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Abstract 
 

Accurate detection of variation in the human genome is important for understanding 

diversity in the human species and for identifying the cause of genetic diseases. The technology 

for interrogating the genome has vastly improved since the sequencing of the first human genome, 

improving our ability to accurately detect and characterize more complex variation. However, 

there are still biases and limitations for all currently available technologies that we must work 

within. An integrative approach using multiple genotyping or sequencing platforms is a practical 

strategy that can work within these limitations while improving variation detection beyond what 

can be achieved with a single technology.  

In this thesis, I apply an integrative approach to variant detection for different but related 

scenarios. First, I use Illumina short read sequencing and SNP microarrays to validate variant calls 

from BGI nanoball short read sequencing to provide a resource of variants present in individuals 

of Ukrainian decent, a previously underrepresented group in publicly available genome sequencing 

databases. Second, I study the ability to detect tandem repeat variation genome wide using both 

short and long read sequencing datasets through the comparison of multiple tandem repeat 

characterization methods. Lastly, I combine whole genome short read sequencing datasets to 

understand the relationship between SNP haplotypes and tandem repeat lengths to estimate tandem 

repeat lengths in individuals with ALS genotyped using SNP microarrays. Taken altogether, these 

examples represent case studies that demonstrate the utility of an integrative approach to genomic 

variant detection, analysis, and characterization.  
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Chapter 1 - Introduction and Background 
 

 

1.1 MOTIVATION 

 

Humans share 99.9% of DNA in the genome but it is the variation in the remaining 0.1% percent 

that makes us unique (1). Studying these variations can help us understand more about the 

evolution of modern humans, investigate differences across populations, and uncover the causes 

of disease which can lead to new therapeutic strategies and treatments (2).  

 

The last 50 years has been spent developing technology to understand the sequence of the human 

genome and to characterize the genomic variation present in humans (3). In 2003, the use of shot-

gun sequencing allowed the human genome to be sequenced for the first time (4). Genotyping 

microarrays aided in the discovery of many disease-associated variants because it provided a way 

to quickly detect known variations in thousands of samples which is required for genome wide 

association studies. Next generation sequencing (NGS) provided parallelization of the sequencing 

process which permitted the creation of high resolution genetic data for thousands of samples 

resulting in a better understanding of the diversity present in human species across variant classes. 

Finally, long read sequencing has given researchers the opportunity to interrogate regions of the 

genome which have been inaccessible with previous technologies. It stands to reason that as 

sequencing technologies continue to develop, they will similarly lead to new discoveries of the 

diversity of genome variation and what that means for our health.  
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Despite incredible strides, limitations of current sequencing technologies remain.  For example, 

current methods struggle to capture and accurately characterize complex variations and highly 

repetitive regions of the genome (5,6).  Additionally, with each advance in sequencing technology, 

there is an ever-present need for new bioinformatic approaches to process datasets to gain insights 

from these newer technologies (7).  

 

Until we can achieve end-to-end genome sequencing at large scale without errors in a cost-efficient 

manner, we are only able to assess genome variations accessible with technology available at the 

present time. That said, the integration of multiple orthogonal techniques for variant detection can 

improve our ability to detect variation from the available technology. In this thesis, I integrate data 

from multiple sequencing platforms and employ various bioinformatics approaches to detect 

variation across the human genome.  

 

1.2 BUILDING THE REFERENCE GENOME 

 

The Structure of the Human Genome 

The human genome encompasses approximately 3 billion base pairs and is comprised of 46 

chromosomes – two copies of 22 autosomes and two sex chromosomes, either XX or XY. It is 

estimated that only one percent of the genome is made up of protein coding genes while the 

remaining DNA was originally thought of as ‘junk DNA’, but can actually serve several functions 

such as regulating the gene expression or organizing genome structure (8). The human reference 

genome serves as a linear representation of the DNA sequence that makes up the human genome.  
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Human Genome Project and the Reference Genome 

The first draft of the human reference genome was created during the Human Genome Project – 

an international collaboration involving both the public and private sectors that was created in 

1990 (4). The Human Genome Project used Sanger sequencing (discussed below) to determine 

and map the nucleotide sequences that make up the human genome. This pivotal work for genomic 

sciences concluded in 2003 with approximately 85% of the genome resolved (4). The sequence 

that makes up the reference genome is neither the complete genome of a single individual, nor is 

it representative of all the variation present in the human species. Approximately 93 percent of the 

current reference genome sequence is derived from 11 individuals with 70% deriving from a single 

male of African-European decent. The remaining 7% of sequence comes from over 50 different 

libraries (9). One of the main functions of the human reference genome is to act as an index of the 

genome for locating genes or other genomic features in genetic data generated from new samples 

(10,11). Additionally, as its name may suggest, the reference genome can act as a standard 

“reference” for which to classify variation. To identify variation in a particular genome, it must be 

in relation to how it is different from another genome - the reference genome provides a common 

sequence which can be used by scientists across different studies in order to characterize variation.  

 

1.3 MOTIVATIONS FOR DETECTING VARIATION IN THE GENOME 

After the completion of the first draft of the human genome, the next challenge was to understand 

the variation present across individuals. Classifying variation across diverse individuals can help 

researchers better understand our evolutionary history as well as identify variations responsible for 

genetic disease (12,13). While many variations in genome are benign, others can cause disease. 

Identifying genetic variations that cause or contribute to disease phenotypes can be the first step 
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in identifying the disease mechanisms and can lead to new therapeutic targets (14). A key 

component when developing personalized medicine strategies is to directly incorporate an 

individual’s genetic make-up into their medical care. However, to ensure these efforts are accurate 

and available to everyone, it is important to understand the genetic diversity in our species (15). 

 

Genotyping and Genome sequencing initiatives 

Since the completion of the Human Genome Project, several large scale, sequencing initiatives 

have greatly contributed to our knowledge of the variation present across the human species. Each 

of these projects aimed to create a resource for the community to facilitate research into how 

variation affects different phenotypes, including disease phenotypes.  

 

The HapMap Project 

The HapMap project ran from 2002 until the final publication of results in 2010 (16). Due to the 

high cost of whole genome sequencing at the time, it was difficult to obtain whole genome 

sequencing for many diverse individuals. Instead of looking at every genomic position, a more 

cost-effective alternative was to use genotyping arrays (discussed in depth below) to look only at 

single nucleotide polymorphisms (SNPs – discussed in depth below) that were known to differ 

between individuals at an appreciable frequency, as humans share 99.9% of DNA sequence. SNPs 

that are nearby each other are generally inherited together, resulting in common segments of DNA 

referred to as haplotypes. These haplotypes can be represented by smaller numbers of ‘tag’ SNPs 

that could be directly interrogated using microarrays (17,18). The project went through three 

phases, with each phase subsequently increasing either the number of characterized SNP variants 

or increasing the number of samples included in the dataset.  The project finished with 1.6 million 
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SNPs genotyped in 1,184 samples from 11 different global ancestry groups (19). This dataset has 

been used extensively in studies to determine regions of the genome that are associated with 

common disease  (16,20–22)  

 

1000 Genomes project 

As the cost of genome sequencing declined, the 1000 Genomes Project (1KGP) was formed to 

sequence thousands of individuals to gain a more complete understanding of the genome variation 

present in different human populations. The 1KGP was another international collaboration and 

involved sequencing over 2,500 reportedly healthy individuals from 26 diverse populations around 

the world. The purpose of this initiative was to generate a publicly available database of genomic 

data and variation to facilitate research on the role genetic variation plays on health and disease 

(23). This project was created to build further on what was learned through the HapMap project 

and several of the samples overlap between the two projects. However, genome sequencing 

allowed for the characterization of variation beyond just SNPs. The 1KGP identified variations 

such as small insertions and deletions (indels) and structural variations (discussed in depth below). 

This project also consisted of multiple phases as the sequencing technology advanced and the cost 

continued to decline (24) The phase 3 dataset includes 2,504 samples with whole genome 

sequencing data, and scientists recently re-sequenced these samples using high coverage, whole 

genome Illumina sequencing for all samples (25). The findings presented by the 1KGP have 

provided avenues to study the amount of variation present in presumably healthy individuals. 

Additionally, studies aimed at elucidating novel pathogenic variations can identify variants present 

in disease samples that are not present in 1KGP samples. This allows the prioritization of variations 

more likely to result in a disease phenotype. 
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TopMed and other Disease Genomic Databases 

While previous large initiatives were aimed at sequencing and genotyping presumably healthy 

populations to create reference sets of background genomic variation, other projects have focused 

on sequencing disease samples. One such initiative is the Trans-omics for precision Medicine 

(TopMed). The TopMed database not only contains genomic data, but also includes additional 

omics datasets such as transcriptomics and epigenomics for every sample. Additionally, the 

database provides clinical and environmental data in order to facilitate precision medicine 

research. TopMed focuses on diseases related to the heart, lung, blood, and sleep (26). Many other 

initiatives have been created for specific diseases or specific classes of disease such as Answer 

ALS (27), Alzheimer’s Disease Sequencing Project (28), and the T2D-Genes consortium (29) to 

name a few.  

 

Genome Aggregation Database  

As more sequencing initiatives were created, the Genome Aggregation Database (gnomAD) 

consortium was created to systematically aggregate and reanalyze these available datasets in a 

uniform manner.  By providing uniform analysis, gnomAD created an even larger overview of the 

variation present in the human species, providing context for variation in both (presumably) 

healthy individuals as well those diagnosed with disease. Key outcomes of this initiative include 

catalogs of variation, for both small variants and larger structural variants, that have been generated 

as a public resource for studying genetic diversity and disease (30).  
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Variation Databases 

As genetic variation is continually discovered in the sequencing datasets generated in these 

initiatives, several databases have been generated to provide a central location to store these 

variations. dbSNP (31) and dbVar (32) are databases containing small and large variations that 

have been discovered across studies. ClinVar is a database specifically for the relationship between 

genome variation and phenotypes (33). 

 

These are just a few of the main initiatives that have been undertaken to create publicly available 

datasets to aid in genomic research. While these provide incredible resources for the genomics and 

medical research committees, there are still areas for additional work. Through these initiatives, 

the importance of using population matched controls for detecting pathogenic variations in disease 

samples became clear to prevent false positive results stemming from identity by descent (34).  

While there are many populations represented in these datasets, there are still underrepresented 

groups and it is important that we continue expanding the diversity of samples included in these 

resources (35). Further, as sequencing technology has advanced, new and more accurate variations 

have been detected and integrated into these datasets. Whole genome sequencing on a large scale 

has allowed researchers to systematically examine larger, structural variations in individual 

samples. With the introduction and optimization of long read sequencing, we should be able to 

incorporate information about various complex variations, including repetitive regions. In 

particular, long read sequencing has the potential to interrogate and characterize variation in the 
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hard-to-reach areas of the genome, including regions such as centromeres which have been 

challenging to sequence with previous technologies (36). Below, we cover the various classes of 

genetic variation that are present across the genome.  

1.4 CLASSES OF GENETIC VARIATION 

 

SNPs 

Single nucleotide polymorphisms (SNPs) are the variation of a single DNA base pair. They are the 

most common type of variation in the human genome and occur about one in every 1,000 base 

pairs (37). The mutation rate of SNPs is estimated to be (1.0-1.25*10-8) per site per generation 

(38–40). While many SNPs do not create pathogenic variations capable of causing disease, others 

can affect the function of cells and thereby cause disease. One example of a pathogenic SNP is 

missense mutations (41). Missense mutations result from SNPs in the coding region of a gene that 

generates a change in the amino acid that gene normally codes for as part of the translation process.  

This missense mutation will produce a different, potentially harmful protein. A single base pair 

substitution in a coding sequence for hemoglobin sufficiently alters the protein generated from the 

sequence resulting in sickle-cell disease (42,43).  

 

Indels 

The insertion or deletion of up to 50 base pairs in a genome (relative to a reference) are  collectively 

referred to as indels (44), as it is impossible to determine whether the underlying variant was 

deleted or inserted without an ancestral outgroup for comparison. While many of these variants 

can be harmless, insertions or deletions in coding sequence can be damaging, particularly if the 

insertion or deletion of base pairs is not a multiple of three, thereby resulting in a frame shift 
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mutation (45). Because the amino acids used to create protein sequences are coded using three 

consecutive base pairs, frame shift mutations can interrupt the frame in which the DNA sequence 

is read, creating a significantly different protein product than intended and often truncating the 

protein early due to the creating of a nonsense stop codon. Furthermore, even non-frame shifted 

mutations can have dire consequences. For example, an indel resulting in the deletion of a single 

codon within a coding sequence can result in the genetic disease cystic fibrosis (46).  

 

Structural Variation 

Variations affecting greater than 50 base pairs are considered structural variation by convention. 

Compared to SNPs and indels, there are fewer structural variations in a given genome, but these 

types of variation collectively affect a larger percentage of the genome than the smaller variations 

(24).   

 

Copy Number Variations 

Large variations which result in a change in the amount of DNA are considered copy number 

variation (CNVs). This includes the insertion, deletion, or duplication of DNA sequences in the 

genome. Like SNPs, some variants can be harmless, while others can affect the function of an 

otherwise healthy cell. In the worst cases, CNVs can cause the deletion or duplication of entire 

genes, which can be particularly harmful. For example, Prader-Willi and Angelman syndrome are 

caused by deletions on chromosome 15 (47).  

  

Inversions 
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Inversions are a class of structural variation that does not result in a change in the amount of DNA 

present and are considered balanced variations. Inversions involve a region of the genome 

occurring in a different orientation than expected. They can cause issues if the breakpoints of the 

inversion occur within important regions of the genome. A key inversion in the factor VIII gene is 

a common cause of hemophilia A, which can lead to spontaneous bleeding and an inability for 

blood to clot following injury in those who are afflicted (48).  

 

Translocations 

Translocations occur when a segment of a chromosome is transferred to a new location in the 

genome.  These variations can either be unbalanced, resulting in loss or gain of genetic material, 

or balanced, resulting in no change in genetic material. Balanced, or reciprocal translocations, 

occur when two segments for a chromosome switch locations in the genome. Both balanced and 

unbalanced translocations can cause disease phenotypes. When translocation breakpoints occur 

within genes, this can alter the function of the gene. Translocations are quite prevalent in cancer 

(49). In particular, oncogenic fusion genes formed by translocations have been identified in both 

hematological and solid tumors (50–53).  

 

Mobile Element Insertions 

Transposable elements are segments of DNA which are capable of replicating and creating copies 

of itself at new regions of the genome. Transposable elements that have recently been mobile in 

the genome are classified as mobile element insertions (MEIs). These include L1s, a sub-class of 

long interspersed nuclear elements (LINE), Alu elements, a subclass of short, interspersed nuclear 

elements (SINEs), and SINE-VNTR-Alu (SVA) elements. Together, sequences derived from these 
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elements make up over 35% of the genome (6). NUMTs, nuclear mitochondrial DNA, is the 

insertion of mitochondrial DNA into the nuclear genome (54). While there are sequences from 

these elements present in the genome, it is the novel insertions that are of interest. Like other 

genomic variation, the insertion of MEIs into important regions of the genome can cause problems. 

The exonic insertion of an AluY in FIX gene has been associated with Hemophilia B (55). 

  

Tandem Repeat Expansion 

Tandem repeats are a specific class of copy number variation that includes a repetitive motif of 

bases that are repeated in succession in the genome. These are often divided into two classes based 

on the size of the repeat motif.  Short tandem repeats (STRs) have repeat motifs up to 6 base pairs 

in length and variable number tandem repeats (VNTRs) have repeat motifs larger than 6 base pairs. 

The primary mechanism of mutation for tandem repeats is strand slippage, which involves the 

displacement of DNA strands during DNA replication (56). Expansions of these repetitive regions 

are thought to occur in a step-wise fashion, i.e. the expansions increase in size in subsequent 

generations or potentially in subsequent replications of the cell (57). Tandem repeats have several 

orders of magnitude higher mutation rates (10-6 to 10-2) than point mutations (58) and are prevalent 

in neurodegenerative disease. Trinucleotide repeat expansions are the known cause of 

Huntington’s Disease and Fragile X syndrome (59,60).  

 

1.5 TECHNOLOGY FOR DETECTING GENOMIC VARIATION 

 

DNA Microarrays 
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DNA Microarrays are a genotyping technology and offer a method for identifying genetic 

variation. DNA microarrays are a less expensive alternative to DNA sequencing but are more 

limited in what they can provide. Microarrays are created by attaching single stranded DNA probes 

onto a small chip. These probes contain the sequence for different variations of regions in the 

genome. Single stranded DNA from a sample is washed over the microarray chip to observe which 

probe the sample DNA hybridizes with, determining the sequence present in the sample (61). 

While microarrays can be applied for a variety of scientific uses, this thesis will focus on the use 

of microarrays for SNP detection. Microarrays are commonly employed for genotyping common 

SNPs in large populations. They are popular due to their high accuracy, low cost, and quick turn-

around time; however, microarrays are unable to detect novel SNP variation (or rare SNP variants) 

and are not straightforward in detecting larger structural variations. As discussed below, other 

whole genome sequencing methods are required for these types of studies. Additionally, due to 

their popularity and their length of existence, there is an abundance of previously generated 

datasets available. DNA microarrays datasets are analyzed as part of the analysis performed in 

Chapter 4.  

 

Sanger Sequencing 

The first human genome was sequenced using the Sanger chain termination method (4).  In Sanger 

sequencing, template strands of DNA undergo in vitro DNA replication but the random 

incorporation of specific fluorescently labeled chain-terminating nucleotides halt replication 

resulting in DNA strands of different lengths. These DNA strands undergo size separation, and the 

sequence of base pairs can be identified by observing the order of the different colors indicating 

the final base pair incorporated in the strands of increasing size (62). When considering read 
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length, there is an upper bound of around 800 base pairs due to size separation becoming 

challenging for molecules beyond this length. Despite improvements to Sanger sequencing since 

its inception, it remains a time-consuming method and has been superseded by Next Generation 

Sequencing methods for most routine sequencing. However, the high accuracy and the length of 

the reads generated make Sanger sequencing amenable for validation of variation calls made using 

other sequencing methods with shorter or lower accuracy reads. In Chapter 3, we use Sanger 

sequencing datasets as validation or ‘truth sets’ to compare variant calls generated from multiple 

sequencing technologies.   

 

Next Generation Sequencing 

The invention of next generation sequencing (NGS) methods was pivotal for studying the genome, 

allowing a human genome to be sequenced in under a day (63). Compared to Sanger sequencing, 

which took decades to create a draft of the first human genome, NGS was a dramatic advancement. 

NGS methods massively parallelize the sequencing process by allowing many regions of the 

genome to be analyzed at once. However, as a trade-off, the length of the reads generated by these 

methods are shorter (~150 base pairs) than what can be achieved with Sanger sequencing (64). 

This makes downstream analysis of the data more complex and limits the type of variations that 

can be captured with the data (65). Furthermore, larger variations, as well as mutations in more 

complex regions of the genome, often escape detection when using short read sequencing methods 

(5). Paired end sequencing can improve sequence alignment and provide features to help uncover 

large variations from short read data. Paired end sequencing involves sequencing from both ends 

of a DNA fragment and thereby creating two reads from each fragment. Together, these paired 

reads provide additional spatial information which can aide downstream analysis (66). In general, 
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NGS methods are not as accurate as Sanger sequencing but the ability to sequence to a higher 

coverage at low cost can improve the error rate (67). 

  

 

Illumina 

Currently, Illumina sequencing is the most used NGS platform for short-read sequencing (68). 

DNA molecules are sheared into ~400 base pairs fragments and attached to a flow-cell via an 

adapter. Each molecule is PCR amplified using bridge amplification to create a cluster of identical 

single-strands at the same location on the flow-cell. Sequencing by synthesis occurs for each 

cluster as fluorescently tagged nucleotides are incorporated one at a time, releasing a color 

corresponding the nucleotide that was just added to the sequence. Pictures are taken of the flow-

cell after each iteration of the process to capture the light emitted by each cluster. The sequence of 

bases is determined based on the sequence of colors emitted by each cluster (69). In paired-end 

Illumina sequencing, the opposite end of the fragments is attached to the flow-cell so that the 

process can be repeated to create a read for the other end of the fragment. Illumina datasets are 

used in each chapter in this thesis. 

  

BGI 

BGI genomics also provides short-read sequencing. BGI sequencing differs from Illumina in that 

it uses DNA nanoballs to amplify the DNA instead of bridge amplification to enhance the signal 

during sequencing. As with Illumina sequencing, the process starts with sheared DNA fragments 

but instead of being attached to a flow-cell right away, adapters are attached to the fragments and 

the two ends of the adapters are ligated together to form a circle (70). Rolling circle replication is 
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used to amplify small fragments of genomic DNA creating DNA nanoballs containing hundreds 

of copies of the DNA fragment. Because each replication is based on the original template, 

nanoball amplification has low amplification bias compared to PCR bridge amplification. The 

DNA nanoballs are attached to a flow-cell for sequencing and sequencing of the strands occurs in 

the same manner as Illumina (using sequencing by synthesis). BGI sequencing datasets are utilized 

in Chapter 2 of this thesis. 

  

Long Read Sequencing 

The last decade has seen the introduction of a new generation of sequencing methods with the 

ability to generate the longest reads lengths yet, with individual sequencing reads being generated 

often over 10,000 base pairs in length. These longer reads vastly improve the ability to both 

definitively align reads to a reference genome as well as construct accurate genome assemblies 

and have shown the capability to identify many of the variant classes that have been inaccessible 

using short-read methods (71–73). However, as with many new technologies, long-read 

sequencing is more expensive per base pair than the well-established short read methods. 

Additionally, these methods tend to have a higher error rate compared to short read methods 

(72,74). Currently, the high cost often prohibits generating the higher coverage needed to decrease 

the relatively higher base calling error rate of long-sequencing technology. There are two main 

long read sequencing technologies being used today. 

 

PacBio 

Single molecule, real-time sequencing developed by Pacific Biosciences, referred to as PacBio 

sequencing, is one technology used to generate long read sequencing data. A single stranded 
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circular DNA molecule is created by ligating hairpin adapters to either end of a double stranded 

template DNA fragment (75). This circular molecule is then loaded into a well on a chip where a 

polymerase, the module used to replicate DNA in a cell natively, is immobilized at the bottom. 

The polymerase performs replication of the single stranded molecule using nucleotides 

fluorescently labeled to indicate which of the four nucleotides is incorporated by the polymerase. 

The light emitted throughout the sequencing process is captured by a camera and translated into 

the base pair sequences. Because the molecule is circular, the polymerase can continuously 

sequence the molecule until it ceases to function, producing multiple copies – subreads – of the 

same template sequence. These subreads can be combined to create higher accuracy consensus 

reads. This process occurs in parallel across the chip, allowing many molecules to be sequenced 

at once. In Chapter 3, a PacBio sequencing dataset is used to compare several bioinformatics 

approaches.  

  

Oxford Nanopore Technologies 

The other common long read sequencing technology is from Oxford Nanopore Technologies, 

referred to as nanopore sequencing. Long, single-stranded molecules are fed through a nanopore 

with an electric current running through it (76). As the molecule passes through, the different base 

pair sequences disrupt the current in different, and predictable, ways. These changes in current are 

recorded and converted into base pair sequences. While not directly utilized within this thesis, 

targeted sequencing approaches, such as those offered by Oxford Nanopore Technologies, can be 

used as validation for hypothesis generating studies such as the work presented in Chapter 4.  

 

1.6 BIOINFORMATIC APPROACHES FOR IDENTIFYING GENOMIC VARIATION 
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Genome Alignment 

For all sequencing methods, the genome of a sample is fragmented into pieces, the length 

depending on the technology being used. In order to interpret the sequences contained in the reads, 

they are aligned to the reference genome. Genome alignment involves identifying what part of the 

genome a read is derived from by matching each sequencing read to the most similar sequence in 

the reference genome.  The length of the read and the error rate play important roles in genome 

alignment. Genome alignment methods have been optimized to work with both short, accurate 

reads as well as long, error-prone reads. Alignment methods used in this thesis include minimap2 

(77)  and BWA (78). Once these reads have been aligned to the reference genome, the regions of 

the genome that differ from the reference genome can be identified using a number of 

bioinformatic approaches that have been developed to detect the different classes of variation.  

 

Variant Detection 

SNPs and Indels 

Detecting SNPs from short read sequencing is highly effective given the lower error rate of the 

technology and because the variants are completely contained within a single read allowing direct 

comparison between reads and the reference sequence. GATK (Genome Analysis Tool Kit) is the 

industry standard for this analysis and provides best practice pipelines set up for processing short 

read data and detecting SNP and indels in samples (79–81).  

 

Detection of these smaller variants can be more challenging to detect with long read sequencing 

given the higher error rate, specifically given the high prevalence of small insertion and deletion 
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errors that occur with long read sequencing technologies. Methods to detect SNPs and indels have 

been developed specifically to handle the higher error rates associated with this these technologies 

(82). 

 

Microarrays are specifically designed to identify SNP and indel variations and are highly effective 

at this task. As opposed to detecting variation from sequencing datasets, detecting variation from 

microarrays does not involve genome alignment as each probe is designed to distinguish between 

the known alleles at a given location in the genome. SNP and indel alleles are determined directly 

by reading the signal intensity indicating hybridization at each probe. 

