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ABSTRACT

Competing risks are omnipresent in administrative records and disease reg-

istries. The increasing availability of data facilitates a comprehensive investigation

on competing risks in various contexts, potentially leading to significant improve-

ments in health care quality, and a deeper understanding of the etiology of deadly

diseases. At the same time, the growing volume of data, high-dimensional parame-

ter space, and complexity of modeling necessitate methodological advances beyond

existing analytical frameworks. In this dissertation, we develop novel statistical and

computational methods for profiling health care providers and characterizing the

variation of coefficients of risk factors. These methods are specifically tailored to

large-scale competing risks data.

The 30-day hospital readmission rate has been widely used in profiling hos-

pitals and dialysis facilities, among other health care providers. Current analyses

typically use logistic regression to model readmission as a binary outcome with-

out explicitly considering competing risks (e.g., death). This oversight leads to less

comprehensive modeling and distorted provider evaluation. To address these draw-

backs, we propose a discrete-time competing risk model, where the cause-specific

readmission hazard is used to assess provider-level effects. This readmission-focused

assessment utilizes the standardized readmission ratio as the associated quality mea-

sure; this ratio is not systematically affected by the rate of competing risks. To

facilitate the estimation and inference of thousands of provider effects, we develop

xvi



an efficient Blockwise Inversion Newton algorithm, and a stabilized robust score test

that overcomes the conservative nature of the classical robust score test. An appli-

cation to Medicare dialysis patients demonstrates improved profiling, model fitting,

and outlier detection over existing methods.

Time-varying coefficient modeling has proven useful for competing risk analy-

sis. When examining the cause-specific etiology of breast and prostate cancers using

the large-scale data from the Surveillance, Epidemiology, and End Results (SEER)

Program, we encountered two challenges that existing time-varying coefficient models

cannot tackle. First, these methods, dependent on expanding the original observa-

tions as repeated measurements, result in formidable time and memory consumption

as the sample size escalates to over one million. Second, when binary predictors are

present with near-zero variance, existing methods suffer from numerical instability

and inaccurate estimation due to ill-conditioned second-order information. To ad-

dress these issues, we propose a proximal Newton algorithm with a shared-memory

parallelization scheme. Applications to the SEER data demonstrate that effects of

tumor stage on cause-specific deaths vary substantially with the time since diagnosis.

Our investigation into the impact of COVID-19 on dialysis patients suggests

that effects of COVID-19 on post-discharge outcomes vary with both post-discharge

and calendar time. This evidence motivates us to develop a novel varying coefficient

model, where each coefficient is a bivariate function of the event time and an ex-

ternal covariate. The model leverages tensor-product B-splines to account for the

coefficient variation in two dimensions. Difference-based anisotropic penalization is

introduced to mitigate model overfitting and the wiggliness of the estimated trajecto-

ries; various cross-validation methods are considered in the determination of optimal

tuning parameters. Hypothesis testing procedures are designed to examine whether

xvii



the COVID-19 effect varies significantly with post-discharge time and the time since

pandemic onset. Simulation experiments are conducted to evaluate the estimation

accuracy, type I error rate, statistical power, and model selection procedures. Appli-

cations to Medicare dialysis patients demonstrate the real-world performance of the

proposed methods.

Overall, the approaches presented here offer promising avenues for analyzing

high-volume competing risks data of multilevel and multidimensional structure.
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CHAPTER I

Introduction

Terminal events of distinct failure types, called competing risks [59], are

commonly encountered in administrative records (e.g., Medicare) and disease reg-

istries (e.g., the Surveillance, Epidemiology, and End Results Program, SEER). Such

databases typically contain a variety of patient characteristics (demographic, proce-

dural and clinical) from thousands of or even millions of individuals [15, 84]. For

instance, 1,093,192 female patients first diagnosed with breast cancer between 1973

and 2015 are included in the SEER breast cancer sample, along with their age, race,

tumor stage, and their dates and causes of death, if not censored; in the 2018 sample

of hospital discharges among Medicare dialysis patients, there are 272,897 patients in

6,937 Medicare-certified dialysis facilities with 541,769 qualifying discharges, along

with patients’ demographics, clinical characteristics, prevalent comorbidities, and

post-discharge event times.

With the wealth of information in these large-scale databases, we are in a good

position to advance our understanding of critical issues in population health, which

potentially informs health care policy and improves clinical practice. As described

above, the Medicare claims database contains information about post-discharge out-

comes of patients with end-stage renal disease (ESRD), who are associated with all

1
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Medicare-certified dialysis facilities in the United States. This unique source can be

leveraged toward a payment-linked assessment of dialysis facilities based on post-

discharge outcomes, thereby promoting high-quality health services among dialysis

facilities [16]. Alternatively, the Medicare claims data for dialysis patients can be

used to examine the possibly varying effect of a particular risk factor, e.g., the coro-

navirus disease 2019 (COVID-19). As a second example, the cause-specific death

data from the SEER registry can elucidate the etiology of a type of cancer as well as

the disease progression over the post-diagnosis period. Any dynamic effects of risk

factors on cancer survival may have implications for risk prediction, treatment, and

care [11].

Despite the improved statistical power and external validity, competing risks

data of immense volume and complex structure pose statistical and computational

challenges that existing methods cannot properly address. For example, the non-

trivial presence of competing risks renders existing methods conceptually flawed for

readmission-focused provider profiling. Specifically, these methods, typically treat-

ing readmission as a binary outcome [49, 37, 36, 87, 88, 3, 80], are highly sensitive

to the rate of competing risks, and hence result in distorted provider evaluation.

The accompanying software implementations [99], developed for moderate-sized and

general-purpose data analytics, impose unwieldy time and memory burdens to the

simultaneous estimation and (or) inference of thousands of unknown model parame-

ters. In addition, when the interest is focused on the cause-specific varying effects of

risk factors, existing methods also suffer from numerical instability and inaccurate

estimation especially in the context of ill-conditioned second-order information.

As analytical strategies targeted at the aforementioned challenges, in this dis-

sertation, we develop flexible statistical and computational methods for large-scale
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competing risks data from administrative records and disease registries. In Chap-

ter II, we propose a discrete-time competing risk model, wherein the cause-specific

readmission hazard is used for assessing health care providers. In Chapter III, we

consider a proximal Newton algorithm with a shared-memory parallelization scheme

and a test of nonproportionality for time-varying effects. Chapter IV introduces

a bivariate varying coefficient model featuring tensor-product B-splines [106] and

difference-based anisotropic penalization [132].



CHAPTER II

Analysis of Hospital Readmissions with Competing Risks

2.1 Introduction

In 2019, approximately 37 million American adults (15%) were estimated to

have chronic kidney disease (CKD), the ninth leading cause of death in the United

States [14]. Dialysis patients with end-stage renal disease (ESRD), the final stage

of CKD, experience high mortality rates [25], and frequent hospital admissions and

readmissions [104]. On average, ESRD patients are hospitalized almost twice a year,

with more than one in three hospital discharges followed by readmission within 30

days. According to recent estimates, treatment of ESRD patients costs 7.2% of total

Medicare expenditures [104].

To improve quality of care and reduce costs for dialysis patients, the Centers

for Medicare and Medicaid Services (CMS) monitors Medicare-certified dialysis fa-

cilities nationwide with various quality measures of patient outcomes (e.g., mortality

and hospitalization) and provides feedback and information to facilities, patients and

other stakeholders. One outcome of particular interest is unplanned hospital readmis-

sion (UHR). Clinical evidence supports UHR as an indicator of facility-hospital care

coordination, medical cost-effectiveness, and patient quality of life [17, 13, 100, 127].

The facility-level 30-day UHR is typically measured by the standardized readmis-

4
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sion ratio (SRR), which is the ratio of the number of observed UHRs to the number

expected with reference to a national average facility (a national norm) given the

patient characteristics of that facility. An SRR less (or greater) than one implies

that the facility’s observed readmission rate is lower (or higher) than expected based

on the national norm. The SRR has been implemented by CMS in its ESRD Quality

Incentive Program, a value-based purchasing program, in which payment for treating

patients is linked to a facility’s quality measures [16]. Thus, valid assessment of dial-

ysis facilities according to UHR has important implications for health care quality

evaluation and policy making.

In this chapter we develop statistical methods for readmission-focused provider

profiling. Current modeling frameworks treat UHR as a binary outcome and use lo-

gistic regression with fixed or random facility effects [49, 37, 36, 87, 88, 3, 80]. These

analyses are routinely used by CMS in calculating readmission measures for hospital

or dialysis facility evaluation [53, 62].

In practice, however, a patient may experience a competing event, such as

death, prior to a UHR during the follow-up. In our motivating example, 15.31% of

discharges with subsequent events within 30 days were initially followed by competing

events, which were distributed among 6,230 (89.8%) facilities. The logistic model

only considers the occurrence of an event during follow-up, regardless of the time

at which the event occurs. As a consequence, an early UHR on Day 4 is deemed

equivalent to a late UHR on Day 29 even though the latter is very close to the end

of the period of interest. Similarly, one competing event on Day 4 and another on

Day 29 are deemed equivalent, although in the first case, the individual is only at

risk of a UHR for 4 days whereas the latter is at risk for 29 days.

We propose a discrete time competing risk model based on a cause-specific
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hazards framework [98], in which UHRs constitute one failure type and competing

events (e.g. death, planned readmission, etc.) constitute the other. This model then

accounts for the timing of events and distinguishes between an early and late event,

which offer several advantages over existing approaches to modeling UHR. Based

on the competing risk model, we find that current methods essentially consider a

logistic model for the cumulative incidence function of a UHR evaluated at 30 days;

this approach makes no distinction between early and late events, and does not take

into account the number of competing events. An unintended consequence is that a

given facility may appear to have a lower readmission rate due to having a higher

rate of competing risks.

Applying the competing risk model to the CMS readmissions data poses chal-

lenges to estimation and inference. First, fitting the proposed model via the maxi-

mum likelihood approach involves estimating 6,937 facility-specific fixed effects along

with coefficients of risk factors, which poses considerable computational challenges.

To address the computational issues, we develop a Blockwise Inversion Newton (BIN)

algorithm applying the block matrix inversion formula to the associated Fisher infor-

mation matrix. Compared with existing algorithms, the fast-converging BIN achieves

scalability and memory efficiency.

Second, the 541,769 discharges in our data were associated with 272,897 pa-

tients from 6,937 facilities, of which 727 (10.48%) had fewer than 25 discharges and

704 (10.15%) had readmission rates of 15.4% or lower. The presence of patient-level

clustering and small facilities with low readmission rates renders existing inferential

methods ill-suited for testing the facility effects. To name a few, the exact test by He

et al. [49] overlooks patient-level correlation; robust or not, the numerically unsta-

ble Wald tests often yield inflated type I errors [49, 124]; and the robust estimator
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by Liang and Zeger [75] deteriorates as cluster size shrinks. Inspired by Pan [90]

and Rotnitzky and Powell [102], we devise a novel robust score test, which stabilizes

the variance estimation by integrating correlation information across patients from

a large number of facilities. Compared with alternative approaches, this test demon-

strates enhanced power, controlled type I error, and less skewed outlier detection.

The rest of this chapter is organized as follows: Section 2.2 develops the

competing risk model.Section 2.3 proposes techniques for estimation and inference.

In Section 2.4, we apply the proposed methods to 30-day readmissions among ESRD

patients, using data obtained from CMS. Section 2.5 presents simulation results and

Section 2.6 concludes with a discussion.

2.2 Discrete Competing Risk Model

2.2.1 The Model

Let the variate T be the time in days until the first post-discharge event and

let τ denote the follow-up of interest (e.g., 30 days). Let D indicate whether the

event is a UHR (D = 1) or a competing risk (D = 2). If there is no event up to time

τ , then D = 0 with T ≥ τ +1. The cause-specific hazard function for event type d is

λd(t) := P(T = t,D = d|T ≥ t), t = 1, ..., τ ; d = 1, 2

where hazard λ1(t) of UHR is of particular interest. It is sometimes said that this

formulation assumes that the failure types are independent, but this is not true.

They are, however, mutually exclusive and the total hazard at time t is λ1(t)+λ2(t).

By the usual results for discrete survival data, the survivor function is

S(t) := P(T ≥ t) =
t−1∏
k=0

{1− λ1(k)− λ2(k)}, t = 1, . . . , τ,

where we assume λ1(0) = λ2(0) = 0.
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In the continuous cause-specific hazard model, the survivor function is factor-

izable, but this is not the case in a discrete competing risk model [59, 73]. However,

we can make a change from λ2(t) to

µ(t) := P(T = t,D = 2|T ≥ t,D ̸= 1) = λ2(t)/{1− λ1(t)}, t = 1, . . . , τ,

which implies that 1 − λ1(t) − λ2(t) = {1 − λ1(t)}{1 − µ(t)}. As we will see later,

this factorization leads to likelihood decomposition which allows modeling the UHRs

alone. A symmetric reparameterization applies to λ2(t), although it is of less interest

in our application. To simplify the notation, we will hereafter use λ(t) to denote the

hazard function of UHR. Thus, the survivor function can be rewritten as

S(t) =
t−1∏
k=0

{1− µ(k)}{1− λ(k)}, t = 1, . . . , τ.

In order to incorporate risk adjustment, it is convenient to introduce counting

process notation. For d = 1, 2 and t = 1, . . . , τ , let Nd(t) := I(T ≤ t,D = d) denote

the number of type d events up to time t with Nd(0) = 0, where I(·) is an indicator

function; let ∆Nd(t) := Nd(t)−Nd(t− 1) be an indicator of a type d event at time

t; and let Y (t) := I{min(T, τ) ≥ t} indicate whether a patient is at risk for an event

(UHR or competing risk) at time t.

Let ni denote the number of discharges within the ith facility (i = 1, . . . ,m),

where m is the total number of facilities. For discharge j (j = 1, . . . , ni) from facility

i, the observed data areHij(τ), whereHij(t) := {(Yij(k),∆N1
ij(k),∆N

2
ij(k),Zij(k))}tk=1.

In this sequence, Zij(k) is a r × 1 vector of covariates, some elements of which may

be external time-dependent covariates [59]. Ignoring the patient-level dependence,

the pseudo-likelihood is given by

(2.1) L̃ = L ·
m∏
i=1

ni∏
j=1

τ∏
k=1

[
µij(k)

∆N2
ij(k){1− µij(k)}1−∆N2

ij(k)−∆N1
ij(k)
]Yij(k)

,
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in which

L =
m∏
i=1

ni∏
j=1

τ∏
k=1

[
λij(k)

∆N1
ij(k){1− λij(k)}1−∆N1

ij(k)
]Yij(k)

is a partial pseudo-likelihood based on {∆N1
ij(k)}τk=1 in the sequence Hij(τ) [21,

129]. This partial likelihood argument allows us to focus solely on the part of L̃

related to UHRs and safely ignore the nuisance competing risk process without losing

important information on UHRs. The intuition behind L is straightforward: at each

at-risk time k, a Bernoulli trial is conducted to identify whether a UHR follows

discharge j at facility i, regardless of any competing risks. Information on UHRs

is largely represented by the product L of individual Bernoulli likelihoods. The

omission of patient-level dependence, i.e., multiple discharges from a single patient,

still leads to unbiased estimation, but the estimated variance and standard error

can be invalid especially when the intra-patient correlation is high. This issue is

addressed in Section 2.3.2 via the proposed stabilized robust score test.

We consider a general formulation of the hazard λij(k) of UHR for time k =

1, . . . , τ , discharge j and facility i:

(2.2) λij(k) = h(ηk + γi + Z⊤
ij(k)β),

where h denotes a function whose inverse g : [0, 1] → [−∞,∞] is a monotonically

increasing and twice differentiable link function with g(0) = −∞, ηk denotes the

g-transformed baseline hazard of UHR at time k, γi is a fixed effect for facility i,

and β denotes a coefficient vector associated with Zij(k). Letting η = (η1, . . . , ητ )
⊤,

γ = (γ1, . . . , γm)
⊤, we have the log-partial likelihood

ℓ(γ,η,β) =
m∑
i=1

ni∑
j=1

τ∑
k=1

Yij(k)
[
∆N1

ij(k) log{h(ηk + γi + Z⊤
ij(k)β)}

+ {1−∆N1
ij(k)} log{1− h(ηk + γi + Z⊤

ij(k)β)}
]
,

(2.3)
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whose score and information matrix are available in Appendix A.1. Common choices

of the link function g include complementary log-log (cloglog), log, and logit. The

first of these leads to the grouped relative risk model given time-invariant covariates

[58], the second is the discrete relative risk model [97], and the third is the discrete

logistic model [20]. In our application, since the discrete (daily) hazard λij(k) is

relatively small, all of these links yield similar results (see Figure A.3 of Appendix

A.9).

The estimation of γ, η and β (details in Section 2.3) relies on the maxi-

mization of (2.3), where for identifiability of parameters, we impose the constraint

γM := median(γ) = 0, and assume that γM represents the national norm [49]. Given

the estimates, we can compute the standardized readmission ratio (SRR). Specifi-

cally, the SRR of a facility is defined as the ratio of the observed number of UHRs

to the number expected with respect to a national norm, adjusting for patient char-

acteristics. For facility i, we have

(2.4) SRRi :=
Oi

Ei

=

∑ni

j=1

∑τ
k=1∆N

1
ij(k)∑ni

j=1

∑τ
k=1 Yij(k)h(η̂k + γM + Z⊤

ij(k)β̂)
,

where γM is the national norm, Oi is the UHR count, Ei is the “expected” number

of UHRs, obtained as a sum of the conditional expected number on each day given

the at-risk information. An SRR less (or greater) than one means that the facility’s

observed readmission rate is lower (or higher) than expected based on the national

norm.

2.2.2 Significance of the Competing Risk Model (CRM)

In the generalized linear models (GLMs) for binary outcomes [49, 37, 36, 87,

88, 3], the event being analyzed is the occurrence of a UHR prior to time τ and

prior to any competing risk. In the homogeneous case without risk adjustment, the
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probability of this event is

(2.5) ν =
τ∑

t=1

[
λ(t)

t−1∏
k=0

{1− µ(k)}{1− λ(k)}

]
.

This probability ν is the cumulative incidence function (subdistribution) of the UHR

evaluated at τ , which depends on the entire series of hazards of UHR and competing

risks. Then the likelihood contribution for each discharge under the GLM is

(2.6) νN
1(τ)(1− ν)1−N1(τ) =

(
ν

1− ν

)N1(τ)

(1− ν).

Note that (2.6) does not depend on when the UHR is observed, but only whether or

not it is observed (i.e., UHR indicator N1(τ) at time τ). Similarly, the timing of the

competing risks is irrelevant. Unlike the GLM, the CRM has its discharge-specific

contribution to L in (2.1) dependent on the at-risk time min(T, τ) but not on the

hazard series of competing risks. As a consequence, discharges with unequal at-risk

times can be distinguished, and the associated SRR is not systematically affected by

the rate of competing risks.

To illustrate the influence of competing risks on SRR-based facility assess-

ment, consider an example in which the hazards of UHR and competing risks are

constant over time, and the rates of UHRs and competing risks for a national aver-

age facility are 0.3 and 0.1 per month (30 days), respectively. Here the focus is on

a very large facility (ignoring sampling errors) with a UHR rate of 0.4 and a rate of

competing risks of x. The CRM would give an approximate SRR of 0.4/0.3 = 1.33

for this facility, while the GLM would give an SRR that depends on x. According to

(2.5), the probability of observing a UHR before Day 30 for the facility of interest is

0.4[1− exp{−(0.4 + x)}]
0.4 + x

.

Similarly, the probability of observing a UHR before Day 30 for a national average
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facility is 0.3{1− exp(−0.4)}/0.4. Thus, the GLM-based SRR is approximately

0.16[1− exp{−(0.4 + x)}]
0.3{1− exp(−0.4)}(0.4 + x)

,

a decreasing function of x. In other words, a higher rate of competing risks leads to

an overall decrease in the GLM-based SRR. In particular, for x = 0, 0.05, and 0.1, the

GLM-based SRR equals 1.33, 1.30, and 1.27, respectively. This inverse relationship

between GLM-based SRR and the rate of competing risks indicates that the GRM

might give a falsely favorable assessment to a facility with a high rate of UHRs,

simply because the facility also has a high rate of competing risks. On the other

hand, since the CRM-based SRR remains nearly constant as the rate x of competing

risks varies, the CRM would assess two facilities with the same UHR rate as similar,

regardless of their difference in the rate of competing risks. This seems a preferable

conclusion.

2.3 Estimation and Inference

2.3.1 Blockwise Inversion Newton Algorithm

As noted before, fitting the CRM to our motivating data poses a computa-

tional challenge that existing methods cannot tackle. Motivated by Prentice and

Gloeckler [96] and Lin and Zhu [76], we develop a Blockwise Inversion Newton (BIN)

algorithm (details available in Appendix A.2). This algorithm features efficient in-

version of the information matrix of (2.3) via the blockwise inversion formula [9],

exploiting the diagonal information submatrix for facility effects.

An analysis of time complexity reveals that the inversion of the information

matrix at each iteration of the BIN algorithm costs O(m(τ + r)2 + (τ + r)3), much

less than O((m + τ + r)3) using a naive Newton–Raphson algorithm given that

m≫ τ + r. Because of this substantial efficiency gain, the BIN outperforms existing



13

software packages such as discSurv [126], which relies on expanding the original data

by at-risk time. This advantage is illustrated in Figure 2.1 using real data, which

compares the runtime and input data size of BIN and discSurv for varying numbers

of facilities.
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Figure 2.1: Runtime (left) and input data size (right) of BIN and discSurv (data expansion by
at-risk time) with varying facility counts. Experiments conducted on an Intel® Xeon® Gold 6254
quad-processor with max frequency 4GHz and RAM 576GB. BIN is implemented using Rcpp [33, 32]
and RcppArmadillo [34]. Only two covariates are included for simplicity. discSurv with a facility
count beyond 900 induces frequent system freezes as a consequence of data expansion (with over 2
million data records). In contrast, fitting the CRM using BIN to the full-fledged readmissions data
(0.335GB) takes 39.512 seconds with 6,937 facilities and 74 covariates.

2.3.2 Stabilized Robust Score Test

When profiling facilities with the SRR, we are interested in the extent to which

a facility’s SRR differs from one. This suggests testing the null hypothesis H0i : γi =

γM. To incorporate repeated events and small facilities with low readmission rates,

we propose a novel robust score test motivated by Pan (2001) [90] and Rotnitzky and

Powell (1990) [102]. Different from existing approaches, this test features stabilized

variance estimation of facility effect estimates via an integrated correlation matrix

shared by all patients with variable discharge counts. Despite being a score test,

constrained model fitting under the null is unnecessary with the assumption that β̂
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and η̂, estimated based on the entire sample of 541,769 discharges, are sufficiently

accurate to replace β and η. Similar treatments can be found in the literature

[49, 37, 36, 138].

The stabilized score test statistic TRS
i under the null H0i is given by

(2.7) TRS
i :=

Ui(γ̃i)√
Ṽγi

,

where Ui(γ̃i) is the ith element of the score vector U(γ̃i) with respect to facility

effects γ, Ṽγi is the middle piece of the stabilized robust variance estimator Σ̃γi (de-

fined in Appendix A.5) of the facility effect estimate, and tildes indicate evaluation

at θ̃i := (γ̃⊤
i , η̂

⊤, β̂)⊤, with γ̃i := (γ̂1, . . . , γ̂i−1, γ̂M, γ̂i+1, . . . , γ̂m)
⊤. The integrated

correlation matrix shared by all patients is embedded in the variance estimator Ṽγi .

With the assumptions in Appendix A.4, as the number of patients in facility i ap-

proaches infinity, TRS
i has an asymptotic standard normal distribution. Given a

certain confidence level, a confidence interval for facility effect γi can be constructed

by inverting (2.7).

2.4 Application

We apply our proposed methods to identify dialysis facilities with significantly

better or worse performance than the national norm, leveraging the readmissions

data derived from an extensive national ESRD patient database. Corresponding to a

hospital discharge, each record includes patient demographics, clinical characteristics,

and prevalent comorbidities for risk adjustment. Each discharge is followed by either

a UHR or a competing event, including planned hospital readmission, death, and

admission to a rehabilitation, psychiatric or long-term care hospital. Since facilities

have little opportunity to oversee newly discharged patients, we exclude discharges

with events over the first 3 days. Accordingly, the outcome of interest is defined as
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an all-cause UHR to an acute care hospital within 4 to 30 days after discharge. In

2018, there were 272,897 patients in 6,937 Medicare-certified dialysis facilities with

541,769 qualifying discharges in total. These facilities had discharge counts ranging

from 11 to 842 (mean 78.10), UHRs from 0 to 264 (mean 20.58), and competing

events from 0 to 76 (mean 3.72). Further details regarding the data are available in

Appendix A.8.

2.4.1 Implications of CRM on Profiling

With a logit link, we fit a CRM of 6,937 facility effects, 27 temporal (day) ef-

fects and 74 time-invariant covariates, and calculate the facility-specific SRRs, which

range from 0 to 4.89, with quartiles 0.80, 1.00, and 1.20. For comparison, we also

fit a logistic regression model (LRM) and present as scatter and box plots the log

SRRs resulting from the two models in Figure 2.2, stratified by average time at risk,

proportion of UHRs, and proportion of competing risks.
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Figure 2.2: Scatter (left and middle panels) and box (right panel) plots of log SRRs under the LRM
versus log SRRs under the CRM stratified by average time at risk (days), proportion of UHRs, and
proportion of competing risks, respectively. SRRs under the CRM and LRM are computed based
on (2.4) and He et al. [49], respectively. The at-risk time of a discharge is defined as the earlier of
the time to the first event and the end of follow-up (30 days). 45-degree lines are in solid black in
the left and middle panels. In the box plot (right panel), log SRRs from the CRM are grouped into
quartiles.

