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Preface

So in the end, when one is doing philosophy, one gets to the point where one
would like just to emit an inarticulate sound. — But such a sound is an ex-
pression only in a particular language-game, which now has to be described.

–Wittgenstein, Philosophical Investigations 2009 [1953], §261

Philosophy provides a kind of therapy. For a long time, I found this picture of philos-
ophy rather silly. Recently it has taken on a quite literal meaning for me. As the reader
will soon discover, much of this thesis engages problems that do not find clear articula-
tion in existing literature. These are problems that have arisen from my own pedagogical
engagement with science and mathematics, going back to at least 2011. They are issues
that have troubled me. Sometimes, it seems, we fashion our own fly bottles.

Owing to these idiosyncratic origins, much of the internal dialectic of this thesis con-
sists in evaluating possible therapeutic responses to these problems. In many cases, I
found no one in the literature defending the kinds of responses that seem prima facie vi-
able to me. I was forced to concoct these positions out of whole cloth, motivating them
wherever possible with remarks made by actual thinkers. Part of this is dissatisfying: it
may appear as though I am tilting at windmills. Much of the thesis consists, as it were,
in playing toy soldiers—something I’m afraid that, intellectually, I never quite grew out
of. Nonetheless, it is the only way I could manage to alleviate the kinds of disturbances
that have motivated this project. Where an interlocutor cannot be found, one must be
invented in the imagination.

I doubt that my position will convince or appeal to anyone who does not already share
a preponderance of my intellectual dispositions. This thesis is written primarily for them,
in the hopes that it may alleviate the disturbances of a like-minded individual. To me, it
has become evermore plausible that this is the most that philosophy achieves: it provides
a particular kind of therapy for a particular kind of temperament. Different temperaments
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require different therapies. For those who find my position or predilections radically mis-
guided, all I can hope is that they might be convinced of a conditional, namely that if they
were disturbed in the particular ways that I am, then they would be inclined toward my
position. At the very least, I report the remedies that I have found particularly therapeu-
tic for the problems that I have found particularly disturbing. Like the pharmaceutical
industry, I hope to find better remedies in the future.

Contemporary philosophy of science—especially of physics—has become so infected
with metaphysics that it inherits the hopelessness of that task. For the empiricist-minded,
the standard interpretive questions of philosophy of physics outstrip what we will ever
have empirical access to decide. Philosophers of physics who pursue such questions are
left with the methodology of metaphysics, hoping that differences in theoretical virtues
can be rationally compelling. One goal of this thesis is to highlight a vast terrain of ne-
glected questions about the cognitive significance of scientific andmathematical problem-
solving. These questions evade metaphysical-infection, happily allowing even an empiri-
cist to have a positive position. Metaphysics is at once the most powerful and most sterile
of philosphical subdisciplines. It can summon anything into existence and thereby sum-
mons nothing.

Despite my focus on problem-solving, the framework of my arguments will still seem
overly theoretical for some philosophers—particularly those sympathetic to pragmatism.
Such philosophers might be skeptical of many emphases or distinctions I draw, including
privileging non-practical over practical dimensions of the epistemic, knowledge-that over
knowledge-how, and non-agentive aspects of understanding (especially my focus on com-
puter states rather than actual humans). At a certain level of idealization and abstraction,
I take these distinctions to be perfectly intelligible. Indeed, I take them to be parts of our
intellectual practices, in both science and philosophy. We are clearly able to make these
distinctions and have them be meaningful. I take it that these pragmatist philosophers are
skeptical that such distinctions or emphases hold up at a more ‘foundational’ level. Such
worries seem similar to the complaint thatQuine leverages against the analytic–synthetic
distinction. To me, it has always seemed that even if Quine is right that there is not re-
ally any analytic–synthetic distinction fundamentally, it is still an extremely useful and
fruitful distinction within various idealized settings.

I find a rather frustrating hypocrisy in many philosophers’ criticism of ideal theory in
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philosophy. These same critics are often extremely comfortable with idealizations made
in the sciences. They extol these idealizations as paradigms of human rationality, often
using them to motivate various grades of antirealism or to deflate more robust realisms.
Yet, insofar as idealizations and toy models work well for the sciences, we have reason
to think they will often work well in philosophy. It seems exceedingly two-faced to extol
a particular problem-solving strategy when scientists do it and then scorn philosophers
who follow suit. Hence, I proudly proclaim that I am engaged in a kind of ideal theory
throughout this dissertation. One could try to de-idealize my account by adopting various
non-ideal, foundational stances. These include (i) upholding a view-from-nowhere and
appealing to categorical properties of agential rationality, perhaps privileging individuals
or (ii) embodying my claims in actual agents, such as humans, perhaps making practices
and communities foundational. I don’t see any need to take a stand on these downstream
issues here. Indeed, I think it is more befitting of the pragmatist-minded to not get overly
wound up with how such foundational questions might shake out, at least in contexts
where it seems unlikely to make much of a difference (which I believe is the case for the
central questions in this dissertation). It is a strength of logic and computability theory
that they abstract away from human agents, not a weakness.

Philosophers—across ideological spectra—are obsessed with trying to explain things.
It is exceedingly common to frame the aim of a philosophical project as providing an
explanation for some phenomena. I find such talk misleading: it presupposes that there
is such a thing as the explanation, waiting out there in the world to be discovered. I do
not take myself to be explaining anything here. I am describing aspects of our practices.
By raising certain aspects to salience, I hope to alleviate some feelings of puzzlement.
As Wittgenstein notes in an anthropological context, all we really need to do is describe
carefully what is in front of us, and then the satisfaction that we thought could only come
from an explanation comes of itself (1993 [1931], p. 120).

I have come to see that philosophy is an inherently normative enterprise. When
philosophers say that they have given an explanation, they have given a description that
they think ought to scratch a certain itch (either in themselves or others). Explanation is
normatively-loaded description: it expresses an attitude of being for being satisfied by a
particular answer. In general, when I defend a positive position, I express endorsement
of a set of norms on what ought to satisfy you, dear reader. By rejecting some aspect of
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my positive position, you express endorsement of a different set of norms (at least in the
interesting cases where we don’t simply disagree about descriptive matters). Philosophi-
cal disagreement consists by and large in negotiating the norms governing what ought to
satisfy us. For those who remain wedded to ‘explanation’ talk, such norms govern what
counts as a philosophical explanation. In trying to make sense of the roles that various
concepts play in human life, different philosophers disagree about the correct order or
form of such explanations.

At the end of the day, every therapy has side-effects, along with ailments it just can’t
cure. We have to pick our poison, as it were, and different temperaments will choose
differently. This thesis expresses the therapy that I have found so far to work for me.
Along the way, it mentions a variety of other therapies that different readers might prefer,
based on the nature of their own afflictions. Admittedly, I don’t paint these therapies in
a maximally welcoming light; they are not what I would recommend. I think there are
good reasons against them, but the weight of my reasons might not seem reasonable to
you. At a certain point, the reasons give out, and we are left with our temperaments.

And it is true, I wouldn’t wish my temperament upon anyone. For that is to wish upon
them an affliction. I’d rather them not worry about such matters; it would be better to go
out and improve society. This is a work for the already-puzzled, who would like to be put
back into unpuzzlement. If you are not already puzzled, I have a friendly suggestion: read
no further. It is unlikely that you will find answers that satisfy you, at least not anytime
soon. Barring the thrill of knowledge-seeking, it may be better to have never wondered.

One could perhaps try to tell an error theory as to why I ought not be troubled. But
I will take my disturbances for granted. This is the method of intuitions. It is the germ
from which philosophy sprouts, although not the soil that nourishes it. That soil is our
practices. They are, asWittgenstein notes, philosophy’s rawmaterials (2009 [1953], §254).

A remark on content rather than form: I went into this project suspecting that there
is something special about symmetry arguments in physics and chemistry. I came out
the other end believing that symmetry arguments are a special case of what goes on in
reformulations generally. The significant kind of reformulation changes what plans are
available for problem-solving. Contrary to my expectations, the most important symme-
try seems to be that which obtains between trivial notational variants. Trivial notational
variants are related by a symmetry that preserves problem-solving plans. The important
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reformulations are the ones that break this symmetry. Symmetry arguments in physics
and chemistry are epistemically significant because they provide an alternative path for
problem-solving.

A remark on an aesthetic deficiency: Due to the practical necessity of publishing ar-
ticles in academic philosophy, the chapters by-and-large can be read independently. In
order to keep them relatively self-contained, I repeat some key definitions and aspects
of my positive position, especially the notions of epistemic dependence relations (EDRs),
intellectual significance, and conceptualism. I hope the reader will excuse the slight ad-
ditional length this repetition has caused. A more elegant alternative might have been
more burdensome to the reader.

On Reading More Widely

To a large extent, philosophy is about finding your tribe. We are searching for intellectual
forebears and contemporaries who give voice to our own intuitions. Identifying these
tribespeople can be much harder then it sounds, especially when your intuitions mesh
with traditions that have been relatively suppressed in contemporary circles.

What has been particularly unsettling for me is the number of intellectual near-misses
in my life. At Pittsburgh, I was not aware of the relevance of Brandom’s work at all. At
Cambridge, I did not encounter Huw Price. At Michigan, I did not read any Gibbard until
more than five years in. While visiting NYU and USC in the Fall of 2019, I had yet to realize
my deep sympathies for expressivism. Accordingly, I had no idea that Hartry Field was
working on related issues; nor did I appreciate work by Horwich on truth and meaning;
nor did I have any contact with Mark Schroeder. As such, much of the last year and a
half has felt like playing a game of intellectual catch-up. What a world it would be if we
had better ‘relevance-detectors,’ matching our intellectual temperaments to recommended
reading. Of course, I bear responsibility for not doing due diligence. A life-long lesson if
there ever was one: intellectual allies can be found in unsuspecting places!

Then again, perhaps one has to come close enough to these ideas on their own before
they are sufficiently receptive to them. I recall sitting through a talk on expressivism
just two-months into graduate school (the only such talk I’ve seen since, I’m afraid!).
Although I thought parts of it might be relevant for addressing questions in philosophy
of math, broader implications of the view did not occur to me. In the Fall of 2020, I even
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started reading a book by Price, only to set it down thinking the position too extreme in
various ways. Yet at the same juncture, I was immediately gripped by norm-expressivism.
At different stages, we seem receptive only to particular modes of presentation.

Inductively, my intellectual near-misses make me seriously concerned that the same
sort of thing is happening right now: there presumably remain whole swaths of philoso-
phy deeply connected to my own work and pattern of thought that I am simply unaware
of. Given that I have been at this now in some capacity for 14 years, it is a rather humbling
thought. I wonder how many other disciplines face a similar challenge of perpetual for-
getfulness. Perhaps it is restricted to those disciplines where progress is not linear, where
fads come and go. These experiences make me extremely grateful for the ideas that I did
encounter at the right place and time, especially constructive empiricism, which I have
held some version of since at least 2011.

My own methodological strategy is a cautionary tale. For many years, I myopically
thought that philosophy of science held all the answers to the questions that puzzled me.
I thought that all I had to do was read some cottage literatures on related issues while
paying close attention to science. Before that, there was a period where I mainly just read
science, thinking that philosophy could wait and wouldn’t add much anyways. It is only
recently that I have realized that what primarily puzzles me are aspects of normativity in
science, and both philosophers of science and scientists are by-and-large wary of norma-
tivity. For instance, I have gotten much more out of reading Gibbard (2012) on meaning
and normativity than papers in philosophy of science on theoretical equivalence. This is
despite the fact that prima facie, the existing literature on theoretical equivalence would
seem to be much more relevant for my project.

Recently (about a month before defending), I learned that Sosa (2015) defends many
distinctions that I rely on in my own arguments. These include distinguishing between (i)
non-practical vs. practical aspects of epistemic significance and (ii) constitutive vs. non-
constitutive aims. Like me, Sosa characterizes the success conditions for an activity in
terms of that activity’s constitutive aims. This is yet another instance where reading out-
side philosophy of science would have helped resolve my philosophical puzzlement much
sooner. Of course, there is something gratifying—and evidentially reassuring—about com-
ing to these distinctions on your own, in light of independent examples and motivations.

While an undergraduate, I studied relatively few historical philosophers (matters have
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not improved much since!). Of those, Wittgenstein was the only one I read who I did not
feel was systematically pulling the wool over my eyes. His disturbances struck me as hon-
est grapplings with philosophical problems. His was the only philosophical methodology
that I felt comfortable with. Yet, it was completely opaque to me who in the contem-
porary tradition had carried on Wittgenstein’s methodology and background philosoph-
ical commitments. It is only recently that I have discovered one family of descendents
in the Wittgensteinian tradition. Coming to understand how these family members fit
within empiricism, pragmatism, and expressivism has been an incredibly illuminating
project that will be ongoing for some time. Given the sense of having—yet again—merely
scratched the surface of the philosophical terrain lying underneath, I cannot help but fret
that much of what I say here will be hopelessly naïve. May it be steps in the ultimate di-
rection that I would endorse once wiser from having studied more forebears in this grand
tradition.

If I had to highlight just one misleading aspect of contemporary philosophy of science,
it would be the unexamined dogma that we must look for the ontic truth-makers standing
behind scientists’ declarative sentences. Seeing my way out of this dogma was perhaps
the most therapeutic intellectual development that I had in graduate school. Declarative
sentences can perform more functional roles than representing reality. What a radical
idea! This is a lesson that, in hindsight, I learned in 2013 from Tom Rickett’s class on
Wittgenstein, and then summarily forgot until 2020 (when I returned to the Philosophi-

cal Investigations to lift my pandemic-ridden spirits). My remembrance came alongside
studying expressivism, which has cured me of many of my troubles.

Synopsis

By and large, philosophy of science has focused on competing theories andmethodologies—
cases where scientists are forced to choose between rival ontologies or inconsistent ways
of understanding theworld. Similarly, philosophy of mathematics has focused extensively
on rival foundations for mathematics. Here, I show that compatible reformulations are no
less important than competing theories or interpretations. Even if scientists were to reach
a “final theory,” they would still have multiple ways of representing and understanding
the world. Likewise, it is exceedingly common in mathematics to have multiple ways of
proving the same theorem or solving the same problem, often arising from quite disparate
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parts of mathematics. In both disciplines, it is essential to understand how reformulations
contribute to intellectual progress.²

Chapter 1 begins by introducing questions about the nature and value of compatible
formulations. Many reformulations seem to constitute a kind of intellectual advance. But
how, and under what conditions? To answer these questions, I canvas a continuum of
philosophical accounts of reformulation. These fall into four big ‘isms’: instrumentalism,
conceptualism, explanationism, and fundamentalism.³ The most deflationary position—
instrumentalism—holds that some reformulations are merely instrumentally or practi-
cally valuable, in virtue of aiding problem-solving. At the other extreme, fundamental-
ism holds that some reformulations are metaphysically valuable in virtue of providing
a more fundamental language for describing reality. Both conceptualism and explana-
tionism provide middle ground positions between these. Explanationism contends that a
reformulation is significant when it provides a better explanation. Finally, my preferred
position—conceptualism—claims that a reformulation is significant when it provides an
epistemically distinct plan for problem-solving. In virtue of how they structure problem-
solving, some plans are epistemically better than others.

Section 1.5 introduces a variety of examples of reformulations from science and math-
ematics. Admittedly, I focus on cases of applied mathematics in science. This is largely for
convenience: mutatis mutandis, it should be clear how my considerations generalize to
many examples in pure mathematics. The contingent fact that these models are approxi-
mately instantiated in physical reality does not play a philosophically significant role in
the dialectics I consider.

Chapter 2 (“Between Instrumentalism and Fundamentalism about Reformulation”) de-
fends three desiderata for a satisfying account of reformulations. Any such account should
(i) distinguish trivial from significant reformulations in a way that (ii) applies to the lo-
cal context of solving particular problems while (iii) using criteria that are epistemically
accessible. I argue that instrumentalism fails to meet the first two desiderata, while fun-
damentalism fails to meet the third. I then show how conceptualism satisfies all three by
distinguishing trivial and significant reformulations on the basis of epistemic structure.

²Hunt (2016) introduces a less general idea of ‘compatible explanations’ in applied mathematics.
³Hunt (2021a) explores part of this dialectical landscape in the context of an important class of symmetry

arguments in physics and chemistry stemming from the Wigner–Eckart theorem for calculating matrix
elements of quantum-mechanical operators.
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Significant reformulations provide epistemically distinct problem-solving plans: they dif-
fer in what agents need to know to solve problems. In contrast, trivial reformulations
differ only in notation, providing equivalent problem-solving plans. I briefly introduce
explanationism as a rival middle ground position, noting some of its inherent disadvan-
tages compared to conceptualism.

Chapter 3 (“Understanding and Equivalent Reformulations”) provides a more detailed
argument against explanationism by using cases of theoretical equivalence in physics,
such as the Lagrangian and Hamiltonian formulations of classical mechanics. In these
cases, two compatible formulations describe exactly the same states of affairs. Since expla-
nations themselves ultimately refer to states of affairs, equivalent reformulations provide
the same explanations. Alongside theoretically equivalent reformulations, I also consider
diagrammatic reformulations, such as the use of Feynman diagrams in particle physics.
These provide a further counterexample to explanationism.⁴

In Chapter 4 (“Reformulating through Symmetry”), I show that explanationism also
fails to account for the intellectual significance of a common symmetry-based reformu-
lation in quantum chemistry and solid-state physics. I argue that explanationism can
accommodate the value of this reformulation only if it deploys substantial metaphysical
commitments that my position avoids. At the same time, I provide a detailed analysis
of how symmetry arguments improve scientific understanding. They do this principally
through two mechanisms: modularization and unification (introduced in Section 1.4).
Symmetry arguments modularize a problem into independently-treatable subproblems.
Additionally, they unify different problems into symmetry-related classes. In both cases,
this clarifies what we need to know to understand properties of the system of interest,
thereby deepening our understanding.⁵ The chapter closes with an expressivist account
of what it means for one formulation to provide better understanding than another. When
we judge that one formulation provides better understanding, we express an attitude of
being for intellectually preferring that formulation.

Chapter 5 (“Reformulation as a Constitutive Aim of Science”) further articulates the
epistemic value of reformulating while providing a more detailed rebuttal of instrumen-
talism. I argue that science and mathematics constitutively aim at solving all possible

⁴Much of Chapter 3 appears in Hunt (2021b), excluding Section 3.7’s case study on Feynman diagrams.
⁵These parts of Chapter 4 and Section 3.2 appear in Hunt (forthcoming).
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problems within their respective domains. Ideally, a complete scientific theory would be
able to solve all possible empirical problems. I refer to this constitutive aim as planning

adequacy: it defines a minimal success criterion for science—and mathematics—in the fu-
turistic ideal of limitless inquiry. Planning adequacy requires that agents can plan for any
possible problem-solving context. In order to accomplish this aim, it is necessary to clarify
whatwe need to know to solve problems. Clarifying epistemic structure requires reformu-
lating. In this way, reformulating becomes a constitutive aim of science. Reformulations
are not merely instrumentally valuable for this aim: they constitute its realization. Along
the way, I distinguish between practical (or pragmatic) aspects of problem-solving and
non-practical, epistemic aspects. These latter aspects are what I call intellectual.

Finally, Chapter 6 (“Making it Manifest: The Intellectual Value of Good Variables”)
uses a particularly compelling objection from fundamentalism as an opportunity to fur-
ther develop conceptualism. Numerous examples from physics suggest that some refor-
mulations are significant because they make fundamental properties manifest or perspic-
uous. Across the sciences, good variable choices lead to insights that bad variable choices
obscure. Fundamentalism suggests that the value of making such properties manifest is
that we thereby approach a more fundamental language for describing reality. This argu-
ment places pressure on a central desideratum from Chapter 2, namely a desire to avoid
substantial metaphysical commitments in accounting for the value of reformulations.

I first provide an account of what it means to make a property manifest. In a given
epistemic circumstance, a property is manifest provided that an agent in that circumstance
ought to infer that the property obtains. This account naturally leads to characterization of
what it means for an expression to “wear a property on the sleeves.” An expression wears
a property on the sleeves when a suitably informed agent ought to infer that property
solely on the basis of other properties that the expression makes manifest.

When we make a property manifest, we simultaneously rule out more epistemically
possible solutions than otherwise. This has the effect of structuring our search space for
a problem. Insofar as we aim to solve problems, it is epistemically valuable to rule out as
many epistemically possible solutions as possible (since doing so constitutes approaching
a solution). We thereby arrive at a non-metaphysical account of the value of making
properties manifest. Other things equal, it is intellectually valuable to make a property
manifest because doing so rules out more epistemically possible solutions.
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A fundamentalist might nevertheless hanker after a vindication of scientists’ ordi-
nary claims about one language being more fundamental than another. To satisfy this
craving while respecting my own philosophical scruples, I develop a non-metaphysical,
expressivist account of fundamentality. To judge that one formulation is more fundamen-
tal than another is to express an attitude of being for privileging the former formulation.
Throughout the chapter, I illustrate and defend various facets of my positive position using
numerous examples arising from natural language, graph theory, normal forms in logic,
manifest Lorentz covariance, Cartesian vs. polar coordinates, gauge choices in quantum
field theory, the hidden hyperspherical symmetry of the hydrogen atom, and hidden sym-
metries in N = 4 super Yang–Mills theory.

Unlike instrumentalism, conceptualism makes sense of the intellectual significance
of reformulations. Unlike explanationism and fundamentalism, conceptualism does so
without embroiling us in controversial metaphysics. The account that emerges is one
that places problem-solving at the heart of rational inquiry, emphasizing the functional
roles played by scientific and mathematical concepts.

xix



Contents
Dedication ii

Acknowledgments iii

Preface ix

List of Figures xxiii

Abstract xxiv

Chapter 1 Introduction 1
1.1 A Puzzle about Compatible Reformulations . . . . . . . . . . . . . . . . . . 2
1.2 Intellectual Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 A Continuum of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Characteristic Differences in Epistemic Structure . . . . . . . . . . . . . . . 9
1.5 Reformulations in Science and Mathematics . . . . . . . . . . . . . . . . . 13

Chapter 2 Between Instrumentalism and Fundamentalism about Reformulations 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Two Simple Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Three Desiderata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Problems facing Instrumentalism . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Convenience-instrumentalism . . . . . . . . . . . . . . . . . . . . . 31
2.5 Problems facing Fundamentalism . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Conceptualism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.1 Epistemic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.2 Satisfying the three desiderata . . . . . . . . . . . . . . . . . . . . . 39
2.6.3 Sameness of epistemic structure . . . . . . . . . . . . . . . . . . . . 41

2.7 Problems with Explanationism . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xx

Josh
Typewriter
Contents

Text Box



Chapter 3 Understanding and Equivalent Reformulations 52
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Explanationism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 The Challenge from Explanationism . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Intellectual Differences without Explanatory Differences . . . . . . . . . . 60
3.5 A Conceptualist Account of Understanding . . . . . . . . . . . . . . . . . . 64
3.6 An Objection against Explanatory Equivalence . . . . . . . . . . . . . . . . 67
3.7 An Extended Illustration: Feynman Diagrams . . . . . . . . . . . . . . . . 68

3.7.1 Generating functionals as a Taylor expansion . . . . . . . . . . . . 71
3.7.2 Connected vs. disconnected terms and diagrams . . . . . . . . . . 72
3.7.3 Feynman diagrams and Feynman rules . . . . . . . . . . . . . . . . 74
3.7.4 Differences in understanding . . . . . . . . . . . . . . . . . . . . . 77

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 4 Reformulating through Symmetry 82
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 A Case Study from Crystal Field Theory . . . . . . . . . . . . . . . . . . . . 84

4.2.1 Three approaches to crystal field theory . . . . . . . . . . . . . . . 86
4.2.2 A problem for explanationism . . . . . . . . . . . . . . . . . . . . . 89
4.2.3 Illustrating conceptualism . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Is Conceptualism Redundant? . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.1 Skow’s account of reasons-why . . . . . . . . . . . . . . . . . . . . 95
4.3.2 Woodward and Hitchcock’s manipulationism . . . . . . . . . . . . 97

4.4 Explanatory Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.1 Strevens’ kairetic account . . . . . . . . . . . . . . . . . . . . . . . 100
4.4.2 Lange’s distinctively mathematical explanations . . . . . . . . . . . 102

4.5 Expressivism about Comparative Understanding . . . . . . . . . . . . . . . 104
4.5.1 A first go at expressivism about understanding . . . . . . . . . . . 105
4.5.2 Intellectual preference . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5.3 Norm-expressivism about better understanding . . . . . . . . . . . 108
4.5.4 Expressivism is not subjectivism . . . . . . . . . . . . . . . . . . . 111

4.6 Norms on Better Understanding . . . . . . . . . . . . . . . . . . . . . . . . 113
4.6.1 Norms from explanation . . . . . . . . . . . . . . . . . . . . . . . . 113
4.6.2 Norms from number of EDRs . . . . . . . . . . . . . . . . . . . . . 115
4.6.3 Norms on kinds of EDRs . . . . . . . . . . . . . . . . . . . . . . . . 118

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.1 The elementary approach . . . . . . . . . . . . . . . . . . . . . . . 120
A.2 The non-group-theoretic approach . . . . . . . . . . . . . . . . . . 121
A.3 The group-theoretic approach . . . . . . . . . . . . . . . . . . . . . 122

xxi



Chapter 5 Reformulation as a Constitutive Aim of Science 127
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2 Constitutive Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3 Scientific Planning as Problem-Solving . . . . . . . . . . . . . . . . . . . . 133
5.4 Ideal vs. Non-ideal Constitutive Aims . . . . . . . . . . . . . . . . . . . . . 134
5.5 Aiming for Epistemic Suitability . . . . . . . . . . . . . . . . . . . . . . . . 137
5.6 Is Epistemic Suitability a Pragmatic Aim? . . . . . . . . . . . . . . . . . . . 141
5.7 A Need for Speed? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.8 Why Talk about Aims at All? . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Chapter 6 Making it Manifest: The Intellectual Value of Good Variables 153
6.1 Hidden Symmetries and Manifest Properties . . . . . . . . . . . . . . . . . 153
6.2 Manifest vs. Hidden Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2.1 Simple examples, on the sleeves . . . . . . . . . . . . . . . . . . . . 159
6.3 Manifest Meanings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.4 The Value of Making it Manifest . . . . . . . . . . . . . . . . . . . . . . . . 166

6.4.1 Ruling out epistemically possible solutions . . . . . . . . . . . . . . 168
6.4.2 Less surprising, more intelligible . . . . . . . . . . . . . . . . . . . 171
6.4.3 Degrees of manifestness . . . . . . . . . . . . . . . . . . . . . . . . 172
6.4.4 Problem-solving adequacy and fruitfulness . . . . . . . . . . . . . 173

6.5 Coordinate Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.6 Preferences, Fundamentality, and Privileging . . . . . . . . . . . . . . . . . 180
6.7 Gauge Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.8 Manifest vs. Hidden Symmetries of Hydrogen . . . . . . . . . . . . . . . . 189
6.9 Hidden Symmetries in N = 4 super Yang–Mills Theory . . . . . . . . . . . 195
6.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

References 205

xxii



List of Figures

1 Two position space Feynman diagrams . . . . . . . . . . . . . . . . . . . . 75
2 Two momentum space Feynman diagrams . . . . . . . . . . . . . . . . . . 76

3 Octahedral coordination complexes . . . . . . . . . . . . . . . . . . . . . . 85
4 Splitting of valence orbitals in an octahedral crystal field . . . . . . . . . . 86
5 Schematic step-by-step flowcharts for the three approaches . . . . . . . . . 89
6 Some symmetry operations of an octahedron . . . . . . . . . . . . . . . . . 122

7 Cartesian vs. Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 176

xxiii

Text Box
List of Figures

Text Box



Abstract

Science and mathematics continually change in their tools, methods, and concepts. Many
of these changes are not just modifications but progress—steps to be admired. But what
constitutes progress? This dissertation addresses one central source of intellectual ad-
vancement in both disciplines: reformulating a problem-solving plan into a new, logi-
cally compatible one. For short, I call these cases of compatible problem-solving plans
“reformulations.”

Two aspects of reformulations are puzzling. First, reformulating is often unnecessary.
Given that we could already solve a problem using an older formulation, what do we gain
by reformulating? Second, some reformulations are genuinely trivial or insignificant.
Merely replacing one symbol with another does not lead to intellectual progress. What
distinguishes significant reformulations from trivial ones?

According to what I call conceptualism (or conceptual empiricism), reformulations are
intellectually significant when they provide a different plan for solving problems. Signif-
icant reformulations provide inferentially different routes to the same solution. In con-
trast, trivial reformulations provide exactly the same problem-solving plans, and hence
they do not change our understanding. This answers the second question about what dis-
tinguishes trivial from significant reformulations. However, the first question remains:
what makes a new way of solving an old problem valuable?

Here, a bevy of practical considerations come to mind: one formulation might be
faster, less complicated, or use more familiar concepts. According to instrumentalism,
these practical benefits are all there is to reformulating. Some reformulations are simply
more instrumentally valuable for meeting the aims of science than others. At another
extreme, fundamentalism contends that a reformulation is valuable when it provides a
more fundamental description of reality. According to this view, some reformulations
directly contribute to the metaphysical aim of carving reality at its joints.
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Conceptualism develops a middle ground between instrumentalism and fundamen-
talism, preserving their benefits without their costs. I argue that the epistemic value of
significant reformulations does not reduce to either practical or metaphysical value. Re-
formulations are valuable because they are a constitutive part of problem-solving. Both
science and mathematics aim at solving all possible problems within their respective do-
mains. Meeting this aim requires being able to plan for any possible problem-solving
context, and this requires reformulating. By reformulating, we clarify what we need to
know to solve problems.

Still, one might wonder whether the value of reformulations requires underlying dif-
ferences in explanatory power. According to explanationism, a reformulation is valu-
able only when it provides a better explanation. Explanationism stands as a rival middle
ground position to my own. However, it faces numerous counterexamples. In many
cases, two reformulations provide the same explanation while nonetheless providing dif-
ferent ways of understanding a phenomenon. Hence, reformulating can be valuable even
when neither formulation is more explanatory.

Methodologically, I draw on a variety of case studies to support my account of refor-
mulation. These range from classical mechanics to quantum chemistry, along with exam-
ples frommathematics. Symmetry arguments provide a paradigmatic example: the math-
ematics of symmetry groups radically recasts quantum mechanics and quantum chem-
istry. Nevertheless, elementary approaches exist that eschew this additional mathemat-
ical apparatus, solving problems in a more tedious but less mathematically-demanding
manner. Further examples include reformulations of quantum field theory, Arabic vs.
Roman numerals, and Fermat’s little theorem in number theory. In each case, my ac-
count identifies how reformulations change and improve our understanding of science
and mathematics.

xxv



Chapter 1:

Introduction

Throughout science, mathematics, and engineering, we often have multiple, compatible
methods for solving problems. For each theory that scientists develop, they typically
develop multiple ways of expressing or formulating its physical content. Often, the mo-
tivations for reformulating are practical: scientists wish to solve problems more quickly,
simply, or elegantly. Sometimes, the aim is explicitly to clarify conceptual foundations,
often by applying new mathematical techniques. Either way, the results of reformulating
are a significant aspect of scientific progress. Reformulations often change how we un-
derstand the world, spawning new areas of research that probe the properties and scope
of the reformulated theory. Similar remarks apply to reformulations in mathematics.

When it comes to scientific reformulations, physics supplies a wellspring of examples.
Within classical mechanics, there are no less than five ways of formulating a large variety
of problems. These include the Newtonian, Hamiltonian, Lagrangian, Hamilton–Jacobi,
and Routhian formulations of classical mechanics (Abraham and Marsden 1978; Arnold
1989). They differ in their mathematical strategies for solving the equations of motion
for classical systems, and—within their shared domain of applicability—they describe the
same physical states of affairs. Similarly, nonrelativistic quantum mechanics can be for-
mulated in a variety of distinct mathematical garb, including wave mechanics, matrix
mechanics, density operators, and path integrals (Styer et al. 2002). Other examples in-
clude the fiber bundle formulation of classical and quantum field theories (Healey 2007),
the use of topology to characterize broken symmetry in condensedmatter physics (Sethna
2006, Ch. 9), applications of de Rham cohomology in general relativity (Torre 1997), and
various formulations of thermodynamics in terms of different ensembles (including the
Helmholtz, Gibbs, and grand free energies).
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In each of these cases, the various formulations are compatible: we are not forced to
choose between them. Rather, we can accept and use them all. They do not disagree
about the way the world is. They do not posit competing ontologies, nor offer competing
descriptions or predictions. Instead, they provide logically consistent problem-solving
procedures for a shared class of problems. For short, I will refer to such compatible for-
mulations as reformulations.

Clearly, reformulations like these provide different ways of looking at their shared
subject matter. I take it as a datum of intellectual life that some of these reformulations
constitute progress. Nevertheless, it is difficult to characterize how reformulations lead
to differences in understanding. This dissertation provides a positive account of how
reformulations change and improve our understanding. In this chapter, Section 1.1 char-
acterizes a philosophical puzzle that reformulations inspire. Next, Section 1.3 introduces a
variety of philosophical responses, on a continuum from maximally deflationary to max-
imally metaphysically-committal. The account I develop occupies a middle ground be-
tween these extremes. It focuses on how reformulations improve our epistemic position
with regards to solving problems, discussed in Section 1.4. Finally, Section 1.5 provides
a variety of examples from science and mathematics that motivate and illustrate my ac-
count. Later chapters simultaneously elaboratemy positionwhile defending it from rivals.

1.1 A Puzzle about Compatible Reformulations

To date, much philosophy of science and metaphysics has focused on competing theo-
ries or formulations. In the case of competing theories or formulations, two approaches
to the same problem are incompatible: at most one could be true. Typically, compet-
ing theories compete because they posit incompatible ontologies. The chief philosophical
task becomes one of weighing the reasons for and against these incompatible ontologies.
Bohmian vs. Everettian interpretations of quantummechanics provide a paradigmatic ex-
ample of this kind of philosophical problem. Since competing formulations posit rival on-
tologies, they straightforwardly lead to differentways of understanding theworld. Thanks
to these ontological differences, competing formulations do not generate the philosophi-
cal puzzle that interests me here.

In contrast, reformulations arise whenever we have two or more compatible ap-
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proaches to the same theory or set of problems. The compatibility of the approaches
means that we are not forced to choose between them. Instead, we can endorse them
all, solving problems with whichever formulation we prefer. Unlike competing theories
or methodologies, reformulations disagree about neither the way the world is nor the
nature of mathematical facts.

This lack of ontological disagreement leads to a host of novel philosophical questions:
what do we gain by recasting a theory or problem-solving procedure in new terms? How
is it that reformulating changes our understanding? Why do we often care about or value
reformulations? Should we care about them in the way we do? These kinds of philosoph-
ical questions remain underexplored in epistemology, metaphysics, and the philosophy
of science. In the first instance, they are not about ontology or the nature of reality. In-
stead, they concern how scientific and mathematical agents make intellectual progress by
reformulating their problem-solving procedures.

Reformulations are puzzling for at least the following reason. For a given problem,
no particular formulation is necessary for providing a solution. Any compatible formula-
tion would suffice. In this way, each compatible formulation seems to render the others
dispensable, at least for the purposes of problem-solving. Nevertheless, many reformula-
tions seem to constitute a particular kind of intellectual progress. They characteristically
deepen our understanding.

Such changes in understanding display at least three interrelated features: i) they are
objective, ii) they can be meaningfully distinguished from practical (or ‘pragmatic’) con-
cerns, and iii) they constitute changes to our epistemic position. Such changes are what I
will call intellectually significant: they concern objective, non-practical, epistemic dimen-
sions of understanding.¹ The primary philosophical challenge of this dissertation is to
characterize and illuminate how some reformulations generate intellectual differences, i.e.
objective, non-practical, and epistemic differences in understanding. Section 2.3 proposes
three desiderata that any satisfying account of reformulations should satisfy. Having iso-
lated some characteristic intellectual differences, we can then consider how some of them
constitute intellectual improvements: they not only change our understanding but im-
prove it.

Generally, I will not provide an argument for interpreting any particular example as

¹For a similar use of ‘intellectual,’ see Sosa (2015, p. 45).
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being a case of compatible reformulations. In all the examples I consider, it will be prima

facie plausible that they are compatible reformulations rather than competing theories.
Indeed, cases of mathematical and diagrammatic reformulations are generally best inter-
preted as being compatible. In mathematical reformulations, we change the mathematics
that we apply and this has no implications for physical ontology. Moreover, I take it
that different parts of mathematics do not compete with each other (Hunt 2016, p. 462).
In diagrammatic reformulations, we similarly change the representational tools we are
using, and again this does not alter the ontology expressed by the theory. Nevertheless,
some cases will be more controversial. For instance, somemay be tempted to viewNewto-
nian and Lagrangianmechanics as providing competing ontologies for classicalmechanics
(e.g. a force-based vs. potential-based ontology, respectively). Under this interpretation,
the puzzle of compatible reformulations does not arise, and the philosophical task falls
squarely within traditional debates concerning which ontology we ought to believe more
likely to be true. How to approach competing formulations or interpretations is already
well-catered for by existing literatures. My focus here is on what we should say in the
event that two problem-solving procedures are genuinely compatible.

1.2 Intellectual Significance

Why introduce this jargon word, the ‘intellectual’? In short, it functions as a convenient
shorthand, delimiting the scope of my investigation. I am interested in objective aspects
of understanding that are non-practical and epistemic. Unlike ‘explanation,’ the English
noun ‘understanding’ has neither an adjectival form parallel to ‘explanatory’ nor an ad-
verbial form parallel to ‘explanatorily.’ As my focus is on differences in understanding, it
seems grammatically convenient to call these ‘intellectual differences.’ We can then de-
note differences in understanding that—for my purposes—are philosophically significant
as being ‘intellectually significant differences.’ Throughout, one must keep in mind that
I do not mean just any difference in understanding. Many such differences are practi-
cal in nature. The intellectual picks out a particular facet of scientific and mathematical
understanding.

Why not then just stick with ‘epistemic’ and its kin? Indeed, what I am calling ‘in-
tellectual’ includes what many would call ‘purely epistemic’ matters (Sosa 2015, p. 172).
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Unfortunately, the word ‘epistemic’ is highly contested (S. Cohen 2016). Many think that
epistemic matters naturally include issues that I classify as practical, such as problem-
solving speed or efficiency (Goldman 1986, p. 122). If one wants to classify such practical
matters as being epistemic, I am inclined to let them, rather than to quibble over terminol-
ogy. Nonetheless, I contend that we can isolate a non-practical dimension of the epistemic.
My usage of ‘intellectual’ builds in this isolation.² If I were to look hard enough, I might
find that ‘intellectual’ has also already become highly contested. Nevertheless, it seems
much less common in the literatures I engage with here, lending itself more readily to a
stipulative characterization. As we’ll soon see, I flirted with using ‘conceptual’ instead.
Here the problem is not so much that the word is contested but that it applies so broadly
as to lose clear sense.

