
Interpretable and Scalable Graphical Models for
Complex Spatio-temporal Processes

by

Yu Wang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Statistics)

in The University of Michigan
2022

Doctoral Committee:

Assistant Professor Yang Chen, Co-Chair
Professor Alfred O. Hero III, Co-Chair
Assistant Professor Walter Dempsey
Dr. Earl Lawrence, Los Alamos National Laboratory



Yu Wang

wayneyw@umich.edu

ORCID iD: 0000-0002-6287-4710

© Yu Wang 2022

mailto:wayneyw@umich.edu


ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my Ph.D.

advisors Dr. Alfred Hero and Dr. Yang Chen. This dissertation would not have

been possible without their continuous guidance, support, and encouragement. Al is

an exemplary scholar, who is always hardworking and dedicated to research. I am

constantly amazed by his sharpness on research and his deep insights about many dif-

ferent topics, ranging from physics, applied math, to statistics, and computer science.

I am deeply indebted to him for devoting so much time and energy to mentoring me

and guiding me through the transition from a student to a researcher. His passion for

research have profoundly influenced me from both professional and personal perspec-

tives. I am also fortunate enough to work with Yang, an inspirational advisor, who

is incredibly generous with her ideas and time; and a caring mentor, who constantly

offers her support and empathy. Our meetings and discussions have been a great

source of inspiration and greatly shaped my way of approaching research problems.

I am also very grateful to have Dr. Walter Dempsey and Dr. Earl Lawrence

serving on my doctoral dissertation committee and providing me with invaluable

comments. I was fortunate to collaborate with Walter on topic models and important

problems in the public health domain. Walter’s enthusiasm for research has left a lot

of positive impacts on me. I first met Earl during his visit to the department as

a distinguished alumni speaker. Later, I had the opportunity to work with him at

LANL on distributed dimensionality reduction and applications on space weather.

His constant support and humor make all the research meetings there and my overall

ii



experience at LANL enjoyable.

My thanks also go to staff members at the University of Michigan, Department of

Statistics, who have helped me over the past few years. In particular, I want to thank

Judy, Jean, Bebe, Virggie, Andrea, Gina, and many others, who always patiently

helped with my questions and warmly welcomed me into the office with big smiles.

Additionally, I would like to express my gratitude and appreciation to Dr. Jim

Zidek and Dr. Nhu Le at the University of British Columbia in Canada. My research

career started with Jim and Nhu, who are both brilliant researchers and caring men-

tors. Jim has always been a role model to me, and without him, I would not have

gone this far in this journey.

To all my friends that I made and all the people that I met throughout the Ph.D.

studies: This journey would not have been so rewarding without you! Shout out to

everyone in our research labs, especially Byoung and Zeyu from the Hero Group that

I was fortunate to collaborate with; Leo who organized those fun board games; and

Chengcheng, Cheng, Yangyi, and Ziping in my cohort. It was a great fun to spend

time with you, and I have learned a lot from our interactions. Last but not least, I

would like to thank my parents, Xiaoqing Tan the duck, Kitty the cat, and Larry the

chinchilla for their unwavering support and unconditioned love.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Gaussian Graphical Models for Tensor-valued Data . . . . . . 2
1.2 Dynamic Topic Models . . . . . . . . . . . . . . . . . . . . . 6
1.3 Outline and Contributions . . . . . . . . . . . . . . . . . . . . 8

II. The Sylvester Graphical Lasso . . . . . . . . . . . . . . . . . . . 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Sylvester Graphical Lasso . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Estimation of the graphical model . . . . . . . . . . 17

2.3 Large Sample Properties . . . . . . . . . . . . . . . . . . . . . 18
2.4 Numerical Illustrations . . . . . . . . . . . . . . . . . . . . . 22
2.5 EEG Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

III. A Proximal Alternating Linearized Minimization Method for
Tensor Graphical Models . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iv



3.2 Background and Notation . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Tensor Gaussian graphical models . . . . . . . . . . 34
3.2.3 The Sylvester generating equation . . . . . . . . . . 35

3.3 The SG-PALM Method . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Choice of step size . . . . . . . . . . . . . . . . . . . 39
3.3.2 Computational complexity . . . . . . . . . . . . . . 41

3.4 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . 44
3.5.2 Solar imaging data . . . . . . . . . . . . . . . . . . 46

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

IV. Multiway Ensemble Kalman Filter . . . . . . . . . . . . . . . . 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Ensemble Kalman filter . . . . . . . . . . . . . . . . 57
4.2.2 Multiway representations for diffusion processes . . 57
4.2.3 Kronecker-structured covariance models . . . . . . . 59

4.3 Penalized Multiway Ensemble Kalman Filter . . . . . . . . . 62
4.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . 67
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

V. A Geometry-driven Framework for Dynamic Topic Modeling 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.1 Probabilistic topic models and computational geometry 76
5.1.2 Application to Twitter data . . . . . . . . . . . . . 81
5.1.3 Application to TalkLife data . . . . . . . . . . . . . 82
5.1.4 Key contributions and outline of the chapter . . . . 83

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.1 LDA for micro-text documents . . . . . . . . . . . . 84
5.2.2 Time evolution of topics and shortest paths . . . . . 87
5.2.3 Interpretation and visualization of topic trends via

low-dimensional embedding . . . . . . . . . . . . . . 94
5.3 Twitter Data Analysis . . . . . . . . . . . . . . . . . . . . . . 96

5.3.1 Data preparation . . . . . . . . . . . . . . . . . . . 97
5.3.2 Hellinger-PHATE embedding for all topics . . . . . 98
5.3.3 Case study I: presidential election topic path . . . . 100
5.3.4 Case study II: general COVID-19 topic path . . . . 102

5.4 TalkLife Data Analysis . . . . . . . . . . . . . . . . . . . . . 105
5.4.1 Data preparation . . . . . . . . . . . . . . . . . . . 106
5.4.2 Clustering of labels . . . . . . . . . . . . . . . . . . 106
5.4.3 Learned topics vs. label topics . . . . . . . . . . . . 108

v



5.4.4 Case study: anxiety and suicide topic paths . . . . . 109
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . 112

VI. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 115

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

vi



LIST OF FIGURES

Figure

I.1 An overview given by Murdoch et al. (2019) that introduces different
stages (black text) in a data–science life cycle where interpretability
is important. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I.2 For multivariate Gaussian variables, the conditional dependence struc-
ture encoded in the precision matrix (left) can be represented by a
simple chain graph (right). . . . . . . . . . . . . . . . . . . . . . . . 3

I.3 Multiway data results in a patterned covariance. This structure can
be exploited by assuming similar patterns within each block, such as
those assumed in the Kronecker product models. . . . . . . . . . . . 5

I.4 Graphical representation of the standard Latent Dirichlet Allocation
(LDA) model. Here nodes are random variables; edges indicate de-
pendence through probability distributions (e.g., Dirichlet or multi-
nomial). Shaded nodes are observed; unshaded nodes are latent.
Plates indicate replicated variables. . . . . . . . . . . . . . . . . . . 7

II.1 Comparison of SyGlasso to Kronecker sum (KS) and product (KP)
structures. All models are composed of the same components Ψk

for k = 1, 2, 3 generated as an AR(1) model with mk = 4 as shown
in (a). The AR(1) components are brought together to create the
final 64× 64 precision matrix Ω following (b) the KP structure with
Ω =

⊗3
k=1Ψk, (c) the KS structure with Ω =

⊕3
k=1 Ψk, and (d)

the proposed Sylvester model with Ω =
(⊕3

k=1 Ψk

)2
. The KP does

not capture nested structures as it simply replicates the individual
component with different multiplicative scales. The SyGlasso model
admits a precision matrix structure that strikes a balance between
KS and KP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

II.2 Performance of the SyGlasso estimator against the number of itera-
tions under different topologies of Ψk’s. The solid line shows the sta-

tistical error log
(
∥Ψ̂(t)

k −Ψk∥F\∥Ψk∥F
)

, and the dotted line shows

the optimization error log
(
∥Ψ̂(t)

k − Ψ̂k∥F\∥Ψ̂k∥F
)

, where Ψ̂k is the

final SyGlasso estimator. The performances of Ψ1 and Ψ2 are repre-
sented by red and blue lines, respectively. . . . . . . . . . . . . . . . 24

vii



II.3 The performance of model selection measured by FPR + FNR. The
performances of Ψ1 and Ψ2 are represented by red and blue lines,
respectively. With an appropriate choice of λ, the SyGlasso recovers
the dependency structures encoded in each Ψk. . . . . . . . . . . . 25

II.4 Performance of SyGlasso, TeraLasso (KS), and Tlasso (KP) measured
by MCC under model misspecification. MCC of 1 represents a perfect
recovery of the sparsity pattern in Ω, and MCC of 0 corresponds to
random guess. From top to bottom, the synthetic data were gener-
ated with the precision matrices from SyGlasso, KS, and KP models.
The left column shows the results for a single sample (N = 1), and
the right column shows the results for N = 5 observations. Note
that the SyGlasso has better performance for a single sample (left
column) when data is generated from the matched Kronecker model
and as good performance for the mismatched Kronecker models. . . 27

II.5 Estimated brain connectivity results from SyGlasso for (a) the alco-
holic subject and (b) the control subject. The blue nodes correspond
to the frontal region, and the yellow nodes correspond to the parietal
and occipital regions. The alcoholic subject has asymmetric brain
connections in the frontal region compared to the control subject. . 28

II.6 Support (off-diagonals) of SyGlasso-estimated temporal Sylvester fac-
tor Ψ̂time of the precision matrix for (a) the alcoholic subject and (b)
the control subject. Both subjects exhibit banded conditional depen-
dency structures over time. . . . . . . . . . . . . . . . . . . . . . . . 29

III.1 Convergence of SG-PALM algorithm under datasets with varying
sample sizes (solid and dashed) generated via matrices with differ-
ent sparsity (red and blue). The function value gaps on log-scale
(left) verifies the geometric convergence rate in all cases and the
MCC over time (right) demonstrates the algorithm’s accuracy and
efficiency. Note that the SG-PALM reached almost perfect recover-
ies (i.e., MCC of 1) within 20 seconds in all cases. In comparison,
SyGlasso (big solid dots with line-range) was only able to achieve at
lower MCCs for lower sample-size cases within 30 seconds. . . . . . 47

III.2 Comparison of the SG-PALM, Tlasso, TeraLasso, IndLasso perfor-
mances measured by NRMSE in predicting the last frame of 13-frame
video sequences leading to B- and MX-class solar flares. The NRM-
SEs are computed by averaging across testing samples and AIA chan-
nels for each pixel. 2D images of NRMSEs are shown to indicate that
certain areas on the images (usually associated with the most abrupt
changes of the magnetic field/solar atmosphere) are harder to predict
than the rest. SG-PALM achieves the best overall NRMSEs across
pixels. B flares are generally easier to predict due to both a larger
number of samples in the training set and smoother transitions from
frame to frame within a video (see the supplemental material for
details). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

viii



III.3 Examples of one-hour ahead prediction of the first two AIA channels
of last frames of 13-frame videos, leading to B- (first two rows) and
MX-class (last two rows) flares, produced by the SG-PALM, Tlasso,
TeraLasso, IndLasso algorithms, comparing to the real image (far
left column). Note that in general linear forward predictors tend to
underestimate the contrast ratio of the images. The proposed SG-
PALM produced the best-quality images in terms of both the spatial
structures and contrast ratios. See the supplemental material for
examples of predicted images from the HMI instrument. . . . . . . . 51

IV.1 RMSEs of the estimated states via EnKF over 50 time steps using dif-
ferent (inverse) covariance estimators. The 95% posterior interval for
RMSEs over all ensemble members are shown here with the posterior
mean highlighted using solid lines. Here, each state is of dimension
64 × 64 and is generated via either a convection-diffusion (right) or
Poisson-AR(1) equation (left). The best performers in terms of mean
RMSE over all ensemble members are KPCA for convection-diffusion
and SG-PALM for Poisson-AR(1). . . . . . . . . . . . . . . . . . . . 71

IV.2 Covariance/precision structures for Poisson-AR and convection-diffusion
dynamics and their estimates. Here, white/blank entries indicate ze-
ros in the (inverse) covariance matrix. For Poisson-AR dynamics the
Sylvester graphical model approximately matches the true structure
of the precision matrix. For convection-diffusion dynamics the co-
variance instead of the precision matrix is structured and sparse. . . 72

IV.3 Visualizations of the performances by various EnKF methods for
tracking the Kuramoto-Sivashinsky system. The proposed multiway
EnKF outperforms the ETKF and its localized version. . . . . . . . 74

V.1 Conditional subsampling procedure using a hypothetical corpus com-
posed of five documents each containing five tweets. For example,
C = {d1, . . . , d5}, d1 aggregates tweets from day 1, d2 aggregates
tweets from day 2, and so on. The subsampling weights for each
document are shown in the bar plots and are exponentially decaying
with a factor of 0.75, centered at day 1 (left, w1) and day 2 (right,
w2), respectively. Each newly generated corpus is a proportionally
weighted random sample and a realization of these samples are shown
in the tables (C1 and C2). Note that the two corpora differ only by
those highlighted and italicized tweets. . . . . . . . . . . . . . . . . 88

ix



V.2 Evolution along the Hellinger shortest paths of a COVID-19 topic
on February 15, 2020, to a COVID-19 topic on May 15, 2020. The
paths are computed on a 10-nearest neighbor graph (top) and a fully
connected graph (bottom). Each word cloud image represents a topic
at a particular time, showing the word distribution encoded by font
size (only the top 30 words in each topic are shown). The middle
two word clouds represent two intermediate topics on the respective
paths and illustrate the benefit of using the k nearest neighbor graph.
The middle two topics on the top row seem naturally connected to
the beginning and the end topics, in contrast to the bottom row. . . 93

V.3 Comparison of principle component analysis (PCA), t-distributed
stochastic neighbor embedding (t-SNE), uniform manifold approx-
imation and projection (UMAP), and potential of heat-diffusion for
affinity-based transition embedding (PHATE) for dimensionality re-
duction. The methods are applied to 2D embedding of simulated 10
trajectories (identified by color) of 100-dimensional probability vec-
tors, all originating from a common initial point. Except for PCA, all
these methods are applied to the matrix of Hellinger distances. Only
PHATE correctly captures the temporal progressions as distinct tra-
jectories originating from a common initial point. . . . . . . . . . . 96

V.4 Potential of heat-diffusion for affinity-based transition embedding
(PHATE) for all word distributions. Here the two bounding boxes
and insets highlight two of the COVID-19-related topic clusters/paths
(COVID/COVID NEWS and STAY HOME). The colors, sizes, and
styles signify various clusters, tweet volumes, and shortest paths, as
given in the dictionary in Appendix 4.9. Note that the embedding
captures some important clustering/trajectory structures, for exam-
ple, branching, splitting, merging, and so on. . . . . . . . . . . . . . 99

V.5 Potential of heat-diffusion for affinity-based transition embedding
(PHATE) for subsets of topics in the COVID NEWS cluster (right)
and the presidential election path (left) within the cluster. Colors and
sizes highlight time and tweet volumes, respectively. Here three word
clouds containing top 30 words in corresponding topics are shown for
the time points highlighted by red circles, showing important real-
word events that are annotated. Note the plot at the bottom shows
(near lower left) the merge and split of different paths (labeled by
filled squares, crosses, and pluses) within the same cluster. . . . . . 100

V.6 County-level maps for California. It shows the spatial distribution of
proportional tweet volumes for the three time points on the COVID
NEWS (presidential election) path. . . . . . . . . . . . . . . . . . . 102

x



V.7 Potential of heat-diffusion for affinity-based transition embedding
(PHATE) for subsets of topics in the COVID cluster. The plots
demonstrate a 2D (left) and a 3D (right) embedding of two differ-
ent paths (i.e., health care and politics). Colors and sizes highlight
time and tweet volumes, respectively. Here four word clouds con-
taining top 30 words in corresponding topics are shown for the time
points (with arrows connecting the beginning and the end topics on
the same path) highlighted by red (health care) and black (politics)
circles. Note the plots show divergent behavior of public discourse
around COVID-19, where two similar discussions diverge to differ-
ent discussions (indicated by the word clouds). The 3D embedding
illustrates nonlinear paths, that is, spirals and loops, for this topic. . 103

V.8 County-level maps for California. It shows the spatial distribution
of proportional tweet volumes for three time points on the COVID
(health care) path. Note that counties’ names are given for spatial
hot spots (in terms of tweet volume). . . . . . . . . . . . . . . . . . 105

V.9 Top words from the merged/clustered words distributions. . . . . . 108
V.10 Examples of the most similar (top row), not quite similar (middle

row), and the least similar (bottom row) learned topics compared
to the label topic under labels “NauseaSuspected” and/or “Nausea-
WithEatingDisorderSuspected” at various timestamps. The top row
clearly resembles the discussion expected from expert knowledge. . . 109

V.11 The dot product scores between the learned topics and the label topic
under labels “NauseaSuspected” and/or “NauseaWithEatingDisor-
derSuspected” across timestamps (52 weeks in 2019), where the hor-
izontal dotted line indicate the average over those timestamps. Here,
scores computed from topics learned with no supervision, minimal
supervision, and weak supervision are compared – more supervision
results in more similar topics compared with the labels. . . . . . . . 110

V.12 Potential of heat-diffusion for affinity-based transition embedding
(PHATE) for two different topic paths. The plots demonstrate a
2D (left) and a 3D (right) embedding of two different paths – anx-
iety and suicidal ideation/attempts. Colors and sizes highlight time
(52 weeks in 2019) and posts volumes, respectively. Here four word
clouds containing top 30 words in corresponding topics are shown for
the time points highlighted by red (suicide) and blue (anxiety) circles
on the 3D plot. On the 2D plot, arrows are drawn connecting the
beginning and the end topics on the same path with circles emphasiz-
ing several key time points. Note the plots show convergent behavior
of these two temporal topic paths, where two dissimilar discussions
converge to similar discussions (indicated by the word clouds). The
3D embedding further confirms this converging behavior. . . . . . . 111

xi



B.1 Examples of one-hour ahead prediction of the first three channels
(HMI components) of ending frames of 13-frame videos, leading to
B- (first three rows) and MX-class (last three rows) flares, produced
by the SG-PALM, comparing to the real image (left column). Sim-
ilarly to AIA predictions, linear forward predictors tend to underes-
timate the contrast ratio of the images. Nonetheless, the SG-PALM
algorithm was able to both capture the spatial structures of the un-
derlying magnetic fields. HMI images tend to be harder to predict, as
indicated by the increased number and decreased degree of smooth-
ness of features, signifying the underlying magnetic activity on the
solar surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.2 Comparison of the SG-PALM performance measured by NRMSE in
predicting the AIA channels (i.e., last four channels) of the ending
frame of 13-frame videos leading to B- and MX-class solar flares, by
using all HMI&AIA channels (left column) and AIA-only channels
(right column). The NRMSEs are computed by averaging across
both testing samples and channels for each pixel. Note that there are
improvements in both the averaged errors rates and the uncertainty
in those errors (i.e., range of the errors) by including multi-instrument
image channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.3 Examples of frames at various timestamps of videos preceding the
predictions of the last frames (last column) that lead to MX flares.
Here, the first two rows correspond to the same video as the last two
rows in Figure III.3. Note that the prediction tasks are difficult in
these two extreme cases, where there are dramatic changes from the
12th to the current (13th) frames. . . . . . . . . . . . . . . . . . . . 155

B.4 Examples of frames at various timestamps of videos preceding the
predictions of the last frames (last column) that lead to B flares.
Here, the first two rows correspond to the same video as the first two
rows in Figure III.3. Note that the prediction tasks are easier than
those illustrated in Figure B.3, since the transitions near the end of
the videos are much smoother. . . . . . . . . . . . . . . . . . . . . . 156

B.5 Estimated spatial and two (longitude and latitude) temporal Sylvester
generating factors for B and MX solar flares, along with their off-
diagonal sparsity patterns (second row in each subplot). Both classes
exhibit autoregressive dependence structures (across time or space).
Note the significant difference in the temporal components, where the
B flares exhibit longer range dependency. This is consistent with the
smooth transition property of the corresponding videos as illustrated
previously. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

C.1 2D Convection-diffusion (top) and Poisson-AR(1) state variables at
three different time steps. . . . . . . . . . . . . . . . . . . . . . . . . 162

xii



C.2 Inverse covariance structures for Poisson-AR(1) and its estimates.
Here, white entries indicate zeros in the inverse covariance matri-
ces. The zoomed-in plots show two temporal blocks (each of size
64 × 64) of spatial inverse correlation structures with the diagonal
elements removed for clearer visualization. SG-PALM and the asso-
ciated Sylvester graphical model produce the richest structures. . . 163

C.3 Inverse covariance structures for the Convection-Diffusion and its
estimates. Here, white entries indicate zeros in the inverse covari-
ance matrices. The zoomed-in plots show two temporal blocks (64×
64) of spatial inverse correlation structures with the diagonal ele-
ments removed for clearer visualization. SG-PALM and the associ-
ated Sylvester graphical model produce the richest structures. . . . 164

C.4 Visualizations of the middle 128 rows and columns of the covariance
structures for Poisson-AR(1) and Convection-Diffusion dynamics and
their estimates, which show two temporal blocks of spatial correlation
structures, each of size 64×64, with the diagonal elements removed for
clearer visualization of the pattern. Here, white entries indicate zeros
in the covariance matrices. Since the covariances are not sparse in
general, all matrices are thresholded for clearer inspections of patterns.165

D.1 Plate notation comparison for the Twitter Latent Dirichlet Alloca-
tion (T-LDA) (left) and the standard Latent Dirichlet Allocation
(LDA) (right) models. Here nodes are random variables; edges indi-
cate dependence through probability distributions (e.g., Dirichlet or
multinomial). Shaded nodes are observed; unshaded nodes are latent.
Plates indicate replicated variables. Note that the T-LDA model ag-
gregates tweets from each user into a document and constrains each
tweet to be drawn from only one topic. . . . . . . . . . . . . . . . . 168

D.2 Multidimensional scaling (MDS), isometric feature mapping (ISOMAP),
and potential of heat-diffusion for affinity-based transition embed-
ding (PHATE) for the same set of word distributions. A shortest
path computed on 10 nearest neighbors graph is highlighted on each
embedding with red and blue points indicating the starting and end-
ing points of the path. Note that PHATE identifies the cleanest path
connecting the red and blue points, with minimal background noises
(grey points) included in between. . . . . . . . . . . . . . . . . . . . 171

D.3 Three simulated trajectories of probability vectors on a sphere. Each
color signifies a trajectory simulated using a specific σ in the random-
walk structure described in Section 5.2.3. Here, three trajectories
started at the same point exhibit different progressive structures: sta-
ble (dark blue), chaotic and clustering (light blue), and sharp transi-
tion (brown). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

xiii



D.4 Comparison of principle component analysis (PCA), t-distributed
stochastic neighbor embedding (t-SNE), and potential of heat-diffusion
for affinity-based transition embedding (PHATE). Two versions of
PHATE with different tuning parameters are illustrated. The data
are 3000 tree-structured observations with 10 branches. Various
branches are colored differently. Note that for this truly trajectory-
based data, PHATE gives the clearest low-dimensional representation
of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

D.5 Comparison of principle component analysis (PCA), t-distributed
stochastic neighbor embedding (t-SNE), uniform manifold approx-
imation and projection (UMAP), and potential of heat-diffusion for
affinity-based transition embedding (PHATE). Here 3, 000 indepen-
dent data points were generated from a 3-component (with weights
0.6, 0.3, 0.1) 10-dimensional Gaussian mixture model. Here, data
were transformed via softmax to resemble a probability vector. Note
that for this random nonstructured data, PHATE did not ‘create’
spurious trajectories in the low-dimensional embedding. . . . . . . . 177

D.6 Principle component analysis (PCA), t-distributed stochastic neigh-
bor embedding (t-SNE), uniform manifold approximation and pro-
jection (UMAP), and potential of heat-diffusion for affinity-based
transition embedding (PHATE) using Euclidean and cosine metrics.
Here 10 trajectories of 100-dimensional probability vectors are gen-
erated, where the trajectories are colored differently. PHATE gives
the clearest 2D representation of the inputs that preserves their high-
dimensional progressive structures, regardless of the distance metric
used. Comparing with Figure V.3, the Hellinger metric outperforms
the other two metrics in recovering the data geometry. . . . . . . . . 178

D.7 Top word clouds showing evolution of topics on the presidential elec-
tion topic paths computed via the shortest path algorithm (bottom)
and the TopicFlow (top) algorithm. The sample timestamps at which
the topics are learned are March 23, 24, 27, and May 15 (top); March
23, 27, and May 15 (bottom). Note that the shortest path algorithm
produces much smoother and more intuitive transitions among topics
within a general theme. . . . . . . . . . . . . . . . . . . . . . . . . . 180

D.8 Volume of all and geotagged Decahose tweets for each day during
the study period. The Decahose stream generates around 30 − 50
million raw tweets and 50−100 thousand geotagged English language
tweets per day, except for several missing/incomplete cases with 0 or
abnormally small volumes. . . . . . . . . . . . . . . . . . . . . . . . 183

xiv



D.9 Evolution along the shortest paths of a COVID-19 topic on the first
day to a COVID-19 health care focused topic on the last day illus-
trated as top word clouds. The paths are computed on a 8- (top) and
a 12- (bottom) nearest neighbor graph. The middle two word clouds
are illustrations of two of the topics on the paths at the same time
points as those in Figure V.2. Note that the intermediate topics in
both cases represent natural transformations from the beginning to
the end topics, confirming that the shortest path is not sensitive to
small perturbations of k around 10. . . . . . . . . . . . . . . . . . . 184

D.10 Contributions of tweet volume from various time points for tempo-
rally smoothed corpora. The examples are constructed for March 31,
using smoothing parameters 0.65, 0.75, 0.85 (from top to bottom).
Although the plots exhibit different resolutions and spans of the his-
tograms, the shapes of the contribution distributions are similar in
all cases. This illustrates robustness of the proposed method to the
choice of smoothing parameters. . . . . . . . . . . . . . . . . . . . . 186

D.11 Potential of heat-diffusion for affinity-based transition embedding
(PHATE) for all word distributions. The topics here are learned
by T-LDA on tweet collections constructed with smoothing parame-
ters 0.65 (top) and 0.85 (bottom). Here two clusters and one shortest
path are highlighted for comparison with Figure V.4. Note that the
overall structures as well as the trajectories for highlighted points are
similar in all three cases, while the lengths of the trajectories are dif-
ferent, which are the result of different assumptions on the range of
the temporal dependence (i.e., a smoothing using 0.85 assumes longer
range dependence by including more old tweets). . . . . . . . . . . . 187

D.12 Bayesian information criteria (BIC) scores across timestamps for dif-
ferent choices of the numbers of topics. . . . . . . . . . . . . . . . . 189

D.13 Potential of heat-diffusion for affinity-based transition embedding
(PHATE) for subsets of topics lie on the executive order path (top)
and the wash hands path (bottom). Colors and sizes of points high-
light time and tweet volume, respectively. Here two word clouds
containing top 30 words in corresponding topics are shown for the
time points highlighted by red circles in each path. Note that in
both cases, the topic near the beginning of the study period is simi-
lar to that near the end of the study period. This shows the stability
of topics on linear trajectories. . . . . . . . . . . . . . . . . . . . . . 193

D.14 State-level spatial distribution of tweet proportions generated from
all topics on the COVID NEWS (presidential election) path. Cali-
fornia, New York, Texas, and Illinois are highlighted for illustration,
while all other states are ll plotted in grey. Note that similar three
events (annotated using texts) as in Figure V.5 correspond roughly
to the three peaks in the time-course plot, indicating validations of
the quality of the shortest path using real-world events. . . . . . . . 194

xv



D.15 State-level spatial distribution of Tweet proportions generated from
all topics on the COVID (health care) path. California, New York,
Texas, and Illinois are highlighted for illustration, while all other
states are plotted in grey. Note that a time period in April is anno-
tated with relevant events explaining the surge in tweet proportions
in many states. This validates the quality of this shortest path using
real-world events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

D.16 Top words visualization of the sparse word distributions of each label
before clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

xvi



LIST OF TABLES

Table

III.1 Run time comparisons (in seconds with N/As indicating those exceed-
ing 24 hour) between SyGlasso and SG-PALM on synthetic datasets
with different dimensions, sample sizes, and densities of the generat-
ing Sylvester factors. Note that the proposed SG-PALM has average
speed-up ratios ranging from 1.5 to 10 over SyGlasso. . . . . . . . . 45

IV.1 Comparison of theoretical guarantees on sample complexity (statis-
tical error) and computational complexity of various precision / co-
variance estimators. Here, M = max{d1, d2, N}, mk =

∏
i ̸=k di is

the co-dimension of the k-th mode, d =
∏K

k=1 di, and sk character-
izes the sparsity of each of the inverse covariance Kronecker factors
sk = |{(i, j) : i ̸= j, [Ψk]i,j ̸= 0}|, s is the sparsity of the full inverse

covariance s = |{(i, j) : i ̸= j,Ωi,j ̸= 0}| and s =
∑K

k=1mksk if Ω
satisfies the Kronecker sum model. . . . . . . . . . . . . . . . . . . 65

IV.2 Runtime (in seconds) of 20 time steps of EnKF tracking using var-
ious (inverse) covariance estimation algorithms. Comparisons under
various problem sizes (i.e., different d and N) and two observation
types (i.e., fully observed or partially observed) are shown. Note the
sparse multiway precision models (SG-PALM, KGlasso, TeraLasso)
are comparably fast and are all faster than Glasso (for large problems)
and KPCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.1 Run time (in seconds) comparisons between SyGlasso and SG-PALM
on solar flare data for different regularization parameters. Note that
the SG-PALM is an order of magnitude faster that SyGlasso. . . . . 152

xvii



C.1 Comparisons of performances measured by log
(
∥Σ̂−Σ∥F\∥Σ∥F

)
for KPCA as well as log

(
∥Ω̂−Ω∥F\∥Ω∥F

)
and the Mathews Corre-

lation Coefficient (MCC) for SG-PALM, Tlasso, TeraLasso, Glasso.
The MCC is a measure of the quality of sparsity recovery considered
as a binary classification problem, where ±1 indicates perfect agree-
ment or disagreement between the truth and the estimation. Here
the Frobenius norm errors are included in the first row under each
generating type while the MCCs are in the second row. Note that
the best performers under each type/criteria are highlighted. . . . . 166

C.2 Runtime (in seconds) of estimating spatio-temporal (inverse) covari-
ance matrices of size d × 50, where d is varying, using various al-
gorithms. Comparisons under various problem sizes (i.e., different d
and N) are shown. Note the sparse multiway precision models (SG-
PALM, KGlasso, TeraLasso) are comparably fast and are all faster
than Glasso (for large problems) and KPCA. . . . . . . . . . . . . . 166

D.1 Summary of the number of skips along with the length of those skips
for four different topic paths. The paths are discovered by the shortest
path algorithm using 10-nearest neighbor weighted graph. Note that
all paths exhibit small numbers of short-length skips. . . . . . . . . 169

D.2 A portion of connected presidential election topics via the shortest
path mechanism (left column) and the TopicFlow mechanism (right
column). Here topics are indicated by their indices, e.g., 0 − 49, at
each timestamp (row index). NA indicates that no connection has
been made by the algorithm. . . . . . . . . . . . . . . . . . . . . . . 180

D.3 A portion of connected presidential election topics via the shortest
path mechanism (left column) and the TopicFlow mechanism (right
column) using the same distance metric (Hellinger). Here topics are
indicated by their indices, e.g., 0−49, at each timestamp timestamps
(row index). NA indicates that no connection has been made by the
algorithm. Note that the restriction imposed by TopicFlow impacts
the topic path similar (from March 23 to 27) to that in Table D.2 . 181

D.4 Average Hellinger distances between any two topics paths generated
using various neighborhood parameters k as the column/row indices.
Examples are shown for the COVID (health care) topics. Note that
the average Hellinger distances are identically 0 across all pairs of
paths, indicating that the shortest paths are stable under different
choices of k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

xviii



D.5 Average Hellinger distances between any two topics paths generated
from corpora with various smoothing parameters as the column/row
indices. Examples are shown for the COVID NEWS (presidential
election) and the COVID (health care) topics in the top and bottom
tables, respectively. Note that the average Hellinger distances are
both relatively small and stable in the sense that all pairwise distances
are similar in magnitude, indicating that the shortest paths are stable
under different choices of smoothing parameters. . . . . . . . . . . . 188

D.6 Label names and corresponding percentage volume in all posts gen-
erated in 2019. Note the label “Other” indicates a post is not labeled
by any other labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

D.7 Seed words and the associated weights that are used in the weakly-
supervised LDA algorithm. Weights are computed as natural log of
the volume (number of occurrences) of the corresponding word in the
entire year of 2019, multiplied by a tune-able constant (equals 10 here).197

D.8 Clustered labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

xix



LIST OF APPENDICES

Appendix

A Appendix of Chapter II . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B Appendix of Chapter III . . . . . . . . . . . . . . . . . . . . . . . . . . 134

C Appendix of Chapter IV . . . . . . . . . . . . . . . . . . . . . . . . . . 158

D Appendix of Chapter V . . . . . . . . . . . . . . . . . . . . . . . . . . 167

xx



ABSTRACT

This thesis focuses on data that has complex spatio-temporal structure and on

probabilistic graphical models that learn the structure in an interpretable and scal-

able manner. We target two research areas of interest: Gaussian graphical models

for tensor-variate data and summarization of complex time-varying texts using topic

models. This work advances the state-of-the-art in several directions. First, it in-

troduces a new class of tensor-variate Gaussian graphical models via the Sylvester

tensor equation. Second, it develops an optimization technique based on a fast-

converging proximal alternating linearized minimization method, which scales tensor-

variate Gaussian graphical model estimations to modern big-data settings. Third,

it connects Kronecker-structured (inverse) covariance models with spatio-temporal

partial differential equations (PDEs) and introduces a new framework for ensemble

Kalman filtering that is capable of tracking chaotic physical systems. Fourth, it pro-

poses a modular and interpretable framework for unsupervised and weakly-supervised

probabilistic topic modeling of time-varying data that combines generative statistical

models with computational geometric methods. Throughout, practical applications of

the methodology are considered using real datasets. This includes brain-connectivity

analysis using EEG data, space weather forecasting using solar imaging data, longi-

tudinal analysis of public opinions using Twitter data, and mining of mental health

related issues using TalkLife data. We show in each case that the graphical mod-

eling framework introduced here leads to improved interpretability, accuracy, and

scalability.

xxi



CHAPTER I

Introduction

Complex, structured data is ubiquitous in both industrial and academic settings

and has elicited a commensurate interest in utilizing such information to assist in

inference and decision making. Often, there exists simpler and interpretable underly-

ing structure that can be exploited to make inference and summarization procedures

more tractable. For large datasets, in particular, it is imperative to consider the

data in the context of its structure to develop parsimonious models that represent

the intrinsic form of the data well and provide computationally efficient, theoretically

grounded inference procedures. On one hand, searching for such structures can help

to summarize the data in a more interpretable manner and find relevant attributes

of the data of interest that might otherwise go undetected. On the other hand, for

some datasets the structure is explicit, and thus requires careful consideration when

reasoning about modeling decisions.

Moreover, despite the fact that machine learning models have recently demon-

strated great success in learning the above-mentioned complex structures that enable

them to make predictions about unobserved data, the ability to interpret what a model

has learned is yet to be determined and has been receiving an increasing amount of

attention (Rudin et al., 2022; Murdoch et al., 2019; Du et al., 2019; Doshi-Velez and

Kim, 2017; Rudin, 2019; Papernot and McDaniel, 2018). In particular, Murdoch et al.
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(2019) recently introduced a unified PDR (predictive, descriptive, relevant) framework

for discussing interpretations of machine learning and statistical models in general,

and categorized existing techniques into model-based and post-hoc categories, with

subgroups including sparsity, modularity, and simulatability. In this dissertation, the

focus is on data that has temporal or spatio-temporal structure and on problems

that benefit from the application of spatio-temporal based inference algorithms. In

both cases, we target the overarching desiderata described in the PDR interpretabil-

ity framework and introduce statistical methods that improve the overall (predictive

and descriptive) accuracy and relevancy through both model-based and post-hoc ap-

proaches. Specifically, we attempt to advance two research areas. First, Gaussian

graphical models for tensor-valued data is studied, and we develop a sparse multiway

representation of constituent spatial and temporal processes, which enables a decom-

posable (i.e., spatial and temporal) and scalable framework for analyzing tensor data,

especially that generated from complex dynamical systems. Second, a framework for

topic modeling of time-varying texts is developed. The framework breaks previously

(computationally and statistically) intractable approaches into tractable modules and

utilizes computational geometric methods for extracting various (stable) forms of in-

formation from the fitted model. Overall, we improve interpretability, scalability, and

accuracy throughout the full life cycle (see Figure I.1) of a data science problem with

complex structure. Below, these two research areas are briefly introduced that form

the backbone of this thesis.

1.1 Gaussian Graphical Models for Tensor-valued Data

Estimating conditional independence patterns of multivariate data has long been

a topic of interest for statisticians. In the past decade, researchers have focused on

imposing sparsity on the precision matrix (inverse covariance matrix) to develop effi-

cient estimators in the high-dimensional statistics regime where sample size is much
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Figure I.1: An overview given by Murdoch et al. (2019) that introduces different
stages (black text) in a data–science life cycle where interpretability is important.

less than the dimension of each sample (N ≪ d). The success of the ℓ1-penalized

method for estimating conditional dependencies was demonstrated in Meinshausen

and Bühlmann (2006) and Friedman et al. (2008) for the multivariate Gaussian set-

ting. Contributing to this success is the underlying graphical structure (see Figure I.2)

that facilitates simple interpretation and ties the statistical model to the mathemat-

ical field of graph theory (Lauritzen, 1996).

Figure I.2: For multivariate Gaussian variables, the conditional dependence structure
encoded in the precision matrix (left) can be represented by a simple chain graph
(right).

This success has naturally led researchers to generalize these methods to multiway

tensor-valued data. Such generalizations are of benefit for many applications, includ-

ing for example, the estimation of brain connectivity in neuroscience, reconstruction

of molecular networks, and detecting anomalies in social networks over time. The first

generalizations of multivariate analysis to the tensor-variate settings were presented
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by Dawid (1981), where the matrix-variate (a.k.a. two-dimensional tensor) distribu-

tion was first introduced to model the dependency structures among both rows and

columns. Dawid (1981) extended the multivariate setting by rewriting the tensor-

variate data as a vectorized (vec) representation of the tensor samples X ∈ Rd1×···×dk

and analyzing the overall precision matrix Ω ∈ Rd×d, where d =
∏K

k=1 dk. Even

for a two-dimensional tensor X ∈ Rd1×d2 , the computation complexity and sample

complexity is high since the number of parameters in the precision matrix grows

quadratically as d2. Therefore, in the regime of tensor-variate data, unstructured

precision matrix estimation has posed challenges due to the large number of samples

needed for accurate structure recovery.

To address the sample complexity challenges, sparsity can be imposed on the

precision matrix Ω by using a sparse Kronecker product (KP) or Kronecker sum

(KS) decomposition of Ω, where each decomposed factor has an underlying graph-

ical representation like Figure I.2 that can be modeled, estimated, and interpreted

separately. The earliest and most popular form of sparse structured precision matrix

estimation represents Ω as the KP of smaller precision matrices, which corresponds

to a separable structure across different modes of a data tensor (see Figure I.3).

Tsiligkaridis et al. (2013) and Zhou (2014) proposed to model the precision matrix

as a sparse KP of the precision matrices along each mode of the tensor in the form

Ω = Ψ1 ⊗ · · · ⊗ΨK . The KP structure on the precision matrix has the nice prop-

erty that the corresponding covariance matrix is also a KP. Zhou (2014) provides a

theoretical framework for estimating the Ω under KP structure and showed that the

precision matrices can be estimated from a single instance under the matrix-variate

normal distribution. Lyu et al. (2019) extended the KP structured model to tensor-

valued data, and provided new theoretical insights into such models. An alternative,

called the Bigraphical Lasso, was proposed by Kalaitzis et al. (2013) to model con-

ditional dependency structures of precision matrices by using a KS representation
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Figure I.3: Multiway data results in a patterned covariance. This structure can be
exploited by assuming similar patterns within each block, such as those assumed in
the Kronecker product models.

Ω = Ψ1 ⊕Ψ2 = (Ψ1 ⊗ I) + (I⊗Ψ2). On the other hand, Rudelson and Zhou (2017)

and Park et al. (2017) studied the KS structure on the covariance matrix Σ = A⊕B

which corresponds to errors-in-variables models. More recently, Greenewald et al.

(2019) proposed a model that generalized the KS structure to model tensor-valued

data, called the TeraLasso. As shown in their paper, compared to the KP structure,

KS structure on the precision matrix leads to a different type of separability on the

covariance matrix that provides a more parsimonious representation.

Despite being modeling choices, the KP and KS structures admit their own pros

and cons. The KP model admits a simple stochastic representation, which defines a

generating process for the underlying data. Unlike the KP model, the KS model does

not lead to a natural generative interpretation. From another perspective, Kronecker

structures can be characterized by the product graphs of the individual components.

In particular, Kalaitzis et al. (2013) first motivated the KS structure on the precision

matrix by relating Kronecker sum of matrices to the associated Cartesian product
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graph. Thus, the overall structure of Ω naturally leads to a parsimonious model

that brings the individual components together. The KP, however, corresponds to

the direct tensor product of the individual graphs and leads to a denser dependency

structure in the precision matrix Greenewald et al. (2019). Chapter II proposes a new

Kronecker-structured graphical model that admits a natural stochastic representation

for precision matrices associated with tensor data. The resulted Gaussian graphical

model strikes a balance between the KP- and KS- structured models. The new model

poses additional challenge in computation, Chapter III proposes an estimation algo-

rithm that utilizes state-of-the-art optimization technique and scales the method to

modern big data applications. Chapter IV studies the connection between multiway

Gaussian graphical models and second-order representation of spatio-temporal par-

tial differential equations (PDE) and introduces an Kalman filtering framework for

model-based physics-informed data assimilation.