Unsurprisingly, SRRs from the two models are positively correlated in the

three panels. The CRM-based SRR tends to be greater than the LRM-based SRR
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when the average time at risk is at most 23 days, and tends to be less than the

LRM-based SRR when the at-risk time approaches the end of follow-up (Figure 2.2,

left panel). This relationship holds as a consequence of the SRR definitions of the

two models. At the discharge level, the contribution to the denominator of the

LRM-based SRR equals ν in (2.5) evaluated at γM, [49] while according to (2.4),

the contribution to the denominator of the CRM-based SRR equals the sum of the

hazards of UHRs up to the at-risk time. This sum is easily seen to be greater

than ν when the at-risk time approaches the end of follow-up, or be smaller than

ν when the at-risk time is substantially shorter than the follow-up period. The

relationship in the left panel then follows given that numerators of the two types of

SRRs are the same. In light of this relationship, we conclude that although the LRM

provides an appropriate description of the average performance of a facility over the

course of follow-up, it leads to a shrinking the SRR toward the national average

(i.e., SRR = 1), especially when a facility’s average time at risk is relatively long

or short. As standardized measures of the UHR burden within a facility, the LRM-

and CRM-based SRRs both increase as the proportion of UHRs grows in the middle

panel of Figure 2.2. As a side note, the first two panels of Figure 2.2 suggest that

on average, a high-readmission facility tends to have shorter at-risk time than a low-

readmission facility. The right panel of Figure 2.2 shows that within each quartile

of the CRM-based SRR, the distribution of the LRM-based SRR shifts downward

with a higher proportion of competing risks. This evidence confirms the inverse

relationship between the LRM-based SRR and the rate of competing risks discussed

in Section 2.2.2.
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2.4.2 Score Tests with Different Variance Estimators

To examine the real-data behavior of the stabilized robust score test, we

compare it with the classical robust [102] and model-based score tests (available in

Appendix A.6). Given a certain significance level, a rejection of the null hypothesis

H0i with γi > γM (or γi < γM) using one of the three tests indicates that the perfor-

mance of facility i is significantly worse (or better) than the national average with

regard to UHR, adjusting for risk factors. In Figure 2.3, we present the histograms

and pairwise scatter plots of the test statistics with a significance level of 0.05. The

diagonal panels with histograms reveal that the distribution of the classical robust

score test statistics is more skewed than those of the other two, and it identifies 154

facilities as worse than expected and 519 as better, while the model-based score test

flags 537 facilities as worse and 205 as better. The two non-stabilized tests both

suffer from skewed outlier detection. In contrast, the stabilized robust test selects

352 worse and 218 better facilities, which is more conservative and balanced than

the other two.

Pairwise scatter plots on off-diagonal panels break down one-way outlier

counts into two-way tables. Specifically, 201 of the 6,264 non-outlying facilities under

the classical robust test are flagged as worse by the stabilized robust test, while 309

normal facilities under the stabilized robust test are considered better than expected

by the classical robust test. In addition, the dot distribution relative to the 45-

degree line illustrates the differential levels of efficiency among the three score tests.

In fact, 72.4% of facilities have their stabilized robust test statistic at least equal to

their classical robust test statistic, 64.9% have their stabilized robust test statistic

less than or equal to their model-based counterpart, and 76.5% have their classical

robust test statistic no greater than their model-based test statistic. To summarize,
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Figure 2.3: A matrix of histograms and scatter plots of score test statistics equipped with different
variance estimators. “stabrobust”, “robust” and “model” correspond to test statistics with the
stabilized robust, classical robust and model-based variance estimators, respectively. Facilities are
stratified by readmission rate or discharge count. Dashed lines represent 2.5% and 97.5% quantiles
of the standard normal distribution. 45-degree lines are in solid black.
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the stabilized robust score test has higher efficiency than the classical robust test.

The efficiency advantage of the model-based score test is outweighed by its omission

of the within-patient correlation.

2.4.3 Score versus Wald Tests

We compare score and Wald test statistics of facility effects in Figure 2.4,

with three different variance estimators. Score tests outperform Wald tests with

stable statistics and outlier detection. Specifically, Wald tests with the classical

robust estimator (middle panel) have much smaller test statistics than those with

the stabilized robust and model-based estimators (left and right). This evidence is

consistent with the literature [40, 102, 8] in that the asymptotic distribution of a

Wald test statistic is a poorer approximation to its small-sample distribution than

that of a score test statistic, which can lead to inflated type I error.[124]
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Figure 2.4: Scatter plots of Wald versus score test statistics with different variance estimators.
Facilities are stratified by readmission rate. 45-degree lines are in solid black.

Besides superior small-sample performance, the stabilized robust score test

(2.7) is readily available without refitting the CRM under the null. Note that the

log-partial likelihood (2.3) is separable with respect to γ, with the assumption that

η ≈ η̂ and β ≈ β̂. Constrained maximization under H0i : γi = γM thus does not

change γ̂ except γ̂i, and (2.7) is easily computable by replacing γ̂i with γM. As shown
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in Figure A.4, using estimates from the constrained model refitting procedures, albeit

theoretically valid, have hardly any discernible effect on the score test statistics,

regardless of which variance estimator is considered.

2.5 Simulation Study

We present an application-driven simulation assessment of the stabilized ro-

bust score test, compared with the classical robust and model-based score tests. In

each scenario, we create 1,000 data sets with m = 1,000 facilities. Facility-specific

patient counts are drawn from Gamma(shape = 2.589, rate = 0.066), rounded up

and left-truncated by 3. Patient-specific discharge counts are drawn from 1 to 12,

with frequencies based on the real data. If the discharge count of a facility falls

below 11, its first patient is assigned additional discharges. Each facility effect

γi ∼ N1(0, σ
2
γ) with σγ = 0.306, and 27 temporal effects η are set based on the real

data with mean -5.403 and standard deviation 0.155. Three discharge-specific covari-

ates Zipl ∼ N3(0, I) with β = (1, 0.5,−1)⊤. To introduce patient-level correlation,

patient-specific random effects εip := (εip1, . . . , εipnip
)⊤ ∼ Nnip

(0,Σ) were added,

where Σ is an exchangeable covariance matrix with marginal variance σ2 = 0.09 and

correlation ρ varying from 0 to 0.9. Further details are available in Appendix A.7.

UHRs and competing risks are sampled sequentially over time: Starting from

Day 4, Bernoulli trials of UHRs with probabilities h(ηk + γi + Z⊤
iplβ + εipl) under

a logistic function h, and trials of competing risks with rate 5%/27 = 0.185% are

applied to all discharges. Those with an event are marked as no longer at risk, and

their event days are recorded as 4. From Day 5 until Day 30, trials are only applied

to discharges at risk.

Table 2.1 displays type I error rates and powers, where we focus on Facility
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1 by varying its discharge count n1 and patient count n(1). Panel A shows error

rates with 3 levels of facility size and 10 levels of ρ. When ρ = 0 (no correlation),

the model-based score test has its error rates closest to the nominal level α = 0.05,

which suggests that the model-based test has higher efficiency than the other two

conservative tests. When ρ ̸= 0, the proposed test has error rates closest to 0.05

on average. The classical robust test is mostly conservative, especially for n1 = 11,

whereas the model-based test remains liberal. As expected, the error difference

between the stabilized and classical robust test shrinks as facility size grows (n1 =

50).

Panel B provides powers with 3 levels of facility size and 12 levels of relative

deviation of facility effect γ1/σγ, with ρ = 0.5. For all three tests, the power rises as

facility size grows or absolute relative deviation enlarges, with faster power increase

for positive deviation. The stabilized robust score test has greater power than the

classical robust test, and greater power than the model-based test when γ1 < 0 and

n1 = 11 or 20. To check whether the model-based test has inflated power, we reduce

α from 0.05 to 0.04 for n1 = 50 so that the type I error rates of the model-based test

are close to those of the stabilized robust test with α = 0.05. Given similar error

rates, we observe that the model-based test has decreased powers with a mean of

0.675 across 12 levels of relative deviation. Since the average power of the stabilized

robust test is 0.682 for n1 = 50 and α = 0.05, we conclude that the model-based

score test suffers from inflated power.

2.6 Discussion

We propose a discrete competing risk model of readmission using a cause-

specific hazards framework. Compared with existing logistic modeling approaches,
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Table 2.1: Type I error rates and powers of score tests using different variance estimators. All values
were calculated based on 1,000 independent replicates with m = 1000, σ2 = 0.09, and significance
level α = 0.05. With correlation ρ varying from 0 to 0.9, rates in Panel A were obtained assuming
γ1 = γM = 0. In Panel B, correlation was fixed at ρ = 0.5, whereas γ1 is allowed to vary in terms
of relative deviation γ1/σγ .

Panel A: Type I Error Rates

ρ
n1 = 11 and n(1) = 3 n1 = 20 and n(1) = 9 n1 = 50 and n(1) = 22

stabrobust robust model stabrobust robust model stabrobust robust model

0 0.037 0.000 0.051 0.037 0.039 0.049 0.043 0.044 0.054
0.1 0.044 0.000 0.064 0.048 0.038 0.071 0.048 0.058 0.069
0.2 0.043 0.000 0.062 0.049 0.041 0.063 0.043 0.045 0.059
0.3 0.047 0.000 0.069 0.044 0.037 0.059 0.046 0.058 0.067
0.4 0.040 0.000 0.059 0.043 0.039 0.060 0.050 0.052 0.084
0.5 0.040 0.000 0.061 0.045 0.045 0.064 0.053 0.055 0.062
0.6 0.048 0.000 0.069 0.054 0.045 0.067 0.053 0.057 0.068
0.7 0.043 0.000 0.069 0.049 0.043 0.074 0.049 0.049 0.059
0.8 0.042 0.000 0.065 0.046 0.035 0.075 0.045 0.058 0.065
0.9 0.045 0.000 0.058 0.050 0.046 0.069 0.049 0.053 0.075

Panel B: Powers with ρ = 0.5

γ1
σγ

n1 = 11 and n(1) = 3 n1 = 20 and n(1) = 9 n1 = 50 and n(1) = 22

stabrobust robust model stabrobust robust model stabrobust robust model

- 4 0.180 0.000 0.123 0.340 0.231 0.316 0.787 0.721 0.801
-3.6 0.142 0.000 0.096 0.301 0.231 0.269 0.730 0.666 0.738
-3.2 0.135 0.000 0.095 0.279 0.190 0.241 0.623 0.569 0.634
-2.8 0.103 0.000 0.066 0.205 0.177 0.184 0.517 0.475 0.535
-2.4 0.078 0.000 0.048 0.162 0.128 0.148 0.443 0.417 0.458
-2 0.068 0.000 0.048 0.124 0.121 0.103 0.339 0.323 0.356

2 0.182 0.000 0.259 0.232 0.080 0.353 0.487 0.374 0.592
2.4 0.247 0.000 0.331 0.322 0.106 0.420 0.641 0.502 0.738
2.8 0.303 0.000 0.403 0.424 0.158 0.538 0.786 0.659 0.857
3.2 0.394 0.000 0.487 0.521 0.197 0.658 0.885 0.756 0.931
3.6 0.451 0.000 0.586 0.666 0.270 0.784 0.960 0.870 0.976
4 0.547 0.000 0.653 0.756 0.316 0.844 0.990 0.928 0.995



23

our model considers competing risks and event times, and leads to a more compre-

hensive approach to analyzing the outcome of interest. To facilitate estimation using

the proposed model, we develop a fast-converging Blockwise Inversion Newton algo-

rithm with scalability and memory efficiency compared to existing software packages.

In addition, we devise a stabilized robust score test that improves the accuracy of

inference in general, and is especially suitable for small facilities with low readmission

rates. Evidence from simulations and application demonstrates the enhanced power,

controlled type I error, and less skewed outlier detection of this test.

As in other survival contexts, incorporating event times into the analysis of

readmissions data makes it possible to distinguish discharges of unequal lengths of

risk exposure. In this regard, the traditionally used GLM framework is less com-

prehensive and may lead to spurious interpretation. For example, suppose that two

facilities have the same rate of underlying (possibly unobserved) readmissions and

that Facility 1 has more discharges followed by early deaths than Facility 2. Thus,

Facility 2 would have a higher observed rate of readmission than Facility 1. Since the

GLM ignores the times to death events, it would misinterpret Facility 1 as perform-

ing better than Facility 2, and lead to biased parameter estimation. Considering

event times within a cause-specific hazard framework, Lee et al. [73] approached

the parameter estimation by “naively” treating competing events as censorings. In

contrast, our framework reparameterizes the discrete-time cause-specific hazard of

competing risks, and decomposes the pseudo-likelihood function traditionally deemed

as not factorizable. The proposed model is useful for analyzing a particular failure

type of interest especially when the limited occurrence of nonignorable competing

events hinders accurate joint modeling of all failure types.

The adoption of a discrete time framework has some advantages over the
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more commonly encountered continuous time modeling in our application setting.

The large-scale readmissions data consist of 541,769 discharges with only 27 distinct

times. Thus, there are a large number of tied events at each time point. Using a

discrete model in this context yields more accurate parameter estimation than using

a continuous time model, which largely depends on approximation techniques to

reduce estimation bias. In addition, the hazard formulation via a link function allows

flexibility beyond the continuous Cox-type framework, in which the non-proportional

hazards models can require painstaking effort on implementation and inference.

Growing out of readmission-focused provider profiling, our proposed frame-

work is akin to mortality-based methods [63], and it can be used to evaluate providers

according to alternative outcomes such as arteriovenous fistula access [109] and emer-

gency department visits [61]. In addition, the competing risk model can be incor-

porated into cross-sectional and longitudinal provider monitoring techniques such as

funnel plots [111] and cumulative sum control charts [112]. Although formulated with

fixed facility effects, the underlying model can be readily implanted into a Bayesian

framework with random facility effects. However, caution should be used in this case

since the Bayesian or empirical Bayes approach can introduce substantial bias in

regression parameters and effects for providers with extreme outcomes [49, 60, 57],

which are those of primary interest.

Following the illness-death framework [139], Lee et al. [72, 71] and Haneuse

and Lee [47] considered readmission as a nonterminal semi-competing risk and death

as a terminal event. This semi-competing risk perspective facilitates explicit use of

information on post-readmission death. Such models are useful and may well be

worth further exploration, but are not applicable to the specific task of evaluating

readmissions considered here. First, in our readmissions data, facility-specific death
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rates were relatively low, making it impossible to employ a joint modeling framework

to obtain stable and accurate parameter estimation for the death model. Second, by

using a discharge- rather than a patient-level model, we also consider the possibility

that a patient can have multiple readmissions, which was not explicitly considered

in Lee et al [71].



CHAPTER III

Scalable Proximal Methods for Competing Risk Modeling
with Time-Varying Coefficients

3.1 Introduction

The temporal variation in the effects of interventions or risk factors is a com-

mon phenomenon in time-to-event data [128, 120, 27]. To allow the effects to vary

with time when analyzing the data, an important extension of the Cox model is

often used—the relative risk model with time-varying coefficients. As remarked in

Kalbfleisch and Prentice (2002) [59], this extended model is not only instrumental for

testing the proportional hazards relationship, but also allows a concise description of

a useful class of covariate effects. When the event of interest involves several distinct

types, the time-varying effects can be similarly incorporated into a competing risk

framework.

Our endeavors here were motivated by studying the cause-specific etiology of

breast and prostate cancers using data from the National Cancer Institute Surveil-

lance, Epidemiology, and End Results (SEER) Program. Different from most anal-

yses assuming constant effects of prognostic factors for survival, our purpose was to

account for how the effects change with time. Early evidence from breast cancer

patients [6, 5] suggested that tumor grade had a significant time-varying effect. As a

more recent example, Brouwer (2020) [11] studied the cause-specific survival of pa-

26
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tients diagnosed with squamous cell carcinomas (head and neck cancers) and found

that the effects of age and sex were strongest at the time of diagnosis, but attenuated

dramatically over the first few years. Ignoring the dynamic nature of a time-varying

effect may weaken the internal validity of the study and cloud its implications for

risk prediction, treatment development, and health care policy.

Along with the rising need for time-varying effect modeling in a cause-specific

context, the growing volume and complexity of data pose overarching challenges to

existing analytic frameworks. To name a few examples, Zucker and Karr (1990)

[147] established a nonparametric penalized partial likelihood approach, which was

revisited by Hastie and Tibshirani [48] with a cubic spline penalty. Gray [45, 46]

instead used the cubic B-spline bases [24] with a small number of knots to parame-

terize the penalty function. Alternatively, Verweij and van Houwelingen (1995) [123]

and Tutz and Binder (2004) [121] adopted as penalty the sum of squared pairwise

differences of effect estimates at adjacent time points. In terms of implementation,

these methods expand the original data in a repeated measurement format [116]

using existing software such as the survival package [117], and perform well when

the input data set is relatively small. As the data under analysis escalate in size,

however, fitting a cause-specific hazard model with time-varying coefficients becomes

formidably time-consuming and memory inefficient.

To illustrate this issue, we benchmarked the cause-specific hazard model fit-

ting to simulated data sets (details in Section 3.5) using the function coxph of survival,

called hereafter the Naive Newton (NaiveN) method. As shown in Figure 3.1, in-

creasing the number of observations from 1,000 to 10,000 leads to substantial growth

in the runtime and memory usage of NaiveN, whereas the runtime and memory con-

sumption of our proposed algorithm slightly increase. If the sample size is further
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scaled up to over 100,000, as in [11], even a well-configured workstation with 500 GB

of RAM can barely accommodate the execution. The SEER breast cancer data we

used consist of over 1 million patients, rendering any data-expansion-based method

infeasible.

NaiveN ProxiN

0

25

50

75

100

125

2500 5000 7500 10000

ru
nt

im
e 

(s
ec

)

0

10000

20000

30000

2500 5000 7500 10000

m
em

or
y 

(M
B

)
sample size

Figure 3.1: Runtime and memory usage of proximal Newton (ProxiN) and naive Newton (NaiveN)
with sample sizes varying from 1,000 to 10,000. In each scenario, 10 data replicates were generated,
and a fixed number of K = 10 knots were used for model fitting. Dichotomization was not applied
to covariates. A tolerance level ϵ = 10−10 was used. The vertical axis displays average runtime (in
seconds) across the 10 simulated data sets. Experiments were conducted on an Intel® Xeon® Gold
6254 quad-processor with max frequency 4 GHz and RAM 576 GB. ProxiN was implemented using
Rcpp [33, 32] and RcppArmadillo [34]. Runtime and memory usage were measured using bench [52].

In the literature, some analyses have attempted to address this computational

challenge. Inspired by a Kronecker product-based routine [93], He et al. (2017,

2021) [50, 51] respectively considered the Quasi-Newton (QuasiN) and minorize-

maximization-based steepest ascent (MMSA) methods. Taking advantage of the

large number of small strata in their settings, both methods demonstrated improved

computation compared with the NaiveN, but were unable to handle an unstratified

risk set with over one million subjects as in our cancer applications. Since gradient-

based methods such as the MMSA only utilize first-order information, they often

lead to appreciably more iterations than Newton-type methods. As will be seen in

Table 3.1, the QuasiN may also produce highly biased estimates due to poor Hessian
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matrix approximation.

In addition to the computational burden, numerical instability often arises

from ill-conditioned second-order information in large-scale cause-specific hazard

modeling. Specifically, when the data under analysis include a number of binary

covariates with near-zero variation (e.g., in the SEER prostate cancer data, only

0.6% of the 716,553 patients had their tumors regional to the lymph nodes), the

associated observed information matrix of a Newton-type method may have its min-

imum eigenvalue close to zero with a large condition number. Inverting such a nearly

singular matrix is numerically unstable and the corresponding Newton updates are

likely to be confined within a small neighborhood of the initial value, causing the

estimates to be far from the optimal solutions. When multiple failure types are

present, the issue of inaccurate estimation can be further exacerbated using existing

methods (Section 3.5.1).

To achieve computational efficiency and reduce numerical instability, we pro-

pose a spline-based Newton-type method, which we term the proximal Newton

(ProxiN) algorithm. This algorithm originates from the so-called proximal algo-

rithms [91], and bears some resemblance to the more generic proximal Newton-type

methods [69, 70]. Compared with the data-expansion-based NaiveN, the ProxiN

reduces the execution time and memory consumption by orders of magnitude. As

shown in Figure 3.1, the runtime and memory curves of the ProxiN stand in sharp

contrast with those of the NaiveN and demonstrate the superiority of our pro-

posed approach. Moreover, a shared-memory parallelization scheme further adds

to the computational efficiency of the ProxiN with mild hardware requirements. As

will be seen in Section 3.5.1, the ProxiN also leads to improved estimation accu-

racy compared to the NaiveN and QuasiN methods. The R and C++ code imple-
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menting the ProxiN and the parallelization scheme is available online at https:

//github.com/UM-KevinHe/surtiver.

The rest of this chapter proceeds as follows: Section 3.2 lays out a cause-

specific hazard model with time-varying coefficients. Section 3.3 presents the prox-

imal Newton algorithm, its convergence properties, and the parallelization scheme.

Section 3.4 introduces testing procedures. Simulation results are discussed in Sec-

tion 3.5. In Section 3.6, the proposed method is applied to two large-scale cancer

databases of SEER. Section 3.7 concludes with a discussion.

3.2 Model

For the ith subject, i = 1, . . . , n, let Ti, Ci and Xi := Ti ∧ Ci denote the

failure, censoring and observed time, respectively, where n denotes the total number

of subjects and a ∧ b := min{a, b}. Let Zi := (Zi1, . . . , Zip)
⊤ denote a vector of

p covariates for risk adjustment. Let Ji be a random variable such that Ji = j if

subject i has a failure of type j, j = 1, . . . ,m, and Ji = 0 if subject i has a censoring

event. Let ∆ij := I(Ti ≤ Ci, Ji = j) be an indicator of type j failure, where I(·) is an

indicator function. We assume that conditional on Zi, Ti is independently censored

by Ci.

To model competing risks, we consider a Cox relative risk model

(3.1) λj(t | Zi) := λ0j(t) exp[Z
⊤
i βj(t)], j = 1, . . . ,m,

where for failure type j, λj(t | Zi) denotes the cause-specific hazard function, λ0j(t)

denotes the baseline hazard, and βj(t) := [βj1(t), . . . , βjp(t)]
⊤ is a p-dimensional

vector of potentially time-varying coefficients. To estimate βj(t) at time t, we span

βj(·) by a set of K B-spline basis functions. Specifically, for l = 1, . . . , p, βjl(·) is

https://github.com/UM-KevinHe/surtiver
https://github.com/UM-KevinHe/surtiver
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formulated as a linear combination

(3.2) βjl(t) := γ⊤
jlB(t) =

K∑
k=1

Bk(t)γjlk,

whereB(t) := [B1(t), . . . , BK(t)]
⊤ forms a basis, and γjl := [γjl1, . . . , γjlK ]

⊤ is a vector

of K unknown parameters for the lth time-varying coefficient βjl(·) of failure type

j. The time points at which pieces of B-spline polynomials meet are called knots

and may be chosen based on the quantiles of the failure time points [45, 50, 51].

For ease of notation, we only consider a fixed number of K basis functions across

different time-varying effects βjl(t); the general case of a varying number of basis

functions is discussed in Section 3.5. Letting Γj := [γj1, . . . ,γjp]
⊤, we define γj :=

vec(Γ⊤
j ), a vectorization of Γ⊤

j , by stacking its columns on top of each other, and

γ := [γ⊤
1 , . . . ,γ

⊤
m]

⊤. Then model (3.1) leads to a log-partial likelihood given by

(3.3) ℓ(γ) =
m∑
j=1

ℓj(γj),

in which

ℓj(γj) :=
1

n

n∑
i=1

∆ij

Z⊤
i ΓjB(Xi)− log

 ∑
r∈R(Xi)

exp
(
Z⊤

r ΓjB(Xi)
)


=
1

n

n∑
i=1

∆ij

D⊤
i (Xi)γj − log

 ∑
r∈R(Xi)

exp
(
D⊤

r (Xi)γj

)
 ,(3.4)

where R(Xi) := {r ∈ {1, . . . , n} : Xr ≥ Xi} denotes the risk set of subject i,

Dr(Xi) := Zr ⊗B(Xi), and ⊗ denotes the Kronecker product.

Observe that ℓ(γ) is twice continuously differentiable and concave since a log-

sum-exp function is convex [9]. In addition, ℓ(γ) can be optimized by maximizing

each ℓj(γj) separately with respect to γj. The gradient ∇ℓj(γj) and Hessian matrix

∇2ℓj(γj) of ℓj(γj) are available in Appendix B.1.
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3.3 Estimation

3.3.1 Proximal Newton algorithm

As discussed in Section 3.1, the classical Newton-type methods tend to provide

unstable estimation, especially when the information matrix is nearly singular. Our

proposed solution to this numerical instability has its roots in the proximal algorithm.

For completeness, we start by reviewing this technique as well as its affinity to the

traditional Newton approach. Interested readers are referred to Parikh and Boyd

(2014) [91] for a detailed account.

Let ℓ : Rd → R be a closed and concave function; that is, its hypograph

hyp(ℓ) := {(γ, s) ∈ Rd+1 : ℓ(γ) ≥ s} is a nonempty closed convex set. For any λ > 0,

a proximal operator of λℓ, denoted as proxλℓ, is defined as

(3.5) Rd ∋ v→ proxλℓ(v) := argmax
γ

{
ℓ(γ)− ∥γ − v∥22/(2λ)

}
∈ Rd,

where ∥ · ∥2 denotes the Euclidean norm for vectors, or the induced L2 norm for

matrices. The use of argmax is justified by Proposition B.1.

To reveal the connection between the proximal operator (3.5) and Newton

approach, note that if ℓ is twice continuously differentiable, its second-order Taylor

approximation ℓ̂v(γ) at v is ℓ̂v(γ) := ℓ(v)+∇ℓ⊤(v)(γ−v)+(γ−v)⊤∇2ℓ(v)(γ−v)/2.

To derive the proximal operator of λℓ̂v(γ), observe that the corresponding maximand

is

ℓ(v) +∇ℓ⊤(v)(γ − v) + (γ − v)⊤
(
∇2ℓ(v)− I/λ

)
(γ − v)/2,

where ∇2ℓ(v)−I/λ is a negative definite matrix with I being a d×d identity matrix.

Maximizing the above quadratic maximand yields

(3.6) proxλℓ̂v
(v) = v +

(
I/λ−∇2ℓ(v)

)−1∇ℓ(v),
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which is a Levenberg–Marquardt step [74, 79], or a Newton step with a modified

Hessian matrix [86].

As noted in Section 3.2, the log-partial likelihood ℓ(γ) in (3.3) is twice contin-

uously differentiable and concave. Since a function is upper semi-continuous if and

only if its hypograph is closed [101], (3.3) is also a closed function. Applying (3.6) to

the second-order Taylor approximation of (3.3), we have the proximal Newton algo-

rithm sketched as Algorithm 1, where Xj1 < · · · < Xjnj
denote the nj distinct times

of type j failures, j = 1, . . . ,m, and Zjq denotes the vector Zi such that ∆ij = 1 and

Xi = Xjq, q = 1, . . . , nj.

