisms with the cyclic group generated by θ, as

shown in the description of θ given in [Tho13, Lemma 2.13]. It is clear that θ commutes with

itself, so we need to show that if Ch commutes with θ, then h is fixed by θ. If Ch commutes

with θ, then for all g ∈ H, we have

θ(h)gθ(h)−1 = hgh−1.

Since H is adjoint, this implies θ(h) = h, so that h is in Hθ.

By the classification of representations of sl(n + 1), as in [Tit66, pp. 54–58], we have

that ψ∗(V0) is either isomorphic to the standard representation or its dual. Since θ∗(V0) is
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the dual to the standard representation, if ψ∗(V0) is isomorphic to the dual of the standard

representation, we replace ψ by θ ◦ ψ. Then ψ is unique up to Hθ-conjugacy.

If n is even, then Hθ is connected, and we are done. If n is odd, then Hθ has two

components and conjugating by an element of the non-identity component sends ψ∗(W0) to

its dual while leaving ψ∗(V0) fixed. Therefore if ψ∗(W0) is isomorphic to the dual of the

standard representation of so(n), we conjugate ψ by an element of Hθ not in the identity

component. Then ψ is unique up to (Hθ)◦-conjugacy.

III.6: Heisenberg Groups

We recall some well-known material on Heisenberg groups of abelian varieties, which we will

use to construct our central extensions. For references and proofs where needed, we refer to

[BL04].

Definition III.15. Let X be an abelian variety defined over an algebraically closed field of

characteristic 0. Let L be a very ample line bundle on X.

The group K(X,L) is the subgroup of elements x in X such that t∗x(L) is isomorphic to

L.

The Heisenberg group H(X,L) is the group of pairs (x, ϕ), where t∗x(L) is isomorphic to

L and such that the diagram

L L

X X

ϕ

t∗x

is Cartesian.

The product (x, ϕ).(y, ψ) is equal to (x+ y, ϕ ◦ ψ).

Lemma III.16. The map π : H(X,L) → K(X,L) given by forgetting ϕ canonically identifies

H(X,L) with a central extension of K(X,L) by Gm.

Proof. The map π is clearly surjective, and the kernel of π is simply the isomorphism group

of L, which is canonically isomorphic to Gm.

We are specifically interested in the Heisenberg groups of line bundles related to theta

divisors on Jacobians. We recall the definition of a theta divisor.

Definition III.17. A divisor Θ which defines a principal polarization on J(C) is called a

theta divisor (see [BL04, p.323] for further details). A divisor on J(C) is called symmetric

if it is fixed by the pullback map (−1)∗ on Pic(J(C)).
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We will use the following result in our computations.

Lemma III.18. Suppose that C is a curve of genus g defined over K. Let Θ be a symmetric

theta divisor, and for a point B ∈ J(C), let ΘB be equal to t∗B(Θ). The following are true.

For any d > 0, we have

1. h0(J(C), dΘB) := dimH0(J(C), dΘB) = dg and

2. K(J(C), dΘB) = J(C)[d].

Proof. 1. This follows from [BL04, 3.2.8] along with the fact that Θ, by definition, defines a

principal polarization on J(C).

2. This follows from [BL04, 11.3.4].

Lemma III.19. For any h = (x, ϕ) in H(J(C), 2ΘB), we that h
2 lies in Gm. Therefore there

is a well-defined map

χ : H(J(C), 2ΘB) → Gm

sending h to (−1)q(x)h2, where q is the quadratic form on J(C)[2] induced by the Weil pairing.

Proof. For h = (x, ϕ), inH(J(C), 2ΘB), by Lemma III.18 we have that x lives inK(J(C), 2ΘB) =

J(C)[2]. Therefore h2 = (x+ x, ϕ ◦ ϕ) = (0, ϕ ◦ ϕ).

Definition III.20. Suppose that ω ∈ H0(X,L) is a global section of L. For any element

(x, ϕ) in H(X,L), the element ϕ◦ω◦t−1
x is also a global section. Thus (x, ϕ) acts on H0(X,L),

and this action defines the canonical representation ρ : H(X,L) → GL(H0(X,L)).

Lemma III.21. . The canonical representation is irreducible. In the specific case of

H(J(C), 2ΘB), we have that the restriction of ρ to the subgroup ker(χ) is an irreducible

representation of ker(χ) as well.

In addition, we have that ρ(−1) = −1, where here −1 denotes the element

(0,−1) ∈ Gm ⊂ H(X,L).

Proof. The first sentence is [BL04, 6.4.3]; the proof given there shows, in addition, that given

any non-zero vector v inH0(J(C), 2ΘB), there exist elements g1, ..., gm inH(J(C), 2ΘB), such

that g1.v, ..., gm.v is a basis of H0(J(C), 2ΘB). By scaling, we may assume that g1, ..., gm lie

in ker(χ). This shows that there are no non-trivial subrepresentations of ρ on ker(χ), so that

ρ is irreducible on ker(χ).

The second sentence follows immediately from the definition of ρ; namely, given a section

ω ∈ H0(X,L), we have that

ρ(−1).(ω) = (0,−1).ω = (−1) ◦ ω = −ω,
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which finishes the proof.

In addition, we will need to show that various line bundles have a K-structure, even when

we work in part over its algebraic closure Ks.

Lemma III.22. Suppose that C is a curve of genus g defined over a field K (not necessarily

algebraically closed) of characteristic 0. If Θ is a symmetric theta divisor defined over K

and B in J(C) is such that 2B is defined over K, then 2ΘB is also defined over k.

Proof. This follows from applying [BL04, 11.3.4] with (in the notation of that book) κ =

ω +B, where ω is any theta divisor on C defined over Ks.

III.7: Marked Data and Equations

In this section, we show that given additional marked data on the curve C, we can make

assumptions about the form of f in the defining equation of our surface S. These assumptions

will be useful in the following sections.

Lemma III.23. Given a hyperelliptic curve C of genus g defined over K and marked rational

points P1 and P2 defined over K such that [P1 + P2] is the hyperelliptic class, there is a

polynomial f(x) of degree 2g + 2 such that

1. f is monic,

2. the coefficient of x2g+1 in f is zero,

3. C is the unique smooth completion of the affine curve

y2 = f(x), and

4. if F (x, z) is the homogenization of f , then there is an isomorphism from C to the curve

Y 2 = F (X,Z)

in P(1, g + 1, 1) sending P1 to [1 : 1 : 0].

Further, f is unique up to a change in the equation induced by the change in variables

x→ λx, y → λg+1y, where λ is a non-zero constant.
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Before beginning the proof, we recall note that for n = 2g + 1, the curves in the family

π : X → B corresponding to the degree-2 Vinberg representation of type An are exactly

those of the form

y2 = f(x),

where f satisfies conditions 1-4.

Proof. It is a classical fact (see for example [Sha13, 6.5]) that there exists a polynomial

f satisfying properties 1, 3, and 4. After possibly translating x, we can assume that 2

is satisfied. By conditions 3 and 4, x must be a rational function on C in the Riemann-

Roch space L(P1 + P2), and y must be a rational function in the Riemann-Roch space

L((g + 1)(P1 + P2)). In order to preserve conditions 1–4, the only other possible choices of

x and y are x→ λx, y → λg+1y, where λ is a non-zero constant.