1.2 Dynamic Topic Models

Probabilistic topic model is a suite of algorithms that aim to automatically dis-

cover and annotate large collections of documents that contain useful information with

thematic labels. Topic modeling algorithms are statistical methods that analyze the

words of the original texts to discover the themes that run through them, how those

themes are connected to each other, and how they change over time. One such model

that has been very successful is the Latent Dirichlet Allocation (LDA) model (Blei

et al., 2003), which infers the topics (i.e., thematic information) in a corpus by as-

suming an underlying generative process whereby the documents are created, so that

one may infer, or reverse engineer, it. The LDA model posits that documents are

represented as random mixtures over latent topics, where each topic is characterized

by a distribution over all the words. The complete probabilistic structure can be

represented by a simple graphical model shown in Figure I.4.
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Figure I.4: Graphical representation of the standard Latent Dirichlet Allocation
(LDA) model. Here nodes are random variables; edges indicate dependence through
probability distributions (e.g., Dirichlet or multinomial). Shaded nodes are observed;
unshaded nodes are latent. Plates indicate replicated variables.

Numerous extensions of the original LDA model have been proposed to handle

more complex data that exhibits serial dependencies. In particular, Blei and Lafferty

(2006) proposed a Dynamic Topic Model (DTM) that models time-varying corpus

(e.g., archive of articles published on the Science journal from 1990 to 2020), and the

alignment among topics across time steps is captured by a Kalman filter procedure

with a Markov assumption where the state (of topics) at time t + 1 is independent

of all other history given the state at time t. Wang and McCallum (2006) deals with

similar data and introduced a non-Markov continuous-time model called the Topics-

over-Time (TOT), which captures changes in the occurrence (and co-occurrence con-

ditioned on time) of the topics themselves, not changes in the word distribution of each

topic. Wang et al. (2008) further improved the DTM with a continuous time variant

called cDTM that uses Brownian motion to model the latent topics in a sequential

collection of documents, where a topic is a pattern of word use that is expected to

evolve over the course of the collection.

All the methods mentioned above try to build certain dynamical or flexible struc-
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tures explicitly into the probabilistic model. Besides the fact that these methods gen-

erally rely on complex stochastic process specifications to model temporal or other

dependency structures, they all suffer from the following: 1. natural interpretation

comes at the cost of correct model assumption: DTM and its variants achieve in-

terpretability under the assumption of model being correct, which is restrictive as

complicated real world applications tend not to follow the models perfectly and any

abrupt change in the data makes modeling results hard to interpret; 2. computa-

tional instability: as many of these methods rely on either expensive MCMC sampling

schemes or variational approximations as inference algorithms, they face the issue of

getting trapped into local minimum/maximum of their objectives, which makes the

results hard to interpret with confidence; 3. there is inherent inflexibility to diverse

dynamical structures, as most methods are developed for handling specific temporal

dynamics and are not able to capture all types (e.g., abnormality, clustering, etc) of

variations jointly. In Chapter V, a scalable and interpretable framework is developed

that attempts to overcome those issues in traditional dynamic topic models. Addi-

tionally, the proposed temporal topic modeling approach is extended to incorporate

side information via weak supervision.

1.3 Outline and Contributions

This section lists the chapters and corresponding contributions in this dissertation.

Each chapter aims to be a self contained exposition on a specific topic; as a result,

some introductory material for particular chapters are similar in scope.

Chapter II describes a structured Gaussian graphical model for tensor-valued data.

Here, we consider the underlying generating process of the data to be governed by a

Sylvester equation. We show that this leads to a Kronecker sum structural assumption

on the square root factor of the precision matrix of the data. The resulted modeling

approach is able to simultaneously improve robustness, richness, and interpretability
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of existing Kronecker-structured models. This chapter is based on Wang et al. (2020c)

and was published in the Proceedings of the 23rd International Conference on Artificial

Intelligence and Statistics.

Chapter III tackles a challenging optimization problem posed by the Sylvester

graphical model. An algorithm based on the proximal alternating linearized mini-

mization is proposed to estimate generating factors of the model. State-of-the-art

convergence rate is achieved and a comprehensive convergence analysis is done via

recent development of optimization theory. Practically, we apply the new procedure

to astrophysics-related application in solar flare prediction, where we model the solar

magnetogram and atmosphere as Guassian Markov Random Field (GMRF) induced

by a Sylvester-structured precision matrix. The utility of the estimated precision

matrix is demonstrated via a linear prediction of evolution of the solar active regions.

The chapter is based on the work of Wang and Hero (2021b) that was published in

the Proceedings of the 38th International Conference on Machine Learning.

Chapter IV connects Kronecker-structured (inverse) covariance modeling and spa-

tio temporal PDEs via the ensemble Kalman filter (EnKF) framework for data as-

similation. A new EnKF algorithm is introduced and the emergence of sparsity and

multiway structures in second-order statistical characterizations of dynamical pro-

cesses governed by PDEs is studied. We demonstrate promises of the new approach

for tracking complex spatio-temporal systems. The chapter is based on the work

of Wang and Hero (2021a) presented in the Workshop on Machine Learning and

the Physical Sciences at the 35th Conference on Neural Information Processing Sys-

tems and the joint work with Zeyu Sun, Dogyoon Song, and Alfred Hero that was

under revision at Statistics Surveys. Additionally, a Julia software package called

TensorGraphicalModels (Wang et al., 2022) has been developed to accompany this

work.

Chapter V introduces a simple and modular approach for modeling time-varying
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texts that combines standard LDA, shortest path algorithms on neighborhood graphs,

and geometric embedding. This approach enables interpretation and visualization of

latent thematic information that are intrinsically temporally dependent. We demon-

strate that the framework is able to capture perceptually natural temporal trajectories

of latent topics with minimal modeling assumptions. Further, we show that the frame-

work is able to incorporate side information (e.g., labels) via weak supervision. Two

important applications are considered: analysis of Twitter data for understanding

COVID-19 related public discourse; and analysis of TalkLife data for understanding

mental health related issues and aiding early detection and intervention. The work

is partially based on the work of Wang et al. (2021) published in the Harvard Data

Science Review.

10



CHAPTER II

The Sylvester Graphical Lasso

In this chapter we introduce the Sylvester graphical lasso (SyGlasso) that cap-

tures multiway dependencies present in tensor-valued data. The model is based on

the Sylvester equation that defines a generative model. The proposed model comple-

ments the tensor graphical lasso (Greenewald et al., 2019) which imposes a Kronecker

sum model for the inverse covariance matrix, by providing an alternative Kronecker

sum model that is generative and interpretable. The interpretability follows from the

Sylvester generative model on which SyGlasso is based: the model is exact for any ob-

servation process that is a solution of a diffusion-based partial differential equation. A

nodewise regression approach is adopted for estimating the conditional independence

relationships among variables. The statistical convergence of the method is estab-

lished, and empirical studies are provided to demonstrate the recovery of meaningful

conditional dependency graphs. We apply the SyGlasso to an electroencephalog-

raphy (EEG) study to compare the brain connectivity of alcoholic and nonalcoholic

subjects. We demonstrate that our model can simultaneously estimate both the brain

connectivity and its temporal dependencies.
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2.1 Introduction

To address the sample complexity challenges that arise in modern multivariate

analysis of tensor-variate data, sparsity can be imposed on the second order infor-

mation - the covariance Σ or the inverse covariance Ω - by using a sparse Kronecker

product (KP) or Kronecker sum (KS) decomposition of Σ or Ω. The earliest and

most popular form of sparse structured precision matrix estimation approaches rep-

resent Ω as the KP of smaller precision matrices, which means that the resulting

Σ also composes of KP of smaller covariance matrices due to the property of KP.

Tsiligkaridis et al. (2013); Zhou (2014); Lyu et al. (2019) have developed estimation

and statistical inference procedures under the KP structure and showed that the

underlying true precision matrix can be estimated efficiently with high-dimensional

consistency guarantees with single matrix or tensor sample. Alternatively, Kalaitzis

et al. (2013); Greenewald et al. (2019) propose to model conditional dependency

structures of precision matrices by using a KS representation. Rudelson and Zhou

(2017); Park et al. (2017) studied the KS structure on the covariance matrix which

corresponds to errors-in-variables models.

KP vs KS: One of the advantages of the KP model is that it admits a simple

stochastic representation as X = C−1ZD−1, where A = CCT ,B = DDT , and Z is

white Gaussian. It can be shown using properties of KP that X ∼ N (0, (A⊗B)−1).

Unlike the KP model, the KS model does not have a simple stochastic representation.

From another perspective, the Kronecker structures can be characterized by different

types of product graphs of the individual component graphs. Specifically, Kalaitzis

et al. (2013) relates (Ψ1 ⊕ · · · ⊕ΨK) to the associated Cartesian product graph. As

a result, the overall number of edges (active conditional dependencies) is additive

in the number of edges in the individual graphs. The KP, however, corresponds to

the direct tensor product of the individual graphs and leads to a denser dependency

structure in the precision matrix, as the number of overall edges is multiplicative in
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the number of individual edges 1.

The Sylvester Graphical Lasso (SyGlasso): We propose a Sylvester struc-

tured graphical model to estimate precision matrices associated with tensor data.

Similar to the KP- and KS-structured graphical models, we simultaneously learn K

graphs along each mode of the tensor data. However, instead of a KS or KP model

for the precision matrix, the Sylvester structured graphical model uses a KS model

for the square root factor of the precision matrix. The model is estimated by joint

sparse regression models that impose sparsity on the individual components Ψk for

k = 1, . . . , K. The Sylvester model reduces to a squared KS representation for the

precision matrix Ω = (Ψ1⊕· · ·⊕ΨK)2, which is motivated by a stochastic representa-

tion of multivariate data with such a precision matrix. SyGlasso is the first KS-based

graphical lasso model that admits a stochastic representation (i.e., Sylvester). Thus,

our proposed SyGlasso puts the KS representations on similar ground as the KP

representations in terms of interpretablility.

2.1.1 Notations

We adopt the notations used by Kolda and Bader (2009). A K-th order tensor

is denoted by boldface Euler script letters, e.g, X ∈ Rm1×···×mK . X reduces to

a vector for K = 1 and to a matrix for K = 2. The (i1, . . . , iK)-th element of

X is denoted by X i1,...,iK , and we define the vectorization of X to be vec(X ) :=

(X 1,1,...,1,X 2,1,...,1, . . . ,Xm1,1,...,1,X 1,2,...,1, . . . ,Xm1,m2,...,mk
)T ∈ Rp with p =

∏K
k=1mk.

There are several tensor algebra concepts that we recall. A fiber is the higher

order analogue of the row and column of matrices. It is obtained by fixing all but

one of the indices of the tensor, e.g., the mode-k fiber of X is X i1,...,ik−1,:,ik+1,...,iK .

Matricization, also known as unfolding, is the process of transforming a tensor into

1From Greenewald et al. (2019) KS (Cartesian product graph) edges:
∑K

k=1 |Ek|
∏

i ̸=k |Vi|; KP

(direct product graph) edges: 1
2

∏K
k=1(2|Ek|+ |Vk|)−

∏K
k=1 |Vk|; where Ek and Vk denote the edge

and vertex sets, respectively for component k.
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a matrix. The mode-k matricization of a tensor X , denoted by X (k), arranges the

mode-k fibers to be the columns of the resulting matrix. It is possible to multiply a

tensor by a matrix – the k-mode product of a tensor X ∈ Rm1×···×mK and a matrix

A ∈ RJ×mk , denoted as X ×k A, is of size m1 × · · · × mk−1 × J × mk+1 × . . .mk.

Its entry is defined as (X ×k A)i1,...,ik−1,j,ik+1,...,iK :=
∑mk

ik=1 X i1,...,iKAj,ik . In addition,

for a list of matrices {A1, . . . ,AK} with Ak ∈ Rmk×mk , k = 1, . . . , K, we define

X ×{A1, . . . ,AK} := X ×1A1×2 · · ·×K AK . Lastly, we define the K-way Kronecker

product as
⊗K

k=1Ψk = Ψ1⊗· · ·⊗ΨK , and the equivalent notation for the Kronecker

sum as
⊕K

k=1Ψk = Ψ1 ⊕ · · · ⊕ΨK =
∑K

k=1 I[mk+1:K ] ⊗Ψk ⊗ I[m1:k−1], where I[mk:ℓ] =

Imk
⊗ · · · ⊗ Imℓ

.

2.1.2 Outline

We briefly outline the structure of this chapter. Section 2.2 introduces the Sy-

Glasso method in details. Section 2.3 studies the statistical convergence of the Sy-

Glasso. Section 2.4 provides numerical illustrations of the method using synthetic

data. Section 2.5 provides numerical illustrations of the method using real data that

arises from Solar flare prediction problems. Section 2.6 concludes the chapter.

2.2 Sylvester Graphical Lasso

Let a random tensor X ∈ Rm1×···×mK be generated by the following representation:

X ×1 Ψ1 + · · ·+ X ×K ΨK = T , (2.1)

where Ψk ∈ Rmk×mk , k = 1, . . . , K are sparse symmetric positive definite matrices and

T is a random tensor of the same order as X . Equation (2.1) is known as the Sylvester

tensor equation. The equation often arises in finite difference discretization of linear

partial equations in high dimension (Bai et al., 2003) and discretization of separable
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PDEs (Kressner and Tobler, 2010; Grasedyck, 2004). When K = 2 it reduces to the

Sylvester matrix equation Ψ1X + XΨ2
T = T which has wide application in control

theory, signal processing and system identification (see, for example Golub et al.

(1979) and references therein).

It is not difficult to verify that the Sylvester representation (2.1) is equivalent to

the following system of linear equations:

(
K⊕
k=1

Ψk

)
vec(X ) = vec(T ), (2.2)

If T is a random tensor such that vec(T ) has zero mean and identity covariance, it

follows from (2.2) that any X generated from the stochastic relation (2.1) satisfies

E vec(X ) = 0 and Σ = Ω−1 := E vec(X ) vec(X )T =
(⊕K

k=1Ψk

)−2

. In particular,

when vec(T ) ∼ N (0, Im), we have that vec(X ) ∼ N
(
0,
(⊕K

k=1Ψk

)−2
)

.

This paper proposes a procedure for estimating Ω with N independent copies of

the tensor data {X i}Ni=1 that are generated from (2.1). For the rest of the paper,

we assume that the last mode of the data tensor corresponds to the observations

mode. For example, when K = 2, X ∈ Rm1×m2×N is the matrix-variate data with

N observations. Our goal is to estimate the K precision matrices {Ψk}Kk=1 each of

which describes the conditional independence of k-th data dimension. The resulting

precision matrix is Ω =
(⊕K

k=1Ψk

)2
. By rewriting (2.2) element-wise, we first

observe that (
K∑
k=1

(Ψk)ik,ik

)
X i[1:K]

= −
K∑
k=1

∑
jk ̸=ik

(Ψk)ik,jkX i[1:k],jk,i[k+1:K]
+ T i[1:K]

.

(2.3)

Note that the left-hand side of (2.3) involves only the summation of the diagonals

of the Ψ’s and the right-hand side is composed of columns of Ψ’s that exclude the

diagonal terms. Equation (2.3) can be interpreted as an autogregressive model re-
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lating the (i1, . . . , iK)-th element of the data tensor (scaled by the sum of diago-

nals) to other elements in the fibers of the data tensor. The columns of Ψ′s act

as regression coefficients. The formulation in (2.3) naturally leads us to consider a

pseudolikelihood-based estimation procedure (Besag, 1977) for estimating Ω. It is

known that inference using pseudo-likelihood is consistent and enjoys the same
√
N

convergence rate as the MLE in general (Varin et al., 2011). This procedure can also

be more robust to model misspecification. Specifically, we define the sparse estimate

of the underlying precision matrices along each axis of the data as the solution of the

following convex optimization problem:

min
Ψk∈Rmk×mk

k=1,...K

−N
∑

i1,...,iK

logW i[1:K]

+
1

2

∑
i1,...,iK

∥(I) + (II)∥22 +
K∑
k=1

Pλk
(Ψk).

(2.4)

where Pλk
(·) is a penalty function indexed by the tuning parameter λk and

(I) = W i[1:K]
X i[1:K]

(II) =
K∑
k=1

∑
jk ̸=ik

(Ψk)ik,jkX i[1:k],jk,i[k+1:K]
,

with W i[1:K]
:=
∑K

k=1(Ψk)ik,ik . Here we focus on the ℓ1-norm penalty, i.e., Pλk
(Ψk) =

λk∥Ψk∥1,off.

The optimization problem (2.4) can be put into the following matrix form:

min
Ψk∈Rmk×mk

k=1,...K

− N

2
log |(diag(Ψ1)⊕ · · · ⊕ diag(ΨK))2|

+
N

2
tr(S(Ψ1 ⊕ · · · ⊕ΨK)2) +

K∑
k=1

Pλk
(Ψk)

where diag(Ψk) ∈ Rmk×mk is a matrix of the diagonal entries of Ψk and S ∈ Rm×m
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is the sample covariance matrix, i.e., S = 1
N

vec(X )T vec(X ). Note that the pseu-

dolikelihood above approximates the ℓ1-penalized Gaussian negative log-likelihood

in the log-determinant term by including only the Kronecker sum of the diagonal

matrices instead of the Kronecker sum of the full matrices. Further discussion of

pseudolikelihood- and likelihood-based approaches for (inverse) covariance estima-

tions can be found in Khare et al. (2015).

We also note that when K = 1 the objective (2.4) reduces to the objective of

the CONCORD estimator (Khare et al., 2015), and is similar to those of SPACE

(Peng et al., 2009) and Symmetric lasso (Friedman et al., 2010). Our framework

is a generalization of these methods to higher order tensor-valued data, when the

Sylvester representation (2.1) holds.

Remark II.1. In our formulation Ω = (
⊕K

k=1Ψk)2 does not uniquely determine

{Ψk}Kk=1 due to the trace ambiguity: scaled identity factors can be added to/subtracted

from the Ψ′
ks without changing the matrix Ω. To address this non-identifiability, we

rewrite the overall precision matrix Ω as

Ω =

(
K⊕
k=1

Ψk

)2

=

(
K⊕
k=1

Ψoff
k +

K⊕
k=1

diag(Ψk)

)2

,

where Ψoff
k = Ψk−diag(Ψk), and estimate the diagonal and off-diagonal entries Ψk’s

separately. This allows us to reconstruct the overall precision matrix Ω when Ψoff
k is

penalized with an ℓ1 penalty.

2.2.1 Estimation of the graphical model

Let QN(W , {Ψoff
k }Kk=1) denote the objective function defined in (2.4). Here, W =⊕K

k=1 diag(Ψk). We adopt a convergent alternating minimization approach (Khare

and Rajaratnam, 2014) that cycles between optimizing Ψk and W while fixing other
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parameters. In particular, for 1 ≤ k ≤ K, 1 ≤ ik < jk ≤ mk, define

Tikjk(Ψoff
k ) = argmin(Ψ̃l)m,n=(Ψl)m,n

∀(l,m,n)̸=(k,ik,jk)

QN(W̃ , {Ψ̃off
k }Kk=1)

T (W) = argminΨ̃off
k =Ψoff

k
∀k

QN(W̃ , {Ψ̃off
k }Kk=1).

(2.5)

For each (k, ik, jk), Tikjk(Ψoff
k ) updates the (ik, jk)-th entry with the minimizer of

QN(W , {Ψ}Kk=1) with respect to (Ψk)offikjk holding all other variables constant. Sim-

ilarly, T (W) updates W i[1:K]
with the solution of minQN(W , {Ψ}Kk=1) with respect

to W i[1:K]
holding all other variables constant. The closed form updates Tikjk(Ψoff

k )

and T (W) are detailed in Appendix A.

Algorithm II.1: Nodewise SyGlasso

Input: Standardized data X , penalty parameter λk

Output: {Ψ̂k}Kk=1, Ω̂ =
(⊕K

k=1 Ψ̂k

)2
Initialize {Ψ̂(0)

k }Kk=1, Ω̂
(0) =

(⊕K
k=1 Ψ̂

(0)
k

)2
while not converged do

# Update off-diagonal elements ;
for k ← 1, . . . , K do

for ik ← 1, . . . ,mk − 1 do
for jk ← ik + 1, . . . ,mk do

(Ψ̂
(t+1)
k )ik,jk ← (Tik,jk(Ψ

(t)
k ))ik,jk ;

from (1.1) in Appendix A
end

end

end
# Update diagonal elements ;

Ŵ
(t+1)

← T (W (t)) from (1.2) in Appendix A
end

2.3 Large Sample Properties

We show that under suitable conditions, the Sylvester graphical lasso (SyGlasso)

estimator (Algorithm II.1) achieves both model selection consistency and estimation
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consistency. As in other studies (Khare et al., 2015; Peng et al., 2009)2, for the

convergence analysis we make standard assumptions that the diagonal of Ω is known.

We analyze the theoretical properties of the SyGlasso under the assumption that W

is given. In practice, we can estimate W using Algorithm II.1, and if the diagonals

of each individual Ψk are desired, we can incorporate any available prior knowledge

of the variation along each data dimension.

We estimate {Ψoff
k }Kk=1 by solving the following ℓ1 penalized problem:

min
β
LN

(
W ,β,X

)
+

K∑
k=1

λk∥Ψk∥1,off, (2.6)

where LN

(
W ,β,X

)
:= 1

N

∑N
s=1 L

(
W ,β,X s

)
, with

L
(
W ,β,X s

)
= −N

∑
i[1:K]

logW i[1:K]

+
1

2

∑
i1,...,iK

((I) + (II))2.

(2.7)

where

(I) = W i[1:K]
X i[1:K]

(II) =
K∑
k=1

∑
jk ̸=ik

(Ψk)ik,jkX i[1:k−1],jk,i[k+1:K]

β = ((Ψ1)1,2, (Ψ1)1,3, . . . , (Ψ1)1,m1 , . . . , (Ψk)mk−1,mk
)T

and β denotes the off-diagonal entries of all Ψ′
ks.

We first state the regularity conditions needed for establishing convergence of

the SyGlasso estimator. Let Ak := {(i, j) : (Ψk)i,j ̸= 0, i ̸= j} and qk := |Ak|

for k = 1, . . . , K be the true edge set and the number of edges, respectively. Let

2When K = 1 it is possible to relax this assumption to require only accurate estimates of the
diagonals, see Khare et al. (2015); Peng et al. (2009) for details.
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A = ∪Kk=1Ak. We use β̄, Ω̄,W̄ to emphasize that they are the true values of the

corresponding parameters.

(A1 - Subgaussianity) The data {X s}Ns=1 are i.i.d subgaussian random tensors,

that is, vec(X s) ∼ x, where x is a subgaussian random vector in Rp, i.e., there exist

a constant c > 0, such that for every a ∈ Rp, EeaTx ≤ eca
T Σ̄a, and there exist ρj > 0

such that Eetx2
j ≤ K whenever |t| < ρj, for 1 ≤ j ≤ p.

(A2 - Bounded eigenvalues) There exist constants 0 < Λmin ≤ Λmax < ∞, such

that the minimum and maximum eigenvalues of Ω are bounded with λmin(Ω̄) =

(
∑K

k=1 λmax(Ψk))−2 ≥ Λmin and λmax(Ω̄) = (
∑K

k=1 λmin(Ψk))−2 ≤ Λmax.

(A3 - Incoherence condition) There exists a constant δ < 1 such that for k =

1, . . . , K and all (i, j) ∈ Ak

|L̄′′

ij,Ak
(W̄ , β̄)[L̄

′′

Ak,Ak
(W̄ , β̄)]−1sign(β̄Ak

)| ≤ δ,

where for each k and 1 ≤ i < j ≤ mk, 1 ≤ k < l ≤ mk,

L̄
′′

ij,kl(W̄ , β̄) := EW̄,β̄

(
∂2L(W ,β,X )

∂(Ψk)i,j∂(Ψk)k,l
|W=W̄,β=β̄

)
.

Note that conditions analogous to (A3) have been used in Meinshausen and

Bühlmann (2006) and Peng et al. (2009) to establish high-dimensional model se-

lection consistency of the nodewise graphical lasso in the case of K = 1. Zhao and

Yu (2006) show that such a condition is almost necessary and sufficient for model

selection consistency in lasso regression, and they provide some examples when this

condition is satisfied.

Inspired by Meinshausen and Bühlmann (2006) and Peng et al. (2009) we prove

the following properties:

1. Theorem 2.3.1 establishes estimation consistency and sign consistency for the

nodewise SyGlasso restricted to the true support, i.e., βAc = 0,
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2. Theorem 2.3.2 shows that no wrong edge is selected with probability tending

to one,

3. Theorem 2.3.3 establishes consistency result of the nodewise SyGlasso.

Theorem 2.3.1. Suppose that conditions (A1-A2) are satisfied. Suppose further that

λN,k = O(
√

mk log p
N

) for all k and N > O(maxk qkmk log p) as N → ∞. Then there

exists a constant C(β̄), such that for any η > 0, the following hold with probability at

least 1−O(exp(−η log p)):

• There exists a global minimizer β̂A of the restricted SyGlasso problem:

min
β:βAc=0

LN(W̄ ,β,X ) +
K∑
k=1

λk∥Ψk∥1,off. (2.8)

• (Estimation consistency) Any solution β̂A of (2.8) satisfies:

∥β̂A − βA∥2 ≤ C(β̄)
√
K max

k

√
qkλN,k.

• (Sign consistency) If further the minimal signal strength: min(i,j)∈Ak
|(Ψk)i,j| ≥

2C(β̄)
√
K maxk

√
qkλN,k for each k, then sign(β̂Ak

)=sign(β̄Ak
).

Theorem 2.3.2. Suppose that the conditions of Theorem 2.3.1 and (A3) are satisfied.

Suppose further that p = O(Nκ) for some κ ≥ 0. Then for η > 0, for N sufficiently

large, the solution of (2.8) satisfies:

PW̄,β̄

(
max

(i,j)∈Ac
k

|L′
N,ij(W̄ , β̂Ak

,X )| < λN,k

)
≥ 1−O(exp(−η log p))

for each k, where L′
N,ij := ∂LN/∂(Ψk)ij.
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Theorem 2.3.3. Assume the conditions of Theorem 2.3.2. Then there exists a con-

stant C(β̄) > 0 such that for any η > 0 the following events hold with probability at

least 1−O(exp(−η log p)):

• There exists a global minimizer β̂ to problem (2.4).

• (Estimation consistency) Any minimizer β̂ of (2.4) satisfies:

∥β̂ − β∥2 ≤ C(β̄)
√
K max

k

√
qkλN,k.

• (Sign consistency) If further the minimal signal strength: min(i,j)∈Ak
|(Ψk)i,j| ≥

2C(β̄) maxk
√
qkλN,k for each k, then sign(β̂)=sign(β̄).

Proofs of the above theorems are given in Appendix A.

2.4 Numerical Illustrations

We evaluate the proposed SyGlasso estimator in terms of optimization and graph

recovery accuracy. We also compare the graph recovery performance with other mod-

els recently proposed for matrix- and tensor-variate precision matrices. We first illus-

trate the differences among these models by investigating the sparsity pattern of Ω

with K = 3 and mk = 4,∀k. For simplicity, we generate Ψk for k = 1, 2, 3 as identical

4×4 precision matrices that follow a one dimensional autoregressive-1 (AR1) process.

We recall the KP and KS models:

Kronecker Product (KP): The KP model restricts the precision matrix and

the covariance matrix to be separable across the K data dimensions and suffers from

a multiplicative explosion in the number of edges. As they are separable models and

the constructed Ω corresponds to the direct product of the K graphs, KP is unable

to capture more complex nested patterns captured by the KS and SyGlasso models

as shown in Figure II.1 (c) and (d).
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(a) Ψk (b) KP Ω

(c) KS Ω (d) SyGlasso Ω

Figure II.1: Comparison of SyGlasso to Kronecker sum (KS) and product (KP) struc-
tures. All models are composed of the same components Ψk for k = 1, 2, 3 generated
as an AR(1) model with mk = 4 as shown in (a). The AR(1) components are brought
together to create the final 64×64 precision matrix Ω following (b) the KP structure
with Ω =

⊗3
k=1 Ψk, (c) the KS structure with Ω =

⊕3
k=1Ψk, and (d) the proposed

Sylvester model with Ω =
(⊕3

k=1Ψk

)2
. The KP does not capture nested structures

as it simply replicates the individual component with different multiplicative scales.
The SyGlasso model admits a precision matrix structure that strikes a balance be-
tween KS and KP.
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Kronecker Sum (KS): The covariance matrix under the KS precision matrix

assumption is nonseparable across K data dimensions, and the KS-structured models

can be motivated from a maximum entropy point of view. Contrary to the KP

structure, the number of edges in the KS structure grows as the sum of the edges

of the individual graphs (as a result of Cartesian product of the associated graphs),

which leads to a more controllable number of edges in Ω.

We compare these methods under different model assumptions to explore the

flexibility of the proposed SyGlasso model under model mismatch. To empirically

assess the efficiency of the proposed model, we generate tensor-valued data based on

three different precision matrices. The Ψk’s are generated from one of 1) AR1(ρ), 2)

Star-Block (SB), or 3) Erdos-Renyi (ER) random graph models described in Appendix

A.
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Figure II.2: Performance of the SyGlasso estimator against the number of itera-
tions under different topologies of Ψk’s. The solid line shows the statistical er-

ror log
(
∥Ψ̂(t)

k −Ψk∥F\∥Ψk∥F
)

, and the dotted line shows the optimization error

log
(
∥Ψ̂(t)

k − Ψ̂k∥F\∥Ψ̂k∥F
)

, where Ψ̂k is the final SyGlasso estimator. The perfor-

mances of Ψ1 and Ψ2 are represented by red and blue lines, respectively.

We test SyGlasso with K = 2 under: 1) SB with ρ = 0.6 and sub-blocks of size
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16 and AR1(ρ = 0.6); 2) SB with ρ = 0.6 and sub-blocks of size 16 and ER with 256

randomly selected edges. In both scenarios we set m1 = 128 and m2 = 256 with 10

samples. Figure II.2 shows the iterative optimization performance of Algorithm II.1.

All the plots for the various scenarios exhibit iterative optimization approximation

errors that quickly converge to values below the statistical errors. Note that these

plots also suggest that our algorithm can attain linear convergence rates. We also

test our method for model selection accuracy over a range of penalty parameters (we

set λk = λ,∀k). Figure II.3 displays the sum of false positive rate and false negative

rate (FPR+FNR), it suggests that the nodewise SyGlasso estimator is able to fully

recover the graph structures for each mode of the tensor data.
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Figure II.3: The performance of model selection measured by FPR + FNR. The
performances of Ψ1 and Ψ2 are represented by red and blue lines, respectively. With
an appropriate choice of λ, the SyGlasso recovers the dependency structures encoded
in each Ψk.

We compare the proposed SyGlasso to the TeraLasso estimator (Greenewald et al.,

2019), and to the Tlasso estimator proposed by Lyu et al. (2019) for KP, on data

generated using precision matrices (Ψ1⊕Ψ2⊕Ψ3)
2, Ψ1⊕Ψ2⊕Ψ3, and Ψ1⊗Ψ2⊗Ψ3,

where Ψ’s are each 16× 16 ER graphs with 16 nonzero edges. We use the Matthews
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correlation coefficient (MCC) to compare model selection performances. The MCC

is defined as (Matthews, 1975)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where we follow Greenewald et al. (2019) to consider each nonzero off-diagonal element

of Ψk as a single edge.

The results shown in Figure II.4 indicate that all three estimators perform well

when N = 5, even under model misspecification. In the single sample scenario, the

graph recovery performance of each estimator does well under each true underlying

data generating process. Note that for data generated using KP, the SyGlasso per-

forms surprisingly well and is comparable to Tlasso. These results seem to indicate

that SyGlasso is very robust under model misspecification. The superior performance

of SyGlasso under KP model, even with one sample, suggests again that SyGlasso

structure has a flavor of both KS and KP structures, as seen in Figure II.1. This

follows from the observation that (Ψ1 ⊕Ψ2)
2 = Im1 ⊗Ψ2

1 + Ψ2
2 ⊗ Im2 + 2Ψ1 ⊗Ψ2 =

Ψ2
1 ⊕Ψ2

2 + 2Ψ1 ⊗Ψ2.

2.5 EEG Analysis

We revisit the alcoholism study conducted by Zhang et al. (1995) to explore mul-

tiway relationships in EEG measurements of alcoholic and control subjects. Each

of 77 alcoholic subjects and 45 control subjects was visually stimulated by either a

single picture or a pair of pictures on a computer monitor. Following the analyses

of Zhu et al. (2016) and Qiao et al. (2019), we focus on the α frequency band (8

- 13 Hz) that is known to be responsible for the inhibitory control of the subjects

(see Knyazev (2007) for more details). The EEG signals were bandpass filtered with

the cosine-tapered window to extract α-band signals. Previous Gaussian graphical
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Figure II.4: Performance of SyGlasso, TeraLasso (KS), and Tlasso (KP) measured
by MCC under model misspecification. MCC of 1 represents a perfect recovery of
the sparsity pattern in Ω, and MCC of 0 corresponds to random guess. From top
to bottom, the synthetic data were generated with the precision matrices from Sy-
Glasso, KS, and KP models. The left column shows the results for a single sample
(N = 1), and the right column shows the results for N = 5 observations. Note that
the SyGlasso has better performance for a single sample (left column) when data is
generated from the matched Kronecker model and as good performance for the mis-
matched Kronecker models.

models applied to such α frequency band filtered EEG data could only estimate the

connectivity of the electrodes as they cannot be generalized to tensor valued data.

The SyGlasso reveals similar dependency structure as reported in Zhu et al. (2016)
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and Qiao et al. (2019) while recovering the chain structure of the temporal relation-

ship.

Specifically, after the band-pass filter was applied, we work with the tensor data

X alcoholic,X control ∈ Rmnodes×mtime×mtrial corresponding to an alcoholic subject and

a control subject. We simultaneously estimate Ψnode ∈ Rmnode×mnode that encodes

the dependency structure among electrodes and Ψtime ∈ Rmtime×mtime that shows

the relationship among time points that span the duration of each trial. Previous

studies consider the average of all trials, for each subject and use the number of

subjects as observations to estimate the dependency structures among 64 electrodes.

Instead, we look at one subject at a time and consider different experimental trials as

observations. Our analysis focuses on recovering the precision matrices of electrodes

and time points, but it can be easily generalized to estimate the dependency structure

among trials as well.

(a) Alcoholic subject (b) Control subject

Figure II.5: Estimated brain connectivity results from SyGlasso for (a) the alcoholic
subject and (b) the control subject. The blue nodes correspond to the frontal region,
and the yellow nodes correspond to the parietal and occipital regions. The alcoholic
subject has asymmetric brain connections in the frontal region compared to the con-
trol subject.

28



Figure II.5 shows the result of the SyGlasso estimated network of electrodes. For

comparison, both graphs were thresholded to match 5% sparsity level. Similar to the

findings of Qiao et al. (2019), our estimated graph Ψnode for the alcoholic group shows

the asymmetry between the left and the right side of the brain compared to the more

balanced control group. Our finding is also consistent with the result in Hayden et al.

(2006) and Zhu et al. (2016) that showed frontal asymmetry of the alcoholic subjects.

(a) Alcoholic subject (b) Control subject

Figure II.6: Support (off-diagonals) of SyGlasso-estimated temporal Sylvester factor
Ψ̂time of the precision matrix for (a) the alcoholic subject and (b) the control subject.
Both subjects exhibit banded conditional dependency structures over time.

While previous analyses on this EEG data using graphical models only focused on

the precision matrix of the electrodes, here we exhibit in Figure II.6 the second preci-

sion matrix that encodes temporal dependency. Overall both subjects exhibit banded

dependency structures over time, since adjacent timepoints are conditionally depen-

dent. However, note that the conditional dependency structure of the timepoints for

the alcoholic subject appears to be more chaotic.
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2.6 Conclusion

This chapter proposed a Sylvester-structured graphical model and an inference

algorithm, the SyGlasso, that can be applied to tensor-valued data. The current

frameworks available for researchers are limited to Kronecker product and Kronecker

sum models on either the covariance or the precision matrix. Our model is motivated

by a generative stochastic representation based on the Sylvester equation. We showed

that the resulting precision matrix corresponds to the squared Kronecker sum of

the precision matrices Ψk along each mode. The individual components Ψk’s are

estimated by the nodewise regression based approach.

There are several promising future directions. First is to relax the assumption

that the diagonals of the factors are fixed - an assumption that is standard among

the Kronecker structured models for theoretical analysis. Practically, SyGlasso is

able to recover the off-diagonals of the individual Ψk and the diagonal of Ω, which

only requires to estimating
⊕K

k=1 diag(Ψk) instead of all diagonal entries diag(Ψk)

for all k. Secondly, in terms of the statistical properties, our theoretical results

guarantee sparsistency of the individual graphs with a slower convergence rate than

that is proposed in Greenewald et al. (2019), while empirical evidence suggests that a

faster rate can be achieved. Improvement of this statistical convergence rate analysis

will be worthwhile. Also, our results do not guarantee statistical convergence of

individual Ψk’s nor Ω with respect to the operator norm. Similar to the solution

proposed in Zhou et al. (2011), we plan to adopt a two-step procedure using SyGlasso

for variable selection followed by refitting the precision matrix Ω using maximum

likelihood estimation with edge constraint.
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CHAPTER III

A Proximal Alternating Linearized Minimization

Method for Tensor Graphical Models

In this chapter, we extend the Sylvester graphical model introduced in Chapter II

to incorporate a new inference procedure, called SG-PALM, for learning conditional

dependency structure of high-dimensional tensor-variate data. Unlike the SyGlasso,

the new method is computationally scalable to ultra-high dimension. Scalability of

SG-PALM follows from the fast proximal alternating linearized minimization (PALM)

procedure that SG-PALM uses during training. We establish that SG-PALM con-

verges linearly (i.e., geometric convergence rate) to a global optimum of its objective

function. We demonstrate the scalability and accuracy of SG-PALM for an impor-

tant but challenging climate prediction problem: spatio-temporal forecasting of solar

flares from multimodal imaging data.

3.1 Introduction

A common challenge for structured tensor graphical models is the efficient esti-

mation of the underlying (conditional) dependency structures. KP-structured models

are generally estimated via extension of GLasso (Friedman et al., 2008) that itera-

tively minimize the ℓ1-penalized negative likelihood function for the matrix-normal
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data with KP covariance. This procedure was shown to converge to some local opti-

mum of the penalized likelihood function (Yin and Li, 2012; Tsiligkaridis et al., 2013).

Similarly, Kalaitzis et al. (2013) further extended GLasso to the KS-structured case

for 2-way tensor data. Greenewald et al. (2019) extended this to multiway ten-

sors, exploiting the linearity of the space of KS-structured matrices and developing

a projected proximal gradient algorithm for KS-structured inverse covariance matrix

estimation, which achieves linear convergence (i.e., geometric convergence rate) to the

global optimum. In Chapter II, the Sylvester-structured graphical model is estimated

via a nodewise regression approach inspired by algorithms for estimating a class of

vector-variate graphical models (Meinshausen and Bühlmann, 2006; Khare et al.,

2015). However, no theoretical convergence result for the algorithm was established

nor did they study the computational efficiency of the algorithm.

In the modern era of big data, both computational and statistical learning ac-

curacy are required of algorithms. Furthermore, when the objective is to learn rep-

resentations for physical processes, interpretablility is crucial. In this chapter, we

bridge this “Statistical-to-Computational-to-Interpretable gap” for Sylvester graphi-

cal models. We develop a simple yet powerful first-order optimization method, based

on the Proximal Alternating Linearized Minimization (PALM) algorithm, for recov-

ering the conditional dependency structure of such models. Moreover, we provide the

link between the Sylvester graphical models and physical processes obeying differen-

tial equations and illustrate the link with a real-data example. The following are our

principal contributions:

1. A fast algorithm that efficiently recovers the generating factors of a represen-

tation for high-dimensional multiway data, significantly improving on the Sy-

Glasso algorithm described in Chapter II.

2. A comprehensive convergence analysis showing linear convergence of the ob-

jective function to its global optimum and providing insights for choices of
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hyperparameters.

3. A novel application of the algorithm to an important multi-modal solar flare

prediction problem from solar magnetic field sequences. For such problems, SG-

PALM is physically interpretable in terms of the Poisson differential equation

for solar magnetic induction fields proposed by heliophysicists.

3.2 Background and Notation

3.2.1 Notations

In this chapter, scalar, vector and matrix quantities are denoted by lowercase

letters, boldface lowercase letters and boldface capital letters, respectively. For a

matrix A = (Ai,j) ∈ Rd×d, we denote ∥A∥2, ∥A∥F as its spectral and Frobenius

norm, respectively. We define ∥A∥1,off :=
∑

i ̸=j |Ai,j| as its off-diagonal ℓ1 norm.

For tensor algebra, we adopt the notations used by Kolda and Bader (2009). A K-

th order tensor is denoted by boldface Euler script letters, e.g, X ∈ Rd1×···×dK . The

(i1, . . . , iK)-th element of X is denoted by X i1,...,iK , and the vectorization of X is the d-

dimensional vector vec(X ) := (X 1,1,...,1,X 2,1,...,1, . . . ,X d1,1,...,1, . . . ,X d1,d2,...,dk)T with

d =
∏K

k=1 dk. A fiber is the higher order analogue of the row and column of matrices.

It is obtained by fixing all but one of the indices of the tensor. Matricization, also

known as unfolding, is the process of transforming a tensor into a matrix. The mode-k

matricization of a tensor X , denoted by X (k), arranges the mode-k fibers to be the

columns of the resulting matrix. The k-mode product of a tensor X ∈ Rd1×···×dK and

a matrix A ∈ RJ×dk , denoted as X ×kA, is of size d1×· · ·×dk−1×J ×dk+1× . . . dK .

Its entry is defined as (X ×k A)i1,...,ik−1,j,ik+1,...,iK :=
∑dk

ik=1X i1,...,iKAj,ik . For a list of

matrices {Ak}Kk=1 with Ak ∈ Rdk×dk , we define X×{A1, . . . ,AK} := X×1A1×2· · ·×K

AK . Lastly, we define the K-way Kronecker product as
⊗K

k=1Ak = A1 ⊗ · · · ⊗AK ,

and the equivalent notation for the Kronecker sum as
⊕K

k=1 Ak = A1 ⊕ · · · ⊕AK =
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∑K
k=1 I[dk+1:K ] ⊗Ak ⊗ I[d1:k−1], where I[dk:ℓ] = Idk ⊗ · · · ⊗ Idℓ . For the case of K = 2,

A1 ⊕A2 = Id2 ⊗A1 + A2 ⊗ Id1 .