Algorithm 1: Proximal Newton Algorithm

1: for j ← 1 to m do ▷ m failure types

2: initialize s← 0, λ0 > 0, and γ
(0)
j = 0

3: set ϕ ∈ (0, 0.5), ψ ∈ (0.5, 1), δ ≥ 1 and ϵ > 0
4: do
5: for q ← 1 to nj do ▷ nj distinct failure times
6: for u← 0 to 2 do
7: S

(u)
jq (γ

(s)
j , Xjq) =

∑
r∈R(Xjq)

exp{[Zr ⊗B(Xjq)]
⊤γ

(s)
j }Z⊙u

r

8: end for
9: for w ← 1 to 2 do

10: Z
(w)

jq (γ
(s)
j , Xjq) = S

(w)
jq (γ

(s)
j , Xjq)/S

(0)
jq (γ

(s)
j , Xjq)

11: end for

12: Vjq(γ
(s)
j , Xjq) = Z

(2)

jq (γ
(s)
j , Xjq)−

[
Z

(1)

jq (γ
(s)
j , Xjq)

]⊙2

13: end for
14: ∇ℓj(γ(s)

j ) = 1
n

∑nj

q=1

{
Zjq − Z

(1)

jq (γ
(s)
j , Xjq)

}
⊗B(Xjq)

15: ∇2ℓj(γ
(s)
j ) = − 1

n

∑nj

q=1 Vjq(γ
(s)
j , Xjq)⊗

{
B(Xjq)B

⊤(Xjq)
}

16: ∆γ
(s)
j =

[
I/λs −∇2ℓj(γ

(s)
j )
]−1

∇ℓj(γ(s)
j ) ▷ Newton step

17: η2 = ∇ℓ⊤j (γ
(s)
j )∆γ

(s)
j ▷ η: Newton increment

18: ν ← 1
19: while ℓj(γ

(s)
j + ν∆γ

(s)
j ) < ℓj(γ

(s)
j ) + ϕνη2 do ▷ line search

20: ν ← ψν
21: end while
22: γ

(s+1)
j = γ

(s)
j + ν∆γ

(s)
j

23: λs+1 = δλs
24: s← s+ 1
25: while η2 ≥ 2ϵ
26: end for
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3.3.2 Convergence of the proximal Newton algorithm

The proposed proximal Newton algorithm, as a likelihood maximization ap-

proach, includes particular features to ensure convergence in most practical settings.

First, the Newton step ∆γ
(s)
j on Line 16 of Algorithm 1 is an ascent direction of

ℓj(γ
(s)
j ) at γ

(s)
j , which is defined as follows:

Definition III.1. A direction µ ∈ Rd is an ascent direction of a function ℓ : Rd → R

at a point γ ∈ Rd if ∃ ν̄ > 0 such that ∀ ν ∈ (0, ν̄], ℓ(γ + νµ) > ℓ(γ).

Using the concept of directional derivative, Definition III.1 implies that µ ∈

Rd is an ascent direction of a differentiable function ℓ at γ if

lim
ν→0

ℓ(γ + νµ)− ℓ(γ)
ν

= ∇ℓ⊤(γ)µ > 0.

An equivalent condition is provided in the following Lemma III.2, which shows that

∆γ
(s)
j on Line 16 is an ascent direction of ℓj(γ

(s)
j ) at γ

(s)
j (I/λs−∇2ℓj(γ

(s)
j ) is positive

definite for any λs > 0). The proof of Lemma III.2 is available in Appendix B.2.

Lemma III.2. Let ℓ : Rd → R be a differentiable function. Then a direction µ ∈ Rd

satisfies ∇ℓ⊤(γ)µ > 0 at γ if and only if there exists a symmetric and positive

definite matrix M such that µ = M−1∇ℓ(γ).

Second, the backtracking line search on Lines 19 and 20 of Algorithm 1 con-

stitutes a practical implementation of the Armijo–Goldstein conditions

ℓj(γ
(s)
j + ν∆γ

(s)
j ) ≥ ℓj(γ

(s)
j ) + ϕν∇ℓ⊤j (γ

(s)
j )∆γ

(s)
j ,(3.7)

ℓj(γ
(s)
j + ν∆γ

(s)
j ) ≤ ℓj(γ

(s)
j ) + ψν∇ℓ⊤j (γ

(s)
j )∆γ

(s)
j ,(3.8)

ϕ ∈ (0, 0.5), ψ ∈ (0.5, 1), based on which the step length ν is determined. Condition

(3.7), known as the Armijo condition [2], explicitly requires a sufficient increase in
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ℓj proportional to step length ν and directional derivative ∇ℓ⊤(γ(s)
j )∆γ

(s)
j before the

line search is terminated. However, (3.7) alone does not guarantee convergence since

ϕ can be arbitrarily small. Condition (3.8), known as the Goldstein condition [42],

imposes a lower bound on ν so that γ
(s)
j cannot be very close to γ

(s)
j + ν∆γ

(s)
j .

We present below three assumptions through which the convergence proper-

ties of the proximal Newton algorithm are achieved.

Assumption III.3. The log-partial likelihood component ℓj(γj) of (3.4) is coercive,

i.e., lim∥γj∥2→∞ ℓj(γj) = −∞, j = 1, . . . ,m.

As discussed in Lange (2013) [68], this assumption along with the continuity

and concavity of ℓj guarantees that the superlevel set {γj ∈ RpK : ℓj(γj) ≥ ℓj(γ
(0)
j )}

is convex and compact.

Assumption III.4. The matrix I/λs −∇2ℓj(γ
(s)
j ) on Line 16 of Algorithm 1 has a

bounded condition number, i.e., ∃κ > 0, such that

(3.9) I/λs −∇2ℓj(γ
(s)
j ) ≤ κ, j = 1, . . . ,m,

where for any invertible matrix M, κ2(M) := ∥M∥2∥M−1∥2.

Assumption III.5. The sequence {λs}∞s=0 of positive tuning parameters monoton-

ically approaches infinity as s→∞, i.e., lims→∞ λs =∞.

The following theorem provides a set of convergence characterizations of Al-

gorithm 1. The proof is included in Appendix B.2.

Theorem III.6. Let ℓj assume (3.4) with an initial iterate γ
(0)
j , and let {γ(s)

j }∞s=1

be a sequence of iterates defined by Line 22 of Algorithm 1, where ∆γ
(s)
j is given

by Line 16, and ν > 0 is determined by (3.7) and (3.8) with ϕ ∈ (0, 0.5) and
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ψ ∈ (0.5, 1). If Assumptions III.3 and III.4 hold, then {ℓj(γ(s)
j )}∞s=0 converges and

lims→∞ ∥∇ℓj(γ(s)
j )∥2 = 0.

Note that Theorem III.6 does not conclude with the convergence of {γ(s)
j }∞s=0.

However, given the fact that γ∗
j is a global maximizer of the concave and differentiable

function ℓj if and only if ∇ℓj(γ∗
j ) = 0, the ultimate iterate from Algorithm 1 should

be close enough to the optimal solution with a sufficiently small tolerance ϵ in most

practical situations.

With a priori assumptions on the optimal solution γ∗
j , requiring ϕ ∈ (0, 0.5)

and ψ ∈ (0.5, 1) allows a step length ν equal to 1 to ultimately satisfy (3.7) and

(3.8), and enables Algorithm 1 to achieve superlinear convergence as defined below.

A formal statement is given in Theorem III.8, with the proof available in Appendix

B.2.

Definition III.7. A sequence {γ(s)}∞s=1 ⊂ Rd converges superlinearly to γ∗ ∈ Rd

if there exists a sequence {ξs}∞s=1 of positive real numbers with lims→∞ ξs = 0 such

that ∀ s ∈ N, ∥γ(s+1) − γ∗∥2 ≤ ξs∥γ(s) − γ∗∥2.

Theorem III.8. Let ℓj assume (3.4) with an initial iterate γ
(0)
j , and let {γ(s)

j }∞s=1 be

a sequence of iterates defined by Line 22 of Algorithm 1, where ∆γ
(s)
j is given by Line

16, and ν > 0 is determined by (3.7) and (3.8) with ϕ ∈ (0, 0.5) and ψ ∈ (0.5, 1).

In addition, assume that {γ(s)
j }∞s=1 converges to γ∗

j with a negative definite ∇2ℓj(γ
∗
j ).

If Assumptions III.3 and III.5 hold, then (1) ∃ s0 ∈ N such that ∀ s ≥ s0, ν = 1

satisfies (3.7) and (3.8); (2) ∇ℓj(γ∗
j ) = 0; and (3) {γ(s)

j }∞s=0 converges superlinearly

to γ∗
j provided that ∀ s ≥ s0, ν = 1 for some s0 ∈ N.
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3.3.3 Shared-memory parallelization

In the literature, various parallel computing schemes have been proposed to

boost computational efficiency in generalized linear models (GLMs) [92, 30, 54],

Bayesian inference [43], and random forests [133], among other instances. Despite

the widespread recognition from the statistics community [31], there is a paucity of

research on the application of parallel computing to large-scale time-to-event data,

especially in a shared-memory context. The utmost reason is that modeling survival

outcomes often involves risk-set-specific calculation tasks at all failure times. These

tasks, unlike the observation-specific calculations in GLMs, are not equally costly in

terms of computational complexity, since the size of the risk set R(Xi) (defined in

Section 3.2) varies with the observed time Xi. The unequal-sized risk sets resulting

from an increasing sequence of failure times pose a challenge to load balancing, i.e.,

the distribution of tasks over a set of computing units (threads).

Following a distributed-memory framework, Lu et al. (2015) [78] bypassed

this issue by sample stratification so that risk sets can only be formed within a

certain stratum. However, their approach becomes infeasible if stratification is not

possible. Moreover, as the sample size escalates (as in our cancer applications), the

distributed-memory approach becomes less appealing since having multiple copies of

a large data set concurrently is not memory-efficient.

In addition to load balancing arising from unequal-sized risk sets, the presence

of time-varying coefficients poses a second challenge to parallel computing. When

βj(t) is time-invariant, i.e., βj(t) = βj, one may approach the problem by first cal-

culating {exp(Z⊤
i βj)}ni=1 and then obtaining the cumulative sums of {exp(Z⊤

i βj)}ni=1

in parallel by means of the prefix sum algorithm [12]. When βj(t) varies with time

t, however, exp[Z⊤
i βj(t)] has to be re-evaluated for different risk sets, making the
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aforementioned approach infeasible.

To tackle the issue of load balancing in the presence of massive data and time-

varying coefficients, we propose a shared-memory paradigm that optimizes workload

allocation among a given number c of available threads where c ≥ 2. For time Xjq

of failure type j, let nXjq
:= |R(Xjq)|, i.e., the number of elements of the risk set

R(Xjq). For failure type j, Algorithm 1 culminates in the calculations of ℓj(γ
(s)
j ),

∇ℓj(γ(s)
j ) and∇2ℓj(γ

(s)
j ) at iteration s, which in turn depend upon S

(u)
jq (γ

(s)
j , Xjq). An

analysis of time complexity reveals that computing S
(u)
jq (γ

(s)
j , Xjq) costs O(pKnXjq

),

O(p(K + 1)nXjq
) and O(p(4K + 3p + 3)nXjq

), respectively, for u = 0, 1, 2. The

linearity with respect to nXjq
suggests using as cutoffs the c-quantiles {n̄a}c−1

a=1 of the

cumulative sums of {nXjq
}nj

q=0 (with nXj0
= 0) to partition the collection of nj risk

sets into c subcollections of nearly equal computational costs.

Let n̄c denote the sum of {nXjq
}nj

q=0 and let n̄0 = 0. Algorithm 2 presents

the parallelization of computing ∇ℓj(γ(s)
j ) at iteration s (Lines 5–14 of Algorithm 1),

in which Line 8 is a race condition requiring execution on one thread at a time

(nonparallel). The other two quantities can be obtained similarly. Evidence in

Appendix B.4 using the SEER breast and prostate cancer data demonstrates the

speedup and efficiency of the proposed parallelization scheme.

Algorithm 2: Parallel Computation of ∇ℓj(γ(s)
j ) at Iteration s

1: initialize ∇ℓj(γ(s)
j )← 0

2: for a = 1 to c do in parallel ▷ schedule c threads
3: foreach b ∈ {b : n̄a−1 <

∑b
q=0 nXjq ≤ n̄a} do ▷ assign jobs to thread a

4: for u← 0 to 1 do
5: S

(u)
jb (γ

(s)
j , Xjb) =

∑
r∈R(Xjb)

exp{[Zr ⊗B(Xjb)]
⊤γ

(s)
j }Z⊙u

r

6: end for
7: Z

(1)

jb (γ
(s)
j , Xjb) = S

(1)
jb (γ

(s)
j , Xjb)/S

(0)
jb (γ

(s)
j , Xjb)

8: ∇ℓj(γ(s)
j )← ∇ℓj(γ(s)

j ) + 1
n

{
Zjb − Z

(1)

jb (γ
(s)
j , Xjb)

}
⊗B(Xjb) ▷ race

9: end for
10: end for
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3.4 Hypothesis testing

Inferential attempts regarding the significance of the time-varying effects βj(t)

for type j failure can be formulated as the linear hypothesis H01 : Cβj(t) = 0, where

C is a contrast matrix with full row rank r. Our penalty-free spline-based modeling

and estimation lay the groundwork for a straightforward Wald-type significance test.

By (3.2), the null H01 can be rewritten as H01 : [C⊗B⊤(t)]γj = 0, and a Wald test

statistic is given by

γ̂⊤
j [C

⊤ ⊗B(t)]n{[C⊗B⊤(t)][I/λ−∇2ℓj(γ̂j)]
−1[C⊤ ⊗B(t)]}−1[C⊗B⊤(t)]γ̂j,

where γ̂j is the estimate of γj. Under the null H01, the test statistic approximately

follows a chi-square distribution with r degrees of freedom. Pointwise confidence

intervals across time are readily obtainable via test inversion. For instance, if one

wants to test whether βjl(t) = 0, where βjl(t) is the lth component of βj(t), l =

1, . . . , p, then C = [0, . . . , 1, . . . , 0], where only the lth element equals 1.

A second test of particular interest is to examine whether a certain effect

βjl(t) is constant over time. In the literature, various procedures have been proposed

to address this inference issue. As the default check for nonproportionality in the R

package survival [117], Grambsch and Therneau (1994) [44] suggested a generalized

least squares test on the scaled Schoenfeld residuals. Assuming βjl(t) = βjl+θjlgjl(t)

with unknown constants βjl and θjl, and a possibly unknown function gjl(·), the

residuals are based on a one-step Newton-Raphson estimator θ̂jl of θjl and an esti-

mator β̂jl of βjl from the Cox proportional hazards model. This approach provides a

fast and easy check for nonproportionality without the need to fit a model of time-

varying effects. Relying on a one-term Taylor approximation, however, using the

scaled Schoenfeld residuals may lead to inflated type-I error when |βjl(t) − βjl| is
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large. In addition, the residual calculation may be unstable, particularly near the

end of follow-up [118].

To test whether the effect βjl(t) is time-invariant, our approach amounts to a

Wald test on the control points. Similar to He et al. (2017) [50], we observe that if

γjl1 = · · · = γjlK = γ̄, then

βjl(t) = γ̄

K∑
k=1

Bk(t) = γ̄,

in which we utilize the property of the B-spline basis that
∑K

k=1Bk(t) = 1 for any t.

This leads to the null hypothesis H02l : L̄γjl = 0, where L̄ is a (K − 1)×K matrix

given by

L̄ =



1 −1 0 · · · 0

0 1 −1 · · · 0

...
...

. . . . . .
...

0 0 · · · 1 −1


.

A Wald test statistic can thus be constructed as

γ̂⊤
jl L̄

⊤(L̄MjlL̄
⊤)−1L̄γ̂jl,

where Mjl denotes the lth diagonal K × K block of [I/λ − ∇2ℓj(γ̂j)]
−1/n for l =

1, . . . , p. Under the null H02l, this test statistic approximately follows a chi-square

distribution with K − 1 degrees of freedom.

Once the time-varying effects are distinguished from the time-independent

ones through tests of nonproportionality, a cause-specific hazard model with time-

variant and -invariant coefficients can be fit via an equality constrained maximization

problem. Suppose βjl1(t), . . . , βjlp̄(t) are flagged as time-variant effects. Let L be a

p(K − 1)× pK matrix whose lth (K − 1)×K submatrix on the diagonal equals L̄ if

βjl(t) is time-variant or 0 otherwise, and all off-diagonal blocks equal 0. Solving the
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following problem

maximize
∆γj∈RpK

∇ℓ⊤j (γj)∆γj +∆γ⊤
j [∇2ℓj(γj)− I/λ]∆γj/2

subject to L∆γj = 0,

in which γj is a feasible point satisfying Lγj = 0 (e.g., γj = 0), we can obtain the

Newton step

∆γ∗
j = U

[
U⊤{I/λ−∇2ℓj(γj)}U

]−1
U⊤∇ℓj(γj)

at each iteration (to replace Line 16 of Algorithm 1), where U is a pK × p̄ matrix,

whose range (column space) is the null space of L.

3.5 Simulation Study

To compare the proximal Newton algorithm with the NaiveN and QuasiN

methods, we conducted a series of simulation experiments. The NaiveN was im-

plemented via the function coxph in the R package survival, and the QuasiN was

implemented using the base R function optim [86]. Since the estimation and in-

ference with respect to different failure types can be handled separately within a

cause-specific hazard framework, we focused primarily on a single failure type and

dropped the index j to simplify notation.

In each simulation scenario, a number of independent data replicates were

generated with the sample size n ranging from 1,000 to 10,000. We considered p = 5

covariates Zi drawn from a multivariate normal distribution with zero mean, unit

variance and an AR(1) correlation structure with parameter ρ = 0.6. To introduce

numerical singularity, the continuous covariates were then dichotomized into binary

variables, with the probability of being one uniformly varying from 0.8 to 0.9. This

treatment intended to mimic our application setting where the Hessian matrix had a

large condition number even when the number of observations was large. A constant
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baseline hazard λ0(t) = 0.5 was used with covariate parameters calibrated as β(t) =

[1, sin(3πt/4),−1,−1, 1]⊤. Failure times were generated from the survivor function

of (3.1), and censoring times were drawn from a uniform distribution between 0 and

3. Observed times were determined as the minimum of the failure and censoring

time pairs.

3.5.1 Estimation accuracy

To assess the estimation accuracy of the proposed ProxiN, Table 3.1 presents

the integrated mean squared error (IMSE), average bias, and average variance asso-

ciated with the three algorithms. Model fitting was performed by treating all coef-

ficients as time-dependent. Using a uniform distribution, we sampled 1,000 distinct

time points from the interval between 0 and 3. At each time t, the mean estimates

of β1(t) and β2(t) across 100 data replicates were used to calculate the mean squared

error and variance, the difference of which is the squared bias. Taking the average

across the 1,000 time points, we obtained the IMSE, average squared bias, and av-

erage variance. The average bias is simply the squared root of the average squared

bias.

Panel A of Table 3.1 displays the three measures of estimation accuracy for

β1(t). Since the nearly singular Hessian matrix was inaccurately approximated by a

matrix in the BFGS algorithm, the QuasiN had consistently much higher IMSE than

the other two methods. Of these two, the ProxiN had lower IMSE, bias and variance,

especially when the sample size equaled 1,000 or 5,000. As a side observation, the

IMSE was largely due to the variance component for all three methods. When

it comes to the estimation accuracy of β2(t), the ProxiN overall outperformed the

alternatives and the performance of QuasiN was even worse than that for β1(t).

The difference in the accuracy measures among the first two approaches shrunk as



43

the sample size increased. To explore the impact of different censoring schemes,

we varied the uniform distribution with different ranges of support (from [0, 3] to

[1.5, 3]), and used the exponential distribution with different rates (from 0.2 to 1.0)

as an alternative scheme. In addition, we also considered the performance of the

ProxiN in settings where the sample size was of a similar order as in our cancer

applications. Results are also available in Appendix B.5.

As noted in Section 3.2, it is conceptually desirable that the number of B-

spline basis functions is allowed to vary across different time-varying coefficients.

Although a systematic investigation into such a general case is absent in the literature

and beyond the scope of this article, we conducted simulation experiments (results

available in Appendix B.5) to shed the first light on knot selection based on the

variation of a covariate. The bottom line is that as the covariate variation shrinks

toward zero, fewer knots should be applied to expanding a time-varying coefficient,

so that the effect can be estimated with sufficient accuracy.

With the sample size equal to 1,000, Figure 3.2 displays the true value along

with the pointwise mean of estimates β̂1(t) and β̂2(t) across 100 data replicates, where

β4(t) = t2 exp(t/2)/9 and β5(t) = exp(−1.5t). The QuasiN was not included due to

its poor performance. For β1(t), the estimate curve of ProxiN had much smaller

deviance from the true value curve than the NaiveN, the deviance of which was in

the opposite direction. As for the time-varying β2(t), the estimate curve of ProxiN

varied closely along the true value curve, whereas the estimate curve of the NaiveN

deviated from the true one when t > 2.

Given a 95% confidence level, Figure 3.3 compares the coverage probability

(CP) of estimates β̂1(t) and β̂2(t) resulting from the ProxiN and NaiveN, with time

t varying from 0 to 3. As time increases, the CP curve for β̂1(t) from the ProxiN
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Table 3.1: Integrated mean squared error (IMSE), average bias, and average variance of estimates

β̂1(t) and β̂2(t) using the proximal Newton (ProxiN), naive Newton (NaiveN), and quasi-Newton
(QuasiN) methods with varying sample sizes. In each scenario, 100 data replicates were generated,
and a fixed number of K = 5 knots were used for model fitting. True values were β1(t) = 1 and
β2(t) = sin(3πt/4).

method size IMSE bias variance

Panel A: β1(t)

ProxiN
1000 3.60 0.24 3.55
5000 0.25 0.02 0.25
10000 0.15 0.04 0.15

NaiveN
1000 35.82 0.99 34.84
5000 0.26 0.03 0.26
10000 0.15 0.05 0.15

QuasiN
1000 6772.12 69.37 1960.34
5000 4870.17 40.94 3194.03
10000 3969.22 44.47 1991.35

Panel B: β2(t)

ProxiN
1000 1.82 0.28 1.74
5000 0.18 0.20 0.14
10000 0.14 0.23 0.09

NaiveN
1000 20.94 1.41 18.95
5000 0.25 0.23 0.20
10000 0.13 0.20 0.09

QuasiN
1000 72892.15 237.68 16400.41
5000 41906.34 106.80 30499.53
10000 26924.89 107.92 15279.30
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Figure 3.2: Mean of estimates β̂1(t) and β̂2(t) at each time t using the proximal Newton (ProxiN)
and naive Newton (NaiveN) methods, with a 95% percentile range (2.5th and 97.5th percentiles as
lower and upper limits). In each scenario, 100 data replicates were generated with sample size equal
to 1,000. A fixed number of K = 5 knots were used for model fitting. True values were β1(t) = 1
and β2(t) = sin(3πt/4), with β3(t) = −1, β4(t) = t2 exp(t/2)/9, β5(t) = exp(−1.5t).
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algorithm fluctuates more closely around 0.95 than the NaiveN, though the CP curve

of ProxiN drops sharply near the end of follow-up (t = 3) when n = 5,000 or 10,000.

The QuasiN approach was not included as it often led to a singular Hessian matrix.

To illustrate the performance of ProxiN with more than one cause of failure,

we compared the estimation accuracy of ProxiN, NaiveN and QuasiN with different

sample sizes and two causes of failure (Table 3.2 and Table B.10). With the notation

in Section 3.2, we set β11(t) = 1, β12(t) = sin(3πt/4), β13(t) = −1, β14(t) = −1,

β15(t) = 1 for the first failure type, and set β21(t) = −1, β22(t) = cos(3πt/4),

β23(t) = 1, β24(t) = 1, β25(t) = −1 for the second failure type. Failure times and

types were determined based on Beyersmann et al. (2009) [7]. Censoring times were

generated from a uniform distribution between 0 and 3. As in the case with only

one cause of failure, the ProxiN outperformed the other two methods in terms of the

IMSE, average bias, and average variance. A larger sample generally led to more

accurate estimation of the true effects.

3.5.2 Testing for time-varying effects

The assessment of the test of nonproportionality is reported in Figure 3.4,

where the average type-I error rate regarding a test of the time-invariant β1(t), and

the average power regarding a test of the time-variant β2(t) across 1,000 data repli-

cates are plotted against different levels of sample size, with a 5% significance level.

When β2(t) = sin(3πt/4) (top two panels), the ProxiN had a lower error curve for

β1(t) and a higher power curve for β2(t). When the magnitude of β2(t) was tripled

(bottom two panels), i.e., β2(t) = 3 sin(3πt/4), the NaiveN had much inflated error

and power curves, both of which approached one as the sample size grew. By con-

trast, the proposed ProxiN maintained a controlled error curve around 5% as well as

a high-level power line at one.
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Figure 3.3: Coverage probability (CP) of estimates β̂1(t) and β̂2(t) at each time t using the proximal
Newton (ProxiN) and naive Newton (NaiveN) methods, with a 95% confidence level. In each
scenario, 100 data replicates were generated and a fixed number of K = 5 knots were used for
model fitting. True values were β1(t) = 1 and β2(t) = sin(3πt/4).
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Table 3.2: Integrated mean squared error (IMSE), average bias, and average variance of estimates

β̂11(t) and β̂12(t) (corresponding to the first cause of failure) using the proximal Newton (ProxiN),
naive Newton (NaiveN), and quasi-Newton (QuasiN) methods with varying sample sizes. In each
scenario, 100 data replicates were generated and a fixed number of K = 5 knots were used for model
fitting. True values were β11(t) = 1, β12(t) = sin(3πt/4), β13(t) = −1, β14(t) = −1, and β15(t) = 1.

method size IMSE bias variance

Panel A: β11(t)

ProxiN
1000 2.41 0.22 2.36
5000 0.61 0.08 0.60
10000 0.45 0.08 0.44

NaiveN
1000 7.72 0.68 7.26
5000 3.75 0.06 3.74
10000 2.63 0.35 2.51

QuasiN
1000 2830.04 41.82 1081.30
5000 3715.09 34.98 2491.78
10000 1700.60 28.43 892.08

Panel B: β12(t)

ProxiN
1000 2.47 0.22 2.42
5000 1.02 0.25 0.96
10000 0.71 0.17 0.68

NaiveN
1000 195.44 2.06 191.19
5000 79.27 0.90 78.47
10000 22.60 1.18 21.21

QuasiN
1000 111975.71 303.89 19627.88
5000 61091.58 143.38 40532.74
10000 17822.45 92.46 9274.30
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Figure 3.4: Type-I error rate and power regarding β1(t) and β2(t) using the proximal Newton
(ProxiN) and naive Newton (NaiveN) methods with varying sample sizes. In each scenario, 1,000
data replicates were generated, and a fixed number of K = 5 knots were used for model fitting.
In the first row, true values were β1(t) = 1 and β2(t) = sin(3πt/4), while in the second row, true
values were β1(t) = 1 and β2(t) = 3 sin(3πt/4).
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3.6 Applications

To demonstrate the real-world performance of the proposed estimation and

testing procedures, we applied these methods to the nationwide breast and prostate

cancer survival database administered by the U.S. Surveillance, Epidemiology, and

End Results (SEER) Program [114, 115].