Lemma III.24. Given a hyperelliptic curve C of genus g defined over K, a marked Weier-

strass point P defined over K, and a non-zero tangent vector t in the tangent space at P

defined over K, there is a unique polynomial f(x) of degree 2g + 2 such that

1. f is monic,

2. the coefficient of x2g+1 in f is zero,

3. C is the unique smooth completion of the affine curve

y2 = f(x),

4. if F (x, z) is the homogenization of f , then there is an isomorphism from C to the curve

Y 2 = F (X,Z)

in P(1, g + 1, 1) sending P1 to [1 : 1 : 0], and

5. the differential d( Z
X
) sends t to 1.

Before beginning the proof of this lemma, we note that the choice of coordinates for the

family π : X → B described in the text preceding Table I.1 in the Introduction gives a

canonical choice of tangent vector for the marked point(s) at infinity.

Proof. We have already shown a polynomial f(x) exists satisfying 1-4 unique up to a change

in the equation induced by the change in variables x→ λx, y → λg+1y, where λ is a non-zero

constant.

30



We now show that we may choose f(x) satisfying 5. By 4., on the affine coordinates

a = Z
X
, b = Y

Xg+1 , the tangent space to P1 can be identified with the subspace b = 1. Since t

is non-zero, d( Z
X
) = da sends t to some non-zero scalar k. We set λ = k, and this fixes our

choice of λ.

The proofs of the following two lemmas are similar.

Lemma III.25. Given a hyperelliptic curve C of genus g defined over K and a marked

rational Weierstrass point P defined over K, there is a polynomial f(x) of degree 2g+2 such

that

1. the constant term in f is 0,

2. the coefficient of x in f is 1,

3. the coefficient of x2 in f is 1,

4. C is the unique smooth completion of the affine curve

y2 = f(x), and

5. if F (x, z) is the homogenization of f , then there is an isomorphism from C to the curve

Y 2 = F (X,Z)

in P(1, g + 1, 1) sending P to [0 : 0 : 1].

Further, f is unique up to a change in the equation induced by the change in variables

x→ λx, y → λg+1y, where λ is a non-zero constant.

We note that Table I.1 shows that for n = 2g, the curves in the family π : X → B

corresponding to the degree-2 Vinberg representation of type An are exactly those of the

form

y2 = h(x),

where h is of degree 2g + 1 and satisfies conditions 1-3 in Lemma III.23. This curve is

birational via a transformation of the form x→ 1
x−a , y → y

xg+1 to an affine curve of the form

y2 = f(x),

where f satisfies conditions 1-5 in Lemma III.25.
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Proof. It is a classical fact that there exists a polynomial f of degree 2g + 1 satisfying

conditions 1-4 in Lemma III.23. After a birational transformation of the kind in the remarks

preceding this proof, we may assume f is of degree 2g + 2 and satisfies conditions 1-4 in

Lemma III.25. The rest of the proof proceeds similarly to that of Lemma III.23.

Lemma III.26. Given a hyperelliptic curve C of genus g defined over K, a marked Weier-

strass point P defined over K, and a non-zero tangent vector t in the tangent space at P

defined over K, there is a unique polynomial f(x) of degree 2g + 2 such that

1. the constant term in f is 0,

2. the coefficient of x in f is 1,

3. the coefficient of x2 in f is 1,

4. C is the unique smooth completion of the affine curve

y2 = f(x),

5. if F (x, z) is the homogenization of f , then there is an isomorphism from C to the curve

Y 2 = F (X,Z)

in P(1, g + 1, 1) sending P to [0 : 0 : 1], and

6. the differential d( Y
X
) sends t to 1.

Proof. The proof is similar to that of Lemma III.24.

III.8: Connections to Jacobians of Curves

Recall that C naturally lives inside S as the locus (on each affine piece Si) z = 0. Let

i : C → S be the inclusion. Then i induces a map i∗ : Pic(S) → Pic(C). Let Λ be one of

the sublattices Λg, Λ
′
g, or Λ

′′
g defined in Section III.4. The map i∗ descends to a restriction

map r : Λ → Pic(C). We will show that r induces a surjection from V := Λθ = Λ/2Λ onto

Pic(C)[2] = J(C)[2], and that it preserves natural bilinear F2-forms that we define on each

group. In this section, we will switch freely between the description of S given via equations

and the description as a blowup of a Hirzebruch surface.

Definition III.27. The Weil pairing ⟨·, ·⟩J(C)[2] is the non-degenerate bilinear F2-form on

J(C)[2] given by taking the usual Weil pairing J(C)[2] × J(C)[2] → µ2 and identifying µ2

with F2.
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Definition III.28. The form ⟨·, ·⟩V is defined to be the non-degenerate bilinear F2-form on

V = Λ/2Λ given by taking the intersection number, modulo 2. (The non-degeneracy can be

checked directly using the intersection matrix in Lemma III.6.)

Lemma III.29. The restriction map r : Λ → Pic(C) is surjective onto Pic(C)[2], contains

2Λ in its kernel, and preserves the non-degenerate F2-forms on each vector space. In the

case Λ = Λ′′
g, this restriction map induces an isomorphism between Λ/2Λ and Pic(C)[2].

The proof is by direct computation. Before beginning the proof, it is helpful to remember

how to compute the Weil pairing. The following lemma is classical.

Lemma III.30. Let (·, ·) denote the usual µ2-valued Weil pairing on J(C)[2]. Suppose that

[D] and [E] are 2-torsion divisor classes, i.e., 2[D] = 2[E] = [0]. Choose rational functions

f and g such that div(f) = D and div(g) = E. Then

([D], [E]) =
∏
P∈C

gordP (D)

f ordP (E)
(P ).

Proof. See Exercise 3.16 of [Sil86] for an equivalent formulation.

In addition, we recall the structure of J(C)[2] when C is hyperelliptic of genus g.

Lemma III.31. Suppose that P1, ..., P2g+1 are 2g + 1 distinct Weierstrass points of C. The

divisor classes

[D1] = [P2 − P1], ..., [D2g] = [P2g+1 − P1]

form a basis of J(C)[2].

Proof. Using the intersection matrix given in Lemma III.6, we can compute

⟨[Di], [Di]⟩J(C)[2] = 0, ⟨[Di], [Dj]⟩J(C)[2] = 1, i ̸= j

A fact from linear algebra (see for example [Zar08, Lemma 2.8]) implies that given these

intersection numbers, the [Di] are linearly independent. Since J(C)[2] is 2g-dimensional as

an F2 vector space, the [Di] form a basis.

Proof of Lemma III.29. Let P1, ..., Pn+1 be the affine Weierstrass points of C, and ai be the

x-coordinate of Pi. The divisor Ei defined in Section 3.3 lives in the fiber above ai, and

i∗([Ei]) = [Pi]. Using the notation of Lemma III.6, we then have r([ei]) = [Pi − Pi+1] for

1 ≤ i ≤ 2g + 1.

We can see directly that the divisor classes [Di] = [Pi+1 − P1] for 1 ≤ i ≤ 2g lie in the

image of r, so that r is surjective by Lemma III.31. In the case Λ = Λ′′
g , the lattice Λ is
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generated by ei for 2 ≤ i ≤ 2g + 1, so it contains the 2g divisor classes [D′
i] = [Pi+1 − P2].

Since V = Λ/2Λ and J(C)[2] are both 2g-dimensional as F2 vector spaces, r induces an

isomorphism between V and J(C)[2].

III.9: Canonical Orbits

In this section, we associate to each appropriate tuple (C,P, t) a Lie group G and a canonical

element κC (or µC) of the vector space V (respectively, variety Y ) on which G acts. The

element κC (or µC) will correspond to the image of 0 ∈ J(C) under the descent map as well

as index the orbit space in which the image of J(C) lies. First, we make a definition in order

to better discuss our tuples.