3.2.2 Tensor Gaussian graphical models

A random tensor X ∈ Rd1×···×dK follows the tensor normal distribution with zero

mean when vec(X ) follows a normal distribution with mean 0 ∈ Rd and precision

matrix Ω := Ω(Ψ1, . . . ,ΨK), where d =
∏K

k=1 dk. Here, Ω(Ψ1, . . . ,ΨK) is parame-

terized by Ψk ∈ Rdk×dk via either Kronecker product, Kronecker sum, or the Sylvester

structure, and the corresponding negative log-likelihood function (assuming N inde-

pendent observations X i, i = 1, . . . , N)

− N

2
log |Ω|+ N

2
tr(SΩ), (3.1)

where Ω =
⊗K

k=1Ψk,
⊕K

k=1 Ψk, or
(⊕K

k=1Ψk

)2
for KP, KS, and Sylvester models,

respectively; and S = 1
N

∑N
i=1 vec(X i) vec(X i)T . For K = 1, this formulation reduces

to the vector normal distribution with zero mean and precision matrix Ψ1.

To encourage sparsity in the high-dimensional scenario, penalized negative log-

likelihood function is proposed

−N
2

log |Ω|+ N

2
tr(SΩ) +

K∑
k=1

Pλk
(Ψk),

where Pλk
(·) is a penalty function indexed by the tuning parameter λk and is applied

elementwise to the off-diagonal elements of Ψk. Popular choices for Pλk
(·) include the

lasso penalty (Tibshirani, 1996), the adaptive lasso penalty (Zou, 2006), the SCAD

penalty (Fan and Li, 2001), and the MCP penalty (Zhang et al., 2010).
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3.2.3 The Sylvester generating equation

The Sylvester graphical model uses the Sylvester tensor equation to define a gen-

erative process for the underlying multivariate tensor data. The Sylvester tensor

equation has been studied in the context of finite-difference discretization of high-

dimensional elliptical partial differential equations (Grasedyck, 2004; Kressner and

Tobler, 2010). Any solution X to such a PDE must have the (discretized) form:

K∑
k=1

X ×k Ψk = T ⇐⇒
( K⊕

k=1

Ψk

)
vec(X ) = vec(T ). (3.2)

where T is the driving source on the domain, and
⊕K

k=1 Ψk is a Kronecker sum of Ψk’s

representing the discretized differential operators for the PDE, e.g., Laplacian, Euler-

Lagrange operators, and associated coefficients. These operators are often sparse and

structured.

For example, consider a physical process characterized as a function u that satis-

fies:

Du = f in Ω, u(Γ) = 0, Γ = ∂Ω.

where f is a driving process, e.g., a Wiener process (white Gaussian noise); D is

a differential operator, e.g, Laplacian, Euler-Lagrange; Ω is the domain; and Γ is

the boundary of Ω. After discretization, this is equivalent to (ignoring discretization

error) the matrix equation

Du = f .

Here, D is a sparse matrix since D is an infinitesimal operator. Additionally, D

admits Kronecker structure as a mixture of Kronecker sums and Kronecker products.

The matrix D reduces to a Kronecker sum when D involves no mixed derivatives.

For instance, consider the Poisson’s equation in 2D, where u(x, y) on [0, 1]2 satisfies
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the elliptical PDE

Du = (∂2x + ∂2y)u = f.

The Poisson equation governs many physical processes, e.g., electromagnetic in-

duction, heat transfer, convection, etc. A simple Euler discretization yields U =

(u(i, j))i,j, where u(i, j) satisfies the local equation (up to a constant discretization

scale factor)

2u(i, j) = u(i+ 1, j) + u(i− 1, j) + u(i, j + 1)

+ u(i, j − 1)− 4f(i, j).

Defining u = vec(U) and A (a tridiagonal matrix)

A =



−1 2 −1

. . . . . . . . .

. . . . . . . . .

−1 2 −1


,

then (A⊕A)u = f , which is the Sylvester equation (K = 2).

For the Poisson example, if the source f is a white noise random variable, i.e., its

covariance matrix is proportional to the identity matrix, then the inverse covariance

matrix of u has sparse square-root factors, since Cov−1(u) = (A⊕A)(A⊕A)T . Other

physical processes that are generated from differential equations will also have sparse

inverse covariance matrices, as a result of the sparsity of general discretized differential

operators. Note that similar connections between continuous state physical processes

and sparse “discretized” statistical models have been established by Lindgren et al.

(2011), who elucidated a link between Gaussian fields and Gaussian Markov Random

Fields via stochastic partial differential equations.

The Sylvester generative (SG) model (3.2) leads to a tensor-valued random vari-

able X with a precision matrix Ω =
(⊕K

k=1Ψk

)2
, given that T is white Gaussian.
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The Sylvester generating factors Ψk’s can be obtained via minimization of the penal-

ized negative log-pseudolikelihood

Lλ(Ψ) =− N

2
log |(

K⊕
k=1

diag(Ψk))2|

+
N

2
tr(S · (

K⊕
k=1

Ψk)2) +
K∑
k=1

λk∥Ψk∥1,off.

(3.3)

This differs from the penalized Gaussian negative log-likelihood in the exclusion of

off-diagonals of Ψk’s in the log-determinant term. (3.3) is motivated and derived

directly using the Sylvester equation defined in (3.2), from the perspective of solving

a sparse linear system. This maximum pseudolikelihood estimation procedure has

been applied to vector-variate Gaussian graphical models (see Khare et al. (2015) and

references therein for discussions). It is known that inference using pseudo-likelihood

is consistent and enjoys the same
√
N convergence rate as the MLE in general (Varin

et al., 2011). This procedure can also be more robust to model misspecification.

Detailed derivations are provided in Appendix 2.1.

3.3 The SG-PALM Method

Estimation of the generating parameters Ψk’s of the SG model is challenging since

the sparsity penalties are applied to the square root factors of the precision matrix

and the likelihood function involves a mix of Kronecker sums and Kronecker products

of matrix-valued parameters. The previously proposed estimation procedure called

SyGlasso (see Chapter II), recovers only the off-diagonal elements of each Sylvester

factor. This is a deficiency in many applications where the factor-wise variances

are desired. Moreover, the convergence rate of the cyclic coordinate-wise algorithm

used in SyGlasso is unknown and the computational complexity of the algorithm is

higher than other sparse Glasso-type procedures. To overcome these deficiencies, we
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propose a proximal alternating linearized minimization method, called SG-PALM,

for finding the minimizer of (3.3). SG-PALM is designed to exploit structures of the

coupled objective function and yields simultaneous estimates for both off-diagonal

and diagonal entries.

The PALM algorithm was originally proposed to solve nonconvex optimization

problems with separable structures, such as those arising in nonnegative matrix fac-

torization (Xu and Yin, 2013; Bolte et al., 2014). Its efficacy in solving convex

problems has also been established, for example, in regularized linear regression

problems (Shefi and Teboulle, 2016), it was proposed as an attractive alternative

to iterative soft-thresholding algorithms (ISTA). For simplicity, we consider the ℓ1-

regularized case (3.3), and the general, possibly non-convex, case is described in the

supplement. The SG-PALM procedure is summarized in Algorithm III.1.

For clarity of notation we write

Lλ(Ψ1, . . . ,ΨK) = H(Ψ1, . . . ,ΨK) +
K∑
k=1

Gk(Ψk), (3.4)

where H : Rd1×d1×· · ·×RdK×dK → R represents the log-determinant plus trace terms

in (3.3) and Gk : Rdk×dk → (−∞,+∞] represents the penalty term in (3.3) for each

axis k = 1, . . . , K. For notational simplicity we use Ψ (i.e., omitting the subscript)

to denote the set {Ψk}Kk=1 or the K-tuple (Ψ1, . . . ,ΨK) whenever there is no risk of

confusion. The gradient of the smooth function H with respect to Ψk, ∇kH(Ψ), is

given by

diag
({

tr[(diag((Ψk)ii) +
⊕
j ̸=k

diag(Ψj))
−1]
}dk

i=1

)
+ SkΨk + ΨkSk + 2

∑
j ̸=k

Sj,k.

(3.5)

Here, the first “diag” maps a dk-vector to a dk × dk diagonal matrix, the second one

maps a scalar (i.e., (Ψk)ii) to a (
∏

j ̸=k dj)× (
∏

j ̸=k dj) diagonal matrix with the same
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elements, and the third operator maps a symmetric matrix to a matrix containing

only its diagonal elements. In addition, we define:

Sk =
1

N

N∑
i=1

X i
(k)(X i

(k))
T ,

Sj,k =
1

N

N∑
i=1

Vi
j,k(Vi

j,k)T ,

Vi
j,k = X i

(k)

(
Id1:j−1

⊗Ψj ⊗ Idj:K

)T
, j ̸= k.

(3.6)

A key ingredient of the PALM algorithm is a proximal operator associated with the

non-smooth part of the objective, i.e., Gk’s. In general, the proximal operator of

a proper, lower semi-continuous convex function f from a Hilbert space H to the

extended reals (−∞,+∞] is defined by (Parikh and Boyd, 2014)

proxf (v) = argminx∈Hf(x) +
1

2
∥x− v∥22

for any v ∈ H. The proximal operator well-defined as the expression on the right-hand

side above has a unique minimizer for any function in this class. For ℓ1-regularized

case, the proximal operator for the function Gk is given by

proxλk
Gk

(Ψk) = diag(Ψk) + soft(Ψk − diag(Ψk), λk), (3.7)

where the soft-thresholding operator softλ(x) = sign(x) max(|x| − λ, 0) has been ap-

plied element-wise.

3.3.1 Choice of step size

In the absence of a good estimate of the blockwise Lipchitz constant, the step

size of each iteration of SG-PALM is chosen using backtracking line search, which,

at iteration t, starts with an initial step size ηt0 and reduces the size with a constant
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Algorithm III.1: SG-PALM

Input: Data tensor X , mode-k Gram matrix Sk, regularizing parameter λk,
backtracking constant c ∈ (0, 1), initial step size η0, initial iterate Ψk for
each k = 1, . . . , K.
while not converged do
for k = 1, . . . , K do
Line search:
Let ηtk be the largest element of {cjηtk,0}j=1,... such that condition (3.8)
is satisfied.
Update:

Ψt+1
k ← prox

ηtkλk

Gk

(
Ψt

k − ηtk∇kH(Ψt+1
i<k,Ψ

t
i≥k)

)
.

end for
Update initial step size: Compute Barzilai-Borwein step size ηt+1

0 =
mink η

t+1
k,0 , where ηt+1

k,0 is computed via (3.9).
end while

Output: Final iterates {Ψk}Kk=1.

factor c ∈ (0, 1) until the new iterate satisfies the sufficient descent condition:

H(Ψt+1
i≤k,Ψ

t
i>k) ≤ Qηt(Ψ

t+1
i≤k,Ψ

t
i>k;Ψt+1

i<k,Ψ
t
i≥k). (3.8)

Here,

Qη(Ψi<k,Ψk,Ψi>k;Ψi<k,Ψ
′
k,Ψi>k)

= H(Ψi<k,Ψk,Ψi>k)

+ tr
(

(Ψ′
k −Ψk)T∇kH(Ψi<k,Ψk,Ψi>k)

)
+

1

2η
∥Ψ′

k −Ψk∥2F .

The sufficient descent condition is satisfied with any 1
η

= Mk and Mk ≥ Lk, for any

function that has a block-wise Lipschitz gradient with constant Lk for k = 1, . . . , K.

In other words, so long as the function H has block-wise gradient that is Lipschitz

continuous with some block Lipschitz constant Lk > 0 for each k, then at each

iteration t, we can always find an ηt such that the inequality in (3.8) is satisfied.

Indeed, we proved in Lemma 2.3.3 in the Appendix that H has the desired properties.

Additionally, in the proof of Theorem 3.4.2 we also showed that the step size found
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at each iteration t satisfies 1
η0k
≤ Lk ≤ 1

ηtk
≤ cLk.

In terms of the initialization, a safe step size (i.e., very small ηt0) often leads

to slower convergence. Thus, we use the more aggressive Barzilai-Borwein (BB)

step (Barzilai and Borwein, 1988) to set a starting ηt0 at each iteration (see Ap-

pendix 2.2 for justifications of the BB method). In our case, for each k, the step size

is given by

ηtk,0 =
∥Ψt+1

k −Ψt
k∥2F

tr(A)
, (3.9)

where

A = (Ψt+1
k −Ψt

k)T×

(∇kH(Ψt+1
i≤k,Ψ

t
i>k)−∇kH(Ψt+1

i<k,Ψ
t
i≥k)).

3.3.2 Computational complexity

After pre-computing Sk, the most significant computation for each iteration in the

SG-PALM algorithm is the sparse matrix-matrix multiplications SkΨk and Sj,k in the

gradient calculation. In terms of computational complexity, the former and latter can

be computed using O(d3k) and O(N
∑

j ̸=k djm
2
j) operations, respectively, there mj =∏

i ̸=j di. Thus, each iteration of SG-PALM can be computed using O
(∑K

k=1(d
3
k +

N
∑

j ̸=k djm
2
j)
)

floating point operations, which is significantly lower than competing

methods.

Remark III.1. All the structured precision estimation algorithms are variants of

Glasso, implemented with techniques tailored to the model assumptions for speedup.

Generally speaking, the resulting complexity consists of the mode-wise complexity (d3k)

and the cost of updating the objective: dK for TeraLasso (Greenewald et al., 2019),

N
∑

k dkm
2
k for Tlasso (Lyu et al., 2019), and N

∑
k

∑
j ̸=k djm

2
j for SG-PALM. The

mode-wise complexity of TeraLasso is dominated by matrix inversion, which is hard to

scale for general problem instances. For Tlasso/KGlasso, the mode-wise complexity

is the same as that of running a Glasso-type algorithm for each mode, which could

41



be improved by applying state-of-the-art optimization techniques developed for vector-

variate Gaussian graphical models. For SG-PALM, the mode-wise operations involve

only sparse-dense matrix multiplications, which could be improved to O(dk ·nnz), where

nnz counts the number of non-zero elements of the sparse matrix (i.e., the estimated

k at each iteration). This could greatly reduce the computational cost for extremely

sparse Ψk, e.g., with only O(dk) non-zero elements. Further, Tlasso and SG-PALM

both incur a cost of O(Ndkm
2
k) for each mode-wise update. This can also be reduced

to be ≈ d for sparse estimated Ψk’s at each iteration. Overall, for sample-starved

setting where we only have access to a handful of data samples, structured KP and

KS models run similarly fast, while the Sylvester GM runs slower theoretically due to

the extra and richer structures that it takes into account.

Additionally, TG-ISTA and the Tlasso proposed both require inversion of dk ×

dk matrices, which is not easily parallelizable and cannot easily exploit the sparsity

of Ψk’s. The cyclic coordinate-wise method used in SyGlasso does not allow for

parallelization since it requires cycling through entries of each Ψk in specified order.

In contrast, SG-PALM can be implemented in parallel to distribute the sparse matrix-

matrix multiplications because at no step do the algorithms require storing all dense

matrices on a single machine. Therefore, with the adaptation of communication-

efficient algorithms (such as that proposed in Koanantakool et al. (2018) for vector-

variate Gaussian graphical models), the scalability of the distributed SG-PALM is

restricted only by the number of machines available.

3.4 Convergence Analysis

In this section, we present the main convergence theorems. Detailed proofs are

included in the supplement. Here, we study the convergence behavior in the convex

cases, but similar convergence rate can be established for non-convex penalties (see

supplement).
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We first establish statistical convergence of a global minimizer Ψ̂ of (3.3) to its

true value, denoted as Ψ̄, under the correct statistical model.

Theorem 3.4.1. Let Ak := {(i, j) : (Ψ̄k)i,j ̸= 0, i ̸= j} and qk := |Ak| for k =

1, . . . , K. If N > O(maxk qkdk log d) and d := dN = O(Nκ) for some κ ≥ 0, and

further, if the penalty parameter satisfies λk := λN,k = O(
√

dk log d
N

) for all k =

1, . . . , K, then under conditions (A1-A3) in Appendix 2.3.1, there exists a constant

C > 0 such that for any η > 0 the following events hold with probability at least

1−O(exp(−η log d)):

K∑
k=1

∥offdiag(Ψ̂k)− offdiag(Ψ̄k)∥F

≤ C
√
K max

k

√
qkλk.

Here offdiag(Ψk) is the the off-diagonal part of Ψk. If further min(i,j)∈Ak
|(Ψ̄k)i,j| ≥

2C maxk
√
qkλk for each k, then sign(Ψ̂k)=sign(Ψ̄k).

Theorem 3.4.1 means that under regularity conditions on the true generative

model, and with appropriately chosen penalty parameters λk’s guided by the the-

orem, one is guaranteed to recover the true structures of the underlying Sylvester

generating parameters Ψk for k = 1, . . . , K with probability one, as the sample size

and dimension grow.

We next turn to convergence of the iterates {Ψt} from SG-PALM to a global

optimum of (3.3).

Theorem 3.4.2. Let {Ψ(t)}t≥0 be generated by SG-PALM. Then, SG-PALM con-

verges in the sense that

Lλ(Ψ(t+1))−minLλ

Lλ(Ψ(t))−minLλ

≤

(
α2Lmin

4Kc2(
∑K

j=1 Lj)2 + 4c2Lmax

+ 1

)−1

,
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where α, Lk, k = 1, . . . , K are positive constants, Lmin = minj Lj, Lmax = maxj Lj,

and c ∈ (0, 1) is the backtracking constant defined in Algorithm III.1.

Note that the term on the right hand side of the inequality above is strictly less

than 1. This means that the SG-PALM algorithm converges linearly, which is a strong

results for a non-strongly convex objective (i.e., Lλ). To the best of our knowledge, for

first-order optimization methods, this rate is faster than any other Gaussian graphical

models having non-strongly convex objectives (see Khare et al. (2015); Oh et al. (2014)

and references therein) and comparable with those having strongly-convex objectives

(see, for example, Guillot et al. (2012); Dalal and Rajaratnam (2017); Greenewald

et al. (2019)). In practical large-scale applications, a fast rate is vital as it would be

desired to have the iterative optimization approximation errors quickly converge to

values below the statistical errors.

3.5 Experiments

Experiments in this section were performed in a system with 8-core Intel Xeon

CPU E5-2687W v2 3.40GHz equipped with 64GB RAM. SG-PALM was implemented in

Julia v1.5. For synthetic data analyses, we used the SyGlasso implementation in R

with C++ speed-up (https://github.com/ywa136/syglasso). For real data analy-

ses, we used the Tlasso package implementation in R (Sun et al., 2016) and the Ter-

aLasso implementation in MATLAB (https://github.com/kgreenewald/teralasso).

3.5.1 Synthetic data

We first validate the convergence theorems discussed in the previous section via

simulation studies. Synthetic datasets were generated from true sparse Sylvester fac-

tors {Ψk}Kk=1 where K = 3 and dk = {16, 32, 64} for all k. Instances of the random

matrices used here have uniformly random sparsity patterns with edge densities (i.e.,
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the proportion of non-zero entries) ranging from 0.1%−30% on average over all Ψk’s.

For each d and edge density combination, random samples of size N = {10, 100, 1000}

were tested. For comparison, the initial iterates, convergence criteria were matched

between SyGlasso and SG-PALM. Highlights of the results in run times are summa-

rized in Table III.1.

Table III.1: Run time comparisons (in seconds with N/As indicating those exceed-
ing 24 hour) between SyGlasso and SG-PALM on synthetic datasets with different
dimensions, sample sizes, and densities of the generating Sylvester factors. Note that
the proposed SG-PALM has average speed-up ratios ranging from 1.5 to 10 over Sy-
Glasso.

d N NZ%
SyGlasso SG-PALM
iter sec iter sec

163

101 0.11 9 4.6 11 4.5
4.10 9 5.1 32 5.1

102 0.21 8 8.8 11 5.4
2.60 8 10.8 35 7.2

103 0.26 8 82.4 12 14.3
3.40 10 99.2 37 33.5

323

101 0.13 10 191.2 19 7.3
7.50 17 304.8 42 10.2

102 0.46 9 222.4 24 28.9
7.00 17 395.2 41 48.5

103 0.10 9 1764.8 22 226.4
6.90 19 3789.4 41 473.9

643

101 0.65 10 583.7 42 91.3
14.5 22 952.2 47 119.0

102 0.62 9 6683.7 41 713.9
14.4 21 15607.2 48 1450.9

103 0.85 N/A 39 6984.4
14.0 N/A 48 12968.7

Convergence behavior of SG-PALM is shown in Figure III.1 (a) for the datasets

with dk = 32, N = {10, 100}, and edge densities roughly around 5% and 20%, respec-

tively. Geometric convergence rate of the function value gaps under Theorem 3.4.2

can be verified from the plot. Note an acceleration in the convergence rate (i.e., a

steeper slope) near the optimum, which is suggested by the “localness” of the Kur-
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dyka -  Lojasiewicz (KL) property (defined in Section B.2 of the Appendix) of the

objective function close to its global optimum. Further for the same datasets, in

Figure III.1 (b), SG-PALM graph recovery performances is illustrated, where the

Matthew’s Correlation Coefficients (MCC) is plotted against run time. Here, MCC

is defined by

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP is the number of true positives, TN the number of true negatives, FP the

number of false positives, and FN the number of false negatives of the estimated

edges (i.e., non-zero elements of Ψk’s). An MCC of 1 represents a perfect prediction,

0 no better than random prediction and −1 indicates total disagreement between

prediction and observation. The results validate the statistical accuracy under Theo-

rem 3.4.1. It also shows that SG-PALM outperforms SyGlasso (indicated by blue/red

solid dots) within the same time budget.

3.5.2 Solar imaging data

Solar active regions are temporary centers of strong and complex magnetic field

on the sun, the principal source of violent eruptions such as solar flares (van Driel-

Gesztelyi and Green, 2015). While weak flares of, for example, B-class, have only

limited terrestrial effect, strong flares of M- and X-class can produce tremendous

amount of electromagnetic radiation, causing disturbance or damage to satellites,

power grids, and communication systems. Therefore, it would be great value to be

able to predict how active regions evolve before the onset of solar flares.

Although there are numerous studies that use active region images or physical

parameters to predict flare activities (Leka and Barnes, 2003; Chen et al., 2019; Jiao

et al., 2020b; Wang et al., 2020b; Sun et al., 2021), fewer studies have attempted to
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(a) Cost gap vs. Iteration (b) MCC vs. Run time

Figure III.1: Convergence of SG-PALM algorithm under datasets with varying sample
sizes (solid and dashed) generated via matrices with different sparsity (red and blue).
The function value gaps on log-scale (left) verifies the geometric convergence rate in
all cases and the MCC over time (right) demonstrates the algorithm’s accuracy and
efficiency. Note that the SG-PALM reached almost perfect recoveries (i.e., MCC of
1) within 20 seconds in all cases. In comparison, SyGlasso (big solid dots with line-
range) was only able to achieve at lower MCCs for lower sample-size cases within 30
seconds.

predict the complicated preflare evolution of active regions without physical model-

ing (Bai et al., 2021). Furthermore, existing work tends to focus on predictions using

images collected from a single space instrument. In this section, to illustrate the

viability of the proposed tensor graphical models, we use multiwavelength active re-

gion observations acquired by multiple instruments: the Solar Dynamics Observatory

(SDO)/Helioseismic and Magnetic Imager (HMI) and SDO/Atmospheric Imaging As-

sembly (AIA), to predict the evolution of two types of active regions that lead to either

a weak (B-class) flare or a strong (M- or X-class) flare.

We construct a multiwavelength active region video dataset from the curated

dataset generated by Galvez et al. (2019). The video data are taken in four wave-

lengths (94Å, 131Å, 171Å, and 193Å) by the Atmospheric Imaging Assembly (AIA,

Lemen et al., 2011) plus the three prime HMI vector magnetic field components Bx,

By, and Bz, both aboard the Solar Dynamics Observatory (SDO) satellite. Each video
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is a 24-hour image sequence of an active region at 1-hour cadence before a strong (M-

or X-class) or a weak (B-class) flare occurs in the region. We spatially interpolate the

videos so that each video is represented as a d1 × d2 × d3 × d4 tensor, where d1 = 13

denotes the number of frames in the video, d2 = 50 denotes the height of the frames

after interpolation, d3 = 100 denotes the width of the frames after interpolation, and

d4 = 7 represents the number of different channels/wavelength/components at which

the images are recorded. To prevent information leakage, we chronologically split the

active region videos into a training set (year 2011 to 2014) and a test set (year 2011

to 2014). In the training set, there are 186 active region videos that lead to a B-class

flare and 48 active region videos that lead to a M/X-class flare. In the test set, the

sample sizes are 93 and 24 for the B-class and the M/X-class, respectively.

To perform active region prediction, we first fit the tensor graphical models on

the training set to estimate the covariance or prediction matrices for each of the two

types of active region videos, and then we use the best linear predictor to predict

the last frame from all previous frames for videos in the test set. The forward linear

predictor is constructed in a multi-output least squares regression setting as

ŷt = −Ω−1
2,2Ω2,1yt−1:t−(p−1) (3.10)

when the precision estimate is available. Here, t = d1 for predicting the last frame of

a video. For notational convenience, let p = d1 and q = d2d3d4, then yt−1:t−(p−1) =

yp−1:1 ∈ R(p−1)q is the stacked set of pixel values from the previous p−1 time instances

and Ω2,1 ∈ Rq×(p−1)q and Ω2,2 ∈ Rq×q are submatrices of the pq × pq estimated

precision matrix:

Ω̂ =

Ω1,1 Ω1,2

Ω2,1 Ω2,2

 .

The predictors were tested on the data containing flares observed from different
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active regions than those in training set, so that the predictor has never “seen” the

frames that it attempts to predict, corresponding to 117 observations of which 93 are

B-class flares and 24 are MX-class flares. Figure III.2 shows the root mean squared

error normalized by the difference between maximum and minimum pixels (NRMSE)

over the testing samples, for the forcasts based on the SG-PALM estimator, Ter-

aLasso estimator (Greenewald et al., 2019), Tlasso estimator (Lyu et al., 2019), and

IndLasso estimator. Here, the TeraLasso and the Tlasso are estimation algorithms

for a KS and a KP tensor precision matrix model, respectively; the IndLasso denotes

an estimator obtained by applying independent and separate ℓ1-penalized regressions

to each pixel in yt. The SG-PALM estimator was implemented using a regularization

parameter λN = C1

√
min(dk) log(d)

N
for all k with the constant C1 chosen by optimizing

the prediction NRMSE on the training set over a range of λ values parameterized

by C1. The TeraLasso estimator and the Tlasso estimator were implemented using

λN,k = C2

√
log(d)

N
∏

i̸=k di
and λN,k = C3

√
log(dk)
Nd

for k = 1, 2, 3, respectively, with C2, C3

optimized in a similar manner. Each sparse regression in the IndLasso estimator was

implemented and tuned independently with regularization parameters chosen from a

grid via cross-validation.

We observe that SG-PALM outperforms all three other methods, indicated by

NRMSEs across pixels. Figure III.3 depicts examples of predicted images, compar-

ing with the ground truth. The SG-PALM estimates produced most realistic image

predictions that capture the spatially varying structures and closely approximate the

pixel values (i.e., maintaining contrast ratios). The latter is important as the flares

are being classified into weak (B-class) and strong (MX-class) categories based on the

brightness of the images, and stronger flares are more likely to lead to catastrophic

events, such as those damaging spacecrafts. Lastly, we compare run times of the

SG-PALM algorithm for estimating the precision matrix from the solar flare data

with SyGlasso. Table B.1 in Appendix 2.5 illustrates that the SG-PALM algorithm
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converges faster in wallclock time. Note that in this real dataset, which is potentially

non-Gaussian, the convergence behavior of the algorithms is different compare to syn-

thetic examples. Nonetheless, SG-PALM enjoys an order of magnitude speed-up over

SyGlasso.

Avg. NRMSE = 0.0379, 0.0386, 0.0579, 0.1628 (from left to right)

A
R

B

Avg. NRMSE = 0.0620, 0.0790, 0.0913, 0.1172 (from left to right)

A
R

M
/X

Figure III.2: Comparison of the SG-PALM, Tlasso, TeraLasso, IndLasso performances
measured by NRMSE in predicting the last frame of 13-frame video sequences lead-
ing to B- and MX-class solar flares. The NRMSEs are computed by averaging across
testing samples and AIA channels for each pixel. 2D images of NRMSEs are shown
to indicate that certain areas on the images (usually associated with the most abrupt
changes of the magnetic field/solar atmosphere) are harder to predict than the rest.
SG-PALM achieves the best overall NRMSEs across pixels. B flares are generally eas-
ier to predict due to both a larger number of samples in the training set and smoother
transitions from frame to frame within a video (see the supplemental material for de-
tails).

3.6 Conclusion

We proposed SG-PALM, a proximal alternating linearized minimization method

for solving a pseudo-likelihood based sparse tensor-variate Gaussian precision matrix

estimation problem. Geometric rate of convergence of the proposed algorithm is es-

tablished building upon recent advances in the theory of PALM-type algorithms. We

demonstrated that SG-PALM outperforms the coordinate-wise minimization method

in general, and in ultra-high dimensional settings SG-PALM can be faster by at least
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Predicted examples - B vs. M/X

A
R

B
A

R
B

A
R

M
/X

A
R

M
/X

Figure III.3: Examples of one-hour ahead prediction of the first two AIA channels of
last frames of 13-frame videos, leading to B- (first two rows) and MX-class (last two
rows) flares, produced by the SG-PALM, Tlasso, TeraLasso, IndLasso algorithms,
comparing to the real image (far left column). Note that in general linear forward
predictors tend to underestimate the contrast ratio of the images. The proposed SG-
PALM produced the best-quality images in terms of both the spatial structures and
contrast ratios. See the supplemental material for examples of predicted images from
the HMI instrument.

an order of magnitude. A link between the Sylvester generating equation underlying

the graphical model and certain physical processes was established. This connection

was illustrated on a novel astrophysics application, where multi-instrument imaging

datasets characterizing solar flare events were used. The proposed methodology was

able to robustly forward predict both the patterns and intensities of the solar atmo-

sphere, yielding potential insights to the underlying physical processes that govern

the flaring events.

Future directions include additional downstream tasks involving solar flare pre-

dictions using the estimated precision matrix, such as classification of strong/weak

flares. Furthermore, the statistical convergence rate outlined in Theorem 3.4.1 might

not be optimal. We have observed that, for example, from the simulation study in
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Section 3.5, where we see in Figure III.1(b) that the estimator achieves perfect graph

recovery accuracy even when N = 10, which is better than the sample complexity

implied by the theorem. We are actively working towards obtaining a tighter upper

bound on the statistical error.
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CHAPTER IV

Multiway Ensemble Kalman Filter

In this chapter, we develop methods of forecasting multiway times-series gener-

ated by dynamical systems. These methods can be used to study the emergence

of sparsity and multiway structures in second-order statistical characterizations of

dynamical processes governed by partial differential equations (PDEs). We consider

several state-of-the-art multiway covariance and inverse covariance (precision) matrix

estimators and examine their pros and cons in terms of accuracy and interpretabil-

ity in the context of physics-driven forecasting when incorporated into the ensemble

Kalman filter (EnKF). In particular, we show that multiway data generated from the

Poisson, the convection-diffusion, and the Kuramoto–Sivashinsky types of PDEs can

be accurately tracked via EnKF when integrated with appropriate covariance and

precision matrix estimators.

4.1 Introduction

There has recently been a resurgence of interest in integrating machine learning

with physics-based modeling. Much of the recent work has focused on black-box mod-

els such as deep neural networks (Takeishi et al., 2017; Long et al., 2018; Zhang et al.,

2018; Vlachas et al., 2018; Reichstein et al., 2019; Wang et al., 2020a). However,

seeking shallower models that capture mechanism in a physically interpretable man-
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ner has been a recurring theme in both machine learning and physics (Weinan et al.,

2020). The Kalman filter is a well-known technique to track a linear dynamical sys-

tem over time by assimilating real-world observations into physical knowledge. Many

variants based on the extended and ensemble Kalman filters have been proposed to

deal with non-linear systems. However, these systems are often high dimensional

and forecasting each ensemble member forward through the system is computation-

ally expensive. Moreover, in the high dimensional and low sample regime (N ≪ d),

the sample covariance matrix of the forecast ensemble is extremely noisy. Previous

methods for dealing with these sampling errors can be dived into the “stochastic fil-

ters” and the “deterministic filters”. The former often involve manually “tuning” of

the sample covariance with variance inflation and localization (Hamill et al., 2001;

Houtekamer and Mitchell, 2001; Ott et al., 2004; Wang et al., 2007; Anderson, 2007,

2009; Li et al., 2009; Bishop and Hodyss, 2009a,b; Campbell et al., 2010; Greybush

et al., 2011; Miyoshi, 2011). However, these schemes require carefully choosing the

inflation factor and using expert knowledge to determine local areas of interest that

are used in assimilation. Additionally, they work with perturbed observations that

introduce further sampling errors due to the lack of orthogonality between the per-

turbation noise and the ensembles. This has led to the development of deterministic

versions of the EnKF such as the square root and transform filters (Bishop et al.,

2001; Evensen, 2004; Whitaker and Hamill, 2002; Tippett et al., 2003; Hunt et al.,

2007; Godinez and Moulton, 2012; Nerger et al., 2012; Tödter and Ahrens, 2015),

which do not perturb the observations and are designed to avoid these additional

sampling errors. Lawson and Hansen (2004) studies the differences between different

approaches (stochastic vs. deterministic) of EnKF and the implications of those dif-

ferences in various regimes, and claims that the stochastic filters can better withstand

regimes with nonlinear error growth.

Most similar to our proposed work is Hou et al. (2021), which suggests to imple-
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ment EnKF with a sparse inverse covariance estimator to handle the high-dimensional

regime. However, we note that many real-world processes are complex and generating

heterogeneous multiway/tensor-variate data. For example, weather satellites mea-

sure spatio-temporal climate variables such as temperature, wind velocity, sea level,

pressure, etc. Due to the non-homogeneous nature of these data, estimation of the

second-order information that encodes (conditional) dependency structure within the

data is of great importance. Assuming the data are drawn from a tensor normal dis-

tribution, a straightforward way to estimate this structure is to vectorize the tensor

and estimate the underlying Gaussian graphical model associated with the vector,

as suggested by Hou et al. (2021). Such an approach ignores the tensor structure

and requires estimating a rather high dimensional precision matrix, often with insuf-

ficient sample size. In many scientific applications the sample size can be as small as

one when only a single tensor-valued measurement is available. In this chapter, we

introduce a high-dimensional statistical approach that naturally integrates physics

and machine learning through Kronecker-structured Gaussian graphical models. The

learned representation can then be incorporated into a high dimensional predictive

model using the ensemble Kalman filtering framework.

4.2 Background

We consider a noisy, non-linear dynamical model f(·) that evolves some unob-

served states xt ∈ Rd through time. A noisy version of the states, xt ∈ Rr
t , is

observed via a transformation of xt by a function h(·). Both the state/process noise

vt and the observation noise wt are assumed to be independent of the states. Fur-

ther, we assume both noises are zero-mean Gaussians with known diagonal covariance
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matrices Qt and Rt. Specifically,

xt = f(xt−1) + vt,

yt = h(xt) + wt.

(4.1)

In this work, we further restrict both noise variables v & w and the observational

process are time-invariant, i.e., vt = v, wt = w, and rt = r, although the methods de-

veloped here work in time-variant scenarios. In geophysical problems such as weather

prediction, the state and observation dimensions are often enormous (i.e., d ≥ 107

and rt ≥ 105). Therefore, as with localization methods, we make an assumption

about the correlation structure of the state vector in order to handle the high dimen-

sionality of the state. Specifically, only a small number of pairs of state variables are

assumed to have non-zero conditional correlation, i.e., cov(xi, xj|x−(i,j)) ̸= 0 where

x−(i,j) represents all state variables except xi and xj. For an illustrating example,

consider a one-dimensional spatial field with three locations x1 , x2, and x3 where x1

and x3 are both connected to x2, but not each other. In this case, it is natural to

model x1 and x3 as uncorrelated conditioned on x2 although they are not necessarily

marginally uncorrelated, that is, cov(x1, x3|x2) = 0 but cov(x1, x3) ̸= 0. Similar con-

ditional independence assumptions have been used in the study of Markov random

fields (MRFs), which find applications in, for example, image processing to generate

textures as they can be used to generate flexible and stochastic image models (Kin-

dermann, 1980). A spacial case is the Gaussian MRFs, which is most widely used

in spatial statistics (Rue and Held, 2005). For Gaussian states, the assumption that

the set of non-zero conditional correlations is sparse is equivalent to the assumption

that the inverse correlation matrix of the model state is sparse with few non- zero

off-diagonal entries (Lauritzen, 1996).
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4.2.1 Ensemble Kalman filter

The ensemble Kalman filter (EnKF) is particularly effective when the dynami-

cal system is complicated and non-linear, which is often the case in physical sys-

tems (Evensen, 1994; Burgers et al., 1998). In these cases, analytic propagation of the

entire Gaussian systems as in the classic Kalman filter (KF) algorithm fails (Evensen,

2003). The EnKF can be viewed as an approximate version of the KF, in which the

state distribution is represented by a sample or “ensemble” from the distribution.

This ensemble is then propagated forward through time and updated when new data

become available.

The forecast covariance matrix is replaced by its sample estimate obtained from

the forecast ensemble. However, such systems are often high-dimensional and the

EnKF operates in the regime where the number of ensemble members, N , is much

less than the size of the state, d, suggesting that the sample covariance matrix is

singular and may introduce spurious correlations (Greybush et al., 2011). In this

case, regularized inverse covariance models will be especially attractive. Hou et al.

(2021) introduced a sparsity-penalized EnKF, which replace the sample covariance

with an estimator of the forecasting covariance whose inverse is sparsity regularized.

Here we propose incorporating the multiway covariance / inverse covariance models

into the penalized EnKF framework of Hou et al. (2021).

4.2.2 Multiway representations for diffusion processes

Multiway representations are particularly useful when modeling data generated

from physical processes as many of these processes obey partial differential equations

of the form

Du = f in Ω,

u = g on ∂Ω,

(4.2)
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where u is the unknown physical process, f is the driving process (e.g., white Gaussian

noise), g is the function value of u on the boundary, D is some differential operator

(e.g, a Laplacian or an Euler-Lagrange operator), and Ω is the domain. After fi-

nite difference discretization over the domain Ω, the model is equivalent to (ignoring

discretization error) the matrix equation

Du = f .

Here, D is a sparse matrix since D is a differential operator. Additionally, as shown

below, D admits the Kronecker structure as a mixture of Kronecker sums and Kro-

necker products.

The matrix D reduces to a Kronecker sum when D involves no mixed derivatives.

As an example, we consider the Poisson equation, an elliptical PDE that governs many

physical processes including electromagnetic induction, heat transfer, and convection.

On a rectangular region Ω = (0, d1)× (0, d2) in the 2D Cartesian plane, the Poisson

equation with homogeneous Dirichlet boundary condition is expressed as

Du = (∂2x + ∂2y)u = f in Ω,

u = 0 on ∂Ω

(4.3)

where f : Ω→ R is the given source function and u : Ω→ R is the unknown process

of interest. Using the finite difference method with a square mesh grid with unit

spacing, the unknown and the source can be expressed as d1-by-d2 matrices, U and

F, respectively, that are related to each other via

Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 − 4Ui,j = Fi,j (4.4)
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for any interior grid point (i, j). Defining n-by-n square matrix

An =



2 −1

−1 2
. . .

. . . . . . −1

−1 2


,

the above relation can be expressed as the (vectorized) Sylvester equation with K = 2:

(Ad1 ⊕Ad2)u = f , (4.5)

where u = vec(U), f = vec(F). Note that A is tridiagonal. In the case where

f is white noise with variance σ2, the inverse covariance matrix of u has the form

cov−1(u) = σ−2(Ad1 ⊕Ad2)
T (Ad1 ⊕Ad2) and hence sparse.

More generally, any physical process generated from Equation (4.2) also has sparse

inverse covariance matrices due to the sparsity of general discretized differential op-

erators. Note that similar connections between continuous state physical processes

and sparse “discretized” statistical models have been established by Lindgren et al.

(2011), who elucidated a link between Gaussian fields and Gauss Markov Random

Fields via stochastic partial differential equations.

4.2.3 Kronecker-structured covariance models

Classic regularized estimators such as the graphical lasso (Glasso, Friedman et al.,

2008) for the (inverse) covariance induced by Equation (4.5) may fail because: 1)

both d1 and d2 may be large (and as a result, d = d1d2 is large) for large spatial

fields/domains; 2) ignoring the Kronecker structure may lead to (statistical) ineffi-

ciency of the method, i.e., the estimator not converging to the estimand; 3) ignoring

the generative process in Equation (4.5) will result in learned structures that are not
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easily (physically) interpretable.

To address these issues in learning second-order representations for multiway (ten-

sor) data, (sparse) Kronecker product (KP) or Kronecker sum (KS) decomposition

of Σ or Ω are often employed. Statistical models and corresponding learning algo-

rithms can be derived using generative models or matrix approximations. The former

include: KGlasso/Tlasso (Tsiligkaridis et al., 2013; Lyu et al., 2019) for estimating

Ω = A ⊗B, using a autoregressive representation AXB = Z for data X when Z is

white noise. Another generative model is SyGlasso/SG-PALM (Chapter II,III) that

models the precision matrix as Ω = (A ⊕ B)2, which corresponds to assuming the

data X obeys a Sylvester equation XA + BX = Z. Matrix approximation meth-

ods include: KPCA (Tsiligkaridis and Hero, 2013; Greenewald and Hero, 2015) that

approximates the covariance matrix as Σ =
∑l

i=1Ai ⊗ Bi, i.e., low separation rank

l. Another matrix approximation method is the TeraLasso (Greenewald et al., 2019)

that models the precision matrix as Ω = A⊕B. TeraLasso is equivalent to approxi-

mation of the conditional dependency graph (encoded by the precision matrix) with

a Cartesian product of smaller graphs 1.

All of KGlasso/Tlasso, TeraLasso, and SyGlasso/SG-PALM can be formulated us-

ing a penalized Gaussian likelihood approach. Here, we give a brief review of penalized

Gaussian graphical models for multiway, tensor-valued data. A random tensor X ∈

Rd1×···×dK follows the tensor normal distribution with zero mean when vec(X ) follows

a normal distribution with mean 0 ∈ Rd and precision matrix Ω := Ω(Ψ1, . . . ,ΨK),

where d =
∏K

k=1 dk. Here, Ω(Ψ1, . . . ,ΨK) is parameterized by Ψk ∈ Rdk×dk via

either Kronecker product, Kronecker sum, or the Sylvester structure, and the cor-

responding negative log-likelihood function (assuming N independent observations

X i, i = 1, . . . , N)

− N

2
log |Ω|+ N

2
tr(SΩ), (4.6)

1Note that Tlasso, TeraLasso, Syglasso/SG-PALM are generalizable to precision matrices of the

form
⊗K

k=1 Ψk,
⊕K

k=1 Ψk, and (
⊕K

k=1 Ψk)
2, respectively, for K ≥ 2.
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where Ω =
⊗K

k=1Ψk,
⊕K

k=1 Ψk, or
(⊕K

k=1Ψk

)2
for KP, KS, and Sylvester models,

respectively; and S = 1
N

∑N
i=1 vec(X i) vec(X i)T . For K = 1, this formulation reduces

to the vector normal distribution with zero mean and precision matrix Ψ1.