It is difficult to non-contentiously define the three interrelated adjectives that char-
acterize the intellectual, namely ‘objective,’ ‘non-practical,’ and ‘epistemic.’ Each is to be
contrasted with another controversial or unwieldy notion, namely ‘subjective,’ ‘practical’
(or ‘pragmatic’), and ‘non-epistemic’ (including moral and aesthetic). The contrasts I in-
tend will become clear as we proceed through examples. If the reader can’t wait for a
better grip on these contrasts, hopefully the following suffices for now: matters of taste
are not objective. Formal, syntactic features of theory formulations or problem-solving
plans are objective. Epistemic matters concern justification and knowledge (a kind of true
belief).³ Practical matters concern features of agents that in-principle do not make a dif-
ference for acquiring knowledge. These include matters of convenience, speed, efficiency,
and effort.

In distinguishing the non-practical from the practical, I intend to remain neutral on

²Sections 2.6.3 and 5.6-5.7 contrast non-practical and practical dimensions of the epistemic.
³What is knowledge, you might ask? Well, you know it when you see it! More seriously, the arguments

in this dissertation are compatible with a wide variety of different accounts of knowledge. If pressed for my
own view of the matter, I am inclined to agree with Wittgenstein (2009 [1949], §307, 310): when an agent
judges that they know P, they indicate that they currently do not doubt P. Dressed up in more contemporary
garb, they express an attitude of being for not doubting P. This attitude is very different from expressing that
there is no doubt that could possibly be had. Of course, whether you know P depends on whether P is true.⁴

⁴Well then, what is truth, you might ask? That’s also highly controversial. In some contexts (dealing
with observables), I will implicitly take ‘truth’ to mean correspondence to states of affairs in reality. In
other contexts (especially when values and norms are in play), ‘truth’ will mean simply that we can apply
a disquotation schema: the sentence ‘P’ is true if and only if P. If you vindicate asserting ‘P,’ you vindicate
asserting that ‘P is true.’ Such processes of vindication do not count as objective in the sense of correspon-
dence, but still in the sense that they are not matters of taste. These judgments are governed by higher-order
norms such that we do not take them to depend on features of us. Field (2018, p. 16) calls this a kind of
‘counterfactual objectivity.’
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whether philosophers ought to ultimately privilege practical matters. For instance, maybe
all intellectual aspects of agentive activity are ultimately socially grounded in some deeper
sense. Either way, we can distinguish between practical and non-practical matters within
some background practices such as science or mathematics. This distinction is compati-
ble with taking these background practices themselves as fundamental for philosophical
purposes. To do so would be to adopt a form of pragmatism, which Brandom defines as
“a generic expression that picks out a family of views asserting various senses in which
practice and the practical may be taken to deserve explanatory pride of place” (2011, p. 58).

1.3 A Continuum of Solutions

To resolve this puzzle about compatible reformulations, I will consider a number of pu-
tative solutions. We can visualize these solutions as lying along a continuum from max-
imally deflationary to maximally inflationary, i.e. involving the adoption of substantial
metaphysical commitments. My goal will be to defend a middle ground position between
these extremes, which I will call conceptualism.⁵ It focuses on the way in which signifi-
cant reformulations provide new concepts that genuinely alter our problem-solving struc-
tures. As with most middle grounds positions, conceptualism must steer a path between
the Scylla of deflationary solutions and the Charybdis metaphysically inflationary ones.
As the issues come into focus, a competing middle ground position—explanationism—
will emerge as my strongest opponent. Chapters 3 and 4 defend conceptualism against
explanationism.

The most deflationary solution is to deny that there is any puzzle at all. Perhaps when
it comes to reformulations, the only differences that arise are ones of mere convenience.
According to what I will call conventionalism, this is all there is to say about reformu-
lations. Reformulations provide convenient footholds for forging ahead, facilitating the
solution of problemswe could solvewith othermethods if onlywewerewilling to sacrifice
the time and energy. Conventionalism holds that there is nothing deep or intellectually

⁵I call this view “conceptualism” to emphasize the role that concepts play in theory reformulation and un-
derstanding. By “concepts,” I include what Kenneth Manders (2008b, unpublished) calls “expressive means.”
These include the mathematical, linguistic, diagrammatic, and notational resources we use to express theo-
ries. More precisely, I endorse Gibbard’s (2012, Ch. 2) distinction between properties and concepts, where
concepts are the content of thoughts. Despite some interesting analogies, I do not intend to endorse scholas-
tic or early modern conceptualism about universals.
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significant about reformulations. Theymerely amount to a different choice of convention,
no different in kind than a change in notation. Seen through this lens, the seeming intel-
lectual triumphs of wholesale theoretical reformulations are simply one notational change
after another, convenience piled atop convenience. Conventionalism holds that reformu-
lations are different only in degree—rather than kind—from trivial notational changes
(Section 2.4.1 characterizes conventionalism in more detail).

I doubt that any philosopher or scientist would defend conventionalism in all cases
of reformulations. For conventionalism faces a serious problem. It fails to save the in-
tellectual phenomena staring us in the face. As the history and practice of science and
mathematics shows, we care about reformulations an awful lot. Section 1.5 provides many
examples. It is no doubt true that partly why we care so much about reformulations is due
to the convenience that they often provide. The conventionalist has no problem saving
this aspect of the story. However, focusing on convenience alone results in an incredibly
bleak picture of our intellectual enterprise. No reformulation would count as genuinely
increasing (or even changing!) our understanding of a given theory. It would be mere
convenience all the way down, invalidating our usual attributions of depth or insight to
paradigmatic reformulations. Conventionalism leaves us with a bland and disappointing
error theory about the value of reformulations.

Section 2.4 considers a more sophisticated deflationary position, focusing on the gen-
eral instrumental value of reformulations. I will call this position instrumentalism. It
contends that the value of reformulations reduces entirely to their instrumental value for
the basic aims of science (or mathematics). Chapter 5 provides an extended argument
against instrumentalism. I show that reformulation itself constitutes an aim of science.
Reformulation therefore acquires final value and is hence not reducible to the other basic
aims of science.

At the other extreme of our continuum lies a metaphysical picture like that of David
Lewis’s. Lewis posits that some properties belong to an elite set of perfectly natural prop-

erties, with physics aiming to provide a partial inventory of these properties (1983, pp. 357,
364). Ted Sider speaks instead of a theory’s conceptual structure, which must match the
structure of reality in order for the theory to be “fully successful” (2011, p. vii). Sider’s
framework suggests that two formulations of a theory can state the same truths about
the world while nonetheless disagreeing about which concepts are more fundamental,
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i.e. more joint-carving (2011, p. 5). These pictures motivate a metaphysically-committal
solution to the problem of compatible formulations. According to what I will call fun-
damentalism (Section 2.5), a compatible formulation does better the closer it comes to a
canonical language that carves nature at its joints. Chapters 2 and 6 argue that the meta-
physical commitments of fundamentalism are not necessary. We can provide a satisfying
account of the intellectual significance of reformulations without the fundamentalist’s
ontological commitments.

A less metaphysically expansive solution appeals to putative explanatory differences
between reformulations. According to what I will call explanationism, reformulations are
intellectually valuable when they provide alternative explanations. Due to the vast num-
ber of different accounts of scientific explanation, explanationism provides a schema, to
be filled in with a particular account of explanation. Different accounts of explanation
give rise to different versions of explanationism.⁶ For this reason, it is logically difficult to
argue decisively against explanationism. Chapter 3 provides a general argument against
a wide class of explanationist accounts. I consider a special case of compatible formu-
lations, namely formulations that are theoretically equivalent. I argue that theoretically
equivalent formulations provide the same explanation but nevertheless can have intellec-
tually significant differences. Chapter 4 broadens the scope of this argument to a wider
class of compatible formulations. Doing so requires engaging with particular accounts of
explanation. I rebut four general families of explanationist accounts, based on different
notions of explanatory relevance.

The core of my argument against explanationism is the following: reformulations
seem to manifest a number of differences that prima facie do not appear to be mat-
ters of explanation. Instead, these differences involve changes to the epistemic struc-
ture of problem-solving. They involve changes to how scientists and mathematicians go
about structuring a search space or organizing information. Hence, I believe that a gen-
eral account of reformulations requires focusing on how formulations structure problem-
solving. Answering explanatory why-questions is, after all, just one kind of problem.

I call my proposed middle ground solution conceptualism (or more suggestively, “con-
ceptual empiricism”).⁷ I aim to characterize the intellectual significance of reformulations

⁶Sections 2.7 and 3.2 characterize explanationism in more detail.
⁷Broadly, my position combines elements from van Fraassen’s (1980) constructive empiricism and what

Brandom calls “conceptual pragmatism” (2001, p. 4). Regrettably, I do not spell out these connections in
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by appealing to their expressive means, i.e. their logical, mathematical, diagrammatic,
and linguistic resources.⁸ I will argue that reformulations are significant when they intro-
duce concepts that restructure problem-solving. What matters are the different functional
roles that different formulations support. By focusing on concepts rather than ontology,
conceptualism stays within the meager ontological commitments of austere empiricist
conceptions of science and mathematics. Sections 2.6, 3.5, and 6.4 characterize different
facets of conceptualism in more detail.

Of course, there is nothing to prevent either a fundamentalist or an explanationist from
adopting my conceptualist analysis and simply wanting to add more. A fundamentalist
might wish to append additional commitments to fundamental structure. An explanation-
ist might wish to append additional commitments to explanatory differences. My view is
not incompatible with either of these augmentation strategies. Instead, conceptualism is
simply incompatible with either fundamentalism or explanationism being the end of the

story when it comes to the intellectual value of reformulations. My goal is to show that
on their own, various versions of conventionalism, fundamentalism, and explanationism
provide inadequate accounts of reformulation. These negative arguments motivate a need
for conceptualism as a positive account of the value of reformulations.

1.4 Characteristic Differences in Epistemic Structure

In Chapter 2, I will argue that differences in problem-solving structure amount to differ-
ences in what we need to know or what suffices to know to solve a problem. I will refer
to facts about what we need to know or what suffices to know as epistemic dependence

relations (EDRs).⁹ The relata of these relations are the inputs and output(s) of a reasoning
process or problem-solving procedure. Schematically, EDRs provide answers to the fol-
lowing kinds of questions: do I need to know B in order to know C? Does knowledge of
D suffice for knowing E?

As a simple illustration of epistemic dependence relations, consider a toy example

detail, although I hope they become clear for the cognoscenti.
⁸I borrow this expression from Manders (2008a), who introduces it in the context of diagrammatic rea-

soning in Euclidean geometry but does not provide a definition.
⁹EDRs also encompass facts about what we don’t need to know and what does not suffice to know. Some

may prefer to call these kinds of relations “epistemic independence relations.”
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from arithmetic: calculating the absolute value of the product of two integers, |xy|.¹⁰ One
formulation of this problem involves first calculating x times y and then taking the ab-
solute value. This involves knowing the signs of both integers. Alternatively, one could
reformulate this problem by recognizing that the absolute value of a product equals the
product of the absolute values: |xy| = |x| |y|. In this formulation, we don’t need to know
the sign of each integer. It suffices to know their absolute values. Hence, this reformu-
lation uses different EDRs to solve the problem. Conceptualism claims that in cases like
this, we not only solve the problem differently, but also gain a different understanding of
the solution.

Although epistemic dependence relations are sui generis, conceptualism seeks to clas-
sify them into different families, based on their functional roles. I will refer to these as
different kinds of EDRs, distinguished by different intellectually significant properties.
These properties characterize different aspects of problem-solving structure. In the case
studies I examine from physics, chemistry, and mathematics, three kinds of EDRs play
starring roles: modularization, unification, and uniformity of treatment. I consider these
in turn.

Some epistemic dependence relations perform the functional role of modularizing:
they show how to break a problem into separately treatable (or at least partially decou-
pled) sub-problems. Modularization occurs when a formulation solves a problem by de-
composing it into separately treatable sub-problems. In the context of answering explana-
tory why-questions, this involves decomposing a why-question into separately treatable
why-questions. Common examples ofmodularization include recursion relations and sep-
aration of degrees of freedom. Modularization arises outside the natural sciences as well,
including modular programming in computer science (Avigad 2015). In Chapter 4, I argue
that modularization lies outside the scope of philosophical theories of scientific explana-
tion. It thereby illustrates an intellectually significant difference that is not an explanatory
difference.

Other EDRs perform the functional role of unifying: they show how the same answer
or result applies to a range of different problems or phenomena. For instance, a symmetry-
based derivation can unify the energy spectra of two or more molecules that have the
same symmetry group. Unification is a kind of EDR because it provides information that is

¹⁰I thank Dave Baker for suggesting this example.
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sufficient for solving problems about an entire class of particular systems. This shows that
problems that prima facie seemed to require separate answers can actually be answered
collectively. In general, unification allows a sub-problem to be solved once and then used
in subsequent applications. Like modularization, unification describes a class of EDRs,
since many different EDRs play the functional role of unifying.

Unlike modularization, unification admits a natural interpretation in terms of expla-
nations. Successful unifications often answer why-questions such as why do all of these

systems display this behavior?¹¹ However, many formulations that fail to unify never-
theless succeed at solving the relevant class of problems case-by-case for each system
of interest (often through a uniform, but not unified, treatment). We will see this again
and again with the elementary approaches to various problems considered below. On
some accounts of explanation, the resulting disunified conjunction of explanations—one
for each system—is a fine way to answer an overarching why-question.

In Chapter 4, I argue that even if this conjunction of answers is explanatory, there is
a crucial difference between a unified answer and a disunified, conjunctive answer. An
account of reformulations must do this difference justice. Moreover, it remains contro-
versial whether this aspect of unification is genuinely an aspect of explanation. For my
purposes, settling this controversy does not matter. If unification is explanatory, so much
the better for accounts of explanation that accommodate it. If it is non-explanatory, it
nevertheless fits into the account of scientific understanding that I provide.

Finally, uniformity of treatment characterizes how a single problem-solving plan can
apply to different kinds of problems, treating these problems uniformly. It is an epistemic
dependence relation because it shows that applying a certain set of steps is sufficient for
solving these problem-types. Unlike in cases of unification, uniformly-treated systems
can still display different behavior and therefore involve different answers or wholly dif-
ferent problems. In an instance of unavoidable terminological infelicity, what I am calling
“uniformity of treatment” is an aspect of Kitcher’s (1989) account of unification. In those
cases where one Kitcherian argument pattern applies to many different kinds of systems,
we have what I would call a uniform treatment. In such cases, a single argument pattern
is instantiated differently for the different kinds of systems. This distinguishes uniformity

¹¹Indeed, what I call “unification” is similar to what Bob Batterman calls answers to type II why questions,
which ask why a certain pattern generally obtains across different systems (2002, p. 23). It is also similar to
what Alan Baker calls “topic generality” (2017, p. 200).
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of treatment from what I am calling “unification.” In cases of unification, we have a single
instantiation of an argument pattern that applies to a variety of different systems.

For instance, group representation theory provides a uniform treatment of the spec-
troscopic properties of elementary particles, nuclei, atoms, and molecules based on their
symmetries (these symmetries provide Casimir operators whose eigenvalues can be used
to label states). Systems with different symmetries require different accounts of these
properties, but the group theoretic solution procedure applies uniformly. However, when
it comes to figuring out how energy levels are ordered from least energetic to most ener-
getic, a fragment of the group theoretic approach does not provide a uniform treatment.
Instead, without solving for the eigenvalues characterizing these levels, the best that sym-
metry alone can do is provide ad hoc geometric arguments based on the relative spatial
overlap of orbital density functions and constituent atoms or molecules. In contrast, for
some problem-types there is a non-group theoretic symmetry-based approach that uni-
formly treats the ordering of the energy-levels as a function of symmetry.

As another example of a failure of uniformity, consider Ansatz’s, used throughout
physics to solve problems. An Ansatz is an educated guess at the form of a solution, which
once guessed can be verified to hold true. Although some Ansatz’s (such as separation of
variables in differential equations) are applicable in a wide range of circumstances, it is
typically possible that an Ansatz might fail. In this way, formulations that use Ansatz’s
often do not treat a class of problems uniformly, even if they are nevertheless able to solve
each problem within a class.

Conceptualism treats each of these three features—modularization, unification, and
uniformity of treatment—as intellectually significant aspects of reformulations. Although
they typically make solving problems and providing explanations more convenient, they
have a non-practical, epistemic aspect that goes beyondmere convenience. These intellec-
tually significant aspects arise from illuminating or manifesting an alternative epistemic
structure. They are valuable at least because they are epistemically valuable. A funda-
mentalist will wish to go further and base these features on objective joints in nature,
while conceptualism remains agnostic about this further commitment.

Whereas convenience or instrumental value is an extrinsic feature of formulations,
intellectually significant features are intrinsic. Discerning intellectually significant dif-
ferences involves comparing at least two different formulations, but the epistemic de-
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pendence relations themselves are non-comparative. They are an intrinsic feature of that
formulation’s expressive means—objective features of its epistemic structure. Whether
or not a formulation modularizes, unifies, or provides a uniform treatment of a problem
is settled by that formulation alone, in isolation from considering other formulations. In
contrast, assessments of convenience are inherently comparative: no formulation is con-
venient simpliciter, it is only either more-or-less convenient than another formulation.
Assessing how convenient an approach is requires some external metric, such as a clock
or counting procedure.

For instance, solving a problem on a faster computer is convenient because it is faster
than solving it on a slower computer.¹² In many of the cases discussed in Section 1.5, we
can use the number of matrix elements that a formulation must compute as a measure of
its convenience. Reformulations that reduce the number of matrix elements (or replace
matrix element calculations with simple arithmetic) can be viewed as more convenient.¹³
In sum, intellectually significant features must be intrinsic aspects of a formulation, and
differences between these intrinsic features account for intellectually significant differ-
ences between reformulations.

1.5 Reformulations in Science and Mathematics

Readers who are already convinced of the significance of compatible reformulations can feel

free to skip or skim this section, moving to Chapter 2. There, Section 2.2 provides two simple

examples of reformulations that suffice for articulating the relevant philosophical dialectic.

A wide variety of examples from science and mathematics motivates my account of
reformulations. In physics and chemistry, reformulations range from classical mechanics
to quantum field theory. Since my account applies uniformly to both reformulations in

¹²Note that this does not make knowledge of computational complexity a matter of mere convenience.
For instance, it is intellectually significant to show that a problem can be solved in polynomial time. This
provides an epistemic dependence relation, e.g. this algorithm suffices to solve the problem in polynomial time
or, we now know that this problem can be solved in polynomial time. Presumably, this is more convenient
than solving the problem in exponential time, but it is not merely more convenient: figuring out how to
solve the problem more quickly is intellectually significant. For the same reason, knowing how to build a
quicker computer is intellectually significant, even though using it to speed up a program is not. Section 5.7
considers these aspects of speed vs. intellectual significance in detail.

¹³In Chapter 4, we will see that there are reasons to question this simple metric for convenience. More
sophisticated reformulations generally require much more complicated expressive means, which in some
contexts mitigate the computational convenience that they provide. Chapter 2 will argue that assessments
of convenience are agent-relative, while epistemic dependence relations are not.
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science and mathematics, I sketch a few examples from pure mathematics as well. Later
chapters discuss many of these examples in detail, using them to illustrate and defend
conceptualism.

The puzzle about reformulations arises in each example below, and we will be inter-
ested in comparing and contrasting how conceptualism and its rivals treat these cases.
Although the gains in convenience are often dramatic, the intellectual richness of these
examples places pressure on any purely conventionalist response. Since these examples
arise naturally in the practice of science and mathematics, they demonstrate that the puz-
zle about compatible reformulations is not an artifact of contrived examples. Many cases
considered below involve reformulating a problem using symmetry, and I will argue that
these are a special case of reformulations more generally.

To start with a well-known example, consider some of the intellectual differences be-
tween Newtonian and Lagrangian formulations of classical mechanics. For a large class of
physical phenomena, both frameworks provide equally legitimate explanations. They use
the same natural laws and the same initial conditions to derive a given explanandum (e.g.
the position of a simple pendulum at a given time). In other words, both are committed to
the same physical ontology and do not compete with each other; neither is closer to the
truth than the other (although a fundamentalist might still wonder which one, if either,
best describes the structure of a classical world). Nevertheless, these approaches provide
different epistemic dependence relations. The Lagrangian approach provides three that
are typically taken to be striking advantages: i) coordinate independence of the Euler–
Lagrange equations; ii) elimination of constraint forces from many calculations; and iii) a
uniform method for treating physical laws via an action principle (Goldstein et al. 2002,
pp. 24–25, 35–36). These advantages are arguably responsible for physicists’ strong pref-
erence for the Lagrangian formulation over the Newtonian. They make solving many
problems much more convenient.

A conventionalist would say this is the end of the story: the Lagrangian reformulation
matters merely because it is more convenient. A fundamentalist might argue that the La-
grangian approach carves nature more closely at its joints. Conceptualism acknowledges
this is possible, but aims to account for the intellectual significance of Lagrangian me-
chanics independently of this further commitment. We can do so by interpreting each
of the three advantages above as an epistemic dependence relation. The use of an action
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principle is an example of providing a uniform treatment, enabling systems as diverse
as the motion of one free particle, an Atwood’s machine, and a bead moving on a ro-
tating wire to be treated under the same procedure.¹⁴ The coordinate independence of
the Euler–Lagrange equations enables us to work in generalized coordinates which con-
tribute to this uniform treatment. Finally, eliminating constraint forces from the equations
of motion amounts to modularization: we learn that we can separate the explanandum of
interest (solving the equations of motion) from figuring out the constraint forces acting
on the system. If we want to, we can still solve for the constraint forces as a separate step,
but unlike in the Newtonian procedure, we do not need to know these forces to find the
equations of motion.

Reformulations in Quantum Mechanics

Turning to a second example, consider one of the most prevalent problems in quantum
physics and quantum chemistry: the calculation of matrix elements for various physi-
cal operators. These matrix elements represent a system’s physical properties, including
the likelihood of a transition from one state to the next. Using an elementary approach,
each matrix element can be calculated via a corresponding inner product in Hilbert space,
representing the states and operators of interest in some basis, e.g. position space, mo-
mentum space, etc. However, this elementary approach quickly becomes inconvenient,
due to the sheer quantity of matrix elements. For instance, calculating the likelihood of a
transition between a d-orbital and p-orbital under electric dipole radiation (i.e. first-order
in perturbation theory) would naïvely involve calculating 45 matrix elements. To avoid
this, a great deal of energy has gone into making these calculations as convenient as pos-
sible. This involves exploiting matrix element theorems such as selection rules (which
characterize which matrix elements must vanish, as entailed by symmetries and conser-
vation laws) and the Wigner–Eckart theorem, which separates out rotational degrees of
freedom from other degrees of freedom. The rotational degrees of freedom can be cata-
loged separately in terms of Clebsch–Gordan coefficients. The other degrees of freedom
are bundled into a reduced matrix element, which represents the particular physical de-

¹⁴Here is a summary of this uniform treatment: “a straightforward routine procedure can now be es-
tablished for all problems of mechanics to which the Lagrangian formulation is applicable. We have only
to write T and V in generalized coordinates, form L from them, and substitute in [the Euler–Lagrange
equations] to obtain the equations of motion” (Goldstein et al. 2002, p. 24).
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tails of the system at hand. For instance, the selection rules tell us that only nine of the 45
matrix elements do not necessarily equal zero. The Wigner–Eckart theorem then lets us
calculate only one matrix element using the elementary approach, determining the rest
by the rotational degrees of freedom.¹⁵

It is of course possible to interpret this reformulation of the matrix element problem
as merely convenient. Indeed, striving for convenience provides much of the motivation
for developing these techniques. However, it woefully mischaracterizes the knowledge
that selection rules and the Wigner–Eckart theorem provide. The Wigner–Eckart theo-
rem both modularizes and unifies the matrix element problem. It modularizes the matrix
element problem by separating it into the following sub-problems: compute the Clebsch–
Gordan coefficients for the relevant symmetry group (e.g. SO(3)), calculate one matrix
element using an elementary approach, determine the reduced matrix element, and then
apply the Clebsch–Gordan coefficients to determine all of the other matrix elements in
this symmetry-related family. Matrix elements that share the same reduced matrix ele-
ment are unified into a symmetry-based family, differing only in their rotational degrees
of freedom. Even if we don’t commit ourselves to joint-carving, these epistemic depen-
dence relations are intuitively intellectually significant. They radically change what it
suffices to know to solve for the family of 45 matrix elements.

Calculating matrix elements is also frequently aided by using symmetries to diago-
nalize matrices, especially in the context of external symmetry breaking. Even though
matrices can be diagonalized numerically, these methods can slow down considerably as
the matrices grow larger for more complex problems. In general, the computational time
is proportional to the matrix-dimension cubed (McIntosh 1971, p. 78). By exploiting a
physical system’s symmetries, we can at least block-diagonalize a perturbation matrix,
typically resulting in huge swaths of vanishing matrix elements. This modularizes the
initial perturbation theory problem into separately treatable secular equations, one for
each sub-block (Cornwell 1984, pp. 132–133).

Chapter 4 considers an extended case study from crystal field theory, which models
the electronic properties of transition metal complexes. Surrounding a metal ion with
ligands breaks the degeneracy of its valance electrons, causing previously degenerate or-

¹⁵For an extended discussion of the Wigner–Eckart theorem, analyzed in terms of conceptualism, see
Hunt (2021a).
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bitals to split into new energy levels with new degeneracies. For instance, when placed in
an octahedral field, the five-fold degenerate d-orbitals of a nickel ion split into a more en-
ergetic two-fold degenerate level and a less energetic three-fold degenerate level. Naïvely
solving for the eigenvalues would involve calculating 25 matrix elements. By taking ad-
vantage of the nickel ion’s spherical symmetry and the crystal field’s octahedral sym-
metry, we can construct symmetry-adapted basis functions for this calculation. In this
symmetry-adapted basis, we modularize the original eigenvalue problem into two sepa-
rate eigenvalue problems, one for each of two degenerate eigenspaces. We then have to
calculate only two matrix elements, one for each eigenspace.

The group theoretic reformulation of external symmetry breaking provides other in-
sights besides just the diagonalization of matrices. Representation theory describes how
initially degenerate levels rearrange when placed within an environment of lower sym-
metry. It reformulates this problem in terms of the decomposition of representations of
the initial symmetry group into a direct sum of irreducible representations of the lower
symmetry group. Thus, it shows us how to solve for the number and degeneracy of the re-
sulting energy levels, all without even solving for the eigenvalues. This provides another
illustration of modularization: solving for the splitting and degeneracy of the levels can be
treated separately from solving for the eigenvalues. It also illustrates unification: based on
their symmetries, different systems can be organized into symmetry-based equivalence
classes that display the same pattern of behavior. Just as a group’s Clebsch–Gordan co-
efficients can be tabulated, these relationships between (i) the initial and final symmetry
groups and (ii) the energy levels can be calculated once and tabulated (Bethe 1929, p. 143;
Cotton 1990, pp. 264–265). Again, although these results can be incredibly convenient for
calculations, it would seem to be completely inadequate to characterize them as merely
convenient. Chapter 4 considers this group theoretic reformulation of crystal field theory
in detail.

Reformulations in Quantum Field Theory

Experimental and theoretical particle physics is also largely concerned with the calcu-
lation of matrix elements, specifically those of the scattering matrix (the “S-matrix” for
short). Elements of the S-matrix are known as scattering amplitudes, and they character-
ize the likelihood that scattering a given set of incoming particles results in a particular set
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of outgoing particles. As with the matrix element calculations considered above, scatter-
ing amplitudes are frequently calculated using perturbation theory. Feynman diagrams
provide a traditional method for reformulating the elementary perturbation theory cal-
culation into a much more convenient method for calculating scattering amplitudes. We
begin with a Lagrangian representing the dynamics governing the scattering process. Us-
ing this, we construct a generating functional for the interacting part of the Lagrangian,
which physically represents the probability amplitude for a process that begins and re-
mains in the vacuum state in the presence of interacting fields. The generating functional
for the interaction can itself be expressed as a functional derivative of a generating func-
tional for the free-field Lagrangian. This enables us to apply perturbation theory to the
free-field generating functional, leading to a Taylor series expansion for the interacting
generating functional. Each order in perturbation theory corresponds to a power of the
coupling constant(s) between the interacting fields. With this Taylor series expansion in
hand, we could naïvely calculate terms in the expansion to our hearts’ content. This would
serve as an elementary approach to calculating scattering amplitudes.

However, many of the terms in the Taylor expansion do not contribute to the non-
trivial, interacting part of the scattering amplitude. The elementary approach is blind to
this. Feynman diagrams (and related expressive means) reformulate this Taylor expansion
by focusing on whether terms arise from connected vs. disconnected diagrams. Hence, we
can say that a term is connected if it arises from a connected Feynman diagram.¹⁶ For any
choice of the Taylor series expansion parameter(s), there are a finite number of connected
terms, and only these contribute non-trivially to the scattering amplitude at that order in
perturbation theory. Hence, in order to compute the generating functional to a desired
order in perturbation theory, we only have to calculate the associated connected terms.
More precisely, we can prove that the generating functional is proportional to the exponen-

tial of the sum of all connected terms (Srednicki 2007, p. 65). This result underwrites one
of the key epistemic dependence relations standing behind the intellectual significance of
Feynman diagrams. We find out that we don’t need to know the disconnected terms in or-
der to calculate scattering amplitudes. This modularizes the perturbation theory problem

¹⁶In position space, we can say that a term is connected if there is a path of propagators ∆(y− z) between
every pair of remaining source terms

´
d4x J(x) and/or “vertex terms” g

´
d4x′. This definition does not

mention diagrams.
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by eliminating any need to calculate disconnected terms.¹⁷ Unlike many of the previous
examples, this epistemic dependence relation comes from topological properties rather
than symmetry properties. Section 3.7 discusses this example in detail.

Despite the convenience afforded by Feynman diagrams, they are often not convenient
enough for physicists’ tastes. In principle, we could calculate any scattering amplitude (for
a theory described by a Lagrangian) by using Feynman rules. But in quantum chromo-
dynamics (QCD), the Feynman diagram approach becomes incredibly complicated even
for tree-level scattering with only four or five particles. A key reason is that the number
of Feynman diagrams can grow very quickly even as the number of particles involved
grows slowly. For tree-level QCD gluon scattering, four particle scattering involves four
diagrams, five particle scattering has 25 diagrams, six particles require 220 diagrams, and
ten particles require more than 1 million diagrams (Elvang and Huang 2015, p. 8). Hence,
using Feynman diagrams for processes like these quickly becomes impractical.

This motivates physicists to reformulate the scattering amplitude problem yet again.
Modern on-shell recursion methods for calculating amplitudes work extremely well, at
least in the high-energy limit where all particles can be treated as massless. These meth-
ods reformulate the standard Feynman diagram variables for characterizing scattering
amplitudes (helicity, polarization vectors, 4-momenta, etc.) in terms of spinor–helicity
variables and ultimately twistors. In conjunction with Cauchy’s residue theorem from
complex analysis, these variables enable one to develop recursion relations for determin-
ing scattering amplitudes with n-many particles in terms of amplitudes with fewer par-
ticles. In many theories, it is possible to show that every (tree-level) amplitude can be
reduced to simple three-particle scattering amplitudes (Elvang and Huang 2015, p. 62).

These recursion relations are yet another example of modularization: they show that
to compute an n-point amplitude, we can modularize the problem into computing lower-
point amplitudes. On-shell recursion relations also lead to a diagrammatic representa-
tion, known as blob-diagrams. Conveniently, a much smaller number of blob-diagrams
generally suffices to calculate a scattering amplitude that would require a much larger

¹⁷In position space, both Feynman diagrams and their corresponding integral terms represent the con-
nectivity properties of the terms in the perturbation series. Hence, there isn’t much reason to prefer one
over the other. However, in momentum space, Feynman diagrams succeed at representing connectivity
properties while the corresponding integral terms fail. This difference in encoding connectivity helps ac-
count for the prevalence of momentum-space Feynman diagrams, since it is also more tractable to compute
the relevant integrals in momentum space.
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number of Feynman diagrams. For instance, some 6-gluon scattering processes require
only two blob-diagrams, whereas a Feynman diagram calculation would require 38 dia-
grams (Elvang and Huang 2015, pp. 34, 59–60). Hence, these on-shell recursion methods
provide dramatic simplifications, but they are much more than merely convenient. They
completely restructure how we understand scattering amplitudes. Section 6.9 considers
how on-shell recursion inspired variable transformations that make a hidden symmetry
manifest.

Reformulations in Mathematics

Finally, there are a bounty of examples from pure mathematics that illustrate the intellec-
tual significance of different solution procedures. These involve both alternative methods
for computations and alternative proofs of the same theorem. For example, many count-
ing problems can be performed either with elementary combinatorics or by taking advan-
tage of symmetries of the problem—using group actions to apply Burnside’s formula. As
another computational example, if our goal is to compute 3231 modulo 5, Fermat’s little
theorem teaches us that it is unnecessary to multiply 3 by itself 231 times and find the
remainder after dividing by 5.¹⁸ Instead, we can figure out how many multiples of 4 go
into 231. These will all be congruent to 1 modulo 5. Hence, we reduce the problem to 33

modulo 5. This is easily seen to be 2.
As a third example, we can consider different methods for computing the decimal ex-

pansions of irrational numbers (such as pi). Traditional methods work recursively, calcu-
lating subsequent decimal places as a function of earlier ones. Yet, mathematicians have
in some cases found formulas like the Bailey–Borwein–Plouffe equation, which allows
calculating the nth digit of pi (represented in base-16) without knowing the preceding
digits.¹⁹ Providing another class of examples, there are many cases where a theorem pos-
sesses both algebraic and geometric proofs, and these have a very different intellectual
character. Many of these are even relevant for physics. For instance, the Wigner–Eckart
theorem can be proved both by focusing on Lie algebras or by focusing on properties
of Lie groups. The same holds true for many selection rules and for deriving Clebsch–

¹⁸Fermat’s little theorem states that if p is a prime number and n is a natural number, then np is congruent
to n modulo p. Provided that p does not divide n, this entails that np−1 is congruent to 1 modulo p. In this
case, 34 ≡ 1 (mod) 5.

¹⁹Thanks to Gordon Belot for suggesting this example.
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Gordan coefficients. One of the advantages of conceptualism is that it provides a uniform
treatment of the intellectual significance of both applied and pure mathematical reformu-
lations, all in terms of epistemic dependence relations.

Some of these mathematical cases also place pressure on fundamentalism, now in the
context of joints in an imagined platonic space. To take an example from complex analysis,
consider Cauchy’s integral formula. Given a holomorphic function on an open set in the
complex plane that has a smooth simple closed curve γ for boundary, then for any point
z0 in the interior, we have the following relationship:

f (z0) =
1

2πi

ˆ
γ

f (z)
z− z0

dz (1.1)

This formula provides the following epistemic dependence relation: to know the value
of this function at any interior point, it suffices to know the function’s values on the
boundary γ , provided that we know the function is holomorphic on the region bounded by
the curve.²⁰ There is certainly an intellectually significant difference between calculating
f (z0) this way vs. calculating it directly (and this remains so even if this is not a typical
use of Cauchy’s formula). Yet, it is difficult to see why one of these ways of formulating
the problem should be more joint-carving than the other. Against the conventionalist, it
also doesn’t seem important whether or not this formula is actually useful. Similar claims
hold for the other mathematical examples described above.

Each of these cases illustrates different ways that alternative solution procedures can
provide intellectually significant differences. Although the more mathematically sophis-
ticated reformulations frequently provide marked gains in convenience, this seems to be
far from the only difference separating them from elementary formulations. Furthermore,
at no point have we needed to appeal to a difference in joint-carving to do justice to these
reformulations’ prima facie significance. Remarkably, all of the key aspects of these intel-
lectually significant features can be analyzed in terms of a few generic kinds of epistemic
dependence relations: modularization, unification, and uniformity of treatment. There
likely other generic kinds of epistemic dependence relations, but it is gratifying to see
how much sense we can make of these disparate examples by using so few resources.

As should be clear from these examples, many of their most interesting features come

²⁰We also require that the closed contour γ is small enough to exclude other poles, and that there are no
branch cuts connected to z0.
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from the content of their particular epistemic dependence relations. For instance, when
we modularize the problem of computing scattering amplitudes by figuring out that dis-
connected terms do not contribute non-trivially, what seems to be particularly significant
is the epistemic dependence relation itself: i.e. that it suffices to compute the connected

terms. Due to the particular nature of each epistemic dependence relation, it is not the
case that every instance of modularization is as significant as any other. Some instances of
modularizationwill seemmuchmore significant. I am not optimistic that we can construct
a general method for quantifying relative significance, although in some cases it will seem
exceedingly clear that a reformulation dramatically restructures our understanding of a
theory rather than making a minor intellectual difference. I return to a related question
in Section 4.5, where I consider what it means for one formulation to provide a better un-

derstanding than another. Section 6.4.1 contains one proposal for quantifying the relative
significance of intellectually significant changes. We may be able to quantify significance
as a function of how many epistemically possible solutions a formulation rules out—at
least in comparison with another compatible formulation.
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Chapter 2:

Between Instrumentalism and Fundamentalism about Reformulations

2.1 Introduction

Chapter 1 introduced a puzzle about compatible formulations: if no compatible formu-
lation is necessary, what is the value of reformulating a problem-solving procedure or
theory? This chapter considers in detail the various solutions to this puzzle introduced
in Section 1.3. I begin in Section 2.2 by providing two simple illustrations of compati-
ble formulations. Section 2.3 uses these examples to motivate three desiderata that any
satisfying account of reformulations must satisfy. Subsequent sections argue that of the
various solutions considered, only my preferred solution—conceptualism—meets these
three desiderata.

According to instrumentalism, reformulations are valuable insofar as they are a means
to the end of traditional scientific goods. These goods include prediction, discovery, con-
trol, and descriptive or empirical adequacy.¹ The instrumentalist argues that although
reformulations are one method for achieving these aims of science, reformulations them-
selves are not constitutive of any scientific aims. This kind of instrumentalism has been
developed in detail to make sense of the value of scientific explanations (van Fraassen
1980, pp. 93–94; Lombrozo 2011). By itself, instrumentalism leaves certain aspects of re-
formulation mysterious. It entails that there is no non-instrumental value in having more
than one approach to solving the same problem. Yet, it seems that local differences in
problem-solving strategy often contribute to different ways of understanding the world.
Section 2.4 argues against instrumentalism.