Definition III.32. For n = 2m, let Sn(K) be the set of equivalence classes of pairs (C,P, t),

where C is a smooth, genus m hyperelliptic curve defined over K, P is a marked Weierstrass

K-point on C, and t is a tangent vector at P . For n = 2m + 1, let Sn(K) be the set of

equivalence classes of pairs (C,P, t), where C is a smooth, genus m hyperelliptic curve, P is

a marked non-Weierstrass K-point on C, and t is a tangent vector at P .

By Lemmas III.24 and III.26, each object in Sn(K) determines a unique polynomial f(x).

Let S0
n(K) be the objects such that the constant term of f(x) is non-zero.

Suppose that we are given a tuple v in Sn(K) for some n. Let C be the curve in v. Let

B ∈ J(C)(Ks) be a line bundle such that 2B is defined over K.

We will construct an object ρB in the category R. Let S be the completion of the affine

surface y2−z2 = f(x), where f(x) is the unique polynomial corresponding to v from Lemmas

III.24 and III.26.

To give an object of R, we must specify a tuple (ΛB, ψB, ṼB, µB, γB). We define ΛB to be

the lattice Λ′
g if n is even and Λ′′

g if n is odd. We can check by the explicit generators given

for ΛB that the Galois group ΓK acts via automorphisms in the Weyl group, which specifies

the map ψB.

The most involved part is defining the central extension ṼB. Recall that by defini-

tion, VB = ΛB/2ΛB. By Lemma III.18, we have a central extension H(J(C), 2ΘB) of

K(J(C), 2ΘB) = J(C)[2] by Gm. We push this out by the (Galois invariant) surjection

r : V → J(C)[2] of Lemma III.29 to obtain a central extension ẼB of VB by Gm. The ex-

tension ẼB has the property that for any ẽ ∈ ẼB lying above e in VB, we have that ẽ2 is in

Gm (since the extension H(J(C), 2ΘB) has this property by Lemma III.19). Therefore we

may define a map χB : ẼB → Gm by χB(ẽ) = (−1)q(e)ẽ2. Define ṼB := kerχB. Then ṼB is a
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central extension of VB by {±1}, and χB(ṽ) = (−1)q(v)ṽ2 = 1, so ṽ2 = (−1)q(v) for any ṽ in

ṼB.

The map µB comes from pushing out the analogous map by the extension H(J(C), 2ΘB)

(and its properties are checked the same way).

Similarly, γB comes from pushing out the canonical representation on H(J(C), 2ΘB).

Definition III.33. Having constructed an object ρB of R, we define λB in L to be λB :=

F (ρB), where F is the equivalence of categories in Theorem III.11.

The most canonical choice of tuple in L associated to v = (C,P, t) is of course the object

λ0 = (H0, θ0, T0, π0) corresponding to the trivial bundle 0 ∈ J(C) as in Theorem III.35. We

construct canonical elements in the orbit spaces W0\t0 and W0\T0. The idea is that for any

given invariant set f , an orbit in the torus with invariant set f is the most “obvious” choice

(although we note that if K is not algebraically closed, there can be multiple orbits in the

torus with a given invariant set).

We recall that for a smooth hyperelliptic curve C, the polynomial f in the equation

y2 = f(x) corresponding to C has distinct roots. In terms of the Vinberg representation,

this means C corresponds to the set of invariants of a regular semistable orbit. Therefore,

we want to show that we may associate to each curve C a point in T rss0 .

Lemma III.34. Given a datum v = [(C,P, t)] ∈ Sn(K), and a point B in J(C)(K) such

that 2B is defined over K, there is a canonical choice of

1. a point κC,B ∈ trssB (K), where TB is the maximal torus corresponding to λB, as in

Theorem III.35, and tB its Lie algebra, and

2. if v is in S0
n(K), a point µC,B in T rssB (K).

Proof. For 1., let C ′′ be the anticanonical curve in Lemma III.8 with D chosen to be the

curve w = 0. Since θ acts on Pic(S)(Ks) by negation, the image of the restriction map

r : Λ = ΛB → Pic(C ′′) lies inside the subgroup A of Pic(C ′) negated by θ, which is isomorphic

to Ga, but not canonically. We choose an isomorphism as follows. Each element of A can be

uniquely represented as P1 − P2, where P1 and P2 are effective divisors whose support is on

the regular points of F ′, or in this case the set of points [u : 0 : 1] (since D was chosen to be

the curve w = 0). We obtain an isomorphism A ∼= Ga sending [u : 0 : 1] to u and extending

linearly. Therefore we obtain a map ΛB → A ⊂ Pic(C ′′) → Ga, which corresponds to an

element κC,B of the the Cartan subspace tB ∼= Hom(ΛB,Ga). To show that κC,B lies in the

regular semisimple locus tB, we must show that κC,B doesn’t send any roots to 0.This can

be checked explicitly using the description of the divisors Ei and E
′
i.
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For 2., let C ′ be the anticanonical curve in Lemma III.7 with D1 chosen to be the curve

u = 0 and D2 chosen to be the curve w = 0 (this is possible since 0 is assumed not to be a

root of f(x)). The rest of the proof proceeds similarly to that of 1.

Theorem III.35. Let λB be the object L from definition III.33. Assuming that HB is split,

we have that λB is split.

Proof. By Lemma III.34, we have that (gB)1 contains a regular semisimple element. By

Lemma II.21, GB is split.

From now on, we use κC to denote κC,0 and µC to denote µC,0.

Theorem III.36. The map assigning v = [(C,P, t)] to κC induces a map Φ from Sn(k) into
W0\trss0 . If K is algebraically closed, this map is a bijection.

Proof. The proof of Lemma III.34 shows that κC is canoincally determined by v, so that

the orbit [κC ] is well-defined. To show that Φ is a bijection if K is algebraically closed, we

construct an inverse Ψ following the argument in the proof of Proposition 1.8 of [Loo93].

Suppose that χ is a character on trss0 , i.e., χ(Ei−Ej) ̸= 0 for any i ̸= j. Choose an arbitrary

point P1 in Ga = A1
K . For P2, ..., Pn, let Pi+1 = χ(Ei+1 −Ei)Pi. Since χ is in trss0 , the Pj are

distinct for all 1 ≤ j ≤ n. Let g(x) be the degree n monic polynomial in x with roots at

the Pj, and let f(x) be the shift of g so that the equation has zero as the coefficient of xn−1

(then g depends on the initial choice of P1, but not f).

The action ofW on χ simply permutes the roots of f and thus does not alter f . Therefore

each orbit in W0\trss0 yields a well-defined class v, namely the curve C with marked point(s)

at infinity and canonical choice of tangent vector given by the affine equation y2 = f(x).

Define Ψ([χ]) to be the class [(C,P, t)]. Then Ψ is the inverse of Φ.

The following lemma relates the elements κC,B to the canonical element κC = κC,0.

Lemma III.37. Let (H0, θ0, T0, π0) and (HB, θB, TB, πB) be the split objects of L of Theorem

III.35. and ψ : H0 → HB an isomorphism satsifying all the assumptions in Theorem III.13.

Then ψ−1(κC,B) lies in the same G0-orbit as κC = κC,0 over Ks.

