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with 𝑧 of 3 as indicated by the three TJs that leave the cluster boundary. It contains an example of 
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TJs that are connected strictly to one QN (see around node 𝑄54), leading to a lower connectivity.
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Figure 10.1. Illustration of interaction between a particle with a grain boundary migrating from 

left to right. The boundary (dark line) bends around the particle (open lines) enveloping it with a 
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Abstract 

 

As the intrinsic microstructure of polycrystalline materials governs their properties, it is of 

fundamental interest to understand the underlying microstructures and their evolution 

mechanisms. Despite decades of research on this topic, many open questions remain unanswered 

(see Chapters 1-4). This is mainly because conventional experimental approaches provide limited 

information on microstructures either spatially (two-dimensional) or temporally (destructive). 

Thus, in this dissertation, nondestructive three-dimensional modalities (Chapter 5), namely 

absorption contrast tomography (ACT) and laboratory-based diffraction contrast tomography 

(LabDCT), are employed to capture the evolution of three-dimensional microstructures in 

polycrystalline materials. Armed with these techniques, this dissertation examines two scientific 

phenomena: (1) abnormal grain growth and (2) percolation behavior of grain boundary networks. 

Firstly, Chapter 6 of this dissertation describes the newly developed in-house 3D x-ray 

diffraction (3DXRD) data processing framework, PolyProc. As LabDCT becomes more and more 

accessible, needs are placed on developing data processing frameworks that are as efficient as 

possible. PolyProc fulfills the demand as it can intake a range of 3DXRD datasets and output 

analysis-ready datasets with further functionalities, such as a visualization and grain statistics. The 

framework is heavily utilized throughout the following chapters. 

The following Chapter 7 and 8 focus on identifying the mechanism of abnormal grain 

growth (AGG) in a particle-containing alloy. By integrating ACT and LabDCT, we capture 

occurrence of AGG together with the spatial distributions of second phase particles. The holistic 
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view of microstructure enables us to conclude that distribution of articles determines the 

trajectories of grain boundaries. That is, the particle distribution is highly correlated to the 

occurrence of AGG. We further investigate the origin of non-random particle distribution, which 

manifests during the isothermal anneal close to the solvus temperature. We find that it stems from 

residual segregation of the solute phase following solidification. 

Finally, Chapter 9 covers the percolation behavior of 3D polycrystalline materials. By 

collecting a large-scale 3D grain structure by LabDCT, we determine a percolation threshold of 

the high angle grain boundaries. We harness finite-size scaling analysis from bond percolation 

theory. We further confirm good agreement of the threshold with the theoretical result, validating 

the applicability of percolation theory on grain boundary networks. We further investigate the 

percolation behavior of triple junction (TJ) lines, which we confirm to show a lower percolation 

threshold than GB. We also observe vastly different percolation behaviors between TJ networks 

and theoretical diamond lattice, despite their topological similarities. We attribute the discrepancy 

to hyper-coordination of nodes and a spatial clustering of TJs in the microstructure. 

Overall, the findings in the dissertation expand our knowledge on kinetics and connectivity 

of grain boundaries in 3D metallic systems, which can contribute for designing efficient 

metallurgical processing methods and tailored microstructures for industrial applications. 
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Part I. Introduction 

Chapter 1. Microstructure of Polycrystals 

Solid materials can be classified based on the degree of arrangement in their crystal 

structures. A single crystal (or monocrystal) refers a solid consisting of a continuous lattice. At the 

other extreme, an amorphous material refers to a solid with no apparent long-range order. Other 

solids that fall into the middle of the spectrum between these two structures are called 

polycrystalline materials. Polycrystals are comprised of a number of microscopic crystals (grains) 

with different sizes, shapes, and crystallographic orientations (Figure. 1.1). A discontinuity of the 

lattice (grain) structure occurs at the interface between two facing grains and this planar defect is 

called a grain boundary. Grain boundaries are of interest as they possess an excess free volume 

and energy due to the mismatch between two crystallographic orientations. The free volume and 

energy, then, are responsible for many microstructural phenomena [1,2], reviewed below. 
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Figure 1.1. Polycrystalline microstructure of Al-3.5wt%Cu alloy, in which the Al grains are 

colored based on their orientation with respect to the specimen 𝑧 direction. 

 

Polycrystals are characterized by the arrangement of the grains and grain boundaries, since 

they vastly influence the properties of materials (e.g., mechanical [3–5], chemical [6], and 

electrical properties [7,8]). For example, the well-known Hall-Petch relationship [3,4] explains the 

direct correlation between yield strength 𝜎𝑦  and grain size 𝑑  of a polycrystal as 𝜎𝑦 ∝ 𝑑−1/2 

(Figure. 1.2). This relationship can be explained because grain boundaries function as barriers to 

dislocation motion due to the discontinuity of a slip direction. Thus, in general, the smaller the 

grain size, the greater the surface area of grain boundaries per unit volume, and a concomitant 

enhancement in mechanical properties of the material as dislocation motion is impeded. Of note 

that the relationship starts to fail as grain size becomes nano scale (~100 nm) (namely, 

nanocrystalline materials) due to grain rotations, formation of shear bands, and so on [5,9–13]  
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In addition to their density, the connectivity of grain boundaries can influence the 

susceptibility towards intergranular failure modes [14–19] (e.g., liquid metal embrittlement 

[20,21]). Fig. 1.3 shows an example of liquid metal embrittlement, recorded in real-time. The 

three-dimensional reconstruction shows the liquid Ga penetrates through Al polycrystal along 

connected paths of failure-susceptible grain boundaries [21]. 

 
Figure 1.2. Schematic of hardness or strength (𝜎𝑦) as a function of normalized grain size (𝑑). The 

grain size was calculated as average grain diameter. Reprinted from Ref. [4]. 
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Figure 1.3. Illustration of the penetration of liquid Ga inside an Al polycrystal sample. The Ga 

distribution is indicated by red dots inside a translucent cylindrical Al sample. Diameter of the 

cylindrical Al sample is 600 µm. Reprinted from Ref. [21]. 

 

As suggested by these two illustrative examples, microstructures provide an essential 

fingerprint on the behavior of materials. Thus, it is of great interest to understand the fundamental 

origins of microstructure and its evolution during processing. In this dissertation, I investigate, 

more specifically, abnormal grain growth and percolation. In the rest of Part I, I provide an 

overview of the relevant background and theory for each phenomenon. 
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Chapter 2. A Primer on Grain Growth 

Grains tend to grow in response to external stimuli (e.g., heat, magnetic field). Generally, 

the driving force for grain growth is capillarity or the reduction of the excess free energy stored in 

the grain boundary (in the absence of other competing factors such as strain energy, etc.). It follows 

that, along a grain growth process, the density of grain boundaries decreases as a result of an 

increase in mean grain size. The grain growth process generally follows one of two mechanisms, 

normal grain growth (NGG) and abnormal grain growth (AGG). NGG occurs when grains grow 

continuously, maintaining a unimodal and self-similar grain size distribution in the steady state 

(Fig 2.1a). AGG refers to a discontinuous growth phenomenon in which few grains grow more 

rapidly compared to other grains, developing a bimodal distribution of grain size at intermediate 

time-scales. Eventually, the few large grains eventually impinge on one other and the system 

returns to unimodal distribution at long times. In a few cases, however, the abnormal grain 

consumes the entire microstructure, resulting in a single crystal. 
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Figure 2.1. Evolution of grain size distribution over time for (a) normal grain growth (NGG) and 

(b) abnormal grain growth (AGG). Note in (a) that NGG retains unimodal distribution of grain 

size, whereas in (b) AGG develops bimodal distribution. Reprinted from Ref. [1]. 

 

The rate of grain growth depends on many factors including, but not limited to, the following.  We 

discuss each on qualitative grounds first, and then provide quantitative details later on in Part I.  

Temperature 

Grain growth entails the migration of grain boundaries, in which the kinetics are highly influenced 

by temperature, through an Arrhenius-type relationship. Since the driving force for grain growth 

(the reduction of grain boundary density) is small (on the order of 10−2 MPa [22]), growth can be 

accelerated at elevated temperatures by providing external stimulus in the form of heat. 

Second phase particles 

Among the factors inhibiting grain growth, an introduction of second phase particles can hamper 

the migration of grain boundaries and slow down grain growth, in turn. This is because the particles 

“pin” the grain boundaries in the same way that they may pin dislocations. 

Texture 
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A strong texture in materials implies a substantial fraction of low angle grain boundaries with 

relatively lower grain boundary energies. Thus, the capillary driving force for grain growth can be 

decreased due to a lower excess free energy in the system. 

2.1. Theories on Normal Grain Growth 

2.1.1. Burke and Turnbull model 

The capillary driving pressure for grain boundary migration is related to the curvature of 

the boundary [23,24]. When the principal radii of curvature (𝑅1 and 𝑅2) and excess energy (𝛾𝑏) of 

a boundary are defined, the driving pressure (𝑃) can be modelled as 

𝑃 =  𝛾𝑏(
1

𝑅1
+

1

𝑅2
) (Equation 2.1) 

The major assumptions of the model by Burke and Turnbull is (1) a temporally and spatially 

uniform grain boundary energy (𝛾𝑏) and (2) the radius of curvature (𝑅) being proportional to the 

mean radius (𝑅̅) of an individual grain. Then, using (2) and assuming further that the boundary is 

part of a sphere of radius (𝑅 = 𝑅1 = 𝑅2), Equation 2.1 becomes 

𝑃 =
𝛼𝛾𝑏

𝑅̅
 (Equation 2.2) 

where 𝛼 is a geometric constant. 

In order to link Equation 2.2 to a kinetic rate law, Burke and Turnbull supposed a linear 

relationship between the driving pressure (𝑃) and the grain boundary velocity. That is, 
𝑑𝑅

𝑑𝑡
= 𝑐𝑃, 

where 𝑐 is constant (later shown to be related to the grain boundary mobility). This linear form is 

consistent with the premise of linear irreversible thermodynamics [25].  Based on the assumptions, 

the following equations can be established: 

𝑑𝑅̅

𝑑𝑡
=

𝛼𝑐1𝛾𝑏

𝑅̅
  (Equation 2.3) 

𝑅̅2 − 𝑅̅0
2 = 2𝛼𝑐1𝛾𝑏𝑡 (Equation 2.4) 
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𝑅̅2 − 𝑅̅0
2 = 𝑐2𝑡 (Equation 2.5) 

where 𝑅̅ and 𝑅̅0 refer the mean grain size at time step 𝑡 and the initial state at which steady-state 

grain growth commences, respectively, and 𝑐2 is a constant (𝑐2 = 2𝛼𝑐1𝛾𝑏).  

Equation 2.5 indicates parabolic growth of grains. If we let 𝑡 ≫ 𝑡0  and hence 𝑅̅ ≫ 𝑅̅0 , the 

equation can be further generalized as 

𝑅̅ = 𝑐2𝑡1/𝑛 (Equation 2.6) 

where the constant 𝑛, also known as the grain growth exponent, is equal to 2 for the model. 

The analytically driven grain growth exponent (𝑛) has been validated with respect to 

experimental measurements [26–28]. Higgins [28] reported that the values of grain growth 

exponent (𝑛) are well above 2 in most metals and alloys that they tested with the general result 

that the exponent takes on lower values at higher temperatures. The discrepancy between 

theoretical value of 2 and those values obtained experimentally can be explained by various 

microstructural features, which are further discussed in Chapter 2.  

Unfortunately, this model considers the ensemble-average grain size (𝑅̅) of the system and 

therefore does not tell us whether a given grain will grow or shrink.  This question can be resolved 

by other, more sophisticated treatments of the grain growth kinetics.  

2.1.2. Hillert Model 

It is widely accepted that the grain boundary velocity (𝑣) is proportional to grain boundary 

mobility (𝑀) and driving pressure (𝑃), under low driving pressures: 

𝑣 =  𝑀𝑃 (Equation 2.7) 

Note this equation resembles Equation 2.3.  Hillert’s mean field theory explains how an individual 

grain grows and shrinks based on a critical grain size [29]. The mean field theory introduces a 

grain shape factor (𝑔) and net curvature (𝜅𝑛𝑒𝑡) as follows: 
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𝑣 = 𝑀𝛾𝑏𝑔𝜅𝑛𝑒𝑡 (Equation 2.8) 

where 𝜅𝑛𝑒𝑡 refers to the sum of the inverse of principal radii of curvature of the grain boundary 

(i.e., 
1

𝑅1
+

1

𝑅2
) and 𝑃 = 𝛾𝑏𝑔𝜅𝑛𝑒𝑡. To circumvent difficulties in the measurement of the principal 

radii, Hillert introduced a critical grain size (𝑅𝑐𝑟) to replace a part of the driving pressure, i.e., 

𝑔𝜅𝑛𝑒𝑡 = 𝛼(
1

𝑅𝑐𝑟
−

1

𝑅
) (Equation 2.9) 

where 𝛼 is a dimensionless constant. Thus, combining Equations 2.8 – 2.9 yields 

𝑣 =  𝑀𝛾𝑏𝛼(
1

𝑅𝑐𝑟
−

1

𝑅
) (Equation 2.10) 

Hillert further claimed that the critical grain size (𝑅𝑐𝑟) is equivalent to the mean grain size (𝑅̅) for 

a 2D system since the mean number of neighbors 𝑛̅ of a grain is 6 and this is the critical number 

of neighbors that a grain must exceed in order to grow (see also Section 2.1.3 below). So, 

𝑣 =  𝑀𝛾𝑏𝛼(
1

𝑅̅
−

1

𝑅
) (Equation 2.11) 

Equation 2.11 indicates that a grain will interact with a mean grain size, as is typical of mean-field 

models of microstructure evolution (e.g., Lifshitz-Slyozov-Wagner theory of coarsening [30]).  

On the other hand, the critical grain size (𝑅𝑐𝑟) is larger than the mean grain size (𝑅̅) in a 3D system. 

The mean field model further postulates that abnormal grain growth (AGG) will occur for grains 

with twice size of the mean grain size (further discussed in Section 2.3). 

2.1.3. Topological Aspects of Grain Growth 

Due to constraints imposed by the space-filling condition, not only the boundaries of 

individual grains, but also the interaction between neighboring grains should be considered. The 

topology of polycrystals was first elaborated by Smith [31]. He explained that the normal grain 

growth is driven by topological requirements and surface tension equilibria at the triple junctions 

or triple lines between three abutting grain boundaries. 



10 

 

With this in mind, Von Neumann [32] and Mullins [33] proposed the basis of 2D grain growth as 

𝑑𝑅

𝑑𝑡
=

𝑀𝛾𝑏

𝑅
(

𝑁

6
− 1) (Equation 2.12) 

where 𝑅 is grain radius, 𝑀 is grain boundary mobility, 𝛾 grain boundary interfacial energy, and 𝑁 

refers the number of sides for a given grain. This equation was derived assuming a uniform and 

isotropic 𝛾𝑏 and hence a dihedral angle at the triple junctions of 120°. Equation 2.12 explains 

evolution of grains based on the number of nearest neighboring grains with critical number of 6. 

Thus, in 2D systems, hexagonal shape grains are metastable while grains with higher or lower 

number of sides will grow and shrink, respectively. 

The analytical 2D von Neumann model was recently extended [34,35] to 3D and even higher 

dimensions using concept of mean width and triple line length: 

𝑑𝑉

𝑑𝑡
= −2𝜋𝑀𝛾𝑏(𝐿(𝐷) −

1

6
∑ ei

𝑛
𝑖=1 (𝐷)) (Equation 2.13) 

where 
𝑑𝑉

𝑑𝑡
 is rate of a grain volume change, 𝐿(𝐷) is linear size measurement of a grain 𝐷, and ei(𝐷) 

is length of the 𝑖th triple line of a grain 𝐷. With respect to 3D systems, other experimental [36] 

and theoretical [37,38] studies reported that zero integral mean curvature of the grains is achieved 

for an average of 13-14 grain faces. This means that the point of metastable equilibrium (
𝑑𝑉

𝑑𝑡
= 0) 

can be attained for grains with around 13-14 sides. 

2.1.4. Influence of Texture on Grain Growth 

Most analytical theories are based on idealized microstructure with isotropic grain 

boundary energy and mobility. This is reasonable for foams or froths but not for solid materials. 

This is because the structure of grain boundaries varies depending on the misorientation between 

two adjacent grains [1,2] as well as the inclination of the grain boundary plane [39]. Misorientation 

is defined as the difference in crystallographic orientation between two adjacent grains. Based on 
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the misorientation, grain boundaries can be classified as a low angle (LAGB) or high angle 

(HAGB). The distinction between the two classes is generally accepted as a misorientation angle 

of 15 .̊ That is, grain boundaries with a misorientation angle greater than 15 ̊ are classified as 

HAGBs, and ones with less than 15 ̊ are LAGBs. LAGBs are considered as an array of discrete 

dislocations without overlap. It means that only a fraction of the atomic arrangements is interrupted, 

and thus, LAGBs are generally associated with lower grain boundary energy, as noted analytically 

by Read and Shockley [40]. In contrast, in HAGBs, an arrangement of geometrically necessary 

dislocations can no longer accommodate greater than a 15 ̊ misorientation angle. There is a greater 

area of interrupted lattice structure with greater excess free volume and consequently a higher 

grain boundary energy. In addition, there are special configurations of HAGBs that do not follow 

the general characteristics of HAGBs. These special boundaries are called coincidence site lattices 

(CSL). CSLs generally attain lower grain boundary energy compared to other HAGBs by two 

adjacent grains sharing coincident sites of the lattice. The reciprocal of the fraction of the shared 

lattice site is denoted by Σ. For instance, a Σ3 CSL (termed a coherent twin boundary) refers one 

out of three lattice sites that are shared between the two facing grains. As one third of lattice sites 

are common, such a CSL is expected to have a lower grain boundary than other HAGBs.  

The mobility of grain boundaries is also highly influenced by texture of the microstructure. 

As the mobility of grain boundary is closely related to the misorientation, Humphreys [41] devised 

an expression for grain boundary mobility in the form of a sigmoidal function: 

𝑀 = 𝑀𝑚(1 − 𝑒
−5(

𝜃

𝜃𝑀
)

4

)  (Equation 2.14) 

where 𝑀𝑚  is the generalized mobility of a HAGB. Of note that 𝑀𝑚  is itself sensitive to 

temperature and obeys an Arrhenius type relationship. Similar to the grain boundary energy, many 

studies report on the importance of grain boundary mobility on grain growth [42,43].  



12 

 

The kinetics of grain growth can be influenced by the presence of particular types of grain 

boundaries. A textured microstructure, with a large number of grains sharing a similar orientation, 

results in substantial fraction of low angle grain boundaries in the system. Then, the rate of grain 

growth decreases as the driving pressure of growth process, which is reduction of excess free 

energy from grain boundaries decreases (see also Equations 2.3 and 2.8). The same can be said 

for a microstructure contains a large fraction of coincidence site lattices with relatively lower grain 

boundary energy. The field of grain boundary engineering is inspired by controlling the density 

of grain boundaries with relatively lower energy 𝛾𝑏 and/or low mobility 𝑀. 

2.2. Theories on Grain Growth in Particle-containing Alloys 

2.2.1 Zener-Smith Model 

The presence of a stable distribution of second phase particles greatly influences the 

evolution of microstructure (e.g., recrystallization, recovery, and grain growth) as the particles 

exert a pinning force or pressure on the grain boundaries. The pinning effect is known as Zener 

pinning in honor of the predictions made by Smith and Zener [44]. 

Zener pinning by a single particle 

They proposed the basis of particle pinning by considering an idealized system where a single 

spherical particle interacts with a boundary. When a grain boundary encounters a particle at an 

angle 𝛽 as shown in Figure 2.2, the drag force 𝐹 acting on the line of contact is 

𝐹 = 2𝜋𝑟𝛾𝑏 cos 𝛽 sin 𝛽 (Equation 2.15) 

The maximum drag force is obtained as 

𝐹𝑚𝑎𝑥 = 𝜋𝑟𝛾𝑏 (Equation 2.16) 

when the angle (𝛽) is 45 ̊. 
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Figure 2.2. Illustration of an interaction between a grain boundary (thick line) and a spherical 

particle according to Zener and Smith. Reprinted from Ref. [45]. 

 

The nature of the drag force makes sense since the particle effectively removes a region of the  

boundary (a circle of diameter 2𝜋𝑟 cos 𝛽), resulting in a decrease of overall grain boundary energy. 

Smith and Zener further generalize the pinning force and evaluate the point at which the 

particle pinning pressure is equal to the capillary pressure for grain growth. This leads to a critical 

grain size (𝑅𝑐) at which grain growth is fully arrested,  

𝑅𝑐 =
4𝑟

3𝑓
 (Equation 2.17) 

where 𝑓 is volume fraction of particles and 𝑟 is the radius of the particles.  

This simple criterion in Equation 2.17 (sometimes known as the Zener equation) allows one to 

predict the limiting grain size provided details on the particles (𝑟 and 𝑓) are known.  The Zener 

equation has been the basis of any theory that deals with particle containing systems. Several 
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modifications to the original equation have been proposed since its inception due to a number of 

assumptions of the original formulation. These assumptions are as follows [45]: 

• Isotropic grain boundary energy 

• Uniformly sized particles 

• Perfectly spherical shaped particles 

• Random distribution of particles 

• Maximum pinning force (𝐹𝑚𝑎𝑥) from every particle 

• Incoherent particle phase 

• No time-evolution of particle phase 

• Grain boundary curvature being equal to grain size (see also Equation 2.2) 

In light of these limitations, the Zener equation is often expressed in a more generalized form as 

𝑅𝑐 = 𝐾
𝑟

𝑓𝑚 (Equation 2.18) 

where 𝐾 is a dimensionless constant and 𝑚 is an exponent for the volume fraction 𝑓.  

Of not is that the Zener equation is not in itself a theory of grain growth in the presence of particles 

as it does not elaborate on the mean grain size, the grain size distribution as a function of time, and 

the time-invariant grain growth rate. Rather, the Zener equation provides insight on only the 

“pinned state” wherein the capillary driving pressure and the pinning pressure are balanced.  

2.2.2. Influence of Particles on Kinetics of Grain Growth 

Second phase particles will reduce the rate of grain growth as the pinning pressure 

necessarily opposes the capillary driving pressure. Incorporating the concept of the drag force 𝑃𝑧 

to the Burke and Turnbull model [23,24], and noting 𝑃𝑧 ∝
1

𝑅𝑐
, we can write 

𝑑𝑅

𝑑𝑡
= 𝑀(𝑃 − 𝑃𝑧) = 𝑀𝛾𝑏(

𝛼

𝑅
−

3𝑓

4𝑟
) (Equation 2.19) 
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The revised Burke and Turnbull model suggests parabolic growth of grains at initial stages and 

stagnation at later stages when 𝑃 = 𝑃𝑧 and hence 
𝑑𝑅

𝑑𝑡
= 0. 

In a similar way, we can include the pinning force in the Hillert model as 

𝑑𝑅

𝑑𝑡
= 𝑀𝛾𝑏(

1

𝑅𝑐
−

1

𝑅
± 𝛼

3𝑓

4𝑟
) (Equation 2.20) 

where 𝛼 is constant that depends on the dimensionality of the system [1].  

As can be seen, the extension of both grain growth models with respect to the pinning force are 

based on the original Zener equation. Thus, the accuracy of these models is highly dependent on 

the validity of the assumptions that enabled a straightforward derivation of the Zener equation. 

2.3. Theories on Abnormal Grain Growth 

Abnormal grain growth (AGG), also known as a secondary recrystallization, refers 

discontinuous grain growth process in which a few grains grow rapidly compared to other grains 

by consuming surrounding smaller grains. One key feature of AGG is the development of a 

bimodal grain size distribution. According to Chapter 1, an abrupt change in grain structure 

resulting from AGG may be considered an undesired phenomenon. Thus, preventing AGG has 

been an active field of study for engineering alloys. On the other hand, AGG can be beneficial for 

producing large-grained materials and/or single crystals [46,47]. 

 The driving force for AGG is the reduction of grain boundary energy, similar to that of 

NGG. From an analytical point of view, Thompson et al. [48] report the conditions for AGG in an 

ideal grain assembly (i.e., monophase, isotropic boundary energy and mobility). They considered 

a grain size 𝑅 in an ideal assembly with mean grain size 𝑅̅ and suggested a condition for AGG: 

4𝑅

𝑅̅
−

𝑅2

𝑅̅2 − 4 > 0 (Equation 2.21) 
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This condition can never be satisfied because large grain will always grow more slowly than 

average grain, eventually rejoining the normal size distribution. Thus, AGG cannot be initiated in 

an ideal grain structure. 

In contrast, in real engineering materials, AGG is a relatively common occurrence. For 

example, Dennis et al. [49] reports AGG in Al-3.5wt%Cu alloys (Figure 2.3). Upon annealing at 

485 ̊C, which is below the solvus temperature (491 ̊C) of 𝜃 − Al2Cu particle phase, abnormally 

large grains grew, contributing to a bimodal distribution of grain size. The open question is which 

grains are selected and why (the selection problem), and also how these grains grew into the 

microstructure (the persistence problem). Even though such questions on the mechanism of AGG 

remain unanswered, the main factors leading to AGG are thought to be  

• Second-phase particles  (Section 2.3.1) 

• Texture (Section 2.3.2) 

 

Figure 2.3. Micrograph showing abnormal grain growth in an Al-3.5wt%Cu alloy after being 

annealed isothermally at 485 ̊C for 30 minutes. The grey matrix is primary Al phase and black 

specks are Al2Cu particle phase. Reprinted from Ref. [49]. 
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2.3.1. Second-phase Particles 

As discussed in Section 2.1.4, second phase particles inhibit grain boundary migration by 

exerting pinning pressure. However, like the example given in Figure 2.3, AGG can occur in in 

particle containing systems. Thus, there are many competing explanations to reconcile this 

counter-intuitive phenomenon. 

Grain topology is strongly correlated to the size of a grain through the Lewis law [50]. 

Thus, it has been generally accepted that a grain with an initial size advantage, and thus a greater 

number of nearest neighbors, is likely initiate AGG (in a non-ideal grain assembly). Considering 

a pinned microstructure with mean grain size (𝑅̅) due to second phase particles, a grain with size 

advantage attains greater capillary driving pressure and, thus, a higher growth rate according to 

𝑑𝑅𝑎𝑏

𝑑𝑡
=

𝛼𝑀𝛾𝑏

𝑅̅
 (Equation 2.22) 

where 𝛼 is constant and 𝑅𝑎𝑏 is a size of a grain with size advantage (which should eventually 

become the abnormal grain in the microstructure). The equation indicates that a grain with a 

persistent size advantage will grow with a constant rate if we suppose that the mean grain size (𝑅̅) 

is fixed or constant due to the effect of particle pinning [51]. 

In a similar vein, Andersen et al. [52] analytically modelled the initiation of AGG in a 2D 

system and presented the results in the form of a “mechanism map.” To construct it, they suggest 

two conditions that must be fulfilled for AGG: (1) the abnormal grain should grow and (2) it should 

have a higher growth rate than other normal grains. These two statements can be expressed as 

𝑑𝑅𝑎𝑏

𝑑𝑡
> 0 (Equation 2.23) 

𝑑(
𝑅𝑎𝑏

𝑅̅
)

𝑑𝑡
> 0 (Equation 2.24) 
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Under these conditions, they derived the mechanism map shown in Figure 2.4. The inner locus of 

the two lines (corresponding to Equations 2.23 – 2.24) gives the stability field for AGG (labelled 

“A”).  In the shaded region, NGG takes over. If the pinning force is relatively weak, and hence  

𝑅̅

𝑅̅𝐿𝑖𝑚
→ 1, then the large grains will be incorporated into the steady-state grain size distribution and 

NGG will prevail.  The mechanism map shows that the critical grain size advantage for a grain to 

become abnormal grain to be 
𝑅𝑎𝑏

𝑅̅
= 1.4 times that of the mean grain size (𝑅̅) when the normal 

grains are fully pinned (
𝑅̅

𝑅̅𝐿𝑖𝑚
= 1).  This result is strictly valid for 2D grain assemblies.  3D 

extensions to the mechanism map are given in Refs. [34,52].  

 
Figure 2.4. Mechanism map for abnormal grain growth based on the two conditions given in 

Equations 2.22 – 2.23. Of note that 𝐷 in the figure indicates diameter, which can be equivalent of 

2𝑅. See text for details. Reprinted from Ref. [52]. 