¹Viewed from within science, these scientific goods have final as opposed to instrumental value. As Ko-
rsgaard (1983) argues, final value (i.e. non-instrumental value) need not be intrinsic. It need not supervene
on the intrinsic properties of the states of affair with final value.
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Through additional metaphysical commitments, fundamentalism proposes a further
scientific aim beyond empirical adequacy or even truth. To fully succeed, science must
construct a theory that carves nature at its joints. Whereas Lewis (1983) frames this aim
in terms of perfectly natural properties, Sider (2011) has developed a more general no-
tion of the fundamental structure described by a theory. According to Sider, successfully
describing fundamental structure leads to greater epistemic value. In this way, funda-
mentalism provides a straightforward account of the value of reformulating. Insofar as
reformulating is sometimes constitutive of writing a theory in more joint-carving terms,
fundamentalists can interpret some reformulations as non-instrumentally valuable.

For those willing to endorse additional metaphysical commitments, fundamentalism
offers a non-instrumentalist account of the value of reformulating. However, it comes at
the cost of difficult problems of epistemic access. As I argue in Section 2.5, these epistemic
access problems partly spoil the positive story that fundamentalism can tell. Section 2.6
develops conceptualism as a third strategy for assessing the value of reformulations, oc-
cupying a middle ground between instrumentalism and fundamentalism. I will argue
that reformulations have non-instrumental value simply in virtue of how they restructure
problem-solving. Successful reformulations clarify what we need to know to solve prob-
lems, improving our understanding of the world. Like instrumentalism, my account does
not require substantial ontological commitments. Like fundamentalism, it accommodates
the intuition that many reformulations are more than just instrumentally valuable.

2.2 Two Simple Illustrations

As the examples from Chapter 1 intimate, scientific reformulations are often rich and
complex. While inherently interesting, such examples require a wealth of background
knowledge to assess, as Section 1.5 makes clear. Fortunately, a few simple examples il-
lustrate the general features that arise. To broach the problems facing instrumentalism
and fundamentalism, I will focus on two such examples here, the first being even simpler
than the second.

Consider the following problem, discussed in the cognitive science literature on
problem-solving and expertise (Goldman 1986, p. 132). Two trains, located at stations 50
miles apart, both head toward each other at 25 miles per hour. While they are moving,
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a bird flies back and forth between them, flying at 100 miles per hour. The problem is
to figure out how many miles the bird travels before the trains meet. One relatively
hard approach to this problem involves calculating the distance the bird flies on each
round-trip between the two trains. Stipulating that the bird always takes the shortest
distance between the two trains, one can determine the overall distance by summing a
geometric series, with a term for each leg of the journey. An easy approach to solving
this problem involves simply determining how long the bird is in flight. This equals the
amount of time it takes for the trains to reach each other, namely, one hour. Hence, the
easy approach entails immediately that the bird travels 100 miles as it flies between the
trains.²

As a second example, consider an application of Gauss’s law in electromagnetism.
We are handed a ball containing static point charges of total charge Q. Our task is to
quantify the strength of the electric field coming out of the ball. In other words, we need
to determine the electric flux ΦE , defined as the integral of the electric field E over the
surface.³ Naïvely, it would seem that to calculate the flux we need to know the electric
field vector at each point passing through the surface. And to determine these electric
field vectors, it would seem that we need to know the exact distribution of charges within
the ball. Incredibly, Gauss’s law shows us that we in fact do not need to know anything
about either the charge distribution or the electric field to determine the flux. Instead,
the electric flux simply equals the total amount of charge contained within our surface
divided by a constant ε0, known as the vacuum permittivity. Hence, knowledge of ε0 and
the total charge Q suffices for knowing the flux.⁴

In both cases, we have two compatible ways of solving the same problem. The pro-
cedures do not disagree about the way the world is. They provide the same answer to
the problem and ultimately for the same physical reasons, albeit differently organized.

²The mutilated checkerboard problem provides a similar example: after removing the squares from two
opposite corners of a checkerboard, can the remaining squares be tiled with 31 dominoes? For discussion
and additional examples, see Bilalić et al. (2019).

³More precisely, the electric flux ΦE through a closed surface S is the surface integral of the component
of the electric field normal to the surface, i.e. we integrate the scalar product of the electric field vector E
with the differential of the normal vector to the surface da: ΦE ≡

‚
S

E · da. Thanks to Gordon Belot for

suggesting this example.
⁴Gauss’s law also supplies another simple compatible reformulation for systems with appropriate sym-

metry. In such cases, we can calculate the electric field itself purely algebraically, eliminating the need for
integration. In contrast, a non-symmetry-based approach would apply Coulomb’s law and a superposition
principle for electric fields, integrating for the electric field.
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Our question is the following: what value is there to having more than one approach
to solving the same problem? More generally, what value is there in reformulating a
problem-solving procedure or theory?

Instrumentalism contends that these reformulations are not valuable in themselves,
but merely as a means to scientific ends such as better predictions, control, or empirical
adequacy. Applied to our two illustrations, instrumentalism entails few differences. In
each case, both formulations solve the same problem, so locally we do not have any dif-
ferences in prediction, control, or (approximate) truth. Each compatible formulation is as
good as the other when it comes to obtaining these scientific goods. The only remain-
ing differences between the formulations are practical or pragmatic ones. These include
differences in computational simplicity, efficiency, and convenience.

For instance, it is easier and faster to solve the bird–train problem by figuring out
how long the bird is in flight than by calculating a geometric series. Likewise, it is easier
and faster to apply Gauss’s law to determine the electric flux than to painstakingly apply
Coulomb’s law. The easiermethodsmay in turn decrease the risk ofmaking a calculational
mistake, but this is an epistemic difference in-practice, rather than in-principle. Later, I
will consider whether global differences in problem-solving fruitfulness allow instrumen-
talism to draw epistemically significant differences between formulations. Perhaps one
formulation generalizes to a wider range of phenomena, leading to increased instrumental
value. For reasons considered in Section 2.3, I will argue that differences in fruitfulness
still miss important epistemic differences between the approaches.

By contrast, on Lewis’s fundamentalist framework, a formulation does better the
closer it comes to a canonical language that carves nature at its joints. A concept carves
nature perfectly at its joints only if it is fundamental, but joint-carving is not an all or
nothing affair. Instead, different concepts within the special sciences can be more or less
joint-carving (Lewis 1983, p. 347). Sider enriches this picture by arguing that differences
in joint-carving generate differences in the epistemic value of formulations. Given two
languages for describing the world, if one of them carves nature better at the joints, then
it has epistemic value that the other one lacks. Sider illustrates this in the context of the
predicates green and grue, claiming that “it’s better to think and speak in joint-carving
terms. We ought not to speak the ‘grue’ language, nor think the thoughts expressed by
its simple sentences” (2011, p. 61).
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In the case of the bird and the trains, it is plausible that neither formulation is more
joint-carving than the other. The geometric series approach keeps track of the causal de-
tails of the bird’s trajectory, while the easy approach shows that we do not need this infor-
mation to solve the problem. Yet, neither approach is obviously more fundamental than
the other. In cases like this, a fundamentalist might agree with an instrumentalist that this
reformulation has no more than practical value. The Gauss’s law case is more interesting.
As one of Maxwell’s laws of electrodynamics, Gauss’s law is plausibly more fundamental
than Coulomb’s law. Gauss’s law is related to conservation principles, which themselves
have a close connection with laws of nature and fundamental symmetries (Strocchi 2013,
Ch. 7). Additionally, Gauss’s law applies to not only static but also moving charges, and
it is therefore more general than Coulomb’s law. Although this difference in fruitfulness
does not directly help with assessing compatible formulations, a fundamentalist might
nevertheless view it as evidence that the Gauss’s law approach gets closer to fundamental
joints in nature.⁵

On the view I defend in Section 2.6, we need not deny that reformulations have in-
strumental value nor that they could—for all we know—have epistemic value coming
from tracking fundamental structure. Instead, we can be sure of one source of their
non-instrumental epistemic value: reformulations clarify what we need to know to solve
problems. By changing our epistemic situation, reformulations accrue epistemic value
independently of any further metaphysical role they might play. In short, a significant
reformulation leads to a different way of understanding the world. This is in contrast to
trivial or insignificant reformulations, considered in the next section.

2.3 Three Desiderata

I will argue that any satisfying account of reformulations must satisfy three desider-
ata. First, it must distinguish trivial notational variants from significant reformulations.
Whereas some reformulations are merely matters of arbitrary, conventional choices, oth-
ers appear to be epistemically significant. Second, a successful account must make sense

⁵As Tappenden (2008) notes, defenders of joint-carving (see Section 2.5) may take differences in fruit-
fulness or fertility as evidence that one formulation is more fundamental than another. Nevertheless, like
me in Section 6.6, Tappenden does not endorse a metaphysically robust notion of ‘fundamentality.’ I remain
neutral on whether fruitfulness plays this evidential role, at least when it comes to metaphysically robust
notions of ‘fundamental.’ See also Nolan (1999), who argues that fertility is not a fundamental virtue.

27



of local differences between reformulations, which arise even when solving the same class
of problems. Although reformulations often lead to differences in solving wider classes
of problems, appealing to these wider differences alone does not address important local
differences. Finally, the criteria that an account employs ought to be epistemically acces-
sible. An account will be less satisfying insofar as it appeals to features of the world that
might readily elude us. My goal in this section is to independently motivate these three
desiderata. Sections 2.4 and 2.5 will then show how both instrumentalism and fundamen-
talism fall short of meeting them.

Not all reformulations are epistemically significant. Some amount to nothing more
than trivial notational variants. These include simple notational substitutions for typo-
graphical preference, the use of a right-handed rather than a left-handed coordinate sys-
tem, conventions for summation, etc. I take it as a datum of scientific and mathematical
practice that these trivial notational variants are epistemically insignificant. At the very
least, they are much less epistemically valuable than paradigmatic cases of reformulation,
including the two simple cases presented in Section 2.2. A successful account of compat-
ible reformulations must provide principled grounds for distinguishing trivial notational
variants from significant reformulations, affording greater epistemic value to the latter.
This requirement supplies the first desideratum.⁶ To satisfy it, an account must avoid both
i) over-generating cases of significant reformulations (e.g. by classifying all reformula-
tions as epistemically significant) and ii) under-generating such cases (e.g. by classifying
all reformulations as trivial notational variants).

To meet the first desideratum, an account must provide a principled distinction be-
tween clear cases of trivial vs. significant reformulations. There may be vague cases that
do not fall neatly into either category. Hence, meeting the first desideratum does not
require necessary and sufficient conditions for when a reformulation counts as “epistem-
ically significant.” It suffices to justify the datum that there is an epistemically significant
difference between trivial vs. significant reformulations, with the latter being objectively
more epistemically valuable (at least in clear cases).⁷ This distinction is objective in the

⁶Readers of Chapter 1 might wonder why I don’t state the first desideratum in terms of intellectual
significance, i.e. objective, non-practical, epistemic differences. I worry that this might unfairly prejudge
the issue against instrumentalism. The burden is on me to motivate a distinction between non-practical and
practical epistemic features.

⁷Some might be inclined to presuppose that some formulations are objectively epistemically better than
others. My argument does not depend on this further assumption. I consider the subtle issue of comparative
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sense that its truth does not depend on how agents feel or what they believe about it.
Regarding the meaning of “epistemically significant” or “epistemic differences,” there are
many candidates. Different accounts may specify different meanings for these terms. I
describe my preferred account in Section 2.6, which focuses on non-practical dimensions
of the epistemic.

The second desideratum restricts what we can appeal to when meeting the first
desideratum. In clear cases, we can distinguish trivial from significant reformulations
at the local level of individual problems or problem-types. This is another apparent
datum of scientific practice that any satisfying account must save. Given two compatible
reformulations, there is a class of problems that they both solve. Within this shared
domain of problems, significant reformulations display an epistemic difference, while
trivial reformulations do not. Since these epistemic differences arise locally, we should
account for them through local aspects of the formulations. It should not be necessary to
consider global differences in fruitfulness or problem-solving scope. Unless shown oth-
erwise, we should assume that these global differences arise from differences at the local
level of solving individual problems. The second desideratum embodies these demands:
a satisfying account of reformulations must provide local criteria for distinguishing
trivial vs. non-trivial reformulations. Section 2.4 will show how this desideratum poses
a serious problem for instrumentalism.

Besides the need to locally distinguish trivial from significant reformulations, a third

desideratum presents itself: the criteria of significance should be epistemically accessible.
Since the epistemic difference between trivial vs. non-trivial reformulations is manifest,
the criteria we use to explicate this difference should be manifest as well. Our account
of reformulation should not be hostage to the lucky success of risky inferences. An ac-
count with epistemically inaccessible criteria may have the resources to address the first
two desiderata, but it would be difficult to determine when the criteria actually apply.
Accounts of reformulation that rely on risky inferences will face problems of underdeter-
mination, leading to skeptical scenarios. The more difficult it is to determine whether the
criteria are satisfied, the more skeptical scenarios there will be. In science, these worries
about underdetermination are well-founded: there are numerous historical examples of

assessments between compatible formulations in Sections 4.5-4.6.
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scientists making needlessly risky inferences that were shown to be unfounded.⁸ This
is not an idle philosopher’s skepticism. There are principled, practice-based reasons for
seeking to avoid risky inferences whenever possible.

An additional dialectical consideration speaks in favor of the third desideratum aswell.
Appraising compatible formulations is a challenge facing philosophers of many differ-
ent temperaments, from hard-nosed scientific anti-realists to those willing to posit Aris-
totelian essences. Ideally, an account of reformulation should have a widely-acceptable
minimal core. This core should be as minimal in its ontological commitments or posits
as possible. Nothing precludes those with additional metaphysical commitments from
embellishing this account further, but it is harder to deconstruct a more metaphysically
committal account into a version acceptable for the a-metaphysical. Section 2.5 will show
how this third desideratum severely limits the appeal of fundamentalism, at least as the
core of an account of reformulations.

2.4 Problems facing Instrumentalism

To distinguish trivial from non-trivial reformulations, instrumentalism proposes the fol-
lowing criterion: a reformulation is significant if and only if it leads to an instrumentally
valuable difference. What counts as instrumentally valuable might vary from case to
case. Some reformulations might make a difference for prediction, others for control, and
still others for empirical adequacy or truth. Since these kinds of instrumental differences
matter epistemically⁹, instrumentalism can in principle satisfy the first desideratum. In-
strumental differences can provide objective, epistemic grounds for distinguishing trivial
notational variants from significant reformulations.

However, this strategy for meeting the first desideratum runs afoul of the second.
When we focus on how two compatible formulations solve the same class of problems,
we see that there are often no significant instrumental differences to be found. Since the
two formulations locally solve the same problems, they locally provide the same predic-
tions, are of equal approximate truth, etc. Hence, it is difficult to see how there could

⁸Examples include Newton’s inference from absolute acceleration to the existence of absolute velocity
and position, 18th-century inferences to the existence of caloric as the carrier of heat, and 19th century
inferences to the existence of an ether for the propagation of light as an electromagnetic wave.

⁹If prediction and control are instead non-epistemic, practical features of science, then this would make
it harder for instrumentalism to satisfy the first desideratum.
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be local differences in instrumental epistemic value beyond differences in convenience.
At most it seems, one formulation might be more convenient for solving problems than
another, perhaps involving simpler calculations or more familiar notation. As I argue in
Section 2.4.1, differences in convenience are insufficient to distinguish trivial from non-
trivial reformulations.

For instrumentalism to meet the first desideratum, it seemingly must appeal to global
differences, such as differences in fruitfulness. When we broaden our scope to consider
how reformulations differentially generalize in different contexts, sometimes certain for-
mulations succeed where others fail. For instance, the easy solution to the bird–train
problem applies even to a bird executing exquisite loop-de-loops between the trains. In
contrast, the geometric series solution requires that the bird fly in straight lines (otherwise,
we would require further empirical information about the bird’s trajectory). Similarly, the
Gauss’s law approach applies to moving charges, while the Coulomb’s law approach re-
quires that the charges are static. In each case, one formulation is more fruitful than the
other, applying to a strictly wider range of problems.

No doubt, differences in fruitfulness are instrumentally valuable. They constitute dif-
ferences in the predictions we can make and the phenomena we can save. However, they
are not differences that arise at the local level of shared problem-solving. To appeal to
them alone would be to give up on the goal of accounting for local differences that are
prima facie significant. We should expect that these global differences are symptoms of
underlying local differences in problem-solving. Thus, it would be more satisfying if we
could accommodate global differences in terms of local, epistemically significant differ-
ences between formulations. We should give up on the second desideratum only if other
promising accounts fail to meet it as well. For this reason, instrumentalism is not enough
to account for the significance of reformulations. Instrumental differences are part of a
larger story, but they are not the whole story.

2.4.1 Convenience-instrumentalism

At this point, an instrumentalist might want to revisit local differences in convenience as
a criterion for meeting the first and second desiderata. Why can’t these successfully dis-
tinguish trivial from non-trivial reformulations? There are at least two serious problems
facing what we might call convenience-instrumentalism.
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First, paradigmatic cases of trivial notational variants often display important differ-
ences in convenience. For instance, we find it extremely difficult to read mirror images of
words.¹⁰ Similarly, scientists sometimes develop such a strong psychological preference
for certain notational conventions that they find it difficult to solve problems using alter-
natives. For instance, the 1959 English translation of Wigner’s (1931) text on the applica-
tions of group theory to atomic spectra converted Wigner’s original left-handed coordi-
nate system into a right-handed convention to facilitate comprehension. Similarly, physi-
cists working in particle physics phenomenology tend to use a different space-time metric
convention than those working in general relativity or string theory. The former tend to
use a mostly minus (1,−1,−1,−1) metric while the latter use a mostly plus (−1,1,1,1)

metric. Although just a choice of convention, “some physicists approach this issuewith al-
most religious conviction” (Burgess and Moore 2006, p. 518). There are many compelling
practical reasons to prefer one convention over the other, based on the kinds of prob-
lems that most commonly arise in either domain. Convenience-instrumentalism would
entail that these two metric conventions are significant reformulations. Such verdicts
would vastly over-generate the class of significant reformulations—by under-generating
the class of trivial notational variants—thereby running afoul of the first desideratum.
Even if these practical differences between trivial notational variants are sometimes im-
portant, they still appear to be different in kind from the epistemic differences between
significant reformulations.

The second problem afflicting convenience-instrumentalism stems from the subjec-
tive nature of convenience. What counts as computationally simpler or more convenient
is often—if not always—a matter of taste and pedagogical training. For instance, com-
parative assessments of convenience can depend on the tools at one’s disposal. Whether
one finds it simpler to use (i) a mathematically sophisticated formulation that reduces
problems to arithmetic vs. (ii) an elementary formulation that requires calculating inte-
grals might depend on whether one has access to numerical integration software. It also
depends on one’s level of mathematical background, which influences preferences for ab-
stract vs. elementary mathematics. As the early history of applied group representation
theory shows, the lack of familiarity with abstract mathematics can lead to a preference

¹⁰For an illustration, seeWittgenstein (2009 [1949], p. 209), remark 151 of Philosophy of Psychology. Fram-
ing effects from the presentation of statistics in terms of decimals or ratios provides a further example. See
Kahneman (2011).
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for methods that involve elementary but tedious calculations.¹¹ Insofar as assessments
of convenience are subjective, the first desideratum precludes convenience as a criterion
of significance. For recall that the first desideratum requires an objective distinction be-
tween clear cases of trivial vs. non-trivial reformulations. To capture this distinction, the
corresponding criteria must be objective.

A third concern arises as well: differences in convenience are plausibly practical dif-
ferences rather than epistemic ones. They amount to differences in how easy it is to solve
a problem, rather than differences in reasons for belief. However, since I have so far left
unspecified what counts as an epistemic difference, it is difficult to develop this objection
in a non-question-begging way. It is open to the convenience-instrumentalist to argue
that practical differences in increasing calculational speed or decreasing the risk of error
are also epistemic differences. After all, they might note, the use of computers in science
have led to both a rapid expansion in scientific knowledge and a decreased risk of calcu-
lational error. Regardless, I argue in Section 2.6.3 that we can meaningfully distinguish
practical from non-practical epistemic differences.

For now, I take the preceding two problems as sufficient grounds for rejecting
convenience-instrumentalism. It does not provide a satisfactory account of the objective
epistemic value of significant reformulations. A convenience-instrumentalist would have
to provide both an objective account of “convenience,” and an error theory for ordinary
scientific assessments of trivial vs. non-trivial reformulations. Unless these challenges
are met, we should reject convenience-instrumentalism for failing to save central aspects
of scientific practice. It is a philosophical position of last resort, to be adopted only if
alternative accounts face equally challenging problems.

2.5 Problems facing Fundamentalism

According to many scientific realists, science aims at the truth. Fundamentalism proposes
a further aim for science: an ideal scientific theory must describe the world in a funda-
mental language. Two descriptions of the world can both be true, while one of them is
more fundamental. Lewis contends that physics aims at providing an inventory of natural
properties (1983, p. 357). According to Lewis, “the businesss [sic] of physics is not just to

¹¹For historical accounts, see Bonolis (2004) and Scholz (2006).
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discover laws and causal explanations. In putting forward as comprehensive theories that
recognize only a limited range of natural properties, physics proposes inventories of the
natural properties instantiated in our world” (1983, p. 364). Likewise, Sider argues that
describing the world in joint-carving terms leads to greater epistemic value than merely
having a true theory:¹²

The goal of inquiry is not merely to believe truly (or to know). Achieving the goal of
inquiry requires that one’s belief state reflect the world, which in addition to lack of
error requires one to think of the world in its terms, to carve the world at its joints.
Wielders of non-joint-carving concepts are worse inquirers. (2011, p. 61)

Although neither Lewis nor Sider are explicitly concerned with compatible formula-
tions, their commitments to fundamental structure suggest a fundamentalist criterion for
assessing reformulations: a reformulation is epistemically valuable whenever it leads to a
more joint-carving formulation. Using this criterion, fundamentalism straightforwardly
meets the first two desiderata from Section 2.3. It proposes an objective epistemic differ-
ence between trivial notational variants and significant reformulations. Whereas trivial
notational variants are equally joint-carving, significant reformulations exhibit a differ-
ence in fundamentality: namely, one formulation is more joint-carving than the other.
Furthermore, the fundamentalist criterion of significance is local: these differences in fun-
damentality arise at the level of individual problem-solving. Fundamentalism thereby sat-
isfies the second desideratum as well. Although evidence for differences in joint-carving
might come from global considerations of fruitfulness, the differences themselves arise
locally (if they arise at all).

The main problems facing fundamentalism arise from its substantial ontological com-
mitments. Many empiricists and scientific anti-realists (and even some realists) disavow
commitments to perfectly natural properties and fundamental structure. Relying on these
commitments precludes fundamentalism from providing a minimal account of the value

¹²Dasgupta (2018) has challenged Sider’s contention that more fundamental descriptions necessarily
have greater epistemic value. He argues that fundamentalists must explain where this epistemic value
comes from, but that no explanation is forthcoming. However, I worry that Dasgupta’s argument is self-
undermining. Fundamentalists fail to meet Dasgupta’s demand for an explanation only if we presuppose
that a realist conception of explanation is desirable. This amounts to presupposing a value claim little differ-
ent than what the fundamentalist is accused of presupposing. Hence, Dasgupta’s own argument is subject
to either circularity or an infinite regress. The fundamentalist can simply demand that Dasgupta explain
why the fundamenalist owes an explanation of the epistemic value of approximating fundamental structure.
By his own lights, Dasgupta will not be able to meet this demand, so his own demand for explanation is
self-undermining.
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of reformulations. In response, a fundamentalist might be inclined to say: so much the
worse for the metaphysically-averse. But there are independently compelling reasons to
be wary of appeals to fundamental structure. One reason comes from fundamentalism
itself: Occam’s razor. If we can provide a positive account of reformulations with fewer
metaphysical commitments, then this account will be simpler. Fundamentalists would
then, by their own lights, have reasons to take such an account seriously.¹³ This is one
reason in favor of the conceptualist account I provide in Section 2.6.

More substantial metaphysical commitments typically involve posits that are less epis-
temically accessible. It is difficult to know if and when theory formulations track perfectly
natural properties. Beyond appeals to intuition, fundamentalists must rely on theoretical
virtues as evidence for greater fundamentality. Whether and when these differences in
virtues—such as simplicity or fruitfulness—themselves track fundamentality is an issue
that is itself ultimately decided by appeals to philosophical intuition. Some scientific real-
ists and fundamentalists may be sufficiently optimistic about these aspects of philosoph-
ical methodology. For them, these epistemic access problems may not be substantially
more troubling than our access to the physical unobservables posited by ordinary scien-
tific theories. Nevertheless, an account of reformulations would be epistemically more
secure if it did not rely on these controversial methodological commitments.¹⁴ Ideally,
we should seek an ontologically minimal account of reformulations that even empiricists
can adopt. More metaphysically-committed philosophers then remain at liberty to invoke
additional ontological commitments when assessing reformulations.

Epistemic access problems also lead to problems of underdetermination. Imagine a
world where neither the Gauss’s law nor Coulomb’s law formulation is more fundamental
than the other (see Section 2.2). This world is empirically indistinguishable from the one
fundamentalists might take ourselves to be in, where the Gauss’s law formulation is pu-
tatively more fundamental. In either world, our physical theories make exactly the same
predictions about both observables and unobservables. Yet, the twoworlds disagree about
whether the Gauss’s law formulation is more fundamental, and hence about whether the
two formulations are trivial notational variants. In the former world, the fundamentalist

¹³Thanks to Dave Baker for stressing this point.
¹⁴Cohen and Callender (2009, p. 13) argue that perfectly natural properties face additional problems of

epistemic access beyond the usual skeptical challenges to knowledge of physical unobservables. See Wood-
ward (2016, p. 1056) for additional criticisms against simply invoking natural properties.
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criterion of significance classifies the two formulations as trivial notational variants. In
the other, this criterion says that the formulations are significantly different. But since
both worlds are empirically indistinguishable, it is difficult to knowwhich one we are in.¹⁵

As a result, fundamentalism makes the significance of compatible formulations
hostage to empirically inaccessible facts about fundamental structure. Even worse,
these inaccessible facts do not have any bearing on how the formulations appear to
us. Metaphysical facts about differences in joint-carving do not change how we solve
problems or understand the world using our theories.

To avoid underdetermination problems, we should strive for an account of compatible
formulations that does not depend on relatively inaccessible facts about the world, e.g. its
fundamental structure. Even if we are mistaken or woefully ignorant about the world’s
fundamental structure, we should be able to satisfactorily interpret significant epistemic
differences between reformulations. In contrast, fundamentalist differences between re-
formulations are not epistemically accessible, making it ambiguous whether and when
there are significant differences between formulations. Fundamentalism meets the first
two desiderata in principle. But in virtue of failing the third desideratum, fundamental-
ism makes it difficult to know when significant differences arise. To avoid this problem,
we need an account that makes the epistemic differences between formulations manifest.
The next section develops one such account.

2.6 Conceptualism

Having seen the problems facing instrumentalism and fundamentalism, I now develop
an account of reformulations that avoids these problems. Because it focuses primarily
on how different concepts restructure problem-solving, I call my account conceptualism.
Conceptualism accounts for the significance of reformulations in terms of how they orga-
nize or structure problem-solving. Section 2.6.1 provides examples of these organizational
differences. They constitute differences in the epistemic structure of a problem-solving
procedure. Section 2.6.2 shows how conceptualism easily satisfies all three desiderata,
providing a positive, local, and ontologically minimal account of reformulations. Finally,

¹⁵van Fraassen (1975) develops a similar underdetermination problem for mathematical Platonism
through his parable of the lands of Oz vs. Id. Cohen and Callender (2009) provide this kind of argument
against the epistemic accessibility of perfectly natural properties.
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Section 2.6.3 rebuts an objection that my account fails to distinguish trivial from signifi-
cant reformulations.

2.6.1 Epistemic structure

Consider the toy example of the bird flying between two trains from Section 2.2. The hard
procedure requires knowing the distance the bird travels on each leg between the trains
(or alternatively, the time spent on each leg). The easy procedure shows that we do not
need to know the bird’s detailed trajectory: it suffices to know the speed at which the
bird flies and the amount of time spent flying. Similar considerations apply to calculating
the electric flux emanating from a charged body using Gauss’s law. Gauss’s law shows
that we do not need to know the distribution of charges within the charged object or the
electric field at each point on the surface. Instead, it suffices to know the total amount of
charge the object contains.

These simple cases of reformulation parallel more complicated cases. Using symmetry
arguments, we can often solve problems without needing to know many details about a
system’s dynamics. In quantum chemistry, reformulating eigenvalue problems in terms
of molecular symmetries shows that we don’t need to know much about particular en-
ergy levels to solve problems about overall energy structure and allowed transitions. In
contrast, elementary methods that eschew appeals to symmetries require detailed infor-
mation about the molecular energy levels. Similarly, in atomic and nuclear physics, the
Wigner–Eckart theorem shows that to calculate the expectation values of physical quan-
tities, we don’t need detailed information about each possible state. Since these states are
related by symmetries of the system, it suffices to calculate one process in detail. This
provides the symmetry-invariant content for each symmetry-related family of states. The
Lagrangian reformulation of classical mechanics illustrates a similar moral. It tells us that
to calculate the equations of motion for a classical system, we do not need to know the
constraint forces acting on the system. In contrast, the Newtonian formulation requires
knowledge of these constraint forces. I will argue that these reformulations are significant
because they provide epistemically different ways of solving the same class of problems.

In each of these cases, reformulating a theory or problem-solving procedure results
in an alternative epistemic structure. The epistemic structure of a solution procedure
comprises the inferential steps we take in moving from a given set of inputs to an output.

37



For each of these steps, there are things we need to know—or at least that suffice to know—
to move from input to output. In short, this is the information we use to carry out an
inference rule. For convenience, I will refer to these input–output relations as epistemic

dependence relations (EDRs). EDRs specify what we need to know orwhat suffices to know
to carry out a step in a problem-solving plan. Generically, EDRs state whether we need
to know fact B in order to know fact C, or whether fact D is sufficient for deriving fact E.
Relations such as these serve as basic units of a theory’s epistemic structure.

I will often focus on EDRs that relate the initial inputs to the final output, i.e. the
solution. These EDRs characterize what we need to know or what suffices to know in order
to solve a problem. In this context, we are considering what we need to know tout court.¹⁶
Yet, an exclusive focus on these kinds of EDRs would neglect the internal structure of a
problem-solving plan. This internal structure manifests what we need to know (or what
suffices to know) to carry out a particular inference rule. Hence, many questions of what
we need to know to solve a problem are implicitly relativized to an inference rule that we
intend to use.¹⁷ In contrast, when we consider what we need to know tout court to solve
a problem, our question ranges over any admissible inference rule.

Differences between Arabic and Roman numerals provide a simple illustration of epis-
temic dependence relations. Imagine a lecture hall with 21 rows of 16 seats each. Our task
is to determine how many people it can seat. Arabic numerals allow us to multiply 16 by
21 using a standard algorithm from grade school. This algorithm takes advantage of Ara-
bic numeral’s positional notation to modularize the problem into a series of single-digit
multiplication and addition sub-problems, such as calculating six times two. Thanks to
this algorithm, to solve any multiplication problem, it suffices to know (i) 100 single-digit
multiplication facts (i.e. the times table up to 9) and (ii) how to add Arabic numerals. Now,
imagine reformulating this multiplication problem using Roman numerals, i.e. calculating
XVI times XXI. Since Roman numerals are a sign-value system rather than a positional

¹⁶As Chapter 5 discusses in detail, the minimal success criteria for solving a problem are different for
constructive empiricists vs. scientific realists. For the former, approximate empirical adequacy is sufficient.
For the latter, approximate (non-deflationary) truth is needed. Hence, when it comes to unobservables,
claims about what an empiricist needs to know are elliptical for “what they need to know according to the
theory.” Empiricists do not think that we need to know any claims about unobservables in order to solve
scientific problems, since they claim that we don’t even need to believe claims about unobservables. Here, I
intend to develop conceptualism as a neutral schema that either constructive empiricists or scientific realists
could adopt as a starting point.

¹⁷I thank Laura Ruetsche for prompting me to characterize EDRs more generally so as to capture this
internal structure.

38



one, our familiar algorithm does not work.¹⁸ We must rely instead on different epistemic
dependence relations. Rather than an addition table, we instead use seven simplification
rules such as replacing “IIIII” by “V”. We also use a multiplication table of 49 separate
multiplication facts (such as L times L equals MMD), which must be augmented for fac-
tors above one million.¹⁹ When it comes to figuring out that 16 times 21 equals 336, these
two formulations display different epistemic structures, characterized by their different
EDRs. They amount to different plans for problem-solving.

2.6.2 Satisfying the three desiderata

Conceptualism proposes a straightforward criterion for assessing the epistemic signifi-
cance of reformulations: two formulations are significantly different when they provide
different epistemic dependence relations. As I now argue, this criterion satisfies all three
desiderata from Section 2.3.

The first desideratum demands a principled distinction between trivial notational vari-
ants and significant reformulations. Unlike significant reformulations, trivial notational
variants fail the above criterion. When we trivially reformulate a theory or problem-
solving procedure, we preserve epistemic structure. Trivial notational variants provide
the same epistemic dependence relations for solving problems.²⁰ Symbol substitution pro-
vides the simplest case: substituting every instance of a symbol α with a previously un-
used, arbitrary symbol β does not alter the formulation’s epistemic dependence relations.
Likewise, even though many scientists prefer to work in a right-handed coordinate sys-
tem, working in a left-handed coordinate system preserves the same EDRs. In relativistic
theories, the arbitrary choice between a mostly positive or a mostly minus metric con-
vention does not lead to differences in epistemic dependence relations. Hence, these two
conventional choices are trivial notational variants. This is the case despite the fact that
many physicists have a personal—and sometimes subfield-wide—preference for one con-
vention over the other. After discussing the other two desiderata, I will return to whether

¹⁸In an additive system, the string represents the sum of its individual numerals. For simplicity, I do not
consider subtractive notation such as “IV” for four, representing this instead as “IIII.” Everything I say below
could be adapted for this case. See Detlefsen et al. (1976).

¹⁹See Schlimm and Neth (2008, p. 2100) for details of this algorithm, which relies on the distributive law.
In Roman numerals, figuring out which of two numbers is greater also involves different EDRs in these two
formalisms; see Colyvan (2012, pp. 133–134).

²⁰Framed in terms of syntactic symmetries, the epistemic structures/plans provided by trivial notational
variants are invariant under the reformulation. Section 2.6.3 discusses this interpretation in more detail.
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trivial notational variants in fact exhibit different EDRs.
The conceptualist criterion also satisfies the second desideratum, which demands that

we locally distinguish trivial from significant reformulations. Differences in epistemic
structure arise at the local level of solving individual problems. We can assess whether
two compatible formulations are significantly different by considering their shared class
of problems. We need not appeal to differences in their fruitfulness or scope. Differences
in fruitfulness are no doubt also epistemically significant, but conceptualism shows how
they arise from local differences in epistemic dependence relations. It is in virtue of re-
structuring our solution procedures that some formulations become more fruitful than
others for certain classes of problems. Differences in fruitfulness are not a reason for
significance; they are a symptom.

Finally, conceptualism satisfies the third desideratum, which calls for epistemic ac-
cessibility. Unlike fundamentalism, conceptualism does not require inductively-risky in-
ferences to fundamental ontology. Even anti-realists about physical unobservables can
recognize differences in epistemic dependence relations. These differences between re-
formulations are typically manifest. We learn about EDRs simply by analyzing how for-
mulations support problem-solving. For instance, when we discover a new way to solve
a problem, we learn that we didn’t need to know certain facts that we previously relied
on. This is not to say that we have complete knowledge of all relevant EDRs. Typically,
reformulations show that a particular set of facts suffices for problem solving, or that an
alternative set of facts is not necessary. Conceptualism merely points out that successful
reformulations implicitly provide proofs of this form. Proving that a set of facts is insuf-

ficient or that a set of facts is necessary would require additional proofs, which are not
typically implicit in reformulations themselves.

In virtue of our relatively easy access to epistemic structure, conceptualism avoids the
underdetermination problems that afflict fundamentalism. Even in a world where we are
radically wrong about which formulation is more fundamental, we will be right about
many differences in epistemic dependence relations. These differences in EDRs are not
empirically underdetermined. In contrast, fundamentalism relies on differences in fruit-
fulness or other super-empirical virtues as evidence for deeper ontological differences.
This involves making an epistemically risky inference to the existence of underlying dif-
ferences in fundamental structure. Conceptualism provides a method for appraising re-
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formulations that avoids these risky inferences.
Both scientific realists and fundamentalists may hanker for a deeper explanation of

epistemic dependence relations. They may seek to ground these EDRs in explanatory
differences or differences in fundamental structure. For instance, perhaps differences
in EDRs correspond to differences in what information is explanatorily relevant to the
problem-solution. According to this explanationist proposal, information that we do not

need to solve a problem is always explanatorily irrelevant. In the case of the bird and
the trains, we do not need to know the detailed trajectory that the bird takes. Some
may therefore be inclined to say that this detailed trajectory is explanatorily irrelevant.
One difficulty with this inference is that it takes us from considering the epistemic struc-
ture of a formulation to considering more contentious explanatory relations in the world.
Philosophers who support causal-mechanical accounts of explanation may have a differ-
ent intuition. From a causal-mechanical standpoint, the bird’s detailed trajectory explains
the distance it travels. It remains explanatorily relevant, despite the fact that we do not
need to know it in order to solve certain problems. Conceptualism shows that we can
positively assess reformulations without resolving these kinds of explanatory disputes.
Section 2.7 considers explanationism in more detail.

Nothing prevents philosophers with a more optimistic view of theoretical virtues from
making further inferences about physical or metaphysical facts that ground EDRs. They
are welcome to do so if so inclined. Nevertheless, these additional commitments pre-
clude fundamentalism and some forms of explanationism from providing an ontologi-
cally minimal account of reformulations, based on epistemically accessible resources. If
instrumentalism could meet the first two desiderata, it would already provide a minimal
account. But as it stands, instrumentalism is inadequate. At the other extreme, fundamen-
talism commits us to more than necessary. Conceptualism, I have argued, is just right.
Of course, there may be other philosophical accounts of reformulation that satisfy these
three desiderata. I would be surprised if any such account proves to be deeply incompat-
ible with conceptualism.

2.6.3 Sameness of epistemic structure

For conceptualism to satisfy the first desideratum, trivial notational variants must have
the same epistemic structure. This requires that they invoke the same epistemic depen-
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dence relations. But how do we knowwhen two formulations have the same EDRs? What
is the criterion for sameness of EDRs and, more generally, sameness of epistemic struc-
ture? Here, I will defend a simple account of sameness of epistemic structure. Much more
could be said, since the issue parallels synonymy of meaning (of which there is a vast
literature). However, for my purposes it suffices to provide a plausible criterion for dis-
tinguishing different epistemic structures. My account relies on an equivalence between
plans, specifically plans for problem-solving. This will show that it is possible to draw an
intelligible and non-question-begging distinction.