Proof. Over Ks, the tuples (H0, θ0, T0, π0) and (HB, θB, TB, πB) are isomorphic objects of L,
so there exists an isomorphism FB between them defined over Ks. In particular, we have

a map FB : H0 → HB which by definition sends T0 to TB, identifies ΛB with Λ0, and thus

sends κC,0 to κC,B, and which also commutes with the involutions. By the proof of Theorem

III.13, we may further assume after modifying FB by conjugation by elements of Hθ
0 (K) that

FB preserves the standard representations of h0 and g0. (Of relevance to later work is that
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this modification does not change the cocycle class F−1σ
B FB where σ is an element of the

absolute Galois group.)

Thus ψ−1 ◦ FB is an automorphism of H0 defined over Ks satsifying all the assumptions

in Theorem III.13, so it is equal to conjugation by some element of G0(K
s). At the same

time, we have ψ−1 ◦ FB(κC,0) = ψ−1(κC,B), thus completing the proof of the lemma.

III.10: Descriptions of the Stabilizer Group

In order to construct our descent maps, we will pass between several equivalent descriptions

of the stabilizer subgroup (G0)κC of κC in G0. This section is dedicated to proving the

following theorem.

Theorem III.38. There is an isomorphism δ : (G0)κC → J(C)[2] such that the isomorphism

ϕ, given in Theorem I.4, between G0\VκC and

ker(γ : H1(K, (G0)κC ) → H1(K,G0))

which sends κC to the zero cocycle sends the orbit of ψ−1(κC,B), where ψ is the map in Lemma

III.37, to the coycle σ → Bσ−B under the isomorphism induced by δ between H1(K, (G0)κC )

and H1(K, J(C)[2]).

The same claim is true if we replace κC by µC .

This is theorem is the assertion implicitly underlying the argument in the 4th paragraph of

the proof of Theorem 3.6 in [Tho16]. For clarity, we provide a proof of this theorem. In order

to construct the isomorphism δ and verify its properties, we need a series of intermediate

lemmas.

Lemma III.39. Using the notation above, we have

(G0)κC = (G0)µC = (T ∩G0)[2].

(Note that this is an actual equality, not merely an isomorphism.)

Proof. By definition, we have that (G0)µC consists of the elements of G0 which commute

with µC . Since µC is regular semisimple and lives in T , its commutator in H0 is exactly T ,

so that (G0)µC = T ∩G0. Since θ acts on T by inversion and θ acts trivially on G0, for any

g in T ∩G0, we have θ(g) = g = g−1, so that g is 2-torsion. Therefore we have

(G0)µC = T ∩G0 = (T ∩G0)[2].
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For the case of (G0)κC we may apply the same argument, along with the statements and

proofs in [Tho13, 2.8-2.10].

Definition III.40. Let

0 A B C 0
ϕ

be a central extension of groups. We define the group Aut(B;C) to be the group of automor-

phisms f of B such that f leaves A fixed and f ◦ ϕ = ϕ.

Lemma III.41 (Lemma 1.7 of [Tho16]). The map

α : J(C)[2] → Aut(H(J(C), 2ΘB); J(C)[2])

given by

ν → ((ω, ψ) → (ω, (−1)⟨ν,ω⟩ψ))

is an isomorphism of groups.

Lemma III.42 (Lemma 1.8 of [Tho16]). Let σ be an element of the absolute Galois group

ΓK , and suppose that B ∈ J(C)(Ks) satisfies 2B = A, where A is in J(C)(K). Then Bσ−B
lies in J(C)[2](Ks) and

α(Bσ −B) = F−1σ
B FB,

where FB : H(J(C), 2Θ) → H(J(C), 2ΘB) is the isomorphism from the remarks preceding

Lemma 1.8 of [Tho16].

Lemma III.43 (Lemma 2.4 of [Tho16]). Let ṼB be the central extension defined in the proof

of Theorem III.35. The map

β : V ∨
B → Aut(ṼB;VB)

given by

f → (ṽ → (−1)f(v)ṽ),

where ṽ in ṼB lies above v in VB, is an isomorphism of groups.

Lemma III.44. Let (H0, θ0, T0, π0) be object of L associated to the trivial bundle 0 ∈ J(C)

as in Theorem III.35. There is a ΓK-equivariant isomorphism ϵ : V ∨
0 → T0[2] satisfying:

1. the restriction of of ϵ to the image NV0 of V0 in V ∨
0 induces an isomorphism between

NV0 and (T ∩G)[2] and
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2. for f ∈ V ∨
0 , let s = ϵ(f) be the image of f in T0[2]. Via the correspondence in Theorem

III.11, the automorphism β(f) ∈ Aut(ṼB;VB) induces an automorphism F of the

triple (H0, θ0, T0) defined over Ks. F is equal to conjugation by s and thus either fixes

π0 or takes π0 to its dual.

Proof. 1. This follows from the remarks after the proof of Proposition 2.2 in [Tho16].

2. This is the second part of Lemma 2.4 in [Tho16].

Remark III.45. Recall that the divisor classes Di = Pi+1−P1 for 1 ≤ i ≤ 2g form an F2-basis

for J(C)[2]. Since the Weil pairing turns J(C)[2] into a symplectic space of dimension 2g

over F2, for each Di there exists a D′
i such that the D′

i form an F2-basis of J(C)[2] and

⟨Di, D
′
j⟩J(C)[2] = δi,j.

Lemma III.46. Define a map η : V ∨
0 → J(C)[2] by

η(f) =

2g∑
i=1

f(Ei+1 − E1)D
′
i.

Then η induces an isomorphism between NV0 and J(C)[2].

Proof. Whether Λ0 = Λ′
g or Λ0 = Λ′′

g , we have that NV0 is freely generated by the images e∨j

of ej = Ej − Ej+1 in V ∨
0 for 2 ≤ j ≤ 2g + 1. By direct computation, we have that

e∨j (Ei − E1) = δj+1,i − δj, i.

By the formula given in the statement of the lemma, we have

η(e∨2 ) = −D′
1 +D′

2, η(e
∨
3 ) = −D′

2 +D′
3, ..., η(e

∨
2g+1) = −D′

2g.

Therefore the image of the e∨j spans J(C)[2]. Since NV0 and J(C)[2] both have 22g elements,

η induces an isomorphism between them.

Definition III.47. Let

0 A B C 0
ϕ

be a central extension of groups, let ψ : C ′ → C be a surjection, and consider the central

extension ψ∗(B) ∼= C ′×CB of C ′ by A. Given an automorphism f in Aut(B;C), we define an

automorphism ψ∗(f) in Aut(ψ∗(B);C ′) by ψ∗(f)(c′, b) = (c′, f(b)). This assignment defines
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the pullback map

ψ∗ : Aut(B;C) → Aut(ψ∗(B);C ′).

Remark III.48. By Lemma III.29, there is a surjection r : VB → J(C)[2]. This induces a

pullback map

r∗ : Aut(H(J(C), 2ΘB); J(C)[2]) → Aut(ẼB;VB),

where ẼB is the central extension of VB by Gm defined in the proof of Theorem III.35.

Since ṼB is by definition the kernel of χB in ẼB, one can check that any automorphism in

Aut(ẼB;VB) restricts to an automorphism in Aut(ṼB;VB). Therefore r
∗ yields, by restriction,

a map

Aut(H(J(C), 2ΘB); J(C)[2]) → Aut(ṼB;VB),

which by abuse of notation we also call r∗ in what follows.