2.3.2. Texture 

As mentioned in Section 2.1.4, the texture of microstructure influences grain growth 

behavior due to its influence on the grain boundary energy and mobility. AGG is commonly 
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observed in many polycrystalline metallic systems with strong textures [53–55]. Extensive 

numerical and analytical investigations on AGG in textured microstructures were conducted by 

Refs. [41,56,57]. For example, Humphreys correlated the tendency of AGG with how sharp or 

diffuse is the texture in a microstructure [41]. One with a sharp texture component tends to attain 

small mean misorientation (𝜃̅) between grains, resulting in a subgrain structure. Then, other grains 

with either random or different texture components may possess high angle grain boundaries, 

providing potential nuclei for AGG. A correlation map between the sharpness of texture and the 

occurrence of AGG is given in Figure 2.5. Figure 2.5 shows the conditions under which a 

particular grain with misorientation angle of 𝜃  within a textured microstructure with mean 

misorientation of 𝜃̅ will grow abnormally. Such a diagram suggests that if mean misorientation 

(𝜃̅) is low as 5 ̊ with sharp texture, a grain with misorientation of 𝜃 = 10 ̊ can potentially grow up 

to ~70 times larger than the mean grain size. In contrary, if the mean misorientation (𝜃̅) is low as 

15 ̊ with diffuse texture, one grain can potentially grow no larger than ~2.5 times of the mean grain 

size. As this is within a normal size distribution of a microstructure (indicated as shaded region), 

this means no AGG is expected in the microstructure. 
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Figure 2.5. Conditions for abnormal grain growth in textured microstructure as a function of the 

misorientation of the grains from the microstructure and the size advantage of the abnormal grains 

(similar to Figure 2.4). The shaded region represents the range of sizes in the microstructure of 0 

– 2.5 𝑅̅, which indicates normal size distribution of a microstructure. See text for details. Reprinted 

from Ref. [41]. 
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Chapter 3. A Primer on Percolation in Grain Boundary Networks 

As briefly mentioned in Chapter 1, the connectivity of grain boundaries can determine 

characteristics of an entire microstructure, especially its susceptibility with respect to intergranular 

failure. That is, when failure-susceptible (i.e., sensitized) grain boundaries form a connected path, 

external stimuli (e.g., oxide phase, stress, and liquid metal) can propagate more readily through 

the microstructure causing failure (e.g., corrosion fatigue crack propagation [14,58,59], and liquid 

metal embrittlement [20,21], to name a few). Thus, there is renewed interest to understand the 

underlying structure of grain boundary networks and their connectivity.  

3.1. Percolation Theory 

Consider a collection of points that are distributed in space. Percolation theory [46,47] 

models the connectivity of the points that are linked in a random manner. The probability of the 

linkage is given as 𝑝. There are two basic types of percolation: site and bond percolation. The latter 

holds when points are fixed, and linkages (referred to as “open bonds”) are made at random. The 

former holds when points are randomly positioned and turned on (referred to as “open sites”), and 

the linkages are defined based on the adjacency between open sites. In this chapter, bond 

percolation is of special interest due to the similarity between bonds and grain boundaries. 

Percolation is achieved when there exists a path of connected points that travels infinitely 

far. In many applications it will be of interest to define the critical probability of open bonds for 

percolation. Intuitively, this critical probability, termed the bond percolation threshold (𝑝𝑐 ), 

depends on coordination number (𝑍), which represents the number of bonds connected to a site. 
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In ideal lattices, the value of percolation threshold (𝑝𝑐) regularly decreases with an increase in the 

coordination number (𝑍) as [60] 

𝑝𝑐 =
1

𝑍
(

𝑑

𝑑−1
) (Equation 3.1) 

where 𝑑 refers dimensionality of a system. 

The relation intuitively make sense that the percolation is more easily attained when there are more 

channels to percolate. 

3.1.1. Critical Behavior near Percolation Threshold (𝒑𝒄) 

The onset of percolation is characterized by the critical behavior of geometrical properties 

near percolation threshold (𝑝𝑐), as will be elaborated below. 

Percolation probability (𝛱) 

Π is a probability that there exists a continuous path within a single cluster of open bonds. In an 

infinite domain, it behaves as a step function: for 𝑝 < 𝑝𝑐, percolation is not attained with only 

finite clusters of open bonds, and Π is zero. For 𝑝 < 𝑝𝑐, Π is one.  Thus, Π can be expressed as 

Π(𝑝) =  {
0, 𝑝 < 𝑝𝑐

1, 𝑝 ≥ 𝑝𝑐
 (Equation 3.2) 

Order parameter (𝑃∞) 

𝑃∞ represents the probability that a given bond belongs to an infinitely-connected, percolating 

path. Thus, if 𝑝 < 𝑝𝑐, where percolation is not realized with only finite clusters,  𝑃∞ is zero. Once 

𝑝 ≥ 𝑝𝑐, 𝑃∞ increases with 𝑝 by a power law according to 

𝑃∞(𝑝) =  {
0, 𝑝 < 𝑝𝑐

𝐶𝑃(𝑝 − 𝑝𝑐)𝛽 , 𝑝 ≥ 𝑝𝑐
 (Equation 3.3) 

where coefficient 𝐶𝑃 is an amplitude prefactor and 𝛽 is a critical exponent. 

Correlation length (𝜉) 
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𝜉 describes linear size of finite clusters as the mean distance between two sites on one finite cluster. 

As 𝑝 approaches 𝑝𝑐, 𝜉 increases with 𝑝 through a power law relationship, 

𝜉(𝑝) = 𝐶𝜉|𝑝 − 𝑝𝑐|−𝜈 (Equation 3.4) 

where coefficient 𝐶𝜉 is the amplitude prefactor and 𝜈 is a critical exponent. 

Mass (𝑆) 

𝑆 refers the mean number of bonds contained within a finite cluster. As 𝑝 becomes closer to 𝑝𝑐, 𝑆 

increases with 𝑝 through a power law relationship as 

𝑆(𝑝) = 𝐶𝑆|𝑝 − 𝑝𝑐|−𝛾 (Equation 3.5) 

where coefficient 𝐶𝑠 is an amplitude prefactor and 𝛾 is another critical exponent. 

The behaviors of order parameter (P∞) and mass (S) vs. 𝑝 are illustrated in Figure. 3.1. 

 
Figure 3.1. Illustration of critical behaviors of (a) order parameter (P∞) and (b) mass (S) as a 

function of the fraction of open bonds 𝑝, in an infinitely large system. Reprinted from ref. [61]. 

3.1.2. Critical Exponents 

The critical exponents 𝛽, 𝜈, and 𝛾 introduced above describe the critical bahavior of each 

parameter with the percolation threshold. They are universal constants that only depends on the 

dimensionalty of a system. Table 3.1 summarizes values of the exponents in 3D. 
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Table 3.1. Critical exponents for percolation theory in 3D. 

Exponent Value in 3D Ref. 

𝛽 0.417 

[61–63] 𝜈 0.875 

𝛾 1.795 

 

3.1.3. Finite Size Effect and Scaling Analysis 

In practice, we must contend with systems that are not infinitely large. Considering a cubic 

shaped system size of size 𝐿3, we expect different behaviors of the variables from Section 3.1.2, 

depending on the magnitude of 𝐿. When a system is large enough (𝐿 ≫ 𝜉), it will practically 

function as if it is infinitely large (𝐿 → ∞), and in this limit the variables will be independent of 

system size (𝐿). Then, the following relationship between the variables are expected: 

𝜉(𝑝) = 𝐶𝜉|𝑝 − 𝑝𝑐|−𝜈 → |𝑝 − 𝑝𝑐|  ∝  𝜉−1/𝜈 (Equation 3.6) 

Applying Equation 3.6 to the order parameter (𝑃) and mass (𝑆), we find 

𝑃(𝑝) ∝ (𝑝 − 𝑝𝑐)𝛽 ∝  𝜉−𝛽/𝜈 (Equation 3.7) 

𝑆(𝑝) ∝ |𝑝 − 𝑝𝑐|−𝛾 ∝ 𝜉𝛾/𝜈 (Equation 3.8) 

However, the finite size influences the percolation behavior when 𝐿 < 𝜉, i.e., the correlation length 

(𝜉) is limited by the system size (𝐿). In this case, the variables can be expressed as 

𝑃(𝑝, 𝐿) ∝ (𝑝 − 𝑝𝑐)𝛽 ∝  𝐿−𝛽/𝜈 (Equation 3.9) 

𝑆(𝑝, 𝐿) ∝ |𝑝 − 𝑝𝑐|−𝛾 ∝ 𝐿𝛾/𝜈 (Equation 3.10) 

Once the order parameter (𝑃) and mass (𝑆) are measured for a system of known size 𝐿, we can 

leverage the relationships in Equations 3.9 – 3.10 to extract the percolation threshold. That is, 

Equation 3.9 implies that a plot of logarithm of order parameter (ln 𝑃(𝑝, 𝐿)) versus logarithm of 

system size (ln 𝐿) should be linear with slope 𝑛(𝐿) given by 
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𝑛(𝐿) =
𝑑(ln 𝑃)

𝑑(ln 𝐿)
|

𝑝𝑐

= −
𝛽

𝜈
 (Equation 3.11) 

Therefore, the percolation threshold in an infinite system can be estimated by determining the 

value of 𝑝 for which the slope 𝑛(𝐿) attains a value of −
𝛽

𝜈
 (or −0.477, from Table 3.1). 

Meanwhile, the finite-sized percolation probability (Π) can be defined as a probability of 

percolation over an ensemble of systems, each with a given size 𝐿. That is, Π can be computed as 

the fraction of percolating finite systems as multiple such systems may contain a percolating 

pathway for a given value of 𝑝. For finite-sized systems, the behavior of Π deviates from a step 

function (Equation 3.2) and instead shows as an ‘S-shaped’ curve with an inflection point (not 

pictured). The step becomes more diffuse as the system size decreases, since there exists a finite 

probability that at 𝑝 < 𝑝𝑐 a cluster of open bonds will span from one side of the system to the 

other. The converse is also true above 𝑝 > 𝑝𝑐.   

From the ‘S-shaped’ curve, two more variables can be extracted: 

Point of inflection (𝑝𝑚𝑎𝑥) 

𝑝𝑚𝑎𝑥 refers to the probability where the change in Π with 𝑝 is maximal, i.e., 

𝑝𝑚𝑎𝑥 = max (
𝑑Π

𝑑𝑝
) (Equation 3.12) 

This parameter converges to 𝑝𝑐 according to Equation 3.13 as percolation probability (Π) is also 

expected to follow a general scaling law.  

(𝑝𝑚𝑎𝑥 − 𝑝𝑐) ∝  𝐿−
1

𝜈 (Equation 3.13) 

Equation 3.13 implies that a plot of 𝑝𝑚𝑎𝑥  vs. 𝐿−
1

𝜈  should show a linear relationship with an 

intercept that gives an estimation of the percolation threshold (𝑝𝑐). 

Average concentration (𝑝𝑎𝑣) 
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𝑝𝑎𝑣 refers an average concentration of bonds at which a percolating path is attained for the first 

time. It can be mathematically expressed in terms of Π as 

𝑝𝑎𝑣 =  ∫ 𝑝(
𝑑Π

𝑑𝑝
)𝑑𝑝

1

0
 (Equation 3.14) 

As shown from the Equation 3.14, 𝑝𝑎𝑣 is the area under the curve of 
𝑑Π

𝑑𝑝
 from a purely numerical 

standpoint. Similar to 𝑝𝑚𝑎𝑥, 𝑝𝑎𝑣 converges to 𝑝𝑐 as 

(𝑝𝑎𝑣 − 𝑝𝑐) ∝  𝐿−
1

𝜈 (Equation 3.15) 

Equation 3.15 implies that a plot of 𝑝𝑎𝑣 vs. 𝐿−
1

𝜈 should show a linear relationship with an intercept 

that gives an estimation of the percolation threshold (𝑝𝑐). 

Outside of what is elaborated here, finite size scaling provides rich relationships between 

different percolation variables and structural properties and the percolation threshold. In 

Section 3.1, I focus only on those variables that we employ for our own analysis. 

3.2. Percolation applied to Microstructure 

Percolation theory provides a statistical framework to investigate the connectivity of a 

microstructural network. Thus far, there has been a few efforts to study the connectivity of grain 

boundaries in the lens of bond percolation [64–67]. Again, the bonds represent the planar grain 

boundaries: open bonds that are available for percolation represent failure susceptible HAGBs with 

relatively high free volume and energy; closed bonds represent other non-failure susceptible grain 

boundaries with lower grain boundary energy, such as LAGBs and CSLs. In order to invoke 

percolation theory, we thus assume throughout a binary classification of microstructural features.   

3.2.1. Percolating Microstructural Features 

Given a polycrystalline microstructure, different types of features may percolate in 3D, 

such as grain boundaries (GBs) and a triple junction lines (TJs).  
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Grain Boundaries (GBs) 

As introduced in Chapter 1, the GB is a planar defect that partitions two grains with different 

crystallographic orientation. GBs possess an excess free volume and thus offers faster diffusion 

paths compare to intragranular regions with continuous lattices. For this reason, the GB is the most 

commonly cited percolating element for investigation of microstructure connectivity [64–66].  

Triple Junction lines (TJs) 

The TJ is a linear defect where three grains or GBs meet at an edge. TJs are considered to provide 

even faster diffusion paths compared to GBs. In nanocrystalline materials where the density of TJs 

is substantial, unusually high grain boundary diffusions have been attributed to connectivity of TJs 

[68–74]. Thus, one could also consider the TJ as a viable percolating element for investigation of 

microstructure connectivity. There are four different types of TJs depending on the number of 

failure susceptible (open) GBs (0, 1, 2, and 3) that meet at the TJ line. To use percolation theory, 

however, we must combine them into two groups: TJs with at least one failure susceptible GBs 

are the so-called “open” TJs, and those without any failure susceptible GBs (0) are “closed” TJs. 

Quadruple Nodes (QNs) 

A QN is a point defect where four grains or six GBs or four TJs meet at a point. QNs can be 

considered as sites, using the same language as in percolation theory. They can be classified based 

on the number of failure susceptible (open) GBs (0, 1, … , and 6) and the number of open TJs 

(0, 1, … , and 4). It follows that nine types of QNs exist (described further in Chapter 9).  

3.2.2. Crystallographic Constraints 

Polycrystals require crystallographic constraints at TJs, in order to maintain a consistency 

of grain orientations around the TJ line. One such constraint is known as the Σ-product rule [75],  

Σ𝑎Σ𝑏 = 𝑚2Σ𝑐 (Equation 3.16) 
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where 𝑎, 𝑏, and 𝑐 refer the three GBs that meet at a TJ, and 𝑚 is a common divisor of 𝑎 and 𝑏. For 

example, at a given TJ, two Σ3 twin boundaries meet to form a Σ9 boundary. Accordingly, the 

misorientation of the third GB depends on other two GBs at the TJ. Consequently, the connectivity 

of GBs cannot necessarily be considered as random in the problem of bond percolation. 

Furthermore, it has been reported in Ref. [66] that the crystallographic constraints propagate to 

circuits drawn around QNs, involving four grains and four GBs.  

3.2.3. Brandon Criterion 

In Section 3.2.1, we introduce the idea of grouping GBs based on their relative GB energy. 

To distinguish between high vs. low grain boundary energy, we employ Brandon criterion [76] 

Δ𝜃𝑚𝑎𝑥 = 𝜃0Σ−𝑛 (Equation 3.17) 

where Δ𝜃𝑚𝑎𝑥 is a tolerable angular deviation to a given CSL type and 𝜃0 is a constant of 15 ̊ for 

angular limit for low angle GBs and 𝑛 is a constant. Different values of exponent, 𝑛, has been 

proposed in the literature including 
1

2
 [76], 

2

3
 [77], 

5

6
 [78], or 1 [79]. In my work, I regard 𝑛 as an 

adjustable parameter. That is, the greater a value of 𝑛, the more restrictive criterion for CSL from 

Equation 3.17, and hence the higher the fraction of failure susceptible HAGBs. 
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Chapter 4. Dissertation Outline 

The main objective of this dissertation is to unravel longstanding questions on kinetics and 

connectivity of grain boundaries in metallic polycrystals by leveraging new advancements in 

three-dimensional x-ray imaging techniques in the laboratory.  

This dissertation is organized into four main parts. Firstly, Part I (Chapters 1 – 4) serves 

as an introduction of the dissertation. Chapter 1 introduces the motivation of my work and relevant 

terminologies regarding microstructure of polycrystals. Chapters 2 and 3 explain the theoretical 

background of scientific phenomena of interest, namely the evolution and percolation of grain 

boundary networks. Part II presents an overview of three-dimensional x-ray imaging techniques 

used to characterize granular microstructures non-destructively. This part not only summarizes the 

basic working principle of the imaging techniques but also elaborates on the sample preparation 

and data processing routines. Part III is divided into Chapters 5 – 8, in which each chapter is 

based on my publications [80–82] and a forthcoming publication [83]. Chapter 5 presents an in-

house function package, PolyProc, for three-dimensional x-ray diffraction datasets. It includes 

routines to convert as-reconstructed data into processed data with other further functions that allow 

for statistical analyses and visualizations. Chapters 6 – 7 investigate the mechanism of abnormal 

grain growth in phase-particle containing systems; since the distribution of particles is intrinsically 

coupled to AGG, we also investigate the origin of non-random particle distribution. Chapter 8 

reports percolation behavior of grain boundary and triple junction networks. We apply bond 

percolation theory to investigate the connectivity of real, three-dimensional, bulk microstructures 

as well as differences between grain boundary and triple junction networks. Part IV serves to 
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conclude the dissertation (Chapter 8) and provide an outlook into potential future studies 

(Chapter 9). An overall list of references is given in Part V. 
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Part II. Experimental Methods 

Chapter 5. Non-destructive Three-dimensional X-ray Imaging Techniques 

This chapter provides an overview of the core x-ray imaging techniques used for the 

experiments reported in this dissertation. More specific procedures, including sample preparation 

and data acquisition and processing, are provided in the respective chapters. 

5.1. Laboratory-based X-ray Tomography 

5.1.1. Basic Principles 

X-ray tomography is a non-destructive 3D imaging technique that enable us to investigate 

the dynamics (time-evolution) of 3D bulk materials. There are many different tomographic 

techniques based on different interactions of x-rays with matter, e.g., absorption, diffraction, and 

scattering. For my PhD projects, absorption and diffraction contrast tomography have been 

employed. Absorption contrast tomography (ACT) is based on the attenuation behavior of the 

forward transmitted x-ray beam as it penetrates the sample. That is, incident x-ray beam attenuates 

more easily through denser materials, resulting in lower transmission rate. That is, the mass 

attenuation coefficient 𝜇 scales with the atomic number 𝑍 as 

𝜇 ∝  𝜌𝑎𝑍4𝜆3 (Equation 5.1) 

where 𝜌𝑎 is an atomic density and 𝜆 is a wavelength of incident radiation. 
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The difference in attenuation, then, is utilized to distinguish between material phases with different 

densities and/or compositions. On the other hand, laboratory-based diffraction contrast 

tomography (LabDCT) is based on the diffracted x-ray beam that must satisfy Braggs’ condition. 

As diffracted beam is orders of magnitude weaker compared to transmitted beam, in LabDCT, the 

transmitted x-ray beam is blocked (with a beam stop) to enhance signal-to-noise ratio of the 

diffraction signals.  

We implement LabDCT on a Zeiss Xradia 520 Versa X-ray microscope at the Michigan 

Center for Materials Characterization at the University of Michigan. The source is a divergent, 

polychromatic x-ray beam. In Chapters 6 – 7, the sample is positioned according to the Laue 

focusing geometry, keeping the same distance between sample to source and sample to detector. 

Then, a grain functions as a lens to the x-rays into a diffraction spot or “steak” (Figure 3.1). On 

the other hand, recent advancements enable to overcome the restriction of the Laue focusing 

geometry. By implementing a flat panel detector and a new software capability in stitching 

multiples scans, we can achieve a projection geometry and a larger final field of view. In 

Chapter 9, these recent advancements in LabDCT are leveraged to characterize ~10,000 grains. 
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Figure 5.1. Schematic of Laue-focusing geometry, under which a divergent polychromatic x-ray 

beam (grey lines) is diffracted and focused by a grain (red). Reprinted from Ref. [84]. 

 

After the incident x-ray beam interacts with a sample, the transmitted or diffracted beam is 

absorbed by a scintillator, which converts the absorbed energy into visible light. The resulting is 

then detected by the CCD camera. To reconstruct 3D bulk microstructure, we collect consecutive 

projection images as the sample rotates about the vertical axis, with a small angular increment. 

Schematics of the experimental setups for both ACT and LabDCT modules are given in 

Figure 3.2. ACT (Figure 3.2a) and LabDCT with flat panel detector (Figure 3.2c) are capable of 

geometrical magnification due to the projection geometry. That is, by changing the sample to 

detector distance, the projection image can be enlarged at the cost of signal to noise ratio. 

 
Figure 5.2. Schematics of the three types of laboratory-based X-ray tomography experiments: (a) 

ACT, (b) LabDCT with Laue focusing geometry, and (c) LabDCT with projection geometry. See 

text for details. Reprinted from Ref. [84] and courtesy of Zeiss. 
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5.1.2. Sample Preparation 

Samples are prepared for both types of x-ray imaging experiments (ACT and DCT) starting 

with high purity alloy ingots prepared with the vacuum arc remelting (VAR). The Al-3.5wt%Cu 

was selected based on, not limited to, its suitability under x-ray microscopes (see also Chapter 6). 

The Al matrix phase and second phase 𝜃-Al2Cu particle phase exhibit substantial absorption 

contrast due to their density difference, and this contrast allows to characterize the distribution of 

second phase particles within the Al matrix phase through ACT. Particular attention is needed for 

the DCT modality as diffracted beam is orders of magnitude weaker compared to transmitted beam. 

That said, the Al phase is light enough to ensure large enough sample size to (1) observe bulk 

behavior of microstructure evolution and (2) include thousands of grains, while maintaining high 

enough signal to noise ratio on the detector plane. Care was taken to ensure the Al-based alloy 

samples were fully recrystallized prior to imaging under LabDCT, since residual strain can lead to 

a smearing of the diffraction spots on the detector and consequently artifacts in the reconstructed 

grain maps (see Figure 3.3).  Such smearing makes it difficult to identify the diffracting grains. 

 
Figure 5.3. Example diffraction projection images for (a) a highly strained state and (b) a fully 

recrystallized state. Of note the images are taken using the same, pure Al sample. Smearing of the 

diffraction spots can be observed from (a), while clear diffraction streaks are observed from (b). 
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After proper mechanical and heat treatments (described in Chapter 6), the ingot was 

machined via electric discharge machining (EDM) to realize a desired geometry (typically 1 mm 

in diameter; any larger would lead to significant attenuation of the x-ray beam). Depending on the 

experiment, electropolishing with nitric acid-based electrolyte (HN 3:CH3 H = 1:2) at −20 ̊C 

was done to further decrease the sample size. This is to prevent the introduction of strain in the 

samples as the alloy is soft enough to be strained by mechanical polishing.  

5.1.3. Data Collection and Reconstruction 

The collected x-ray (projection) images from ACT were reconstructed using the filtered 

back projection algorithm [85] from the Scout and Scan software on the laboratory x-ray 

microscope. Segmentation between different phases was done by simple thresholding [86] due to 

clear contrast between the phases of interest. On the other hand, reconstruction of LabDCT data 

was performed using GrainMapper 3DTM software [80,87] developed by Xnovo Technology ApS. 

The as-reconstructed dataset was then imported into PolyProc, a MATLAB-based modular 

processing pipeline for X-ray diffraction tomography, for further processing and analysis. 

Generally, the initial reconstruction data cannot be used for analysis as is due to noise in the grain 

maps (see Figure 3.4 for a comparison of the data before and after processing with PolyProc). 

Thus, they are “cleaned up” based on filters for grain size, misorientation, and completeness to 

remove any unreliable data. Further details on these routines are elaborated in Chapter 6. 

Hereafter, completeness refers to the fraction of matching diffraction streaks between experimental 

projection images and calculated diffraction patterns obtained from forward modeling the 

reconstruction data.  
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Figure 5.4. Result of data processing with PolyProc by comparing (a) before and (b) after the 

data process shown in 2D. Two grains indicated in the black box from the (a) before processing 

dataset are considered unreliable and cleaned up in (b) after processing dataset. 
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Part III. Results and Discussion 

Chapter 6. Processing of 3D X-ray Diffraction Data via PolyProc 

 This chapter is based on the article published in Integrating Materials and Manufacturing 

Innovation [80], for which I retain the right to include it in this dissertation, provided it is not 

published commercially. The co-authors are Ning Lu, Issac Loo, Nancy Senabulya, and Ashwin J. 

Shahani. This work was supported by the Army Research Office Young Investigator Program 

under award no. W911NF-18-1-0162 and University of Michigan College of Engineering. 

6.1. Introduction 

 The microstructures of materials, from ceramics to superalloys, are three-dimensional (3D) 

in nature. Such materials are opaque to most probes, hence they have been traditionally studied by 

two-dimensional (2D) techniques, e.g., optical or electron microscopy. By coupling the image 

capture with microstructure sectioning, 3D characterization is possible [36,88–90]. Unfortunately, 

however, serial sectioning entails the removal of consecutive layers of material to collect 2D 

images, and so this method is fundamentally destructive. Instead, nondestructive metrologies are 

needed to detect various microstructural features (e.g., grains and precipitates) and monitor their 

evolution with a sufficient temporal resolution. For this purpose, X-ray imaging techniques enable 

the direct visualization of 3D microstructure in a non-destructive manner, since X-rays can 

penetrate deeply in the materials investigated. Computed tomography (CT) is one of the oldest 3D 
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imaging [91] techniques that make use of an X-ray beam. As the transmitted X-rays are sensitive 

to the density of the material, the resulting 3D microstructure shows density differences through 

the illuminated sample.  This is the basis of absorption CT (denoted as ACT). on the other hand, 

analysis of the diffracted X-ray beam is the hallmark of 3D X-ray diffraction (3DXRD) [92–98]. 

Thus, X-ray microscopes capable of diffraction provide a unique opportunity to characterize poly-

crystalline materials in 3D. 

 Recognizing the promise of 3DXRD, investigators in the past decade have developed a 

number of different 3DXRD techniques, such as high-energy X-ray diffraction microscopy 

(HEDM) [95], diffraction contrast tomography (DCT) [94,96,98], and scanning 3DXRD 

(S3DXRD) [97], to name a few. These techniques are all based on X-ray diffraction, and thus they 

share common features in terms of their working principle: As a “hard” (≧ 10 keV) X-ray beam 

illuminates a specimen, a detector placed behind the sample collects diffraction patterns (spots or 

streaks) that are generated when grains in the microstructure satisfy the Bragg condition. To track 

the locations of all grains within the tomographic field-of-view, the specimen is rotated with a 

small angular increment (≲ 2°). The diffraction images collected must then be segmented or 

partitioned into two classes (streak and background). The segmented diffraction streaks are then 

indexed as grains through a reconstruction procedure, such as the GrainMapper3D algorithm used 

here.  Differences in the 3DXRD techniques stem from the shapes and sizes of incident X-ray 

beam, chromaticity of source, resolution of detector, and means of reconstruction [99]. 

 Until recently, non-destructive grain mapping via 3DXRD was only available at 

synchrotron facilities with limited accessibility. With the recent development of laboratory-based 

X-ray diffraction tomography (denoted as LabDCT), bulk polycrystalline specimens can now be 

readily characterized from one’s own laboratory [84,98,100], spearheading a new age in 3D 
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materials science. Unlike synchrotron-based DCT, LabDCT makes use of a polychromatic, 

divergent beam, thereby requiring a different reconstruction procedure.  A number of studies have 

already demonstrated the efficacy of LabDCT for the high-throughput characterization of 

polycrystalline microstructures [87,101–103]. For instance, Keinan et al. integrated ACT and 

LabDCT imaging modalities on a single X-ray microscope to gain new insight on the 

microstructure of metallurgical-grade polycrystalline silicon, which is simultaneously multi-phase 

and polycrystalline [87]. McDonald et al. conducted 3D space- and time-resolved experiments via 

both LabDCT and ACT to investigate the dynamics of sintering of micrometer-scale Cu particles 

[102]. While great strides have been made in technique development and applications, a critical 

need exists to devise the infrastructure for processing such high-dimensional and multimodal 

datasets.  

 To this end, a few software packages have been developed to aid in the processing of 

reconstructed X-ray images. Here we review the strengths and limitations of a few. Tomopy is a 

Python-based, open-source framework for the reconstruction and analysis of absorption images in 

particular [104].  As of this writing, the software has not been extended to support 3DXRD data, 

which is inherently multi-dimensional.  That is, 3DXRD provides orientational information (a 

vector quantity) for each voxel in the imaging domain.  At the other extreme is MTEX, a free 

MATLAB toolbox for analyzing the crystallographic texture from vectorized orientation data 

outputted from diffraction based techniques such as electron backscatter diffraction [105]. 

However, MTEX cannot as yet handle the processing of 3D grain maps.  In contrast, Dream.3D is 

a software package that allows for the construction of customized workflows to analyze 3D 

orientation data, including serial sectioning, DCT, and HEDM [106]. While Dream.3D has 

demonstrated success in processing 3DXRD data, it has not been optimized for high dimensional 
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datasets. Thus, the question remains, “How does one 3D microstructure relate to the next in a 

dynamic experiment?” To answer this question, we present our efforts in developing a data 

processing pipeline, PolyProc, capable of parsing the full spectrum of 2D, 3D, and further higher 

dimensional data collected through 3DXRD techniques.  With our toolbox it is also possible to 

“layer” one dataset over another, thereby providing a unified description of the underlying 

microstructure. 