Characterizing sameness of epistemic structure initially seems difficult for the following
reason: even obvious cases of trivial notational variants require knowing slightly differ-
ent relations (in some sense of “different”), simply because they involve different notation.
For instance, to solve a problem using a left-handed coordinate system, you need to un-
derstand the relevant convention. This left-handed convention is a fortiori different than
that of a right-handed convention. To take a linguistic analogy, knowing what “dogs
bark” means requires knowing some English, while knowing what the synonymous ex-
pression “die Hunde bellen” means requires knowing some German. It seems clear that
these kinds of conventional differences do not yield differences in meaning (in the rele-
vant sense). Typically, notation is a vehicle for communicating content, not the content
itself. Yet, if one simply stipulates that differences in convention or linguistic knowledge
are not epistemically significant, there is a risk of begging the question. What counts as
an epistemically significant difference is exactly what is in question here.

Fortunately, it cannot be the case that any change in notation suffices for an epistem-
ically significant change. Otherwise, there would be no such thing as trivial notational
variants. It would then be impossible to understand a sense in which “dogs bark” means
the same as “die Hunde bellen.” Clearly, there is sense to be made of this claim of syn-
onymy.²¹ Insofar as we take there to be trivial notational variants, we take there to be
some sense in which the epistemic structure of a formulation is not fully determined by
the notation we use to express it. When we say that “a dog cannot dissemble,” we assert
something independently of the particular language we voice it in. We assert the same
thing as what we could voice in German as “ein Hund kann nicht heucheln.” Of course,

²¹Even if one has sympathies for Quine’s skepticism about meaning and synonymy, it remains true that
ordinary assertions of synonymy often seem intelligible.
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saying the latter requires knowing some German, but knowledge of German is not essen-
tial for understanding the content of this sentence. Although understanding any sentence
requires understanding a notation, that does not make the notation part of the content of
the sentence.

Following Gibbard’s (2012) account of meaning, we can understand the synonymy of
“dogs bark” and “die Hunde bellen” as follows. Both sentences voice the same thought,
which we can denote either as dogs baRK or die Hunde bellen. To believe the sentences
are synonymous (in a given situation) is simply to plan to use “dogs bark” if I am an English
speaker in those situations that I would plan to use “die Hunde bellen” if I were a German
speaker, and vice versa. Hence, synonymy of meaning is simply a matter of synonymy
of plans. Although the English and German speaker know different languages, once we
extract away these linguistic differences, they know the same thing, namely the thought
that dogs baRK.

Applying Gibbard’s account of synonymy to epistemic structure yields a clear crite-
rion for trivial notational variance. Imagine that one could solve a given problem with
either a left-handed or a right-handed coordinate convention. In the left-handed case,
I appeal to an EDR expressed in the left-handed convention, denoted ‘EDRle f t .’ In the
right-handed case, I appeal to an EDR expressed in the right-handed convention, denoted
‘EDRright .’ EDRle f t and EDRright voice the same EDR provided that when working in a
left-handed convention, I plan to use EDRle f t in the same situations as I would plan to
use EDRright if I were working in a right-handed convention. Hence, although I techni-
cally need to know something different to work with EDRle f t rather than EDRright (and
vice versa), this difference is an artifact of my notation, rather than a genuine epistemic
difference in my problem-solving plan.

To clarify further, let’s consider a simple example worked out in detail. For many
problems, it does not make an epistemic difference whether we express percentages as
decimals or fractions. Instead, relative tomany problem-solving procedures, these two no-
tations are trivial notational variants: they voice exactly the same EDRs (albeit expressed
in their respective notations). We see this in the following kind of simple problem: you are
given a quantity and asked whether it is less than 5%. In the decimal formulation, you are
presented with ‘0.04.’ You know the following epistemic dependence relation, EDRdecimal :
to convert a decimal to a percent, it suffices to multiply by 100 and affix a percent symbol.
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In practice, this operation may involve moving the decimal point two slots to the right,
arriving at 4%. In the fraction formulation, you are presented with ‘4/100.’ You know the
following epistemic dependence relation, EDR f raction: to convert a fraction to a percent,
it suffices to multiply by 100 and affix a percent symbol. In practice, this operation may
involve canceling out the 100 in the denominator by the 100 we are multiplying, again
arriving at 4%. Despite their different notation and written operations, EDRdecimal and
EDR f raction voice the same EDR.

In each formulation, what I plan to do at each step of the problem-solving procedure
matches what I plan to do in the other formulation, up to the notational differences in
how I voice these inferences and carry them out on the page. Thus, these two expres-
sive means are trivial notational variants, relative to this problem-solving procedure. In
typical problem-solving contexts, similar morals apply to our choice of space-time met-
ric convention (mostly minus vs. mostly plus) or our choice to use Einstein summation
convention (vs. explicitly writing ‘Σi’ for each index i we sum over).

Unlike trivial notational variants, significant reformulations provide different plans for
solving problems. Ultimately, this is borne out as a difference in the epistemic dependence
relations that they exploit or make available. For example, in the bird–train problem,
someone using the hard formulation needs to determine the distance the bird travels on
its first segment, second segment, etc (or, alternatively, the time spent on each segment).
They then need to know how to sum the distance on these segments, relying on an EDR
for summing an infinite geometric series. An agent following the easy formulation does
not need to determine this information, nor rely on this EDR. This is a genuine difference
in epistemic structure, i.e. in problem-solving plan.

Making a Property Manifest

Although it is natural to speak about particular notations as being trivial notational vari-
ants or not, this is actually elliptical for whether two problem-solving procedures are
trivially different or not. Two notations can be trivial notational variants with respect
to one class of problems but non-trivial with respect to another. We see this already in
the case of decimals and fractions. If our problem is to determine how many people out
of 1000 have a certain medical condition, then presenting an incidence rate in fraction
form can be epistemically different from presenting the same quantity in decimal form.
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If you are told that the incidence rate is 6/1000, you can immediately infer that 6 out of
every 1000 people have this condition. In contrast, if you are told that the incidence rate
is 0.006, you need to know how to convert this decimal to a fraction out of 1000. The
notation “6/1000” makes manifest the number of cases out of 1000. The notation wears
the answer on its sleeves; no further EDR is required.

Making a property manifest is a more subtle kind of epistemic difference that arises in
many examples, such as polar vs. Cartesian coordinates, hidden vs. manifest symmetries,
planar representations of planar graphs, etc. Despite the existence of a translation proce-
dure from one notation to the other, there can be differences in when we are licensed to
make certain inferences—based on the notation we are using. For instance, if you were
told that the incidence rate is 6000/1000000, you again need to know how to convert
this to a fraction out of 1000, e.g. by dividing by 1000. Chapter 6 discusses how some
formulations succeed at making a property manifest, while others—even those related by
a translation—do not.

Hence, the existence of a translation procedure between notations does not entail that
they are always trivial notational variants. What matters is whether the notations ever
support problem-solving procedures with different epistemic structures, i.e. epistemically
different plans. If they do, then they are—in that context—non-trivial notational variants.
This can happen even if there is a uniform way to translate from one notation to another.
Trying to exploit a particular EDR in one notation might require translating to the other.
Whereas if we had started out in this latter notation, we would not need to translate.²²

This subtle kind of epistemic difference parallels how certain linguistic meanings can
be “lost in translation.” For instance, imagine that i) when solving a problem in English
you either need to look up a word in an English dictionary or translate a word to German,
but ii) if you were solving the same problem in German you would not need to do either.
In a case like this, the German formulation of this problem is epistemically different, even
if each German word can be translated to an English word. For instance, a German can
reliably guess that “die Speisekarte” voices the concept Menu, since “die Speise” means
‘dish’ or ‘food’ and “die Karte” means ‘card’ or ‘chart.’ In contrast, the meaning of the
English word “menu” is not manifest from knowledge of the English words “dish” and
“card.” Section 6.3 elaborates this example.

²²See Sections 6.2.1-6.5 for a few detailed illustrations.
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An analogous phenomenon arises in the context of mathematical isomorphisms. Two
mathematical objects can be isomorphic in one sense, but not another. For instance, two
objects can be isomorphic as vector spaces, but not as Lie algebras, or isomorphic as groups
but not as rings. To be isomorphic as vector spaces means that these objects support
the same plans for solving a particular class of problems. We could translate between
the objects for this class of problems and use either one for problem-solving. Yet, the
existence of a translation procedure in one context does not entail that this procedure
holds for every possible problem-solving context (e.g. problems in the context of Lie
algebras, where the vector isomorphism does not entail synonymy of problem-solving
plans in this new context).

Practical vs. Non-Practical Epistemic Differences

Focusing on sameness of epistemic structure also allows us to distinguish non-practical
epistemic differences from practical differences that can arise from notational choices.
For instance, I might have a strong preference to work in a right-handed coordinate con-
vention, to work with fractions rather than decimals, or to read ordinary rather than
mirror-image text. I might be considerably faster with one notation than the other. In-
deed, I might even be more reliable working with one notation than the other, making
fewer mistakes. Some of these practical differences, especially in terms of speed or re-
liability, might strike some philosophers as being genuinely epistemic.²³ It is of course
fine to call them ‘epistemic’ if one prefers. What matters is that they are importantly
different from the kinds of epistemic differences that significant reformulations provide.
Such differences in problem-solving plans exist independently of anyone’s preferences,
comfort-level, speed, or risk of error. They exist even for ideal computers (although not
necessarily for logically-omniscient agents). These non-practical epistemic differences
are what Section 1.2 calls “intellectually significant.” Practical differences in reliability or
speed between trivial notational variants are not epistemic in the same sense, even if one
wishes to call them epistemic in some other sense.²⁴

To take another example, consider how our beliefs are often subject to practically

²³See, for instance, Goldman (1986, 122ff.), who discusses speed as an epistemic standard for assessing
intelligence.

²⁴Chapter 5 further distinguishes between (i) practical differences in speed or convenience and (ii) non-
practical, intellectually significant differences. See especially Sections 5.6-5.7.
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important framing effects. Cognitive psychology has found evidence that people are more
likely to believe that the risk of disease is highwhen presented as a proportion, i.e. number
of people out of a reference population size (such as 5 out of 1000). People are more likely
to believe risk is low when the same information is presented as a percentage (e.g. 0.5%).
The former makes salient that actual people have this condition, and that you could be
one of those people. The latter does not, since percentages do not make the number of
people salient.²⁵ For instance, saying that 1 out of every 500 Americans have died from
COVID sounds much worse than the equivalent 0.2%. Despite being practically important
for rhetorical purposes, this is not an intellectually significant difference. What one ought
to believe about the risk does not depend on how the proportion is expressed.

A similar point holds for differences in problem-solving speed between formulations:
what one ultimately ought to believe does not depend on how quickly the problem can be
solved, or how resource-intensive its solution is. Of course, if one computer can get you
a solution in five minutes, and the other takes two weeks, that is practically important
for belief-formation. However, if the two computers implement the same solution proce-
dure (e.g. program)—just on different hardware—then there is no intellectually significant
difference between them.

To summarize, two problem-solving procedures have the same epistemic structure if
agents following either procedure ought to believe the same information, step-by-step.
This means that an agent following one procedure ought to plan to make the same infer-
ences as an agent following the other. Even though these procedures might be written in
different object languages, such differences are genuinely notational: they do not impact
the thoughts or content voiced.²⁶ Sameness of epistemic structure amounts to synonymy
of problem-solving plans. Trivial notational variants therefore display a symmetry of
epistemic structure: the epistemic structure of the problem-solving procedure is invari-
ant under the change in notation. This symmetry does not relate the notations themselves;
rather, it relates the problem-solving procedures written down in these notations. Hence,

²⁵For discussion, see Kahneman (2011, Ch. 30). Even worse, humans are biased by the size of the numer-
ator (neglecting the denominator), even when comparisons are both made in fraction form: people rated a
disease that killed 1286 out of 10000 people as riskier than one which killed 24.14 out of 100 people, even
though the former is half as deadly as the latter (Yamagishi 1997).

²⁶Of course, we assume that the agents begin in evidentially-equivalent starting points. Although they
might have knowledge of different languages or notation, these differences are intellectually insignificant.
Gibbard’s (2012) account of synonymy provides a detailed framework for explicating this intuitive condition
while avoiding vicious circularity.
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two notations might be trivial variants in one problem-solving context but not in another.
This is again analogous to isomorphism of mathematical structures. Whereas philosoph-
ical discussions of theoretical equivalence typically focus on equivalence of theories or
models, here we have focused on equivalence and non-equivalence of problem-solving
procedures. It is through these problem-solving procedures that we actually come to un-
derstand the world (or other subject matters such as mathematics).

2.7 Problems with Explanationism

I have argued that conceptualism meets the three desiderata laid out in Section 2.3. It
provides a middle ground between instrumentalism and fundamentalism about reformu-
lations. Of course, there might be other intermediate positions that meet these three
desiderata as well. Prima facie, one approach that seems attractive would involve tracking
putative differences in explanation. Perhaps two compatible formulations are epistemi-
cally different provided that they exhibit explanatory differences. I will call this schematic
proposal explanationism. It satisfies the first desideratum by holding that trivial nota-
tional variants are explanatorily on a par, whereas significant reformulations manifest
explanatory differences. Provided that these explanatory differences are local and epis-
temically accessible, explanationism will meet the second and third desiderata as well. In
this section, I argue that conceptualism has important advantages over explanationism. In
particular, conceptualism characterizes the epistemic differences between reformulations
without taking a stand on the contentious topic of explanation.

Whether or not two compatible formulations have an explanatory difference depends
on the nature of explanation. Different accounts of explanation give diametrically
opposed verdicts on the simple examples that we have considered. Hempel’s (1965)
deductive–nomological account treats both the easy and hard approaches to the bird–
train problem as equally explanatory: both appeal to the same law-like statement
(distance as a function of rate and time), the same initial conditions, and provide equally
rigorous derivations of the explanandum. Hence, a Hempelian explanationist would
have to view these as trivial notational variants. On a causal–mechanical account of
explanation, the hard approach to the bird–train problem might be viewed as more ex-
planatory, since it explicitly tracks additional causal details. Likewise for the Coulomb’s
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law approach to calculating electric flux, since this approach explicitly calculates the
electric field from each individual charge. A unificationist account of explanation
suggests the opposite verdict: by eliminating reference to these additional causal details,
the simple approach to the bird–train problem and the Gauss’s law approach both apply
to a wider range of phenomena.²⁷ Despite combining aspects of causal and unificationist
approaches, Strevens’ (2008) kairetic account of explanation would agree with the
unificationist verdict here. The kairetic account claims that whenever we can abstract
information from a causal model—while still saving the phenomena—this information is
explanatorily irrelevant.

These disagreements illustrate the important role that philosophical assumptions play
in assessing what information qualifies as explanatorily relevant. In contrast, we can
recognize that certain reformulations do not require information that another formulation
requires, without needing to make further philosophical assumptions about explanation.
Hence, we can more securely discern that reformulations display epistemic differences
than explanatory differences. Moving from a recognition of these epistemic differences
to claims about explanatory relevance requires further philosophical principles.

For instance, when we find out that knowledge of the distance traveled on each
leg of the bird’s journey is unnecessary for solving the bird–train problem, we might
be tempted to infer that this information is explanatorily irrelevant. Doing so requires
endorsing a philosophical principle like the following: contextually-unnecessary but
causally efficacious information is explanatorily irrelevant. Proponents of causal–
mechanical pictures of explanation may have different philosophical intuitions about
whether this contextually-unnecessary information is explanatorily irrelevant. They
might instead argue that tracking this information provides a deeper explanation, even
if this deeper explanation is unnecessary for many purposes. My point here is a simple
one: settling this sort of philosophical dispute is downstream from characterizing central
epistemic differences between compatible formulations. We can account for many of
the epistemic and methodological advantages of reformulations without settling these
further questions about explanation or explanatory relevance.

Most accounts of explanation agree on at least one aspect of explanation: explanations

²⁷For this traditional dialectic between causal-mechanical vs. unificationist account of explanation, see
Salmon (1998).
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provide answers to why-questions.²⁸ Explanatory information describes the reasons why
an event occurred or a fact is true. This aspect of explanation provides a second argument
for viewing explanatory differences as logically downstream from the epistemic differ-
ences that concern conceptualism. Logically, why-questions form a proper subset of a
larger category of scientific and mathematical questions. Not all problems take the form
of requests for explanatory information or reasons why. Hence, not all problem-solving
procedures provide explanations, even if they succeed at providing solutions. Questions
about whether a solution procedure is explanatory typically go beyond whether it pro-
vides the correct solution. We see this, for instance, in the case of mathematics: a rigor-
ous proof of a mathematical theorem may not count as explanatory. For instance, Lange
(2009b) argues that proofs by mathematical induction often fail to be explanatory.

In privileging conceptualism over explanationism, I do not deny that philosophical
questions about explanation and explanatory relevance are important. My point is merely
that various versions of explanationism could agree with my conceptualist analysis of re-
formulations, while disagreeing about the nature of explanation. Conceptualism is there-
fore much better suited to provide the minimal core of an account of reformulations. Hav-
ing adopted this minimal core, one can then defend further philosophical principles about
explanation and explanatory relevance. In this way, my complaint against explanationism
is similar to my complaint against fundamentalism: to assess important epistemic differ-
ences between reformulations, explanationism has to presuppose more than necessary.
Chapters 3 and 4 develop additional arguments against various versions of explanation-
ism, which I take to be the most compelling alternatives to conceptualism.

2.8 Conclusion

Ultimately, the value of reformulations comes from how they facilitate the aims of science.
An instrumentalist account of reformulations fits well with empiricist-friendly aims such
as prediction, control, and empirical adequacy. Reformulations can then be seen as instru-
mentally valuable for bringing about these scientific goods. Yet, instrumentalism lacks
adequate resources for distinguishing trivial from significant reformulations. Fundamen-
talism endorses a more metaphysically substantial aim for science, namely to arrive at a

²⁸This includes both irrealist frameworks such as van Fraassen’s (1980) pragmatic account and realist
approaches such as Skow’s (2016) causal–grounding account of reasons why.
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fundamental language for describing reality. It therefore has the resources to interpret
some reformulations as more than merely instrumentally valuable. According to funda-
mentalism, significant reformulations constitute more fundamental descriptions of real-
ity. However, this positive account comes at the cost of greater ontological commitments,
leading to worries about underdetermination.

Conceptualism provides a middle ground between instrumentalism and fundamental-
ism. It preserves the positive features of these accounts, while avoiding their drawbacks.
Understood in terms of the aims of science, conceptualism augments empiricist-friendly
aims with a further one: scientists should aim at clarifying the epistemic structure of
their theories. They should seek to determine what they need to know to solve scientific
problems. Just as empirical adequacy is a scientific good, so is the clarification of epis-
temic structure.²⁹ By figuring out what we need to know to solve problems, we enhance
our understanding of the world, independently of any further downstream benefits such
as greater fruitfulness, better explanations, or more fundamental descriptions. Significant
reformulations lead to different epistemic dependence relations. They thereby constitute a
clarification of epistemic structure. Provided this clarification is intellectually significant,
so is the reformulation that contributes to it. In this way, conceptualism can interpret
reformulations as having non-instrumental, epistemic value. Advantageously, conceptu-
alism’s positive account does not require any special-purpose ontological commitments.
It thus provides a minimal core for a positive appraisal of reformulations.

²⁹Chapter 5 argues that the clarification of epistemic structure is a constitutive aim of science. Meeting
this aim is part of the minimal success criteria for ideal scientific theorizing.

51



Chapter 3:

Understanding and Equivalent Reformulations

3.1 Introduction

Accounts of theoretical equivalence have neglected an important epistemological ques-
tion about reformulations: how does reformulating a theory change our understanding of
the world? Prima facie, improving our understanding is one of the chief intellectual ben-
efits of reformulations. Nevertheless, accounts of theoretical equivalence have focused
almost entirely on developing formal and interpretational criteria for when two formula-
tions count as equivalent (Weatherall 2019). Although no doubt an important question,
focusing on it alone misses many other philosophically rich aspects of reformulation.

The burgeoning literature on scientific understanding would seem to be a natural
home for characterizing how reformulations improve understanding. However, existing
accounts of scientific understanding do not provide a clear answer. These accounts tend
to focus on competing rather than compatible explanations, investigating how the best
explanation provides understanding. This strategy neglects how equivalent formulations
of the same explanation can provide different understandings. To address these gaps, I
will show how theoretically equivalent formulations can change our understanding of
the world.¹

Harkening back to Hempel, Kitcher, and Salmon, the received view of understanding
holds that understanding why a phenomenon occurs amounts to grasping a correct ex-
planation of that phenomenon (Strevens 2013; Khalifa 2017, p. 16). Many recent accounts
of understanding have decried this picture as overly simplistic, arguing that genuine un-
derstanding goes well beyond grasping an explanation (Grimm 2010; Hills 2016; Newman

¹Sections 3.3-3.6 of this chapter were published in Hunt (2021b).
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2013; de Regt 2017). Nevertheless, in trying to augment the received view, these critics
still maintain a close connection between explanation and understanding. Khalifa (2012,
2013, 2015) has exploited this connection to systematically undermine their more expan-
sive accounts. Defending what I’ll call explanationism, Khalifa (2017) has argued that we
can reduce understanding-why to the epistemology of scientific explanation. Explana-
tionism thereby poses a serious challenge to accounts of understanding that seek to go
beyond the received view.

Here, I argue that we can refute explanationism by considering theoretically equiva-
lent formulations. By definition, theoretically equivalent formulations agree completely
on the way the world is, thereby describing the exact same state of affairs. Moreover,
philosophers often adopt an ontic conception of explanation, wherein explanations them-
selves correspond to states of affairs, e.g. the reasons why an event occurs.² By agreeing
on the way the world is, equivalent formulations ipso facto provide the same explanations.
Nonetheless, they can differ radically in the understandings that they provide. Thus, con-
cerning many phenomena, theoretically equivalent formulations do not differ qua ex-
planation, even as they differ qua understanding. These differences in understanding—
without concomitant explanatory differences—make a separate account of understanding
necessary.

I begin in Section 3.2 by clarifying my target: explanationism. Next, Section 3.3 sum-
marizes Khalifa’s explanationist challenge for existing accounts of scientific understand-
ing, showing how they reduce to accounts of explanation. I focus in particular on how
Khalifa problematizes both skills-based accounts of understanding and a different strat-
egy developed by Lipton (2009) that foreshadows my own. Section 3.4 demonstrates that
theoretically equivalent formulations provide a large class of cases that meet Khalifa’s
challenge. In these cases, we have differences in understanding-why without differences
in explanation. In Section 3.5, I defend conceptualism as a positive account of these dif-
ferences in understanding. Conceptualism characterizes how such differences can arise
from the presentation and organization of explanatory information. It meets Khalifa’s
challenge while accommodating the significance of reformulations. Section 3.6 consid-

²For the ontic conception, see Salmon (1998 [1984], p. 325), Strevens (2008, p. 6), Craver (2014), and Skow
(2016). Non-ontic conceptions of explanation also often have an ontic component. My positive proposal
shows one way of assessing how reformulations change our understanding, without needing to assume or
defend an alternative pragmatic or epistemic conception of explanation.
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ers and rebuts an objection to my use of theoretically equivalent formulations. Finally,
Section 3.7 provides an extended illustration of my proposal in the context of Feynman
diagrams.

3.2 Explanationism

Philosophers who work on scientific understanding sometimes allege that traditional the-
ories of explanation neglected scientific understanding, or at least did not say enough
about it (de Regt 2017, p. 16). Nonetheless, these philosophers typically agree with tra-
ditional accounts of explanation on a central schema that connects understanding with
explanation. According to this “received view of understanding,” understanding why a
phenomenon occurs consists in grasping an explanation of that phenomenon.³ By tightly
connecting understanding-why with explanation, the received view transforms even tra-
ditional accounts of scientific explanation into aminimal account of scientific understand-
ing.

The received view suggests two sources for differences in understanding why a phe-
nomenon occurs. First, on the agentive side, these differences can spring from variation
in how agents grasp explanations. Most recent accounts of scientific understanding have
focused their attention here, arguing that understanding involves special skills or abili-
ties for grasping explanations.⁴ These agentive aspects of understanding-why are ideally
intersubjective but often idiosyncratic.⁵ Second, on the non-agentive side, differences in
understanding can arise from grasping different explanatory information, such as differ-
ent states of affairs or other ontic features of reality. Differences in ontic explanatory
features straightforwardly provide objective and non-pragmatic (i.e. ‘non-practical’) dif-
ferences in understanding. Insofar as traditional accounts of explanation have been in-

³For statements of this position see Strevens (2013), Khalifa (2017, pp. 16–8), de Regt (2017, p. 23), and
Potochnik (2017, pp. 123–4).

⁴See, for instance, de Regt and Dieks (2005), de Regt, Leonelli, et al. (2009), Grimm (2010), and Hills
(2016). Along with scientists’ cognitive abilities, Potochnik’s account of understanding relies on scientists’
research interests, background information, space-time location, and psychological characteristics (2017,
p. 100).

⁵de Regt (2017, p. 44) argues that the pragmatic nature of skills does not entail that the resulting under-
standing is problematically subjective. Potochnik makes a similar claim regarding her account of under-
standing, where “features of scientists themselves, including their interests and intentions, influence what
generates understanding” (2015b, p. 74). However, these agentive features seem less objective than both
explanatory differences in understanding and the epistemic differences that Chapter 2 considers.
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terested in scientific understanding, it has been in this second sense.
This traditional focus leads to explanationism, which claims that all objective and non-

practical differences in understanding arise from differences in the ontological content
represented or picked out by explanations.⁶ Phrased as a biconditional, explanationism
contends that an intellectually significant difference occurs if and only if there is a cor-
responding ontic explanatory difference. Such ontic differences comprise differences in
the worldly features responsible for the phenomenon of interest, such as laws of nature,
causes, mechanisms, grounds, and difference-makers. Explanations that appeal to differ-
ent ontic features straightforwardly lead to intellectual differences; this establishes one
direction of the explanationist biconditional. Many accounts of explanation also treat
such ontic differences as necessary for an intellectual difference, establishing the second
direction.

For instance, according to Hempel, “all scientific explanation […] seeks to provide a
systematic understanding of empirical phenomena by showing that they fit into a nomic
nexus” (1965, p. 488). Similarly, Trout argues that the only kind of understanding that
we should focus on is an objective kind coming from explanations, namely “the state pro-
duced, and only produced, by grasping a true explanation” (2007, pp. 584–5). Strevens
defends this same claim (2008, p. 3), arguing further that “science understands a phe-
nomenon just in case it can provide a standalone explanation of the phenomenon,” namely
“an explanation that is complete, that is not missing any of its parts” (2008, p. 117). Wood-
ward also frequently makes remarks that are congenial to explanationism, such as his
claim that “once we have been given information about the complete patterns of counter-
factual dependence […] it appears that nothing has been left out that is relevant to under-
standing why matters transpired as they did” (2003, p. 86). On this traditional conception,
non-ontic differences—such as differences in the mode of presentation of an explanation—
are seen as being practical or pragmatic.

As a thesis about the relationship between understanding and explanation, explana-
tionism is not itself an account of explanation. As such, there are a great variety of ex-
planationists, distinguished by their preferred accounts of scientific explanation. This in-
cludes defenders of both ontic and epistemic conceptions of explanation. As characterized

⁶What I am calling “explanationism” might more precisely be called “ontic explanationism.” It is distinct
from weaker positions seeking to reduce intellectual differences to both ontic and non-ontic features of
explanation.
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by Salmon, the “ontic conception” views explanations as objective and non-pragmatic fea-
tures of the world that exist independently of explanatory arguments or discoveries (1989,
p. 133). In this ontic sense, an explanation is “a relation among features of the world,”
namely the features “that cause, produce, or are otherwise responsible for the phenom-
enawe seek to explain” (Craver 2014, pp. 30, 36). In contrast, the “epistemic conception” of
explanation focuses on the representation of these ontic features. The epistemic concep-
tion privileges explanation-texts or explanatory arguments as being explanations proper.
Nevertheless, as Craver (2014) has argued, these explanation-texts must still refer to on-
tic explanatory information in order to distinguish explanations from non-explanations.
Thus, at least for my purposes here, the debate between epistemic and ontic accounts
is mainly terminological.⁷ For instance, the three approaches to crystal field theory dis-
cussed in Chapter 4 provide the same explanation in an ontic sense, but of course they
each provide a different explanation-text (and hence a different epistemic explanation).
What matters is that they agree on the ontic explanatory information, and it is immaterial
if we characterize this information within an ontic vs. an epistemic conception of expla-
nation. Hence, I intend to argue against any account of explanation that takes grasping
ontic explanatory information as necessary and sufficient for objective, non-pragmatic
differences in understanding.

Pragmatic or agentive accounts of understanding also aim to challenge explanation-
ism, but they are dialectically less effective for this purpose. Following Elgin (2004), Po-
tochnik (2017, p. 95) rejects the traditional factivity assumption that understanding re-
quires truth, requiring instead that the relevant claims be “true enough.” According to
Potochnik, whether a scientific claim is true enough to provide understanding depends
partly on pragmatic considerations, including “the purpose of the research to which it
contributes” (2017, p. 96). Ultimately, Potochnik extends these pragmatic considerations
to explanation, arguing that the audience “helps determine the nature of the explanatory
facts, that is, the ontic explanation” (2017, p. 128).⁸ However, it is unlikely that explana-
tionists would willingly grant the assumptions of a framework where ontic explanation
depends on features of agents. In general, explanationists are simply less interested in

⁷Even defenders of the epistemic conception, such as Bokulich, agree that “ontic constraints still play a
central role” in explanation (2018, p. 794).

⁸Morrison (2000, pp. 28–9) makes a similar claim that the explanatory power or acceptability of an
explanation depends partly on the scientific community or even individual scientists.
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more subjective, pragmatic conceptions of explanation or understanding.⁹
Pragmatic accounts of understanding face an additional problem, developed in the

next section. Khalifa (2012) has noted that accounts of explanation already implicitly
involve the use of skills. Agents obviously require some cognitive abilities to construct
and grasp explanations. For instance, Woodward’s manipulationist account of causal ex-
planation implicitly references the relevant skills for constructing and analyzing what-
if-things-had-been-different questions. Thus, explanationism already seems compatible
with skills-based accounts of understanding. In contrast, I intend to rebut explanationism
on its own terms by privileging its preferred sense of understanding. I will argue that ex-
planationism is incomplete even with regards to these objective and non-pragmatic differ-
ences in understanding. Whereas pragmatic accounts of understanding criticize explana-
tionism for reasons it might not find compelling, conceptualism points out a shortcoming
that even explanationists should regard as important.

3.3 The Challenge from Explanationism

By closely connecting understanding with explanation, traditional accounts of explana-
tion lead to a deflationary stance toward understanding. According to Khalifa, “on the
old view, if understanding was not merely psychological afterglow, it was nevertheless
redundant, being replaceable by explanatory concepts without loss” (2012, p. 17). Expla-
nationism encapsulates this deflationary position:

Explanationism: all philosophically significant aspects of understanding-why are en-
compassed by an appropriately detailed account of the epistemology of scientific ex-
planation.¹⁰

Importantly, even non-deflationary accounts of scientific understanding must adopt some
account of scientific explanation. Then, givenwhatever account of explanation is adopted,
explanationism demands an argument that understanding-why does not reduce to claims

⁹Hempel (1965, pp. 425–32) discusses pragmatic features of explanation at length, noting that although
they are important, they can be separated from his non-pragmatic account of explanation and understand-
ing. He remarks that “to propound those [non-pragmatic] models is therefore neither to deny the pragmatic
‘dimension’ of explanation nor to belittle its importance” (1965, p. 426).

¹⁰In earlier work, Khalifa refers to this position as the explanatory model of understanding (2012, p. 17).
Khalifa (2017, p. 85) uses “explanationism” in a narrower sense aimed at showing how objectual un-
derstanding can be reduced to explanatory understanding, ultimately defending what he calls “quasi-
explanationism.” For convenience, I simplify this more cumbersome terminology.
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about (this kind of) explanation. For this reason, explanationism is dialectically most
effective when married with explanatory pluralism (Khalifa 2017, p. 8). Then, no mat-
ter which account(s) of explanation is ultimately correct, explanationism challenges non-
deflationary accounts of understanding on their own terms.

Khalifa defends explanationism by developing the explanation-knowledge-science

(EKS) model: an agent improves their understanding why p provided that they either (a)
gain a more complete grasp of p’s explanatory nexus or (b) their grasp of this explanatory
nexus comes closer to scientific knowledge (2017, p. 14). The explanatory nexus is the
“totality of explanatory information about p,” comprising all correct explanations of p

and the relations between them (2017, p. 6). In Section 3.4, I will argue that knowledge
of this nexus does not exhaust differences in understanding-why. Khalifa argues that
scientific knowledge arises from a three-step process of scientific explanatory evaluation

(SEEing), involving i) considering plausible potential explanations, ii) comparing these
potential explanations, and iii) deciding how to rank these potential explanations with
respect to approximate truth (2017, pp. 12–13). Khalifa uses SEEing to deflate many
anti-explanationist accounts of understanding.

The primary anti-explanationist strategy argues that understanding-why involves
special skills or abilities. Provided these skills go beyond what’s required for knowledge-
why, explanationism would be refuted.¹¹ Versions of this skills-based strategy include
skills for grasping counterfactual information (Grimm 2010, 2014), “cognitive control”
over providing and manipulating explanations (Hills 2016), and inferential skills used
in making certain kinds of models (Newman 2013). de Regt has provided one of the
most sustained defenses of the skills-based strategy, arguing that understanding involves
the ability to make qualitative predictions using an intelligible theory that explains the
phenomenon (de Regt and Dieks 2005; de Regt 2009, 2017).

Khalifa’s criticism of Grimm succinctly illustrates explanationism in action. Khalifa
argues that Grimm’s (2010) account of understandingmakes no advance overWoodward’s
(2003) account of explanation. According to Grimm, understanding is an ability to pre-
dict how changing one variable changes another variable, ceteris paribus (2010, pp. 340–
41). Yet, as Khalifa notes—and Grimm acknowledges (2010, p. 341, 2014, p. 339)—this

¹¹Some have pursued other strategies, arguing that objectual understanding either does not reduce to
understanding-why or else that objectual understanding does not require explanatory understanding. Khal-
ifa responds at length to these approaches (2017, p. 80).
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kind of understanding is closely related to Woodward’s analysis of “what-if-things-had-
been-different questions.” Hence, this kind of counterfactual reasoning ability is part of
scientific explanatory evaluation (SEEing). We already deploy counterfactual reasoning
in considering and comparing alternative explanations, and explaining already involves
the ability to answer these what-if questions (Khalifa 2017, pp. 71, 74). Khalifa’s response
is easily generalized: if all that a theory of understanding adds is referencing a cogni-
tive ability to use an explanation, then a theory of explanation can make the same move
without modification.¹²

A distinct anti-explanationist strategy seeks cases of scientific understanding in the
absence of explanations. Such cases would seemingly show that accounts of explana-
tion miss something about understanding. Undertaking precisely this strategy, Lipton
(2009) considers a number of caseswherewe acquire the cognitive benefits of explanations
without actually providing explanations. These cognitive benefits include knowledge of
causes, necessity, possibility, and unification (2009, p. 44). Against the received view, Lip-
ton identifies understanding with “the cognitive benefits that an explanation provides”
rather than with “having an explanation” (2009, p. 43). This maintains a close connection
between understanding and explanation.

Khalifa (2013) exploits this connection to argue that Lipton’s strategy makes no
fundamental advance over the explanation literature. Systematically examining each
of Lipton’s examples, Khalifa shows that whenever there is understanding through a
non-explanation, there is an explanation that provides that understanding and more.
This leads to “explanatory idealism” about understanding, which holds that “other modes
of understanding ought to be assessed by how well they replicate the understanding
provided by knowledge of a good and correct explanation” (2013, p. 162). Thus, a
suitably detailed account of scientific explanation would provide the same insights about
understanding that Lipton defends. In this way, explanation functions as the “ideal of
understanding” (Khalifa 2013, p. 162).

The remainder of this chapter defends a strategy that avoids Khalifa’s objections
against existing accounts of scientific understanding. My strategy succeeds where

¹²Khalifa (2012) applies this strategy to criticize de Regt and Dieks (2005) and de Regt (2009) in detail.
Against Hills, Khalifa argues that her necessary conditions for understanding are either irrelevant for en-
hancing understanding or else are captured by the EKS model (2017, pp. 70–72). He responds to Newman
in his (2015).

59



others fail for two reasons. First, I do not rely on positing any special abilities unique
to understanding, so Khalifa’s challenge from SEEing does not apply. Second, the
examples I consider provide understanding through the same explanatory information,
so explanatory idealism does not apply either.

3.4 Intellectual Differences without Explanatory Differences

To refute explanationism, it suffices to identify differences in understanding-why between
two presentations of the same explanation, since these appeal—ipso facto—to the same ex-
planatory information. In such cases, understanding-why still arises from an explanation,
but non-explanatory differences account for the corresponding differences in understand-
ing. The features we ascribe to “understanding-why” and to “explanation” then truly come
apart. For convenience, I refer to objective, non-practical differences in understanding
as intellectual differences. This section discusses cases of intellectual differences without
concomitant explanatory differences.

To forestall a piecemeal explanationist response, my argument requires a sufficiently
large class of examples stemming from scientific practice. As we will see, the recent lit-
erature on theoretical equivalence provides a rich set of cases, spanning many parts of
physics. Nevertheless, some might worry that these mathematical reformulations are too
isolated or special to be indicative of scientific understanding in general. Hence, it is
worthwhile to also consider a more common aspect of scientific practice: diagrammatic
reformulations. I will consider both cases in turn, illustrating each with a paradigmatic
example.¹³ Importantly, my argument does not apply to cases of different but comple-

mentary explanations, such as Salmon’s example of causal-mechanical vs. unificationist
explanations of a balloon moving forward upon takeoff in an airplane (Salmon 1998, p. 73;
de Regt 2017, p. 77). Such complementary explanations appeal to different explanatory in-
formation and are hence genuinely different explanations. Khalifa’s EKS model of under-
standing accommodates such cases since they reference different parts of the explanatory
nexus (2017, p. 25).

By definition, theoretically equivalent formulations express the same scientific theory,
agreeing exactly on the way the world is (or could be). Intuitively, two formulations

¹³Reformulations of symmetry arguments provide another class of examples; see Chapter 4.
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are theoretically equivalent if and only if they are mutually inter-translatable and em-
pirically equivalent. Mutual inter-translatability requires that anything expressed in one
formulation can be expressed in the other without loss of physically significant informa-
tion. Empirical equivalence requires that the formulations agree on all physically possible
measurable consequences.