3.6.1 SEER breast cancer data

For our study, 1,093,192 female patients first diagnosed with breast cancer

between 1973 and 2015 were selected and their cause-specific deaths [11], if not

censored, were recorded. In the analysis, we considered three risk factors: age,

race and tumor stage at the time of diagnosis. Among all the patients, 24.21% were

younger than 50 at diagnosis, 24.02% aged 50 to 59, 23.68% aged 60 to 69, and 28.09%

were at least 70; 9.75% were black, 82.37% were white (including Hispanic), 7.42%

belonged to other racial groups (American Indian, Alaska Native, Asian, Pacific

Islander), and the remaining 0.46% were unknown. As for tumor staging, 60.02%

had localized tumors, 31.39% had regionalized tumors, 6.13% had distant tumors,

and 2.46% had their tumors recorded as unstaged. Event times (time to cancer death,

other deaths or censoring) ranged from 1 month to 515 months, with a median of 80

months since diagnosis.

Treating cancer and other deaths as two distinct types of failure, we fit two

cause-specific hazard models to the SEER breast cancer data with time-varying coeffi-

cients via Algorithm 1. Effect estimates as well as pointwise 95% confidence intervals

are displayed in Figure 3.5 with a 20-year presentation. Treating the localized stage

as the reference level and the other three as covariates, the top two panels display

the overall shrinking staging effects on the two causes of death. Each of the three
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stages had a larger effect on cancer death than that on other deaths. As expected, an

advanced stage had a stronger effect on cancer death than an early stage. Relative

to the white cohort, black breast cancer patients were more likely to die as a result

of either cancer or other causes. They had an initial increase in the hazard of cancer

death, followed by a gradual decrease to nearly zero. In contrast, the shrinkage of

race effects on other deaths was slower. The three effects of age groups on cancer

death immediately declined after diagnosis and then either remained stable (older

than 70) or gradually increased (younger than 60). Age effects on other deaths re-

mained relatively flat as time passed. The speedup and efficiency of the parallelized

ProxiN is discussed in detail in Appendix B.3.

3.6.2 SEER prostate cancer data

In the prostate cancer data, 716,553 patients with a first diagnosis of prostate

cancer between 2004 and 2017 were chosen and their cause-specific deaths or censor-

ings were recorded. Similarly as in the analysis of breast cancer data, we examined

age, race and tumor stage at the time of diagnosis. Among all the patients, 2.79%

were younger than 50 at diagnosis, 20.83% aged 50 to 59, 40.74% aged 60 to 69, and

35.64% were at least 70; 14.58% were black, 69.44% were non-Hispanic white, 8.81%

were Hispanic, and the remaining 7.17% belonged to other racial groups. (Since this

data were collected only starting in 2004, the registry used different ethnic groupings

than the breast cancer data, which started in 1973.) In terms of summary staging,

82.41% had localized tumors, 11.32% had regionalized tumors by direct extension,

0.6% had regional tumors to lymph nodes, 1.12% had their tumors as regional both

by direct extension and lymph nodes, and 4.54% had tumors of unknown stage.

Event times ranged from 1 month to 167 months, with a median of 6 years since

diagnosis.
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Figure 3.5: Estimates of the time-varying effects of tumor stage, race and age on death (due to
cancer or other causes) as a function of time since diagnosis using the SEER breast cancer data.
Quadratic B-splines were applied throughout the analysis with K = 5 knots. The ribbons in all
panels represent 95% pointwise confidence intervals for the time-varying coefficients. At a 5%
level, all effects on cancer death or other deaths were significantly time-dependent using the testing
procedure in Section 3.4.
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As in the application of breast cancer, we fit two cause-specific hazard models

with time-varying coefficients to the SEER prostate cancer data. Estimates and

confidence intervals are displayed in Figure 3.6 with a 10-year presentation. With

the localized stage as the reference group and the other four as covariates, the top two

panels reveal different patterns of staging effects on the two types of death. Overall,

an advanced tumor stage led to a considerably higher hazard ratio of cancer death

than the hazard ratio of other deaths. While the effects of regional both and regional

by direct extension on cancer death were significantly positive, their effects on other

deaths were negative. Nonproportionality tests with 5% size of the staging effects on

cancer death indicated that they should all be viewed as time-variant. Relative to

the white cohort, black prostate cancer patients were more likely to die as a result

of either cancer or other causes. As expected, older patients had a higher hazard of

dying from any cause than younger patients.

3.7 Discussion

The increasing availability of large-scale and complex data has the potential

to vastly improve our understanding of important real-world problems such as cancer

survival, but only with methodological and computational advances. Existing data-

expansion- or gradient-based methods impose formidable computational costs and

numerical instability to model fitting. To facilitate efficient and accurate statistical

analysis in this context, we propose the proximal Newton algorithm along with a

shared-memory parallelization paradigm and testing procedures. Simulation analyses

demonstrate superior scalability, efficiency and estimation accuracy compared to

alternative approaches. Applications to the SEER breast and prostate cancer data

confirm the excellent real-world performance of our proposed approach.
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Figure 3.6: Estimates of the time-varying effects of tumor stage, race and age on death (due to
cancer or other causes) as a function of time since diagnosis using the SEER prostate cancer data.
Quadratic B-splines were applied throughout the analysis with K = 5 knots. The ribbons in all
panels represent 95% pointwise confidence intervals for the time-varying coefficients. The four stages
displayed in the legends are regional both by direct extension and lymph nodes (both), regional by
direct extension (ext), regional by lymph nodes (lymph) and unknown. At a 5% level, significant
time-varying effects on cancer death included age greater than 70, other races and the four stage
effects. All effects on other deaths were significantly time-dependent except both and lymph.
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Although developed for analyzing cancer data, the proposed technique can be

used in many other applications that involve time-varying effect analysis. In kidney

transplantation, for example, the relative risk of death among recipients relative to

those on dialysis is known to initially increase due to surgery, but the subsequent de-

crease eventually leads to an overall survival benefit [128]. Similarly, when comparing

two infant feeding strategies for preventing mother-to-child human immunodeficiency

virus transmission, evidence from a randomized trial showed that, although breast-

feeding with prophylaxis was associated with lower infant mortality at 7 months

relative to formula feeding, this difference shrunk to insignificance through age 18

months [120]. Obesity, a well-known risk factor of mortality in the general popu-

lation, was found among dialysis patients to have a short-term protective effect on

survival and an increased risk of death after a long-term exposure [56, 55, 26, 27]. In

all these instances, our proposed methods would have undoubtedly contributed to a

better understanding of the changes in effects over time.

Depending on specific analytic needs, the proximal Newton algorithm can also

be applied to a more general setting with stratum-specific baseline hazards. In a head

and neck cancer application, for instance, there was evidence of substantial differences

in the baseline hazards by tumor stage [11]. A stratified analysis taking account of the

stage-wise variation may better reflect the effect evolution of prognostic factors. As

another example, the analysis of electronic health records often involves integrating

data from multiple health care providers. Stratification by providers can alleviate the

mediation between provider-specific effects and the effects of risk factors. In either

case, our proposed method can readily handle the less demanding computational

burdens with reduced risk sets.

As for the determination of the number and location of knots in the cause-
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specific hazard model, we followed the rules by Gray (1992) [45], that is, a small

number of knots (e.g., 10) chosen to include an equal number of events within each

time interval. Although using this early suggestion yields stable estimation in our

applications, a systematic guideline on this issue is beyond the current endeavors. In

addition, it is worth further exploration into the use of the penalized B-spline to alle-

viate overfitting and increase smoothness in coefficient estimation. Moreover, when

the dimension of the parameter space is very high, existing model selection techniques

such as Yan and Huang (2012) [140] would no longer be feasible. This necessitates

in-depth investigation into high-dimensional variable selection methods with time-

varying effects. Fortunately, the superb performance of the proposed algorithm paves

the way for possible advances along these paths in a large-scale cause-specific setting.

In the top right panel of Figure 3.6, the effect curve of lymph on other deaths

has more variation than the curve of ext especially for the initial 2.5 years since

diagnosis, but the test of nonproportionality identified the effect of ext as time-

dependent rather than the effect of lymph. This suggests that the effect of lymph

on other deaths may not be nonzero everywhere. Although addressing this issue

systematically is beyond the aims of the current article, more analytical effort is

worthwhile on accounting for zero-effect regions in competing risk models with time-

varying effects. Currently, there is a paucity of studies in the survival literature

on time-varying effect modeling with zero-effect regions. For a relevant account

on varying coefficients with zero-effect regions in the context of generalized linear

models, we refer to a recent work by Yang (2020) [141].



CHAPTER IV

Understanding the Dynamic Impact of COVID-19 through
Competing Risk Modeling with Bivariate Varying

Coefficients

4.1 Introduction

This chapter grows out of our investigation in response to the request by

the U.S. Centers for Medicare & Medicaid Services (CMS) on the influence of the

coronavirus disease 2019 (COVID-19) pandemic on patients with end-stage renal

disease (ESRD) [135]. Our goal is to inform evidence-based COVID-19 adjustment

in the implementation of ESRD quality measures, especially for postdischarge patient

outcomes. These quality measures have been routinely reported on Care Compare–

Dialysis Facilities [18] to assess dialysis facilities in the ESRD Quality Incentive

Program [19]. The calculation of pandemic-adjusted ESRD quality metrics largely

depends on how COVID-19 as a risk factor should be accounted for in statistical

modeling; any switch in measure-based flagging (e.g., from average to worse than

expected) resulting from COVID-19 adjustment would lead to a substantial change

in performance-based payments to dialysis facilities. This significant consequence

indicates the high-stakes nature of our statistical endeavors.

To understand the impact of COVID-19 on patients requiring routine kidney

dialysis for appropriate risk adjustment in CMS reporting, we explored their post-

57



58

discharge readmissions and deaths by in-hospital COVID-19 diagnosis (with versus

without COVID-19). Included in the data were 436,745 live hospital discharges of

222,154 Medicare dialysis beneficiaries from 7,871 dialysis facilities throughout the

first ten months of 2020. The top two panels of Figure 4.1 shows that within a week

of hospital discharge, the descending (unadjusted) cause-specific hazard curves of

readmission and death were substantially higher for the group with COVID-19 than

the group without. Figure 4.1c shows that the rate of readmission increased in both

groups between mid-March and mid-May; from early June onward, the rate of read-

mission among discharges with COVID-19 began to significantly surpass the rate of

readmission among discharges without. Figure 4.1d indicates that the rate of death

in both groups started at a relatively high level and then overall decreased until mid-

October; the rate of death among discharges with COVID-19 remained significantly

higher than the rate among discharges without throughout the ten months. Despite

the fact that other risk factors were not adjusted for, these preliminary findings indi-

cate that the impact of COVID-19 was constantly changing with both postdischarge

(Figures 4.1a and 4.1b) and calendar time (Figures 4.1c and 4.1d).

Existing risk adjustment models for quality measure development and health

care provider monitoring mostly treat the outcome of interest as a binary variable,

using logistic regression with fixed and random effects to indicate inter-provider vari-

ation [49, 60, 37, 36, 137, 87, 88, 3, 80]. Because these models do not account for

event timing, they cannot be applied to our COVID-19 study to discover the impor-

tant evidence of postdischarge variation; a time-to-event modeling framework would

better meet the analytical needs in this setting. In addition, the unusual dynamics

of the COVID-19 effect calls for a distinctive varying coefficient model that provides

a unified characterization of the significant variations with both postdischarge and
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calendar time, and a systematic inferential procedure testing the two-dimensional

variations either jointly or separately. Unfortunately, such a flexible and comprehen-

sive model is still lacking in the statistical literature.

Motivated by the pressing need for novel statistical methods to appropriately

analyze the dynamic impact of COVID-19, we develop a spline-based bivariate vary-

ing coefficient model, treating postdischarge readmission and death as competing

risks within a cause-specific hazard framework. Unlike existing time-varying coef-

ficient models for time-to-event outcomes [147, 45, 48, 123, 121, 50, 51, 136], the

proposed model formulates the effect of a risk factor (e.g., in-hospital COVID-19

diagnosis in our applications) as a bivariate function of both event time (e.g., post-

discharge time to a readmission or death, hereafter postdischarge time) and an ex-

ternal covariate (e.g., calendar time since pandemic onset, hereafter calendar time).

Tensor-product B-splines [106] are employed to estimate the surface of the bivariate

COVID-19 effect, thereby allowing complex variation trajectories along two different

dimensions. Although tensor-product B-splines were previously used to model in-

teractions between two continuous risk factors [45], our study is the first to use this

technique to characterize the complexly varying effect of a risk factor in a competing

risk analysis.

Fitting the bivariate varying coefficient model to the massive postdischarge

outcome data for Medicare dialysis patients poses significant computational issues

that no existing methods can handle. Current methods rely on expanding a single ob-

servation into multiple records from the baseline until the observed time [116]. With

large-scale data, this approach leads to prolonged convergence and overloaded mem-

ory even for univariate time-varying effect modeling [136], let alone bivariate varying

coefficients. Moreover, the presence of extremely distributed binary covariates often
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Figure 4.1: Panels (a) and (b) present unadjusted cause-specific hazard curves of unplanned hospital
readmission and death, respectively, from January 1, 2020 to October 31, 2020. On each postdis-
charge day, the unadjusted hazard of readmission or death was defined as the number of readmissions
or deaths occurring over that day divided by the number of discharges at risk for readmission (or
death) at the beginning of that day. Panels (c) and (d) present rates of unplanned hospital readmis-
sion and death, respectively, among discharges with and without in-hospital COVID-19 from March
17, 2020 to October 15, 2020. Monthly rates and their 95% confidence intervals were calculated on
a rolling basis.
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introduce numerical instability with ill-conditioned Hessian matrices. To address

these challenges, we develop a tensor-product proximal Newton algorithm that op-

timizes the unpenalized log-partial likelihood. This algorithm efficiently extends the

approach by Wu et al. (2022) [136] to a two-dimensional setting. Leveraging the

property of B-splines, we propose a hypothesis testing framework with respect to

both univariate and bivariate variation of the COVID-19 effect.

To mitigate model overfitting and the wiggliness of the estimated COVID-19

effect surface in a multivariate setting, we also introduce difference-based anisotropic

penalization [130, 131, 35] to the original log-partial likelihood, where the penaliza-

tion is applied against the deviation from a constant coefficient model, and the degree

of the penalty is regulated through dimension-specific sets of tuning parameters. The

asymptotic distribution of the resulting penalized estimates is investigated under mild

conditions, and a corresponding inference procedure that generalizes the test of Gray

(1992) [45] is developed. To determine optimal tuning parameters, we evaluate var-

ious methods of cross-validation and extend the method of cross-validated deviance

residuals to the setting with varying coefficients.

The rest of this chapter is organized as follows: Section 4.2 introduces the bi-

variate varying coefficient model for competing risks. Section 4.3 presents estimation

and inference methods based on the unpenalized partial likelihood. In Section 4.4, we

develop estimation and inference methods based on the penalized partial likelihood.

Next, we demonstrate and evaluate the proposed methods with simulation experi-

ments in Section 4.5 and two applications to Medicare dialysis patients in Section 4.6.

Section 4.7 concludes with a discussion.
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4.2 Model

First, we present a competing risk model with bivariate varying coefficients.

For the ith subject in the gth stratum (g = 1, . . . , G, i = 1, . . . , ng, where ng de-

notes the total number of subjects in the gth stratum, i.e., dialysis facility in our

applications), let Tgi, Cgi, and Xgi := min{Tgi, Cgi} denote the failure, censoring

and observed times, respectively. Let Zgi denote a vector of p covariates associated

with p bivariate varying coefficients, and let Wgi denote a vector of q covariates

with invariant coefficients. For ease of notation and due to the interest of our ap-

plications, we assume that all bivariate varying coefficients depend upon a single

effect modifying covariate X̆gi, although the dependence can be easily relaxed to

be coefficient-specific. Further, let Jgi be a random variable such that Jgi = j

(j = 1, . . . ,m) if subject i in stratum g has a failure of type j, and Jgi = 0 if that

subject is censored. In our applications (details in Section 4.6), j indicates different

postdischarge outcomes (unplanned hospital readmission and death) or discharge

destinations (to home, to another health care facility, and in-hospital death or to

hospice). Let ∆jgi := I(Tgi ≤ Cgi, Jgi = j) indicate whether subject i in stratum g

has a type j failure, where I(·) is an indicator function, and let ∆gi := I(Tgi ≤ Cgi).

We assume that conditional on Zgi, Wgi and X̆gi, Tgi and Cgi are independent so

that the censoring is non-informative.

We consider a stratified Cox relative risk model with semi-varying coefficients

[38], i.e.,

(4.1) λjgi(t | Zgi,Wgi, X̆gi) := λ0jg(t) exp
{
Z⊤

giβj(t, X̆gi) +W⊤
giθj

}
,

where λjgi(t | Zgi,Wgi, X̆gi) denotes the stratum- and cause-specific hazard function

for failure type j, λ0jg(t) denotes the baseline hazard function allowed to be arbitrary
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and assumed completely unrelated, βj(t, X̆gi) := [βj1(t, X̆gi), . . . , βjp(t, X̆gi)]
⊤ is a p-

dimensional vector of varying coefficients, each of which is a bivariate function of

time t and covariate X̆gi, and θj is a q-dimensional vector of invariant coefficients.

In our setting, t denotes the time (in days) since hospital discharge or admission,

and X̆gi denotes the discharge or admission time (in days) since the onset of the

COVID-19 pandemic.

To approximate the surface of βjl(t, x̆), l = 1, . . . , p, we span βjl(·, ·) by tensor-

product B-splines. Specifically,

(4.2) βjl(t, x̆) := B̆⊤(x̆)γjlB(t) =
K̆∑
k̆=1

K∑
k=1

γjlk̆kB̆k̆(x̆)Bk(t),

where B(t) := [B1(t), . . . , BK(t)]
⊤ and B̆(x̆) := [B̆1(x̆), . . . , B̆K̆(x̆)]

⊤ are B-spline

bases (with intercept terms) at t and x̆, respectively, and γjl := [γjlk̆k] is a K̆ × K

matrix of unknown control points for the lth bivariate varying coefficient βjl(·, ·) of

failure type j. The number K (or K̆) of B-spline functions forming a basis B(t) (or

B̆(x̆)) relates to the degree d (or d̆) of the piecewise B-spline polynomials and to

the number u (or ŭ) of interior knots in that K = u + d + 1 (or K̆ = ŭ + d̆ + 1)

[106]. In reality, interior knots of the B-spline space B(·) can be chosen based on

the quantiles of distinct failure times {Xgi : ∆gi = 1, i = 1, . . . , ng, g = 1, . . . , G}

[45, 50, 51, 136], and the interior knots of B̆(·) can be set at the quantiles of covariates

{X̆gi : i = 1, . . . , ng, g = 1, . . . , G}.

Note that (4.2) can be rewritten as

βjl(t, x̆) = {vec(γ⊤
jl )}⊤{B̆(x̆)⊗B(t)},

where vec denotes the vectorization of a matrix, i.e., stacking columns of a matrix

on top of one another, and ⊗ denotes the Kronecker product. It follows that

βj(t, x̆) = Γj{B̆(x̆)⊗B(t)},
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where Γj := [vec(γ⊤
j1), . . . , vec(γ

⊤
jp)]

⊤. Let γj := vec(Γ⊤
j ), γ := [γ⊤

1 , . . . ,γ
⊤
m]

⊤, and

θ := [θ⊤
1 , . . . ,θ

⊤
m]

⊤. Given model (3.1), we have the log-partial likelihood

(4.3) ℓ(γ,θ) =
m∑
j=1

ℓj(γj,θj) =
m∑
j=1

G∑
g=1

ℓjg(γj,θj),

in which

ℓjg(γj,θj) =

ng∑
i=1

∆jgi

L⊤
gi(Xgi)γj +W⊤

giθj − log

 ∑
r∈Rg(Xgi)

exp
(
L⊤

gr(Xgi)γj +W⊤
grθj

)
 ,

(4.4)

Rg(Xgi) := {r ∈ {1, . . . , ng} : Xgr ≥ Xgi} denotes the risk set of subject i in stratum

g, and Lgr(Xi) := Zgr ⊗ B̆(X̆gr) ⊗ B(Xgi). The gradient and Hessian matrix of

ℓjg(γj,θj) are available in Appendix C.1.

4.3 Unpenalized partial likelihood approach

4.3.1 Estimation

As noted before, the joint estimation of the bivariate varying coefficient func-

tions βjl(·, ·) and invariant coefficients θj based on the unpenalized log-partial likeli-

hood (3.3) becomes computationally challenging, especially when the sample includes

at least half a million subjects. To address this challenge, we develop a tensor product

proximal Newton algorithm on the basis of Wu et al. (2022) [136] to allow bivariate

varying coefficient estimation. This approach is derived from the proximal opera-

tor [91] of the second-order Taylor approximation of the log-partial likelihood (3.3),

leading to a modified Hessian matrix. The algorithm features accurate and efficient

model fitting to large-scale competing risks data with millions of subjects and binary

predictors of near-zero variance. Let Xjg1 < · · · < Xjgnjg
denote the njg distinct

times of type j failures within stratum g. For failure time Xjgb, b = 1, . . . , njg, let

Zjgb, Wjgb, and X̆jgb denote Zgi, Wgi, and X̆gi, respectively, such that ∆jgi = 1 and



65

Xgi = Xjgb. The algorithm is outlined as Algorithm 3. For theoretical arguments

justifying the convergence of the algorithm, the reader is referred to Wu et al. (2022)

[136]. In what follows, we will use carets to indicate unpenalized estimates resulting

from this algorithm. For instance, γ̂jl denotes unpenalized estimates of γjl.

Algorithm 3: Tensor Product Proximal Newton

1: for j ← 1 to m do ▷ m failure types

2: initialize s← 0, λ0 > 0, γ
(0)
j = 0, and θ

(0)
j = 0

3: set ϕ ∈ (0, 0.5), ψ ∈ (0.5, 1), δ ≥ 1 and ϵ > 0
4: do
5: for g ← 1 to G do ▷ G distinct strata
6: for b← 1 to njg do ▷ njg distinct failure times
7: for u← 0 to 2 do
8: S

(u)
jgb(γ

(s)
j ,θ

(s)
j , Xjgb) =

∑
r∈Rg(Xjgb)

exp{L⊤
gr(Xjgb)γ

(s)
j +

W⊤
grθ

(s)
j }

[
Lgr(Xjgb)

Wgr

]⊙u

9: end for
10: for w ← 1 to 2 do
11: U

(w)
jgb (γ

(s)
j ,θ

(s)
j , Xjgb) = S

(w)
jgb (γ

(s)
j ,θ

(s)
j , Xjgb)/S

(0)
jgb(γ

(s)
j ,θ

(s)
j , Xjgb)

12: end for

13: Vjgb(γ
(s)
j ,θ

(s)
j , Xjgb) = U

(2)
jgb(γ

(s)
j ,θ

(s)
j , Xjgb)−

[
U

(1)
jgb(γ

(s)
j ,θ

(s)
j , Xjgb)

]⊙2

14: end for
15: end for

16: ℓ̇j(γ
(s)
j ,θ

(s)
j ) =

∑G
g=1

∑nj

q=1

{[
Ljgb(Xjgb)

Wjgb

]
−U

(1)
jgb(γ

(s)
j ,θ

(s)
j , Xjgb)

}
17: ℓ̈j(γ

(s)
j ,θ

(s)
j ) = −

∑G
g=1

∑nj

q=1 Vjgb(γ
(s)
j ,θ

(s)
j , Xjgb)

18:

[
∆γ

(s)
j

∆θ
(s)
j

]
=
[
I/λs − ℓ̈j(γ(s)

j ,θ
(s)
j )/n

]−1

ℓ̇j(γ
(s)
j ,θ

(s)
j )/n ▷ Newton step

19: η2 = ℓ̇⊤j (γ
(s)
j ,θ

(s)
j )

[
∆γ

(s)
j

∆θ
(s)
j

]
▷ η: Newton increment

20: ν ← 1
21: while

∑G
g=1 ℓjg(γ

(s)
j + ν∆γ

(s)
j ,θ

(s)
j + ν∆θ

(s)
j ) <

∑G
g=1 ℓjg(γ

(s)
j ,θ

(s)
j ) + ϕνη2 do ▷ line

search
22: ν ← ψν
23: end while
24: γ

(s+1)
j = γ

(s)
j + ν∆γ

(s)
j

25: θ
(s+1)
j = θ

(s)
j + ν∆θ

(s)
j

26: λs+1 = δλs
27: s← s+ 1
28: while η2 ≥ 2ϵ
29: end for
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4.3.2 Inference

To examine the dynamic impact of COVID-19 among dialysis patients, it is

logical to test whether a bivariate coefficient βjl(t, x̆) varies significantly with t and

x̆, either separately or jointly. By the property of B-splines, when γjlk̆k remains

constant with k, i.e., γjlk̆k ≡ γjlk̆· for any k̆ = 1, . . . , K̆, βjl(t, x̆) reduces to

βjl(t, x̆) =
K̆∑
k̆=1

γjlk̆·B̆k̆(x̆)
K∑
k=1

Bk(t) =
K̆∑
k̆=1

γjlk̆·B̆k̆(x̆),

which no longer varies with t due to the fact that
∑K

k=1Bk(t) = 1. This relationship

suggests the null hypothesis H
(t)
0 : C(t)vec(γ⊤

jl ) = 0 for testing whether βjl(t, x̆) varies

significantly with t, where C(t) = diag(D, . . . ,D︸ ︷︷ ︸
K̆

) is a block diagonal matrix with K̆

diagonal blocks. Each of these blocks is a (K − 1)×K first-order difference matrix

D of the form 

1 −1 0 · · · 0

0 1 −1 · · · 0

...
...

. . . . . .
...

0 0 · · · 1 −1


.

A Wald test statistic associated with the null H
(t)
0 can thus be constructed as

(4.5) {C(t)vec(γ̂⊤
jl )}⊤

[
C(t)M̂jl{C(t)}⊤

]−1

C(t)vec(γ̂⊤
jl ),

where M̂jl denotes the lth KK̆×KK̆ diagonal block of {−
∑G

g=1 ℓ̈jg(γ̂j, θ̂j)}−1 with

ℓ̈jg(γj,θj) being the Hessian matrix of ℓjg(γj,θj). Under H
(t)
0 , the test statistic

approximately follows a chi-squared distribution with K̆(K − 1) degrees of freedom.