6.2. Experimental Methods 

We demonstrate the efficacy of our function package with two full-field (volume) scans 

that are separated by a short time-interval. In this interval, we apply an external stimulus (heat) to 

encourage the coarsening of grains in the microstructure. We collect the 3D data through the 

LabDCT module in a laboratory X-ray microscope (Zeiss Xradia 520 Versa) located at the 

Michigan Center for Materials Characterization at the University of Michigan. We selected an 

alloy of composition Al–3.5wt%Cu for subsequent analysis, as it is relatively well characterized 

and does not attenuate the incident X-ray beam too heavily. The sample was prepared for the first 

round of imaging by annealing at 485 °C, thereby achieving a fully recrystallized state. Of note is 

that this temperature is below the solvus temperature (about 491 °C), and thus, we retained second 

phase θ-Al2Cu particles within the system. Annealing also releases the strain accumulated in the 

cold-rolled condition. From our experience, strain has the effect of smearing the diffraction spots 

of polycrystals. This, in turn, introduces difficulties in reconstruction, since it becomes impossible 

to “untangle” the overlapping diffraction spots belonging to individual grains in the microstructure. 

Following the annealing, the specimen was imaged through LabDCT, collecting 181 projection 

images every ~ 2° between 0° and 360° with an exposure time of 400 s per projection. The detector 

images measure 385 μm of the sample from top to bottom. Due to the nondestructive nature of 
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LabDCT, we further annealed the same sample for four minutes at the aforementioned temperature 

(485 °C), inducing the microstructural evolution. The second round of imaging was done with the 

same scan conditions. The specimen was annealed further and imaged in ACT on the same 

microscope to acquire the spatial distribution of second phase θ-Al2Cu particles within the 

tomographic field-of-view. In the ACT scan, we collected 1600 projections evenly distributed 

between 0° and 180° with an exposure of 5.3 s. The Cu constituent provided a natural source of 

attenuation contrast such that the θ-Al2Cu particles could be readily identified via ACT. 

The LabDCT diffraction patterns were segmented and reconstructed via the 

GrainMapper3D™ software developed by Xnovo Technology ApS. In the reconstruction, the 

volume is overlaid on a structured grid with side length of 5 μm. Based on the known crystal 

symmetry and lattice parameters, the equations of diffraction are solved for a subset of spots in 

order to compute a prospective orientation. Then, the forward simulations calculated by the 

software are compared against the real grains reflection on the detector. A grain is said to be 

indexed when a match is found between the reflection observed on the detector and predicted 

position from the forward simulation. Figure 6.1 shows superposition of the two. The color of 

calculated diffraction spot represents the crystallographic orientation of grains that give rise to the 

various spots. Overall, good agreement is seen between the reconstructed and measured results; 

the simulated patterns are able to capture not only the position of the spots but also their shapes. 

The software outputs the high-dimensional data in the hierarchical data format version 5 (HDF5), 

which was designed for complex data objects. Each voxel in the 3D image domain contains the 

following attributes: its grain identification, Rodrigues vector (texture components), and 

completeness value. On the other hand, the ACT dataset was directly reconstructed using the 

filtered back-projection algorithm employed by the Scout and Scan software on the Zeiss Xradia 
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520 microscope. Our principal task is to process this high-dimensional and heterogeneous data, as 

will be described in detail below. 

 
Figure 6.1. Superposition of experimental and calculated diffraction pattern, the latter obtained 

from forward modelling the reconstruction data.  A beam-stop (center) blocked the forward-

transmitted beam.  Color of calculated spots in the periphery reflects crystallographic orientation 

of the diffracting grain according to the standard triangle. White scale bar is 1000 μm. 

 

The GrainMapper3D reconstructions are inherently six-dimensional (i.e., 3D space plus 

3D orientation). For matrix algebra and plotting, we use the MATLAB R2018a programming 

language, which provides a high-level technical computing environment. Our toolbox takes 

advantage of a few different toolkits that are freely distributed through MathWorks, such as MTEX 

(described above) [105]. MTEX is required to run the pipelines involving data clustering, 

crystallographic analysis, and grain tracking. Other dependencies are included as utilities within 

the toolbox. 

6.3. Results and Discussion 

This section demonstrates integral procedures for processing and analyzing in situ and 3D 

crystallographic datasets. A typical workflow of the function package is illustrated in Figure 6.2, 

organized in a set of modules that group the algorithms according to their function. In time-

dependent studies (like ours), there is likely a misalignment of the scanned domains and/or grain 
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orientations between consecutive time-steps, causing challenges in data analysis downstream. 

Thus, after importing the HDF5 data, our workflow starts with the alignment of volume data via 

genetic optimization to define the common scope (intersection volume) for further analysis. Within 

the defined scope, grain cleanup procedures filter unreliable features such as incorrectly indexed 

voxels that inevitably appear during data collection. The grains are processed according to three 

thresholds: angular, volumetric, and completeness. The cleaned data can be visualized in 3D or 

cross-sectionally in 2D with different color schemes depending on user preference. Data analysis 

functions provide various capabilities for the statistical analysis of the entire polycrystalline 

aggregate or a single grain in particular. Additionally, for time-resolved data, our toolbox offers a 

means of grain tracking via combinatorial optimization. We step through each of these modules 

using the two LabDCT reconstructions as a test case. 
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Figure 6.2. Workflow for processing 3D LabDCT data; see text for details. 

 

6.3.1. Data Processing 

Volume Alignment 

 A geometric deviation of sample, including translation and rotation, would be found 

between two time-steps (denoted 𝑡1 and 𝑡2 hereafter) if the sample was to be repeatedly removed 

and mounted on its holder. Translation will introduce a spatial drift in corresponding grains 

between the two datasets. Meanwhile rotation will alter the perceived crystallographic orientation 

of the grains between time-steps 𝑡1  and 𝑡2 . Both transformations will thereby mislead further 

analysis like grain tracking. Thus, body alignment (registration) of sample volume is the first step 

of our pipeline. 

 We solve the registration problem by minimizing the misfit of volume through Genetic 
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Algorithm (GA). Volume is defined as the set of all pixels within the 3D sample; misfit is the 

number of voxels not shared between the two volumes 𝑡1 and 𝑡2, over total number of voxels. Six 

independent parameters are determined during the alignment procedure: three translational vectors 

(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) and three rotational angles (𝑅𝑥, 𝑅𝑦, 𝑅𝑧), assuming a purely isometric transformation. 

This implies a massive calculation over a 6D space to calculate and compare misfit, if done for all 

possible transformations. Instead, we achieve a better alignment in a much shorter amount of 

compute time via GA. The detailed operating principle of GA is discussed below. After those six 

parameters are optimized by GA, a transformation matrix is generated for the alignment of 𝑡2 onto 

𝑡1 where 𝑡1 is the reference state. The application of the obtained transformation matrix on scalar 

data is illustrated in Figure 6.3a, where volumes 𝑡1 and 𝑡2 are presented by blue and red color, 

respectively. Before alignment (top left), a huge misfit is observed. After alignment (top center), 

not only the outermost contour of sample volume, but also the orientation and location of a pore 

inside the volume (see arrow), align closely. Subsequently, the shared (intersection) volume is 

determined (top right), which serves as a “mask” to ensure that all the following comparisons 

between 𝑡1 and 𝑡2 are carried out under the same region-of-interest.  

Based on the Euler rotation matrix described by three rotational angles (𝑅𝑥, 𝑅𝑦 , 𝑅𝑧), the 

crystallographic orientations of grains are also updated. Figure 6.3b shows the registration of grain 

orientations. Color represents crystallographic orientation parallel to the specimen height ( 𝑧 

direction). It can be found that crystallographic orientation of grains becomes similar after 

updating their Rodrigues vectors. For example, the grains indicated by white arrows are a pair of 

matching grains. The orientations of those two matched grains are presented by cyan and green 

color before updating orientations, respectively. Once the Rodrigues vectors are updated, the grain 

color at 𝑡2 becomes cyan (bottom right), which corresponds closely to the grain at 𝑡1. To quantify 



46 

 

the accuracy of the orientation alignment, we calculated the change of average misorientation of 

the matching grains between time-steps. As presented in Figure 6.3c, before the orientation 

update, average misorientation angle of the matching grains is 7.56 ± 0.13°; after the update, it 

decreases to 0.82 ± 0.15°. 

 

 
Figure 6.3. Procedures for (a) registering sample volume and defining its intersection; and (b) 

updating crystallographic orientation of grains based on the rotation angles obtained from volume 

alignment.  Arrows in top and bottom rows point to features that are registered between the datasets 

𝑡1  and 𝑡2 . Scale-bar measures 100 μm. (c) Quantitative results of crystallographic orientation 

update based on changes in matching grains. 

 

 Since volume alignment is only evaluated by the degree of misfit, it can be formulated as 

an optimization problem. GA has a few advantages over other optimization engines. For instance, 

it is generally effective in optimizing a function with many local minima since it does not require 

a good starting estimate; furthermore, it is quite flexible in that it places no constraint on the form 

of the objective function [107,108]. Due to these merits, GA has been employed to register 2D and 

3D data [108–110]. In this work, GA function from Global Optimization Toolbox of MATLAB is 

employed [107]. Drawing from Darwin’s theory of natural selection, GA begins with a randomly 

generated set of individuals (rigid transformations in our case) also known as a population at first 

generation (see Figure 6.4). Parallel computation will be utilized to calculate the fitness (here, 

misfit) between transformed volume at 𝑡2  and volume at 𝑡1 . Individuals with relatively lower 
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misfit would then be selected from the current population, its genome modified and recombined 

to produce the next generation. We set the maximum number of generations to 25, although this 

may require some tuning based on the size of the search space. Once the lowest misfit computed 

lies below the user-specified misfit tolerance during the 25 generations, the algorithm is interrupted 

in order to output the corresponding six parameters. If the calculated misfit never goes under the 

threshold, another iteration of GA with 25 generations containing twice the population size is 

triggered. Larger population size gives more opportunity to reach global minima rather than local 

minima. Finally, GA outputs the six parameters corresponding to the lowest misfit. As GA is 

“embarrassingly parallel” and converges to a high-quality solution after only a few generations 

through a number of bio-inspired operators, the computation time is low, and accuracy of 

alignment is quite high. In practice, parent selection is done by stochastic universal sampling; 

mutation via gaussian distribution; and crossover through scattered blending. Further details 

regarding GA can be found in Ref. [107]. In contrast, it is difficult to optimize the accuracy of 

“brute force” calculations due to the limitation of finite search step size. The accuracy and 

efficiency were compared on a workstation with Intel(R) Xeon(R) E-2176M CPU core and 64 GB 

RAM capacity. Between volumes 𝑡1 and 𝑡2, the angular constraints were set to ±7° for each of the 

three rotational angles (𝑅𝑥, 𝑅𝑦, 𝑅𝑧) and misfit tolerance of 2%, for both GA and “brute force” 

comparison approach. The former took 657 s for body alignment with 2.42% of misfit, while the 

latter took 1175 s with 2.61% misfit.  The result indicates that GA can significantly improve the 

automated registration of 3DXRD data, achieving a better alignment in a much shorter amount of 

time.  
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Figure 6.4. Mechanism of automated volume alignment via genetic algorithm (GA). Individuals 

from the later time-step are generated and mutated and their misfit is calculated accordingly.  

Shown is a single generation of GA.  The algorithm proceeds by selecting those individuals with 

the highest fitness (lowest misfit) for the next generation (not pictured). 

 

Grain Clean Up 

 The clean-up module aims to align the data based on outputted transformation matrices 

(from above) and further process them to exclude unreliable features within the intersection 

volume. Upon importing the raw (i.e., as-collected) 3DXRT data together with alignment matrices 

and mask array, data outside of masked scope are cropped, and every dimension of data except 

orientation is transformed to the new frame-of-reference. Since the calculation of crystal 

orientation is computationally costly — there are O(𝑁3) rotations that need to be performed, 

assuming a mask dimension of 𝑁 — the Rodrigues vectors are updated only after the average 

orientation of grain is computed based on clustering voxels with similar orientation. That is, based 

on a user-defined angular threshold (typically ≤1°), grains with very small misorientation angles 

are grouped into a single grain. This order of operations greatly reduces computation load without 

compromising the accuracy of orientational alignments. 
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 After clustering grains and updating the average grain orientations, data is further 

processed to remove small grains. Any grain composed of fewer voxels than a preset volume 

threshold is considered as noise and treated as unindexed regions. The rationale behind this 

procedure is to retain statistically significant grains and not to artificially inflate grain statistics. 

The volume threshold is determined based on the spatial resolution of the reconstruction data (10 

μm for AabDCT). Finally, grains with lower average completeness than a preset completeness 

threshold are considered as unreliable data and marked as unindexed. Low completeness grains 

are often located near the edges of the LabDCT aperture, wherein grains may lie partially outside 

of the illuminated field-of-view.  Consequently, their diffraction patterns are partially occluded by 

the aperture, resulting in a low reconstruction completeness in Forward modeling simulations.  

Outputs of this module include basic measurements of the processed grains: grain volume is 

expressed as total number of voxels; grain orientation as the average Rodrigues vector over all 

voxels in each grain; grain position as its center-of-volume, considering the Euclidean coordinates 

of every voxel in the grain. Grain adjacency is also stored in a form of a 𝑀  by 2 array of 

neighboring pairs that meet at a grain boundary, where 𝑀 is the number of unique pairs. Those 

grains adjacent to the free surfaces of the sample are designated as “exterior” grains and those in 

the bulk as “interior.”  

6.3.2. Visualization 

 The segmented grain surfaces are meshed or represented as a series of triangles and vertices. 

Triangulation is accomplished via MATAAB’s built-in Marching Cubes routine. To eliminate any 

“staircasing” artifacts that occur as a result of the triangulation, we smooth the mesh to better 

reflect the physical grain shape. In particular, we make use of Laplacian smoothing, which utilizes 

the normalized curvature operator as weights for smoothing in a direction normal to the mesh 
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interface. In practice, we apply only a few iterations of mesh smoothing in order to reduce artefacts 

while preserving the integrity of interface. 

 Different modes for mesh coloring are available based on user preference.  For instance, 

the grains can be colored according to their crystallographic orientation, topology (i.e., number of 

grain neighbors), volume, and average completeness. Figure 6.5 illustrates these different 

representations of the 𝑡1 volume. It should be noted that average completeness value of many 

grains is close to 0.45 because reconstruction of this particular dataset was executed with a 

tolerance level of 0.45, meaning that indexing voxels concluded once a completeness value of 0.45 

was achieved. Grains located on the topmost surface of the sample show a lower completeness 

compared to ones located below because those grains partially lie out of the illuminated field-of-

view. The bottom surface of the sample is not shown because it is outside the intersection mask 

between volumes 𝑡1 and 𝑡2 (see also Figure 6.3a). Visualization of individual 2D slices along the 

specimen z direction is also available under the same color schemes, thereby demonstrating the 

versatility of our function package in handling different data shapes. 
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Figure 6.5. Visualization of 3DXRD data in 2D and 3D. Grain color corresponds to (a) 

crystallographic orientation, (b) number of neighboring grains, (c) grain volume, (d) average 

completeness of grain.  Scale-bar measures 100 μm. 

 

6.3.3. Data Analysis 

Simple Metrics 

 Direct imaging of 3D microstructure allows for the characterization of various indicators 

of microstructure evolution, including grain size, shape, and topology.  These metrics can only be 

estimated via quantitative stereology of planar sections [111]. To our benefit, these parameters can 

be measured directly from 3DXRD without any averaging or interpolation. In the analysis module, 

we provide some basic statistics at the grain level.  These include 

• Grain volume, see, e.g., Figure 6.6a corresponding to 𝑡1 volume.  A wide range of grain 

sizes is captured in the grain size distribution, from 33 voxels (4.3 × 103 μm3) to 20,298 

voxels (2.5 × 106).   

• Grain topology, Figure 6.6b.  An accurate assessment of topology is limited by the finite 

sample size [112], meaning that the number of neighbors for the “exterior” grains may be 
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underestimated compared to those in the specimen “interior”. To resolve this potential bias, 

we distinguish between topologies of “interior” versus “exterior” grains.  

• Grain morphology, Figure 6.6c.  Sphericity (𝛹) is defined as a ratio of surface area of a 

sphere having the same volume of a grain to the actual surface area of a grain; that is 𝛹 =

π
1
3(6𝑉𝑔)

2
3

𝐴𝑔
, where where 𝑉𝑔 is volume of a grain and 𝐴𝑔 is surface area of a grain. The former 

is outputted from above while the latter is determined as the summation of each triangle 

area adorning the grain surfaces, 𝐴𝑔 = ∑ 𝐴𝑡𝑟𝑖
𝑖𝐹

𝑖=1 , where 𝐴𝑡𝑟𝑖
𝑖  is the area of triangle 𝑖 and 𝐹 

is the total number of triangle faces.  The area of each triangle is computed as 𝐴𝑡𝑟𝑖
𝑖 =

1

2
‖𝑒12

𝑖 × 𝑒13
𝑖 ‖  where 𝑒𝑗𝑘

𝑖  is the edge vector from vertex 𝑗  to 𝑘  of triangle 𝑖 .  The vast 

majority of grains at the time-step 𝑡1 show a relatively high compactness ( 𝛹 → 1), which 

is expected for a recrystallized system. 

• Grain misorientation, Figure 6.6d.  Misorientation ∆𝑔 is formally defined as ∆𝑔 = 𝑔𝑖𝑔𝑗
𝑇 

where 𝑔𝑖 and 𝑔𝑗 are the grain-average orientations (in Rodrigues vectors) determined from 

the clean up module above.  The histogram weights in the misorientation distribution are 

the grain boundary areas, found by summing over all triangle areas along the boundary. 

We show for comparison the distribution expected for a material with uniformly distributed 

misorientations. The results for the 𝑡1 data indicate a near-random distribution of grain 

boundaries.   

• Grain texture, Figure 6.6e.  Shown is the inverse pole figure (IPF) of all grains in the 𝑡1 

volume.  It can be seen that the sample has no obvious texture at this particular time-step. 
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Figure 6.6. Analysis of 267 grains in the microstructure. (a) Grain size distribution, (b) neighbors 

distribution, (c) sphericity distribution, (d) misorientation distribution (i.e., Mackenzie plot), and 

(e) inverse pole figure where colors are drawn from the standard triangle.  Shown in (d) for 

comparison is the distribution expected for a material with uniformly distributed misorientations. 

 

Multimodal Analysis 

 The integration of multiple imaging modalities enables us to investigate correlations 

between various features, thereby providing an in-depth understanding of the underlying 

microstructure. For instance, in the multimodal analysis module, we correlate the positions of grain 

boundaries (retrieved via LabDCT) to that of secondary features (observed via ACT). The ACT 

data is assumed to be registered to the LabDCT data through application of the functions in the 

alignment module. The secondary features are (in our case) micrometer-scale θ-Al2Cu particles 

whose locations in the microstructure are given in form of centroid coordinates. The user may 

specify a grain-of-interest (GOI) and a distance threshold to then determine which particles in the 

particle cloud are adjacent to the GOI, and the corresponding grain-to-particle distances. We 
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visualize the particles within a two-voxel distance threshold in Figure 6.7a.  To link grain 

boundaries to secondary features, we have developed a new algorithm, summarized here as follows: 

(1) for each triangle face along the grain boundaries, we calculate its centroid; next (2) we find the 

nearest-neighbor distances between the face centroid and particle locations; and (3) if this distance 

is less than the threshold, we conclude that the particle lies on or sufficiently close to the triangle 

face. Step (2) above can be accomplished by calculating the Euclidean distance between each 

particle and each mesh triangle and then organizing the results in ascending order of distance. This 

approach would necessitate 𝑁 × 𝑀 calculations to correlate particle and grain boundary positions, 

where 𝑁 is the number of particles and 𝑀 the number of mesh triangles that enclose a given grain. 

Considering that 𝑀  is on the order of 105, and 𝑁  is also 105 (this work), the task of particle 

classification (as near or far from the boundary) is computationally intensive if done in such an 

exhaustive manner. To recognize patterns in the locations of particles with respect to grain 

boundaries, we harness the 𝑘 nearest neighbors (𝑘-NN) algorithm, a type of “lazy” learning.  𝑘-

NN lessens the computational load significantly — determining the nearest-neighbor particles in 

seconds — by using a so-called 𝐾d-tree to narrow the search space. This algorithm was previously 

implemented in measuring the local velocities of solid-liquid interfaces in dynamic, synchrotron-

based CT experiments [113]. 

 Provided that the grain misorientations are known (Fig. 6.7b), we can measure the particle 

associated misorientation distribution (PMDF), among other interrelationships [114].  The PMDF 

is defined as the fraction of secondary features (here, particles) that are located on or in the vicinity 

of grain boundaries within a specific range of misorientation angles.  It can be seen in Figure 6.7c 

that the distribution of particles does not follow the distribution of grain boundaries, which might 

be expected if the particle-boundary correlations were truly random (i.e., density of particles per 
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unit area of boundary is constant).   

 
Figure 6.7. Analysis of a single grain according to its (a) adjacency to secondary features (here, 

𝜃-Al2Cu precipitates in red), and (b) misorientation with adjacent grains.  Only those particles 

within two voxels of the grain boundary surfaces are shown. The one voxel “gap” between two 

given grain faces in (b) arises due to the uncertainty of classifying that voxel to a given face.  Scale 

bar measures 50 μm. (c) Particle-associated misorientation distribution of the same grain. Volume 

fraction of particles adjacent to grain boundaries is shown in blue, and Mackenzie plot is shown in 

orange. 

 

6.3.4. Grain Tracking 

 In this module, we define a mapping between experimental time-steps, allowing for the 

analysis of individual grains as time progresses.  We use two key parameters for grain tracking: 

crystallographic misorientation and physical distance. The crystallographic orientation of a given 

grain should not change over time, provided the sample is fully recrystallized, and its location 

within the microstructure should also not change too drastically. Figure 6.8 illustrates our 

approach for grain tracking. Under the above two constraints, we search for a matching grain at 
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some time-step in the future (𝑡 + ∆𝑡) within a local neighborhood of the grain at the current time-

step 𝑡. The neighborhood is defined as smallest cuboid that encapsulates a grain with a user-

defined additional padding (in number of voxels). Any grain included in the cuboidal scope is 

considered to be within a local neighborhood. For instance, the gray colored region in Figure 6.8 

illustrates the cuboidal scope of grain 𝑚 with default padding of two voxels. Care must be taken 

in defining the size of the grain neighborhood since too large a padding may lead to an incorrect 

grain assignment and too small an extension may fail to contain the matching grain. Any grain that 

is partially contained in this cuboidal scope at time-step 𝑡 + ∆𝑡 is labeled as a candidate grain. 

 For each candidate grain in the neighborhood, we tabulate its distance and misorientation. 

Distance ∆𝑑𝑛𝑚 refers to that between the centroid of grain 𝑚 and centroid of candidate grain 𝑛. 

The maximum (threshold) distance is predetermined as the half-diagonal length of cuboidal 

neighborhood. Similarly, misorientation angle ∆𝜃𝑛𝑚  is that between grain 𝑚 at time-step 𝑡 and 

grain 𝑛 at time-step 𝑡 + ∆𝑡. The maximum allowable misorientation (threshold) is a user-defined 

value. In theory, the misorientation between two datasets should be zero if the sample is perfectly 

registered and there are no grain rotations.  Yet this is often not the case due to slight misalignments 

between datasets (see Data Processing). These two metrics are combined linearly to formulate a 

cost function 𝐽𝑛𝑚 associated with the assignment of grain 𝑛 to grain 𝑚,  

𝐽𝑛𝑚 = 𝑐 ∆𝑑𝑛𝑚 + (1 − 𝑐)∆𝜃𝑛𝑚 (Equation 6.1) 

, where 𝑐 is a scalar quantity (ranging from zero to one) that reflects the importance of the distance 

over misorientation criterion. Rohrer uses a similar formulation of the cost function [115]. The 

problem of grain tracking is then to find the lowest cost way of assigning grains from one time-

step to the next.  To solve this assignment problem in polynomial time, we employ the Hungarian 

algorithm (otherwise known as the Kuhn-Munkres algorithm) [116,117]. The algorithm operates 
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on a cost matrix 𝑱 = {𝐽𝑛𝑚}𝑁×𝑀, and outputs a binary matrix 𝑿 = {𝑥nm}N×M where 𝑥𝑛𝑚 = 1 if and 

only if the 𝑛-th grain at 𝑡 is assigned to the 𝑚-th grain at 𝑡 + Δ𝑡. The total cost is then found as 

∑ ∑ 𝑥nm𝐽𝑛𝑚 → min.𝑀
𝑗=1

𝑁
𝑖=1   Unlike the typical assignment problem with a square cost matrix (i.e., 

the matrix dimensions are such that 𝑁 = 𝑀), our cost matrix is rectangular (𝑁 < 𝑀) since the total 

number of grains decreases with time over the course of grain growth. However, the algorithm can 

be extended to rectangular arrays using the method prescribed by Ref. [117], which we have 

applied here. Worth mentioning is that the cost element 𝐽𝑛𝑚 for a non-candidate grain is computed 

to infinity, preventing the assignment of disappearing grains. Elements for candidate grains are 

normalized by threshold values to bring orientation and distance parameters into the same scale.  

 The result of grain tracking via Hungarian algorithm approach is evaluated using two 

performance metrics, matching efficiency and computation time. Matching efficiency represents 

the percentage of grains that are successfully tracked (assigned), i.e.,  

matching efficiency (%) =
number of matched grains at later time step

number of total grains at later time step
 ×  100  (Equation 6.2) 

Grain tracking between the two LabDCT datasets achieved a ~86% matching efficiency. The 

remaining ~14% of grains that were not assigned can be mainly attributed to grains that emerged 

into the tomographic field-of-view. Since the rod specimen is long enough to be considered an 

open system, “new” grains that were not captured in previous time step may be detected near the 

top and bottom of the X-ray source aperture. This can be confirmed from Figure 6.3b that top 

layer of 𝑡2volume has several new grains that are not observed in previous 𝑡1volume. 

 Hungarian optimization offers distinct advantages over the “brute force” solution to the 

assignment problem. The latter considers every possible assignment, implying a complexity of 

O(𝑁!).  To speed up the task at hand, we may elect to iteratively (i) locate a grain neighborhood, 

(ii) compute costs 𝐽𝑛𝑚 of all grains in the neighborhood, and (iii) assign matching grains based on 
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minimum cost; once a matching grain is found we proceed to the next grain in the dataset.  

However, rather than computing cost matrices 𝑱  and analyzing the matching problem in a 

comprehensive manner, this approach sequentially assigns matching grain as it goes through the 

𝑁 grains, causing an inherent bias from the matching order. It is for this reason that the Hungarian 

algorithm offers a higher matching accuracy and computational efficiency over these brute force 

methods. On a same workstation with Intel(R) Xeon(R) E-2176M CPU core and 64 GB RAM, 

grain tracking between datasets with 𝑀 = 308 and 𝑁 = 295 grains via Hungarian optimization 

takes 11.44 seconds with a cuboidal scope padding of two voxels, misorientation threshold of four 

degrees, and weight factor 𝑐 of zero. On the other hand, the three-step iterative matching scheme 

described above takes 15.69 seconds with the same parameters and offers a matching rate of ~85%. 

Even though the matching efficiency of both methods are comparable, tracking by brute force 

results a few cases of incorrect assignments for the reasons mentioned above. Even larger data 

sizes (e.g., fine-grained materials) should widen the performance gap between combinatorial 

optimization and “brute force” approaches. 
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Figure 6.8. (a) Mechanism of grain tracking. For the candidate grains 𝑛 in the neighborhood of 

grain 𝑚,  physical distances ∆𝑑𝑛𝑚  and misorientation angles ∆𝜃𝑛𝑚  are computed. These 

parameters are combined linearly to give the cost of assignment according to Eq. 1. The green line 

represents the matching grain among other candidate grains (red lines). (b) Schematic of cost 

matrix 𝑱, where row and column entries represent grains from time step 𝑡 and 𝑡 + Δ𝑡, respectively. 

Colored entries in each row represent candidate grains at 𝑡 + Δ𝑡; color scheme indicates cost of 

assignment. (c) Output binary matrix, 𝑿, where row and column entries represent grains from time 

step 𝑡 and 𝑡 + Δ𝑡 (as before). Black colored entries are optimized assignments. 

 

6.4. Summary 

 With the concomitant rise and accessibility of 3D characterization approaches there is an 

emerging need for processing the multimodal and multidimensional data outputted from such 

techniques. To this end, we have developed a set of functions to import, process, and analyze 

3DXRD datasets of varying dimensions, from 2D to higher dimensions. Through effective 

computational routines, the toolbox allows us to align and track features in a highly accurate, 

efficient, and robust manner. For instance, we have achieved a 45% decrease in computation time 

by registering data via Genetic optimization.  Similarly, we attained an 86% matching rate between 

grains in consecutive time-steps, whereas brute force solution to the assignment problem achieved 
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a similar matching efficiency in 37% longer time. Our package also includes functions to filter out 

unreliable features of the experimental data, perform basic statistics on the “cleaned” data, and 

visualize the resultant microstructures. We also offer a solution to correlate and fuse the results 

from different imaging modalities and/or instruments, e.g., ACT and LabDCT.  The full breadth 

of our toolbox is tested on two datasets of a bulk metallic specimen undergoing grain growth, yet 

the toolbox is capable of processing a stream of multiple data sets. It is also noteworthy that the 

toolbox is not strictly limited to metals nor coarsening phenomena, as showcased here.  Rather, we 

expect that our function package will provide a cross-cutting foundation for data processing 

involving very minimal sample-specific tuning.  Potential test cases include studies of crack 

propagation in polycrystalline materials, embrittlement of grain boundaries, and defects in 

additively manufactured polycrystals. 