Lemma III.49. Going around the diagram

V ∨
0 Aut(Ṽ0;V0) Aut(H(J(C), 2Θ); J(C)[2])

J(C)[2]

η

β−1
r∗

α

induces the identity on J(C)[2].

Proof. Suppose that we have an element ν in J(C)[2]. For an element (ω, ψ) ∈ H(J(C), 2Θ),

we have by definition

α(ν).(ω, ψ) = (ω, (−1)⟨ν,ω⟩ψ).

For (v, (ω, ψ)) ∈ Ṽ0 ⊂ r∗(H(J(C), 2Θ)), we also have by definition

r∗(α(ν)).(v, (ω, ψ)) = (v, α(ν).(ω, ψ)) = (v, (ω, (−1)⟨ν,ω⟩ψ)).

Note by the definition of r∗(H(J(C), 2Θ)) that we have r(v) = ω. Thus by the definition of

β, we have that b−1(r∗(α(ν))) in V ∨
0 is the linear functional fν on V0 which sends v ∈ V0 to

⟨r(v), ν⟩. Now by the definition of η, we have

η(b−1(r∗(α(ν)))) = η(fν) =

2g∑
i=1

fν(Ei+1 − E1)D
′
i

40



=

2g∑
i=1

⟨r(Ei+1 − E1), ν⟩D′
i =

2g∑
i=1

⟨Di, ν⟩D′
i = ν,

and this completes the proof.

Definition III.50. Let ϵ : V ∨
0 → T0[2] and η : V ∨

0 → J(C)[2] be as in the statement of

Lemmas III.44 and III.46.

We define a map δ from ZG0 ⊂ T0[2] to J(C) by

δ := η ◦ ϵ−1.

Lemma III.51. The map δ is an isomorphism.

Proof. By Lemma III.44, the map ϵ maps NV0 isomorphically onto ZG0 . By Lemma III.46,

the map η maps NV0 isomorphically onto J(C)[2].

Proof of Theorem III.38. We start by proving the claim for κC .

The isomorphism

ϕ : G0\VκC → ker(γ : H1(K, (G0)κC ) → H1(K,G0))

which sends κC to the zero cocycle sends ψ−1(κC,B) to s−1σs, where ψ−1 ◦ FB is equal to

conjugation by s, as in the proof of Lemma III.37.

By Lemma III.41, we have that α(Bσ −B) = F−1σ
B ◦FB. Note that F−1σ

B ◦ FB is exactly

the automorphism of H0 induced by r∗(α(Bσ − B)) = r∗(F−1σ
B ◦ FB), and that since ψ is

defined over K, we have

(ψ−1 ◦ FB)
−1σ ◦ (ψ−1 ◦ FB) = F−1σ

B ◦ FB.

By this last equality, we have that F−1σ
B ◦ FB is equal to conjugation by s−1σs.

By Lemma III.44, we have that s−1σs = ϵ(r∗(α(Bσ − B)), and by the proof of Lemma

III.37, s lies in G0. By Lemma III.49, we have that η(r∗(α(Bσ −B))) = Bσ −B.

Finally, we have that

δ(s−1σs) = η(ϵ−1(s−1σs)) = η(r∗(α(Bσ −B))) = Bσ −B,

which completes the proof.

The same argument works for µC since the stabilizer subgroups of κC and of µC in G0

are equal by Lemma III.39.
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III.11: Construction of Descent Maps

In this section, we construct 2-descent maps from the Jacobians J(C) over our curves C into

the orbit spaces of the local and global Vinberg representations arising from our surfaces S

and prove Theorem I.5.

Theorem III.52. Suppose that v = (C,P, t) is a point in Sn(K). The map v → κC can be

extended to an injective map

iC : J(C)/2J(C)(K) → G0\V0,κC (K)

sending 0 to κC . If v is in S0
n(K), the map v → µC can be extended to an injective map

IC : J(C)/2J(C)(K) → G0\Y0,µC (K),

sending 0 to µC .

Here V0 is the −1 eigenspace of dθ in g0 and Y0 is the identity component of the subvariety

θ(g) = g−1 in G0, and where for a K-variety X on which a group G acts Xp denotes the set

of points of X which lie in the same G(Ks)-orbit as p ∈ X.

Proof of Theorem III.52. First, we construct ic.

Given a rational point A ∈ J(C)(K), choose a point B ∈ J(C)(Ks) such that 2B = A.

We define iC(A) ∈ X0 to be ψ−1(κC,B), where ψ : H0 → HB is the map of Lemma IV.7; then

iC(A) is well-defined up to G0-conjugacy.

By Lemma III.37, this is in the G0 orbit of κC over Ks. By Theorem III.38, this is the

orbit corresponding to the cocycle σ → Bσ − B. Since this coycle is the image of A in the

injection J(C)/2J(C) → H1(K, J(C)[2]), it depends only on A and not the choice of B and

further is an injection.

To construct IC , we simply replace κC by µC in the preceding argument.

Proof of Theorem I.5. The data referenced in the Theorem are defined throughout the chap-

ter. Their properties are proved in Theorem III.52.
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CHAPTER IV

Decomposable Transformations and the Orbit Problem

for Dn

IV.1: Introduction

Let K be a field of characteristic 0 with separable closure Ks. For a simple, split adjoint

Lie algebra of type Dn, where n is odd, the local Vinberg representation of degree 2 is the

group G = SO(V )× SO(V ), where V is an orthogonal space of dimension n = 2m+ 1 with

index of isotropy i(V ) = 2m and discriminant 1, acting on the space End(V ) with the action

(a, b) · T = aTb∗.

The invariant polynomials of this action are the degree 1 through n− 1 coefficients f2j of

the characteristic polynomial of T ◦T ∗, where T ∗ is the adjoint of T , plus the determinant gn

of T . Let fT = (f2, ..., f2(n−1), gn) be the vector of invariants of T . When K is algebraically

closed (but not in general), these invariants completely determine the orbit of T , assuming

T is stable. The orbit of T is associated to a hyperelliptic curve CfT , namely the projective

completion of the affine plane curve

(IV.1.1) y(xy + gn) = xn−1 + f2x
n−2 + ...+ f2(n−1).

This curve is isomorphic to the projective completion of the affine plane curve

(IV.1.2) y2 = xn + f2x
n−1 + ...+ f2(n−1)x+ g2n.

The curve has a marked Weierstrass point lying above x = ∞ and a marked non-Weierstrass

point, which corresponds to the point (0, gn).

The goal of this chapter is to prove Theorem I.6, i.e., construct an injective map from the

set J(CfT )/2J(CfT ) into the set of K-orbits [T ′] of G acting on V satisfying the condition

fT ′ = fT . This yields a kind of explicit 2-descent on J(CfT ).

Various constructions used in the An case and found in [Tho14] can also be applied in
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our Dn case. We recall some relevant facts, which are found in that article. The relevant

terminology is also reviewed in the next section. Let C be a hyperelliptic curve given by the

equation

(IV.1.3) y2 = xn + c1x
n−1 + ...+ cn = f(x).

Let W be the sublocus of C given by the non-infinite ramification points of C. To each

degree zero line bundle L on C we associate the m-dimensional vector space V = H0(W ,L).
There exists a symmetric bilinear form ⟨·, ·⟩ on V with respect to which V is a split orthogonal

space of discriminant 1 and maximal index of isotropy and multiplication by x is a self-adjoint

linear transformation, denoted by Tx.

We will prove the following theorem.

