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ABSTRACT

Technological advances in sensing, mobile communication, computation, imaging, artificial intelligence

and many other fields have brought the city of tomorrow within reach. In that city, infrastructure

and vehicles will be connected and automated; mobility services–from ground transportation to

airborne services–will be readily accessible from smartphones and highly personalized thanks to

an abundance of data; and sensors and cloud infrastructure will allow for constant monitoring and

timely maintenance of infrastructure components. While this future is exciting, its concretization

will disrupt our current way of life: the technologies and services enabling the city of tomorrow

will first emerge in an environment that was not thought out or designed for them. This will create

challenges both for the growth of these technologies but also to society as it seeks to integrate

them. Naturally, these challenges raise an array of policy-relevant questions: what are the benefits

of these new technologies? Do the benefits justify the costs of integration and disruption? Is the

current regulatory ecosystem appropriate for the growth of beneficial technologies and, if not, how

should it be adapted?

In this dissertation, by bringing together insights from economics, operations research and

traffic science, I seek to address these policy concerns along two main thrusts.

In the first thrust, I investigate the optimal regulation of the ride-hailing industry in the age

of uberization. Indeed, over the past decade, e-hailing transportation network companies such as

Uber and Lyft have entered the ride-hailing industry and quickly grown in popularity. Naturally,

this surge in popularity has resulted in the decline of street-hailing services. Faced with dwindling

revenues, traditional taxi drivers have been calling for regulatory action, accusing e-hailing companies

of unfair competition due to their unregulated status. Moreover, e-hailing services have been

xi



linked to an increase in congestion in a number of metropolitan cities. Regulators have, however,

struggled to address both competition and congestion concerns in ways that promote efficiency

and consumer welfare. Thus, I propose a model of the ride-hailing market that captures both

competition between e-hailing and street-hailing services but also the effect of these services on

congestion. My analysis shows that the emergence of e-hailing need not be a death sentence

for street-hailing under appropriate regulatory and market conditions. More importantly, I show

that a simple mechanism exists to address issues of unfair competition in the industry as well as

of congestion, thus providing an avenue to simplify the host of regulations that have historically

burdened the industry.

In the second thrust, I focus on the question of automated mobility and infrastructure services.

The current approach to driving automation has been primarily vehicle-centric. However, despite

tremendous spending on R&D, fully automated vehicles are still far from being a reality. In

this context, a vehicle-infrastructure cooperative approach, in which infrastructure and vehicles

cooperate to perform the different driving tasks, could emerge and be preferable. To study the

implication of such a paradigm, I develop a model of an automated mobility market. In this

market, consumers interact with both automakers and with infrastructure support service providers

(ISSPs)–entities which provide automation services through road infrastructure–in order to find

suitable mobility solutions. This model allows me to study the suitability of vehicle-infrastructure

cooperation; the outcome of strategic interactions between ISSPs and automakers; and the implications

for safety and liability should that market emerge.
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Part I

Regulating the Ride-hailing Market
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CHAPTER 1

Introduction

1.1 Motivation

Traditionally, the ride-hailing industry has been dominated by street-hailing services. In
metropolitan cities like New York City (NYC), these services have usually been subject to
major regulations: limits on the number of cabs operating, licensing requirements, fare controls.
However, over the past decade, e-hailing transportation network companies such as Uber and Lyft
have entered the ride-hailing industry and quickly grown in popularity while operating largely
unregulated. For example, Uber’s quarterly earning reports show that between 2016 and 2018 the
number of trips served by the platform increased tenfold (Chai, 2019). Naturally, this surge in
popularity has resulted in the decline of street-hailing services. For example, in NYC, between
April 2016 and April 2020, the market share of street-hail fell from 86% to 14% (Schneider,
2022). Faced with dwindling revenues, traditional taxi drivers have been calling for regulatory
action, accusing e-hailing companies of unfair competition due to their unregulated status (Rana,
2022).

While one might argue that the imminent death of the street-hailing industry is the natural result
of technological advancement and of e-hailing’s superior efficiency, empirical evidence suggests
that the picture is more complicated. Indeed, using data from Shenzhen, China, Nie (2017) and
Zhang et al. (2019) show that, in very dense settings, using street-hailing will tend to result in lower
waiting times than using e-hailing. This seems to indicate that, at least in major urban centers
like NYC, society might benefit from sustained operation of street-hailing, even if I ignored the
mobility needs from those who don’t have access to a smartphone. This is, however, less likely
to occur unless policymakers provide for an appropriate regulatory environment that allows for
street-hailing’s competitiveness.

However, to date, in major US cities, no regulatory action has sought to address the legal
discrepancy between e-hailing companies and the street-hailing industry. Moreover, in other parts
of the world, regulatory action has often sought to assuage street-hailing drivers by curtailing or
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outlawing the use of e-hailing (Rana, 2022). However, the fact that e-hailing companies have
a user-base more expansive than street-hailing (Contreras and Paz, 2018; Rayle et al., 2016;
Clewlow and Mishra, 2017) suggests that there may be a better regulatory approach to the question.
Moreover, in other parts of the world and, recently, in NYC, partnerships between e-hailing
companies and taxi drivers seem to indicate that synergistic operation between these two services
is possible (Rana, 2022). In this context, one might wonder the potential welfare implications of
greater synergy and even consolidation between street-hailing and e-hailing.

Moreover, evidence that e-hailing services are a major contributor to increased traffic
congestion in cities has been surfacing in recent years. Using the National Household Travel
Survey data, Schaller (2018) found that replacing a private vehicle trip with an e-hailing trip at
least doubles the number of miles traveled. Moreover, he also reported that only a little over 20%

of trips taken with Uber or Lyft in New York City in February 2018 using their pooling service
resulted in actual sharing. This puts into question the claim that e-hailing services might positively
impact congestion by inducing sharing. After accounting for population, employment growth, and
roadway modifications, Castiglione et al. (2018) and Erhardt et al. (2019) showed that e-hailing
companies are a major contributor to the drop in travel speed and the increase in vehicle miles
travelled in San Francisco between 2010 and 2016. More recently, using exogenous variation
provided by Uber and Ola drivers’ strike in three major Indian cities, Agarwal et al. (2019) showed
that the absence of e-hailing drivers resulted in a reduction in delay nearly equivalent to half of
that observed on major holidays1. E-hailing vehicles may, in certain instances, alleviate private
car use, although available research suggests that a higher proportion of users switch from taxis or
higher-occupancy modes, or would forego their trip altogether (Rayle et al., 2016; Clewlow and
Mishra, 2017; Hampshire et al., 2017; Schaller, 2018). However, as compared with private car
use, in serving their customers, e-hailing vehicles generate massive vacant or empty trips. These
vacant trips create additional vehicular traffic demand. Unless pooling plays a larger part and the
fleet is efficiently managed, e-hailing will likely worsen traffic conditions, at least in the short term
(Beojone and Geroliminis, 2021; Wei et al., 2020).

Cities have already started to take steps to mitigate congestion caused by e-hailing vehicles. For
example, in 2019, New York City announced new regulations that impose a cap on new licenses
issued to for-hire vehicles, mandate a minimum percent of time e-hailing vehicles must carry a
passenger while operating in Manhattan below 96th Street, and collect a congestion surcharge to
trips that begin in, end in or pass through the area. While e-hailing companies have generally been
favorable to the congestion surcharge, some have criticized that the regulations hurt customers–
especially low-income customers–and drivers by locking them out of the app at times of low

1These results, however, represent short-term effects and do not necessarily reflect longer term patterns resulting
from a stoppage in e-hailing services
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demand (Bellon, 2019; Dobbs, 2019; ?). This debate highlights the importance of understanding
the welfare implications of these regulations.

1.2 Contribution and Outline

The aim of the first part of this dissertation is to make policy recommendations that can successfully
address the issues arising from the rise and adoption of e-hailing services. I divide this first part
into two chapters. In Chapter 2, to address the issue of e-hailing-induced congestion, I develop an
analytical model that replicates the inner workings of the e-hailing market and captures the effect
of e-hailing vehicles on traffic congestion. Our model accounts for the presence of both a solo
service (e.g.: UberX, Lyft...) and a pooling service (e.g.: UberPool, Lyft Line...) and customers’
choices between these two services. Our model also captures the effect of e-hailing vehicles on
traffic congestion using traditional traffic flow analysis methods. Using that framework, I identify
the issues that arise when an e-hailing company is left to operate on its own, especially with
regards to congestion. I am also able to investigate the adequacy–or lack thereof–of the current
regulatory solutions put forth by cities like New York. Then, I design and analyze the impact of a
simple regulatory scheme that preserves the flexibility of the e-hailing platform while appropriately
addressing its congestion effects and, thus, improves welfare.

Then in Chapter 3, to address the issue of competition in the ride-hailing industry, I
propose a model of competition in the ride-hailing market. After investigating the socially
optimal configuration in such a context, I investigate the outcome of e-hailing and street-hailing
competition. I also investigate the integration of these two services into a single platform in
which fares are jointly determined but e-hailing customers cannot match with street-hailing drivers
through an app. Lastly, I am also able to assess the impact of current policies and to propose
policies more suited for the age of e-hailing.
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CHAPTER 2

E-hailing and Congestion

2.1 Literature review

This chapter contributes to our discussion on how to regulate e-hailing services, especially when
accounting for their effect on congestion.

In the literature, several studies have analyzed ridesourcing markets and investigated the
welfare implications of potential regulations. Using an aggregate model of the ridesourcing market,
Zha et al. (2016) demonstrated that, under the assumption of homogeneous value of time and labor
supply, capping the commission that the ridesourcing firm takes on each ride is sufficient to achieve
a second-best. Zha et al. (2018a,b) further examined the commission cap in a market with spatial
or temporal heterogeneity and demonstrated that the commission cap can, in effect, significantly
improve welfare. It appears that the cap may be imposed per trip, by unit distance, or time, and can
even vary with respect to location or time of day. The choice of the granularity level will depend
on the trade-off between implementation complexity and policy effectiveness. Ke et al. (2020a)
compared the pricing equilibrium in two different types of ridesourcing market: a pooling market
and a non-pooling market. They show that, at the monopolist, first-best, and second-best equilibria,
both markets operate in an efficient regime (as opposed to the wild-goose-chases or WGC regime,
first described by Castillo and Weyl (2018)). Additionally, in either equilibrium, the fare in the
pooling market is lower than that in the non-pooling market. Their study does not, however,
consider the joint operation of both services. Additionally, all the aforementioned studies do not
consider traffic congestion. In fact, most of the analyses of regulations accounting for congestion
externality in the for-hire vehicle market have focused on the taxi market. Yang et al. (2005)
proposed a model of taxi service with a fare structure that implicitly incorporates congestion.
Under the proposed framework, they showed that the first-best solution might be sustainable when
congestion is high. Yang et al. (2014a) extended this work by incorporating bilateral taxi-customer
search frictions and showed that taxi demand may decrease with taxi fleet size in the presence
of congestion externality. Moreover, under the assumption of constant returns to scale for the
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matching function, taxi utilization rates decrease along the Pareto frontier from the system optimal
solution to the monopolist solution. Albeit insightful, these results should be re-examined against
the ridesourcing market due to its distinctive features, such as its two-sided nature, matching
technology and workforce flexibility, etc. A few recent studies seek to address the question
of congestion and regulation in the ridesourcing market. Li et al. (2019) investigated different
regulations in the ridesourcing market: the minimum wage, the congestion fee, and the driver cap.
Their analyses show that a minimum wage can actually result in higher welfare for consumers and
drivers but lower profits for the firm. In contrast to Li et al. (2019), Zhang and Nie (2019) modelled
both the solo and pooling options offered by the ridesourcing platform. This allows them to capture
the trade-offs between maximizing vehicle occupancy and mitigating congestion on the one hand,
and ensuring that drivers are incentivized to provide service on the other. However, both analyses of
congestion regulation fall short by not incorporating the mechanism through which ridesourcing
vehicles affect traffic congestion. In contrast, Ke et al. (2020b) incorporated such a mechanism
using the concept of macroscopic fundamental diagram (Geroliminis and Daganzo, 2008). They
are able to show that pooling can, under certain circumstances and with an appropriate pairing
time window, reduce the total travel cost experienced by ridesourcing customers. Their analysis
assumes, however, that pooling does not coexist with solo rides on the same platform. Thus, in
the present work, we propose a stylized framework that captures the workings of a ridesourcing
market, its two different services, i.e., riding alone or sharing with someone else, and their effects
on traffic congestion. We then derive optimal solutions to the monopolist and social-optimum
problems, and analyze the impact of a commission cap and a toll on system performance and
social welfare.

This chapter is organized as follows. In Section 2.2, we present our main assumptions and
our model. Section 2.3 analyzes the monopolist and first-best solutions. Section 2.4 discusses
our proposed mechanism to regulate the market and Section 2.5 illustrates the results through
numerical examples.

2.2 Model

Consider a e-hailing market with one platform offering two types of services: solo rides (denoted
by s) and pooling rides (p), which customers choose to use based on their preferences. However,
drivers are required to provide both services, and the assignment of customers will be made by
the platform via a matching algorithm. In addition, the platform decides the fares f s and fp that
customers will pay to use each service as well as the amount that drivers will receive for delivering
customers. Thus, by setting the fares and drivers’ share, the platform essentially determines the
demand rates λ̃s and λ̃p for the solo and pooling services.
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2.2.1 Pairing and matching

In this paper, we consider a stylized matching process that is consistent in spirit with the matching
algorithms implemented by some e-hailing platforms in practice. To avoid confusion, we use
pairing to refer to the process by which a pooling customer is grouped with other customers with
whom they will split their ride. We use matching to refer to the process by which both solo and
pooling customers are assigned to their drivers.

We consider a pairing process where pooling customers wait for a pairing time window to
be matched to other pooling customer. Customers are paired if they depart and arrive within a
given pooling radius of each other. Once a target occupancy (the maximum number of customers
to be paired) is reached, the pairing process will be terminated and the pooling customers will
be subsequently matched with a driver. If the target occupancy is not achieved at the end of the
pairing period, currently pooled customers will be assigned to a driver. It implies that if no other
customer is found, the waiting customer will ride alone. With this consideration, given the target
occupancy, pooling radius and pairing time window exogenously determined by the platform, the
average pairing time wp experienced by a pooling customer is given by:

wp = W p(λ̃p)

with W p′ < 0, suggesting that an increase in pooling demand leads to a decrease in pairing time.
Correspondingly, the relationship between average occupancy o and the pooling demand can then
be described by another function:

o = O(λ̃p)

where O′ > 0.
On the other hand, we assume, as in Castillo and Weyl (2018), that the matching time for

customers is zero, owing to instantaneous matching and a sufficiently large matching radius. In
other words, customers are matched to drivers as they arrive in the matching queue. Pooling
customers enter the matching queue either as a unit (with the other customers they will ride with)
or alone (if suitable pooling partners were not found before the expiration of the pairing time
window).

2.2.2 Meeting and delivery

Upon being matched to a driver, solo customers experience an expected pickup time wm and an
expected delivery time wr. In addition to wm and wr, pooling customers will also experience an
expected detour time ∆w that stems from picking up and dropping off their pooling partners. We
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have:

wr =
dr

v

wm =
dm

v

∆w =
∆d

v

where v is an average traffic speed; dr is the average trip distance for e-hailing trips, which is
assumed to be given; dm is the average pickup distance and is a decreasing function of the density
of idle drivers nI i.e., dm = Dm(nI) and Dm′ < 0; and ∆d is the expected detour distance. For
a given pooling radius, we assume that the detour distance is a decreasing function of pooling
demand as follows:

∆d = ∆D(λ̃p)

with ∆D′ < 0. The exact functional form of ∆D will necessarily depend on the operational
decisions of the platform as shown, for example, in ?.

Following the network macroscopic fundamental diagram approach (Geroliminis and Daganzo,
2008), it is possible to describe the average traffic speed v using the number of e-hailing vehicles
n and the number of background vehicles nb in the network:

v = V (θ · n+ nb)

with V ′(·) < 0. The parameter θ ≥ 1 reflects higher marginal effect of e-hailing vehicles on
congestion compared to regular background vehicles, because, for example, e-hailing vehicles
often drive slower as they await their next assignment.

Assuming that that background traffic trips originate at a rate λb with an average travel distance
of drb, we have:

wrb =
drb

v

nb = λb · wrb

where wrb represents the average travel time of background traffic. The second equation holds as
per Little’s law. We further note that while it is straightforward to consider λb to be congestion-
dependent, we treat it to be exogenous for simplicity and clarity.
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2.2.3 Demand

Customers face the following costs from taking a trip on the platform:

µs = f s + β · (wm + wr)− ξs

µp =
fp

o
+ β · (wp + wm + wr + ∆w)

where f s and fp denote the total fare collected by the platform for completing a transaction for
the solo and pooling services, respectively; β represents customers’ value of time; and ξs > 0 is
a constant, reflecting the fact that, all else equal, riding alone provides higher utility to customers.
Additionally, customers also have access to an outside option (such as public transit or driving)
with cost µ0. We further assume that customers’ value of travel time β is a variable across the
customer population with cumulative density function G(·). Thus, each customer chooses which
service to use by comparing the costs µs, µp and µ0 and choosing the cheapest option. Thus, we
have:

1. if µs ≤ µp and µs ≤ µ0, then customers with β2 ≤ β ≤ β1 choose the solo service. The
proportion of these customers is G(β1)−G(β2).

2. if µp ≤ µ0 and µp < µs, then customers with β ≤ β3 = min

{
β2,

µ0− f
p

o(
wp+wm+wr+∆w

)}
choose the pooling service, whose proportion is G(β3).

Here:

β1 =
µ0 − f s + ξs

wm + wr

β2 =
f s − fp

o
− ξs

wp + ∆w

If we let λ0 denote the population size, then demand for each service is given by:

λ̃s = λ0 ·
[
G(β1)−G(β2)

]
λ̃p = λ0 ·G(β3)
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2.2.4 Supply

We further assume that drivers decide to provide service if their average hourly earnings during the
study period ω exceed their opportunity cost. That is, the supply of drivers is given by:

n = S(ω)

where S ′(·) > 0 and S(·) captures the distribution of drivers’ opportunity cost. The above
relationship between driver supply and driver earnings can be further simplified if one considers
the inverse supply function S−1(·):

C(n) = S−1(n) · n = ω · n

where C ′ > 0 by construction. C(·) can be understood as the cost for the platform of using n
drivers. Now, let e denote the amount that drivers receive per unit service time 1. Then:

ω = e ·
wr · (λ̃s + λ̃p

o
)

n

2.2.5 Equilibrium

At equilibrium, we consider a steady state in the system where the following conservation holds as
per Little’s law:

n = nI + (λ̃s +
λ̃p

o
) · (wm + wr) +

λ̃p

o
·∆wd

where ∆wd is the additional time that drivers spend on pickup and delivery for a pooling ride
relative to a solo ride. As pointed out in Ke et al. (2020a), ∆wd and ∆w are correlated, though
this correlation, once again, depends on operational decisions from the platform. To simplify our
analysis, we also assume that ∆wd = γ ·∆w.

All of the above considerations yield our model of eqs. 2.1a to 2.1o, which is a system of 14

equations and 17 unknowns. By specifying exogenous variables f s, fp, and e, we can solve the
system to evaluate the performance of the e-hailing market at the steady state.

λ̃s = λ0 ·
[
G(β1)−G(β2)

]
(2.1a)

1Here, note that we assume that drivers do not get paid for the extra detour time induced by pooling. Our model
could easily be extended to include such a possibility. In this formulation, we however seek to capture the reality that,
for many drivers, they work more and earn almost the same (if not less) when serving pooling trips as opposed to solo
trips.
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λ̃p = λ0 ·G(β3) (2.1b)

β1 =
µ0 − f s + ξ

wm + wr
(2.1c)

β2 =
f s − fp

o
− ξ

wp + ∆w
(2.1d)

β3 = min

{
β2,

µ0 − fp

o(
wp + wm + wr + ∆w

)} (2.1e)

o = O(λ̃p) (2.1f)

wp = W p(λ̃p) (2.1g)

wm =
Dm(nI)

v
(2.1h)

wr =
dr

v
(2.1i)

∆w =
∆D(λ̃p)

v
(2.1j)

wrb =
drb

v
(2.1k)

v = V (θ · n+ nb) (2.1l)

n = nI + (λ̃s +
λ̃p

o
) · (wm + wr) +

λ̃p

o
· γ ·∆w (2.1m)

e ·
[
wr · (λ̃s +

λ̃p

o
)
]

= C(n) (2.1n)

nb = λb · wrb (2.1o)

2.3 Scenario analysis

Below we analyze scenarios that determine the choice of exogenous variables f s, fp, and e given
our e-hailing market model presented above. In order to analyze the market and derive policy
insights, both in this section and Section 2.4, we will make a few assumptions and specifications
to simplify the model. Later in Section 5, we will conduct numerical experiments to examine the
effectiveness of the policies derived in the general case considered in the previous section.
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2.3.1 Model simplification

We first assume that customers are homogeneous in their value of time β. With homogeneous
value of time, the demand-side equilibrium can be described by the following set of equations:

λ̃s + λ̃p = Λ(µ)

µs − µ ≥ 0 and λ̃s ≥ 0

µp − µ ≥ 0 and λ̃p ≥ 0

λ̃s · [µs − µ] = 0

λ̃p · [µp − µ] = 0

where Λ(·) is a demand function for e-hailing services and is such that Λ′ < 0. The above
complementarity condition indicates that, at equilibrium, the cost of services with non-zero
demand must be equal, and less than that of non-utilized services.

We also assume, as in Korolko et al. (2018), that pooling customers must walk to and from
common meeting and drop-off locations. As such, ∆d = 0. This scenario can be likened to the
operation of Uber Express Pool, Uber’s low-cost service. In this case, the driver compensation
becomes the same for solo and pool services and thus it is convenient to consider the choice of
r = e · wr, the compensation per ride, rather than that of e. In light of the above, the e-hailing
market model becomes:

µs = f s + β · (wm + wr)− ξs (2.2a)

µp =
fp

o
+ β · (wp + wm + wr) (2.2b)

λ̃s + λ̃p = Λ(µ) (2.2c)

µs − µ ≥ 0 (2.2d)

µp − µ ≥ 0 (2.2e)

λ̃s · [µs − µ] = 0 (2.2f)

λ̃p · [µp − µ] = 0 (2.2g)

o = O(λ̃p) (2.2h)

wp = W p(λ̃p) (2.2i)

wm =
Dm(nI)

v
(2.2j)

wr =
dr

v
(2.2k)

wrb =
drb

v
(2.2l)
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v = V (θ · n+ nb) (2.2m)

n = nI + (λ̃s +
λ̃p

o
) · (wm + wr) (2.2n)

r · (λ̃s +
λ̃p

o
) = C(n) (2.2o)

nb = λb · wrb (2.2p)

In our analyses, we assume that the above modeling system defines continuously differentiable
functions between endogenous variables and exogenous variables f s, fp, and r, as per the implicit
function theorem. To facilitate the presentation of our analysis results, we define the vehicle trip
rates for solo and pool services as follows:

λs = λ̃s

λp =
λ̃p

o

To conclude our model presentation, below we present a few results that highlight some useful
properties of our model and that will be used in analyzing our different scenarios.

From Equation 2.2n, we can obtain the following derivative for the total vehicle trip rate
λs + λp with respect to the number of vacant vehicles:

∂(λs + λp)

∂nI
= −

1 + (λs + λp) · Dm
′

v

wm + wr
(2.3)

When 1+(λs+λp)·D
m′

v

wm+wr
< 0, then ∂(λs+λp)

∂nI
> 0, which corresponds to the WGC described in Castillo

and Weyl (2018).
From Equations 2.2l, 2.2m and 2.2p, the derivative of the total traffic nT = n+nb with respect

to the fleet size is:
∂nT

∂n
= 1− θ · drb · λb · V ′

v2 + λb · drb · V ′
(2.4)

Given our assumption of inelastic background traffic demand, it must be that ∂nT

∂n
> 0 so that

θ·drb·λb·V ′
v2+λb·drb·V ′ < 1. If v2 + λb · drb · V ′ < 0, then it follows that v2 < (θ− 1) · λb · drb · V ′ < 0 (given
that θ ≥ 1), which is absurd. Thus, it follows that when background traffic demand is inelastic, we
must have v2 + λb · drb · V ′ > 0.
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2.3.2 First-best

Here, a social planner seeks to maximize social welfare by solving the following optimization
problem:

W = max
fs≥0,
fp≥0,
r≥0

Consumers’ surplus︷ ︸︸ ︷∫ ∞
µ

Λ(x) · dx+

Platform profit︷ ︸︸ ︷
(f s − r) · λs + (fp − r) · λp +

Drivers’ surplus︷ ︸︸ ︷∫ r·(λs+λp)
n

0

S(x) · dx−

Background cost︷ ︸︸ ︷
γb · λb · wrb

(FB)

where γb is the value of time for the background traffic2.Note that the dependent variables λs, λp,
n, wrb and µ are functions of the decision variables through the system defined in Equation 2.2.
Without loss of generality, we do not consider the platform’s operation cost.