 Our function package is available as a free and open source MATLAB toolbox and may be 

downloaded from repository platforms, such as Github (https://github.com/shahaniRG/PolyProc) 

and MATLAB File Exchange (https://www.mathworks.com/matlabcentral/fileexchange/71829-

polyproc). It is open to any party wishing to not only use the codes but also contribute to its vitality.   
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Chapter 7. Formation and Persistence Mechanism of ‘Abnormal’ Grains 

This chapter is based on the article published in Acta Materialia [81], for which I retain the right 

to include it in this dissertation, provided it is not published commercially. The co-authors are 

Ning Lu, Nancy Senabulya, Ron Keinan, Nicolas Gueninchault, and Ashwin J Shahani. This work 

was supported by the Army Research Office Young Investigator Program under award no. 

W911NF-18-1-0162 and University of Michigan College of Engineering. 

7.1. Introduction 

 In structural materials, grain refinement is an attractive mechanism for optimizing material 

properties because grain boundaries (GBs) act as barriers for dislocation motion. To this end, 

second phase particles — which exert drag or pinning pressure [44]— may restrain grain boundary 

migration in polycrystalline materials. For this reason, the evolution of grain structure in 

particle-containing systems has been an active area of research, from the 1940s to present day 

[44,118–124]. Even so, the evolution of the grain network in the presence of particles is far from 

understood, with a number of competing proposals (vide infra). For example, prediction of pinned 

grain size by Smith–Zener equation generally overestimates, and a number of modifications exist 

[45]. 

 In general, there are two ways in which grains evolve during coarsening: normal grain 

growth (NGG) and abnormal grain growth (AGG). In NGG, the grain size follows a normal 

distribution after primary recrystallization [29,125]. On the other hand, AGG is a discontinuous 

grain growth event, wherein a few grains “run away” from the normal distribution and grow at 

much faster rate by consuming other grains. The preferential growth of a few grains in AGG may 
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be triggered by energetic factors (such as stored strain energy [126–128]) or kinetic factors (such 

as high mobility grain boundaries [129,130]). Beyond such intrinsic reasons for AGG, one must 

also consider a grain's external environment: AGG may occur in a polycrystalline material with a 

dispersion of second-phase particles [49,131–133] For example, Dennis et al. [49] observed AGG 

following primary recrystallization in Al-3.5wt%Cu alloys, which consist of θ-Al2Cu particles in 

an Al matrix. Upon annealing at 485 °C, which is below the solvus temperature of 491 °C, the 

authors observed a few colossal (200 μm) grains that grew much faster than the others. Since only 

a weak crystallographic texture was measured in Al-3.5wt%Cu, grain orientation alone cannot 

explain why AGG occurred. 

 Our traditional understanding of AGG in the presence of particles is that the particles begin 

dissolving close to the solvus temperature [134,135]. Due to the smaller particle sizes, the pinning 

pressure acting on the grain boundaries is reduced and hence the grain boundaries can break free. 

However, contrary to this metallurgical intuition, simulations show that AGG can indeed occur in 

pinned microstructures without any such particle dissolution. According to recent work done by 

Holm et al. [133], a few grains can thermally fluctuate from their particle clouds at long incubation 

times. If the free grain boundaries belong to a grain that is inclined to grow, growth will be 

sustained since the boundaries of the neighboring grains remain immobile [136]. This 

counterintuitive result — in which the abnormal grains are much larger than the Zener prediction 

[44,45] — is termed “particle-assisted abnormal grain growth”. It is important to keep in mind that 

Holm et al. assumed that the particle distribution and grain boundary properties are uniform and 

isotropic. It is unlikely that these assumptions hold true for real materials.   

  In general, grain growth in a particle-containing system is a delicate balance between the 

capillary driving pressure, 𝑃𝑑, and the particle pinning pressure, 𝑃𝑧, which can be combined to 
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yield the volumetric grain growth rate ∆𝑉/∆𝑡 = 𝑀(𝑃𝑑 − 𝑃𝑧) , where 𝑀  is the grain boundary 

mobility and 𝑡 is time. When 𝑃𝑑 = 𝑃𝑧, the two pressures are equal and opposite, and the grain has 

reached its limiting size. It can be shown that 𝑃𝑑 ∝ 𝛾𝐹𝑉1/3 [137] and 𝑃𝑍 ∝ 𝛾𝑛𝑝 [44], where 𝛾 is 

the grain boundary energy, 𝐹 is the number of grain neighbors, 𝑉1/3 is an integral measure of grain 

size, and 𝑛𝑝 is the number of particles around the grain. Analytical [29,52,138] , computational 

[42,134,139,140] , and experimental [49,129,131,132] studies demonstrate that grain orientation 

(texture [129,130]) and grain size advantage [29]contribute significantly to grain growth through 

the parameters 𝑀𝛾  and 𝐹𝑉1/3 , respectively. In particular, the influence of grain size on the 

propagation of abnormal grains has been assessed through “mean field” models [141] which 

assume a mean matrix (normal) grain size and a uniform distribution of particles [140,141]. Based 

on such models, a critical size to sustain abnormal grain growth was analytically determined to be 

about 1.4 times that of the mean grain size. However, these models were not cross-checked on 

experimental results, likely due to the dearth of 3D and time-resolved information of 

microstructure evolution. 

 Indispensable from theoretical advances are new modes of real-time and three-dimensional 

(3D) characterization, which are required to capture the full microstructural details. For example, 

laboratory-based 4D X-ray diffraction-contract tomography (LabDCT) has only recently been 

applied to the study of microstructural evolution [102,103]. Here, we take advantage of new strides 

in laboratory-based X-ray microscopy, integrating diffraction-contract tomography (LabDCT) and 

absorption-contrast tomography (ACT) to reveal the interaction between grain boundaries and 

particles, respectively, in all their complexity. Correlative imaging in the laboratory has opened a 

new paradigm in physical metallurgy [142,143] and allows us to test the above theories of AGG 

with great precision. Through this multimodal imaging platform, we characterize the grain 



64 

 

structure evolution and particle distribution in an Al-3.5wt%Cu alloy as a model system. We 

observe AGG after prolonged annealing via LabDCT. Meanwhile, the particle distribution is 

highly non-uniform, as determined via ACT. By combining results from LabDCT and ACT, we 

find abnormally large grains located in regions with low particle density. That is, a non-uniform 

distribution of particles can trigger AGG even in initially normal grain structures, for reasons that 

will be presented and discussed. 

7.2. Experimental Methods 

7.2.1. Sample Preparation 

 An ingot of composition Al-3.5wt%Cu was cast via vacuum arc melting at the Materials 

Preparation Center at Ames Laboratory (Ames, IA, USA), using high-purity Al (99.999%) and Cu 

(99.997%). This sample was selected because its thermo-physical properties are well known and 

also it does not attenuate the incident X-radiation too heavily. Our subsequent processing steps are 

based loosely on the prior work of Dennis and Humphreys [49]. That is, the ingot was initially 

homogenized at 550 °C for 4 hours. Then, it was annealed at 400 °C for 30 min. after 50 % 

thickness reduction by cold rolling. These treatments lead to a strain-free (i.e., fully recrystallized) 

microstructure as determined by the diffraction patterns in LabDCT [80]. The annealed sample 

was machined via electric discharge machining (EDM) and further electro-polished in nitric 

acid-based electrolyte (HNO3:CH3 H = 1:2) at −20°C to obtain a thin pillar geometry (~500 μm 

dia.) for the subsequent X-ray tomographic imaging in the laboratory.  

7.2.2. Data Acquisition 

The prepared sample was imaged through LabDCT and ACT on a laboratory X-ray 

microscope (Zeiss Xradia 520 Versa) at the Michigan Center for Materials Characterization at the 

University of Michigan. The anneal schedule is shown in Figure 7.1a. In short, we imaged the 
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grain evolution in an interrupted manner: that is, the same pillar sample was isothermally annealed 

at 485 °C and then water-quenched after 0, 22, 42, 67, and 97 min. Of note is that this anneal 

temperature is below the solvus temperature (491 °C), thereby retaining second-phase θ-Al2Cu 

particles in the system. After each of the anneal segments, we conducted a LabDCT scan. LabDCT 

enabled us to measure the grain structure, including the grain size, shape, orientation, and position. 

In recent years, the technique has been validated against synchrotron DCT [100] , EBSD, and 

absorption-contrast tomography [144] all with satisfactory results for grains that are larger than 

~20 μm (as in this work). During each LabDCT scan, the detector imaged 385 μm of the pillar 

sample from top-to-bottom for 0, 22, 42 min. anneal states, and a vertical scope of 1025 μm for 

the 67, 97 min. anneal states. We increased the field-of-view (FOV) midway through our 

experiment in order to capture more grains, as the average grain size increased upon annealing.  

For each tomogram, we collected 181 projection images every ~2° between 0° and 360° with an 

exposure time of 400 s per projection.  

 On the same instrument we have access to a second imaging modality, ACT, which we 

used to characterize the location of second-phase particles in 3D space. Here, the Cu constituent 

in the θ-Al2Cu particles provided a natural source of absorption contrast (Cu is heavier than Al). 

Unfortunately, at a temperature of 485 °C, the observation of particles via ACT was hindered by 

a limited volume fraction of the θ-Al2Cu phase (~0.3%).  In order to observe particles more clearly, 

we took the following steps at the very end of our experiment (i.e., after 97 min. mark, see 

Figure 7.1a): we ramped down the temperature from 485 °C to 450 °C at a rate of  0.6 °C/min. 

and held the sample at 450 °C for an additional 30 min., thereby increasing the volume fraction of 

the θ-Al2Cu and hence magnifying the particle size (for sake of imaging only). Calculations in 

TC-PRISMA demonstrate that the particle diameter increased from about 0.4 to 0.7 μm 
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(Figure 7.1b) within this temperature window, thereby allowing us to detect particles against a 

matrix with higher signal to noise in ACT. The annealed sample with larger particles was imaged 

in ACT using 1600 projections evenly distributed between 0° and 180° with an exposure of 5.3 s.  

 This ACT scan was intended to represent the particle distribution of the system throughout 

the entire anneal schedule. To this end, our calculations (Figure 7.1c) revealed that the number of 

particles does not vary significantly as the temperature is lowered, owing to a very large nucleation 

barrier above 445 °C. This indicates that this final ramp down in temperature had no discernable 

effect on the nucleation of new particles. That is, the increase in volume fraction between 485 °C 

and 450 °C was accomplished by growth on pre-existing particles. One may also wonder about the 

coarsening rate of the particles at elevated temperature. We note that particle coarsening should be 

very slow during isothermal annealing at 485 °C (as it involves long-range transport) and thus only 

the smallest particles should dissolve into the matrix (due to their higher mean curvatures). 

Conversely, it is reasonable to expect that that the larger particles that exert the most significant 

pinning pressures [44] prevail in the sample. Detailed validation of our assumption is provided in 

the following. 



67 

 

 

Figure 7.1. Thermodynamic predictions via TC-PRISMA of θ-Al2Cu particle evolution in the 

Al-3.5wt%Cu system over the course of annealing. (a) Overview of annealing schedule. Variation 

of (b) particle size (diameter), (c) density, and (d) volume fraction during the annealing process 

shown in (a). Initial mean grain size was set to 0.7 μm in calculations. 

 

Quantitative Predictions on Particle Behavior 

During prolonged annealing at 485 °C, the particles may evolve through coarsening, dissolution, 

and morphological instability. Yet we believe that these three factors do not significantly influence 

our analysis of the interaction between particles and grain boundaries. 

 Firstly, the coarsening rate is too low. We calculated the coarsening rate of θ-Al2Cu 

particles at 485 °C based on Lifshitz-Slyozov-Wagner theory [30]. During isothermal and steady-

state ripening of a two-phase alloy, the average particle size 𝑅 evolves with time 𝑡 according to [2] 

𝑅3 − 𝑅0
3 =  

8𝐷̃𝛾𝛺𝑐(∞)
𝑒𝑞

9𝑘𝑇
𝑡  (Equation 7.1) 



68 

 

where 𝐷̃ = 9 × 10−11 𝑚2/ℎ is the bulk diffusion coefficient of component B (Cu) in α phase 

(Al matrix) [145], 𝛾 = 0.456 𝐽/𝑚2 is the interfacial energy between α (Al matrix) and β phase (θ-

Al2Cu) [145], 𝛺 = 1.6 × 10−31 𝑚3 is the atomic volume, 𝑐(∞)
𝑒𝑞 = 0.015 is the solubility B (Cu) in 

α (Al matrix) for a system with a planar α/β interface, 𝑘 is the Boltzmann constant, and 𝑇 =

758 K (485 °C) is the annealing temperature.  

Based on calculations in TC-PRISMA (Figure 7.1b), the mean particle size 𝑅0 is about 0.2 ~ 0.35 

µm, after Al and Al2Cu have achieved their equilibrium volume fractions at 485 °C. Then, using 

Equation 7.1, the maximum particle coarsening ratio (𝑅 − 𝑅0)/𝑅0 after 𝑡 = 1 ℎ of annealing is 

determined to be 3.5% when 𝑅0 = 0.2µm, i.e., the maximum particle size variation (𝑅 − 𝑅0) is 

about 0.007 µm. Since this value is much smaller than the particle size, isothermal coarsening 

could be safely neglected. 

Secondly, morphological instabilities will not significantly change the centroid position of the 

particles. The surviving particles may indeed evolve via Rayleigh instabilities [146], yet the 

magnitude of such perturbations is on the order of the particle size. According to calculations 

(Figure 7.1b), the particle size (diameter) is below 1 µm at 485 °C. Importantly, this length-scale 

is well below the threshold of 15 µm used to identify the local particle density in the vicinity of an 

individual grain boundary. Thus, slight variations in centroid position on the order of 1 µm will 

not impact our analysis. For these reasons, our terminal ACT scan can approximately deliver the 

distribution of second-phase particles throughout the annealing steps. 

7.2.3. Data Processing 

 Reconstruction of LabDCT data was done via the GrainMapper 3DTM software developed 

by Xnovo Technology ApS. Further details are given in Refs.[80,87]. The reconstructed data from 

Grain Mapper 3DTM was then imported and analyzed using PolyProc, a MATLAB-based modular 
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processing pipeline for X-ray diffraction tomography (Chapter 6). The pipeline consists of data 

alignment (registration), masking, clean up, and grain tracking routines, which are all described in 

Chapter 6 using the same Al-3.5wt%Cu alloy sample as a proof-of-concept. Namely, neighboring 

grains with disorientation less than 1° were clustered into one grain; additionally, grains with size 

and completeness below user-set thresholds were considered unreliable data and ignored in further 

steps. 

 The ACT dataset was reconstructed using the filtered back projection algorithm employed 

by the Scout and Scan software on the laboratory X-ray microscope. Segmentation by thresholding 

was relatively straightforward owing to differences in absorption between the θ-Al2Cu particles 

and Al matrix. It should be emphasized that only the centroids of the particles (and hence, their 

number density) are physically meaningful quantities following segmentation. This is because the 

shapes and sizes of the particles evolve during isothermal annealing at 485 °C and the subsequent 

ramp down in temperature, as mentioned before. 

7.3. Results and Discussion 

7.3.1. Initial Condition 

We first characterize the initial state of the sample, prior to isothermal annealing at 485 °C, see 

Figure 7.2. The corresponding LabDCT reconstruction at the 0 min. mark is shown at the far left 

in Figure 7.3. Using this reconstruction of 267 grains, we characterize the initial condition of our 

sample: the grain size distribution (Figure 7.2a) shows approximately log-normal behavior (see 

fit) and there are no such abnormal grains in system. The average grain size measures 30 μm. We 

also consider crystallographic properties of the initial state. The measured distribution of GB 

disorientations is plotted with the theoretical random distribution of GBs in Figure 7.2b. 

Comparison of the two suggests the GB distribution is nearly random, i.e., there are no significant 
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populations of special high-angle GBs in the sample. In addition, we examine the grain texture of 

the initial state by constructing an inverse pole figure (IPF) of all grains in initial volume. From 

Figure 7.2c there is no distinct texture developed in the sample at the 0 min. mark. 

 

Figure 7.2. Characterization of initial state. Distributions of (a) grain size, (b) GB disorientation 

(i.e., Mackenzie plot) with a random GB distribution shown for comparison, and (c) grain 

orientations (i.e., inverse pole figure) with respect to the specimen z axis (see Figure 7.3), where 

each point is colored using the standard triangle shown inset. 

 

7.3.2. Grain Evolution 

 Figure 7.3 provides discrete snapshots of the 3D grain structure at each annealing state. 

The entire scanned (illuminated) volume is depicted by a translucent blue color. The opaque colors 

indicate the crystallographic orientation of grains along the specimen z direction (see coordinate 

system).  We use this color scheme throughout all figures. Intermittently unindexed regions near 

the top and bottom of the tomographic FOV are due to grains that are either too small or possess 

a low completeness level. It should be stated that the reconstructed volume represents an open 

system; that is, it is located in the vertical middle of a long pillar-shaped sample, and thus the grains 

visualized here are only those grains within the scope of our objective aperture. For this reason, 

“new” grains can emerge into the tomographic FOV from the top and/or bottom during grain 

growth. For example, the huge blue grain was not observed before 42 min. but appeared after that. 

After prolonged annealing (imaging at 97 min. step), this blue grain (abnormal grain) takes up 
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most of the scope volume. To show more of it, we increased the aperture size at the 67 min. mark. 

We prove later on that this grain is truly the abnormal grain in the microstructure. 

 
Figure 7.3. Evolution of grain structure in time.  LabDCT reconstructions shown after 0, 22, 42, 

67, and 97 min. of isothermal annealing at 485 °C. The translucent regions represent the full 

tomographic FOV, out of which we consider a 3D section (opaque) that has been filtered and 

aligned. Opaque colors represent grain orientation with respect to the specimen z direction (see 

inset coordinate system and corresponding standard triangle). The specimen belongs to a much 

longer pillar sample, hence why grains appear into the FOV at the later stages. 

 

 The corresponding evolution of the grain size distribution is presented in the form of 

volume-weighted probability density function (Figure 7.4). Bimodal peaks are developed at later 

time-steps, consistent with what is expected for AGG. At the 42 min. time-step, part of the blue 

grain, which becomes abnormally large in the later time steps, is out of our view. That is, the 

initiation of AGG is not clear from our somewhat limited FOV. In any case, the bimodal 

distribution of grains size is clearly seen at 67 min. once a significant volume of the abnormal 

grain is captured. Then, the abnormal grain continues to “run away” from the grain size distribution 

by consuming smaller grains, resulting a colossal grain that takes up most of the sample volume 

(cf. Figure 7.3). 
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Figure 7.4. Evolution of grain volume in time, plotted as a probability distribution function.  The 

function is not self-similar, showing a bimodal distribution of grain volumes at long times that is 

consistent with AGG.   

 

 We investigate a few properties of the abnormal grain including its shape, at the 67 min. 

mark.  A number of simple metrics can be used to quantify grain morphology: For example, Holm 

et al. employed circularity to quantify the shapes of 2D grains undergoing grain growth [42]. 

Circularity is a measure of compactness, i.e., how closely a shape approaches that of a 

mathematically perfect circle. In 3D, an analogous descriptor would be sphericity. While in 

principle we can apply such a metric to our collection of grains, it loses its meaning for those grains 

that touch the sample surfaces — in that case, the measurement of grain shape is biased by the 

sample geometry. To avoid such complications, we introduce a related descriptor termed convexity, 

𝜓, defined as the ratio of grain boundary area to surface area of smallest convex polygon that can 

contain the grain. Visual representations of the grain surface area and its convex hull are illustrated 

in Figure 7.5 on the right. For the calculation of 𝜓, we consider only the interior GB surfaces and 

not the external sample surfaces. Thus, grains that do not show any “crumpliness” of GB surfaces 

have 𝜓 → 1; the opposite is true for irregularly shaped grains, i.e., 𝜓 → 0. The distribution of grain 
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convexity within this range 𝜓 ϵ (0,1) is correlated to grain size (Figure 7.5). Remarkably, the 

lowest convexity value (indicative of the most irregular shape) belongs to the abnormally large 

blue grain. This grain shows a peninsular morphology, in direct contrast to smaller, more convex 

grains (see insets). Furthermore, the smaller grains are closer to equiaxed morphologies, whereas 

the larger grains, including the abnormal grain, have more irregular morphologies. Worth noting 

is that the grain with the second smallest convexity, but relatively small grain size, is one of the 

neighbors of the abnormal grain (that is, they touch at a grain boundary); this particular grain is 

encapsulated by the abnormal one. Note that most regions (including those with a peninsular 

morphology) within the abnormal grain are above the completeness threshold (see Figure 7.6 for 

a completeness map). Overall, this result is consistent with the aforementioned study [42] that 

shows abnormal grains with very low compactness. 

 

Figure 7.5. Characterization of 3D grain shape, defined as convexity of interior grain surfaces.  73 

grains represented at the 67 min. anneal state. An abnormal grain (blue) and one normal grain 

(pink) are visualized together with their 3D convex hulls (see right). Blue color represents grains 

and red their convex hulls.  Scale-bar on right is 100 μm.  
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Figure 7.6. Closer look at the abnormally large grain. (a) Cross-sectional view of abnormal grain 

at the 67 min. time-step, where voxels within the grain are colored according to their completeness 

value (see colorbar). The average completeness of the peninsular region (arrow) exceeds 0.4. This 

particular cross-section was retrieved from the three-dimensional microstructure by cutting the 

abnormal grain along the red plane in (b,c). 

 

7.3.3. Particle Distribution 

 We investigated the distribution of second phase θ-Al2Cu particles by ACT, as shown in 

Figure 7.7. The 3D visualization of particle centroids shows a certain degree of non-uniformity in 

their locations within the bulk (Figure 7.7a). From this particular viewpoint, the middle region of 

our sample shows a higher density of particles compared to the sides. We quantify the degree of 

dispersion by using the k-nearest-neighbors (k-NN) algorithm, which was previously implemented 

in Refs. [52,113]. In this work, k-NN enables determination of the 𝑘th nearest-neighbor distance 

between particles. For example, histograms of particle-to-particle distances corresponding to 𝑘 =

1 and 𝑘 = 3 are shown in Figure 7.7b. Interestingly, a nearly bimodal distribution is seen at 

increasing 𝑘  values, which is qualitatively consistent with the observation in Figure 7.7a of 

separated particle ‘rich’ and ‘poor’ regions. This result is further compared to the result of a 

Poisson point process (Figure 7.7d). We find a clear difference between the result of the 

experimental and the Poisson distribution. As the latter generates particles randomly, the range of 
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particle spacing is much narrower than the experimental result. 

      Delving deeper, following the method described by Tong and coworkers [147] , we plot in 

Figure 7.7c the average distance < 𝑑 > to the 𝑘th neighbor particle, against 𝑘. The experimental 

results are shown in red, and the 3D analytical calculation based on a Poisson point process is 

presented as black dashed line. For relative smaller 𝑘 (corresponding to local particle distribution), 

there is an obviously departure from the Poisson distribution. This provides quantitative evidence 

of a non-random particle distribution: for instance, the neighbors nearest to a given point are 

located at shorter distances (on average) compared to that of a random distribution. This situation 

would correspond to two particles that are narrowly separated within the particle-dense region of 

Figure 7.7a. With an increase in 𝑘 , the average distance < 𝑑 > is increasingly insensitive to 

fluctuations in the particle density. The two curves in Fig. 5(c) are indistinct when < 𝑑 > is greater 

than ~100 μm. 
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Figure 7.7. Dispersion of second-phase particles. (a) 3D ACT reconstruction. Red specks 

represent particle centroids and blue surfaces the contours of observed field-of-view. One out of 

five particles is shown for clarity. Scale bar is 100 µm. (b) Histograms of first (𝑘 = 1) and third 

(𝑘 = 3) nearest-neighbor distances between particles. (c) Average distance <r> between a particle 

and its 𝑘th nearest-neighbor plotted as a function of k (red points). For comparison, a 3D analytical 

calculation based on Poisson distribution is indicated by black dashed line. (d) Histograms of first 

(𝑘 = 1) and third (𝑘 = 3) nearest-neighbor distances assuming a Poisson distribution. 

 

7.3.4. Multiple Regression Analysis 

 As mentioned in the 7.1. Introduction, the magnitude of the grain volume change ∆𝑉 is 

influenced by the five quantities {𝐹, 𝑉1/3, 𝑛𝑝, 𝑀, and 𝛾}, out of which the first three parameters 

can be directly measured. Among these parameters, the product 𝑀𝛾  can be thought of as an 

amplification factor for grain growth rate, since all grains have some intrinsic mobility 𝑀 set by 
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the grain boundary character and the energy 𝛾  is part of both pressure terms (see 7.1. 

Introduction). Given that Cu solute would level off the mobility as well as energy of Al GBs [148] 

at high misorientation and no significant fraction of “special” grain boundaries (Σ3, Σ7 and Σ11) 

are observed in the sample nor the abnormal grain in particular1 , it is reasonable to assume that 

the product 𝑀𝛾 scales with the fraction of high-angle GBs, which we denote as 𝐻. In what follows, 

we compute 𝐻 for each grain locally. Hence, the parameter set can be reduced to {𝐹, 𝑉1/3, 𝑛𝑝, 𝐻} 

in order to comprehend grain growth phenomena. 

 To trace the dominant factor for grain growth, we plot in Figure 7.8 the change in grain 

volume between 42 to 67 min. annealing states — a period of time within which the abnormal 

grain first develops its size advantage (see Figure 7.3) — as a function of grain size, grain 

neighbors, particle density around the grain, and fraction of high angle grain boundaries, 

respectively.  These four metrics were all evaluated at the 42 min. mark. The particle density here 

provides more localized information over the particle number. The grains that touch the top and 

bottom of our tomographic F V were excluded from our analysis of grain topology (Figure 7.8b) 

owing to the fact that we only see a portion of these grains. It can be found that there is no preferred 

crystallographic orientation of grains that tend to grow or shrink. Interestingly, the first two plots 

go against theoretical predictions: For instance, according to the Hillert model [29] of grain 

growth, if the grain size is above some critical (mean) value, grains should grow; conversely, grains 

shrink when they are smaller than the critical value.  This is clearly not true here since the largest 

grain (~115 μm3) actually shrinks, see Figure 7.8a; presumably it rejoins the log-normal 

distribution of normal grains [48] at later time-steps. Similarly, according to the Mullins[149] and 

MacPherson-Srolovitz [150] criteria, grains should grow if they have 14 or more neighbors. Yet 

 
1 Among the GBs that enclose the abnormal grain, none of them is identified as "special" GBs (i.e., belonging to the set { Σ3, Σ7 

and Σ11}) according to the Brandon criterion. 
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our data reveal a grain with 17 neighbors that experiences a negative growth rate, see Figure 7.8b. 

 f course, what these theories do not consider is the influence of second-phase particles. As shown 

in Figure 7.8c, we observe a larger fluctuation in grain growth and shrinkage rates for those grains 

surrounded by a relatively low particle density. Intuitively, the absence of a pinning pressure will 

“activate” the dynamical evolution of grain boundaries. Furthermore, not surprisingly, a higher 

fraction of high-angle GBs brings about a higher mobility and accordingly a larger grain growth 

or shrinkage rate, see Figure 7.8d. This plot indicates that the largest volume change corresponds 

to grains without low-angle GBs. Worth mentioning is that one grain dramatically outgrows the 

others (note the breaks on vertical axes), and this grain has relatively low particle density and 

highest fraction of high-angle GBs. 
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Figure 7.8. Influence of microstructural features on grain growth rates. Correlations of the grain 

volume change between the 42 min. and 67 min. annealing states with (a) grain size, (b) grain 

neighbors, (c) particle density around grain, and (d) fraction of high angle grain boundaries at 42 

min. The color of data points represents the crystallographic orientation parallel to the specimen z 

direction using the same standard stereographic triangle from Fig. 7.3. Inset on (c) demonstrates 

how the calculation of particle density was done: we count the number of particles (black dots) 

within a threshold distance (thin lines) of the grain boundary and divide through by the grain 

surface area (thick line).  Note the vertical axes breaks on all plots. 