Theorem IV.1 (Decomposition Theorem). Using the notation above, in the case where the

constant term of f(x) is a non-zero square c2 in K, there exists a linear transformation Sx

of V defined over K such that Tx has the decomposition

Tx = Sx ◦ S∗
x.

For a given x, the set of all such Sx’s breaks into two SO(V) × SO(V) orbits, one with

determinant c and the other with determinant −c.

The assumption that c2 is non-zero does not change the moduli objects parameterized;

the constant term can always be made non-zero by a shift in x, and this simply changes the

coordinate of one of the marked points.

After proving the Decomposition Theorem, we use it to give a proof of Theorem I.5. Note

that Decomposition Theorem is true regardless of the parity of n but Theorem I.5 assumes

that n is odd; we will say more about this assumption later in the chapter.

IV.2: Preliminary Notions

We first define some preliminary notions and notations, starting with some generalities on

orthogonal spaces.

Definition IV.2. An orthogonal space is a k-vector space V of dimension n together with

a non-degenerate symmetric bilinear form ⟨·, ·⟩. We often treat the form as implicitly and

simply state that V is an orthogonal space.

Example IV.3. The space V = Rn endowed with the Euclidean inner product is an orthog-

onal space over R.
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Definition IV.4. Let V be an orthogonal space and T a linear transformation on V . T

is called decomposable if there exists a linear transformation S defined over K such that

T = S ◦ S∗.

From this definition, it follows that a decomposable transformation T must be self-adjoint,

and its determinant must be a square inK. At the same time, not every linear transformation

with these properties is decomposable, as the following example shows.

Example IV.5. Consider the orthogonal space Q2 endowed with the standard inner product

⟨ei, ej⟩ = δij. The transformation represented by the matrix
[ −1 0

0 −1

]
has determinant 1 and

is self-adjoint (which in this case is the same as the matrix being symmetric), but it is not

decomposeable since any matrix of the form MMT has non-negative entries on its diagonal.

The following two lemmas state fundamental properties of decompsable transformations.

Lemma IV.6. An invertible transformation T has a decomposition T = P ◦ P ∗ if and only

if there exists a transformation R such that R ◦ T ◦R∗ = I.

Proof. Simply set R = P−1 (since T and I are invertible, P and R must be invertible as

well).

Lemma IV.7. Let T be an invertible transformation. Suppose the transformation A satisfies

A ◦A∗ = T . Then B satisfies T = B ◦B∗ and has the same determinant as A if and only if

A and B are in the same orbit of SO(V ) acting on the right.

Proof. The “if” direction follows directly from the relevant definitions. We now address the

“only if” direction.

By Lemma IV.6, there exists a transformation R such that R ◦T ◦R∗ = I. Then we have

(RA)(RA)∗ = I = (RB)(RB)∗. This shows that RA and RB are both in O(V ). Since A and

B have the same determinant, RA and RB either both have determinant 1 or determinant

−1, so they are in the same SO(V )-right orbit.

As stated earlier, we aim to prove decomposability for a certain class of transformations.

We now study decomposability on split orthogonal spaces of discriminant 1, a category which

the spaces we are interested in belong to.

Definition IV.8. Let V be an orthogonal space. We define the determinant of V to be the

class det(V ) in K×/(K×)2 given by the determinant of any matrix M which represents the

form ⟨·, ·⟩, i.e., such that Mij = ⟨ei, ej⟩ for some basis {ek} of V . We define the discriminant

of V to be the class disc(V ) in K×/(K×)2 given by (−1)
n(n−1)

2 det(V ).
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Example IV.9. Let V = Q2 be endowed with the basis B = {(1, 0), (0, 1)}. Let ⟨·, ·⟩ be the

bilinear form which is represented relative to B by the matrix[
7 1

2 3

]
.

The determinant and discriminant of V in Q×/(Q×)2 are, respectively, 19 and [−19].

Definition IV.10. Let V be an orthogonal space of dimension n = 2m. We say that V is

split if it has an isotropic subspace of dimension m.

Definition IV.11. An orthogonal space V is anisotropic if there are no non-zero vectors v

satisfying ⟨v, v⟩ = 0.

Example IV.12. The Euclidean space V = R6 is anisotropic and is not split; there are no

non-zero isotropic vectors.

The following theorem is a summary of the results in Chapter 3, Section 1 of [MH73].

Theorem IV.13. Suppose that V is an orthogonal space. There exists an orthogonal de-

composition

V = S ⊕ A,

where S is split and A is anisotropic. The dimension of S satisfies

dim(S) = 2i(V ),

where i(V ) is the index of isotropy of V , i.e., the dimension of the largest isotropic subspace

of V . Note that the index of isotropy is thus at most dimV
2
.

We will be interested in split orthogonal spaces. The following lemma shows that split

orthogonal spaces of discriminant 1 have a very simple structure.

Lemma IV.14. Every orthogonal space V of dimension n = 2m+ 1 with index of isotropy

2m and discriminant 1 has a basis {e1, ..., ek, g, fk, ..., f1} satisfying ⟨ei, fi⟩ = 1, ⟨g, g⟩ = 1,

and all other products of basis elements equal to 0.

Every split orthogonal space V of dimension n = 2m and discriminant 1 has a basis

{e1, ..., f1} satisfying ⟨ei, fi⟩ = 1 and all other products of basis elements equal to 0.

Proof. The case n = 2m follows directly from [MH73, CH. 1, 6.3] (note that this shows

something even stronger - that every split orthogonal space has discriminant 1). The case

n = 2m+ 1 follows from applying, in addition, [MH73, CH. 3, 1.1].
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Definition IV.15. If V is an orthogonal space with maximal index of isotropy and discrimi-

nant 1, we call a basis of V satisfying the properties given in the preceding lemma a standard

split basis.

If T is a linear transformation on V and MT is its matrix with respect to a standard split

basis, then the matrix MT ∗ is given by reflecting the entries of MT over the antidiagonal.

There is an alternate way of giving matrix representations of symmetric bilinear forms

that is more suitable when studying split spaces; it is formalized in the following definition

and lemma.

Definition IV.16. Suppose that V is an orthogonal space. Two linear transformations T

and S on V are similar if there exists an invertible linear transformation P on V such that

T = P ∗SP.

Remark IV.17. The order of P and P ∗ can be reversed in the preceding definition, but the

one we use corresponds to the way bilinear forms transform under a change of basis.

Lemma IV.18. Let V be a K-vector space of dimension n = 2m and B : V × V → k be a

bilinear form on V . Let B = {b1, ..., bm, cm, ..., c1} be a basis for V , and consider the matrix

M =



B(c1, b1) ... B(c1, bm) B(c1, cm) ... B(c1, c1)

... ... ... ... ... ...

B(cm, b1) ... B(cm, bm) B(cm, cm) ... B(cm, c1)

B(bm, b1) ... B(bm, bm) B(bm, cm) ... B(bm, c1)

... ... ... ... ... ...

B(b1, b1) ... B(b1, bm) B(b1, cm) ... B(b1, c1)


We say that M represents B in the split sense relative to B. If B′ = {b′1, ..., c′1} is another

basis for V and M′ represents B relative to B′, then we have the equality

M′ = P∗MP,

where P is the change of basis matrix from B′ to B and P∗ is obtained from P by reflection

across the antidiagonal.

An analogous statement is true when the dimension n = 2m+ 1 is odd.

Proof. The proof is by direct computation of the matrices M and M′ (see the example

below).

Example IV.19. Let V = Q2, and consider the quadratic form given by Q((x, y)) = x2+y2.