Assuming that λs > 0 and λp > 0, the first-order optimality conditions (FONC) of the problem
yield the following formulae for the price of a solo and a pool ride and drivers’ hourly income:

f s = mc (2.5a)
fp

o
= mc · co + β ·W p′ · λp · o (2.5b)

C(n)

n
=

mc

wm + wr
− τ int − τ b (2.5c)

where:

mc = −β · D
m′

v
· (wm + wr)

1 + (λs + λp) · Dm
′

v

· (λs + λp · o)

co =
1− λp ·O′

o
=

O′

∂o
∂λp

<
1

o

τ b = −θ · γb · drb · λb · V ′

v2 + λb · drb · V ′
> 0

τ int = −θ · β · V ′

v2 + λb · drb · V ′
· (dm + dr)

1 + (λs + λp) · Dm
′

v

· (λs + λp · o) > 0

Here, mc represents the marginal cost, to the platform, of providing a ride. Since f s > 0, it follows
from Equation 2.5a that, at the social optimum, mc > 0, which implies that 1 + (λs +λp) · Dm

′

v
>

0. Thus, at the first-best, the equilibrium of the e-hailing market lies in the non-WGC regime.

2Truly, this is a quasi first-best since we take λb as given. Under the first-best, the planner would also be able to
determine λb by considering the demand function for background traffic.
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Additionally, we note that Equation 2.5b contains the negative term β ·λp ·o ·W p′ , which captures
the matching externality that each additional pooling customer creates on the platform. It then
follows that, since fp > 0, co > 0 at the first-best equilibrium. Thus, increasing the pooling vehicle

trip rate increases occupancy for the pooling service ( ∂o
∂λp

> 0). By combining Equations 2.2a,
2.2b, 2.5a and 2.5b, we obtain:

mc · (1− co) = β ·W p · (1 + λp · o · W
p′

W p
) + ξs (2.6)

If we assume that the mode-specific constant ξs ≈ 0, then 1+λp ·o · W p′

W p > 0 from which it follows
that the solution to the first-best problem lies in the non-elastic portion of the pairing time function
for the pooling service. When ξs > 0, this condition is relaxed and the market outcome may lie in
the elastic region of the pairing time function. Here, the disutility of using the pooling service is so
large that the resulting equilibrium number of pooled rides is relatively low. It is also evident from
Equation 2.5 that f s − fp

o
> 0 and f s − fp > 0. In other words, the fare per customer and the

revenue per trip for the single service are higher than their respective counterparts for the pooling
service at the first-best.

From Equation 2.5c, the average driver hourly income is equalized with the drivers’ marginal
social benefit. This marginal benefit is composed of three main components:

• the benefit of a marginal driver to the platform mc
wm+wr

, which captures drivers’ impact on
meeting distance;

• the intra-platform congestion externality τ int that a marginal driver imposes on e-hailing
customers;

• the extra-platform congestion externality τ b that a marginal driver imposes on the
background traffic.

From this latest point, we notice that the externality component is independent of occupancy. This
suggests that, irrespective of the number of passengers they carry, e-hailing vehicles impose the
same externality on background traffic.

We can also rewrite Equation 2.5 as follows:

f s =
[C(n)

n
+ τ int + τ b

]
· (wm + wr) (2.7a)

fp

o
=
[C(n)

n
+ τ int + τ b

]
· (wm + wr) · co + β ·W p′ · λp · o (2.7b)
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Thus, at the first-best, the fare only covers the marginal social cost of vehicles that are in pickup
or delivery modes. In particular, it does not cover the marginal cost of drivers when they are
idle. Now, from Arnott (1996) and Yang et al. (2005), we know that unless congestion is high,
the taxi market must be subsidized at the first-best. Additionally, from Zha et al. (2016), without
considering congestion, the e-hailing market must be subsidized when the production function of
rides is increasing returns to scale. We examine here whether, in the presence of pooling and
congestion, the e-hailing market is sustainable at the first-best. Consider the first-best profits πf :

πf =

Operating loss≤0︷ ︸︸ ︷
− mc

wm + wr
· nI + (β ·W p′ · λp · o2 −mc ·O′) · λp +

(
τ b + τ int

)
· n (2.8)

From examining Equation 2.8, we notice two main components. On one hand, there is a
congestion-independent component that is negative and captures the industry’s losses. Those
include the cost of idle drivers–which is not covered by the fare at the first-best (Arnott, 1996;
Yang et al., 2005)–and a pooling-service-related cost. This latter cost emerges from the positive
matching externality that the pooling service enjoys and the fact that pooling reduces the marginal
impact of riders on the platform but not the marginal cost of drivers relative to the single service.
On the other hand, there is a congestion related component,

(
τ b + τ int

)
· n, which is positive.

When congestion externality is high, this term may exceed the operating loss, which would result
in positive profits for the platform. In other words, similar to the taxi market investigated by Yang
et al. (2005), the first-best is sustainable for the e-hailing platform when congestion externality is
high.

2.3.3 Monopoly

In this section, we derive the monopolist equilibrium, its properties, and the distortions that arise
relative to the social optimum. In this setting, the e-hailing platform determines exogenous
variables f s, fp, and r to maximize its profits. Thus its revenue-maximizing decision can be
obtained by solving the following optimization problem:

π = max
fs≥0,
fp≥0,
r≥0

(f s − r) · λs + (fp − r) · λp
(M)

The FONC of the optimization problem are given below:

f s = −λ
s + λp · o

Λ′
+mc (2.9a)
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fp

o
= −λ

s + λp · o
Λ′

+mc · co + β · λp · o ·W p′ (2.9b)

C ′(n) =
mc

wm + wr
− τ int (2.9c)

Compared to first-best pricing, f s and fp include a markup term −λs+λp·o
Λ′

> 0 under
monopoly pricing. Thus, fares under the monopolist are higher than under the first-best. Moreover,
Equation 2.9c indicates that, at optimality, the platform equalizes the cost of the marginal driver,
C ′(n), to its marginal benefit. Thus, while the regulator is concerned with the average cost of
the fleet, the platform is only concerned with the cost of the marginal driver. Additionally, by
comparing the right-hand sides of Equations 2.5c and 2.9c, it appears that the monopolist only
internalizes part of the congestion externality that arises from running the platform. Indeed, under
monopoly pricing, customers only bear the congestion cost they impose on each other but do
not bear the cost of congestion on the background traffic. Taken together, it follows that, for a
convex driver cost function C(·), assuming equal marginal driver and marginal externality costs,
the number of drivers under the monopolist is higher than the first-best number of drivers 3. Since
demand is lower under the monopolist, it follows that utilization rates are also lower under the
monopolist, a finding similar to that of Ke et al. (2020a) when considering pooling and solo services
separately.

Now, the question arises as to whether it may be optimal for the monopolist to operate in the
WGC-regime (mc < 0) when accounting for congestion. Indeed, unlike in the first-best case, it
is not straightforward to rule out a WGC solution at optimality for the monopolist. It is, however,
easy to show that for any solution with mc < 0, we can construct another solution with identical
n, λs, and λp but higher fares f s and fp

o
. Thus, though they may exist, solutions with mc < 0 are

dominated, even in the presence of congestion. This is consistent with the findings of Zha et al.
(2018b) in a spatial market without congestion.

Lastly, while f s > fp

o
and f s > fp in the first-best, it is not necessary that f s > fp under the

monopolist. Indeed:

f s − fp = −λ
s + λp · o

Λ′
· (1− o) +mc · (1− co · o)− β · λp · o2 ·W p′ (2.10)

Since o ≥ 1, the markup per ride that the platform collects is higher for the pooling service.
When occupancy is high and the markup per passenger is significantly higher than the difference

3This can be seen by noting that:

• C and C ′ are both increasing in n and that the right hand side of Equation 2.5c is lower than that of
Equation 2.9c;

• C ′(n) ≥ C(n)
n for convex functions.
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in marginal costs between the solo and the pooling service, the monopolist may earn more revenue
from the pooling service than from the solo service. In practice, however, such a situation
does not seem to occur: numerous reports suggest that the prices required to make the pooling
service profitable tend to induce a demand lower than that necessary to achieve high occupancy
(Spotswood, 2017; Anand, 2020). Thus, for the rest of our analysis, we will assume that f s > fp

at the monopolist equilibrium.

2.4 Policy discussion

Before we dive into the analysis of potential policies, it is important to characterize an efficient
policy. First, such a policy must target the two sides of the market, i.e., it must address the
monopolist’s market power on the demand and supply sides. Second, it must address congestion
externality by ensuring that drivers (and by extension the passengers) bear the social cost of the
congestion they impose on the background traffic. Lastly, the policy should be easy to implement.

We seek for an optimal policy with which the monopolist problem admits the first-best solution.
Suppose that the fares f̂ s and f̂p and the per-ride driver revenue r̂ solve the above first-best
problem. An obvious policy would be to regulate the fares and the earnings to be at this first-best
level. Such regulations, however, may be unpopular as they would restrict the operational freedom
and flexibility of the platform. Since the modeling system of the e-hailing market, eqs. 2.2a to 2.2p,
enjoys three degrees of freedom (14 equations and 17 unknowns), a policy that can ensure that any
three variables stay at their first-best level will be optimal, if the reduced system admits a unique
solution. However, this implies that regulating fares, driver per-ride earnings, or the fleet size alone
cannot induce the first-best; it is necessary to explore a combination of regulatory instruments.

2.4.1 New York City’s regulatory scheme

We first briefly analyze NYC’s approach to regulating the for-hire vehicle market to determine
whether it meets the aforementioned criteria. We preface our discussion by noting that NYC’s
e-hailing market operates with multiple companies while our setting only considers a single firm.
Thus, we do not comment on the effectiveness of NYC’s policy as it pertains to NYC’s current
market, but rather on the effectiveness of that policy when applied to a market similar to the one in
our setting. In 2019, New York City announced new regulations that impose a cap on new licenses
issued for for-hire vehicles, mandate a minimum percent of time e-hailing vehicles must carry
a passenger while operating in Manhattan below 96th Street, and collect a congestion surcharge
on trips that begin in, end in or pass through the area. In December 2018, NYC additionally
implemented an effective minimum wage requirement of 15 $

hr for e-hailing drivers. We investigate
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here whether such policies are effective in our setting, where, under these regulations, the problem
for the monopolist would be as follows:

max
F≥0,
ω≥0,
n≥0

(f s − r − τ̂ s) · λs + (fp − r − τ̂ p) · λp

s.t. (λs + λp) · wr ≥ ρ̂ · n (Occupied time constraint),

n ≤ n̂ (Fleet size constraint),

C(n) ≤ ω̂ · n (Minimum wage constraint)

(2.11)

where τ̂ s and τ̂ p are the congestion surcharges on single and pooled trips respectively; ρ̂ is the
first-best utilization rate for the e-hailing fleet; n̂ is the first-best vehicle fleet cap; and ω̂ is the
wage under the first-best.

First, we note that the fleet size constraint and the minimum wage constraint cannot
simultaneously be binding at equilibrium. Indeed, the fleet size constraint is only necessary
and effective when the congestion externality imposed on the background traffic exceeds the
monopolist’s market power, so that the monopolist wage is higher than the socially efficient wage.
On the other hand, the minimum wage constraint is only effective and necessary when congestion
is low and the firm’s market power leads to wages lower than socially efficient. We analyze below
the two cases.

Suppose that the fleet size constraint is binding so that n = n̂ and C(n̂) = ω̂ · n̂. Then,
wr = dr

V (n̂+n̂b)
, i.e., the monopolist and first-best travel times are equal and the monopolist solves

the following problem:

max
F ≥ 0

(f s − r − τ̂ s) · λs + (fp − r − τ̂ p) · λp

s.t. λs + λp ≥ λ̂
(2.12)

where λ̂ = ρ̂ · n̂
ŵr

= λ̂s + λ̂p. Essentially, the occupied time constraint becomes a minimum on the
number of trips served by the platform. Thus, it essentially acts as a way to maximize the demand
served by the monopolist. However, the fleet size cap renders the congestion management effect of
the congestion surcharge unnecessary. Moreover, the occupied time constraint might be redundant.
Indeed, following Xu et al. (2017), when congestion is high, the objectives of the platform and of
the planner tend to be aligned, so that the platform inherently seeks to maximize its fleet utilization
rate.

Now consider the case in which congestion is low and the monopolist’s driver supply is lower
than that targeted by the regulator. Then, we consider two situations of interest. In the first, n̂ is
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such that C(n̂) = ω̂ · n̂. Then, the monopolist solves the following problem:

max
F ≥ 0, n ≥ 0

(f s − r − τ̂ s) · λs + (fp − r − τ̂ p) · λp

s.t. (λs + λp) · wr ≥ ρ̂ · n̂ (Occupied time constraint)
(2.13)

This is identical to Equation 2.12. Here again, the surcharge is unnecessary (since congestion is
not a problem). Moreover, it likely hampers the effectiveness of the minimum trip requirement,
since higher prices might discourage consumers from using the service. In the second case, the
platform’s optimal choice of n is such that C(n) ≤ ω̂ · n̂: it is more advantageous for the platform
to hire fewer drivers. In such situation, not only would the number of drivers be suboptimal, but
the rationing mechanism used by the platform could further decrease welfare.

Our brief analysis shows that, while NYC’s regulatory scheme might be effective in mitigating
the congestive effect of ride-sourcing vehicles, it is unnecessarily burdensome and might not
always improve welfare in our setting. In the following section, we propose another solution
that not only remedies that issue but is also more parsimonious.

2.4.2 Commission cap regulation and congestion toll

Zha et al. (2016) showed that, when customers are homogeneous in their value of time, regulating
the amount of commission that the platform receives can achieve a second-best. Consider such
regulation applied to our current framework. First, we note that, given a commission cap on the
solo service corresponding to the first-best commission p̂s = f̂ s−r̂, it must be that the firm’s choice
of pooling commission is such that pp ≤ p̂s4. Thus, there exists a natural, non-binding cap on the
pooling service commission. It might therefore be possible to regulate the market with a single
commission cap. Second, we note that Equations 2.5c and 2.9c differ by τ b. A priori, a policy that
increases the cost of drivers by τ b should be enough to address the congestion externality. Thus,
for the regulated monopoly, Equation 2.2o becomes:

r =
C(n)

λs + λp
+ τ b · (wI + wm + wr)

= [S−1(n) + τ b] · (wI + wm + wr)

with wI = nI

λs+λp
. We consider then the following regulated problem for the monopolist:

4This is because the driver revenue per ride r is identical for both services. Since fs > fp, the conclusion follows.
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π = max
fs≥0,
fp≥0,
r≥0

(f s − r) · λs + (fp − r) · λp

s.t. f s − r ≤ p̂s (Single service cap)

(M-CAPT)

The FONC of M-CAPT satisfy:

f s = −[λs − ν1 + o · λp] · 1

Λ′
+ [C ′(n) + τ b + τ int] · (wm + wr) +

[
S−1(n) + τ b

]
· wI · ν1

λs + λp
−

τ int · (wm + wr) · ν1

λs + λp · o

(2.14a)

fp

o
= −λ

s − ν1 + λp · o
Λ′

+ co ·

[
[C ′(n) + τ b + τ int] · (wm + wr) +

[
S−1(n) + τ b

]
· wI · ν1

λs + λp

− τ int · (wm + wr) · ν1

λs + λp · o

]
+ β · λp · o ·W p′

(2.14b)

where ν1 ≥ 0 is the Lagrangian multiplier associated with the commission cap.
Now consider a constructed, constrained social welfare maximization problem below:

W = max
fs≥0,
fp≥0,
r≥0

∫ ∞
µ

Λ(x) · dx+ (f s − r) · λs + (fp − r) · λp − γb · λb · wrb

s.t. f s − r ≥ p̂s
(SB)

It is straightforward to see that the first-best solution solves this constrained social welfare
maximization problem. Now, the FONC of SB yield:

f s = −η1

Λ′
+
[C(n)

n
+ τ b + τ int

]
· (wm + wr)− S−1(n) · wI · η1

λs + λp
+

τ int · (wm + wr) · η1

λs + λp · o

(2.15a)

fp

o
= −η1

Λ′
+ co ·

[[C(n)

n
+ τ b + τ int

]
· (wm + wr)− S−1(n) · wI · η1

λs + λp
+

τ int · η1

λs + λp · o
· (wm + wr)

]
+ β · λp · o ·W p′

(2.15b)
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where η1 ≥ 0 is the Lagrangian multiplier associated with the commission cap.
Now, assuming the first-best is attained by the regulation, does there exist ν1 ≥ 0 so that

Equation 2.14 holds? By analyzing the system of Equations 2.14 and 2.15, the answer to this
question can be reduced to determining the conditions under which:

ν1 = (λs + λp · o) ·

[
τ int + C(n)

n
− C ′(n)

]
· (wm + wr) · λ̄− S−1(n) · wI

τ b · wI
≥ 0 (2.16)

where λ̄ = λs+λp

λs+λp·o . It then follows that the first-best can be replicated with a cap and toll if:

π̄ = τ int · (wm + wr) · λ̄− S−1(n) · wI ≥
[
C ′(n)− C(n)

n

]
· (wm + wr) · λ̄ (2.17)

Now, τ int · (wm +wr) · λ̄ represents the platform’s revenue per customer (solo and pooled) served;[
C ′(n)− C(n)

n

]
· (wm+wr) · λ̄ represents the opportunity cost of equalizing drivers’ benefit to their

average cost rather than their marginal cost; and S−1(n) · wI represents the cost of an idle vehicle
per customer served. Thus, Equation 2.17 simply indicates that the first-best can be replicated
when the platform’s revenues are sufficiently high to cover the economic cost of its drivers. Can
this condition be satisfied, regardless of the composition of the driver pool?

When drivers are homogeneous 5, this is a slightly weaker condition than requiring that the
platform’s profits be positive since, as Equation 2.8 indicates, profits include a pooling-service-
related cost that does not appear in Equation 2.17. Thus, under the assumption of homogeneous
drivers, as long as the first-best is sustainable, the proposed regulation will be effective.

Additionally, Equations 2.16 and 2.17 do not depend on η1. Thus, any desired second-best
equilibrium can be replicated by a regulation with a cap p̂s > 0 and an appropriate toll. This is
especially important when the first-best is not sustainable (p̂s < 0) and the cap must be increased
beyond its first-best level to ensure platform operation.

When drivers are heterogeneous, assuming the cost function C(·) is convex, then the right
hand side of Equation 2.17 is positive. Then, that the first-best is sustainable may or may not be
sufficient to guarantee that the policy can replicate the regulator’s objective.

In practice, collecting a toll on e-hailing vehicles can be challenging, especially if there is no
preexisting mechanism to toll other vehicles. However, imposing a congestion fee per use time on
each rider is more easily implementable (cities and states already impose multiple fees on riders).
From Equation 2.14, we can easily deduce that the appropriate fee structure per rider is as follows:

τ s = τ b (2.18)

5That is, C ′(n) = C(n)
n = c and S−1(n) = c
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τ p = τ b · co (2.19)

where τ s and τ p denote the fee imposed on solo and pooled riders, respectively. We note that
τ s > τ p since co < 1

o
< 1. Additionally, τ

s

τp
= 1

co
> o so that the ratio between the single fee and

the pooling fee is not linear in occupancy. It will rather depend on the extent of congestion and its
costs on society.

2.4.3 Commission cap only

Zha et al. (2016) explained that the commission cap incentivizes the monopolist to serve a higher
demand than it otherwise would. When congestion is taken into account, maximizing demand
served might involve maximizing occupancy for the platform, thus alleviating congestion and
achieving the regulator’s objective.

To analyze such a regulation, it is convenient to introduce τ̂n ∈ [0, τ b], the toll imposed by the
regulator on each e-hailing vehicle.

Then, Equation 2.14 becomes:

f s = −[λs − ν1 + o · λp] · 1

Λ′
+ [C ′(n) + τ int + τ̂n] · (wm + wr)+[

S−1(n) + τ̂n
]
· wI · ν1

λs + λp
− τ int · ν1

λs + λp · o
· (wm + wr)

(2.20a)

fp

o
= −λ

s − ν1 + λp · o
Λ′

+
[
[C ′(n) + τ int + τ̂n] · (wm + wr)+[

S−1(n) + τ̂n
]
· wI · ν1

λs + λp
− τ int · ν1

λs + λp · o
· (wm + wr)

]
· co + β · λp · o ·W p′

(2.20b)

Then, a solution to the monopoly problem that satisfies Equation 2.15 can be obtained if:

ν1 = (λs + λp · o) ·

[
τ int + C(n)

n
− C ′(n) + τ b − τ̂n

]
· (wm + wr) · λ̄− S−1(n) · wI

τ̂n · wI
≥ 0 (2.21)

From Equation 2.21, we note the following:

• When τ̂n = τ b, we recover the commission cap and toll policy from Section 2.4.2;

• For any toll τ̂n ∈ (0, τ b), the first-best can be replicated if:

π̄ = (τ int+τ b− τ̂n) ·(wm+wr) · λ̄−S−1(n) ·wI ≥
[
C ′(n)− C(n)

n

]
·(wm+wr) · λ̄ (2.22)

Here, (τ b − τ̂n) · (wm + wr) · λ̄ > 0 represents the additional revenue for the platform due
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to bearing only a fraction of the congestion externality it imposes on the background traffic.
The interpretation of Equation 2.22 is then similar to that of Equation 2.17.

• Using our approach, it is not possible to recover ν1 when τ̂n = 0. However, we note that, as
τ̂n −→ 0, ν1 −→ ∞ i.e., ν1 becomes more and more positive. This suggests that it is always
possible to find a smaller toll τ̂n such that the first-best (or another targeted equilibrium) can
be replicated.

From this last point above, it appears that the selection of τ̂n does not have a significant impact
on the ability of the cap to bring the system to an efficient equilibrium. In fact, the commission
cap alone might be able to achieve the desired effect. We will verify this intuition using numerical
examples in Section 2.5. In practice, the regulating authority might still, however, choose τ̂n > 0

in order to meet other objectives: improving road infrastructure, satisfying special interests, etc.

2.5 Numerical experiments

Our proposed policies in Section 2.4 assume that users are identical in their value of time and that
pooling users experience no detour time. In this section, we relax this assumption and apply our
proposed policies to the full model described in Equation 2.1. In this context, the social welfare
maximization problem now becomes:

W = max
fs≥0, fp≥0

r≥0

Total trip utility︷ ︸︸ ︷
U0 · (λs + λp · o)−

Solo time cost︷ ︸︸ ︷
λ0 ·

∫ β1

β2

β · (wm + wr) ·G′(β) · dβ

−

Pooled time cost︷ ︸︸ ︷
λ0 ·

∫ β3

¯
β

β · (wp + wm + wr + ∆w) ·G′(β) · dβ

− r · (λs + λp)︸ ︷︷ ︸
Driver cost

− γb · λb · wrb︸ ︷︷ ︸
Background traffic

(FB)

where
¯
β is the lower bound of the support of G; and U0 is the utility of completing the trip for an

individual customer. Unlike in the homogeneous value of time case, however, analyzing the above
system analytically for policy insights is substantially difficult. Thus, we turn instead to numerical
experiments, for which we adopt the following functional forms:

Dm(nI) = A · nI−α (2.23a)

C(n) = c · n (2.23b)
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W p(λ̃p) =
1− exp (−δ · φ · λ̃p)

δ · λ̃p
(2.23c)

O(λ̃p) = 2− exp (δ · φ · λ̃p) (2.23d)

∆D(λ̃p) =
B

λ̃p
(2.23e)

V (θ · n+ nb) = v0 − vc · (θ · n+ nb) (2.23f)

G(β) =
β −

¯
β

β̄ −
¯
β

(2.23g)

co =
1− exp (−δ · φ · λ̃p) · δ · φ · λ̃p

o

o
(2.23h)

We assume, as in Korolko et al. (2018), that the maximum occupancy is two and that the probability
of being paired is constant. Then, the resulting pairing time and occupancy functions are given in
Equations 2.23c and 2.23d. Furthermore, we assume that β follows a uniform distribution on
(
¯
β, β̄). Equation 2.23a is a classical representation of the pickup distance between a randomly

chosen driver and their closest unmatched customer (Zha et al., 2018b; Korolko et al., 2018;
Castillo, 2018). We also borrow from Korolko et al. (2018) for information on δ. The data and
parameters used are presented in Appendix A.1.

2.5.1 Comparative analysis

In this section, we compare the first-best and monopoly outcomes. To tease out the effects moving
away from the homogeneous value of time assumption, we also vary the variance of the value
of time distribution and investigate how it affects both outcomes 6. Especially, we consider the
producer’s and social surpluses, the distribution of rides across the two services and the congestion
effect.