 

 We seek to quantify the contribution of each microstructural parameter to the volumetric 

growth rate. To do so, we use a multiple linear regression model to control for the confounding 

factors listed in Table 7.1 as potential predictors.  Multiple regression bears some similarity to 

canonical correlation [151,152], with the exception that there is only one dependent variable in the 

former (here, change in grain volume between 42 and 67 min., represented as Δ𝑉). Note also that 

the quantities 𝐹𝑉1/3  and  sgn(−Δ𝑉)𝑛𝑝  are physically derived from the driving and pinning 
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pressures (see 7.1. Introduction) associated with grain growth, respectively. Multiplication of 𝑛𝑝 

by the sign function sgn(−Δ𝑉)  ensures that the pinning pressure always opposes the capillary 

driving pressure.  The regression model is of the form 𝑌 = ∑𝑋𝑖𝛽𝑖 where 𝑌 is the single dependent 

variable, 𝑋𝑖 is the set of dependent variables and 𝛽𝑖 is the standardized regression coefficient (i.e., 

the coefficient of the independent variables when all variables are expressed in the standardized 

form of 𝑧-score). For our analysis, we obtain a multiple 𝑅2  of 0.73 (𝑝 < 0.01, from a F-test) 

indicating a good correlation between the independent and dependent variables. 2  The 

corresponding linear combination of variables is displayed in Figure 7.9 for each of the data points 

(individual grains, as before), along with the regression line and a 95% confidence interval. Within 

the regression model, only the two independent variables involving the pinning pressure 

sgn(−Δ𝑉)𝑛𝑝 are significant predictors (𝑝 < 0.01, from a t-test) of grain growth rate; they also have 

among the highest regression coefficients 𝛽𝑖, see Table 7.1. To support these results, we conduct 

dimensional reduction by employing least absolute shrinkage and selection operator (LASSO) 

regularization. We determine 𝜆 that corresponds to the minimum mean squared error from ten-fold 

cross-validation. The sparse solution via LASSO regularization only contains four variables, 𝐻, 

𝑉1/3, sgn(−Δ𝑉)𝑛𝑝, and 𝐻 × sgn(−Δ𝑉)𝑛𝑝. MLR with these four variables gives 𝑅2 = 0.6 (cf. 𝑅2 

= 0.73 for MLR with the full set of 11 variables, see above). To further investigate the significance 

of each of these four variables, we conduct an ablation study, which excludes one feature at a time 

to observe performance reduction and determine contribution of the excluded feature 

(Figure 7.10). As expected, a model without sgn(−Δ𝑉)𝑛𝑝 shows a greatly reduced 𝑅2 , 

representing poor performance without this particular variable. Additionally, a model without 

 
2
 Using only the first four independent variables listed in Table 7.1 leads to a weaker correlation (𝑅2  = 0.33, 𝑝 = 0.21, from an 

F-test), see also Figure 7.10. This would indicate a discrepancy between the coefficient set 𝑋 and grain growth rate  𝑌.  This 

motivated us to consider independent variables that were physically derived. 
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𝐻 × sgn(−Δ𝑉)𝑛𝑝  showed the second greatest decrease in 𝑅2  value. The other two variables 

achieve a comparable result to MLR with all four variables. Taken altogether, these results point 

to the strong influence of a grain’s external environment (i.e., the particle cloud) on its growth 

rate. Stated differently, the abnormal grain is selected from a particle-poor region. Given that it 

has mobile boundaries (𝐻 = 1), it will readily develop a size advantage over the normal grains.3 

We discuss the implications of these results below. 

Table 7.1. Standardized regression coefficients (𝛽𝑖), level of significance (𝑝), and coefficient of 

determination (𝑅) for the dependent variable 𝑌 (grain volume change) and independent variables 

𝑋𝑖. 

𝑋𝑖 𝛽𝑖 𝑝 𝑅 

Residual error 0.08 0.58 N/A 

𝐻 −0.38 0.05 −0.06 

𝐹 −0.02 0.97 −0.14 

𝑉1/3 −0.31 0.73 −0.38 

𝑛𝑝 0.40 0.19 −0.07 

𝐹𝑉1/3 −0.01 0.99 −0.31 

sgn(−Δ𝑉)𝑛𝑝 −0.86 <0.01 0.66 

𝐻 × 𝐹 0.10 0.83 −0.07 

𝐻 × 𝑉1/3 −1.42 0.14 −0.24 

𝐻 × 𝑛𝑝 -0.45 0.30 -0.01 

𝐻 × 𝐹𝑉1/3 1.28 0.24 -0.19 

𝐻 × sgn(−Δ𝑉)𝑛𝑝 1.10 <0.01 0.52 

 

 
3 The influence of grain boundary energy and mobility (intrinsic parameters) should not be understated.  Even if a grain is located 

in a particle-poor region, it can only grow if its boundaries are sufficiently mobile (i.e., 𝑀𝛾 > 0 or 𝐻 > 0). Conversely, grains with 

high mobility boundaries may be located in particle-rich regions and thus cannot grow. The importance of both boundary mobility 

and external environment can be seen through the independent variable 𝐻 ∗ sgn(−Δ𝑉)𝑛𝑝  (𝑝 < 0.01, from a t-test). 
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Figure 7.9. Multiple regression analysis, showing 𝑌 versus ∑𝑋𝑖𝛽𝑖. The regression line (dashed) 

and a 95% confidence interval (shaded region) are shown. As before, the color of data points 

represents the crystallographic orientation parallel to the specimen z direction using the same 

standard stereographic triangle from Fig. 7.3.  

 

 
Figure 7.10. Ablation study on dimensionally reduced multiple linear regression model. The 

model includes four variables, 𝐻 , 𝑉1/3 , sgn(−Δ𝑉)𝑛𝑝 , and 𝐻 × sgn(−Δ𝑉)𝑛𝑝 , after AASS  

regularization. 
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7.3.5. Selection of Abnormal Grain 

 ur multiple regression analysis reveals that the dominant factor governing grain growth 

is the particle distribution. However, it is still unclear how exactly the local particle distribution 

influences the selection of the abnormal grain. According to the Zener-Smith criterion [44], the 

limiting (maximal) grain size is dependent on the local particle distribution when the grain 

boundaries are fully pinned by particles. Thus, one can infer that the particle distribution is random 

before annealing at 485 °C (i.e., the 0 min. mark) since the grain size distribution is log-normal 

(see Figure 7.4). During further annealing at 485 °C, the particle distribution becomes non-random 

as the volume fraction of particles adjusts very quickly to its equilibrium value (from ≳1.6 vol% 

at 400 °C to 0.3 vol% at 485 °C, see Figure 7.1). Even so, the log-normal grain size distribution 

will persist for a while owing to the fact that the grain growth rate is lower than the particle 

dissolution rate, as shown in the schematic image of Figure 7.11a and the corresponding 

experimental result of Figure 7.11d. That is, there exists a rate hysteresis between the evolution 

of particles and that of GBs. Here, Figure 7.11d-f are representative 2D cuts of the AabDCT 

reconstructions at the 22, 42 and 67 min. time-steps, respectively. Ultimately, the system will strike 

a new balance between the local grain size and local particle distribution. At this point, the grain 

size distribution becomes non-random in a way that is consistent with the particle distribution 

(Figure 7.11b and 7.11e), i.e., larger grains are seen in the regions with a lower volume fraction 

of particles, and vice versa.  
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Figure 7.11. Microstructural evolution during isothermal aging at 485 °C. Schematic images are 

shown at (a) early, (b) intermediate, and (c) late stages of grain growth. Grain boundaries are 

shown in black and particles in red.  The thick black outline on each schematic represents the free 

surface of the sample. Blue outline in (b) represents a candidate, interior grain. Corresponding 

cross-sectional images of superimposed ACT and LabDCT data are shown at (d) 22 min. (early), 

(e) 42 min. (intermediate), and (f) 67 min. (late stages). Blue arrows point to abnormal grains.   

 

According to models of capillarity-driven grain growth [34], the driving pressure for 

growth is positively correlated to the number of grain neighbors and anti-correlated to the contact 

(dihedral) angle between grain boundaries (assuming isotropic grain boundaries). It could be 

imagined that the larger grains — which sit in a lower particle density region — will have more 

grain neighbors when touching smaller grains.  ne such large grain is indicated by a blue outline 

in Figure 7.11b. Such a grain can amplify its driving pressure advantage by consuming its 

neighbors. Subsequently the grain's accumulative driving pressure advantage will propel it towards 

an abnormal state, as shown in Figure 7.11c, and confirmed by experiment in Figure 7.11f. The 

above result and corresponding discussion indicate that particles by themselves are a necessary but 

insufficient condition for particle-assisted AGG. What is required is a non-random distribution of 
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particles so that grains can develop a size advantage (in the absence of any other intrinsic factors, see 

7.1. Introduction). 

Based on the above discussion, it can be concluded that the grain growth behavior is highly 

localized and set by the particle distribution. For example, the expansion of the blue grain may be 

realized by consuming its larger grain neighbors rather than the smaller grains in its periphery, as 

the strong pinning pressure induced by the higher particle distribution in the central region will 

prohibit grain boundary migration. In contrast, a weak pinning pressure induces a growth 

competition in the left- and right-hand sides (that show a lower particle density). This is consistent 

with Figure 7.8 that shows a higher fluctuation in grain volume change for grains with a larger 

size, more neighbors, and sparse particle density, as those grains are more mobile than all others.  

7.3.6. Persistence of Abnormal Grain during Growth 

Once the abnormal grain has developed its size advantage, why and how does it 

parasitically take over the microstructure? Why should it persist through regions of high particle 

density?  Is a critical grain size required for these processes to occur in a cascade? To answer these 

questions, and especially the latter, we recall from the 7.1. Introduction that the grain growth rate 

is determined by a balance between a driving pressure and a retarding pinning pressure. This 

pinning pressure is assumed to be proportional to the particle distribution. However, the means for 

evaluating the driving pressure is still somewhat indefinite [52,138]. Recently, a capillarity-driven 

grain growth model was generalized from 2D [32] to 3D [34,35]. This model showed excellent 

agreement with experimental results on normal grain growth [36] in a particle-free system. We 

seek to extend this model to a particle-containing system in order to predict the stability fields 

associated with AGG in 3D. While in our case the particle distribution is far from uniform, it is 

nevertheless instructive to consider mean-field approximations as a first-order approach. 
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By injecting Smith-Zener pinning into the 3D capillarity-driven grain growth model 

[34,35], we derive the following two growth laws,  

𝑑𝑅𝑎𝑏

𝑑𝑡
= 𝑀𝛾 (

1

𝑅𝑛
𝑚 −

1

𝑅𝑎𝑏
−

1

2𝑅0
)  (Equation 7.2) 

𝑑𝑅𝑛
𝑚

𝑑𝑡
= 𝑀𝛾 (

1

2𝑅𝑛
𝑚 −

1

2𝑅0
)  (Equation 7.3) 

where 𝑅0 is the normal grain size when GBs are pinned by particles; and 𝑅𝑛
𝑚 and 𝑅𝑎𝑏 is the mean 

size of normal and abnormal grains, respectively. The first equation thus pertains to the growth 

rate of the abnormal grain and the second to that of the normal grains. In order for AGG to take 

place, both the absolute and relative growth rate should be greater than zero, i.e., 
𝑑𝑅𝑎𝑏

𝑑𝑡
> 0 and 

𝑑

𝑑𝑡
(

𝑅𝑎𝑏

𝑅𝑛
𝑚 ) > 0. In other words, the abnormal grain should be growing with a positive driving pressure 

and at a rate that is higher than the normal grains. These two conditions are solved and plotted as 

solid lines in the "mechanism map" (Figure 7.12), wherein the horizontal axis represents the 

pinning efficiency of the particles and vertical axis the size advantage of the abnormal grain. The 

inner locus of the two curves represents the characteristic field for which AGG is favorable (see 

shaded red region). It can be seen that the critical grain size for which the abnormal grain will 

outgrow its neighbors is 𝑅𝑎𝑏 𝑅𝑛
𝑚⁄ > 2, which is a little higher than that of aforementioned two 

models [52,138] (dashed and dot-dashed lines). Even so, the tendency of all models is essentially 

the same: the required size advantage (𝑅𝑎𝑏 𝑅𝑛
𝑚⁄ ) is minimal when the matrix grain boundaries are 

strongly pinned by second-phase particles (𝑅𝑛
𝑚/𝑅0). 
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Figure 7.12.  Mechanism maps of abnormal grain growth. Superimposed are three different 

models [52,138] (solid, dashed, and dot-dashed lines) together with experimental results (colored 

data points) corresponding to the 67 min. annealed state. The abnormal grain is marked by red 

color and the distribution of normal grains is presented by a symmetric blue outline. The width of 

this outline along the vertical axis indicates probability density of normal grains.  

 

We can plot our experimental results on Figure 7.12, by assuming that the mean normal 

grain size, 𝑅𝑛
𝑚, does not evolve significantly at the later stages and thus 𝑅𝑛

𝑚/𝑅0  = 1. We show 

only the data pertaining to the 67 min. time-step as this is right before the abnormal grain consumes 

the sample volume (see Figure 7.3). Consistent with predictions from our mechanism map, the 

abnormal grain (indicated by red dot) is located in the region wherein abnormal growth is 

favorable, whereas all normal grains are below this regime. We also indicate the four largest 

normal grains and observe those grains are located in the NGG region based on our model but in 

AGG region based on the work by Razzak et al. [34] and Andersen et al. [52]. As such, the 

abnormal grain outgrows the normal grains, and eventually engulfs the sample at the 97 min. mark. 

That the mechanism map is consistent with our experimental observations is remarkable given its 

underlying assumptions. The simple criterion of 𝑅𝑎𝑏 𝑅𝑛
𝑚⁄ > 2 is helpful in understanding the 

importance of size advantage on the persistence of the abnormal grain during grain growth, yet its 
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applicability is limited to systems with a random distribution of particles, for reasons that are 

explained below. 

To reconcile our experimental data with the model, we incorporate the influence of a 

gradient in the particle distribution. We consider a one-dimensional (1D) system with continuous 

gradient in particle distribution and grain size. Since the local particle density determines local 

grain size, one can expect, in turn, a gradient in grain size once the grains are fully pinned. The 

corresponding distribution of normal mean grain size 𝑅𝑛
𝑚 in 1D space S is schematically illustrated 

in Figure 13a. Of note is that 𝑅𝑛
𝑚  is never a single value in particle-gradient system as local 

particle density determines local mean grain size. Let us insert in the distribution an abnormal (ab) 

candidate grain. It is surrounded by normal grains of size 𝑅𝑛 + 𝛥𝑅𝑛 and 𝑅𝑛 − 𝛥𝑅𝑛 on either side, 

where 𝛥𝑅𝑛 indicates the departure in local mean grain size away at distance 𝑅𝑎𝑏. In this case, we 

must update the neighbor grain sizes in our expression (Equation 7.2) for abnormal grain growth 

rate: 

𝑑𝑅𝑎𝑏

𝑑𝑡
= 𝑀𝛾[

1

2
(

1

𝑅𝑛+∆𝑅𝑛
+

1

𝑅𝑛−∆𝑅𝑛
) −

1

𝑅𝑎𝑏
−

1

2𝑅0
]  (Equation 7.4) 

To induce AGG, the absolute abnormal grain growth rate would need to be greater than zero, i.e., 

𝑑𝑅𝑎𝑏

𝑑𝑡
> 0 under the condition that grain boundaries are fully pinned (𝑅𝑛 𝑅0 = 1⁄ ). Thus, we find 

from Eq. (R1) that the size advantage required for persistent AGG can be expressed as 

𝑅𝑎𝑏

𝑅𝑛
>

2(1−𝛿2)

1+𝛿2   (Equation 7.5) 

where 𝛿 = ∆𝑅𝑛 𝑅𝑛⁄ . Figure 7.13b shows a plot of 𝑅𝑎𝑏 𝑅𝑛⁄  against 𝛿. Note the previous “mean 

field” model assumed 𝛿 = 0 and hence 𝑅𝑎𝑏 𝑅𝑛
𝑚⁄ > 2.  In comparison, a non-random particle 

distribution (𝛿 > 0) relaxes the grain size advantage. That is, an abnormal grain does not need to 

have double the radius of a normal grain to persist in its growth, in systems with gradients in 
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particle density. For example, the critical grain size to trigger AGG is only 𝑅𝑎𝑏 𝑅𝑛⁄ >1.9 when 

𝛿 = 0.15. 

 
Figure 7.13. Influence of non-random particle distribution on abnormal grain growth. (a) 

Illustration of local grain size distribution 𝑅𝑛
𝑚 in one-dimensional space S. 𝑅𝑛 is the normal grain 

size at a certain position and Δ𝑅𝑛 indicates the deviation in grain size away from this position. (b) 

Plot of critical grain size advantage for AGG ( 𝑅𝑎𝑏 𝑅𝑛⁄ ) versus homogeneity parameter 

𝛿 = ∆𝑅𝑛 𝑅𝑛⁄ . 

 

The above analysis indicates why the abnormal grain should run away from the grain size 

distribution, but does not explain how it does so. According to DeCost and Holm [42], one possible 

mechanism is that AGG propagates by a series of fast, localized growth spurts involving 

high-mobility grain boundaries. These authors investigated the influence of non-uniform boundary 

mobility on AGG, but their arguments may be interpreted more generally in terms of a non-uniform 

particle distribution (as in our case). As a result of these localized events, the abnormal grain 

develops a highly irregular morphology. Our 3D results qualitatively agree with those of 

simulation: namely, the AG shows the lowest convexity value, representing the most irregular 

shape among the full set of grains at the 67 min. time-step (see Figure 7.5). The low convexity of 

the abnormal grain stems from its highly peninsular morphology, resembling other abnormal 

grains seen in computational [42] and experimental studies [42]. The unusual morphology may 

represent how the abnormal grain propagates through the particle cloud, presumably "exploring" 
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regions of low particle density. Further confirmation of this route will be left for future work.  At 

present, we are limited by a low temporal resolution between subsequent 3D reconstructions and 

a limited number of grains (a few hundred). Future developments in the LabDCT technique will 

enable us to probe larger samples in a shorter amount of time. 

7.4. Summary 

The phenomenon of AGG in the presence of particles throws into question our 

conventional wisdom, namely that particles pin the GBs and prevent grain growth from taking 

place. To better understand the dynamics of this secretive process, we harnessed new strides in 

laboratory-based 3D X-ray microscopy. Through our multimodal imaging platform, we were able 

to capture the evolution of grains (via LabDCT) and the distribution of particles (via ACT) in an 

Al-Cu alloy. We observed AGG after isothermally annealing our sample below the solvus 

temperature. Meanwhile, we detected a non-uniform particle distribution with a broad range of 

inter-particle spacings.  By integrating the results of LabDCT and ACT, we determined that the 

most significant predictor of grain growth rate is the local particle density.  That is, larger grains 

are found in regions of lower particle density and vice versa.  Once a grain develops a size 

advantage — that reflects the underlying particle distribution — it may persist to consume the 

sample volume.  We provide some guidelines for when this might occur, based on an analytical 

model that considers both capillary and pinning pressures.  On the whole, we offer a new 

explanation for AGG in systems with a non-uniform distribution of particles, which is more often 

the norm and not the exception.  The insights gained can be used to identify favorable 

microstructural environments associated with the initiation of AGG in heterogeneous materials. 
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Chapter 8. Origin of Non-random Particle Distributions 

This chapter is based on the article published in Metallurgical and Materials Transactions 

A [82], for which I retain the right to include it in this dissertation, provided it is not published 

commercially. The co-authors are Ning Lu and Ashwin J. Shahani. This work was supported by 

the Army Research Office Young Investigator Program under award no. W911NF-18-1-0162 and 

University of Michigan College of Engineering. 

8.1. Introduction 

Control of microstructure is critically important for many physical properties, such as 

strength and ductility. In other words, modification of microstructure leads to a corresponding 

variation of materials properties. A well-known example is the Hall-Petch relationship in which 

yield strength 𝜎𝑦  is related to grain size 𝑅 of a polycrystal as 𝜎𝑦 ∝ 𝑅−1/2 [3,4]. In multi-phase 

alloys, e.g., particle-containing systems, the grain size is governed in large part by the distribution 

of second phase particles since the particles exert a pinning pressure on grain boundary migration 

[44]. Based on the classical Smith-Zener pinning mechanism, grain size is proportional to the 

particle size r and inversely proportional to phase fraction f as 𝑅 ∝ 𝑟/𝑓  [44]. Therefore, the 

distribution of second phases (i.e., their local fractions and local particle sizes) ultimately 

determines the grain structure and, in turn, the mechanical properties. 

In general, grain growth via capillarity (𝑅 ∝ 𝑡1/2) is faster than coarsening of particles via 

bulk diffusion (𝑟 ∝ 𝑡1/3) in the limit of infinite dilution (𝑓 → 0) [1,23,30,153]. Therefore, grains 

adopt their pinned configurations (where the capillary pressure balances the particle pinning 
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pressure) while particle coarsening becomes a rate limiting step. As the second phase particles 

continue to coarsen through Ostwald ripening, one may infer that grain structure would evolve in 

tandem during isothermal annealing. That is, the grain size retains a log-normal distribution and 

smoothly shifts to larger average grain size (the hallmark of normal grain growth) [29,125]. 

Contrary to this logic, in some cases, discontinuous or AGG events have been observed in 

particle-containing systems, wherein a few grains "run away" from the log-normal distribution at 

relatively high temperature, thus generating a bimodal grain distribution [49,131–135,154,155]. 

The evolution of grain size distribution would, in turn, induce changes in materials properties and 

may limit the lifetime of the material in-service. In some cases where AGG is particularly severe, 

the abnormal grain can consume the microstructure, leading to a single crystal [46,156].  

In past theoretical treatments, investigators developed ‘mean field’ and statistical models 

to assess the origins of AGG in particle-containing alloys [29,52,138,157,158]. Typical 

assumptions are (1) isotropic grain boundary properties; (2) a fixed and random particle 

distribution throughout annealing; and (3) a correspondingly uniform distribution of grain size 

after preliminary recrystallization. Under these conditions, a grain can become abnormal if it has 

a critical size advantage over the other grains. The exact criteria for a grain to obtain this size 

advantage depend on the dimensionality of the system (2-dimensional (2D) vs. 3-dimensional 

(3D)), among other factors. Even so, these mean field models do not specify how to achieve a 

target grain size advantage in the face of an evolving particle distribution, in order to either initiate 

or bypass AGG for technological applications.  

More recently, Refs. [49,81,133,159] suggested that the grain size advantage might be 

caused by local thermal fluctuations or non-random particle distributions. Rios [159] proposed that 

a locally lower pinning pressure adjacent to a large grain can cause it to become unstable and grow 
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abnormally. In a similar vein, Holm et al. [133] showed via Monte Carlo Potts simulations that a 

few grains can thermally fluctuate from the local particle cloud and grow abnormally, even without 

particle dissolution and coarsening. However, this model was not cross-checked against 

experiment. On the other hand, AGG may be attributed to a non-random particle distribution. For 

instance, by taking 2D SEM observations of an Al-3.5wt%Cu alloy, Dennis et al. [49] found a 

lower fraction of θ-Al2Cu particles phase at the grain boundaries of the abnormal grain compared 

to those of the fine matrix grains. Aided by new developments in four-dimensional (i.e., 3D space 

plus time-resolved) laboratory X-ray microscopy, Lu et al. [81] (Chapter 7) investigated the 

particle distribution as well as the grain structure evolution in the same alloy. The results showed 

that particle distribution was non-random during the course of annealing at temperatures near (but 

below) the solvus (491 °C). Accordingly, one of grains in the particle-poor regions became 

abnormally large, eventually accruing a capillary driving pressure that far exceeds that of the other 

(normal) grains. However, the exact reason for a non-random particle distribution (and hence non-

uniform pinning pressure) is still unclear. It should be emphasized that the sample was 

homogenized at 550 °C for 4 hr. and a random particle distribution was observed prior to 

isothermal annealing for grain growth [81]. In light of these details, we hypothesize that the 

transition of the particle distribution from random to non-random takes place upon annealing, and 

that it is chiefly responsible for the initiation of AGG.  

As mentioned above, the two features of the particle distribution that govern grain growth 

are phase fraction and particle size. Hence, the annealing temperature and time would be key 

processing variables. In this work, we characterize the particle evolution and grain growth behavior 

in an Al-3.5wt%Cu alloy as a function of these two parameters. We find the particle distribution 

is random immediately after preliminary recrystallization but deviates from random with 
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increasing annealing temperature (below the solvus) and/or increasing annealing time. We 

quantify the inhomogeneity of particle distribution by borrowing an important measure from the 

economics of inequality, the Gini coefficient. Interestingly, the transformation from NGG to AGG 

takes place when the distribution of particles achieves a critical Gini coefficient. This result 

confirms that a certain degree of inhomogeneity in the spatial arrangement of particles is necessary 

for AGG to take over. We propose an analytical model to describe the evolution of the particle 

distribution and its implications to grain growth. Our combined experimental-modelling efforts 

reveal that even a slight Cu segregation (after homogenization) would lead to a highly non-uniform 

particle distribution (and AGG) at relatively high temperatures (below the solvus). Conversely, 

NGG is favored at lower temperatures and shorter times. These results are presented on a TTT 

diagram that traces the operational window for AGG.  

8.2. Experimental Methods 

8.2.1 Sample Preparation 

An ingot with composition of Al-3.5wt%Cu was acquired from the Materials Preparation 

Center at Ames Laboratory (Ames, IA, USA). All other impurity elements were less than 0.01wt%. 

The subsequent processing steps were based on Dennis et al.[49] and our prior work [81] 

(Chapter 7). That is, the sample cut from ingot was firstly homogenized at 550 °C for 4 hours. 

After cold rolling with 50 % thickness reduction, the sample was heat treated at 400 °C for 30 min 

to induce primary recrystallization. These treatments were assumed to provide a sufficiently 

random distribution of θ-Al2Cu particles and an equiaxed and strain-free grain structure.  
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8.2.2. Characterization 

The microstructure of the samples was characterized by SEM in a TESCAN MIRA3 

microscope with a field emission gun (FEG), at the Michigan Center for Materials Characterization 

(MC2) at the University of Michigan. Elemental dispersions of Al and Cu before and after 

homogenization were inspected by energy dispersive X-ray spectroscopy (EDS). The grain 

structure and crystallographic texture right after primary recrystallization were examined by 

electron backscatter diffraction (EBSD). The samples were mechanically ground and polished for 

EDS, and further FIB-polished by dual-beam system Helios G4 PFIB UXe for EBSD. 

Grain structure evolution throughout further annealing was characterized by backscatter 

electron (BSE) imaging in an interrupted manner. That is, the prepared samples were isothermally 

annealed at 445, 465, 475, 485, 490 °C and then air-cooled after 0, 10, 20, 35, 55, 80 min. After 

each of anneal segments, the grain structure and particle distribution were measured (vide infra). 

Altogether, we collected a total of 78 images at different (temperature, time) coordinates.  

8.2.3. Data Processing 

In what follows, we focus on the evolution of particles and their spatial inhomogeneity, 

since our past work [81] (Chapter 7) indicates that the local particle density determines grain 

growth rates. Measurements of various microstructural features (e.g., grain size, number of 

neighbors, local particle density, etc.) and their contributions to AGG are given in Ref. [81] 

(Chapter 7). Here, we quantify the spatial inhomogeneity of the particles from each image. Taking 

the example of the BSE image collected after annealing at 475 °C for 35 min. (Figure 8.1a), 

wherein the discrete white specks represent Al2Cu particles, we assess the inhomogeneity of 

particle distribution by a convenient single index known as the Gini coefficient [160,161]. 

Formally, the Gini coefficient measures the extent to which the distribution of particles across 
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spatial units deviates from uniformity. If the unit size is large (low granularity), then a random 

distribution converges to a uniform distribution [162,163]. To measure the Gini coefficient, we 

must first transfer the discrete data of particle positions to a quasi-continuous distribution (that 

shows the normalized probability density of particles, see Figure 8.1b) through kernel density 

estimation. Physically, the estimated probability density reflects the spatially averaged fraction of 

θ-Al2Cu phase. For clearer illustration, one out of every five particles is also rendered as white 

specks in Figure 8.1b. Regions with higher probability density (yellow) show a correspondingly 

higher number of white specks (particles), which demonstrates a consistent mapping between the 

discrete particle data and the probability density function. Of note is that we take into account the 

particle size as a weighting factor during estimation since the pinning pressure is proportional to 

particle size (see 8.1. Introduction). Based on the improved Sheather-Jones method [164] — a 

‘nonparametric’ method that does not require an underlying model for the data — we determined 

the optimized bandwidth as 4-6 times the average area per observed particle occupied, with an 

output grid of 64 × 64. The corresponding Gini coefficient (see below) of the particle distribution 

(Figure 8.1c) is in the range of 0.35-0.38, which suggests that it is not very sensitive to bandwidth 

selection. In the following analysis, we use a bandwidth with 6 times the average area to process 

all images and make impartial comparisons.  
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Figure 8.1. Estimation of Gini coefficient associated with the distribution of particles. (a) 

SEM/BSE image of sample annealed at 475 °C for 35 min. Scale bar measures 200 μm. (b) 

Corresponding (normalized) probability density of particles.  ne of five particles’ centroids are 

presented by white specks. (c) Calculation of Gini coefficient based on (b). The ‘PD’ in the 

ordinate refers to the probability density of particles.  See text for details.  

 

After we estimate the quasi-continuous distribution, we then assess the degree of 

inhomogeneity in the distribution of particles by computing the dimensionless Gini coefficient. 

The metric was originally intended to represent the income distribution of residents and is the most 

widely used measure of economic inequality. Somewhat analogously, we treat each pixel after 

kernel density estimation as isolated spatial unit (resident) and its pixel value as its expected 

particle density (income). The Gini coefficient is graphically represented through the so-called 

Lorenz curve 𝐿, which is found by plotting the cumulative percentile of pixels on the abscissa 

against cumulative probability density on the ordinate, as shown in Figure 8.1c. Mathematically, 

the Lorenz curve is calculated as 𝐿(𝑖/𝑛) = ∑ 𝑝(𝑖)𝑖
1 , where 𝑝(𝑖) is the normalized probability 

density of the 𝑖𝑡ℎ pixel sorted in increasing order and n (64 × 64 = 4096) is the total number of 

pixels in the image. Then, the Gini coefficient 𝐺 is computed as double the area (grey) between 

the Lorenz curve and the line of equality (which strikes the origin at a 45° angle), or 𝐺 = 2(1/2 −

∑ 𝐿(𝑖/𝑛)𝑛
1 /𝑛). It can be seen that 𝐺 ranges from 0 to 1, with the limits 0 and 1 representing a 
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uniform distribution (under low measurement granularity) and complete segregation of particles, 

respectively. For the particle distribution shown in Figure 8.1a, 𝐺 = 0.35.  