 

CNVs and Inversions 

While large variations can be challenging to detect using short reads given the variations can 

exceed the length of a single read, several methods have been developed to detect large variation 

using a combination of signatures of the alignments of paired-end reads to the reference genome. 

These signatures include read depth to detect changes in copy number, distance and orientation in 

which read pairs align to the reference genome to identify insertions or deletions relative to the 

reference sequence, and split reads to identify breakpoints of structural variants where split reads 

are reads that only partially align to the reference genome (79–81).   

 

Long read sequencing has an advantage over short read sequencing for the detection of structural 

variation as more variations can be fully contained within the ~10,000 base pair read lengths. 

Differences between a read and the reference sequence can be directly interrogated for variations 
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that are completely spanned by a long read. Mapping signatures used in short reads such as split 

reads can also be used to detect variations spanning across multiple reads (83–85). 

 

While there are microarrays designed to detect changes in the number of copies of regions of DNA, 

these are not used in this thesis. 

 

MEI 

Methods for detecting novel MEIs and NUMTs from short reads, such as MELT and dinumt, use 

similar approaches to methods for detecting CNVs (86,87). Pairs of reads where one read maps to 

the reference genome while the mate-pair maps to the known sequence of a mobile element 

identify regions of the genome with novel insertions and split reads are used to refine location of 

the insertion.  Long read sequencing methods can identify mobile element insertions that are 

undetectable in using short read datasets, specifically in repetitive regions of the genome (88).  

 

Tandem Repeats 

Tandem repeats variation has historically been very challenging to characterize using current 

sequencing technologies. This is due to the difficulty of aligning reads containing repetitive 

sequence to the reference genome. This is particularly apparent with short reads which may not 

span the entirety of a repetitive region. However, several methods have been developed to 

characterize tandem repeats from short read data (89,90). These often again take advantage of the 

properties of mapped paired end reads to estimate the length of the repeat expansions compared to 

the reference genome.  
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Long read sequences have been particularly helpful in the characterization of repetitive variation 

as spanning the repeat and having unique sequence flanking the repetitive region can be helpful in 

mapping the read to the correct location in the reference genome and allowing comparison of the 

lengths between the read and reference sequences (91–93).  

 

1.7 CROSS PLATFORM VARIANT DETECTION STRATEGIES  

 

As each of the approaches discussed above has limitations, there is still room for advancement in 

detecting variation across the genome. It has been shown on many occasions that integrating 

multiple sequencing platforms can enhance variation detection (94–97). Often times, these 

approaches look to leverage information from a more accurate but difficult to obtain datasets to 

improve or enhance data from more accessible datasets – accessible being either already generated 

data or data that is less expensive to generate.  

 

Variant Call Validation 

While some sequencing technologies such as Sanger sequencing or long read sequencing provide 

advantages over others for detection of variation, they can be cost prohibitive to perform on a large 

scale. Instead, these technologies are often used as validation for variant calls made from 

technologies that may be less accurate (94,98). Targeted Sanger sequencing can be used to validate 

large, complex, or repetitive variation detected by bioinformatic approaches for short read data. 

This validation can be automated such as was done in previous work from our group, including 

myself, using long read sequencing data to validate structural variation calls made from short read 

datasets (99) (Figure 1).  
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Variant Imputation 

The concept of imputation takes advantage of knowledge taken from short read sequencing data 

to increase the SNP density for samples genotypes using SNP microarrays. Sequencing datasets 

provide higher resolution data for variant detection compared to SNP microarrays and provide 

higher density variant datasets (100). However, variant imputation can be performed to infer what 

variants are present in a sample without directly interrogating the variants. This technique relies 

on linkage disequilibrium - the phenomenon that variants are not typically inherited independently 

of one another and instead, variations near one another are often inherited together (101,102). For 

example, if an allele in a sample genotyped with a SNP microarray matches closely with an allele 

in a WGS sample present in a reference population, it can be inferred that the untyped variants in 

the microarray genotyped sample match the reference sample for the region. While the imputed 

variants cannot be determined as accurately as directly genotyping the sample, this technique can 

provide the opportunity to increase the variant density of SNP microarray datasets. 

 

1.8 DISSERTATION SUMMARY  

 

 

In this thesis, I have developed and employed multiple bioinformatic approaches to analyze 

datasets produced by multiple sequencing technologies. In Chapter 2, I compare variant calls 

generated from BGI sequencing of individuals of Ukrainian descent using the more established 

short read sequencing platform Illumina and SNP microarrays. Additionally, we identify the key 

genomic variation that differentiates Ukrainians from others of European ancestry. In Chapter 3, I 

perform a comparison of various bioinformatics and sequencing approaches for detecting tandem 
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repeat variation and provide guidelines for when to use each technique.  In Chapter 4, I utilize the 

relationship between tandem repeat lengths and surrounding SNP haplotypes gleaned from whole 

genome, short reads sequencing to estimate the lengths of tandem repeats in disease samples 

genotyped using SNP microarrays. We identify repeat expansions of interest relating to ALS from 

both the samples with WGS and SNP microarray data that should be further investigated using 

targeted sequencing approaches.  This thesis highlights the important role executing multi-

platform approaches can play in detecting genomic variation across both disease and diversity 

studies.  
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1.9 FIGURES 
 

 

Figure 1-1 Flowchart describing the VaPoR algorithm.  

As input, the algorithm requires a set of structural variants in either VCF or BED format, a series of long reads and/or sequence 

contigs in BAM format, and the corresponding reference sequence. VaPoR then interrogates each variant individually at its 

corresponding reference location, assesses the quality of the region, and assigns a score. 
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Chapter 2 - Characterizing Population Scale Variation Using Multiple 

Sequencing Platforms 
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contributions of the remaining authors.  

 

 

 

2.1 ABSTRACT 

 

Background 

The main goal of this collaborative effort is to provide genome-wide data for the previously 

underrepresented population in Eastern Europe, and to provide cross-validation of the data from 

genome sequences and genotypes of the same individuals acquired by different technologies. We 

collected 97 genome-grade DNA samples from consented individuals representing major regions 

of Ukraine that were consented for public data release. BGISEQ-500 sequence data and genotypes 

https://doi.org/10.1093/gigascience/giaa159
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by an Illumina GWAS chip were cross-validated on multiple samples and additionally referenced 

to one sample that has been re-sequenced by Illumina NovaSeq6000 S4 at high coverage. 

 

Results 

The genome data have been searched for genomic variation represented in this population, and a 

number of variants have been reported: large structural variants, indels, copy number variations, 

single-nucleotide polymorphisms, and microsatellites. To our knowledge, this study provides the 

largest to-date survey of genetic variation in Ukraine, creating a public reference resource aiming 

to provide data for medical research in a large understudied population. 

 

Conclusions 

Our results indicate that the genetic diversity of the Ukrainian population is uniquely shaped by 

evolutionary and demographic forces and cannot be ignored in future genetic and biomedical 

studies. These data will contribute a wealth of new information bringing forth novel, endemic and 

medically related alleles. 

 

2.2 INTRODUCTION 

 

Context 

Ukraine is the largest country located fully in Europe, with a population that was formed as a result 

of several millennia of migration and admixture. It occupies the intersection between the 

westernmost reach of the great steppe and the easternmost extent of the great forests that spread 

across Europe, at the crossroads of the great trade routes from “Variangians to the Greeks” along 

the river Dnipro, which the ancient Greeks referred to as Borysthenes, and the Silk Road linking 
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civilizations of Europe and Asia (103). This land has seen the great human migrations of the 

Middle Ages sweeping from across the great plains, and even before that in the more distant past, 

of the early farmers (104) and the nomads who first domesticated the horse (105–108). Here, at 

the dawn of the modern human expansion, our ancestors met the Neanderthals who used to hunt 

the great game along the glacier of the Ice Age (109,110). 

 

The rich history shaped genetic diversity in the population living in the country of Ukraine today. 

As people have moved and settled across this land, they have contributed unique genetic variation 

that varies across the country. While the ethnic Ukrainians constitute approximately more than 

three-quarters of the total population, this majority is not uniform. A large Russian minority 

compose approximately one-fifth of the total population, with higher concentration in the southeast 

of the country. Smaller minority groups are historically present in different parts of the country: 

Belarusians, Bulgarians, Crimean Tatars, Greeks, Gagauz, Hungarians, Jews, Moldovans, Poles, 

Romanians, Roma (Gypsies), and others (111). 

 

This study offers genome data from 97 individuals from Ukraine (Ukrainians from Ukraine 

[UAU]) to the scientific community to help fill the gaps in the current knowledge about genomic 

variation in Eastern Europe, a part of the world that has been largely and consistently overlooked 

in global genomic surveys (112). To our knowledge, this was the first effort to describe and 

evaluate the genome-wide diversity in Ukraine. Samples were successfully sequenced using BGI's 

DNA Nanoball (DNBSEQ™) sequencing technology and cross-validated by Illumina sequencing 

and genotyping. The major objectives of this study were to demonstrate the importance of studying 

local variation in the region and to demonstrate the distinct and unique genetic components of this 
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population. Of particular interest were the medically related variants, especially those with allele 

frequencies that differed with the neighboring populations. As a result, we present and describe an 

annotated dataset of genome-wide variation in genomes of healthy adults sampled across the 

country. 

 

Dataset 

The new dataset includes 97 whole genomes of self-reported UAU at 30× coverage sequenced 

using BGISEQ-500 (one of the range of DNBSEQ™ sequencers; BGI Inc., Shenzhen, China) and 

annotated for genomic variants: single-nucleotide polymorphisms (SNPs), indels, structural 

variants, and mobile elements. The samples were collected across the entire territory of Ukraine, 

after obtaining institutional review board (IRB) approval for the entire study design and informed 

consent from each participating volunteer. Each participant in this study had an opportunity to 

review the informed consent, received an explanation of the nature of the genome data, and made 

a personal decision about making it public. 

 

The majority of samples in this study (86 of 97) were additionally genotyped using Illumina Global 

Screening Array (Illumina Inc., San Diego, CA, USA) to confirm the accuracy of base calling 

between the 2 platforms. In addition, one sample (EG600036) was also sequenced on the Illumina 

NovaSeq 6000 S4 (2 × 150 bp; ∼60× coverage) and used for validation of the variant calls (see 

summary in Table 2-2 and full sequencing statistics for individual samples in Table 2-3). The list 

of the cross-validated samples and the source technology of the data is presented in Table 2-1. 

 

https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/gigascience/10/1/10.1093_gigascience_giaa159/5/giaa159_supplemental_files.zip?Expires=1634314454&Signature=mP1RoLtRKgWso6ZW3KImmnmQedbZqk8~x3EniS1DxQ9C0ZYkwZdD36i5p6S-QxVSsjE7c1KA935tbuJIlyRVdP~qwhAEzLq4Q3ZxGKLRSJYkIX3fs4cv6rnSvoq0AkMYNNvh5z2ER0QhYEHXJriF3Nzw8YWhS-a620QX-P07Y3AJtJfJ~2XWP2LzP0D-2TU89c0Ed3Kv8xnkD591iIqR383B4uODw-lWy58rD3XZzu5axdgjmFCk01ypw4hf1nGtAfRyVEy0qsSM2WIVZ1Uc2Ld~W3NC1qZeGExvFVSj1h8uKt1x1hR-M1HuxnrqeEvti6VtXMorLu9fTZVE5DilMw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
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The present dataset contains locations and frequencies of >13 million unique variants in UAU that 

are further interrogated for functional impact and relevance to medically related phenotypes 

(Table 2-4 and data in GigaDB (113)). As much as 3.7% of these alleles, or 478,000, are novel 

genomic SNPs that have never been previously registered in the Genome Aggregation Database 

(gnomAD) (30) (Table 2-4). This number is similar in magnitude to what was reported earlier in 

2 populations from European Russia (3–4% (114)). Many of the discovered variants (12.6%) are 

also currently missing from the global survey of genomic diversity in the 1000 Genomes Project 

(1KG) (24). The majority of these described variants are rare or very rare (<5% Appendix Figure 

A 1). 

 

Because other indigenous ethnic groups from Ukraine (such as the Crimean Tatars or the Gagauz) 

are not included in the study, increasing the aforementioned sample size from 100 to 1,000 

individuals is not likely to greatly contribute to discovery of novel mutations (115). The proportion 

of the novel structural variants and mobile elements compared to the earlier databases is even 

higher: almost 1M (909,991) complex indels, regions of simultaneous deletions and insertions of 

DNA fragments of different sizes that lead to net a change in length, the majority of which are 

novel (Table 2-4). Many of the newly discovered variants are functional and potentially contribute 

to the phenotype (classified in Table 2-5). We report many important variants that are overlooked 

or require special modifications in the commonly used resources and tools in genomic research 

and diagnostics. This wealth of novel variation underscores the importance of variant discovery in 

local populations that cannot be ignored in biomedical studies. 

 

javascript:;
javascript:;
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2.3 RESULTS 

 

Variant calling and confirmation 

For each sample in the database, we estimated the number of passing bi-allelic SNP calls (i.e., loci 

with the non-reference genotypes relative to the most current major human genome assembly, 

GRCh38 (116)) (Table 2-4). Then ∼12% of these were filtered out on the basis of excess 

heterozygosity and low variant quality scores (Table 2-3). For the indels, we also estimated the 

number of passing calls compared to GRCh38 and excluded 4% of those that did not pass filtering. 

The total number of the unique SNPs, small and large indels (Table 2-4) was calculated from the 

raw read alignments of all 97 sequenced genomes (Total Unique SNPs, Table 2-3) with the 

exception of those filtered out for low variant quality scores and containing excess heterozygosity 

(Filtered Count; Table 2-3). In addition, we filtered out 4,135,903 variants that only appeared once 

in a single sample (for both indels and SNPs) and designated them as “singletons.” 

 

We report a good correspondence between the SNP calls made using BGISEQ-500 and NovaSeq 

6000 S4 data. A comparison of the variants detected using these 3 platforms for sample EG600036 

is summarized in Figure 2-1A. The SNP concordance for samples with both BGISEQ-500 and 

SNP array data is summarized in Figure 2-1C. The cross-platform comparison shows a very good 

overlap across all 3 technologies: >3.5 M (97.7%) of the SNPs identified in the BGISEQ-500 were 

also verified in the whole-genome sequence of EG600036 sequenced by the Illumina NovaSeq 

6000 S4. The correspondence with the Illumina SNP Array for sample EG600036 was also very 

good: 95.8% of all the SNP genotypes called by the Illumina method were also detected by the 

BGISEQ-500 (Figure 2-1A, right, and C, right). The concordance between the non-reference 

alleles between the 2 platforms in all 86 samples was nearly linear (r2= 0.985, Figure 2-1C, left). 
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The transition/transversion (TITV) ratio for the novel SNPs (estimated with TiTvtools (117) and 

visualized by plotTiTv in Supplementary Figure 2-2) was lower than the TITV ratio for SNPs in 

the dbSNPs database (1.9 vs 2.2; (31)). Similarly, the insertions to deletions (ins/del) ratio for 

novel indels is lower than for the indels already reported in the dbSNP database (0.63 vs 0.75). 

This observation likely reflects our improved ability to detect small insertions in newer sequencing 

technologies compared to many platforms that historically submitted variation to dbSNP. 

 

We have defined the multi-allelic SNPs as observations of genomic positions having 2 or more 

alternative alleles (118). These are important variants that are overlooked or require special 

modifications in the commonly used resources and tools in genomic research and diagnostics. We 

report a total of 343,696 multiallelic sites in the sequences from our sample, of which 2.0% are at 

locations unreported in the gnomAD database (30) (Table 2-4). 

 

In addition to the SNPs, we have identified and quantified major classes of structural variations in 

the Ukrainian population: small indels (insertions and deletions <50 bp), large structural variants 

(deletions, duplications, and inversions > 50 bp), and mobile element insertions (MEI) (Alu 

elements [ALU], L1 elements, non-autonomous retroelements [SVA], and nuclear mitochondrial 

DNA [NUMT] copies). A number of structural elements were reported, including common and 

novel ones. While among the small variants most were common (6–9%), a large proportion of 

large variants and MEIs (38–52%) have not been reported previously in the 1GP Database (Table 

2-4). 
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Once more, there is a significant correspondence between the calls made using BGISEQ-500 and 

Illumina NovaSeq 6000 S4 data. The 2 sequencing platforms show a significant overlap in calling 

indels (DEL): 87.9% of the variants called by the BGISEQ-500 were also detected by the Illumina 

platform. At the same time, there were 822 deletions, or 33.8% of all the indels called by the 

Illumina that were not detected by the BGISEQ-500 (Figure 2-1B). A similar picture, where 

BGISEQ-500 performs competitively well, is also observed for inversions (INV) (Figure 2-1B) 

and LINE1 transposable elements (Figure 2-1D). At the same time, there were more duplications 

(DUP) (Figure 2-1B) and the 2 classes of transposable elements evaluated: ALU and SVA (Figure 

2-1D). Evaluation tests show that current algorithms are platform dependent, in the sense that they 

exhibit their best performance for specific types of structural variation, as well as for specific size 

ranges (119), and the algorithms designed for detection and archived datasets are predominantly 

for Illumina pair-end sequencing (120,121). While it is possible that these results indicate 

Illumina's superiority at detecting structural variation, it can also be the consequence of the 

bioinformatics tools for calling structural variants developed using mainly the Illumina data, as 

suggested by previous comparative evaluations of the 2 technologies (122,123). Additionally, 

higher coverage of the Illumina data (60×) could have contributed to the differences observed 

between the platforms. 

 

The database was compared to the existing global resources of population variation such as 

gnomAD (30) and the 1KG (24). Specifically, under our search criteria, the small variants (SNPs 

and small indels) were considered “novel” if they were absent from all the samples in the 2 global 

datasets (gnomAD and 1KG; Table 2-4). The large structural variants and MEIs were considered 

novel if the variant was not present in the gnomAD and 1KG databases. To determine whether a 
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given variant was present in 1 of the databases, a variant of the same type in the database had to 

overlap the Ukrainian variant with a minimum fraction of 0.95. We observed no significant 

deviation of the rate at which reference bases were observed at REF/alt heterozygous SNP sites 

(reference bias was near 50%). 

 

Collection of functional variants 

A particular interest in this study is the distribution of functional variation, not in the least due to 

the potential impact on phenotypes, especially to those with medical relevance (124). As much as 

97.5% of all annotated variation was discovered outside of the known functional elements 

(upstream, downstream, intron, and intergenic). These results are similar to the expected 

distributions of mutations shown with the simulated data (125). Nevertheless, there were >8,000 

mutations discovered within exons of each individual on average (top half of Table 2-5). We 

annotated several classes of functional mutations within the coding regions (bottom half of Table 

2-5). As expected, the nonsense mutations classified in the annotation file as “disruptive in-frame 

indel,” “start lost,” “stop gained,” and “stop loss” were rare, while categories with minimal effect 

on the function, such as “synonymous,” “motif,” “protein folding,” and “missense,” were more 

common. Some of the mutations listed in the annotation file can be classified in >1 category (e.g., 

“synonymous variants” can also be counted in “exonic variants”). 

 

In addition to the gene-coding mutations, we report a number of regulatory variants. For example, 

the database contains a total of 2,229 transcription factor binding site ablation (TFBS) mutations 

(bottom half of Table 2-5). A summary of functional variation discovered in this study is presented 
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in Table 2-5. The full annotation database with classifications is available alongside the associated 

data deposited in GigaDB (113). 

 

Collection of medically relevant variants 

Many of the reported variants are already known to be medically related and are listed either in 

genome-wide association studies (GWAS) (126) or ClinVar (an NCBI archive of reports of the 

relationships among human variations and phenotypes with supporting evidence)(33) catalogues 

(Table 2-6). Our database contains a total of 43,892 benign mutations in medically related genes 

but also 189 unique pathogenic or likely pathogenic variants, as well as 20 protective or likely 

protective alleles as defined in ClinVar (33,127). Each individual in this study carries 19 

pathogenic and 12 protective mutations on average. While at least some individuals were 

homozygous for the pathogenic allele, none of the associated disease phenotypes have been 

reported, which could be largely attributed to heterozygosity, age-dependent penetrance, 

expressivity, and gene-by-environment interactions (128,129). 

 

As expected, our study shared a lot more variants with the GWAS (126) than with the ClinVar 

(33) catalogue. While GWAS has recently become the tool of choice to identify genetic variants 

associated with complex disease and other phenotypes of interest (130), because the amount of 

genetic variance explained by these variants is low, they are generally not very useful for predicting 

pathogenic phenotypes (131). It is also important to note that not all ClinVar variants carry the 

same weight of supporting evidence; attributing disease causation to prioritized variants remains 

an inexact process and some of the reported associations eventually are proven to be spurious 

(132). Nevertheless, the importance of the unique set of mutations published here is difficult to 
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overemphasize because it constitutes the first published set of pathological variants in an 

understudied population, an important step towards a local catalogue of medically relevant 

mutations. In addition, as the attention in the genomic community is shifting from monogenic to 

polygenic traits, many of these may become relevant in future research and exploration (133).  

 

Disease variants with frequencies that differed between the Ukrainians and the neighboring 

populations are of particular interest to the medical community. It is well established that 

differences in allele frequencies are a consequence of evolutionary forces acting in populations 

(such as drift, mutation, migration, nonrandom mating, and natural selection) and that certain 

diseases and heritable traits display marked differences in frequency between populations (134). 

With this in mind, we created a list of the known disease variants whose frequencies differ between 

Ukrainians and other European populations (the combined European sample [EUR] from the 1KG, 

comprising Utah residents [CEU] with Northern and Western European ancestry, Toscani in Italy 

[TSI], Finnish in Finland [FIN], British in England and Scotland [GBR], Iberian population in 

Spain [IBS] (24,135), and French population from Human Genome Diversity Project [HGDP] 

[FRA] (136)) and Russians from HGDP (RUS) (136). Several examples of these variants are 

presented in Table 2-7. Among these are variants involved in a number of medical conditions such 

as hyperglycinuria/iminoglycinuria (rs35329108,SLC6A19), efficacy of bisphosphonate response 

(rs2297480,FDPS), autism (rs7794745, CNTNAP2), Leber congenital amaurosis 

(rs10151259,RPGRIP1), and breast cancer susceptibility in BRCA1 and BRCA2 carriers 

(rs1801320,RAD51) (Table 2-7). 
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Of course, not all the medically related variants are currently known, and many remain to be 

discovered and verified in local populations. This is, to some extent, a consequence of 

underreporting of allelic endemism within understudied populations, particularly in Eastern 

Europe (112) but also elsewhere (137,138). By offering public annotations of functional mutations 

in a population sampled across the territory of Ukraine, our database contributes a number of 

candidates to direct future research in medical genomics. We chose only the markers with the 

highest non-reference allele frequency differences compared to the neighboring populations 

EUR(24) and RUS (136), evaluated by the Fisher exact test, and listed them in Table 2-8. 

 

Population structure and ancestry informative markers 

We performed several population analyses, but only to demonstrate the uniqueness and usefulness 

of this new dataset. Our results indicate that genetic diversity of the Ukrainian population is 

uniquely shaped by evolutionary and demographic forces and cannot be ignored in future genetic 

studies. However, we do not evaluate any historical hypotheses on the timing of origins, founding, 

migration, and admixture of this population and use only the naive approaches, based on the 

statistical models. 

 

To demonstrate the extent to which our dataset contributes to the genetic map of Europe, we 

explored genetic relationships between Ukrainian individuals within our sample and evaluated 

genetic differences between this population and its immediate neighbors on the European continent 

for which population data of full genome sequences were publicly available. A principal 

component analysis (PCA) of the merged dataset of 654 samples included European populations 

from the 1KG (Utah residents [CEU] with Northern and Western European ancestry, Toscani in 
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Italy [TSI], Finnish in Finland [FIN], British in England and Scotland [GBR], Iberian population 

in Spain [IBS] (24,135)) and French (FRA) and Russian (RUS) populations from the HGDP (136), 

as well as the relevant high-coverage human genomes from the Estonian Biocentre Human 

Genome Diversity Panel (EGDP: Croatians [CRO], Estonians [EST], Germans [GER], Moldovans 

[MOL], Polish [POL], and Ukrainians [UKR]) (139) and Simons Genome Diversity Project 

(Czechs [CZ], Estonians [EST], French [FRA], Greeks [GRE], and Polish [POL]) (139) (Figure 

2-3). The latter article also identifies “Cossacks” as a separate self-identified ethnic group within 

Russians (Cossacks [RUS]) or Ukrainians (Cossacks [UKR]) (140) (Table 2-1). 

 

Ukrainian genomes from this as well as other studies (139,140) form a single cluster positioned 

between the Northern (Russians, Estonians) on 1 side, and Western European populations on the 

other (CEU, French, British, and Germans, Figure 2-3). There was a significant overlap with the 

other Central and Eastern European populations, such as Czechs, Polish, and the people from the 

Balkans (Croats, Greeks, and Moldovans). This is not surprising; in addition to the close 

geographic distance between these populations, this may also reflect the insufficient representation 

of samples from the surrounding populations (see data in GigaDB (113)). Similarly, the admixture 

analysis demonstrates distinctiveness of our dataset but also demonstrates unique combinations of 

genetic components that may have shaped this population (Figure 2-4 and Appendix Figure A 2). 