To test whether βjl(t, x̆) varies significantly with x̆, observe that when γjlk̆k ≡

γjl·k for any k = 1, . . . , K, k̆ = 1, . . . , K̆, the bivariate coefficient βjl(t, x̆) =
∑K

k=1 γjl·kBk(t)

no longer varies with x̆. The corresponding null hypothesis is H
(x̆)
0 : C(x̆)vec(γ⊤

jl ) = 0



67

where C(x̆) is a K(K̆ − 1)×KK̆ difference matrix of the Kth order. The Wald test

statistic is readily obtained by substituting C(t) in (4.5) with C(x̆). Similarly, the

null hypothesis for testing whether βjl(t, x̆) varies significantly with both t and x̆ is

H
(t,x̆)
0 : C(t,x̆)vec(γ⊤

jl ) = 0, where C(t,x̆) is a (KK̆ − 1) × KK̆ first-order difference

matrix. The Wald test statistic can be written by substituting C(t) in (4.5) with

C(t,x̆).

4.4 Penalized partial likelihood approach

4.4.1 Difference-based anisotropic penalization

To mitigate overfitting and increase the smoothness of the estimated coeffi-

cient surface of βjl(·, ·), we consider penalizing the column-wise and row-wise dif-

ferences between adjacent control points of γjl. The penalized log-partial likelihood

can be written as

ℓ(P)(γ,θ) =
m∑
j=1

ℓ
(P)
j (γj,θj;µj, µ̆j),

where

ℓ
(P)
j (γj,θj;µj, µ̆j) := ℓj(γj,θj)−

p∑
l=1

{
µ̆2
jl∥D̆γjl∥2F + µ2

jl∥γjlD
⊤∥2F

}
= ℓj(γj,θj)− γ⊤

j Pj(µj, µ̆j)γj.

(4.6)

In (4.6), µj := [µj1, µj2, . . . , µjp]
⊤ and µ̆j := [µ̆j1, µ̆j2, . . . , µ̆jp]

⊤) denote vectors of

smoothing parameters controlling the amount of penalty, ∥·∥F denotes the Frobenius

norm, and

Pj(µj, µ̆j) := {D̆⊗ I⊗ diag(µ̆j)}⊤{D̆⊗ I⊗ diag(µ̆j)}

+ {Ĭ⊗D⊗ diag(µj)}⊤{Ĭ⊗D⊗ diag(µj)},

where I (or Ĭ) is a K × K (or K̆ × K̆) identity matrix, diag(·) converts a vector

into a diagonal matrix, and D̆ (or D) is a (K̆ − 1)× K̆ (or (K − 1)×K) first-order
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difference matrix. In what follows, we use tildes to indicate penalized estimates. For

example, γ̃jl denotes a vector of penalized estimates of γjl.

4.4.2 Asymptotics

Before presenting the inferential procedures with penalization, we first derive

the asymptotic distribution of the penalized estimates η̃j := [γ̃⊤
j , θ̃

⊤
j ]

⊤. We assume

that the knot locations, K, K̆, p, and q remain fixed as the sample size n :=
∑G

g=1 ng

increases. Observe that as n grows, the contribution from the log-partial likelihood

in (4.6) increases. To preserve the degree of smoothness, µj and µ̆j will need to

increase at a rate of O(
√
n). Here we consider two cases when the contribution of

the penalty term to the penalized score function, Pj(µj, µ̆j)γj, is not necessarily

0, but the amount of smoothing (and the introduced bias) shrinks as n increases.

First, given two constants µ
(0)
jl and µ̆

(0)
jl , if µjl/n

1/4 → µ
(0)
jl and µ̆jl/n

1/4 → µ̆
(0)
jl as n

increases [45], then standard derivations imply that
√
n(η̃j − ηj) is asymptotically

normal with a mean estimate

√
nb̃j :=

√
n
{
ℓ̈
(P)
j (η̃j;µj, µ̆j)

}−1

Qj(µj, µ̆j)η̃j

and a sandwich estimate of variance

nṼS
j := −n

{
ℓ̈
(P)
j (η̃j;µj, µ̆j)

}−1

ℓ̈j(η̃j)
{
ℓ̈
(P)
j (η̃j;µj, µ̆j)

}−1

,

where

ℓ̈
(P)
j (ηj;µj, µ̆j) = ℓ̈j(ηj)−Qj(µj, µ̆j)

is the penalized Hessian matrix of (4.6), and Qj(µj, µ̆j) is a block diagonal matrix

with two blocks Pj(µj, µ̆j) and 0 (a q× q matrix). As a second case, if µjl/n
1/4 → 0

and µ̆jl/n
1/4 → 0 as n increases, the variance of (η̃j−ηj) can be well approximated by

the inverse of the penalized information matrix, i.e., ṼM
j = −

{
ℓ̈
(P)
j (η̃j;µj, µ̆j)

}−1

, a

model-based variance estimate.
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4.4.3 Inference

In the presence of penalization, a Wald test statistic associated with the null

hypothesis H
(t)
0 : C(t)vec(γ⊤

jl ) = 0 can be written as

(4.7) {vec(γ̃⊤
jl )− b̃jl}⊤{C(t)}⊤

[
C(t)Ωjl{C(t)}⊤

]−1
C(t){vec(γ̃⊤

jl )− b̃jl},

where b̃jl denotes the lth KK̆-dimensional subvector of b̃j, and Ωjl denotes an

arbitrary KK̆ ×KK̆ symmetric and positive-definite matrix, e.g., the lth diagonal

block of ṼS
j or ṼM

j . The distribution of the test statistic (4.7) is characterized in

Proposition IV.1 below. The proof is available in Appendix C.2.

Proposition IV.1. Under H
(t)
0 , the test statistic (4.7) asymptotically follows a dis-

tribution characterized by
KK̆×KK̆∑

u=1

µuG
2
u,

where Gu’s are independent standard normal random variables, and µu’s are the

possibly identical eigenvalues of the matrix product of [C(t)Ωjl{C(t)}⊤]−1 and the

variance of C(t){vec(γ̃⊤
jl )− b̃jl}.

Similarly as in Section 4.3.2, for the null H
(x̆)
0 : C(x̆)vec(γ⊤

jl ) = 0, the cor-

responding Wald test statistic can be obtained by substituting C(t) in (4.7) with

C(x̆). For the null H
(x̆)
0 : C(t,x̆)vec(γ⊤

jl ) = 0, the Wald test statistic can be written by

substituting C(t) in (4.7) with C(t,x̆).

4.4.4 Cross-validated parameter tuning

To identify an optimal set of tuning parameters to alleviate model overfitting

and the unsmoothness of the estimated effect surface, we consider 5 methods of cross-

validation. In the first 4 methods, the entire data sample needs to be partitioned

into F subsamples (hereafter folds) of approximately equal sizes. For failure type j
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and f = 1, . . . , F , let η̃−f
j be the penalized estimates of ηj based on the complement

of fold f , and let ℓfj and ℓ−f
j be the (unpenalized) log-partial likelihood based on

fold f and the complement of fold f , respectively. A cross-validation error (CVE)

for failure type j is then defined in each of the 4 approaches. The last method of

generalized cross-validation does not require data partitioning in the calculation of

CVE. Optimal tuning parameters can be determined through minimizing the CVE.

A comprehensive evaluation of the 5 approaches is presented in Section 4.5.2.

Fold-constrained (FC) cross-validated partial likelihood

In this approach, the CVE is proportional to the sum of fold-specific log-

partial likelihood functions in which risk sets are constrained by the corresponding

folds, i.e.,

CVEj := −2
F∑

f=1

ℓfj (η̃
−f
j ).

Complementary fold-constrained (CFC) cross-validated partial likelihood

As the name suggests, the CVE is proportional to the sum of complementary

fold-constrained log-partial likelihood functions, i.e.,

CVEj := −2
F∑

f=1

{ℓj(η̃−f
j )− ℓ−f

j (η̃−f
j )}.

This approach was applied in Verweij and Van Houwelingen (1993) [122] and Simon

et al. (2011) [110].

Unconstrained (UC) cross-validated partial likelihood

First introduced by Breheny and Huang (2011) [10], this approach features

risk set construction unconstrained by folds in that fold-specific estimates η̃−f
j ’s are

assigned to all units of the sample according to their fold identities. With a slight
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abuse of notation, the CVE is written as

CVEj := −2ℓj(η̃−1
j , . . . , η̃−F

j ),

where η̃−f
j is assigned to observations of fold f .

Cross-validated deviance residuals (DR)

Dai and Breheny (2019) [22] used the sum of squared deviance residuals [119]

as a criterion of cross-validation in a penalized Cox proportional hazards model.

However, their approach cannot be directly applied to a non-proportional hazards

model with varying coefficients. To proceed, we first derive the deviance residuals

for model (4.1) in the next proposition, the proof of which is available in Appendix

C.3.

Proposition IV.2. Let λ̂0jg(·) be the estimated baseline hazard function derived from

the unpenalized bivariate varying coefficient model. Let

M̃jgi := ∆jgi − exp(W⊤
giθ̃

−f
j )

∫ Xgi

0

exp
{
Z⊤

giβ̃
−f
j (t, X̆gi)

}
λ̂0jg(t) dt

be the martingale residual for subject i in the gth stratum, where β̃−f
j (·, ·) and θ̃−f

j

are the penalized estimates from the corresponding fold f to which subject i in the

gth stratum belongs. Then the deviance residual for subject i in the gth stratum with

respect to the jth failure type is written as

djgi := sign(M̃jgi)

√
−2
[
∆jgi

{
Z⊤

giβ̃
−f
j (Xgi, X̆gi) +W⊤

giθ̃
−f
j + log

∫ Xgi

0

λ̂0jg(t) dt

}
+ M̃jgi

]
.

Given the deviance residuals in Proposition IV.2, the CVE can be written as

CVEj :=
G∑

g=1

ng∑
i=1

d2jgi.
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Generalized cross-validation (GCV)

Extending the approach of Yan and Huang (2012) [140] to this setting with

bivariate varying coefficients, we can write the CVE for the jth failure type as

CVEj = −
ℓj(ηj)

n(1− fj(µj, µ̆j)/n)2
,

where fj(µj, µ̆j) := trace
(
{ℓ̈(P)j (ηj;µj, µ̆j)}−1ℓ̈j(ηj)

)
, i.e., the number of effective

parameters [140], or the “degrees of freedom” of the model [45].

4.5 Simulation experiments

4.5.1 Unpenalized approach

Following the approach in Section 4.3, we assessed the bivariate varying coef-

ficient model for competing risks via simulation experiments. Since distinct types of

competing risks can be analyzed separately within a cause-specific hazard framework,

we focused on a single event type and dropped the subscript j to allow simplified

notation. Therefore, no stratification was used in the data generating process.

In each simulation scenario, a number (100 or 1,000) of independent data

replicates were generated with the sample size varying from 1,000 to 10,000. For

each sample unit, two covariates (corresponding to Zgi and Wgi in Section 4.2)

were drawn from a bivariate normal distribution with zero mean, one variance, and

correlation ρ = 0.6. Two coefficients were set as β1(t, x̆) = sin(3πt/4) exp(−0.5x̆)

and β2 = 1, with event time t varying from 0 to 30, and calendar time x̆ varying

from 0 to 50. Underlying event times were determined via a root-finding procedure

based on the cause-specific hazard function in Section 4.2 [7]. Calendar times were

drawn from a uniform distribution bounded by 0 and 50. Censoring times were

sampled from a uniform distribution bounded by 0 and 30. Observed event times

were determined as the minimum of the underlying event and censoring time pairs.
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Figure 4.2a presents the integrated mean squared error (IMSE), bias, and

variance (all averaged over a grid of 100 evenly spaced points across either event

or calendar time) with respect to the bivariate varying coefficient β1(t, x̆) with the

sample size growing from 2,000 to 10,000. The three metrics were calculated based

on 100 data replicates. The coefficient β2 was treated as a time-invariant parameter

in model fitting. On the event timescale, the IMSE becomes higher as event time

increases, due to the fact that the shrinking risk set leads to fewer remaining units

in the sample and hence less accurate estimation. As the sample size grows, the

IMSE curve shifts downward and the IMSE is substantially reduced towards the end

of follow-up. On the calendar timescale, the IMSE is higher on both ends and the

curve becomes lower as the sample size increases from 2,000 to 10,000. Moreover, a

comparison between the second and third row of Figure 4.2a suggests that the IMSE

on both timescales is predominantly determined by the variance component. As a

complement to Figure 4.2a, Figure 4.2b provides additional evidence on estimation,

with the sample size fixed at 10,000. Throughout all panels of distinct event and

calendar times, the mean estimated curve tracks closely with the true effect curve,

demonstrating the accurate estimation of the extended proximal Newton algorithm.

At different event and calendar times, we compared coverage probability (CP)

curves of β1(t, x̆) = sin(3πt/4) exp(−0.5x̆) with varied sample sizes in Figure 4.3a.

Pointwise 95% confidence intervals were used throughout all panels. Overall, all

curves remained around the 0.95 reference line, except that the CP dropped below

0.8 toward the end of the event time period with calendar time equal to 10 and

sample size equal to 10,000. In Figure 4.3b, we evaluated three tests of univariate

and bivariate variation with respect to β1(t, x̆), where the sample size varied from

2,000 to 10,000. As expected [136], curves of type I error rate were sloping downward
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Figure 4.2: (a) Integrated mean squared error (IMSE), average bias, and average variance of the

estimated surface β̂1(t, x̆) with varied sample sizes on event and calendar timescales. In each

scenario, 100 data replicates were generated. On both timescales, K = K̆ = 7 cubic (d = d̆ = 3)
B-spline functions form a basis. True values are β1(t, x̆) = sin(3πt/4) exp(−0.5x̆) and β2 = 1.
(b) Mean and 95% percentile range (2.5th and 97.5th percentiles as lower and upper limits) of
pointwise estimates of β1(t, x̆) at selected event times and calendar times. In each scenario, 100
data replicates were generated with sample size equal to 10,000. On both timescales, K = K̆ = 7
cubic (d = d̆ = 3) B-spline functions form a basis. True values are β1(t, x̆) = sin(3πt/4) exp(−0.5x̆)
and β2 = 1. An unpenalized approach was used in (a) and (b).
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with the sample size, while the rates remained slightly higher than 0.05 as the sample

size exceeded 5,000. The power grew dramatically until the sample size reached 4,000,

and then remained higher than 0.95 afterward.

4.5.2 Penalized approach

In similar simulation settings, we evaluated the difference-based anisotropic

penalization and corresponding tests of effect variation. With sample size fixed at

n = 10,000, Figure 4.4a shows the IMSE, bias, and variance (again, averaged over a

grid a 100 evenly spaced points on either time scale) of the estimated effect surface

β̂1(t, x̆) on two timescales with different pairs of tuning parameters µ and µ̆, where

the unpenalized approach with µ = 0 and µ̆ = 0 is included as a reference. Across

both event and calendar time, the IMSE was the highest when the penalty was

minimal (µ = 0.02 and µ̆ = 0.05). As the penalty became more prominent (µ = 0.2

and µ̆ = 0.5), the IMSE decreased at first, especially on the calendar timescale.

When µ = 2 and µ̆ = 5, the IMSE rebounded substantially. As for bias, a higher

penalty level led to a higher bias across event time, while the bias remained lowest

with µ = 0.2 and µ̆ = 0.5. Unsurprisingly, a higher level penalty was associated with

lower variance for both timescales. This result suggests that µ = 0.2 and µ̆ = 0.5 are

the optimal pair among the four. This pair was applied exclusively in Figure 4.4b,

where the curves of true values were compared to the curves of mean estimates. In

all panels, the two curves tracked closely, except toward the end of the event time.

Figure 4.5 presents the CP, type I error rate, and power with varying sample

sizes. To allow tuning parameters to vary with sample size, we set µ = 0.002n1/8 and

µ̆ = 0.005n1/8, corresponding to the second case in Section 4.4.2. Across event and

calendar time, the CP curve fluctuated closely around the 0.95 reference line, except

that the CP dropped to 0.75 toward the end of the event time period with calen-
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Figure 4.3: (a) Coverage probability curves of β1(t, x̆) via pointwise 95% confidence intervals on
event and calendar time scales, with varied sample sizes. In each scenario, 100 data replicates were
generated with sample size equal to 10,000. On both timescales, K = K̆ = 7 cubic (d = d̆ = 3)
B-spline functions form a basis. True values are β1(t, x̆) = sin(3πt/4) exp(−0.5x̆) and β2 = 1. (b)
Type I error rate and power curves for tests of univariate and bivariate variation with varied sample
sizes. In each scenario, 1,000 data replicates were generated. On both timescales, K = K̆ = 7 cubic
(d = d̆ = 3) B-spline functions form a basis. True values are β1(t, x̆) = 1 and β2 = 1 in the
left panel, and β1(t, x̆) = sin(3πt/4) exp(−0.5x̆) and β2 = 1 in the right panel. An unpenalized
approach was used in (a) and (b).
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Figure 4.4: (a) Integrated mean squared error (IMSE), average bias, and average variance of the

estimated surface β̂1(t, x̆) with sample size fixed at 10,000. In each scenario, 100 data replicates

were generated. On both timescales, K = K̆ = 7 cubic (d = d̆ = 3) B-spline functions form a
basis. True values are β1(t, x̆) = sin(3πt/4) exp(−0.5x̆) and β2 = 1. Various levels of penalization
were introduced to β1(·, ·), where mu1 and mu2 denote tuning parameters for calendar and event
time, respectively, as in (4.6). (b) Mean and 95% percentile range (2.5th and 97.5th percentiles
as lower and upper limits) of pointwise estimates of β1(t, x̆) at selected event times and calendar
times. In each scenario, 100 data replicates were generated with sample size equal to 10,000. On
both timescales, K = K̆ = 7 cubic (d = d̆ = 3) B-spline functions form a basis. True values are
β1(t, x̆) = sin(3πt/4) exp(−0.5x̆) and β2 = 1. Only the optimal case in Part (a), i.e., mu1=0.5 and
mu2=0.2, was considered.
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dar time equal to 10 and sample size equal 10,000 (Figure 4.5a, top left panel). In

each column of Figure 4.5b, we adopted a distinct construction of the test statistics

based on (4.7), and considered three tests of variation, jointly and separately. In the

first and second columns, the sandwich and model-based variance estimators, respec-

tively, were employed to determine Ω and the variance of vec(γ̃⊤)− b̃, respectively,

so that the test statistics approximately followed the chi-squared distribution. In

the third column, the model-based estimate was used to form Ω, while the variance

of vec(γ̃⊤)− b̃ was estimated via the sandwich estimator. The resulting test statis-

tics, similar to the one in Gray (1992) [45], approximately followed a distribution

characterized by a linear combination of chi-squared random variables [23]. This dis-

tribution was implemented via the package CompQuadForm [66]. We observed that

the third construction generally led to higher type I error rates than the other two.

When sample size was up to 3,000, the model-based test statistics gave lower type

I error rates; when sample size exceeded 3,000, the sandwich test statistics overall

resulted in slightly lower type I error rates. All three constructions were associated

with sufficiently high power with sample size greater than or equal to 3,000.

To compare the five methods of cross-validation via simulations in Section 4.4.4,

we generated 100 pairs of training and testing data replicates for each sample size

n (varying from 2,000 to 5,000). A 5-by-5 grid of tuning parameters was formed

such that µ/
√
n and µ̆/

√
n varied from 10−5 to 10−1. All five methods were applied

to a training copy to obtain an optimal pair of tuning parameters and penalized

estimates. The training data were split into four folds whenever data partition-

ing was necessary. The penalized estimates were then applied to both training and

testing replicates in the calculation of −2ℓ (ℓ denoting the unpenalized log partial

likelihood) and the average IMSE, two measures of predictive accuracy used for eval-
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Figure 4.5: (a) Coverage probability curves of β1(t, x̆) via pointwise 95% confidence intervals at
varied event time, calendar time, and sample sizes. In each scenario, 100 data replicates were
generated with sample size n = 10, 000. True values are β1(t, x̆) = sin(3πt/4) exp(−0.5x̆) and β2 =
1. (b) Type I error rate and power curves for tests of univariate and bivariate variation with different
test statistics and varied sample sizes. In each scenario, 1,000 data replicates were generated. True
values are β1(t, x̆) = 1 and β2 = 1 in the top 3 panels, and β1(t, x̆) = sin(3πt/4) exp(−0.5x̆) and
β2 = 1 in the bottom 3 panels. In the first and second column, a sandwich and a model-based
variance estimator were used with test statistics approximately following a chi-squared distribution.
In the third column, the test statistic in Gray (1992)[45] was compared with a distribution of a
linear combination of chi-squared random variables [23]. In Parts (a) and (b), 7 cubic B-splines
form a basis on both timescales, and tuning parameters vary with sample size, i.e., µ = n1/8/500
and µ̆ = n1/8/200.
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uating the five methods. The distribution of selected tuning parameters is reported

in the Web Appendix D of the Supporting Information, and −2ℓ and average IMSE

for all methods are tabulated in Table 4.1. The method of cross-validated deviance

residuals (DR) led to the lowest −2ℓ when the sample size of the training data was

less than 5,000, or when the sample size of the testing data was 3,000 or 5,000; it

also led to the lowest average IMSE when the sample size of the training data was

4,000 or 5,000. In contrast, the generalized cross-validation was associated with the

highest −2ℓ for both training and testing data across different sample sizes; it also

gave the highest average IMSE except when the sample size was 2,000. Although

DR overall achieved the highest predictive accuracy, its advantage over the other 3

data-partitioning cross-validation methods was not significant.

Table 4.1: A simulation-based comparison of five cross-validation methods: fold-constrained (FC),
complementary fold-constrained (CFC), and fold-unconstrained (UC) cross-validated partial like-
lihood, cross-validated deviance residuals (DR), and generalized cross-validation (GCV). In each
scenario, 100 training and validation data replicates were generated independently. Each cross-
validation method was applied to the training data replicate to obtain the penalized estimates.
The estimates were then applied to the training and validation data separately to calculate
−2ℓ (Panel A), where ℓ denotes the unpenalized log partial likelihood, and to the training data
to calculate average integrated mean squared error (IMSE, Panel B). For IMSE, the average
was taken across 10,201 different combinations of event and calendar time. True values were
β1(t, x̆) = sin(3πt/4) exp(−0.5x̆) and β2 = 1. Standard deviations are provided in parentheses.

Panel A: −2ℓ

sample size
training testing

FC CFC UC DR GCV FC CFC UC DR GCV

2000
12951.11 12950.53 12951.02 12949.77 12978.45 11917.90 11917.24 11917.69 11917.68 11927.87
(2636.17) (2634.96) (2634.98) (2635.09) (2635.43) (11.80) (10.72) (10.90) (10.85) (4.70)

3000
20729.73 20729.64 20729.66 20729.58 20769.08 25852.29 25852.16 25852.21 25852.12 25871.91
(4174.25) (4174.46) (4174.56) (4174.55) (4176.98) (16.02) (16.01) (15.99) (15.98) (8.77)

4000
28696.21 28696.33 28696.21 28695.57 28746.12 26794.12 26794.10 26794.11 26794.34 26831.69
(5753.25) (5752.60) (5752.59) (5753.07) (5757.26) (10.51) (10.49) (10.50) (10.57) (10.30)

5000
37036.32 37035.18 37035.27 37036.26 37095.90 54238.77 54239.27 54239.44 54238.45 54279.14
(7439.08) (7439.23) (7439.38) (7439.86) (7451.81) (26.10) (26.37) (26.19) (26.85) (14.08)

Panel B: average IMSE

sample size
training

FC CFC UC DR GCV

2000
0.1023 0.1019 0.1041 0.1104 0.0812
(0.1193) (0.1137) (0.1148) (0.1170) (0.0124)

3000
0.0697 0.0710 0.0706 0.0726 0.0775
(0.0679) (0.0684) (0.0685) (0.0678) (0.0100)

4000
0.0714 0.0703 0.0680 0.0674 0.0747
(0.0917) (0.0917) (0.0904) (0.0917) (0.0098)

5000
0.0562 0.0567 0.0570 0.0550 0.0729
(0.1193) (0.1137) (0.1148) (0.1170) (0.0124)
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4.6 Applications to dialysis patients amidst COVID-19

To better understand the dynamics of the COVID-19 effect on dialysis pa-

tients, we applied the bivariate varying coefficient model to two large-scale retro-

spective studies, both having data abstracted from the CMS clinical and admin-

istrative database (primarily based on the Renal Management Information System,

CROWNWeb facility-reported clinical and administrative data, the Medicare Enroll-

ment Database, and Medicare claims data). In both studies, the interest was in the

impact of an in-hospital COVID-19 diagnosis on the outcomes of dialysis patients.

Information on in-hospital COVID-19 diagnosis was mainly obtained from Medicare

inpatient and physician/supplier claims. An in-hospital COVID-19 diagnosis was

confirmed if the patient’s inpatient or physician/supplier claim associated with the

hospitalization had either of the two diagnosis codes of the International Classifica-

tion of Diseases, 10th Revision: B97.29 or U07.1 [134]. In addition to COVID-19,

a comprehensive list of patient demographics, clinical characteristics, and prevalent

comorbidities were considered as baseline risk factors.

4.6.1 Postdischarge outcomes

In the first study, outcomes of primary interest were all-cause unplanned

acute-care-hospital readmission and death within 30 days of hospital discharge. This

study consisted of 436,745 live acute-care hospital discharges of 222,154 Medicare

beneficiaries on dialysis from 7,871 Medicare-certified dialysis facilities between Jan-

uary 1, 2020 and October 31, 2020. Discharges from non-acute care hospitals, dis-

charges with in-hospital death, and discharges with discharge-day outcomes were

excluded from the data, along with other administrative exclusions.

The 8 panels of Figure 4.6 show different perspectives of the bivariate dynam-
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Figure 4.6: Bivariate variation of log hazard ratios with respect to in-hospital COVID-19 diagnosis
for 30-day postdischarge readmission and death. Included in the sample were 436,745 live hospi-
tal discharges of 222,154 Medicare beneficiaries on dialysis from 7,871 Medicare-certified dialysis
facilities from January 1, 2020 to October 31, 2020. Ribbons in the top four panels indicate 95%
confidence intervals. Panels in the third and fourth rows are contour and surface plots, respectively.
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ics of the COVID-19 effect in terms of the log hazard ratio on 30-day postdischarge

readmission and death. The penalized likelihood approach was used to improve

the smoothness of the estimated surface, with tuning parameters determined by the

method of cross-validated deviance residuals. The two panels in the first row present

30-day postdischarge variations at 4 distinct dates of discharge. The downward slop-

ing curves indicate that having COVID-19 was associated with significantly elevated

risks of readmission and death, but only over the first week of discharge. The two

panels in the second row present variations with calendar time on 4 different days

after discharge, where the COVID-19 effect became less significant with more days

since discharge. Within the first 5 days of discharge, the risk of readmission gradu-

ally increased as the pandemic unfolded, whereas the risk of death decreased until

early June and then remained relatively unchanged afterward.