As Figure 2.1 shows, the monopolist’s behavior results in an inefficient outcome. This
inefficient outcome is, however, not driven by congestion, since, as shown in Figure 2.4, traffic
speed in the unregulated scenario is similar to that in the first-best scenario when congestion is
high. Thus, most inefficiencies are the results of the monopolist’s exercise of market power, as
shown by the fares in Figure 2.2. As the variance of the value of time distribution increases, so
does the difference between the laissez-faire outcome and the first-best outcome. This is due to
the fact that, when variance is high, the monopolist can easily maximize profits by catering to
high value of time customers. However, as variance decreases, the e-hailing service must become

6The effect of the mean of the distribution was also studied. However, the findings were as expected and do not
add much regulatory insights to what can be gleaned from studying the variance. Higher value of time implies lower
profits for the platform since it needs to hire a larger number of drivers. Lower value of time implies that pooling
becomes preferable and that profits are easier to generate.
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Figure 2.1: Social surplus comparisons

less niche to survive and maximize its profits. This is best seen in Figure 2.3: as variance in the
population decreases, total demand served (across both services) increases. Such a pattern can also
easily be understood in terms of price elasticity: as variance in the population increases, the price
elasticity decreases, thus making it easier for the firm to charge higher fares (Figure 2.2).
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Figure 2.2: Fare comparisons

As far as the trip distribution is concerned, Figure 2.3 shows that, at the first-best, we can
discern two regimes. In the first, as base demand increases, the fraction of demand served by the
solo service is non-increasing while that served by the pooling service increases. This is because,
when demand is low, frictions due to pooling cannot be easily overcome. However, as demand
increases, economies of scale lead to a reduction in pooling and detour time costs, thus making
pooling the more efficient option to serve the demand. In the second regime, as congestion
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Figure 2.3: Demand rate comparisons

increases, pooling (and the e-hailing service overall) become less desirable and the service is
eventually eliminated. Under the monopolist, the share of solo trips is non-increasing, just as
in the first-best case. However, when variance is high, pooling is only provided when congestion
is very high: because it manages less demand than under the first-best, the monopolist is able
to maintain a good quality of service for its high value of time customers longer while getting
adequately compensated. When variance is low, the distribution pattern under the monopolist
becomes similar to that under the first-best, with a caveat: when congestion is very high, the
monopolist still provides the solo service, since it does not have to bear its full contribution to
congestion.

Interestingly, regardless of the value of time distribution, beyond a certain point, as the base
demand increases, the lesser the discrepancy between the first-best and the monopolist. This is
because, similar to the findings of Xu et al. (2017), the interests of the platform and the planner
become more aligned. As demand rises, both actors are looking to manage their fleet more
efficiently in order to serve the growing demand. Thus, both the fleet size and the utilization rates
increase (Figure 2.4). However, as congestion becomes more problematic, both under the first-best
and the monopoly, the number of vehicles and their utilization rate decrease (Figure 2.4). This is
the result of two forces. Firstly, falling pooling demand served increases detour times. Secondly,
the reduction in traffic speed increases pickup and detour times. Both forces thus contribute to
reducing the attractiveness of the e-hailing service while increasing the time drivers spend without
customers on board.
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Figure 2.4: Fleet size, utilization rate and traffic speed comparisons
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Figure 2.5: Profit comparisons
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Lastly, we consider the e-hailing company’s profits. As predicted in our analysis, under the
first-best, the e-hailing platform becomes sustainable in high congestion regimes (Figure 2.5).
Moreover, as variance in the value of time decreases, the range under which the service is
sustainable increases. Intuitively, when variance is high, welfare can be increased mainly through
expanding access, so that effects of scale dominate. In that context, average costs and fares
decrease with increasing demand, leading to a net loss for the platform. However, when variance
is low, demand increases play a lesser role, since if one customers uses the platform, most of them
likely also do. The main gains to be made are from efficiency in fleet and demand management,
which accrue to the platform under the form of fares.

These numerical examples have a few implications. First, intervention by the planner to reduce
congestion might not be necessary, since, as congestion increases, the platform acts similarly to
the planner. Second, significant welfare gains can only be made when heterogeneity in the market
served by the platform is high. Then, the main contribution from the planner is to increase demand
served by expanding access to lower value of time customers. In that context, there may be limited
gains to be made from focusing on e-hailing-induced congestion, as pointed out by Tarduno (2021).
Rather, applying commission caps with limited tolling should be the preferred regulatory strategy.

2.5.2 Effects of proposed policies

In order to evaluate whether our proposed policies can improve welfare relative to the monopolist
solution, we can only consider cases under which the ride-sourcing market is sustainable under the
first-best. Therefore, if the first-best is sustainable, it will be our regulatory target. Otherwise, we
settle for a second-best in which the monopolist makes some profit. From the previous numerical
examples, it is clear that when regulation is needed (i.e. in the high and medium variance cases),
one will often have to settle for the second-best. Most importantly, we must determine how the
choice of the caps ps and pp and of the toll τn is made. Our analysis in Section 2.4 assumed a
homogeneous value of time. When the population is heterogeneous in the value of time, selecting
the optimal caps and tolls can be modeled as a bilevel program in which the social planner is at the
upper-level and seeks to maximize welfare by choosing ps, pp and τn subject to a profit constraint.
We present the problem and our solution method in detail in Appendix A.2.

Upon implementation, our strategy is able to substantially improve welfare (Figure 2.6) and
results in an outcome close to the second-best. The results suggest that significant welfare gains
can be realized from our policy, especially when the welfare gap is significant.

Figure 2.7 shows our chosen caps (p̂s and p̂p) as well as the commissions implemented by the
platform (f̂ s− r̂ and f̂p− r̂) in response to the regulation. It is evident that, at most demand levels
considered, only one cap is required for the solo service. However, in the highly congested regimes,
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the regulation is not needed, since, as discussed in Section 2.5.1, the monopolist’s behavior aligns
with the regulator’s objective. It is interesting to note that, as base demand increases, the cap for
the solo service is reduced while that for the pooling service increases.
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Figure 2.7: Regulatory and realized commissions

Finally, Figure 2.8 shows the regulatory tolls. We note that the tolls first increase with
congestion but then decrease. This is in keeping with the fact that the monopolist’s objective
becomes closer to that of the regulator when congestion becomes very high.
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2.6 Summary

In this chapter, we present a model of the e-hailing market with the presence of congestion
externality, and the integration of the solo and pooling services. In order to derive analytical
insights, we then consider a simplified version of our model with a homogeneous value of travel
time. Analyzing the market equilibrium under both the first-best and the monopolist, we show that:

• under a socially optimal equilibrium and similar to the taxi market, the e-hailing market may
be sustainable when congestion is high;

• a monopoly platform internalizes part of the congestion externality its drivers impose but
still employs larger number of vehicles than is socially efficient;

• a regulation coupling a single commission cap and a congestion toll (however small) can
replicate any sustainable equilibrium when customers are homogeneous in their value of
time;

• in the case that the collection of a toll is impractical, we derive a set of congestion fees to be
collected directly from customers of each service. Interestingly, the ratio between the fee for
the solo service and the pooling service does not vary linearly with occupancy.

We also briefly apply New York’s congestion mitigation policies to our setting and show
that, compared to our proposed regulations, they are redundant. In some cases, this redundancy
could also potentially lead to inefficiencies. In order to understand how our policy performs in
the more realistic setting of heterogeneous value of time, we perform numerical experiments.
Our numerical results show that regulatory intervention is only warranted when the population
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is highly heterogeneous. In those circumstances, however, the main source of inefficiency may
not necessarily be congestion and there are limited welfare gains to be made by focusing on that
issue. Rather, maximizing demand served would be the best strategy for the regulator. We confirm
our intuition by solving a Stackelberg game to choose optimal regulatory caps and tolls. These
examples reveal that, when the welfare gap between the unregulated market and the first-best is
the highest, it is optimal not to impose a toll but, rather, to impose low commission caps–with
lowest caps on the solo service. Moreover, when tolls are applied, their value should decrease
with the level of congestion, since the monopolist naturally aligns with the regulator in these
cases. Thus, since imposing commission caps is more parsimonious and justifiable with regards
to addressing inefficiencies, we favor that approach to regulating the e-hailing market under a
monopoly. However, the regulator might still choose to impose a toll on traffic as a whole, rather
than singling out e-hailing vehicles.

While our assumption of a monopolistic market might make sense in certain contexts7, most
other markets feature two or more companies competing for customers and drivers. Thus, a few
questions may arise in that context. As shown in our analysis of the first-best, marginal cost
pricing is not sustainable, except in highly congested instances. Thus, for more than one firm to
subsist in a long-term equilibrium, competition must result in a non-efficient pricing pattern and/or
significant product differentiation. Whether welfare will be higher than in the monopolist setting
and closer to the first-best is, however, unclear. Zha et al. (2016) showed that, in a duopoly setting,
welfare might be lower than in the monopoly setting when matching frictions are high or if market
size is too small. The inclusion of congestion will likely increase matching frictions, though the
extent to which this will degrade profitability is unclear. Additionally, since congestion enhances
profitability, one might reasonably ask whether competition for drivers–driven by profit seeking–
might worsen traffic conditions at peak times in a manner that is welfare degrading. In-depth
analysis of these aspects is left to future work.

Customer characteristics indubitably vary across geographical locations. This leads to
more opportunities for product differentiation but also raises the question of the fairness of
regulations such as congestion pricing. Indeed, Uber has argued that e-hailing regulations in
NYC disproportionately hurt customers from low-income neighborhoods and from areas with
poor transit access who disproportionately use their pooling service (Dobbs, 2019). Thus, taking
into account these unintended effects might provide an opportunity for spatially differentiated
tolling/subsidy strategies that we will investigate. Moreover, such a setting provides an opportunity
to analyze the fleet management behavior of the platform as it must contend with the opportunity
cost of providing service in one neighborhood as opposed to another. Here again, supplementing
our work with an empirical basis might be appropriate and will be done in future work.

7Currently Didi Chuxing in some Chinese cities, for example.
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E-hailing companies have also been touting their potential to aid and complement public transit,
thus making it more accessible. In select cities, for example, users are able to see public transit
options alongside UberX and UberPool in the Uber app. Additionally, rides beginning or ending
near public transit stations in select cities are now subsidized in an effort to address the first- and
last-mile problem. This provides additional opportunities for congestion mitigation and increasing
the share of pooled rides on the platform, but also creates additional modeling challenges.

Lastly, we have also taken the background traffic demand to be fixed, thus obviating the
possibility that congestion management and social welfare might be better served by encouraging
the use and aiding the efficiency of the e-hailing service–rather than discouraging it. Our future
work will seek to integrate these substitution effects to provide a more complete picture of the
transportation conundrum faced by urban planners.
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CHAPTER 3

Competition in the Ride-hailing Market

3.1 Introduction

The previous chapter explored the question of regulating an e-hailing market with a single platform
in the presence of congestion externalities. While such discussion can be adequate for certain
markets (e.g.: the Chinese market), there exists two or more companies in most US markets.
Moreover, both the previous chapter and previous literature (Zha et al., 2016; Buchholz, 2019)
points to the fact that, in the presence of competition, welfare may decrease even though the total
number of vehicles in the market might increase. Thus, an in-depth exploration of competition
in the e-hailing market as well as its effect of congestion and welfare is warranted. Moreover,
as mentioned in Chapter 1, competition between and regulation of e-hailing and street-hailing
services ought to be considered. In this chapter, we will focus on this latter aspect, since it seems
to bear more urgently on policy matters.

3.2 Literature Review

Historically, ride-hailing regulations have been catered to street-hailing services and have spanned
three areas: price regulation, entry regulation and quality requirements. Naturally, these
regulations have generated a lot of academic and political discussions which are worth exploring
when considering how they should evolve with the rise of e-hailing.

Proponents of regulation argue that, in the absence of fare regulations, an equilibrium to the
street-hailing market may not exist or may be undesirable due to imperfect information for both
customers and drivers (Shreiber, 1975, 1981; Coffman and Shreiber, 1977; Gallick and Sisk, 1987;
Cairns and Liston-Heyes, 1996). Indeed, given the spatial nature of the market, the inability of
customers to easily collect pricing information and the inability of drivers to easily signal their
lower price compared to other drivers, absent regulations, fares might be unnecessarily high or
might never stabilize. Evidence also suggests that, at taxi stands with first-in-first-out rules for
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customers and drivers, bargaining is next to impossible, which results in even higher fares than
in the cruising market (Frankena, 1984). Additionally, some advocate that entry restrictions are
needed to allow positive profits for the industry and address congestion and pollution externalities
(Shreiber, 1975; Arnott, 1996). Absent regulations, the industry’s low entry cost would lead to
an oversupply of cabs which, absent coordination among drivers, would reduce utilization rates
and make taxi operation unsustainable. This oversupply of cabs would also adversely affect traffic
and generate more pollution, without either customers or drivers bearing the cost they impose on
others. Lastly, there is also an argument that quality requirements in the form of knowledge test,
background checks, insurance and vehicle condition and size are needed. Indeed, because of the
temporary nature of their interactions with drivers, customers are unable to properly assess the
safety and risks associated with their ride before experiencing it.

In general, opponents to regulations argue that price and supply limits lead to higher waiting
times and fares than are efficient (Frankena, 1984; Beesley, 1973; Barrett, 2003). This arises
in part because these restrictions are set for industry benefits rather than for customers’ welfare.
These restrictions–coupled with other restrictions such as the inability to provide shared rides–also
inhibit the ability of drivers and fleet operators to differentiate their service and thus serve a larger
market (Beesley, 1979). Moreover, these price and entry restrictions fail to account for the spatial
and temporal nature of the market (Fréchette et al., 2019; Buchholz, 2019). Thus, fares might not
reflect the fact that the opportunity cost of a ride depends on its destination, and supply restriction
might lead to demand/supply imbalances at different times of day in different geographic locations.
Moreover, to address the high prices that arise at taxi stands or in isolated locations where finding
a taxi is difficult, the matching process could be tweaked and price caps could be set at these
locations instead of widespread industry restrictions (Frankena, 1984). Lastly, externalities could
be addressed through tolls and taxes, thus making taxis, their customers and other vehicle users
bear the full social cost of their activities.

Evidence from the US and other places are available for either side of the debate, and careful
analysis seems to suggest that some regulation might be needed to ensure competitiveness and
limit entries in already saturated corners of the industry (Teal and Berglund, 1987; Gaunt, 1995;
Dempsey, 1996; Schaller, 2007). With the introduction of e-hailing services, new evidence seems
to validate some of the claims for either side. On the one hand, waiting times on the e-hailing
services tend to be lower than for street-hailing services. There has also been an increase in
the number of rides with e-hailing compared to street-hailing services in some cities, and new
services such as pooled rides have been made available. However, there is evidence that both
e-hailing (Erhardt et al., 2019; Tarduno, 2021) and street-hailing (Mangrum and Molnar, 2020)
contribute to increased congestion levels in cities like NYC and San Francisco. Moreover, the
dynamic pricing mechanism used by the platforms to deal with unforeseen surges in demand has
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occasionally resulted in very high prices, to the dismay of customers.
A number of studies have also investigated the issue of competition in markets with search

friction, especially ride-hailing (Zha et al., 2016; Nikzad, 2017; Fréchette et al., 2019; Benjaafar
et al., 2020; Zhang and Nie, 2021b). A consensus seems to emerge that extreme competition
between these two ride-hailing firms might not necessarily be socially efficient because it may
reduce market thickness for each service, thus leading to lower service quality and higher fares
than with a single service. More recently, a number of papers have focused on the specific issue
of competition between e-hailing and street-hailing (Yu et al., 2019; Daniels and Turcic, 2021;
Noh et al., 2021). Yu et al. (2019) considers the effect of regulatory intervention in a market in
which e-hailing and street-hailing compete. While their findings seems to validate our premise–
better regulations can improve street-hailing’s competitiveness against e-hailing–their model does
not incorporate one of the crucial differences between the two services: their matching technology
and the resulting waiting times. On the other hand, Noh et al. (2021) focuses on the impact of each
service’s managerial structure (i.e. street-hailing exercises more control on its supply compared to
e-hailing) on service quality, prices and welfare. Similarly to Yu et al. (2019), their model does
not incorporate the effect of matching technology on the outcome of competition in the industry.
Additionally, in the long run, e-hailing drivers’ greater flexibility compared to street-hailing drivers
should be a minor factor in determining the outcome of competition 1. Daniels and Turcic (2021)
investigates the role of matching technology in determining the outcome of competition between e-
hailing and street-hailing. By modeling the matching process, they are able to derive waiting time
functions for each service as a function of demand and supply levels. Then, they proceed to show
that restricting the service area–as opposed to adopting e-hailing style centralized dispatch–would
be a better option for street-hailing to compete against e-hailing.

My work is closest in spirit to that of Daniels and Turcic (2021). I incorporate the differences
in matching technology between e-hailing and street-hailing and use the resulting model to derive
insights as to the operational settings that favor one service over the other. While Daniels and
Turcic (2021) focuses on waiting times, my analyses account for both waiting times and pricing
behavior. Additionally, going further than Daniels and Turcic (2021), we evaluate potential
regulatory strategies for the ride-hailing industry as a whole and their implications for welfare
and congestion.

The rest of this chapter paper is organized as follows. Section 3.3 presents my main
assumptions and our model. Then, in Section 3.4 I analyze the first-best while in Section 3.5 I
analyze the Nash equilibrium and an integrated monopoly. In Section 3.6, I propose and determine
sufficient conditions for the market to be regulated parsimoniously. Additionally, in Section 3.7, I

1Since, in the long run, drivers can decide on which of these two platforms to provide services and, from a
managerial perspective, compensation costs can be adjusted accordingly.
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extend my model to consider the policy implications of accounting for the effect of ride-hailing on
congestion. I conclude in Section 3.8.

3.3 Model

We consider a market with a street-hailing and an e-hailing service. It is assumed that customers
have access to the prices and waiting times on both services and can choose which one to use by
comparing features across both platforms. Drivers also have access to earning information on both
services and can choose whether and for which company to provide service. However, no multi-
homing is considered in this setting. The e-hailing platform decides the fares and driver earning
per ride and earns the difference, i.e., a per-trip commission. The street-hailing company decides
its fleet size as well as the leasing fee for its vehicles.

Additionally, we consider the following:

1. The e-hailing platform implements instantaneous matching upon a customer’s request with
an infinite matching radius. Thus, e-hailing customers experience no (online) matching time
(Castillo, 2018; Xu et al., 2019). This tends to be a common practice among e-hailing
companies in the US market. Alternatively, some companies (e.g.: DiDi Chuxing in China)
implement batch matching that would yield online matching time for customers in addition
to the pickup time. We do not consider such a strategy here.

2. Street-hailing customers experience no pickup time. Rather, (physical) matching between
customers and drivers occurs as described in Arnott (1996); Chen et al. (2019); Zhang et al.
(2019).

3. Each firm only provides a solo service: no pooling is considered.

A description of the main variables used in our model is given in Table B.1 and a description
of relevant parameters is given in Table B.1.

3.3.1 Matching, pickup, and delivery

Let wmi denote the expected waiting time experienced by customers using service i ∈ {e, s}2.
If service i is an e-hailing company, then wmi corresponds to the pickup time experienced by
the requesting customer. If, instead, i is a street-hailing company, then wmi corresponds to the
”matching” time (search frictions) experienced by the requesting customer. Then, we have:

wmi =
dmi
v

2e stands for e-hailing
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where dmi represents the average distance between a customer and her closest available driver on
service i; dr represents the average trip length, which is given and independent of the service used;
and v represents the traffic speed. The average distance dmi is a decreasing function of the number
of idle drivers nIi and is such that:

dmi = Dm
i (nIi ) (3.1)

where Dm
i (·) is a decreasing and convex function that reflects the matching technology for service

i. Then, if we let dr be the average trip distance, the trip time wr experienced by customers of
either service once they are picked up is given by:

wr =
dr

v

3.3.2 Demand

We assume that customers are homogeneous in their value of time β but differ in other aspects
that influence choice (e.g., preference for a particular service, inertia and diligence in comparing
features across services). Given the distribution of these customer specific attributes, the demand
rate λi for each service i is given by:

λi = Λi(µi, µ−i)

where Λi,1 < 0 and Λi,2 > 0; and µi is the average cost of using service i and is such that:

µi = fi + β · (wmi + wr)

where fi is the fare on service i.

3.3.3 Supply

When multi-homing is not permitted, drivers must decide which platform to join before beginning
service. As such, given the distribution of drivers’ reservation costs and their idiosyncratic
preferences, the supply of drivers is given by:

ni = Si(ωi, ω−i)

where Si,1 > 0 and Si,2 < 0; and ωi is the expected hourly earning on service i.
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3.3.4 Equilibrium

At equilibrium, we consider a steady state in the system where the following conservation equation
holds as per Little’s law:

ni = nIi + λi · (wdi + wr)

where wd represents the pickup time experienced by drivers. For e-hailing drivers, wdi = wmi and,
for street-hailing drivers, wdi = 0.

We then obtain the system of Equations 3.2a to 3.2g:

λi = Λi(µi, µ−i) ∀i ∈ {s, e} (3.2a)

µi = fi + β · (wmi + wr) ∀i ∈ {s, e} (3.2b)

wmi =
dmi
v
∀i ∈ {s, e} (3.2c)

wr =
dr

v
∀i ∈ {s, e} (3.2d)

dmi = Dm
i (nIi ) ∀i ∈ {s, e} (3.2e)

ni = Si(ωi, ω−i) ∀i ∈ {s, e} (3.2f)

ni = nIi + λi · (wdi + wr) ∀i ∈ {s, e} (3.2g)

The above system of equations contains 14 equations and 18 unknowns. By specifying a set of
4 exogenous variables and 14 endogenous variables, we can assume that this system defines a
continuously differentiable function G : X→ E where X ⊆ R4

+ is a set of exogenous variables and
E ⊆ R14

+ is a set of endogenous variables.

3.4 First-best analysis

In this section, we analyze the first-best to understand when and how regulatory actions can be
taken in the ride-hailing market.

3.4.1 Problem equivalence

Before proceeding to analyze the first-best, a simple analysis of firms’ independent decisions can
help us further simplify the problem by treating e-hailing and street-hailing in a similar fashion.
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An e-hailing company maximizes its profits as follows, taking its competitors’ decisions as given:

πe = max
fe≥0,
ne≥0,
re≥0

(fe − re) · λe

s.t. (ωe + ce) · ne = re · λe

(3.3)

where ce is the (given) per unit time operation cost for drivers who decide to serve on platform e;
and re is the compensation per ride that drivers earn. The constraint in the above problem indicates
that, under free-entry condition and sufficient supply, drivers enter the market until economic
profits reach zero. The problem can be rewritten as:

πe = max
fe≥0,
ne≥0

fe · λe − (ωe + ce) · ne (3.4)

Meanwhile, a street-hailing company solves the following problem:

πs = max
fs≥0,
ns≥0,
ls≥0

(ls − ccs) · ns

s.t. (ωs + cds + ls) · ns = fs · λs

(3.5)

where ccs is the (given) per unit time cost of vehicle ownership for the company; cds is the (given)
cost of operation incurred by drivers; and ls is the leasing fee that the company charges drivers. By
posing cs = ccs + cds , it is now possible to rewrite the problem for the street-hailing company as:

πs = max
fs≥0,
ns≥0

fs · λs − (ωs + cs) · ns (3.6)

Thus, provided that cs and ce are properly specified, both street-hailing and e-hailing companies
solve mathematically equivalent problems. This greatly simplify the rest of our work.

In our following analyses, both in this and subsequent sections, we assume that the exogenous
variables for this system will be the fares fi and the number of drivers ni for each company.

3.4.2 Comparison between e-hailing and street-hailing

Using empirical data and a model of the matching technology for both e-hailing and street-hailing,
Zhang et al. (2019) show that, in high density settings, waiting times for street-hailing could be
lower than those for e-hailing. This is largely attributed to stronger returns to scale for street-
hailing. These stronger returns to scale stem from the fact that, by expanding customers’ hailing
radius, e-hailing also increases inter-customer competition for drivers. Thus, while the radius
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expansion can lead to lower waiting times for customers in low density areas, it can result in
longer waiting times in denser settings. This waiting time advantage of street-hailing in denser
settings is corroborated by other researchers, both analytically and empirically (Nie, 2017; Daniels
and Turcic, 2021).