Recent defenses of categorical equivalence have shown it to be a fruitful criterion for
theoretical equivalence. It successfully formalizes a number of philosophically and sci-
entifically plausible cases of theoretically equivalent formulations.¹⁴ Five prominent ex-
amples include Lagrangian and Hamiltonian formulations of classical mechanics (Barrett
2019), standard and geometrized formulations of Newtonian gravity theories (Weatherall
2016), Lorentzian manifold and Einstein algebra formulations of general relativity (Rosen-
stock, Barrett, et al. 2015), Faraday tensor and 4-vector potential formulations of classical
electromagnetism (Weatherall 2016), and principal bundle and holonomy formulations of
Yang–Mills gauge theories (Rosenstock andWeatherall 2016). Here, then, is a varied class
of cases that collectively pose a serious problem for explanationism.

In each of these cases, I contend, we have intellectual differences without correspond-
ing explanatory differences. Each formulation provides a different understanding than its
equivalent counterpart for at least the following simple reason: understanding one does
not entail understanding the other (and indeed, showing that they are equivalent requires
non-trivial insights). For instance, understanding a phenomenon via Lagrangian mechan-
ics does not entail an understanding of that same phenomenon using Hamiltonian me-
chanics. Thus, Lagrangian understanding-why differs from Hamiltonian understanding-
why, even though both involve grasping the same explanation. The lack of explanatory
differences follows from categorical equivalence, which entails that we can inter-translate
models of one formulation into models of the other without losing any information.¹⁵ In
other words, equivalent formulations possess “the same capacities to represent physical
situations” (Rosenstock, Barrett, et al. 2015, p. 315). On the common ontic conception of
explanation assumed here, explanatory information itself is a subset of this physical infor-
mation, so equivalent formulations a fortiori represent the same explanatory information.

¹⁴For an introduction see Halvorson (2016, p. 601) and for details Weatherall (2016, 2019).
¹⁵For defenses of this claim, see Weatherall (2016, pp. 1083, 1087) and Rosenstock, Barrett, et al. (2015,

p. 314). My argument in Chapter 4 has the advantage of not presupposing that categorical equivalence is a
good standard for theoretical equivalence.
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Thus, whenever one formulation provides an explanation, any equivalent formulation
provides the same explanation, preserving everything of ontic explanatory significance—
but not necessarily of intellectual significance.

Lagrangian and Hamiltonian mechanics provide a simple but detailed illustration of
the foregoing points.¹⁶ These equivalent formulations display two main sources of in-
tellectual differences. First, they differ in how they encode the system’s dynamics. The
Lagrangian formalism uses a Lagrangian function L(qi, q̇i, t), encoding the dynamics as a
function of time t , generalized coordinates qi, and generalized velocities q̇i. In the Hamil-
tonian formalism, we perform a variable change from generalized velocities to generalized
momenta pi, yielding the Hamiltonian H(qi, pi, t). Despite encoding the same physical in-
formation, the Lagrangian and Hamiltonian organize this information differently, as illus-
trated below. Second, the two formulations represent the dynamical laws of evolution (the
equations of motion) in dramatically different ways. Whereas the Lagrangian formulation
represents these as a set of n-many 2nd-order differential equations (the Euler–Lagrange
equations), the Hamiltonian formulation represents these same equations of motion as a
set of 2n-many 1st-order differential equations (Hamilton’s equations).¹⁷ By reorganizing
the equations of motion in this way, the Hamiltonian formulation treats the generalized
coordinates qi and the generalized momenta pi more symmetrically. This leads to further
intellectual differences in cases like the following.

A typical explanandum in mechanics concerns the evolution of a classical system such
as a pendulum or spinning top. In systems with symmetry, one generalized coordinate,
e.g. qn, is typically ignorable—meaning that it does not occur in the Lagrangian or Hamil-
tonian. The equations of motion then entail that the corresponding conjugate momen-
tum, pn, is a conserved quantity, i.e. a constant α . It is here that a dramatic intellectual
difference occurs between the formulations. Despite pn being constant, the correspond-
ing generalized velocity q̇n need not be. Hence, q̇n still appears in the Lagrangian as a
non-trivial variable. A Lagrangian understanding of the system’s evolution thereby still
requires considering n-many degrees of freedom, despite having an ignorable coordinate.
In contrast, the Hamiltonian formalism enables a genuine reduction in the number of de-

¹⁶Technically—within a subclass of models known as the hyper-regular domain—Barrett (2019) shows
that the Lagrangian tangent bundle and Hamiltonian cotangent bundle formulations are equivalent. For
ease of exposition, I present their more elementary coordinate-based formalisms. For details see Goldstein
et al. (2002).

¹⁷In both cases, we require 2n initial values to solve these equations.
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grees of freedom that need to be considered, resulting in a different understanding. By
changing variables from generalized velocities to generalized momenta, the Hamiltonian
depends on the latter but not the former. Hence, we can replace pn in the Hamiltonian
with a constant α , and—since the ignorable coordinate qn is absent—this eliminates an
entire degree of freedom from consideration.¹⁸ As Butterfield remarks, this example “il-
lustrates one of mechanics’ grand themes: exploiting a symmetry so as to reduce the
number of variables needed to treat a problem” (2006, p. 43). Although not an explanatory
difference, this variable reduction demonstrates a difference in how the same explanatory
content is organized. This organizational difference results in a different understanding of
the system’s evolution. Indeed, these kinds of organizational differences ultimately lead
to differences in understanding Noether’s first theorem—a foundational result connecting
continuous symmetries and conserved quantities (Butterfield 2006).

Thanks to their rigorous mutual inter-translatability, categorically equivalent formu-
lations provide the most precise illustration of my argument. However, at a less rigorous
level, theoretically equivalent formulations can arise whenever we reformulate a theory
while keeping its physical content the same. This motivates including at least some in-
stances of diagrammatic reasoning within the class of theoretically equivalent formula-
tions. Although neglected by the literature on theoretical equivalence, diagrammatic re-
formulations satisfy the same intuitive criteria: mutual inter-translatability and empirical
equivalence. They thereby provide another large class of examples where we can have
differences in understanding-why without concomitant explanatory differences. Exam-
ples of diagrammatic reformulations include Feynman diagrams in particle and condensed
matter physics, graphical approaches to the quantum theory of angular momentum (Brink
and Satchler 1968), Penrose–Carter diagrams in space-time theories, graph-theoretic ap-
proaches to chemistry (Balaban 1985; Trinajstić 1992), and diagrams for mechanistic rea-
soning in biology (Abrahamsen and Bechtel 2015).

To illustrate how diagrammatic reasoning can provide intellectual differences, con-
sider Feynman diagrams in particle physics. Here, the explanandum is typically a scat-
tering amplitude for a particular interaction, explained by calculating terms in a pertur-
bation expansion. Without using Feynman diagrams, we can calculate each term up to a
desired order in perturbation theory. This provides one way of understanding the scatter-

¹⁸Technically, we replace one of Hamilton’s equations with a trivial integral for calculating q̇n.

63



ing amplitude. Alternatively, we can reorganize this same explanatory information using
Feynman diagrams, allowing us to express connectivity properties of terms in the pertur-
bation expansion. To calculate the scattering amplitude, it suffices to know the connected
terms; the disconnected terms contribute only to the non-interacting part of the scattering
amplitude, i.e. the identity.¹⁹ Focusing on connectivity thereby makes it unnecessary to
consider a vast number of terms in the perturbation expansion—terms that a brute force
calculation would show contribute only to the identity. In this way, Feynman diagrams
lead to a different understanding of scattering amplitudes but without introducing any
additional explanatory information.²⁰ Section 3.7 discusses Feynman diagrams in detail.

3.5 A Conceptualist Account of Understanding

I have argued that a variety of mathematical and diagrammatic reformulations provide
intellectual differences without associated explanatory differences. If not from explana-
tory differences, whence do these intellectual differences arise? Conceptualism provides
a satisfying answer, showing how intellectual differences can result from differences in
the organization of explanatory information. These organizational differences generate
differences in what we need to know to present explanations, leading to differences in
understanding-why. I will consider an objection that conceptualismmerely describes how
reformulations modify explanatory concepts, with no effect on understanding-why. To
rebut this objection, I will argue that non-trivial changes in explanatory concepts neces-
sarily lead to differences in understanding-why.

Conceptualism posits a sufficient condition for differences in understanding-why: re-
formulating an explanation generates an intellectual difference whenever it changes what
we need to know or what suffices to know to present that explanation. For instance, in
shifting from Lagrangian mechanics to Hamiltonian mechanics, we learn that we don’t
need to know how to represent the system and its dynamics using the Lagrangian and
the Euler–Lagrange equations. Knowledge of the Hamiltonian and Hamilton’s equations
suffices. Mutatis mutandis, the same can be said for shifting from Hamiltonian mechanics

¹⁹In position space, a term is connected if there is a path of propagators connecting every pair of source
factors and/or vertex factors in the term. For details, see Section 3.7.

²⁰de Regt (2017, p. 251) also considers Feynman diagrams to defend his account of understanding, focusing
on how they aid visualization.
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to Lagrangian mechanics, leading again to a difference in understanding. Similarly, re-
formulating scattering amplitude explanations using Feynman diagrams teaches us that
we don’t need to know the disconnected terms in the perturbation expansion: knowledge
of the connected terms suffices. For convenience, I refer to these differences in what-we-
need-to-know or what-suffices-to-know as epistemic dependence relations (EDRs). Con-
ceptualism claims that when equivalent formulations provide different epistemic depen-
dence relations, they manifest intellectual differences.

To rebuff explanationism, these intellectual differences must be genuine differences in
understanding why empirical phenomena occur. If instead these intellectual differences
concern some other kind of understanding, explanationism is left unscathed. Accord-
ingly, an explanationist might argue that differences in EDRs do not genuinely affect
understanding-why. Rather, these differences might merely affect our understanding of
the concepts used to represent explanations, concepts such as Lagrangians, Hamiltonians,
connected diagrams, Lorentzian manifolds, etc.²¹ If so, conceptualism would have failed
to identify a genuine source of intellectual differences.

Conceptualism agrees with part of this objection: in the first instance, reformulat-
ing an explanation changes our understanding of that explanation. However, non-trivial
changes in understanding an explanation entail differences in understanding-why. Con-
ceptualism reframes this claim as a simple bridge principle:²²

Intellectual bridge principle (IBP): A non-trivial difference in understanding an expla-
nation of p entails a different understanding why p.

According to this bridge principle, organizing the same explanatory information differ-
ently can lead to a different understanding-why, as we have seen in the case of Lagrangian
and Hamiltonian mechanics. Different ways of understanding an explanation are non-

trivial provided that they are not merely conventional differences in presenting an expla-
nation. Hence, the intellectual bridge principle excludes a large class of trivial notational
variants from counting as intellectually significant.²³ For instance, uniformly replacing “5”

²¹I adapt this objection from Khalifa (2017, p. 138), who develops it against Lipton (2009).
²²de Regt similarly argues that understanding a phenomenon necessarily requires being able to under-

stand a theory (2017, p. 44). However, I disagree with de Regt that understanding a theory is inherently
pragmatic or contextual.

²³Grammatically, “intellectually significant” is analogous to “explanatorily significant.” It characterizes
differences that matter for understanding—specifically the non-practical, objective dimensions of under-
standing.
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everywhere with “V” in an Arabic numeral system would result in different presentations
of many explanations, but these differences would be trivial, rather than intellectually
significant. Similarly, recasting an explanation using a left-handed coordinate system
rather than a right-handed one would not result in any differences in understanding-
why. Although it is difficult to precisely delimit trivial from non-trivial reformulations,
my defense of conceptualism only requires clear cases of non-trivial reformulations, such
as those developed in Section 3.4. Conceptualism posits that a difference in EDRs is both
necessary and sufficient for an intellectually significant difference. Trivial notational vari-
ants do not provide different EDRs and hence do not generate intellectual differences.²⁴

In response, an explanationist might attempt to reject this bridge principle. How-
ever, the IBP follows straightforwardly from the received view of understanding, which
explanationism seeks to uphold. Recall that according to the received view, understand-
ing why a phenomenon occurs amounts to grasping an explanation of that phenomenon.
Grasping explanations requires that we can represent them, and any way of representing
explanations involves concepts. Hence, understanding the relevant explanatory concepts
is necessary for understanding-why. Understanding-why is thereby derivative on the way
that we have understood this explanation, such as the epistemic dependence relations we
have used to present it. Thus, at least some changes in explanatory concepts must lead
to concomitant changes in understanding-why. In other words, any account of under-
standing requires a bridge principle to connect our explanatory concepts with achieving
understanding.

With these distinctions in hand, conceptualism straightforwardly identifies the ori-
gins of intellectual differences between the equivalent formulations mentioned in Sec-
tion 3.4. To take one example, the Einstein algebra formalism is markedly different from
the standard formulation of general relativity. It teaches us that we don’t need to know
the standard Lorentzian manifold and metric concepts to provide explanations in general
relativity. Instead, we can reorganize all of the relevant explanatory information using
algebraic notions, as Geroch (1972) has argued. Since this reformulation changes what we
need to know to present explanations, it is not a trivial notational variant of the standard
formulation. It thereby satisfies the intellectual bridge principle, leading to a different
understanding-why for phenomena explained by general relativity.

²⁴Section 2.6.3 defends this criterion for distinguishing trivial from significant reformulations.
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By itself, conceptualism does not provide a full-fledged account of scientific under-
standing. Instead, it illuminates an important facet of understanding that has been ne-
glected in the literature. Due to its minimal commitments, conceptualism can be adjoined
with existing accounts of understanding, particularly those allied against explanation-
ism. Although compatible with skills-based accounts of understanding, conceptualism
does not assume any special role for skills or abilities. The key insight behind my po-
sition is that how a theory-formulation organizes explanatory information matters for
understanding. Scientific agents perform no more special a role than grasping this orga-
nizational structure. For these reasons, my position is not susceptible to the explanationist
strategy against skills-based accounts considered in Section 3.3. Likewise, since conceptu-
alism focuses on how recasting explanations changes understanding, it does not succumb
to Khalifa’s objections to Lipton’s (2009) understanding without explanation proposal.

3.6 An Objection against Explanatory Equivalence

In response, an explanationist might reject my argument in Section 3.4 that theoreti-
cally equivalent formulations provide the same explanation. They might argue that in
such cases, one formulation takes explanatory priority. There are at least two candidate
sources of explanatory priority. First, one formulation might be physically privileged.
For instance, Curiel (2014) privileges Lagrangian mechanics for allegedly encoding the
kinematic constraints of classical systems. Second, one formulation might be more fun-
damental than another. This metaphysical difference would presumably entail a corre-
sponding explanatory difference, wherein the more fundamental formulation provides
a better explanation (Sider 2011, p. 61). Differences in joint-carving or perfectly natural
properties would then be part of the explanatory nexus. For instance, North (2009) argues
that Hamiltonian mechanics is more fundamental than Lagrangian mechanics.²⁵

However, this objection sits uneasily within the broader dialectic of Khalifa’s expla-
nationism. Recall from Section 3.3 that to uniformly problematize multifarious accounts
of understanding, Khalifa adopts a form of explanatory pluralism. Otherwise, we could
easily designate some aspects of explanation (e.g. the causal-mechanical ones) as gen-
uinely explanatory while viewing other aspects (such as unification) as mattering for un-

²⁵See Section 2.5 for some problems facing appeals to differences in joint-carving or fundamentality.
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derstanding but not explanation. Insofar as explanationism requires pluralism, it cannot
preclude the interpretation of theoretically equivalent formulations adopted in Section 3.4.
It must allow philosophers to interpret cases of theoretically equivalent formulations as
being just that: genuinely equivalent both physically and metaphysically.²⁶ If explana-
tionists instead adopt explanatory monism, they will be unable to systematically recast
all purported differences in understanding as explanatory differences. The explanationist
is thus caught on the horns of a dilemma. Either they renounce explanatory pluralism
and thereby fail to systematically deflate skills-based accounts of understanding, or they
maintain pluralism and thereby allow that theoretically equivalent formulations provide
the same explanation but different understandings. For those who are happy to reject
explanatory pluralism, Section 4.4 poses further problems for explanationism.

3.7 An Extended Illustration: Feynman Diagrams

To illustrate features of understanding that conceptualism illuminates, I consider the case
of Feynman diagrams in particle physics. I will argue that Feynman diagrams provide an
important way of understanding scattering experiments at least in virtue of their formal
representational features, setting aside features that might depend on human psychol-
ogy. I will focus on the formal role that Feynman diagrams perform in representing the
connectivity properties of terms in a perturbation expansion.²⁷ These properties make it
unnecessary to consider a vast number of terms in the perturbation expansion. This leads
to uniform expressions for simplified formulas that describe particle scattering. Yet as we
will see, Feynman diagrams are not unique in providing this representational capacity.
When it comes to formally expressing connectivity, other representational frameworks
succeed just as well. I leave open whether additional non-psychological, formal features
can account for the prima facie differences between Feynman diagrams and these other
frameworks. My primary goal is to provide a detailed example illustrating my strategy

²⁶As Rosenstock et al. note, “it seems far more philosophically interesting to recognize that the world
may admit of such different, but equally good, descriptions than to argue about which approach is primary”
(2015, pp. 315–16). Chapter 6 further rebuts appeals to differences in joint-carving.

²⁷Although it is typically the diagrams themselves that are called ‘connected’ or ‘disconnected,’ each
diagram corresponds to a term in a perturbation series. Hence, we can say that a term is connected if it
arises from a connected diagram.
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for meeting Khalifa’s challenge to accounts of understanding.²⁸
The connectivity properties of Feynman diagrams are simply one of their many

methodologically beneficial features. Arguably, some of these other features are even
more important. Nevertheless, for my goals here, it suffices to identify a single intellectu-
ally significant feature, so as to illustrate the kind of epistemic value that conceptualism
highlights. Hence, I focus on a single way in which Feynman diagrams contribute
non-practical, epistemic value.

Before diving into the gory details for computing scattering amplitudes, it helps to
see a schematic overview of the two formulations under discussion. On the one hand,
we have what I will call the naïve approach to amplitudes. This approach proceeds by
naïvely applying perturbation theory, similar to the elementary approach to crystal field
theory discussed in Chapter 4. For each scattering process of interest, we can calculate
terms in a perturbation expansion to approximate the scattering amplitude. The naïve
approach lacks the expressivemeans to express the connectivity properties of terms. From
the standpoint of convenience, this results in having to calculate many more terms in
the perturbative expansion. From the standpoint of intellectual significance, failure to
express connectivity propertiesmakes it impossible to express the following EDR: only the
connected terms in the perturbative expansion contribute non-trivially to the scattering
amplitude. The disconnected terms contribute to the trivial part of the scattering matrix,
i.e. the identity. This trivial part represents processes where the particles do not interact.

What I will call the sophisticated approach to scattering amplitudes remedies this ex-
pressive limitation. By expressing the connectivity properties of terms, it provides the
aforementioned epistemic dependence relation: in order to calculate the scattering am-
plitude to a given order in perturbation theory, it suffices to analyze a finite number of
connected terms. In other words, it is not necessary to calculate the disconnected terms.
This epistemic dependence relation is an instance of modularization. It allows us to de-
compose the problem of calculating a scattering amplitude into the sub-problems of (i)
determining and then (ii) calculating the connected terms. Feynman diagrams are one
way to carry out out this sophisticated approach, but other expressive means also provide
ways to express connectivity, which is all this approach requires.

²⁸For technical background and formal results, see for instance Srednicki (2007, §§8–10) and Lancaster
and Blundell (2014, §§16–20, 22, and 24).
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These two formulations of scattering amplitudes show how we can have differences
in understanding without differences in explanation. Both formulations ultimately pro-
vide the same explanation for a given amplitude. They appeal to the same physical laws
governing interacting quantum field theories. Likewise, they appeal to the same terms in
the perturbation expansion (with the same physical content). Thus, the formulations are
compatible rather than competing. The explanation that one provides is (at least) as true
(or false) as the other, and for the same physical reasons. Whereas the naïve approach
shows by brute force calculation that various terms contribute only trivially, the sophis-
ticated approach takes a shortcut through connectivity. Modularizing the perturbation
theory calculation to focus on connected terms does not change the explanation. Rather,
it changes how we express this explanation.

Against my claim of explanatory parity, some might object that only the sophisticated
approach shows that the disconnected terms are “explanatorily irrelevant,” since they do
not contribute to the non-trivial, interacting part of the scattering amplitude. Assum-
ing that irrelevant information detracts from an explanation, this would render the naïve
approach less explanatory. This objection is misguided for two reasons. First, the discon-
nected terms are not explanatorily irrelevant: it matters for the scattering amplitude that
they do not contribute to the interacting part. If they did contribute, then the interacting
part of the amplitude would be different. Second, both approaches do in fact show that
the disconnected terms only contribute to the trivial part of the scattering matrix (either
by a brute force calculation or by connectivity properties).

Similar remarks apply to the use of selection rules throughout quantum physics and
chemistry. It is explanatorily relevant, not irrelevant, that various matrix elements of
physical operators vanish. For the purposes of providing an explanation, it does notmatter
if we determine these vanishing matrix elements by brute force calculations or by elegant
symmetry arguments. It does, however, matter for the purposes of understanding the
phenomena at hand.

Sections 3.7.1-3.7.3 provide details about computing scattering amplitudes using per-
turbation theory and Feynman diagrams. Readers who are satisfied with a schematic
philosophical understanding of this example can skip ahead to either the philosophical
analysis in Section 3.7.4 or to the concluding section of this chapter.
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3.7.1 Generating functionals as a Taylor expansion

To compute scattering amplitudes and decay cross-sections for an interacting quantum
field theory, one standard method constructs a generating functional ZI(J), where the “I”
stands for “interacting” and the “J” stands for a source term for a quantum field. By defini-
tion, the generating functional is the probability amplitude for starting out in the vacuum
state and remaining in the vacuum state in the presence of a source term J: ZI(J)≡⟨0 |0⟩J .
The point of this subsection is to motivate an expression for the generating functional as
a Taylor expansion (Equation 3.5). This then enables the use of perturbation theory to
approximate the scattering amplitude.

To construct the generating functional, we start by expressing it as a path integral:

ZI(J) =
ˆ

Dϕ ei
´

d4x [L0+LI+Jϕ ] (3.1)

Here, L0 is the free Lagrangian (devoid of all interaction terms), whereas LI is the inter-
acting part of the total Lagrangian. To illustrate, we will consider the case of ϕ 3-theory,
given by the following Lagrangian:

L =
1
2

∂ µϕ∂µϕ − 1
2

m2ϕ 2 +
1
6

gϕ 3 (3.2)

The free Lagrangian consists of the kinetic and potential energy terms: L0 =
1
2∂ µϕ∂µϕ −

1
2m2ϕ 2. The interacting Lagrangian comprises the interaction term: LI =

1
6gϕ 3 where g

is the coupling strength between the ϕ -fields.
The free field Lagrangian L0 has a generating functional that we can represent ex-

actly as an exponential of a product of source fields and a free field propagator ∆(y− z),
integrated over the field variables (note that these propagators end up being crucial to
determining whether a term is connected or disconnected):

Z0(J) = exp
[

i
2

ˆ
d4x d4x′ J(x)∆(x− x′)J(x′)

]
(3.3)

This lets us express the generating functional for the interacting theory as a functional
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derivative of this free-field generating functional, proportional up to normalization:²⁹

ZI(J) ∝ exp

[
i
6

g
ˆ

d4x
(

1
i

δ
δJ(x)

)3
]

Z0(J) (3.4)

We can then proceed to apply perturbation theory by expanding ZI(J) as a Taylor expan-
sion in powers of g and J, which yields the following:

ZI(J) ∝
∞

∑
V=0

1
V !

[
ig
6

ˆ
d4x

(
1
i

δ
δJ(x)

)3
]V

×
∞

∑
P=0

1
P!

[
i
2

ˆ
d4yd4zJ(y)∆(y−z)J(z)

]P

(3.5)

Each order of perturbation theory corresponds to the power of g in the corresponding
terms, i.e. the value of the expansion parameter V . Hence, to compute the generating
functional to first order in perturbation theory, we would compute all terms withV = 0,1.

We do this by considering all possible ways that the functional derivatives
(

1
i

δ
δJ(x)

)3

can act on the source–propagator–source terms J(y)∆(y− z)J(z). Since each functional
derivative annihilates a single source term, we see that the remaining number of source
terms J(x) is given by E = 2P − 3V (each propagator term supplies 2P source terms,
and each functional derivative term supplies 3V functional derivatives). Clearly, we only
require that E is non-negative, so for any given choice of V there will be infinitely many
terms corresponding to the summation over P.

3.7.2 Connected vs. disconnected terms and diagrams

The infinite number of terms in Equation 3.5 initially makes the perturbation theory cal-
culation seem intractable: we can seemingly never finish computing all relevant terms to
any given order in perturbation theory.³⁰ There are at least two ways for reducing this
infinite number of terms to a computationally tractable finite number of terms. The seem-
ingly most naïve approach would proceed by showing that after a certain point, additional
propagator terms do not contribute non-trivially to scattering amplitudes and decay rates.

²⁹The δ
δJ(x) term indicates that we are taking a functional derivative acting on the free-field generating

functional Z0(J).
³⁰Note that this infinity of terms has no essential connection to the infinite divergences handled by renor-

malization methods. I do not consider the complexities of renormalization here. A more in-depth investiga-
tion would articulate how formal features of Feynman diagrams also underlie their utility for understanding
renormalization.
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Physically, these additional propagator terms correspond to particles entering and exit-
ing without scattering. Formally, we would show that once we have fixed V , there is
an upper bound on P for the resulting terms to be non-trivial. Ultimately, I will argue
that the formal deficiencies of this naïve approach illustrate how Feynman diagrams (and
other representational methods considered below) provide a different understanding of
scattering processes, while providing no differences qua explanation.

A more sophisticated approach to handling the Taylor expansion of Equation 3.5 relies
on the following insights: for any choice ofV , there are a finite number of connected terms.
Additionally, it is only the connected terms that contribute to the non-trivial, interacting
part of the scattering amplitude. Hence, in order to compute the generating functional to a
desired order in perturbation theory, we need only consider the corresponding connected
terms. This insight lies behind the power and utility of Feynman diagrams. Nevertheless,
Feynman diagrams are simply one (particularly perspicuous) method for expressing the
connectivity properties of these terms.

At this point, a disclaimer is in order: standard presentations speak only of connected
or disconnected diagrams, where ‘connected diagram’ means a path-connected graph.
In contrast, the sophisticated approach ascribes the property of connectedness to terms
in the perturbation expansion. In general, we can say that a term is connected if and
only if it arises from a connected diagram (likewise for a disconnected term). This non-
standard usage is necessary in order to make the naïve approach commensurable with
the sophisticated approach. It is necessary to focus on properties of the terms in the
perturbation expansion, rather than properties of any particular way of representing those
terms.

In a position space representation, we can provide a more explicit definition of a con-
nected term. A term is connected provided that there is a path of propagators ∆(y− z)

between every pair of remaining source terms
´

d4x J(x) and/or “vertex terms” g
´

d4y.
To illustrate the difference between a connected and a disconnected term, consider a term
resulting from the choice V = 2 and P = 4:

i
ˆ

d4x J(x)
1
i
∆(x− y) ig

ˆ
d4y ig

ˆ
d4u

[1
i
∆(y−u)

]2 1
i
∆(u− v) i

ˆ
d4v J(v) (3.6)

This term is connected because there is a path of propagators connecting the position
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dummy variables x, y, u, and v. For instance, the source term i
´

d4x J(x) is connected
to the vertex term ig

´
d4y by the propagator 1

i ∆(x− y). Similarly for the source term
i
´

d4v J(v), which is connected to the vertex term ig
´

d4u by the propagator 1
i ∆(u− v).

In contrast, consider the following term that results from the choice V = 2 and P = 5:

i
ˆ

d4x J(x)
1
i
∆(x− y) ig

ˆ
d4y ig

ˆ
d4u

[1
i
∆(y−u)

]2 1
i
∆(u− v) i

ˆ
d4v J(v)

× i
ˆ

d4w J(w)
1
i
∆(w− z) i

ˆ
d4z J(z) (3.7)

This term is disconnected because there is no propagator connecting the source term
i
´

d4x J(x) defined at x to the source term i
´

d4w J(w) defined at w. Instead, this term is
a product of two connected terms.

Exploiting the connectivity properties of terms greatly simplifies our representation of
the interacting generating functional ZI(J). As shown by the Taylor expansion in Equa-
tion 3.5, ZI(J) is proportional to the sum of all terms. However, using the language of
connected terms, we can prove that the generating functional is proportional to the expo-

nential of the sum of all connected terms (Srednicki 2007, p. 65). Hence, to compute the
generating functional to any order in perturbation theory, we need only focus on con-
nected terms, rather than disconnected terms as well. This illustrates two distinct ways of
understanding the generating functional, both of which are physically equivalent: either
(1) as the sum of all terms or (2) as the exponential of the sum of connected terms. For con-
venience, I’ll continue to refer to the first method as the naïve approach to computing the
generating functional. Likewise, I’ll call the second method—which uses connectivity—
the sophisticated approach.

3.7.3 Feynman diagrams and Feynman rules

In the position space representation that we have been working in, the integral terms
themselves express their connectivity properties. Thus, position space integral terms pro-
vide one way of implementing the sophisticated approach. Feynman diagrams provide
another method for implementing this approach: they also express the connectivity prop-
erties of terms in the Taylor expansion of the generating functional. Hence, from a formal
standpoint, the corresponding position space Feynman diagrams do not add anything, at
least when it comes to connectivity. We will see shortly that this is decidedly not the case
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when we move to a momentum space representation.
To see how the position space Feynman diagrams express exactly the same informa-

tion as the corresponding integral terms, consider again the terms in Equations 3.6 and
3.7. These terms correspond to the position space Feynman diagrams in Figure 1.

x v

(a) Connected Diagram

x v

w z

(b) Disconnected Diagram

Figure 1: Two position space Feynman diagrams

These diagrams follow from the corresponding position space Feynman rules for ϕ 3-theory,
which establish correspondences between elements of a diagram and integral terms:

Source terms (external blobs): = i
ˆ

d4x J(x) (3.8)

Propagators (internal lines): =
1
i
∆(x− y) (3.9)

Vertex terms (intersection point of three lines): = ig
ˆ

d4x (3.10)

However, when it comes to computing scattering cross-sections, it is often much more
computationally convenient and tractable to work in a momentum space representation.
Moving to momentum space eliminates all source terms (the external blobs) and replaces
position dummy variables with momentum dummy variables {k1,k2, . . .}, one for each
line. Eliminating the source terms leads to a simpler representation for the external lines.
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The momentum space Feynman rules for ϕ 3-theory are the following:³¹

External lines:= a factor of 1 (3.11)

Propagators (internal lines) with momentum k:= −i
k2 +m2 − iε

(3.12)

(Unconstrained) internal loop propagator:=
ˆ

d4k
(2π)4 (3.13)

Vertex terms (intersection point of three lines):= ig (3.14)

Here, m corresponds to the mass of the particle (the lowest order excitation of the ϕ -field).
The factor of −iε functions to keep integrals well-defined by analytically continuing into
the complex plane.

From these rules, we can immediately see that the integral terms corresponding to
momentum space Feynman diagrams are unable to independently express connectivity
properties, while the diagrams themselves can. Considering again our earlier examples
of the connected and disconnected terms in Equations 3.6 and 3.7, Figure 2 depicts the
corresponding momentum space Feynman diagrams.

k1

ℓ

k1

(a) Connected Diagram

k1

ℓ

k1

k2

(b) Disconnected Diagram

Figure 2: Two momentum space Feynman diagrams

These diagrams clearly maintain the connectivity properties of their corresponding posi-
tion space terms: the former is connected, whereas the latter is disconnected.

In contrast, when we apply the momentum space Feynman rules, we see that the
corresponding momentum space integral terms for both diagrams equal the following:

(ig)2
ˆ

d4ℓ

(2π)4
−i

ℓ2 +m2 − iε
−i

(k1 − ℓ)2 +m2 − iε
(3.15)

³¹Note that since momentum is conserved at each vertex, some values of momentum are constrained in
terms of the momenta on adjoining lines.
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Hence, we see that these two rather distinct diagrams both correspond to the same inte-
gral term in the momentum space representation. This is a consequence of the fact that
external lines in the momentum space representation correspond to a factor of one.³²

3.7.4 Differences in understanding

We can now examine in more detail how Feynman diagrams illustrate my conceptual-
ist account of scientific understanding. Putting together the pieces, both the naïve ap-
proach and the sophisticated approach provide two methodologically distinct but phys-
ically equivalent ways of explaining scattering amplitudes. First, consider the naïve ap-
proach. From the Taylor expansion for the generating functional, we compute every non-
trivial position space term to our desired order in perturbation theory. This includes both
connected and disconnected terms. Next, we re-express these terms in amomentum space
representation and compute the generating functional. From this generating functional,
we can compute the desired scattering amplitudes.

Second, consider the sophisticated approach. Starting from the same Taylor expan-
sion, we exploit the connectivity properties of the terms, enabling us to neglect all dis-
connected terms. We ultimately find that the generating functional is given by the ex-
ponential of the sum of connected terms (equivalently diagrams). Thus, we determine
all connected momentum space diagrams (up to our desired order in perturbation the-
ory), apply the Feynman rules, and arrive at the corresponding momentum space integral
terms. We then compute the generating functional on the basis of these.

A few remarks demonstrate that these two formulations are on a par qua explanations
of scattering amplitudes. They both appeal to identical sets of physical laws (the laws
underlying interacting quantum field theories). They have identical physical ontologies,
specified by the ϕ 3-theory Lagrangian and whatever preferred (partial) interpretation of
quantum field theory we might have. They both also lead to identical generating func-
tionals and thus identical scattering amplitudes. It is not the case that one formulation
makes additional physical or mathematical assumptions that the other does not. Further-
more, they have the same explanatory scope: if one formulation works for explaining a

³²Technically, we could distinguish these two diagrams by taking into account the conservation of mo-
mentum of incoming and outgoing momentum variables. For simplicity, I neglect this subtlety. A slightly
more complicated example would show more rigorously that momentum space integral terms cannot ex-
press connectivity.
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given scattering amplitude then the other will work as well. There is also seemingly no
possible causal difference between the explanations they provide: they both appeal to the
same physical processes. Thus, we have good reason to believe that the naïve and the
sophisticated approaches represent the same explanation.

Nevertheless, we have already seen that these two reformulations have stark concep-
tual differences, and it is these differences that my account of understanding captures.
Only the sophisticated approach succeeds at expressing the generating functional as the
exponential of a sum of connected momentum space terms/diagrams. This difference
stems from the fact that although each momentum space Feynman diagram corresponds
to a momentum space integral term via the Feynman rules, the diagram but not the in-
tegral encodes connectivity properties. This shows that the momentum space Feynman
diagrams underwrite an epistemic dependence relation that the corresponding integral
terms do not: the diagrams can express connectivity properties. Recognizing the rela-
tionship between connectivity and the generating functional modularizes the scattering
amplitude problem into the two sub-problems of (i) determining the connected terms and
(ii) calculating their contribution. Hence, these diagrams provide a way of understanding
scattering amplitudes that the momentum space integral terms cannot provide.

Besides modularizing the problem, the momentum space Feynman diagrams also pro-
vide a uniform treatment of generating functionals in terms of connected diagrams. In
this context, uniformity amounts to the fact that the diagrams—or, more generally, any
representation that succeeds at expressing connectivity—enable us to say for all scatter-

ing processes that we need not compute disconnected terms. Hence, it is not just that for
any particular scattering process we end up with the generating functional as an expo-
nential of the sum of connected terms: we know that this result holds even before we
start computing. In contrast, by failing to exploit connectivity, the naïve approach lacks
the capacity to uniformly express this formal relationship. The closest it could come to
expressing this relationship would be to verify it in particular cases. For instance, after
arriving at our generating functional via the naïve approach, we could subsequently show
that this generating functional is equal to the exponential of the sum of all of the “con-
nected” terms. I place “connected” in scare quotes here because we are assuming that the
naïve approach is formally unable to express connectivity.

More precisely, in this scenario we would be showing the following: the exponential
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of the sum of all momentum integral terms that in fact correspond to connected diagrams
yields the same generating functional. Yet, by the lights of the naïve approach, this equiv-
alence might as well be a coincidence. Note that this is not a failure of explanatory scope:
as noted above, both formulations succeed for the same set of cases. Instead, it amounts to
an expressive limitation. It leads to a difference in the way that the generating functional
is understood.³³

Lange’s (2017) account of distinctively mathematical explanations leverages this no-
tion of coincidence to great effect. His account could thereby capture the difference in
uniformity between the naïve and sophisticated approaches. However, it requires that
the world have a sufficiently rich modal structure. In Section 4.4.2, I argue that this on-
tological requirement generates an underdetermination problem, similar to that facing
fundamentalism (see Section 2.5). Here, all I have assumed is that we have an epistemic
difference between seeming-coincidences and seeming-non-coincidences. For all I have
said, this relationship between generating functionals and connected terms could still be
a coincidence. Either way, we learn the following: any generating functional can be ex-
pressed in terms of its connected terms. The issue of ontic coincidences aside, the naïve
approach cannot even say this much.

To summarize then, it is not the case that we need Feynman diagrams to compute scat-
tering amplitudes. Rather, Feynman diagrams provide a particularly convenient way of
expressing the connectivity properties of terms in the perturbation expansion. It is these
connectivity properties that enable us to simplify the generating functional, making it un-
necessary to compute a large number of terms. However, at least when it comes to these
connectivity properties, the position space integral representation succeeds just as well.
Furthermore, there are additional ways to represent these connectivity properties, such
as through Wick contractions of vacuum expectation values. This approach is used, for
example, in the canonical quantization approach to computing scattering amplitudes for
interacting field theories.³⁴ Ultimately though, the expressive differences between mo-

³³One might object that only the sophisticated approach succeeds at explaining why the generating func-
tional equals the exponential of the sum of connected terms. Nevertheless, explaining this epistemic de-
pendence relation is a separate explanans than explaining the scattering amplitude. In this case study, we
are focused only on explaining scattering amplitudes. Additionally, if explanation is ontic, then plausibly
the naïve approach can explain this EDR just as well, simply by representing the relevant states of affairs
involved.

³⁴See, for instance, Lancaster and Blundell (2014), §§18–19.
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mentum space Feynman diagrams and momentum space integral terms shows that these
diagrams provide an important way of understanding the generating functional that the
momentum space integral terms cannot provide, despite each diagram corresponding to
an integral term via the momentum space Feynman rules. This difference illustrates how
the formal language we choose can change how we understand the physical quantities
we compute.