The remaining panels in the third and fourth rows of Figure 4.6 are contour

and surface plots, respectively, displaying the variations of the COVID-19-associated

risks of readmission and death along two dimensions of time. Persistently declining

log hazard ratios were observed from Day 0 to Day 30 since discharge, suggesting that

the COVID-19 effects on readmission and death were decreasing with time. During

the first 5 days after discharge, there existed three peaks for readmissions around

early April, early August, and mid October of 2020, while there was only one peak for

death in early April. These findings are consistent with the evolution of the COVID-

19 pandemic in the general population. In the initial phase of the pandemic, the

case fatality rate was extremely high as the highly pathogenic variants of the novel

coronavirus hit the country. Restricted access to health services and the fear of

contagion contributed to deferred hospitalizations and readmissions, which supports

the mildly high risk of readmission in early April. As governments implemented
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various mandates to contain the spread of the coronavirus, patients became more

willing to be admitted to hospital, with the risk of readmission rebounding. In the

meantime, the pervasive variants were getting less pathogenic, and hospitals became

more prepared to treat COVID-19 patients, both of which led to a reduced case

fatality rate. The risk of postdischarge death therefore decreased with calendar

time.

In addition to modeling the bivariate COVID-19 effect on postdischarge out-

comes, we tested its variation along two time dimensions according to Section 4.4.3.

Consistent with the top right panel of Figure 4.6, the test of univariate variation

across calendar time for postdischarge death led to a p-value of 0.727, indicating

that the risk of death did not vary significantly with calendar time. All other tests

of univariate and bivariate variation led to p-values less than 0.001.

4.6.2 Discharge destinations

In the second study, outcomes of interest were three options of discharge des-

tination, including (1) in-hospital death or discharge to hospice, (2) discharge to

a long- or short-term care hospital, skilled nursing facility, intermediate care facil-

ity, inpatient rehabilitation facility, psychiatric hospital, or critical access hospital

(hereafter discharge to another facility), and (3) discharge to home with or without

home care services, together viewed as mutually exclusive competing risks. Included

in the data were 544,677 unplanned hospitalizations of 250,940 Medicare dialysis

beneficiaries associated with 2,929 dialysis facilities throughout the year of 2020 (de-

termined based on admission dates). Each hospital admission was followed up for up

to 40 days. Among the 544,677 hospital admissions, 44,858 resulted in an in-hospital

death or discharge to hospice; 125,723 were followed by a discharge to another facil-

ity; and 371,104 resulted in a home discharge. The remaining 2,992 admissions were
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associated with a hospital stay longer than 40 days, i.e., a censoring.

We ran an unpenalized bivariate varying coefficient model to validate its per-

formance on the discharge status data, in which the coefficient of COVID-19 was

formulated as a bivariate function of post-admission time (i.e., days after admission

or length of hospital stay) and calendar time. Similarly as before, the 12 panels of

Figure 4.7 present the dynamics of the COVID-19 effect (in log hazard ratio) on

three discharge destinations from different perspectives. Panels in the first two rows

indicate that patients admitted with COVID-19 were less likely to be discharged to

home or to another facility, and more likely to die in hospital or be discharged to

hospice than those without COVID-19, especially in the initial phase of the pan-

demic and over the first 20 days of hospitalization. The COVID-19 effects remained

significant with calendar time (the first row), but shrank as the length of stay in-

creased (the second row). Evidence shown in the contour and surface plots (last

two rows of Figure 4.7) is consistent with what one would anticipate in the early

stage of the pandemic: compared with those admitted without COVID-19, dialysis

patients admitted with COVID-19 were associated with a significantly higher risk

of early in-hospital death or discharge to hospice, and a significantly lower risk of

early discharge to home or another facility. The COVID-19 effects then became less

significant until mid-November 2020. After mid-November, the risk of in-hospital

death or early discharge to hospice mildly increased among COVID-19 hospitaliza-

tions, while the risk of early discharge to another facility decreased substantially

among COVID-19 hospitalizations, suggesting a worsening situation toward the end

of 2020.

For all three discharge destinations, we performed tests of univariate and

bivariate variation of the COVID-19 effects, similarly as in Section 4.6.1. The re-
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Figure 4.7: Bivariate variation of log hazard ratios with respect to in-hospital COVID-19 diagno-
sis for discharge status (home, another facility, and hospice/death). Included in the sample were
544,677 unplanned acute-care hospitalizations of 250,940 Medicare beneficiaries on dialysis associ-
ated with 2,929 Medicare-certified dialysis facilities in 2020. Ribbons in the top six panels indicate
95% confidence intervals. Panels in the third and fourth rows are contour and surface plots, respec-
tively.
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sulting p-values were all less than 0.001, implying that the COVID-19 effects were

significantly varying jointly or separately with post-admission and calendar time.

4.7 Discussion

Motivated by our recent investigations into the dynamic impact of COVID-

19 on dialysis patients, we have proposed a bivariate varying coefficient model for

large-scale competing risks data. This novel model successfully characterizes the

variation of COVID-19 effects on both event and calendar timescales. To address

the computational challenge arising from fitting the model to the massive data in our

applications, we developed an efficient tensor-product proximal Newton algorithm.

Further, we introduced difference-based anisotropic penalization to alleviate model

overfitting and the unsmoothness of the estimated effect surface. Various methods of

cross-validation were considered for parameter tuning purposes. Statistical testing

procedures with and without penalization were also designed to examine whether

the COVID-10 effect variation was significant across event and calendar time, either

jointly or separately. The proposed methods have been comprehensively evaluated

through simulation studies and applications to dialysis patients amidst the COVID-

19 pandemic.

Although inspired by COVID-19 studies on dialysis patients, the bivariate

varying coefficient model can be harnessed in a variety of applications. For instance,

among patients with breast cancer, evidence suggests that the racial and ethnic dis-

parities in their cause-specific survival change significantly with post-diagnosis time

[136]. The proposed model can be leveraged to examine whether those disparities

also change with age at diagnosis, thereby promoting health equity through more

customized treatment options.
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Multivariate varying coefficient models, as a flexible and granular analytical

approach, have been studied in the presence of functional responses [146, 94] or

longitudinal outcomes [85, 125]. However, none of these studies has allowed the

coefficients to depend on event time in a survival manner, which imposes a higher

order of computational complexity than modeling event-time-independent varying

coefficients in a multi-dimensional context. In contrast, our proposed model features

bivariate effect dependence with both event time and an arbitrary risk factor; the

accompanying inference, penalization, and model selection methods also advance the

current literature of varying coefficient modeling.



CHAPTER V

Summary and Future Work

This dissertation has introduced three approaches to analyzing massive and

complex competing risks data arising from administrative claims and disease reg-

istries. In Chapter II, we have developed a discrete time competing risk model

for profiling Medicare-certified kidney dialysis facilities based on 30-day unplanned

hospital readmissions. Distinct from existing logistic regression models, the new

model accounts for event times, and the resulting standardized quality measure is

not systematically affected by the rate of competing risks. Next in Chapter III, we

have proposed a proximal Newton algorithm that improves the computational effi-

ciency and estimation accuracy of time-varying coefficient modeling for large-scale

competing risks data through the introduction of proximal algorithms in convex op-

timization. Lastly in Chapter IV, a bivariate varying coefficient model has been

developed to characterize the multidimensional dynamics of the COVID-19 effect on

dialysis patients, accompanied by difference-based anisotropic penalization, tests of

variation, and cross-validated model selection methods.

Although the endeavors were motivated by applications in kidney dialysis,

cancer survival and COVID-19, the novel competing risk methods can be harnessed

in a variety of settings. For instance, the discrete time competing risk model can

89
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be used to examine any type of terminal outcome, as long as the occurrence of the

outcome is significantly affected by other types of terminal outcome, e.g., 30-day post-

discharge emergency department visit in the presence of post-discharge death. As a

second example, one may leverage the bivariate varying coefficient model to study

racial and ethnic inequalities in the progression of chronic kidney disease (CKD) to

end-stage renal disease, where the disparities may vary with calendar time and the

time since the diagnosis of CKD.

In the near future, we intend to extend the research pipeline along several

paths. First, evidence suggests that the impact of COVID-19 on the post-discharge

prognosis of dialysis patients also varies geographically (Figure 5.1). A competing

risk model with spatiotemporally varying coefficients would be an ideal statistical

tool for analyzing the variation of the COVID-19 effect across space and time. The

literature has seen a growing number of Bayesian [41, 4, 83, 39] and frequentist

approaches [145, 113, 82, 81, 65, 64] to modeling spatially varying coefficients for

continuous outcomes, with a few studies further considering the spatiotemporal vari-

ation [41, 108]. However, there is a paucity of methodological effort devoted to the

development of spatially or spatiotemporally varying coefficient models for time-to-

event data. Following a frequentist perspective, we propose to bridge this gap by

means of the bivariate splines defined on triangulations and their tensor product with

univariate splines [67, 107]. Compared with kernel or tensor product smoothing, the

proposed method will be free from the “leakage” problem when the spatial data are

distributed over irregularly shaped domains with complex boundaries, strong con-

cavities, or interior holes [103]. Given the analytical complexity of our approach, we

anticipate the computational challenge to be considerable.

Second, varying coefficient modeling can also be useful in the presence of re-
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Figure 5.1: Geographic variation of the unplanned readmission and death rates among discharges
with and without in-hospital COVID-19 from January 1 to October 31 of 2020. To enhance accuracy,
states with limited COVID-19 discharges were combined within each of the nine US Census Bureau-
designated divisions.
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current events (e.g., hospitalizations) and/or terminal events (e.g., deaths), possibly

with staggered subject entry (left truncation). Thus far, there have been only a

few articles focused on the temporal variation of coefficients for recurrent events,

with or without terminal events. Zhao et al. (2011) [143] considered jointly model-

ing recurrent and terminal events with time-varying coefficients, which were simply

assumed to be piecewise constant. Yu et al. (2014) [142] added a shared random

effect (frailty) to the joint event modeling framework with time-varying coefficients.

Liu and Guo (2020) [77] pursued a Bayesian framework allowing multitype recurrent

events. None of these analyses accounted for the possibility of left truncation, and

their applications were restricted to small data sets with about 100 subjects. In our

case of hospitalizations among dialysis patients with end-stage renal disease, while

some patients were at risk for another hospital admission at a certain time of the year,

others were still ineligible for kidney dialysis and should not be counted as at-risk

patients. Another overwhelming challenge is that the sample often consists of mil-

lions of data records, which renders any general-purpose software implementations

infeasible. To better meet the analytical needs, we plan on extending our methodol-

ogy for competing risks to recurrent and terminal events with left truncation. Since

a model with left truncation leads to risk sets non-monotonically varying with time,

the load balancing in parallel computing is anticipated to be more challenging than a

model with right censoring only. In this context, a solution to optimized workload al-

location may involve multi-way number partitioning [105]. Spatial or spatiotemporal

variation of coefficients may also be incorporated into the analytical framework.

Lastly, in some applications of time-varying coefficient modeling, it is of par-

ticular interest to identify the subset of the domain on which the coefficient exactly

equals zero, i.e., a zero-effect (null) region. Despite the growing interest, this topic
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remains underexplored. Zhou et al. (2013) [144] developed a shrinkage method

which simultaneously detected the null region and estimated the coefficient on the

non-null region for functional linear regression models; Yang (2020) [141] proposed a

novel soft-thresholded varying coefficient model allowing for null region identification.

Both articles were exclusively focused on continuous outcomes. We therefore aim at

developing estimation and inference methods of null region detection for competing

risks and other time-to-event outcomes.

I embarked on my predoctoral training in biostatistics and scientific com-

puting with a quantitative background in statistics and economics. As my clinical

knowledge built up while working at the Kidney Epidemiology and Cost Center, I

have become increasingly interested in health services and outcomes research, and

aspire to a career that harnesses data-driven quantitative methods to promote pop-

ulation health. The series of competing risk approaches presented here reflects my

initial attempt toward the scientific vision. Moving forward, I would like to continue

my pursuit along the paths set forth above in the hope of making a difference in

public health, one person at a time.
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APPENDIX A

Supplementary Material for Chapter II

A.1 Score and Information of Log-Partial Pseudo-Likelihood L

Let h denote a vector consisting of

hijk := h(ηk + γi + Z⊤
ij(k)β),

i = 1, . . . ,m, j = 1, . . . , ni, k = 1, . . . , tij, and let ḣijk and ḧijk denote the first and

second order derivatives, respectively. With θ := (γ⊤,η⊤,β⊤)⊤, the score and Fisher

information of the log-partial pseudo-likelihood are given by

U(θ) :=
(
U⊤(γ),U⊤(η),U⊤(β)

)⊤
,

I(θ) :=


I(γ) I⊤(η,γ) I⊤(β,γ)

I(η,γ) I(η) I⊤(β,η)

I(β,γ) I(β,η) I(β)

 ,

in which

U(γ) =
τ∑

k=1

(U1·k, . . . ,Um·k)
⊤ , I(γ) =

τ∑
k=1

diag(I1·k, . . . , Im·k),

U(η) =
m∑
i=1

(Ui·1, . . . ,Ui·τ )⊤ , I(η) =
m∑
i=1

diag(Ii·1, . . . , Ii·τ ),

U(β) =
m∑
i=1

ni∑
j=1

τ∑
k=1

UijkZij(k), I(β) =
m∑
i=1

ni∑
j=1

τ∑
k=1

IijkZij(k)Z
⊤
ij(k),
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I(η,γ) =


I1·1 · · · Im·1

...
. . .

...

I1·τ · · · Im·τ

 ,

I(β,γ) =
τ∑

k=1

{
n1∑
j=1

I1jkZ1j(k), . . . ,
nm∑
j=1

ImjkZmj(k)

}
,

I(β,η) =
m∑
i=1

ni∑
j=1

(Iij1Zij(1), . . . , IijτZij(τ)) ,

with

Uijk :=
ḣijk{∆N1

ij(k)− Yij(k)hijk}
hijk(1− hijk)

, Iijk :=
Yij(k)ḣ

2
ijk

hijk(1− hijk)
.

Throughout the expressions above, a subscripted dot denotes summation over that

subscript. For convenience, let D(γ) := [I−1
1·· , . . . , I−1

m··]
⊤, the vector of diagonal ele-

ments of I−1(γ), and

I11 := I(γ), I21 :=

I(η,γ)
I(β,γ)

 , I12 = I⊤21, I22 :=

 I(η) I⊤(β,η)

I(β,η) I(β)

 .

A.2 Blockwise Inversion Newton Algorithm: Technical Details

Let ◦ denote the entrywise product, and let l ∈ {0}∪N index iterations. The

Blockwise Inversion Newton algorithm is sketched as Algorithm 4. Computing the

Newton step ∆θ = I−1(θ)U(θ) in Lines 8 and 9 is a dominant bottleneck. By the

blockwise inversion formula [9], we have

(A.1) I−1 =

I−1
11 + I−1

11 I12S−1I21I−1
11 −I−1

11 I12S−1

−S−1I21I−1
11 S−1

 ,

where S := I22−I21I−1
11 I12 is the Schur complement of I11 = I(γ). Observing

the four blocks of I−1(θ), we record J1, S−1 and J2 (Lines 5–7, Algorithm 4) at each

iteration to avoid redundant computing. Specifically, J1 defined as a matrix product,
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can instead be computed by multiplying each column of I21 with the corresponding

element of D(γ), a vector of the diagonal elements of I−1(γ). This trick brings down

the time complexity from O(m2(τ + r)) to O(m(τ + r)). In total, inverting I(θ) via

(A.1) costs O(m(τ + r)2 + (τ + r)3), much less than O((m + τ + r)3) using a naive

Newton–Raphson algorithm given that m≫ τ + r.

Algorithm 4: Blockwise Inversion Newton (BIN)

1: initialize l← 0 and θ(0) = 0
2: set s ∈ (0, 0.5), t ∈ (0.5, 1) and ϵ > 0
3: do
4: d← 1

5: J (l)
1 = I(l)21

{
I(l)11

}−1

6: S(l) = I(l)22 − J
(l)
1

{
I(l)21

}⊤

7: J (l)
2 =

{
S(l)

}−1 J (l)
1

8: ∆γ(l) = D(γ(l)) ◦ U(γ(l)) +
{
J (l)
2

}⊤
{
J (l)
1 U(γ(l))−

(
U(η(l))
U(β(l))

)}
9:

(
∆η(l)

∆β(l)

)
=
{
S(l)

}−1
(
U(η(l))
U(β(l))

)
− J (l)

2 U(γ(l))

10: while ℓ(θ(l) + d∆θ(l)) < ℓ(θ(l)) + sdU⊤(θ(l))∆θ(l) do
11: d← td
12: end while
13: while ∥h(l) − h(l−1)∥∞ ≥ ϵ

A.3 Justifying θ̂ as a GEE Estimator

We redefine discharge j as discharge l of patient p to introduce patient-level

indexing. Let n(i) denote the patient count of facility i, let nip denote the discharge

count of patient p in that facility, and let n̄ be the maximum of all nip’s. To ease

notation, for i = 1, . . . ,m, p = 1, . . . , n(i), l = 1, . . . , nip, and k = 1, . . . , τ , we define

Uipl(k) := (uiplk(1), . . . , uiplk(m))⊤,

Wipl(k) := (wiplk(1), . . . , wiplk(τ))
⊤,

where uiplk(q) = 1(q = j) and wiplk(q) = 1(q = k). Then we have

hiplk = h(ηk + γi + Z⊤
ipl(k)β) = h(X⊤

ipl(k)θ),
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in which Xipl(k) := (U⊤
ipl(k),W

⊤
ipl(k),Z

⊤
ipl(k))

⊤. Further, we let

Dip = (ḣip11Xip1(1), . . . , ḣip1τXip1(τ), . . . , ḣipnip1Xipnip
(1), . . . , ḣipnipτXipnip

(τ))⊤,

∆N1
ip := (∆N1

ip1(1), . . . ,∆N
1
ip1(τ), . . . ,∆N

1
ipnip

(1), . . . ,∆N1
ipnip

(τ))⊤,

Yip := diag(Yip1(1), . . . , Yip1(τ), . . . , Yipnip
(1), . . . , Yipnip

(τ)),

hip := (hip11, . . . , hip1τ , . . . , hipnip1, . . . , hipnipτ )
⊤,

Vip := diag(v(hip11), . . . , v(hip1τ ), . . . , v(hipnip1), . . . , v(hipnipτ )),

bip := (b(hip11), . . . , b(hip1τ ), . . . , b(hipnip1), . . . , b(hipnipτ ))
⊤,

where hiplk is a shorthand of h(ηk + γi + Z⊤
ij(k)β), and b and v are known functions

given by

b(h) :=
√
h(1− h), v(h) :=

ḣ2

h(1− h)
,

with ḣ representing the first-order derivative of h.

Following the GEE framework, we have a system of unbiased estimating equa-

tions

(A.2)
m∑
i=1

n(i)∑
p=1

D⊤
ipV

−1
ip (∆N1

ip −Yiphip) = 0,

in which an independent working correlation matrix has been assumed. With some

algebra, system (A.2) reduces to

ϕ−1

m∑
i=1

n(i)∑
p=1

nip∑
l=1

τ∑
k=1

UiplkXipl(k) = 0,

which is easily seen to be equivalent to U(θ) = 0. This implies that the maximum

likelihood estimator θ̂ is a solution to (A.2), i.e., θ̂ is a GEE estimator under the

working independence assumption.
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A.4 Assumptions on the Stabilized Robust Variance Estimator

As in a marginal model, we make three assumptions on the stabilized robust

variance estimator.

Assumption A.1. The conditional mean of ∆N1
ipl(k) (i.e., cause-specific hazard of

readmission) depends on the covariates Zipl(k) via a known function, that is,

(A.3) E{∆N1
ipl(k)|Tipl ≥ k,Zipl(k)} = λipl(k) = hiplk.

Assumption A.2. The conditional variance of ∆N1
ipl(k) depends on the conditional

mean hiplk in (A.3) according to

Var{∆N1
ipl(k)|Tipl ≥ k,Zipl(k)} = v(hiplk)ϕ,

where ϕ > 0 is an unknown scale parameter.

Assumption A.3. For any n ∈ {1, . . . , n̄}, all patients who have a τnth-order lead-

ing principal submatrix of the correlation matrix of ∆N1
ip share a common structure

for that submatrix.

Compared with Pan (2001) [90], Assumption A.3 extends the notion of com-

mon correlation structure to patient-level clustering with unequal discharge counts.

An underlying justification is that for those patients who have experienced at least n

discharges, their levels of exposure to additional UHRs should be similar, regardless

of the different discharge counts they would eventually have. This assumption allows

inter-patient discharge pooling to be independent of patient-specific discharge count,

which, implicitly, is a random variable for every patient.

A.5 Stabilized Robust Score Test: Technical Details

For patient p in facility i, let hip be a vector of UHR hazards hiplk :=

h(ηk + γi + Z⊤
ipl(k)β), let Yip denote a diagonal matrix of at-risk indicators Yipl(k),
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let Vip be a diagonal matrix with variance functions v(hiplk) on the diagonal, where

v(h) := ḣ2/[h(1−h)] with ḣ being the first derivative of h, and let bip be an entrywise

transformation of hip by b(h) :=
√
h(1− h). Furthermore, we let n(i) denote the pa-

tient count of facility i, let nip denote the discharge count of patient p in that facility,

and let n̄ be the maximum of all nip’s. As typically assumed, we adopt a working

independence covariance structure of ∆N1
ip, the vector of UHR outcomes of patient

p in facility i. Under this condition, θ̂ is a generalized estimating equation (GEE)

estimator. Detailed derivation is available in Web Appendix B of the Supporting

Information. With the notation in Section A.3, the integrated correlation matrix M

is defined as

(A.4) M := Π ◦A := Π ◦
m∑
i=1

n(i)∑
p=1

Aip,

where matrix Π := (πrc) ∈ Rτn̄×τn̄ with πrc := |{(i, p) : nip ≥ ⌈max(r, c)/τ⌉}|−1, and

Aip ∈ Rτn̄×τn̄ is zero everywhere except at its τnipth-order leading principal subma-

trix (LPS) A
(nip)
ip := V

−1/2
ip (∆N1

ip −Yiphip)(∆N1
ip −Yiphip)

⊤V
−1/2
ip . The matrix M

can be thought of as an aggregation of patient-specific correlation information A
(nip)
ip

of unequal dimensions, then downscaled by the counts of patients who contribute to

the specific entries of A. Figure A.1 illustrates how Π is applied to A to obtain M.

With the matrix M defined as in (A.4), the stabilized robust estimator of Var(γ̂i)

can be written as

(A.5) Σ̂γi := Ŵ−1
γi
V̂γiŴ

−1
γi
,

where

V̂γi := ϕ̂−2

n(i)∑
p=1

b̂⊤
ipM̂

(nip)b̂ip, Ŵγi := ϕ̂−1

n(i)∑
p=1

b̂⊤
ipYipb̂ip,

ϕ̂ := N−1

m∑
i=1

n(i)∑
p=1

nip∑
l=1

τ∑
k=1

{∆N1
ipl(k)− Yipl(k)ĥiplk}2

v(ĥiplk)
,
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N :=
∑m

i=1

∑n(i)

p=1

∑nip

l=1

∑τ
k=1 Yipl(k)−m− τ − p+ 1, M(n) is the τnth-order LPS of

M, and carets indicate evaluations at θ̂.
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Figure A.1: Illustration of constructing M as an entrywise product of A and the scale matrix
Π. For simplicity, we consider τ = 1 and n̄ = 5. A lighter tint of gray indicates a smaller set
Rn := {(i, p) : nip ≥ n} of patients at risk for at least n discharges, n = 1, . . . , n̄.

A.6 Alternative Tests

A generalized Wald test statistic is given by

TRW
i :=

γ̂i − γ̂M√
Σ̂γi

,

which has the same asymptotic distribution as TRS
i .

If the competing risk model is correctly specified, a model-based score test

statistic under the null hypothesis H0i : γi = γM can be expressed as

TMS
i

Ui(γ̃i)√
Ii(γ̃i)

,

where Ii(γ̃i) is the ith diagonal element of the information matrix I(γ̃i) evaluated

at θ̃i. Likewise, a model-based Wald test statistic is given by

TMW
i :=

√
Ii(γ̂)(γ̂i − γ̂M),

where Ii(γ̂) is the ith diagonal element of I(γ̂) evaluated at θ̂. Under certain regular-

ity conditions, TMS
i and TMW

i also have an asymptotic standard normal distribution.
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A.7 Simulation Details

As acknowledged in the literature [95, 90, 29], with a logit link and clustered

binary responses, it is unlikely to build a model in which subjects with the same num-

ber of repeated measurements share a common correlation matrix structure. Since

our inference framework bears a resemblance to a marginal model, the previous ob-

servation carries over to our simulation setting. Nonetheless, Assumptions A.1 to A.3

in Section A.4 can be approximately satisfied by assuming the following misspecified

model with random effect:

E{∆N1
ipl(k)|Tipl ≥ k,Zipl(k), εipl} = h(ηk + γi + Z⊤

ipl(k)β + εipl),

where εip = [εip1, . . . , εipnip
]⊤ ∼ Nnip

(0,Σ), with Σ being an exchangeable covariance

matrix with marginal variance σ2 and correlation ρ. When h is a standard logistic

function (corresponding to the logit link), we have

E{∆N1
ipl(k)|Tipl ≥ k,Zipl(k)} ≈ ψσ(ηk + γi + Z⊤

ipl(k)β),

where

ψσ(u) := κ · Φ

(
u√

ξ1 + σ2

)
+ (1− κ) · Φ

(
u√

ξ2 + σ2

)
,

with κ = 0.4353, ξ1 = 2.29672, and ξ2 = 1.30172, and the last so-called two-probit

approximation is due to Demidenko (2013) [28]. Figure A.2 displays absolute errors

of two-probit approximation with respect to the standard logistic function under

different values of σ. In particular, σ = 0.3 strikes a balance between introducing

correlation and approximating the logistic function, with a maximum absolute error

of 0.0043.
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Figure A.2: Absolute errors of two-probit approximation relative to standard logistic function under
different values of σ.

A.8 Application Details

The readmissions data are derived from an extensive national ESRD patient

database garnered from multiple data systems operated by federal public health

agencies in the United States. Significant sources include the Renal Management

Information System, CROWNWeb facility-reported clinical and administrative data

(extracted from CMS-2728 Medical Evidence Form, CMS-2746 Death Notification

Form, and CMS-2744 Annual Facility Survey Form), Medicare Enrollment Database,

Medicare claims data from Standard Analytic Files, transplant data from the Scien-

tific Registry of Transplant Recipients, nursing home Minimum Data Set, provider

survey and certification data from Quality Improvement and Evaluation System Busi-

ness Intelligence Center, and the Dialysis Facility Compare.