To encourage sparsity in the high-dimensional scenario, penalized negative log-

likelihood function is proposed

−N
2

log |Ω|+ N

2
tr(SΩ) +

K∑
k=1

Pλk
(Ψk),

where Pλk
(·) is a penalty function indexed by the tuning parameter λk and is applied

elementwise to the off-diagonal elements of Ψk. Popular choices for Pλk
(·) include the

lasso penalty (Tibshirani, 1996), the adaptive lasso penalty (Zou, 2006), the SCAD

penalty (Fan and Li, 2001), and the MCP penalty (Zhang et al., 2010).

To further reduce computational complexity and improve robustness, the Sylvester

models in SyGlassoi/SG-PALM consider the penalized negative log-pseudolikelihood

Lλ(Ψ) =− N

2
log |(

K⊕
k=1

diag(Ψk))2|

+
N

2
tr(SΩ) +

K∑
k=1

Pλk
(Ψk).

(4.7)

This differs from the true penalized Gaussian negative log-likelihood in the exclusion

of off-diagonals of Ψk’s in the log-determinant term. It is motivated and derived

directly using the Sylvester equation, from the perspective of solving a sparse linear

system (see Chapters III and III for details). This maximum pseudolikelihood esti-

mation procedure has been applied to vector-variate Gaussian graphical models (see

Khare et al. (2015) and references therein).

Lastly, the matrix approximation approach of Tsiligkaridis and Hero (2013) to

multiway covariance estimation is based on the representation Σ =
∑l

i=1Ai ⊗ Bi.

The representation is universal: any square matrix can be represented as a sum of
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l Kronecker products for sufficiently large l ≤ min{d21, d22}, as shown in Van Loan

and Pitsianis (1993). The Kronecker components can be obtained via a penalized

optimization approach for estimating a rank l Kronecker product decomposition of

the sample covariance S, i.e.,

min
{Ai,Bi}

∥∥∥∥∥S−
l∑

i=1

Ai ⊗Bi

∥∥∥∥∥
2

F

+ λ

∥∥∥∥∥
l∑

i=1

Ai ⊗Bi

∥∥∥∥∥
∗

for a user-supplied regularization parameter λ > 0. The solution to this penalized

optimization is specified by the first l principal components of the singular value de-

composition (SVD) of R(S) where l is determined by λ through a soft-thresholding of

the SVD spectrum. In analogy to the ordinary PCA algorithm, the soft-thresholding

SVD solution to this optimization problem was called Kronecker PCA (KPCA) in

Greenewald and Hero (2014).

4.3 Penalized Multiway Ensemble Kalman Filter

The proposed multiway ensemble Kalman filter, whose pseudo code is shown in

Algorithm IV.1, modifies the EnKF by using a forecast (inverse) covariance estimator

Σ̂f
t = (Ω̂f

t )−1 obtained from one of the Kronecker-structured methods. From this,

the correspondingly modified Kalman gain matrix is given by

K̂t = Σ̂f
tH

T (HΣ̂f
tH

T + R)−1 = ((Ω̂f
t )−1 + HTR−1H)−1HTR−1. (4.8)

As the observations are assimilated into the EnKF through the ensemble update,

which depends linearly on the Kalman gain matrix (as outlined in Algorithm IV.1),

an accurate estimate of the true Kt ensures that data is properly incorporated into

the forecast ensemble. Hou et al. (Theorem 1, 2021) argues that the estimator K̂t via

a Glasso covariance estimator is asymptotically consistent with the true Kalman gain
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matrix, given conditions on the state ensembles and the regularization parameters

in the covariance estimation procedure. This nice property is a result of conver-

gence of the Glasso-type sparse covariance estimator. Here, the Kronecker-structured

estimators outlined in the previous section all enjoy faster rates of convergence, un-

der appropriate regularity conditions. In Table IV.1, we summarize the theoretical

guarantees on the (inverse) covariance estimators, and hence the estimator K̂t under

different modeling assumptions, i.e., KP, KS, Sylvester. All estimators have a simi-

lar
√

log d/N factor. However, comparing to Glasso that has an additional
√
d+ s

factor, the Kronecker-structured estimators have additional factors that depend on

the smaller dk’s (assuming the number of tensor modes remain constant), that is,√
l
∑

k d
2
k for matrix approximation based estimators 2,

√∑
k dk for KP based inverse

covariance estimators,
√

(d+ s)/minkmk for KS based inverse covariance estimators,

and maxk

√
skdk for the Sylvester estimators. These indicate improved theoretical ac-

curacy on estimating the state (inverse) covariance and the Kalman gain matrix.

Algorithm IV.1: Multiway Ensemble Kalman Filter

Input: Initial ensemble x̂
(1)
0 , . . . , x̂

(N)
0 , observations at each time yt, mea-

surement operator H, state and observation noise covariance matrices Q
and R
for t = 1, . . . , T do
for i = 1, . . . , N do
Forecast Step: Evolve each ensemble member forward in time via
x̃
(i)
t = f(x̂

(i)
t−1) + w(i), with w(i) ∼ Nd(0,Q)

Multiway Covariance Estimation: Estimate the (inverse) covariance

via and compute the Kalman gain matrix K̂t via (4.8)
Update Step: Update the ensemble with the observations by comput-
ing x̂

(i)
t = x̃

(i)
t + K̂t(yt + v

(i)
t −Hx̃

(i)
t ), where v

(i)
t ∼ Nr(0,R)

end for
end for

Output: Final ensemble x̂
(1)
T , . . . , x̂

(N)
T .

In terms of computational complexity, all the structured precision estimation al-

gorithms are variants of Glasso, implemented with techniques tailored to the model

2Here, l indicates the separation rank.
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assumptions for speedup. Generally speaking, the resulting complexity consists of the

mode-wise complexity (d3k) and the cost of updating the objective: dK for TeraLasso,

Nd for KGlasso, and N
∑

k

∑
j ̸=k djm

2
j for SG-PALM. The mode-wise complexity of

TeraLasso is dominated by matrix inversion, which is hard to scale for general prob-

lem instances. For KGlasso, the mode-wise complexity is the same as that of running

a Glasso-type algorithm for each mode, which could be improved by applying state-

of-the-art optimization techniques developed for vector-variate Gaussian graphical

models such as Hsieh et al. (2013). For SG-PALM, the mode-wise operations involve

only sparse-dense matrix multiplications, which could be improved to O(dk · nnz),

where nnz counts the number of non-zero elements of the sparse matrix (i.e., the es-

timated Ψk at each iteration). This could greatly reduce the computational cost for

extremely sparse Ψk, e.g., with only O(dk) non-zero elements. Further, KGlasso and

SG-PALM both incur a cost of the type O(Ndkm
2
k) for each mode-wise update. This

can also be reduced to be ≈ d for sparse estimated Ψk’s at each iteration. Overall,

for sample-starved setting where we only have access to a handful of data samples,

structured KP and KS models run similarly fast, while the Sylvester GM runs slower

theoretically due to the extra and richer structures that it takes into account. The

matrix approximation based estimation procedure, KPCA, is in general computation-

ally more expensive than other KP, KS, and Sylvester based methods. This is mostly

due to the absence of the sparsity structure in the latter model, as well as as SVD step

involved during the its estimation algorithm. There exist faster randomized methods

for truncated SVD (Halko et al., 2011). Thus, it still scales well for moderately high-

dimensional applications. In Table IV.2 wall-clock runtimes of EnKF integrated with

theses (inverse) covariance estimation algorithms are compared under various settings.

The table confirms the aforementioned theoretical computational complexities.
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Table IV.1: Comparison of theoretical guarantees on sample complexity (statistical
error) and computational complexity of various precision / covariance estimators.
Here, M = max{d1, d2, N}, mk =

∏
i ̸=k di is the co-dimension of the k-th mode, d =∏K

k=1 di, and sk characterizes the sparsity of each of the inverse covariance Kronecker
factors sk = |{(i, j) : i ̸= j, [Ψk]i,j ̸= 0}|, s is the sparsity of the full inverse covariance

s = |{(i, j) : i ̸= j,Ωi,j ̸= 0}| and s =
∑K

k=1mksk if Ω satisfies the Kronecker sum
model.

Model Algorithm Statistical Error Computational Complexity

Sparse-Precision Glasso (Friedman et al., 2008) OP

(√
(d+s) log d

N

)
O(d3)

KP-Covariance Robust KPCA (Greenewald and Hero, 2015) OP

(√
l(d21+d22+logM)

N

)
O(ld2)

KP-Precision KGlasso (Tsiligkaridis et al., 2013) OP

(√
(d1+d2) logM

N

)
O(d31 + d32 +Nd)

KS-Precision TeraLasso (Greenewald et al., 2019) OP

(√
K + 1 ·

√
(d+s) log d
N mink mk

)
O(dK +

∑K
k=1 d

3
k)

Sylvester GM SG-PALM (Wang and Hero, 2021b) OP

(√
K ·maxk

√
skdk log d

N

)
O
(∑K

k=1(d
3
k +N

∑
j ̸=k djm

2
j)
)
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4.4 Numerical Experiments

We describe three dynamic models that extend the spatial Poisson equation de-

scribed in Section 4.2.2 to incorporate temporal dynamics, and the resulting multiway

(inverse) covariance structure. These models will be used in our numerical experi-

ments to generate data to demonstrate the performance of the proposed multiway

ensemble Kalman filter algorithm.

Poisson-AR(1) Process. The first extension, which we call the Poisson-AR(1)

process, imposes an autoregressive temporal model of order 1 on the source function

f in the Poisson equation (4.3). Specifically, we say a sequence of discretized spatial

observations {Uk ∈ Rd1×d2}k indexed by time step k = 1, · · · , T is from a Poisson-

AR(1) process if

(Ad1 ⊕Ad2) vec(Uk) = vec(Zk),

vec(Zk) = a vec(Zk−1) + vec(Wk), |a| < 1,

where {Wk ∈ Rd1×d2}k is spatial white noise, i.e., W k
i,j ∼ N (0, σ2

w), i.i.d.

Convection-diffusion Process. The second time-varying extension of the Poisson

PDE model (4.3) is based on the convection-diffusion (C-D) process (Chandrasekhar,

1943)

∂u

∂t
= θ

2∑
i=1

∂2u

∂x2i
− ϵ

2∑
i=1

∂u

∂xi
. (4.9)

Here, θ > 0 is the diffusivity; and ϵ ∈ R is the convection velocity of the quantity

along each coordinate. Note that for simplicity of discussion here, we assume these

coefficients do not change with space and time (see, Stocker (2011), for example, for

a detailed discussion). These equations are closely related to the Navier-Stokes equa-

tion commonly used in stochastic modeling for weather and climate prediction (Chan-
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drasekhar, 1943; Stocker, 2011). Coupled with Maxwell’s equations, these equations

can be used to model magneto-hydrodynamics (Roberts, 2006), which characterize

solar activities including flares.

A solution of Equation (4.9) can be approximated similarly as in the Poisson

equation case, through a finite difference approach. Denote the discrete spatial sam-

ples of u(x, t) at time tk as a matrix Uk ∈ Rd1×d2 . We obtain a discretized update

propagating u(x, t) in space and time, which locally satisfies

Uk
i,j − Uk−1

i,j

∆t
= θ

(
Uk
i+1,j + Uk

i−1,j + Uk
i,j+1 + Uk

i,j−1 − 4Uk
i,j

h2

)

− ϵ

(
Uk
i+1,j − Uk

i−1,j + Uk
i,j+1 − Uk

i,j−1

2h

)
,

(4.10)

where ∆t = tk+1 − tk is the time step and h is the mesh step (spatial grid spacing).

Then, the temporal update of Uk can be shown to obey the Sylvester matrix update

equation (Thomas, 2013) Ad1U
k + UkAT

d2
= Uk−1, or equivalently,

(Ad2 ⊕Ad1) vec(Uk) = vec(Uk−1), (4.11)

where Ad1 = Ad1(θ, ϵ, h,∆t) and Ad2 = Ad2(θ, ϵ, h,∆t) are symmetric tridiagonal

matrices whose entries depend on θ, ϵ, ∆t and h (Grasedyck, 2004).

Kuramoto-Sivashinsky Process. The third extension of a spatial diffusion pro-

cess is the Kuramoto-Sivashinsky (K-S) equation, which is a class of non-linear fourth-

order PDEs known to exhibit chaotic behaviors (Hyman and Nicolaenko, 1986).

Specifically, the K-S equation in a 2D spatial domain can be written as

ut + ∆u+ ∆2u+
1

2
|∇u|2 = 0,
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or equivalently,

∂u

∂t
+

2∑
i=1

∂2u

∂x2i
+

2∑
i=1

∂4u

∂x4i
+

∂4u

∂x21∂x
2
2

+
2∑

i=1

( ∂u
∂xi

)2
. (4.12)

Here, although we can similarly apply finite difference approximation to the differ-

ential operators, the equation is non-linear and simple linear algebraic update like in

the Poisson-AR and convection-diffusion cases is not available.

For numerical illustrations, we consider a 2D spatio-temporal process of dimension

64 × 64 where only half of the entries are observed, which leads to a measurement

matrix H ∈ {0, 1}2048×4096. We generated the true states and the corresponding obser-

vations according to Poisson-AR(1), convection-diffusion, and Kuramoto-Sivashinsky

dynamics for T = 50 time steps. Several realizations of the true state variables are

shown in Figure C.1 of Appendix C. At each time step, we generated an ensemble

of size N = 15 and estimated the state covariance / inverse covariance using several

sparse (multiway) inverse covariance estimation methods, including Glasso (Fried-

man et al., 2008), KPCA (Greenewald and Hero, 2015), KGlasso (Tsiligkaridis et al.,

2013), TeraLasso (Greenewald et al., 2019), SG-PALM (Wang and Hero, 2021b).

Figure IV.1 shows evolution of the computed root mean squared errors (RMSEs)

for the estimated states under the Poisson-AR (left panel) and the convection-diffusion

(right panel) processes across all ensemble members. It is noted that SG-PALM, which

corresponds to the statistical method that models the inverse covariance as a squared

Kronecker sum, performs the best under the Poisson-AR generating process. In Fig-

ure IV.2 (a) we show the true and estimated (inverse) covariance matrices obtained

at the last time step – at each time step the multiway EnKF involves estimation of a

sparse Kronecker sum squared inverse covariance matrix induced by the Poisson-AR

process. Hence, the SG-PALM method operates under the correct model assumption

in this situation. On the other hand, the KPCA method outperforms other methods
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as time progresses. This is due to the fact that the inverse covariance structure un-

der the convection-diffusion dynamics model is dense due to the smoothing nature of

the Kalman filtering algorithm. But, its steady-state covariance has low-dimensional

structures as shown in Figure IV.2 (b). The KPCA in this case was able to approxi-

mate this structure reasonably well as it does not impose any sparsity on the precision

matrix. Remarks IV.1 and IV.3 below further discuss this emergence of dense preci-

sion matrix for the marginal spatial process. Appendix C illustrates situations where

the joint spatio-temporal precision matrix is sparse. Note in this case, the EnKF with

Glasso converges slower than the multiway methods.

Remark IV.1. Although the state variable following the convection-diffusion dynam-

ics evolves via a Sylvester equation, similar to the Poisson-AR case, the state (in-

verse) covariance matrix at time step tk admits different structures. Specifically, the

state precision matrix Ωk = cov−1(vec(Uk)) ∈ Rd1d2×d1d2 evolves as Ωk = (Ad1 ⊕

Ad2)Ω
k−1(Ad1 ⊕ Ad2) + σ−2

w I (see Katzfuss et al. (2016), for example). This ma-

trix is not necessarily sparse for finite k but, assuming that the eigenvalues of the

matrix Ad1 ⊕ Ad2 are in (−1, 1), the limiting precision matrix Ω∞ = limk→∞Ωk is

Ω∞ = (Ad1 ⊕Ad2)Ω
∞(Ad1 ⊕Ad2) +σ−2I. The Ω∞ matrix is sparse because Ad1 and

Ad2 are both tridiagonal.

Tacking the Poisson-AR and convection-diffusion dynamics with EnKF both in-

volve sparse (on either the covariance or its inverse) and tractable linear updates. The

Kuramoto-Sivashinsky dynamical model will similarly involve sparse updates if finite

difference approximations are employed for solving the PDE because the discretized

differential operators will always be sparse. But, the non-linear nature of the prob-

lem makes the update intractable. Moreover, the KS equation is known to generate

chaotic behaviors, making it a more realistic benchmark model for real-world systems.

Here, two of the best performers under the Possion-AR and convection-diffusion dy-

namics (SG-PALM and KPCA) are compared against the ensemble transform Kalman
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Figure IV.1: RMSEs of the estimated states via EnKF over 50 time steps using
different (inverse) covariance estimators. The 95% posterior interval for RMSEs over
all ensemble members are shown here with the posterior mean highlighted using solid
lines. Here, each state is of dimension 64×64 and is generated via either a convection-
diffusion (right) or Poisson-AR(1) equation (left). The best performers in terms of
mean RMSE over all ensemble members are KPCA for convection-diffusion and SG-
PALM for Poisson-AR(1).

filter (ETKF) and its localized version, a method known to work well for tracking

high-dimensional highly non-linear systems with limited ensemble size. It has been

successfully applied for data assimilation of, for example, the solar photospheric mag-

netic flux, which are fundamental drivers for simulations of the corona and solar

wind (Hickmann et al., 2015). Figure IV.3 (a) shows that the proposed multiway

EnKF outperforms the (local) ETKF. The KPCA based estimator outperforms the

SG-PALM based estimator as time progresses, likely due to a similar reason discussed

previously – the inverse covariance structure becomes denser and denser, making the

sparse models less appealing. The local ETKF performs similarly well as the non-

local version but facilitates parallel estimation schemes where the “local patches” of

the state variable can be updated and evolved simultaneously. Figure IV.3 (b) vi-

sualizes the true and estimated KS states by SG-PALM multiway EnKF at several

timestamps. It shows that the proposed method can correct the noisy observations

(with missing values) and recovers the true states reasonably well.

Remark IV.2. The Sylvester matrix equations (and hence the sparse Kronecker

structures) arise when the finite-difference discretization is performed on a rectan-
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(a) Poisson-AR inverse covariance structure (left) and the estimate obtained by SG-PALM
(right) at the last time step.

(b) Convection-diffusion covariance structure (left) and the estimate obtained by KPCA at
the last time step.

Figure IV.2: Covariance/precision structures for Poisson-AR and convection-diffusion
dynamics and their estimates. Here, white/blank entries indicate zeros in the (inverse)
covariance matrix. For Poisson-AR dynamics the Sylvester graphical model approx-
imately matches the true structure of the precision matrix. For convection-diffusion
dynamics the covariance instead of the precision matrix is structured and sparse.

gular grid. The relations (4.4) and (4.11) might not hold for finite-difference on, for

example, spherical coordinates, as well as approximations to the equations using other

types of methods, such as finite volume, finite element, and spectral methods.

Remark IV.3. Although the precision matrix of the state ensemble becomes dense

as the temporal update progresses, making sparse Kronecker-structured methods less

appealing as illustrated in Figure IV.1 and IV.2, if we consider “temporal blocks” of

states then the precision matrix remains sparse. Appendix C includes detailed deriva-

tions of the blocked versions of the Poisson-AR and convection-diffusion dynamics,

and illustrates the performances of the Kronecker-structured models under these sce-
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narios.

4.5 Conclusions

Spatiotemporal PDEs are prominent techniques for modeling real-world physi-

cal systems. In this chapter, we introduced a multiway ensemble Kalman filtering

framework that integrates the powerful ensemble Kalman filters with state-of-the-art

Kronecker-structured covariance/precision models. The resulting framework allows

one to track simulated complex, potentially chaotic systems. One such system in

the real world arises in space physics, where solar flares and coronal mass ejections

are associated with rapid changes in field connectivity and are powered by partial

dissipation of electrical currents in the solar atmosphere (Schrijver et al., 2008). The

nonlinear force-free field model is often used to describe the solar coronal magnetic

field (DeRosa et al., 2015; Wheatland and Gilchrist, 2013) and can be derived from

the convection-diffusion process described in this work. Additionally, global maps of

the solar photospheric magnetic flux are fundamental drivers for simulations of the

corona and solar wind. However, observations of the solar photosphere are only made

intermittently over approximately half of the solar surface. Hickmann et al. (2015)

introduced the Air Force Data Assimilative Photospheric Flux Transport model that

uses localized ensemble transform Kalman filtering to adjust a set of photospheric

simulations to agree with the available observations. In future work, we plan to in-

corporate our proposed multiway EnKF framework for tracking these solar physical

systems.
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(a) Root mean squared errors in log 10 scale for state estimated
by EnKF variants. The solid lines and the shaded areas indi-
cate the posterior mean and the 95% posterior interval over all
ensemble estimates.

(b) Comparison between true states (top) and estimated states by EnKF with the SG-
PALM inverse covariance estimator (bottom) at several time stamps.

Figure IV.3: Visualizations of the performances by various EnKF methods for track-
ing the Kuramoto-Sivashinsky system. The proposed multiway EnKF outperforms
the ETKF and its localized version.
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CHAPTER V

A Geometry-driven Framework for Dynamic Topic

Modeling

A simple and scalable framework for longitudinal analysis of text data is de-

veloped that combines latent topic models with computational geometric methods.

Dimensionality reduction tools from computational geometry are applied to learn the

intrinsic manifold on which the latent, temporal topics reside. Then shortest path dis-

tances on the manifold are used to link together these topics. The proposed framework

permits visualization of the low-dimensional embedding, which provides clear inter-

pretation of the complex, high-dimensional trajectories that may exist among latent

topics. Practical application of the proposed framework is demonstrated through its

ability to 1) capture and effectively visualize natural progression of latent COVID-

19–related topics learned from Twitter data; 2) learn latent topics correspond to

human-labeled data and “generate” novel latent topics from TalkLife – a peer sup-

port network focused on mental health. Interpretability of the trajectories and the

learned topics is achieved by comparing to real-world events and expert knowledge

(e.g., labeled data). The analysis demonstrates that the proposed framework is able

to 1) capture granular-level impact of COVID-19 on public discussions; and 2) learn

mental health focused topic clusters that resemble human-level expert knowledge.
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5.1 Introduction

The continued digitization of public discourse in news feeds, books, scientific re-

ports, social media, blogs, microblogs, and web pages creates opportunities to dis-

cover meaningful patterns and trends of public opinion. Methods of probabilistic

topic modeling have been used to extract such patterns using a suite of algorithms

that aim to automatically discover and annotate large collections of documents with

thematic labels (Blei, 2012). Topic modeling algorithms are computational methods

that manipulate word frequencies in document corpora to discover the themes that

run through them, quantify how those themes are connected to each other, and how

they change over time.

5.1.1 Probabilistic topic models and computational geometry

A probabilistic topic model that has seen success in many applications is the la-

tent Dirichlet allocation (LDA) model (Blei et al., 2003), which uses a latent topic

model to extract thematic information from document corpora to infer an underly-

ing generative process that explains hidden relationships among documents. Many

real-world document corpora, however, have complex structure and include temporal

information that is ignored by traditional LDA models. For example, discussions

of COVID-19 on Twitter between February and May 2020 involve the emergence,

evolution, and extinction of multiple topics over time. Moreover, data generated

from emerging social media platforms, such as Twitter, Reddit, TalkLife, etc. are

short bursts composed in micro-text (Ellen (2011)), which traditional LDA models

struggle to model effectively. Additionally, side information is commonly available

such as document-level labels/tags or word-level features. For example, a significant

proportion of the news articles on Reuters is labeled with multiple human-provided

tags (Ramage et al., 2009). Effectively incorporating these additional information is

key to reliability and interpretability of many machine learning algorithms, including
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LDA and topic models.

Extensions of the standard LDA have been proposed to learn latent topics in the

context of complex structure and temporal information. An early modeling strategy is

to assume a temporally Markovian relationship where the state of the process at time

t+ 1 is independent of past history given the state at time t. Blei and Lafferty (2006)

proposed the dynamic topic model (DTM) for modeling time-varying topics, where

the topical-alignment over time is captured by a Kalman filter procedure. Further

improvements have been in various directions, including: (1) relaxation of the Markov

assumption, as discussed by Wang and McCallum (2006), who introduced a non-

Markov continuous-time model called the topics-over-time (TOT) model, capturing

temporal changes in the occurrence of the topics themselves, and (2) circumvent of

time discretization, as proposed by Wang et al. (2008) that improved the DTM using

a continuous time variant, called cDTM, formulated on Brownian motion to model

the latent topics in a longitudinal collection of documents. These approaches rely

on spatiotemporally coupled stochastic processes for modeling the evolution of topics

over time. Such integrated models employ a global joint parameterization of time

evolution and word co-occurrence, producing a unified generative probabilistic model

for both temporal and topical dimensions.

However, global parameterized DTMs have several deficiencies that motivate the

model proposed in this article. The main issue is that global parameterization can in-

crease the computational complexity of parametric inference. Wang et al. (2008) and

Blei and Lafferty (2006) argued that applying Gibbs sampling to perform inference on

DTMs is more difficult than on static models, principally due to the nonconjugacy of

the Gaussian and multinomial distributions. As an alternative, they proposed the use

of inexact variational methods, in particular, variational Kalman filtering and varia-

tional wavelet regression, for inference. These approximate inference procedures face

two issues: 1) they usually involve assumptions on the correlation structures among
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latent variables, for example, mean-field, which undermines uncertainty quantifica-

tion; 2) the resulting optimization problems are usually nonconvex, which means that

the approximate posterior distribution found might only be locally optimal–trapping

the topic parameters in a neighborhood of a local optima. An additional issue is that

posterior inference via variational approximation usually relies on batch algorithms

that need to scan the full data set before each update of the model. This increases

the computational burden, especially for long time sequences, and parallel computing

cannot be easily exploited (Bhadury et al., 2016). Such issues can lead to numerical

instability and lack of interpretability of the model predictions. Furthermore, incor-

porating side information, such as document-level labels, word-level features (e.g.,

word volumes), imposes additional challenges to dynamic topic modeling. Hong et al.

(2011) proposed a variant of DTM for tracking topic trends, by incorporating word

volumes and assuming these volumes are generated by the latent topics through a

linear model. Similarly, Park et al. (2015) introduced a supervised DTM (sDTM),

where a time-series of numerical values are assumed to be generated by the topic

assignment distributions via a normal linear model. Both of these variants require

the aforementioned Kalman filtering and variational approximation procedures for

inference, in addition to the extra modeling assumption on the side information.

Rather than jointly modeling word co-occurrence and the temporal dynamics,

there exist alternatives that adopt simpler analysis strategies that motivate our pro-

posed approach. Most of these approaches to nonglobal modeling involve fitting a

local time-unaware topic model to predivided discrete time slices of data, and then

examining the topic distributions in each time-slice in order to assemble topic trends

that connect related topics (Griffiths and Steyvers, 2004; Wang et al., 2005; Malik

et al., 2013; Cui et al., 2011). A difficulty with these approaches is that aligning the

topics from each time slice can be challenging, even though several strategies have

been proposed. Malik et al. (2013) proposed a framework to connect every pair of top-
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ics from adjacent time slices whose similarity, measured by the cosine metric, exceeds

a certain threshold. Cui et al. (2011) used a semiparametric clustering algorithm to

identify similar topics at adjacent time slices. However, these approaches suffer from

an inherent inflexibility in modeling diverse dynamical structures that exist in a po-

tentially large collection of temporal topic sequences. Such methods are developed to

model and visualize specific, and relatively rare, types of temporal dynamics and are

often not able to capture all types of variations, for example, anomalies, bifurcations,

emergence, convergence, and divergence.

We propose a flexible and scalable computational geometry framework that reme-

dies the above mentioned issues and complements the existing methods in the dynamic

topic modeling toolbox. Specifically, in this article a time-evolving topic model is in-

troduced that uses a local LDA-type model for discrete time slices of collections of

documents, and a geometric proximity model to align the topics from time to time.

In contrast to global parametric dynamic latent variable approaches to summarizing

time-evolving unstructured texts, our framework offers a wrapper for a suite of tools.

The proposed wrapper framework has the flexibility to allow any particular topic

model to be applied locally to each time slice of documents. This allows any side

information to be included via supervised/semi-supervised variants of LDAs (e.g.,

Ramage et al. (2009); Mcauliffe and Blei (2007); Petterson et al. (2010); Zhu et al.

(2012); Lu et al. (2011)). It then implements a fast and scalable shortest path algo-

rithm to stitch together the locally learned LDA topics into an integrated collection

of temporal topic trends.

To facilitate visualization and interpretation of the learned topic trends, an empha-

sis of this article, the proposed framework also implements a recent geometric embed-

ding method called PHATE (Potential of Heat-diffusion for Affinity-based Trajectory

Embedding) that projects the high-dimensional word distributions representing latent

topics to lower dimensional coordinates. The PHATE embedding has been shown to
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preserve the intrinsic geometry of high-dimensional time-varying data (Moon et al.,

2019), which provides a clear and intuitive visualization of any progressive structure

that exists among the topics. We note that similar computational geometric repre-

sentations of data have been used in unsupervised, semisupervised, and supervised

learning, both as principal learning models and as supplementary regularizers of other

models. In manifold learning, geometric affinity (or distance) between data points

drives dimensionality reduction (Tenenbaum et al., 2000; Donoho and Grimes, 2003)

and dimensionality estimation methods (Costa and Hero, 2006). Several deep learn-

ing architectures, like the deep k-nearest neighbors (Papernot and McDaniel, 2018,

DkNN), use interpoint distances and the kNN classifier to induce interlayer repre-

sentational continuity and robustness against adversarial attacks. Semisupervised

classification approaches adopt geometric measures over reproducing kernel Hilbert

space (RKHS) to associate unlabeled data with labeled data in geometry-regularized

empirical loss frameworks (Belkin and Niyogi, 2004). Geometry is the driver for many

missing data models, for example, synthetic minority oversampling technique (Chawla

et al., 2002, SMOTE) and more generally, nearest neighbor interpolations.

We point out that dimensionality reduction is the basis for latent semantic anal-

ysis (LSA) in computational linguistics. In particular, Doxas et al. (2010) had a

similar objective to ours, to explore temporal evolution of discourse, but in long text

with labeled corpora. The authors constructed semantic spaces for various corpora,

and then calculated the intrinsic dimensionality of the paragraph trajectories through

these corpora. The work focuses on investigating the intrinsic dimension of the tra-

jectories and they used LSA to construct representations of the texts. However, they

did not address the topic alignment or trajectory clustering problems for which our

PHATE and Hellinger shortest path framework is designed.
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5.1.2 Application to Twitter data

Enabled by our proposed longitudinal dynamic topic model, we leverage recent

activity on social media to understand the impact of the COVID-19 pandemic and,

in particular, its impact on social discourse. The utilization of novel data sources

is vital, as the current data landscape for understanding the pandemic remains im-

perfect. For example, public databases maintained by Johns Hopkins University

(https://bit.ly/2UqFSuA) and The New York Times (https://bit.ly/2vUHfrK)

provide incoming county-level information of confirmed cases and deaths. Unfor-

tunately, these data streams are of limited utility due to limited testing capacity

and selection bias (Dempsey, 2020). The public health community requires auxil-

iary sources of information to improve national and local health policy decisions.

A critical question is whether there are complementary data streams that may be

leveraged to better understand the COVID-19 pandemic in the United States. Social

media platforms, such as Twitter, Reddit, Facebook, and so on, are examples of such

data streams. These platforms generate high resolution spatiotemporal data sets that

concern public opinions on various societal issues, including health care, government

decisions, and politics, all of which could be highly relevant to understanding the

impact of COVID-19.

Although use of these novel data streams create new challenges due to limitations

such as high noise level, high volume, and selection bias, many recent efforts have

explored social media data as a complementary source to traditional health care data

and applied topic models to understand public concerns toward COVID-19 (Doogan

et al., 2020; Stokes et al., 2020; Boon-Itt and Skunkan, 2020; Xue et al., 2020; Jang

et al., 2020), as well as related socioeconomic issues (Su et al., 2021; Sha et al., 2020;

Liu et al., 2020). Here, we extract information from Twitter, a particularly popular

social media platform, and focus on studying its spatiotemporal behaviors that are

believed to be affected by COVID-19. We use subsamples of tweets generated from
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February 15, 2020, to May 15, 2020, a period over which a large volume of COVID-19-

related tweets occurred. An extended analysis of data collected from May to August

2020 can be found on https://github.com/ywa136/twitter-covid-topics. We

apply our temporal topic modeling framework to discover sets of COVID-19-related

latent topics that impact public discourse.

5.1.3 Application to TalkLife data

In addition to its lasting physical health effects, a side effect of the COVID-19

is a noticeable and disproportionate increase in the global burden of depressive and

anxiety disorders worldwide. Santomauro et al. (2021) showed that the pandemic

led to a dramatic rose in the overall number of cases of mental disorders, with an

additional 53.2 million and 76.2 million cases of anxiety and major depressive disorders

(MDD), respectively. Even before the COVID-19 pandemic, mental health disorders

posed a significant burden worldwide. However, access to mental healthcare resources

remain poor worldwide. Online social media platform, especially peer-to-peer support

platforms attempt to alleviate this fundamental gap by enabling those who struggle

with mental illness to provide and receive social support from their peers.

Recent work found that social media big data combined with NLP and machine

learning techniques can help address public health, especially mental health, research

questions (Conway and O’Connor, 2016; De Choudhury, 2013; Gkotsis et al., 2016;

De Choudhury et al., 2016; Kim et al., 2021; Amir et al., 2019). As another practical

application of this work, we use data from TalkLife (https://www.talklife.com),

the largest online peer-to-peer support platform for mental health support. Several

work (Sharma et al., 2020b,a, 2021) have demonstrated the usefulness of the TalkLife

data as a machine learning dataset for training models that help improve understand-

ing of the mental health issues. Here, we obtain posts from the platform in the year

of 2019 and apply our temporal topic modeling framework to extract mental health
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related discussions. A distinguishing feature of the TalkLife data is that labels for

the posts are created by human experts for further investigation of the contents and

to aid potential early prevention and intervention of mental health issues. Extending

the Twitter analysis, we develop a weakly-supervised temporal topic model and show

that our framework is able to capture latent topics that correlate well with a set of

labels created by human experts.

5.1.4 Key contributions and outline of the chapter

We highlight key contributions of this article:

• A modular framework that provides a wrapper for a suite of tools for interpre-

tation and visualization of temporal topic models.

• A new approach for aligning independently learned topic models over time based

on computational geometry.

• A scheme for visualizing and understanding temporal structures of the aligned

topics via manifold learning.

The remainder of the article is organized as follows: Section 5.2 introduces the

methods and tools that have been applied in our analysis framework. Section 5.3

and Section 5.4 present numerical results and visualizations with several case studies.

Section 5.5 gives some concluding remarks.

5.2 Methods

In this section, we discuss the building blocks for the proposed framework: Sec-

tion 5.2.1 briefly describes the LDA model and its variants for dealing with micro-text;

Section 5.2.2 introduces two key components of the framework for propagating and

associating topics over time; and Section 5.2.3 reviews and applies a dimension re-

duction technique to visualize the temporal trajectories of the evolving topics.
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5.2.1 LDA for micro-text documents

Since the literature in probabilistic topic models and their dynamic variants is

enormous (see Blei (2012) for a survey), we focus our discussion on the LDA (Blei

et al., 2003), which is the building block for all other algorithms targeting similar

applications. A graphical model representing its generating process is presented in

Appendix 4.1. The idea of LDA is: from a collection of documents (each composed

of set of words wd,n), one is able to infer the per-word topic assignment zd,n, the per-

document topic proportions θd, and the per-corpus topic distributions βk, through a

joint posterior distribution p(θ, z, β|w). Numerous inference algorithms are developed

to handle data at scale, for example, variational methods (Blei et al., 2003; Teh et al.,

2008; Hoffman et al., 2013; Mimno et al., 2012; Srivastava and Sutton, 2017), expec-

tation propagation (Minka and Lafferty, 2002), collapsed Gibbs sampling (Griffiths

and Steyvers, 2002), distributed sampling (Newman et al., 2008; Ahmed et al., 2013),

and spectral methods (Arora et al., 2012; Anandkumar et al., 2014). The posterior

expectations can then be used to perform the task at hand: information retrieval,

document similarity determination, exploration, and so on.

The standard LDA, however, may not work well with micro-text like tweets. In

particular, each tweet usually concentrates on a single topic, and it is not reasonable to

consider one tweet as a document in the traditional sense as there is limited data (e.g.,

word co-occurrences) from which the latent topics can be learned. To overcome this

“data sparsity” issue, efforts have been made along on three major directions (Qiang

et al., 2020): 1) methods predicated on the assumption that each text (e.g., tweet)

is sampled from only one latent topic; 2) methods utilizing global (i.e., the whole

corpus) word co-occurrences structures; 3) methods based on aggregation/pooling of

texts into ‘pseudo-documents’ prior to topic inference.

In this article, we apply the Twitter LDA model (T-LDA, Zhao et al., 2011), for

modeling topics at each time slice. T-LDA can be categorized along the directions 1)
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and 3) mentioned above. But we note that the proposed framework works with any

topic model that outputs word distributions representing learned latent topics. We

selected T-LDA since it has been widely used in many related applications, including

aspect mining (Yang et al., 2016), user modeling (Qiu et al., 2013), and bursty topic

detection (Diao et al., 2012). The generative model underlying T-LDA assumes that

there are K topics in the Tweets, each represented by a word distribution, denoted

as βk for topic k and βB for background words. Let θu denote the topic assign-

ment distribution for user u. Let π denote a Bernoulli distribution that governs the

choice between background words and topic words. The generating process for a

tweet is as follows: a user first chooses a topic based on its user-specific topic as-

signment distribution. Then the user chooses a bag of words one-by-one based on

the chosen topic or the background model. The generation process is summarized in

Algorithm V.1, and a plate notation comparison between the T-LDA and standard

LDA is included in Appendix 4.1. Similarly to a standard LDA algorithm, parame-

ters in each multinomial distribution are governed by symmetric Dirichlet priors. The

model inference can be performed using collapsed Gibbs sampling (code available at

https://github.com/minghui/Twitter-LDA). Due to space limitations we leave out

derivation details and sampling formulas. More details on the implementation can be

found in Appendix 4.1.

Weak Supervision with Word-level Prior Knowledge: To encourage topic

models to learn latent topics that correlate directly with word-level side information,

we augment them with a weakly supervised signal in the form of seed words. Rather

than fully guiding the model with labels in a supervised version, as in for example,

Mcauliffe and Blei (2007) and Ramage et al. (2009), we use a set of seed words to define

an asymmetric prior on the word-topic distributions. The reasons for modeling choice

are twofold: 1) In one of the applications we concern, we have access to micro-text
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Algorithm V.1: Generating process for T-LDA

Input: Constants η, γ
Draw βB ∼ Dir(η), π ∼ Dir(γ)
for topic k = 1, . . . , K do

Draw βk ∼ Dir(η)
end for
for user u = 1, . . . , U do

Draw θu ∼ Dir(α)
for Tweet s = 1, . . . , Su do

Draw zu,s ∼ Multi(θu)
for word n = 1, . . . , Nu,s do

Draw yu,s,n ∼ Multi(π)
if yu,s,n = 0 then

Draw wu,s,n ∼ Multi(βB)
else

Draw wu,s,n ∼ Multi(βzu,s)
end if

end for
end for

end for

data from TalkLife and the corresponding labels for each post. However, the labeling

is noisy (labels could be wrong/imperfect), limited (not every post is labeled), and

have overlaps (a post could be tagged with multiple related labels). Directly applying

supervised LDAs that assume perfect labeling may not be appropriate. 2) We hope to

learn novel latent topics that have not yet been discovered and/or have been missed

by domain experts.

Using seed words as a form of word-level side information has been considered

by a few researchers (Lu et al., 2011; Zhu et al., 2009; Wang et al., 2010), although

their goal was normally aspect ratings and multi-aspect sentence labeling. In this

work, we characterize our prior knowledge (seed words) for the original T-LDA model

using a conjugate Dirichlet prior to the multinomial word-topic distributions. We

define a combined conjugate prior for each word n in the vocabulary V as βk ∼

Dir
(
{η + wn}n∈V

)
for each topic k, where wn can be interpreted as an equivalent

sample size, i.e., the impact of our asymmetric prior is equivalent to adding wn pseudo
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counts to the sufficient statistics of the topic to which word n belongs. In practice, wn

can be obtained empirically as proportional to the volume of a word n in the corpus.

We set wn = 0 when we do not have prior knowledge of a word.

5.2.2 Time evolution of topics and shortest paths

Instead of explicitly building the temporal structures into the model as in the

globally parameterized DMT and its variants, we propose a two-stage approach: 1)

construct a new corpus at each time point via subsampling the documents and inde-

pendently fitting a topic model to each new corpus; 2) link each of these time points

together via shortest distance paths through topics.

Temporal smoothing by subsampling A subsample of tweets is constructed at

each time point by conditional sampling of all the tweets with a sampling distribution

that is inversely proportional to the temporal proximity of the tweet. This produces

subsamples that are local mixtures of tweets at nearby time points, accomplishing a

degree of temporal smoothing prior to topic analysis.

To clarify the subsampling procedure, we give a simple example. Assume that

the corpus is composed of five tweets per day over a 5-day period. We write dt

as the set of five tweets on day t. On the first day (t = 1), exponential weights

are computed w1 = {1.000, 0.7500, 0.5625, 0.4219, 0.3164} and normalized by their

sum, defining the sampling distribution used to construct the subsample. That is,

at time 1, the subsample consists of 100% of all the tweets from day 1, 75% of

the tweets from day 2, 75%2 = 56.25% of the tweets from day 3 and so on. This

subsample is denoted C1 = {s1, . . . , s5}. To construct the subsample on day 2, we

condition on the subsample C1 on day 1 and we construct exponential sampling

weights for day 2 of the form w2 = {0.7500, 1.000, 0.7500, 0.5625, 0.4219}. We combine

the subsample C1 and weights w2 to construct the subsample on day 2, denoted C2,
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by either randomly removing extra tweets if the sampling weights on a particular

day i decreased or randomly adding more tweets from di − si if the weights on a

particular day i increased. This algorithm ensures a (tuneable) degree of smoothness

over the subsamples generated at each time in the sense that subsamples which are

close in time are likely to contain similar tweets. The procedure is illustrated in

Figure V.1. Specifically, using notations developed above, C1 = {s1, . . . , s5} and

C2 = {s1 − Tweet 3, s2 + Tweet 7, s3 + Tweet 15, s4 + Tweet 20, s5 + Tweet 24},

where Tweet 3, Tweet 7, Tweet 15, Tweet 20, and Tweet 24 were randomly chosen.