8.3. Results and Discussion 

8.3.1. Elemental Distributions before and after Homogenization 

Given that element Cu is indispensable for precipitation of θ-Al2Cu particles (which consist 

of ~50wt%Cu), it is logical to infer that particle distribution is dominated by the local Cu 

dispersion. Homogenization for 4 hr. at 550 °C (above solvus) is conducted to realize a reasonably 

uniform Cu dispersion prior to particle precipitation. To verify this effect, we characterize the 

sample before and after homogenization via SEM, as shown in Figure 8.2. Before 

homogenization, typical eutectic features can be observed in the interdendritic regions (e.g., 

lamellae of θ-Al2Cu phase, as shown in top half of Figure 8.2a). The corresponding EDS analysis 

(bottom half of Figure 8.2a) confirms that the Cu constituent is concentrated in the θ-Al2Cu phase 

(green), which suggests a highly non-uniform Cu dispersion due to chemical segregation. After 

the homogenization treatment, the dendritic structure disappears, and the BSE image becomes 

featureless (see upper half of Figure 8.2b). Due to interdiffusion, there is no obvious Cu 

segregation based on preliminary EDS analysis (bottom half of Figure 8.2b). To illustrate the Cu 

dispersion more clearly, we plot in Figure 8.2c the ratio of Cu to Al counts (photons of Cu K𝛼 

radiation to that of Al K𝛼 radiation). Slight fluctuations in the count ratio indicate a relatively weak 

Cu segregation. This is consistent with our metallurgical intuition that it is impossible to achieve 

a uniform Cu dispersion even after annealing for a finite amount of time. For example, assuming 

instantaneous, localized sources in infinite media [2], the concentration 𝑐 of diffusant (here, Cu) 

in one-dimensional (1D) space S at some time 𝑡 is 𝑐(𝑆, 𝑡) =
𝑛𝑑

(𝜋𝐷𝑡)1/2
𝑒−𝑆2/(4𝐷𝑡), where 𝑛𝑑 is the 
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total mass of diffusant (Cu) and D is the bulk diffusivity of diffusant in the matrix (for Cu in Al at 

550 °C, 540 µm2/hour [145]). After 𝑡 = 4 hr.  of annealing, we estimate the range of Cu 

segregation to be about 50%. Although this value is higher than our experimental observation — 

likely due to the departure of the initial condition from the Dirac function — it still indicates the 

residual segregation of elemental Cu following homogenization. 

 

Figure 8.2. Chemical distributions before and after homogenization. (a) SEM/BSE image of cast 

ingot (top half), with element map (counts) of Cu (bottom half).  (b) SEM/BSE image of sample 

after 4 hr. homogenization at 550 °C (top half), with element map (counts) of Cu (bottom half). 

(c) Ratio of the counts of Cu (K𝛼) to that of Al (K𝛼), corresponding to image (b). Scale-bars in 

(a) and (b) measure 200 and 500 μm, respectively. 

 

8.3.2. Microstructure after Primary Recrystallization 

After confirming the near-uniform Cu dispersion after homogenization, the sample was 

cold-rolled and subsequently heat treated at 400 °C for 30 min. for precipitation and 

recrystallization. Then, we examined the particle distribution and grain structure by BSE and 

EBSD, respectively. A clearly random particle distribution is shown in BSE image (Figure 8.3a). 

No obvious agglomeration nor abnormally large particles can be seen (see inset). The average 

nearest-neighbor distance between particles is ~2-3 µm. The grain map retrieved from EBSD 

(Figure 8.3b) indicates an equiaxed grain structure is achieved after primary recrystallization. In 
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addition, a nearly random distribution of orientations confirms that no preferred texture is 

developed after recrystallization. We note that past studies with similarly prepared samples 

demonstrate also a weak crystallographic texture. Namely, in our own previous investigation [81] 

– Chapter 7, which involves the same ingot as well as sample preparation procedure, we 

characterized the crystallography of 267 individual grains in 3D and confirmed that no obvious 

texture was developed in our sample during annealing (Figure 7.2). 

 

 

Figure 8.3. Particle distribution and grain structure after cold-rolling and annealing at 400 °C for 

30 min. (a) SEM/BSE images. White specks are θ-Al2Cu particles (see inset for a magnified view). 

(b) SEM/EBSD grain map. Colors indicate crystallographic orientations of grains along the normal 

vector of page. All scale-bars measure 200 μm. 

 

8.3.3. Evolution of Particle Distribution upon Annealing 

After recrystallization, the samples are subject to heat treatment at various annealing 

temperatures and annealing times, the effect of which is to alter both the phase fraction and particle 

size, and consequently the particle distribution. Examples of particle distributions at various 

conditions are shown in Figure 8.4. More specifically, the sequence of images in Figure 8.4a 

shows the evolution of the particle distribution upon isothermal annealing at 485 °C for 0, 10 and 
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20 min. As expected, the particle density is significantly reduced owing to dissolution. 

Interestingly, however, this particle dissolution is non-uniform across the sample since particles 

preferentially disappear in some regions as opposed to others, leading to a highly non-random 

distribution. The inhomogeneity in the particle distribution persists upon further annealing at 485 

°C due to slow coarsening rate of particles (Figure 8.5). On the other hand, by varying the 

annealing temperature (465, 475 and 485 °C) and holding the annealing time fixed at 35 min. 

(Figure 8.4b), we recognize a clear transition toward a non-random distribution of particles. 

Generally, the particle distribution becomes highly heterogeneous at long times and/or high 

temperatures, the reasons for which are discussed in subsequent sections. 
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Figure 8.4. Examples of particle distribution at various annealing temperatures and times. (a) 

SEM/BSE images of Al-Cu alloy annealed isothermally at 485 °C for 0-, 10- and 20-min. White 

specks are θ-Al2Cu particles (see insets). (b) SEM/BSE images at temperatures of 465, 475 and 

485 °C after 35 min. All scale-bars measure 200 μm. 
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Figure 8.5. Examples of particle distribution at annealing temperature of 485 °C for longer times. 

(a through c) SEM/BSE images collected after 35-, 55-, and 80-min. White specks are θ-Al2Cu 

particles (see insets). All scale-bars measure 200 μm. 

 

To describe and compare the particle distribution across all annealing steps, we quantify 

the inhomogeneity of particle distribution using the Gini coefficient 𝐺 (see Section 8.2.3). The 

variation of 𝐺 as a function of annealing time and temperature is displayed in Figure 8.6. It should 

be noted that filled/open symbols represent calculated 𝐺 values from experiments (Figure 8.5); 

we employ third-order polynomial fitting to extrapolate between our measurements (color-bar). 

The result shows that when the annealing temperature is lower than 470 °C, the particle distribution 

retains the incipient Gini coefficient (𝐺 < 0.2) irrespective of annealing time. At temperatures 

higher than 470 °C, 𝐺 varies dramatically over the course of annealing, increasing significantly 

before 20 min. and then increasing only slightly after that, which might be explained by rapid 

dissolution followed by a more gradual coarsening of particles, respectively. The highest Gini 

coefficient (𝐺 ≅ 0.6) associated with a highly non-random particle distribution can be found at 
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485 °C after 20 min. It is important to mention that  𝐺 decreases in the sample annealed at 490 °C 

for 35 min (𝐺 ≅ 0.3). We confirmed that this behavior is due to severe particle dissolution as the 

temperature approaches the solvus (491 °C). Since the Gini coefficient reflects the inequality 

among individuals (here, pixels), severe dissolution will let the particle-rich regions be in the 

minority. That is, most pixels are devoid of particles and thus show a similar behavior. 

Consequently, the average area per particle occupied increases with the reduction in particle 

number (see Section 8.2.3). Thereby the bandwidth for kernel density estimation increases 

dramatically, thus reducing the Gini coefficient. 

 
Figure 8.6. Variation of Gini coefficient (associated with the particle distribution) with annealing 

temperature and time (TTT diagram). Symbols indicate where we measured particle distributions 

and grain structures (filled: AGG, open: NGG). Data points were fit to a third-degree polynomial, 

see color-bar. Yellow regions indicate inhomogeneity (𝐺 ≥ 0.65) and dark blue the converse. 

Dashed line represents the transformation boundary between NGG and AGG.  

 

Of note is that the non-random particle distribution here does not originate from 

deformation. In previous studies[1,165,166], investigators report the segregation of particles to 
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‘bands’ in Al alloys after cold rolling, where the bands lie parallel to the rolling direction. While 

we indeed perform cold rolling, the particle-rich band is roughly perpendicular to the rolling 

direction in our case (see Figure 8.7), suggesting the particle distribution is not influenced too 

strongly by extrinsic factors such as deformation. 

 

Figure 8.7. Extended scope of particle observation at annealing temperature of 485 °C for 80 min., 

showing particle rich bands. RD indicates rolling direction and 𝜆 the spacing between the bands. 

Scale-bar measures 200 μm 

 

8.3.4. Transformation in Grain Growth Behavior 

The consensus in the metallurgical community is that second phase particles restrict grain 

growth by pinning the grain boundaries. What is much less recognized is the impact of the evolving 

particle distribution on grain growth. Examples of NGG and AGG are shown in Figure 8.8. In 

Figure 8.8a-d, we provide both the grain structure captured by SEM/BSE (inset) as well as the 

corresponding grain size distribution (outset). Furthermore, we plot probability density functions 

of the grain size in Figure 8.8d. As discussed in 8.1. Introduction, we can distinguish grain 
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growth behavior by considering the shape of the grain size distribution: unimodal for NGG and 

bimodal for AGG [167]. With this criteria in mind, Figure 8.8a-b reveal the typical NGG behavior 

after 20 and 35 min. of annealing. However, after 55 min. of annealing (see Figure 8.8c), a few 

colossal grains appear, transforming the grain size distribution to a bimodal shape (indicative of 

AGG, see Figure 8.8d). These three inset images of grain structure were obtained by filtering and 

adjusting the contrast of the raw BSE images to reveal the grain structure. 
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Figure 8.8. Evolution of grain growth behavior upon annealing. (a-c) Representative grain 

structures obtained by SEM/BSE (inset) and corresponding grain size distributions (outset) after 

annealing at 475 °C for 20, 35, and 55 min, respectively. Scale-bars: 200 μm. (d) Probability 

density functions of grain size corresponding to (a-c). 

 

To trace the underlying relationship between the distribution of particles and the mode of 

grain growth, we superimpose in Figure 8.6 the binary classification of grain structure (AGG or 

NGG) on the bivariate (temperature vs. time) distribution of Gini coefficients. We observe AGG 

in 10 annealing states (marked by filled symbols), whereas the remainder show NGG (open 

symbols). Interestingly, AGG occurs only when the particle distribution achieves a certain or 

critical degree of inhomogeneity (𝐺 > 0.2). Based on this result, we draw a rough boundary on 
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Figure 8.6, which represents the onset of AGG (i.e., the runaway of a few grains from the grain 

size distribution). By doing so, we uncover a time-temperature-(structural) transformation (TTT) 

diagram that identifies the stability fields of NGG and AGG. This information helps to anticipate 

the grain growth behavior (whether it is NGG or AGG) at a given annealing state (temperature and 

time), and ultimately, to control granular microstructure through thermal processing.  

8.3.5. Influence of Cu Segregation on Particle Dispersion 

Based on the above analysis, we find that the transformation of grain growth behavior from 

NGG to AGG is associated with the transition of particle distribution from random to non-random. 

This is consistent with our previous 3D observations pertaining to an Al-3.5wt%Cu alloy [81] 

(Chapter 7). With these results in mind, we draw our attention to the question of what is the 

mechanism by which the particle distribution becomes highly non-random? 

At a given temperature and composition, mass fractions 𝑓 of the two phases (α-Al and θ-

Al2Cu) can be determined from the Al-Cu phase diagram [168], reprinted in Figure 8.9a. 

According to the lever rule [169], they are calculated as 𝑓α =
𝑙α

𝑙α+𝑙𝜃
 and 𝑓𝜃 =

𝑙𝜃

𝑙α+𝑙𝜃
, respectively. 

Here, 𝑙𝜃 is the length of the green line, or the difference of mass fraction of Cu in α phase and the 

alloy. Similarly, 𝑙𝑎 is the length of red line, or the difference of mass fraction of Cu in the alloy 

and θ phase. To account for the spatial fluctuation in Cu concentration after homogenization (see 

Section 8.3.1), herein we introduce a term ∆𝑙 that specifies the local deviation of Cu from the 

nominal 3.5wt%, as shown in Figure 8.9a. It can be either negative or positive depending on 

whether the region is locally Cu sparse or dense. Accordingly, we update the above expressions to 

𝑓α =
𝑙α−∆𝑙

𝑙α+𝑙𝜃
 and 𝑓𝜃 =

𝑙𝜃+∆𝑙

𝑙𝑎+𝑙𝜃
.  
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Figure 8.9. Influence of Cu segregation on particle distribution. (a) Phase diagram of Al-Cu. 

Deviation of Cu concentration from the nominal value is indicated by ∆𝑙. See text for details. (b) 

Schematic illustrations of partitioning of θ-Al2Cu and α-Al at three temperatures (𝑇1 < 𝑇2 < 𝑇3), 

along a 1D domain 𝑆. (c) Illustrations of particle distribution at the same temperatures as in (b), 

now in a quasi-1D domain 𝑆. Note axis breaks on (a-b). 

 

In our case, since ∆𝑙 (≪ 3.5wt%) is much smaller than 𝑙α (~50wt%), the variation of mass 

fraction of α matrix 𝑓α is insensitive to ∆𝑙. Therefore, the effect of Cu segregation (∆𝑙) could be 

neglected and ultimately 𝑓α is only dependent on annealing temperature:  

𝑓α ≈
𝑙α

𝑙α+𝑙𝜃
                                                                                                                     (Equation 8.1) 

On the other hand, for 𝑓𝜃, ∆𝑙 would be non-negligible as it is comparable in magnitude to 𝑙𝜃. This 

is especially true when 𝑙𝜃 tends to zero as the annealing temperature approaches the solvus. In 

order to better clarify the influence of ∆𝑙 on 𝑓𝜃, we rewrite the latter as 𝑓𝜃 =
𝑙𝜃

𝑙α+𝑙𝜃
+

∆𝑙

𝑙α+𝑙𝜃
. The first 

term on the right-hand-side is solely impacted by the annealing temperature (similar to the above 

discussion). Meanwhile, the second term is the contribution associated with Cu segregation. As 

before, we can neglect 𝑙𝜃  (< 3.5wt%), given that it is hardly comparable to 𝑙α  (~50wt%). 

Therefore, the mass fraction of θ-Al2Cu phase could be simplified as  
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𝑓𝜃 ≈
𝑙𝜃

𝑙α+𝑙𝜃
+

∆𝑙

𝑙α
                                                                                          (Equation 8.2) 

Because of the nearly fixed constitution of Cu in θ-Al2Cu, 𝑙α is roughly a constant. That is, 𝑓𝜃 

consists of a standard, temperature-dependent term (the first one) and a temperature-independent 

term (the second). We emphasize again that the above simplifications are only for sake of 

understanding the influence of residual Cu segregation on phase partition (although the sum of the 

mass fraction of those two phases (𝑓α + 𝑓𝜃) never yields unity).  

Following Equations 8.1-2, we illustrate in Figure 8.9b the phase partition at elevated 

temperatures (𝑇1 < 𝑇2 < 𝑇3) in the two-phase regime. Phase fractions of θ-Al2Cu and α-Al are 

represented by the relative heights of the green and red domains, respectively, in 1D space S. The 

Cu segregation parameter ∆𝑙 (as well as ∆𝑙/𝑙α) are expected to follow a sinusoidal profile based 

on homogenization theory [170]. Note again that the amplitude of the fluctuation in θ-Al2Cu phase 

fraction, ∆𝑙/𝑙α, retains the same value at various temperatures. Of course, the profile would be flat 

(∆𝑙 = 0) for a perfectly homogeneous (uniform) dispersion of Cu, as indicated by black dashed 

line in the top left panel of Figure 8.9b. With increasing temperature, the length of the green line 

(𝑙𝜃) is gradually reduced, as shown in Figure 8.9a. Accordingly, a smaller fraction of θ-Al2Cu 

phase would be predicted at equilibrium (see Figure8.9b). When the annealing temperature 

approaches the solvus (𝑇3), regions that sit in relatively Cu poor regions are now totally devoid of 

the θ-Al2Cu phase. Furthermore, the θ-Al2Cu phase fraction 𝑓𝜃 is related to particle density 𝑛𝑣 as 

𝑛𝑣 ∝ 𝑓𝜃/𝑣𝑝 (where 𝑣𝑝 is the particle volume). We would thus expect a corresponding non-random 

particle density at relatively higher temperatures assuming a constant particle size, as shown 

schematically in Figure 8.9c. The trends conveyed by the illustrations in Figure 8.9c match our 

experimental results in Figure 8.4b. Namely, we observe a highly non-random particle distribution 
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at high temperatures. Although the influence of Cu segregation on phase dispersion is negligible 

at lower temperatures, its impact is greatly magnified when approaching the solvus from below. 

The discussion above is strictly based on thermodynamic arguments with the assumption 

of infinitely fast dissolution. In reality, dissolution takes time, with the dissolved fraction 𝑔 being 

inversely proportional to the initial, local phase fraction 𝑓𝜃
0, assuming it is diffusion-limited and 

there is no overlap of solutal fields [171]: 𝑔 =  
√2𝐷𝑡

𝑓𝜃
0𝜆

(𝑥𝛼/𝜃−𝑥𝑚)

(𝑥𝜃−𝑥𝑚)
, where 𝐷 is the diffusivity of Cu in 

α-Al, 𝑡 is dissolution time, 𝜆 is the spacing between Cu segregates, 𝑥𝛼/𝜃 is the Cu concentration 

in the matrix at the 𝛼/𝜃 interface (as long as the θ-Al2Cu is not completely dissolved), 𝑥𝜃 is the 

Cu concentration in θ-Al2Cu and 𝑥𝑚  is the initial Cu concentration in α-Al (far from the 𝛼/𝜃 

interface). Given the minor fluctuation of Cu concentration of the sample (Figure 8.2b), the 

dissolution rates across the sample will not strongly impact the results of our above discussion 

(i.e., the dividing line between the red and green regions in Figure 8.9b should be nearly flat). If 

we assume a constant rate of dissolution, we should expect the particle distribution to evolve from 

random to non-random upon isothermal annealing at elevated temperatures (right below the 

solvus), as the system moves toward an equilibrium phase fraction of θ-Al2Cu. We confirm this 

behavior in Figure 8.5a.  

We find also that thermal fluctuations are inconsequential at the scale of our experimental 

data. Thermal fluctuations are thought to lead to compositional fluctuations such that some pockets 

of the sample are thermodynamically favored to undergo precipitation to θ-Al2Cu, and likewise 

other pockets undergo dissolution. From fluctuation theory, fluctuations in composition may be 

approximated as a Gaussian probability distribution function. Following Landau and Lifshitz 

[172,173], we calculated the variance of Cu concentration 〈(∆𝑐)2〉 as 〈(∆𝑐)2〉 =
𝑘𝐵𝑇

𝑁(
𝜕𝜇

𝜕𝑐
)

𝑃,𝑇

, where 𝑇 
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is temperature (465-490 °C), 𝑘𝐵 is Boltzmann constant, 𝑁 is the total number of atoms in a single 

pixel and (
𝜕𝜇

𝜕𝑐
)

𝑃,𝑇
 is the first derivative of the chemical potential of α-Al with respect to 3.5wt% of 

Cu evaluated at constant pressure (1 atm) and temperature. Assuming a pixel size of ~102 µm2 

(used in calculating the Gini coefficient) and estimating the chemical potential as a function of Cu 

concentration via Thermo-Calc, we estimate the variance in Cu concentration 〈(∆𝑐)2〉 to be less 

than 10−15 within the temperature range given above. Since it is not comparable to the average 

Cu concentration, thermal fluctuations play a very minor role (compared to residual segregation) 

and thus we do not consider it further in our analysis. 

8.3.6. Strategies to Prevent AGG 

The above results suggest that in order to restrict the occurrence of AGG, we should 

understand the origins of a non-uniform Cu dispersion. To this end, we investigate the evolution 

of the Cu dispersion prior to isothermal annealing. After solidification, equiaxed grains are found 

in the center of the casting while columnar grains radiate from the chilled surfaces. Although our 

sample is prepared by conventional casting, the thickness of our button-shaped ingot (~1.5 cm) is 

much smaller than its diameter (~5 cm). As a result of the limited thickness and hence the steep 

temperature gradient normal to the top/bottom surfaces (relative to the solidification rate), a 

columnar growth morphology is produced, as illustrated in the upper panel of Figure 8.10a. This 

is confirmed by our observation of a columnar grain structure in Figure 8.2a. The θ-Al2Cu phase 

is mainly dispersed in the interdendritic regions, as presented in the bottom panel of Figure 8.10a. 

After homogenization above the solvus, the Cu species dissolves from θ-Al2Cu phase and diffuses 

into α-Al phase. As a result, the Cu-rich (or -poor) regions have a periodicity of 𝜆 (see Figure 

8.10b), which is equivalent to the primary dendrite arm spacing from Figure 8.10a.  
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Figure 8.10. Influence of processing history on Cu distribution. (a) Cast microstructure consists 

of columnar grains, where θ-Al2Cu is mainly found in interdendritic regions (dark gray). (b) Cu 

distribution following homogenization. 

 

To further illustrate the behavior of Cu segregation/homogenization, we mathematically 

express the mass fraction to be a sinusoidal function [170] given by   

𝑓𝜃(𝑆) = 𝑎 + 𝑏 sin (𝑆
𝜋

𝜆
−

𝜋

2
) (Equation 8.3) 

where 𝑎  represents the mass fraction of θ-Al2Cu phase without Cu segregation ( ∆𝑙 = 0 ), 𝑏 

indicates the amplitude of the fluctuation (∆𝑙/𝑙𝑎) and 𝜆 is the spacing between Cu segregates. A 

prolonged homogenization is also expected to flatten the gradients in Cu distribution (decrease in 

𝑏). Annealing for relatively short durations (for a few hours) will lead to a highly non-uniform θ-

Al2Cu phase distribution when approaching solvus from below, as shown in Figure 8.11a. On the 

contrary, an even longer homogenization treatment will reduce the Cu segregation and hence the 

fluctuation of θ-Al2Cu phase distribution, see Figure 8.11b. However, a totally uniform Cu 
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dispersion (𝐺 = 0) would require an infinite amount of time and thus a non-uniform phase 

distribution (𝐺 > 0) is inevitable. Even so, adjustments made to the homogenization treatment 

would help lower the possibility of AGG by decreasing the amplitude of the non-random particle 

distribution.  

 

Figure 8.11. Influence of homogenization time on θ-Al2Cu phase distribution. (a, b) Schematic 

partitioning of θ-Al2Cu and α-Al phase after relatively short and long homogenization treatments 

and further annealing. 

 

6.4. Conclusions 

In this work, we investigate the evolution of second phase particles and their role in 

provoking abnormal grain growth (AGG) in Al-3.5wt%Cu alloy. To uncover the connection 

between the particles and the grains, we map the θ-Al2Cu particle distributions and grain growth 

behaviors as a function of annealing temperature and time. We use the Gini coefficient 𝐺  to 

quantify and compare the inhomogeneity of particle distributions across the various annealing 

states. At relatively high temperatures (but below the solvus) and at long annealing times, we 

observe a highly non-random particle distribution (𝐺 > 0.2 − 0.3) and a concomitant AGG. With 
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this information, we construct a temperature-time-(structural) transformation (TTT) diagram that 

can be used by researchers to anticipate the grain growth behavior at a given annealing state.  

To rationalize the above trends, we determine the source of the non-random particle 

distribution to be residual Cu segregation after homogenization. That is, the spatial fluctuations in 

Cu and/or θ-Al2Cu are amplified at elevated temperature and upon prolonged annealing. The 

insights gained can be used to predict the onset of AGG by monitoring the Gini coefficient 

associated with the particle distribution. Based on our analysis, we propose a few strategies to 

decrease 𝐺 and thus mitigate the occurrence of AGG. 
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Chapter 9. Percolation Behavior of Three-dimensional Grain Boundary Networks 

This chapter is based on the article in peer review as of August 2022 [83], for which I retain 

the right to include it in this dissertation, provided it is not published commercially. The co-authors 

are Konnor Walter, Hrishikesh Bale, and Ashwin J. Shahani. This work was supported by the 

Army Research Office Young Investigator Program under award no. W911NF-18-1-0162. 

9.1. Introduction 

As early as 1948, C.S. Smith defined the topology of the materials world [44]. Solid 

materials like polycrystalline metals can be partitioned into space-filling grains with faces (grain 

boundaries or GBs), edges (triple junctions or TJs) and vertices (quadruple nodes or QNs), see 

also Chapter 3. For topologically stable 3D structures, Smith showed that three GBs meet at a TJ 

edge and four TJs meet at a QN. The importance of such planar and linear defects on materials 

performance is worth reviewing, below.  

GBs in a polycrystal provide faster diffusion paths (orders of magnitude greater 

diffusivities) compared to the intragranular lattice, due to the excess free volume and enhanced 

atomic mobility [174–176]. The distribution and character of GBs have long been known to play 

a critical role in many intergranular failure events, including corrosion [14,58,59,177–179], 

cracking [16,180–183], and liquid metal embrittlement [20,21]. For example, low-angle GBs tend 

to be less susceptible to grain boundary sliding [184] and coincidence-site lattice (CSL) GBs have 

shown a resistivity to crack propagation [185]. Consequently, the field of grain boundary 

engineering has sought to prevent those intergranular failure events by increasing the density of 
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failure-resistant GBs. On the other hand, it has been consistently claimed that susceptibility to 

failure depends not only on the identity of individual GBs, but also the connectivity between them 

[14–19]. Damage accumulates in a material when a connected pathway of failure-susceptible (i.e., 

sensitized) GBs span the material. A detailed understanding of the underlying structure of the GB 

network is therefore warranted.  

To this end, bond percolation describes the behavior of a large system, the elements of 

which are randomly interconnected via bonds [62,63]. Since it provides a natural description of 

connectivity, the network of GBs can be analyzed within the framework of bond percolation theory 

wherein the ‘bonds’ represent the GBs. Some bonds are ‘open’ (or failure-susceptible, in this case) 

while others are ‘closed’ (or failure-resistant and immune). At a critical fraction of open bonds, 

termed the percolation threshold, there exists a continuous path of open bonds that travels infinitely 

far. Stated differently, the percolation threshold is the bond occupancy at which the network 

connectivity changes from short- to long-range [186]. Wells and coworkers [187] were the first to 

investigate the complex structures and percolation thresholds of synthetic, 3D GB networks. More 

recently, Schuh and coworkers modelled the grains as space-filling tetrakaidecahedra and 

compared their results on the connectivity of GBs against standard percolation theory [64–66]. 

Ultimately, they found that the GB network can be characterized using the same scaling laws and 

critical exponents as of percolation theory, i.e., it is in the same universality class as random 

percolation. Even so, the percolation threshold is system-specific and dependent on the underlying 

topology of the GB network [64]. It is thus an open question if the percolation threshold measured 

by Schuh and coworkers on an ensemble of 14-sided grains is necessarily relevant to real materials 

that possess a broad distribution of grain topologies (vide infra). In fact, prototypical shapes like 

Kelvin’s tetrakaidekahedra and the Weaire-Phelan cell are rarely observed [188]. To the best of 
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our knowledge, there have been no direct tests to confirm the results of their idealized simulations 

nor any other idealized model studies using different space-filling polyhedrons. 

Damage can propagate in a 3D polycrystal not only along the GBs, but also along the three-

grain intersection lines, or TJs. Such linear defects are diffusional short-circuits even with respect 

to the GBs [189–191]. The influence of TJ diffusion becomes increasingly evident in 

nanomaterials where the density of TJs per unit volume is substantial. Many studies reported 

unusually high grain boundary diffusivity for nanocrystalline materials compared to conventional 

grain boundary diffusivity [68–73], and Chen and Schuh quantitatively explained the anomaly by 

accounting for the high diffusivity of TJs [74]. It stands to reason, then, that the TJ lines are the 

key network-forming elements of the bond percolation problem. However, we have limited 

understanding of TJ network and its connectivity in real 3D materials, aside from some preliminary 

remarks in Ref. [192]. It remains to be determined how the percolation threshold of TJs relates to 

that of the GBs and also to idealized lattice structures [67].  

These questions remain unanswered via experiment due to the dearth of (i) 3D and (ii) 

large-scale microstructural data. Firstly, since percolation is a measure of connectivity, the 

percolation threshold varies with the dimensionality of the system [61–63]. As Ref. [186] explains, 

in 2D the formation of a percolating cluster of GBs (or TJs) blocks the spanning of any other 

cluster, while in 3D a cluster may “go around” a spanning cluster and simultaneous percolation is 

achievable. Secondly, smaller datasets will intuitively lead to artificially lower percolation 

thresholds than that of an infinite system, as noted also by Ref. [193]. For these two reasons, 

measuring percolation thresholds by microscopy on limited fields-of-view is an ineffectual pursuit.  