In this section, we are interested in examining whether, when considering the generalized cost
of service, street-hailing could still possess an advantage over e-hailing. Indeed, lower waiting
times could be associated with higher fares and, subsequently, make a service less desirable.
Naturally, to capture these trade-offs between higher fares and lower waiting times, we must be able
to capture the impact of waiting times on fares. A potential approach to establish that connection
would be to consider fares under marginal cost pricing. Indeed, under marginal cost pricing,
the fares would capture the waiting time externality that a given customer imposes on others.
Moreover, an appropriate comparison between the two services would compare their generalized
costs when they operate at their most efficient level. These considerations motivate studying the
optimality condition of the first-best problem:

W = max
fi≥0,
ni≥0

CS(µs, µe) +
∑
i

fi · λi − (ci + ωi) · ni +DS(ω1, ω2) (FB)

where CS(·, ·) represents the consumer surplus with CSi = −λi; and DS(·, ·) represents driver
surplus with DSi = ni. We note that, at the first-best, the planner maximizes the joint profit of
both companies, not favoring one over the other beyond what efficiency would require. Then, the
fare per unit assigned time is given by:

fi = mci = mci · (wdi + wr) (3.7a)

mci = ci + ωi (3.7b)

with:

mcs = −β · λs · wm
′

s (3.8a)

mce = −β · λe · wm
′

e ·
1

1 + λe · wm′e
(3.8b)

wm
′

i =
Dm′
i (nIi )

v
(3.8c)

In the above, mci represents the marginal service cost for service i i.e. the cost that serving the
marginal customer imposes on other users of the service; and mci represents the marginal service
cost per unit time for service i. Now, let us compare the relative socially optimal costs of using
e-hailing and street-hailing. To do this, let us consider a widely adopted form in the literature for
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the pickup distance (Arnott, 1996; Zhang et al., 2019):

Dm
i (nIi ) =

1

ai
· (nIi )αi

where ai is a parameter that captures the efficiency of the meeting process; and αi is the elasticity
parameter with αs = −1 and αe = −0.5.

Thus, using Equations 3.2b and 3.8b, the socially efficient cost of serving a trip can be written
as:

µs = β · wms ·

[
λs ·

(
nIs

)−1

· wr + 1

]

µe = β · wme ·

[
1

2
· λe ·

(
nIe

)−1

·

(
wme + wr

1− 1
ae·2·v · λe ·

(
nIe

)−1.5

)
+ 1

]

Then, we obtain Proposition 3.1:

Proposition 3.1. Given ai, dr and v, and assuming identical labor costs for both services, there

exists supply and demand levels such that street-hailing is more efficient than e-hailing.

Proof. Street-hailing is more efficient than e-hailing when µe
µs
≤ 1, assuming identical levels of

demand served and identical number of vehicles (i.e λe = λs = λ and ns = ne = n). However,
it is sufficient to show that µs

µe
≤ 1 holds when considering identical levels of demand served and

identical number of idle drivers (nIs = nIe = nI). Indeed, when λi = λ and nIi = nI ∀i, it follows
that ns < ne. If µs

µe
≤ 1, it implies that it is possible to serve λ with a lower driver cost using

street-hailing. Reducing n2 to n1 would not alter that result but would increase the customer cost
by increasing waiting time for e-hailing customers.

Then, considering λi = λ and nIi = nI ∀i, it is a matter of algebraic transformations to rewrite
µs
µe
≤ 1 as:

− 1

2 · as · v
·(nI)−1·wr ·φ2−

[
1

2 · as · v
·(nI)−1+wr ·

(1

2
−ae
as
·(nI)−0.5

)]
·φ+

(ae
as
·(nI)−0.5−1

)
≤ 0

(3.9)
where φ = λ

nI
. Now, we have:

• if nI ≥ a2e
a2s

, then regardless of the value of φ (which is uniquely determined by the level of
demand once nI is set), the above condition is met.

• if nI < a2e
a2s

, the left hand-side of Equation 3.9 is a concave parabola whose value at φ = 0

is positive and whose smallest root is negative. Thus, if φ is greater than the positive root of
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Equation 3.9, the condition is met.

Proposition 3.1 indicates that if there is a large supply of drivers, or if demand is sufficiently
large, then street-hailing will tend to be preferable to e-hailing. This could potentially be explained
by stronger increasing returns to scale for street-hailing. A closer examination reveals the
underlying mechanism that gives rise to those increasing returns to scale. First, note that even
if both services had the same waiting time functions (αs = αe and as = ae), street-hailing would
still be more efficient under certain conditions. This is simply due to the nature of the marginal
cost of both services. While the marginal cost of street-hailing is only a function of delivery time,
that of e-hailing is a function of both delivery time and pickup time. Indeed, a marginal street-
hailing user only monopolizes driving resources for the duration of her trip. In e-hailing, unless
reassignments are made, a marginal user also monopolizes a driver for the duration of her pickup
time. High density of drivers and customers then has two effects on e-hailing. First, a marginal
e-hailing user imposes a pickup time cost on a larger number of users. Second, relative to street-
hailing, an increase in both e-hailing supply and demand does not fully translate into an increase
in available drivers, since the time dedicated to pickup by the fleet also increases (due to the larger
number of people to pickup). Thus, when supply and/or demand are high, street-hailing will have
higher market shares than e-hailing if demand is served optimally. It is possible to gain further
insights into the relative performance of both services by considering the following:

Corollary 3.1.1. Given a demand level λ and supply n, there exists (as, ae, d
r, v) ∈ R4

+ such that

street-hailing is more efficient than e-hailing. In particular:

• If ae ≤
√
nI

2
· as, then street-hailing is more efficient regardless of demand level.

• If
√
nI

2
· as < ae and v ≤ ṽ, then street-hailing is more efficient.

• If
√
nI

2
· as < ae <

√
nI · as, v > ṽ and dr ≤ d̃r, then street-hailing is more efficient.

• If ae >
√
nI · as, ṽ < v < ˜̃v, and dr ≤ d̃r, then street-hailing is more efficient.

In the above:

ṽ = λ · (nI)−
3
2 · 1

2 · ae − as ·
√
nI

˜̃v =
1

2
· λ · (nI)−

3
2 · 1

ae − as ·
√
nI

d̃r = v · n
I

λ
·

1− v
˜̃v

v
ṽ
− 1
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Proof. Applying the same principles as in Proposition 3.1 and rewriting Equation 3.9 as a
quadratic in v, we obtain the following condition for street-hailing dominance:

(ae
as
·(nI)−0.5−1

)
·v2−

[
1

2 · as
·(nI)−1 +dr ·

(1

2
− ae
as
·(nI)−0.5

)]
·φ ·v− 1

2 · as
·(nI)−1 ·dr ·φ2 ≤ 0

(3.10)
In other words, Equation 3.10 describes a parabola whose concavity is governed by the relative

efficiency ae
as

and for which the negative region is determined by the relative efficiency as well as
the travel distance dr. It is then easy to verify that the statements in Corollary 3.1.1 hold.

Corollary 3.1.1 indicates that, when traffic speed is low, street-hailing is more efficient. Indeed,
low traffic speed implies that e-hailing drivers spend a larger fraction of their time in pickup mode,
thus serving less rides 3. Additionally, settings with low travel distances will also favor street-
hailing. Indeed, as trip distance increases, the reduction in available supply depresses the quality
of service of street-hailing to a stronger extent than that of e-hailing. For the latter, an increase
in travel distance actually reduces the fraction of time drivers spend on pickup, thus reducing the
pickup inefficiency. This latter result is consistent with findings from Daniels and Turcic (2021)
whose counterfactual show that limiting the service area of street-hailing could help them better
compete against e-hailing.

The insights from Proposition 3.1 and Corollary 3.1.1 are illustrated in Figure 3.1 which
presents the cost ratio between e-hailing and street-hailing, µs

µe
as a function of demand density.

These results illustrate that, depending on market characteristics, one alternative may be
preferable to the other. We might wonder under which circumstances it will be optimal to use both
services. Indeed, following the literature on ride-hailing, when two companies operate, increased
market frictions due to demand/supply splitting could actually reduce welfare (Zha et al., 2016;
Zhang and Nie, 2021b). Thus, it would seem that in dense urban settings with large available
supply, two services could be supported. In settings with low driver supply or low demand,
operating an e-hailing service might be preferable to operating both. When both services operate,
Proposition 3.1 and Corollary 3.1.1 simply indicate the circumstances under which street-hailing
would dominate the market.

Additionally, as noted by Arnott (1996); Yang et al. (2014b); Zha et al. (2016), at the first-best
in a single firm environment, ride-hailing services must be subsidized. When two firms operate,
the same finding holds. Indeed, using Equations 3.2g and 5.4, it is possible to show that first-best
profits are as follows:

πi = −(ci + ωi) · nIi < 0 (3.11)

3Note that this result has nothing to do with different congestion externality from both services, since we have not
yet included the effect of vehicles on congestion
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Figure 3.1: Equilibrium variables under the first-best and the Nash equilibrium. In (3.1a), we see that when supply increases, the cost of using
street-hailing significantly drops. Moreover, economies of scale are stronger for street-hailing, resulting in a better cost advantage for street-hailing
as demand and supply increase. However, when supply is constant, increased demand can eventually cause street-hailing to become more expensive
than e-hailing unless demand exceeds a certain threshold and traffic speed is low. Past that threshold, e-hailing drivers’ utilization becomes more
inefficient (3.1b). For all demand levels below that threshold, the cost curves in (3.1b) also capture the effect of increased travel distance dr (as
opposed to reduced travel speed) on the relative cost of each service. Due to effects of scale, longer trips have a stronger negative impact on the
quality of service of the street-hailing service.

In essence, the fare only covers the time a driver is assigned to serving a customer but not their
idle time, resulting in a loss for both ride-hailing companies. Thus, we now take a look at the
second-best.

3.4.3 Second-best

Here, the social planner maximizes welfare subject to profit constraints for both e-hailing and
street-hailing. The problem is as follows:

W = max
fi≥0,
ni≥0

CS(µs, µe) +
∑
i

fi · λi − (ci + ωi) · ni +DS(ωs, ωe)

s.t. πi ≥ p̄i · λi
(SB)

where p̄i is the reservation profit per ride served (or commission) for company i. The FONC for
this problem is given by:

fi = mci · (wdi + wr)− δi
1 + δi

· fi
εdmi

+
δ−i

1 + δi
· f−i
εdmi
· λ−i
λi
· ε−ii
ε−i−i

+ p̄i ·
δi

1 + δi
(3.12a)

ci + ωi = mci −
δi

1 + δi
· ωi
ηdmi

+
δ−i

1 + δi
· ω−i
ηdmi
· n−i
ni
· η−ii
η−i−i

(3.12b)
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where δi ≥ 0 is the Lagrangian multiplier associated with the profit constraint for firm i.
Essentially, the profit constraint introduces a wedge between the fare and the marginal cost of
service (on the customer side) and a wedge between drivers’ earnings and the marginal cost. In
essence, the second-best realizes a transfer from customers to companies and drivers. We also note
that additional earnings beyond marginal costs on service i are tied to the level of service on the
other platform. Thus, in essence, the consolidated firm4 endogenizes competitive externalities that
arise under the Nash game studied earlier.

It is also worth noting that Equation 3.12 defines, given the δi, a solution on the Pareto frontier
that joins the joint monopoly between e-hailing and street-hailing to the first-best.

Further, it is interesting to consider the case when δe = 0, i.e., the e-hailing industry is not
subject to a profit constraint but operates close to marginal cost. This scenario is somewhat close
to the current status quo in the industry. Indeed, because of the vast amount of their financial
resources, e-hailing companies have been operating at a loss, subsidizing customers while offering
multiple incentives to drivers. Thus, in reality, fares might be below marginal costs while driver
incentives bring their earning in line with their marginal benefit. In this context, it is easy to see that
street-hailing vehicles are at a natural disadvantage: at most levels of demand, the fare required to
use taxi services would be higher than marginal costs (to guarantee profitability of the industry).
Thus, the higher market shares for e-hailing that we observe might not necessarily be the result
of their efficiency, but rather the outcome of inefficient pricing at two levels: higher than efficient
prices for street-hailing and lower than efficient prices for e-hailing.

In light of the above, we might ask whether removing restrictions on street-hailing could
provide a better outcome for the street-hailing industry as well as the overall impacts of such a
move on welfare.

3.5 Unregulated market

In this section, we focus on an unregulated market featuring both street-hailing and e-hailing. On
the one hand, we consider the case when the two industries compete for customers and drivers and
try to understand the implications for the profitability of street-hailing. Then, we consider the case
of a more integrated operation between the two services and whether and when it is preferable to
competition.

4Recall that joint profits are maximized
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3.5.1 Nash equilibrium

We define the Nash equilibrium as a set of fares {f ∗s , f ∗e } and fleet sizes {n∗s, n∗e} such that, ∀i ∈
{s, e}:

(f ∗i , n
∗
i ) = arg max

fi≥0,
ni≥0

fi · λi(fi, f ∗−i, ni, n∗−i)− [ωi(fi, f
∗
−i, ni, n

∗
−i) + ci] · ni (NE)

The FONC resulting from equation NE is as follows:

fi = mci · (wdi + wr)− fi
εnei

(3.13a)

mci = ci + ωi ·

[
1 +

η−i−i
ηii · η−i−i − η−ii · ηi−i

]
(3.13b)

with:

εnes = εss −
λe
fe
· β · (wme + wr) · wm′e

1 + wm′e ·
[
1 + β · (wme + wr) · Λee

] · εse · εes < 0 (3.14a)

εnee = εee −
λs
fs
· β · wr · wm′s

1 + β · wm′s · wr · Λss

· εse · εes < 0 (3.14b)

In the above, εij represents the elasticity of demand on service i with respect to the cost of
service j; and ηij is the elasticity of supply on service i with respect to the hourly wage on
service j. Comparing Equations 3.13 and 5.4, it is expedient to note that the action of the planner
contributes to increasing both the demand and supply for each service compared to their levels in
the unregulated case.

By examining Equations 3.14a and 3.14b, we note that the markup on one service is a function
of friction imposed by a marginal customer on the other service: the higher the marginal friction
on the other service, the higher the markup charged by a given firm, 1

|εnei |
. In particular, because

of deadheading trips on the e-hailing platform, marginal frictions are higher for e-hailing when
demand is high: the street-hailing platform will be able to command higher prices relative to its
marginal cost than e-hailing (|εnes | < |εnee |). This insight could also be gotten at by considering
that, when demand is high, the marginal cost for e-hailing will be higher than that for street-hailing
(again, due to increased friction). Thus, the ability of e-hailing to raise fares above marginal cost is
lower compared to that of street-hailing. Thus, in the absence of supply and price constraints and in

high density areas, street-hailing stands to benefit more than e-hailing, from a pricing perspective.
It is also useful to compare the above results to those under a monopoly (which operates a

single e-hailing or street-hailing platform with the same market size), which we recall below from
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Zha et al. (2016):

f sm = mc · (wd + wr)− f sm

εsm
(3.15a)

mc = csm + ωsm ·

[
1 +

1

ηsm

]
(3.15b)

where the superscript sm indicates that the relevant functions and quantity are that faced by a
single service monopoly.

In principle, we expect |εii| ≥ |εsm| since, given other options, users become more sensitive
to price increases. However, as indicated earlier, the market power term, fi

εci
under the Nash

equilibrium also depends on friction on the competing platform: the larger the friction (low nI−i or
high wr), the lower, in absolute term, εci . If friction is sufficiently high, higher prices may result
under the NE compared to the single firm, single service case: |εci | ≤ |εsm|. This is consistent
with numerical experiments from Zha et al. (2016); Zhang and Nie (2021b) and we show in
Appendix B.2 that frictions are the main drivers of this phenomenon.

Comparing Equations 3.13b and 3.15b, we note that competition on the driver side can lead
to a substantial reduction of supply under the duopoly. Indeed, when the cross-elasticities of
substitution are high (high ηi−i and η−ii), unless demand served is high, the incentive for hiring
supply can decrease, leading to lower supply overall. This corroborates numerical examples from
Zhang and Nie (2021b) and indicates that, multi-homing on the driver side might actually result in
a lower driver pool and lower quality of service.

3.5.2 Integrated monopoly

In this section, we seek to provide insights into recent developments in cities like NYC where
Uber will begin listing street-hail drivers on its platform (Rana, 2022). In the context of this paper,
we will assume that a single firm is able to integrate and manage pricing and compensation for
both services at the same time. Importantly, we do not incorporate the fact that street-hailing
drivers could also be matched to e-hailing customers. Indeed, in our context, we are concerned
with efficiency gains/losses that might result from joint pricing and compensation. The case of
differentiated supply for e-hailing in the presence of street-hailing will be modeled and discussed
in a subsequent work. With this in mind, the profit maximization problem is given by:

πdm = max
fi≥0,
ni≥0

∑
i

fi · λi − (ωi + ci) · ni (DM)
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The FONC for equation DM yields:

fi = mci · (wdi + wr)− fi
εdmi

+
f−i
εdmi
· λ−i
λi
· ε−ii
ε−i−i

(3.16a)

ci + ωi = mci −
ωi
ηdmi

+
ω−i
ηdmi
· n−i
ni
· η−ii
η−i−i

(3.16b)

where

εdmi = εii −
ε−ii · εi−i
ε−i−i

(3.17a)

ηdmi = ηii −
η−ii · ηi−i
η−i−i

(3.17b)

and dm indicates that quantities correspond to those faced by a dual service monopoly. Comparing
Equations 3.13 and 3.16, we note that integrating the platforms in an unregulated market has
two effects. On the one hand, fares for both services increase in tandem since the absence
of competition increases the monopolist’s market power. On the other hand, the monopolist
internalizes the friction-related competitive externality that arises in the Nash equilibrium. For
given levels of supply and demands, the direct effect of this internalization can be to either increase
or decrease prices for a given service. Indeed, let us compare εnei and εdmi . We have:

εnes − εdms = −λe
fe
· εse · εes ·

[
β · (wme + wr) · wm′e

1 + wm′e ·
[
1 + β · (wme + wr) · Λee

] − 1

Λee

]
(3.18a)

εnee − εdme = −λs
fs
· εse · εes ·

[ β · wr · wm′s
1 + β · wm′s · wr · Λss

− 1

Λss

]
(3.18b)

When frictions are high (low nIi and high wr), the quantities in Equation 3.18 are positive: each
individual firm’s markup is higher than what it would be under the integrated monopoly. If friction
is sufficiently high, then, the price under the Nash equilibrium might even exceed that under the
integrated monopoly, and this despite the latter’s greater market power. Thus, it cannot be ruled out
that integration might actually reduce prices and be profitable for both customers and producers 5.

3.6 Policy analysis

Following our discussions in Sections 3.4 and 3.5 it is indubitable that the regulatory environment
must change. This can be done by regulating both fares and entry in both markets. However, such

5Again, we show in Appendix B.2 that such an issue does not arise in a friction-less environment.
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an approach would be rather heavy-handed and would remove an important feature of ride-hailing’s
performance: its flexibility. In the following section, we will investigate possible alternatives and
their outcomes.

3.6.1 Commission cap on e-hailing, regulation adjustment for street-hailing

Following Zha et al. (2016) and Vignon et al. (2021), it is known that a cap on the commission of an
e-hailing monopoly can replicate the second-best when supply is perfectly elastic. In the presence
of competition between e-hailing and street-hailing, would such a cap be effective, assuming fares
and supply regulations for street-hailing are properly adjusted? Under a commission cap, the
problem for the e-hailing platform becomes:

πe = max
fe≥0,
ne≥0,
re≥0

(fe − re) · λe

s.t. (ωe + ce) · ne = re · λe,

(fe − re) · λe ≤ p̄e · λe

where p̄e is the commission cap. The problem can be recast as:

π2 = max
fe≥0,
ne≥0

p̄e · λe

s.t. (ωe + ce) · ne ≥ (fe − p̄e) · λe
(EH-REG)

Thus, the e-hailing platform must maximize demand served on its platform. Can such as regulation
induce the platform to choose the socially optimal fe and ne? Suppose not. Clearly, the set of
decision variables that would be chosen by the platform must be such that λdme > λsbe . Such an
increase over the socially-optimal market share would have to come at the expense of either the
street-hailing service or the outside option. However, those customers switching from either of
these services would see their utility increase relative to the second-best6. Therefore we must ask
what happens to those customers who remain on the street-hailing service. Since both the fares
and the fleet size are set, it follows that they will experience lower waiting times. Thus, their utility
also increases. This implies that the second-best is actually not Pareto efficient, a contradiction.

Thus, the current regulation is optimal and provides a simple avenue for policymakers to make
the ride-hailing market more efficient. Are there other, potentially simpler regulations able to
achieve the same objective?

6This is why they switch.
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3.6.2 Consolidation and commission cap regulation

Since the social planner maximizes the joint producer profit, we might ask whether consolidating
the ride-hailing industry and then regulating the resulting monopoly might be a better approach.
This approach would lead to a major restructuring of the ride-hailing industry but would also
simplify the patchwork of regulation that governs the industry. It would also leave a number of
operational features such as pricing and wages into the hands of service operators which could
provide for better and more synergistic operation between the two services.

Thus, consider the following problem:

πM = max
fi≥0,
ni≥0,
ls,re≥0

(ls − ccs) · ns + (fe − re) · λe

s.t. (ωs + cds + ls) · ns = fs · λs,

(ωe + ce) · ne = re · λe,

(ls − ccs) · ns ≤ p̄s · λs,

(fe − re) · λe ≤ p̄e · λe

First, it is easy to note that, unless p̄s = p̄e = p̄, the regulation might lead to the highest
cap service being over-utilized following the monopolist’s bid to maximize profits. Thus, for this
regulation to be effective, both caps must be identical to ensure that the monopoly favors a service
over the other only on efficiency grounds. Then, we can rewrite the above as:

πM = max
fi≥0,
ni≥0

p̄ ·
∑
i

λi

s.t. (ωi + ci) · ni ≥ (fi − p̄) · λi
(MONO-REG)

Naturally, the monopolist will choose fi and ni such that λdms +λdme ≥ λsbs +λsbe . If λdms +λdme >

λsbs + λsbe , it could mean that the monopolist is charging lower than second-best prices. Since this
behavior must be profit maximizing, it follows that the reduction in fares is also accompanied by
a reduction in earnings for either one or both groups of drivers. Thus, essentially, the monopolist
would realize a surplus transfer from drivers to consumers in order to increase its profits. When
supply is perfectly elastic so that all drivers are identical and drivers have a reservation wage ω,
such a profitable move from the monopolist does not arise since driver surplus is null and any
reduction in that surplus would result in a loss of supply.

On the other hand, a profitable deviation of the monopoly might be to increase driver earnings
which would in turn reduce waiting times and result in higher fares for customers but, most
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importantly, increase the number of customers for the platform7. However, if such an approach
were preferable to the second-best, it would mean that every agent’ surplus increases, which
would contradict the Pareto optimality of the second-best. Thus, when supply is homogeneous,
consolidating the industry and imposing an identical commission cap is not only welfare improving
but can replicate the second-best. Following Uber’s move of opening its app to street-hail drivers,

regulating the industry might be simpler and more straightforward than in the case of outright

competition.

When supply is heterogeneous, the distortion created from the second-best may or may not be
significant: this becomes an empirical question.

3.6.3 Nash game with commission cap

Would it be possible to keep both industries separate while applying a commission cap? This
would avoid the regulatory headache that would arise from trying to determine how stakes in a
consolidated ride-hailing company would be allocated among current actors in the ride-hailing
industry. Moreover, the consolidated setting is somewhat restrictive since only identical caps can
be imposed. Under a commission cap regulation of two competing firms, we would have:

πi = max
fi≥0,
ni≥0

fi · λi − (ci + ωi) · ni

s.t. (ωi + ci) · ni ≥ (fi − p̄i) · λi
(NE-REG)

Here, it is not straightforward to demonstrate that neither company has an incentive to deviate
from the second-best. Indeed, either company could increase its wage rate and/or decrease its
prices to increase its market share at the expense of the other company. However, we are able to
show that, so long as the company is sustainable under the second-best, the regulation can achieve
the desired outcome. This can be shown in the manner of Vignon et al. (2021). Indeed, let θi be the
Lagrangian multiplier associated with the commission cap constraint in equation NE-REG. Then,
assuming the regulation replicates the second-best, we must have:

θi =
fnei − f sbi

fnei − (ci + ωi) · niλi
≥ 0 (3.19)

where fnei and f sbi are the fare formulae derived in Equations 3.7a and 3.13a evaluated at the
targeted second-best. Now, at the second-best, it must be that fnei ≥ f sbi . Otherwise, regulatory
intervention is not warranted since it increases prices while there are no externalities. If the second-
best is sustainable, then it must also be that f sbi ≥ (ci + ωi) · niλi . Thus, necessarily, θi ≥ 0. Thus,

7Otherwise, profits would not increase.
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provided both companies make positive profits at the second-best, the commission cap regulation
can regulate the duopoly ride-hailing market.