3.8 Conclusion

I have argued that theoretically equivalent formulations provide a clear counterexample
to explanationism. Whereas explanationism holds that all intellectual differences arise
from explanatory differences, equivalent formulations show that some differences in
understanding-why do not reduce to explanatory differences. To accommodate these
intellectual differences, I have defended conceptualism. Conceptualism argues that
understanding-why involves not only the explanatory content that we have understood,
but also the way that we have understood it. In particular, it claims that equivalent
formulations manifest intellectual differences whenever they provide different epistemic

dependence relations. These are differences in what we need to know or what suffices
to know to solve scientific problems. By characterizing how reformulations change
understanding, conceptualism addresses complementary lacunae in current accounts of
both scientific understanding and theoretical equivalence. In this way, conceptualism
supplements existing anti-explanationist accounts of scientific understanding. By
adopting conceptualism, these accounts can forestall the challenge from explanationism
and illuminate understanding beyond scientific explanation.

To illustrate my strategy, I considered some simple Feynman diagrams in particle
physics. I argued that Feynman diagrams provide a distinct way of understanding scat-
tering experiments when compared to the momentum space representation of the cor-
responding integrals. Feynman diagrams provide this understanding by expressing the
connectivity properties of terms in a Taylor expansion for the generating functional. Al-
though the corresponding momentum space integral terms can perform the same compu-
tational roles as the Feynman diagrams, they cannot express these connectivity properties.
This prevents them from modularizing the scattering amplitude problem and uniformly
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expressing the generating functional in terms of connected terms. When we use the mo-
mentum space integral terms in a naïve approach to explaining scattering amplitudes, we
miss out on a key epistemic dependence relation. In contrast, using a sophisticated ap-
proach (such as momentum space Feynman diagrams) exploits this EDR to modularize
and uniformly express the scattering amplitude problem, providing a different under-
standing. However, both these naïve and sophisticated approaches are physically equiv-
alent and share identical explanatory scope: they lead to identical generating functionals
from identical assumptions. They therefore provide a difference in understanding with
no difference in explanation.
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Chapter 4:

Reformulating through Symmetry

4.1 Introduction

Chapter 3 used cases of theoretical equivalence to undermine explanationism. Such cases
show that there are features of scientific understanding that go beyond scientific explana-
tion. Nevertheless, one might question the scope and force of this argument. Does it only
apply in cases of theoretically equivalent reformulations? If so, that would be a severe
limitation, since many compatible reformulations are not theoretically equivalent. This
includes many symmetry arguments in physics and chemistry, exemplified by the case
study I analyze in this chapter.¹

This chapter applies conceptualism to one of the simplest yet sufficiently rich exam-
ples of a general kind of symmetry argument in physics and chemistry. The example
comes from an idealized model known as crystal field theory. Section 4.2 introduces three
compatible formulations of crystal field theory: the elementary, non-group-theoretic, and
group-theoretic approaches. Each approach references the same ontic explanatory fea-
tures, while nonetheless leading to different understandings of the phenomena. I will ar-
gue that these formulations illustrate another kind of counterexample to explanationism.
Other examples of symmetry-based reformulations include the Wigner–Eckart matrix el-
ement theorem (Hunt 2021a), selection rules in spectroscopy (Hunt 2014), and symmetry-
based explanations of hydrogen’s energy spectrum (Singer 2005).

Since symmetry arguments are not theoretically equivalent to the elementarymethods
they reformulate, we need a new argument against explanationism in this context. Oth-
erwise, an explanationist could argue that explanatory differences ground the relevant
intellectual differences. They might argue that in cases of symmetry-based reformula-
tion, all differences in understanding arise from explanatory differences. If so, this would

¹Sections 4.2-4.4 and the appendix of this chapter were published in Hunt (forthcoming).
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severely limit the scope of conceptualism. It would show that in many cases, conceptu-
alism is at best redundant, adding nothing to existing accounts of scientific explanation.
In this chapter, I rebut this more general challenge from explanationism. In doing so,
I extend the scope of conceptualism as an account of understanding that goes beyond
explanatory differences. Both the elementary and the symmetry-based approaches pro-
vide different understandings of the same phenomena, despite describing the same ontic
explanatory information. Section 4.2 illustrates this moral in detail. Moreover, my argu-
ment in this chapter does not presuppose that categorical equivalence is a good standard
for theoretical equivalence.

My account of how symmetry arguments contribute to understanding involves dis-
entangling three compatible formulations. First, there are elementary approaches, which
proceed on a case-by-case basis without appealing to symmetry. Often in physics and
chemistry, elementary approaches involve a brute-force application of perturbation the-
ory to each system of interest. Second, in non-group-theoretic approaches, we make the
system’s symmetries explicit but without using an abstract language for symmetry. Fi-
nally, group-theoretic approaches take advantage of symmetry by using the more sophis-
ticated mathematics of group representation theory. Section 4.2.3 shows how at each
stage in this process of reformulation, we acquire different epistemic dependence rela-
tions, leading to different understandings of the phenomena.

In particular, symmetry-based reformulations affect understanding through two gen-
eral kinds of epistemic dependence relations: modularization and unification. Modular-

ization occurs when a formulation breaks a problem or a why-question into separately
treatable sub-problems. Modularizing a problem shows that some parts of it can be treated
independently of other parts. Unification occurs when a single derivation and its solution
applies to a family of different systems that all display shared behavior. For instance,
organizing systems into symmetry-based families unifies them. Noticing such epistemic
dependence relations changes our understanding of a given phenomenon by clarifying
what suffices or is necessary to understand it. Furthermore, this kind of intellectual dif-
ference does not rely on any particular details about agents, skills, or capacities. We can
thereby abstract away agents, analyzing EDRs as objective, agent-independent features
of a theory formulation.²

²This non-agentive approach to understanding captures one facet of understanding that does not de-
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An explanationist might wonder whether current accounts of explanation can accom-
modate these intellectual differences. Doing so would render conceptualism redundant.
Sections 4.3 and 4.4 consider and rebut two objections against conceptualism, stemming
from this worry. The first objection argues that existing accounts of explanation can eas-
ily accommodate the intellectual differences I identify. Considering two leading accounts
of causal explanation, I show that this is not the case. The second objection argues that
what I am calling cases of the same explanation are in fact different explanations and
can be accommodated as such. I argue that this response faces a skeptical challenge that
conceptualism avoids.

Finally, I consider what it takes for one formulation to provide a better understand-

ing than another. Section 4.5 proposes an expressivist account of better understanding. I
argue that comparative judgments of understanding express preferences for intellectual
features or properties of arguments. Judging one formulation to be intellectually better
than another is to express a non-cognitive attitude of being for intellectually preferring that
formulation. Expressing these preferences amounts to expressing acceptance of a system
of norms. Section 4.6 considers a number of different norms that might govern intellec-
tual preferences. Accepting or rejecting these norms leads to particular first-order claims
about comparative understanding, such as the claim that the group theoretic approach
provides a better understanding of crystal field theory than the elementary approach.

4.2 A Case Study from Crystal Field Theory

Crystal field theory provides an idealized model for describing properties of coordination
complexes. These consist of a positively charged metal ion surrounded by negatively
charged or polarized species known as ‘ligands.’ Figure 3 shows two examples: nickel(II)
hexahydrate and nickel(II) hexammine. Both complexes comprise a Ni2+ ion bound to
six ligands occupying the vertices of an octahedron (see Figure 6). Often, the color of
coordination complexes changes according to the ligands bound to themetal ion. Whereas
nickel(II) hexahydrate is green, nickel(II) hexammine is purple. Chemists use crystal field
theory to understand these differences in color, along with differences in thermodynamic
and magnetic properties (Figgis and Hitchman 2000).

pend on agents, allowing agent-dependent features to be subsequently added. Ultimately, psychological
‘grasping’ should be treated naturalistically, sensitive to the concerns of Trout (2007).
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Figure 3: Octahedral coordination complexes

To explain these properties, chemists focus on how the valence electrons of the metal
ion change when surrounded by ligands. For instance, an isolated Ni2+ ion has eight
valence electrons that occupy five energetically ‘degenerate’ orbitals, meaning that they
have the same energy (depicted by the left side of Figure 4).³ Surrounding Ni2+ with lig-
ands breaks this degeneracy, causing previously degenerate orbitals to ‘split’ into new
energy levels with new degeneracies. Crystal field theory describes this splitting phe-
nomenon by treating ligands as point dipoles that create an electrostatic ‘crystal’ field,
perturbing the energy levels of the metal ion.⁴ In the case of nickel(II) hexahydrate, the
fivefold degenerate valence orbitals split into two new levels that are two-fold and three-
fold degenerate, shown in Figure 4. The difference between these energy levels is denoted
‘∆O.’ Electronic transitions between these levels help explain the characteristic colors of
many metal complexes.

Crystal field theory solves three connected problems about electronic structure, each
posing its own why-question. The ‘splitting problem’ is to determine how many new en-
ergy levels form from a previously degenerate energy level. The ‘degeneracy problem’ is
to determine how many orbitals constitute each new level, i.e. its degeneracy. Finally,
chemists estimate the energy difference ∆O by finding the eigenvalues of each new en-
ergy level, giving rise to the ‘eigenvalue problem.’ For brevity, I will refer to these three
problems collectively as the crystal field theory problem. Section 4.2.1 begins by sketch-
ing three different compatible approaches to explaining this phenomenon. Armed with

³Atomic orbitals are one-electron wavefunctions used to approximate the overall state of an atom or
molecule.

⁴Crystal field theory idealizes interactions as purely ionic, neglecting chemical bonds between the metal
ion and ligands. It underlies more sophisticated models such as ligand field theory (Cotton 1990, p. 254).
For simplicity, I suppress additional philosophical issues pertaining to idealization, since the same questions
about reformulations arise outside this context.
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Figure 4: Splitting of valence orbitals in an octahedral crystal field

these approaches, Section 4.2.2 develops them as a counterexample to explanationism.
They provide different ways of understanding crystal field theory without concomitant
explanatory differences. Finally, in Section 4.2.3, I show how conceptualism easily ac-
commodates the intellectually significant features of this case study. The group-theoretic
approach modularizes and unifies crystal field theory by providing distinctive epistemic
dependence relations. Throughout, I will focus on nickel(II) hexahydrate as a concrete
example, although my discussion applies more generally.

4.2.1 Three approaches to crystal field theory

The first approach to crystal field theory is ‘elementary’ in the sense that it makes no
explicit appeal to symmetry properties of the molecule. Instead, it relies entirely on per-
turbation theory, approximating the eigenvalues of the coordination complex relative to
those of the unperturbed, free metal ion. We begin by measuring the electrostatic poten-
tial, representing it as a perturbation operator H ′. The eigenvalues of this perturbation
operator provide a first-order correction to the known energy states of the free metal ion.
We calculate these eigenvalues by solving a ‘secular equation’ (Equation A.1), which func-
tions as the relevant law-like statement for this explanation. With the eigenvalues in hand,
the splitting and degeneracy follow immediately. The number of distinct eigenvalues and
their degeneracies corresponds to the number of new energy levels and their degenera-
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cies. For nickel(II) hexahydrate, we obtain two distinct eigenvalues that are three-fold and
two-fold degenerate. Figure 5a represents the schematic structure of this approach.⁵

The second approach relies on the same schematic structure: it uses perturbation the-
ory to calculate the eigenvalues, from which the energy-level structure follows. However,
we now take explicit advantage of symmetry, although without using the formal appara-
tus of group representation theory. Hence, I will refer to this first symmetry-based for-
mulation as the non-group-theoretic approach.⁶ Unlike the elementary approach, we begin
by characterizing the electrostatic potential in terms of the symmetry of the coordina-
tion complex. For nickel(II) hexahydrate, the resulting potential (Equation A.2) applies to
any coordination complex with six ligands at the vertices of an octahedron. We then fol-
low the same procedure as the elementary approach but now using this symmetry-based
potential. Solving the secular equation leads to two distinct eigenvalues: λ1 = −2

5∆O

(three-fold degenerate) and λ2 =
3
5∆O (two-fold degenerate), expressed in terms of their

energy difference ∆O. As in the elementary approach, the splitting and degeneracy follow
immediately from these eigenvalues. The two distinct eigenvalues and their degeneracies
entail that two new energy levels form that are three-fold and two-fold degenerate.

In the third approach, we take advantage of not only symmetry but also the formal ap-
paratus of group (representation) theory. This group-theoretic approach extensively refor-
mulates the crystal field theory problem, leading to a dramatically different organizational
structure, shown in Figure 5b.⁷ Rather than deduce the splitting and degeneracy from the
eigenvalues (as in the other two approaches), we now determine them without solving a
secular equation. To begin, we identify the symmetry groups of both the free metal ion
and the coordination complex. An unperturbedmetal ion, such as Ni2+, is invariant under
arbitrary rotations, so its symmetry group is the rotation group. In the case of nickel(II)
hexahydrate, since its ligands sit at the vertices of an octahedron, its symmetry group is
accordingly the octahedral group.

The next step is to extract information about the energy levels from these symme-
try groups, using the mathematics of group representations. Recall from Figure 4 that
our task is to determine how the initially five-fold degenerate valence orbitals of Ni2+

⁵See Appendix A for a more detailed account of each formulation.
⁶See Dunn et al. (1965, pp. 9–16) and Figgis and Hitchman (2000, pp. 30–38) for detailed applications of

this approach.
⁷Adopting an abbreviation common throughout physics and chemistry, ‘group theory’ will typically

refer more precisely to ‘group representation theory.’ See Appendix A.3 for details.
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rearrange into the new energy-level structure of the coordination complex. For both the
initial and final systems, each distinct energy level corresponds to a ‘representation’ Γ of
the corresponding symmetry group. Hence, to determine the new splitting and degen-
eracy, it suffices to determine how many representations of the octahedral group occur
(corresponding to the number of new energy levels) and their dimensions (corresponding
to the degeneracy of each energy level). First, we determine the representation of the
rotation group associated with the nickel ion’s valence orbitals. We then exploit a precise
mathematical relationship characterizing how this initial representation from the rota-
tion group ‘decomposes’ into a sum of new representations from the octahedral group.
Executing a simple algorithm (demonstrated in Appendix A.3), we find that the initial
representation decomposes into two new representations of dimensions two and three.
This solves the splitting and degeneracy problems: two new energy levels form that are,
respectively, two-fold and three-fold degenerate.

Finally—as in the other two approaches—the group-theoretic approach uses pertur-
bation theory to solve the eigenvalue problem. The key difference is that group theory
reorganizes the secular equation using properties of the representations. By knowing
the group representations of the new energy levels, we can diagonalize the perturbation
operator, H ′. Diagonalization provides a separate secular equation for each distinct en-
ergy level. This modularizes the eigenvalue problem into a separate sub-problem for each
distinct eigenspace. We learn that we can calculate each distinct eigenvalue separately,
rather than solving a larger secular equation for all of them.

To summarize central intellectual differences between the three approaches, we can
represent the structure of their solution procedures as flowcharts. I represent the elemen-
tary and non-group-theoretic approaches together, since they differ only in the first step,
namely whether or not we first construct a symmetry-based form for the electrostatic
potential. Figure 5 shows how the additional epistemic dependence relations provided
by group theory restructure the solution procedure. The dashed ovals indicate modular-
ization, where we have broken a problem into separately treatable sub-problems. Group
theory shows us how to separate the splitting and degeneracy problems from the eigen-
value problem, indicated by the first dashed oval in Figure 5. Furthermore, group theory
separates the eigenvalue problem into a separate problem for each distinct eigenvalue,
indicated by the second dashed oval. Finally, the flowchart indicates that symmetry prop-
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erties are sufficient for determining the splitting and degeneracy, illustrating how group
theory unifies the crystal field theory problem. I expand on these points in Section 4.2.3,
but first I clarify how the three approaches pose a problem for explanationism.

Elementary and

Non-group-theoretic approaches

(Derive symmetry-based potential)

Compute Matrix Representa-
tion of Perturbation Operator

Compute Roots of Secular Equation

1st-order
Corrections

to
Eigenvalues

Splittings Degeneracies

(a) The parenthetical first step applies
only to the non-group-theoretic approach.

Group-theoretic approach

Determine Groups G0 and G

Representation of
Unperturbed Energy Level

Decompose into (Irre-
ducible) Representations of G

Splittings

Degeneracies

Determine Good
Basis Functions

Compute Diagonal
Matrix Elements

Roots 1 Roots 2 · · ·

(b) The dashed ovals indicate modularization. See the
appendix for a description of irreducible representations.

Figure 5: Schematic step-by-step flowcharts for the three approaches

4.2.2 A problem for explanationism

With the approaches to crystal field theory before us, I will now show how they pose a se-
rious challenge to explanationism. To simplify the exposition, I will focus on how the two
symmetry-based approaches explain the splitting and degeneracy (i.e. the energy-level
structure). Similar points arise when comparing these two approaches to the elementary
approach, along with considering how each approach explains the eigenvalues. My ar-
gument involves establishing three premises, which together entail that explanationism
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provides an incomplete account of the objective and non-pragmatic (or ‘non-practical’)
dimensions of understanding. First, I will show that—on many accounts of explanation—
both symmetry-based approaches provide not only derivations but also explanations of
the relevant phenomena.⁸ Second, I will argue that both approaches reference the same
ontic explanatory information; hence, they do not involve explanatory differences. Fi-
nally, I will argue that the approaches nevertheless provide different understandings of
the crystal field theory phenomena. Hence, explanationism is incorrect: not all intellec-
tual differences stem from corresponding explanatory differences.

Since explanationism is concerned only with explanatory understanding (i.e.
understanding-why), my case study poses a problem only if the compatible formulations
are genuine explanations, rather than mere derivations. However, due to persistent dis-
agreements about the nature of explanation, it is impossible to conclusively demonstrate
that these approaches are explanatory.⁹ The best one can do is motivate interpreting them
as such. To this end, it suffices to note that many established accounts of explanation
would treat these three approaches as explanatory.¹⁰ To make just one representative
analysis, I will consider Woodward and Hitchcock’s (2003a) manipulationist (or ‘inter-
ventionist’) account of causal explanation, since it avoids many well-known problems
facing 20th-century accounts of explanation.

Manipulationism recasts explanation as the pursuit of answering what-if-things-had-

been-different questions: howwould the explanandumhave differed if one of the explanans
had been changed? For instance, we might wonder how a coordination complex’s energy
levels would have differed if we had changed its symmetry. Answering thesewhat-if ques-
tions requires an explanatory generalization: a law-like statement characterizing how the
explanandum depends on the explanans, in function–variable form. This lets us derive the
explanandum from input variables characterizing the explanans (such as initial or bound-
ary conditions). To qualify as an explanatory generalization, a law-like statement must
be invariant under ‘testing interventions’ (Woodward and Hitchcock 2003b, p. 182). This

⁸Section 4.4 extends my argument to explanationists who might refuse to grant this premise.
⁹As Section 2.7 points out, the controversial nature of scientific explanation provides another reason to

prefer conceptualism over explanationism when it comes to making sense of reformulations.
¹⁰These derivations also count as explanatory on Hempel and Oppenheim’s (1965 [1948]) deductive-

nomological model, Railton’s (1981) ideal explanatory text account, Lewis’s (1986, pp. 217–21) similar ac-
count of causal explanation, and Kitcher’s (1989) unificationist account. I briefly discuss the latter in Sec-
tion 4.3.2.
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means that the generalization must continue to hold even as we intervene on the system
of interest, changing its explanans variables within some nontrivial range.¹¹ Coulomb’s
law provides a paradigmatic example, characterizing how the electrostatic force between
two charged bodies depends on their charges and the distance between them.

Manipulationism straightforwardly renders both symmetry-based approaches—and
also the elementary approach—as genuinely explanatory. In each formulation, the secular
equation (A.1) functions as a suitable explanatory generalization for solving the eigen-
value problem. The secular equation remains invariant under a wide range of interven-
tions, including modifying the charges and configuration of the surrounding ligands. It
thereby answers many kinds of what-if-things-had-been-different questions. In the non-
group-theoretic approach, we explain the splitting and degeneracy as a consequence of
these eigenvalues. Thus, by causally explaining the eigenvalues, we also causally ex-
plain the energy-level structure. In the group-theoretic approach, a different explanatory
generalization—the character decomposition formula—characterizes how the splitting and
degeneracy depend on the symmetry.¹² Since the character decomposition formula is also
invariant under a variety of interventions, manipulationism would interpret this as a gen-
uine explanation too. Hence, both approaches provide not merely derivations but also
causal explanations of the splitting and degeneracy.

Next, we must show that both symmetry-based approaches reference the same ontic
explanatory information. Otherwise, an explanationist could seek to reduce any intellec-
tual differences between the approaches to concomitant explanatory differences. In both
cases, we appeal to the geometric arrangement of the coordination complex, i.e. its sym-
metry, to determine its energy-level structure. The non-group-theoretic approach uses
this structural information to determine the symmetry-based form of the potential (Equa-
tion A.2). This potential is then fed into the secular equation to determine the quantitative
form of the eigenvalues. Although the symmetry-based potential technically references
the charge of the central metal ion, this information could be suppressedwithout changing
the derivation of the energy-level structure. Likewise, in the group-theoretic approach,
we appeal to the geometric structure of the coordination complex to determine its ab-

¹¹These testing interventions need not be experimentally feasible or even physically possible (although
they often are); an intervention simply needs to be “logically or conceptually possible” (Woodward 2003,
p. 132).

¹²Appendix A.3 describes this formula (Equation A.5) in detail.
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stract symmetry group. Then, using mathematical properties of this abstract symmetry
group—namely, properties of its representations—we determine the energy-level struc-
ture. Hence, in both cases, we appeal to the same ontic explanation, namely the same
state of affairs in the world.¹³

Finally, it remains to show that the two approaches provide different ways of un-
derstanding the crystal field theory phenomena, despite relying on the same ontic ex-
planatory information. In the non-group-theoretic approach, we understand the splitting
and degeneracy as a consequence (or feature) of the eigenvalues. In contrast, the group-
theoretic approach provides a way of understanding the splitting and degeneracy as a
consequence of symmetry independently of the quantitative form of the eigenvalues. Be-
low, I will describe how conceptualism accommodates this intellectual difference in terms
of ‘modularization,’ a property that some epistemic dependence relations possess. More-
over, the two approaches differ in how they unify coordination complexes into symmetry-
based families. In the non-group-theoretic approach, we understand the system’s features
as an instance of a particular instantiation of octahedral symmetry. Whereas in the group-
theoretic approach, our understanding does not depend on the particular instantiation of
octahedral symmetry; it applies to any possible instantiation of this symmetry. These
differences in unification amount to differences in understanding.¹⁴

To summarize, the two symmetry-based approaches to crystal field theory provide a
counterexample to explanationism. They each explain the splitting and degeneracy while
referencing the same ontic explanatory information. Nevertheless, they provide objective
and non-practical differences in understanding why the phenomenon occurs. Hence, they
show that explanationism is incomplete: it fails to account for all relevant intellectual dif-
ferences. In the next section, I will demonstrate how conceptualism easily accommodates
the intellectual differences between these two approaches, interpreting them in terms of
different epistemic dependence relations.

¹³Similarly, when it comes to explaining the eigenvalues, each of the three approaches references the
same explanatory information, including the charge of the central metal ion, the charges of the ligands, the
arrangement of the ligands and metal ion, and the secular equation. This provides a further counterexample
to explanationism.

¹⁴Many philosophers nevertheless view unification as having no bearing on explanation (see Section 4.3).
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4.2.3 Illustrating conceptualism

Unlike explanationism, conceptualism accounts for the intellectual differences between
compatible formulations. As an illustration, I will show how conceptualism interprets
the differences between the two symmetry-based approaches. These amount to organi-
zational differences of the same ontic explanatory information, leading to objective and
non-practical differences in understanding. First, I will explain how the notion of mod-
ularization accommodates two key intellectual differences between the approaches. Sec-
ond, I will explain how unification accommodates a remaining intellectual difference.

When it comes to understanding the splitting and degeneracy, the two symmetry-
based approaches provide different understandings because they appeal to different EDRs.
In the non-group-theoretic approach, we rely on the EDR that knowledge of the quanti-
tative form of the eigenvalues is sufficient for knowledge of the splitting and degeneracy.
In contrast, the group-theoretic approach modularizes the crystal field theory problem
into distinct sub-problems, solving for the splitting and degeneracy without solving for
the eigenvalues. This modularization constitutes the following EDR: knowledge of the
eigenvalues is not necessary for knowledge of the splitting and degeneracy. Instead, it
is possible to derive the splitting and degeneracy without knowing even the quantitative
form of the eigenvalues. These different EDRs thereby provide different ways of under-
standing the splitting and degeneracy, in virtue of how they structure the derivation.
A similar moral about modularization applies to the eigenvalue problem. In the non-
group-theoretic approach, we understand the eigenvalues from a single secular equation,
whereas in the group-theoretic approach, we modularize the larger secular equation into
a set of smaller secular equations, one for each distinct eigenspace. Thus, we learn that
we can understand each distinct eigenspace separately.

A third key intellectual difference between the approaches stems from differences
in how they unify phenomena. Unlike the elementary approach, both symmetry-based
approaches unify the crystal field theory problem into symmetry-based families.¹⁵ The
symmetry-based derivations apply not only to a given coordination complex but also to

¹⁵The elementary approach cannot unify the energy-level structure because it treats each coordination
complex on a case-by-case basis. This piecemeal approach results from its central EDR, namely that knowl-
edge of the eigenvalues is sufficient for knowledge of the splitting and degeneracy. To calculate these
eigenvalues, it—like the other two approaches—appeals to the particular strength of the interaction, a fea-
ture specific to each coordination complex.
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coordination complexes in the same geometric family. Specifically, they provide the fol-
lowing kind of epistemic dependence relation: knowledge of the energy-level structure
for one coordination complex in this family suffices for knowledge of the energy struc-
ture for other complexes in this family. Unifying coordination complexes into symmetry-
based families enables us to understand each one as an instance of a larger class with
the same behavior. Moreover, due to the differences in their respective EDRs, the group-
theoretic approach unifies more than the non-group-theoretic approach. In the latter,
a given symmetry-based potential applies only to coordination complexes that have the
same geometric arrangement of ligands around the central metal ion. For nickel(II) hex-
ahydrate, this is a particular instantiation of octahedral symmetry, with each ligand at the
vertex of an octahedron. In contrast, the relevant group-theoretic argument applies to any
coordination complex with octahedral symmetry, independently of how it is instantiated.
For instance, the derivation sketched in Section 4.2.1 applies just as well to a coordination
complex with eight ligands at the vertices of a cube, rather than an octahedron.¹⁶ The
group-theoretic approach unifies more because it tells us that knowledge of the abstract
symmetry group suffices for knowledge of the energy-level structure.

Despite my focus on non-pragmatic differences in understanding, some EDRs are
pragmatically beneficial as well. For agents interested in knowing only the splitting and
degeneracy, modularization provides a beneficial way of obtaining this knowledge with-
out needing to determine further properties of the eigenvalues. Similarly, for agents who
wish to determine the energy-level structure of a class of coordination complexes, the
additional unification provided by group theory hastens this task. In this way, different
EDRs can lead to pragmatic benefits, based on agents’ goals. But, unlike many recent
pragmatic accounts of scientific understanding, conceptualism keeps these two aspects
of theory reformulation separate, i.e. the pragmatic benefits vs. the objective and non-
pragmatic differences in understanding. The former depend on the preferences and goals
of agents, whereas the latter are formal properties of a theory’s formulation.¹⁷

¹⁶Since cubes are dual to octahedra, they have the same symmetry group.
¹⁷Against my approach, Potochnik (2015a, p. 1172) argues that it is a mistake to seek a clean-divide

between the pragmatic and the non-pragmatic in the context of explanation and understanding. Defending
the utility and coherence of this basic distinction—which explanationists necessarily grant—lies outside the
scope of this chapter.
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4.3 Is Conceptualism Redundant?

Section 4.2.2 developed a counterexample to explanationism. This counterexample tar-
gets explanationists who view each approach to crystal field theory as explanatory—an
interpretation sanctioned by many accounts of explanation. To rebut my argument, these
explanationists might argue that other non-pragmatic features of scientific explanation—
such as differences in explanatory depth—account for all intellectual differences between
the approaches. This would render conceptualism’s account of scientific understanding
redundant, relative to existing accounts of explanatory differences.

In response, I will argue that conceptualism is not redundant when compared with
leading accounts of explanation that treat the approaches to crystal field theory as ex-
planatory. Because I view them as the most promising theories in their respective tradi-
tions, I will focus on Skow’s (2016) account of reasons-why and Woodward and Hitch-
cock’s manipulationist account.¹⁸ I will argue that both accounts fail to accommodate
modularization and unification. Additionally, even Kitcher’s (1989) unificationist account
of explanation does not accommodate the relevant kind of unification illustrated by crys-
tal field theory.

4.3.1 Skow’s account of reasons-why

Skow’s account of reasons-why continues the causal explanation tradition of Railton and
Lewis, while treating grounding as an additional explanatory feature. For a given concrete
event Q, Skow’s theory characterizes a hierarchy of reasons why Q occurred. At bottom,
there are the ‘first-level reasons why Q.’ These are always either causes or grounds. For
each reason-why, there might be further reasons why that reason is a reason, and so on
(2016, p. 124). Nevertheless, when it comes to answering the initial, bottom-level why-
question regarding Q, answering these higher-level why-questions is optional on Skow’s
account. Hence, explanatory arguments that agree on the first-level reasons-why provide
the same explanation. Since the three approaches to crystal field theory agree on the un-

¹⁸Potochnik’s causal pattern account of explanation provides an interesting approach that amalgamates
and develops aspects of Woodward’s, Achinstein’s, Strevens’, and van Fraassen’s accounts of explanation
(2015a, 2017, pp. 127, 134). However, since it relies on pragmatic features of agents (2015a, pp. 1172–5,
2017, p. 127), it is not amenable to a defender of explanationism. Bokulich’s (2011) rich account of model
explanations modifies Woodward’s account to accommodate idealization, a complication that I suppress
here.
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derlying ontic reasons for the crystal field theory phenomena, Skow’s account would treat
each of them as explanatory.¹⁹ Thus, his account falls within the scope of Section 4.2.2’s
argument against explanationism.

Although Skow’s account has its attractions, it is too circumscribed to capturemany of
the intellectually significant differences brought out by symmetry arguments. The chief
utility of Skow’s theory derives from characterizing a hierarchy of reasons-why. This en-
ables us to see how multiple arguments can agree on a set of lower-level reasons-why
while differing in the higher-level reasons that they articulate. However, Skow’s theory
focuses exclusively on answers to why-questions, and modularization is not an answer
to a why-question. Instead, modularization is a feature of how some explanatory ar-
guments are organized, based on the epistemic dependence relations they deploy. As a
property of EDRs, modularization characterizes what it suffices to know to answer a cer-
tain why-question. Characterizing what-it-takes-to-know something is different in kind
from answering a why-question about a physical phenomenon.

For a different reason, Skow’s account cannot accommodate the symmetry-based uni-
fication discussed in Section 4.2.3. Skow restricts his account to reasons why to ‘concrete
events,’ excluding law-like generalizations such as Galileo’s law of freefall (2016, pp. 27–8,
37). This restriction makes it difficult to explain generalizations, such as the claim that
all coordination complexes with octahedral symmetry display a particular energy-level
structure. To accommodate such generalizations, Skow’s account must treat them as a
conjunction of concrete events, explained by a concatenation of reasons-why for each
system (2016, p. 134). This sort of aggregative explanation leaves open that these differ-
ent systems only coincidentally display the same pattern of behavior. Aware of this worry,
Skow claims that “to show that it is no coincidence that all the facts in some collection
obtain it is enough to find a common reason why they all obtain” (2016, p. 134). In this
case, the common reason would presumably be that all these different coordination com-
plexes have octahedral symmetry. Nevertheless, as Lange (2010, pp. 307, 319–22, 2014,
pp. 508–9) notes, there is an important difference between conjoining explanations (even
those sharing a common explainer) vs. providing a single, unified explanation. Skow’s
account cannot afford any special significance to the single, unified derivation that group

¹⁹Technically, Skow recommends abandoning the explanation-idiom in favor of answers to why-
questions that describe the reasons why an event occurs (2016, pp. 7–10). Nonetheless, ‘explanation’ re-
mains a convenient catchall for the particular kinds of reasons-why and why-questions pertinent to science.
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representation theory provides. For indeed, the non-group theoretic symmetry argument
provides the same common reason—octahedral symmetry—but without providing a single
unified derivation that covers all instantiations of this symmetry group. Hence, Skow’s
account would have to view these two approaches as being on a par with respect to uni-
fication, although they are not.

4.3.2 Woodward and Hitchcock’s manipulationism

Manipulationism also fails to accommodate modularization and unification. As described
in Section 4.2.2, manipulationism focuses on answering what-if-things-had-been-
different questions, using possible interventions on the system of interest. However,
just as modularization is not a reason-why, it is also not subsumed under answers
to what-if questions—again because modularization is an organizational feature of
explanatory arguments. Thus, it prima facie lies outside the scope of manipulationism.
In particular, manipulationism neglects a crucial instance of modularization, namely
the EDR that we do not need to know the charges and distances in order to determine
the splitting and degeneracy. The group-theoretic approach provides us with this EDR
by demonstrating that knowledge of symmetry suffices for knowledge of the energy
structure. However, manipulationism cannot accommodate this EDR using interventions
and what-if-things-had-been-different questions. The problem stems from Woodward
and Hitchcock’s stricture that explanations depend solely on “invariance under some
range of changes in the variables figuring in the [explanatory generalization] itself ” (2003a,
p. 7). Changes to other variables left out of the explanatory generalization—such as
background conditions—do not figure in the explanation. Crucially, the group-theoretic
approach gives us the above EDR by setting aside explicit dependence on the charges and
distances, treating them as background conditions. Hence, when it comes to explaining
the splitting and degeneracy, the group-theoretic approach is silent on interventions that
affect these variables.²⁰

Nevertheless, an explanationist might use manipulationism’s account of explanatory

²⁰Woodward does discuss a completely different notion of ‘modularity’ in the context of representing
causal structure by systems of equations (2003, pp. 48, 327–9). This notion of modularity requires that
each equation represents a distinct causal mechanism, so that we can intervene on one equation without
affecting others. The crystal field theory equations are not modular in this sense because they are not
causally independent of each other.
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depth to underwrite these intellectual differences. According toWoodward andHitchcock
(2003a, 2003b), one generalization is—ceteris paribus—deeper than another if the former
incorporates an explanans that the latter treats as a background condition. Explicitly in-
corporating background conditions shows how the phenomenon depends on additional
explanans, thereby providing a deeper explanation. For instance, the group-theoretic
character decomposition formula (Equation A.5) explicitly incorporates symmetry as an
explanans variable. This makes the group-theoretic approach deeper than the non-group-
theoretic approach because the latter fixes symmetry as a background condition. While
this might be a welcome result, Woodward and Hitchcock’s account of depth also has
counterintuitive consequences. In particular, it seems to classify the elementary approach
as deeper than the group-theoretic approach: the elementary approach allows for inter-
ventions on not only the symmetry but also the charges and ligand distances, whereas
the group-theoretic approach treats these latter features as background conditions. Yet,
the group-theoretic EDRs tell us something important about crystal field theory that the
elementary approach neglects. Independently of whether either approach is deeper, we
need an account of this intellectual difference. This is what conceptualism provides.

Moreover, Woodward and Hitchcock explicitly disavow that unification matters for
causal explanation. Recall that symmetry arguments unify by focusing on families of
systems that share a key property, such as the family of coordination complexes with
octahedral symmetry. Woodward and Hitchcock argue that this kind of generalization
is not crucial for accounts of explanation at all. Instead, they focus exclusively on a sec-
ond kind of generalization, based on varying the properties of a particular system. They
characterize this as “generality with respect to other possible properties of the very object

or system that is the focus of explanation” (2003b, p. 182).²¹ Having specified a particu-
lar system of interest, one considers varying features that are properties of that system
only. They thus deny any need to interpret unification qua explanation. As Woodward
argues, many kinds of unification involve classificatory schemes or general mathematical
formalisms that are not intrinsically connected with causal explanations (2003, pp. 362–4).
This illustrates how accounts of explanation can neglect intellectually significant features
such as unification. Not everything that matters for understanding necessarily has to do

²¹Likewise, Woodward claims that “the explanatory depth of a generalization is connected to its range of
invariance rather than its scope; hence, the unificationist approach focuses on the wrong sort of generality
in explanations” (2003, p. 366).
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with explanation.²²
Still, an explanationist might wonder whether Kitcher’s (1989) account of unification

already accommodates the intellectual differences wrought by unification. Perhaps sur-
prisingly, it does not. According to Kitcher, an argument pattern counts as explanatory
provided that it best unifies the phenomena. This is quantified in terms of deriving the
largest number of phenomena relative to the smallest number of assumptions. Only these
unificatory argument patterns earn a place in the ‘explanatory store’ of arguments that
are genuinely explanatory. But, problematically for Kitcher, the explanatory store is de-
ductively closed, and this prevents it from distinguishing the three approaches to crystal
field theory on unificatory grounds. Recall that the group-theoretic approach relies on
the same perturbation-theoretic argument schema as the other two approaches. Hence,
including the group-theoretic approach within Kitcher’s explanatory store ipso facto in-
cludes the other two approaches. Thus, even though only the group-theoretic approach
maximally unifies crystal field theory, Kitcher’s account does not distinguish it from the
other approaches. This shows that Kitcher’s notion of unification is actually too weak to
adequately characterize the relevant EDRs that I have identified.²³

4.4 Explanatory Exclusion

Short of denying that there are intellectual differences between compatible formulations,
seemingly only one strategy for defending explanationism remains: an explanationist
could deny that the three formulations of crystal field theory are each explanatory. If only
the group-theoretic approach provides a genuine explanation, then its intellectual differ-
ences would arise from explanatory differences after all. Mounting this strategy requires
adopting an exclusionary account of explanation. Compared to the accounts considered
in Section 4.3, exclusionary accounts posit more restrictive criteria for explanatory rel-
evance. By making the criteria for explanation more demanding, exclusionary accounts
generate an explanatory difference between compatible formulations. These putative ex-
planatory differences can ground corresponding differences in understanding, thereby

²²See Gijsbers (2013) for a similar conclusion. Gijsbers (2007) provides a detailed argument for why uni-
fication is not inherently connected with explanation. Similarly, Morrison (2000) argues through numerous
case studies that unification is often either in tension with or has nothing to do with explanation.