 

Addition of the new genomic data will most likely add to the resolution of the genetic map of this 

region and further reveal differences between the populations of Eastern and Central Europe. Our 

dataset showed a limited amount of inbreeding and contains information for future population 

studies. This database can be a starting point for association studies, as the candidate ancestry 
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informative markers (AIMs) (141) can be used for mapping disease alleles by admixture 

disequilibrium (142,143). 

 

To provide a more extended view of the genetic components contributing to the Ukrainian 

population, we used the population structure plots using the ADMIXTURE package (144). This 

allowed us to construct a preliminary picture of putative ancestry contributions and population 

admixture. To identify the optimal K, we implied the 10-fold cross-validation function in range of 

K = 2−6. The results with the optimal K = 3 shown in Figure 2-4 illustrate similarity and the 

difference of Ukrainian population compared to the other populations in Central and Eastern 

Europe (Figure 2-4, second row). While the higher values of K (Appendix Figure A 2) show an 

increasing number of clusters, they also show an increasing amount of error in the cross-validation 

function. This analysis already shows the potential of the present database in helping to resolve 

population structure in Eastern Europe, but additional genome-wide data from neighboring 

populations would be helpful to refine the picture in this geographical region. Unfortunately, 

valuable genome-wide data collected from 3 populations in Russia have been retracted from public 

databases after publication (114). 

 

Despite the fact that all of the samples were collected from self-identified ethnic Ukrainians, there 

were 2 notable outliers: sample EG600048 clustered with the Southern Europeans (Iberia and 

Italian populations) Figure 2-3. This illustrates an important point that ignoring the unique 

composition of the population will result in ascertainment bias in biomedical studies. Genetics is 

not a reliable determinant of ethnicity but can be used to evaluate individual contributions of 

ancestry.  
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People of Ukraine carry many previously known and several novel genetic variants with clinical 

and functional importance that in many cases show allele frequencies different from neighboring 

populations in the rest of Europe, including Poland to the west, Romania to the south, the Baltics 

to the north, and Russia to the northeast. While several large genome projects already exist 

contributing to the understanding of global genetic variation, many rare and endemic alleles have 

not yet been identified by international databases such as 1KG and are currently not available in 

standard genotyping panels for association testing for human diseases, and glaring white spots still 

exist on the genetic maps in local populations of Eastern Europe (112). We fully expect future 

sampling and sequencing to continue to improve and complete the detailed picture of genomic 

diversity in people across the country and contribute to the further development of genetic 

approaches in biomedical research and applications. 

 

2.4 METHODS 

 

Sampling strategy 

The collection and consent procedure was approved as part of the “Genome Diversity in Ukraine” 

project by the IRB of Uzhhorod National University in Uzhhorod, Ukraine (Protocol 1 from 

09/18/2018, Supplementary File S1). We employed doctors and medical professionals from 

different regions of Ukraine to oversee collection of blood samples at hospitals. Healthy (non-

hospitalized) volunteers were contacted through advertisements and invited for personal 

interviews at outpatient offices. During the visit the volunteers were familiarized with the study 

and the collection procedure and gave full consent to participate and let their genotypic and 

phenotypic data be freely and publicly available. During each interview, the volunteer participants 
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also completed a questionnaire indicating self-reported region of origin, place of birth of all 4 

grandparents (if remembered), sex, and several phenotypical features, such as daily history of 

disease (Table 2-1). The hard copies of the consents and personal interviews remain sealed and 

stored at the Biology Department of Uzhhorod National University. After the conclusion of the 

interview and sample collection, all personal identifiers were removed from the vials containing 

blood samples, except for an alphanumeric identifier and a barcode. All the subsequent analysis 

and publication was done in a blind design where neither the participants nor the researchers could 

identify the person who donated the sample. 

 

At the conclusion of the interview a whole-blood sample was collected from a vein into two 5-mL 

EDTA tubes by a certified nurse or a phlebotomist, assigned a barcode number, and shipped by 

courier on dry ice to a biomedical laboratory certified to handle blood samples in Uzhhorod, 

Ukraine (Astra Dia Inc.), for DNA extraction immediately on arrival. The excess of the blood and 

DNA from samples remaining after the genetic analysis is stored frozen at the biobank of the 

Biology Department, Uzhhorod National University, Ukraine. As a result, blood samples were 

collected from a total 113 individuals. 

 

DNA extraction 

Immediately upon arrival to the laboratory, DNA isolation from 200 μL of blood was carried out 

with the innuPREP DNA Blood Minikit (AAnalytik Jena GmbH, Jena, 07745, Germany). High 

molecular weight genomic DNA was lightly fragmented by vortexing. The initial DNA 

concentration was measured with the Implen C40 Nanophotometer (München, Germany), and 

quality was verified visually on a 2% agarose gel. The 97 successfully extracted DNA samples 
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were normalized to 20–30 ng/μL concentration for downstream application. After extraction the 

samples were recoded and sent to NIH for the genotyping procedure, whence the aliquots were 

further shipped to a BGI facility (BGI Shenzhen, China) or to Psomagen Inc. (Gaithersburg, MD, 

USA) for the whole-genome sequencing (WGS). The remaining ∼2 mL was frozen for future use. 

 

Sequencing and genotyping 

All 97 individuals in this study were sequenced with BGISEQ-500 and 88 individuals were cross-

validated by genotyping using Illumina Global Screening Array. The record of which individual 

samples have been cross-validated by both technologies is presented in Table 2-1. In addition, a 

single sample (EG600036) was also sequenced on Illumina NovaSeq 6000 S4 (∼60× coverage). 

 

Sequencing with BGISEQ-500 

All 97 DNA samples were sequenced on BGISEQ-500 (BGI Shenzhen, China). Upon receipt at 

the BGI facility, and prior to sequencing, samples were checked again for quality. Concentration 

was once more detected by fluorometer or Microplate Reader (e.g., Qubit Fluorometer, 

Invitrogen). Sample integrity and purity were detected by agarose gel electrophoresis 

(concentration of agarose gel: 1%; voltage: 150 V; electrophoresis time: 40 min). Aliquots of 1 μg 

genomic DNA were fragmented by Covaris. The fragmented genomic DNA was selected by 

Agencourt AMPure XP-Medium kit to a mean size of 200–400 bp. Fragments were end-repaired 

and then 3′-adenylated. Adaptors were ligated to the ends of these 3′-adenylated fragments. PCR 

products were purified by the Agencourt AMPure XP-Medium kit. The double-stranded PCR 

products were heat denatured and circularized by the splint oligo sequence. The single-strand circle 

DNA was formatted as the final library. The qualified libraries were sequenced by BGISEQ-500: 
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the single-strand circle DNA molecule formed a DNA nanoball (DNB) containing >300 copies 

through a rolling-cycle replication. The DNBs were loaded into the patterned nanoarray by using 

high-density DNA nanochip technology. Finally, pair-end 100-bp reads were obtained by 

combinatorial probe-anchor synthesis. Raw reads were filtered to remove adaptor sequences, 

contamination, and low-quality reads. Sequencing of all 97 full genome samples submitted for 

sequencing at BGI was successful. 

 

Short-read sequencing with Illumina NovaSeek6000 

One individual was resequenced by Illumina NovaSeq6000 S4 at Psomagen Inc. (Gaithersburg, 

MD, USA). The library was prepared using TruSeq DNA PCR Free 350 bp protocol by Illumina. 

The library was sequenced at ∼64× depth, producing 150-bp–long reads, resulting in 241.7 Gb of 

data. 

 

Genotyping with the Illumina Infinium Global Screening Array 

We attempted to genotype all 97 of the collected samples using the Illumina Infinium Global 

Screening BeadChip Array-24 v1.0 (GSAMD-24v1–0) for 700,078 loci at the National Cancer 

Institute's Division of Cancer Epidemiology and Genetics (Bethesda, MD, USA) (145). Data were 

analyzed by using the standard Illumina microarray data analysis workflow. During quality control 

(QC), samples were filtered for contamination, completion rate, and relatedness. As part of QC, 

we performed ancestry assessment using SNPweights software (141) with a reference panel 

consisting of 3 populations (European, West African, and East Asian). All samples were attributed 

to the European ancestry group. After QC and sample exclusion, 87 (86 samples and 1 QC) 

samples with 689,918 loci and completion rate of 99.9% were retained for further analysis. 
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Variant Calling 

Variant Calling of the BGISEQ-500 data 

The sequencing data produced using the BGISEQ-500 platform for 97 samples were analyzed 

using the Sentieon tools (Sentieon Inc., San Jose, CA, USA) high-performance implementation of 

the BWA/GATK best practices pipeline on servers hosted by the Cornell University 

Biotechnology Resource Center. Reads were aligned to the GRCh38 human reference genome 

using BWA-MEM (Version: 0.7.16a-r1181), and mapped reads were prepared for variant calling 

using GATK (v3.8-1-0-gf15c1c3ef by Broad), including marking duplicates (picard 

MarkDuplicates, Version 2.12.1), indel realignment (GATK RealignerTargetCreator, 

IndelRealigner, Version 3.7-0), and base quality score recalibration (GATK BaseRecalibrator, 

PrintReads, Version 3.7-0). SNP and indel discovery were performed for each individual using 

GATK HaplotypeCaller and merged into a single pVCF using bcftools. Sample EG600036 was 

also run without joint calling, which was used when calculating concordance between the Illumina 

and BGISeq variant callsets, estimated with TiTvtools and visualized by plotTiTv (117). 

 

Repetitive variant calling 

Mobile element discovery was performed using MELT (Version 2.2.0) (86) and structural variant 

discovery using lumpy-sv with Smoove (Version 0.2.5) (146). Short tandem repeats were called 

using GangSTR (Version 2.4.2) (89) and nuclear mitochondrial DNA using dinumt (87). 

 

Data validation and quality control 
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Variant files were compared for consistency across the 3 different platforms: BGISEQ-500 

sequencing, Illumina genotyping, and Illumina NovaSeq6000 S4 sequencing. Illumina genotyping 

was performed on 86 of the 97 samples previously sequenced with BGISEQ-500. Additionally, 1 

sample (EG600036) was also sequenced with Illumina NovaSeq6000 S4. The variant detection 

programs were rerun without joint calling for the BGISEQ-500 sequencing for sample EG600036 

for comparison with the single Illumina-sequenced sample. In this sample, the SNPs derived from 

the WGS platforms were compared to those identified using the Illumina SNP array for both 

matching position and matching genotype. Structural variants and MEIs were compared between 

the WGS platforms in EG600036. Variants were considered the same if they had 95% reciprocal 

overlap. Overall, we found that Illumina identified a higher number of larger variants than 

BGISEQ-500. This could potentially be due to its higher coverage (∼60×) compared to BGISEQ-

500 (∼30×). However, because both have high coverage, we may see diminishing returns for 

coverage >30×. An alternative explanation is that the variant identification tools have been built 

to detect variation from Illumina sequencing data and therefore may not be able detect variants in 

BGISEQ-500 data as accurately. 

 

Annotation 

Sequence variant files were annotated using ANNOVAR (ANNOVAR, RRID:SCR_012821) 

(147) and SNPEff (SNPEff, RRID:SCR_005191) (148) software using GRCh38 reference 

databases. The following databases were used for the For ANNOVAR annotations: RefSeq Gene, 

1GP superpopulation, dbSNP150 with allelic splitting and left-normalization. For annotation of 

the medically related and functional variants we used ClinVar Version 20200316 (33), InterVar 

gnomeAd Version 3.0 (30), and dbnsfp Version 35c (149). For SNPEff, the default GRCh38 
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annotation database (150) was complemented with ClinVar (ClinVar, RRID:SCR_006169) (33) 

and GWAS catalog (126) database annotation using the snpSift tool (snpSift, RRID:SCR_015624) 

(151). 

 

Population analysis 

Principal component analysis 

For PCA, we used WGS variants of our samples and merged them with samples from neighboring 

countries available from the European samples from 1KG (Utah residents [CEU] with Northern 

and Western European ancestry, Toscani in Italy [TSI], Finnish in Finland [FIN], British in 

England and Scotland [GBR], Iberian population in Spain [IBS] (24,135)) and French (FRA) and 

Russians (RUS) from HGDP (136), as well as the relevant high-coverage human genomes Croatian 

(CRO), Czech (CZ), Estonian (EST), German (GER), Greek (GRE), Hungarian (HUN), Moldovan 

(MOL), Polish (POL), Russian Cossack (RUS), and Ukrainian (UKR) from the EGDP (139), and 

the Simons Genome Diversity Project (140). The analysis was performed with Eigensoft 

(Eigensoft, RRID:SCR_004965) (152). 

 

To produce a meaningful number of alleles to analyze, the resulting dataset was filtered by 

genotyping rate (1) and pruned for variants in linkage disequilibrium by excluding those with high 

pairwise correlation within a moving window (–indep-pairwise 50 10 0.5). This resulted in 677 

samples with 208,945 variants. We used EIGENSOFT (152) to calculate the eigenvectors, of 

which PC1 and PC2 were visualized using Python programming language, with pandas, 

matplotlib, and seaborn libraries (153). Two extreme outlier samples (EG600056, and EG600052) 
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were excluded from the visible range of the PCA plot because they clustered with each other far 

away from any known European group. 

 

Model-based population structure analysis 

For the naive (model-based) structure analysis, we used the same dataset described in the PCA 

(above). The analysis was performed using ADMIXTURE software (ADMIXTURE, 

RRID:SCR_001263) (144). For identification of the optimal K parameter, we used the 10-fold 

cross-validation function of ADMIXTURE in the range 2–6, with K = 3 resulting in the lowest 

error, deeming it optimal. The results were visualized using Python programming language, with 

pandas, matplotlib, and seaborn libraries (153,154) to construct a population structure plot using 

samples from the 1KG (Utah residents [CEU] with Northern and Western European ancestry, 

Toscani in Italy [TSI], Finnish in Finland [FIN], British in England and Scotland [GBR], and 

Iberian population in Spain [IBS]) and French population (FRA) (24,135) and Russians (RUS) 

from HGDP (136), as well as the relevant high-coverage human genomes from the EGDP (139), 

and Simons Genome Diversity Project (140). The resulting plot with K = 3 is presented in Figure 

2-4, and plots with K = 4 to K=8 are in Appendix Figure A 2.  

 

Inbreeding estimates 

We estimated inbreeding coefficients for all the genotype samples in the same dataset. For this 

analysis the samples were pruned for genotyping rate (>0.9) and linkage disequilibrium by 

excluding those with high pairwise correlation within a moving window (PLINK parameter –

indep-pairwise 50 10 0.1). Using the resulting dataset containing the remaining 117,641 loci from 

84 samples, we performed several inbreeding estimates: (i) method-of-moments F-coefficient 
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estimates, (ii) variance-standardized relationship minus 1 estimates, and (iii) F-estimates based on 

correlation between uniting gametes (155).  

 

2.5 DISCUSSION 

 

Reuse potential 

Since the publication of the first human genome (4,156) and the first surveys of worldwide 

variation such as 1KG (24,135), efforts have been directed outward, to expanding the exploration 

of human diversity across the world and filling out more and more “white spots” of genome 

variation (114,140), as well as inward, to fill the remaining white spots in the human genome itself: 

to map the remaining gaps in the chromosome assembly and identify new structural and functional 

variation (10) and to map the 3D structure of the human genome (157). The new data present a 

valuable addition to the former and represent the first exploration of the genome landscape in the 

important component of European genomic diversity. 

 

The genome diversity of Ukraine is an important clue to advance modern genome studies of the 

population history of Europe. The country is positioned in the crossroads of the early migration of 

modern humans and the westward expansion of the Indo-Europeans, and represents an aftermath 

of centuries of migration, admixture, and demographic and selective processes. As wave after 

wave of great human migrations moved across this land for millennia, they were followed by the 

exchange of cultural knowledge and technology along the great trade routes that continue to 

transect this territory until the present day. 
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The justifications for collecting, sequencing, and analyzing populations from this part of Europe 

have been outlined previously (112,113), and the new database is a step in that direction. Given its 

unique history, the genome diversity data from Ukraine will contribute a wealth of new 

information, bringing forth different risk and/or protective alleles that neither exist nor associate 

with disease elsewhere in the world. This project identified 13M variants in Ukrainians of which 

478,000 were novel genomic SNPs currently missing from global surveys of genomic diversity 

(30,114). We also report almost 1M (909,991) complex indels, regions of simultaneous deletions 

and insertions of DNA fragments of different sizes that lead to a net change in length, with only 

713,858 previously reported in gnomAD (30) (Table 2-4). The newly discovered local variants can 

be used to augment the current genotyping arrays and used to screen individuals with genetic 

disorders in GWAS, in clinical trials, and in genome assessment of proliferating cancer cells. 

 

The present project is built upon the open release/access philosophy. The data have been released 

and can be used to search for population ancestry markers, as well as medically related variants, 

in subsequent studies. The public nature of the data deposited on the specially created web resource 

located at Uzhhorod National University will ensure that the nation's biomedical researchers will 

receive access to a useful information resource for future projects in genomics, bioinformatics, and 

personalized medicine. Engaging local Ukrainian scientists in this collaborative international 

project lays the foundation for future studies and ensures their participation in the worldwide 

research community. 

 

Data Availability 
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The raw reads are available at the SRA (Project PRJNA661978, SUB7904361). All other datasets 

mentioned in this project are available in GigaScience GigaDB. 
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2.6 FIGURES AND TABLES 
 

 

Figure 2-1 Variant concordance across the 3 sequencing/genotype methods 

Left: Overlap of SNP positions identified in 1 sample (EG600036) using each of the 3 platforms. Right: Concordance of SNP 

genotypes in 1 sample derived from each of the 3 platforms. This only includes the subset of SNPs with alternate alleles included 

in the Illumina genotyping array (the smallest of the 3 variant sets). The variants indicated as belonging to none of the categories 

are variants whose genotypes differ between all 3 platforms. (B) Left: The percentage of concordance between the Illumina SNP 

array and BGISEQ-500 for all SNPs compared to the percentage concordance of only SNPs with non-reference alleles in the 

Illumina SNP array for the 86 samples genotyped on both platforms. Right: Concordance of SNP genotypes between BGISEQ-500 

and Illumina SNP Array for 1 sample (EG600036). (C) Overlap within the numbers of the 3 major structural variants detected in 1 

sample using the 2 whole-genome sequencing datasets. (D) Overlap within the numbers of the 3 major mobile element insertions 

detected in 1 sample using the 2 whole-genome sequencing datasets.  
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Figure 2-2 Transition/Transversion ratio (or TITV ratio) for the novel SNPs 

(estimated with TiTvtools and visualized by plotTiTv) (top) for the SNPs where Illumina SNP array identified more alternate 

haplotypes than BGI (top right triangle in Figure 1C) and (bottom) for the SNPs where BGISeq identified more alternate haplotypes 

than Illumina SNP Array (bottom left triangle on Figure 1C table). 
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Figure 2-3 Principal component (PC) analysis of genetic merged dataset, containing European populations. 

Colors reflect prior population assignments from the European samples from the 1KG (Utah residents [CEU] with Northern and 

Western European ancestry, Toscani in Italy [TSI], Finnish in Finland [FIN], British in England and Scotland [GBR], Iberian 

population in Spain [IBS])(24,135) and French (FRA) and Russians (RUS) from HGDP (RUS)(136), as well as the relevant high-

coverage human genomes Croatian (CRO), Czech (CZ), Estonian (EST), German (GER), Greek (GRE), Hungarian (HUN), 

Moldovan (MOL), Polish (POL), Russian Cossack (RUS), and Ukrainian (UKR) from the Estonian Biocentre Human Genome 

Diversity Panel (EGDP) (139)as well as Simons Genome Diversity Project (140). The analysis was performed with Eigensoft (158). 
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Figure 2-4 Genetic structure of Ukrainian population in comparison to other European populations. 

Ukrainian (UKR) from the Estonian Biocentre Human Genome Diversity Panel (EGDP) (139)as well as Simons Genome Diversity 

Project (140). For identification of the optimal K parameter, we evaluated a range from 2 to 8, with K = 3 resulting in the lowest 

error. Structure plot constructed using ADMIXTURE package(144) at K = 3 illustrates similarity and differences between genomes 

from this study as well as samples from the 1KG (Utah residents [CEU] with Northern and Western European ancestry, Toscani in 

Italy [TSI], Finnish in Finland [FIN], British in England and Scotland [GBR], and Iberian population in Spain [IBS]) (24,135)and 

French (FRA) and Russians (RUS) from HGDP (136), as well as the relevant high-coverage human genomes Croatian (CRO), 

Czech (CZ), Estonian (EST), German (GER), Greek (GRE), Hungarian (HUN), Moldovan (MOL), Polish (POL), Russian Cossack 

(RUS), and Ukrainian (UKR) from the Estonian Biocentre Human Genome Diversity Panel (EGDP) as well as Simons Genome 

Diversity Project. For identification of the optimal K parameter, we evaluated a range from 2 to 8, with K = 3 resulting in the lowest 

error. 
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Table 2-1 The list of the samples in this study, their characteristics and geographical locations, and sources of genomic data for each  

(BGISEQ-500 sequencing [BGI Inc., Shenzhen, China], Illumina Global Screening Array genotyping, and Illumina NovaSeq sequencing  array [Illumina Inc., San Diego, USA]). 
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31 F yes yes no 45°57'26.8"N 
33°47'52.4"E 

45.957438, 
33.797891 

no No No Yes No       

13 F yes yes no 46°45'09.7"N 
36°50'16.0"E 

46.752702, 
36.837771 

no No No No No Allergy     

1 F yes no no 48°00'40.2"N 
24°06'51.9"E 

48.011173, 
24.114424 

yes No No Yes Yes       

29 F yes yes no 48°03'37.0"N 
37°57'37.6"E 

48.060289, 
37.960431 

no No No Yes No       

11 F yes yes no 48°04'09.8"N 
23°44'17.0"E 

48.069389, 
23.738057 

yes Yes No No Yes Vertebral disc 
hernia 

    

35 M yes yes no 48°09'09.9"N 
23°01'53.7"E 

48.152747, 
23.031586 

no No No Yes No       

27 F yes yes no 48°09'22.3"N 
23°08'05.9"E 

48.156197, 
23.134983 

no No Yes No Yes       

4 F yes yes no 48°32'35.2"N 
22°59'27.2"E 

48.186729, 
23.572066 

no No No No No       

26 M yes yes no 48°18'48.2"N 
38°04'36.8"E 

48.313385, 
38.076901 

no No No No Yes       

2 F yes yes no 48°20'54.3"N 
22°54'07.1"E 

48.353582, 
22.901122 

no No No No No       

19 M yes yes no 48°23'09.7"N 
25°55'54.6"E 

48.386021, 
25.931838 

no Yes Yes No Yes Allergy mixed   
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7 F yes yes no 48°23'29.1"N 
22°54'09.2"E 

48.391403, 
22.902553 

yes Yes Yes No Yes       

32 F yes yes no 48°25'35.0"N 
23°42'03.3"E 

48.426380, 
23.700904 

yes No No No  Yes       

88 M yes yes no 48°26'25.2"N 
22°43'17.3"E 

48.440321, 
22.721470 

no No No Yes Yes   mixed   

72 F yes no no 48°28'21.4"N 
35°00'32.9"E 

48.472600, 
35.009137 

no No No Yes Yes       

65 F yes yes no 48°28'24.8"N 
35°00'34.8"E 

48.473548, 
35.009659 

no Yes Yes Yes Yes       

73 F yes yes no 48°28'27.1"N 
35°00'25.5"E 

48.474200, 
35.007077 

no No No No No       

66 F yes yes no 48°28'29.6"N 
35°00'24.9"E 

48.474874, 
35.006919 

no No No Yes Yes       

67 M yes yes no 48.475498"N, 
34.920716"E 

48.475498, 
34.920716 

no No No Yes Yes       

68 F yes yes no 48°28'47.0"N 
34°54'55.9"E 

48.479730, 
34.915523 

no No Yes Yes Yes   mixed   

69 F yes yes no 48°30'42.0"N 
35°03'39.7"E 

48.511667, 
35.061040 

no No No Yes Yes       

70 F yes yes no 48°30'48.6"N 
35°03'32.2"E 

48.513494, 
35.058948 

no No Yes No Yes Polinosis     

92 M yes yes no 48°30'55.9"N 
32°14'56.9"E 

48.515526, 
32.249134 

no No No No No   mixed   

74 F yes yes no 48°32'28.1"N 
34°51'25.8"E 

48.541139, 
34.857161 

no No Yes No Yes       

3 F yes yes no 48°32'35.2"N 
22°59'27.2"E 

48.541686, 
22.988396 

yes No No No No       

5 F yes yes no 48°33'36.3"N 
22°28'45.7"E 

48.560091, 
22.479349 

yes No No Yes No       

93 M yes yes no 48°33'48.1"N 
39°18'55.5"E 

48.563362, 
39.315403 

no No No No No       

71 F yes yes no 48°34'36.8"N 
35°05'51.7"E 

48.576882, 
35.097688 

no Yes Yes Yes Yes       

76 M yes yes no 48°35'09.9"N 
22°28'46.4"E 

48.586074, 
22.479541 

no No No No No uro-, cholelitiasis     

94 M yes yes no 48°36'35.8"N 
22°17'16.7"E 

48.609951, 
22.287960 

no No No Yes Yes   mixed   

96 M yes yes no 48°36'44.2"N 
22°17'07.8"E 

48.612281, 
22.285509 

no No No Yes No   mixed   
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95 M yes yes no 48°36'44.6"N 
22°17'16.6"E 