The matrix representing Q in the split sense relative to {(1, 0), (0, 1)} is [ 0 2
2 0 ]. Define the
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vectors b1 = (1, 7) and c1 = (1, 2), and let B be the basis B = {b1, c1}. The following

identities come from direct computation

B(b1, c1) = 30, B(b1, b1) = 100, B(c1, c1) = 10.

In addition, we can verify directly the equation[
30 10

100 30

]
=

[
2 1

7 1

][
0 2

2 0

][
1 1

7 2

]
.

Lemma IV.20. Let (V, ⟨·, ·⟩) be an orthogonal space. We have that

disc(V ) = det(M),

where M is any matrix which represents ⟨·, ·⟩ in the split sense.

Proof. The proof is by direct computation.

Next we move on to developing a decomposability criteria for invertible, self-adjoint

transformations T on orthogonal spaces with maximal index of isotropy and discriminant 1.

We will find it helpful to think of these transformations as symmetric bilinear forms, in the

vein of the next lemma.

Lemma IV.21. Let (V, ⟨·, ·⟩) be an orthogonal space, and let T be an invertible self-adjoint

transformation on V . Let T = (·, ·) be the bilinear form on V given by (v, w) = ⟨v, Tw⟩.
Then (V, T ) is an orthogonal space.

Further, suppose V has maximal index of isotropy and B is a standard split basis of V .

Let MT be the matrix representing T with respect to B and MT be the matrix representing

the form T with respect to B. Then MT = MT .

Proof. The form T is symmetric since T is self-adjoint with respect to ⟨·, ·⟩ and it is non-

degenerate since T is invertible. The claim in the second paragraph follows directly by

writing down both matrices.

Lemma IV.22 ([MH73]). Let (V, ⟨·, ·⟩) be an orthogonal space of dimension n = 2m or

n = 2m + 1 which contains a split subspace of dimension 2m, and let B be a standard split

basis of V . Suppose T is an invertible self-adjoint transformation on V such that

1. the symmetric form T = (·, ·) = ⟨·, T (·)⟩ turns V into an orthogonal space of dimension

n which contains a split subspace of dimension 2m and
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2. the discriminant of T is 1.

Let MT be the matrix representing T in the split sense with respect to B. Recall by the

previous Lemma that MT = MT Then there exists a matrix R such that

RMTR
∗ = In.

Proof. The case n = 2m follows directly from [MH73, CH. 1, 6.3], with the modification

that MT = MT is the matrix representing T in the split sense rather than in the traditional

sense.

For the case n = 2m + 1, we apply [MH73, CH. 3, 1.1] to argue that (V, T ) can be

written V = S⊕A, where S is split with respect to T of dimension 2m and A is anisotropic

of dimension 1. Applying [MH73, CH. 1, 6.3] to S, we have that there exists a basis B′ of V

such that the matrix representing T in the split sense with respect to B′ is of the formIm 0 0

0 c 0

0 0 Im

 .
Since the discriminant of T is 1, we may choose our basis so that C is equal to 1. Thus there

exists a matrix R such that

RMT R
∗ = In.

IV.3: Reduction to the Trivial Bundle Case

In this section, we show that we may reduce the proof of Theorem IV.1 to the case V =

H0(W ,OC) = K[x]/f(x). It will be useful to use the notation A = K[x]/f(x), and to

consider the vector spaces H0(W ,L) as free, 1-dimensional A-modules. The idea is that for

any line bundle L, the space H0(W ,L) of global sections has an orthogonal space structure

which comes from its A-module structure.

We begin by defining an orthogonal space structure on the base space A.

Definition IV.23. We define the A-valued bilinear form (·, ·)A on A by (g(x), h(x))A =

g(x)h(x). Suppose that the degree of f is n. We define the k-linear functional τ : A→ k on

the k-basis {1, x, ..., xn−1} by τ(xm) = δn−1(x
m); that is, τ takes sends a polynomial to the

coefficient of xn−1 in the polynomial. Finally, we define the k-valued bilinear form ⟨·, ·⟩A on

A by ⟨·, ·⟩A = τ ◦ (·, ·)A.
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Lemma IV.24. The bilinear form ⟨·, ·⟩A is non-degenerate and thus gives A an orthogonal

space structure. Further, A has maximal index of isotropy.

Proof. If g(x) is a polynomial (class) of degree 0 ≤ m < n, then ⟨g(x), xn−1−m⟩A ̸= 0, so that

⟨·, ·⟩A is non-degenerate. If n = 2m + 1 or n = 2m the subspace {1, x, ..., xm−1} is isotropic

and of dimension m.

Next, we define the orthogonal space structure on free, 1-dimensional A-modules M .

Definition IV.25. Suppose that M is an A-module with an isomorphism F : M → A.

Define a k-valued bilinear form on M by ⟨·, ·⟩M = ⟨F (·), F (·)⟩A.

It follows directly from the definition that ⟨·, ·⟩M gives M the structure of a split orthog-

onal space, and that F is both an isomorphism of A-modules and of orthogonal spaces. We

derive some basic properties of the form ⟨·, ·⟩M which we will use later.

Lemma IV.26. Suppose that S : A → A is a linear transformation. Then we have an

equality

(F−1 ◦ S ◦ F )∗ = (F−1 ◦ S∗ ◦ F )

of maps on the orthogonal space M .

Proof. Since F is an isomorphism of orthogonal spaces, for any x, y in M we have the

equalities

⟨(F−1 ◦ S∗ ◦ F )(x), y⟩M = ⟨(S∗ ◦ F )(x), F (y)⟩A = ⟨F (x), (S ◦ F )(y)⟩A

= ⟨x, (F−1 ◦ S ◦ F )(y)⟩M .

Since this holds for arbitrary x, y, we obtain (F−1 ◦ S ◦ F )∗ = (F−1 ◦ S∗ ◦ F ).

Lemma IV.27. Suppose that g is an element of A, Tg denotes the multiplication by g map

on A, and T ′
g denotes the multiplication by g map on M . Then we have an equality of maps

(F−1 ◦ Tg ◦ F ) = T ′
g.

Proof. Using the fact that all maps involved are morphisms of A-modules, we have for any

x in M the equalities

(F−1 ◦ Tg ◦ F )(x) = (F−1 ◦ Tg)(F (x)) = F−1(g.F (x)) = g.(F−1(F (x))) = g.x = T ′
g(x).

Since this holds for any x in M , we have (F−1 ◦ Tg ◦ F ) = T ′
g.
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There are many orthogonal space structures on M varying by the choice of isomorphism

F and they are all isomorphic, but for the A-modules we are interested in, which are global

sections of line bundles, there is one particular orthogonal space structure we are interested

in which is easily computable based on data from C. This structure is used in [Tho14];

while we do not need to work with it directly for our proofs, we include it here so that our

arguments are in principle all effective (the proofs we cite from [MH73] being already all

effective).

Let C be a hyperelliptic curve cut out by the equation y2 = xn + f1x
n−1 + ... + fn. Let

W be the sublocus of non-infinite branch points on C. Given a degree 0 line bundle L on C,

let V be the vector space H0(W ,L). We recall the following useful facts related to V , which
we will illustrate later by example.

Lemma IV.28 (Mumford Representation, see Lemma 3.2 of [Tho14]). Any degree 0 line

bundle L on C can be written in the form L = (mP∞ − D), where m ≤ n and D is an

effective divisor such that

1. no K-basepoint of D is equal to P∞ and

2. no two K-basepoints of D are related under the involution of C.