²³For additional criticisms of Kitcher’s account, see Barnes (1992) and Woodward (2003, pp. 366–73).
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precluding counterexamples to explanationism.
To illustrate this strategy, I will consider two exclusionary accounts: Strevens’ (2008)

kairetic account and Lange’s (2017) account of distinctively mathematical explanations.
Both accounts focus on abstraction of allegedly irrelevant causal details, thereby exclud-
ing many causal influences from counting as explanatorily relevant. We will see that only
the group-theoretic approach satisfies their restrictions, making it the only genuine ex-
planation for crystal field theory. However, this exclusionary strategy runs afoul of the
third desideratum from Section 2.3: ideally, we should accommodate the apparent dif-
ferences in understanding without appealing to epistemically inaccessible ontic features.
Positing more restrictive explanatory relevance relations generates a skeptical problem
because we cannot easily know whether these additional relevance relations exist or are
satisfied.²⁴ My goal here is not to reject these accounts of explanation per se, but rather to
point out that no one should adopt them merely for the sake of upholding explanation-
ism. Conceptualism provides a more epistemically secure and parsimonious account of
the relevant differences in understanding.

4.4.1 Strevens’ kairetic account

Strevens’ account focuses on identifying causal difference-makers, the only causal influ-
ences that are explanatorily relevant. According to his ‘kairetic condition,’ a causal influ-
ence counts as a difference-maker provided it remains in at least one maximally abstract
model explaining the phenomenon. To apply this test, we begin with amodel that causally
entails the explanandum.²⁵ We thenmake this causal model as abstract as possible, replac-
ing specific descriptions of causal influences with increasingly abstract characterizations,
i.e. less exact or specific claims (Strevens 2008, p. 97). Causal influences that survive
this abstraction procedure qualify as difference-makers. On Strevens’ account, only these
maximally abstract causal models genuinely explain.²⁶

Applying the kairetic account to the three formulations of crystal field theory, we see
this abstraction procedure in action. Regarding the splitting and degeneracy, the non-

²⁴Woodward defends a similar epistemic accessibility criterion for explanation (2003, pp. 23, 179–81, 308).
²⁵Causal entailment goes beyond logical entailment by representing an actual causal process that pro-

duces the explanandum (Strevens 2008, pp. 71–2, 93). Potochnik weakens this entailment relation to better
accommodate idealizations (2017, pp. 155–6).

²⁶Note that a single application of this kairetic procedure only identifies all of the difference-makers that
appear in a given causal model, rather than all of the difference-makers for a given event.
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group-theoretic approach abstracts from the particular charges and field strength used by
the elementary approach.²⁷ In their stead, it offers the symmetry-based potential as a puta-
tive causal difference-maker. The group-theoretic approach abstracts further, eliminating
the particular way that symmetry is instantiated. Assuming that we can always re-express
knowledge of symmetries using group theory, the symmetry-based potential would be ex-
planatorily irrelevant. What remains are the symmetries themselves—of the initial metal
ion and the resulting coordination complex—as the putative causal difference-makers for
the splitting and degeneracy. Since only the group-theoretic approach successfully rep-
resents these difference-makers, it is the only approach we have considered that would
provide a genuine explanation. It shows that symmetry is a difference-maker, but not
the particular way that symmetry is instantiated. In this way, Strevens’ kairetic account
could ground the intellectual differences between the two symmetry-based approaches in
corresponding ontic explanatory differences, thereby preserving explanationism.

However, the kairetic abstraction procedure for identifying causal difference-makers
faces a skeptical challenge. In general, it is impossible to conclusively prove that any
causal factor is or is not a difference-maker. On the one hand, to show that a factor
is a difference-maker, we must show that it survives under maximal abstraction within
a causal model. Yet, how can we know that no further abstractions in our model are
possible? A scientist taught the non-group-theoretic approach—and with no knowledge
of group theory—might reasonably think that this is a maximally abstract causal model.
On the other hand, to show that a causal factor is not a difference-maker, we must show
that the kairetic procedure eliminates or abstracts away that causal factor from any and
all causal models for the given explanandum (Strevens 2008, pp. 69–70, 87). For instance,
to show that the specific eigenvalues are genuinely irrelevant for explaining the splitting
and degeneracy, it is not enough to see how group theory eliminates them to provide a
more abstract causal model. Instead, we would have to show that any causal model for
the splitting and degeneracy lets us abstract away the specific eigenvalues.

Conceptualism avoids these skeptical worries by analyzing the relevant intellectual
differences in terms of epistemic dependence relations, rather than putative causal
difference-makers. It shows that we do not have to consider other possible but currently

²⁷We cannot, however, conclude from this single application of the kairetic procedure that the charges
and field strength are explanatorily irrelevant for the splitting and degeneracy. To do that, we would have
to show that we can abstract them away from any model that causally entails the splitting and degeneracy.
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unconceived causal models to account for the change in understanding provided by
group theory. Although considering such models would no doubt be illuminating—since
it would amount to considering further reformulations—conceptualism lets us analyse
the intellectual differences between the symmetry-based approaches by considering
those two approaches alone. The hard task of identifying causal difference-makers may
reasonably be hostage to the existence of even more abstract models, but the task of
identifying intellectually significant differences surely is not.

4.4.2 Lange’s distinctively mathematical explanations

Facedwith the limitations of causal accounts of explanation, an explanationistmight try to
locate ontic differences between reformulations within the realm of non-causal explana-
tions. Perhaps what is needed to save explanationism is an account of how mathematical
facts explain physical phenomena. Lange’s theory of distinctively mathematical explana-
tions provides one such account. According to Lange, causal structure alone sometimes
cannot account for the inevitability of certain physical phenomena (2017, pp. 5–6). In
these cases, we require a ‘distinctively mathematical explanation,’ wherein a mathemat-
ical fact ‘constrains’ the causal structure of reality. Such constraints possess a higher
degree of necessity than the laws or contingent facts that they constrain (Lange 2013,
2017, p. 10). Recognizing the relevant constraints shows not only why the explanandum
occurred, but also why the explanandum was inevitable—in a modal sense stronger than
nomic inevitability. In such cases, arguments that appeal to causal structure alone are
merely derivations of the relevant phenomenon, rather than explanations.

When it comes to explaining splitting and degeneracy, Lange’s account classifies only
the group-theoretic approach as explanatory. On this interpretation, the character de-
composition formula (Equation A.5) constrains the possible form of all resulting energy
levels, given initial and final symmetry groups. In other words, it constrains all possible
causal relations governing the energy-level structure of coordination complexes. For in-
stance, if the force law governing coordination complexes weren’t Coulomb’s law—e.g. if
it were an inverse cubic force law instead—the splitting and degeneracy would remain the
same. Although naturally necessary, such force laws would be interpreted as less neces-
sary than the mathematically necessary facts governing the representations of symmetry
groups. Hence, the group-theoretic approach shows that the splitting and degeneracy are
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more necessary than both the relevant force laws and the resulting eigenvalues. Since
the other two approaches cannot explain this difference in modality, Lange would argue
that they are non-explanatory: the causal mechanisms they reference are explanatorily
irrelevant.

However, just like Strevens’ account, Lange’s account faces a skeptical challenge.
His account successfully distinguishes the group-theoretic approach from the other ap-
proaches only if the world possesses this rich modal structure of mathematical facts con-
straining physical facts. Commitment to this kind of graded modality is decidedly contro-
versial, in part because it is epistemically inaccessible. We do not have empirical access
to this hierarchy of modal facts. Nevertheless, Lange’s account applies only if the world
possesses this structure. If the world turned out to lack sufficient modal structure, then
distinctively mathematical explanations would devolve into ordinary causal explanations.

A further problem arises from this skeptical worry. Worlds that lack Lange’s requi-
site modal structure are empirically indistinguishable from worlds that possess it. Hence,
the intellectual differences described in Section 4.2 would be equally apparent in either
kind of world. Regardless of whether or not the world possesses this modal structure, the
three formulations would still provide different understandings of crystal field theory.
Since these differences do not depend on corresponding facts about modality, we should
be able to accommodate them without further metaphysical theorizing. For instance, to
appreciate the central insight that modularization provides, we don’t need there to be
graded modality in the world. Specifically, we don’t need group-theoretic facts to con-
strain the causal structure of the world. By supplying epistemic dependence information,
the group-theoretic approach makes a distinctive contribution to our understanding of
crystal field theory, independently of further ontic commitments. Hence, conceptualism
provides a superior strategy for accommodating these intellectual differences.

Plausibly, any exclusionary account of explanation will face similar problems. For
the basic idea behind this explanationist strategy is to posit additional ontic features that
might ground the intellectual differences between compatible formulations. Since com-
patible formulations superficially posit the same states of affairs, any such additional ontic
features will be epistemically less accessible. In contrast, conceptualism provides an ac-
count of these intellectual differences using features that we have easy epistemic access
to—namely, epistemic dependence relations. Determining epistemic dependence relations
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is simply amatter of analyzing the epistemic structure of a theory formulation. Since these
differences in EDRs persist independently of whether they are grounded in further ontic
differences, our account of understanding should likewise be independent of these further
differences. Whereas conceptualism satisfies this desideratum, the exclusionary strategy
canvassed here seemingly does not.

4.5 Expressivism about Comparative Understanding

So far, I have offered an account of differences in understanding. These differences concern
how one formulation provides a different understanding of a phenomenon than another.
There is a further interesting question: underwhat conditions does one reformulation pro-
vide a better understanding than another? On what grounds—if any—is one compatible
formulation “intellectually better” than another? In asking such questions, we implic-
itly ascribe a kind of intellectual value to our problem-solving procedures. We entertain
the possibility that one of these procedures has greater intellectual value than another,
thereby providing better understanding. What is the nature of this intellectual value that
underpins claims about comparative understanding?

In keeping with the minimal ontological commitments of Chapter 2, I am reluctant
to posit metaphysically robust facts about intellectual value. The natural or non-natural
world might come equipped with such facts, but we should try to avoid positing them if
we can. Otherwise, we face problems of epistemic access similar to those that plague fun-
damentalism. Fortunately, there is a general philosophical strategy for simultaneously
vindicating a discourse while avoiding commitment to mysterious entities or facts that
such a discourse implicitly references. In its contemporary guise, this strategy is known
as ‘expressivism’ or ‘quasi-realism.’ It is most well-known in ethics, where expressivism
allows us to recover and vindicate ordinary moral discourse without positing metaphys-
ically robust moral facts or properties.²⁸ Here, I will propose an expressivist account of
comparative understanding.

Traditionally, expressivism begins with a distinction between descriptive vs. non-
descriptive claims. Descriptive claims are what Field (2009) calls straightforwardly factual.
They represent states of affairs, mirroring reality. In contrast, non-descriptive claims

²⁸For developments of quasi-realism in the ethical domain, see Gibbard (1990) and Blackburn (1993).
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are not straightforwardly factual; they involve an evaluative or normative dimension.²⁹
Expressivism focuses in particular on those non-descriptive claims that express action-
directed states of mind (Chrisman 2007, p. 236). Various expressivist accounts differ on
the mental states or attitudes involved, but common ones include universal preferences,
states of norm-acceptance, states of planning, or a non-cognitive attitude of being for.³⁰
Because I find them complementary and illuminating, I present my account using both
Schroeder’s (2008) attitude of being-for and Gibbard’s (1990) attitude of norm-acceptance.

4.5.1 A first go at expressivism about understanding

Judgments of comparative understanding are a type of evaluative judgment. They are
judgments that one formulation provides better understanding than another. More pre-
cisely, they take the form “X provides a better understanding than Y of some phenomenon
P.” The evaluative part comprises a “better-than” relation. Hence, if we can characterize
what it means to say that “X is better than Y,” we will have gone quite a ways toward
characterizing comparative understanding.

This is one place where expressivism gains a clear foothold. Expressivism provides a
general strategy for understanding better-than relations. Generically, to judge that some-
thing X is better than some other thing Y is to express an attitude of being for preferring X

to Y (Schroeder 2008, p. 58). Notice how this expressivist account differs from a descrip-
tivist (or representationalist) account of ‘better-than.’ Descriptivism would posit some
state of affairs that ‘better-than’ relations track, such as comparative amounts of psycho-
logical well-being. Expressivism can remain neutral on whether ‘better-than’ relations
ever track such states of affairs. The point is a modest one: we can at least understand
‘better-than’ claims through their expressive role. They at least express an attitude of
being for preferring or favoring one thing over another.

Naïvely, expressivism about better-than relations leads to the following account of
comparative understanding:

(Naïve) Comparative Understanding: to judge that an argument (or problem-
solving plan) X provides better understanding than an argument Y is to express an
attitude of being for preferring X to Y.

²⁹See Kraut (1990, p. 159) for a detailed characterization of this ‘bifurcation’ between descriptive and
non-descriptive claims and Price (2013) for criticism.

³⁰See Gibbard (2003, p. 181). Schroeder’s (2008) account in terms of the attitude of ‘being for’ resolves
some technical problems that afflict Gibbard’s solution to the Frege–Geach embedding problem.

105



On this simple account, when I judge that the group theoretic approach to crystal field
theory provides a better understanding than the elementary approach, I express an at-
titude of being for preferring group theory. Here, the object of understanding can be a
specific phenomenon, proposition, or body of knowledge.

Of course, there aremany different kinds of preference. Some preferences are intended
as expressions of taste, whereas others are intended to express more universalizable at-
titudes. When I say that chocolate ice cream is better than vanilla, I don’t intend my
expression of preference to be anything more than a matter of taste. I am communicat-
ing that, as a matter of my contingent physiology, I find chocolate to be more enjoyable
than vanilla. I am not encouraging others to agree with me; I do not care about their
preferences on this matter.

In contrast, when I say that helping is better than hurting, I take this expression of
preference to be more than a matter of taste. I express an attitude of preferring that
everyone think helping is preferable to hurting. I express a preference that I think everyone
should have. Clearly then, to make the account work, we need to saymore about the kinds
of preferences involved.

4.5.2 Intellectual preference

The naïve account of comparative understanding runs immediately into a serious prob-
lem: many preferences are idiosyncratic, subjective, or practical. As we have seen in
the context of trivial notational variants, I might have a strong preference for working
with one notational convention rather than another. I might strongly prefer working in a
right-handed rather than a left-handed coordinate system. Nevertheless, as I have argued
in Chapter 2, either convention results in the same understanding of the problem. It is in
this sense that they are trivial notational variants: they evince no non-practical, epistemic
differences. A fortiori, neither can provide a better understanding than the other, at least
not in the sense of ‘understanding’ that interests me here.

To avoid this problem, it suffices to restrict the relevant notion of preference. Rather
than focus on all of an agent’s preferences toward formulations, I will focus on their
intellectual preferences. These comprise their preferences toward intellectual differences
or features that give rise to such differences (recall that ‘intellectual differences’ consti-
tute a non-practical subset of epistemic differences). These include preferences toward
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modularization, unification, uniformity of treatment, and manifestness. Since intellec-
tual differences arise from differences in epistemic dependence relations, it follows that
intellectual preferences also include preferences toward specific EDRs. Given any two
epistemic dependence relations that can be used in solving a problem, I might have an
intellectual preference for one of them over the other.

In contrast, intellectual preferences do not distinguish between trivial notational vari-
ants. Since a right-handed coordinate convention does not yield any intellectual differ-
ences from a left-handed system, my preference for right-handed systems is not an in-
tellectual preference. It is what we might call a ‘practical preference’—stemming from
my familiarity or relative facility with right-handed systems over left-handed ones. There
are typically many practical reasons to prefer one formulation over another, based on
familiarity with a formalism, preferences for the kinds of computations one likes to per-
form, mathematical background knowledge, etc. These practical reasons can contribute
to overall preference, but not intellectual preference.

By restricting attention to intellectual preferences, we arrive at the following improved
account of comparative understanding:

Comparative Understanding: to judge that an argument X provides better under-
standing than Y is to express an attitude of being for intellectually-preferring X.

On this account, when I judge that the group theoretic approach provides a better un-
derstanding of crystal field theory than the elementary approach, I express an attitude of
intellectually favoring the group theoretic approach. Specifically, I might be expressing an
intellectual preference for modularization and unification. These are two non-practical,
epistemic features that the group theoretic approach supports that the elementary ap-
proach does not. Often, to judge that formulation X provides better understanding than
formulation Y will amount to judging that X provides, on balance, a better set of EDRs
than Y. Moreover, to judge that these EDRs are better is to express an attitude of being
for intellectually preferring them.

Of course, in various contexts, my overall preference might be for the elementary ap-
proach. Someone who is interested in solving only a few crystal field theory problems
might prefer, for the sake of convenience, to avoid learning any group theory at all. If so,
they might overall prefer to use the elementary approach, which avoids the hard work
of tabulating character tables for the relevant symmetry groups. However, this kind of
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convenience-based preference is not relevant for an assessment of comparative intellec-
tual virtues. Focusing on intellectual preferences screens off matters of convenience from
matters of intellectual importance.

4.5.3 Norm-expressivism about better understanding

So far, I have relied on Schroeder’s formulation of expressivism, using a non-cognitive
attitude of being for. Schroeder’s formulation provides a relatively streamlined character-
ization of the attitudes that judgments of comparative understanding express. Nonethe-
less, focusing on norms provides a richer account of these judgments. We can unpack
the attitude of being for in terms of accepting a set of norms, i.e. through an attitude that
Gibbard (1990) calls ‘norm-acceptance.’ On this construal, ‘being for X’ amounts to being
in favor of a set of norms that recommend X.

I intend this notion of ‘recommendation’ to be a weak form of ‘ought,’ in the sense of
‘you ought to take out your trash,’ rather than the stronger sense of ‘you must take out
your trash.’ Recommendation, in this sense, is stronger than permissible but weaker than
required. Although Gibbard (1990) talks in terms of actions being required, permissible,
or forbidden, I see no reason why we can’t adjoin a further normative notion of recom-
mendation. Someone who fails to follow a recommendation engages in an action that,
although permissible, is suberogatory.

It is very natural—at least in a philosophical context—to talk about norms governing
better understanding. These norms govern what counts as an intellectual improvement,
i.e. improvements to our understanding in a non-practical, epistemic sense. Hence, it is
illuminating to reformulate my account of comparative understanding using Gibbard’s
norm-expressivism. I take Gibbard’s framework to be compatible with Schroeder’s, and
I do not intend to treat either as more fundamental. Rather, both frameworks elucidate
different facets of comparative understanding (and evaluative judgments more generally).

Gibbard’s norm-expressivism

Gibbard’s framework extends possible worlds semantics by adjoining a set of norms to
each possible world. The worlds are specified entirely through descriptive claims, i.e.
claims that purport to represent states of affairs or mirror reality. Adjoining a set of
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norms yields descriptive–normative worlds, given by a pair ⟨w,n⟩.³¹ The possible world
w specifies states of affairs. The additional component n specifies a normative system.
Gibbard characterizes this as follows:

A system of norms, recall, is the end result of the ways the various general nor-
mative principles a person accepts combine, weigh against each other, and override
one another. If it is complete, then for every conceivable fully described occasion
governed by norms, the system classifies each alternative as required, optional, or
forbidden.…Together, w and n entail a normative judgment for every occasion. (Gib-
bard 1990, p. 95)

To illustrate Gibbard’s framework, consider judgments about rationality. When a
norm-expressivist about rationality says that X is rational, they neither ascribe a prop-
erty to X nor assert a truth-condition for X (at least not directly). Instead, saying that “X
is rational” is equivalent to expressing acceptance of a system of norms that, on balance,
permit X (Gibbard 1990, p. 84). In short, to think something rational is to accept a set of
norms that permits it. For any given belief, judgment, or action, a complete system of
norms renders it either required, permissible, or forbidden. Below, I will further divide
permissible states into those that are recommended and those that are not.

Applying Gibbard’s Framework

To apply Gibbard’s norm-expressivism to understanding, I must specify which compo-
nents fall within the descriptive part, and which fall within the normative part. Intel-
lectual differences belong to the descriptive part: it is a matter of straightforward fact
whether or not two formulations display intellectual differences. In saying that the group
theoretic approach modularizes the crystal field theory problem, while the elementary
approach does not, I say nothing normative. I merely describe non-practical, epistemic
features of these two formulations.

The normative part comprises norms governing intellectual preferences. These
norms settle which intellectual preferences are recommended, required, forbidden, or
permissible-but-not-recommended (i.e. suberogatory). For instance, one such norm
might say that, ceteris paribus, one ought to intellectually prefer unification. According

³¹Gibbard himself refers to these as ‘fact–norm’ pairs, but due to his later embrace of minimalism about
truth, this terminology is liable to cause confusion. Within the minimalist framework, normative claims
can also count as being factual (although not straightforwardly factual).
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to this norm (considered in isolation), a formulation that unifies provides better under-
standing than one that does not, assuming that they are otherwise on a par intellectually
(i.e. with respect to other intellectually significant features). When I say that the unifying
formulation provides better understanding, I express acceptance of a set of norms that
recommends this intellectual preference.

(An aside: technically, matters are not so simple for all intellectually significant prop-
erties. Some of these properties themselves have a normative component and hence are
not wholly descriptive, i.e. straightforwardly factual. As I have mentioned, making a
property manifest is an intellectually significant feature that some formulations possess
while others lack. Yet, as I argue in Chapter 6, what it means to make a property man-
ifest is partly normative. Whether or not a property is manifest depends on what we
epistemically ought to infer from a given expression or argument. Nonetheless, the kind
of normativity involved in these epistemic ought claims is different from the normativity
involved in ‘better-than’ relations. Epistemic-oughts have nothing to do with intellectual
preferences. If one were a descriptivist about epistemic-ought claims, then the simple
story in the preceding two paragraphs would hold.)

Within this framework, disagreements about comparative understanding are either
descriptive or normative. They amount to disagreements about either i) which formula-
tions display a given intellectually significant feature or ii) the right norms governing in-
tellectual preferences. Imagine then two chemists, Greg and Eleanor, who disagree about
whether the group theoretic approach provides better understanding than the elementary
approach. Stipulate that they both agree on the intellectual differences between these
approaches. In particular, they both recognize that only the group theoretic approach
modularizes and unifies the crystal field theory problem. According to Greg, the group
theoretic approach provides better understanding, whereas Eleanor denies this (perhaps
thinking that both provide an equally good understanding).

In making his comparative judgment, Greg expresses acceptance of a set of norms
that recommends intellectually preferring the group theoretic approach. In denying that
group theory provides better understanding, Eleanor expresses acceptance of norms that
forbid Greg’s intellectual preference (or at least recommend a different preference). In
thinking that at most one of Greg or Eleanor can be correct, I myself express a further
normative judgment. I express acceptance of a set of norms that forbids both being right.
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In other words, I express my rejection of relativism about norms governing intellectual
preference. In this way, expressivism does not entail relativism: relativists about compar-
ative understanding endorse a particular set of norms governing intellectual preferences.
To avoid relativism, it suffices to reject such norms.

It is of course possible that in some cases, the right thing to say is that neither formu-
lation provides a better understanding than the other. The two formulations might simply
display different intellectual virtues that balance each other out. For instance, perhaps the
correct norms on intellectual preference do not legislate in favor of one epistemic feature
over the other. In such cases, the most we might be able to say is that it is ideal to be
able to understand the phenomena using both approaches, rather than to intellectually
privilege one over the other. Section 4.6.3 further explores the possibility of there being
no privileged weighting of various intellectually significant properties.

4.5.4 Expressivism is not subjectivism

Of course, we should expect that different scientists and scientific communities in vari-
ous contexts and historical periods will disagree about which epistemic dependence re-
lations should be preferred. When it comes to making sense of these disagreements, ex-
pressivism improves upon agent- or community-based subjectivism. According to sub-
jectivism, judgments of comparative understanding are synonymous with judgments of
preference. If a scientist Greg says that “group theory provides a better understanding
of crystal field theory than the elementary approach,” a subjectivist understands this as
follows: Greg prefers group theory to the elementary approach.

Subjectivism faces serious problems for making sense of disagreements. If a different
scientist Eleanor asserts that the elementary approach provides better understanding, a
subjectivist construes this as synonymous with the following assertion: “Eleanor prefers
the elementary approach to the group theoretic approach in the context of crystal field
theory.” Problematically, both of these assertions about Greg and Eleanor’s preferences
can be true simultaneously. Hence, subjectivism seems unable to capture a sense in which
Greg and Eleanor disagree. It is unable to capture the ordinary intuition that Eleanor
not only disagrees with Greg’s attitudes or preferences, but also thinks that the content
of his claim about comparative understanding is false.³² In contrast, on an expressivist

³²For discussion of this problem for speaker subjectivism, see Schroeder (2008, 16ff.). Beddor (2019)
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account of comparative understanding, Greg and Eleanor are in genuine disagreement.
They disagree about which epistemic dependence relations we ought to prefer.

There are good historical reasons to resist subjectivist approaches to comparative judg-
ments of understanding. The mere consensus of the scientific community is insufficient
evidence for treating one formulation as intellectually better tout court than another.
Forming consensus about the betterness of reformulations generally takes time and de-
pends largely on training. It is subject to numerous historical contingencies, including
the idiosyncratic predilections of individual scientists and promoters of favored reformu-
lations. Overall preferences are also heavily influenced by which approach is ultimately
more convenient for a class of problems. As discussed briefly in Section 2.4.1, even de-
ciding which of two approaches is more convenient can depend on personal preferences.
For instance, although group theoretic methods ultimately lead to vast computational sim-
plifications, they have a steep entry cost compared to elementary approaches. Learning
the requisite group representation theory is not easy compared to applying elementary
brute-force methods. It is largely for this reason (along with the pedagogical absence of
group theory in early 1900s physics education) that group theoretic approaches to atomic
spectroscopy took more than two decades to become widespread.³³

Unlike subjectivism, expressivism avoidsmaking better-understanding amatter of his-
torical contingency and subjective preference. Within an expressivist framework, we can
criticize scientists from various periods for having poor intellectual preferences about
various kinds of epistemic dependence relations. Additionally, we can criticize them for
conflating their overall preference (taking into account factors of convenience) with prop-
erly intellectual preference. Chemists and physicists have since come to appreciate the
intellectual advantages of group representation theory. These advantages were there all
the while to be admired, independently of whether chemists and physicists ever did ad-
mire them. Thus, expressivism allows that many disputes about better-understanding are
substantive intellectual debates rather than matters of taste. It is plausible that epistemic
dependence relations that modularize and unify are ones that scientists ought to strive
for, ceteris paribus. If so, contemporary chemists and physicists would have a principled
reason to criticize the preferences of many of their forebears in the 1930’s and 1940’s.

discusses how expressivism improves upon subjectivism and contextualism.
³³For historical accounts, see Scholz (2006) and Bonolis (2004)
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4.6 Norms on Better Understanding

By itself, expressivism does not provide a first-order account of the norms governing com-
parative understanding. In the first instance, expressivism is a meta-theoretical frame-
work: it clarifies what we are doing when we make certain kinds of non-descriptive
claims. Providing a first-order account requires endorsing and defending a particular
set of norms, including which EDRs and kinds of intellectual properties to prefer. In the
ethical domain, expressivism is compatible with a wide variety of first-order moral the-
ories. An expressivist could endorse utilitarianism or deontology or Aristotelian virtue
ethics. Likewise, my expressivist account is compatible with a variety of different norma-
tive systems governing comparative understanding. Nonetheless, I recognize that many
philosophers are most interested in determining these norms, since they settle what ac-
tually contributes to greater understanding. This section describes different first-order
norms on comparative understanding.

I divide these norms into three families. The first stems from the relationship between
explanation and understanding. I imagine that these norms will be the least controversial,
since they are entailed by a widely-accepted account of explanatory understanding (i.e.
understanding-why). They are for that reason relatively uninteresting. The second family
focuses on improvements coming from increasing the number of epistemic dependence
relations or intellectually significant properties. The third family is themost interesting: it
concerns norms governing which non-explanatory intellectually significant properties to
prefer, including modularization, unification, and manifestness. I imagine that reasonable
people will probably be most likely to disagree about these norms. I myself am inclined
to endorse all of the norms that I consider. I provide brief arguments for some of these
norms, although part of the defense for the third family of norms must await Chapter 5.

4.6.1 Norms from explanation

According to the received view of understanding, understanding why a phenomenon P oc-
curred consists in grasping an explanation of that phenomenon. This account entails an
uncontroversial claim about comparative understanding: given two arguments, if only
one of them provides an explanation of P, then the explanatory argument provides bet-
ter understanding of P. For instance, classical electrodynamics is unable to explain the
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stability of atoms. Quantum mechanics supplies an explanation. Therefore, quantum me-
chanics provides a better understanding of atoms than classical electrodynamics.

In general, an explanatory argument provides better understanding than a non-
explanatory one. Given the received view, this claim might qualify as a conceptual truth.
On my expressivist account, accepting this claim amounts to expressing acceptance
of the following norm: we ought to intellectually prefer explanatory arguments over
non-explanatory ones. Hence, the received view of understanding underwrites a rather
obvious norm on comparative understanding. Moreover, one could endorse this norm
while augmenting the received view, e.g. by holding that understanding-why is not
exhausted by grasping explanations. Indeed, conceptualism purports to give such
arguments against explanationism.

The norm that explanations provide better understanding than non-explanations has
a rather natural extension. Based on how we commonly talk about explanations, ‘expla-
nation’ appears to be a degreed notion. Given two explanatory arguments, one of them
might provide a better explanation than the other (even if both are equally accurate). This
observation motivates a further norm on comparative understanding: given two explana-
tory arguments, if one provides a better explanation, then it provides better understand-
ing. If we accept the received view of understanding, then this norm takes on the air of
a conceptual truth. Insofar as understanding amounts to grasping an explanation, grasp-
ing a better explanation leads to better understanding. Phrased as an explicit norm on
intellectual preference, this yields the following: we ought to intellectually prefer better
explanations.

I expect that these are two of the least controversial norms one could endorse on com-
parative understanding. To a large extent, Khalifa’s (2017) account of understanding con-
sists in spelling out the constraints that explanation places on comparative understand-
ing. Defending a form of explanationism, Khalifa advocates two conditions for greater
understanding: either, an agent grasps more explanatory information about the phe-
nomenon, or their grasp of this information better resembles scientific knowledge (2017,
p. 14). Framed explicitly as norms on intellectual preference, Khalifa’s claims amount to
the following: i) we ought to intellectually prefer grasping more explanatory information
to less, and ii) we ought to intellectually prefer greater justification, resilience, safety, or
other epistemic goods that contribute to scientific knowledge.
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Due to the arguments in Section 4.2.2 and Chapter 3, I am doubtful that these norms
capture all of the intellectually significant features of scientific understanding. This is
because I believe we can have intellectually significant differences without explanatory
differences (where the grasp of these differences equally resembles scientific knowledge).
Hence, the extent to which we grasp explanatory information does not exhaust sources
of better understanding.

The first family of norms, then, arises from constraints that explanation places upon
better understanding. Of course, how to apply these norms depends very much on one’s
account of explanation, an exceedingly controversial topic within philosophy of science
(and philosophy generally). Reasonable people frequently disagree about which of two
explanatory arguments provides a better explanation; likewise for the question of whether
an argument is even explanatory (as opposed to merely providing a derivation or justifica-
tion for belief). Regardless of their preferred account of explanation, seemingly everyone
can agree on the preceding two norms.³⁴

4.6.2 Norms from number of EDRs

The second family of norms arises from differences in the number of EDRs or intellectually
significant properties that a formulation provides. In some cases, one formulation extends
another, more elementary formulation. The extension then underwrites strictly more
epistemic dependence relations than the elementary formulation. The Wigner–Eckart
theorem provides one such example: it extends an elementary approach to calculating
matrix elements in atomic, nuclear, and molecular physics (Hunt 2021a). Likewise, Feyn-
man diagrams extend an elementary approach to calculating scattering amplitudes in par-
ticle physics (see Section 3.7). In these cases, additional EDRs tell us that there is some
information that we don’t need to know in order to solve problems, e.g. to calculate par-
ticular physical quantities. Whereas the elementary formulations rely on this information
to solve problems.

It is natural to think that the extended formulation is intellectually superior to the
elementary one. After all, it contains the elementary formulation as a proper sub-plan for

³⁴Philosophical disagreements about explanation typically concern what it takes for one fact to be ex-
planatorily relevant for another. Elsewhere, I defend an expressivist account of explanation, based on ex-
pressivism about explanatory relevance. To judge that a fact is explanatorily relevant to answering a why
question is to express an attitude of being for being satisfied by that fact as part of an answer.
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solving problems. These observations motivate the following claim about comparative
understanding: a formulation that provides strictly more epistemic dependence relations
than another provides better understanding. Formulated explicitly as a norm, this yields
the following: other things equal, one ought to intellectually prefer a formulation that
provides strictly more epistemic dependence relations.

To avoid pedantic counterexamples, some qualifications are required. Not just any
gain in epistemic dependence relations will do. We are only interested in those that ac-
tually contribute to solving problems about a particular set of phenomena. One could in
principle adjoin arbitrarily many epistemic dependence relations that have nothing to do
with the given phenomena. If an EDR does not contribute to a problem-solving plan, then
it is irrelevant for that plan.

At first glance, the formulations of crystal field theory appear to fall into this special
case where a more sophisticated formulation extends a more elementary formulation. The
group theoretic approach builds on the elementary approach. It contains the elementary
approach as a proper subset of its expressive means. The norm above then seems to li-
cense the claim that the group theoretic approach provides better understanding than the
elementary approach. While this norm applies at least in the context of the eigenvalue
problem, it does not apply in all contexts. For problems concerning splitting and degener-
acy, we can restrict the group theoretic approach to a problem-solving plan that does not
appeal to the elementary approach. We can then ask whether the elementary or the group
theoretic approach provides a better understanding of the relevant phenomena. Within
this context, neither approach is an extension of the other. Hence, we cannot appeal to
a norm based on counting epistemic dependence relations. Instead, we need to consider
norms from the third family, introduced below.

Unsurprisingly, it is often not the case that a more sophisticated approach builds upon
a less sophisticated one. For instance, the group theoretic approach does not contain the
non-group theoretic symmetry-based approach as a proper subset of its expressive means.
Generically, compatible reformulations can bear complicated inferential relations to one
another, with neither being an extension of the other. Each formulation might supply its
own set of epistemic dependence relations, with different intellectually-significant prop-
erties. Figuring out which—if any—formulation provides better understanding requires
comparing these different EDRs and resultant properties, weighting them to different
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degrees. For example, perhaps EDRs that unify are more epistemically valuable, ceteris
paribus, than EDRs that merely provide a uniform treatment. These considerations lead
us to the third family of norms, namely norms governing which kinds of EDRs one ought
to intellectually-prefer.

Before moving on to this third, more interesting family of norms, it is worth pointing
out a consequence of the preceding simple norm on counting EDRs. It answers the fol-
lowing kind of comparative question about understanding: together, do two formulations
for solving the same problem provide better understanding than either one alone? Intu-
itively, the answer is often ‘yes,’ two formulations are often better than one. The simple
norm on counting EDRs provides one way of underwriting this intuition, while providing
principled reasons for cases where two formulations are not better than one.

Recall that in order for two formulations to be significantly different—as opposed to
trivial notational variants—they must differ in at least one EDR. Typically then, two sig-
nificant reformulations provide strictly more EDRs than either one on their own (an ex-
ception is the case where one formulation is an extension of the other). If the norm on
counting EDRs is correct, then we ought to intellectually-prefer having more EDRs to
fewer. Hence, we ought to intellectually-prefer having more significant reformulations
to fewer. This entails that two significant reformulations provide better understanding
than either alone (barring the extension case).

For instance, independently of whether or not the group theoretic account provides a
better understanding than the elementary approach, the conjunction of these two refor-
mulations provides a better understanding of crystal field theory than either formulation
on its own. This follows simply from the fact that both reformulations together provide
more epistemic dependence relations than either approach.³⁵ In contrast, in cases of triv-
ial notational variants, both formulations provide the same EDRs. Hence, it is not the case
that we ought to intellectually-prefer having more trivial notational variants. We do not
understand a phenomenon better by knowing how to treat it using two different conven-
tions, when those conventions do not lead to any epistemic differences in problem-solving
plans.

³⁵For example, the elementary approach shows that no knowledge of group representation theory is
needed to solve the crystal field theory problem. It also shows that one does not need to know the symmetry
of the coordination complex.
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4.6.3 Norms on kinds of EDRs

This leaves the most interesting norms on comparative understanding. These norms per-
tain to EDRs and the intellectually significant properties that different EDRs can generate.
Such properties include modularization, unification, uniformity of treatment, and man-
ifestness. There are probably others that outstrip my limited experience.³⁶ For each of
these properties, a formulation that instantiates it might provide a better understanding
than a formulation that lacks the given property. We can schematize such comparative
claims as follows: ceteris paribus, solving a problem with a formulation that possesses an
intellectually significant property Q provides a better understanding than one that lacks
Q. On my expressivist account, accepting this claim amounts to expressing acceptance of
a set of norms that recommend intellectually-preferring this property.

At the first-order level then, we have to settle at least two questions. First, which EDRs
and properties ought we intellectually-prefer? Second, how should we weight these EDRs
or properties in cases where two formulations exhibit different ones? For instance, one
formulation might modularize while another makes a property manifest. Other things
equal, judging that themodular formulation provides better understanding than themani-
fest formulationwould amount to expressing acceptance of a set of normswhere we ought
to intellectually-prefer modularization over manifestness.

The first question seems much easier to answer than the second. I am inclined to think
that we ought to intellectually-prefer those epistemic dependence relations that give rise
to intellectually significant properties. This is because I think we ought to intellectually-
prefer such properties. Other things equal, it seems intellectually better for a formulation
to have these properties than to lack them. Hence, I am inclined to endorse a system of
norms that recommends intellectually-preferring the properties of modularization, uni-
fication, uniformity of treatment, manifestness, and plausibly others that I have left out.
Developing formulations that exhibit these properties contributes to the clarification of
epistemic structure. It clarifies what we need to know to solve problems. In Chapter 5, I
argue that clarifying epistemic structure is a constitutive aim of science. Hence, I believe
that developing formulations with these properties has final value for science (as opposed
to merely instrumental value).

³⁶Perhaps visualizability is an intellectually significant property, connected with the nature of geometric
EDRs, as opposed to algebraic ones.
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On the second question, regarding how toweight our intellectual preferences for these
properties (or EDRs that give rise to them), I am not confident in any particular answer.
An analogous question arises in the moral domain: how are we to weight competing
moral goods when they come into conflict, such as respecting autonomy vs. promoting
well-being? A utilitarian has a straightforward answer: do whatever best promotes utility
for the greatest number in the long run. A similar answer is available here: perhaps some
intellectual virtues are more likely to lead to more accurate theories in the long run. An
epistemic utility theorist might then favor these virtues, whatever they are.

Thinking instrumentally in this way, it might be the case that science on the whole
does best when different scientists subscribe to different weightings of intellectually sig-
nificant properties. Different weightings might motivate scientists to pursue different
projects, and one cannot know in advance which problem-solving strategies are most
likely to bear fruit for currently unsolved problems. The case study methodology I pursue
here can at best provide inductive grounds for privileging certain intellectually significant
properties. Nevertheless, the question seems like it might not admit a decisive answer. It
is similar to figuring out how best to weight various artistic virtues, so as to figure out
which of two great works of art is aesthetically better. Such weightings might ultimately
just be matters of taste.