Motivated by new developments in non-destructive, high-throughput laboratory-based 

materials characterization, we analyze 3D microstructure in the lens of percolation theory. 
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Specifically, we probe via X-ray diffraction-contrast tomography (LabDCT) a total of 1,869 grains 

and 10,265 GBs in an Al-3.5wt%Cu alloy as a model system. Recent developments in 

crystallographic grain reconstructions and advanced adaptive scanning modes for large volume 

scanning within the LabDCT module provide unprecedented access to the location, shape, and 

crystallography of these features within large samples with true sample representativeness.  

Optimizations of reconstruction algorithms permit mapping massive volumes for significantly 

larger grain statistics in reasonable timeframes without the need of demanding computational 

resources.4 The large-scale 3D microstructure and the scaling laws of random percolation enable 

us to quantify the percolation threshold in the limit of an infinite GB network size and compare to 

theory. We find self-consistent percolation thresholds using different metrics. We further confirm 

agreement between the results from our 3D experiments and those from simulations by Schuh and 

coworkers [66] if grain topology is normalized. In addition, we investigate percolation of TJs for 

the first time and further compare to that of GBs as well as idealized lattice structures. We identify 

the origin of discrepancy between TJ and GB connectivity from a specific type of isomerism of 

QN. We show that there exists also a significant difference between the TJ network and the 

idealized diamond lattice that is explained by a spatial correlation of TJs and a hyper-coordination 

of nodes. These results force a reconsideration of some long-standing assumptions while validating 

others regarding the percolation behavior of polycrystalline materials.  

 
4 For example, the volume reconstruction of ~2000 grains takes about three days on a Windows workstation with 128GB RAM, 

Dual Intel Xeon Silver 4114, 2.2 GHz processors with 40 cores.  
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9.2. Experimental Methods 

9.2.1. Sample Preparation 

Broadly, our experimental procedure follows that of Refs. [80,81], described already in 

Chapters 7. An ingot of composition Al-3.5wt%Cu was cast via vacuum arc remelting at Ames 

Laboratory (Ames, IA, USA), using high-purity Al (99.999%) and Cu (99.997%). After 

homogenization at 550 °C for four hours, the sample was subject to cold rolling to reduce its 

thickness by 50 %. Then, it was annealed at 400 °C for 30 min. These treatments resulted in a fully 

recrystallized microstructure, but not necessarily a steady-state configuration of grains (vide infra). 

The specimen was prepared into a rectangular shape ( 1 × 2 × 6  mm) by electric discharge 

machining for 3D X-ray imaging in the laboratory. 

9.2.2. Data Acquisition 

After cutting it to size, the specimen was imaged using the Diffraction Contrast 

Tomography module (LabDCT) on a laboratory X-ray microscope (ZEISS Xradia 620 Versa with 

LabDCT Pro). The entire sample was scanned by rastering a small X-ray illumination area 

(achieved using a fine 250 µm × 750 µm aperture) over the large sample. The acquisition sequence 

is user selectable to suit the sample geometry and consists of moving the sample position (𝑥, 𝑦, 𝑧) 

and rotation (𝜃) stages in fine increments after acquiring diffraction patterns at each position using 

the flat panel detector of the X-ray microscope. For the current sample the helical phyllotaxis 

acquisition mode was used which is best suited for smaller ‘matchstick’ sized samples.  A total of 

8500 raw diffraction images were collected with an exposure time of 25 s per projection to cover 

the entire sample. Thus, the entire data acquisition took approximately a few days. The source-to-

sample and sample-to-detector distances were 14 mm and 425 mm respectively producing a 

projection geometry for acquisition of diffraction data.   
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9.2.3. Data Processing 

We reconstructed the X-ray images into a 3D crystallographic microstructure using the 

grain reconstruction software (GrainMapper3D version 3.1, Xnovo Technology ApS, Koge, 

Denmark), described elsewhere [80,81,87]. The reconstructed microstructure was further filtered 

and analyzed using PolyProc freeware [80], a MATLAB-based modular data processing 

framework for 3D x-ray diffraction (3DXRD) data (Chapter 6). In this work, we utilize mainly 

the grain clean-up routine therein. Namely, we cluster into grains provided they have 

misorientation less than 1°. Following this procedure, we screen the remaining grains and digitally 

remove the ones we deem unreliable if they are under the thresholds completeness (0.2). Details 

on our data processing pipeline can be found in Ref. [80] - (Chapter 6). We further excluded the 

outer-most regions of the sample since it contains un-indexed ‘voids’ after the clean-up routine, 

thereby disturbing the connectivity of GBs. The final 3D microstructure contains 1,869 grains and 

10,265 GBs, as mentioned previously.  

To invoke percolation theory, we require a binary classification of grain boundaries (e.g., 

open or closed bonds in the classical description of bond percolation). Gertsman and Tangri have 

shown that there is no loss of generality in dividing the GBs into two categories when considering 

their propensity to failure [16], which justifies the following binary classification. That is, we label 

GBs in the processed LabDCT reconstruction as either high-angle random (HAR) or non-HAR, 

the latter of which includes low-angle random (LAR) and coincident site lattice (CSL) boundaries. 

In general, HAR boundaries are less ordered than non-HAR boundaries and therefore possess 

higher GB energies [1,40,194,195]. It follows that they are generally more susceptible to failure 

by, e.g., liquid metal embrittlement  [21,101]. To distinguish between the two classes of GBs, we 

use a generalization of the Brandon criterion [76] 
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Δ𝜃𝑚𝑎𝑥 = 𝜃0Σ−𝑛 (Equation 9.1) 

where Δ𝜃𝑚𝑎𝑥 is an allowable angular deviation to a given CSL type (characterized by Σ number) 

and 𝜃0 = 15° is a constant of angular limit for low-angle or Σ = 1 GBs. We examine only Σ ≤

49. Historically, 𝑛 can take on different values such as 
1

2
 [76], 

2

3
 [77], 

5

6
 [78], or 1 [79].  In this 

work, we treat 𝑛 as an adjustable parameter. The greater the value of 𝑛 the more restrictive the 

criterion for CSL in Equation 9.1, and hence the higher the number fraction 𝑝 of HAR GBs in the 

microstructure and also the more likely it is that the HAR GBs percolate. Figure 9.1 plots 𝑛 against 

𝑝 for a subvolume of the sample so considered. Bearing this relationship in mind, our procedure 

is as follows: For a given value of 𝑛, we identify the largest cluster of HAR GBs.  We compute 

the order parameter, 𝑃, defined as the number fraction of HAR boundaries that belong to this 

cluster. We also check to see if the system percolates, i.e., whether the largest cluster of HAR GBs 

spans the imaged FOV in one or all three principal directions. We then repeat our calculations for 

different values of 𝑛 ∈ [0,1]. The procedure allows to investigate how the network of HAR GBs 

evolves with just a single 3D dataset. Ref. [193] use a similar approach, albeit for a 2D dataset. 

 
Figure 9.1. Illustration of relationship between exponent, n, and the number fraction of HAR GBs, 

𝑝. 
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Figure 9.2 illustrates how 𝑃 increases upon increasing the concentration (by number) of 

HAR boundaries, p, in one of the largest cubic-shaped subvolumes (side length of 600 µm) out of 

the entire reconstructed microstructure. The inset images provide a few 3D snapshots of the largest 

connected cluster of HAR boundaries in the sample (see opaque orange colors) and its evolution 

with 𝑝 . It is only until 𝑝  reaches ~0.2 that 𝑃  starts to rise significantly. The inset image 

corresponding to the datapoint 𝑝 = 0.29 illustrates how the largest connected cluster of HAR 

boundaries spans or percolates all three principal directions.  We also observe that 𝑝 never reaches 

a value of 1, but rather terminates at ~0.95. This is because the microstructure contains a non-

negligible number fraction (0.05) of LAR GBs. Such GBs have a misorientation angle below 15° 

and are thus non-HAR boundaries regardless of the exponent 𝑛 in Equation 9.1. We note that this 

observation stands for other figures with 𝑝  in the abscissa. The critical (denoted with a 𝑐  in 

subscript) value of 𝑝𝑐 = 0.29 obtained here for percolation of HAR GBs in all three directions 

does not represent an intrinsic percolation threshold as percolation is defined on an infinite lattice. 

 
Figure 9.2. The order parameter, 𝑃, versus the number fraction of failure-susceptible or open grain 

boundaries, 𝑝. Insets illustrate 3D microstructures in translucent orange color with the largest 

connected cluster of HAR GBs in opaque orange color, at designated values of 𝑝. 
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9.2.4. Key Functions of Percolation Theory 

Finite-size scaling allows us to circumvent the limitation of a finite sample size by 

computing an intrinsic percolation threshold 𝑝𝑐 from measured quantities as a function of sample 

size 𝐿 [61,62]. In this work, we utilize two functions for scaling analysis. The first is the order 

parameter 𝑃 (defined previously), which scales with 𝐿 at the percolation threshold 𝑝 = 𝑝𝑐 as 

𝑃(𝑝𝑐, 𝐿) ∝  𝐿−
𝛽

𝜈 (Equation 9.2) 

where 𝛽 and 𝜈 are critical exponents that depend only on the dimensionality of the system; in 3D, 

they are 0.418 and 0.876, respectively [61]. It should be emphasized that Frary and Schuh have 

already demonstrated the suitability of these universal constants on grain boundary networks [64]. 

On a plot of ln 𝑃 versus ln 𝐿, then, the above function is linear with a slope 𝑛(𝐿), given by  

𝑛(𝐿) =
𝑑(ln 𝑃)

𝑑(ln 𝐿)
|

𝑝𝑐

= −
𝛽

𝜈
 (Equation 9.3) 

Therefore, the percolation threshold in the infinite or thermodynamic limit can be found by 

determining at which value of 𝑝 the slope 𝑛(𝐿) attains a value of −
𝛽

𝜈
= −0.477.     

The second function of relevance here is the percolation probability (so-called crossing 

probability [196,197]), Π, defined as the probability of percolation across a sample in all three 

principal directions (Π(3)). This definition prevents any potential bias caused by anisotropic grain 

shapes. For an infinitely large sample, Π is a step function with Π(𝑝 < 𝑝𝑐) = 0 and Π(𝑝 > 𝑝𝑐) =

1. On the other hand, for finite-sized samples, the step is diffuse and Π behaves instead as an ‘S-

shaped’ curve with an inflection point [198], as Π  now becomes the fraction of percolating 

subvolumes (described below) in an ensemble at a particular value of 𝑝. The point of inflection, 

denoted 𝑝𝑚𝑎𝑥, where the change in Π with 𝑝 is maximum, converges to 𝑝𝑐 as 
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(𝑝𝑚𝑎𝑥 − 𝑝𝑐) ∝  𝐿−
1

𝜈 (Equation 9.4) 

Likewise, the parameter 𝑝𝑎𝑣, which represents here the average fraction of HAR GBs in the 

largest connected cluster that completes a percolation path for the first time, is defined as  

𝑝𝑎𝑣 =  ∫ 𝑝(
𝑑Π

𝑑𝑝
)𝑑𝑝

1

0
 (Equation 9.5) 

The scaling of 𝑝𝑎𝑣 is similar to 𝑝𝑚𝑎𝑥, i.e., 

(𝑝𝑎𝑣 − 𝑝𝑐) ∝  𝐿−
1

𝜈 (Equation 9.6) 

To carry out a scaling analysis, we divided the entire imaged FOV into ensembles of cubic 

subvolumes with side length 𝐿 =  3, 4, 5, …  10 (in units of multiples of the mean grain size, 60 

μm, expressed as an equivalent diameter). Each subvolume is unique in the sense that there are no 

overlaps with neighboring subvolumes; they also contain at least three grains (𝐿 ≥ 3) with less 

than 5% of free space (un-indexed voxels). From each ensemble of subvolumes at a given 𝑝, we 

determined the two parameters 𝑃 and Π. To improve the resolution of the latter, we fit the discrete 

data-points to a smooth, ‘S’-shaped curve with an inflection point 𝑝𝑚𝑎𝑥 [198],  

Π(𝑝) = 1 − [1 + exp (
𝑝−𝑝𝑚𝑎𝑥

𝛼
)]

−1

 (Equation 9.7) 

where 𝛼 is a fitting parameter that determines the width of the step in Π(𝑝).  

9.3. Results and Discussion 

9.3.1. Characterization of GBs, TJs, and QNs 

We first characterize the microstructure of the 3D sample, visualized in its entirety in 

Figure 9.3. Grains are rendered semi-opaque in order to peer into the network of GBs and colored 

based on their crystallographic orientations with respect to the specimen 𝑧̂ direction. As the texture 

of the microstructure is known to influence the extent of crystallographic constraints at both triple 

junctions (e.g., combination rule, a first-order constraint) and quadruple nodes (a second-order 
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constraint), and hence also the percolation behavior [66,199–201], we examine first the orientation 

distribution function. From the inverse pole figure shown in Figure 9.3, there is weak texture in 

the microstructure, as we would also predict from past reports [49,81]. 

 

Figure 9.3. LabDCT reconstruction of the full sample with microtexture analysis using an inverse 

pole figure with respect to the specimen 𝑧̂ axis. Grains are plotted translucently to reveal GBs. The 

colors of grains represent crystallographic orientations with respect to the specimen 𝑧̂ direction 

(see inset coordinate system and corresponding standard triangle).  Each data point on the inverse 

pole figure is a grain that is colored using the standard triangle shown in the standard triangle inset. 

 

Next, we analyze the topology of the GB network by obtaining statistics on the numbers 

of first nearest neighbors of each grain, see Figure. 9.4. We do so by building a region adjacency 

graph [87] of the grain map in order to find a set of neighbors of each grain within the sample. 

Only interior grains are considered here because grains on the free surfaces of the sample can 

deflate the nearest neighbor statistics. Our analysis reveals an average of 12.10 nearest neighbors 

per interior grain. We corroborate our result against other computational [202–204], experimental 

[36,205–210], and analytical [211] studies, all of which show a qualitatively similar behavior in 

distribution of grain neighbors (Table 9.1). This similarity may be understood by noting that the 

grain size distribution is usually log-normal [29,36,207,210]. It follows that the grain topology, 

which is strongly correlated to the grain size through the Lewis law [50], can be described with 

the same log-normal distribution. Clearly, a lattice wherein each grain has exactly 14 neighbors 
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does not exist in reality. Despite the similarity in general shape of the distribution, our result shows 

a greater skewness (mode skewness of 0.81 vs. 0.07 for Ref. [211]). This can be an indication that 

our sample has not reached a steady-state growth phase as mentioned previously; rather, it is still 

in transient period that precedes normal grain growth [202,203].  

  
Figure 9.4. Distribution of the number of nearest neighbor grains (or faces) per interior grain 

obtained from our experimental microstructure. Superimposed are distributions from different 

simulated [204], experimental [206], and analytical [211] microstructures for comparison.  
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Table 9.1. Average number of nearest neighbors of various 3D microstructures. 

 Nearest neighbors Reference 

Theoretical microstructure   

     Average N-hedra  11.98 [211] 

3D experimental microstructure   

     Al-Cu 12.10 (±6.67) this work 

     α Fe 12.1-12.8 [207,210] 

     β Cu-Zn 11.8 [206] 

     α Ti 14.2 [208] 

     β Ti 13.7 [36] 

     IN100 alloy 12.9 [209] 

     316L alloy 9.5-11.2 [205] 

Simulated microstructure   

     Phase field 13.7 [204] 

     Surface evolver 13.5 [202] 

     Monte Carlo 12.85 [203] 

 

We turn our attention to linear defects, namely the TJs that are formed by the intersection 

of three GBs in 3D space. In practice, we identify them directly from the region adjacency graph. 

TJs realize four different types based on the number of failure-susceptible, HAR GBs that meet at 

the TJ. Following Ref. [66], the notation 𝐽𝑖 indicates a TJ consisting of 0 ≤ 𝑖 ≤ 3  HAR GBs. We 

characterize the triple junction distribution (TJD), which illustrates the number fraction of different 

TJs with respect to the number fraction of failure-susceptible HAR GBs, 𝑝, in one of the largest 

cubic-shaped subvolumes, see Figure 9.5. The subvolume contains 428 grains, 2,122 GBs, and 

3,930 TJs. The reason for investigating a subvolume instead of the entire microstructure is to 

employ the same criterion of TJ percolation (clusters spanning all three principal directions) for 

fair comparison with GB percolation, in a later discussion. As was alluded to previously, 

crystallographic, first-order constraints are known to influence the TJD by maintaining consistency 

of grain orientations around the TJ [199–201]. Yet in our case, the TJD shows good agreement to 

a random assignment of GBs, which can be calculated using the Bernoulli distribution as 
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𝐽𝑖 = (
3
𝑖

)  𝑝𝑖(1 − 𝑝)3−𝑖  (Equation 9.8) 

The compliance of our data with Equation 9.8 indicates a weak influence of first-order 

crystallographic constraints on the shape of the TJD. From the four different types of TJs depicted 

in Figure 9.5, we combine them into two groups in order to investigate percolation behavior of TJ 

network (Sec. 9.2.3). As an ansatz, we take TJs of character 𝐽0 to be “closed” bonds, and those TJs 

with at least one failure-susceptible HAR GBs (𝐽1, 𝐽2, and 𝐽3) to be “open” bonds available for 

percolation. 

 
Figure 9.5. The triple junction distribution (TJD) for the experimental microstructure (solid line) 

compared to that predicted by a random assemblage of GBs (Equation 9.8, dashed line). 

 

QNs are points in 3D space where four grains, six GBs, and four TJs meet. Figure 9.6 

shows a schematic of an idealized QN in 3D space with four different grains labeled as 𝐺𝑖 (𝑖 =

 1, 2, 3 and 4), and a corresponding topological map [66]. The latter is an illustration of the QN 

topology, wherein the lines represent GBs, and the vertices represent TJs. To illustrate how the 

microstructure can be represented by such a map, examples of a GB and a TJ are colored 

correspondingly: that is, a GB between 𝐺2 and 𝐺3 is colored in green and a TJ by 𝐺1, 𝐺3, and 𝐺4 
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is colored in red in both Figure 9.6a-b. In what follows, thick lines indicate open GBs and thin 

ones the converse.  

 

 
Figure 9.6. (a) Schematic of an idealized QN with six associated GBs (gray faces) and four 

associated TJs (bold lines) in 3D. (b) Topological map of the same QN. One matching GB and TJ 

are colored in red and green, respectively. Reprinted and adapted with permission from [66]. 

 

These point defects can be distinguished based on the number of failure-susceptible (HAR) 

GBs and open (𝐽1, 𝐽2, and 𝐽3) TJs. We note that, unlike TJs, classification of QNs must involve 

two criteria, namely, the composition of GBs and TJs, to differentiate configurational isomers that 

QNs exhibit [66]. The notation 𝑄𝑖𝑗  (adapted from Ref. [66]) accounts for both effects and 

completely specifies the identity of the QN, where the first index 0 ≤ 𝑖 ≤ 6 refers to the number 

of open or failure-susceptible GBs and the second index 0 ≤ 𝑗 ≤ 4 to the number of open TJs. By 

this definition, the nine unique types of QNs are shown via topological maps in the insets of 

Figure 9.7. For each, we examine at the outset the quadruple node distribution (QND), which 

specifies the number fraction of the given QN with respect to the number fraction of failure-

susceptible GBs, 𝑝 , for the same cubic-shaped subvolume analyzed above. The influence of 

crystallographic constraints is known to extend to the QND [66]. That said, we find a good 

agreement of the experimentally assessed QNDs to random assignment of GBs, which can be 

calculated as 
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𝑄𝑖𝑗 = 𝛺𝑖𝑗  𝑝𝑖(1 − 𝑝)6−𝑖 (Equation 9.9) 

where 𝛺𝑖𝑗 is the number of configurational isomers for each QN, which we find to be 1, 6, 12, 3, 

4, 16, 15, 6, and 1 for 𝛺00, 𝛺12, 𝛺23, 𝛺24, 𝛺33, 𝛺34, 𝛺44, 𝛺54, and 𝛺66, respectively. Ultimately, 

second-order crystallographic constraints only weakly impact the QNDs in this study.  

 
Figure 9.7. The quadruple node distribution (QND) for the experimental microstructure (solid 

line) compared to that predicted by a random assemblage of GBs (Equation 9.9, dashed line). 

Topological diagrams are shown inset for the nine unique types of QNs, denoted 𝑄𝑖𝑗. 

 

9.3.2. Calculation of GB 𝑝𝑐 and Comparison to Simulation 

In Figure 9.8, we plot the ensemble-averaged 𝑃(𝑝, 𝐿) over all subvolumes as a function of 

𝑝. As expected, we observe a slower increase in 𝑃(𝑝, 𝐿) with increasing 𝐿 in low 𝑝 region, see 

inset. This is because the formation of a connected cluster of HAR GBs becomes easier for smaller 

𝐿. Using the data in Figure 9.8a, we plot 𝑛(𝐿) in order to estimate 𝑝𝑐 via Equation 9.3, see blue 
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curve in Figure 9.8b. The grey-colored band bounded by dotted line represents the connection of 

error bars from each data point. Linear interpolation allows us to estimate 𝑝𝑐 of the GB network 

as 0.222 (0.162, 0.273), at which point the bold line at –
𝛽

𝜈
=  −0.477 intersects the blue 𝑛(𝐿) 

curve. Relatively large errors are expected for low 𝑝 as the calculation of 𝑛(𝐿) is more readily 

perturbed by outliers.  

 

 
Figure 9.8. Order parameter, 𝑃, and estimated value of percolation threshold, 𝑝𝑐. (a) Ensemble 

averaged 𝑃(𝑝, 𝐿)  from subvolumes with weighted average error bar. Errors reflect standard 

deviation in 𝑃 from multiple subvolumes. Inset illustrates an enlarged plot of low 𝑝 region. (b) 

Estimation of 𝑝𝑐 derived from the power law scaling of 𝑃, according to Equation 9.3. Blue curve 

represents change in 𝑛(𝐿) based on data presented in (a). See inset of (b) for the calculation of a 

single 𝑛 value (arrow). Grey colored band bounded by dotted line represents the connection of 

error bars from each data point. Black horizontal line represents 𝑛(𝐿) = –
𝛽

𝜈
=  −0.477. 

 

In Figure 9.9, we fit Equation 9.7 to the ensemble averaged Π(𝑝, 𝐿), by assessing the 

presence of a percolating pathway in each subvolume. Of note is that error bars are absent here 

because Π(𝑝, 𝐿) for each subvolume is either 0 (not percolating) or 1 (percolating). In an ideal 

lattice, plots of Π(𝑝, 𝐿) versus 𝑝 for different domain sizes 𝐿 should share a common intersection 

point at 𝑝𝑐 [196,197,212]. However, we observe here a spread of the intersection points in the 

range of 0.25 to 0.4. This is mainly due to the finite size of the 3D dataset. Nevertheless, from 
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these Π(𝑝, L) curves, we calculate 𝑝𝑚𝑎𝑥  and 𝑝𝑎𝑣  and plot them against 𝐿−
1

𝜈, see Figure 9.9b-c. 

The red lines represent a linear interpolation of points with 95% confidence interval (grey colored 

region). From the scaling relations in Equations. 9.4 & 9.6, 𝑝𝑐 can be found when 𝐿−
1

𝜈 approaches 

to 0 or 𝐿 → ∞. We find 𝑝𝑐 of 0.200 ± 0.072 and 0.287 ± 0.068 from Figure 9.9b-c, respectively. 

 
Figure 9.9.  Percolation probability, Π, and estimated value of percolation threshold, 𝑝𝑐. (a) Fitted 

curve of ensemble averaged Π(𝑝, 𝐿) from subvolumes, see also Equation 9.7. (b-c) Estimation of 

𝑝𝑐 derived from the finite scaling of (b) 𝑝𝑚𝑎𝑥 (Equation 9.4) and (c) 𝑝𝑎𝑣 (Equation 9.6) with 

respect to 𝐿−1/𝜈 where 𝐿 is in units of multiples of mean grain size. The red lines represent a linear 

interpolation of points with 95% confidence interval (grey band bounded by dotted line). Intercepts 

with the ordinate give 𝑝𝑐 from (b) 𝑝𝑚𝑎𝑥 (0.200 ± 0.072) and (c) 𝑝𝑎𝑣 (0.287 ± 0.068). 

 

Table 9.2 summarizes three estimates of 𝑝𝑐 from the different parameters and their scaling 

laws. As these three values are all based on valid scaling relations with no superiority, we take the 

average of them and propagate errors to obtain 𝑝𝑐 = 0.236 ± 0.039. This value represents the 

percolation threshold of an infinite GB network. To confirm whether our 𝑝𝑐  is reasonable, we 

compare it to simulation [66]. From their system of tetrakaidekahedral grains, they found 𝑝𝑐 =

0.225 with deviation of about 0.07 depending on the crystallographic texture. Of note is that this 

value of 𝑝𝑐 is within the standard deviation of our experimentally measured 𝑝𝑐 value.  
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Table 9.2. GB percolation thresholds, 𝑝𝑐, from different 3D microstructures and methods. For the 

simulated microstructure, 𝑝𝑐 from Ref. [66] is further normalized based on a procedure used in 

Ref. [213], as further elaborated on in the main text.  For our experimental microstructure, 𝑝𝑐 is 

estimated from different parameters and their scaling laws. 

Analysis method Percolation threshold (𝒑𝒄 ) Reference 

Theoretical microstructure   

     Tetrakaidecahedra  0.225 [66] 

     Normalized by nearest neighbors  0.220 [213] 

3D experimental microstructure   

     Finite-size scaling – averaged 0.236 (0.197,0.275) this work 

     Finite-size scaling – order parameter 0.222 (0.162, 0.273) this work 

     Finite-size scaling – 𝑝𝑚𝑎𝑥 0.200 (0.129, 0.272) this work 

     Finite-size scaling – 𝑝𝑎𝑣 0.287 (0.219, 0.355) this work 

 

Even so, direct comparison between the two measurements is not fair since the topological 

characteristics are different. Recall that our experimental dataset shows a wide and skewed 

distribution of nearest neighbor grains (Figure 9.4), whereas the synthetic microstructure by the 

Frary and Schuh [64] would show a Dirac delta function at 14 nearest grains. To bring the 

simulation result closer to experiment, we employ the topological correction suggested by 

Fullwood and coworkers [213]. That is, we must add, on average, 14.33 − 14 = 0.33 HAR GBs 

per grain, where 14.33 is again the average number of grain neighbors in the experimental dataset 

(Figure 9.4). This would represent a number fraction of 
0.33

14
= 0.024 HAR GBs in the simulated 

microstructure that should further contribute to the percolation process.  Consequently, we would 

expect that 
0.225

1+0.024
= 0.220 of the remaining bonds are open to arrive at the percolation threshold, 

following the same logic in Ref. [213]. This value still shows consistent agreement with our 

experimental estimation of 𝑝𝑐 . Intuitively, percolation is made more easier if we increase the 

number of grain neighbors as there are greater number of HAR GB pathways that span the system. 

Of note is that we conducted the same exercise with a Poisson-Voronoi microstructure and 

confirmed a higher percolation threshold compared to our experimental results (even after 
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normalization). Intuitively, the disagreement makes sense as the Poisson-Voronoi structure 

corresponds to the nucleation of recrystallization [214], not grain growth. 

Based on the preceding analysis, we postulate that the average grain topology plays critical 

role on the percolation threshold of the GB network. Nevertheless, we should caution that the 

experimental microstructure considered here have a relatively weak crystallographic texture and 

an approximately log-normal distribution of grain size. We leave for future work the 3D 

assessment of other types of granular microstructures (e.g., those with a strong texture and/or 

bimodal distribution of grain size, characteristic of abnormal grain growth [81,215]).   

9.3.3. Comparison of GB and Trijunction 𝑝𝑐 

Next, we seek to identify the relationship between GB and trijunction percolation 

behaviors. As such, we investigate the connectivity of triple junctions (TJs) in one of the largest 

cubic-shaped subvolumes instead of the entire microstructure; this is to leverage the same criterion 

for percolation (spanning all three principal directions, as described in Sec. 9.2.4), so that we can 

make an impartial comparison between GB and TJ connectivities. We analyze this same 

subvolume in the following analysis, with attention to the TJ network.  Within the subvolume, we 

observed the structure of the TJ network as we vary the number fraction of failure-susceptible 

GBs, 𝑝, just as we did for the GB connectivity analysis (cf. Sec. 9.3.3). To ensure the connectivity 

of TJs that are separated by around one voxel due to experimental uncertainty in LabDCT, we 

performed a morphological closing operation [86] on the TJ network.5  

Figure 9.10 illustrates the evolution of TJ connectivity upon increasing the number fraction 

of failure-susceptible GBs (the effect of which is to “open” TJs accordingly; see upper and lower 

 
5 If we assume a binary classification of TJs (open and closed, see Sec. 9.3.1), the connectivity of GBs must entail that of TJs 

since a HAGB maintains at least 𝐽1 along its perimeter. Thus, empirically, we confirm that the minimum-sized structuring element 

that guarantees TJ connectivity along with the GB connectivity to be a cube of 3 × 3 × 3 voxels. 
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labels of abscissa on Figure 9.10 for the explicit relationship between the number fractions of 

open GBs and open TJs). Similar to Figure 9.2, the inset images provide a few 3D snapshots of 

the largest connected cluster of open TJs at various 𝑝 values. Starting from the first inset image 

corresponding to a low fraction of failure-susceptible GBs, we clearly observe the formation of 

open TJ rings or loops since all TJs must open along the perimeter of a HAR GB. This particular 

topological structure will be discussed later. For now, we can see that the TJs percolate for a 

particular number fraction of failure-susceptible GBs, 𝑝𝑐 = 0.247 (the third inset image), which is 

a lower threshold compared to GB percolation 𝑝𝑐  = 0.289 (again, for the same subvolume so 

considered). While the order parameter, 𝑃, becomes almost linear after percolation in Figure 9.2, 

here in Figure 9.10 the number fraction of open TJs in the largest cluster plateaus after reaching 

percolation. This is because all possible TJs in the network open before all possible GBs become 

failure susceptible.  