48.612377, 
22.287939 

no No No Yes Yes   mixed   

34 M yes yes no 48°36'53.3"N 
22°16'04.7"E 

48.614810, 
22.267959 

no No Yes No No   mixed   

36 F yes yes yes 48°37'28.8"N 
22°17'40.5"E 

48.624666, 
22.294577 

no No No No Yes Varicosis mixed   

98 M yes yes no 48°38'02.9"N 
22°16'17.7"E 

48.634126, 
22.271575 

no No No No No Testicular cancer mixed Varicosis 

9 M yes yes no 48°39'15.3"N 
22°48'42.1"E 

48.654261, 
22.811705 

yes Yes No No No Psoriasis     

8 M yes yes no 48°42'37.9"N 
22°35'45.0"E 

48.710527, 
22.595823 

yes Yes Yes No Yes       

97 F yes yes no 48°44'15.3"N 
22°28'19.5"E 

48.737593, 
22.472083 

no No No Yes Yes       

22 F yes yes no 48°46'52.6"N 
31°39'10.2"E 

48.781277, 
31.652828 

no No No No No       

87 M yes yes no 48°47'20.2"N 
30°01'38.5"E 

48.788948, 
30.027352 

no No Yes No Yes       

25 M yes yes no 48°51'04.9"N 
37°35'06.9"E 

48.851357, 
37.585255 

no No No No No Chronic rhinitis mixed   

16 F yes yes no 48°51'55.6"N 
22°26'40.4"E 

48.865431, 
22.444547 

no No No No Yes   mixed   

18 F yes yes no 48°52'39.5"N 
23°04'23.7"E 

48.877627, 
23.073250 

yes         No info     

20 M yes yes no 48°53'21.1"N 
22°27'18.1"E 

48.889200, 
22.455021 

no No No No Yes       

15 F yes yes no 49°04'56.7"N 
33°25'53.9"E 

49.082408, 
33.431636 

no No No No No       

6 F yes yes no 49°06'30.6"N 
23°38'29.0"E 

49.108510, 
23.641393 

yes No Yes No Yes       

30 F yes yes no 49°08'00.3"N 
25°12'06.4"E 

49.133426, 
25.201764 

no No No No Yes       

89 M yes yes no 49°09'12.2"N 
23°01'58.1"E 

49.153394, 
23.032793 

no No No No No       

24 F yes yes no 49°24'40.1"N 
24°36'42.7"E 

49.411124, 
24.611856 

no No No Yes Yes Allergy 
medicaments 

    

90 M yes yes no 49°28'23.5"N 
24°07'45.4"E 

49.473181, 
24.129274 

no No No No No Arrythmia     

14 F yes yes no 49°31'02.2"N 
23°12'25.7"E 

49.517270, 
23.207126 

no No No No No       
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33 F yes yes no 49°31'12.3"N 
23°12'05.5"E 

49.520072, 
23.201532 

no No No No Yes       

61 M yes yes no 49°31'37.9"N 
23°58'38.2"E 

49.527191, 
23.977288 

no Yes No No Yes Diabetes 
mellitus type 1 

    

12 M yes yes no 49°31'42.6"N 
24°46'34.3"E 

49.528496, 
24.776199 

yes No No Yes No Oncology     

91 M yes yes no 49°48'01.4"N 
30°07'06.8"E 

49.800393, 
30.118547 

no No No No No   mixed   

62 M yes no no 49°50'20.7"N 
24°01'21.8"E 

49.839069, 
24.022715 

no Yes No Yes Yes Diabetes 
mellitus type 1 

    

63 F yes yes no 49°50'20.7"N 
24°01'21.8"E 

49.839069, 
24.022715 

no No No Yes Yes   mixed   

64 F yes no no 49°50'40.2"N 
24°01'05.9"E 

49.844511, 
24.018296 

no No No No Yes   mixed   

23 M yes yes no 50°00'22.1"N 
36°18'09.6"E 

50.006127, 
36.302679 

no No No No No       

50 F yes yes no 50°15'32.2"N 
28°41'41.4"E 

50.258950, 
28.694822 

no No No No No       

48 F yes yes no 50°15'41.9"N 
28°40'40.3"E 

50.261637, 
28.677854 

no No No No Yes   mixed   

75 M yes yes no 50°15'54.8"N 
28°40'26.6"E 

50.265216, 
28.674057 

no No Yes No Yes       

46 F yes yes no 50°16'04.3"N 
28°39'45.8"E 

50.267850, 
28.662730 

no No No No Yes Miopia     

47 F yes yes no 50°16'08.5"N 
28°39'40.6"E 

50.269016, 
28.661282 

no No No Yes Yes Allergy     

80 F yes no no 50°18'18.5"N 
34°53'42.5"E 

50.305129, 
34.895146 

no No No No Yes Allergy fur, dust   Thyroid cancer 

49 F yes yes no 50°20'10.0"N 
28°46'04.5"E 

50.336109, 
28.767902 

no No No Yes Yes       

77 M yes yes no 50°27'31.7"N 
34°17'29.4"E 

50.458802, 
34.291507 

no No No No No     Colon cancer 

83 F yes no no 50°33'28.5"N 
35°22'14.2"E 

50.557910, 
35.370609 

no No No No Yes     Urolithiasis, 
vitiligo 

42 M yes yes no 50°37'06.4"N 
26°14'14.6"E 

50.618438, 
26.237382 

no No No No Yes       

43 F yes yes no 50°37'16.3"N 
26°13'54.1"E 

50.621189, 
26.231702 

no No No No Yes       

44 F yes yes no 50°37'23.6"N 
26°14'03.9"E 

50.623217, 
26.234406 

no No Yes No Yes       



 57 

40 F yes yes no 50°47'18.8"N 
27°12'23.1"E 

50.788551, 
27.206422 

yes Yes Yes Yes No DM type 2     

45 F yes yes no 50°51'31.6"N 
28°33'39.4"E 

50.858774, 
28.560945 

yes No Yes No Yes Allergy     

81 F yes yes no 50°51'51.8"N 
35°15'39.1"E 

50.864400, 
35.260856 

no No No Yes Yes     Lung cancer 

84 F yes yes no 50°53'25.6"N 
34°49'03.5"E 

50.890445, 
34.817631 

no No Yes Yes Yes Allergy   Cirhrosis 

85 F yes yes no 50°54'07.7"N 
34°48'52.4"E 

50.902139, 
34.814560 

no No No No Yes       

78 M yes yes no 50°54'14.1"N 
34°38'44.8"E 

50.903916, 
34.645784 

no No No No Yes       

86 F yes no no 50°54'27.2"N 
34°47'04.9"E 

50.907566, 
34.784693 

no No No No No     Stomach cancer 

79 F yes yes no 50°54'31.9"N 
34°48'19.1"E 

50.908857, 
34.805298 

no No No No No     Cancer of 
mammary gland, 
cancer of ovaries 

82 F yes yes no 50°55'50.6"N 
34°46'16.1"E 

50.930733, 
34.771132 

no No Yes No Yes Allergy pollen   Miocardial 
infarction 

38 M yes no no 50°58'29.8"N 
26°43'23.7"E 

50.974947, 
26.723256 

no Yes No No No DM type 1     

37 M yes yes no 50°58'33.6"N 
26°42'55.8"E 

50.975990, 
26.715494 

no Yes No Yes Yes DM type 1     

53 F yes yes no 50°59'24.0"N 
31°08'13.3"E 

50.989994, 
31.137039 

yes       Yes       

21 M yes yes no 51°12'11.6"N 
24°43'00.8"E 

51.203209, 
24.716882 

no No No No No       

28 F yes yes no 51°19'42.9"N 
28°48'44.6"E 

51.328593, 
28.812374 

no No No No Yes       

39 M yes yes no 51°20'24.2"N 
26°36'39.7"E 

51.340042, 
26.611015 

no Yes Yes No Yes DM type 2     

41 M yes yes no 51°23'29.2"N 
26°24'03.3"E 

51.391456, 
26.400927 

yes Yes Yes No Yes Asthma     

17 F yes yes no 51°25'34.6"N 
26°08'16.1"E 

51.426284, 
26.137811 

yes No No No No       

60 F yes yes no 51°26'32.4"N 
31°41'16.9"E 

51.442333, 
31.688016 

no Yes Yes     Allergy     

58 F no no no 51°27'36.8"N 
31°33'48.0"E 

51.460212, 
31.563338 

no Yes Yes Yes Yes       
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52 F yes yes no 51°27'48.2"N 
30°55'41.5"E 

51.463387, 
30.928186 

no Yes Yes No Yes       

51 F yes yes no 51°30'06.2"N 
31°17'24.7"E 

51.501728, 
31.290201 

no No No Yes Yes   mixed   

56 F yes yes no 51°30'23.9"N 
31°16'14.3"E 

51.506650, 
31.270636 

no     Yes Yes       

59 F yes no no 51°33'40.0"N 
31°09'07.8"E 

51.561099, 
31.152163 

no No Yes No Yes Hypothyroidism     

55 F yes no no 51°40'27.4"N 
31°08'29.3"E 

51.674263, 
31.141482 

yes               

57 F yes yes no 51°48'10.4"N 
31°05'13.3"E 

51.802883, 
31.087032 

yes No Yes Yes No       

10 F yes yes no                     

54 F yes yes no 51°22'39.9"N 
30°51'16.6"E 

  yes               
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Table 2-2 . Sequencing summary of output from DNBSEQ-G50 and Illumina NovaSeq6000. 

₴ Sequencing of 97 samples were attempted on DNBSeq-G50 at BGI sequencing facility (BGI Shenzhen, CHINA), and all 97 were 

successful. 

¥ One sample (EG600036) was sent to Illumina NovaSeq6000 S4 at Psomagen Inc. (Gaithersburg, MD, USA). In addition, 96 

samples were genotyped using Illumina Global Screening Array array (Illumina Inc., San Diego, USA), and 87 were successful 

(86 individual samples and 1 internal QC) remained after filtering. 

  DNBSeq-G50  ₴ Illumina NovaSeq6000 ¥ 

Samples sequenced 97 1 

Read length (bp) 100 150 

Reads above Q20 (>99% quality score) 97.85% 96.91 % 

Total Reads 99,638,538,182 1,600,898,738 

Average reads/sample 1,027,201,425 1,600,898,738 

Average GC content 42.05% 41.07 
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Table 2-3 Filtering summary of the data obtained from 97 whole genomes sequenced with DNBSeq-G50. 

₴ Sequencing of 97 samples were attempted on DNBSeq-G50 at BGI sequencing facility (BGI Shenzhen, CHINA), and all 97 were 

successful. 

¥ One sample (EG600036) was sent to Illumina NovaSeq6000 S4 at Psomagen Inc. (Gaithersburg, MD, USA). In addition, 96 

samples were genotyped using Illumina Global Screening Array array (Illumina Inc., San Diego, USA), and 87 were successful 

(86 individual samples and 1 internal QC) remained after filtering. 

Sequencing results All samples 

  Total 

 Unique SNPs # 

Filtered 

 Count 

% Filtered₴ 

Variation       

SNPs 14,738,063 1,727,084 11.7 

Bi-allelic 14,254,070 1,586,787 11.1 

Multi-allelic 483,993 140,297 29 

Small Indels ¥ 2,808,384 80,780 2.9 

Deletions 1,864,698 57,959 3.1 

Insertions 1,488,408 42,421 2.9 

Structural Variants $       

Large Deletions 685,56 52,478 76.5 

Large Duplications 3,374 52,478 45.3 

Inversions 430 93 21.6 

Mobile Element Insertions       

Alu 7550 1790 23.7 

L1 3123 2672 85.6 

SVA 222 122 55 

NUMT 1169 455 38.9 
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Table 2-4 Summary of variation int he 97 whole genome sequences from Ukraine 

 ₴  Defined as “percent not reported in gnomAD(1000Genomes)” 
¥ Small indels are insertions and deletions < 50bp called by GATK (146). 
$ Large deletions and duplications are those called by lumpy (80) which are > 50 bp.  

Sequencing results All samples On average 

 Total 
Unique 

Variants # 

Novel 

gnomAD 

Count 

% Novel 
gnomAD 

(1000Genomes) 

₴ 

Average # 
/sample 

Average 
# Novel 
/sample 

Total sequence reads 99.8 Bn -- -- 1.03 Bn -- 
Mean coverage 97 samples 

at 30X each 
-- -- 30X -- 

Variation      
SNPs 13,010,979 477,564 3.7%(12.6%) 3,488,083 0.1% (0.7%) 
Bi-allelic 12,667,283 470,667 3.7%(12.7%) 3,340,557 0.3%(0.6%) 
Multi-allelic 343,696 6,897 2.0%(7.4%) 146,340 0.8%(4.7%) 
Small Indels ¥ 2,727,604 76,484 2.8%(7.4%) 917,731 0.3% (1.0%) 
Deletions 1,805,739 55,599 3.1% (9.0%) 624,919 0.3% (2.4%) 
Insertions 1,445,987 30,453 2.1%(6.7%) 571,461 0.2% (2.1%) 
Structural Variants $       
Large Deletion 16,078 10,914 67.9(48.3%) 3,524 52.6%(19.1%) 
Large Duplications 1,845 1,356 73.5%(42.3%) 562 89.4%(35.2%) 
Inversions 337 314 93.2% (47.8%) 185 94.1%(48.6%) 
Mobile Element 

Insertions 
     

Alu 2,316 1805 77.9%(38.1%) 473 68.1%(18.0%) 
L1 451 289 64%(50.1%) 79 60.8%(27.8%) 
SVA 100 75 75%(52.0%) 20 70%(50%) 
NUMT 714 -- -- 16 -- 
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Table 2-5 Summary annotation of different genomic elements in the Ukrainian genomes annotated in BGISeq data from 97 

Ukrainian samples 

₴  Unique alleles represent mutations that were counted only once using the largest transcript, disregarding their frequency in the 

population 

 £ Some of the mutations listed in the can be classified in more than one category 

 
A. Variants by Location # of unique alleles ₴ Total allele # Average 

/sample 

Upstream 2,023,920 6,716,794 69,246 
UTR 5 Prime 31,026  122,417 1,263 
Exon 320,979 839,045 8,650 
UTR 3 Prime 150,302 389,528 4,016 
Downstream 2,036,111 6,591,978 67,959 
Intergenic 9,844,120 9,844,120 101,486 
Intron 9,297,384 42,268,211 435,755 
Motif 58,164  58,164 600 

 

B. Functional Variants by Type £ 

   

Splice site acceptor 1,105 3,844 40 
Splice site donor 969  3,609 38 
Splice site region 19,436 79,853 824 
Transcription factor binding site (TFBS) ablation 2,229 2,229 23 

Conservative in-frame indels 1544 2,475 26 
Gene Fusion 98 1,482 16 
Disruptive in-frame indels 978 4,093 43 
Missense 61,181 169,454 1,747 
Start lost 116 413 5 
Stop gained 885 2,442 26 

Stop loss 95 324 4 
Synonymous 49,731 146,066 1,506 
Protein folding 105,436 258,767 2,668 
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Table 2-6 . Medically-relevant variants in the Ukrainian population included in GWAS and ClinVar databases 

₴  Unique variants represent substitutions that were counted only once, disregarding their frequency in the population 

 
Source of Annotation  

# Unique substitutions ₴ Total allele #  Average 
/sample  

GWAS catalog  102,551 6,479,953 66,804 
ClinVar: pathogenic (or likely pathogenic)  189 1,830 19 
ClinVar: benign (or likely benign)  43,892 1,842,668 18,997 
ClinVar: protective (or likely protective)  20 1,209 12 

 

 

 

 
Table 2-7 Examples of the functional SNPs with highly differentiating functional markers reported in ClinVar with high 

differences in the Ukrainian population compared to other neighboring European populations 

SNP Chr Gene REF/

alt 

Associated 

medical 

condition 

Non-reference allele 

frequency 

Fisher exact 

test P-value 

UKR EUR RUS vs 

EUR 

vs 

RUS 

rs2297480  1 FDPS T/G Efficacy of the 

bisphosphonate 

response  

0.13 0.26 0.27 0.038 >0.00

1 

rs35329108  5 SLC6A19 G/A Hyperglycinuria

iminoglycinuria  

0.32 0.23 0.17 0.049 0.004 

rs7794745  7 CNTNAP2 A/T Autism  0.48 0.38 0.30 0.032 0.010 

rs10151259  14 RPGRIP1 G/T Leber congenital 

amaurosis, cone-

rod dystrophy  

0.32 0.24 0.11 0.003 0.014 

rs1801320  15 RAD51 G/C Breast cancer 

susceptibility in 

BRCA1 and 

BRCA2 carriers  

0.19 0.08 0.07 0.047 0 
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Table 2-8 Examples of the functional markers with the highest non-reference allele frequency differences in the Ukrainian 

population  

Evaluated by the Fisher exact test compared to the frequencies in the neighboring populations: the combined population from 

Europe (EUR) and Russians from HGDP (RUS) 

SNP Chr Gene Ref

/Alt 

Function Non-reference 

allele frequency 

Fisher exact 

test P-value 

UKR EU

R 

RUS vs 

CEU 

vs 

RUS 

rs7262

5995  

17  POM121L8P

  

C/T

  

Exonic, 

nonsynonymous 

SNV  

0.03  0.62  0.75  2.50E

−07  

1.86E

−06  

rs9930

886  

16  PTPRN2  A/G

  

Exonic, 

synonymous 

SNV  

0.01  0.33  0.35  2.56E

−07  

2.19E

−06  

rs4779

816  

15  ZBTB9; 

BAK1  

A/G

  

Exonic, 

nonsynonymous 

SNV  

0.41  0.80  0.83  3.29E

−06  

7.82E

−07  

rs5858

0222  

12  ABCC1  G/A

  

Exonic, 

synonymous 

SNV  

0.03  0.13  0.26  3.06E

−04  

1.17E

−02  

rs8015

0964  

11  SMIM40; 

KIFC1  

T/C

  

Exonic, non-

synonymous 

SNV  

0.03  0.23  0.19  4.95E

−04  
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Chapter 3 - Assessing Repetitive Variation in the Genome Through Multi-

Platform Discovery 
 

 

 

The work presented in this chapter of the dissertation is a working draft of a manuscript in 

preparation with Dr. Ryan E. Mills. Dr. Mills and I devised the context and scope of the analysis. 

Dr. Mills provided guidance for the analysis, and I led the implementation of the computational 

methods and comparison analyses.  

 

 

3.1 ABSTRACT 

Expansions of tandem repeats are known to cause disease but can be difficult to characterize as 

these repeat expansions are highly variable across individuals. The ability to accurately 

characterize the length of tandem repeats in the genome is important for the identification of repeat 

expansions associated with disease, however, due to the repetitive nature of this class, variation 

has been challenging to detect genome wide with available sequencing technology. Here we 

perform a systematic analysis of available tandem repeat detection methods for both short and long 

read sequencing data on a single sample. We find that reference-based methods closely match for 

both short and long read methods while de novo methods differ from each other in both the 

characteristics of the repeat motifs they interrogate as well as the repeat lengths they predict. 

Finally, we provide guidelines for which methods are appropriate for different study goals.  

  

3.2 BACKGROUND 
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Tandem repeats make up approximately 3% of the human genome (4), and expansions of tandem 

repeats are currently known to be associated with over 50 human diseases, including Huntington’s 

Disease, Fragile X Syndrome, and ALS (159–162). A tandem repeat occurs when a sequence motif 

of two or more DNA base pairs (bp) is repeated with the repetitions directly adjacent to each other 

in the genome. These can be categorized into two classes: short tandem repeats (STRs) and variable 

number tandem repeats (VNTRs) with 2-6 base pair and 7 or more base pair repeat motifs 

respectively. Expansions of tandem repeats have historically been difficult to assess in the genome 

given their repetitive nature and the technology available to characterize them (159,163). 

 

The introduction of whole genome sequencing (WGS) has greatly accelerated the discovery of 

pathogenic repeat expansions with half of known disease associations discovered in the last ten 

years (159). Prior to WGS, most repeat expansion disorders were discovered using large familial 

studies (164–166), but these lack the ability to identify rare repeat expansions responsible for 

disease or to untangle the relative contribution of repeat expansions in complex diseases. Whole 

genome sequencing allows for the identification of repeat expansions genome wide which has been 

shown to be important in uncovering additional repeat expansion disorders (92,167,168).  

 

Several bioinformatics approaches have been developed to characterize tandem repeats from 

whole genome sequencing datasets (89–93,169,170). These can be split into two groups: reference-

based and de novo. Reference-based detection methods require a list of coordinates in order to 

characterize tandem repeats. This can include a targeted list of known pathogenic repeat 

expansions or can include a list of coordinates of all tandem repeats annotated in the reference 

genome for whole genome analysis. In contrast, de novo detection methods aim to determine 
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repetitive regions from the read sequences for the samples being analyzed and do not require a list 

of known locations. De novo approaches allow for characterization of tandem repeats in a sample 

that may not be present or annotated in the reference genome, however, read lengths and the 

algorithms used to detect these regions have influence on the length of repeats and the repeat motifs 

which can be detected.  

 

Short read WGS enables the characterization of many tandem repeats at once, however, the short 

length of the reads present challenges for repeat detection. Reads largely made up of repetitive 

sequence are difficult to align to the reference genome and often map to multiple locations, making 

it difficult to discern what region of the genome they originated from. For this reason, repetitive 

reads are often left unmapped. However, several methods have been developed to characterize 

tandem repeats from short reads. The first set of genome wide tandem repeat profiling methods 

focused on characterizing repeats fully contained within a single short read  (171,172) while 

subsequent methods used properties of the pair-end reads to include estimates of repeats larger 

than a single short read. These latter methods include referenced-based methods GangSTR (89), 

ExpansionHunter (90), and de novo method STRling (169). Despite the utility of these 

bioinformatic approaches, they remain somewhat limited in their ability to predict tandem repeats 

by the intrinsic nature of short read technology.   

 

The introduction and adoption of long read sequencing is promising for the characterization of 

repetitive regions in the genome; however, long read sequencing technology has a relatively higher 

error rate that can complicate the task of mapping and identifying tandem repeat regions. Several 

approaches have been developed to identify and characterize tandem repeat regions from long, 
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error-prone reads – namely, reference-based method Tandem-genotypes (92), and de novo 

methods Tricolor (93), and STRaglr (91), perform genome wide characterization of tandem 

repeats. While these methods have the potential to improve upon tandem repeat detection from 

short reads, the high insertion and deletion rate of long read sequencing can make the accurate 

characterization of repeat lengths difficult. Additionally, the higher cost of long read sequencing 

may be cost prohibitive for some studies (72). 

 

Here we perform an in-depth analysis of tandem repeat detection by applying multiple state-of-

the-art methods suitable for whole genome characterization of tandem repeats to a single sample, 

NA12878, which has been sequenced using several different sequencing platforms (25,173,174).  

We use this analysis to determine comparability of methods run on the same sample and to identify 

how many novel repeats are detected using de novo approaches compared to reference-based 

approaches.  Finally, we provide guidelines as to when each method or combination of methods is 

appropriate for different study goals.   

 

3.3 RESULTS 

 

To assess the current capabilities of genome-wide tandem repeat calling in the human genome, we 

ran six tandem repeat profiling methods on a single sample, NA12878. The six methods are 

outlined in Table 3-1. Below, we have organized the results in the following manner: first we 

analyze the tandem repeat characterization methods developed for short read data. Next, we 

perform the same analysis for long read methods.  Finally, we group reference and de novo 

methods to directly compare those techniques across different read lengths.   
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Detecting Repeat Variation from Short Read Whole Genome Sequencing 

We ran three methods on whole genome PCR free Illumina sequencing data (30x coverage) from 

sample NA12878 (25), to assess the ability of each method to characterize repeat expansions from 

short reads. These include two reference-based approaches, GangSTR (89) and ExpansionHunter 

(90), and one de novo approach, STRling (169).  

 

Short-read tandem repeat characterization methods 

GangSTR takes aligned sequences and a set of coordinates (indicating known repetitive regions in 

the refence genome) as input and outputs estimated diploid repeat lengths. To estimate repeat 

lengths, GangSTR characterizes properties from four classes of pair-end reads; 1) the number of 

repeat copies enclosed in reads which cover the entirety of the repetitive region, 2) the observed 

fragment length for read pairs where the two reads map on either side of the repetitive region, 3) 

the distance a non-repetitive mate read of a fully repetitive read maps from the repetitive region, 

and 4) the number of repeat copies in a read that partially covers the repetitive region. These 

properties are integrated into a unified model to estimate the maximum likelihood TR length for 

each repeat loci supplied in the repeat reference panel. Reference repeat panels are supplied for 

the human reference genome and include both STRs and VNTRs with repeat motifs up to 20bp 

(89).  