Figure V.1: Conditional subsampling procedure using a hypothetical corpus com-
posed of five documents each containing five tweets. For example, C = {d1, . . . , d5},
d1 aggregates tweets from day 1, d2 aggregates tweets from day 2, and so on. The
subsampling weights for each document are shown in the bar plots and are exponen-
tially decaying with a factor of 0.75, centered at day 1 (left, w1) and day 2 (right,
w2), respectively. Each newly generated corpus is a proportionally weighted random
sample and a realization of these samples are shown in the tables (C1 and C2). Note
that the two corpora differ only by those highlighted and italicized tweets.

After constructing the temporally smoothed corpus, any topic modeling algorithm,

such as LDA or its (weakly) supervised variants, can be independently applied to each

of the extracted corpora, using either the same set of parameters across all LDA runs,

or seeding the next LDA with estimated parameter values (e.g., the posterior mean of
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the Markov chain Monte Carlo samples) from the current LDA, as described in Song

et al. (2005).

Our proposed temporal smoothing technique is similar to smoothing approaches

introduced in spatiotemporal statistics. For example, in time-series analysis the idea

of exponential smoothing was proposed in the late 1950s (Brown, 1959; Holt, 2004;

Winters, 1960), and has motivated some of the most successful forecasting meth-

ods. Forecasts produced using exponential smoothing methods are weighted averages

of past observations, with the weights decaying exponentially as the observations be-

come older. As another example, kriging (Krige, 1951) or Gaussian process regression

is a widely used method of interpolation in geostatistics. The basic idea of kriging

is to predict the value of a function at a given point by computing a weighted av-

erage of the known values of the function in the neighboring points (Cressie, 2015).

Lastly, in nonparametric regression analysis, the locally estimated scatterplot smooth-

ing (LOESS) is a widely used method that combines multiple regression models in a

k-nearest neighbor based framework. Particularly, at each point in a data set a low-

degree polynomial is fitted to a subset of the data, with explanatory variable values

near the point whose response is being estimated. The subsets used for each of these

polynomial fits are determined by a nearest neighbor algorithm. A user-specified

‘bandwidth’ or smoothing parameter determines how much of the data is used to fit

each local polynomial. This smoothing parameter is the fraction of the total number

of data points that are used in each local fit.

Dissimilarity between topic word distributions After applying local LDA to

each of the time localized subsamples of the smoothed corpus, we stitch together the

local LDA results. The alignment of topics with different time stamps is accomplished

by creating a weighted graph connecting all pairs of topics where the edge weights are

a measure of topic similarity, to be described below. Assume that each local model
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generates K topics, resulting in a total of K × T topics across T time points. A

weighted adjacency matrix is constructed from the similarities between
(
K×T

2

)
topic

pairs. The similarities between topics will allow the alignment algorithm to relate

topics together across time and enable us to track topic evolution.

As each topic is characterized by the LDA word distribution, any metric that

measures dissimilarity between discrete distributions could be used to construct a

similarity measure. It is well known that the Euclidean distance is not well adapted

to measuring dissimilarity between probability distributions (Amari, 2012). As an

alternative, we propose using the Hellinger metric on the space of distributions, which

we justify as follows. The LDA word distribution is conditionally multinomial and

it lies on a statistical manifold called an information geometry, that is endowed with

a natural distance metric, called the Fisher-Rao Riemannian metric. Unlike the

Euclidean metric, this Riemannian metric characterizes intrinsic minimal (geodesic)

distances between multinomial distributions and it depends on the Fisher information

matrix [I(θ)], θ is the multinomial probability vector. Carter et al. (2009) showed that

this metric can be well approximated by the Hellinger distance between multinomial

distributions. The Hellinger distance between discrete probability distributions P =

(p1, . . . , pN) and Q = (q1, . . . , qN) is defined as

H(P,Q) =
1√
2

√√√√ N∑
n=1

(
√
pn −

√
qn)2, 0 ≤ H(·, ·) ≤ 1.

The major advantages of the Hellinger distance are threefold: 1) it defines a true

metric for probability distributions, as compared to, for example, the Kullback-Leibler

divergence; 2) it is computationally simple, as compared to the Wasserstein distance;

3) and it is a special case of the f -divergence, which enjoys many geometric properties

and has been used in many statistical applications. For example, Liese (2012) showed

that f -divergence can be viewed as the integrated Bayes risk in hypothesis testing
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where the integral is with respect to a distribution on the prior; Nguyen et al. (2009)

linked f -divergence to the achievable accuracy in binary classification problems; Jager

and Wellner (2007) used a subclass of f -divergences for goodness of fit testing; Rao

(1995) demonstrated the advantages of the Hellinger metric for graphical representa-

tions of contingency table data; Srivastava and Klassen (2016) adopted the Hellinger

distance to measure distances between functional and shape data; Shemyakin (2014)

showed the connection of the Hellinger distance to Hellinger information, which is

useful in nonregular statistical models when Fisher information is not available; and

finally, Servidea and Meng (2006) derived an identity between the Hellinger derivative

and the Fisher information that is useful for studying the interplay between statistical

physics and statistical computation.

We note that in previous work on aligning topics the L2 or cosine distance is

commonly applied (Chuang et al., 2013, 2015; Yuan et al., 2018). As discussed above,

these distances are practically and theoretically deficient for aligning distributions. A

simulation study is presented in Appendix 4.5 that compares use of these distances to

the Hellinger distance, showing that the latter better preserves topic trend coherence.

Nearest neighbor graphs and shortest paths We use the topic graph with

Hellinger weights to identify natural progressions from one topic to another over

time. We use Dijkstra shortest paths through a nearest neighbor subgraph to identify

these progressions. These paths can be interpreted as trajectories of public discourse

on the topics identified. This is of interest because we want to understand how

conversations around a topic evolves over time. Shortest path analysis allows us to

do this with minimal assumptions on the data. In particular, we do not assume or

further encourage temporal smoothness in the data beyond the temporally smoothed

corpora described in Section 5.2.2.

Due to the noisy nature of social media data and the wide range of topics, we pay
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special attention to local neighborhoods of data points. Hence, instead of working

with a fully connected graph induced by the full N × N Hellinger distance matrix

of pairwise distances between topics, we build a k-nearest neighbor graph from it.

Natural evolution of a topic over time can then be inferred by finding a shortest

path of topics on the weighted k-nearest graph, where Hellinger distances represent

edge weights. Here, a shortest path is a path between two vertices (i.e., two topics)

in a weighted graph such that the total sum of edges weights is minimum, and can

be computed efficiently using, for example, Dijkstra’s algorithm. The approach of

using neighborhood graphs for estimating the intrinsic geometry of a data manifold

is justifiable both empirically and theoretically. In manifold learning similar ideas

are used to reconstruct lower dimensional geometry from data. For example, the

isometric feature mapping (Tenenbaum et al., 2000, ISOMAP) extends metric mul-

tidimensional scaling (MDS) by replacing the matrix of Euclidean distances in MDS

with the matrix of shortest path distances between pairs of vertices in the Euclidean

k nearest neighbor graph. Using such embedding, ISOMAP is able determine lower

dimensional structure in high-dimensional data and capture perceptually natural but

highly nonlinear “morphs” of the corresponding high-dimensional observations (see

figure 4 in Tenenbaum et al. (2000)). Such shortest path analysis is supported by

substantial theory (Bernstein et al., 2000; Costa and Hero, 2006; Hwang et al., 2016).

Under the assumption that the data points are random realizations on a compact and

smooth Riemannian manifold, as the number of data points grows, the shortest paths

over the k nearest neighborhood graph converge to the true geodesic distance along

the manifold.

In the context of our topic alignment application, this theory suggests that the

analogous Hellinger shortest paths should be able to achieve alignment if the empir-

ical LDA word distributions can themselves be interpreted as random draws from

an underlying distribution that varies continuously and smoothly over time along a
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statistical manifold. To illustrate, Figure V.2 demonstrates how a COVID-19-related

topic learned from the corpus on February 15, 2020 (far left), evolves to a COVID-

19-related health care–focused topic learned from the corpus on May 15, 2020 (far

right). The top row in the figure was constructed by computing the shortest Hellinger

distance path on a 10-nearest neighbor graph, whereas the bottom row was con-

structed using the full graph. As expected, the shortest path on the neighborhood

graph captures perceptually natural but highly nonlinear ‘morphs’ of the correspond-

ing high-dimensional word distributions by transforming them approximately along

geodesic paths. On the other hand, the shortest path on the full graph connects the

two observations through a sequence of apparently unrelated and nonintuitive topics.

In Appendix 4.6, we compare the proposed Hellinger shortest path topic alignment

method with TopicFlow (Malik et al., 2013), a common method for topic alignment

that uses local matching and Euclidean distances.

→ → →

→ → →

Figure V.2: Evolution along the Hellinger shortest paths of a COVID-19 topic on
February 15, 2020, to a COVID-19 topic on May 15, 2020. The paths are computed on
a 10-nearest neighbor graph (top) and a fully connected graph (bottom). Each word
cloud image represents a topic at a particular time, showing the word distribution
encoded by font size (only the top 30 words in each topic are shown). The middle two
word clouds represent two intermediate topics on the respective paths and illustrate
the benefit of using the k nearest neighbor graph. The middle two topics on the top
row seem naturally connected to the beginning and the end topics, in contrast to the
bottom row.

The choice of k for the neighborhood graph affects the approximation to the

Hellinger geodesic path: choosing a k that is too large creates short circuits in the

graph, resulting in a noisy path like the bottom row of Figure V.2; choosing a k that
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is too small results in a graph that is disconnected for which there might not exist

a path between two points of interest. The problem of selecting an optimal value of

k remains open, although several computational data-driven approaches have been

proposed for ISOMAP (Tenenbaum et al., 2000; Samko et al., 2006; Gao and Liang,

2011). Here we use k = 10, which exceeds the connectivity threshold, to induce the

most natural approximation to the true geodesic path between topics of interest. In

Appendix 4.8 we establish that our results are robust to perturbations around this

value of k.

We also note that the Hellinger shortest paths may differ in length, which is the

number of topics that they connect over time. This variation is due to the occasional

time skips in the path that occur when the shortest path algorithm does not find an

adequate match between topics at successive time points. Such skipping can occur

when a topic thread wanes temporarily, merges with another thread, or dies. In

Appendix 4.2 we provide statistics on the occurrences of skips for a subset of paths.

5.2.3 Interpretation and visualization of topic trends via low-dimensional

embedding

In LDA each latent topic is represented by a vector that lies on a simplex that

constitutes a discrete probability distribution over words. This vector could be very

high dimensional depending on the size of the vocabulary. Dimensionality reduction

methods are useful for visualization, exploration, and interpretation of such high-

dimensional data, as they enable extraction of critical information in the data while

discarding noise. Many popular methods are available for visualizing high dimensional

data, such as principle component analysis (PCA), MDS, uniform manifold approx-

imation and projection (McInnes et al., 2018, UMAP), and t-distributed stochastic

neighbor embedding (van der Maaten and Hinton, 2008, t-SNE). These methods use

spectral decompositions of the pairwise distance matrix to embed the data into lower
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dimension. PHATE (Moon et al., 2019), on the other hand, is designed to visualize

high-dimensional time-varying data. As demonstrated by the authors, it is capable

of uncovering hidden low-dimensional embedded temporal progression and branching

structure.

Here we embed the estimated LDA word distributions into lower dimensions using

a novel application of PHATE to the Hellinger distance matrix. For details on our

implementation, see Appendix 4.4. Here, using simulated data, we demonstrate the

power of the proposed PHATE-Hellinger embedding for visualization of temporal

evolution patterns as compared to other embedding methods. Specifically, we simulate

10 trajectories of 100-dimensional probability vectors using the model

Xj
t |X

j
t−1 ∼ N100(X

j
t−1, σ

2
j I)

and

P j
t,i =

exp
(
Xj

t,i

)∑p
i=1 exp

(
Xj

t,i

) , i = 1, . . . , 100

for j = 1, . . . , 10 and t = 0, . . . , 99. Each trajectory starts at the same point X0 ∈ R100

and differs from realization to realization depending on σj. We project all 1000 vectors

onto a hypersphere by computing the element-wise square root of each probability

vector and using the mapping Pt,1+· · ·+Pt,100 = 1⇔ (
√
Pt,1)

2+· · ·+(
√
Pt,100)

2 = 12.

Figure V.3 presents the 2D embeddings of this synthetic dataset using PCA on the

Euclidean distance matrix, and t-SNE, UMAP, and PHATE on the Hellinger distance

matrix. Observe that, among all methods, only PHATE correctly captures the tem-

poral progressions as distinct trajectories originating from a common initial point X0.

Additional simulation studies comparing PCA, t-SNE, UMAP, and PHATE with and

without Hellinger distance are included in the Appendix 4.5. In particular, the benefit

of using the Hellinger distance instead of the Euclidean distance is demonstrated.
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Figure V.3: Comparison of principle component analysis (PCA), t-distributed
stochastic neighbor embedding (t-SNE), uniform manifold approximation and projec-
tion (UMAP), and potential of heat-diffusion for affinity-based transition embedding
(PHATE) for dimensionality reduction. The methods are applied to 2D embedding
of simulated 10 trajectories (identified by color) of 100-dimensional probability vec-
tors, all originating from a common initial point. Except for PCA, all these methods
are applied to the matrix of Hellinger distances. Only PHATE correctly captures
the temporal progressions as distinct trajectories originating from a common initial
point.

5.3 Twitter Data Analysis

The entire pipeline for our analysis is described in Algorithm V.2. The imple-

mentation requires setting several hyperparameters. For Twitter data, the temporal

smoothing parameter was selected as γ = 0.75, which corresponds to smoothing ap-

proximately one month of tweets into the current time point, in inverse proportion

to temporal proximity; the parameter for the number of topics was set to K = 50 at

every time point; the number of neighbors was set to k = 10 for the neighborhood

graph to compute shortest paths. In Appendix 4.8 we show relative insensitivity of
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our framework to the choice of these hyperparameters. Although not explored here,

one could also vary K over time, for example, selected by minimizing perplexities

or Bayesian information criteria (BIC) scores at each time (see Appendix 4.8 for a

further discussion).

Algorithm V.2: Longitudinal analysis of micro-text data.

Input: Raw micro-text data
1: Preprocess data and organize tweets into a temporally smoothed corpus
as described in Section 5.2.2, with smoothing parameter γ.
2: Apply topic models described in Section 5.2.1 independently to each
one of T corpus with K topics. This results in TK word distributions.
3: Compute pairwise Hellinger distances for word distributions.
4: Compute:

a: k-nearest neighbor graph with from the TK-by-TK Hellinger matrix
and find the shortest path of interest on the neighborhood graph using
the Djikstra algorithm.
b: PHATE embedding of high-dimensional word distributions in 2D and
3D.

Output: Shortest paths and PHATE coordinates.

5.3.1 Data preparation

We downloaded data via the Twitter Decahose Stream API (https://developer.

twitter.com/en/docs/Tweets/sample-realtime/overview/decahose). The Dec-

ahose includes a random sample of ∼ 10% of the tweets from each day, resulting in a

sample of 300−500 millions of tweets per day. Among all tweets that are sampled, be-

tween ∼ 0.1% and 0.5% (see Appendix 4.7 for details) of them contain geographic lo-

cation information, called geotags, that localize the tweet to within a neighborhood of

the user’s location when the tweet was generated. Note that Twitter’s precise location

service that uses GPS information has been turned off by default (https://twitter.

com/TwitterSupport/status/1141039841993355264). We consider here the more

common Twitter “Place” object that consists of 4 longitude-latitude coordinates that

define the general area from which the user is posting the tweet (https://developer.
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twitter.com/en/docs/tutorials/filtering-Tweets-by-location). Here, we fo-

cus on a time period from February 15, 2020, to May 15, 2020, where we expect

there to be a large volume of tweets that are COVID-19 related. Figure D.8a in

Appendix 4.7 shows the number of tweets for each day in the study period. The

following filtering was used:

• U.S. geographic area: Tweets that are geotagged and originated in the United

States as indicated by the Twitter location service.

• English language Tweets: Tweets from users who selected English as their

default language.

• Non-retweets: Tweets that contain original content from the users and are

not a retweet of other tweets.

The following text preprocessing steps were undertaken: 1) we remove stop words

(e.g., in, on, and, etc., which do not carry semantic meaning); 2) we keep only

common forms of words (lemmatization); 3) we remove words that occurred less than

5 times in a document. As a result, the average vocabulary length per timestamp was

been reduced from around 300000 to 3000. Further, the union of the unique words

from each timestamp has been used as the common vocabulary with word frequencies

zeroed out on days where those words do not occur.

5.3.2 Hellinger-PHATE embedding for all topics

Figure V.4 shows the 2D Hellinger-PHATE embedding of 4500 word distributions.

We labeled the points on the plots with different colors, sizes, and styles for visual-

ization and interpretation of various time points, tweet volumes, and shortest paths.

The full labeling scheme is included in Appendix 4.9. Figure V.4 also shows (as in-

sets) two zoom-ins onto selected COVID-19 topics. We observe several interesting

trajectory patterns in the PHATE embeddings. For example, the “STAY HOME
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(executive order)” cluster (bottom inset) is organized along a straight line, where the

points are more dense at the beginning as well as at the end of the line while sparser

in between. The COVID and COVID NEWS clusters (top inset) behave like a split-

ting between two branches of a tree, and the COVID NEWS (presidential election)

path in those clusters exhibits a ’hook’ or a ’U’ shape. Within the COVID NEWS

cluster, the presidential election path also splits and diverges from other points in

the same cluster. The following two subsections will focus on these two clusters and

paths therein to illustrate the advantages of the proposed framework. Additional vi-

sualizations for the SANITIZING (wash hands) and STAY HOME (executive order)

paths are included in Appendix 4.10.

Figure V.4: Potential of heat-diffusion for affinity-based transition embedding
(PHATE) for all word distributions. Here the two bounding boxes and insets high-
light two of the COVID-19-related topic clusters/paths (COVID/COVID NEWS and
STAY HOME). The colors, sizes, and styles signify various clusters, tweet volumes,
and shortest paths, as given in the dictionary in Appendix 4.9. Note that the embed-
ding captures some important clustering/trajectory structures, for example, branch-
ing, splitting, merging, and so on.
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5.3.3 Case study I: presidential election topic path

Here, we focus on a cluster of topics that is implicitly COVID-related but can

be well understood from associated real-world events. We call this the presidential

election topical path. The subset of topics lying on this shortest path is illustrated

in Figure V.5. Here continuous color scales are used to illustrate temporal evolution,

which exhibits a smooth transition from the beginning to the end points on the path.

The PHATE embedding exhibits three subclusters on the path: 1) an early March

cluster that groups topics related to Super Tuesday; 2) an April cluster that groups

topics related to or triggered by the “Bernie Sanders dropped out of the presidential

race” event; 3) an early to mid-May cluster that groups topics converging to more

general COVID-related political topics.

Figure V.5: Potential of heat-diffusion for affinity-based transition embedding
(PHATE) for subsets of topics in the COVID NEWS cluster (right) and the pres-
idential election path (left) within the cluster. Colors and sizes highlight time and
tweet volumes, respectively. Here three word clouds containing top 30 words in cor-
responding topics are shown for the time points highlighted by red circles, showing
important real-word events that are annotated. Note the plot at the bottom shows
(near lower left) the merge and split of different paths (labeled by filled squares,
crosses, and pluses) within the same cluster.

Additionally, in terms of tweet volume generated by COVID NEWS topic, there

exists again a U-shaped trend: starting at a high level in mid-February the tweet
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volumes dropped down after the Super-Tuesday week and started to rise near the time

when Bernie Sanders dropped out and eventually peaked in mid-May. We believe that

this modulation of the presidential election path can be explained by the COVID-19

pandemic in the United States, which accelerated through March when many states

issued stay-at-home orders. This then triggered public discourse around COVID-19,

increasing the volume of COVID-19-related topics. However, starting in May, as many

stay-at-home orders were lifted, more mainstream political news topics reentered the

discourse.

Following we present results of spatial analysis, showing county-level tweet volume

in California, illustrating that the Hellinger-distance shortest path combined with

PHATE is able to capture more granular-level variations in both space and time. In

Figure V.6 we plot smoothed choropleth maps for the same three topics that were

highlighted in Figure V.5, where the color changes with respect to tweet proportions

(the estimated tweet volumes generated from the given topics normalized by the total

tweet volumes for the given days for each county). Here raw tweet proportions have

been smoothed using a simple Markov random field (MRF) smoother (Wood, 2017),

which regularizes neighboring counties (i.e., regions with contiguous boundaries, that

is, sharing one or more boundary point) to have similar tweet proportions. This

smoothing procedure is used to identify hot spots, or areas whose tweet volumes have

a high likelihood of differing over neighboring locations. The regularization removes

some of the variance one would normally see in a choropleth, and gives a bird’s eye

view of the entire state. For visualization of similar choropleth maps for other states,

as well as a comparison of the maps between states, we include interactive maps at

https://wayneyw.shinyapps.io/mrf_smooth_map_app/.

From the top row of Figure V.6 we observe two ‘presidential election’ hot spots

in counties near the Bay Area and in counties near Los Angeles. The local trend in

tweet volume for California is similar to the global trend overall in the United States,
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as indicated by Figure V.5 above as well as Figure D.14 in Appendix 4.11.

Figure V.6: County-level maps for California. It shows the spatial distribution of
proportional tweet volumes for the three time points on the COVID NEWS (presi-
dential election) path.

5.3.4 Case study II: general COVID-19 topic path

In this case study we focus on an explicit COVID-19 topic cluster and shortest

paths therein. Figure V.7 shows the PHATE embedding for subsets of topics in the

COVID cluster. The embedding identifies two paths that together exhibit splitting

behavior, which can be considered as types of structures built into PHATE a priori. In

this case, two similar discussions around COVID-19 split into a path that focused on

health care, for example, testing, deaths, hospital, and so on, and a path that focused

on politics, for example, government, Trump, president, and so on, respectively. The

split of the two paths into two different sets of topics is revealed by naive clustering

algorithms, such as hierarchical clustering. We emphasize here that such bifurcation

behavior would be difficult to model explicitly, for example, using a time-varying

global LDA-type model, but appears naturally in the PHATE embedding of the

shortest paths using Hellinger distance.
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Figure V.7: Potential of heat-diffusion for affinity-based transition embedding
(PHATE) for subsets of topics in the COVID cluster. The plots demonstrate a
2D (left) and a 3D (right) embedding of two different paths (i.e., health care and
politics). Colors and sizes highlight time and tweet volumes, respectively. Here four
word clouds containing top 30 words in corresponding topics are shown for the time
points (with arrows connecting the beginning and the end topics on the same path)
highlighted by red (health care) and black (politics) circles. Note the plots show di-
vergent behavior of public discourse around COVID-19, where two similar discussions
diverge to different discussions (indicated by the word clouds). The 3D embedding
illustrates nonlinear paths, that is, spirals and loops, for this topic.

The two separated paths can be more clearly observed in the 3D view, where a

‘spiral’ structure in the path labeled by filled circles is revealed. This spiral as well

as the ‘loop’ presented in Figure V.5 capture sharp transitions of discussions within a

topic path, in contrast to more linear structures such as those exhibited in the SAN-

ITIZING (wash hands) and the STAY HOME (executive order) clusters, where the

discussion is stable over time. In particular, the health care trajectory transitioned

from a discussion on general concerns about the coronavirus to testing-focused dis-

cussions on a similar topic; the discussions along the presidential election trajectory

transitioned from politicians in the presidential race to more general politics. On

the other hand, as illustrated in Appendix 4.10, for more linear ‘wash hands’ and

‘executive order’ trajectories, discussions along the paths are quite stable in terms
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of the most relevant words. We conjecture, more formally, that linear paths geomet-

rically constitute a one-dimensional subspace over which a single multinomial word

distribution propagates over time, unaffected by nearby clusters. This represents

stability in the discussions of the topic. Nonlinear paths like spirals, on the other

hand, likely constitute a nonlinear subspace where the multinomial word distribution

changes smoothly over time, affected by proximity to other clusters.

For county-level spatial analysis, three examples of events can be visualized in

Figure V.8 (following the list of relevant events found at https://en.wikipedia.

org/wiki/COVID-19_pandemic_in_California):

• Spatial distribution of COVID tweet proportions on March 1, where the Bay

Area is identified as a relative hot spot in the state. Around late February

and early March, counties near the Bay Area were first hit by the coronavirus

pandemic. For example, cases were reported in Alameda and Solano Counties

on that day; a case was reported in Marin County, who was a passenger on the

Grand Princess cruise.

• On March 11, the first death due to coronavirus was reported in LA County,

and Ventura County reported their first case on the day before. These ‘light

up’ the two counties on the map as a hot spot.

• On March 20 to March 21, Los Angeles County, which is nationally the second-

largest municipal health system, announced that it could no longer contain

the virus and changed their guidelines for COVID-19 testing to not test symp-

tomatic patients if a positive result would not change their treatment. Note

that the Bay Area hot spot before started to ‘fade away’ in terms of Tweets

volume proportions.

104

https://en.wikipedia.org/wiki/COVID-19_pandemic_in_California
https://en.wikipedia.org/wiki/COVID-19_pandemic_in_California


Figure V.8: County-level maps for California. It shows the spatial distribution of
proportional tweet volumes for three time points on the COVID (health care) path.
Note that counties’ names are given for spatial hot spots (in terms of tweet volume).

5.4 TalkLife Data Analysis

For TalkLife data, a similar procedure detailed in Algorithm V.2 is applied with a

weakly-supervised T-LDA using seed words. Here, we set γ = 0.5 which corresponds

to one month of posts for the current time point; the parameter for the number of

topics was set to K = 15 at every time point; the number of neighbors was set to

k = 10 for the neighborhood graph to compute shortest paths.

In contrast to the Twitter analysis, we do not have access to a time period of

high-volume data and a diverse set of real-world events (e.g., COVID-19 pandemic,

presidential election) that can be compared against each other. Although this results

in a lack of ground truth for our dynamical analysis, we do have access to a set of

labels generated by human experts. This motivates us to compare the learned topics

with these labels in the following subsections.
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5.4.1 Data preparation

We use data provided by the TalkLife platform (https://www.talklife.com/

research). All posts from the year 2019 are extracted for further processing. Since

the volume of daily posts is much lesser compared to that of Twitter data, we com-

bined posts on a weekly basis and consider “week” as our time unit for the following

analyses. Volumes are these weekly posts are comparable to the volume of the daily

tweets (see Figure D.8b). Furthermore, similar text preprocessing steps as in the

Twitter analysis were undertaken, and the union of the unique words from each

timestamp has been used as the common vocabulary with word frequencies zeroed

out on weeks where those words do not occur.

A notable feature of the TalkLife data is the human-generated labels for the posts.

There are 33 labels in total, and each post is tagged by ≥ 0 labels that describe the

underlying/suspected mental health issues embedded in the post. Note that there are

cases where more than one label is tagged to a post. In Table D.6 of Appendix 4.12

basic information including percentage volume of each label is shown. Additionally,

the labels are used for constructing word-level features that are fed into the weakly

supervised LDA model. Specifically, top words (measured by percentage volume)

from posts associated with the labels are selected as “seed words” that guide the

LDA discovery of latent topics. Using the notation from Section 5.2.1, for each seed

word n ∈ V , an incremental weight of wn that is proportional to the volume of the

corresponding word has been employed in the Dirichlet prior to the multinomial word

distribution. Table D.7 of Appendix 4.12 provides details of the seed word selection

and the associated prior weights being used in the weakly-supervised T-LDA model.

5.4.2 Clustering of labels

An issue with 33 labels is that they overlap with each other in terms of the bag-

of-words representations of the corresponding posts. For example, the posts with
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labels “NauseaWithEatingDisorderSuspected” and “NauseaSuspected” respectively

may look similar from the perspective of bag-of-words. As our goal of using the

labels is to compare them against the learned topics from an LDA model that is

based on the bag-of-words approach, we further cluster the labels into meta-labels in

order to reduce noise and redundancy.

In particular, we extract the associated posts for each given label and construct a

word distribution where the weights are computed as the percentage volumes. When

using a potentially large set of features, one might expect that the true underlying

clusters present in the data differ only with respect to a small fraction of the features,

and will be missed if one clusters the observations using the full set of features (Wit-

ten and Tibshirani, 2010). Here, since we are training a clustering model on a dataset

with 33 samples where each sample is a 3623-dimensional vector (3623 ≫ 33), i.e.,

a discrete distribution over the vocabulary, we sparsify each feature vector by ze-

roing out the weights of words that belong to the intersection of the 33 samples.

This procedure will de-emphasize words such as “feel”, “sad”, “upset”, etc. that

are common to most mental health-related posts in any clustering algorithm. More-

over, as noted by several researchers (Gopal and Yang, 2014; Batmanghelich et al.,

2016; Meng et al., 2019), clustering text data with Euclidean metrics such as used by

the kmeans algorithm or Gaussian mixture models are not appropriate as the data

is usually normalized (e.g., term frequency, word counts) and lies on a unit-sphere

manifold induced by the Hellinger metric over distribution pairs. Here, taking into

consideration the above-mentioned issues, we employ a von Mises-Fisher (vMF) mix-

ture model (Banerjee et al., 2005; Gopal and Yang, 2014) to cluster the label using

their sparse representations of word distributions.

We construct 10 meta-clusters where the number of components is chosen via a

Bayesian information criteria (BIC). Figure V.9 visualizes the top words from the

merged words distributions. Table D.8 and Figure D.16 of Appendix 4.13 shows the
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labels that belong to each of the cluster and a similar top-word visualization for the

33 samples before clustering, respectively.

Figure V.9: Top words from the merged/clustered words distributions.

5.4.3 Learned topics vs. label topics

In this study we focus on comparing the learned latent topics against the label

topics (i.e., meta-clusters). At each timestamp, we compute the dot products be-

tween the learned topics with each of the label topic, that is, we compute the dot

products between the corresponding weights over the vocabulary. Figure V.10 de-

picts topics that have the largest (i.e., most similar), smaller (i.e., not quite similar),

and the smallest (i.e., least similar) dot products compared with a meta label topic

that includes posts labeled by “NauseaSuspected” and/or “NauseaWithEatingDisor-

derSuspected”. The topics with smaller dot products are clearly unrelated to eating

disorder. This comparison is potentially helpful for discovering novel mental health

related discussions/topics that have not yet been assigned a proper label by experts.

Specifically, the learned topics that consistently result in small dot products with all

label topics may indicate such novel discovery. For example, the last topic in the

middle row of Figure V.10 may indicate a topic related to sleeping disorder (e.g.,

insomnia), which has not been included in the label set.

Furthermore, as one increases the level of supervision by increasing the prior

weights on the seed words, we expect to see an increased similarity between the learned

topics and a given label topic. This is confirmed in Figure V.11 that compares two
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weighting schemes (with different seed words weights) with an unsupervised T-LDA.

Figure V.10: Examples of the most similar (top row), not quite similar (middle
row), and the least similar (bottom row) learned topics compared to the label topic
under labels “NauseaSuspected” and/or “NauseaWithEatingDisorderSuspected” at
various timestamps. The top row clearly resembles the discussion expected from
expert knowledge.

5.4.4 Case study: anxiety and suicide topic paths

In this case study we focus on two critical mental health issues and the corre-

sponding latent topic paths learned using our method: anxiety and suicide ideation.

Figure V.12 depicts the PHATE embedding for these two topic paths. The embed-

ding identifies two paths that together exhibit converging behavior, which can be

considered as types of structures built into PHATE a priori (similar to the splitting

structure in case study II of Twitter analysis). Here, two dissimilar discussions on

TalkLife around anxiety and suicide, respectively, merge into discussions centered on

life-worthlessness and suicidal ideation. The convergence of the two paths is further

revealed by clustering of the true labels – Figure D.8 in the appendix shows that the

labels “AnxietyPanicFearSuspected” and “SuicidalIdeationAndBehaviorSuspected”,

as well as other related labels such as “AgitationOrIrritationSuspected”, “SelfHarm-
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Figure V.11: The dot product scores between the learned topics and the label topic un-
der labels “NauseaSuspected” and/or “NauseaWithEatingDisorderSuspected” across
timestamps (52 weeks in 2019), where the horizontal dotted line indicate the average
over those timestamps. Here, scores computed from topics learned with no super-
vision, minimal supervision, and weak supervision are compared – more supervision
results in more similar topics compared with the labels.

RelapseSuspected” all belong to the same cluster.

Moreover, in terms of the shape of the embedding, we again observe similar curved

and spiral structures that occurred in Figure V.7 and Figure V.5 in the Twitter

analysis. For example, we believe the curvy structure appeared on the suicidal path

(solid circle) is due to seasonal effect in suicide rates. In particular, a study by the

Annenberg Public Policy Center (Rozansky, 2020) found that in 2018 the month

with the lowest average daily suicide rate was December with the next-lowest rates

in November and January (e.g, winter months). In the same year, the highest rates
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were in June, July, and August (summer months). Here, the “inflection point” in

the suicidal path occurred around the beginning of summer with an increase in post

volumes. The drop in suicidal rate during the winter months is signified by the

convergence of the path with the anxiety path. On the anxiety path (solid cross), there

is a similar inflection that occurred around early May, which indicates an increase in

the suicidal rates and convergence of the path with the suicidal path. From a mental

health point of view, a preexisting anxiety issue is a risk factor for the subsequent onset

of suicidal ideation and attempts. This is consistent with published analysis (Sareen

et al., 2005). Further, another change of direction occurred on the anxiety path

towards the winter, which coincides with the decrease in suicidal events. After this

second transition, we observe on the PHATE plot that the topics in the anxiety path

are diverging from the suicidal path and converging with the earlier topics on anxiety.

Figure V.12: Potential of heat-diffusion for affinity-based transition embedding
(PHATE) for two different topic paths. The plots demonstrate a 2D (left) and a 3D
(right) embedding of two different paths – anxiety and suicidal ideation/attempts.
Colors and sizes highlight time (52 weeks in 2019) and posts volumes, respectively.
Here four word clouds containing top 30 words in corresponding topics are shown
for the time points highlighted by red (suicide) and blue (anxiety) circles on the 3D
plot. On the 2D plot, arrows are drawn connecting the beginning and the end topics
on the same path with circles emphasizing several key time points. Note the plots
show convergent behavior of these two temporal topic paths, where two dissimilar
discussions converge to similar discussions (indicated by the word clouds). The 3D
embedding further confirms this converging behavior.
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5.5 Conclusion

We proposed a framework for longitudinal analysis of text data, combining tools

from graph algorithms, statistics, and computational geometry. The proposed pro-

cedure works by linking together marginal topic-word distributions discovered by a

‘regularized’ LDA model designed for micro-text, via Hellinger distances and shortest

paths on neighborhood graphs. The resulting chain of topics can then be visualized

by PHATE dimensionality reduction, which preserves the progressive nature of the

input data. With this framework, we discovered and interpreted how certain conver-

sations split and merged under the impact of the COVID-19 pandemic, which can

be validated by associating with real-world events. Granular-level spatial analyses

showed that our framework is able to capture both global (in the United States) and

local variations of COVID-19-related discussions. We further extended the framework

to incorporate side information via weak supervision in the form of seed words. With

TalkLife data, this extension has been shown to be able to capture latent topics that

coincide with expert knowledge. Finally, we believe that social media data could be

used to supplement traditional health care or census data to provide fresh insights

into the impact of events, like the pandemic, on society, as well as to aid study of

mental health issues.

5.5.1 Limitations

There are several limitations of our analysis that deserve additional attention.

First, as with most statistical algorithms, there are user tuning parameters that must

be selected. There are three tuning parameters that the user must provide: 1) the

numbers of nearest neighbors k in the k nearest neighbor graph; 2) the data smoothing

parameter γ; and 3) the number of topics K for the T-LDA algorithm. We have shown

that our results are robust to perturbations about the parameters we chose, but there

may be better choices. These include comprehensive cross-validation methods which,
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with sufficient computational resources, can be used to reliably select parameters

that minimize a loss function. Such methods have been proposed for selecting k.

For selection of K, a promising option is the hierarchical Dirichlet process (HDP),

a nonparametric Bayesian model for the number of topics that could vary over time

and model birth and death of topics (Teh et al., 2006). Our wrapper framework

could easily incorporate an HDP in place of the T-LDA model, but at the expense of

increased computation. Two more challenging limitations are those of selection bias

and model bias.

Selection biases The use of Twitter data for studying public discourse may be

subject to selection bias as users of Twitter may not be representative of the U.S.

population. Additionally, users of Twitter may be engaged in different types of public

discourses around COVID-19 than users of other social media platforms, for example,

Facebook and Reddit, which have different user demographics and privacy policies.

Different types of subsampling of Tweets may create their own biases. For example,

subsampling based on retweet status, geotag information, country, and time range

(e.g., Feb 15 to May 15) are all subject to selection biases. Our subsampling procedure

may leave out some important information. For example, we did not consider any

retweets, which may contain information on how popular a particular topic might

be. Retweets could possibly shed light on a particular topic, which can be measured,

for example, by the longitudinal distribution of retweet frequencies for the topic.

However, we could not perform a retweet analysis on our geotagged tweets since

Twitter does not allow retweets to be geotagged. We also leave out tweets that are

generated from U.S. users who are outside of the United States.

Model biases The LDA algorithm we have applied to topic modeling summarizes

unstructured texts by themes or topics using a bag-of-words approach. This partic-

ular approach is computationally scalable but it ignores the relative order of words.
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For example, a topic about ‘vaccines are not available’ can be very close to a topic

on ‘vaccines are available, but not to me.’ The issue may be alleviated by using more

sophisticated representations, for example, bigrams or latent semantic analysis. This

would result in higher computational burden–the length of unique phrases would in-

crease exponentially as the word order dimension. Other approaches that attempt to

model the semantic meaning of topics, such as deep neural networks, could also be

used. Additionally, our construction of the smoothed corpora assumes temporal simi-

larities between tweets generated at adjacent time points. Similar types of smoothing

assumptions are common in other areas of spatiotemporal statistics as described in

Section 5.2.2. The manifold hypothesis is also essential in our model for the shortest

path algorithms to recover the intrinsic similarities between topics over time.
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CHAPTER VI

Conclusion and Future Work

6.1 Summary

This thesis focused on statistical methods concerning data with spatio-temporal

structure. In particular, it touched on two separated research areas:

• Tensor-variate Gaussian graphical models and its connections to and applica-

tions in spatio-temporal physical processes

• Temporal topic modeling in both unsupervised and weakly-supervised settings

with applications to analyses of public opinions and mental health

These areas are connected in that in each of them there exists structured and

graphical representations of the data, and it is imperative to utilize these interpretable

representations to achieve scalable and valid inference. This dissertation advanced

the state-of-the-art by introducing a new class of Gaussian graphical model for tensor-

valued data, designing new estimation algorithms with fast convergence, introducing

a new framework for filtering and data assimilation, and finally describing a new

approach to temporal topic modeling. There are multiple fruitful extensions of these

methodology that warrant further investigation, which we discuss next.
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6.2 Future Work

Physical interpretability. While the Kronecker products expansion used in Kro-

necker PCA captures dense structures in the covariance matrix of data generated

from more complex spatio-temporal physical processes as illustrated in Chapter IV,

it lacks physical interpretability. In contrast to the case of Sylvester graphical model

and Poisson-AR(1) processes, it is not obvious whether the sum of Kronecker products

structure corresponds to any true physical models. Recent development in quantum

informatics (Chu and Lin, 2021) has demonstrated a link between estimation of the

density matrix for entangled quantum states and the structured tensor approxima-

tion via
∑l

i=1Ai ⊗ Bi. Further characterizing and extending these connections to

other classes of discretized PDEs is an interesting future direction. Furthermore, in

both the blocked Poisson-AR(1) and convection-diffusion examples, a mixed Kro-

necker sum and Kronecker product structure emerges that can be related to the state

inverse covariance of a dynamical system.

Heavy-tailed multiway covariance/precision models. Most existing work on

multiway covariance and inverse covariance models focus on modeling Gaussian vari-

ables. It would be interesting to explore whether the pseudo-likelihood framework we

adopted for SyGlasso and SG-PALM can be extended to non-Gaussian heavy-tailed

models, e.g., using copula’s or elliptically contoured distributions. This could have im-

portant practical applications, in particular to solar flare and active region prediction

problems presented in Chapter III. The images that characterize the active regions

generally include a small number of pixels of extreme high-intensity. These pixels

might not be captured by a Gaussian-like distribution. Recently, there have been

advances (Wei and Minsker, 2017; Ke et al., 2019) in covariance estimation for heavy-

tailed, non-Gaussian vector-variate data. Multiway (inverse) covariance estimation is

an open problem. Furthermore, robust Kronecker structured covariance / correlation
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models where robust estimator of the correlation matrix with sparse Kronecker struc-

ture has been recently studied for high-dimensional matrix-variate data (Niu et al.,

2020). But, there are still open problems such as theoretical guarantees (comparable

to those of traditional methods) and efficient computational algorithms that warrant

future development.

Kronecker-structured autoencoders. Low-rank covariance models have close

connections with variational autoencoders (VAEs). Dai et al. (2018) studied the rela-

tionship between (robust) PCA and VAEs. Since the Kronecker product for matrices

is a generalization of the outer product for vectors, KPCA can be considered as a

generalization of a the low-rank approximation method of PCA. It is thus natural

to exploit similar relationships between KPCA and VAEs. In this case VAE may be

considered as a nonlinear/non-Gaussian extension to KPCA for low separation rank

covariance models. Additionally, recent advances in efficient training of the VAE-type

neural network architecture (e.g., using stochastic gradient descent) could improve the

computational complexity of KPCA that is currently limited by an expensive singular

value decomposition (Tsiligkaridis and Hero, 2013; Greenewald and Hero, 2015).