Applying exclusion criteria (such as patients with a primary diagnosis of can-

cer, mental health, or rehabilitation, discharged against medical advice, or hospi-

talized at Prospective Payment System-exempt cancer hospitals) to qualifying dis-

charges taking place between January 1 and December 31, 2018, there were 541,769

discharges (257,860 patients) from 6,937 Medicare-certified dialysis facilities included

in analysis, each facility with at least 11 discharges. The 6,937 facilities had a wide
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variety of discharge counts from 11 (52 facilities) to 842 (1 facility) with a mean of

78.10, readmission counts from 0 (19) to 264 (1) with a mean of 20.58, and com-

peting event counts from 0 (707) to 76 (1) with a mean of 3.72. Among them, 10%

had at most 24 discharges or 5 readmissions, and 26.35% had at most 1 competing

risk. Patient-specific discharge counts spanned from 1 (143,704 patients) to 12 (139

patients), with 75% of patients having at most 2 discharges. The observed 30-day

facility-specific readmission rates ranged from 0% (19 facilities) to 73.33% (1 facil-

ity), with an overall readmission rate of 26.35%; the observed 30-day facility-specific

rates of competing risks varied from 0% (707) to 23.08% (1), with an overall rate

of 4.76%. We consider 74 predictors, including age, sex, body mass index, years on

dialysis, status of Medicare Advantage Plans at discharge, length (days) of index

hospitalization, diabetic status, past-year nursing home status at discharge, past-

year prevalent comorbidities and high-risk conditions at discharge (using Agency for

Healthcare Research and Quality Clinical Classifications Software ICD-10 diagnosis

categories). Days (4 to 30) to the first event after discharge are available as times

to events. If a patient switches to another facility prior to a readmission, then the

readmission is attributed to the dialysis facility at the time of discharge.

A.9 Supplementary Figures

Figure A.3 implies that different link functions give rise to similar distribution

of SRRs in our application setting. Figure A.4 demonstrates that using estimates

from the constrained model refitting procedures yield similar score test statistics as

those without model refitting, regardless of which variance estimator is considered.

Figure A.5 shows the difference in SRR versus average at-risk time, stratified by

facility-specific discharge counts.
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SRR (logit)
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Figure A.3: SRR from competing risk models with different link functions. Histograms are in
the diagonal panels. Facilities are stratified by readmission rate or discharge count. Dashed lines
represent 2.5% and 97.5% quantiles of the standard normal distribution. 45-degree lines in solid
black.
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Figure A.4: Score test statistics with versus without constrained model refitting using different
variance estimators. “stabrobust”, “robust” and “model” correspond to test statistics with the
stabilized robust, classical robust and model-based variance estimators, respectively. Facilities are
stratified by readmission rate. 45-degree lines in solid black.
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Figure A.5: Difference in SRR versus average at-risk time, stratified by facility-specific discharge
counts. SRRs under the CRM and LRM are computed based on expression (8) in the article and
He et al. (2013) [49], respectively. The at-risk time of a discharge is defined as the earlier of the
time to the first event and the end of follow-up (30 days).
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APPENDIX B

Supplementary Material for Chapter III

B.1 Gradient and Information of Log-Partial Likelihood (3.4)

To derive the gradient ∇ℓj(γj) and Hessian matrix ∇2ℓj(γj) of ℓj(γj), we

define

S
(u)
ij (γj, Xi) :=

∑
r∈R(Xi)

exp{[Zr ⊗B(Xi)]
⊤γj}Z⊙u

r , u = 0, 1, 2,

where for a vector v ∈ Rp, v⊙0 := 1, v⊙1 := v, and v⊙2 := vv⊤. The gradient

∇ℓj(γj) and Hessian ∇2ℓj(γj) of ℓj(γj) are hence given by

∇ℓj(γj) =
1

n

n∑
i=1

∆ij

{
Zi − Zij(γj, Xi)

}
⊗B(Xi),(B.1)

∇2ℓj(γj) = −
1

n

n∑
i=1

∆ijVij(γj, Xi)⊗
{
B(Xi)B

⊤(Xi)
}
,(B.2)

in which

Zij(γj, Xi) :=
S
(1)
ij (γj, Xi)

S
(0)
ij (γj, Xi)

, Vij(γj, Xi) :=
S
(2)
ij (γj, Xi)

S
(0)
ij (γj, Xi)

− Z
⊙2

ij (γj, Xi).

B.2 Proofs of Lemmas, Propositions and Theorems

Proposition B.1. Let proxλℓ be a proximal operator of λℓ as in (4) with the max-

imand g(γ) := ℓ(γ)− 1
2λ
∥γ − v∥22. Then ∃m > 0 such that h(γ) := g(γ) + m

2
∥γ∥22 is

concave and the maximizer of g is unique.
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Proof. Given any µ ∈ [0, 1] and γ,α ∈ dom(g), observe that when m ≤ 1/λ,

µh(γ)+ (1−µ)h(α)−h(µγ+(1−µ)α) = µℓ(γ)+ (1−µ)ℓ(α)− ℓ(µγ+(1−µ)α)

+

(
m

2
− 1

2λ

)[
µ∥γ∥22 + (1− µ)∥α∥22 − ∥µγ + (1− µ)α∥22

]
≤ 0,

by the concavity of ℓ and convexity of the Euclidean norm ∥ · ∥2. Thus g is strongly

and hence strictly concave, which further implies that g has a unique maximizer. ■

Lemma B.2. Let ℓ : Rd → R be a differentiable function. Then a direction µ ∈ Rd

satisfies ∇ℓ(γ)⊤µ > 0 at γ if and only if there exists a symmetric and positive

definite matrix M such that µ = M−1∇ℓ(γ).

Proof. Suppose µ = M−1∇ℓ(γ) where M is positive definite. Then M−1 is positive

definite as well since eigenvalues of M−1 are reciprocals of eigenvalues of M by spec-

tral decomposition. Thus ∇ℓ(γ)⊤µ = ∇ℓ(γ)⊤M−1∇ℓ(γ) > 0 whenever ∇ℓ(γ) ̸= 0.

Conversely, suppose d⊤µ > 0 where d := ∇ℓ(γ). We claim that

M := I− µµ⊤

µ⊤µ
+

dd⊤

d⊤µ

is positive definite. Observe that I − µµ⊤

µ⊤µ
is symmetric and idempotent, and dd⊤

d⊤µ

is symmetric and positive semidefinite. Then M is positive semidefinite. Pick an

arbitrary x ∈ Rd \ {0} with

x⊤
(
I− µµ⊤

µ⊤µ

)
x = 0⇔

(
I− µµ⊤

µ⊤µ

)
x = 0⇔ x ∈ null

(
I− µµ⊤

µ⊤µ

)
= range

(
µµ⊤

µ⊤µ

)
.

That x ∈ range
(

µµ⊤

µ⊤µ

)
implies that ∃y ∈ Rd such that x = aµ with a := µ⊤y

µ⊤µ
̸= 0.

Then

x⊤
(
dd⊤

d⊤µ

)
x =

a2µ⊤dd⊤µ

d⊤µ
= a2d⊤µ > 0

implies that x⊤Mx > 0 for any x ∈ Rd \ {0}, that is, M is positive definite.

Furthermore, we have Mµ = µ− µ+ d = d = ∇ℓ(γ), i.e., µ = M−1∇ℓ(γ). ■
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Proposition B.3. Let ℓ : Rd → R be continuously differentiable and bounded above

on Rd. Assume that ∃γ(0) ∈ Rd such that the superlevel set G := {γ ∈ Rd :

ℓ(γ) ≥ ℓ(γ(0))} is convex and compact with a nonempty interior int(G). If the

sequence {γ(s)}∞s=1 is defined recursively by γ(s+1) = γ(s) + ν∆γ(s), where ∆γ(s)

satisfies ∇ℓ⊤(γ(s))∆γ(s) > 0 at γ(s), and ν > 0 satisfies

ℓ(γ(s) + ν∆γ(s)) ≥ ℓ(γ(s)) + ϕν∇ℓ⊤(γ(s))∆γ(s),(B.3)

ℓ(γ(s) + ν∆γ(s)) ≤ ℓ(γ(s)) + ψν∇ℓ⊤(γ(s))∆γ(s),(B.4)

with ϕ ∈ (0, 1) and ψ ∈ (ϕ, 1), then {ℓ(γ(s))}∞s=0 converges and

(B.5) lim
s→∞

∇ℓ⊤(γ(s))∆γ(s)

∥∆γ(s)∥2
= 0.

Proof. By the Heine–Cantor theorem, the continuity of ∇ℓ on a compact set G

implies uniform continuity of ∇ℓ. For fixed γ ∈ G and µ satisfying ∇ℓ⊤(γ)µ > 0,

define

R(γ,µ) := {ν > 0 : ϕν∇ℓ⊤(γ)µ ≤ ℓ(γ + νµ)− ℓ(γ) ≤ ψν∇ℓ⊤(γ)µ}.

Trivially, ∀ ν ∈ R(γ,µ), γ + νµ ∈ G, which implies that {γ(s)}∞s=1 ⊂ G. Now we

claim that R(γ,µ) contains a nontrivial interval. Since ℓ is bounded above byM , and

ϕ∇ℓ⊤(γ)µ > 0, ∃ νu > 0 such that ∀ ν ≥ νu, ℓ(γ + νµ) ≤ M < ℓ(γ) + ϕν∇ℓ⊤(γ)µ.

By the definition of directional derivative, ∃ ϵ > 0 such that ∀ ν ∈ (0, ϵ ∧ νu),

ℓ(γ + νµ)− ℓ(γ)
ν

−∇ℓ⊤(γ)µ > −(1−ϕ)∇ℓ⊤(γ)µ⇔ ℓ(γ+νµ) > ℓ(γ)+ϕν∇ℓ⊤(γ)µ.

Since ν 7→ ℓ(γ + νµ) − ϕν∇ℓ⊤(γ)µ is a continuous mapping, by the intermediate

value theorem, ∃ ν1 ∈ (0, νu) such that ℓ(γ + ν1µ) = ℓ(γ) + ϕν1∇ℓ⊤(γ)µ. With the

same argument, ∃ ν2 > 0 such that ℓ(γ + ν2µ) = ℓ(γ) + ψν2∇ℓ⊤(γ)µ. Once again,

the intermediate value theorem implies that ∃ τ > 0 such that

ϕτ∇ℓ⊤(γ)µ < ℓ(γ + τµ)− ℓ(γ) < ψτ∇ℓ⊤(γ)µ,
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which by the continuity of ν 7→ [ℓ(γ + νµ) − ℓ(γ)]/ν implies that there exists a

nonempty open neighborhood of τ contained in R(γ,µ).

Obviously, {ℓ(γ(s))}∞s=1 is an increasing sequence bounded above and hence

converges. To show (B.5) by contradiction, suppose ∃ ϵ > 0 and a subsequence

{γ(sr)}∞r=1 such that

(B.6)
∇ℓ⊤(γ(sr))∆γ(sr)

∥∆γ(sr)∥2
≥ ϵ, ∀ r ∈ N.

Condition (B.3) implies that

ℓ(γ(sr+1))− ℓ(γ(sr)) ≥ ℓ(γ(sr) + ν(sr)∆γ(sr))− ℓ(γ(sr))

≥ ϕν(sr)∇ℓ⊤(γ(sr))∆γ(sr) ≥ ϕν(sr)∥∆γ(sr)∥2ϵ, ∀ r ∈ N,

which further implies that

(B.7) lim
r→∞

ν(sr)∥∆γ(sr)∥2 = 0

given that {ℓ(γ(sr))}∞r=1 converges.

In addition, Condition (B.4) implies that ∀ r ∈ N,

(1−ψ)ν(sr)∇ℓ⊤(γ(sr))∆γ(sr) ≤ ν(sr)∇ℓ⊤(γ(sr))∆γ(sr)+ℓ(γ(sr))−ℓ(γ(sr)+ν(sr)∆γ(sr)).

By Taylor’s theorem and the Cauchy–Schwarz inequality, ∃ ξ ∈ (0, 1) such that

(1− ψ)ν(sr)∇ℓ⊤(γ(sr))∆γ(sr)

≤ ν(sr)∇ℓ⊤(γ(sr))∆γ(sr) + ℓ(γ(sr))− ℓ(γ(sr) + ν(sr)∆γ(sr))

= ν(sr)
[
∇ℓ(γ(sr))−∇ℓ(γ(sr) + ξν(sr)∆γ(sr))

]⊤
∆γ(sr)

≤ ∥∇ℓ(γ(sr))−∇ℓ(γ(sr) + ξν(sr)∆γ(sr))∥2ν(sr)∥∆γ(sr)∥2.

By (B.6), (B.7), and the uniform continuity of ∇ℓ, ∃ ξ ∈ (0, 1) such that as r →∞,

0 < (1− ψ)ϵ ≤ ∥∇ℓ(γ(sr))−∇ℓ(γ(sr) + ξν(sr)∆γ(sr))∥2 → 0,

a contradiction. Thus (B.5) holds true. ■
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Theorem B.4. Let ℓj assume the log-partial likelihood (4) in Section 2 with an

initial iterate γ
(0)
j , and let {γ(s)

j }∞s=1 be a sequence of iterates defined by Line 20 of

Algorithm 1, where ∆γ
(s)
j is given by Line 16, and ν > 0 is determined by the Armijo–

Goldstein conditions (7) and (8) in Section 3.2 with ϕ ∈ (0, 0.5) and ψ ∈ (0.5, 1). If

Assumptions 1 and 2 hold, then {ℓj(γ(s)
j )}∞s=0 converges and lims→∞ ∥∇ℓj(γ(s)

j )∥2 =

0.

Proof. By assumption, Condition (B.5) holds by Proposition B.3. ∀ s ∈ N, let

M(s) := I/λs − ∇2ℓj(γ
(s)
j ), symmetric and positive definite. Spectral decomposi-

tion implies that ∥M1/2
(s) ∥2 = ∥M(s)∥1/22 and ∥M−1/2

(s) ∥2 = ∥M(s)∥−1/2
2 . It follows from

Assumption 2 that

∇ℓ⊤j (γ
(s)
j )∆γ

(s)
j

∥∇ℓ(γ(s)
j )∥2∥∆γ

(s)
j ∥2

=
(∆γ

(s)
j )⊤M(s)∆γ

(s)
j

∥M(s)∆γ
(s)
j ∥2∥∆γ

(s)
j ∥2

≥
(∆γ

(s)
j )⊤M

1/2
(s) M

1/2
(s) ∆γ

(s)
j

∥M(s)∥2∥∆γ
(s)
j ∥22

=
∥M1/2

(s) ∆γ
(s)
j ∥22

∥M(s)∥2∥∆γ
(s)
j ∥22

≥
∥∆γ

(s)
j ∥22

∥M−1/2
(s) ∥22∥M(s)∥2∥∆γ

(s)
j ∥22

=
1

∥M−1
(s)∥2∥M(s)∥2

≥ 1

κ
,

that is,

∇ℓ⊤(γ(s)
j )∆γ

(s)
j

∥∆γ
(s)
j ∥2

≥
∥∇ℓ(γ(s)

j )∥2
κ

, ∀ s ∈ N,

which by (B.5) implies lims→∞ ∥∇ℓj(γ(s)
j )∥2 = 0. ■

Lemma B.5. If ℓ : Rd → R is twice continuously differentiable, then ∀x,y, z ∈ Rd,

∥∇ℓ(y)−∇ℓ(z)−∇2ℓ(x)(y− z)∥2 ≤ sup
0≤ξ≤1

∥∇2ℓ(z+ ξ(y− z))−∇2ℓ(x)∥2∥y− z∥2.

See, for example, Ortega and Rheinboldt (1970) [89] for a proof.
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Proposition B.6. Let ℓ : Rd → R be twice continuously differentiable. Assume that

∃γ(0) ∈ Rd such that the superlevel set G := {γ ∈ Rd : ℓ(γ) ≥ ℓ(γ(0))} is convex and

compact with a nonempty interior int(G), and that the sequence {γ(s)}∞s=1 defined

recursively by γ(s+1) = γ(s) + ν∆γ(s) converges to γ∗, where ∇2ℓ(γ∗) is negative

definite, ∆γ(s) satisfies ∇ℓ⊤(γ(s))∆γ(s) > 0 at γ(s), and ν > 0 satisfies (B.3) and

(B.4) with ϕ ∈ (0, 0.5) and ψ ∈ (0.5, 1). If

(B.8) lim
s→∞

∥∇ℓ(γ(s)) +∇2ℓ(γ(s))∆γ(s)∥2
∥∆γ(s)∥2

= 0,

then

(i) ∃ s0 ∈ N such that ∀ s ≥ s0, ν = 1 satisfies (B.3) and (B.4);

(ii) ∇ℓ(γ∗) = 0; and

(iii) {γ(s)}∞s=0 converges superlinearly to γ∗ provided that ∀ s ≥ s0, ν = 1 for some

s0 ∈ N.

Proof. The Cauchy–Schwarz inequality implies that

∇ℓ⊤(γ(s))∆γ(s)

∥∆γ(s)∥22
=

(∆γ(s))
⊤
[∇ℓ(γ(s)) +∇2ℓ(γ(s))∆γ(s)]− (∆γ(s))

⊤∇2ℓ(γ(s))∆γ(s)

∥∆γ(s)∥22

≥ −∥∆γ(s)∥2∥∇ℓ(γ(s)) +∇2ℓ(γ(s))∆γ(s)∥2
∥∆γ(s)∥22

− (∆γ(s))
⊤∇2ℓ(γ(s))∆γ(s)

∥∆γ(s)∥22

≥ −∥∇ℓ(γ
(s)) +∇2ℓ(γ(s))∆γ(s)∥2
∥∆γ(s)∥2

− λmax(∇2ℓ(γ(s))),

where λmax(M) denotes the greatest eigenvalue of a matrixM. By the assumption on

ℓ, the map γ 7→ λmax(∇2ℓ(γ)) is continuous. By (B.8) and the negative definiteness

of ∇2ℓ(γ∗), for sufficiently large s1 ∈ N, ∃ ξ > 0 such that

(B.9)
∇ℓ⊤(γ(s))∆γ(s)

∥∆γ(s)∥22
≥ ξ, ∀ s ≥ s1.

It follows from (B.5) that

(B.10) lim
s→∞
∥∆γ(s)∥2 = 0.
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By Taylor’s theorem, ∃ γ̄ := γ(s) + ξ∆γ(s) with ξ ∈ (0, 1) such that

ℓ(γ(s) +∆γ(s))− ℓ(γ(s))− 1

2
∇ℓ⊤(γ(s))∆γ(s)

=
1

2
[∇ℓ(γ(s)) +∇2ℓ(γ(s))∆γ(s)]⊤∆γ(s) +

1

2
(∆γ(s))

⊤
[∇2ℓ(γ̄)−∇2ℓ(γ(s))]∆γ(s)

≥ −
[
∥∇ℓ(γ(s)) +∇2ℓ(γ(s))∆γ(s)∥2

2∥∆γ(s)∥2
+

1

2
∥∇2ℓ(γ̄)−∇2ℓ(γ(s))∥2

]
∥∆γ(s)∥22.

It follows from (B.8), (B.10), and the continuity of γ 7→ ∇2ℓ(γ) that for sufficiently

large s2 ∈ N,

ℓ(γ(s) +∆γ(s))− ℓ(γ(s))− 1

2
∇ℓ⊤(γ(s))∆γ(s)

≥ −(1/2− ϕ)ξ∥∆γ(s)∥22 ≥ (ϕ− 1/2)∇ℓ⊤(γ(s))∆γ(s), ∀ s ≥ s2,

the second inequality due to (B.9). Thus ∀ s ≥ s2, ν = 1 satisfies (B.3). Likewise,

since ψ > 1/2, for sufficiently large s3 ∈ N,

ℓ(γ(s) +∆γ(s))− ℓ(γ(s))− 1

2
∇ℓ⊤(γ(s))∆γ(s)

≤ (ψ − 1/2)ξ∥∆γ(s)∥22 ≤ (ψ − 1/2)∇ℓ⊤(γ(s))∆γ(s), ∀ s ≥ s3,

which satisfies (B.4) and hence Part (i) holds true.

To show Part (ii), note that (B.10) implies

lim
s→∞
∥∇ℓ(γ(s)) +∇2ℓ(γ(s))∆γ(s)∥2 = 0.

By the triangle inequality and continuity of γ 7→ ∇2ℓ(γ), as s→∞,

∥∇ℓ(γ(s))∥2 ≤ ∥∇ℓ(γ(s)) +∇2ℓ(γ(s))∆γ(s)∥2 + ∥∇2ℓ(γ(s))∥2∥∆γ(s)∥2 → 0,

that is, Part (ii) is true.

To show Part (iii), suppose without loss of generality that ∀ s ∈ N, ν = 1

satisfies Conditions (B.3) and (B.4). By the triangle inequality, Lemma B.5 and
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(B.8), as s→∞,

∥∇ℓ(γ(s+1))∥2
∥∆γ(s)∥2

=
∥∇ℓ(γ(s+1))−∇ℓ(γ(s))−∇2ℓ(γ(s))∆γ(s) +∇ℓ(γ(s)) +∇2ℓ(γ(s))∆γ(s)∥2

∥∆γ(s)∥2

≤ ∥∇ℓ(γ
(s+1))−∇ℓ(γ(s))−∇2ℓ(γ(s))∆γ(s)∥2

∥∆γ(s)∥2

+
∥∇ℓ(γ(s)) +∇2ℓ(γ(s))∆γ(s)∥2

∥∆γ(s)∥2

≤ sup
0≤ξ≤1

∥∇2ℓ(γ(s) + ξ∆γ(s))−∇2ℓ(γ(s))∥2 +
∥∇ℓ(γ(s)) +∇2ℓ(γ(s))∆γ(s)∥2

∥∆γ(s)∥2

→ 0,

given that lims→∞ ∥ξ∆γ(s)∥2 = 0 by (B.10). Likewise, by Part (ii), the triangle

inequality, and Lemma B.5, for sufficiently large s4, ∃ η > 0 such that

∥∇ℓ(γ(s+1))∥2 = ∥∇ℓ(γ(s+1))−∇ℓ(γ∗)∥2

≥∥∇2ℓ(γ∗)(γ(s+1) − γ∗)∥2 − ∥∇ℓ(γ(s+1))−∇ℓ(γ∗)−∇2ℓ(γ∗)(γ(s+1) − γ∗)∥2

≥
[

1

∥∇2ℓ(γ∗)−1∥2
− sup

0≤ξ≤1
∥∇2ℓ(γ(s) + ξ(γ(s+1) − γ∗))−∇2ℓ(γ∗)∥2

]
∥γ(s+1) − γ∗∥2

≥ η∥γ(s+1) − γ∗∥2, ∀ s ≥ s4.

By the arguments above and triangle inequality, as s→∞, we have

ηρ(s)

1 + ρ(s)
=

η∥γ(s+1) − γ∗∥2
∥γ(s) − γ∗∥2 + ∥γ(s+1) − γ∗∥2

≤ ∥∇ℓ(γ
(s+1))∥2

∥∆γ(s)∥2
→ 0,

where ρ(s) := ∥γ(s+1) − γ∗∥2/∥γ(s) − γ∗∥2. It follows that lims→∞ ρ(s) = 0 and hence

by Definition 2 in Section 3.2, Part (iii) holds. ■

Theorem B.7. Let ℓj assume the log-partial likelihood (4) in Section 2 with an

initial iterate γ
(0)
j , and let {γ(s)

j }∞s=1 be a sequence of iterates defined by Line 20

of Algorithm 1, where ∆γ
(s)
j is given by Line 16, and ν > 0 is determined by the

Armijo–Goldstein conditions (7) and (8) in Section 3.2 with ϕ ∈ (0, 0.5) and ψ ∈

(0.5, 1). In addition, assume that {γ(s)
j }∞s=1 converges to γ∗

j with a negative definite

∇2ℓj(γ
∗
j ). If Assumptions 1 and 3 hold, then (1) ∃ s0 ∈ N such that ∀ s ≥ s0,
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ν = 1 satisfies the Armijo–Goldstein conditions; (2) ∇ℓj(γ∗
j ) = 0; and (3) {γ(s)

j }∞s=0

converges superlinearly to γ∗
j provided that ∀ s ≥ s0, ν = 1 for some s0 ∈ N.

Proof. By the assumptions, we have

∇ℓj(γ(s)
j ) +∇2ℓj(γ

(s)
j )∆γ

(s)
j = ∇ℓj(γ(s)

j ) +∇2ℓj(γ
(s)
j )
(
I/λs −∇2ℓj(γ

(s)
j )
)−1

∇ℓj(γ(s)
j )

= (I/λs)
(
I/λs −∇2ℓj(γ

(s)
j )
)−1

∇ℓj(γ(s)
j ) = ∆γ

(s)
j /λs,

which implies that (B.8) holds. Then the conclusions follow from Proposition B.6.

■

B.3 Proximal Newton algorithm versus its parallelization

To illustrate the advantage of the parallelized ProxiN, in Figure B.1, we re-

ported its speedup and efficiency with respect to the serial ProxiN with varying

thread counts. The setting was similar to the one in Table 1 of the manuscript,

except that the sample size increased from 1,000 to 1,000,000. As more threads were

involved, the speedup curves went up and efficiency curves went down. When the

sample size was 1,000, the speedup and efficiency were at the lowest level since the

overhead of invoking the shared-memory parallelization accounted for the vast ma-

jority of the computational cost. However, when the sample size increased to 10,000,

the speedup and efficiency reached 12 and 0.75, respectively, with 16 threads being

employed. This indicated a massive advantage of the parallelized ProxiN algorithm

over the serial version. As the sample size increased further to 1 million, the speedup

and efficiency dropped to 7.43 and 0.464, respectively, in the presence of 16 threads.

Therefore, we recommend that the parallelized ProxiN algorithm be preferred to the

serial ProxiN especially when the sample size is beyond 10,000. The speed improve-

ment is substantial even on a general-purpose computer workstation with a limited

number of threads.
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Figure B.1: Speedup and efficiency of the parallelized proximal Newton algorithm. Experiments
were conducted using simulated data on an Intel® Xeon® Gold 6254 quad-processor with max
frequency 4 GHz and RAM 576 GB. The sample size varied from 1,000 to 1,000,000. The runtime
was taken as an average of the duration of 10 runs with a fixed number of threads. The speedup
was defined as the ratio of the runtime of the serial proximal Newton algorithm to the runtime
of the parallelized version, given a certain number of threads. The efficiency was defined as the
speedup divided by the number of threads. See Casanova et al. (2008) [12] for a detailed account.