3.7 Congestion and competition

As mentioned in Section 3.2, the rise of e-hailing has been associated with an increase in
congestion in major urban centers. Thus, regulators have been looking into ways to address
the issue by imposing congestion fees, tolls and minimum fleet utilization rate requirements. As
pointed out in Vignon et al. (2021) and in Zhang and Nie (2021a), the latter set of regulations
are either redundant or detrimental to welfare. Rather, as shown by Zhang and Nie (2021a), the
imposition of tolls on either trips or e-hailing drivers present the best opportunity for regulators to
address the issue of congestion. Moreover, as pointed out by Vignon et al. (2021) and Xu et al.
(2017), in a monopoly setting, when congestion increases, the monopolist and the social planner
tend to behave similarly: they both look to mitigate the negative impact of congestion. Thus,
regulatory intervention in that context might not be needed. However, we might wonder whether
such a reasoning holds in the context of competition within the ride-hailing industry. Lastly, should
competition create significant congestion issues, we must determine whether and to which extent
tolls should be differentiated between e-hailing and street-hailing companies.

To answer these questions, we must first extend our model in Equation 3.2 to incorporate
background traffic and congestion.

Assuming that background traffic trips originate at a (given) rate λb with an average trip length
of drb, we have:

wrb =
drb

v
(3.20a)

nb = λb · wrb (3.20b)

where wrb represents the average travel time of background traffic; and βb is the (homogeneous)
value of time of background travellers. Then, following the network macroscopic fundamental
diagram approach (Geroliminis and Daganzo, 2008), it is possible to describe the average traffic
speed v using the accumulation of vehicles in the network, which is the sum of the number of
vehicles for each service ni and the number of background vehicles nb:

v = V (nb +
∑
i

ni) (3.21)

with V ′(·) < 0.
We show in Appendix B.3 that, under the Nash game, unlike the integrated monopolist
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which internalizes all but the congestion externality it imposes on background travellers, ride-
hailing companies competing against each other benefit from the fact that congestion hurts their
opponent (Appendix B.3.1). Thus, they do not fully internalize their congestion externality. This
leads to more drivers on the road than in the monopoly case and can have deleterious effects
on congestion. Under the first-best, because the planner regulates a consolidated ride-hailing
company, the ”competitive” externality is internalized (Appendix B.3.2). More interestingly, from
the point of view of the planner, all vehicles impose the same externality on traffic regardless of
their status–background vehicle, e-hailing vehicle or street-hailing vehicle. Thus, not only should
ride-hailing vehicles be tolled, but so should background traffic vehicles8.

When it comes to regulatory actions, imposing appropriate tolls and commission caps can
readily achieve the first-best (or the second-best). Indeed, when congestion is present, the social
planner essentially maximizes demand served after accounting for the higher (social) cost of
operating a vehicle. Thus, once an appropriate toll is set, it is straightforward to verify that, given
the commission cap, our insights from Section 3.6 carry over. Most importantly, however, despite
congestion, it is possible to regulate the market, regardless of its structure, using only commission
caps (Appendix B.3.3). If, however, regulatory authorities decide to impose a toll, e-hailing might
end up bearing a higher toll per unit time than street-hailing (τ̄e− τ̄s ≥ 0), as shown in Figure 3.2.
This strategy is consistent with, for example, NYC’s surcharge structure which charges e-hailing
trips $0.25 higher than street-hailing trips (TLC, 2022).
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Figure 3.2: Toll difference between street-hailing and e-hailing

We illustrate our findings in numerical examples whose results are shown in Figure 3.3. Details
on the numerical examples are given in Appendix B.4. As shown in Figures 3.3a and 3.3b, the
commission cap regulation can significantly improve welfare in both the monopoly and duopoly
cases. However, the manner in which the cap achieves that objective differs in both settings. In the

8This is shown by making background traffic elastic
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monopoly case, the effect of the cap is to increase demand in low density markets (Figure 3.3c).
Indeed, in these markets, the monopolist’s decisions tend to restrict demand with higher than
optimal prices. As density increases, the behavior of the monopolist starts to mirror that of the
planner, thus resulting in improved welfare (despite a mild increase in congestion relative to the
second-best). Under a duopoly, the same demand and traffic patterns compared to the monopoly
occur when density is low (Figures 3.3d and 3.3f). However, as density increases, competition
between the two services leads to a significant reduction in traffic speed. In that context, by forcing
each company to improve its efficiency, the commission cap also contributes to improving traffic
speed while increasing consumer welfare.

3.8 Conclusion

In this chapter, we have sought to inform the development of policies for the ride-hailing industry
in the age of uberization. To this effect, we presented a model of competition in the ride-hailing
industry and analyzed the impact of current and alternative policies to regulate that market. Some
of our key findings are as follows:

• we analytically show that, in denser settings, or when trip distances are low or traffic speed
is low, the socially-efficient cost of street-hailing will be lower than that of e-hailing. Thus,
in cities like NYC, there is room for a more expanded role of street-hailing in serving the
market;

• additionally, we show that in these settings and barring any supply or fare restrictions, the
street-hailing industry can have greater market power and thus, better fend for itself. Thus,
the industry should seek to relax their current supply restrictions as opposed to trying to
curtail e-hailing;

• we also show that, despite the potential benefits of relaxed regulation on street-hailing
for that industry, unchecked competition between e-hailing and street-hailing would still
result in higher prices and higher congestion than is socially efficient. This latter effect of
deregulation on congestion does not, however, arise when the pricing and compensation for
both platforms is managed by a single platform;

• lastly, we show that, by imposing a commission cap on either an integrated company or
the two competing services, both consumer welfare and congestion levels will improve.
Especially, under certain assumptions, such regulation can readily achieve the socially
optimal configuration. This demonstrates the effectiveness of commission cap regulation,
as it is effective even in congested and competitive settings.
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(a) Welfare under integrated monopoly
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(e) Traffic speed under integrated monopoly
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(f) Traffic speed under Nash equilibrium

Figure 3.3: Effect of commission cap regulation under both an integrated monopoly and a Nash game. The commission cap improves welfare
and contributes to reducing congestion in both settings. As demand increases and the system becomes more congested under the second-best, the
monopolist’s behavior leads to slightly more congestion than under the second-best. Thus, the commission cap regulation mostly serves to increase
consumer welfare (Figure 3.3c). However, in the Nash game, competition can have have dramatic effects on congestion. In that context, the
commission cap can reduce congestion (Figure 3.3f) while obtaining socially efficient levels of demand (Figure 3.3d).
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In our analysis, we have not considered spatially heterogeneous markets. Indeed, we have
shown that both services have different efficiency advantages depending on the characteristics
of demand (density and distance of trips requested) and of traffic. In a spatially heterogeneous
context, we might wonder whether an equilibrium in which the two services do not directly
compete with each other but operate in markets in which they have a competitive advantage is
socially efficient. We might also wonder whether a commission cap regulation could achieve
the socially efficient outcome in a setting of spatial competition. We also have not considered
the potential efficiency gains or losses that might come from allowing street-hailing drivers to
be matched to street-hailing customers. We will propose a model appropriate for exploring that
question. Lastly, our present work will be further enhanced by bringing data to our model to
better inform policymakers and help answer practical questions such as the value of an appropriate
commission cap in NYC or the distributional effects of such a policy.

57



Part II

Infrastructure in the Age of Automation
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CHAPTER 4

Introduction

4.1 Motivation

By analyzing the investment strategies of e-hailing firms, it becomes apparent that the current
state of the ride-hailing industry–in which drivers are major actors–is transitory. Indeed, Uber
and Lyft have heavily invested in developing autonomous vehicle technology. For example,
Uber’s initial public offering documents reveal that, from 2016 to 2018, the company spent close
to $29 millions per month on research and development for automated vehicles (Chai, 2019).
These investments point to a larger trend in the transportation sector toward automation. Indeed,
traditional automakers and other institutional investors have dedicated billions of dollars–$80

billions from 2014 to 2018–to the development of autonomous vehicles technology (Karsten,
2017; Efrati, Amir, 2020). More recently, Amazon acquired self-driving car company Zoox for
close to $1 billion (Weise and Griffith, 2020). These investment patterns underscore investors’
beliefs that, despite their negative impact on some industries, automated driving technology will
increase productivity and profitability by reducing the social and human cost of driving (Clements
and Kockelman, 2017).

However, to date, fully automated vehicle technology has failed to materialize (only Level
2 has been commercialized thus far by companies like Tesla and General Motors). Moreover,
the enormous amount spent on research and development suggests that significant technological
hurdles must be overcome before the automated age of transportation–thus discouraging investors
and companies alike (Efrati, Amir, 2020; Metz and Griffith, 2020). Indeed, loosely speaking,
drivers perform three tasks when driving: perception, planning and control. Across the industry
the effort has been centered on enhancing vehicles to perform all the above tasks, which has
been difficult: AVs’ perception abilities are still sensitive to weather and lighting conditions (Zhu
et al., 2017; Van Brummelen et al., 2018); a priori vehicle localization and mapping is not, as
of yet, robust to infrastructure changes and simultaneous localization and mapping is subject to
perception challenges (Van Brummelen et al., 2018); and algorithms for planning and decision
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making (e.g., for lane changing) are computationally burdensome for vehicles, thereby limiting
their applicability to real-time decision making (Katrakazas et al., 2015; González et al., 2016;
Dixit et al., 2018; Schwarting et al., 2018). Additionally, while AV adoption is low, AVs in traffic
mixed with conventional vehicles may compromise traffic stream stability and throughput (Seo and
Asakura, 2017; Luo et al., 2018). While these are not insurmountable challenges, public tolerance
for errors and mistakes may be thin, as demonstrated by the aftermath of recent deadly AV
crashes and the reported reservation of a non-negligible segment of the population towards driving
automation (Ge et al., 2017). Thus, some investors are starting to question their commitment to
AV technology since it is unclear when they will be able to recoup their investment or whether the
increased spending is worth the potential gains: there simply is no clear timeline for the deployment
and adoption of fully automated vehicles as companies seek to minimize safety risks (Metz and
Griffith, 2020).

In contrast to this vehicle-centric approach, researchers have realized that placing some sensors
and algorithms on the infrastructure may be a more effective way to enable automated driving.
Recent developments primarily focus on the design, modeling and assessment of sensor networks
to aid with vehicle perception (Rebsamen et al., 2012; Jun and Markel, 2017; Leone et al., 2017;
Bieshaar et al., 2017; Eilbrecht et al., 2017; Reitberger et al., 2018; Jayaweera et al., 2019;
Kong, 2020). Others have envisioned a more infrastructure-centric approach in which sensors
and algorithms are placed on the infrastructure to perform the tasks of perception and planning,
achieving cooperative perception and driving (Gopalswamy and Rathinam, 2018). Note that
infrastructure-enabled automation is not a new concept, as the Automated Highway Systems,
investigated and demonstrated in the 1990s (Tan et al., 1998; Godbole et al., 1996), can be
considered as an early attempt of such an infrastructure-driven approach for driving automation.

Many believe that neither the vehicle- nor the infrastructure-centric approach will prevail in
the future (Li et al., 2020). Rather, an infrastructure-vehicle cooperative approach for enabling
automated driving would emerge. In this approach, both the level of automation in the future fleet
and the level of digitalization in the future infrastructure will be heterogeneous. Similar to the
SAE classification on the AVs, Carreras et al. (2018) recently proposed a scheme to classify the
readiness of road infrastructure to support and guide AVs . In their classification, at Level A and
B the infrastructure will support cooperative driving and perception while at Level C all dynamic
and infrastructure information will be provided in digital form to AVs; conventional infrastructure
will be at Level D and E. With infrastructure-vehicle cooperation, a Level 3 AV may achieve
full automation on a Level A infrastructure. Moreover, the liability associated with automated
driving can be shared among OEMs, infrastructure providers, and/or a third-party player, which
may substantially accelerate the diffusion of the AV technology. Additionally, the digitalization of
infrastructure could provide revenue generating opportunities for road operators. Indeed, smart
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infrastructure will make the provision of digital services to users as well as the monetization
of traffic data easier. Worldwide, governments and supra-governmental agencies are seeing
the potential for connectivity and automation to revolutionize transportation systems, especially
infrastructure. In the US, the Federal Highway Administration (FHWA)’s CARMA program seeks
to encourage and accelerate the research and development of cooperative driving automation (?).
In Europe, the European Road Transport Advisory Council (ERTRAC), a structure that seeks to
encourage cooperation and investment in critical road transportation innovation, supports multiple
projects related to infrastructure connectivity and cooperative systems (ERTRAC, 2019). However,
despite recent investments in smart road technology in the US (Nordrum, 2018; Calvert, 2020),
smart infrastructure investment lags behind the investment in vehicle technology and very few
roads are equipped with the necessary digital technology for vehicle-infrastructure communication
and cooperation. This could be the consequence of the lack of regulatory coordination in the US–
with rules regarding automation and infrastructure development varying across states–and the lack
of coordination between automakers and road operators, which forces automakers to rely heavily
on automation technology (Ge et al., 2017). This could also be due to a lack of infrastructure
funding in the US. However, with the bipartisan push for infrastructure spending in recent years,
we might soon enough be faced with the issue of what to spend the money on rather than whether
to spend it. In contrast, in China, the question is to determine where to invest. Indeed, the market
for smart cities solutions, grown out of the central government’s decades long development plan,
is estimated at $1.1 trillions. This includes, among other things, investment in automated vehicles
and smart transportation infrastructure (Atha et al., 2020).

4.2 Contribution and Outline

The aim of the second part of this dissertation is to lay the groundwork for this vehicle-
infrastructure cooperative approach. In Chapter 5, to make a policy and economic case for this
vision, we build an analytical model that captures the interactions between different actors of the
transportation industry: automakers, road operators and customers. We model both automakers’
investment in the research and development of automation technology and road operators’
investment decisions in infrastructure sensors and algorithms. We also model customers’ choices
between different vehicle offerings and their travel patterns across the road network. This stylized
model allows us to glean two main insights. First, we show that, from a societal perspective, the
vehicle-cooperative approach is superior to the vehicle-centric approach. Second, we show that,
when left on their own, automakers and road operators make suboptimal investment decisions. On
the one hand, automakers might aim for higher than optimal automation levels because of their
inability to rely on infrastructure for assistance. On the other, road operators, unable to capture
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sufficient returns on their investment from customers, shy away from equipping their infrastructure.
Then, in Chapter 6, we turn to the issue of liability and safety and investigate how they are

affected in our proposed automated mobility market. Modeling liability as an insurance contract
between automakers and ISSPs, on one hand, and their customers, on the other, we investigate who
will bear the burden of AV-involved accidents, from a societal perspective. Then, we show that,
when accounting for safety, it is likely that only investment in infrastructure will reduce vehicle
ownership costs. We also extent our model to include speed selection and mixed traffic. This
extension forms the building blocks for future work on this topic.
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CHAPTER 5

Economic Analysis of a Vehicle-Infrastructure
Cooperative Approach

5.1 Introduction

The aim of the present chapter is twofold. First, we present a modeling framework to examine
whether this vehicle-infrastructure cooperative approach for enabling automated driving makes
economical sense. Specifically, we investigate, from a societal perspective, the optimal allocation
of investment between the on-board and infrastructure-based sensors. We show that, at the social
optimum, the heterogeneous provision of digitalization and automation naturally arises from the
heterogeneity in vehicle and road usage. Then, to understand why there is little digitalization
investment compared to automation investment, we analyze the outcome of strategic interactions
between OEMs and infrastructure operators/third-party providers. Our model especially highlights
the negative effects of a lack of coordination between auto manufacturers and road operators on
vehicle automation and infrastructure digitalization spending. To the best of our knowledge, this
study is the first economic study on the joint provision of vehicle and infrastructure technology
for enabling automated driving. Our results offer insights on infrastructure-assisted automated
driving and provide both the public and private sectors with additional avenues for cooperation
in developing and deploying smart infrastructure. The rest of the paper is organized as follows.
Section 5.2 presents our model setting. Then, in Section 5.3, both the social optimum and the
Nash equilibrium are derived and compared. We present in Section 5.4 a numerical example to
illustrate our analysis, and then conclude in Section 5.5.

5.2 Model

For the convenience of readers, frequently used notations are listed in Table 5.1.
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Notation Description
xi Vehicle automation level for users of type i
di Number of users of type i
Ui Utility of users of type i
p Price per unit of automation level
zk Digitalization level for road group k
Vk Traffic volume on road group k
lk Total road length for road group k
vik Vehicle miles travelled (VMT) per day by users of type i on road group k
τk fee per mile travelled on road k
πc Manufacturer profit
πr Service provider profit

(a) Frequently used variables

Notation Description
vi Daily VMT by users of type i
κc Amortization parameter for vehicle purchase
κr Amortization parameter for road investment

(b) Frequently used parameters

Table 5.1: Frequently used notations

We consider a setting with vehicle-infrastructure cooperative deployment of automated driving
where sensors, edge-computing devices and intelligence can either reside on the vehicle or
infrastructure side to perform various driving tasks. A car manufacturer produces vehicles of
various levels of automation and prices them differently. A private automation service provider or
ISSP like Cavnue equips roads, whose usage varies, with various types of sensors and devices to
assist vehicles in sensing, perception planning and maneuver. To finance the digitalization of these
roads, the ISSP will charge a service fee. Additionally, the ISSP will also benefit from the data
collected from users’ digital footprint on her roads. Such an infrastructure-vehicle cooperation
may yield significant benefits for users: reduction in driving opportunity cost, increased safety,
etc. The level of benefits will depend on the combination of the automation level of the vehicles
that the users are riding and the digitalization level of the roads their vehicle is on. Thus, users are
faced with two choices. On one hand, they must decide the automation level of the vehicle they
purchase based on the car manufacturer’s offerings. On the other hand, they must decide which
roads to use to complete their trips based on the digitalization choices of the ISSP.

In our model, users are divided into I user groups based on their vehicle-miles travelled (VMT).
While we could instead consider heterogeneity along other dimensions (such as willingness to
pay), considering VMT heterogeneity allows us to directly connect customers’ decisions regarding
automation to road usage since the latter is the main channel through which ISSPs earn a profit
from digitalization. Thus, within each group i, users are identical in all aspects, including in their
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VMT vi. However, users’ VMT differ across groups. The number of users in group i is di. In
making their vehicle purchase decisions, users essentially decide the automation level of their car
xi based on the price per unit of automation pi. Additionally, they take into account the allocation
of their VMT across K different groups of road infrastructure equipped with a digitalization level
zk and of a total road length lk. Using a given road k results in users paying a service fee τk per
mile. We treat xi and zk as continuous variables in [xmin, xmax] and [zmin, zmax] respectively.

Users’ travel benefit is captured by a function fk(xi, zk, Vk, vik) where vik denotes the amount
driven by a user of group i on road k,and Vk =

∑
i vik·di
lk

denotes the average traffic volume on road
k. Thus, a user from group i chooses her automation level xi and travel pattern vi = {vik}k to
maximize her utility Ui given by:

Ui =
∑
k

[fk(xi, zk, Vk, vik)− τk · vik]− κc · pi · xi (5.1)

where vik is daily VMT of user i on road group k; and κc is a term that amortizes vehicle purchase
cost to daily costs. Using fk,i to denote the derivative of fk with respect to its ith argument while
fk,ij denotes the cross partial derivative of fk with respect to its ith and jth arguments, we make
the following assumptions.

Assumption 5.1. Our assumptions on utility are as follows:

A1.1 Utility increases with automation and digitalization: fk,1, fk,2 > 0.

A1.2 Users’ utility increases with their amount of travel: fk,4 > 0.

A1.3 Congestion decreases a given user’s utility: fk,3 < 0.

A1.4 Utility is concave in automation, digitalization and individual miles travelled:

fk,11, fk,22, fk,44 < 0.

A1.5 Utility is concave in travel volume: fk,33 < 0.

Assumptions A1.1 and A1.3 are readily understood. Assumption A1.2 captures the fact that
users derive a positive benefit from travelling (be it for leisure, work, shopping etc). Note that
travel’s intrinsic purpose is to complete tasks that improve utility. Assumptions A1.4 and A1.5
ensure concavity of the user maximization problem and are intuitive when we consider decreasing
marginal utility of consumption.

Vehicles for different user groups are manufactured by a profit-maximizing firm that decides
the price per unit of automation pi for vehicles it produces. More importantly, the firm must decide
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how much to invest to expand its production capabilities to meet the demand for automation from
each user group. We specify the manufacturer’s profit function as follows:

πc =
∑
i

pi · xi · di − cc(xi, di) (5.2)

where cc(·, ·) is the automation-related manufacturing and R&D costs for a vehicle as a function
of its automation level and the number of units produced.

Assumption 5.2. Our assumptions on the manufacturer’s cost function are as follows:

A2.1 The cost function is increasing in automation levels and in the quantity of vehicles

manufactured: cc,1, cc,2 > 0.

A2.2 The cost function is convex in automation level: cc,11 > 0.

A2.3 The cost function is concave in the quantity of vehicles manufactured: cc,22 < 0.

A2.2 indicates that achieving higher levels of automation becomes increasingly costly for the
manufacturer. As detailed in Section 5.1, this forms one of the basis for our present inquiry. A2.3
indicates economies of scale in the manufacture of vehicles.

Lastly, we consider a profit-maximizing ISSP who is interested in digitizing roads to achieve
cooperative perception, planning and control of AVs. Note that this private ISSP does not
necessarily own these roads. Instead, it partners with the road owner, who is likely a public
agency, and is responsible for constructing and maintaining the digital infrastructure. This ISSP
thus decides how much to invest to equip each road group with digitalization level zk. Additionally,
she decides the service fee per mile τik on each of her roads for each user group. More importantly,
this digital infrastructure operator is able to harness some additional benefits for each mile driven
on its road via, e.g., the revenue from data monetization and advertising. This non-pricing benefit
per mile can be captured by a function br(xi, zk, Vk) and the profit function for the service provider
is given by:

πr =
∑
k

∑
i

di · [τik + br(xi, zk, Vk)] · vik − κr ·
∑
k

cr(zk, lk) (5.3)

where κr is a term that amortizes the investment cost to daily costs, and cr(·, ·) captures the
digitalization-related investment and maintenance costs per road mile as a function of digitalization
level. Our functional form assumptions are given below:

Assumption 5.3. Our assumptions on the ISSP’s cost and benefit functions are as follows:

A3.1 The non-pricing benefit function is increasing in automation and digitalization levels:

br,1, br,2 > 0.
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A3.2 The non-pricing benefit function is increasing in travel volume: br,3 > 0.

A3.3 The non-pricing benefit function is concave in automation and digitalization levels:

br,11, br,22 < 0.

A3.4 The cost function is increasing and convex in digitalization levels: cr,1, cr,11 < 0.

In essence, higher digitalization and automation allow the ISSP to collect and provide more
information to aid in maintenance, data monetization and other services (Assumption A3.1).
Moreover, the company benefits from higher usage on its roads since this leads to more data
collected for monetization purposes (Assumption A3.2). Buried in that latter assumption is also
that the contribution of road usage to maintenance cost is negligible or always lower than its
contribution to the non-pricing benefit. Thus, in essence, br(·, ·, ·) could be thought of as the
net pricing-benefit. Lastly, the higher the digitalization level, the higher the installation and
maintenance costs (Assumption A3.4). Indeed, sensors and digital infrastructure will require
constant monitoring to ensure their proper operation and reduce the risk of cyber-attacks and other
related issues.

5.3 Equilibrium analysis

5.3.1 Social optimum

In this section, we consider the case in which a social planner maximizes social surplus by choosing
automation and digitalization levels, in addition to users’ travel patterns. The social surplus
maximization problem is given by:

max
xi, zk, Vk, vik

∑
i

di ·
∑
k

[fk(xi, zk, Vk, vik) + br(xi, zk, Vk) · vik]− κc ·
∑
i

cc(xi, di)− κr ·
∑
k

cr(zk, lk)

s.t.
∑
k

vik = vi ∀i ∈ I (VMT constraint for users of group i),

Vk · lk =
∑
i

vik · di ∀k ∈ K (Flow conservation constraint onk),

vik ≥ 0 ∀k ∈ K, i ∈ I (Flow positivity constraint)
(W)

where the social surplus is the sum of consumers’ utilities, manufacturer’s profits and service
provider’s profits. At optimality, assuming that fk(·, ·, ·, ·) and br(·, ·, ·) are strictly concave so that
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the optimum is an interior point, we obtain:

∑
k

[
fk,1(xi, zk, Vk, vik) + br,1(xi, zk, Vk) · vik

]
· di = κc · cc,1(xi, di) ∀i ∈ I (5.4a)

∑
i

[
fk,2(xi, zk, Vk, vik) + br,2(xi, zk, Vk) · vik

]
· di = κr · cr,1(zk, lk) ∀k ∈ K (5.4b)

αk + br(xi, zk, Vk) + fk,4(xi, zk, Vk, vik)−
γi
di
≤ 0 ∀k ∈ K, ∀i ∈ I (5.4c)

vik ·
[
αk + br(xi, zk, Vk) + fk,4(xi, zk, Vk, vik)−

γi
di

]
= 0 ∀k ∈ K, ∀i ∈ I (5.4d)

∑
i

[
fk,3(xi, zk, Vk, vik) + br,3(xi, zk, Vk) · vik

]
· di = αk · lk ∀k ∈ K (5.4e)

vik ≥ 0 ∀k ∈ K, ∀i ∈ I (5.4f)

where γi is the Lagrangian multiplier associated with the ith VMT constraint; αk is the Lagrangian
multiplier associated with the kth flow conservation constraint. Equations 5.4c to 5.4e indicate
that, for each user group, the marginal benefit per mile of each used road group is equal, and is
more than or equal to the marginal benefit per mile of non-used road groups. From Equation 5.4a,
the marginal social benefit of automation for users of type i must equal the social marginal cost
of providing these users with automation xi. From Equation 5.4b, the marginal social benefit of
digitalization for roads of type k must equal the social marginal cost of equipping these roads with
digitalization zk. In other words, allocating some resources to the infrastructure is socially optimal
under the assumption of strict concavity of the benefit functions and strict convexity of the cost
functions.