 

ExpansionHunter (v3) (90) also takes aligned sequences as input and requires a list of known 

repetitive regions in the reference genome and outputs estimated diploid repeat lengths. The largest 

advancement ExpansionHunter makes compared to its predecessors is that it uses a sequence 
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graph-based approach in the detection of complex loci containing multiple repeat motifs in close 

proximity. Reads aligning to the repetitive loci in the reference genome are realigned to the graph-

based model representing the locus structure which can include multiple repeat motifs. Identifying 

alignment paths through the graph structure are used to genotype the repeat loci. This graph 

structure allows for much more flexibility in the definition of an individual repeat locus and allows 

for mismatches. Because we are looking to characterize repetitive regions genome wide for this 

analysis, it was not feasible to curate individually tailored regular expressions for each loci known 

to be repetitive in the reference genome. Instead, each loci in the reference repeat panel was treated 

as a simple repeat. The same reference panel supplied by GangSTR was used to generate the input 

for ExpansionHunter and therefore also includes both STRs and VNTRs with up to 20bp repeat 

motifs. (89) 

 

STRling (169) takes aligned sequences as input as well but does not require a list of known 

repetitive loci, allowing the detection of repeats expansions in regions which are not annotated in 

the reference genome. To identify repeat loci in a sample, STRling utilizes a kmer based approach 

to identify reads with substantial repetitive content which are either remapped using a well-mapped 

mate pair as an anchor or designated as an unplaced-pair. Clusters of anchored or soft-clipped 

reads are reported as putative repeat expansion loci with anchored pairs providing rough 

boundaries and split-reads providing base pair resolution. The allele length at the putative STR 

repeat expansion loci is then estimated using properties from three classes of reads aligning to the 

repetitive region: 1) the length of a repetitive region is observed directly from reads spanning the 

entirety of the repetitive region, 2) the length of alleles up to the median fragment length are 

estimated to be proportional to the number of anchored pairs, and 3) the length of alleles beyond 
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the median fragment length are estimated to be proportional to the number of unplaced pairs. 

Unlike the previous two approaches, STRling only characterizes STRs – repeat motifs 2-6bps in 

length – and does not characterize VNTRs, thus we cannot compare STRling to ExpansionHunter 

or GangSTR in VNTR identification. (169) 

 

STRling estimates longer repeat loci with lower G:C content than reference-based methods in short 

read data 

Reference based methods GangSTR and ExpansionHunter characterized several orders of 

magnitude more repeat loci (STRs) that differed from the reference genome compared to the de 

novo method STRling (Figure 3-1A). STRling identified repeat motifs of 2-6 base pairs. The 

majority of STRling results characterized repeat motifs with 2 or 4 base pairs. Congruent with the 

reference repeat panel, Expansion Hunter and GangSTR report repeats motifs of 2-20 base pairs 

with 97.5% of repeat motifs between 2 and 6 base-pairs (Figure 3-1B). The two reference-based 

methods estimate that the majority of repeat motifs contain either 50% G or C nucleotides or 

consistent entirely of A or T nucleotides (Figure 3-1C). In contrast, the majority of all repeat loci 

identified by STRling had repeat motifs with less than 50% G or C nucleotides. Indeed, very few 

repeat loci identified by any of the three short read methods characterized repeat loci that were 

made of primarily G or C nucleotides.  

 

Expansion Hunter and GangSTR have similar distributions of estimated repeat lengths with most 

loci being less than 100bp – less than the length of a single read – but also reporting estimated 

lengths up to 4,075bp for Expansion Hunter and 4,110bp for GangSTR. In contrast, most repeats 
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characterized by de novo method STRling were estimated to be between 100 and 1000bp in length 

and report loci up to 86,965bp (Figure 3-1D). 

 

ExpansionHunter shows better concordance with Sanger repeat estimates 

While ExpansionHunter and GangSTR have abundant regions characterized by both methods, 

STRling has much less overlap with these approaches (Figure 3-2A). Of the results it reports, only 

3% overlap with regions from the reference repeat panel. We observed the concordance for repeat 

loci where all three methods reported results (Figure 3-2B). Crucially, there are no loci where all 

three methods report the same results. For some repeat loci, the STRling repeat estimate is close 

to the estimate of the reference-based methods, but overall it appears to estimate longer repeats 

than the reference-based methods. STRling frequently estimates repeat lengths longer than the 

fragment length at these repeat loci while the reference-based methods do not. 

 

We compared our results to a Sanger sequencing dataset (0.3x coverage) for the same sample, 

NA12878, that was generated as part of a previous study to explore structural variation in humans 

(173). Sanger sequencing has longer read lengths (~800bp) compared to Illumina (~150 bp) and 

has a very low base calling error rate, both of which are beneficial for accurately characterizing 

repetitive sequences, and thus serve as an appropriate resource against which we can benchmark 

our results. We used Tandem Repeat Finder (175) to identify repetitive sequences within the 

Sanger reads, which were then aligned to the reference in order to determine overlap with regions 

profiled by the short read methods. We identified all repeat regions characterized by a short read 

method that also had a sanger read fully spanning the repeat region.   
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For the regions where both ExpansionHunter and GangSTR report results, 83.3% of the predicted 

repeat lengths were the same between these two methods. We quantify the divergence, calculated 

as a similarity metric, between a pair of repeat count genotypes reported by two different methods 

(see Methods). A visualization of the similarity metric (see Methods) is shown in Figure 3-2C, 

comparing ExpansionHunter and GangSTR for regions where they reported differing repeat 

counts. The result of each method is similarly compared to the overlapping Sanger reads. Repeat 

regions are sorted based on the similarity metric between ExpansionHunter and GangSTR. Of the 

9,056 regions with Sanger reads overlapping repeat loci where Expansion Hunter and GangSTR 

report different results, Expansion Hunter matches the Sanger results 494 times whereas GangSTR 

matches the Sanger results 272 times. When calculating the total number of repeat counts 

difference from the Sanger results over all 9,056 regions, on average, Expansion Hunter differs by 

1.35 repeat counts and GangSTR differs by 1.71 repeat counts on average.  As Sanger length 

estimates increase, both ExpansionHunter and GangSTR are quite correlated with one another and 

underestimate repeat length in comparison to Sanger (Figure 3-3). However, the same pattern does 

not hold true for STRling estimates which is unbiased when it comes to over or under estimating 

repeat length in comparison to Sanger (Figure 3-3).  Overall, estimated repeat lengths reported by 

Expansion Hunter showed greater concordance with Sanger than those reported by GangSTR 

based on the similarity metric detailed in the methods. In particular, when ExpansionHunter and 

GangSTR significantly disagree on their estimated repeat lengths (bottom right of Figure 3-2C), 

ExpansionHunter estimates tend to be closer to Sanger reads (bottom left of Figure 3-2C). 

 

Detecting Repeat Variation from Long Read Whole Genome Sequencing 
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To assess the ability to characterize repeat expansions from long reads, we applied three different 

methods. These include one reference-based approach, Tandem-genotypes and two de novo 

approaches, Tricolor and STRaglr (Table 1).  

 

Long-read tandem repeat characterization methods 

Tandem-genotypes requires that sequencing reads be aligned specifically using the alignment 

program LAST as input and also requires a list of coordinates specifying repetitive regions in the 

reference genome (92). The same reference repeat panel supplied to the reference-based short read 

methods was used with the application Tandem-genotypes. To estimate repeat length, Tandem-

genotypes relies on LAST-split which divides each long read into one or more parts and identifies 

the most probable alignment of each part. From the alignment of the parts which overlap the repeat 

coordinates, Tandem-genotypes uses the difference in the number of base pairs in the reference 

and query sequence to estimate the size of an insertion (or deletion) in the repeat regions. Repeat 

length estimates are reported for each read overlapping repeat regions supplied in the reference 

panel (89).  

 

Tricolor is a de novo method that requires that read alignments be haplotype resolved prior to 

running the program and does not require a list of repeat coordinates (93). Tricolor’s first module, 

sensor, detects repetitive regions within each long read by identifying drops in Shannon entropy 

across 20bp non-overlapping windows and merging any repetitive regions within 100bp of one 

another. Tricolor’s second module, refer, extracts and trims all reads completely overlapping each 

repetitive region and creates haplotype resolved consensus sequences. These consensus sequences 

are used to identify the predominate repeat motifs and estimate the number of copies present. By 
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default, Tricolor only looks for repeat motifs up to six base pairs and requires there be at least five 

perfect copies of the motif. Additionally, results are only output if the estimated repeat length 

exceeds 50bp and at least one of the haplotypes differs from the reference sequence.  

 

Like Tricolor, STRaglr is a de novo method (91). STRaglr looks only to find repetitive expansions 

as opposed to characterizing all repeat loci to limit run-time.  Repetitive regions are discovered by 

identifying large insertions (default > 100bp) via the CIGAR string or split reads which are then 

analyzed for repetitive content using Tandem Repeat Finder to identify both the repeat boundaries 

and repeat motif. 70% of the insertion sequence must be made up of a single repeat motif. Once 

repetitive regions have been identified, reads aligning between the repeat coordinates or within 

80bps (to rescue potentially missed split reads) are designated as candidate reads. These are then 

analyzed by Tandem Repeat Finder to determine the number of times the matching repeat motif is 

present in each read. A gaussian mixed model is used to cluster the repeat counts determined from 

each read overlapping a repetitive region into two groups to return a diploid genotype for each 

region.  

 

STRaglr characterizes longer repeat estimates that contain greater G:C content than Tricolor or 

Tandem-genotypes 

Like the short read methods, the de novo approaches, Tricolor and STRaglr did not report as many 

results as the reference-based approach, Tandem-genotypes (Figure 3-4A). Consistent with the 

reference repeat panel, Tandem-genotypes reports repeat motifs of 2-20 base pairs with most being 

between 2-6 base pairs. Tricolor only reports repeat motifs between 2-6 base pairs while STRaglr 

between 2-50 base pairs (Figure 3-4B). The distribution of the percentage of the repeat motifs 
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made up of C or G nucleotides is very similar between the reference-based method Tandem 

genotypes and de novo method Tricolor. The most repeat motifs were made up of 50% G or C 

nucleotides followed closely by repeat motifs made entirely of A or T nucleotides (Figure 3-4C). 

In contrast, the majority of repeat events reported by STRaglr are made up of 50% or more CG 

content. This represents a key distinction between the two de novo methods. A majority of the 

estimated lengths of the repeats characterized by Tandem-genotypes and Tricolor are between 10 

and 100 bps. Overall, STRaglr reports larger repeats than the other two methods with most repeats 

estimated to be between 100 and 10,000bps (Figure 3-4D).  

 

Of the de novo methods, Tricolor had substantial overlap with the repeat reference panel but also 

contributes several novel regions (Figure 3-5A). STRaglr reported a mix of novel repeat loci and 

repeat loci included in the reference repeat panel. With Tricolor and Tandem-genotypes reporting 

the most results for the same loci, we wanted to determine if one approach was performing more 

accurately than the other using the Sanger reads again as a truth set. We show concordance for 

repeat loci where all three methods reported results (Figure 3-5B). Note, while STRaglr estimates 

are relatively close to the estimates of Tandem Genotypes and Tricolor for half of the repeat loci 

analyzed, STRaglr overestimates repeat length of the other half of repeat loci compared to Tandem 

Genotypes and Tricolor. Concordance for repeat loci where STRaglr and at least one of Tandem 

genotypes or Tricolor report results is shown in Appendix Figure B 1. 

 

A visualization of the similarity metric (see Methods) is shown in Figure 3-5C, comparing Tandem 

Genotypes and Tricolor for regions where they reported differing repeat counts. The result of each 

method is similarly compared to the overlapping Sanger reads. Repeat regions are sorted based on 
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the similarity metric between Tandem Genotypes and Tricolor. Of the 9,934 regions characterized 

by both Tandem Genotypes and Tricolor that were also covered by Sanger reads, 1,061 Tricolor 

results matched Sanger repeat length estimates while 1,039 Tandem Genotypes repeat results 

matched Sanger repeat length estimates. When calculating the total number of repeat counts 

difference from the Sanger results over all 9,934 regions, on average, Tricolor differs from Sanger 

by 0.95 repeat counts and Tandem genotypes differs by 1.02 repeat counts on average. While not 

as striking as in the short read data, it appears that Tricolor results match more closely to Sanger 

estimates, especially when Tricolor and Tandem-genotypes significantly diverge from one another 

(bottom of heat map, Figure 3-5C).  As Sanger length estimates increase, both Tricolor and 

Tandem Genotypes underestimate repeat length in comparison to Sanger (Figure 3-6). However, 

the same pattern does not hold true for STRaglr estimates, which tend to overestimate repeat length 

compared to Sanger across all Sanger estimated lengths (Figure 3-6).   

 

Short-read reference-based methods provide similarly accurate repeat length estimations 

compared to long read referenced based methods.  

The majority of coordinates supplied in the reference repeat panel are characterized by all three 

reference-based methods (Figure 3-7A). Interestingly, the long-read method, Tandem Genotypes 

reports the fewest unique repeats (Figure 3-7A). Unsurprisingly, all three reference-based methods 

report similar repeat motif lengths (Figure 3-7B) and G:C content of repeat motifs (Figure 3-7C). 

All three reference-based methods additionally report similar distributions of repeat estimate 

lengths, with most estimations falling between 10 and 100 base pairs. Regions that differed 

between the methods were compared to Sanger sequences to determine which methods were the 

most accurate (Figures 3C and 3D). Expansion Hunter matched better with repeats estimated from 
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Sanger reads compared to Tandem Genotypes, though Tandem Genotypes matched more closely 

with Sanger than GangSTR (Appendix Figure B 2). 

 

de novo approaches provide diverse estimates of repeat length  

While the reference-based approaches were all supplied the same set of reference coordinates to 

focus repeat characterization, each of the de novo methods applied different approaches to detect 

repetitive loci directly from the read sequences. Compared to the reference-based methods, we see 

much less overlap between the results of de novo approaches (Figure 3-7E). Tricolor identifies 

substantially more repetitive regions within the genome of NA12878. 11,477 novel repeat loci - 

repeat loci not included in the repeat reference panel - were characterized by de novo methods. 

685 repetitive loci were identified by more than one method with only 59 identified by all three 

methods. Of the loci identified by all three methods, the length estimates for the two long read 

methods were closer to each other than either were to the short read method, STRling (Figure 3-

7H). Two of these methods only detect STRs, while STRaglr is the only de novo method with the 

capacity to identify VNTRs that are not annotated in the reference genome (Figure 3-7F).  

 

Performance on Known Pathogenic Expansion Loci 

We looked at the tandem repeat count estimates across all six methods for a set of ten repeat loci 

known to be pathogenic when expanded (see Table 3-2). Six repeats showed exact concordance 

between all methods able to characterize them while three showed variation in the estimated repeat 

length across methods. The remaining repeat was only characterized by a single method (Figure 

3-8). 
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Two de novo methods, STRaglr and STRling, were unable to characterize any of the ten pathogenic 

repeats, likely because they are not in an expanded form in this sample and therefore do not exceed 

the threshold for detection by these methods. STRaglr focuses on repetitive regions with insertions 

larger than 100 bps relative to the reference genome, which likely do not exist in this sample as it 

is not known to have any expansions at these loci. STRling does not report any results for these 

loci because they are likely too small to be detected. The largest repeat length based on the 

estimations of the other methods is 90 bp (CAG repeat on Chr6) which would not exceed the 80% 

threshold of a 150bp read that is required for a read to be deemed informative by STRling.  

 

Nine of the ten pathogenic loci were included in the reference repeat panel and were characterized 

by all three reference-based methods except the GGGGCC repeat which Tandem-genotypes failed 

to categorize. Tricolor, a de novo method, was able to identify five of the nine regions included in 

the reference repeat panel. Additionally, it was able to characterize one repeat not identified by 

any of the reference-based methods, showing the utility of de novo methods in disease contexts.  

 

3.4 DISCUSSION 

 

Tandem repeats are an understudied class of variation in the genome known to cause disease when 

expanded. The advancements in whole genome sequencing technology have allowed genome wide 

characterization of tandem repeats, greatly improving the potential to detect novel expansions 

associated with disease. Here, we conducted an in-depth analysis of six bioinformatic methods for 

genome wide characterization of tandem repeats for the sample NA12878, three designed to be 

used on short-read data and three on long read data. Additionally, these methods include a mix of 

reference-based methods and de novo methods.  
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In characterizing three short read methods we found that two referenced-based methods, 

Expansion Hunter and GangSTR, reported results for many of the same loci. However, when their 

estimated repeat lengths were compared to overlapping Sanger reads from the same sample, 

Expansion Hunter outperformed GangSTR. While Expansion Hunter and GangSTR have the 

capacity to detect VNTRs, the vast majority of the repeat loci characterized by these methods had 

repeat motif lengths less than 6bp. De novo method STRling has little overlap with the reference-

based methods and generally reported repeat loci with higher repeat length estimates compared to 

the other two short read detection methods. Interestingly, the repeat loci identified by STRling 

consisted primarily of repeat motifs with less than 50% G:C content.  

 

Our analysis of three long read tandem repeat detection methods found significant overlap in repeat 

loci characterized by reference-based method Tandem Genotypes and de novo method Tricolor. 

Both methods had similar distributions of predicted repeat length and G:C content for the repeat 

loci characterized. In contrast, the de novo method STRaglr had little overlap with the other two 

long read methods and had the highest percentage of repeat motifs with greater than 50% GC 

content. STRaglr is also the only long-read method to characterize VNTRs.  

 

When considering all three reference-based methods, regardless of read length, the characteristics 

of the repeat loci interrogated are very similar, given they were supplied the same set of repeat loci 

as input. Overall, Expansion Hunter using short reads provided repeat length estimates closest to 

long read method Tandem genotypes. The repeats identified by the de novo methods differed from 

one another in several ways. Tricolor had similar estimated lengths and G:C content to the 
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reference-based methods while STRling and STRaglr generally reported most repeat estimates 

between 100 and 1000bp in length. There was very little overlap in the repeat loci identified by 

the methods. Together they identified over 11,000 novel repeat loci that were not included in the 

repeat reference panel; however, only 685 were identified by more than one method leading to the 

conclusion that these may contain many false positives. Since two of the de novo based methods 

often predicted repeat lengths greater than 800 bps, Sanger sequencing is not the best method for 

validation and other techniques such as PCR may be more appropriate for the validation of these 

novel repeat expansions.  

 

Sanger sequencing reads were used as a “truth set” in several analyses in this paper. There are 

several limitations of this approach. The Sanger sequencing dataset was low coverage and often 

only a single read spanned a repeat locus, which would enable the measurement of the concordance 

of only a single allele. Additionally, using Sanger as a “truth set” has limited utility to validate 

repeat expansions greater than 800bp – the average length of a Sanger read. Additional validation 

through PCR amplification or Southern blot would help elucidate the more accurate method for 

larger repeats, although this will have lower resolution.  Additionally, TRF was used to determine 

the length of repeats in the Sanger reads. TRF has been shown to be conservative in identification 

of repeat loci in a sequence, specifically with very short motif lengths (176,177). While a low false 

positive rate is beneficial for validation, this may have limited our ability to use Sanger reads for 

validating STRs. 

 

This analysis was also limited in that each method was only run using the default parameters on a 

single sample. Running each program multiple times while varying the input parameters may result 
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in improved (or worse) performance. Performing this analysis on additional samples including 

samples with varying sequencing coverage could also provide additional insight on when it is 

appropriate to use each method 

 

From these results, we have developed a set of guidelines for researchers exploring STRs and 

VNTRs with either short-read or long-read datasets: 

 

Short-read guidelines 

While there are some unique repeats regions analyzed by ExpansionHunter and GangSTR, it likely 

isn’t enough to warrant running both methods on a short read dataset. However, STRling provides 

an orthogonal set of repeats, specifically ones that are not annotated in the reference sequence. 

While the method is theoretically able to analyze regions that are annotated in the reference 

sequence, in practice, we do not see a lot of overlap between STRling results and those from 

reference-based methods. For this reason, we recommend running both ExpansionHunter and 

STRling on short read data when looking to characterize genome wide repetitive repeats. However, 

if only looking for large STRs and are not interested in small variations in repeat length across 

many regions, STRling has a much faster runtime than ExpansionHunter or GangSTR.  

 

Long-read guidelines 

Guidelines for analysis of long-read datasets is not as straightforward. STRaglr, one of the two de 

novo methods, characterizes longer repeat estimates that contain greater G:C content than Tricolor 

or Tandem-genotypes. Additionally, STRaglr can characterize VNTRs, unlike Tricolor or 

Tandem-genotypes. For this reason, we recommend running either Tricolor or Tandem-genotypes 
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together with STRaglr to provide a diverse set of characterized repeat expansions. Of the three 

methods, Tandem-genotypes provides the greatest number of unique repeat loci. That said, 

Tricolor offers utility in pathogenic studies, in that it can identify small novel repeat expansions, 

that can be characteristic of pre-mutations, that the other two de novo methods will miss. 

3.5 METHODS 

 

Data 

We obtained the publicly available alignment of Illumina reads for NA12878 (25) to GRCh38. We 

obtained previously generated FASTQ files generated by PacBio sequencing of NA12878 (174). 

FASTA and qscore files were download for previously generated Sanger sequencing of NA12878 

(173) and were converted in to FASTQ files using a custom python script.  

 

Repeat reference panel 

The reference repeat panel was downloaded from (https://github.com/gymreklab/GangSTR, 

version 13). In brief, this panel was created by running Tandem Repeat Finder on the human 

reference genome and several filters were used to refine the repeat set. Some filters which were 

used included removing repeats with repeat motifs greater than 20 base pairs, removing repeats 

with homopolymer runs, and repeats which could be fully represented as a single sub-motif. See 

(89) for more details. 

 

Alignment 

PacBio reads were aligned using minimap2 (77) (v2.17-r974-dirty; map-pb preset option) and 

LAST (v1256; as specified https://github.com/mcfrith/last-rna/blob/master/last-long-reads.md - 

https://github.com/mcfrith/last-rna/blob/master/last-long-reads.md


 84 

without repeat masking) (178). Sanger reads were aligned using minimap2 (77) (v2.17-r974-dirty; 

map-sr preset option). Illumina reads were already aligned when downloaded (25) (BWA-MEM) 

(179). 

 

Tandem Repeat Characterization 

Default parameters were used run the tandem repeat characterization methods unless otherwise 

stated.  

 

GangSTR was run using the Illumina alignment and the repeat reference panel mentioned above. 

To run ExpansionHunter, a JSON input file was created starting from repeat reference panel. Each 

repeat was made into a JSON entry using the repeat motif as the locus structure in the format 

"([RU])*" and the variant type “Repeat”. Repeat loci within 1,000 bp of a gap in the reference were 

removed, as these would produce errors when running ExpansionHunter. Non-autosomal 

chromosomes were excluded from the analysis. Tricolor was run using the minimap alignment of 

PacBio reads. The minimum length of tandem repeat option was set to 10 (default is 30) to better 

match list of known repeat regions from the reference genome. Tandem-genotypes was run using 

the LAST alignment of PacBio reads and the repeat reference panel. STRaglr was run using the 

minimap alignment of PacBio reads. STRling was run using the short read alignment. Tandem 

repeat counts characterization for each sanger read aligning to a known repetitive region was 

performed using Tandem Repeat Finder and the recommended parameters ̀ trf - 2 7 7 80 10 50 500 

-h -ngs`.  

 

Cross-method repeat region identification comparisons 
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The repetitive regions from the results of all methods were merged using the merge functionality 

of bedtools (180) to create a master list of all repetitive regions identified across methods. Repeats 

reported by reference-based methods were only included in the analysis if the estimated repeat 

length differed from the reference genome. The results from each method were intersected with 

the “master list” to determine which regions the method characterized (50bp were added on either 

side of STRling repeat regions as regions were often reported as a single base pair). Each region 

from the master list was only counted once, even if the method reported multiple repeats within 

the same region from the master list.  

 

Cross-method repeat length concordance comparisons 

Given the variety in the output format across the different methods, the following steps were 

performed to allow for the comparison among the methods: 

(1) Identify matching repeat calls across methods – method results were considered the same 

repeat if they had a) overlapping coordinates (50bp were added on either side of STRling 

repeat regions as regions were often reported as a single base pair) b) matching repeat motifs 

(specified in the method output; all rotations of the repeat motif were allowed, i.e. AT and 

TA). If multiple results with the same repeat motif were within the repeat boundaries, the 

results were combined (Tricolor often had several smaller repeats whereas other methods 

would characterize it as a single larger repeat)   

 

(2) Convert method outputs to a uniform format (repeat motif counts) – GangSTR, 

ExpansionHunter, and STRaglr all report results as absolute repeat motif counts and were used 

as is. Tricolor also reports absolute repeat counts but multiple repeat motifs can be given in 
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the same VCF entry – different repeat motifs were separated into different results or counts 

were summed if the same repeat motif was reported twice in one VCF entry. Tandem-

genotypes and STRling reported repeat motif count relative to the reference sequence. These 

were converted to absolute repeat counts by adding or subtracting count change from the 

number of repeat motifs seen in the reference sequence [𝑐𝑒𝑖𝑙((𝑠𝑡𝑜𝑝 –  𝑠𝑡𝑎𝑟𝑡)/

𝑟𝑒𝑝𝑒𝑎𝑡 𝑙𝑒𝑛𝑔𝑡ℎ)].  