Model selection for Kronecker-structured models. Each of the KP, KS, or

Sylvester structure has its pros and cons and is appealing only under appropriate

data generating processes. It is still unclear, for a given data problem with unknown

underlying generative process, how to choose among various Kronecker-structured

models. This problem has been attracting attentions only very recently – Guggen-

berger et al. (2022) developed a procedure for testing for a covariance matrix to have

Kronecker product structure. However, the method proposed relies on an expensive

rank test procedure (Kleibergen and Paap, 2006) that is not scalable to modern big-

data applications. Moreover, it is still an open problem to develop similar tests for

Kronecker sum and Sylvester structures in either the covariance or its inverse.
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Theoretical analysis of geometry-driven dynamic topic models. The “non-

parametric” geometry-driven framework proposed in Chapter V shows promising re-

sults in recovering perceptually natural temporal dynamics that may exist among

data. We demonstrated the “closeness” of the recovered chain of topics to a series of

real events happened around the same time period. However, from a theoretical point

of view, it is desirable to understand whether the estimated topic chain approximates

well the truth. Just as statisticians have studied when least-squares regression can

estimate the “true” regression model, it is natural and important for us to study the

ability of the computational geometric algorithms to estimate the “true” topic path

in a stochastic topic model.

Researchers have explored the performance of nonparametric algorithms that are

based on heuristics or insights on the underlying problems under certain statisti-

cal/stochastic models. For example, Rohe et al. (2011) showed the consistency of

the spectral clustering algorithms in identifying clusters in network data under a true

network generated from the Stochastic Blockmodel (Holland et al., 1983). Bickel

and Chen (2009) proved that, also under the Stochastic Blockmodel, a nonparamet-

ric community detection algorithm called the Newman–Girvan modularity (Newman

and Girvan, 2004) are asymptotically consistent estimators of block partitions.

Akin to these work of studying the performance of nonparametric methods on

parametric tasks of estimating quantities in statistical models, we propose to study

the consistency of the geometry-driven topic modeling algorithm in identifying the

true topic path, under topics generated by the DTM model proposed in Blei and

Lafferty (2006). More specifically, under DTM, the generative process at a time

stamp t is

1. Draw βt,k|βt−1,k ∼ N (βt−1,k, σ
2I),∀k

2. Draw αt|αt−1 ∼ N (αt−1, δ
2I)
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3. For each document:

(a) Draw ηt,d ∼ N (αt, a
2I)

(b) For each word:

i. Draw topic Zt,d,n ∼ Multi(π(ηt,d))

ii. Draw Wt,d,n ∼ Multi(π(βt,Zt,d,n
)),

where π(x) is a mapping from the natural parameterization x to the mean parame-

terization. Here, define

αt as the per-document topic distribution at time t.

βt,j as the word distribution of topic k at time t.

ηt,d as the topic distribution for document d at time t.

zt,d,n as the topic for the nth word in document d in time t.

wt,d,n as the word.

A plausible direction in proving performance of the nonparametric topic modeling

approach proposed in Chapter V under DTM is to characterize the distances between

the recovered topic paths to the true paths, i.e., βt,k’s, for t = 1, . . . and show that

these distances vanish as both the length of the documents and the number of latent

topics grow to infinity.
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APPENDIX A

Appendix of Chapter II

In this Appendix,

Section 1.1 provides the detailed derivation of the updates for Algorithm II.1;

Section 1.2 provides the proofs of theorems stated in Section 2.3;

Section 1.3 provides details on the simulated data in Section 2.4.

1.1 Derivation of the Nodewise Tensor Lasso Estimator

1.1.1 Off-Diagonal updates

For 1 ≤ ik < jk ≤ mk, Tikjk(Ψoff
k ) can be computed in closed form:

(Tikjk(Ψk))offikjk =
Sλk

N

(
FX ,{Ψk}Kk=1

)
( 1
N
X (k)X T

(k))ikik + ( 1
N
X (k)X T

(k))jkjk
, (1.1)
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where

FX ,{Ψk}Kk=1
= − 1

N

((
(W (k) ◦X (k))X T

(k)

)
ikjk

+
(

(W (k) ◦X (k))X T
(k)

)
jkik

+
(
X (k)(X ×k Ψ

off,ikjk
k )T(k)

)
jkik

+
(
X (k)(X ×k Ψ

off,ikjk
k )T(k)

)
ikjk

+
∑
l ̸=k

(
X (k)(X ×l Ψ

off
l )T(k)

)
ikjk

+
∑
l ̸=k

(
X (k)(X ×l Ψ

off
l )T(k)

)
jkik

)
.

Here the ◦ operator denotes the Hadamard product between matrices; Ψoff,ikjk
k is

Ψoff
k with the (ik, jk) entry being zero; and Sλ(x) := sign(x)(|x| − λ)+ is the soft-

thresholding operator.

1.1.2 Diagonal updates

For W ,

(T (W))i[1:K]
=

−
(
X T

(N)Y (N)

)
i[1:K]

+

√(
X T

(N)Y (N)

)2
i[1:K]

+ 4
(
X (N)X T

(N)

)
i[1:K]

2
(
X (N)X T

(N)

)
i[1:K]

.

(1.2)

Here we define Y :=
∑K

k=1

(
X ×k Ψ

off
k

)
. Equations (1.1) and (1.2) give necessary

ingredients for designing a coordinate descent approach to minimizing the objective

function in (3.3). The optimization procedure is summarized in Algorithm II.1.
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1.1.3 Derivation of updates

Note that for 1 ≤ ik < jk ≤ mk, 1 ≤ k ≤ K,

QN({Ψk}Kk=1)

= (N/2)
( ∑

i[1:k−1,k+1:K]

(X ik
i[1:K]

2
+ X jk

i[1:K]

2
)
)(

(Ψk)ikjk

)2
+NFX ,{Ψ}Kk=1

(Ψk)ikjk + λk|(Ψk)ikjk |

+ terms independent of (Ψk)ikjk ,

where

FX ,{Ψ}Kk=1
= −

∑
i[1:k−1,k+1:K]

(
W ik

i[1:K]
X ik

i[1:K]
X jk

i[1:K]
+ Wjk

i[1:K]
X jk

i[1:K]
X ik

i[1:K]

+ (Ψk)Tik,\{ik,jk}X
\{ik,jk}
i[1:K]

X jk
i[1:K]

+ (Ψk)Tjk,\{ik,jk}X
\{ik,jk}
i[1:K]

X ik
i[1:K]

+
∑

l∈[1:k−1,k+1:K]

(Ψl)
T
il,\ilX

ik,\il
i[1:K]

X jk
i[1:K]

+
∑

l∈[1:k−1,k+1:K]

(Ψl)
T
il,\ilX

jk,\il
i[1:K]

X ik
i[1:K]

)
.

Here X ik
i[1:K]

denotes the element of X indexed by i[1:K] except that the kth index is

replaced by ik and X ik,jl
i[1:K]

denotes the element of X indexed by i[1:K] except that the

k, lth indices are replaced by ik, jl. Note the following equivalence:

∑
i[1:k−1,k+1:K]

W ik
i[1:K]

X ik
i[1:K]

X jk
i[1:K]

=
(

(W (k) ◦X (k))X T
(k)

)
ikjk∑

i[1:k−1,k+1:K]

X ik
i[1:K]

X jk
i[1:K]

= (X (k)X T
(k))ikjk

∑
i[1:k−1,k+1:K]

(Ψl)
T
il,.
X ik,.

i[1:K]
X jk

i[1:K]
=
(
X (k)(X ×l Ψl)

T
(k)

)
jkik

,
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where W is a tensor of the same dimensions of X , formed by tensorize values in W ,

and in the case of N > 1 the last mode of W is the observation mode similarly to

X but with exact replicates. Using the tensor notation and standard sub-differential

method, Equation (1.1) then follows.

For W i[1:K]
, using similar tensor operations,

∂

∂W i[1:K]

QN(W , {Ψoff
k }Kk=1) = 0

⇐⇒ − 1

W i[1:K]

+ W2
i[1:K]

X 2
i[1:K]

+ W i[1:K]

(
X i[1:K]

K∑
k=1

(X ×k Ψ
off
k )i[1:K]

)
)

= 0

⇐⇒ W2
i[1:K]

(
X T

(N)X (N)

)
i[1:K]

+ W i[1:K]

(
X T

(N)

K∑
k=1

(X ×k Ψ
off
k )
)
i[1:K]

− 1 = 0

which is a quadratic equation in W i[1:K]
and since W i[1:K]

> 0, so the positive root

has been retained as the solution. Note that the estimation for one entry of W is

independent of the other entries. So during the estimation process we update all the

entries at once by noting that diag
(
X T

(N)X (N)

)
=
((

X T
(N)X (N)

)
i[1:K]

,∀i[1:K]

)
.

1.2 Proofs of Main Theorems

We first list some properties of the loss function.

Lemma 1.2.1. The following is true for the loss function:

(i) There exist constants 0 < ΛL
min ≤ ΛL

max < ∞ such that for Sk := {(ik, jk) : 1 ≤

ik < jk ≤ mk}, k = 1, . . . , K,

ΛL
min ≤ λmin(L̄′′

Sk,Sk
(β̄)) ≤ λmax(L̄

′′
Sk,Sk

(β̄)) ≤ ΛL
max

(ii) There exists a constant K(β̄) < ∞ such that for all 1 ≤ ik < jk ≤ mk,

L̄′′
ikjk,ikjk

(β̄) ≤ K(β̄)
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(iii) There exist constant M1(β̄),M2(β̄) <∞, such that for any 1 ≤ ik < jk ≤ mk

VarW̄,β̄(L′
ikjk

(W̄ , β̄,X )) ≤M1(β̄), VarW̄,β̄(L′′
ikjk,ikjk

(W̄ , β̄,X )) ≤M2(β̄)

(iv) There exists a constant 0 < g(β̄) <∞, such that for all (i, j) ∈ Ak

L̄′′
ij,ij(W̄ , β̄)− L̄′′

ij,Aij
k

(W̄ , β̄)[L̄′′
Aij

k ,Aij
k

(W̄ , β̄)]−1L̄′′
Aij

k ,ij
(W̄ , β̄) ≥ g(β̄),

where Aij
k := Ak/{(i, j)}.

(v) There exists a constant M(β̄) <∞, such that for any (i, j) ∈ Ac
k

∥L̄′′
ij,Ak

(W̄ , β̄)[L̄′′
Ak,Ak

(W̄ , β̄)]−1∥2 ≤M(β̄).

proof of Lemma A.2.1. We prove (i). (ii − v) are then direct consequences, and the

proofs follow from the proofs of B1.1-B1.4 in Peng et al. (2009), with the modifications

being that the indexing is now with respect to each k for 1 ≤ k ≤ K.

Consider the loss function in matrix form as in (2.5). Then L̄′′
Sk,Sk

(β̄) is equivalent
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to

∂2

∂Ψoff
k ∂Ψ

off
k

L(W , {Ψoff
k }Kk=1)

=
∂2

∂Ψoff
k ∂Ψ

off
k

(
tr(ΨT

kSΨk) + first order terms in Ψk + terms independent of Ψk

)

=
∂2

∂Ψoff
k ∂Ψ

off
k

(
tr((Ψoff

k + diag(Ψk))TS(Ψoff
k + diag(Ψk))) + first order terms in Ψoff

k

+ terms independent of Ψoff
k

)

=
∂2

∂Ψoff
k ∂Ψ

off
k

(
tr((Ψoff

k )TSΨoff
k ) + first order terms in Ψoff

k

+ terms independent of Ψoff
k

)

= S =
1

N
vec(X )T vec(X ).

Thus L̄′′
Sk,Sk

(β) = EW,β(S). Then for any non-zero a ∈ Rp, we have

aT L̄′′
Sk,Sk

(β̄)a = aT Σ̄a ≥ ∥a∥22λmin(Σ̄).

Similarly, aT L̄′′
Sk,Sk

(β̄)a ≤ ∥a∥22λmax(Σ̄). By (A2), Σ̄ has bounded eigenvalues, thus

the lemma is proved.

Lemma 1.2.2. Suppose conditions (A1-A2) hold, then for any η > 0, there exist

constant c0,η, c1,η, c2,η, c3,η, such that for any u ∈ Rqk the following events hold with

probability at least 1−O(exp(−η log p)) for sufficiently large N :

(i) ∥L′
N,Ak

(W̄ , β̄,X )∥2 ≤ c0,η

√
qk

log p
N

(ii) |uTL′
N,Ak

(W̄ , β̄,X )| ≤ c1,η∥u∥2
√
qk

log p
N

(iii) |uTL′′
N,AkAk

(W̄ , β̄,X )u− uT L̄′′
AkAk

(β̄)u| ≤ c2,η∥u∥22qk
√

log p
N
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(iv) |L′′
N,AkAk

(W̄ , β̄,X )u− L̄′′
AkAk

(β̄)u| ≤ c3,η∥u∥22qk
√

log p
N

proof of Lemma A.2.2. (i) By Cauchy-Schwartz inequality,

∥L′
N,Ak

(W̄ , β̄,X )∥2 ≤
√
qk max

i∈Ak

|L′
N,i(W̄ , β̄,X )|.

Then note that

L′
N,i(W ,β,X )

=
∑

i[1:k−1,k+1:K]

(ei[1:k−1],p,i[k+1:K]
(W ,β)X i[1:k−1],q,i[k+1:K]

+ ei[1:k−1],q,i[k+1:K]
(W ,β)X i[1:k−1],p,i[k+1:K]

),

where ei[1:k−1],p,i[k+1:K]
X i[1:k−1],q,i[k+1:K]

(W ,β) is defined by

wi[1:k−1],p,i[k+1:K]
X i[1:k−1],p,i[k+1:K]

+
∑
jk ̸=p

(Ψk)p,jkX i[1:k−1],jk,i[k+1:K]

+
∑
l ̸=k

∑
jl ̸=il

(Ψl)il,jlX i[1:k−1],p,i[k+1:K]
.

Then evaluated at the true parameter values (W̄ , β̄), we have ei[1:k−1],p,i[k+1:K]
(W̄ , β̄)

uncorrelated with X i[1:k−1],\p,i[k+1:K]
and E(W̄,β̄)(ei[1:k−1],p,i[k+1:K]

(W̄ , β̄)) = 0. Also,

since X is subgaussian and Var(L′
N,i(W̄ , β̄,X )) is bounded by Lemma C.1. ∀i,

L′
N,i(W̄ , β̄,X ) has subexponential tails. Thus, by Bernstein inequality,

P (∥L′
N,Ak

(W̄ , β̄,X )∥2 ≤ c0,η

√
qk

log p

N
)

≥ P (
√
qk max

i∈Ak

|L′
N,i(W̄ , β̄,X )| ≤ c0,η

√
qk

log p

N
) ≥ 1−O(exp(−η log p)).
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(iii) By Cauchy-Schwartz,

|uTL′′
N,AkAk

(W̄ , β̄,X )u− uT L̄′′
AkAk

(β̄)u|

≤ ∥u∥2∥uTL′′
N,AkAk

(W̄ , β̄,X )− uT L̄′′
AkAk

(β̄)∥2

≤ ∥u∥2
√
qk max

i
|uTL′′

N,Ak,i
(W̄ , β̄,X )− uT L̄′′

Ak,i
(β̄)|

= ∥u∥2
√
qk|uTL′′

N,Ak,imax
(W̄ , β̄,X )− uT L̄′′

Ak,imax
(β̄)|

= ∥u∥2
√
qk|

qk∑
j=1

(ujL
′′
N,j,imax

(W̄ , β̄,X )− ujL̄′′
j,imax

(β̄))|

≤ ∥u∥2qk|ujmax||L′′
N,jmax,imax

(W̄ , β̄,X )− L̄′′
jmax,imax

(β̄))|

≤ ∥u∥22qk|L′′
N,jmax,imax

(W̄ , β̄,X )− L̄′′
jmax,imax

(β̄))|.

Then by Bernstein inequality,

P (|uTL′′
N,AkAk

(W̄ , β̄,X )u− uT L̄′′
AkAk

(β̄)u| ≤ c2,η∥u∥22qk

√
log p

N
)

≥ P (∥u∥22qk|L′′
N,jmax,imax

(W̄ , β̄,X )− L̄′′
jmax,imax

(β̄))| ≤ c2,η∥u∥22qk

√
log p

N
)

≥ 1−O(exp(−η log p)).

(ii) and (iv) can be proved using similar arguments.

Lemma A.2.3. and A.2.4. are used later to prove Theorem 1.

Lemma 1.2.3. Assuming conditions of Theorem 1. Then there exists a constant

C1(β̄) > 0 such that for any η > 0, there exists a global minimizer of the restricted

problem (2.8) within the disc:

{β : ∥β − β̄∥2 ≤ C1(β̄)
√
K max

k

√
qkλN,k}

with probability at least 1−O(exp(−η log p)) for sufficiently large N .
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proof of Lemma A.2.3. Let αN = maxk
√
qkλN,k. Further for 1 ≤ k ≤ K let Ck > 0

and uk ∈ Rmk(mk−1)/2 such that ukAc
k

= 0, ∥uk∥2 = Ck, and u = (u1, . . . , uK) with
√
K mink Ck ≤ ∥u∥2 ≤

√
K maxk Ck.

Then by Cauchy-Schwartz and triangle inequality, we have

∥β̄k + αNu
k − αNu

k∥1 ≤ ∥β̄k + αNu
k∥1 + αN∥uk∥1,

and

∥β̄k∥1 − ∥β̄k + αNu
k∥1 ≤ αN∥uk∥1 ≤ αN

√
qk∥uk∥2 = CkαN

√
qk.

Thus,

QN(β̄ + αNu,X , {λN,k}Kk=1)−QN(β̄,X , {λN,k}Kk=1)

= LN(β̄ + αNu,X )− LN(β̄,X )−
K∑
k=1

λN,k

(
∥β̄k∥1 − ∥β̄k + αNu

k∥1
)

≥ LN(β̄ + αNu,X )− LN(β̄,X )−
K∑
k=1

λN,kCkαN
√
qk

≥ LN(β̄ + αNu,X )− LN(β̄,X )− αNK max
k
Ck
√
qkλN,k

≥ LN(β̄ + αNu,X )− LN(β̄,X )−Kα2
N max

k
Ck.

128



Next,

LN(β̄ + αNu,X )− LN(β̄,X ) = αNu
T
AL

′
N,A(β̄,X ) +

1

2
α2
Nu

T
AL

′′
N,AA(β̄,X )uA

= αN

K∑
k=1

(ukAk
)TL′

N,Ak
(β̄,X ) +

1

2
α2
N

K∑
k=1

(ukAk
)TL′′

N,AkAk
(β̄,X )ukAk

= αN

K∑
k=1

(ukAk
)TL′

N,Ak
(β̄,X ) +

1

2
α2
N

K∑
k=1

(ukAk
)T (L′′

N,AkAk
(β̄,X )− L̄′′

N,AkAk
(β̄,X ))ukAk

+
1

2
α2
N

K∑
k=1

(ukAk
)T L̄′′

N,AkAk
(β̄,X )ukAk

≥ 1

2
α2
N

K∑
k=1

(ukAk
)T L̄′′

N,AkAk
(β̄,X )ukAk

− αNK(max
k
c1,η∥ukAk

∥2

√
qk

log p

N
)

− 1

2
α2
NK(max

k
c2,η∥ukAk

∥22qk

√
log p

N
).

Here the first equality is due to the second order expansion of the loss function and

the inequality is due to Lemma A.2.2 For sufficiently large N , by assumption that

λN,k

√
N/ log p → ∞ if mk → ∞ and

√
log p/N = o(1), the second term in the last

line above is o(αN
√
qkλN,k) = o(α2

N); the last term is o(α2
N). Therefore, for sufficiently

large N

QN(β̄ + αNu,X , {λN,k}Kk=1)−QN(β̄,X , {λN,k}Kk=1)

≥ 1

2
α2
N

K∑
k=1

(ukAk
)T L̄′′

N,AkAk
(β̄,X )ukAk

−Kα2
N max

k
Ck

≥ 1

2
α2
NK min

k

(
(ukAk

)T L̄′′
N,AkAk

(β̄,X )ukAk

)
−Kα2

N max
k
Ck,

with probability at least 1−O(N−η).

By Lemma A.2.1., (ukAk
)T L̄′′

N,AkAk
(β̄,X )ukAk

≥ ΛL
min∥ukAk

∥22 = ΛL
min(Ck)2, for each
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k. So, if we choose mink Ck and maxk Ck such that the upper bound is minimized,

then for N sufficiently large, the following holds

inf
u:u(Ak)c=0,∥uk∥2=Ck,k=1,...,K

QN(β̄ + αNu,X , {λN,k}Kk=1) > QN(β̄,X , {λN,k}Kk=1),

with probability at least 1−O(exp(−η log p)), which means any solution to the prob-

lem defined in (2.8) is within the disc {β : ∥β − β̄∥2 ≤ αN∥u∥2 ≤ αN

√
K maxk Ck}

with probability at least 1−O(exp(−η log p)).

Lemma 1.2.4. Assuming conditions of Theorems 1. Then there exists a constant

C2(β̄) > 0, such that for any η > 0, for sufficiently large N , the following event holds

with probability at least 1 − O(exp(−η log p)): if for any β ∈ S = {β : ∥β − β̄∥2 ≥

C2(β̄)
√
K maxk

√
qkλN,k,βAc

N
= 0}, then ∥L′

N,AN
(W̄ , β̄,X )∥2 >

√
K maxk

√
qkλN,k.

proof of Lemma A.2.4. Let αN = maxk
√
qkλN,k. For β ∈ S, we have β = β̄ + αNu,

with u(A)c and ∥u∥2 ≥ C2(β̄). Note that by Taylor expansion of L′
N,A(W̄ ,β,X ) at β̄

L′
N,A(W̄ ,β,X ) = L′

N,A(W̄ ,β,X ) + αNL
′′
N,AA(W̄ ,β,X )uA

= L′
N,A(W̄ ,β,X ) + αN

(
L′′
N,AA(W̄ ,β,X )− L̄′′

N,AA(β̄)
)
uA

+ αN L̄
′′
N,AA(β̄)uA.

By triangle inequality and similar proof strategies as in Lemma A.2.3., for sufficiently

large N

∥L′
N,A(W̄ ,β,X )∥2 ≥ ∥L′

N,A(W̄ ,β,X )∥2 + αN∥L′′
N,AA(W̄ ,β,X )uA − L̄′′

N,AA(β̄)uA∥2

+ αN∥L̄′′
N,AA(β̄)uA∥2

≥ αN∥L̄′′
N,AA(β̄)uA∥2 + o(αN)

130



with probability at least 1−O(exp(−η log p)). By Lemma A.2.1., ∥L̄′′
N,AA(β̄)uA∥2 ≥

ΛL
min(β̄)∥uA∥2. Therefore, taking C2(β̄) to be 1/ΛL

min(β̄) + ϵ completes the proof.

proof of Theorem 1. By the Karush-Kuhn-Tucker condition, for any solution β̂ of

(2.8), it satisfies ∥L′
N,Ak

(W , β̂,X )∥∞ ≤ λN,k. Thus,

∥L′
N,AN

(W , β̂,X )∥2 ≤
√
K max

k
∥L′

N,Ak
(W , β̂,X )∥2

≤
√
K max

k

√
qk∥L′

N,Ak
(W , β̂,X )∥∞

≤
√
K max

k

√
qkλN,k.

Then by Lemmas A.2.4., for any η > 0, for N sufficiently large, all solutions of (2.8)

are inside the disc {β : ∥β − β̄∥2 ≤ C2(β̄) maxk
√
qkλN,k,βAc

N
= 0} with proba-

bility at least 1 − O(exp(−η log p)). If we further assume that min(i,j)∈Ak
|β̄i,j| ≥

2C(β̄) maxk
√
qkλN,k for each k, then

1−O(exp(−η log p))

≤ PW̄,β̄(∥β̂A − β̄A∥2 ≤ C2(β̄) max
k

√
qkλN,k, min

(i,j)∈Ak

|β̄i,j| ≥ 2C(β̄) max
k

√
qkλN,k,∀k)

≤ PW̄,β̄(sign(β̂Ak
ikjk

) = sign(β̄Ak
ikjk

),∀(ik, jk) ∈ Ak,∀k).

proof of Theorem 2. Let EN,k = {sign(β̂Ak
ikjk

) = sign(β̄Ak
ikjk

)}. Then by Theorem 1,

PW̄,β̄(EN,k) ≥ 1−O(exp(−η log p)) for large N . On EN,k, by the KKT condition and
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the Taylor’s expansion of L′
N,Ak

(W̄ , β̂Ak ,X ) at β̄Ak

−λN,ksign(β̄Ak)

= L′
N,Ak

(W̄ , β̂Ak ,X )

= L′
N,Ak

(W̄ , β̄Ak ,X ) + L′′
N,AkAk

(W̄ , β̄,X )vN,k

= L̄′′
AkAk

vN,k + L′
N,Ak

(W̄ , β̄Ak ,X ) + (L′′
N,AkAk

(W̄ , β̄,X )− L̄′′
AkAk

)vN,k,

where vN,k = β̂Ak − β̄Ak . By rearranging the terms

vN,k =

− λN,k[L̄′′
AkAk

]−1sign(β̄Ak)− [L̄′′
AkAk

]−1[L′
N,Ak

(W̄ , β̄Ak ,X ) +DN,AkAk
(W̄ , β̄Ak)vN,k],

(1.3)

where DN,AkAk
= L′′

N,AkAk
(W̄ , β̄,X )− L̄′′

AkAk
. Next, for fixed (i, j) ∈ Ac

k, by expand-

ing L′
N,Ak

(W̄ , β̂Ak ,X ) at β̄Ak

L′
N,ij(W̄ , β̂Ak ,X ) = L′

N,ij(W̄ , β̄Ak ,X ) + L′′
N,ij,Ak

(W̄ , β̄Ak ,X )vN,k. (1.4)

Then combining (1.3) and (1.4) we get

L′
N,ij(W̄ , β̂Ak ,X )

= −λN,kL̄
′′
ij,Ak

(β̄Ak)[L̄′′
AkAk

]−1sign(β̄Ak)− L̄′′
ij,Ak

(β̄Ak)[L̄′′
AkAk

]−1L′
N,Ak

(W̄ , β̄Ak ,X )

+ [DN,ij,Ak
(W̄ , β̄Ak)− L̄′′

ij,Ak
(β̄Ak)[L̄′′

AkAk
]−1DN,AkAk

(W̄ , β̄Ak)]vN,k

+ L′
N,ij(W̄ , β̄Ak ,X ).

(1.5)

By the incoherence condition outlined in condition (A3), for any (i, j) ∈ Ak,

|L̄′′

ij,Ak
(W̄ , β̄)[L̄

′′

Ak,Ak
(W̄ , β̄)]−1sign(β̄Ak

)| ≤ δ < 1.
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Thus, following straightforwardly (with the modification that we are considering each

Ak instead of A) from the proofs of Theorem 2 of Peng et al. (2009), the remaining

terms in (1.5) can be shown to be all o(λN,k), and max(i,j)∈Ac
k
|L′

N,ij(W̄ , β̂Ak ,X )| <

λN,k with probability at least 1 − O(exp(−η log p)) for sufficiently large N . Thus, it

has been proved that for sufficiently large N , no wrong edge will be included for each

true edge set Ak and hence, no wrong edge will be included in A = ∪kAk.

proof of Theorem 3. By Theorem 1 and Theorem 2, with probability tending to 1,

any solution of the restricted problem is also a solution of the original problem. On

the other hand, by Theorem 2 and the KKT condition, with probability tending to

1, any solution of the original problem is also a solution of the restricted problem.

Therefore, Theorem 3 follows.

1.3 Simulated Precision Matrix

1. AR1(ρ): The covariance matrix of the form A = (ρ|i−j|)ij for ρ ∈ (0, 1).

2. Star-Block (SB): A block-diagonal covariance matrix, where each block’s pre-

cision matrix corresponds to a star-structured graph with (Ψk)ij = 1. Then,

for ρ ∈ (0, 1), we have that Aij = ρ if (i, j) ∈ E and Aij = ρ2 for (i, j) ̸∈ E,

where E is the corresponding edge set.

3. Erdos-Renyi random graph (ER): The precision matrix is initialized at

A = 0.25I, and d edges are randomly selected. For the selected edge (i, j),

we randomly choose ψ ∈ [0.6, 0.8] and update Aij = Aji → Aij − ψ and

Aii → Aii + ψ, Ajj → Ajj + ψ.
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APPENDIX B

Appendix of Chapter III

In this Appendix,

Section 2.1 provides detailed derivation of the log-pseudolikelihood function.

Section 2.2 provides justifications for the Barzilai-Borwein step sizes imple-

mented in Algorithm III.1.

Section 2.3 provides detailed proofs of Theorems 3.4.1 and 3.4.2.

Section 2.4 discusses extensions of Algorithm III.1 and its convergence proper-

ties to non-convex cases.

Section 2.5 provides additional details of the solar flare experiments.

2.1 Derivation of the Log-Pseudolikelihood

By rewriting the Sylvester tensor equation defined in (3.2) element-wise, we first

observe that (
K∑
k=1

(Ψk)ik,ik

)
X i[1:K]

= −
K∑
k=1

∑
jk ̸=ik

(Ψk)ik,jkX i[1:k],jk,i[k+1:K]
+ T i[1:K]

.

(2.1)

134



Note that the left-hand side of (2.1) involves only the summation of the diagonals of

the Ψk’s and the right-hand side is composed of columns of Ψk’s that exclude the

diagonal terms. Equation (2.1) can be interpreted as an autogregressive model relat-

ing the (i1, . . . , iK)-th element of the data tensor (scaled by the sum of diagonals) to

other elements in the fibers of the data tensor. The columns of Ψk’s act as regres-

sion coefficients. The formulation in (2.1) naturally leads to a pseudolikelihood-based

estimation procedure (Besag, 1977) for estimating Ω (see also Khare et al. (2015)

for how this procedure applied to vector-variate Gaussian graphical model estima-

tion). It is known that inference using pseudo-likelihood is consistent and enjoys

the same
√
N convergence rate as the MLE in general (Varin et al., 2011). This

procedure can also be more robust to model misspecification (e.g., non-Gaussianity)

in the sense that it assumes only that the sub-models/conditional distributions (i.e.,

X i|X−i) are Gaussian. Therefore, in practice, even if the data is not Gaussian, the

Maximum Pseudolikelihood Estimation procedure is able to perform reasonably well.

Wang et al. (2020c) also studied a different model misspecification scenario where the

Kronecker product/sum and Sylvester structures are mismatched for SyGlasso.

From (2.1) we can define the sparse least-squares estimators for Ψk’s as the solu-

tion of the following convex optimization problem:

min
Ψk∈Rdk×dk

k=1,...K

−N
∑

i1,...,iK

logW i[1:K]

+
1

2

∑
i1,...,iK

∥(I) + (II)∥22 +
K∑
k=1

Pλk
(Ψk).

where Pλk
(·) is a penalty function indexed by the tuning parameter λk and

(I) = W i[1:K]
X i[1:K]

(II) =
K∑
k=1

∑
jk ̸=ik

(Ψk)ik,jkX i[1:k],jk,i[k+1:K]
,
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with W i[1:K]
:=
∑K

k=1(Ψk)ik,ik .

The optimization problem above can be put into the following matrix form:

min
Ψk∈Rdk×dk

k=1,...K

− N

2
log |(diag(Ψ1)⊕ · · · ⊕ diag(ΨK))2|

+
N

2
tr(S(Ψ1 ⊕ · · · ⊕ΨK)2) +

K∑
k=1

Pλk
(Ψk)

where S ∈ Rd×d is the sample covariance matrix, i.e., S = 1
N

∑N
i=1 vec(X i) vec(X i)T .

Note that this is equivalent to the negative log-pseudolikelihood function that ap-

proximates the ℓ1-penalized Gaussian negative log-likelihood in the log-determinant

term by including only the Kronecker sum of the diagonal matrices instead of the

Kronecker sum of the full matrices.

2.2 The Barzilai-Borwein Step Size

The BB method has been proven to be very successful in solving nonlinear opti-

mization problems. In this section we outline the key ideas behind the BB method,

which is motivated by quasi-Newton methods. Suppose we want to solve the uncon-

strained minimization problem

min
x
f(x),

where f is differentiable. A typical iteration of quasi-Newton methods for solving this

problem is

xt+1 = xt −B−1
t ∇f(xt),

where Bt is an approximation of the Hessian matrix of f at the current iterate xt.

Here, Bt must satisfy the so-called secant equation: Btst = yt, where st = xt − xt−1

and yt = ∇f(xt) − ∇f(xt−1) for t ≥ 1. It is noted that in to get B−1
t one needs to

solve a linear system, which may be computationally expensive when Bt is large and

136



dense.

One way to alleviate this burden is to use the BB method, which replaces Bt by

a scalar matrix (1/ηt)I. However, it is hard to choose a scalar ηt such that the secant

equation holds with Bt = (1/ηt)I. Instead, one can find ηt such that the residual of

the secant equation, i.e., ∥(1/ηt)st − yt∥22, is minimized, which leads to the following

choice of ηt:

ηt =
∥st∥22
sTt yt

.

Therefore, a typical iteration of the BB method for solving the original problem is

xt+1 = xt − ηt∇f(xt),

where ηt is computed via the previous formula.

For convergence analysis, generalizations and variants of the BB method, we refer

the interested readers to Raydan (1993, 1997); Dai and Liao (2002); Fletcher (2005)

and references therein. BB method has been successfully applied for solving problems

arising from emerging applications, such as compressed sensing (Wright et al., 2009),

sparse reconstruction (Wen et al., 2010) and image processing (Wang and Ma, 2007).

2.3 Proofs of Theorems

2.3.1 Proof of Theorem 3.4.1

We first state the regularity conditions needed for establishing convergence of the

SG-PALM estimators {Ψ̂k}Kk=1 to their true value {Ψ̄k}Kk=1.

(A1 - Subgaussianity) The data X 1, . . . ,XN are i.i.d subgaussian random tensors,

that is, vec(X i) ∼ x, where x is a subgaussian random vector in Rd, i.e., there exist

a constant c > 0, such that for every a ∈ Rd, EeaT x ≤ eca
T Σ̄a, and there exist ρj > 0

such that Eetx2
j ≤ +∞ whenever |t| < ρj, for 1 ≤ j ≤ d.
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(A2 - Bounded eigenvalues) There exist constants 0 < Λmin ≤ Λmax < ∞, such

that the minimum and maximum eigenvalues of Ω are bounded with λmin(Ω̄) =

(
∑K

k=1 λmax(Ψk))−2 ≥ Λmin and λmax(Ω̄) = (
∑K

k=1 λmin(Ψk))−2 ≤ Λmax.

(A3 - Incoherence condition) There exists a constant δ < 1 such that for k =

1, . . . , K and all (i, j) ∈ Ak

|L̄′′

ij,Ak
(Ψ̄)[L̄′′

Ak,Ak
(Ψ̄)]−1sign(Ψ̄Ak,Ak

)| ≤ δ,

where for each k and 1 ≤ i < j ≤ dk, 1 ≤ k < l ≤ dk,

L̄′′

ij,kl(Ψ̄) := EΨ̄

(
∂2L(Ψ)

∂(Ψk)i,j∂(Ψk)k,l
|Ψ=Ψ̄

)
,

and

L(Ψ) = −N
2

log |(
K⊕
k=1

diag(Ψk))2|+ N

2
tr(S · (

K⊕
k=1

Ψk)2).

Given assumptions (A1-A3), the theorem follows from Theorem 3.3 in Wang et al.

(2020c).

2.3.2 Proof of Theorem 3.4.2

We next turn to convergence of the iterates {Ψt} from SG-PALM to a global

optimum of (3.3). The proof leverages recent results in the convergence of alternating

minimization algorithms for non-strongly convex objective (Bolte et al., 2014; Karimi

et al., 2016; Li and Pong, 2018; Zhang, 2020). We outline the proof strategy:

1. We establish Lipschitz continuity of the blockwise gradient ∇kH(Ψ) for k =

1, . . . , K.

2. We show that the objective function Lλ satisfies the Kurdyka -  Lojasiewicz (KL)

property. Further, it has a KL exponent of 1
2

(defined later in the proofs).

138



3. The KL property (with exponent 1
2
) is equivalent to a generalized Error Bound

(EB) condition, which enables us to establish linear iterative convergence of the

objective function (3.3) to its global optimum.

Definition 2.3.1 (Subdifferentials). Let f : Rd → (−∞,+∞] be a proper and lower

semicontinuous function. Its domain is defined by

domf := {x ∈ Rd : f(x) < +∞}.

If we further assume that f is convex, then the subdifferential of f at x ∈ domf can

be defined by

∂f(x) := {v ∈ Rd : f(z) ≥ f(x)+ < v, z − x >,∀z ∈ Rd}.

The elements of ∂f(x) are called subgradients of f at x.

Denote the domain of ∂f by dom∂f := {x ∈ Rd : ∂f(x) ̸= ∅}. Then, if f is proper,

semicontinuous, convex, and x ∈ domf , then ∂f(x) is a nonempty closed convex

set. In this case, we denote by ∂0f(x) the unique least-norm element of ∂f(x) for

x ∈ dom∂f , along with ∥∂0f(x)∥ = +∞ for x /∈ dom∂f . Points whose subdifferential

contains 0 are critical points, denoted by critf . For convex f , critf = argminf .

Definition 2.3.2 (KL property). Let Γc2 stands for the class of functions ϕ : [0, c2]→

R+ for c2 > 0 with the properties:

(i) ϕ is continuous on [0, c2];

(ii) ϕ is smooth concave on (0, c2);

(iii) ϕ(0) = 0, ϕ′(s) > 0,∀s ∈ (0, c2).

Further, for x ∈ Rd and any nonemptyQ ⊂ Rd, define the distance function d(x,Q) :=

infy∈Q ∥x − y∥. Then, a function f is said to have the Kurdyka -  Lojasiewicz (KL)
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property at point x0, if there exist c1 > 0, a neighborhood B of x0, and ϕ ∈ Γc2 such

that for all

x ∈ B(x0, c1) ∩ {x : f(x0) < f(x) < f(x0) + c2},

the following inequality holds

ϕ′
(
f(x)− f(x0)

)
dist(0, ∂f(x)) ≥ 1.

If f satisfies the KL property at each point of dom∂f then f is called a KL function.

We first present two lemmas that characterize key properties of the loss function.

Lemma 2.3.3 (Blockwise Lipschitzness). The function H is convex and continuously

differentiable on an open set containing domG and its gradient, is block-wise Lipschitz

continuous with block Lipschitz constant Lk > 0 for each k, namely for all k =

1, . . . , K and all Ψk,Ψ
′
k ∈ Rdk×dk

∥∇kH(Ψi<k,Ψk,Ψi>k)−∇kH(Ψi<k,Ψ
′
k,Ψi>k)∥

≤ Lk∥Ψk −Ψ′
k∥,

where ∇kH denotes the gradient of H with respect to Ψk with all remaining Ψi, i ̸= k

fixed. Further, the function Gk for each k = 1, . . . , K is a proper lower semicontinuous

(lsc) convex function.

Proof. For simplicity of notation, in this and the following proofs we use Ψ (i.e., omit-

ting the subscript) to denote the set {Ψk}Kk=1 or the K-tuple (Ψ1, . . . ,ΨK) whenever

there is no confusion. Recall the blockwise gradient of the smooth part of the objective
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function H with respect to Ψk, for each k = 1, . . . , K, is given by

∇kH(Ψ) = diag
([

tr{(diag((Ψk))ii +
⊕
j ̸=k

diag(Ψj))
−1} i = 1 : dk

])
+ SkΨk + ΨkSk + 2

∑
j ̸=k

Sj,k.

Then for Ψk,Ψ
′
k,

∥SkΨk + ΨkSk + 2
∑
j ̸=k

Sj,k − (SkΨ
′
k + Ψ′

kSk + 2
∑
j ̸=k

Sj,k)∥

= ∥SkΨk + ΨkSk − SkΨ
′
k −Ψ′

kSk∥

≤ 2∥Sk∥∥Ψk −Ψ′
k∥.

To prove Lipschitzness of the remaining parts, we consider the case of K = 2 for

simplicity of notations. The arguments easily carry over cases of K > 2. In this case,

denote A = (aij) := Ψ1 and B = (bkl) := Ψ2. Let f(A) := ∂
∂A

log |diag(A ⊕ B)|,

then

f(A)− f(A′) = diag
([ m2∑

i=1

(ajj + bii)
−1 −

m2∑
i=1

(a′jj + bii)
−1 j = 1, . . . ,m1

])
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and

∥f(A)− f(A′)∥F =

(
m1∑
j=1

( m2∑
i=1

(ajj + bii)
−1 −

m2∑
i=1

(a′jj + bii)
−1
)2)1/2

≤

(
m1∑
j=1

m2

m2∑
i=1

(
(ajj + bii)

−1 − (a′jj + bii)
−1
)2)1/2

=
(
m2

m1∑
j=1

m2∑
i=1

(c−1
ji − (c′ji)

−1)2
)1/2

=
(
m2

m1∑
j=1

m2∑
i=1

(c′ji)
−2(c′ji − cji)2c−2

ji

)1/2
=
(
m2

m1∑
j=1

(ajj − a′jj)2
m2∑
i=1

(c′jicji)
−2
)1/2

≤
(
Cm2

m1∑
j=1

m2∑
i=1

(c′jicji)
−2
)1/2
∥A−A′∥F ,

where the first inequality is due to Cauchy-Schwartz inequality; the third line is due

to cji := ajj + bii; and in the last inequality we upper-bound each (ajj − a′jj)2 by its

maximum over all j, which is absorbed in a constant C. Note that the first term

in the last line above is finite as long as the summations of the diagonal elements

of the factors A and B are finite, which is implied if the precision matrix Ω defined

by the Sylvester generating equation as (A⊕B)2 has finite diagonal elements. This

follows from Theorem 3.1 of Oh et al. (2014), who proved that if a symmetric matrix

Ω satisfying Ω ∈ C0, where

C0 =
{
Ω|Lλ(Ω) ≤ Lλ(Ω(0)) = M

}
,

and Ω(0) is an arbitrary initial point with a finite function value Lλ(Ω(0)) := M , the

diagonal elements of Ω are bounded above and below by constants which depend

only on M , the regularization parameter λ, and the sample covariance matrix S.
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Therefore, we have

∥f(A)− f(A′)∥F ≤ C̃∥A−A′∥F

for some constant C̃ ∈ (0,+∞). Similarly, we can establish such an inequality for B,

proving that the first term in ∇kH is Lipschitz continuous.

As a consequence of Lemma 2.3.3, the gradient of H, ∇H = (∇1H, . . . ,∇KH) is

Lipschitz continuous on bounded subsets B1×· · ·×BK of Rd1×d1×· · ·×RdK×dK with

some constant L > 0, such that for all (Ψk,Ψ
′
k) ∈ Bk × Bk,

∥(∇1H(Ψ1,Ψi>1)−∇1H(Ψ′
1,Ψ

′
i>1), . . . ,

∇KH(Ψ′
i<K ,Ψ

′
K)−∇KH(Ψ′

i<K ,Ψ
′
K))∥

≤ L∥(Ψ1 −Ψ′
1, . . . ,ΨK −Ψ′

K)∥,

and we have L ≤
∑K

k=1 Lk.