 
Figure 9.10. The number fraction of open TJs in the largest connected cluster versus the number 

fraction of failure susceptible grain boundaries, 𝑝 (bottom abscissa) and the number fraction of 

open TJs, 𝑝′ (top abscissa). Insets illustrate the microstructural domain in a translucent orange 

color with the largest connected cluster of open TJs in opaque orange color. 
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To investigate in detail the source of the difference between TJ and GB connectivity, we 

plot connected clusters of GBs at the GB percolation threshold (which, in terms of the number 

fraction of failure susceptible GBs, is 𝑝 = 0.289) together with connected clusters of TJs at the 

same 𝑝 value, see Figure 9.11a. The network of percolating GBs (in green) does not match that 

of the percolating TJs (in red).  Namely, the latter spreads into regions of the domain that consist 

of non-percolating GBs (in teal).  See, for example, the black-boxed region, which is magnified in 

Figure 9.11b. Where the open TJ cluster extends beyond the open GB cluster, we find the root of 

this discrepancy to be a specific type of QN, namely 𝑄24, two of which can be found (as black 

dots) in the magnified image. This particular QN involves two failure-susceptible GBs (first index) 

with all four TJs being open bonds (second index). More specifically, at 𝑄24 , two failure-

susceptible GB planes meet at a single point in 3D space while all four TJ lines are open bonds of 

character 𝐽1. At 𝑄24, then, the connectivity of TJs is necessarily guaranteed while that of GBs is 

not. This result is especially notable given that the small number fraction of 𝑄24 at GB percolation 

(6.4%, see the arrow in Figure 9.7) leads to a dramatic (15.7%) difference in percolation behavior 

of GBs and TJs. The locations of these QNs in the microstructure thus plays a dominant role.  
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Figure 9.11. (a) 3D visualization of GB and TJ clusters within one of the largest cubic-shaped 

subvolumes at GB percolation (where the number fraction of failure susceptible GBs 𝑝 = 0. 289). 

Green- and cyan-colored faces represent the GBs, which are either in the largest connected cluster 

(green) or not (cyan). Red- and blue-colored lines represent the TJs, which are either in the largest 

connected cluster (red) or not (blue). Black dots in inset (b) are an isomerism of QN, namely, 𝑄24.  

 

9.3.4. Comparison of Trijunction 𝑝𝑐 to Idealized Lattices 

The connectivity of TJs in a microstructure is thought to share a similarity to bond 

percolation in 3D lattice structures [67]. The diamond cubic structure is tetrahedrally coordinated, 

which means that each atom has four bonds (𝑧 = 4). In a similar sense, QNs are connected to four 

TJs, by definition. Motivated by this simple analogy, we investigate whether the connectivity of 

TJs can truly be explained by that of idealized lattice structures. Since bond percolation thresholds 

of lattice structures are typically expressed in terms of the number fraction of bonds, we put our 

own results on the same plane of analysis: that is, we convert the number fraction of failure 

susceptible GBs into the number fraction of open TJs. In doing so, we find 𝑝𝑐
′  = 0.506, where the 

′ notation indicates that the percolation threshold is written in terms of the number fraction of open 

TJs. In comparison, the bond percolation threshold of the diamond lattice is 𝑝𝑐
′  = 0.389 [216–222].  

The distinction in the two thresholds is surprising and thus warrants further consideration. 

We begin by reviewing the key assumptions of the percolation problem: (i) the bonds or lines are 
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opened at random, with some probability 𝑝′, and (ii) the coordination of nodes is strictly four for 

the diamond lattice. Are these two assumptions fulfilled in our data?  

To account for factor (i), we open each TJ in the microstructure at random, independent of 

its underlying crystallography (that is, we do not invoke the Brandon criterion described in 

Sec. 9.2.3). We reiterate that we focus on the same largest cubic-shaped subvolume, as before.6 

From the random assignment of TJs, we observe percolation in all three principal directions at 

𝑝𝑐
′  =  0.240 ± 0.026. This value is the averaged result of twenty randomized trials, and the small 

error reflects a relatively consistent percolation threshold. On the other hand, from above, we find 

𝑝𝑐
′  = 0.506 when we use a crystallographic assignment of TJs. Thus, the system requires almost 

twice as many TJs to reach the percolation threshold given crystallographic constraints.5 This can 

be understood as follows: with a crystallographic assignment, TJs must open along the perimeter 

of HAR GBs, forming a ring/loop, see inset of Figure 9.12a. That is, the TJs that form the ring 

structure must be at least of character 𝐽1. On the other hand, a random assignment of open TJs 

shows no such spatial correlations, see inset of Figure 9.12b. To quantify the spatial distributions 

of open TJs in both cases, we calculate for each TJ the mean distance to its nearest-neighbor TJ.7 

Examples are shown in Figure 9.12a-b at 𝑝′ =  0.069 for crystallographic and random 

assignments, respectively. As expected, the distribution is compressed towards the origin in the 

former case, since TJs neighbor each other along the ring. In the case of random assignment, 

however, the TJs are separated from their nearest neighbors over relatively greater distances. We 

next compare the average values of these two distributions vs. 𝑝′ , see Figure 9.12c. With 

 
6 We perform a study of bond percolation on a diamond lattice, which is of comparable size to the experimental subvolume 

(same order of magnitude in the number of TJs and QNs). Since the averaged result of twenty randomized trials is 0.43±0.01, i.e., 

only ~10% different from that of an infinite lattice, we confirm that the finite size of the data alone cannot reconcile the discrepancy 

in percolation thresholds between the TJ and diamond lattices. 
7 That is, for each voxel 𝑖 (out of 𝑛 total) along an open TJ, we find using the 𝑘 nearest neighbors algorithm [237] the distance 

𝑥𝑖  to a voxel on the nearest open TJ.  The average of the measurements becomes the mean distance 𝑥̅ between TJs, i.e., 𝑥̅ =
(1 𝑛⁄ ) ∑ 𝑥𝑖

𝑛
𝑖 .  
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increasing 𝑝′, the average distances of both cases become very similar to each other as the open 

TJs become densely populated in the volume. In this limit, a TJ on the HAR GB ring may be just 

as close to a TJ off the ring as one that is on it. However, the differences between two cases become 

more pronounced as 𝑝′ → 0. Indeed, for a random assignment, TJ percolation occurs at 𝑝𝑐
′ =

0.240 ± 0.026, wherein the difference in average distances is still substantial (91.3%, evaluated 

from Figure 9.12c).  For this reason, we postulate that the spatial clustering of TJs under 

crystallographic constraints leads to a significantly reduced 𝑝𝑐
′ . While such constraints do not 

modify appreciably the number fractions of the four classes of TJs in our case (Figure 9.5), they 

do influence their spatial distributions. 

 



141 

 

 
Figure 9.12. Quantification of spatial distribution of TJ in 3D, by calculating for each TJ the mean 

distance to its first nearest neighbor TJ. (a, b) Histograms of the mean distances when 𝑝𝑐
′ = 0.069 

(a) with crystallographic and (b) random assignment of TJs. (c) Average of the mean distances 

over different number fraction of TJs, 𝑝′. Arrows indicate where (a) and (b) were evaluated. 

 

Correcting for assumption (i) still does not bring us any closer to replicating the percolation 

behavior of the idealized lattice (from above: 𝑝𝑐
′ = 0.240 ± 0.026 vs. for diamond: 𝑝𝑐

′  = 0.389).  

Thus, we examine assumption (ii) next. As the coordination number 𝑧 plays critical role in bond 

percolation [67,223], we evaluate the connectivity of nodes in the microstructure. To find high 

coordinated nodes, we use a 3 × 3 × 3 kernel and search the subvolume for regions where four or 

more grains are found within this locality. We then look at permutations of each recorded instance 

and remove entries from the list if they either match one of the permutations, or if an entry with 

fewer grains matches a trimmed permutation of a larger cluster. This results in an identification of 
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937 unique clusters. To confirm our results, we then use the region adjacency graph to determine 

which grains are touching; with this approach, we are able to identify 663 unique clusters. This 

discrepancy can be attributed to the search kernel including grains that are separated by a single 

voxel, whereas those grain pairings would be absent on the adjacency graph. We justify using the 

larger node count for further analysis due the established gaps in TJ connectivity (Sec. 9.3.3) that 

was repaired by morphological closing. Ultimately, we confirm an unusually wide distribution of 

node coordination (Figure 9.13). Thermodynamically, nodes with greater than or less than four 

TJs are unstable [1]. We rationalize their existence by noting that several QNs are clustered in 

small regions (on the order of 5 µm, approaching the resolution limit of LabDCT), thereby 

behaving like a single large node with a higher coordination number. An example of such a cluster 

is shown in the inset of Figure 9.13. Five different grains meet each other, resulting in multiple 

QNs that are located close together, i.e., with a one voxel TJ “bridge” between them.  

Regarding the substructure of the node clusters, we observe 204 𝑄24 nodes among total 

3,427 QNs within the subvolume, for 𝑝 = 0.289. That said, not all the 𝑄24 nodes contribute to the 

discrepancy in percolation thresholds between the GB and TJ networks. Those 𝑄24 nodes within 

a cluster are highly interconnected (Figure 9.14) and thus less likely to lead to a difference between 

connectivity of GBs and TJs. Only 54 of the 𝑄24 nodes present in the subvolume are isolated, i.e., 

not part of any node clusters (Figure 9.15). Such ‘isolated’ 𝑄24 sit on a unique path for percolation, 

leaving no other path available around the chokepoint that the 𝑄24 creates. This can be seen in 

Figure 9.11 where the cyan HAGB cluster is found in a corner with no alternate routes for 

percolation within the subvolume-of-interest.  

Kinetically, it is not unreasonable to treat the clusters as single entities since the diffusion 

lengths between the component QNs are negligibly small (relative to the bulk microstructure).  
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Figure 9.13. Distribution of node coordination 𝑧 (expressed in terms of the number of TJs; for a 

diamond lattice, 𝑧 = 4). Inset shows an example of a node with five different grains and nine TJs 

(the latter is not depicted). Grains are colored randomly for better contrast between them. 
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Figure 9.14. Topological maps for node clusters, retrieved from experimental data: (a) 𝑧 > 4 and 

(b) 𝑧 < 4. Black circles represent QNs, the character of which is labeled inside the circles. Lines 

represent TJs, which are either percolating (red) or not (blue), at 𝑝 = 0.289. Boundary of cluster 

is indicated by dashed line. (a) shows a cluster of QNs with 𝑧 of 5 as shown by five TJs are leaving 

the cluster boundary, thus serving as a source of higher-order connectivity. It contains examples 

of TJs being connected to more than two QNs (see horizontal red line between nodes 𝑄24 and 

𝑄34), which can occur if, e.g., there exist small grains along the TJ line. (b) shows a cluster of QNs 

with 𝑧 of 3 as indicated by the three TJs that leave the cluster boundary. It contains an example of 

TJs that are connected strictly to one QN (see around node 𝑄54), leading to a lower connectivity. 

 

 
Figure 9.15. Number of 𝑄24 in context of total number of QNs at percolation. The “special” 𝑄24, 

which result in differences in percolation between GB and TJs (Sec. 3.3), belong to isolated four-

grain clusters. Conversely, the GBs that intercept 𝑄24 nodes within the larger clusters are likely 

to “turn on” anyway due to the high degree of interconnectivity within the cluster. 
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Accordingly, if we accept the result of Figure 9.13, we find the mean coordination number 

of the nodes to be 𝑧̅ = 6.184. In the theory of bond percolation, it is reported that the reciprocal of 

the percolation threshold is proportional to the lattice coordination number, 𝑧 [223]. Fig. 16 shows 

the empirical correlation overlaid with the bond percolation thresholds of different 3D lattice 

structures including diamond [216–222], simple cubic [216,221,224–227], body-centered cubic 

[216,221,224,227], and face-centered cubic [216,224,228], with corresponding error bars. These 

data are also reported in Table 9.3. When we include our own data, namely 𝑧̅ = 6.184 and 𝑝𝑐
′ =

0.240 ± 0.026 (obtained with random assignment of TJs), we find a good agreement between our 

result and the empirical correlation for bond percolation. Accounting for both effects (i-ii) enable 

us to place the TJ network in the context of theory.  

 
Figure 9.16. Empirical correlation between reciprocal of bond percolation thresholds (1 𝑝𝑐

′⁄ ) and 

lattice coordination number (𝑧), overlaid with bond percolation thresholds for different lattice 

structures with their error bars. These values are also given in Table 9.3. We include our 

measurements corresponding to the TJ network: an open red circle refers to TJs assigned at 

random, and a closed red circle refers to the TJs under crystallographic constraints. 
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Table 9.3. Number fractions of GBs and TJs at percolation (denoted, respectively) within the finite 

sized subvolume compared to bond percolation thresholds of ideal lattice structures. 

Lattice Coordination (𝒛̅) Percolation threshold (𝒑𝒄
′ ) Reference 

Diamond 4 0.389 ± 7.83𝑒−04 [216–221] 

Simple cubic 6 0.248 ± 7.57𝑒−04 [216,221,224–227] 

Body centered cubic 8 0.180 ± 1.10𝑒−03 [216,221,224,227] 

Face centered cubic 12 0.120 ± 2.11𝑒−04 [216,224,228] 

 

7.4. Conclusions 

The present work has revealed for the first time the percolation threshold of GBs and TJs 

in a real, experimentally obtained 3D microstructure. Our efforts are made possible due to new 

strides nondestructive and high-throughput characterization via LabDCT that enable us to visualize 

10,265 GBs and their connectivity. Firstly, by employing finite-size scaling together with the 

critical exponents from standard percolation theory, we find self-consistent percolation thresholds 

𝑝𝑐 of 0.236 ± 0.039 using different metrics. We compare our measurements against those from a 

simulated 3D microstructure [66], wherein grains are modelled as 14-sided polyhedra. We find 

that the percolation thresholds are remarkably similar if appropriately normalized by the number 

of grain neighbors. Secondly, we find that the TJ percolation threshold can serve as a lower bound 

to the GB percolation threshold due to the existence of one isomerism of quadruple node, 𝑄24, 

which facilitates TJ connectivity while impeding GB connectivity. Lastly, we test the commonly 

held hypothesis that the percolative behavior of the TJ network should be identical to that of the 

idealized diamond lattice due to their topological similarity. Instead, we find that the percolation 

thresholds are dissimilar due to a spatial clustering of TJs and a hyper-connectivity of nodes (𝑧̅ = 

6.184). Taken altogether, these results provide new insights into the influence of GB and TJs on 

percolation and help guide the design of polycrystalline materials that may otherwise fail due to 

the percolation of damage [21,59,181,187] along the GB and TJ networks.  
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Part IV. Conclusions and Outlooks 

Chapter 10. Conclusions 

The intrinsic grain structure of polycrystalline material has significant impact on its 

properties. This dissertation aims to investigate the structure and dynamics of grains and 

intergranular networks by leveraging nondestructive three-dimensional x-ray imaging techniques. 

The focus was placed on two scientific phenomena: (1) abnormal grain growth and (2) percolation 

behavior of grain boundary networks. Part I, composed of Chapters 1-4, provides a theoretical 

basis for the aforementioned the scientific phenomena of interest, as well as brief introduction of 

other key functions and concepts that were employed in the following main chapters of the 

dissertation. Part II introduces the core imaging techniques that are utilized throughout this 

dissertation. Part III, divided into Chapter 6-9, reports the scientific findings using the new 

imaging platform. The findings along with their broader impacts are reviewed here in Part IV. 

10.1. In-house 3DXRD Data Processing Framework, PolyProc 

Direct imaging of three-dimensional microstructure via x-ray diffraction-based techniques 

gives valuable insight into the crystallographic features that influence materials properties and 

performance. As such techniques become more accessible to researchers, demands are placed on 

processing the datasets that are inherently “noisy,” multi-dimensional, and multimodal.  To fulfill 

this need, Chapter 6 introduces one-of-a-kind function package, PolyProc, that is compatible with 
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a range of data shapes, from planar sections to time-evolving and three-dimensional orientation 

data. The package comprises functions to import, filter, analyze, and visualize the reconstructed 

grain maps. To accelerate the computations in our pipeline, we harness computationally efficient 

approaches: for instance, data alignment is done via genetic optimization; grain tracking through 

the Hungarian method; and feature-to-feature correlation through k-nearest neighbors algorithm. 

As a proof-of-concept, we test our approach in characterizing the grain texture, topology, and 

evolution in a polycrystalline Al–Cu alloy undergoing coarsening.  

The function package, PolyProc, is currently compatible with laboratory-based x-ray 

diffraction contrast tomography (LabDCT) and high-energy x-ray diffraction microscopy 

(HEDM). Thus, it has not only been heavily used throughout other projects of mine and others that 

employ LabDCT, but is also expected to be relevant to other probes that yield three- and four-

dimensional microstructure datasets. Future efforts in the code developments can be directed 

towards extending compatibility with respect to other 3DXRD datasets, such as scanning 3DXRD 

(S3DXRD). Furthermore, as PolyProc has a modular architecture, additional modules with their 

own functionalities can be easily developed and integrated into the workflow based on future 

demands.  

10.2. Mechanism of Abnormal Grain Growth in Particle Containing Systems 

Second phase particles are routinely dispersed in metals and ceramics to prevent grain 

growth and take full advantage of the small grain size in the mechanical properties of polycrystals. 

Somewhat surprisingly, the preferential or abnormal growth of a few grains is observed in 

particle-containing systems at relatively high temperature (but below the solvus), which will limit 

the lifetime of the material. The origins and mechanisms of particle-assisted abnormal grain 

growth (AGG) are widely contested. In Chapter 7, we employ integrated three-dimensional x-ray 
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imaging to shed new light on the complex interactions between grain boundaries and particles in 

an Al-3.5wt%Cu alloy as a model system. We observe AGG in the presence of a highly 

non-random distribution of particles. The incipient grain size is set by the local distribution of 

particles such that the larger grains come from particle-poor regions. Subsequently, grains with a 

size advantage may “run away” from the grain size distribution, in agreement with predictions 

from an analytical model that takes into account the competing capillary and particle pinning 

pressures. This work supports the idea that statistical fluctuations in the microstructure (such as a 

nonuniform distribution of particles or GB mobilities) can trigger abnormal grain growth.  

It follows that the processing conditions leading to a non-random particle distribution are 

far from being understood. In Chapter 8, we investigate the particle distribution and concomitant 

grain growth behavior at different annealing temperatures and times in an Al-3.5wt%Cu alloy by 

scanning electron microscopy (SEM). At high temperatures and long times, the particle 

distribution evolves from random to non-random, with an accompanying transition from normal 

grain growth (NGG) to AGG. Our investigation suggests that a non-random particle distribution 

is introduced by residual Cu segregation even after homogenization. In short, the corresponding 

fluctuation of 𝜃-Al2Cu phase distribution is amplified at elevated temperatures via severe particle 

dissolution. We quantify the spatial inhomogeneity of particles through the Gini coefficient and 

link this important parameter to the occurrence of AGG. The trends are conveyed succinctly in a 

temperature–time–(structural) transformation (TTT) diagram, which identifies the onset of AGG 

in an Al-3.5wt%Cu alloy. This is the first time that such a diagram has been used to describe the 

stability fields of normal and abnormal microstructures, to the best of my knowledge.  

In a broader context, the insights gained from the two related studies in Chapter 7 and 8 

may provide guidance in optimization of processing parameters for particle-containing 
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engineering materials. That is, in case AGG is undesired (in order to, e.g., maintain consistent 

properties), one may investigate what tolerance in the degree of nonuniformity in the distribution 

of the second phase is necessary to control microstructural evolution, as well as to estimate life 

span until the initiation of AGG. In contrast, AGG can be leveraged to attain single crystals.  

10.2.1. Producing Single Crystals via AGG 

Producing single crystals has been a thriving area of research for at least the past sixty years 

due to their highly unique properties [229]. For example, single-crystal turbine blades have the 

advantage of superior mechanical performance at an elevated temperature, which is offered by the 

high resistance to the creep failure due to the lack of grain boundaries. Currently, single crystals 

are grown by directional solidification processes that require costly optimization of multiple 

processing parameters (e.g., solid-liquid interface velocities and thermal gradients). This large 

parameter space makes the manufacturing process challenging. An alternative route would be to 

grow single crystals from the solid-state, by taking advantage of AGG. In Chapter 7, we indeed 

observed that abnormal grain propagated and took up major portion of the sample volume, 

realizing single crystal region of the sample. This study gives us some inspiration: that is, we may 

design an AGG process to intentionally control the positions of grain boundaries. 

Single crystals via AGG can be realized by passing a thermal gradient along a sample. 

According to Chapters 7 - 8, we know that a non-random particle distribution leads to selection 

of abnormally large grain. In these studies, the development of non-random particle distribution is 

attributed to the underlying nonuniformity in Cu distribution. This can be achieved by noting the 

temperature-dependency of particle phase volume fraction according to chemical 

thermodynamics. For example, the Al-side of the Al-Cu phase diagram tells us, as temperature 

increases, the volume fraction of 𝜃-Al2Cu particle phase as particles dissolve back into Al matrix. 
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Thus, if we realize large enough temperature gradient along the sample to attain a corresponding 

gradient in the (local) volume fraction of 𝜃-Al2Cu phase, AGG is expected to be triggered from 

the region with high temperatures due to the lack of a particle-pinning pressure. Therefore, we can 

control the grain and its orientation that is selected in AGG. In practice, such an experiment8 can 

be done by directional annealing two- or three-temperature-zone in a Bridgman furnace.  

10.2.2. Detailed Interaction between a Grain Boundary and Second Phase Particles 

One of the remaining fundamental questions concerns the propagation mechanisms of the 

abnormal grain as it encounters new microstructural neighborhoods (e.g., the particles) upon 

prolonged annealing. That is, its grain boundaries must overcome the drag pressure imposed by 

the second-phase particles in order to eventually “consume” the microstructure.  The mechanism 

by which grain boundaries bypass particles is widely contested, with two divergent viewpoints: 

Zener-Smith’s pass-through mechanism where particles effectively “punch out” regions of the 

grain boundary [44] (Figure 2.2) and Rios’ enveloping mechanism where the grain boundary 

bends around the particle [230] (similar to dislocation dynamics, see Figure 10.1). The 

pass-through mechanism explains the pinning pressure by reduction of interfacial energy from the 

“punched out” regions. A particle that occupies the “punched out” region lowers energy by 

decreasing the area of a grain boundary.  nce a grain boundary is pinned, areas of the “punched 

out” regions have to be created again if the grain boundary migrates away from the (immobile) 

particles. In contrast, the enveloping mechanism rationalizes the pinning pressure by introduction 

of additional interface area, similar to Orowan looping [231] of dislocation bypassing mechanism. 

A hard particle will lead to a bowing of the boundary and further creation of an increase in the 

 
8 The proposed strategy requires consideration on thermal conductivity of the system. An alloy with high thermal conductivity, 

like given example of Al alloy, is less likely to realize large enough temperature gradient. In contrast, an alloy like Cu71.6Mn17Al11.4 

(atomic percent) has been shown to sustain temperature gradients on the order of 1 ̊C/mm.  
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interface area corresponding to the surface area of the particle (Figure 10.1). To date, conclusive 

experimental evidence of either mechanism has not been obtained due to technical difficulties in 

probing the interaction mechanism between grain boundaries and particles. Capturing in situ the 

moment that grain boundaries bypass the particles will be a breakthrough in this domain.  

 
Figure 10.1. Illustration of interaction between a particle with a grain boundary migrating from 

left to right. The boundary (dark line) bends around the particle (open lines) enveloping it with a 

surface loop. Interfacial thickness is greatly exaggerated. Reprinted from Ref. [230]. 

 

This aforementioned task is challenging as it requires microscopic or atomic-level spatial 

resolution in 3D to characterize dislocations around the particle as well as the grain boundary 

curvature. Recent advancement in Bragg coherent diffraction imaging (BCDI) shows great 

potential for this experiment. BCDI is very sensitive to the presence of crystal defects including 

dislocations [232–235]. Thus, it could be the method of choice for the experiment. The presence 

of a dislocation loop before and after migration of a grain boundary would support the enveloping 

mechanism, thereby lending new insights on the long-standing question of the interaction between 

grain boundaries and the particle. As a first step, we can characterize the granular microstructure 

holistically via HEDM; then, using BCDI we can focus on a particle grain boundary for higher-

resolution characterization [236]. 
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10.3. Percolation Behavior of Three-dimensional Grain Boundary Networks 

Percolation behavior of grain structures is a fundamental property of grain boundary (GB) 

networks that has so far been analyzed through synthetic three-dimensional (3D) microstructures 

alone. In Chapter 9, by applying finite-size scaling with the critical exponents from standard 

percolation theory, we determine from our experimental data a percolation threshold of 0.236 ± 

0.039 for the GBs in the thermodynamic limit. We compare our results to those from past 

simulations, which model the 3D microstructure using space-filling polyhedra; the thresholds 

show good agreement when they are normalized by the topological characteristics of the GB 

network. We further investigate the percolation threshold of triple junction (TJ) lines, which we 

show to be necessarily lower than that of the GBs. The percolation behavior of TJs is also different 

from that of the theoretical diamond lattice due to two factors: a surprisingly higher coordination 

of nodes (6.184 vs. 4) and also a spatial clustering of TJs in the microstructure.  

In a broader context, obtaining the intrinsic percolation thresholds of grain boundary 

networks using the framework of bond percolation theory provides insights on the design of 

failure-resistant granular materials via grain boundary engineering. That is, the percolation 

threshold serves as a gauge for how many failure-susceptible grain boundaries an engineering 

material can afford while ensuring resistivity toward intergranular failure modes (such as crack 

propagation or liquid metal embrittlement). On the other hand, the findings from percolation of 

triple junction (TJ) lines leaves many intriguing questions, which are addressed below.  

10.3.1. Investigation of Nodes with Higher Coordination 

We experimentally observed nodes with hyper-coordination (i.e., greater than four bonds). 

It was somewhat surprising as previous theoretical studies assumed topological similarity between 

TJ connectivity and an idealized diamond lattice. On this basis, we compared the percolation 
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behavior of triple junctions (TJ) to bond percolation of ideal lattice structures solely based on the 

mean coordination number. Even though we found good alignment with our result and the 

empirical correlation between percolation threshold and coordination number (Figure 9.16), the 

influence of a wide distribution in node coordination has not been investigated, to our knowledge.  

I propose to re-create the (measured) node coordination distribution using idealized 

diamond lattice structure to investigate the impact of distribution in node coordination. That is, by 

forcing a fraction of bonds to be “open” in the diamond lattice, we can artificially generate a higher 

coordination of nodes. Then, we can investigate the percolation behavior of this artificial lattice 

structure in order to provide insight the influence of distribution in node coordination. Using this 

approach, we can investigate also how the statistical moments of the node coordination distribution 

influence the resultant bond percolation threshold.  

10.3.2. Transition from Two-dimensional to Three-dimensional Behavior  

Percolation behaviors are dependent upon the dimensionality of system [61–63]. For 

instance, two-dimensional (2D) square and three-dimensional (3D) diamond lattices have the same 

coordination of 4, but different percolation thresholds of 0.50 and 0.389, respectively [63]. As 

mentioned in Chapter 9, experimental studies of percolation behavior so far have been focused 

on 2D grain boundary networks due to difficulties in characterizing representative 3D 

microstructures. As recent developments in crystallographic grain reconstructions and advanced 

adaptive scanning modes for large volume scanning with the LabDCT module provide 

unprecedented capabilities in characterizing large volume of grain structures with true sample 

representativeness, new opportunities arise to answer long standing questions.  

One of the long standing questions concerns the transition of percolation behavior from 2D 

to 3D. Basinger et al. [193] reported the percolation threshold for 2D grain boundary networks in 
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alloy 304 stainless steel to be ~0.46. However, as mentioned earlier, the percolation threshold for 

3D networks may be vastly different. Thus, it is of interest to understand the transition of 

percolation behavior by progressively including depth information on the imaged microstructure. 

That is, we can observe the change in percolation threshold as the field of volume (FOV) increases 

incrementally in the depth direction. The change in FOV from a thin layer to a cube may answer 

over what length-scales the percolation behavior transitions from 2D to 3D.  
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