 

(3) Determine the genotype per sample – Several of the long-read callers report the repeat motif 

count per read as opposed to one count per haplotype. To estimate the genotype for the 

individual, we performed k-means clustering with k=2 to group the estimated repeat lengths. 

The mean value of the repeat lengths contained in each cluster were rounded to the nearest 

integer and were reported as the repeat loci genotype.  

 

 

(4) Calculate a similarity metric - following was used as a measure for similarity between two 

methods results for a given loci. (𝐺𝑇𝐴1, 𝐺𝑇𝐴2) is the genotype reported by method A and 

(𝐺𝑇𝐵1, 𝐺𝑇𝐵2) is the genotype reported by method B: 

min(𝑎𝑏𝑠(𝐺𝑇𝐴1 − 𝐺𝑇𝐵1) + 𝑎𝑏𝑠(𝐺𝑇𝐴2 −  𝐺𝑇𝐵2), 𝑎𝑏𝑠(𝐺𝑇𝐴1 − 𝐺𝑇𝐵2) + 𝑎𝑏𝑠(𝐺𝑇𝐴2 − 𝐺𝑇𝐵1)) 
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3.6 FIGURES AND TABLES 
 

Table 3-1 The reference-based and de novo bioinformatic methods for short-read and long-read technologies. 
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Figure 3-1 Comparison of methods using short read data.  

A) Table reporting the number of repeats characterized by each method as well as the method type. B) Violin plot that displays the 

distribution of repeat motif lengths characterized by each method. C) Density plot showing the % of G:C content of repeat motifs 

characterized by each method. Repeat motifs containing only A or T nucleotides align with 0.0 along the x axis, motifs containing 

only G or C nucleotides align with 1.0. D) Violin plot displaying the distribution of estimated repeat lengths for each method.    
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Figure 3-2 Repeat length concordance across short-read methods.   

A) Upset plot of overlapping repeat loci characterized by each method. B) Dot plot of estimated repeat lengths for repeat loci 

characterized by STRling (dark blue) and reference based methods (ExpansionHunter-green, GangSTR – light blue). Sanger dots 

(red) are included for repeat loci spanned by Sanger reads.  C) Heatmap of similarity metric comparisons between reference based 

methods and Sanger. 
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Figure 3-3 Comparisons between Sanger Sequencing and each short-read method.   

A) Scatter plots displaying direct comparison of each methods repeat length estimate along the y axis and the Sanger repeat estimate 

along the x axis. B) Scatter plots displaying the difference in repeat estimates by the two methods along the y axis across the 

predicted Sanger lengths along the x axis. Each scatter plot represents a separate comparison between Sanger estimates and either 

ExpansionHunter, GangSTR or STRling estimates. 
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Figure 3-4 Comparison of methods using long read data.  

A) Table reporting the number of repeats characterized by each method as well as the method type. B) Violin plot that displays the 

distribution of repeat motif lengths characterized by each method. C) Density plot showing the % of G:C content of repeat motifs 

characterized by each method. Repeat motifs containing only A or T nucleotides align with 0.0 along the x axis, motifs containing 

only G or C nucleotides align with 1.0. D) Violin plot displaying the distribution of estimated repeat lengths for each method.   
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Figure 3-5 Repeat length concordance across long read methods.  

A) Upset plot of overlapping repeat loci characterized by each method. B) Dot plot of estimated repeat lengths for repeat loci 

characterized by STRaglr (dark red) and Tandem Genotypes - yellow, Tricolor – orange). C) Heatmap of similarity metric 

comparisons between reference based methods and Sanger. 
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Figure 3-6 Comparisons between Sanger Sequencing and each long read method.  

A) Scatter plots displaying direct comparison of each methods repeat length estimate along the y axis and the Sanger repeat estimate 

along the x axis. B) Scatter plots displaying the difference in repeat estimates by the two methods along the y axis across the 

predicted Sanger lengths along the x axis. Each scatter plot represents a separate comparison between Sanger estimates and either 

Tandem Genotypes, STRaglr, or Tricolor estimates.  
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Figure 3-7 Characteristics of repeat loci detected by reference and de novo based methods.   

(A-D correspond to reference based methods while E-H correspond to de novo methods) A,E) Upset plot of overlapping repeat loci 

characterized by each method. B,F) Violin plot that displays the distribution of repeat motif lengths characterized by each method. 

C,G) Density plot showing the % of G:C content of repeat motifs characterized by each method. Repeat motifs containing only A 

or T nucleotides align with 0.0 along the x axis, motifs containing only G or C nucleotides align with 1.0. ,HD) Violin plot 

displaying the distribution of estimated repeat lengths for each method 
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Table 3-2 Table of known pathogenic repeat expansions 

 

Disease  Gene Repeat Motif Location Chr 
GRC38  

Citation 
Co-ordinates 

Cerebellar ataxia, neuropathy, 

vestibular areflexia syndrome 
RFC1 

AAGGG 

(AAAAG) 
Intron 4 39366381-39287456 (181) 

Spinocerebellar ataxia type 1 ATXN1 CAG CDS 6 16761490-16299112 (182) 

Spinocerebellar ataxia type 2 ATXN2 CAG CDS 12 111599673-111452214 (183)  

Spinocerebellar ataxia type 3 ATXN3 CAG CDS 14 92106582-92058552 (184) 

Spinocerebellar ataxia type 6 
CACN

A1A 
CAG CDS 19 13506479-13206442 (185) 

Huntington's disease HTT CAG CDS 4 3074681-3243960 (186) 

Myotonic dystrophy type I DMPK CTG 3' UTR 19 45782490-45769709 (187) 

Myotonic dystrophy type 2 CNBP CCTG Intron 3 129183896-129167827 (188) 

Fridreich's ataxia FXN GAA Intron 1 9 69035752-69079076 (189) 

C9ORF72 amyotrophic lateral 

sclerosis frontotemporal dementia 

C9ORF

72 
GGGGCC Intron 9 27573866-27546546 (190) 
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Figure 3-8 Pathogenic Variant concordance across the tandem repeat characterization methods.  

Repeat count estimations for each method for ten repeats where expansions are known to be pathogenic. Each method should have 

two results for each repeat region, one from each chromosome.  
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Chapter 4 - Integrating Multiple Sequencing Technologies to Identify Repeat 

Expansions in a Disease Cohort 
 

 

 

The material presented in this chapter is derived from preliminary work in progress as part of a 

collaborative project and is not being pursued as a manuscript at this time. The computational 

portion of this project aimed to identify potential repeat expansions in participants of the Michigan 

Genomics Initiative diagnosed with neurodegenerative diseases. These potential expansions can 

be targeted with long-read Oxford Nanopore sequencing for more accurate characterization of 

repeat expansions which can be used to further study their association with disease.  Dr. Ryan 

Mills, Dr. Alan Boyle, and Dr. Peter Todd devised the context and scope of the project. Dr. Mills 

provided guidance for computational approach, and I led the implementation of the computational 

analysis. 

 

 

 

4.1 ABSTRACT 

Amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, is the most common motor neuron 

disease in adults. Although 5-10% of all cases have a familial connection, the vast majority of 

incidents have no known genetic factor. Recent genome-wide association studies have identified 

several SNPs that correlate with ALS phenotypes. However, the strongest connections have been 

linked to tandem repeat expansions which have been critically understudied due to technological 

limitations.  Here, we developed and applied an approach to link repeat expansions with nearby 

SNPs and report potentially relevant repeat expansions in two cohorts of ALS patients, one with 

short-read whole genome sequencing (WGS) (n=24) and one with SNP microarray data (n=31). 

We estimate repeat lengths in the WGS dataset using Expansion Hunter and compare two methods 

for estimating repeat lengths using surrounding SNP haplotypes for the SNP microarray datasets. 
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We compare the estimated repeat lengths in the ALS samples to a control population to identify 

candidate repeat expansions which could be confirmed using targeted long read sequencing. 

 

4.2 BACKGROUND 

 

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in adults with a 

prevalence of approximately 6 cases per 100,000 people (191). ALS is a neurodegenerative disease 

affecting the nerve cells in the brain and in the spinal cord. The age of onset is typically between 

40 and 70 with patients typically surviving 2-4 years after symptoms present (192). As the world 

population continues to age and diagnostic capabilities grow, the prevalence of ALS is projected 

to increase by 69% by 2040, underscoring the need to better understand the genetic underpinnings 

of this disease (193). 

 

In approximately 5-10% of ALS cases, there is a known family history of the disease (194). About 

half of familial cases have variants in genes known to be linked with ALS. Some of the most 

common variants include SOD1, C9ORF72, FUS and TARDBP (195–199). The remaining 90-

95% of ALS cases are considered sporadic cases and do not have a known family history of the 

disease; however, it is estimated that heritability of ALS is around 60%. This suggests there are 

additional variants to be uncovered. Several large association studies have identified loci 

associated with ALS but oftentimes these studies are unable to determine the causal variant (200–

202). Other neurological diseases such as Huntington’s Disease and Fragile X syndrome are 

caused by repeat expansions (203) and offer a reasonable target variant class for investigation.  
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Repeat expansions in the C9ORF72 gene are the most common known ALS variant (204); 

however, tandem repeat variations but have been harder to include in large association studies due 

to limitations in the ability to characterize them with currently available technology. While short 

read sequencing methods can be used to characterize tandem repeats,  this technology still has 

several limitations when assessing repetitive sequences. For example, issues arise when aligning 

a short read derived from a repetitive region of the genome that consists of a large proportion of 

repetitive sequences. In this case, alignment methods often produce multiple alignments or fail to 

align the read altogether. Because of this, repetitive regions are often excluded in variant analysis 

pipelines. However, several methods have been developed attempting to overcome these 

challenges and detect repeat expansions in the genome which can aid in the detection of additional 

repeat expansions associated with ALS (89,90). 

 

Several methods have been developed for repeat expansion characterization from whole genome 

sequencing datasets as discussed in depth in the previous chapter. While long read sequencing has 

advantages over short read sequencing for detecting complex variation like tandem repeat 

expansions, generating new whole genome, long read sequencing datasets for many samples is 

often cost prohibitive (93). Comparatively, short-read sequencing is currently more practical for 

generating whole genome sequencing data for large numbers of samples, such as those that may 

be required for the discovery of more repeat expansions linked with ALS. However, there is an 

abundance of genomic data already generated for individuals with various diseases, including 

ALS, in large biobanks or databases such as the Michigan Genomics Initiative (205).  
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Despite the availability of these datasets, they often only contain SNP microarray data instead of 

whole genome sequencing given that microarrays are significantly less expensive, especially at 

large scale. While microarrays are not straightforward for characterizing repeat expansions, it has 

previously been shown that repeat lengths can be estimated from surrounding SNP variations in 

microarray datasets (206–208). The ability to characterize repeat lengths in the samples included 

in these databases would significantly increase the overall number of disease samples that could 

be included in large association studies to identify potential repeat expansion loci linked to any 

given disease. Because there are limitations in profiling repeats using short reads and SNP arrays 

(209),  expansions identified using these approaches are great candidates for targeted long read 

sequencing, which can provide more accurate repeat length estimates while avoiding the cost of 

whole genome long read sequencing (167,210). 

  

Here we identify potential repeat expansions in individuals with ALS from available short read 

and SNP array datasets with the goal of prioritizing regions of the genome for targeted long read 

sequencing. The ALS samples come from two cohorts. One cohort includes Illumina whole 

genome sequencing (WGS) samples generated by the Mayo Clinic (211), and the other cohort 

contains SNP genotyping array data from the Michigan Genomics Initiative (MGI) at the 

University of Michigan (205). We estimate the length of tandem repeats near SNPs associated with 

ALS in samples with WGS using Expansion Hunter (90), a method for characterizing tandem 

repeats in short read data. We utilize these tandem repeat callsets to develop and assess a method 

for estimating tandem repeat lengths from SNP array data. We compare this method to the existing 

imputation method, Beagle (100). Finally, we compare the repeat length estimates for the ALS 
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samples to a healthy control population to identify potential expansions which can be targeted with 

long read sequencing for more accurate characterization. 

 

4.3 METHODS AND MATERIALS 

To alleviate any issues with nomenclature, I have provided a definition of terms used throughout 

the methods and results sections (see Box 1).   

 

 

Datasets 

ALS Cohort 

WGS ALS Cohort 

Box 1: Terminology used in Chapter 4 

 

ALS Cohort – refers to all samples diagnosed with ALS (both WGS and Microarray) 

 

WGS ALS Cohort – refers to the 24 samples with whole genome sequencing data obtained 

from the Mayo Clinic 

 

Microarray ALS Cohort – refers to the 31 samples with SNP microarray data obtained from 

MGI 

 

1KG Cohort – refers to the 2,504 samples with whole genome sequencing from the 1000 

Genomes Project 

 

Repeat loci – refers to a region in the reference genome containing a repetitive sequence 

 

Repeat motif – refers to the base pair sequence that is repeated at the repeat loci 

 

Repeat length – refers to the number of copies of the repeat motif for a given repeat loci 

 

Repeat Expansion – refers to the increase in the number of copies of the repeat motif in 

comparison to either the reference genome or to a control population 

 

Candidate Repeat Expansions – refers to repeat loci which are estimated to be repeat 

expansions and are potential candidates for further analysis with targeted long read sequencing 
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We obtained BAM files for whole genome Illumina sequencing data of 24 individuals diagnosed 

with ALS from the Mayo Clinic. DNA was extracted from four different brain tissues (211). We 

pooled reads generated from the four tissues for each sample for SNP calling. GATK (146) was 

used to call SNP variation using the germline short variant detection best practice pipeline. 

SHAPEIT2 (212) was used to phase SNPs.  

 

Microarray ALS Cohort 

We obtained SNP genotype data from the Michigan Genomics Initiative (MGI) (205) for 31 

individuals diagnosed with ALS who also have biospecimens available. Genotyping was 

performed by MGI using a custom genotyping array based on the Illumina Infinium CoreExome-

24 bead array. Phasing (Eagle (213)) and imputation (TOPMed imputation server (214)) were 

previously performed by MGI.  

 

1000 Genomes Control Samples (1KG Cohort) 

We obtained high coverage whole genome Illumina sequencing BAM files and previously phased 

SNP calls for 2,504 presumably healthy samples from the 1000 genomes project (1KGP) as control 

samples (25). This includes samples from 26 diverse populations around the world. These samples 

have an approximate coverage of ~30X.  

 

Methods for estimating tandem repeat length 

Expansion Hunter 

Expansion Hunter (90) is a method for characterizing the length of tandem repeats from short read 

sequencing data. Expansion Hunter requires a list of repeat coordinates in the reference genome 
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known to contain tandem repeats in order to assess each region. This method was discussed and 

benchmarked in the previous chapter.  

 

Beagle 5.1 

Beagle (100,215) is a well-known method for the imputation of ungenotyped variation. While not 

strictly used for estimating tandem repeat lengths, tandem repeat lengths can be treated as multi-

allelic variants which can be phased along with SNP variants to generate reference panels. In turn, 

these reference panels are used to estimate the repeat lengths in SNP Microarray datasets - a 

technology that, when used alone, does not genotype tandem repeats.  

 

ForecaSTR 

We created ForecaSTR as a potential alternative to Beagle for estimating tandem repeat lengths in 

SNP Microarray datasets. For each repeat loci of interest, we generated a training set using 

individuals with whole genome sequencing data (in this study, we used 2,504 presumably healthy 

samples and 31 samples diagnosed with ALS) that have homozygous repeat lengths for the loci as 

estimated by Expansion Hunter. For all individuals included in the training set, the two haplotypes 

containing phased SNPs (that are also present on the SNP microarrays) within 100,000 bp of the 

repeat boundaries were extracted creating a matrix with dimensions 2S x N where S is number of 

homozygous samples and N is the number of SNPs within 100,000bp of the repeat loci. Each entry 

in the matrix is coded as either 0 or 1 indicating the presence or absence of the reference allele in 

the individuals for the SNP. The repeat length estimates for the homozygous samples were 

extracted to create a matrix with dimensions 2S x 1 where the values of the matrix indicate the 



 105 

number of repeat copies present in the individuals. (Only homozygous samples were used to ensure 

the correct SNP haplotypes were paired with the correct repeat estimate). (Figure 4-1). 

 

We used the phased SNP haplotypes matrix paired with the estimated repeat lengths matrix to train 

an ordinal linear model for each repeat loci.  The input variables of the ordinal linear model 

included the presence or absence of the surrounding SNPs in each reference sample and the output 

variable of the model was the predicted repeat count for each of those samples. Using an ordinal 

model treats the repeat counts as categorical variables but also accounts for the sequential nature 

of the increasing repeat count sizes. The model only outputs repeat lengths present in the training 

dataset. The number of homozygous samples and SNPs used for prediction, and the number of 

unique repeat lengths present in the training datasets are recorded for each repeat loci. To estimate 

the length of repeat loci in samples genotyped using SNP arrays, SNPs within 100,000 base pairs 

of a repeat loci are input into the ordinal linear model trained for the repeat. 

 

Identifying reference repeat loci near ALS GWAS SNPs 

To narrow the scope of the project, we focused our analysis on repeats loci that may be driving the 

SNP associations of ALS GWAS hits. All associations for ALS included in the GWAS catalog 

(126) were downloaded (download date: 04-26-22). All associations with genomic coordinates 

were kept (Appendix Table C 1). We downloaded the set of simple repeats present in the reference 

genome which was generated by running Tandem Repeat Finder (175) on the reference genome 

GRCh38 from the UCSC table browser (216) and identified repeats within 40,000 bp on either 

side of the ALS GWAS hits to create a set of repeats loci for analysis. We removed repeats with 
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repeat motif lengths of one or greater than 15bp as these can be difficult to characterize using short 

reads and the threshold is consistent with other thresholds used in the field (89). 

 

Estimating tandem repeat lengths in WGS samples 

To estimate the repeat length of the repeat loci near ALS GWAS hits in the two whole genome 

sequencing datasets (WGS ALS samples and 1KG control samples), we ran Expansion Hunter 

(default parameters). For the ALS samples, Expansion Hunter was run twice, once by pooling the 

different brain tissues together and once on each brain tissue separately. We created the input 

variant catalog to include the reference repeat loci near ALS GWAS hits. Each repeat was made 

into a JSON entry using the repeat motif as the locus structure in the format "([RU])*" and “Repeat” 

as the variant type. Repeat loci within 1,000 bp of a gap in the reference were removed, as these 

caused the program to error out. 

 

Estimating repeat lengths in the MGI ALS cohort 

We applied two approaches for estimating repeat length for the repeat loci near ALS GWAS SNPs 

in the Microarray ALS samples. 

 

Beagle 5.1 

We built a reference panel using the two WGS datasets (WGS ALS samples [pooled tissues] and 

1KG Cohort) by combining the SNP and STR callsets generated by GATK and Expansion Hunter 

respectively. These variants were phased using the phasing method implemented in Beagle (215) 

with default parameters. The reference panel was then used to impute STRs onto the SNP 
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haplotypes of the Microarray ALS cohort using the imputation method implemented in Beagle 

(100) (default parameters). 

 

ForecaSTR 

We used the WGS ALS (pooled tissues) and 1KG Cohort datasets to train an ordinal linear model 

for each reference repeat loci near ALS GWAS hits. We extracted the phased haplotypes 

containing SNPs within 100,000 bp of the repeat boundaries from the samples in the Microarray 

ALS cohort creating a matrix with dimensions 2A x N where A is number of Microarray ALS 

samples and N is the number of SNPs within 100,000bp of the repeat. The SNP haplotypes matrix 

for each repeat loci was input into the trained model for the repeat to estimate the repeat lengths 

for the samples in the Microarray ALS cohort.  

 

Benchmarking repeat length estimations from SNP profiles 

We generated simulated array data for the 1KG sample NA12878 which has whole genome short 

read sequencing as a test dataset to assess how close the repeat length estimations derived from 

SNP profiles are to the repeat length estimations from short reads. The simulated array was created 

by sub-setting the SNP calls based on the WGS for sample NA12878. The SNP calls were subset 

to include only the SNPs present in the genotyping array used to genotype the Microarray ALS 

cohort.   

 

For Beagle, we removed NA12878 from the generated reference panel and imputed the STRs into 

the simulated array data using the imputation method implemented in BEAGLE. For ForecaSTR, 

we trained the ordinal linear model using the whole genome sequencing datasets, 1KG cohort 
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excluding NA12878 and WGS ALS cohort, and estimated the repeat lengths in NA12878 using 

only the simulated array SNPs as input for ForecaSTR.  

 

Null Models 

We created several null models to compare against Beagle and ForecaSTR. For the Beagle random 

model, we randomly selected two alleles from all repeat alleles present for a repeat in the reference 

panel for each repeat loci. For the Beagle naïve model, we selected the most common allele present 

in the reference panel for each candidate repeat. For the ForecaSTR random model, we randomly 

selected repeat lengths from those present in the ForecaSTR training set which includes only the 

repeat lengths from the samples homozygous for repeat length from the whole genome sequencing 

datasets. 

 

Identifying candidate repeat expansions in the ALS cohort 

To identify potential repeat expansions, we compared the estimated repeat lengths in the ALS 

samples (WGS ALS cohort [pooled tissue] repeat lengths estimated by Expansion Hunter; 

Microarray ALS cohort repeat lengths estimated by Beagle 5.1) to the estimated repeat lengths in 

the, presumably healthy, 1KG cohort samples (estimated by Expansion Hunter). For each repeat 

loci in the reference genome near known ALS GWAS hits, the mean and standard deviation of the 

estimated repeat lengths in the 1KG control cohort were calculated. Each sample contributed two 

repeat lengths, one for each allele.  

 

Repeat length outliers present in each ALS sample were identified by comparing each repeat length 

allele present at each locus to the control distribution using a z-test. Multiple test correction was 
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applied using the Benjamini-Hochberg procedure (217) and results with an adjusted p-value less 

than 0.05 were considered potential repeat expansions. Repeat loci were reported as candidate 

repeat expansions if a repeat length outlier was identified in more than one ALS sample.  

 

Candidate repeat expansions in genes 

The genome annotation for GRCh38 was downloaded from GENCODE (V39) (218). Repeat loci 

in genes were identified by intersecting the coordinates of repeat loci with coordinates of “gene” 

features from the GENCODE V39 annotation using the intersect module of bedtools2 (180). The 

same procedure was used to identify repeat loci present in exons using the “exon” features from 

the GENCODE V39 annotation. 

 

Candidate repeat expansions expressed in brain 

Gene expression levels across different tissues were obtained from GTEx v8 (219). The median 

expression scores were extracted for all genes containing candidate repeat expansions. The 

expression scores were put in two groups, one for tissues in the brain and one for the remaining 

tissues in the dataset.  

 

4.4 RESULTS 

 

Development of an approach to link SNPs with tandem repeat expansion length 

We created a method, ForecaSTR, for estimating repeat lengths from surrounding SNP haplotypes 

as described in the Methods. In brief, we create a reference panel using SNP and tandem repeat 

variation callsets generated from whole genome sequencing datasets. We trained ordinal linear 
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models for each input repeat loci using phased SNP haplotypes and the length of repeat loci as 

explanatory and response variables respectively. We used samples homozygous for the repeat 

length to ensure the SNP haplotypes were paired with the correct repeat length value. To estimate 

the length of repeat loci in samples genotyped with SNP microarrays, phased SNP haplotypes 

containing SNPs surrounding repeat loci coordinates were input into the corresponding trained 

linear model. (Figure 4-1) 

 

Identifying reference repeat loci near ALS GWAS SNPs 

To identify potential repeat expansions associated with ALS, we focused our analysis on repeat 

loci within 40,000bp of ALS GWAS hits. Of the over one million repeat loci present in the 

reference genome (as characterized by Tandem Repeat Finder), we identified 2,612 falling within 

40,000 bp of 217 ALS GWAS hits. Each GWAS SNP had between 4 and 94 repeats with an 

average of 26.7 repeats within 40,000 bps per hit. (Figure 4-2 A).  For this analysis we capped 

repeat unit lengths at 15 because repeat unit lengths greater than 15 are difficult to characterize 

using short read technologies. Figure 4-2 B displays a histogram of the repeat unit lengths.  Repeat 

motifs with one, two, and four base pairs were the most common, but larger VNTR repeats motif 

lengths are also included. This set of 2,612 repeat loci were used for all following analyses. Note, 

identifying reference repeat loci is not an outcome of running ForecaSTR (or Beagle), but is a 

input to run the algorithms.  

 

Assessing the performance of tandem repeat length estimation from SNP haplotypes 

To assess and compare the accuracy of the two methods, Beagle and ForecaSTR, for estimating 

tandem repeat lengths from SNP haplotype data, we simulated array data for repeat loci near ALS 
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GWAS hits for the 1KG sample NA12878. We imputed repeat lengths for the reference repeat loci 

near ALS GWAS hits using the simulated data as input for two methods: 1) Beagle and 2) 

ForecaSTR (see Methods). We then compared the repeat lengths estimated from each of the 

imputation methods to those estimated from short read data for NA12878 using Expansion Hunter. 