This suggests that an infrastructure-vehicle cooperative approach to automated driving deserves
more attention. As expected, the levels of automation and digitalization for user and road groups
will be determined by equalizing their social marginal cost to their social marginal benefit. Thus,
under a set of constraints (budgetary and political etc.), automation and digitalization technologies
with a higher marginal return should be given priority. Moreover, because of different VMT and
volume distributions and cost functions, the equilibrium will result in a heterogeneous provision
of both automation and digitalization. As pointed out by previous research, those with higher
VMT will likely benefit from and desire higher levels of automation (Hardman et al., 2019;
Hardman, 2021). We now proceed to investigate strategic interactions between automakers and
service providers and how such strategic interactions affect the allocation of resources.
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5.3.2 Generalized Nash equilibrium

We now explore a case in which the car manufacturer and the service provider act independently
from each other, and model it as a noncooperative simultaneous game. We choose to model these
interactions as a Generalized Nash Equilibrium problem (GNEP)1. An alternative could be to
consider a leader-follower game in which the automaker is the leader and the ISSP is the follower.
The rationale for this alternative would be that, while vehicles can operate without digitalized
infrastructure, the reverse is not true. However, because of the premise of our work–namely,
that reaching full vehicle-automation might be infeasible or too costly to society–vehicles are
dependent on infrastructure digitalization in our setting, leading to a chicken-and-egg problem.
Therefore, imposing the precedence structure inherent in a leader-follower game might not be
appropriate. Let vi = {vik}. {p∗,x∗, z∗, τ ∗} constitutes a Generalized Nash Equilibrium (GNE)
if there exists {v∗i } such that:

{x∗,p∗, {v∗i }} = arg max
xi, pi, Vk, vik ≥ 0

∑
i

pi · xi · di − cc(xi, di)

s.t. {p,x, z∗, τ ∗, {vi}} ∈ X(v)

(5.5)

and

{z∗, τ ∗, {v∗i }} = arg max
zk, τk, Vk, vik ≥ 0

∑
k

[τk · Vk · lk +
∑
i

br(xi, zk, Vk) · vik · di]− κr · cr(zk, lk)

s.t. {p∗,x∗, z, τ , {vi}} ∈ X(v)
(5.6)

where v = {vi}; and X(v) characterizes the set of all {p,x, z, τ , {vi}} for which {x, {vi}} is
users’ response to {p, z, τ} due to utility maximization. The utility maximization problem for a
user of type i is given by:

max
xi, vik

Ui =
∑
k

[fk(xi, zk, Vk, vik)− τk · vik]− κc · pi · xi

s.t.
∑
k

vik = vi,

vik ≥ 0 ∀k ∈ K

(UM)

UM assumes that when a user i routes themselves selfishly in the network, they take the traffic
volume Vk as given. This assumption is implicitly made in the literature of traffic network
equilibrium analysis (e.g., Sheffi, 1984) and is particularly valid when the number of users is

1For distinction between Nash Equilibrium and Generalized Nash Equilibrium problems, please see Facchinei and
Kanzow (2010). The basic distinction is that the feasibility set of a given player is affected by the strategies of other
players in a Generalized Nash Equilibrium problem but not in a Nash Equilibrium problem.
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sufficiently large. The first-order necessary conditions (FONC) of UM yield:

∑
k

fk,1(xi, zk, Vk, vik) · vik = κc · pi ∀i ∈ I (Pricing constraint) (5.7a)

vik · [fk,4(xi, zk, Vk, vik)− τk − µi] = 0 ∀k ∈ K, ∀i ∈ I (Complementarity) (5.7b)

fk,4(xi, zk, Vk, vik)− τk − µi ≤ 0 ∀k ∈ K, ∀i ∈ I (Link travel cost condition) (5.7c)∑
k

vik = vi ∀i ∈ I (VMT constraint for user i) (5.7d)

vik ≥ 0 ∀k ∈ K, ∀i ∈ I (5.7e)

where Equations 5.7a to 5.7d indicate that the benefit of all road groups used by user i is equal and
greater than the benefit of all other unused road groups. µi is the Lagrangian multiplier associated
with the ith VMT constraint, capturing the net benefit from miles travelled for a user of type i.
Then, X is the set of all {p,x, z, τ , {vi}} such that Equations 5.7a to 5.7d and Equations 5.8a
to 5.8b below are satisfied:

Vk · lk =
∑
i

vik · di ∀k ∈ K (Flow conservation constraint for road k) (5.8a)

µi · vi ≥ κc · pi · xi ∀i ∈ I (Individual rationality constraint) (5.8b)

Here, Equation 5.8b indicates that, if there exists an equilibrium, then the user benefit from travel
must be enough to justify the purchase of a vehicle. We note that Equation 5.7a to Equation 5.8a
make profit maximization for both the automaker and the service provider mathematical programs
with equilibrium constraints. To facilitate our analysis, we therefore consider a more restrictive
case when all road groups are used by all user groups. Then, for k ∈ K, τk is such that:

τk = fk,4(xi, zk, Vk, vik)− µi =
1

Vk · lk
·
∑
i

[fk,4(xi, zk, Vk, vik)− µi] · vik · di (5.9)
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The problem for the automaker becomes:

max
xi

Vk,vik

∑
i

[(∑
k

fk,1(xi, zk, Vk, vik)
)
· xi · di − κc · cc(xi, di)

]
s.t.

∑
k

fk,1(xi, zk, Vk, vik) = κc · pi ∀i ∈ I,

τk · Vk · lk =
∑
i

(fk,4(xi, zk, Vk, vik)− µi) · vik · di ∀k ∈ K,∑
k

vik = vi ∀i ∈ I,

Vk · lk =
∑
i

vik · di ∀k ∈ K,

µi · vi ≥
(∑

k

fk,1

)
· xi ∀i ∈ I

(M)

Then, the FONC yield:

di ·
∑
k

[
fk,1 ·

(
1 + δck −

γci
di

)
+ fk,11 ·

(
1− γci

di

)
· xi

]
= κc · cc,1(xi, di) ∀i ∈ I (5.10a)

fk,14 ·
(

1− γci
di

)
· xi + (fk,44 · vik + fk,4) · δck + αck =

βci
di

+ δck · µi ∀i ∈ I, ∀k ∈ K (5.10b)

∑
i

[
fk,3 · δck + fk,13 ·

(
1− γci

di

)
· xi

]
· di = (δck · τk + αck) · lk ∀k ∈ K (5.10c)

γci ·
[∑

k

fk,1 · xi − µi · vi
]

= 0 ∀i ∈ I (5.10d)

γci ≥ 0 ∀i ∈ I (5.10e)

where δck is the Lagrangian multiplier associated with the fee constraint; βci is the Lagrangian
multiplier associated with the ith individual VMT constraint; αck is the Lagrangian multiplier
associated with the kth traffic volume constraint; γci is the Lagrangian multiplier associated with
the ith individual rationality constraint.

Firstly, we note that, when all road groups are used, δck ≥ 0. Indeed, in the more general case,
the manufacturer is faced with τk · Vk · lk ≥

∑
i(fk(xi, zk, Vk, vik) − µi · vik) · di ∀k ∈ K. This

implies that the Lagrangian multiplier δck would be non-negative for all used road groups. Then,
by comparing Equation 5.4a and Equation 5.10a, we note that there may be under-provision
or over-provision of automation under the GNE. On the one hand, the automaker’s exercise of
market power (captured by

∑
k fk,11 ·xi < 0 in Equation 5.10a), induces a lower automation level

than what would happen under the social optimum. Moreover, due to the lack of coordination

71



with the service provider, the automaker does not account for the non-pricing benefit (captured
by
∑

k br,1 · vik > 0 in Equation 5.4a) when making its production decisions. This, in turns,
leads to a lower provision than socially optimal. On the other hand, the ability of the automaker
to affect and exploit changing travel patterns for increased gains (captured by

∑
k fk,1 · δck > 0

in Equation 5.10a) could lead to more investment than socially optimal. In an environment with
relatively high competition and in which infrastructure-related non-pricing benefits are uncertain
or inaccessible for the automaker, the net effect of the automaker’s decisions might be too much
spending on automation.

The problem for the service provider becomes:

max
zk,τk,
Vk,vik

∑
k

τk · Vk · lk +
∑
i

br(xi, zk, Vk) · vik · di − κr · cr(zk, lk)

s.t.
∑
k

fk,1(xi, zk, Vk, vik) = κc · pi ∀i ∈ I,

τk · Vk · lk =
∑
i

(fk,4(xi, zk, Vk, vik)− µi · vik) · di ∀k ∈ K,∑
k

vik = vi ∀i ∈ I,

Vk · lk =
∑
i

vik · di ∀k ∈ K,

µi · vi ≥
(∑

k

fk,1

)
· xi ∀i ∈ I

(O)

The FONC then yield:

∑
i

(
fk,2 + br,2 · vik −

λri + γri · xi
di

· fk,12

)
· di = κr · cr,1(zk, lk) ∀k ∈ K (5.11a)

− λri + γri · xi
di

· fk,14 + (fk,44 · vik + fk,4) + br + αrk =
βri
di

+ µi ∀k ∈ K, ∀i ∈ I (5.11b)∑
i

[
fk,34 + br,3 · vik −

λri + γri · xi
di

· fk,13

]
· di = αrk · lk ∀k ∈ K (5.11c)

γri ·
[∑

k

fk,1 · xi − µi · vi
]

= 0 ∀i ∈ I (5.11d)

γri ≥ 0 ∀i ∈ I (5.11e)

where λri is the Lagrangian multiplier associated with the ith pricing constraint; βri is the
Lagrangian multiplier associated with the ith flow balance constraint; γri is the Lagrangian
multiplier associated with the ith individual rationality constraint; and αrk is the Lagrangian
multiplier associated with the kth traffic volume constraint. Here too, with arguments similar
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to those for the positivity of δck in the automaker’s case, it is possible to deduce that λri ≥ 0 at
equilibrium.

Now, considering Equation 5.11a, if automation and digitalization are substitutes (fk,12 ≤ 0),
then there is over-provision of digitalization relative to the social optimum (with equal provision
when fk,12 = 0). Simply, in order to have a competitive edge and capture users’ willingness
to pay, the service provider invests heavily in digitalization. If automation and digitalization are
complementary (fk,12 > 0), there is under-provision of digitalization at the Nash equilibrium.
Because of a coordination failure, the service provider is reluctant to invest in digitalization: she
cannot ensure that the automaker will make the compatible automation investment that will make
the digitalization investment worthwhile.

5.3.3 Cooperation

Our analysis above shows that, in the absence of coordination, it is likely that the level of
automation and digitalization are suboptimal. This sub-optimality is due, on one hand, to a
lack of coordination between service providers and car manufacturers and, on the other, to
the car manufacturer’s exercise of market power (as attested by the presence of a markup in
Equation 5.10a). We discuss here how the former issue could be resolved. In order to achieve
coordination, a contract that ensures that both the operator and the manufacturer are better off
working together can be designed. Such a contract must meet the following criteria:

• The joint profit πT must be maximized: πT = πc + πr

• Each party must be better off than under the GNE: πc,GNE ≤ πc,CE and πr,GNE ≤ πr,CE

where πa,GNE refers to the profit under the GNE and πa,CE refers to the profit under the cooperative
equilibrium (CE) with a ∈ {c, r}. Following the Nash bargaining, πc,CE and πr,CE are such that:

(πc,CE, πr,CE) = arg max
πc≥πc,GNE ,
πr≥πr,GNE

(πc − πc,GNE) · (πr − πr,GNE)

s.t. πc + πr = πT,CE

(NB)

where:

πT,CE = max
xi,pi,vik,
zk,τk,Vk≥0

κc ·
∑
i

[
pi · xi · di − cc(xi, di)−mc(x̄)

]
+
∑
k

τk · Vk · lk − κr · cr(zk, lk)

+
∑
k

∑
i

br(xi, zk, Vk, vik) · vik · di

s.t. {p,x, z, τ , {vi}} ∈ X(v)
(TM)
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It is easy to show that:

πc,CE = πc,GNE + φ ·
[
πT,CE − πc,GNE − πr,GNE

]
(5.12)

πr,CE = πr,GNE + (1− φ) ·
[
πT,CE − πc,GNE − πr,GNE

]
(5.13)

where φ ∈ (0, 1) represents the share of excess profits–relative to the GNE–that the automaker
will pocket. Now, the question arises as to whether cooperation is welfare-improving relative to
the GNE. Assuming, as in M and O, that all road groups are utilized by all user groups, then TM
becomes:

πT,CE = max
xi,x̄,vik,

zk,Vk,vik≥0

∑
i

(∑
k

fk,1(xi, zk, Vk, vik) · xi + br(xi, zk, Vk) · vik
)
· di − κc ·

∑
i

cc(xi, di)

+
∑
k

∑
i

(fk,4(xi, zk, Vk, vik)− µi) · vik · di −
∑
k

κr · cr(zk, lk)

s.t.
∑
k

vik = vi ∀i ∈ I,

Vk · lk =
∑
i

vik · di ∀k ∈ K,

µi · vi ≥
∑
k

fk,1(xi, zk, Vk, vik) · xi ∀i ∈ I

(TM)
and the FONC yields:

di ·
∑
k

[
fk,1 + br,1 · vik

]
= κc · cc,1(xi, di) ∀i ∈ I (5.14a)∑

i

[
fk,2 + br,2 · vik

]
· di = κr · cr,1(zk, lk) ∀k ∈ K (5.14b)∑

i

[
fk,3 + br,3 · vik

]
· di = αk · lk ∀k ∈ K (5.14c)

fk,4 + br + αk =
βi
di

+ µi ∀k ∈ K, ∀i ∈ I (5.14d)

Comparing Equation 5.14 to Equations 5.10 and 5.11 indicates that, relative to the Nash
equilibrium, cooperation:

• reduces the effect of the manufacturer’s market power and increases the provision of
automation;

• increases (decreases) provision of digitalization when digitalization and automation are
complements (substitutes)
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Thus, cooperation between the car manufacturer and the service provider increases surplus.
Additionally, comparing Equations 5.4 and 5.14, cooperation between the manufacturer and the
operator will decentralize the social optimum if:

γi
di

=
βi
di

+ µi (5.15)

In other words, if the marginal benefit of travel βi
di

+ µi for the combined entity is equal to the
marginal benefit of travel for the social planner, cooperation will achieve the first-best. Otherwise,
cooperation achieves the second-best: βi

di
+ µi <

γi
di

. This can potentially be the best-case scenario
absent the possibility of subsidies (e.g., when the first-best is not sustainable for either or both
companies).

5.4 A numerical example

We propose here to illustrate our model’s results as well as other properties.

5.4.1 Functions and parameters

We considerK = 3 road groups and I = 3 different user groups. The road lengths lk and capacities
V max
k , users’ daily VMT vi and population di as well as other parameter values and how they were

obtained can be found in Appendix C.1. It suffices to say, however, that K and I are ordered in an
increasing order of capacity and daily VMT respectively.

Automation and digitalization levels vary continuously from 1 to 100. We assume the following
cost and benefit functions:

fk(xi, zk, Vk, vik) =

[
f0t ·

[
α · (xi)ρ + (1− α) · (zk)ρ

] v
ρ − f0c ·

( Vk
V max
k

)2
]
·
√
vik (5.16a)∑

i

cc(xi, di) = mc,0 ·max
j
xj +

∑
i

[c0 + c1 · (xi)2] · di (5.16b)

br(xi, zk, Vk) = b0 · (xi)γ · (zk)θ ·
( Vk
V max
k

)ηr
(5.16c)

cr(zk, lk) = mr,0 · lk · (zk)2 (5.16d)

Equation 5.16a indicates that automation and digitalization interact following a constant elasticity
of substitution (CES) utility function. Thus, ρ is the substitution parameter: as ρ increases,
automation and digitalization become more substitutable in the eyes of customers. Additionally,
drivers’ benefit from automation and digitalization will be affected by a congestion cost.
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Equation 5.16b indicates that the total cost of manufacturing includes both an investment cost
mc,0 · maxj xj–the cost the company must pay to develop its highest level of automation–and
production costs [c0 + c1 · (xi)2] · di for each automation levels.

The parameters of the model as well as their value are given in Appendix C.1.

5.4.2 Effect of substitution parameter

Figure 5.1 and Figure 5.2 show the level of automation and digitalization, respectively, as a a
function of the degree of substitution under the three different scenarios considered in this study:
the social optimum (FB), the cooperative equilibrium (CE) and the GNE. First, we note that as
automation and digitalization levels become more substitutable, the socially optimal automation
level decreases. Simply, because customers are increasingly indifferent between automation and
digitalization and because digitalization can serve mutliple classes simultaneously, the need for
automation diminishes. Moreover, the road groups with the highest volumes receive the highest
levels of digitalization (Figure 5.2 and Figure 5.3). As expected, the CE improves welfare relative
to the GNE, though it still falls short from the socially optimal configuration2. The improvement of
CE over the GNE is more pronounced as substitutabiltiy increases, thus highlighting the crippling
effect of competition.

5.4.3 Effect of unit cost of congestion

Here, we evaluate the impact of the cost of congestion, fc,0, on equilibrium results. In practice,
this can shed light on the difference in automation choices between users with different values of
time. As Figures 5.4 and 5.5 show, some of main insights from Section 5.4.2 still hold. Namely,
cooperation usually results in better performance than competition but performs worse than the
surplus maximizing configuration. As we would expect, increasing congestion costs leads to an
increase in both automation and digitalization investment, though the effect is more pronounced on
the infrastructure side. Simply, the higher the cost of congestion, the higher the value of automation
and digitalization. Thus, investing in automation and digitalization in highly congested areas would
seem like an intuitive first step for both the private and public sector.

5.4.4 Effect of unit monetary value of digitalization

There is uncertainty as to what the monetary benefits of digitalization, b0, will be for ISSPs.
Such benefits will depend, among other things, on the existence of a vibrant market for road

2The elasticity of demand will determine the size of the gap between CE and GNE. In our case, because demand
is inelastic, the gap will be larger.
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Figure 5.1: Effect of substitution parameter on automation level
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Figure 5.2: Effect of substitution parameter on digitalization level
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Figure 5.3: Effect of substitution parameter on traffic volume distribution
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Figure 5.4: Effect of congestion cost on automation level
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Figure 5.5: Effect of congestion cost on digitalization level

data that only infrastructure digitalization could fulfill. To better understand the effect of that
monetary value, we vary b0 across the three scenarios considered. The results are shown in
Figures 5.6 and 5.7. It is interesting to note that, in the FB and CE cases, an increase in the
value of digitalization leads to an increase in equilibrium automation levels. In essence, because
digitalization and automation interact together to generate value, there is an incentive for the social
planner and for any joint venture between automaker and ISSP to increase automation levels.

5.4.5 Effect of automation development costs

Lastly, because one of the main motivations for the present work is the high cost of automation,
we propose to investigate the effect of development costs, mc,0, on the outcome of our scenarios.
The results are shown in Figures 5.8 and 5.9. First, we note that, because of the co-dependency
between automation and digitalization in generating value, increasing automation costs lead to
a reduction in both automation and digitalization for both the social planner and the integrated
company. Essentially, the more expensive automation becomes, the lesser the value to both society
and the private sector of implementing our vision for vehicle-infrastructure cooperation. Thus, a
careful evaluation of the costs and benefits of automation is needed. In the GNE case, the ISSP
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Figure 5.6: Effect of the value of digitalization on automation level
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Figure 5.7: Effect of the value of digitalization on digitalization level

obviously benefits from the higher automation costs and increases its provision of digitalization
beyond the efficient levels to increase profits.

5.5 Conclusion

This paper has investigated vehicle-infrastructure cooperation for enabling automated driving.
In this cooperation, the infrastructure can perform driving tasks such as sensing, perception
or planning, and essentially becomes an integral part of the driving system of an automated
vehicle. By proposing and analyzing a model that captures investment decisions in automation and
digitalization and their effect on travellers’ purchase and travel decisions, we have shown that such
a vehicle-infrastructure cooperative paradigm can be socially optimal. Subsequently, we also show
that strategic interactions between a monopolistic automaker and a monopolistic service provider
result in suboptimal investment in both automation and digitalization. The suboptimality of
automation is due, in part, to the lack of coordination which prevents automakers from enjoying the
non-pricing benefits that driving generates for service providers. Whether there is over-investment
or under-investment in automation will also depend on the travel behaviors of the different user
groups. Users with high VMT will likely see higher than optimal automation while those with
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Figure 5.8: Effect of automation development cost on automation level
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Figure 5.9: Effect of automation development cost on digitalization level

low VMT will receive lower than optimal automation. For service providers, when automation
and digitalization are substitutes, there is over-investment in digitalization technology as service
providers seek to compete with the automation technology. However, when they are complements,
service providers are reluctant to invest in digitalization: there is no enforcement mechanism that
guarantees that automakers will invest in compatible automation levels. It is then easy to show that,
given an appropriate profit-sharing agreement between the two actors, cooperation could yield the
socially optimal levels of automation and digitalization. Thus, from a planning perspective, better
coordination of infrastructure standards and regulation across states should be a priority. Such
coordination across service providers will then provide automakers with the opportunities for
economies of scale that would be otherwise lacking when developing the infrastructure-assisted
vehicle technology. Finally, it will provide service providers and/or their regulating entities with
the value proposition necessary to benefit from vehicle-infrastructure cooperation.

In this work, we assume that users’ demand for travel and automation is fixed. However, since
automation and digitalization reduce the cost of travel, an increase in VMT is likely after adoption
of these technologies and can have two conflicting effects which it will be necessary to investigate.
On one hand, by increasing VMT, it could increase the ISSP’s ability to generate profits. On the
other, that increase in VMT can increase congestion and reduce willingness to pay for road usage.
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Moreover, such an increase in VMT can also have a negative social impact. Thus, future iterations
will consider the case of elastic travel demands. Moreover, by enabling mobility-as-a-service,
automation will also provide an alternative to car ownership for users. As such, automakers face an
additional dilemma in providing automation, but also another earning opportunity. The impact of
these decisions and their effects on VMT will also be incorporated. Lastly, we have not accounted
here for competition among automakers and among service providers. Essentially, there is no
product differentiation in either the vehicle or infrastructure market. This makes it difficult to
assess the benefits–or lack thereof–that can accrue to different socio-demographic groups. Our
model can be extended and made more realistic to include the effects on investment of these new
strategic interactions and the relevant incentives to be provided. Lastly, the question of investment
is essentially a dynamic problem subject to uncertainty and the different agents involved will make
repeated decisions that can significantly alter the trajectory of both automation and digitalization
levels. Such rich dynamics is not captured by the current model and will need to be incorporated.
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CHAPTER 6

Safety, Liability and Infrastructure

6.1 Introduction

In the previous chapter, we established that vehicle-infrastructure cooperation is socially optimal.
We also showed that a cooperative agreement between an automaker and a private road operator
can increase welfare and the joint profit between the two entities. However, an important issue
arises out of the framework we presented. Our model and approach is unspecific as to the benefits
that will come from automation and digitalization. This becomes important when we attempt
to evaluate the incentives and gains from a vehicle-infrastructure cooperative approach. Thus,
in this chapter, we propose to focus on the question of liability and safety. Indeed, one of the
key benefits that will accrue to customers through automation and digitalization is that of safety.
For example, using National Highway Traffic Safety Administration (NHTSA) data, Fagnant and
Kockelman (2015) identify that 90 % of traffic accident involve human error. When considering
the substantial costs to society of crashes to society–$226 billions in 2005 (2021 dollars) according
to Cambridge Systematics (2008)–improved safety resulting from vehicle automation would
generate enormous savings to customers and society in general. Moreover, most of the remaining
challenges in developing automated vehicles revolve around safety–as discussed in the introduction
to Chapter 4–and research shows that customers have high expectations for automated vehicle
safety (Shariff et al., 2021; Shariff, 2021). Importantly, after a series of roads incidents involving
automated vehicles, regulators are also starting to show concerns about automation technology’s
safety and readiness for commercialization (Elliott, 2021). Thus, it appears that finding cost
effective means to address the remaining safety concerns of automated vehicles is critical if
automakers want to encourage adoption.