Lemma 2.3.4 (KL property of Lλ). The objective function Lλ(Ψ) defined in (3.3)

satisfies the KL property. Further, ϕ in this case can be chosen to have the form

ϕ(s) = αs1/2, where α is some positive real number. Functions satisfying the KL

property with this particular choice of ϕ is said to have a KL exponent of 1
2
.

Proof. This can be established in a few steps:

1. It can be shown that the function (of X) tr(SX2) + ∥X∥1,off satisfies the KL

property with exponent 1
2

(Karimi et al., 2016). We then apply the calculus

rules of the KL exponent (compositions and separable summations) studied

in Li and Pong (2018) to prove that tr(S(
⊕

j Ψj)
2) and

∑
j ∥Ψj∥1,off are also

KL functions with exponent 1
2
.

2. The − log det
(⊕

j diag(Ψj)
)

term can be shown to be KL with exponent 1
2

using a transfer principle studied in Lourenço and Takeda (2019).
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3. Finally, using the calculus rules of KL exponent one more time, we combine the

first two results and establish that Lλ has KL exponent of 1
2
.

Karimi et al. (2016) proved that the following function, parameterized by some

symmetric matrix X, satisfies the KL property with KL exponent 1
2
:

tr(SX2) + ∥X∥1,off = ∥AX∥2F + ∥X∥1,off

for S = AAT , even when A is not of full rank.

We apply the calculus rules of the KL exponent studied in Li and Pong (2018)

to prove that tr(S(
⊕

j Ψj)
2) and

∑
j ∥Ψj∥1,off are KL functions with exponent 1

2
.

Particularly, we observe that tr
(
S(
⊕

j Ψj)
2
)

is the composition of functions X →

tr(SX) and (X1, . . . ,XK)→
⊕

j Xj; and
∑

j ∥Ψj∥1,off is a separable block summation

of functions Xj → ∥Xj∥1,off.

Thus, by Theorem 3.2. (exponent for composition of KL functions) in Li and Pong

(2018), since the Kronecker sum operation is linear and hence continuously differen-

tiable, the trace function is KL with exponent 1
2
, and the mapping (X1, . . . ,XK) →⊕

j Xj is clearly one to one, the function tr(S(
⊕

j Ψj)
2) has the KL exponent of 1

2
.

By Theorem 3.3. (exponent for block separable sums of KL functions) in Li and Pong

(2018), since the function ∥ · ∥1,off is proper, closed, continuous on its domain, and is

KL with exponent 1
2
, the function ∥Xj∥1,off is KL with an exponent of 1

2
.

It remains to prove that − log det
(⊕

j diag(Ψj)
)

is also a KL function with an

exponent of 1
2
. By Theorem 30 in Lourenço and Takeda (2019), if we have f : Rr →

R a symmetric function and F : E → R the corresponding spectral function, the

followings hold

(i) F satisfies the KL property at X iff f satisfies the KL property at λ(X), i.e.,

the eigenvalues of X.

(ii) F satisfies the KL property with exponent α iff f satisfies the KL property with
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exponent α at λ(X).

Here, take f(λ(X)) := −
∑r

i=1 log(λi(X)), and F (X) := − log det(X) the correspond-

ing spectral function. Then, the function f is symmetric since its value is invariant

to permutations of its arguments, and it is a strictly convex function in its domain,

so it satisfies the KL property with an exponent of 1
2
. Therefore, F satisfies the KL

property with the same KL exponent of 1
2
. Now, we apply the calculus rules for KL

functions again. As both the Kronecker sum and the diag operators are linear, we

conclude that − log det
(⊕

j diag(Ψj)
)

is a KL function with an exponent of 1
2
.

Overall, we have that the negative log-pseudolikelihood function L(Ψ) satisfies

the KL property with an exponent of 1
2
.

Now we are ready to prove Theorem 3.4.2. We follow Zhang (2020) and divide

the proof into three steps.

Step 1. We obtain a sufficient decrease property for the loss function L in terms of

the squared distance of two successive iterates:

L(Ψ(t))− L(Ψ(t+1)) ≥ Lmin

2
∥Ψ(t) −Ψ(t+1)∥2. (2.2)

Here and below, Ψ(t+1) := (Ψ
(t+1)
1 , . . . ,Ψ

(t+1)
K ) and Lmin := mink Lk. First note

that at iteration t, the line search condition is satisfied for step size 1

η
(t)
k

≥ Lk, where

Lk is the Lipschitz constant for ∇kH. Further, it follows that for SG-PALM with

backtracking one has for every t ≥ 0 and each k = 1, . . . , K,

1

η
(0)
k

≤ 1

η
(t)
k

≤ cLk,

where c > 0 is the backtracking constant.
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Then by Lemma 3.1 in Shefi and Teboulle (2016), we get

L(Ψ(t))− L(Ψ(t+1)) ≥ 1

2η
(t+1)
min

∥Ψ(t) −Ψ(t+1)∥2

≥ Lmin

2
∥Ψ(t) −Ψ(t+1)∥2

for η
(t)
min := mink η

(t)
k .

Step 2. By Lemma 2.3.4, L satisfies the KL property with an exponent of 1
2
. Then

from Definition 2.3.2, this suggests that at x = Ψt+1 and f(x0) = minL

∥∂0L(Ψt+1)∥ ≥ α
√
L(Ψt+1)−minL, (2.3)

where α > 0 is a fixed constant defined in Lemma 2.3.4. This property is equivalent to

the error bound condition, (∂0L, α,Ω)-(res-obj-EB), defined in Definition 5 in Zhang

(2020), for Ω ⊂ dom∂L. This is strictly weaker than strong convexity (see Section 4

in Zhang (2020)).

At iteration t + 1, there exists ξ
(t+1)
k ∈ ∂Gk(Ψ

(t+1)
k ) satisfying the optimality

condition:

∇kH(Ψ
(t+1)
i<k ,Ψ

(t)
i≥k) +

1

η
(t+1)
k

(Ψ
(t+1)
k −Ψ

(t)
k ) + ξ

(t+1)
k = 0.

Let ξ(t+1) := (ξ
(t+1)
1 , . . . , ξ

(t+1)
K ). Then,

∇H(Ψ(t+1)) + ξ(t+1) ∈ ∂L(Ψ(t+1))

and hence the error bound condition becomes

L(Ψ(t+1))−minL ≤ ∥∂
0L(Ψ(t+1))∥2

α2
≤ ∥∇H(Ψ(t+1)) + ξ(t+1)∥2

α2
.
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It follows that

∥∇H(Ψ(t+1)) + ξ(t+1)∥2

=
K∑
k=1

∥∇kH(Ψ(t+1))−∇kH(Ψ
(t+1)
i<k ,Ψ

(t)
i≥k)− 1

η
(t+1)
k

(Ψ
(t+1)
k −Ψ

(t)
k )∥2

≤
K∑
k=1

2∥∇kH(Ψ(t+1))−∇kH(Ψ
(t+1)
i<k ,Ψ

(t)
i≥k)∥2 +

K∑
k=1

2

(η
(t+1)
k )2

∥Ψ(t+1)
k −Ψ

(t)
k ∥

2

≤
K∑
k=1

2∥∇H(Ψ(t+1))−∇H(Ψ
(t+1)
i<k ,Ψ

(t)
i≥k)∥2 +

K∑
k=1

2

(η
(t+1)
k )2

∥Ψ(t+1)
k −Ψ

(t)
k ∥

2

≤
K∑
k=1

2
( K∑

j=1

1

η
(t+1)
j

)2
∥Ψ(t+1)

i≥k −Ψ
(t)
i≥k∥

2 +
K∑
k=1

2

(η
(t+1)
k )2

∥Ψ(t+1)
k −Ψ

(t)
k ∥

2

≤

(
2Kc2

( K∑
j=1

Lj

)2
+ 2c2Lmax

)
∥Ψ(t+1) −Ψ(t)∥2.

Therefore, we get

L(Ψ(t+1))−minL ≤

(
2Kc2

(∑K
j=1 Lj

)2
+ 2c2Lmax

)
α2

∥Ψ(t+1) −Ψ(t)∥2. (2.4)

Step 3. Combining (2.2) and (2.4), we have

L(Ψ(t))−minL =
(
L(Ψ(t))− L(Ψ(t+1))

)
+
(
L(Ψ(t+1))−minL

)
≥ Lmin

2
∥Ψ(t) −Ψ(t+1)∥2 +

(
L(Ψ(t+1))−minL

)
≥

(
α2Lmin

4Kc2(
∑K

j=1 Lj)2 + 4c2Lmax

+ 1

)(
L(Ψ(t+1))−minL

)
.

This completes the proof.

147



2.4 SG-PALM with Non-Convex Regularizers

The estimation algorithm for non-convex regularizer is largely the same as Algo-

rithm III.1, except with an additional term added to the gradient term. Specifically,

the updates are of the form

Ψ
(t+1)
k = prox

∥·∥1,off
ηtkλk

(
Ψt

k − ηtk∇kH̄(Ψt+1
i<k,Ψ

t
i≥k)

)
,

where

H̄(Ψ) = H(Ψ) +
K∑
k=1

∑
i ̸=j

(
gλk

([Ψk]i,j)− λk|[Ψk]i,j|
)
.

Here, the formulation covers a range of non-convex regularizations. Particularly, the

SCAD penalty (Fan and Li, 2001) with parameter a > 2 is given by

gλ(t) =


λ|t|, if |t| < λ

− t2−2aλ|t|+λ2

2(a−1)
, if λ < |t| < aλ

(a+1)λ2

2
, if aλ < |t|,

which is linear for small |t|, constant for large |t|, and a transition between the two

regimes for moderate |t|.

The MCP penalty (Zhang et al., 2010) with parameter a > 0 is given by

gλ(t) = sign(t)λ

|t|∫
0

(
1− z

aλ

)
+
dz,

which gives a smoother transition between the approximately linear region and the

constant region (t > aλ) as defined in SCAD.
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The updates can also be written as

Ψ
(t+1)
k = prox

∥·∥1,off
ηtkλk

(
Ψt

k − ηtk∇k

(
H(Ψt+1

i<k,Ψ
t
i≥k) +Q′

λk
(Ψk)

))
,

where q′λ(t) := d
dt

(gλ(t) − λ|t|) for t ̸= 0 and q′λ(0) = 0 and Q′
λ denotes q′λ applied

elementwise to a matrix argument. These updates can be inserted into the framework

of Algorithm III.1. The details are summarized in Algorithm B.1.

Algorithm B.1: SG-PALM with non-convex regularizer

Input: Data tensor X , mode-k Gram matrix Sk, regularizing parameter λk,
backtracking constant c ∈ (0, 1), initial step size η0, initial iterate Ψk for each
k = 1, . . . , K.
while not converged do
for k = 1, . . . , K do
Line search: Let ηtk be the largest element of {cjηtk,0}j=1,... such that
condition (3.8) is satisfied for

Ψt+1
k = prox

∥·∥1,off
ηtkλk

(
Ψt

k − ηtk∇k

(
H(Ψt+1

i<k,Ψ
t
i≥k) +Q′

λk
(Ψk)

))
.

Update:

Ψt+1
k ←− prox

∥·∥1,off
ηtkλk

(
Ψt

k − ηtk∇k

(
H(Ψt+1

i<k,Ψ
t
i≥k) +Q′

λk
(Ψk)

))
.

end for
Next initial stepsize: Compute Barzilai-Borwein stepsize ηt+1

0 = mink η
t+1
k,0 ,

where ηt+1
k,0 is computed via (3.9).

end while
Output: Final iterates {Ψk}Kk=1.

2.4.1 Convergence Property

Consider a sequence of iterate {xt}t∈N generated by a generic PALM algorithm

for minimizing some objective function f . Specifically, assume

(H1) inf f > −∞.

(H2) The restriction of the function to its domain is a continuous function.

(H3) The function satisfies the KL property.
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Then, as in Theorem 2 of Attouch and Bolte (2009), if this objective function

satisfying (H1), (H2), (H3) in addition satisfies the KL property with

ϕ(s) = αs1−θ,

where α > 0 and θ ∈ (0, 1]. Then, for x∗ some critical point of f , the following

estimations hold

(i) If θ = 0 then the sequence of iterates converges to x∗ in a finite number of steps.

(ii) If θ ∈ (0, 1
2
] then there exist ω > 0 and τ ∈ [0, 1) such that ∥xt − x∗∥ ≤ ωτ t.

(iii) If θ ∈ (1
2
, 1) then there exist ω > 0 such that ∥xt − x∗∥ ≤ ωt−

1−θ
1θ−1 .

In the case of SG-PALM with non-convex regularizations, so long as the non-

convex L satisfies the KL property with an exponent in (0, 1
2
], the algorithm remains

linearly convergent (to a critical point). We argue that this is true for SG-PALM

with MCP or SCAD penalty. Li and Pong (2018) showed that penalized least square

problems with such penalty functions satisfy the KL property with an exponent of

1
2
. The proof strategy for the convex case can be easily adopted, incorporating the

KL results for MCP and SCAD in Li and Pong (2018), to show that the new L still

has KL exponent of 1
2
. Therefore, SG-PALM with MCP or SCAD penalty converges

linearly in the sense outlined above.

2.5 Additional Details of the Solar Flare Experiments

2.5.1 HMI and AIA Data

The Solar Dynamics Observatory (SDO)/Helioseismic & Magnetic Imager (HMI)

data characterize solar variability including the Sun’s interior and the various compo-

nents of magnetic activity; the SDO/Atmospheric Imaging Assembly (AIA) data con-

tain a set of measurements of the solar atmosphere spectrum at various wavelengths.
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In general, HMI produces data that is particularly useful in determining the mecha-

nisms of solar variability and how the physical processes inside the Sun that are related

to surface magnetic field and activity. AIA contains structural information about solar

flares, and the the high AIA pixel values are correlated with the flaring intensities. We

are interested in examining if combination of multiple instruments enhances our un-

derstanding of the solar flares, comparing to the case of single instrument. Both HMI

and AIA produce multi-band (or multi-channel) images, for this experiment we use all

three channels of the HMI images and 9.4, 13.1, 17.1, 19.3 nm wavelength channels of

the AIA images. For a detailed descriptions of the instruments and all channels of the

images, see https://en.wikipedia.org/wiki/Solar_Dynamics_Observatory and

the references therein. Furthermore, for training and testing involved in this study,

we used the data described in (Galvez et al., 2019), which are further pre-processed

HMI and AIA imaging data for machine learning methods.

2.5.2 Classification of Solar Flares/Active Regions (AR)

The classification system for solar flares uses the letters A, B, C, M or X, according

to the peak flux in watts per square metre (W/m2) of X-rays with wavelengths 100

to 800 picometres (1 to 8 angstroms), as measured at the Earth by the GOES space-

craft (https://en.wikipedia.org/wiki/Solar_flare#Classification). Here, A

usually refers to a “quite” region, which means that the peak flux of that region is not

high enough to be classified as a real flare; B usually refers a “weak” region, where

the flare is not strong enough to have impact on spacecrafts, earth, etc; and M or X

refers to a “strong” region that is the most detrimental. Differentiating between a

weak and a strong flare/region ahead of time is a fundamental task in space physics

and has recently attracted attentions from the machine learning community (Chen

et al., 2019; Jiao et al., 2020a; Sun et al., 2019). In our study, we also focus on B

and M/X flares and attempt to predict the videos that lead to either one of these two
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types of flares.

2.5.3 Run Time Comparison

We compare run times of the SG-PALM algorithm for estimating the precision

matrix from the solar flare data with SyGlasso. Table B.1 illustrates that the SG-

PALM algorithm converges faster in wallclock time. Note that in this real dataset,

which is potentially non-Gaussian, the convergence behavior of the algorithms is

different compare to synthetic examples. Nonetheless, SG-PALM enjoys an order of

magnitude speed-up over SyGlasso.

Table B.1: Run time (in seconds) comparisons between SyGlasso and SG-PALM on
solar flare data for different regularization parameters. Note that the SG-PALM is
an order of magnitude faster that SyGlasso.

λ
SyGlasso SG-PALM
iter sec iter sec

0.28 47 5772.1 89 583.7
0.41 43 5589.0 86 583.4
0.54 45 5673.7 85 568.8
0.67 42 5433.0 77 522.6
0.79 39 4983.2 82 511.4
0.92 40 5031.9 72 498.0
1.05 39 4303.7 76 452.2
1.18 41 4234.7 64 437.6
1.30 40 4039.5 58 406.9
1.43 35 3830.7 64 364.9

2.5.4 Examples of Predicted Magnetogram Images

Figure B.1 depicts examples of the predicted HMI channels by SG-PALM. We ob-

serve that the proposed method was able to reasonably capture various components

of the magnetic field and activity. Note that the spatial behaviors of the HMI com-

ponents are quite different from those of AIA channels, that is, the structures tend

to be less smooth and continuous (e.g., separated holes and bright spots) in HMI.
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Predicted HMI examples - B vs. M/X

A
R

B
A

R
B

A
R

B
A

R
M

/X
A

R
M

/X
A

R
M

/X

Figure B.1: Examples of one-hour ahead prediction of the first three channels (HMI
components) of ending frames of 13-frame videos, leading to B- (first three rows)
and MX-class (last three rows) flares, produced by the SG-PALM, comparing to the
real image (left column). Similarly to AIA predictions, linear forward predictors
tend to underestimate the contrast ratio of the images. Nonetheless, the SG-PALM
algorithm was able to both capture the spatial structures of the underlying magnetic
fields. HMI images tend to be harder to predict, as indicated by the increased number
and decreased degree of smoothness of features, signifying the underlying magnetic
activity on the solar surface.
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2.5.5 Multi-instrument vs. Single Instrument Prediction

To illustrate the advantages of multi-instrument analysis, we compare the NRM-

SEs between an AIA-only (i.e., last four channels of the dataset) and an HMI&AIA

(i.e., all seven channels of the dataset) study in predicting the last frames of 13-frame

AIA videos, for each flare class, respectively, using the proposed SG-PALM. The re-

sults are depicted in Figure B.2, where the average, standard deviation, and range

of the NRMSEs across pixels are also shown for each error image. By leveraging the

cross-instrument correlation structure, there is a 0.5%−1% drop in the averaged error

rates and a 2%− 4% drop in the range of the errors.

Avg. NRMSE = 0.0379 (w/ HMIs) Avg. NRMSE = 0.0479 (w/o HMIs)

A
R

B

Avg. NRMSE = 0.0620 (w/ HMIs) Avg. NRMSE = 0.0674 (w/o HMIs)

A
R

M
X

Figure B.2: Comparison of the SG-PALM performance measured by NRMSE in pre-
dicting the AIA channels (i.e., last four channels) of the ending frame of 13-frame
videos leading to B- and MX-class solar flares, by using all HMI&AIA channels (left
column) and AIA-only channels (right column). The NRMSEs are computed by av-
eraging across both testing samples and channels for each pixel. Note that there are
improvements in both the averaged errors rates and the uncertainty in those errors
(i.e., range of the errors) by including multi-instrument image channels.
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2.5.6 Illustration of the Difficulty of Predictions for Two Flares Classes

We demonstrate the difficulty of forward predictions of video frames. Figure B.3

depicts two different channels of multiple frames from two videos leading to MX-class

solar flares. Note that the current frame is the 13th frame in the sequence that we

are trying to predict. We observe that the prediction task is particularly difficult if

there is a sudden transition of either the brightness or spatial structure of the frames

near the end of the video. These sudden transitions are more frequent for MX flares

than for B flares. In addition, as MX flares are generally considered as rare events

(i.e., less frequent than B flares), it is harder for SG-PALM or related methods to

learn a common correlation structures from training data.

On the other hand, typical image sequences leading to B flares exhibit much

smoother transitions from frame to frame. As shown in Figure B.4, the SG-PALM

was able to produce remarkably good predictions of the current frames.

Predicted examples - M/X

Figure B.3: Examples of frames at various timestamps of videos preceding the pre-
dictions of the last frames (last column) that lead to MX flares. Here, the first two
rows correspond to the same video as the last two rows in Figure III.3. Note that
the prediction tasks are difficult in these two extreme cases, where there are dramatic
changes from the 12th to the current (13th) frames.
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Predicted examples - B

Figure B.4: Examples of frames at various timestamps of videos preceding the pre-
dictions of the last frames (last column) that lead to B flares. Here, the first two
rows correspond to the same video as the first two rows in Figure III.3. Note that the
prediction tasks are easier than those illustrated in Figure B.3, since the transitions
near the end of the videos are much smoother.

2.5.7 Illustration of the Estimated Sylvester Generating Factors

Figure B.5 illustrates the patterns of the estimated Sylvester generating factors

(Ψk’s) for each flare class. Here, the videos from both classes appear to form Markov

Random Fields, that is, each pixel only depends on its close neighbors in space and

time given all other pixels. This is demonstrated by observing that the temporal

or each of the spatial generating factor, which can be interpreted as conditional de-

pendence graph for the corresponding mode, has its energies concentrate around the

diagonal and decay as the nodes move far apart (in space or time).

The spatial patterns are similar for different flares. Although the exact spatial

patterns are different from one frame to another, they always have their energies

being concentrated at certain region (i.e., the brightest spot) that is usually close to

the center of the images. This is due to the way how these images were curated and

pre-processed before analysis. On the other hand, the temporal structures are quite
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different. Specifically, B flares tend to have longer range dependencies, as the frames

leading to these types flares are smooth, which is consistent with results from the

previous section.

(a) Estimated precision matrices - B flares (b) Estimated precision matrices - M/X
flares

Figure B.5: Estimated spatial and two (longitude and latitude) temporal Sylvester
generating factors for B and MX solar flares, along with their off-diagonal sparsity
patterns (second row in each subplot). Both classes exhibit autoregressive dependence
structures (across time or space). Note the significant difference in the temporal com-
ponents, where the B flares exhibit longer range dependency. This is consistent with
the smooth transition property of the corresponding videos as illustrated previously.
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APPENDIX C

Appendix of Chapter IV

In this Appendix, we discuss the blocked versions of the Possion-AR(1) and

convection-diffusion processes.

Poisson-AR(1) Process. The first extension, which we call the Poisson-AR(1)

process, imposes an autoregressive temporal model of order 1 on the source function

f in the Poisson equation (4.3). Specifically, we say a sequence of discretized spatial

observations {Uk ∈ Rd1×d2}k indexed by time step k = 1, · · · , T is from a Poisson-

AR(1) process if

(Ad1 ⊕Ad2) vec(Uk) = vec(Zk), (3.1)

vec(Zk) = a vec(Zk−1) + vec(Wk), |a| < 1, (3.2)

where {Wk ∈ Rd1×d2}k is spatiotemporal white noise, i.e., W k
i,j ∼ N (0, σ2

w), i.i.d.

Assuming Z0 = 0 and defining the T -by-T matrix

B =



1 −a

1
. . .

. . . −a

1


,
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the above linear system of equations can be written as (Ad1 ⊕ Ad2)UB = W, or

equivalently,

(
BT ⊗ (Ad1 ⊕Ad2)

)
vec(U) = vec(W), (3.3)

where U = [vec(U1) vec(U2) . . . vec(UT )] ∈ Rd1d2×T and W is defined likewise. The

inverse covariance of U, despite having a large size of d1d2T × d1d2T , is sparse and

has a mixed Kronecker sum and product structure.

Convection-diffusion Process. The second time-varying extension of the Poisson

PDE model (4.3) is based on the convection-diffusion process Chandrasekhar (1943)

∂u

∂t
= θ

2∑
i=1

∂2u

∂x2i
− ϵ

2∑
i=1

∂u

∂xi
. (3.4)

Here, θ > 0 is the diffusivity; and ϵ ∈ R is the convection velocity of the quantity

along each coordinate. Note that for simplicity of discussion here, we assume these

coefficients do not change with space and time (see, Stocker (2011), for example, for

a detailed discussion). These equations are closely related to the Navier-Stokes equa-

tion commonly used in stochastic modeling for weather and climate prediction (Chan-

drasekhar, 1943; Stocker, 2011). Coupled with Maxwell’s equations, these equations

can be used to model magneto-hydrodynamics (Roberts, 2006), which characterize

solar activities including flares.

A solution of Equation (4.9) can be approximated similarly as in the Poisson

equation case, through a finite difference approach. Denote the discrete spatial sam-

ples of u(x, t) at time tk as a matrix Uk ∈ Rd1×d2 . We obtain a discretized update
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propagating u(x, t) in space and time, which locally satisfies

Uk
i,j − Uk−1

i,j

∆t
= θ

(
Uk
i+1,j + Uk

i−1,j + Uk
i,j+1 + Uk

i,j−1 − 4Uk
i,j

h2

)

− ϵ

(
Uk
i+1,j − Uk

i−1,j + Uk
i,j+1 − Uk

i,j−1

2h

)
,

(3.5)

where ∆t = tk+1 − tk is the time step and h is the mesh step (spatial grid spacing).

Similarly to the Poisson-AR(1) process, in the following, we consider a “blocked”

version of the convection-diffusion process.

We define the first-order and second-order discretized differential operators, denote

by D and A, respectively:

D =



1

−1 1

. . . . . .

−1 1


, A =



2 −1

−1 2
. . .

. . . . . . −1

−1 2


.

Then, Equation (4.10) can be written as

1

∆t
(D⊗ I⊗ I) vecU =

θ

h2
(I⊗A⊗ I + I⊗ I⊗A) vecU

− ϵ

2h
(I⊗D⊗ I + I⊗ I⊗D) vecU,

(3.6)

where U = [vec(U1) vec(U2) . . . vec(UT )] ∈ Rd1d2×T . Assuming the process is driven

by some white noise W, similarly defined as in the Poisson-AR equation, the inverse

covariance of U is again sparse and has a mixed Kronecker sum and product structure.

We consider a spatio-temporal process (2D space + time) on a 8× 8 spatial grid,

and generated instances of state trajectories, which we call true states, according

to the Poisson-AR(1) and the convection-diffusion dynamics for T = 50 time steps.

Several realizations of the true state variables are shown in Figure C.1 to illustrate
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how the states evolve over time under each model.

We generated N = 50 independent realizations of random tensors of dimension

64 × 50 and estimated the state covariance / inverse covariance (with K = 2) using

several sparse (multiway) inverse covariance estimation methods described in Sec-

tion 4.2 of Chapter IV, including Glasso, KPCA, Tlasso, TeraLasso, SG-PALM. Note

that none of the above-mentioned models operate under the true generative processes

(i.e., there is model mismatch with the data). Here, the sparsity-regularized methods

are all implemented with an ℓ1 penalty function, and the penalty parameters were

selected similarly and guided by the theoretical results in Table IV.1. For example,

for SG-PALM, we use a penalty parameter of λk = C
√

dk log d
N

where C is chosen by

optimizing a normalized Frobenius norm error between the estimate and the truth,

over a range of λ values parameterized by C. For the KPCA alorithm, both the

nuclear norm penalty parameter and the separation rank are selected by optimizing

a normalized Frobenius norm error via grid search.

Summary of the estimation accuracy in terms of the recovery of the matrix entries

measured normalized Frobenius norm error as well as the recovery of the sparsity pat-

terns measured by Mathews Correlation Coefficient (Matthews, 1975) are reported in

Table C.1. In Figure C.2 and C.3 we show the true and the estimated inverse covari-

ance matrices obtained for all the methods except KPCA, under both the Poisson-AR

(panel (a)) and the Convection-Diffusion processes (panel (b)). The inverse covari-

ances under both generating processes admit structures with a mix of Kronecker sums

and Kronecker products of sparse matrices. In both of the cases, the SG-PALM pro-

duces the estimates with the closest and richest structures, which we believe is due

to the nature of the Sylvester graphical model that imposes a squared KS structure

on the precision matrix. Tlasso has comparable performances and achieves the best

matrix approximation error under the convection-diffusion generating process. This

might be due to the fact that the KP model corresponds to an underlying spatio-
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temporal autoregressive process. TeraLasso seems to produce the biggest model mis-

match as indicated by the MCC scores. Although Glasso works reasonable well given

that it ignores any multiway structure, this also leads to an increased computational

cost for the vector-variate estimating algorithm. In Figure C.4, we also show compare

the true covariance matrix and the estimate obtained by KPCA. Here, although the

KPCA model does not match the underlying generating process, the estimates were

able to capture certain blocking patterns that similarly exist in the true covariance.

Figure C.1: 2D Convection-diffusion (top) and Poisson-AR(1) state variables at three
different time steps.

Computational efficiencies of the various covariance/precision estimation algo-

rithms are also vitally important in practice to facilitate real-time tracking of physical

systems. Table C.2 shows the runtime of different covariance and inverse covariance

estimation algorithms for the synthetic experiments. It shows that by recognizing

and exploiting multiway structures in the data, sparse multiway inverse covariance

estimation methods, TeraLasso, Tlasso, and SG-PALM significantly reduce the run-

time complexity of Glasso that ignores such special multiway structures. Remark that

KPCA runs considerably slower than other methods as it involves expensive singular
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(a) Poisson-AR inverse covariance (left) and the SG-PALM estimate (right).

(b) Zoomed-in (middle 128 rows and columns) Poisson-AR inverse covariance structure (left)
and the estimate obtained by SG-PALM, KGlasso, Glasso, TeraLasso (right, clockwise).

Figure C.2: Inverse covariance structures for Poisson-AR(1) and its estimates. Here,
white entries indicate zeros in the inverse covariance matrices. The zoomed-in plots
show two temporal blocks (each of size 64×64) of spatial inverse correlation structures
with the diagonal elements removed for clearer visualization. SG-PALM and the
associated Sylvester graphical model produce the richest structures.
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(a) Convection-diffusion inverse covariance (left) and the SG-PALM estimate (right).

(b) Zoomed-in (middle 128 rows and columns) convection-diffusion inverse covariance (left)
and the estimates by SG-PALM, KGlasso, Glasso, TeraLasso (right, clockwise).

Figure C.3: Inverse covariance structures for the Convection-Diffusion and its esti-
mates. Here, white entries indicate zeros in the inverse covariance matrices. The
zoomed-in plots show two temporal blocks (64 × 64) of spatial inverse correlation
structures with the diagonal elements removed for clearer visualization. SG-PALM
and the associated Sylvester graphical model produce the richest structures.
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(a) Poisson-AR covariance structure (left) and the estimate obtained by KPCA (right).

(b) Convection-Diffusion covariance (left) and the estimate obtained by KPCA (right).

Figure C.4: Visualizations of the middle 128 rows and columns of the covariance
structures for Poisson-AR(1) and Convection-Diffusion dynamics and their estimates,
which show two temporal blocks of spatial correlation structures, each of size 64×64,
with the diagonal elements removed for clearer visualization of the pattern. Here,
white entries indicate zeros in the covariance matrices. Since the covariances are not
sparse in general, all matrices are thresholded for clearer inspections of patterns.
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Table C.1: Comparisons of performances measured by log
(
∥Σ̂−Σ∥F\∥Σ∥F

)
for

KPCA as well as log
(
∥Ω̂−Ω∥F\∥Ω∥F

)
and the Mathews Correlation Coefficient

(MCC) for SG-PALM, Tlasso, TeraLasso, Glasso. The MCC is a measure of the
quality of sparsity recovery considered as a binary classification problem, where ±1
indicates perfect agreement or disagreement between the truth and the estimation.
Here the Frobenius norm errors are included in the first row under each generating
type while the MCCs are in the second row. Note that the best performers under
each type/criteria are highlighted.

Type Metric SG-PALM KGlasso TeraLasso Glasso KPCA

P-AR
Fnorm −0.2622 1.1777 0.6312 0.9775 0.3289
MCC 0.4300 0.3395 0.2061 0.0560 N/A

C-D
Fnorm −0.0420 1.4919 −0.0208 2.2041 0.0642
MCC 0.2122 0.1884 0.2018 0.0349 N/A

value decomposition of a large-dimensional re-arranged sample covariance matrix of

the data.

Table C.2: Runtime (in seconds) of estimating spatio-temporal (inverse) covariance
matrices of size d × 50, where d is varying, using various algorithms. Comparisons
under various problem sizes (i.e., different d and N) are shown. Note the sparse
multiway precision models (SG-PALM, KGlasso, TeraLasso) are comparably fast and
are all faster than Glasso (for large problems) and KPCA.

d N
Glasso SG-PALM TeraLasso KGlasso KronPCA

sec sec sec sec sec

82

25 0.40(0.20) 0.46(0.15) 0.15(0.35) 0.65(0.11) 37.22(0.20)
50 0.48(0.21) 0.47(0.08) 0.22(0.50) 0.70(0.10) 38.22(0.55)
100 0.76(0.05) 0.44(0.13) 0.26(0.28) 0.69(0.30) 39.09(1.05)

162

25 6.43(1.45) 3.37(1.09) 5.38(0.58) 5.14(1.99) 495.47(2.69)
50 9.12(0.98) 3.27(1.81) 4.62(1.98) 3.39(2.00) 516.64(2.19)
100 11.84(2.01) 4.85(1.10) 6.71(0.72) 5.67(0.57) 498.04(4.01)
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APPENDIX D

Appendix of Chapter V

4.1 Additional details of the Twitter latent Dirichlet alloca-

tion (T-LDA) algorithm

The generation processes for a T-LDA and an LDA are illustrated side-by-side in

Figure D.1. Here, the key differences exhibited in T-LDA are aggregation (pooling

tweets from users) and regularization (restricting a tweet to be generated from only

one topic). In our study, the aggregation is done by pooling tweets generated from

the same day.

All numerical results presented in the article were produced with the following

implementation details of the T-LDA algorithm: the collapsed Gibbs sampler has

been run for 2000 iterations with the first 1000 samples discarded as burn-in. The

latent variable β is assumed to be symmetric Dirichlet with hyperparameter η = 0.01

for all topics; and θ is assumed to be symmetric Dirichlet with hyperparameter α = 0.5

for all time stamps. Additionally, for weakly-supervised T-LDA implemented on the

TalkLife data, additional weights are added to η such that ηn = 0.01 + wn for each

seed word n and ηn = 0.01 otherwise, where the details of the weights can be found

in Section 4.12.
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Figure D.1: Plate notation comparison for the Twitter Latent Dirichlet Allocation
(T-LDA) (left) and the standard Latent Dirichlet Allocation (LDA) (right) models.
Here nodes are random variables; edges indicate dependence through probability dis-
tributions (e.g., Dirichlet or multinomial). Shaded nodes are observed; unshaded
nodes are latent. Plates indicate replicated variables. Note that the T-LDA model
aggregates tweets from each user into a document and constrains each tweet to be
drawn from only one topic.
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4.2 Summary statistics characterizing shortest paths

To characterize the smoothness and continuity of the learned shortest paths of

topics, we present summaries of the ‘skips’ (days where there are no topics connected

to either a topic immediately before or after the current timestamp) they made.

Table D.1 depicts the number of skips and the length of the skips for four topic paths

(see Appendix 4.9 for details on the path names). We note that the length of a

whole path (number of topics connected) could be different because 1) the different

numbers of skips, and 2) the different time span as some topics appeared only for a

certain time range (e.g., the wash hands topic). The lengths of those paths shown in

the table are: COVID NEWS (presidential election), 70; COVID (health care), 58;

STAY HOME (executive order), 59; SANITIZING (wash hands) 19. Clearly, longer

paths could make longer skips. However, the paths remain fairly continuous (small

numbers of short skips) during their time span. This is partly due to the corpora

smoothing being applied–the topics learned at time t should usually be very similar

to those learned at nearby timestamps.

Table D.1: Summary of the number of skips along with the length of those skips for
four different topic paths. The paths are discovered by the shortest path algorithm
using 10-nearest neighbor weighted graph. Note that all paths exhibit small numbers
of short-length skips.

Path Name Days Skipped

1 2 3 4

COVID (health care) 10 0 1 1
COVID NEWS (presidential election) 3 1 2 2

SANITIZING (wash hands) 1 1 0 0
STAY HOME (executive order) 4 0 0 0
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4.3 Shortest path on MDS, ISOMAP, and PHATE

We desire a low-dimensional embedding that preserves the trajectory structures

of shortest paths, so that we can visualize and interpret any results computed us-

ing methods described in Section 5.2.2. Here we compare PHATE with MDS and

ISOMAP. MDS does not take any local structural information into account when

building the embedding; ISOMAP applies MDS using shortest path distances com-

puted on neighborhood graphs; finally, PHATE applies MDS on potential distances

computed on neighborhood graphs while striking a balance between local and global

trajectory structures. Figure D.2 shows that MDS failed to identify any path be-

tween two points. ISOMAP identifies a cleaner structure but there are interrupting

background points on the path. PHATE identifies a clean path that is also well sep-

arated from background points. The comparison also highlights the importance of

working with neighborhood graphs, instead of the fully connected graph, when trying

to identify local structures in data.
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Figure D.2: Multidimensional scaling (MDS), isometric feature mapping (ISOMAP),
and potential of heat-diffusion for affinity-based transition embedding (PHATE) for
the same set of word distributions. A shortest path computed on 10 nearest neighbors
graph is highlighted on each embedding with red and blue points indicating the
starting and ending points of the path. Note that PHATE identifies the cleanest path
connecting the red and blue points, with minimal background noises (grey points)
included in between.
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4.4 Detailed descriptions of PHATE

Algorithm D.1 outlines the steps for obtaining a low-dimensional embedding using

PHATE with the Hellinger distance metric.

Algorithm D.1: PHATE with Hellinger distance

Input: N observations of some objects
1: Compute pairwise Hellinger distance matrix (denoted as D) from all pairs

of multinomial topic distributions (stored as columns in a matrix X).
2: Compute k-nearest neighbor distance (denoted as ϵk(x)) from each col-

umn of X.
3: Compute local affinity matrix Kk,α from D and ϵk.
4: Form a diffusion operator P , which is a Markov transition matrix com-

puted by normalizing Kk,α.
5: Compute time scale via Von Neumann Entropy. The time scale is then

used to diffuse P to obtain P t.
6: Compute potential representation of the diffusion matrix as Ut =
− log(P t) and compute potential distance matrix DU,t from Ut.

7: Apply MDS on DU,t to embed the data in lower dimension.
Output: An N×L matrix that contains L-dimensional coordinates for each

observation.

In Algorithm D.1 we use the Hellinger distance to compute D and ϵk. This

ensures that PHATE is being used to perform dimension reduction on a statistical

manifold (Amari, 2012).

The PHATE construction is based on computing local similarities between data

points, and then diffusing through the data using a Markovian random-walk diffusion

process to infer more global relations. The local similarities between points are com-

puted by first computing pairwise distances and then transforming the distances into

similarities, via a kernel named the α-decaying kernel with locally adaptive band-

width. It is defined as

Kk,α(x, y) =
1

2
exp

(
−
(∥x− y∥

ϵk(x)

)α)
+

1

2
exp

(
−
(∥x− y∥

ϵk(y)

)α)
. (4.1)

Here the k-nearest neighbor distance ϵk is used to ensure that the bandwidth is locally
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adaptive and varies based on the local density of the data. The exponent α controls

the rate of decay of the tails in the kernel Kk,α. Setting α = 2 is equivalent to the

use of a Gaussian kernel and choosing α > 2 results in lighter tails in the kernel.

The kernel is then normalized by row-sums that results in a row-stochastic matrix

P = Pk,α (the diffusion operator), which is used for following steps.

In Step 5, the diffusion operator is powered by a time scale t. In particular, for a

data point x and diffusion operator P , and let δx be the Dirac delta that is defined to

be a row vector of length N (length of the data) with a one at entry corresponding

to x and zero elsewhere. The t-step distribution of x is the row in P t corresponding

to x:

ptx := δxP
t = [P t](x,·). (4.2)

This distribution captures multiscale (where t serves as the scale) local neighborhoods

of data points, where the local neighborhoods are explored by randomly walking or

diffusing over the intrinsic manifold geometry of the data. The scale parameter t

affects the embedding. It can be selected based on any prior knowledge of the data

or, as proposed in Moon et al. (2019), by quantifying the information in the powered

diffusion operator with different values of t, via computing the Von Neumann En-

tropy (von Neumann, 2013; Anand et al., 2011) of the diffusion affinity, and choosing

the one that explains the maximum amount of variability in the data.

Finally, a new type of distance, called the potential distance in Moon et al. (2019),

is recovered in the end from the powered diffusion operator, which is obtained by

taking the negative log of the transition probabilities. This transforms these transition

probabilities into the heat-potential context.
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4.5 Additional simulation studies for PHATE

To illustrate the idea of probability vectors on a sphere, in Figure D.3 we present

a simple example of a sphere in 3D and probability vectors (simulated as in Sec-

tion 5.2.3) lying on the sphere. The trajectories in this simulated example exhibit

different progressive structures. In particular, the trajectory in dark blue evolves

smoothly and remains roughly on the same path; the trajectory in brown exhibits a

sharp turn in the direction at a certain position; finally, the trajectory in light blue

behaves more chaotically and exhibits clustering structures. The PHATE embed-

ding presented in Figure V.3 of Section 5.2.3 was able to uncover all these types of

structures in low dimension.

To further demonstrate the advantage of PHATE over traditional methods for

uncovering progressive structures, we present a similar example to that in Moon et al.

(2019), which uses artificial tree-structured data and compare principle component

analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE) and PHATE in

constructing low-dimensional embedding. In particular, we generate tree-structured

data with 10 branches and 200 dimensions, and each branch has length 300. Thus, we

have 3000 observations of 200-dimensional data, and the goal is to find a 2-dimensional

embedding for visualization. Figure D.4 shows the results of embedding for three

different methods. PCA is good for finding an optimal linear transformation that

gives the major axes of variation in the data. However, the underlying data structure

in this case is nonlinear in which case PCA is not ideal. t-SNE is able to embed

nonlinear data; however, it is optimized for cluster structure and as a result will

destroy any continuous progression structure in the data. PHATE for this example

separates the clusters and is able to clearly represent the trajectory structure of

the data. Additionally, PHATE neatly captures the branching/splitting points of

different trajectories. This feature is vital for our study of tweeting behaviors as we

are interested in learning how different conversations converge to a similar one or
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Figure D.3: Three simulated trajectories of probability vectors on a sphere. Each
color signifies a trajectory simulated using a specific σ in the random-walk structure
described in Section 5.2.3. Here, three trajectories started at the same point exhibit
different progressive structures: stable (dark blue), chaotic and clustering (light blue),
and sharp transition (brown).

diverge to different topics.