Repeat length estimates from Beagle and ForecaSTR had similar concordance with Expansion 

Hunter, with Beagle reporting the same repeat length estimate for 81.2% of the alleles and 

ForecaSTR reporting the same repeat length estimate for 78.6% of the alleles (Figure 4-3).  These 

are both significantly better than the random null model which matched the Expansion Hunter 

estimated length for 21.4% of alleles. 91.9% of alleles predicted by Beagle were within 2 counts 

of the Expansion Hunter estimate while 87.3% of alleles predicted by ForecaSTR were within 2 

counts of the Expansion Hunter estimate. While not nearly as striking as the random null model, 

both Beagle and ForecaSTR predict repeat length alleles closer to Expansion Hunter than the naïve 

model (Figure 4-3).  

   

We next examined potential variables that might influence the accuracy of ForecaSTR predictions. 

We investigated whether the number of training samples, surrounding input SNPs, or unique repeat 

length alleles influenced how well the ordinal linear model (ForecaSTR) estimated repeat lengths 

and matched the short read estimated repeat lengths by Expansion Hunter. There was no clear 

linear relationship between any of these variables and how closely the estimated lengths of the 

ordinal model estimation and Expansion Hunter were to each other (Figure 4-4).   

 

Identifying candidate repeat expansions in the ALS cohort 
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We estimated the length of the 2,612 repeat loci near ALS GWAS SNPs for samples in the ALS 

and 1KG cohorts. Expansions Hunter was applied to the 2504 1KG cohort samples and the 24 

WGS ALS cohort samples. Beagle was applied to the 31 Microarray ALS cohort samples. We 

identified repeat lengths in the ALS cohort samples that were outliers compared to the distribution 

of repeat lengths present in the 1KG control population using a z-test. 107 repeat loci had at least 

one repeat length allele outlier in at least two ALS samples (Table 4-1).  

 

Repeat loci present within gene boundaries are indicated in Table 4-1. 62 repeat loci fell within 

gene boundaries with 7 of those loci falling within exons. Expression data across the 54 tissues 

included in the GTEx database are plotted in Figure 4-5 for each of the genes containing a repeat 

length outlier in the ALS sample.  Several genes have high expression in brain tissues with some 

genes being almost exclusively expressed in the brain. One such gene is the CTNND2 gene 

containing a CA repeat which has expanded allele lengths estimated in 9 WGS ALS samples and 

14 Microarray ALS samples (Figure 4-5) with the ALS samples having 11 or 12 copies more than 

the mean count seen in the 1KG datasets (standard deviation in 1KG: 2.8 copies).  

 

Additionally, we looked at whether different repeat lengths were identified in different brain 

tissues for the WGS ALS samples. Some repeat loci were variable between individuals, but the 

same length was observed across all four tissue types within a sample (Figure 4-6 A). Other repeat 

loci were highly variable across tissues within the same sample (Figure 4-6 B). For a few repeat 

loci, including those in the PTPRN2 and ABCG1 genes, repeat expansion generally seemed to 

occur in tissues 2-4 but repeat expansions were not seen in tissue 1 (Figure 4-6 C,D).  
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4.5 DISCUSSION 

 

ALS is a disease with a genetic component which is not yet fully understood. While several GWAS 

have identified significant loci associated with ALS, many of the causal variants have not yet been 

identified  (200–202). Tandem repeats have historically been difficult to characterize in the 

genome and may contribute to the missing heritability of ALS. While long read sequencing is 

advantageous for characterizing repeat expansion, it can be cost prohibitive to perform at the level 

of whole genome sequencing (93,167,210). We sought use previously generated genomic datasets 

to prioritize repetitive regions for further interrogation in subsequent studies using targeted long 

read sequencing. 

 

We developed and presented a method to estimate the length of repeat loci from microarray 

genotype data to expand our repeat characterization analysis to include additional ALS samples 

from the MGI database. When testing the method on a sample with WGS, we found over 87% of 

the estimations to be within 2 repeat counts of the estimation determined by Expansion Hunter; 

however, the method was outperformed by the established imputation method Beagle.  

 

We identified expanded repeats in 24 ALS patients compared to a healthy population including a 

particularly interesting repeat locus in the intron of the KCNG2 gene where an expanded repeat 

was found in 41 of the 48 alleles from the 24 samples. This gene is primarily expressed in the brain 

and is a member of a family of potassium voltage-gated channel modifier genes (220). As 

potassium channels are an important part of neuronal action potential propagation – the opening 

of voltage-gated potassium channels follows the flux of sodium into a cell during the action 
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potential, causing hyperpolarization (221) - a mutation in KCNG2 could potentially impact action 

potential signaling in nerve cells and pathologically alter their behavior in ALS (222).   

 

A CA repeat expansion in the PTPRN2 gene was estimated to be expanded in 18 of the 48 alleles 

from the WGS ALS samples. This gene is also primarily expressed in the brain. The repeat length 

was highly variable within the four brain tissues sequenced; however, it was never estimated to be 

expanded in tissue 1. While a repeat expansion in this gene has not been previously associated 

with ALS, this gene was found to have high levels of DNA methylation in ALS individuals 

compared to monozygotic twins who did not have the disease (223). While this is not directly 

related to repeat expansions, hypermethylation has previously been shown to be correlated with 

tandem repeat expansion status (224–226).  Together, these provide support for further research 

into repeat expansions in this gene to determine a potential link to ALS.  

 

When preforming outlier detection on the repeat lengths estimated by ForecaSTR for the MGI 

ALS samples, we observed that by requiring samples to be homozygous for a locus in order to be 

included in the training set, we are potentially unable to estimate the most informative repeat loci. 

For example, we were unable to reliably estimate the repeat length in the MGI ALS dataset at the 

TG repeat locus on chromosome 18 that appeared to be expanded in many samples in the WGS 

ALS cohort. The repeat lengths were highly polymorphic in the 1KG control population at this 

locus and no samples were observed to be homozygous at this locus in this cohort. Only three 

repeat lengths were included in the training dataset, all deriving from WGS ALS samples with 

expanded repeats, which would result in all predicted repeat lengths in the Microarray ALS dataset 

to appear as outliers. We were able to apply Beagle to impute different repeat lengths into the 
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Microarray ALS samples for this variant. Another limitation of only using homozygous samples 

in the training set can occur if a repeat expansion is very rare in the general population. While it is 

possible the rare allele is present in a homozygous state, it is likely there are many instances where 

a rare expansion is only present on one allele and will be excluded, resulting in only the common 

allele lengths included in the training set. Using beagle instead of ForecaSTR for imputing repeat 

expansions does not rely on only using homozygous samples from the training set and an 

improvement was seen when using this method. However, the limitation of only estimating repeat 

lengths present in the training set/reference panel, still persists. This lends to the importance of 

including disease samples in the refence panel when applying this approach. Only 24 WGS ALS 

samples were used in this analysis. Future work can incorporate additional samples, like those 

present in publicly available datasets such as Answer ALS (27). 

 

Expansion Hunter was used to estimate repeat lengths in WGS data but this method has limitations 

which are important to acknowledge when assessing the results of all analyses for this chapter. 1) 

Expansion Hunter requires a list of coordinates and repeat motifs to characterize a given repeat 

loci and therefore, no novel repeat expansions can be discovered. 2) Expansion Hunter is a method 

for detecting repeat expansions from short reads and has several limitations for characterizing 

complex or repetitive sequences in the genome. These limitations extend to the repeat lengths 

estimated via imputation for samples with SNP array data due to the models being entirely based 

on repeat lengths estimated using Expansion Hunter in the training datasets. All benchmarking 

efforts in this paper were only to determine if the imputation methods matched Expansion Hunter 

and did not attempt to assess if the Expansion Hunter results accurately represent what was in the 

sample as was presented in the previous chapter. 
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Our goal was not to estimate the length of a repeat to the exact count but instead to prioritize any 

repeat regions in the Microarray ALS samples that are potentially expanded compared to a healthy 

population. In this work, we have identified repeat loci that appear to be expanded in several 

samples with ALS. As these repeat loci are potentially encouraging targets, next steps include 

performing targeted long read sequencing on the MGI ALS samples with biospecimens available 

to obtain more accurate estimates of repeat size in these individuals prior to including them in any 

large association studies. Examining the repeat expansions in additional ALS samples will increase 

the sample size and thereby provide increased statistical power necessary to perform larger 

association studies.    
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4.6 FIGURES AND TABLES 
 

 

Figure 4-1 Schematic of the ForecaSTR method 

1) For each repeat supplied to ForecaSTR, a training set is created using individuals with whole genome sequencing data that have 

homozygous repeat lengths for the loci as estimated by Expansion Hunter (or any other WGS tandem repeat characterization 

method). For all individuals included in the training set, the two haplotypes containing phased SNPs also present on the SNP 

microarrays within 100,000 bp of the repeat boundaries are extracted. The repeat length estimates for the homozygous samples are 

paired to the SNP haplotypes and are used to train an ordinal linear model.  2) To estimate the length of repeat loci in samples 

genotyped using SNP arrays, SNPs within 100,000 base pairs of a repeat loci are input into the ordinal linear model trained for the 

repeat. 
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Figure 4-2 Characteristics of repeat loci surrounding ALS GWAS hits 

A) Histogram showing the number of repeat loci within 40kb for each ALS GWAS hit  B) Histogram showing the distribution or 

repeat motif lengths for the repeat loci included in the outlier analysis 
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Figure 4-3 Benchmarking tandem repeat imputation methods in sample NA12878 
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Each row compared the results of either an imputation method or a null model to Expansion Hunter. Rows one and two are 

imputation methods and rows three through five are null models. 

Column one compares the repeat lengths predicted by short-read tandem repeat detection method Expansion Hunter to the repeat 

lengths predicted by the imputation methods or null models. Column two shows the cumulative number of repeats where the repeat 

length estimates by the imputation methods or null models are off by various number of counts compared to repeat length estimate 

determined by Expansion Hunter. Column three contains histograms showing the difference in the number of repat motif counts 

estimated by Expansion Hunter and the imputation methods or null models. Negative values indicate the imputation method or null 

model estimated repeat lengths less than Expansion Hunter while positive numbers indicate the imputation method or null model 

estimated repeat lengths greater than Expansion Hunter. (All repeat loci off by more than ten repeat counts were placed in the -10 

and 10 bins) 

  



 121 

 

 

Figure 4-4 Effect of features of ForecaSTR training set on accuracy of repeat length prediction in sample NA12878 

Each scatter plot shows the relationship between a feature of the training dataset and the difference in the in the number of repeat 

counts predicted by Expansion Hunter and ForecaSTR in sample NA12878. The features include A) the number of samples included 

in the training dataset for each repeat. This is based on the number of samples homozygous for each repeat loci. B) the number of 

unique repeat counts present in the training dataset for each repeat and C) the number of training SNPs within 100,000 bps of each 

repeat loci that were including in the training set.
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Table 4-1 Repeat loci predicted to have outlier lengths in ALS samples 

Locus 

# Mayo 

outlier 

alleles 

(N=48) 

# MGI 

outlier 

alleles 

(N=62) 

Gene 
Ex

on 

1KG 

Mean 

1KG 

SD 

Mayo Repeat 

Counts  

MGI 

Repeat 

Counts 

(Repeat count x  

Number of samples) 

chr18-79829186-

79829354-TG 
41 6 KCNG2 . 11.00 4.45 

73x1,71x1,69x1,65x

2,64x8,63x2,57x11,

43x14,32x1 

57x2,43x3,3

2x1 

chr2-48615466-

48615559-

GGAGAG 

33 17 
STON1-

GTF2A1L 
. 8.00 1.48 

27x1,26x2,25x4,24x

5,23x6,22x4,21x2,2

0x1,18x7,17x1 

25x1,19x1,1

8x14,15x1 

chr8-142013108-

142013194-

ATCACC 

25 14 . . 7.00 1.48 16x16,15x9 16x2,15x12 

chr8-2541227-

2541333-AT 
23 29 

ENSG000

00282142 
. 40.00 2.97 69x1,53x21,51x1 

56x1,54x3,5

3x25 

chr13-22019636-

22021009-TA 
21 10 . . 12.00 5.93 

72x2,70x3,69x2,68x

2,63x1,53x2,50x2,4

9x1,47x2,39x4 

39x10 

chr13-53020110-

53020154-TG 
20 22 . . 17.00 1.48 24x13,23x7 24x16,23x6 

chr1-26595384-

26595451-

CCCTGC 

19 8 . . 11.00 1.48 

25x1,24x1,23x4,22x

2,21x3,20x3,19x1,1

8x1,17x3 

24x2,22x3,2

1x1,20x1,19

x1 

chr18-58138329-

58138398-CCT 
18 22 NEDD4L . 27.00 1.48 

41x9,40x1,39x1,38x

1,37x1,36x1,34x3,3

3x1 

41x20,38x1,

34x1 

chr7-157656810-

157658038-

ACACACACACA

C 

18 13 PTPRN2 . 17.00 7.41 

92x1,88x1,86x1,81x

1,80x1,77x1,76x3,7

5x5,74x1,71x1,59x1

,57x1 

90x1,82x1,7

5x7,73x3,72

x1 

chr3-10471364-

10471406-TG 
18 12 ATP2B2 . 16.00 1.48 28x4,27x9,26x5 27x12 

chr6-32709842-

32709890-CTTC 
17 21 . . 4.00 1.48 17x1,12x16 

17x1,16x1,1

3x1,12x17,1

1x1 

chr16-85595802-

85595831-CCCA 
17 . GSE1 . 8.00 1.48 

37x1,32x3,31x1,30x

2,29x2,28x2,27x2,2

6x1,24x1,22x1,20x1 

. 

chr10-5576277-

5576441-

CCTCTCTCTCTG

TCT 

16 1 . . 3.00 1.48 9x2,8x14 8x1 

chr10-112419102-

112419131-TG 
16 . 

ENSG000

00232934 
. 14.00 1.48 21x1,20x5,19x10 . 

chr10-112419102-

112419131-TG 
16 . ACSL5 . 14.00 1.48 21x1,20x5,19x10 . 

chr6-32709795-

32709897-

TCTCTTCCT 

15 17 . . 5.00 1.48 15x1,12x10,10x4 
15x1,14x1,1

2x15 

chr1-188084965-

188085119-

TATATATATAAA

ATTTA 

14 17 
ENSG000

00285894 
. 9.00 1.48 

89x1,80x2,79x1,76x

1,73x1,70x2,67x1,6

5x1,61x1,26x3 

79x1,78x3,7

6x2,75x2,74

x1,72x2,71x

1,69x2,50x1,

49x1,26x1 
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chr11-127874911-

127874958-TG 
13 12 . . 14.00 1.48 

24x4,21x1,20x3,19x

5 

24x3,23x6,2

2x2,20x1 

chr10-3760818-

3760881-TTCC 
12 1 

ENSG000

00229672 
. 17.00 1.48 24x1,23x5,22x6 22x1 

chr2-238627901-

238627968-TG 
11 25 

LINC019

37 
. 35.00 1.48 

49x1,48x1,47x4,46x

1,45x1,44x1,43x1,4

0x1 

62x1,56x1,5

5x1,48x4,47

x9,46x3,45x

3,44x1,43x1,

41x1 

chr2-55771310-

55771341-AC 
11 7 . . 17.00 1.48 25x4,23x2,22x5 

25x1,24x1,2

3x5 

chr20-15233969-

15234010-TA 
11 . 

MACRO

D2 
. 21.44 4.20 59x1,39x10 . 

chr18-31709553-

31709604-TG 
10 1 . . 22.00 1.48 28x1,27x9 27x1 

chr8-2191106-

2191425-TCCT 
10 . . . 7.00 5.93 

39x1,37x2,35x2,34x

2,33x1,32x2 
. 

chr5-11081072-

11081122-CA 
9 14 CTNND2 . 24.01 2.80 35x9 36x1,35x13 

chr4-36043832-

36043866-

GGGGAGGGGAG

G 

9 3 ARAP2 . 4.00 1.48 12x1,11x1,9x7 10x2,9x1 

chr21-31546556-

31546587-AAAG 
7 4 TIAM1 . 8.33 1.86 

19x1,18x2,16x2,15x

2 

18x2,17x1,1

5x1 

chr3-127045510-

127045646-

AGGGAGAG 

7 . . . 12.64 4.91 29x7 . 

chr21-42264391-

42264552-

TCCATCCATCCA 

7 . ABCG1 . 12.38 2.55 23x2,22x1,21x4 . 

chr9-18634858-

18634921-AT 
6 9 

ADAMTS

L1 
. 32.40 1.04 50x6 

70x1,50x6,4

9x1,48x1 

chr20-52119533-

52119568-AT 
6 9 ZFP64 . 19.04 1.60 30x1,29x5 30x2,29x7 

chr8-2178538-

2178605-CTTC 
6 6 

ENSG000

00289036 
. 16.25 3.45 

40x1,39x1,38x1,37x

1,36x1,32x1 

41x1,38x1,3

7x3,35x1 

chr8-2171578-

2171604-TA 
6 4 

ENSG000

00289036 
. 11.36 1.21 

24x1,21x1,19x1,17x

1,16x2 
17x3,16x1 

chr2-207645301-

207645327-AT 
6 2 . . 12.91 1.01 

34x2,33x1,28x1,21x

1,17x1 
42x1,18x1 

chr11-127874871-

127874912-TA 
5 12 . . 11.00 1.48 21x4,20x1 

22x2,21x4,2

0x3,19x2,18

x1 

chr2-55762428-

55762536-

CTTTCTCT 

5 7 . . 13.21 1.99 
26x1,24x1,21x2,20x

1 

25x2,24x3,2

3x1,21x1 

chr18-41645522-

41645567-TG 
5 5 . . 22.59 1.08 27x5 27x5 

chr6-32715478-

32715542-AAAG 
5 3 . . 18.56 1.25 23x5 29x1,23x2 

chr18-41613092-

41613154-CA 
5 1 KC6 . 32.20 1.14 36x5 37x1 

chr12-26509958-

26510004-TG 
5 1 ITPR2 . 25.00 5.41 

64x1,56x1,52x1,49x

1,48x1 
49x1 

chr6-10439856-

10439891-AC 
4 10 

MIR5689

HG 
. 17.40 1.13 25x1,24x3 25x2,24x8 

chr11-18464966-

18465011-TGTTT 
4 4 

LDHAL6

A 
. 9.82 0.91 19x1,18x2,13x1 

17x2,16x1,1

3x1 

chr6-32702379-

32702408-GT 
4 3 . . 12.00 1.48 25x4 25x3 
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chr6-32715466-

32715542-

AAAAAGAAAG 

4 2 . . 8.60 0.86 12x4 12x2 

chr20-49834185-

49834215-TA 
4 2 SLC9A8 . 14.59 3.22 

80x1,69x1,51x1,37x

1 
59x1,55x1 

chr14-72465550-

72465697-TGGA 
4 2 RGS6 . 38.71 3.97 59x1,55x1,54x2 62x1,59x1 

chr13-71477080-

71477105-TA 
4 . DACH1 . 12.76 1.26 52x1,45x2,31x1 . 

chr13-22022288-

22022527-

TATATAATATGT

TAA 

4 . . . 2.31 0.94 8x1,7x3 . 

chr13-22021330-

22022787-

TATATAT 

4 . . . 21.04 4.74 65x4 . 

chr2-34479778-

34479831-TTTC 
3 21 

LINC013

20 
. 14.00 1.48 32x1,31x1,29x1 

38x2,35x1,3

4x1,33x3,32

x3,31x4,30x

2,29x3,28x1,

27x1 

chr4-119022662-

119022793-TTTAT 
3 13 SYNPO2 . 27.92 1.69 35x2,34x1 

40x2,39x1,3

8x5,36x2,35

x2,34x1 

chr4-13958960-

13959001-AC 
3 8 

LINC011

82 
. 18.09 1.25 26x1,24x1,23x1 24x2,23x6 

chr11-134868572-

134868612-AC 
3 3 . . 20.25 2.67 31x2,30x1 32x2,30x1 

chr5-172893868-

172893906-AT 
3 2 ERGIC1 . 26.25 10.34 66x1,65x1,61x1 70x2 

chr14-67757640-

67757722-TCTT 
3 2 ZFYVE26 . 19.00 1.48 27x1,24x2 25x1,24x1 

chr1-39695417-

39695485-

AAAGAAAGAAG 

3 1 PPIE . 6.39 0.75 11x3 11x1 

chr8-2191869-

2191927-TCCT 
3 . . . 15.00 2.97 34x2,25x1 . 

chr6-16761484-

16761544-CTC 
3 . 

ATXN1, 

ATXN1-

AS1 

X 22.53 1.41 33x2,30x1 . 

chr6-129446500-

129446580-

AGGGG 

3 . LAMA2 . 16.00 2.97 35x1,30x1,26x1 . 

chr6-129446500-

129446580-

AGGGG 

3 . 
ENSG000

00226149 
. 16.00 2.97 35x1,30x1,26x1 . 

chr4-189169845-

189169874-TA 
3 . . . 16.16 4.07 125x1,53x2 . 

chr20-49834318-

49834443-

TATATATATACT

G 

3 . SLC9A8 . 3.69 2.03 14x2,12x1 . 

chr14-30596129-

30596165-GT 
3 . G2E3 . 18.08 1.38 59x1,33x1,28x1 . 

chr1-28990333-

28990405-TCCC 
3 . EPB41 . 18.00 1.48 25x2,23x1 . 

chr10-5573325-

5573377-AAGG 
3 . . . 13.04 1.48 19x2,18x1 . 

chr1-43633012-

43633046-AT 
2 14 . . 10.00 1.48 16x1,15x1 

20x1,18x2,1

7x1,16x10 
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chr2-34479775-

34479844-

TTTTTTCTTTTT 

2 12 
LINC013

20 
. 6.00 1.48 12x2 

42x1,28x2,2

7x1,22x2,21

x1,16x1,15x

1,14x1,12x2 

chr12-26451365-

26451408-CA 
2 12 ITPR2 . 19.00 1.48 29x1,25x1 

29x2,28x1,2

6x2,25x7 

chr11-127852052-

127852106-

AAAAAAAAACA 

2 8 . . 5.00 1.48 12x1,10x1 
31x2,30x3,2

8x1,26x2 

chr6-32708874-

32708913-

TTGTTTTTTTTTT 

2 6 . . 2.80 2.49 12x2 12x6 

chr6-32708879-

32708911-

TTTTTTTTTTG 

2 3 . . 2.72 2.66 14x1,13x1 13x3 

chr8-2531536-

2531574-GT 
2 1 

ENSG000

00282142 
. 18.55 0.71 23x1,22x1 22x1 

chr12-3226744-

3226795-TA 
2 1 TSPAN9 . 16.26 4.69 37x2 44x1 

chr1-155927832-

155927874-CA 
2 1 KHDC4 . 14.04 3.59 28x1,27x1 27x1 

chr2-207609772-

207609825-

CTCCCT 

2 . 
METTL2

1A 
X 4.86 4.55 27x2 . 

chr2-166543390-

166543518-

AAGAAAGAAAG

AGAGAAGAGA 

2 . SCN7A . 7.06 1.15 11x2 . 

chr20-49834139-

49834186-TC 
2 . SLC9A8 . 22.09 3.39 45x1,34x1 . 

chr20-35226773-

35226798-GCC 
2 . 

MMP24O

S,MMP24 
X 8.31 2.56 30x2 . 

chr20-35223330-

35223358-ATA 
2 . 

MMP24O

S 
. 10.00 1.48 16x1,15x1 . 

chr19-17631154-

17631205-CTCC 
2 . UNC13A . 13.64 6.68 51x1,47x1 . 

chr17-47509589-

47509632-AAT 
2 . . . 15.16 1.37 20x2 . 

chr14-95624167-

95624304-GGAA 
2 . 

ENSG000

00258927 
. 15.72 6.15 36x2 . 

chr14-92042946-

92042977-AT 
2 . . . 13.49 3.14 47x2 . 

chr1-43501209-

43501307-CTCTCC 
2 . . . 18.92 1.60 26x2 . 

chr11-127863772-

127863805-TG 
2 . . . 20.00 1.48 26x2 . 

chr10-131901020-

131901063-CGG 
1 7 PPP2R2D X 14.68 0.81 24x1 21x1,19x6 

chr21-42264391-

42264552-

TCCATCCATCCA

TCCATCCA 

1 2 ABCG1 . 9.10 2.64 19x1 23x1,22x1 

chr1-232004883-

232005061-CCTT 
1 2 DISC1 . 35.00 1.48 42x1 43x1,41x1 

chr4-108674629-

108674751-GAAG 
1 1 

ENSG000

00286136 
. 29.00 1.48 35x1 37x1 

chr18-41577593-

41577618-ACAT 
1 1 KC6 . 6.40 0.66 33x1 21x1 

chr1-155945280-

155945323-GT 
1 1 . . 23.31 1.43 28x1 29x1 
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chr10-5554770-

5554808-AC 
1 1 . . 19.00 1.48 24x1 25x1 

chr13-53008511-

53008563-

TTTCTTTTC 

. 13 . . 5.84 1.72 . 
15x3,14x7,1

3x3 

chr10-86429023-

86429152-AT 
. 11 . . 70.84 1.08 . 