However, though automated vehicles would increase safety, we are unlikely to see accident-free
roads. Indeed, vehicles and infrastructure could still malfunction; pedestrians are still independent
agents who can interfere with vehicle operation; and human-driven vehicles (HDVs) will co-
exist for a long period of time with AVs, potentially leading to more crashes than in an AV-free
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environment since HDVs might reduce their level of care (Chatterjee and Davis, 2013; Elvik, 2014;
Talley, 2019; Di et al., 2020). In this context, one might ask who should be liable for the accidents
in which an AV is involved. While some automakers, like BMW, have decided to shoulder full
responsibility for accidents in which their self-driving technology is involved (even when not at
Level 5–(Tucker, Sean, 2022)), others such as Tesla, have been content to let current liability
rules for drivers prevail and have, mostly, eschewed responsibility for accidents related to their
technology (Communications, 2022). Is such a configuration optimal? Should liability be shared
between automakers and AV owners? What happens when infrastructure support service providers
(ISSPs) enter the fray?

The question of liability and automated vehicles has been explored in a number of works over
the past decade. Researchers have explored and discussed ethical problems that arise in the design
of AVs (Nyholm and Smids, 2016; Contissa et al., 2017; Thornton et al., 2017; Himmelreich,
2018; Nyholm, 2018; Borenstein et al., 2019; Wu, 2020); and ways in which current tort laws can
be adapted in the era of AVs (Lohmann, 2016; Talley, 2019; Di et al., 2020). While insightful,
these works all deal with the issue of equipping individual vehicles and responsibility resulting
from the failure of these individual vehicles. However, these works have not explored the ways
in which liability design might affect the provision of AV-related infrastructure, something the
present chapter will attend to.

An important concept that we will exploit in addressing that problem is that of insurance.
Indeed, insurance contracts are means through which an agent can offload a part or a totality
of its liability burden on another agent. Thus, optimal liability design between different parties
could be thought of, in and of itself, as the design of an insurance contract between these parties.
These contracts have been studied in detail over the years. Some articles have dealt with the issue
of insurance in competitive markets (Ehrlich and Becker, 1972; Rothschild and Stiglitz, 1976;
Cook and Graham, 1977; Schlesinger, 1983) and monopolistic markets (Stiglitz, 1977; Ligon
and Thistle, 1996) both under full information and information asymmetry; others have looked
at insurance under the threat of adverse selection and moral hazard and sought to evaluate their
effects on insurance markets and insurance provision (Pauly, 1974; Dionne, 1982). Some have
even tried to estimate the effect of connectivity on insurance cost, accounting for issues like privacy
(Jin and Vasserman, 2021). However, we are not aware of any work in that literature that seeks to
model and address issues of insurance and liability in a vehicle-infrastructure cooperation context.
Nevertheless, a survey of the relevant literature provides an insight that will be important for our
work: under full information, regardless of market structure and without the threat of moral hazard
from the insured, if any insurance is provided, then the contract provides full insurance priced at
actuarial odds.

This chapter is divided as follows. Section 6.2 introduces our model and its basic components.
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Notation Description
zM Vehicle automation quality
zI Infrastructure automation quality
φj,a Liability amount for accident on road j ∈ {r, s} for agent a ∈ {M, I}
ca Investment cost for a ∈ {M, I}
τ Vehicle cost
V Value of car ownership
λ Total demand for vehicle ownership

(a) Frequently used variables

Notation Description
ηj Share of road j ∈ {r, s}
l Total road length
pj Crash probability per mile driven on road j ∈ {r, s}
p̃k Probability of state k ∈ {0, r, s}
W k Wealth in state k ∈ {0, r, s}
W̃ 0 Initial wealth level
sj Accident severity on road j ∈ {r, s}

(b) Frequently used parameters

Table 6.1: Frequently used notations

Then, Section 6.3 derives the socially optimal provision of automation and digitalization and the
associated optimal liability design. This discussion is then followed by a discussion of the resulting
allocation in an unregulated market. In Section 6.5, we revisit our analysis of Section 6.3 to
understand how the introduction of speed choice affects automation and digitalization provision.

6.2 Model

Consider a roadway used exclusively by Level 5 AV owners. These owners purchase their
vehicles from a vehicle manufacturer who decides the quality of the technology (e.g.: sensors,
algorithms, other hardware and software components...) with which to equip these vehicles. The
manufacturer’s quality choices affect the crash probability of his vehicles and, therefore, his bottom
line. Indeed, customers will shy away from an accident-prone product. We consider that all losses
and accidents are the results of vehicle technology. Importantly, we do not consider owners’ efforts
in maintaining vehicles in fully functional order: thus, we do not account for moral hazard and/or
adverse selection.

A portion of the roadway is managed by an ISSP. This ISSP installs and operates AV-related
technology on the roadway. While this contributes to reducing the crash probability on the
roadway, it could also expose the ISSP to similar accident losses and reputational harms as the
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AV manufacturer. The principal goal of this work is to understand how liability for accidents
should be shared between manufacturer, ISSP, and customer.

AV owners face three states of the world while using an AV. In the first state, they travel without
accident on the full length of the road. In the second state, they are involved in an accident on the
regular (r) portion of the road and face potential losses as a result. In the third state, they are instead
involved in an accident on the smart (s) portion of the road. Formally, then, user preferences can
be described by the following equations:

V = p̃0 · U(W 0) + p̃r · U(W r) + p̃s · U(W s)

W k =


W̃ 0 − τ if k = 0

W̃ 0 − τ − sr + φr if k = r

W̃ 0 − τ − ss + φs if k = s

p̃k =


1− p̃r − p̃s if k = 0

1− (1− pr)(1−ηs)·l if k = r

1− (1− ps)ηs·l if k = s

In the above, p̃k represents the probability of occurrence of state k ∈ {0, r, s}; pj represents the
probability of a crash per mile driven on portion j ∈ {r, s} of the roadway; W̃ 0 is consumers’ auto
budget; sj represents the severity–or monetary losses–incurred as a result of the accident on portion
j of the roadway; φj represents total payments from the ISSP and/or the manufacturer received by
the victim as a result of the accident on portion j of the roadway; l is the length of the roadway;
τ represents the price of the AV; ηs represent the fraction of the road operated by the ISSP; and
U(·) describes utility as a function of wealth. Essentially, there exists a form of insurance from the
producers (manufacturer and ISSP) to the AV owners. Heterogeneity in valuation for car ownership
(but not in risk profile) gives rise to a demand function λ = Λ(V ) for AVs. We make the following
standard assumptions on U(·) and Λ(·):

Assumption 6.1. We assume the following:

A1.1 Utility is strictly increasing in wealth: U ′ > 0

A1.2 Customers are risk averse: U ′′ < 0

A1.3 The demand function is strictly increasing in the value of AV ownership: Λ′ > 0

The crash probabilities are influenced by the decisions of the manufacturer and the ISSP as
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follows:

pr = P (zM , 0)

ps = P (zM , zI)

where zM is the quality level of AV technology; zI is the quality level on the smart portion of the
roadway; and P (·, ·) is a probability function such that:

Assumption 6.2. We assume the following:

A2.1 The crash probability is strictly decreasing in technology quality: P1, P2 < 0

The manufacturer and the ISSP face cost cM per vehicle and cI per mile of roadway equipped,
respectively. These costs depend on technology level as follows:

cM = CM(zM)

cI = CI(zI)

We make the following assumptions on CM(·) and CI(·):

Assumption 6.3. We assume the following:

A3.1 The cost functions are strictly increasing in technology quality: CM ′ , CI′ > 0

A3.2 The cost functions are strictly convex in technology quality: CM ′′ , CI′′ > 0.

We can then describe our problem using the system of equations below:

λ = Λ(V ) (6.1a)

V = p̃0 · U(W 0) + p̃r · U(W r) + p̃s · U(W s) (6.1b)

W k =


W̃ 0 − τ if k = 0

W̃ 0 − τ − sr + φr if k = r

W̃ 0 − τ − ss + φs if k = s

(6.1c)

p̃k =


1− p̃r − p̃s if k = 0

1− (1− pr)(1−ηs)·l if k = r

1− (1− ps)ηs·l if k = s

(6.1d)

pr = P (zM , 0) (6.1e)

ps = P (zM , zI) (6.1f)
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cM = CM(zM) (6.1g)

cI = CI(zI) (6.1h)

6.3 Scenario analysis

In this section, we consider three different scenarios to understand how liability will be shared in
the age of automation and digitalization. Especially, we would like to understand how liability is
shared without policy intervention and whether the outcome of lack of regulation and coordination
warrants new rules be put in place.

6.3.1 First-best

We now consider the social welfare maximization problem:

max
τ, zM , zI

φr, φs

∫ V

0

Λ(x) · dx+ (τ − cM − p̃r · φr − p̃s · φs) · λ− cI · ηs · l

s.t. Equations 6.1a to 6.1h

(SO)

In this problem, given the fraction of the roadway allocated for smart infrastructure, a social
planner essentially minimizes the social cost of driving automation and smart infrastructure quality
as well as the liability borne by the traveller. One might argue that the problem should contain two
prices: one for the AV sale and another for the road usage. However, it is straightforward to show
that both fees can be coalesced into a single τ and that multiple solutions would exist should two
prices enter our problem. This also highlights another important point: because joint producer
profit is maximized, the planner is agnostic as to whom bears liability on the smart roadway.

The first-order necessary conditions (FONCs) for optimality yield:

φj = sj ∀j ∈ {r, s} (6.2a)

τ = cM + φr · p̃r + φs · p̃s +
λ

Λ′ · U ′(W 0 − τ)
· [1− U ′(W 0 − τ)] (6.2b)

CM ′(zM)

l
= −P1(zM , 0) · 1− p̃r

1− pr
· φr − ηs ·

[
P1(zM , zI) · 1− p̃s

1− ps
− P1(zM , 0) · 1− p̃r

1− pr
]
· φs

(6.2c)

CI′(zI)

λ
= −P2(zM , zI) · 1− p̃s

1− ps
· φs (6.2d)

As expected from the classical literature on insurance markets, the optimal allocation of liability
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from a social perspective is for producers to provide full coverage (Equation 6.2a). Equation 6.2b
indicates that the cost of vehicle ownership is adjusted to reflect producers’ risk exposure and now
includes the expected producer losses from vehicle operation. Thus, this indicates that, even when
automakers decide to shoulder losses resulting from AV accident, vehicle ownership cost might not
decrease, except if both crash probability and/or crash severity significantly decrease. Moreover,
it is apparent that when users are risk neutral (U ′(·) = 1), the last term in Equation 6.2b vanishes.
Then, producers’ profits at the optimum, π∗, become:

π∗ = −cI∗ · ηs · l < 0 (6.3)

In other words, at the first-best with risk-neutral users, the provision of smart infrastructure
occurs at a loss for the providers. Especially, contrary to other infrastructure problems with
capacity management,–such as the optimal provision of capacity on congested roads (Verhoef
and Rouwendal, 2004)–self-financing does not hold. This also implies that, in a decentralized
framework, either the provision of infrastructure services will be subsidized by a public agency or,
just as for other infrastructure services, a regulated monopoly will form.

Additionally, we note that longer travel and higher demand will lead to increased investment
in automation and digitalization technology, respectively (Equations 6.2c and 6.2d). This is in
keeping with the results from (?). More travel increases the risk of accident and, thus, in response,
the planner invests more in vehicle technology. Moreover, more demand increases the expected
losses from an accident, thus inducing the planner to invest more on infrastructure technology.

Looking at the relationship between vehicle and infrastructure technology, we note that when
an increase in infrastructure technology reinforces the safety potential of AVs (P1(zM , zI) −
P1(zM , 0) < 0 or P12 < 0), then the introduction of infrastructure (ηs > 0) increases spending
cM on vehicle technology. Simply and naturally, the introduction of infrastructure technology only
reduces vehicle costs when infrastructure acts as a substitute for vehicle technology.

6.3.2 Unregulated environment

6.3.2.1 Integrated monopoly

We now consider what happens when a single entity manages both the automaker and the ISSP. As
alluded to in (?) and ??, such a configuration is more optimal than the Nash game. Thus, to isolate
effects that might arise from competition from those that arise from lack of established liability
rules, considering a single entity is the best course. This monopolist maximizes profits according
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to the following:
max
τ, zM , zI

φr, φs

(τ − cM − p̃r · φr − p̃s · φs) · λ− cI · ηs · l

s.t. Equations 6.1a to 6.1h
(MO)

Assuming an interior solution exists, the FONC for (MO) yields:

φj = sj ∀j ∈ {r, s} (6.4a)

τ = cM + φr · p̃r + φs · p̃s +
λ

Λ′ · U ′(W 0 − τ)
(6.4b)

CM ′(zM)

l
= −P1(zM , 0) · 1− p̃r

1− pr
· φr − ηs ·

[
P1(zM , zI) · 1− p̃s

1− ps
− P1(zM , 0) · 1− p̃r

1− pr
]
· φs

(6.4c)

CI′(zI)

λ
= −P2(zM , zI) · 1− p̃s

1− ps
· φs (6.4d)

Here too, in keeping with the classical literature on insurance markets, if the monopolist provides
coverage at all, it must cover all potential damages (Equation 6.4a). However, this naturally occurs
at a higher vehicle cost than that chosen by the planner (Equation 6.4b).

6.3.2.2 Generalized Nash Equilibrium

What happens, however, when we allow for the possibility of shared liability between the two
producers operating independently? To study this question, we introduce τM and τ I , the prices
charged by the manufacturer and the ISSP, respectively. We also introduce φs,M and φs,I , the
coverage provided by the manufacturer and the ISSP on the smart road, respectively. This allows
us to study the Nash game between the two entities. If we let ak = {τ k,φk, zk} denote the action
vector of player k ∈ {M, I}, {aM,∗, aI,∗} constitutes a Generalized Nash Equilibrium (GNE) if
aM,∗ solves the following problem, taking aI,∗ as given:

max
τM , zM ,
φr, φs,M

(τM − cM − p̃r · φr − p̃s · φs,M) · λ

s.t. Equations 6.1a to 6.1h

(N-M)

and aI,∗ solves the following problem, taking aM,∗ as given:

max
τI , zI ,
φs,I

(τ I · ηs · l − p̃s · φs,I) · λ− cI · ηs · l

s.t. Equations 6.1a to 6.1h

(N-I)
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Using the FONCs of (N-M) and (N-I), we derive the following equations that characterize the
equilibrium:

φr = sr (6.5a)

φs,M + φs,I = ss (6.5b)

τM = cM + φr · p̃r + φs,M · p̃s +
λ

Λ′ · U ′(W 0 − τM − τ I)
(6.5c)

τ I · ηs · l = φs,I · p̃s +
λ

Λ′ · U ′(W 0 − τM − τ I)
(6.5d)

CM ′(zM)

l
= −P1(zM , 0) · 1− p̃r

1− pr
· φr − ηs ·

[
P1(zM , zI) · 1− p̃s

1− ps
− P1(zM , 0) · 1− p̃r

1− pr
]
· φs,M

(6.5e)

CI′(zI)

λ
= −P2(zM , zI) · 1− p̃s

1− ps
· φs,I (6.5f)

Here too, full coverage is provided to AV owners (Equations 6.5a and 6.5b). However, this
occurs at a higher cost than that charged by a single entity because of double marginalization
(Equations 6.5c and 6.5d). Moreover, who bears most of the cost of providing that coverage on the
smart road is unclear. As such, multiple equilibria might exist, ranging from one of the producers
providing no coverage to both of them sharing the liability equally. In this context, it appears
that both the automaker and the ISSP could offer different coverage options to customers. Then,
the cost of vehicles and their quality, on the one hand, and of smart road use, on the other, could
differ among customers. If infrastructure technology acts as a substitute for vehicle technology,
then vehicles with lower coverage φs,M from the automaker on the smart road would naturally be
of lower quality. In the case of complementarity between the two technologies, higher coverage
from the manufacturer on the smart road would result in higher vehicle quality. In the context
of the Nash game, the planner might need to establish a liability rule, in the manner of Di et al.
(2020), to ensure that no undesirable equilibrium is reached (e.g.: one of the agents free-riding
from the other’s quality investment). We will discuss the design of these rules in depth in the next
subsection.

6.3.3 Nash game with liability rule

Here, we wish to investigate whether a liability rule can prevent the Nash game to settle at an
undesirable equilibrium. To answer this question, we introduce αM(·, ·), the share function for the
manufacturer. αM(·, ·) determines the fraction of total damages paid that the manufacturer must
shoulder when an accident occurs on the smart portion of the road. If we let zM,∗∗ and zI,∗∗ denote
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any target equilibrium, then {aM,∗, aI,∗} constitutes a Generalized Nash Equilibrium (GNE) if aM,∗

solves the following problem, taking aI,∗ as given:

max
τM , zM ,
φr, φs,M

(τM − cM − p̃r · φr − p̃s · φs,M) · λ

s.t. Equations 6.1a to 6.1h,

φs,M · λ ≥ αM
(
zM,∗∗ − zM , zI,∗∗ − zI

)
· ss · λ

(N-MR)

and aI,∗ solves the following problem, taking aM,∗ as given:

max
τI , zI ,
φs,I

(τ I · ηs · l − p̃s · φs,I) · λ− cI · ηs · l

s.t. Equations 6.1a to 6.1h,

φs,I · λ ≥
[
1− αM

(
zM,∗∗ − zM , zI,∗∗ − zI

)]
· ss · λ

(N-IR)

:
(In the above, pre-multiplying by λ simplifies a lot of the subsequent calculus). We make the

following assumptions on αM(·, ·):

Assumption 6.4. We assume the following:

A4.1 The share function is strictly decreasing in the automaker’s choice of automation: αM1 > 0.

A4.2 The share function is strictly increasing in the ISSP’s choice of digitalization: αM2 < 0.

A4.3 The share function is strictly positive and below 1: 0 < αM < 1

It is important to note that the shape and functional form of α(·, ·) will differ depending on the
equilibrium targeted by the planner. In some instances, for example, the desired target might yield
α(0, 0) = 1

2
, so that the equal sharing in liability is the effective desired targets. At others, this

might change. However, by our assumptions, both agents will always hold some liability, however
infinitesimal.

By deriving the FONC for N-MR and N-IR and assuming Equation 6.2c and Equation 6.2d
hold, we can derive sufficient conditions for a share function to replicate the desired quality levels.
Indeed, let δM ≥ 0 and δI ≥ 0 denote the Lagrangian multiplier associated with the share
constraints for the automaker and the ISSP, respectively. Then, sufficient conditions for the GNE
to yield zM,∗∗, zI,∗∗ are that there exists δM > 0 and δI > 0 satisfying the following two equations:

αM(0, 0) · P2(zM , zI) · 1− p̃s

1− ps
− δI · αM ′2 (0, 0) = 0 (6.6a)
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ηs · [1− αM(0, 0)] · P1(zM , zI) · 1− p̃s

1− ps
+ δM · αM ′1 (0, 0) = 0 (6.6b)

By Assumptions A4.1, A4.2 and A4.3, the sufficiency condition is always met. Thus, an
appropriate liability rule can reproduce the first-best automation and digitalization levels. In
practice, however, implementing such a rule would be costly. Indeed, it would involve expanding
resources to determine the quality levels of sensors used by both entities. In the presence of certain
standards, this cost could be reduced and quality could be ensured ex ante, a priori.

6.4 Numerical examples

6.4.1 Setup

In order to garner more insights from our model, we now proceed to carry out numerical
experiments. Parameters and their values are provided in an appendix (Table D.1). We assume
the following functional forms:

U(W ) = logW (6.7a)

Λ(V ) = λ0 · expV

expV + expV 0
(6.7b)

P (zM , zI) =
p̃0

1 + bM · zM + bI · zI
(6.7c)

Ck(zk) = a0,k + a1,k · (zk)2 ∀k ∈ {M, I} (6.7d)

p̃r = 1− (1− pr)(1−ηs)·l·ζ (6.7e)

p̃s = 1− (1− ps)ηs·l·ζ (6.7f)

6.4.2 Results

We can now discuss the results obtained from these numerical experiments, focusing on the first-
best 1.

6.4.2.1 Effect of base crash probability

Here, we consider the effect of increasing p̃0, the base crash probability (i.e. the probability
of accident for a HDV) in Figure 6.1. This is useful when considering the effect of
automation and digitalization on different types of accident. Naturally, because of increased

1We found results from the monopoly to be similar to the first-best. Meanwhile, results from the Nash game are
not stable and thus provide no discernible trends.
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Figure 6.1: Effect of base crash probability p̃0
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crash risk and exposure to losses, both consumer surplus (Figure 6.1a) and producer surplus
(Figure 6.1b) decrease. Meanwhile, both vehicle technology and infrastructure technology
increase (Figure 6.1c). This leads to an increase in the price of the vehicle (Figure 6.1c). We also
note that, as one should anticipate, providing both automation and digitalization (i.e. on the smart
portion of the road) leads to lower crash probability than with automation alone (Figure 6.1d).

6.4.2.2 Effect of mileage l
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Figure 6.2: Effect of mileage l

What happens, in our model, when the length of the roadway–or, equivalently, the number of
miles travelled–increases? Because driving only increases the risk of being involved in a crash
(and we have not included benefits to driving in our model), increased mileage reduces total
welfare (both consumer and producer surplus Figures 6.2a and 6.2b). Similarly to the effect
of base crash probability, increased mileage also raises vehicle costs as well as investment in
vehicle technology (Figure 6.2c). However, as predicted in our analysis, it reduces investment
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in infrastructure technology.

6.4.2.3 Effect of smart road share
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Figure 6.3: Effect of smart road share ηs

We now consider the effect of the fraction of roads equipped with smart infrastructure. Here,
it is interesting to note that both consumer and producer surplus–and therefore total welfare–
eventually increase (Figures 6.3a and 6.3b). This occurs because, when the share of smart roads
increase, equipping vehicles becomes less and less important (Figure 6.3c). This reduces the
marginal cost of production for vehicles, since equipping the roadway is independent of demand.
Naturally, then, the utility of vehicle ownership increases for consumers. Moreover, increasing
the share of smart roads limits the exposure to accidents on the regular portion of the road
(Figure 6.3d). Since those tended to occur more frequently, the substitution away from regular
roads also improves producer profits.
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6.4.2.4 Effect of market size λ0
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Figure 6.4: Effect of market size λ0

Lastly, we consider the effect of market size on the optimal allocation. Here, as predicted
by our analysis, an increase in the number of users increases the investment on infrastructure,
though marginally. Thus, accident probability barely changes. However, the cost of vehicle
ownership decreases–likely as a result of the marginal increase in infrastructure spending–and
partially contributes to the increase in consumer surplus (Figures 6.4a and 6.4c)2. Additionally,
because demand can grow independent from infrastructure costs in our example, profits also
increase (Figure 6.4b).

2Higher market size being the other contributor
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6.4.2.5 Discussion

From our analysis, a key takeaway seems to be that a reduction of car ownership cost through
reduced or total elimination of insurance will likely only occur if infrastructure is involved. This is
because of low accident probability in general and because infrastructure investment is independent
of demand. Thus, marginal cost pricing ensures that vehicle owners do not pay for infrastructure
investment, but only their liability coverage. Otherwise, without any infrastructure investment,
the costs of any improvements in safety are directly passed on to the vehicle owner. Because
accident probabilities are relatively low, there ensues that the total cost of ownership would actually
increase. This can be clearly seen in Figure 6.5. Only when the base accident probability is
unrealistically high (the annual crash rate in the US is well below 500 accidents per 100 million
miles travelled (?)) does the ownership cost significantly decrease. The decrease is even more
significant when the smart road share increases. Of course, one must bear in mind that there
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Figure 6.5: Cost reduction relative to HDV as a function of road share and crash risk

is no such thing as a free lunch and we are not calling for a return to the automated highway
system idea3: infrastructure investment will likely be taxpayer-funded either directly or through

3An introduction to the AHS

97

https://highways.dot.gov/public-roads/summer-1994/automated-highway-system-idea-whose-time-has-come


concessions. Thus, it might not necessarily be, when fully considered, a suitable alternative.
Lastly, We must bear in mind that our analysis has, thus far, only considered a homogeneous

traffic environment and costly means of increasing safety. In a mixed environment and assuming
high crash probabilities, vehicle-side investment might have more value. Additionally, speed limits
could be a seemingly costless alternative to smart infrastructure. Or, by reducing the traveling
speeds and further reducing crash probabilities, speed limits could favor infrastructure even further.
We have also not included the effect of density on accidents, and this could tilt the balance slightly
in favor of infrastructure investment. We will consider the potential implications of including these
in the following sections.