Lemma IV.29 (see Lemma 4.4 of [Tho14]). Let P and D be as in Lemma IV.28. There

exists a triplet (U, V,R) of polynomials in k[x] satisfying the following properties.

1. the degree of U is m and the degree of V is 2n−m,

2. the degree of R is no more than m− 1,

3. the equality f = UV −R holds,

4. the set {U, xU, ..., x2n−m−1U, (y − R), x(y − R), ..., xm−1(y − R)} is a basis of V =

H0(W ,L),

5. there exists an isomorphism F : V → A such that the dot product □ · □ : V × V → A

defined by a · b = F (a)F (b) is given by the following identities:

xiU · xjU = xi+jU, xiU · xj(y −R) = −xi+jR, xi(y −R) · xj(y −R) = −xi+jV.

Example IV.30. Let C be the genus 2 hyperelliptic curve defined by the affine equation

y2 = x(x4 + x3 + x2 + x).
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Let P0 = (0, 0). Consider the line bundle L = P∞−P0. The Mumford Representation (U, V,R)

is given by

U = x, V = x4 + x3 + x2 + x, R = 0.

By Lemma IV.29, a basis of V = H0(W ,L) is given by

e1 = U, e2 = xU, e3 = x2U, e4 = x3U, e5 = y,

and the A-valued matrix of the dot product is
U xU x2U x3U 0

xU x2U x3U x4U 0

x2U x3U x4U x5U 0

x3U x4U x5U x6U 0

0 0 0 0 −V

 .

It follows by direct computation that the k-valued matrix of ⟨·, ·⟩V is
0 0 0 1 0

0 0 1 −1 0

0 1 −1 0 0

1 −1 0 −1 0

0 0 0 0 −1

 .

Theorem IV.31. Assume that the linear transformation given by multiplication by x is

decomposable on A. If M is a free, 1-dimensional A-module, then multiplication by x is a

decomposable linear transformation on M .

Proof. Fix the isomorphism F : M → A. Let Tx : A → A denote the multiplication by x

map on A, and T ′
x denote the multiplication by x map on M . By Lemma IV.27, we have

F−1 ◦ Tx ◦ F = T ′
x. Given a decomposition Tx = S ◦ S∗, by Lemma IV.26, we have the

equalities

F−1 ◦ Tx ◦ F = F−1 ◦ S ◦ S∗ ◦ F = F−1 ◦ S ◦ F ◦ F−1 ◦ S∗ ◦ F

= (F−1 ◦ S ◦ F ) ◦ (F−1 ◦ S ◦ F )∗ = T ′
x,

which shows that multiplication by x is a decomposable linear transformation on M .
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IV.4: Proof of Theorem IV.1

We now turn to the proofs of our main results. For an orthogonal space V , we fix a left

action of SO(V ) on End(V ) acting by left multiplciation, a right action of SO(V ) on End(V )

acting by right adjoint multiplication, and an action of G = SO(V ) × SO(V ) on End(V )

given by (a, b) · T = a ◦ T ◦ b∗.

Lemma IV.32. Suppose that f(0) ̸= 0 n = 2m or n = 2m + 1. Let Tx be the symmetric

form associated to the self-adjoint transformation Tx on V = K[x]/f(x). The space (V , Tx)
is an orthogonal space containing a split orthogonal subspace S of dimension 2m.

Proof. If n = 2m + 1, we can see directly that the subspace {1, x, ..., xm−1} is a dimension

m subspace isotropic with respect to Tx. By Theorem IV.13, the index of isotropy i(V) is at
most m, so we have i(V) = m. By applying that theorem again, we see that (V , Tx) contains
a split orthogonal subspace of dimension 2m.

If n = 2m, we can similarly see that the subspace

{1, x, ..., xm−1 +
am−1

2
xm−2},

where ai is the coefficient of xi in f(x), is a dimension m subspace isotropic with respect to

Tx. The rest of the proof is similar to the odd case.

Proof of Theorem IV.1. By Lemma IV.22, there exists a transformation R such that R◦Tx◦
R∗ = I. By Lemma IV.6, Tx is decomposable. By Lemma IV.7, the set of all S’s such that

Tx = S ◦ S∗ breaks into two SO(V) right-orbits, one with determinant c and the other with

determinant −c.

Proof of Theorem I.6. Suppose we have a polynomial f(x) = x2m+1+a2mx
2m+ ...+a1x+ c

2

such that c ̸= 0 and ∆(f) ̸= 0. Let C be the hyperelliptic curve of genus g given by

y2 = f(x).

By [Tho14, Theorem 4.6], there is an injection.

ϕ : J(C)/2J(C)(K) → SO(V )\End(V ),

Following the proof in that article and applying our Theorem IV.1, we see that the image

of ϕ lies in the space of decomposable matrices of determinant c2 (it consists of orbits of

endomorphisms of the form Tx).
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For each [A] ∈ J(C)/2J(C)(K), let TA be an endomorphism in the class of ϕ([A]). We

define ψ([A]) to be the unique G(K)-orbit of a transformation S such that ϕ([A]) = S ◦ S∗

and S has determinant c.

First, we show this is independent of the choice of representative TA in the orbit ϕ([A]).

If TA and T ′
A are in the same orbit, then we have TA = aT ′

Aa
∗ for some a ∈ SO(V ). Therefore

if S and S ′ satisfy S ◦S∗ = TA and S ′ ◦ (S ′)∗ = T ′
A, then we have that (aS ′)◦ (aS ′)∗ = TA and

aS ′ and S both have determinant c. By Theorem IV.1, we have that there exists an element

b ∈ SO(V ) such that aS ′b∗ = S.

Lastly, we show that ψ is injective. Suppose that [A] and [A′] in J(C)/2J(C)(K) sat-

isfy ψ([A]) = ψ([A′]). Let SA and SA′ be representatives for the orbits ψ([A]) and ψ([A′]),

respectively. By assumption, there exists (a, b) ∈ G = SO(V )× SO(V ) such that

SA = aSA′b∗.

Therefore we have that TA = SA ◦ (SA)
′ = aTA′a∗, so that ϕ([A]) = ϕ([A′]). Since ϕ is

injective, we have that [A] = [A′].

In [Tho14], the author constructs for each [A] a self-adjoint transoformation TA in an

orthogonal space V of discriminant 1 and maximal index of isotropy. This transformation is

well-defined up to a choice of basis of V , so TA is well-defined up to conjugation by O(V ).

Since n is assumed to be odd, the O(V ) orbits are the same as the SO(V ) orbits; when n is

even, this is no longer the case, so that the analogous argument does not work.

54



BIBLIOGRAPHY

[Bea96] Arnaud Beauville. Complex algebraic surfaces, volume 34 of London Mathematical

Society Student Texts. Cambridge University Press, Cambridge, second edition,

1996. Translated from the 1978 French original by R. Barlow, with assistance from

N. I. Shepherd-Barron and M. Reid.

[BG13] Manjul Bhargava and Benedict H. Gross. The average size of the 2-Selmer group

of Jacobians of hyperelliptic curves having a rational Weierstrass point. In Auto-

morphic representations and L-functions, volume 22 of Tata Inst. Fundam. Res.

Stud. Math., pages 23–91. Tata Inst. Fund. Res., Mumbai, 2013.

[BG14] Manjul Bhargava and Benedict H. Gross. Arithmetic invariant theory. In Symme-

try: representation theory and its applications, volume 257 of Progr. Math., pages
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