85x1,80x4,7

9x2,78x3,77

x1 

chr10-60014077-

60014118-AT 
. 10 . . 17.00 1.48 . 

30x1,28x1,2

7x1,26x1,25

x2,24x3,23x

1 

chr2-212015041-

212015112-AT 
. 8 ERBB4 . 20.00 1.48 . 

37x1,34x1,3

1x1,30x4,26

x1 

chr14-79504641-

79504675-TA 
. 6 NRXN3 . 17.00 1.48 . 26x4,24x2 

chr21-41618016-

41618043-AC 
. 5 . . 13.04 1.56 . 75x1,30x4 

chr22-49764913-

49764941-AT 
. 4 . . 12.78 2.06 . 21x4 

chr13-53008511-

53008572-

TTTCTTTTTCTTT

C 

. 4 . . 5.13 1.68 . 
14x1,13x2,1

1x1 

chr4-94675900-

94675943-

TTTTTTTTCTTTT

TTTT 

. 3 
ENSG000

00249951 
. 3.07 1.28 . 46x1,45x2 

chr4-108691795-

108692021-

ATATATACACAC

ATAT 

. 3 . . 3.92 2.13 . 14x3 

chr3-124439200-

124439237-CA 
. 3 KALRN . 18.47 2.49 . 45x1,32x2 

chr5-123747207-

123747236-GT 
. 2 . . 14.25 1.92 . 25x2 

chr18-41577304-

41577584-

TATATATATATT 

. 2 KC6 . 20.96 3.35 . 40x1,34x1 

chr14-79569602-

79569631-GT 
. 2 NRXN3 . 15.18 0.93 . 21x2 
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Figure 4-5 Gene expression levels (from GTEx) for genes with potential repeat expansions 

Each histogram shows the gene expression levels in RPKM for different tissues. Bars showing gene expression levels for brain 

tissues are shown in green while bars for all other tissues are shown in blue.  
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Figure 4-6 Representative dot plots of repeat estimates across different brain tissues in Mayo ALS samples. 

Each dot plot shows the different repeat length estimates across the four brain tissues in each sample for a given repeat loci. The 

three lines on each plot show the mean (middle line) and standard deviation (outside lines) of the repeat lengths seen in the 1KG 

samples for the repeat loci in the plot. A) This dot plot is an example of a repeat loci that is variable between samples but is 

relatively stable within an individual. B) This dot plot is an example of a repeat loci that shows high variability between tissues. C) 

and D) The repeats in these two dot plots show variable repeat expansions in three tissues no repeat expansions are estimated in 

the fourth tissue. 
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Chapter 5 - Conclusion 

5.1 SUMMARY 

 

Studying genomic variation enables us to investigate differences across populations of individuals 

and uncover the causes of disease (2).  Across the last 50 years, researchers have developed 

increasingly better technology and techniques to sequence the human genome and characterize the 

variation present across the genome. Despite these incredible strides, current methods do struggle 

to capture complex variations and highly repetitive regions of the genome.  Additionally, with 

every technological advance in sequencing, there is an equal need for new bioinformatic 

approaches to be developed in order to gain insight from the data generated by these technologies.   

 

Until we can sequence the entire genome end-to-end, we will only be able to assess genomic 

variation at the locations accessible given the technology.  Further, researchers are often faced with 

a key choice, for there is a trade-off between the resolution of the genomic data generated and the 

cost of time and resources it takes to generate this data.  Combining sequencing technologies can 

offer a balance by being cost efficient while also taking advantage of the benefits of higher 

resolution genomic data.   

 

In this thesis, I have outlined three distinct ways multiple sequencing technologies can be 

combined to better understand the underlying variation in the human genome. Additionally, I 

employ multiple bioinformatic approaches to analyze the datasets produced by multiple 
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sequencing technologies. When viewed comprehensively, this thesis offers a series of case studies 

to illustrate how researchers can integrate multiple sequencing technologies and employ multiple 

bioinformatic approaches together in a multi-modal approach to detect genomic variation across 

both disease and diversity studies. The major conclusions of this dissertation are listed below, 

organized by main findings. 

 

The use of multiple sequencing platforms provides a useful way to detect and characterize 

variation in a population 

In Chapter 2, I present a genome wide survey of the genomic variation present in 97 individuals 

from Ukraine sequenced using BGI nanoball sequencing. BGI nanoball sequencing technology is 

less established than other short-read sequencing methods, and an outstanding question prior to 

this work was how variant detection using this technology might differ from other, more 

established technologies.  Therefore, the variants detected from BGI sequencing data were 

compared to variation detected using SNP microarrays for 86 of the individuals and variation 

detected using Illumina WGS for one of the individuals. We found the variation detected using 

BGI WGS was comparable to the more established technologies. The genome wide variation 

dataset was used to establish the evolutionary differences of this population – Ukrainian 

individuals - compared to neighboring regions across Europe.  Further, this work and the genome 

wide variation dataset can be used to identify variation specific to this population that may be 

relevant for identifying cause of diseases in Ukrainians.  

 

Short and long read sequencing technologies are appropriate for detecting different classes 

of tandem repeat variation 
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In Chapter 3, I used both short and long read sequencing methods to detect tandem repeat variation 

in the human genome. These variations have been historically difficult to detect because of their 

repetitive nature. Many repetitive regions have not been included in previous versions of the 

reference genome, or if they have, are often removed from analysis pipelines because of the 

alignment of reads to these regions can often be unreliable. In particular, when using short read 

sequencing data alignment of reads to repetitive regions of the genome is fraught with errors and 

misalignments (6,227,228). The introduction of long read sequencing data has potential 

advantages for detecting tandem repeat variation specifically. In this chapter, I performed an in-

depth analysis of different bioinformatic approaches for both short and long read sequencing data 

to evaluate their ability to detect tandem repeat variation genome wide. I found, somewhat 

unsurprisingly, short read methods have difficulty detecting repeat variation beyond the fragment 

length of 400 bp. This was especially apparent for reference-based methods while de novo 

detection methods could estimate and characterize larger repeat events even from short-read 

sequencing datasets.  

 

Providing guidance on bioinformatic programs when using long- or short-read sequencing 

datasets 

In Chapter 3, I additionally provide guidance about which bioinformatic program should be used 

when investigating variation in short or long read datasets. Specifically, en lieu of running both 

programs separately, bioinformaticians should run Expansion Hunter over GangSTR on short read 

data due to the large overlap in variation detected with these methods and the better concordance 

of EH with Sanger sequencing (our ‘truth set’).  For long read sequencing, the advice is not so 

clear-cut. Each bioinformatic method identified unique genomic variations; however, STRaglr 
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identified much larger repeat expansion lengths than the other two methods, and Tricolor and 

Tandem Genotypes methods had substantial overlap in variation identified. Perhaps, an ensemble 

approach is best when utilizing long-read sequencing data. 

 

Short read sequencing data can inform tandem repeat estimation in SNP array datasets to 

enhance disease associated variation detection 

Identifying causal genetic variations associated with ALS remains an important line of research as 

the majority of cases have no known genetic etiology (229). In Chapter 4, I used both short read 

WGS datasets and SNP microarrays to identify potential tandem repeat expansions associated with 

ALS. We hypothesized that a repeat expansion, not the associated SNP from a database of ALS 

GWAS hits, may be the causal variant. Thus, I focused our analysis on repeats around ALS GWAS 

hits. Because repetitive variation has been difficult to assess in the past, disease associated repeat 

expansions likely have gone undetected compared to other, more easily accessible variations. 

Additionally, I increased the number of disease samples beyond the available WGS data samples 

by imputing tandem repeat lengths for ALS samples included in the MGI biobank that have SNP 

microarray data. Importantly, we identified several repeat loci with lengths in multiple ALS 

samples that were outliers when compared to 1KG control population. Short reads, as discussed 

previously in Chapter 3, and SNP arrays are not entirely reliable for accurately determining the 

length of repetitive regions, therefore we suggest these repeat loci be candidates for targeted long 

read sequencing to obtain more accurate repeat length characterization. Only then can further 

research be performed to investigate their potential association with ALS. 
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5.2 FUTURE DIRECTIONS 

 

Imputing tandem repeats for SNP array datasets 

The analysis performed in Chapter 4 focused on identifying repeat expansions that may be 

associated with the disease ALS; however, the MGI database contains genetic and medical record 

data for many other diseases. The imputation of tandem repeat lengths can be performed for these 

individuals, specifically for neurodegenerative diseases as tandem repeat expansions have been 

implicated in many of these disease phenotypes (168,230–233). However, repeat lengths must be 

present in a reference panel for them to be imputed into a given sample. Thus, imputation of 

tandem repeats is greatly benefited by including disease samples in the reference panel. This 

requires access to WGS for the disease of interest, which can be difficult, depending on the disease 

of study. There are publicly available datasets such as the Answer ALS dataset of ALS or the 

Simon Simplex collection for Autism that could be used for this purpose. As discussed in Chapter 

4, there are significant limitations to estimating tandem repeat lengths from SNPs and follow-up 

studies should be done to obtain more accurate repeat sizes for candidate repeat expansions. New 

methods show the utility of sequencing multiple known repeat regions at once using Oxford 

nanopore sequencing technology (234). The combination of SNP array data, WGS datasets and 

targeted long read sequencing can provide an avenue for a cost-efficient way to identify repeat 

expansions associated with disease.  

 

Advancements of long read sequencing and tandem repeat detection 

As shown in Chapter 3, the use of long read sequencing provides the ability to characterize repeat 

variation genome wide better than what could previously be done using short read sequencing. 
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However, WGS long read sequencing is currently less common than short read sequencing due to 

cost. Undoubtedly, as the technology is optimized, long read sequencing will likely become more 

accessible for researchers across different institutes and will become relatively more accurate 

compared to today’s technology. These eventual advancements will no doubt enable a broader 

characterization of large complex variations, including tandem repeats. As the technology 

progresses, long read sequencing will allow complex types of variation to be integrated into large 

disease association and evolutionary studies in the future.  

 

As an example of its utility, the use of long read sequencing has recently been used to create the 

first complete, gapless genome (235).  Before the release of this complete genome earlier this year, 

there have been regions of the genome where variation has been impossible to characterize because 

they were not included in the reference genome. These regions were mostly made-up of repetitive 

sequences in the telomeric and centromeric regions (236).  

 

Integrating these new sequences into the reference genome is a large advancement for the field.  

The inclusion of these sequences allows for the characterization of variation in these regions across 

individuals. It is highly likely that there is extensive structural variation hidden within these 

previously dark regions of the genome and studies can now, for the first time, shed light on how 

variations in these regions might impact our diversity and our health. Both long- and short-read 

sequencing datasets can be aligned to the new regions to comprehensively evaluate potential 

associations between disease and variations within these newly identified regions of the genome.  

Further development of bioinformatic tools may be needed to compare and characterize newly 

identified variations in the context of older association studies. 
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Detecting variation within an individual in addition to across individuals 

Most of the analysis performed for this thesis involved characterizing germline variation by 

analyzing bulk sequencing for samples from a single tissue. While this type of analysis has resulted 

in abundant new knowledge about the variation present in the human species, many new avenues 

of research involve looking at the somatic variation present within an individual. The tissue from 

which DNA is extracted can affect the ability to identify disease associated variation.  Examining 

and analyzing the genetic differences between tissues in the same individual can help elucidate 

mechanisms and progression of a disease. Characterizing the relative variation of tandem repeats 

within an individual could be particularly interesting - given the high mutation rate of this type of 

variation (58,237–239), it is likely that repetitive sequences will vary more across cells than other 

types of genetic variation, such as SNPs. 

 

On a more granular level, single-cell sequencing can uncover genetic variation within the same 

tissue. Since its introduction, single cell sequencing has revolutionized multiple biomedical and 

basic biological fields by introducing a resolution that had previously been unseen and embracing 

heterogeneity across samples (240,241). Characterizing SNPs in cells of the same phenotype has 

already shown that some cells may exhibit the SNP but others will not. Single cell sequencing will 

additionally support better understanding of tandem repeats as well.  Our work in Chapter 3, 

analyzing the output from the single molecule long read sequencing, provides an opportunity for 

further analysis, using single cell sequencing approaches. Many of the bioinformatic methods we 

employed (Tri-Color, Tandem Genotypes, STRaglr) reported the estimated repeat length for each 

read covering the repeat loci. Often, the bioinformatic tools reported more than two repeat lengths, 
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the maximum number expected. In our analysis, we treated this as sequencing error and clustered 

them into two alleles.  However, in some cases, this may actually be indicative of somatic variation 

within an individual. This type of variation can be explored and further characterized by using 

single cell sequencing approaches.   

  

Classifying variation across multiple tissues and multiple cells will also require the development 

of accompanying bioinformatics approaches to be built on top of the current detection methods. 

The amplification necessary for single cell analysis introduces errors that will present challenges 

to variant calling, such as handling missing data or allelic dropout (242–246).  As this thesis has 

shown the utility of integrating various technologies and methods for analysis, single cell analysis 

can also be integrated with other sequencing technologies to provide additional insight when 

detecting different types of variation across multiple tissues and cells.  Finally, as with any 

developing technology, optimizing compute times for single-cell analysis represents an open 

challenge.  

 

Integrating diverse genomes in medical research 

As an umbrella over all the future work that has been discussed, research identifying genomic 

variation must be performed with diversity in mind. As the use of genomics by both scientists and 

clinicians to achieve personalized medicine becomes more and more prevalent, it is imperative 

that diverse genomes are included in the research that supports this practice to ensure these 

practices are applicable, safe, and effective for everyone. Initiatives such as the 1000 Genomes 

Project (24) and gnomAD (247) have greatly increased the diversity of publicly available genomes 
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with the purpose of providing a resource for the variation present in the human species. However, 

there are still populations which are under-represented in these databases.   

 

Further, there is a stark lack of representation within the reference genome.  While its well-known 

that the reference genome should not be thought of as a ‘universal genome’, approximately 70% 

of the reference genome came from a single sample (248). Further, the reference genome has its 

own biases, demonstrating high risk of disorders like type 1 diabetes, among others (249). As such, 

any comparisons of variation to the reference genome in a disease context must account for 

reference bias. For example, since rare alleles could be present in the reference genome, potential 

pathogenic variants could be incorrectly unidentified (250).  

 

Further complicating lack of diversity issues within the reference genome, GWAS also have poor 

representation from specific populations. In 2018, approximately 78 percent of individuals 

included in GWAS comes from people of European descent, but only 16 percent of the global 

population is of European descent (35). (While this disparity is unacceptable, it should be noted 

that prior to 2009, 96% of individuals that participated in GWAS were of European descent (251). 

This remarkable and persistent sampling bias of large-scale GWAS is perhaps a critical reason 

why GWAS hits do not always translate to clinically relevant treatment options for the world. 

Undoubtedly, by sampling from primarily a population of individuals of shared descent, 

researchers have perpetuated the health disparities that are already present in global medicine. For 

example, the strength of association differed in non-European populations for 25% of the variants 

GWAS identified as being associated with type 2 diabetes (252). 
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That said, projects like the 1000 genomes project (24) and gnomAD (30) are excellent first steps 

to providing reference genomes across various populations worldwide. In gnomAD’s paper on 

structural variation, their work included samples where the majority (54%) were of non-European 

ancestry.  They found that samples of African ancestry exhibited the greatest genetic diversity and 

that East Asian samples featured the highest levels of homozygosity across samples (247). This 

finding underscores the importance of further characterizing all populations in the world, but 

certainly major efforts need to be made to understand and identify variation across African 

populations.  

 

As diversity becomes better represented within and across these databases and studies, that 

diversity and variation can be better captured in the form of graph reference genomes (as opposed 

to a linear reference genome) for various populations which allow for alternate loci to be included 

in the reference genome. These graph reference genomes will provide a much-needed update to 

the field’s gold standard for comparison and variant identification, the reference genome.  

 

While further investigation of European ancestry may not be the most pressing need within 

genomic variation studies, our work in Chapter 2 was still the first characterization of the Ukrainian 

population, representing approximately 50 million individuals whose ancestry could be better 

understood.  While 97 samples are by no means representative of the full genomic diversity present 

in the Ukrainian population, the genomic variant dataset generated in Chapter 2 of this thesis is 

one that can be integrated into future medical and evolutionary studies. Increasing the number of 

individuals sequenced from Ukraine or other populations which have not been included in previous 
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large sequencing initiatives (such as those from African or Latin American ancestry) will provide 

important data for future studies.  

 

In sum, greater diversity within GWAS and other genomic variation studies have been shown to 

provide medical benefits and greater biomedical insight. In fact, a recent study quantified the 

importance of diversity in just such studies and provided evidence that increasing diversity rather 

than studying additional individuals of European ancestry results in substantial improvements in 

mapping variants (253). Greater efforts to incorporate diversity in studies of genome variation will 

be key to identifying the next set of causal variations that lead to clinically relevant findings and 

eventual downstream medical discoveries.  
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Appendices 
Appendix A Supporting Information for Chapter 2 

 

 

 
Figure A-1 Frequencies of various classes of SNPs in the Ukrainian genome variation database.  

Definitions are as follows: Singleton (passed the GATK QC once), Doubleton, Rare (3-10 counts roughly equivalent to 1%< x < 

5%) and Common (>5%) to make it closer to the 1KGP definitions. B. Percent novel mutations in various classes of SNPs 
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Figure A-2 Genetic structure of Ukrainian population in comparison to other European populations.  
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For identification of the optimal K parameter, we used the 10-fold cross-validation function of ADMIXTURE in range from 2 to 

8, with K=3 resulting in the lowest error. This analysis included genomes from this study as well as samples from the 1000Genomes 

Project (Utah Residents (CEU) with Northern and Western European Ancestry, Toscani in Italy (TSI), Finnish in Finland (FIN), 

British in England and Scotland (GBR), and Iberian Population in Spain (IBS) 

French(FRA) and Russians (RUS) from HGDP [39], as well as the relevant high-coverage human genomes Croatia (CRO), Czech 

(CZ), Estonian (EST), German (GER), Greek (GRE), Hungarian (HUN), Moldovan (MOL), Polish (POL), Russian Cossack (RUS) 

and Ukrainian (UKR) from the Estonian Biocentre Human Genome Diversity Panel (EGDP) as well as Simmons Genome Diversity 

project.
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Appendix B Supporting Information for Chapter 3 

 
Figure B-1 Dot plots of estimated repeat lengths for repeat loci characterized by long read methods 

STRaglr (dark red) and Tandem Genotypes - yellow, Tricolor – orange) 
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Figure B-2 Heatmap of similarity metric comparisons between GangSTR (gstr), Expansion Hunter (eh) and Tandem Genotypes 

(tg). 
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Appendix C Supporting Information for Chapter 4 

Study and Citation SNP IDs 

(Chen CJ,2015) www.ncbi.nlm.nih.gov

/pubmed/26580837 

rs2185341,rs3772760,rs4879628,rs11224052,rs2785946,rs9953769 

(Cronin S, 2007) www.ncbi.nlm.nih.gov

/pubmed/18057069 

rs10260404 

(Cronin S, 2008) www.ncbi.nlm.nih.gov

/pubmed/18987618 

rs10260404 

(Laaksovirta H, 2010) www.ncbi.nlm.nih.gov

/pubmed/20801718 

rs3849942,rs13048019 

(Kwee LC, 2012) www.ncbi.nlm.nih.gov

/pubmed/22470424 

rs2278170,rs3113494 

(McLaughlin RL, 2014) www.ncbi.nlm.nih.gov

/pubmed/25442119 

rs7019351 

(Xie T, 2014) www.ncbi.nlm.nih.gov

/pubmed/24529757 

rs982274,rs4824093,rs2972219,rs2457174,rs1981626,rs2492937,rs442

4056,rs8192851,rs10501765,rs4761659,rs7999075,rs1605070,rs26850

56,rs11744876,rs9327881,rs9329300,rs7117082,rs9977018,rs1198775

8,rs11062578,rs7899101,rs3798696,rs17162257,rs1572511,rs1075428

3,rs6531209,rs3749146,rs1400816,rs6722486,rs9599848,rs11590421,r

s7601234,rs1199333,rs4148112,rs4482178,rs12891047,rs10131300,rs1

0145110,rs16945894,rs730547,rs16975050,rs529445,rs6137726,rs480

9847,rs1464443,rs1559473,rs11921451,rs13100616,rs3852053,rs4128

705,rs6851442,rs2667100,rs10495822,rs4234080,rs1987842,rs767921

8,rs13133845,rs10029851,rs7698598,rs7148498,rs4240810,rs320637,r

s7224488,rs7267421,rs11167260,rs9825420,rs7755729,rs4719220,rs13

256095,rs7830371,rs16938145,rs17684824,rs10508264,rs17603886,rs

551585,rs2985334,rs10489764,rs2247208,rs16902328,rs5029317,rs19

29412,rs776776,rs10982990,rs1002442,rs10458771,rs3740713,rs2322

978,rs3782455,rs1147246,rs11061269,rs9568797 

(Wei L, 2019) www.ncbi.nlm.nih.gov

/pubmed/31872054 

rs12145183,rs1419311,rs1483023,rs9610216,rs1722923,rs6703183,rs8

141797 

(Schymick JC, 2007) www.ncbi.nlm.nih.gov

/pubmed/17362836 

rs16984239,rs11099864,rs12680546,rs6013382,rs2782931 

(van Es MA, 2007) www.ncbi.nlm.nih.gov

/pubmed/17827064 

rs2306677 

(Dekker AM, 2019) www.ncbi.nlm.nih.gov

/pubmed/30976013 

rs3849942 

(van Es MA, 2007) www.ncbi.nlm.nih.gov

/pubmed/18084291 

rs10260404,rs3825776,rs7580332 

(Shatunov A, 2010) www.ncbi.nlm.nih.gov

/pubmed/20801717 

rs4799088,rs1488902,rs10122902; rs3849942,rs10122902; rs3849942 

(Goris A, 2013) www.ncbi.nlm.nih.gov

/pubmed/24234648 

rs2935183 

(Landers JE, 2009) www.ncbi.nlm.nih.gov

/pubmed/19451621 

rs16856202,rs873917,rs7577894,rs10438933,rs8066857,rs697739,rs31

77980,rs2823962,rs1541160,rs3099950,rs11241713,rs855913,rs77020

57,rs13015447,rs10192369 

(Diekstra FP, 2014) www.ncbi.nlm.nih.gov

/pubmed/24931836 

rs3849943,rs12608932,rs13268726,rs7477,rs7638688,rs10233425,rs12

546767 

(Nakamura R, 2020) www.ncbi.nlm.nih.gov

/pubmed/32968195 

rs3736947 
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(Ahmeti KB, 2012) www.ncbi.nlm.nih.gov

/pubmed/22959728 

rs2364403,rs2819332,rs669446,rs1421746,rs10503672,rs1491818,rs29

04524,rs7147705,rs3011225,rs12651329,rs6956741,rs7047865,rs2036

225,rs2303565,rs7607369,rs1320900,rs7665939,rs6918777,rs4917300,

rs3849942,rs4529888,rs9533799,rs1971791,rs8056742,rs7477,rs20069

33,rs11082762,rs12608932,rs1923626,rs7729723,rs4913250,rs283856

8,rs524675,rs42714,rs11096913,rs1320900,rs12608932,rs4877387,rs1

510510,rs10870270,rs2199351 

(van Es MA, 2009) www.ncbi.nlm.nih.gov

/pubmed/19734901 

rs2405657,rs3849942,rs9971637,rs774359,rs5916687,rs5937496,rs281

4707,rs12608932 

(Deng M, 2013) www.ncbi.nlm.nih.gov

/pubmed/23624525 

rs6703183,rs8141797 

(Fogh I, 2016) www.ncbi.nlm.nih.gov

/pubmed/27244217 

rs139550538,rs2412208,rs969599,rs72911847,rs75285952,rs11513457

2 

(Fogh I, 2013) www.ncbi.nlm.nih.gov

/pubmed/24256812 

rs12608932,rs3849942,rs34517613,rs1788776 

(Benyamin B, 2017) www.ncbi.nlm.nih.gov

/pubmed/28931804 

rs12608932,rs3849943,rs35714695,rs616147 

(Nicolas A, 2018) www.ncbi.nlm.nih.gov

/pubmed/29566793 

rs10463311,rs3849943,rs74654358,rs12973192,rs75087725,rs1132479

76,rs17070492,rs10139154,rs10143310,rs9901522 

(van Rheenen W, 2016) www.ncbi.nlm.nih.gov

/pubmed/27455348 

rs75087725,rs616147,rs10139154,rs74654358,rs3849943,rs12608932,r

s35714695 

(van Rheenen W, 2021) www.ncbi.nlm.nih.gov

/pubmed/34873335 

rs62333164,rs2985994,rs10280711,rs12608932,rs80265967,rs229195,r

s229194,rs631312,rs9275477,rs113247976,rs75087725,rs10463311,rs1

7785991,rs4075094,rs517339 

Table C-1 Table of ALS GWAS SNPs  used for detection potential repeat expansions associated with ALS
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