B.4 Evaluating parallelized ProxiN using breast and prostate cancer
data

We evaluated the shared-memory parallelization of ProxiN with a varied num-

ber of threads and presented the speedup and efficiency in Figure B.2. As the number

of threads increased from 2 to 16, the speedup of the parallelization relative to the se-

rial proximal algorithm grew from 1.56 to 10.79. As more threads were involved in the

computation, fewer tasks were assigned to a single thread and the load distribution

became less even. Therefore, the per thread proportion of parallelization overhead

rose, resulting in an overall efficiency decline from 78.18% to 67.47%. Theoretical

upper bounds of speedup and efficiency curves were also depicted.

Using the prostate cancer data, we also assessed the shared-memory paral-

lelization of ProxiN, with results shown in Figure B.3. As the number of threads grew

from 2 to 16, the speedup increased from 1.75 to 7.42, while the efficiency declined

from 87.51% to 46.41%. Comparing the results with those using the breast cancer
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Figure B.2: Speedup and efficiency of the parallelized proximal Newton algorithm. Experiments
were conducted using the SEER breast cancer data on an Intel® Xeon® Gold 6254 quad-processor
with max frequency 4 GHz and RAM 576 GB. The runtime was taken as an average of the duration
of 10 runs with a fixed number of threads. The speedup was defined as the ratio of the runtime
of the serial proximal Newton algorithm to the runtime of the parallelized version, given a certain
number of threads. The efficiency was defined as the speedup divided by the number of threads.
See Casanova et al. (2008) [12] for a detailed account. Theoretical bounds of speedup and efficiency
were also obtained according to Amdahl’s law [1]. Let δ ∈ (0, 1) be the fraction of serial runtime
of parallelizable code and c the number of threads used for parallelization. Then the speedup is
bounded by c/(δ + c − cδ), and the efficiency by 1/(δ + c − cδ). In this case, the fraction δ was
around 98%. For reference, the serial proximal Newton algorithm took 159.10 seconds to converge.

data, we note that the performance of the parallelization depends upon sample size

as well as hardware configuration.

B.5 Supplementary Tables
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Table B.1: Integrated mean squared error (IMSE), average bias, and average variance of estimates

β̂1(t) and β̂3(t) using the proximal Newton (ProxiN), naive Newton (NaiveN), and quasi-Newton
(QuasiN) methods with varying sample sizes. In each scenario, 100 data replicates were generated.
True values were β1(t) = 1, β2(t) = sin(3πt/4), β3(t) = 1, β4(t) = sin(3πt/4), and β5(t) = 1.
Effects β1(t) and β2(t) were expanded with 5 control points (knots) and the other 3 effects were
expanded with 7 control points. Binary covariates for β1(t) and β2(t) had their frequency of being
one varying uniformly from 0.8 to 0.9, while covariates for β3(t), β4(t) and β5(t) had their frequency
of being one varying uniformly from 0.4 to 0.5.

method size IMSE bias variance

Panel A: β1(t)

ProxiN
1000 7.16 1.12 5.90
5000 1.34 0.08 1.33
10000 0.67 0.13 0.65

NaiveN
1000 4970.70 16.53 4697.48
5000 166.96 3.47 154.94
10000 24.34 0.47 24.12

QuasiN
1000 565324.26 20.01 564923.92
5000 4394.66 30.34 3473.92
10000 7938.16 53.74 5050.27

Panel B: β3(t)

ProxiN
1000 4.55 0.60 4.19
5000 0.89 0.31 0.79
10000 0.31 0.12 0.29

NaiveN
1000 343.03 3.05 333.73
5000 6.29 0.57 5.96
10000 4.76 0.50 4.51

QuasiN
1000 3136357.39 340.91 3020134.58
5000 37874.74 75.48 32177.72
10000 51506.41 111.61 39049.38
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Table B.2: Integrated mean squared error (IMSE), average bias, and average variance of estimates

β̂2(t) and β̂4(t) using the proximal Newton (ProxiN), naive Newton (NaiveN), and quasi-Newton
(QuasiN) methods with varying sample sizes. In each scenario, 100 data replicates were generated.
True values were β1(t) = 1, β2(t) = sin(3πt/4), β3(t) = 1, β4(t) = sin(3πt/4), and β5(t) = 1.
Effects β1(t) and β2(t) were expanded with 5 control points (knots) and the other 3 effects were
expanded with 7 control points. Binary covariates for β1(t) and β2(t) had their frequency of being
one varying uniformly from 0.8 to 0.9, while covariates for β3(t), β4(t) and β5(t) had their frequency
of being one varying uniformly from 0.4 to 0.5.

method size IMSE bias variance

Panel A: β2(t)

ProxiN
1000 7.59 1.01 6.56
5000 1.75 0.36 1.62
10000 0.83 0.33 0.72

NaiveN
1000 15298.91 20.16 14892.65
5000 2053.19 0.95 2052.29
10000 147.46 1.95 143.67

QuasiN
1000 825978.27 122.77 810904.83
5000 3629.98 30.64 2691.19
10000 7695.80 64.09 3587.91

Panel B: β4(t)

ProxiN
1000 4.25 0.20 4.21
5000 0.55 0.20 0.51
10000 0.24 0.21 0.20

NaiveN
1000 169.73 0.91 168.89
5000 1.78 0.30 1.69
10000 1.55 0.34 1.44

QuasiN
1000 2680662.28 348.07 2559512.55
5000 15715.84 56.26 12550.28
10000 27001.54 95.26 17927.10
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Figure B.3: Speedup and efficiency of the parallelized proximal Newton algorithm. Experiments
were conducted using the SEER prostate cancer data on an Intel® Xeon® Gold 6254 quad-processor
with max frequency 4 GHz and RAM 576 GB. The runtime was taken as an average of the duration
of 10 runs with a fixed number of threads. The speedup and efficiency were defined in the caption
of Figure B.2. In this case, the fraction of parallelizable code δ was around 94%. For reference, the
serial proximal Newton algorithm took 71.35 seconds to converge.

Table B.3: Integrated mean squared error (IMSE), average bias, and average variance of estimates

β̂11(t) and β̂12(t) (corresponding to the first cause of failure) using the proximal Newton (ProxiN),
naive Newton (NaiveN), and quasi-Newton (QuasiN) methods with varying sample sizes. In each
scenario, 100 data replicates were generated. True values were β11(t) = 1, β12(t) = sin(3πt/4),
β13(t) = −1, β14(t) = −1, and β15(t) = 1. The effect β11(t) was expanded with 5 control points
(knots) and the other 4 effects were expanded with 7 control points.

method size IMSE bias variance

Panel A: β11(t)

ProxiN
1000 1.88 0.06 1.88
5000 0.60 0.08 0.60
10000 0.44 0.07 0.43

NaiveN
1000 50.68 0.22 50.63
5000 4.00 0.16 3.97
10000 2.52 0.34 2.41

QuasiN
1000 10667.07 99.70 726.24
5000 13967.36 113.29 1132.96
10000 4966.15 68.71 245.43

Panel B: β12(t)

ProxiN
1000 2.96 0.31 2.86
5000 1.05 0.27 0.98
10000 0.66 0.19 0.63

NaiveN
1000 18046.24 29.96 17148.45
5000 234.14 0.30 234.05
10000 154.32 1.36 152.47

QuasiN
1000 29836.08 171.26 504.90
5000 22516.75 145.01 1488.61
10000 607.72 23.48 56.57
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Table B.4: Integrated mean squared error (IMSE), average bias, and average variance of estimates

β̂21(t) and β̂22(t) (corresponding to the second cause of failure) using the proximal Newton (ProxiN),
naive Newton (NaiveN), and quasi-Newton (QuasiN) methods with varying sample sizes. In each
scenario, 100 data replicates were generated. True values were β21(t) = −1, β22(t) = cos(3πt/4),
β23(t) = 1, β24(t) = 1, and β25(t) = −1. The effect β21(t) was expanded with 5 control points
(knots) and the other 4 effects were expanded with 7 control points.

method size IMSE bias variance

Panel A: β21(t)

ProxiN
1000 2.66 0.09 2.65
5000 0.82 0.22 0.78

10000 0.57 0.04 0.57

NaiveN
1000 210.96 2.62 204.10
5000 11.50 0.11 11.49

10000 9.63 0.40 9.47

QuasiN
1000 26201.67 160.88 320.23
5000 26077.32 160.62 279.39

10000 26457.63 161.71 309.09

Panel B: β22(t)

ProxiN
1000 4.41 0.41 4.24
5000 1.12 0.31 1.02

10000 0.73 0.28 0.65

NaiveN
1000 344296.28 85.31 337018.53
5000 2242.58 9.38 2154.56

10000 736.99 3.15 727.08

QuasiN
1000 816.01 19.09 451.39
5000 832.45 27.32 86.07

10000 1506.81 36.60 167.22
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Table B.5: Integrated mean squared error (IMSE), average bias, and average variance of estimates

β̂1(t) and β̂2(t) using the proximal Newton (ProxiN), naive Newton (NaiveN), and quasi-Newton
(QuasiN) methods with varying sample sizes. In each scenario, 100 data replicates were generated
each with 1,000 observations. A fixed number of K = 5 knots were used for model fitting. The
column ‘censoring’ indicates different uniform distributions of censoring times. True values were
β1(t) = 1, β2(t) = sin(3πt/4), β3(t) = −1, β4(t) = −1, and β5(t) = 1.

method censoring IMSE bias variance

Panel A: β1(t)

ProxiN
Uniform(0,3) 3.60 0.24 3.55

Uniform(0.5,3) 2.82 0.15 2.80
Uniform(1,3) 2.20 0.10 2.19

Uniform(1.5,3) 1.63 0.18 1.59

NaiveN
Uniform(0,3) 35.82 0.99 34.84

Uniform(0.5,3) 18.49 0.58 18.15
Uniform(1,3) 17.95 0.68 17.48

Uniform(1.5,3) 7.02 0.46 6.81

QuasiN
Uniform(0,3) 6772.12 69.37 1960.34

Uniform(0.5,3) 6447.40 67.50 1891.83
Uniform(1,3) 5843.91 65.85 1507.36

Uniform(1.5,3) 5504.39 66.36 1100.59

Panel B: β2(t)

ProxiN
Uniform(0,3) 1.82 0.28 1.74

Uniform(0.5,3) 1.72 0.27 1.65
Uniform(1,3) 1.39 0.24 1.33

Uniform(1.5,3) 0.89 0.23 0.84

NaiveN
Uniform(0,3) 20.94 1.41 18.95

Uniform(0.5,3) 11.05 1.02 10.01
Uniform(1,3) 8.06 0.95 7.16

Uniform(1.5,3) 3.24 0.64 2.83

QuasiN
Uniform(0,3) 72892.15 237.68 16400.41

Uniform(0.5,3) 73688.59 241.31 15460.03
Uniform(1,3) 67488.24 234.54 12481.04

Uniform(1.5,3) 61153.12 230.64 7957.28
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Table B.6: Integrated mean squared error (IMSE), average bias, and average variance of estimates

β̂1(t) and β̂2(t) using the proximal Newton (ProxiN), naive Newton (NaiveN), and quasi-Newton
(QuasiN) methods with varying sample sizes. In each scenario, 100 data replicates were generated
each with 1,000 observations. A fixed number of K = 5 knots were used for model fitting. The
column ‘censoring’ indicates different exponential distributions of censoring times. True values were
β1(t) = 1, β2(t) = sin(3πt/4), β3(t) = −1, β4(t) = −1, and β5(t) = 1.

method censoring IMSE bias variance

Panel A: β1(t)

ProxiN
Exponential(0.2) 0.24 0.22 0.19
Exponential(0.5) 0.68 0.22 0.63
Exponential(0.8) 2.89 0.15 2.87
Exponential(1.0) 4.65 0.36 4.53

NaiveN
Exponential(0.2) 0.25 0.22 0.20
Exponential(0.5) 40.00 0.63 39.60
Exponential(0.8) 45.88 0.20 45.84
Exponential(1.0) 153.62 0.44 153.42

QuasiN
Exponential(0.2) 10738.67 93.24 2045.25
Exponential(0.5) 11491.22 84.32 4381.66
Exponential(0.8) 10737.09 77.90 4669.03
Exponential(1.0) 50168.07 66.31 45771.43

Panel B: β2(t)

ProxiN
Exponential(0.2) 0.26 0.31 0.16
Exponential(0.5) 0.41 0.35 0.29
Exponential(0.8) 1.28 0.36 1.15
Exponential(1.0) 2.18 0.45 1.98

NaiveN
Exponential(0.2) 0.31 0.32 0.21
Exponential(0.5) 2.65 0.49 2.40
Exponential(0.8) 16.34 0.91 15.51
Exponential(1.0) 53.29 2.35 47.79

QuasiN
Exponential(0.2) 42096.75 190.56 5783.34
Exponential(0.5) 67970.58 212.90 22646.26
Exponential(0.8) 82922.33 231.75 29212.65
Exponential(1.0) 617933.47 179.31 585780.50
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Table B.7: Integrated mean squared error (IMSE), average bias, and average variance of estimates

β̂1(t) and β̂2(t) using the proximal Newton (ProxiN), naive Newton (NaiveN), and quasi-Newton
(QuasiN) methods with varying sample sizes. In each scenario, 100 data replicates were generated
each with 1,000 observations. A fixed number ofK = 5 knots were used for model fitting. Censoring
times were generated from an exponential distribution with a rate of 0.5. True values were β1(t) = 1,
β2(t) = sin(3πt/4), β3(t) = −1, β4(t) = −1, and β5(t) = 1.

method size IMSE bias variance

Panel A: β1(t)

ProxiN
100,000 0.074 0.27 0.00053

1,000,000 0.074 0.27 0.00023

Panel B: β2(t)

ProxiN
100,000 0.15 0.39 0.00074

1,000,000 0.15 0.39 0.00051

Table B.8: Integrated mean squared error (IMSE), average bias, and average variance of estimates

β̂1(t) and β̂2(t) using the proximal Newton (ProxiN), naive Newton (NaiveN), and quasi-Newton
(QuasiN) methods with varying sample sizes, where t ∈ (0, 2]. In each scenario, 100 data replicates
were generated and a fixed number of K = 5 knots were used for model fitting. True values were
β1(t) = 1, β2(t) = sin(3πt/4), β3(t) = −1, β4(t) = −1, and β5(t) = 1.

method size IMSE bias variance

Panel A: β1(t)

ProxiN
1000 0.23 0.04 0.23
5000 0.03 0.03 0.03
10000 0.02 0.03 0.02

NaiveN
1000 0.97 0.09 0.96
5000 0.02 0.02 0.02
10000 0.01 0.01 0.01

QuasiN
1000 6414.11 69.50 1584.47
5000 4784.41 47.07 2569.14
10000 3449.31 42.66 1629.44

Panel B: β2(t)

ProxiN
1000 0.19 0.06 0.19
5000 0.04 0.07 0.03
10000 0.02 0.07 0.01

NaiveN
1000 0.54 0.17 0.51
5000 0.05 0.09 0.04
10000 0.02 0.07 0.02

QuasiN
1000 66114.46 227.58 14323.58
5000 46499.04 122.28 31546.56
10000 31094.54 117.32 17330.83
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Table B.9: Integrated mean squared error (IMSE), average bias, and average variance of estimates

β̂1(t) and β̂2(t) using the proximal Newton (ProxiN), naive Newton (NaiveN), and quasi-Newton
(QuasiN) methods with varying sample sizes, where t ∈ (2, 3]. In each scenario, 100 data replicates
were generated and a fixed number of K = 5 knots were used for model fitting. True values were
β1(t) = 1, β2(t) = sin(3πt/4), β3(t) = −1, β4(t) = −1, and β5(t) = 1.

method size IMSE bias variance

Panel A: β1(t)

ProxiN
1000 11.13 0.43 10.94
5000 0.75 0.01 0.75
10000 0.42 0.06 0.41

NaiveN
1000 112.19 1.76 109.08
5000 0.79 0.04 0.79
10000 0.42 0.09 0.42

QuasiN
1000 8152.12 72.22 2936.10
5000 6371.02 33.61 5241.41
10000 5029.56 47.96 2729.46

Panel B: β2(t)

ProxiN
1000 5.49 0.51 5.23
5000 0.50 0.35 0.38
10000 0.38 0.38 0.24

NaiveN
1000 5.60 2.48 59.44
5000 0.68 0.36 0.55
10000 0.35 0.33 0.24

QuasiN
1000 90108.10 265.80 19459.02
5000 38950.91 78.33 32815.05
10000 18420.84 85.59 11095.19
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Table B.10: Integrated mean squared error (IMSE), average bias, and average variance of estimates

β̂21(t) and β̂22(t) (corresponding to the second cause of failure) using the proximal Newton (ProxiN),
naive Newton (NaiveN), and quasi-Newton (QuasiN) methods with varying sample sizes. In each
scenario, 100 data replicates were generated, and a fixed number of K = 5 knots were used for
model fitting. True values were β21(t) = −1, β22(t) = cos(3πt/4), β23(t) = 1, β24(t) = 1, and
β25(t) = −1.

method size IMSE bias variance

Panel A: β21(t)

ProxiN
1000 2.74 0.08 2.74
5000 0.87 0.25 0.81

10000 0.59 0.05 0.59

NaiveN
1000 184.50 4.13 167.44
5000 11.17 0.04 11.17

10000 7.77 0.34 7.66

QuasiN
1000 228079.67 52.04 225371.79
5000 7137.96 58.58 3706.53

10000 6077.03 64.58 1906.45

Panel B: β22(t)

ProxiN
1000 3.32 0.62 2.94
5000 1.22 0.49 0.98

10000 0.95 0.51 0.69

NaiveN
1000 1283.69 4.58 1262.67
5000 20.77 0.64 20.36

10000 68.89 0.56 68.57

QuasiN
1000 971229.96 100.36 961157.95
5000 14782.05 83.76 7765.94

10000 9854.26 81.96 3137.26
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APPENDIX C

Supplementary Material for Chapter IV

C.1 Gradient and Hessian of ℓgj(γj,θj)

For g = 1, . . . , G, i = 1, . . . , ng, and j = 1, . . . ,m, we define

S
(u)
gij (γj,θj, Xgi) :=

∑
r∈Rg(Xgi)

exp{L⊤
gr(Xgi)γj +W⊤

grθj}

Lgr(Xgi)

Wgr


⊙u

, u = 0, 1, 2,

where Lgr(Xgi) := Zgr⊗B̆(X̆gr)⊗B(Xgi), and for a vector v ∈ Rp, v⊙0 := 1, v⊙1 := v,

and v⊙2 := vv⊤. The gradient ℓ̇gj(γj,θj) and Hessian ℓ̈gj(γj,θj) of ℓgj(γj,θj) are

hence given by

ℓ̇gj(γj,θj) =

ng∑
i=1

∆gij


Lgi(Xgi)

Wgi

−Ugij(γj,θj, Xgi)

 ,

ℓ̈gj(γj,θj) = −
ng∑
i=1

∆gijVgij(γj,θj, Xgi),

in which

Ugij(γj,θj, Xgi) :=
S
(1)
gij (γj,θj, Xgi)

S
(0)
gij (γj,θj, Xgi)

, Vgij(γj,θj, Xgi) :=
S
(2)
gij (γj,θj, Xgi)

S
(0)
gij (γj,θj, Xgi)

−U⊙2
gij(γj,θj, Xgi).

C.2 Proof of Proposition IV.1

Proposition C.1. Under H
(t)
0 : C(t)vec(γ⊤

jl ) = 0, the test statistic

{vec(γ̃⊤
jl )− b̃jl}⊤{C(t)}⊤

[
C(t)Ωjl{C(t)}⊤

]−1
C(t){vec(γ̃⊤

jl )− b̃jl}
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asymptotically follows a distribution characterized by

KK̆×KK̆∑
u=1

µuG
2
u,

where Gu’s are independent standard normal random variables, and µu’s are the

possibly identical eigenvalues of the matrix product of [C(t)Ωjl{C(t)}⊤]−1 and the

variance of C(t){vec(γ̃⊤
jl )− b̃jl}.

Proof. LetM := [C(t)Ωjl{C(t)}⊤]−1, letΣ denote the variance of x := C(t){vec(γ̃⊤
jl )−

b̃jl}, and letQ := x⊤Mx denote the Wald test statistic. SinceΣ is orthogonally diag-

onalizable, there exists an orthogonal matrixP such thatPΣP⊤ = Ψ, withΨ being a

diagonal matrix of positive eigenvalues ofΣ. LetR := Ψ−1/2P, a nonsingular matrix.

ThenRΣR⊤ = I. Since (R⊤)−1MR−1 is symmetric and orthogonally diagonalizable,

there exists another orthogonal matrix T such that T(R⊤)−1MR−1T⊤ = Φ is a diag-

onal matrix sharing the same eigenvalues µ1, . . . , µKK̆×KK̆ as those of (R⊤)−1MR−1.

Let z := TRx. Then under the null H
(t)
0 , we have z ∼ N (0, I). Since TR is non-

singular, x = R−1T⊤z. It follows that Q = z⊤Φz =
∑KK̆×KK̆

u=1 µuG
2
u, where Gu’s

independently follow the standard normal distribution. Observe that

(R⊤T⊤)−1MΣR⊤T⊤ = T(R⊤)−1MΣR⊤T⊤ = T(R⊤)−1MR−1T⊤ = Φ.

This implies that MΣ and Φ have the same set of eigenvalues (since the mapping

A 7→ B−1AB preserves eigenvalues). ■

C.3 Proof of Proposition IV.2

Proposition C.2. Let λ̂0jg(·) be the estimated baseline hazard function derived from

the unpenalized bivariate varying coefficient model. Let

M̃jgi := ∆jgi − exp(W⊤
giθ̃

−f
j )

∫ Xgi

0

exp
{
Z⊤

giβ̃
−f
j (t, X̆gi)

}
λ̂0jg(t) dt
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be the martingale residual for subject i in the gth stratum, where β̃−f
j (·, ·) and θ̃−f

j

are the penalized estimates from the corresponding fold f to which subject i in the

gth stratum belongs. Then the deviance residual for subject i in the gth stratum with

respect to the jth failure type is written as

djgi := sign(M̃jgi)

√
−2
[
∆jgi

{
Z⊤

giβ̃
−f
j (Xgi, X̆gi) +W⊤

giθ̃
−f
j + log

∫ Xgi

0

λ̂0jg(t) dt

}
+ M̃jgi

]
.

Proof. Given estimates θ̂j, β̂j(·, ·) for the bivariate varying coefficient model (1), the

martingale residuals can be defined as

M̂jgi := M̂jgi(∞, X̆gi) = ∆jgi − exp(W⊤
giθ̂j)

∫ Xgi

0

exp
{
Z⊤

giβ̂j(t, X̆gi)
}
λ̂0jg(t) dt,

where the baseline hazard estimates λ̂0jg(·) are determined via the Breslow estimator.

Further, the log-likelihood with respect to the jth failure type can be written as

G∑
g=1

ng∑
i=1

{∆jgi log λjgi(Xgi | Zgi,Wgi, X̆gi) + logSjgi(Xgi | Zgi,Wgi, X̆gi)}

=
G∑

g=1

ng∑
i=1

[
∆jgi{Z⊤

giβj(Xgi, X̆gi) +W⊤
giθj + log λ0jg(Xgi)

−
∫ Xgi

0

exp{Z⊤
giβj(t, X̆gi) +W⊤

giθj}λ0jg(t) dt
]
,

where Sjgi(t | Zgi,Wgi, X̆gi) is the corresponding survivor function. Assuming that

the baseline hazard λ0jg(·) is known, we have the deviance D written as

D = 2 sup
βjgi,θjgi

G∑
g=1

ng∑
i=1

{
∆jgi[Z

⊤
gi{βjgi − β̂j(Xgi, X̆gi)}+W⊤

gi(θjgi − θ̂j)]

−
∫ Xgi

0

[
exp(Z⊤

giβjgi +W⊤
giθjgi)− exp{Z⊤

giβ̂j(t, X̆gi) +W⊤
giθ̂j}

]
λ0jg(t) dt

}
,

where βjgi and θjgi are subject-cause-specific estimates allowed in a saturated model.

Now, we have the first order condition

∆jgi = exp(Z⊤
giβjgi +W⊤

giθjgi)

∫ Xgi

0

λ0jg(t) dt, g = 1, . . . , G, i = 1, . . . , ng.
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With this condition, the deviance D reduces to

D = −2
G∑

g=1

ng∑
i=1

{
∆jgi log

exp{Z⊤
giβ̂j(Xgi, X̆gi) +W⊤

giθ̂j}
∫ Xgi

0
λ0jg(t) dt

∆jgi

+ M̃jgi

}

= −2
G∑

g=1

ng∑
i=1

[
∆jgi

{
Z⊤

giβ̂j(Xgi, X̆gi) +W⊤
giθ̂j + log

∫ Xgi

0

λ0jg(t) dt

}
+ M̃jgi

]
,

where

M̃jgi := M̃jgi(∞, X̆gi) = ∆jgi − exp(W⊤
giθ̂j)

∫ Xgi

0

exp
{
Z⊤

giβ̂j(t, X̆gi)
}
λ0jg(t) dt

is the martingale residual with known baseline hazard λ0jg(·). Then the deviance

residual djgi for subject i in the gth stratum with respect to the jth failure type can

be written as

djgi = sign(M̂jgi)

√
−2
[
∆jgi

{
Z⊤

giβ̂j(Xgi, X̆gi) +W⊤
giθ̂j + log

∫ Xgi

0

λ̂0jg(t) dt

}
+ M̂jgi

]
,

where M̂jgi is the martingale residual M̃jgi with λ0jg(·) replaced by λ̂0jg(·). ■

C.4 Supplementary Figure



131

n: 2000 n: 3000 n: 4000 n: 5000

dim
ension: event tim

e
dim

ension: calendar tim
e

10−5 10−4 10−3 10−2 10−1 10−5 10−4 10−3 10−2 10−1 10−5 10−4 10−3 10−2 10−1 10−5 10−4 10−3 10−2 10−1

0

25

50

75

100

0

25

50

75

100

µ n

co
un

t

FC CFC UC DR GCV

Figure C.1: A comparison of the distribution of selected tuning parameters for five cross-validation
methods: fold-constrained (FC), complementary fold-constrained (CFC), and fold-unconstrained
(UC) cross-validated partial likelihood, cross-validated deviance residuals (DR), and generalized
cross-validation (GCV). In each scenario, 100 training and validation data replicates were generated
independently. A 5-by-5 grid of tuning parameters was formed such that µ/

√
n (with n denoting

sample size) and µ̆/
√
n varied from 10−5 to 10−1. Each cross-validation method was applied to a

training data replicate to determine the optimal tuning parameters. True values were β1(t, x̆) =
sin(3πt/4) exp(−0.5x̆) and β2(t, x̆) = 1.
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