6.5 Future extensions

6.5.1 Speed selection

In the above, we considered a setting in which improving the safety of their products necessarily
demanded costly investment from producers. However, by tailoring the settings of their offerings,
both automaker and ISSP have an a priori costless mean of reducing their exposure. In particular,
the automaker can limit the speed of its vehicles while the ISSP can limit the speed at which
vehicles travel on the smart road. Consumers must then face the natural trade-off of speed vs
safety and said trade-off will influence their choices. Denoting AVs’ speed on portion j of the
roadway by vj , we introduce the following equations:

V = p̃0 · U(W 0) + p̃r · U(W r) + p̃s · U(W s) (6.8a)

W 0 = W̃ 0 − τ − β ·
∑
j

tj (6.8b)

W j = W̃ 0 − τ − sj − β ·
∑
k

tk + φj (6.8c)

tj =
ηj · l
vj

(6.8d)

sj = S(vj) (6.8e)

pr = P (zM , 0, vr) (6.8f)

ps = P (zM , zI , vs) (6.8g)

where tj is the travel time on portion j; β is the value of time for AV users; S(·) is a function that
relates crash severity to travel speed; and P (·, ·, ·) is now also a function of speed. We make the
following assumptions on S(·) and P (·, ·, ·):
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Assumption 6.5. We assume the following:

A5.1 Crash severity is strictly increasing and strictly convex in travel speed: S ′ > 0, S ′′ > 0.

A5.2 Crash probability is strictly increasing and strictly convex in speed: P3 > 0 and P33 > 0

With speed selection, optimization problems (SO), (MO), (N-M), and (N-I) maintain the same
objective function but now face the constraints outlined by Equation 6.1a, Equations 6.1d to 6.1f,
Equations 6.1g to 6.1h, and Equations 6.8a to 6.8g.

The first-order necessary conditions (FONC) for optimality for these three problems remain
unchanged except for the addition of two equations describing the equalization of the marginal
time benefit of speeding to its marginal crash cost and a change in the coverage equation to include
the effect of travel time:

φj = sj + β ·
∑
k

tk ∀j ∈ {r, s} (6.9a)

β · η
j · l

(vj)2
= S ′(vr) +

1

p̃j
· ∂p̃

j

∂vj
· φj (6.9b)

Here, it is worth noting that where liability is assigned matters (beyond technology quality
considerations). Indeed, higher liability for accidents on the regular road would lead to a decrease
in speed on regular roads. Higher liability for accidents on smart roads would lead to lower speeds
on smart roads. Moreover, the shorter the length of travel considered, the lower the equilibrium
speed.

6.5.2 Mixed traffic environment

We now introduce human-driven vehicles (HDVs) and explore the potential implications for our
findings. To this effect, we introduce the set of subscripts {a, h} to differentiate quantities related
to AVs and HDVs, respectively. Then, Equation 6.8 becomes, ∀i ∈ {a, h}:

Vi = p̃0
i · U(W 0

i ) + p̃ri · U(W r
i ) + p̃si · U(W s

i ) (6.10a)

W 0
i = W̃ 0 − τi − φrp,i − φsp,i − βi ·

∑
j

tji (6.10b)

W j
i = W̃ 0 − τi − φjp,i − φ

j
p,i − s

j
i − βi ·

∑
k

tki + φji (6.10c)

tji =
ηj · l
vji

(6.10d)

sji = S(vji ) (6.10e)
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pri =

P (0, 0, vri , v
r
−i, ρ

r) for i = h

P (zM , 0, vri , v
r
−i, ρ

r) otherwise
(6.10f)

psi =

P (0, 0, vsi , v
s
−i, ρ

s) for i = a

P (zM , zs, vsi , v
s
−i, ρ

s) otherwise
(6.10g)

where ρj represents road density; φjp,i are premiums paid by users; and P (·, ·, ·, ·, ·) is now a
function of the speeds of all agents involved as well as of road density. For simplicity, we will
assume that τh is fixed and exogenous and that there exists an insurance market providing insurance
for HDVs. Moreover, φjp,a = 0 as before, since insurance costs are absorbed in the vehicle costs
for AVs. The social welfare maximization problem now becomes:

max
τi, z

M , zI

φji ,v
j
i , φ

j
p,i

CS(Va, Vh) + (τa − cM − p2,a · φra − p3,a · φsa) · λa+

(φrp,h + φsp,h − p2,h · φrh − p3,h · φsh) · λh − cI · ηs · l

s.t. Equations 6.1a to 6.1h

(SO-M)

where CS(·, ·) is such that its ith partial derivative CSi = λi. At the optimal, full coverage
naturally prevails for both HDVs and AVs. For HDVs, coverage on road j is obtained at a premium
φjp,h = pjh · φ

j
h. Then, the FONC for the (SO-M) is the FONC from Section 6.5.1 supplemented by

the following equations:

βi ·
ηj · l
(vji )

2
= p̃ji · S ′(v

j
i ) +

1

λi
·
∑

k∈{a,h}

∂p̃jk
∂vji
· φjk · λk ∀i ∈ {a, h},∀j ∈ {r, s} (6.11a)

As can be seen from Equation 6.11a, speeds are further decreased, on both portions of the road,
in mixed traffic. Should the value of time for AV users be extremely low, then speeds can be made
even lower, thus reducing the risk for accidents and obviating a need for costly investments.

6.6 Conclusion

In this work, we have considered the potential implications of vehicle-infrastructure cooperation
on safety and liability. We have first shown that, absent any expected efforts from drivers and
assuming homogeneous risk profiles, a consortium of automakers and ISSPs will provide full
coverage and endorse full liability for accidents involving AVs. When both automakers and ISSPs
operate independently, however and even though full coverage is provided, it is unclear which of
the two actors will bear the burden: the Nash game involves mutliple equilibria. In that context,

100



an appropriate liability rule must be designed to ensure that undesirable equilibria do not occur.
We show that, with a rule based on a share function, this can be readily achieved. However,
implementing such a rule is non-trivial, thus favoring cooperation rather than competition in this
automated mobility market. Numerical examples also offer a number of insights on the effects
of automation and digitalization on vehicle costs. Namely, only when infrastructure technology is
significantly involved in the provision of automated services and when accident probability without
technology are significantly high does vehicle ownership costs decrease. Moreover, infrastructure
investment seems to be more advantageous, from the customer perspective, than vehicle ownership:
customers do not bear any marginal cost from infrastructure investments and accident probabilities
are low enough that vehicle side investments would provide a low return.

While our model provides useful basic insights, we have also proposed extensions that need
to be investigated further. Indeed, how does liability evolve in mixed traffic environments when
both automakers and ISSPs can control travel speeds and when value of time is low for AV users?
Answering this question will be the goal of our future work on this topic.
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CHAPTER 7

Conclusions and Future Research

In this dissertation work, we have attempted to address policy issues surrounding two important
technologies: e-hailing and automated vehicles.

We first showed that, when appropriately designed, a commission cap policy can effectively
regulate the ride-hailing industry, even when accounting for competition between e-hailing and
street-hailing. Coupled with our analysis of competition between e-hailing and street-hailing and of
congestion externality, this work provides useful insights and direction for policy makers seeking
to simplify the host of regulations that have historically been a feature of ride-hailing.

Then, we proceeded to investigate vehicle-infrastructure cooperation and assess whether it
could be a viable alternative to a vehicle-centric approach to automated driving. This demanded
the development of a model of an automated mobility market, the first of its kind. This model
allowed us to analyze interactions between automakers and ISSPs and provided us the means to
study the impact of market structure on automation, digitalization, and liability between these two
entities.

The work in this dissertation lays the groundwork for a number of other exciting research
avenues: optimal timing of infrastructure investment; evaluation of the safety benefits of ADAS
systems; and evaluation of the welfare effects of automaker’s entry in the insurance market.

First, our work on vehicle-infrastructure cooperation has focused on a static setting. While
such a framework is useful, it fails to provide any insight to policy makers as to how to address
the chicken-and-egg problem of digitization and automation. Indeed, on the one hand, without
users of smart infrastructure technology, or without quick adoption and penetration of compatible
AVs, investing in infrastructure would provide poor returns on investment. On the other, because
infrastructure is meant to help make AVs a reality, lack of infrastructure might mean significantly
delaying or foregoing altogether the benefits of AVs. In this context, we must understand how
provision of specific infrastructure technology will affect adoption of AVs and the appropriate
timing for these investments. This will demand the development and analysis of appropriate
models, but also a more empirical approach than the present work.
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The need for this empirical approach leads into the next possible research avenue. Since AVs
have not yet entered the market, it is difficult to assess whether the benefits they promise justify the
economic and social costs of their adoption. However, it is possible to use certain technologies as
proxies to evaluate the safety benefits of AVs: advanced driver assistance systems (ADAS). These
systems have slowly but readily penetrated the new vehicle markets and evaluating a) their effects
of accident risk and b) customers’ willingness to pay for these services could help us determine a
somewhat reliable estimate of the effect AV adoption on consumer welfare through safety.

Lastly, as touched upon in this work, auto companies have started to use their vehicle
technology to enter the insurance market. Over the past couple of years, some auto manufacturers
(e.g.: GM, Ford. . . ), have begun partnering with financial institutions to directly offer insurance to
their customers while others—such as Tesla—have decided to become insurers themselves. Such
a move has been enabled, in part, by automakers’ access to usage data from their vehicles and
customers rising interest in usage-based insurance (UBI). Such developments could lead to better
competition and reduced insurance rates for consumers. Additionally, automakers’ understanding
of their proprietary technologies could also help drive down repair costs, thus lowering premiums
further. However, evidence seems to suggest that safer drivers tend to self-select into monitoring
programs. Thus, we could observe an environment in which insurer-automakers attract the safest
drivers in their customer pool, while regular insurers are left with two types of monitoring-adverse
drivers: safer drivers who experience disutility from being monitored and riskier drivers who prefer
to keep their driving behavior hidden. This would limit regular insurers’ ability to hedge against
adverse selection, offer lower prices and compete. Lastly, to reduce their exposure to accident
risks as insurers, automakers will likely aim to make a larger fraction of their products safer by
equipping them with various safety and automation features. While such increased provision of
safety features would contribute to making driving safer, it may also lead to higher prices for
vehicles and could offset the reduction in ownership costs effected by lower insurance premiums.
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APPENDIX A

Appendices for Chapter 1

A.1 Numerical examples

A.1.1 Demand data

Base demand λ0 is obtained from Korolko et al. (2018). Background traffic demand is obtained by
scaling λ0 by 101 so that as λ0 increases, so does congestion and the externality of ridesourcing (as
would happen in practice). We show the base demand pattern in Figure A.1.

0 5 10 15 20 25

0

20

40

60

80

100

120

140

160

Figure A.1: Base demand and background demand data

A.1.2 Parameter values

All the parameters (except the bounds on the support of the value of time distribution) and their
values are described in Table A.1.

The parameter values used for the different value of time distributions are given in Table A.2.
1Our results show that, accross demand levels, the number of ride-sourcing vehicles N is at least 10% of the

number of background vehicles N b, which seems reasonable.
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Notation Interpretation Value
α Meeting distance elasticity 0.5
ξs Mode specific constant 0
γ Correlation coefficient between customer and driver detour time 1

γb Value of travel time for background traffic 30 $
hr

δ Pairing probability 0.1
φ Matching time window 5 min
θ Marginal effect of ridesourcing vehicles on traffic 1
A Scaling parameter for meeting time function 25
B Scaling parameter for detour distance function 5
dr Average distance of ridesourcing trips 7 km
dr,b Average distance of background traffic trips 3.5 km
V c Slope of speed function −0.11 kph·km2

veh
V 0 Free-flow speed 50 kph
U0 Trip utility $50
c Cost per driver $10
µ0 Cost of outside option $30

Table A.1: Parameter values for numerical examples

β̄
¯
β

High variance 75 5
Medium variance 60 20

Low variance 45 35

Table A.2: Uniform distribution parameter values
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A.2 Finding regulatory policy

As outlined in Section 2.5, we consider a Stackelberg game between the planner (leader) and the
monopolist (follower). The planner solves (REG) below2:

W = max
P s≥0, F s≥0,
P p≥0, F p≥0,
τN≥0, R≥0

U0 · (λs + λp · o)− λ0 ·
∫ β1

β2

β · (wm + wr) ·G′(β) · dβ

− λ0 ·
∫ β3

¯
β

β · (wp + wm + wr + ∆w) ·G′(β) · dβ

−R · (λs + λp) + τN ·N − γb · λb · wrb

s.t. (F s, F p, R) = S(P s, P p, τN)

(REG)

In the above, S(P s, P p, τN) is the best response function of the firm when subject to the regulation
(P s, P p, τN). This best response is obtained by solving (M-CAPT) below:

π = max
F s≥0, F p≥0,

R≥0

(F s −R) · λs + (F p −R) · λp

s.t. F s −R ≤P s,

F p −R ≤P p

(M-CAPT)

Moreover, the positivity constraint on P s and P p ensure that the regulation is implementable (the
platform can generate a profit and thus operates). The positivity constraint on τN enforces a no-
subsidy constraint on the outcome of the regulation.

As formulated, the problem is a bilevel program, a class of optimization problems difficult to
solve. For our numerical experiments, we used a heuristic solution procedure. In the process,
we solve (M-CAPT) with the current regulation policy (P s

k , P
p
k , τ

N
k ). Then, holding the firm’s

response constant, we solve (REG) and use the method of successive averages (MSA) to update
the regulation policy for the next step. Since our algorithm may not necessarily converge and
given that we do not consider whether the updated policy effectively increases welfare, we keep
track of the best solution obtained up to the current step. Thus, after solving for the firm’s best
response to (P s

k , P
p
k , τ

N
k ), we compare the welfare resulting from the monopolist’s response, Wk,

to the maximum realized welfare up to k, Wbest.
The above solution procedure yielded reasonably good solutions, as demonstrated in

Figure 2.6. The solutions may be further improved by applying a derivative-free method such

2Note that the revenue from tolls needs to be added to the social welfare function. Otherwise there would be a
missing transfer in our system.
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as Nelder–Mead or pattern search, as the decision variables of REG are of a low dimension.
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APPENDIX B

Appendices for Chapter 2

B.1 Nomenclature

Variable Description Unit
µi Generalized cost of service i $
λi Demand density rate for service i /mi2/hr
fi Trip fare for service i $
wmi Average customer waiting time on service i hr
wr Average trip time hr
dmi Distance between customer and closest available driver on service i mi
dr Average trip distance mi
v Traffic speed mi/hr
nIi Density of idle/cruising drivers on service i /mi2

ni Driver density on service i /mi2

ωi Hourly driver earnings on service i $
wdi Average pickup time experienced by drivers on service i hr
mci Marginal cost for service i $
mci Marginal cost per unit time for service i $/hr
p̄i commission cap imposed on service i $
τ̄i Toll per unit time imposed on service i vehicles $/hr
λb Trip density rate for background vehicles /mi2/hr
wrb Average travel time for background vehicles hr
nb Density of background vehicles /mi2

Table B.1: Variable description

B.2 Competition in friction-less environment

In order to show that, in the absence of friction, competition necessarily leads to lower fares,
we will consider a perfectly elastic labor supply with reservation wage c. Then, both services
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are identical and the system of equations that describes the operation of this friction-less hailing
service is as follows:

λi = Λi(µi, µ−i) (B.1a)

µi = fi + β · wr (B.1b)

wr =
dr

v
(B.1c)

ni = λi · wr (B.1d)

The above system is actually determined by two exogenous variables which we select to be the
fares. Then, the Nash equilibrium can be described by the following set of equations:

fi = − fi
εii

+ c · wr ∀i (B.2)

It is trivial to show that the pricing equation for a monopoly operating a single service is
identical to Equation B.2:

f sm = −f
sm

εsm
+ c · wr

However, at any level of supply and demand combination, the elasticity of demand faced by the
monopoly is lower, in absolute terms, than that faced by a duopolist: |εsm| < |εii|. It follows that,
at equilibrium, the fare is always lower in the duopoly case for this friction-less service. If the
monopoly operates both services, the same conclusion holds, since εii − εdmi = ε−ii·εi−i

ε−i−i
< 0.

B.3 Derivation under congestion

We apply the same analysis techniques as in Section 3.4 and Section 3.5.

B.3.1 Nash game and integrated monopoly

Under congestion, the Nash equilibrium can be described with the following set of equations:

fi = mci · (wdi + wr)− fi
εnei

(B.1a)

mci = ci + ωi ·

[
1 +

η−i−i
ηii · η−i−i − η−ii · ηi−i

]
+ τ oi + τnei (B.1b)
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where

τ os = −β · λs · [dms − dr · λs · wm
′

s ] · δc > 0 (B.2a)

τ oe = −β · λe ·
dme − dr · λe · wm

′
e

1 + λe · wm′e
· δc > 0 (B.2b)

τnes = − fs
εnes
· [dme − dr · λe · wm

′

e ] · Λse

1 + wm′e ·
[
1 + β · (wme + wr) · Λee

] · δc < 0 (B.2c)

τnee = − fe
εnee
· [dms − dr · λs · wm

′

s ] · Λes

1 + β · wr · dm′s · Λss

· δc < 0 (B.2d)

δc =
V ′

v2 + λb · drb · V ′
< 0 (B.2e)

From Equation B.1a, it is easy to note that a competing ride-hailing platform internalizes the
congestion externality that its marginal customer imposes on its other customers (τ oi ). However, the
term τnei and the absence of τ o−i in firm’s i pricing equation also indicate that the platform considers
the externality that this marginal customer imposes on customers on the competing platform. Such
externality is advantageous from a competitive standpoint and incentivizes the company to price
its rides less than it would in the absence of a competitor. Indeed, if we consider an integrated
company, the pricing equations become:

fi = mci · (wdi + wr)− fi
εdmi

+
f−i
εdmi
· λ−i
λi
· ε−ii
ε−i−i

(B.3a)

mci = ci + ωi ·

[
1 +

1

ηdmi

]
− ω−i
ηdmi
· n−i
ni
· η−ii
η−i−i

+
∑
j

τ oj (B.3b)

Comparing Equations 3.16b and B.1b, it is easy to note that τnei disappears from the
company’s pricing and that τ o−i is also accounted for. Thus, it appears that competition has the
effect of worsening traffic congestion.

B.3.2 First-best

The solution to the first-best problem:

W = max
fi≥0,
ri≥0

CS(µ1, µ2) +
∑
i

[
fi · λi − ωi · ni

]
+DS(ω1, ω2)− βb · λb · wrb (FBC)

can be readily derived as:

fi = mci · (wdi + wr) (B.4a)
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mci = ci + ωi +
∑
j

τ oj + τ b (B.4b)

where
τ b = −βb · λb · drb · δc > 0 (B.5)

As the inclusion of τ b indicates, ride-hailing customers must now pay for the externality they
impose on the background traffic. Moreover, just as in the congested monopoly case of Vignon
et al. (2021), the first-best is sustainable when congestion is high enough:

πi = −(ci + ωi) · nIi + (τ oi + τ b) · (wdi + wr) · λi (B.6)

B.3.3 Regulation

We focus on the case of regulation using a cap p̄i and a toll τ̄i ∈ [0, τ b] on ride-hailing vehicles. The
case for the integrated monopoly is similar to the case of a monopoly with product differentiation
considered in Vignon et al. (2021). Under our regulation, the Nash game becomes:

πi = max
fi≥0,
ni≥0

fi · λi − (ci + ωi + τ̄i) · ni

s.t. (ωi + ci + τ̄i) · ni ≥ (fi − p̄i) · λi
(NEC-REG)

Let θi be the Lagrangian multiplier associated with the commission cap constraint. Then, a
sufficient condition for the cap to replicate the first-best is given by:

θi =
1

fnei − (ci + τ̄i) · niλi
·
[fnei
εnei
− (τ b − τ̄i) ·

ni − nIi
λi

]
≥ 0 (B.7)

where fnei is the fare according to Equation 3.13a and all quantities are evaluated at the first-best.
Now, because the first-best is sustainable, it must be that f fbi > τ b · ni−n

I
i

λi
where f fbi is the fare of

service i under the first-best. Then, it follows that fnei > τ b · ni−n
I
i

λi
and fnei − (ci + τ̄i) · niλi > 0.

It follows that the above condition is met, regardless of the value of τ̄i so long as the first-best is
sustainable.

B.4 Numerical experiments

Functionally, we also assume that demand follows a logit model with dispersion parameter κ:

λi = λ0 · exp (−κ · µi)∑
j exp (−κ · µj) + exp (−κ · µ0)

(B.1)
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We also assume that speed is a linear function of the number of vehicles in the system:

v = v0 − vc ·
(∑

i

ni + nb
)

(B.2)

All the parameters and their values are described in Table B.1. We obtain a1 and a2 following
Zhang et al. (2019). We also obtain β, and κ from Zhang and Nie (2021b). Our market sizes range
from 500 to 19025. We assume that supply is perfectly elastic with cost c0 and we set λb0 = 10000.

Notation Interpretation Value
β Value of travel time 27.69 $

hr
βb Value of travel time for background traffic 20 $

hr
κ Demand logit dispersion 0.5
κb Background elasticity 0.01
a1 Efficiency parameter street-hail 38.69
a2 Efficiency parameter e-hail 1.625
dr Average trip distance 4 mi
dr,b Average background trip distance 5 mi
vc Slope of speed function 0.0025 mph·mi2

veh
v0 Free-flow speed 30 mph
µ0 Cost of outside option $14.68
c0 Driver opportunity cost $23

Table B.1: Parameter values for numerical examples
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APPENDIX C

Appendices for Chapter 3

C.1 Parameter values

C.1.1 User groups

We identify user groups and their population distribution using data from the 2017 National
Household Travel Survey (NHTS) (McGuckin and Fucci, 2018). We also use the total VMT
implied by the data to compute a VMT distribution suitable for our numerical examples. The
resulting parameters can be seen in Table C.1.

i User type Population
size (millions)

Daily VMT vi
(miles)

1 Age under 20 60.75 75
2 Over 65 61.80 45
3 Age 21− 65 167.15 15

Table C.1: Parameter values for numerical examples

C.1.2 Road groups

We identify road types in our example using classification from the Federal Highway
Administration (FHWA) (NYDOT). We then identify the relevant parameters in Table C.2 using
FHWA 2018 statistics for VMT, total miles built, number of lane-miles for each category. Capacity
for each road type is determined using guidelines from Margiotta and Washburn (2017).

C.1.3 Other parameters

The other parameters used in our numerical example are listed in Table C.3. f0 and b0 are
approximated by using estimates of the total savings at full automation in Clements and Kockelman
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k Road type Length (ten
thousands)

Capacity
V max
k

(thousands)
1 Local 290.69 4.79
2 Collector 79.2 5.01
3 Arterial 46.15 7.07

Table C.2: Parameter values for numerical examples

(2017) and the total yearly VMT in the US. The base manufacturing cost is obtained by using the
average selling price of a car in 2016 (Statista, 2019) and assuming $4, 000 in profits for the car
manufacturer. κc and κr are calculated by assuming a discount factor of 5% and assuming that
users will own their car for 7 years while operators will operate the roads for 25 years. mc,0 and
mr,0 will likely be higher in practice, but these are values that make our numerical experiments
easier.

Notation Interpretation Value
f0 User monetary value of a mile driven ¢5
b0 Operator monetary value of a mile driven ¢15
fc,0 Cost of congestion ¢10
c0 Base vehicle manufacturing cost $30, 000
c1 Manufacturing cost per unit of automation $5, 000
mc,0 Vehicle investment cost per unit of automation $155, 000
mr,0 Road unit investment per unit of digitalization $5, 000
α Utility automation share 0.6
ρ Substitution parameter 1
v Degree of homogeneity 2
ηc Customer congestion elasticity 0.2
ηr Operator congestion elasticity 0.4
γ Operator automation elasticity 0.2
θ Operator digitalization elasticity 0.4
κc Amortization parameter for vehicle purchase 0.15
κr Amortization parameter for road investment 0.07

Table C.3: Parameter values for numerical examples
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APPENDIX D

Appendices for Chapter 4

D.1 Parameter values

Notation Interpretation Value
a0,k Base investment cost for k ∈ {M, I} ($) {0, 25000}
a1,k Unit investment cost for k ∈ {M, I} ($) {5, 20}
bk Probability function parameter for k ∈ {M, I} {0.5, 0.25}
l Roadway length / Mileage per trip (mi) 40
ηs Smart portion of the roadway 0.2
ζ Number of times driven on roadway 260
λ0 Base travel demand 3000
P 0 Base crash probability (/mi) 10−4

V 0 Value of the outside alternative to car ownership 10
W 0 Initial budget ($) 30000
sj Accident severity for j ∈ {r, s} ($) {18000, 35000}
κc Amortization parameter for vehicle purchase 0.17
κr Amortization parameter for road investment 0.07

Table D.1: Parameter values for numerical examples
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