Additionally, we also demonstrate that PHATE does not ‘create’ spurious tra-

jectories, although it does not preclude the existence of such structures. Here,

3000 independent data points were simulated from a 3-component (with weights

0.6, 0.3, 0.1) 10-dimensional Gaussian mixture model and transformed through soft-

max (i.e., zj → exp(zj)∑10
i=1 exp(zi)

, j = 1, . . . , 10). Figure D.5 depicts 2-dimensional em-

bedding computed by PCA, t-SNE, uniform manifold approximation and projection

(UMAP), and PHATE using Hellinger distance. Clearly, PHATE did not artificially
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Figure D.4: Comparison of principle component analysis (PCA), t-distributed
stochastic neighbor embedding (t-SNE), and potential of heat-diffusion for affinity-
based transition embedding (PHATE). Two versions of PHATE with different tuning
parameters are illustrated. The data are 3000 tree-structured observations with 10
branches. Various branches are colored differently. Note that for this truly trajectory-
based data, PHATE gives the clearest low-dimensional representation of the data.

‘trajectorize’ the data; t-SNE seems to perform the best in terms of clustering as it

often tries to separate data as much as possible; UMAP separated the clusters well

but generated artificial segments and trajectories in the embedding.

Lastly, we compare PHATE (and other) embeddings using different distance met-

rics. In particular, we compute 2-dimensional embeddings for the data generated in

Section 5.2.3 using Euclidean and cosine distances/similarities. Figure D.5 depicts

the results comparing PCA, t-SNE, UMAP, and PHATE. It shows that the Hellinger

metric (for t-SNE, UMAP, and PHATE) outperforms the other two in terms of gener-

ating the clearest low-dimensional embedding that preserves the true data geometry.
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Figure D.5: Comparison of principle component analysis (PCA), t-distributed
stochastic neighbor embedding (t-SNE), uniform manifold approximation and projec-
tion (UMAP), and potential of heat-diffusion for affinity-based transition embedding
(PHATE). Here 3, 000 independent data points were generated from a 3-component
(with weights 0.6, 0.3, 0.1) 10-dimensional Gaussian mixture model. Here, data were
transformed via softmax to resemble a probability vector. Note that for this ran-
dom nonstructured data, PHATE did not ‘create’ spurious trajectories in the low-
dimensional embedding.
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(a) Embedding using Euclidean metric.

(b) Embedding using Cosine metric.

Figure D.6: Principle component analysis (PCA), t-distributed stochastic neighbor
embedding (t-SNE), uniform manifold approximation and projection (UMAP), and
potential of heat-diffusion for affinity-based transition embedding (PHATE) using
Euclidean and cosine metrics. Here 10 trajectories of 100-dimensional probability
vectors are generated, where the trajectories are colored differently. PHATE gives
the clearest 2D representation of the inputs that preserves their high-dimensional
progressive structures, regardless of the distance metric used. Comparing with Fig-
ure V.3, the Hellinger metric outperforms the other two metrics in recovering the
data geometry.
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4.6 Comparison with TopicFlow for topic trend mining

TopicFlow (Malik et al., 2013) is an analysis framework for Twitter data over adja-

cent time slices, binned topic models, and alignment, which is an application of LDA

to timestamped documents at independent time intervals and alignment of the result-

ing topics. The key differences between TopicFlow and the proposed framework are:

1) a different similarity measure between topics, that is, cosine similarity metric for

TopicFlow; 2) a different mechanism for topic alignment and connection–TopicFlow

connects every pair of adjacent topics that has similarity above a certain threshold.

The advantages of Hellinger metric over other metrics for comparing/embedding word

distributions have been made clear in the previous section. Here, we demonstrate the

advantages of the proposed shortest path mechanism over TopicFlow for obtaining

natural temporal evolution of topics.

We analyze a particular topic cluster–the presidential election cluster discussed in

Section 5.3–and compare the connections computed by the proposed shortest path

algorithm and the TopicFlow algorithm. Here, for a fair and direct comparison, we fix

the bins and the topic detection algorithms to be the same for both frameworks–using

the smoothed temporal corpus and the T-LDA; the shortest path is performed on a

10-nearest neighbor weighted graph and the TopicFlow is performed with a connection

threshold of 0.2. For the latter, we obtain a path by localizing the connection that

has the largest cosine similarity at each pair of adjacent timestamp. For illustration,

in Table D.2, we highlight a time segment that exhibits differences between two

paths. In particular, the shortest path skipped 3 days, March 23 to March 26, while

the TopicFlow remain continuously connected. The top row of Figure D.7 depicts

the top word clouds of topics at timestamps March 23, 24, 27, and May 15 on the

TopicFlow path. It shows a sharp transition from a voting/election topic to general

political topics and finally to a relatively nonpolitical topic. On the other hand, the

shortest path automatically skipped the timestamps where these new topics emerged
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and maintained the major theme of the path, which is voting/election and later on

general politics. This offers a more natural and much smoother transition.

This comparison demonstrates particularly that the mechanism for topic trend

discovery used by TopicFlow is restrictive as it potentially results in nonsmooth and

nonintuitive transitions. Although one could tune the connection threshold, it in-

creases the computational burden and there is no obvious objective (e.g., prediction

score, loss, etc.) that could help with the tuning process.

Table D.2: A portion of connected presidential election topics via the shortest path
mechanism (left column) and the TopicFlow mechanism (right column). Here topics
are indicated by their indices, e.g., 0 − 49, at each timestamp (row index). NA
indicates that no connection has been made by the algorithm.

SP topic index TF topic index
Feb 15 37 37

...
...

...
Mar 23 1 1
Mar 24 NA 44
Mar 25 NA 27
Mar 26 NA 26
Mar 27 22 26

...
...

...
May 15 2 15

→ → →

→ →

Figure D.7: Top word clouds showing evolution of topics on the presidential election
topic paths computed via the shortest path algorithm (bottom) and the TopicFlow
(top) algorithm. The sample timestamps at which the topics are learned are March
23, 24, 27, and May 15 (top); March 23, 27, and May 15 (bottom). Note that
the shortest path algorithm produces much smoother and more intuitive transitions
among topics within a general theme.
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To further investigate the two different topic aligning methods, we fix the distance

metric to be Hellinger, and compare the shortest path mechanism and the TopicFlow

mechanism for the same set of topics. Table D.3 depicts a similar pattern for the

time range March 23 to 27, where the restrictive TopicFlow mechanism for topic

connection exhibits a sharp transition as shown in Figure D.7. Similar to Table D.2,

from February to March 23, the two paths are mostly the same. However, we observe

that the two paths also exhibit similar topics near the end of the time period. This

again demonstrates the superiority of Hellinger distance for measuring topic similarity.

Table D.3: A portion of connected presidential election topics via the shortest path
mechanism (left column) and the TopicFlow mechanism (right column) using the
same distance metric (Hellinger). Here topics are indicated by their indices, e.g.,
0− 49, at each timestamp timestamps (row index). NA indicates that no connection
has been made by the algorithm. Note that the restriction imposed by TopicFlow
impacts the topic path similar (from March 23 to 27) to that in Table D.2

SP topic index TF topic index
Feb 15 37 37

...
...

...
Mar 23 1 1
Mar 24 NA 44
Mar 25 NA 27
Mar 26 NA 26
Mar 27 22 26

...
...

...
May 12 8 8
May 13 42 42
May 14 0 0
May 15 2 2
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4.7 Volume plots of raw Twitter Decahose data

Figure D.8b shows the Decahose Twitter volume plots before (top) and after

(bottom) processing. Although Twitter officially claims the percentage of geotagged

tweets to be around 1-2% of the total tweets (https://developer.twitter.com/en/

docs/tutorials/Tweet-geo-metadata), we found the percentage to much smaller.

Note that there are several time points where the data is either incomplete (i.e., low

volumes) or missing (i.e., 0 volumes).
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(a) Raw Decahose tweets volume (on a scale of 107 tweets) from Feb 15
to May 15.

(b) Geotagged U.S., non-retweet, English Decahose tweets volume from
Feb 15 to May 15.

Figure D.8: Volume of all and geotagged Decahose tweets for each day during the
study period. The Decahose stream generates around 30 − 50 million raw tweets
and 50− 100 thousand geotagged English language tweets per day, except for several
missing/incomplete cases with 0 or abnormally small volumes.
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4.8 Sensitivity analysis for hyperparameters

In this section, we perform sensitivity analyses for the hyperparameters k and γ

in Algorithm V.2, namely the number of neighbors in the nearest neighbor graph and

the smoothing parameter for constructing new corpora. Further, we perform model

selection for varying choices of K, the number of topics in T-LDA.

In Figure D.9, the two shortest paths computed using neighborhood graphs of

k = 8 and 12 are illustrated. For comparison, the same starting and ending topics

as well as the two intermediate topics at the same time points as those in Figure V.2

are used. It is clear from the word clouds that the shortest paths are not sensitive to

the choice of k in the neighborhood of 10.

→ → →

→ → →

Figure D.9: Evolution along the shortest paths of a COVID-19 topic on the first
day to a COVID-19 health care focused topic on the last day illustrated as top word
clouds. The paths are computed on a 8- (top) and a 12- (bottom) nearest neighbor
graph. The middle two word clouds are illustrations of two of the topics on the paths
at the same time points as those in Figure V.2. Note that the intermediate topics in
both cases represent natural transformations from the beginning to the end topics,
confirming that the shortest path is not sensitive to small perturbations of k around
10.

Additionally, we quantify the similarities between any two shortest paths com-

puted on different neighborhood graphs by computing the average Hellinger distance

between topics (at the same time point) on the paths. Particularly, in Table D.4

we show the average Hellinger distances. For this particular cluster of topics, the

average Hellinger distances are negligible and are stable across all pairs of different

paths, which suggests that the shortest path is not sensitive to different k in the
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neighborhood of k = 10.

Table D.4: Average Hellinger distances between any two topics paths generated using
various neighborhood parameters k as the column/row indices. Examples are shown
for the COVID (health care) topics. Note that the average Hellinger distances are
identically 0 across all pairs of paths, indicating that the shortest paths are stable
under different choices of k.

8 10 12
8 0 0 0
10 0 0 0
12 0 0 0

Figure D.10 shows the contributions (in terms of the number of tweets) from

each document to the temporally smoothed corpus constructed for March 31, using

smoothing parameters of 0.65, 0.75, 0.85. With 0.75, the contents span the whole

study period (Feb 15 to May 15) but concentrate on tweets within a month, centered

at March 31.

Moreover, Figure D.11 shows the PHATE embedding of all topics learned by T-

LDA, using corpus constructed with smoothing parameters 0.65 and 0.85. Here we

highlight two clusters (COVID and COVID NEWS) and one shortest path (presiden-

tial election) similar to Figure V.4. Comparing the three PHATE plots, the overall

structures are similar and the highlighted trajectories remain relatively stable (i.e.,

presidential election paths exhibit similar ‘U’ shapes in all cases). Note that the

‘split-and-merge’ behaviors within the COVID NEWS cluster are being captured in

all cases as well. The only notable difference in the PHATE produced with different

temporal smoothing is the length of the trajectories, with those in the embedding pro-

duced using smoothing parameter 0.85 being the longest. This is reasonable because

a larger smoothing parameter assumes a longer range temporal dependence structure

of the data.

Additionally, we quantify the similarities between any two shortest paths from

different smoothed corpora by computing the average Hellinger distance of the topics
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Figure D.10: Contributions of tweet volume from various time points for temporally
smoothed corpora. The examples are constructed for March 31, using smoothing
parameters 0.65, 0.75, 0.85 (from top to bottom). Although the plots exhibit different
resolutions and spans of the histograms, the shapes of the contribution distributions
are similar in all cases. This illustrates robustness of the proposed method to the
choice of smoothing parameters.
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Figure D.11: Potential of heat-diffusion for affinity-based transition embedding
(PHATE) for all word distributions. The topics here are learned by T-LDA on tweet
collections constructed with smoothing parameters 0.65 (top) and 0.85 (bottom).
Here two clusters and one shortest path are highlighted for comparison with Fig-
ure V.4. Note that the overall structures as well as the trajectories for highlighted
points are similar in all three cases, while the lengths of the trajectories are different,
which are the result of different assumptions on the range of the temporal dependence
(i.e., a smoothing using 0.85 assumes longer range dependence by including more old
tweets).

on the paths. Particularly, in Table D.5 we show the average Hellinger distances be-

tween any two paths computed under different smoothing conditions, for the COVID
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NEWS (presidential election) and COVID (health care) topics. In these two cases,

the average Hellinger distances are around 0.35 and are stable across all pairs, which

suggests that the shortest paths of key topics of interest are not sensitive to different

smoothing parameters.

Table D.5: Average Hellinger distances between any two topics paths generated from
corpora with various smoothing parameters as the column/row indices. Examples are
shown for the COVID NEWS (presidential election) and the COVID (health care)
topics in the top and bottom tables, respectively. Note that the average Hellinger
distances are both relatively small and stable in the sense that all pairwise distances
are similar in magnitude, indicating that the shortest paths are stable under different
choices of smoothing parameters.

0.65 0.75 0.85
0.65 0 0.3520 0.3578
0.75 0.3520 0 0.3056
0.85 0.3578 0.3056 0

0.65 0.75 0.85
0.65 0 0.3697 0.4112
0.75 0.3697 0 0.3652
0.85 0.4112 0.3652 0

Lastly, for the choice of the number of topics for T-LDA, we propose to compute

a Bayesian Information Criteria (BIC) score at each timestamp defined as

−log-likelihood +
C log(D)

2

where the model complexity is computed by C := Kp + (K − 1)D with p denoting

the length of the vocabulary. The log-likelihood of the T-LDA model is defined as

K∏
k=1

Dirichlet(βk; η)×
D∏

d=1

Dirichlet(θd;α)

×
Sd∏
s=1

Categorical(zs,d; θd)×
Ns∏
n=1

Categorical(wn,s,d; βzs,d).
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Here, the categorical distribution is a special case of the multinomial distribution, in

that it gives the probabilities of potential outcomes of a single drawing rather than

multiple drawings; Sd denotes the number of tweets in document d ; and Ns denotes

the number of words in a tweet s. This criteria is similar to the topic model selection

criteria proposed in Taddy (2012).

In Figure D.12, we show the computed scores across all timestamps for various

choices of the numbers of topics. The model with K = 50 consistently produces the

lowest scores for the first half of the time range and is comparable to the model with

K = 100 for the second half.

Figure D.12: Bayesian information criteria (BIC) scores across timestamps for differ-
ent choices of the numbers of topics.
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4.9 PHATE dictionary of clusters and trajectories

We explain the labeling of the PHATE plots for visualization and interpretation:

• Colors signify clusters of topics. Clusters are computed by a hierarchical cluster-

ing algorithm using Hellinger distance between topics. Only selected COVID-19

topics are colored differently, and all others are grouped into a single color. Se-

lected COVID-19 topics are:

– COVID: topics where the top words are mostly general COVID-19 terms

such as coronavirus, virus, covid, etc.

– COVID NEWS: topics where the top words are related to government

officials or politicians discussing COVID-19 related issues. Typical top

words include: Trump, government, news, covid, etc.

– SANITIZING: topics where the top words are mostly wash hands, sanitiz-

ing, virus, etc.

– STAY HOME: topics where the top words are mostly stay home, safe,

covid, etc.

• Sizes represent normalized number of tweets that is generated from each topic.

• Shapes highlight selected COVID-19 related shortest paths computed on the

neighborhood graph. Different shapes represent

– COVID (health care): a subset of topics in the COVID topic cluster that

are all on a shortest path starting from a general COVID topic at the

first time point and finishing at a health care focused COVID topic (e.g.,

testing, death).

– COVID (politics): a shortest path that starts from a topic that is second-

closest in distance to the starting topic of the COVID (health care) and

finishing at a politics focused COVID topic (e.g., president, news, etc.).
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– COVID NEWS (presidential election): a subset of topics in the COVID

NEWS cluster that are all closely related to presidential election and are

on a shortest path starting from a election-related topic at the first time

point.

– SANITIZING (wash hands): a subset of topics in the SANITIZING cluster

that are on a shortest path starting from a topic related to washing hands

due to COVID-19.

– STAY HOME (executive order): a subset of topics in the STAY HOME

cluster that are on a shortest path starting from a topic related to stay

home executive order due to COVID-19.

– General: topics that are not on selected shortest paths of interest.
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4.10 Additional PHATE trajectories

Figure D.13 shows two linear trajectories, the SANITIZING (wash hands) and the

STAY HOME (executive order), on the PHATE embedding. In contrast to nonlinear

trajectories presented in Figure V.5 and Figure V.7, topics on linear trajectories

exhibit no obvious deviation in terms of the top words.
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Figure D.13: Potential of heat-diffusion for affinity-based transition embedding
(PHATE) for subsets of topics lie on the executive order path (top) and the wash
hands path (bottom). Colors and sizes of points highlight time and tweet volume,
respectively. Here two word clouds containing top 30 words in corresponding topics
are shown for the time points highlighted by red circles in each path. Note that in
both cases, the topic near the beginning of the study period is similar to that near
the end of the study period. This shows the stability of topics on linear trajectories.
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4.11 State-level trend in Tweet proportions

Here, we illustrate state-level variations in estimated tweet volumes generated by

topics on the presidential election path, normalized by total tweet volume at each

time point. From Figure D.14, we see that although tweet proportions vary state by

state, the overall trend is clear with peaks roughly correspond to the time points of

key event highlighted.

Figure D.14: State-level spatial distribution of tweet proportions generated from all
topics on the COVID NEWS (presidential election) path. California, New York,
Texas, and Illinois are highlighted for illustration, while all other states are ll plotted
in grey. Note that similar three events (annotated using texts) as in Figure V.5
correspond roughly to the three peaks in the time-course plot, indicating validations
of the quality of the shortest path using real-world events.

For the COVID (health care) topic path, at the state level, tweet proportions

follow global trends at the beginning of the study period in February and March but

194



become chaotic starting in April. One possible explanation is that the COVID-19

pandemic in the United States started in several hot spots but quickly spread into

other states, which then started to implement state-specific control measures. In

addition, the overall new cases and death toll in the country reached a few record

highs in April, starting with New York, which became an epicenter of the pandemic,

with a record 12274 new cases reported on April 4 (https://en.wikipedia.org/

wiki/COVID-19_pandemic_in_New_York_(state)). This explains the difference in

tweet proportions trend in New York, compared with the other three highlighted

states.

Figure D.15: State-level spatial distribution of Tweet proportions generated from all
topics on the COVID (health care) path. California, New York, Texas, and Illinois
are highlighted for illustration, while all other states are plotted in grey. Note that a
time period in April is annotated with relevant events explaining the surge in tweet
proportions in many states. This validates the quality of this shortest path using
real-world events.
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4.12 Additional details of TalkLife data

Table D.6: Label names and corresponding percentage volume in all posts generated
in 2019. Note the label “Other” indicates a post is not labeled by any other labels.

Label Percentage volume
Other 0.5840
DepressedMoodSuspected 0.0799
AgitationOrIrritationSuspected 0.07421
LonelinessSuspected 0.0682
FamilyIssuesSuspected 0.0674
BehavorialSymptomsSuspected 0.0618
DistortedThinkingSuspected 0.0607
AnxietyPanicFearSuspected 0.0566
SelfHarmSuspectedTakeTwo 0.0506
BodyImageEatingDisordersSuspected 0.0495
SuicidalIdeationAndBehaviorSuspected 0.0433
NumbnessEmptinessSuspected 0.0371
NssiIdeationAndBehaviorSuspected 0.0327
SelfHarmRelapseSuspected 0.0325
TiredFatiguedLowEnergySuspected 0.0257
MentalHealthTreatmentSuspected 0.0241
CryingSuspected 0.0229
DeathOfOtherSuspected 0.0201
AlcoholAndSubstanceAbuseSuspected 0.0191
HelplessnessHopelessnessSuspected 0.0163
SelfHarmRemissionSuspected 0.0126
EmotionalExhaustionSuspected 0.0110
FinalTiredFatiguedLowEnergySuspected 0.0105
FailureSuspected 0.0094
SongLyricsSuspected 0.0078
SuicidalPlanningSuspected 0.0078
InpatientOutPatientMedicationSuspected 0.0059
EmptinessSuspected 0.0054
NumbnessSuspected 0.0050
SuicideAttemptSuspected 0.0017
NssiUrgeSuspected 0.0017
NauseaWithEatingDisorderSuspected 0.0015
NauseaSuspected 0.0012
SelfHarmRemissionOrRelapseSuspected 0.0011
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Table D.7: Seed words and the associated weights that are used in the weakly-
supervised LDA algorithm. Weights are computed as natural log of the volume (num-
ber of occurrences) of the corresponding word in the entire year of 2019, multiplied
by a tune-able constant (equals 10 here).

Word Weight Word Weight
afraid 101.72 listen 105.46
anxiety 106.67 live 113.41
anymore 112.89 lonely 108.59
attempt 86.54 long 111.18
band 80.62 lose 112.61
body 104.47 lyric 79.44
clean 93.92 medication 86.72
cry 112.81 mental 101.90
cut 104.78 mom 109.04
dad 103.89 month 108.48
dead 102.16 numb 93.79
death 98.71 pain 110.16
depression 105.84 parent 105.64
die 114.56 plan 97.73
drink 99.31 play 104.71
drug 93.76 pretty 103.28
drunk 92.33 relapse 81.82
eat 107.72 sad 111.77
emptiness 77.17 scar 106.90
empty 95.84 school 109.36
end 113.06 sick 103.66
energy 93.67 smoke 94.36
exhaust 91.71 song 102.18
eye 104.10 stop 114.58
fail 96.32 suicide 99.23
failure 90.22 tear 97.94
family 110.45 throw 97.05
favorite 96.82 tire 108.81
feeling 112.08 tired 101.14
food 99.55 ugly 100.59
harm 96.07 urge 86.28
health 97.70 vomit 71.62
heart 112.15 weak 92.34
hospital 91.96 week 107.86
hurt 115.45 worry 101.11
kill 108.86 write 101.68
leave 115.83
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4.13 Additional details of clustering of TalkLife labels

Table D.8: Clustered labels.

Cluster Labels
1 BehavorialSymptomsSuspected, CryingSuspected, DepressedMoodSus-

pected
2 InpatientOutPatientMedicationSuspected, MentalHealthTreatmentSus-

pected
3 EmptinessSuspected, NumbnessSuspected
4 AgitationOrIrritationSuspected, AlcoholAndSubstanceAbuseSuspected,

AnxietyPanicFearSuspected, BodyImageEatingDisordersSuspected,
DeathOfOtherSuspected, FamilyIssuesSuspected, NssiIdeationAndBe-
haviorSuspected, SelfHarmRelapseSuspected, SelfHarmRemissionSus-
pected, SelfHarmSuspectedTakeTwo, SuicidalIdeationAndBehaviorSus-
pected

5 FinalTiredFatiguedLowEnergySuspected, TiredFatiguedLowEnergy-
Suspected

6 NauseaSuspected, NauseaWithEatingDisorderSuspected
7 SuicidalPlanningSuspected, SuicideAttemptSuspected
8 DistortedThinkingSuspected, EmotionalExhaustionSuspected, Failure-

Suspected, HelplessnessHopelessnessSuspected
9 NssiUrgeSuspected, SelfHarmRemissionOrRelapseSuspected, Song-

LyricsSuspected
10 LonelinessSuspected, NumbnessEmptinessSuspected
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Figure D.16: Top words visualization of the sparse word distributions of each label
before clustering.
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Nerger, L., T. Janjić, J. Schröter, and W. Hiller (2012), A unification of ensemble
square root kalman filters, Monthly Weather Review, 140 (7), 2335–2345.

Newman, D., P. Smyth, M. Welling, and A. U. Asuncion (2008), Distributed infer-
ence for latent Dirichlet allocation, in Advances in Neural Information Processing
Systems, pp. 1081–1088.

Newman, M. E., and M. Girvan (2004), Finding and evaluating community structure
in networks, Physical review E, 69 (2), 026,113.

Nguyen, X., M. J. Wainwright, and M. I. Jordan (2009), On surrogate loss functions
and f -divergences, The Annals of Statistics, 37 (2), 876–904.

Niu, L., X. Liu, and J. Zhao (2020), Robust estimator of the correlation matrix
with sparse kronecker structure for a high-dimensional matrix-variate, Journal of
Multivariate Analysis, 177, 104,598.

Oh, S., O. Dalal, K. Khare, and B. Rajaratnam (2014), Optimization methods for
sparse pseudo-likelihood graphical model selection, Advances in Neural Information
Processing Systems, 27, 667–675.

Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay,
D. Patil, and J. A. Yorke (2004), A local ensemble kalman filter for atmospheric
data assimilation, Tellus A: Dynamic Meteorology and Oceanography, 56 (5), 415–
428.

Papernot, N., and P. McDaniel (2018), Deep k-nearest neighbors: Towards confident,
interpretable and robust deep learning, arXiv preprint arXiv:1803.04765.

Parikh, N., and S. Boyd (2014), Proximal algorithms, Foundations and Trends in
optimization, 1 (3), 127–239.

211



Park, S., W. Lee, and I.-C. Moon (2015), Supervised dynamic topic models for as-
sociative topic extraction with a numerical time series, in Proceedings Of the 2015
Workshop On Topic Models: Post-Processing And Applications, pp. 49–54.

Park, S., K. Shedden, and S. Zhou (2017), Non-separable covariance models for
spatio-temporal data, with applications to neural encoding analysis, arXiv preprint
arXiv:1705.05265.

Peng, J., P. Wang, N. Zhou, and J. Zhu (2009), Partial correlation estimation by
joint sparse regression models, Journal of the American Statistical Association,
104 (486), 735–746.

Petterson, J., W. Buntine, S. Narayanamurthy, T. Caetano, and A. Smola (2010),
Word features for latent dirichlet allocation, Advances in Neural Information Pro-
cessing Systems, 23.

Qiang, J., Z. Qian, Y. Li, Y. Yuan, and X. Wu (2020), Short text topic modeling tech-
niques, applications, and performance: a survey, IEEE Transactions on Knowledge
and Data Engineering.

Qiao, X., S. Guo, and G. M. James (2019), Functional graphical models, Journal of
the American Statistical Association, 114 (525), 211–222.

Qiu, M., F. Zhu, and J. Jiang (2013), It is not just what we say, but how we say them:
LDA-based behavior-topic model, in Proceedings of the 2013 SIAM International
Conference on Data Mining, edited by J. Ghosh, Z. Obradovic, J. Dy, Z.-H. Zhou,
C. Kamath, and S. Parthasarathy, pp. 794–802, SIAM.

Ramage, D., D. Hall, R. Nallapati, and C. D. Manning (2009), Labeled lda: A su-
pervised topic model for credit attribution in multi-labeled corpora, in Proceedings
of the 2009 conference on empirical methods in natural language processing, pp.
248–256.

Rao, C. R. (1995), The use of Hellinger distance in graphical displays of contingency
table data, pp. 143–161, VSP, Utrecht.

Raydan, M. (1993), On the Barzilai and Borwein choice of steplength for the gradient
method, IMA Journal of Numerical Analysis, 13 (3), 321–326.

Raydan, M. (1997), The Barzilai and Borwein gradient method for the large scale
unconstrained minimization problem, SIAM Journal on Optimization, 7 (1), 26–
33.

Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais,
et al. (2019), Deep learning and process understanding for data-driven earth system
science, Nature, 566 (7743), 195–204.

212



Roberts, B. (2006), Slow magnetohydrodynamic waves in the solar atmosphere, Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engineer-
ing Sciences, 364 (1839), 447–460.

Rohe, K., S. Chatterjee, B. Yu, et al. (2011), Spectral clustering and the high-
dimensional stochastic blockmodel, The Annals of Statistics, 39 (4), 1878–1915.

Rozansky, M. (2020), In a holiday season unlike any other, avoid unfounded
claims about suicide, https://www.annenbergpublicpolicycenter.org/

in-a-holiday-season-unlike-any-other-avoid-unfounded-claims-about-suicide/,
accessed: 2022-06-24.

Rudelson, M., and S. Zhou (2017), Errors-in-variables models with dependent mea-
surements, Electronic Journal of Statistics, 11 (1), 1699–1797.

Rudin, C. (2019), Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead, Nature Machine Intelligence, 1 (5),
206–215.

Rudin, C., C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong (2022), In-
terpretable machine learning: Fundamental principles and 10 grand challenges,
Statistics Surveys, 16, 1–85.

Rue, H., and L. Held (2005), Gaussian Markov random fields: theory and applications,
Chapman and Hall/CRC.

Samko, O., A. D. Marshall, and P. L. Rosin (2006), Selection of the optimal parameter
value for the isomap algorithm, Pattern Recognition Letters, 27 (9), 968–979.

Santomauro, D. F., et al. (2021), Global prevalence and burden of depressive and anx-
iety disorders in 204 countries and territories in 2020 due to the covid-19 pandemic,
The Lancet, 398 (10312), 1700–1712.

Sareen, J., B. J. Cox, T. O. Afifi, R. de Graaf, G. J. Asmundson, M. Ten Have, and
M. B. Stein (2005), Anxiety disorders and risk for suicidal ideation and suicide
attempts: a population-based longitudinal study of adults, Archives of general
psychiatry, 62 (11), 1249–1257.

Schrijver, C., et al. (2008), Nonlinear force-free field modeling of a solar active region
around the time of a major flare and coronal mass ejection, The Astrophysical
Journal, 675 (2), 1637.

Servidea, J. D., and X.-L. Meng (2006), Statistical physics and statistical computing:
A critical link, in Frontiers In Statistics, edited by J. Fan and H. L. Koul, pp.
327–344, World Scientific.

Sha, H., M. A. Hasan, G. Mohler, and P. J. Brantingham (2020), Dynamic topic mod-
eling of the covid-19 twitter narrative among us governors and cabinet executives,
arXiv preprint arXiv:2004.11692.

213

https://www.annenbergpublicpolicycenter.org/in-a-holiday-season-unlike-any-other-avoid-unfounded-claims-about-suicide/
https://www.annenbergpublicpolicycenter.org/in-a-holiday-season-unlike-any-other-avoid-unfounded-claims-about-suicide/


Sharma, A., M. Choudhury, T. Althoff, and A. Sharma (2020a), Engagement pat-
terns of peer-to-peer interactions on mental health platforms, in Proceedings of the
International AAAI Conference on Web and Social Media, vol. 14, pp. 614–625.

Sharma, A., A. S. Miner, D. C. Atkins, and T. Althoff (2020b), A computational
approach to understanding empathy expressed in text-based mental health support,
arXiv preprint arXiv:2009.08441.

Sharma, A., I. W. Lin, A. S. Miner, D. C. Atkins, and T. Althoff (2021), Towards fa-
cilitating empathic conversations in online mental health support: A reinforcement
learning approach, in Proceedings of the Web Conference 2021, pp. 194–205.

Shefi, R., and M. Teboulle (2016), On the rate of convergence of the proximal alter-
nating linearized minimization algorithm for convex problems, EURO Journal on
Computational Optimization, 4 (1), 27–46.

Shemyakin, A. (2014), Hellinger distance and non-informative priors, Bayesian Anal-
ysis, 9 (4), 923–938.

Song, X., C.-Y. Lin, B. L. Tseng, and M.-T. Sun (2005), Modeling and predicting per-
sonal information dissemination behavior, in Proceedings of the 11th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, edited by
R. Grossman, R. Bayardo, and K. Bennett, pp. 479–488, Association for Com-
puting Machinery.

Srivastava, A., and E. P. Klassen (2016), Functional and shape data analysis, vol. 1,
Springer.

Srivastava, A., and C. Sutton (2017), Autoencoding variational inference for topic
models, arXiv preprint arXiv:1703.01488.

Stocker, T. (2011), Introduction to climate modelling, Springer Science & Business
Media.

Stokes, D. C., A. Andy, S. C. Guntuku, L. H. Ungar, and R. M. Merchant (2020),
Public priorities and concerns regarding COVID-19 in an online discussion forum:
Longitudinal topic modeling, Journal of General Internal Medicine, 35 (7), 2244–
2247.

Su, Y., A. Venkat, Y. Yadav, L. B. Puglisi, and S. J. Fodeh (2021), Twitter-based
analysis reveals differential covid-19 concerns across areas with socioeconomic dis-
parities, Computers in Biology and Medicine, 132, Article 104,336.

Sun, H., W. Manchester, Z. Jiao, X. Wang, and Y. Chen (2019), Interpreting
lstm prediction on solar flare eruption with time-series clustering, arXiv preprint
arXiv:1912.12360.

214



Sun, W. W., Z. Wang, X. Lyu, H. Liu, and G. Cheng (2016), Tlasso: Non-Convex Op-
timization and Statistical Inference for Sparse Tensor Graphical Models, r package
version 1.0.1.

Sun, Z., M. Bobra, X. Wang, Y. Wang, H. Sun, T. Gombosi, Y. Chen, and A. Hero
(2021), Predicting solar flares using cnn and lstm on two solar cycles of active region
data, Earth and Space Science Open Archive, p. 32, doi:10.1002/essoar.10508256.1.

Taddy, M. (2012), On estimation and selection for topic models, in Proceedings of the
Fifteenth International Conference on Artificial Intelligence and Statistics, Pro-
ceedings of Machine Learning Research, vol. 22, edited by N. D. Lawrence and
M. Girolami, pp. 1184–1193, PMLR, La Palma, Canary Islands.

Takeishi, N., Y. Kawahara, and T. Yairi (2017), Learning koopman invariant sub-
spaces for dynamic mode decomposition, arXiv preprint arXiv:1710.04340.

Teh, Y. W., M. I. Jordan, M. J. Beal, and D. M. Blei (2006), Hierarchical Dirichlet
processes, Journal of the American Statistical Association, 101 (476), 1566–1581.

Teh, Y. W., K. Kurihara, and M. Welling (2008), Collapsed variational inference for
HDP, in Advances in Neural Information Processing Systems, vol. 20, edited by
J. Platt, D. Koller, Y. Singer, and S. Roweis, pp. 1481–1488, Curran Associates,
Inc.

Tenenbaum, J. B., V. De Silva, and J. C. Langford (2000), A global geometric frame-
work for nonlinear dimensionality reduction, Science, 290 (5500), 2319–2323.

Thomas, J. W. (2013), Numerical partial differential equations: finite difference meth-
ods, vol. 22, Springer Science & Business Media.

Tibshirani, R. (1996), Regression shrinkage and selection via the lasso, Journal of the
Royal Statistical Society: Series B (Methodological), 58 (1), 267–288.

Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker
(2003), Ensemble square root filters, Monthly weather review, 131 (7), 1485–1490.

Tödter, J., and B. Ahrens (2015), A second-order exact ensemble square root filter
for nonlinear data assimilation, Monthly Weather Review, 143 (4), 1347–1367.

Tsiligkaridis, T., and A. O. Hero (2013), Covariance estimation in high dimensions
via kronecker product expansions, IEEE Transactions on Signal Processing, 61 (21),
5347–5360.

Tsiligkaridis, T., A. O. Hero, and S. Zhou (2013), On convergence of kronecker graph-
ical lasso algorithms, IEEE transactions on signal processing, 61 (7), 1743–1755.

van der Maaten, L., and G. Hinton (2008), Visualizing data using t-SNE, Journal of
Machine Learning Research, 9, 2579–2605.

215



van Driel-Gesztelyi, L., and L. M. Green (2015), Evolution of active regions, Living
Reviews in Solar Physics, 12 (1), 1–98.

Van Loan, C. F., and N. Pitsianis (1993), Approximation with kronecker products,
in Linear algebra for large scale and real-time applications, pp. 293–314, Springer.

Varin, C., N. Reid, and D. Firth (2011), An overview of composite likelihood methods,
Statistica Sinica, pp. 5–42.

Vlachas, P. R., W. Byeon, Z. Y. Wan, T. P. Sapsis, and P. Koumoutsakos (2018),
Data-driven forecasting of high-dimensional chaotic systems with long short-term
memory networks, Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 474 (2213), 20170,844.

von Neumann, J. (2013), Mathematische grundlagen der quantenmechanik, vol. 38,
Springer-Verlag.

Wang, C., D. Blei, and D. Heckerman (2008), Continuous time dynamic topic mod-
els, in Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial
Intelligence, edited by D. McAllester and P. Myllymaki, pp. 579–586, AUAI Press,
Arlington, Virginia, USA.

Wang, H., Y. Lu, and C. Zhai (2010), Latent aspect rating analysis on review text
data: a rating regression approach, in Proceedings of the 16th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pp. 783–792.

Wang, R., K. Kashinath, M. Mustafa, A. Albert, and R. Yu (2020a), Towards physics-
informed deep learning for turbulent flow prediction, in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 1457–1466.

Wang, X., and A. McCallum (2006), Topics over time: a non-Markov continuous-time
model of topical trends, in Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, edited by T. Eliassi-Rad,
L. Ungar, M. Craven, and D. Gunopulos, pp. 424–433, Association for Computing
Machinery.

Wang, X., N. Mohanty, and A. McCallum (2005), Group and topic discovery from
relations and text, in Proceedings of the 3rd International Workshop on Link Dis-
covery, edited by J. Adibi, M. Grobelnik, D. Mladenic, and P. Pantel, pp. 28–35,
Association for Computing Machinery.

Wang, X., T. M. Hamill, J. S. Whitaker, and C. H. Bishop (2007), A comparison
of hybrid ensemble transform kalman filter–optimum interpolation and ensemble
square root filter analysis schemes, Monthly weather review, 135 (3), 1055–1076.

Wang, X., et al. (2020b), Predicting solar flares with machine learning: investigating
solar cycle dependence, The Astrophysical Journal, 895 (1), 3.

216



Wang, Y., and A. Hero (2021a), Multiway ensemble kalman filter, arXiv preprint
arXiv:2112.04322.

Wang, Y., and A. Hero (2021b), Sg-palm: a fast physically interpretable tensor graph-
ical model, International Conference on Machine Learning (ICML), arXiv preprint
arXiv:2105.12271.

Wang, Y., and S. Ma (2007), Projected Barzilai-Borwein method for large-scale non-
negative image restoration, Inverse Problems in Science and Engineering, 15 (6),
559–583.

Wang, Y., B. Jang, and A. Hero (2020c), The sylvester graphical lasso (syglasso), in
International Conference on Artificial Intelligence and Statistics, pp. 1943–1953,
PMLR.

Wang, Y., C. Hougen, B. Oselio, W. Dempsey, and A. Hero (2021), A
Geometry-Driven Longitudinal Topic Model, Harvard Data Science Review, 3 (2),
https://hdsr.mitpress.mit.edu/pub/0v7qw6jf.

Wang, Y., Z. Sun, and A. Hero (2022), Tensorgraphicalmodels: A julia toolbox
for multiway covariance models and ensemble kalman filter, Software Impacts, 13,
100,308, doi:https://doi.org/10.1016/j.simpa.2022.100308.

Wei, X., and S. Minsker (2017), Estimation of the covariance structure of heavy-tailed
distributions, in Advances in Neural Information Processing Systems, vol. 30, edited
by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Curran Associates, Inc.

Weinan, E., J. Han, and L. Zhang (2020), Integrating machine learning with physics-
based modeling, arXiv.

Wen, Z., W. Yin, D. Goldfarb, and Y. Zhang (2010), A fast algorithm for sparse
reconstruction based on shrinkage, subspace optimization, and continuation, SIAM
Journal on Scientific Computing, 32 (4), 1832–1857.

Wheatland, M., and S. Gilchrist (2013), The state of nonlinear force-free magnetic
field extrapolation, in Journal of Physics: Conference Series, vol. 440, p. 012037,
IOP Publishing.

Whitaker, J. S., and T. M. Hamill (2002), Ensemble data assimilation without per-
turbed observations, Monthly weather review, 130 (7), 1913–1924.

Winters, P. R. (1960), Forecasting sales by exponentially weighted moving averages,
Management science, 6 (3), 324–342.

Witten, D. M., and R. Tibshirani (2010), A framework for feature selection in clus-
tering, Journal of the American Statistical Association, 105 (490), 713–726.

Wood, S. N. (2017), Generalized additive models: an introduction with R, CRC Press.

217



Wright, S. J., R. D. Nowak, and M. A. Figueiredo (2009), Sparse reconstruction by
separable approximation, IEEE Transactions on signal processing, 57 (7), 2479–
2493.

Xu, Y., and W. Yin (2013), A block coordinate descent method for regularized mul-
ticonvex optimization with applications to nonnegative tensor factorization and
completion, SIAM Journal on imaging sciences, 6 (3), 1758–1789.

Xue, J., J. Chen, C. Chen, C. Zheng, S. Li, and T. Zhu (2020), Public discourse and
sentiment during the COVID-19 pandemic: Using latent Dirichlet allocation for
topic modeling on Twitter, PloS One, 15 (9), Article e0239,441.

Yang, Y., C. Chen, and F. S. Bao (2016), Aspect-based helpfulness prediction for
online product reviews, in 2016 IEEE 28th International Conference on Tools with
Artificial Intelligence, edited by N. Bourbakis, A. Esposito, A. Mali, and M. Ala-
maniotis, pp. 836–843, IEEE.

Yin, J., and H. Li (2012), Model selection and estimation in the matrix normal
graphical model, Journal of multivariate analysis, 107, 119–140.

Yuan, M., B. Van Durme, and J. L. Ying (2018), Anchoring: Interactive topic model-
ing and alignment across languages, in Advances in Neural Information Processing
Systems, vol. 31, edited by S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, pp. 8653–8663, Curran Associates, Inc.

Zhang, C.-H., et al. (2010), Nearly unbiased variable selection under minimax concave
penalty, The Annals of statistics, 38 (2), 894–942.

Zhang, H. (2020), New analysis of linear convergence of gradient-type methods via
unifying error bound conditions, Mathematical Programming, 180 (1), 371–416.

Zhang, L., J. Han, H. Wang, W. Saidi, R. Car, and W. E (2018), End-to-end symmetry
preserving inter-atomic potential energy model for finite and extended systems, in
Advances in Neural Information Processing Systems, vol. 31, edited by S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Curran
Associates, Inc.

Zhang, X. L., H. Begleiter, B. Porjesz, W. Wang, and A. Litke (1995), Event related
potentials during object recognition tasks, Brain Research Bulletin, 38 (6), 531–538.

Zhao, P., and B. Yu (2006), On model selection consistency of lasso, Journal of
Machine learning research, 7 (Nov), 2541–2563.

Zhao, W. X., J. Jiang, J. Weng, J. He, E.-P. Lim, H. Yan, and X. Li (2011), Compar-
ing Twitter and traditional media using topic models, in Advances in Information
Retrieval, edited by P. Clough, C. Foley, C. Gurrin, G. J. F. Jones, W. Kraaij,
H. Lee, and V. Mudoch, pp. 338–349, Springer Berlin Heidelberg, Berlin, Heidel-
berg.

218



Zhou, S. (2014), Gemini: Graph estimation with matrix variate normal instances,
The Annals of Statistics, 42 (2), 532–562.
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