4.7 Conclusion

I have argued that non-explanatory, intellectual differences arise even outside the context
of theoretically equivalent reformulations. The three formulations of crystal field theory
provide a paradigmatic example of theoretically inequivalent formulations that neverthe-
less pose a counterexample to explanationism. Moreover, I have shown how conceptual-
ism provides an account of the intellectual significance of symmetry arguments in cases
where they are not needed to explain phenomena. Section 4.2 illustrates the dramatic in-
tellectual differences that symmetry arguments can provide. Group representation theory
radically restructures how we understand the energy levels of coordination complexes. It
does this by modularizing the crystal field theory problem into separately treatable sub-
problems, while unifying systems into symmetry-based families.

Sections 4.3 and 4.4 considered what seem to be the only two strategies available for
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defending explanationism—short of denying that compatible formulations lead to differ-
ences in understanding. By rebutting these strategies, I have shown that existing ac-
counts of explanation face the burden of accommodating non-explanatory intellectual
differences. One easy way to meet this burden is simply to renounce explanationism and
adopt conceptualism. Conceptualism provides a general approach to interpreting the in-
tellectual and methodological significance of reformulations. This includes mathematical
reformulations in particular, which have recently sparked debates over the existence of
non-causal explanations. Promisingly, conceptualism lets us interpret mathematized ex-
planations while skirting seemingly insoluble metaphysical disputes. It focuses attention
away from epistemically inaccessible features of scientific ontology and toward the man-
ifestly accessible epistemic structure of problem-solving plans.

In the final two sections, I considered the question of what makes one formulation
intellectually better than another. I argued that to answer this question in full gener-
ality, we need to appeal to the preferences of scientific agents. Section 4.5 proposed a
novel expressivist account of the better-understanding-than relation. Comparative judg-
ments of intellectual value express preferences for specific kinds of epistemic dependence
relations or intellectually significant properties. Section 4.6 considered a number of first-
order norms on intellectual preference, underwriting specific claims about comparative
understanding. In Section 6.6, I will return to expressivism in order to develop a non-
metaphysical account of fundamentality.

A Appendix

A.1 The elementary approach

The elementary approach solves the crystal field theory problem exclusively through
perturbation theory. We begin with an initial Hamiltonian H0 (with known eigenval-
ues and eigenfunctions) that characterizes the energy and dynamics of the unperturbed
system, such as Ni2+. We characterize the perturbation from the six water molecules
by an operator H ′. The sum of these two operators equals an approximate Hamilto-
nian, H , for nickel(II) hexahydrate: H = H0 +H ′. To approximate the eigenvalues of
H , we first calculate the matrix elements of the perturbation operator H ′ by measuring
the electrostatic potential. Calculating these matrix elements requires choosing a basis
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for the five unperturbed d-orbitals of Ni2+, such as the five spherical harmonics, Y 2,m

(m ∈ {−2,−1,0,1,2}).³⁷ In this basis, we compute all twenty-five elements of the 5× 5

matrix H ′ and use them to solve the secular equation of the perturbation operator:

determinant[H ′−λ I] = 0 (A.1)

where λ I is a constant multiple of the identity matrix. The roots (i.e. zeros) of the secular
equation equal the eigenvalues of H ′, which provide a first-order correction to the eigen-
values of H0. The number and degeneracy of the distinct eigenvalues corresponds to the
number of new energy levels and their degeneracies.

A.2 The non-group-theoretic approach

The non-group-theoretic approach begins by determining a general form for the electro-
static potential in terms of the symmetry of the coordination complex. Using Coulomb’s
law, we express the potential at an arbitrary point P as a sum of six contributing poten-
tials, one from each of the ligands. After manipulating this expression using Legendre
polynomials, we arrive at a tractable formula in Cartesian coordinates x, y, and z. This
constitutes a symmetry-based form for the potential (Figgis and Hitchman 2000, p. 38):

V =
6

∑
i=1

Vi = 6
Ze2

a
+

35Ze2

4a5 (x4 + y4 + z4 − 3
5

r4) (A.2)

Here, Z is the charge of the central metal ion, r is the distance from the point P to the
central metal ion, and a is the distance between each ligand and the central metal ion.

Using equation (A.2) for the crystal field potential V , we then proceed as in the ele-
mentary approach. We calculate the matrix elements of the perturbation operator H ′ and
solve the resulting secular equation for its roots. Since this derivation uses a symmetry-
based expression for the potential, it applies not just to nickel(II) hexahydrate but to any
coordination complex with octahedral symmetry instantiated in the same way. We find
two distinct roots: λ1 =−2

5∆O (three-fold degenerate) and λ2 =
3
5∆O (two-fold degener-

ate), expressed in terms of their energy difference ∆O. The existence of two distinct roots
entails that two new energy levels form. Since these roots are three-fold and two-fold

³⁷These functions belong to the separableHilbert space L2(R3) of square-integrable complex-valued func-
tions defined over Euclidean three-space R3. For details, see Cornwell (1984, Appendix B).
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degenerate, so are the resulting energy levels (Dunn et al. 1965, p. 16).

A.3 The group-theoretic approach

To apply group theory, we first identify the symmetry group G0 of the unperturbed Ni2+

metal ion.³⁸ This is the set of transformations that leave the initial Hamiltonian, H0, in-
variant. An unperturbedmetal ion possesses spherical symmetry, so H0 is invariant under
any rotation around any axis passing through the centre of Ni2+. This uncountably infi-
nite set of rotations constitutes the pure rotation group SO(3), (i.e. the special orthogonal
group in three dimensions).³⁹

Next, we identify the symmetry group G of the final, perturbed state—in this case
nickel(II) hexahydrate. In Figure 6, Ni2+ sits at the centre of an octahedron, surrounded
by a water ligand at each vertex. The symmetry operations that leave this coordination
complex’s Hamiltonian, H , invariant are the twenty-four operations of the octahedral
group, O. These comprise a variety of 90°,120°, and 180° rotations through various axes
passing through the octahedron’s centre.

120°

180°
x

90°
z

y

Figure 6: Some symmetry operations of an octahedron

These symmetry transformations form five distinct ‘conjugacy classes’: (1)360°, (8)120°,
(6)180°′, (3)180°, and (6)90°, corresponding to distinct kinds of rotations. Here,
‘(1)360°’ indicates a conjugacy class consisting of one 360 degree rotation, namely the

³⁸A group is a set equipped with a closed, invertible, and associative binary operation, containing an
identity element.

³⁹To simplify the exposition, I neglect inversion transformations in both the initial and final symmetry
groups.
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identity element of the group.⁴⁰
To extract information about the energy levels from these symmetry groups, we move

from group theory to group representation theory. This involves constructing ‘matrix
representations’ for the symmetry groups of interest.⁴¹ To form a matrix representation,
we map each geometrical symmetry transformation B to an invertible matrix ρ(B). For
finite groups, such as the octahedral group, each representation can be decomposed into
a finite number of ‘irreducible representations.’⁴² Since these irreducible representations
cannot be decomposed further, they function as the basic building blocks of all other
representations. For instance, the octahedral group has five irreducible representations,
labeled A1,A2,E,T1, and T2.⁴³

Irreducible representations express important symmetry properties of physical sys-
tems. In particular, the irreducible representations of a system’s symmetry group label the
Hamiltonian’s eigenvalues, i.e. the energy of each orbital. This means that each distinct
energy level (each distinct eigenspace) corresponds to an irreducible representation.⁴⁴ For
example, an irreducible representation ‘Γ(2)

rot ’ of SO(3) labels the five-fold degenerate d-
orbitals of Ni2+. This correspondence between eigenspaces and irreducible representa-
tions allows us to derive facts about energy levels by considering relationships between
representations.

For many applications, it is unnecessary to determine explicit matrix representations
for each irreducible representation (illustrating another epistemic dependence relation).
Instead, we can often rely on group characters. For a given irreducible representation, a
‘character’ is the trace of a matrix from that representation (the ‘trace’ is the sum of the
elements along the principal diagonal). Since matrix traces are invariant under changes in

⁴⁰A conjugacy class is a collection of operations that is invariant under conjugation: letting A be amember
of the conjugacy class and X any member of the group, the combination XAX−1 is also a member of the
conjugacy class.

⁴¹A matrix representation is a group homomorphism ρ from the group of interest to the group of in-
vertible linear transformations over a vector space V (i.e. the general linear group GL(V )). Requiring this
map to be a ‘group homomorphism’ means that the matrix representatives must compose under matrix
multiplication in the same way as the symmetry transformations do: ρ(AB) = ρ(A)ρ(B).

⁴²A representation is irreducible if there is no proper subspace of basis vectors left invariant by the trans-
formations of the symmetry group, i.e. the vector space for the representation contains no smaller, non-
trivial invariant subspaces. Otherwise, a representation is reducible.

⁴³The capital letters correspond to the dimensionality of the irreducible representation, with ‘A,’ ‘E,’ and
‘T’ corresponding to one, two, and three dimensional representations, respectively.

⁴⁴In general, each d-dimensional eigenspace provides a basis for a d-dimensional representation of the
Hamiltonian’s symmetry group. In cases of accidental degeneracy, this representation is reducible, rather
than irreducible.
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basis, characters are invariants of an irreducible representation, meaning that they do not
depend on the basis chosen for the representation. Thus, each irreducible representation
has a well-defined set of characters. Furthermore, since the trace of a matrix is invariant
under conjugation, members of the same conjugacy class have the same trace, and thus
the same characters. As a result, we can organize the characters in a table, where the
rows label the irreducible representations and the columns label the conjugacy classes.
The character table for the octahedral group is shown in Table A.1.

Table A.1: Character table for the octahedral group

O (1)360° (8)120° (3)180° (6)180°′ (6)90° Good basis functions
A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 −1 −1
E 2 −1 2 0 0 (2z2 − x2 − y2,x2 − y2)
T1 3 0 −1 −1 1
T2 3 0 −1 1 −1 (xz,yz,xy)
Γ(2)

rot 5 −1 1 1 −1

Affixed to the bottom of Table A.1 are the characters of the representation Γ(2)
rot for

each conjugacy class of the octahedral group. These characters follow from a general
equation for the character of a rotation throughα radians for an irreducible representation
characterized by angular momentum ℓ (Cotton 1990, p. 261):

χℓ(α) =
sin[(ℓ+ 1

2)α]

sin[α/2]
(A.3)

For instance, the character of the Γ(2)
rot matrix representatives for 120° rotations is −1,

obtained by substituting ‘2π
3 radians’ for α and ‘2’ for ℓ (since we are dealing with d-

orbitals, which have an orbital angular momentum of two).
When we perturb the spherical symmetry by surrounding the metal ion with ligands,

we break its spherical symmetry into octahedral symmetry. Consequently, irreducible
representations from the octahedral group now label the energy levels of the system.
Therefore, the irreducible representation Γ(2)

rot that labels the initially degenerate energy
levels decomposes into a direct sum of irreducible representations Γr from the octahedral
group:

Γ(2)
rot ≈ ∑

r
⊕nrΓr (A.4)
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where the multiplicity, nr ∈ N, indicates the number of times that the irreducible repre-
sentation Γr occurs in this decomposition.

Each distinct Γr in the decomposition (A.4) labels an eigenspace of nickel(II) hexahy-
drate. Thus, the number of distinct Γr in the decomposition provides the splitting, i.e.
the number of distinct eigenspaces, and the dimension of Γr equals the degeneracy of the
corresponding eigenspace. Hence, the decomposition of Γ(2)

rot determines the splitting and
degeneracy.

To determine this decomposition, we do not need to know explicit matrix representa-
tions for the irreducible representations. Instead, it suffices to use a character decomposi-

tion formula:
nr = (1/g)∑

k
Nkχr(T )∗χrot(T ) (A.5)

This equation provides a general relation for decomposing a reducible representation into
a sum of irreducible representations of a finite group (Cornwell 1984, p. 85). As before,
nr denotes the multiplicity of the r-th irreducible representation in the decomposition
of Γ(2)

rot . g denotes the cardinality of the symmetry group of the coordination complex,
in this case the octahedral group (which has 24 elements). The sum is taken over each
conjugacy class (i.e. column) of the character table, indexed by k. Nk denotes the number
of symmetry operations in the k-th conjugacy class. In Table A.1, Nk corresponds to the
number preceding the type of symmetry operation at the top of the table. χr(T )∗ denotes
the complex conjugate of the character of a symmetry operation T in the k-th class for
the r-th irreducible representation. Since the characters for the octahedral group are real,
these are simply the characters in Table A.1. Likewise, χrot(T ) denotes the character of
the same symmetry operation for the representation Γ(2)

rot .
To illustrate the use of Equation A.5, we can compute the multiplicities nr in the de-

composition of the representation Γ(2)
rot . In each equation below, the three factors in the

k-th summand all come from the k-th column of Table A.1. The first number in each sum-
mand is the class size Nk from the top row. The second number is χr(T ) from the row of
the irreducible representation. The third number is χrot(T ) from the table’s bottom row.
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nA1 =
1

24
[(1)(1)(5)+(8)(1)(−1)+(3)(1)(1)+(6)(1)(1)+(6)(1)(−1)] = 0

nA2 =
1

24
[(1)(1)(5)+(8)(1)(−1)+(3)(1)(1)+(6)(−1)(1)+(6)(−1)(−1)] = 0

nE =
1

24
[(1)(2)(5)+(8)(−1)(−1)+(3)(2)(1)+(6)(0)(1)+(6)(0)(−1)] = 1 (A.6)

nT1 =
1

24
[(1)(3)(5)+(8)(0)(−1)+(3)(−1)(1)+(6)(−1)(1)+(6)(1)(−1)] = 0

nT2 =
1

24
[(1)(3)(5)+(8)(0)(−1)+(3)(−1)(1)+(6)(1)(1)+(6)(−1)(−1)] = 1

This calculation shows that the only irreducible representations that occur in the de-
composition of Γ(2)

rot are E and T2. Thus, the fivefold degenerate d-orbitals split into two
new energy levels, with symmetry type E and T2, respectively. This solves the splitting
problem. It also solves the degeneracy problem. In Table A.1, the character of the identity
transformation (found in the column under 360°) equals the dimension of the correspond-
ing irreducible representation. Thus, we see that the E irreducible representation is two-
dimensional, while the T2 irreducible representation is three-dimensional. Recalling that
the dimension of an irreducible representation equals the dimension of the corresponding
eigenspace, we see that the resulting energy levels are two-fold and three-fold degenerate,
respectively. Finally, through the method of projection operators, representation theory
allows us to determine good basis functions that diagonalize the perturbation operator, H ′

(Cornwell 1984, pp. 92–8). These are listed in the final column of the character table. They
help modularize the eigenvalue problem into separate calculations for each eigenvalue.
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Chapter 5:

Reformulation as a Constitutive Aim of Science

5.1 Introduction

In developing constructive empiricism, van Fraassen (1980) framed the debate over scien-
tific realism as a disagreement about the aims of science. Scientific realism takes the aim
of science to be approximate truth, including claims about physical unobservables.¹ In
contrast, constructive empiricism defends a weaker aim for science: empirical adequacy.
Empirical adequacy requires truth only about observable states of affairs. Nevertheless,
as Rosen (1994) pointed out, the foundational status of these “aims of science” is not clear.
Are they descriptive claims about scientific sociology? Prescriptive claims about what
scientists ought to aim at, independently of their current goals? Or are they merely a
useful way of talking, perhaps a kind of fictional story about science?

I will analyze the aims of science by focusing on those aims that are constitutive of
scientific activity. Constitutive aims define theminimal criteria of success, i.e. the criteria
that must be met for scientific activity to succeed at all. Unlike success criteria in general,
constitutive features are often hidden from participants. For instance, native language
speakers are often unaware of the grammatical rules they follow. I will argue that one
constitutive aim of science is the ability to solve all physically possible empirical prob-
lems. I will call this aim problem-solving adequacy. My proposal is similar to Laudan’s,
who argues that “the aim of science is to secure theories with a high problem-solving ef-
fectiveness” (1996, p. 78). Of course, realists and antirealists disagree about the minimal
success criteria for solving a scientific problem. Whereas realists posit truth, construc-

¹Philosophers commonly speak about the aims of science, especially physics. See, for instance, Loewer
(2007, pp. 319, 322, 326), who in passing distinguishes the aims of physics from the aims of metaphysics, or
Potochnik (2017). Earman and Roberts “presuppose that science does aim to discover laws (among lots of
other things)” (2005, p. 254). Section 5.8 considers objections to speaking about aims of science.
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tive empiricists posit empirical adequacy. Because my account enriches both realism and
antirealism, I will remain neutral on this contentious debate here.²

To argue that problem-solving adequacy is a constitutive aim of science, I focus on
a ubiquitous aspect of scientific practice: reformulating scientific theories and problem-
solving procedures. Unamended, both realism and antirealism leave mysterious why sci-
entists go to such great lengths to clarify which epistemic resources they need to solve
problems, even when this clarification does not make their theory any more empirically
adequate or true. I will argue that beyond seeking truth or empirical adequacy, scientists
ought to clarify the epistemic structure of their theories. This constitutive aim arises from
the need to prepare for any possible problem-solving context that could arise. My argu-
ment shows that reformulations are not merely instrumentally valuable for either truth
or empirical adequacy. Instead, reformulations are valuable for their own sake, since they
are constitutive of clarifying epistemic structure, which is itself a constitutive aim of sci-
ence.

The argument of this chapter rebuts a worry raised in Chapter 2. There, I wondered
whether the value of reformulating might ultimately just be instrumental. If so, then con-
ceptualism would itself be a kind of instrumentalism about reformulations (Section 2.4).
Here, I show that conceptualism does not reduce to instrumentalism. Reformulations
possess a kind of final epistemic value that goes beyond their instrumental value.

5.2 Constitutive Aims

Empiricism and Scientific Aims

Constructive empiricism and scientific realism posit the same truth conditions for a sci-
entific theory: a theory is true only if it matches reality at all length scales.³ Further-
more, constructive empiricists agree with realists about the meaningfulness of claims
about physical unobservables (even ones that are in-principle empirically inaccessible).
For these reasons, constructive empiricism is not a variety of verificationism. Instead,

²Elsewhere, I argue that empirical adequacy, rather than truth, is the correct minimal success criterion
for solving a physical problem. Since agents lack any competence for perceiving unobservables, the con-
stitutive aim of perception is accuracy about observables. Developing this argument would take us too far
afield here.

³Traditionally, these positions rely on a correspondence theory of truth.
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constructive empiricism restricts the aim of science from truth at all length scales to truth
about observables. Aiming for truth about observables is equivalent to aiming for empir-
ical adequacy.

More precisely, a theory is empirically adequate provided that it accurately describes
and predicts all true claims about observables.⁴ Colloquially, an empirically adequate
theory ‘saves the phenomena.’ Although less demanding than achieving truth, empirical
adequacy remains a difficult aim to satisfy. A theory is empirically adequate only if it
accurately represents the truth about observables past, present, and future, including not
just what will be observed, but what could be observed. As I discuss in Section 5.4, empir-
ical adequacy—like truth—is best understood as a futuristic aim: we will plausibly never
obtain an empirically adequate theory. Rather, we approach greater empirical adequacy
over time.

Rosen (1994) points out that as a sociological matter, many (if not most) scientists
are aiming for more than empirical adequacy. Hence, for constructive empiricism to be
plausible, it must distinguish the aims of science from the aims of individual scientists,
even their aggregate aims. Indeed, van Fraassen contends that the aims of science are
not the same as the aims of most or even all scientists (1994, p. 185). This generates a
distinction between intentionality at the level of agents vs. intentionality at the level of
the activity of science. Intentionality at the agent-level includes the intentions, opinions,
and motivations of individual scientists. Intentionality at the activity-level abstracts away
from these individual intentions. The aims of science exist at the activity-level.

To insulate the aims of science from the intentions of individual scientists, van
Fraassen characterizes aims as criteria of success (1980, p. 8). As he notes, criteria of
success often exist independently of the personal aims or motivations for engaging in a
given activity. As a guiding analogy, both van Fraassen and Rosen consider the game
of chess. One aim of chess is to checkmate your opponent. This aim serves as a shared
criterion of success, independently of the particular reasons why anyone is playing chess.
It is in this sense that van Fraassen claims that the “criterion of success in actual practice
is empirical adequacy,” regardless of scientists’ individual aims, motives, or intentions

⁴On the semantic (model-theoretic) view of theories, this requires that the empirical substructure of the
theory’s models is isomorphic to observable reality (van Fraassen 1980, p. 64). However, I intend to remain
neutral on the debate between syntactic vs. semantic approaches to scientific theories, especially given
recent arguments that they are not competitors (Halvorson 2016; Lutz 2017).
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(1994, p. 182). It is at least plausible that empirical adequacy could be an aim of science
at the activity-level without being an explicit aim at the agent-level.

Nevertheless, van Fraassen’s proposal is too weak to exclude truth from being an aim
of science. If the aims of science are merely criteria of success, there is no reason why
truth cannot be an aim as well. For surely, obtaining truth about unobservables would
be a great success, in addition to empirical adequacy. Hence, interpreting the aims of
science as criteria of success does not favor constructive empiricism over scientific real-
ism. Similarly in chess, a player would demonstrate supreme mastery if they were able
to not only checkmate their opponent but also capture all of their pieces along the way
(or if they were able to checkmate their opponent as quickly as possible). Noting that
checkmating your opponent is a criterion for success does not exclude other criteria for
success. Likewise, recognizing that empirical adequacy is a criterion for success does not
exclude either aiming at the truth or aiming at fundamental structure.

Van Fraassen’s proposal faces a further, related challenge. Rosen wonders why the
aims of science—defined as criteria of success—are not themselves “constituted by the
conscious understandings of the participants” (1994, p. 146). Why isn’t it the case that
scientists’ own understanding of science determines what qualifies as success? In re-
sponse, van Fraassen grants that the conscious understandings of scientists define the
activity ‘science,’ but that nevertheless this “does not mean what all the participants say
they are doing is what they are doing” (1994, p. 186). This response grants the possibility
that all scientists aim at truth, without truth being a criterion of success for science. But
this response is implausible for success criteria in general. If the majority of scientists de-
cided that the gold standard of experimental design requires insulating all measurement
devices fromWi-Fi signals, this would generate a success criterion. It is therefore implau-
sible that success criteria in general are independent from the conscious understandings
of scientists.

Aims that are Constitutive

Fortunately for the aspiring empiricist, van Fraassen’s response stands a chance when re-
stricted to a more narrow class of success criteria. I will call these constitutive aims of an
activity. They define minimal criteria of success. In chess, a constitutive aim is to check-
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mate your opponent: this is not merely a criterion for success; it is a minimal criterion.⁵ In
contrast, capturing all of your opponents’ pieces—while no doubt grounds for success—is
not constitutive of this success. Even if all chess players and chess federations agreed
tomorrow that winners would receive twice the prize money for capturing all pieces, this
would not make capturing all pieces into a constitutive aim. Capturing all pieces would
still be unnecessary for winning a game of chess.

To understand what it takes for a criterion to be minimal, I invoke the notion of a
constitutive feature. ‘Constitutive aims’ are then the constitutive criteria for success, deter-
mined by the activity itself. A constitutive feature is a feature something has in virtue of
being itself. A thing’s constitutive features are its conceptually essential or indispensable
aspects. For instance, constitutive of the bishop piece in chess is moving along diagonals.
Constitutive features, including constitutive rules, stand in contrast to arbitrary conven-
tions, such as designating a particular piece as ‘the king’ (Searle 1995, p. 49). Instead, they
are connected to the very possibility of the object or activity. As Max Black notes, “Chess
played for the sake of losing is not chess but some other game” (1970, p. 159).⁶

In his accounts of perception, action, and knowledge, Sosa (2015) invokes a similar
notion of a constitutive aim: a performance succeeds provided that it attains its consti-
tutive aim. Moreover, attaining a constitutive aim does not preclude a performance from
succeeding “even more fully” (2015, p. 14). It is in this sense that I take constitutive aims
to define criteria for minimal success.⁷

Unlike aims in general, constitutive aims have the features that van Fraassen’s account
requires. Constitutive features, rules, or aims are often not manifest or perspicuous to
participants. For instance, native speakers of English are often unaware of its grammatical
rules, even rules that they routinely follow. Their lack of awareness is not evidence that
there are no grammatical rules.⁸ Moreover, English speakers could collectively decide
to institute new rules, but this would not necessarily affect constitutive rules of their

⁵Similarly, we can understand a constitutive aim of an individual chess move as being “to do what will
best help the player towards winning, or at least toward averting immediate defeat” (Sosa 2015, p. 126).

⁶We also commonly talk about constitutive norms. In her discussion of Peirce, Misak claims that “it is a
constitutive norm of belief that a belief is responsive to the evidence and argument for or against it” (2013,
p. 35).

⁷Sosa prefers to say that agents succeed fully when they attain a constitutive aim, but I worry this leads
to grammatical confusion: in many contexts, it seems strange to say that “you can succeed fully even if
you might have succeeded even more fully” (Sosa 2015, p. 14). The notion of minimal success preserves the
relevant distinction while avoiding this infelicity.

⁸For a similar discussion in the context of semantic rules, see Thomasson (2020, p. 65).
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language. As another example, many people are unaware that the value of money is
a social construct, but this does not make money’s value any less socially constructed.
People might even believe money is valuable due to holding a false theory, such as that it
must be “backed by gold” (Searle 1995, p. 47). The upshot is that scientists may verywell be
unaware of or even mistaken about the constitutive aims of science, without their lack of
understanding affecting these aims. Focusing on constitutive aims thereby clarifies why
aims-talk is not inherently sociological. Constitutive aims support a distinction between
the intentional aspects of science vs. the intentions or opinions of individual scientists.

In the next section, I propose a method for identifying constitutive aims of science.
Before that, two points of clarification are in order. First, the constitutive aims of an
activity need not be sufficient for defining that activity. Multiple different games might
all have a constitutive aim of checkmating opponents. For this reason, the constitutive
aims that I defend for science do not demarcate science from either pseudoscience or non-
science. If they are honest investigators, cryptozoologists searching for Bigfoot are bound
by empirical adequacy. Likewise, ordinary problem-solving (such as figuring out how to
cook pasta) involves considering possible scenarios and striving for empirical adequacy.
But we wouldn’t count cooking pasta as science, unless it were investigated sufficiently
systematically!⁹

Second, science is typically a community activity. Hence, the normative labor of con-
stitutive aims is distributed: scientific agents ought to desire that members of their epis-
temic community are collectively working toward satisfying all of the constitutive aims
of science. Each individual agent does not shoulder the normative weight of these obli-
gations themselves. For whatever reasons, there may be particular tasks that individual
agents abhor. They simply ought to desire that some magnanimous colleague will some-
day pick up the slack. The constitutive aims of science thereby generate pro tanto reasons
for action. Such reasons can be outweighed at the individual level by other considerations,
but never canceled.

⁹I thank Angela Sun and Sumeet Patwardhan for raising these demarcation issues.
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5.3 Scientific Planning as Problem-Solving

Isolating constitutive aims of science requires identifying constitutive features of scientific
activity. I will argue that one relevant constitutive feature is scientific planning, consisting
of empirical problem-solving. Essential to scientific activity is answering questions about
the physical world. As a method for answering empirical questions, science takes many
forms: describing the past (e.g. archaeology), predicting the future (e.g. meteorology),
building devices, synthesizing substances, etc. In different ways, each of these scientific
activities contributes different methods for planning about how to interact with the world.
They are methods for planning how to solve empirical problems, i.e. problems about the
physical world. We can therefore understand one constitutive activity of science as being
a form of planning. Scientists are planning how to solve problems, which amounts to
planning how to answer their questions about the physical world. Even in the historical
sciences, empirical problem-solving involves planning how to gather and assess evidence
about the past.

Given this constitutive activity, we can determine its constitutive goals. Doing so
will take us closer to isolating minimal success criteria for science. Beginning with local
instances of scientific planning, we simply need to determine the local constitutive goals.
Since this planning amounts to trying to solve an empirical problem, the constitutive goal
is evidently to solve the problem. The foundational question is thereby to determine the
minimal success criteria for solving an empirical problem: What makes a putative answer
to a scientific question minimally successful? Answering this question helps identify local
constitutive aims of science. We can then generalize from these local aims to determine
global constitutive aims of science.

Following Goldman (1986, pp. 126–127), we can always define a problem in terms of
asking a question, and we can define a solution in terms of an answer to that question.
Schematically, an agent S has a scientific problem Q if and only if Q is a question about
the physical world and agent S wants to have a successful answer to Q. Different criteria
for what constitutes a “successful answer” lead to different positions in the realism vs.
antirealism debate. Whereas Goldman proposes that a proposition B must be true in or-
der to be a successful answer to the question, a constructive empiricist will settle for an
empirically adequate answer. Remaining neutral between realism and antirealism, I will
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say that a proposition B is a solution/answer to a problem/question Q if and only if (i) B
is a potential answer to Q and (ii) B satisfies the minimal criteria for success.

To remain neutral between truth vs. empirical adequacy, I will refer to the relevant
constitutive aim of science as planning adequacy. Achieving planning adequacy would
amount to being able to solve every scientific problem. Since the constitutive aim of
other disciplines is presumably a form of planning adequacy as well, we should technically
disambiguate physical problem-solving adequacy from other forms of planning adequacy
(e.g. mathematical, logical, philosophical, etc.). For convenience, I will refer to ‘physical
problem-solving adequacy’ as ‘planning adequacy,’ leaving it implicit that the focus here
is on science. As I will argue in Section 5.5, neither truth nor empirical adequacy is actu-
ally sufficient for planning adequacy (at least not for beings like us). There is a further,
subsidiary, constitutive aim necessary for achieving planning adequacy. Of course, the
notion of ‘adequacy’ is ambiguous along various dimensions. What does it mean to ‘re-
ally’ solve a problem, and what does it mean to solve ‘every’ scientific problem? I turn to
these issues next.

5.4 Ideal vs. Non-ideal Constitutive Aims

The minimal success criteria vary depending on whether we are talking about non-ideal
vs. ideal scientific practice. There are at least two different dimensions of idealization.
First, we can focus on obtaining exact—as opposed to approximate—solutions to scientific
problems. This generates a distinction between exact vs. approximate empirical adequacy,
which is simply a special case of the well-trod distinction between exact vs. approximate
truth. Second, we can focus on all possible empirical problems, as opposed to the problems
that scientific agents will actually face over their history. This distinction between solving
all-possible vs. actual problems is a variety of modal completeness. Our knowledge about
empirical problem-solving varies from radically incomplete at the beginning of science to
maximally complete at the ‘end of science.’

Both of these ideals—exactness and completeness—are futuristic: they will plausibly
never be realized in finite time by any actual scientific community. What makes them
futuristic is that they aim at “some ideally improved descendent that is never expected
to actually exist, but that would result if the process of improvement went on forever”
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(Lewis 1984, p. 230). In this way, ideal constitutive aims define the minimal criteria for
success in the ‘end of science.’ In contrast, non-ideal constitutive aims define the minimal
criteria for actual science, up to the demands that we require in practice and the problems
that we actually face.¹⁰

The notion of ‘adequacy’ in ‘empirical adequacy’ is ambiguous along both dimensions
of idealization. When it comes to solving actual problems non-ideally, it suffices for a
solution to be approximate. Exact empirical adequacy (or truth) is unnecessary for prac-
tical purposes. As van Fraassen notes, “empirical adequacy is stronger than what counts
as success in practice” (1995, pp. 157, 144). At best, scientists achieve various grades of
approximate empirical adequacy, namely, an approximate fit between the predictions of
their theory or solution procedure and the data obtained. At least due to measurement
limitations, exactness is unattainable. Non-ideally, science aims at either approximate
empirical adequacy or approximate truth. For this reason, scientific realism does not
face a special problem of making sense of approximate truth that constructive empiri-
cism avoids. Approximate empirical adequacy just is a special case of approximate truth:
it is approximate truth about observables.

Restricted to individual problems, truth and empirical adequacy are both local criteria
for success. They become global criteria when we consider wider classes of problems or
problem-types. Beyond having (approximately) true or empirically adequate solutions
to particular problems, scientists should ideally be able to solve any solvable problem
they might encounter. This aim generates the second dimension of idealization: problem-
solving completeness. Whereas non-ideal planning adequacy requires planning for all
actual problems that will be encountered, ideal planning adequacy requires planning for
all possible problems that could be encountered.

In the context of empirical problem-solving, the relevant notion of ‘possible’ is phys-
ically possible.¹¹ Whether a scientist ought to be able to solve a problem depends on
whether that problem concerns a physically possible process, either exactly or approxi-
mately. Classical mechanics, for instance, typically concerns processes that are approx-
imately physically possible (since in a non-classical world, an object can at best be ap-

¹⁰In passing, Davidson refers to a “constitutive ideal of rationality” (1980 [1970], p. 223). My contention
here is that problem-solving adequacy is a constitutive ideal of science.

¹¹Similarly, mathematics concerns at least logical possibility, while metaphysics focuses on metaphysi-
cally possible problem-solving. The local success criteria for solving a metaphysical problem are perhaps
determined by the norms governing imagination.
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proximately classical). Of course, we often do not know in advance which processes are
physically possible. Hence, when inquiring, scientists often consider epistemic possi-
bilities that turn out to be physically impossible. When scientists try to solve problems
concerning non-physically possible scenarios, I take this to be instrumentally valuable for
solving problems that are physically possible. Nonetheless, solving these non-physically
possible problems is not a constitutive aim of science, even if this activity has independent
epistemic value.

Here, I intend to remain neutral on how best to understand physical possibility. No
doubt, different scientific realists have different preferred conceptions of physical pos-
sibility. Likewise, it is an open question which account of possibility is best suited for
empiricism.¹² The specific content of scientific planning adequacy requires choosing an
account of physical possibility, but the schematic conception remains the same.

My conception of planning adequacy is inspired by Gibbard’s notion of a hyperplan.¹³
Gibbard defines a hyperplan as a maximal contingency plan; it is a plan covering every
possible circumstance (2003, p. 54). Clearly, no finite scientific agent ever needs a hyper-
plan to successfully solve the problems they actually encounter. Nevertheless, in the limit
of successful scientific inquiry, we ought to develop hyperplans for all scientific problem-
types. Even at the more local level of solving a given problem-type, scientists should
ideally have a hyperplan for solving this problem-type.

To summarize: in the limit of a successful science, an epistemic community will have
a plan covering all physically possible scenarios of interacting with the world. They will
thereby attain scientific planning adequacy, i.e. knowledge of how to solve any (physi-
cally) possible physical problem. If we take empirical adequacy as the constitutive aim of
problem-solving, then these agents will know all truths about observables, attaining what
we might call observational omniscience. If instead we take truth as the minimal local suc-
cess criterion, then agents in the end of science would know all physical truths and would
thereby be physically omniscient. If a being attains physical omniscience, further scien-

¹²One strategy I pursue elsewhere is to combine an expressivist account of counterfactuals with Lange’s
(2009a) account of meta-laws, where counterfactuals are the truthmakers for physical necessity. This yields
an empiricist-friendly account of meta-laws. I believe that the best way to interpret this account is as
specifying the norms that govern our talk of laws and counterfactual planning, leading to a normativist
approach to physical modality similar to Thomasson’s (2020) approach to metaphysical modality.

¹³For his own inspiration, Gibbard cites Savage’s (1954) discussion of big vs. small worlds in the context
of decision theory.
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tific inquiry becomes impossible. At most, they could ‘inquire’ in the sense of retrieving
knowledge from their memory. But they could never inquire further about the physical
world, since they already know everything about it.¹⁴ As a result of their omniscience,
they would have no need for scientific planning or problem-solving. All problems would
already lay solved.

Considering the awesome power of a true scientific theory, one might worry that
the notion of planning adequacy is redundant. Given either a true theory or an empiri-
cally adequate theory, wouldn’t we ipso facto have achieved realist or empiricist planning
adequacy, respectively? For recall that the notions of truth and empirical adequacy are
futuristic: in the limit, they already purport to cover all past, present, and future states
of affairs. Why then do we need a separate notion of planning adequacy? In the next
section, I argue that for logically-omniscient beings, the notion of planning adequacy is
genuinely redundant. However, for logically-imperfect beings like ourselves, neither em-
pirical adequacy nor truth is sufficient. To achieve planning adequacy, beings like us must
clarify the epistemic structure of our theories and problem-solving procedures. This, in
turn, requires that we reformulate our scientific theories.

5.5 Aiming for Epistemic Suitability

Although an omniscient agent could not inquire about the world, mere logical omni-
science does not preclude inquiry. Assuming that the state of the world does not follow
from logic alone, a logically-omniscient being still has much to learn. If they were to ar-
rive at an empirically adequate theory, then they would have reached the end of scientific
inquiry, according to constructive empiricism. When coupled with logical omniscience,
an empirically adequate theory automatically grants empiricist planning adequacy. Em-
pirical adequacy entails that for any possible physical scenario, the theory has a model
whose empirical substructurematches the observable phenomena. A logically-omniscient
agent would immediately know how to apply such a theory to save the phenomena. As
I argue below, this is because they already have full knowledge of the theory’s epistemic

¹⁴As Woodard (forthcoming) argues, agents can genuinely check claims they already know. Hence, by
‘omniscient,’ I technically mean an agent who not only knows everything, but is also certain of this knowl-
edge. Perhaps a physically omniscient agent could inquire further into the fundamental structure of reality,
e.g. about how to state truths in a perfectly natural language. Whether these are further facts about the
physical world depends on the relationship between metaphysics and science.
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structure. Hence, for logically-omniscient beings, an empirically adequate theory is al-
ready sufficient for possessing a scientific hyperplan. Logically-omniscient agents with
an empirically adequate theory are thereby guaranteed to be minimally successful when
it comes to solving all possible scientific problems. They possess a plan that predicts and
accurately describes all observable parts of the world. Mutatis mutandis, the same re-
marks apply to a logically-omniscient agent with a true theory. They are guaranteed to
be minimally successful according to scientific realism.

However, most agents are presumably logically imperfect, rather than logically om-
niscient. Logically-imperfect agents have a real need to struggle through the derivations
of what entails what, or of whether a given fact is necessary for another. They are not
disposed to immediately know the logical connections between their concepts. For these
agents, neither empirical adequacy nor truth is sufficient for planning adequacy. Instead,
they have a further constitutive need to clarify the epistemic structure of their theories
(insofar as they are interested in scientific problem-solving at all). To show that this need
gives rise to a further constitutive aim, I will assume that these agents already have a true
theory (so a fortiori, an empirically adequate theory as well).¹⁵ This will be the case that
humans find themselves in if we ever arrive at a true scientific theory, since we will never
be logically omniscient (at least on account of our finite minds).

As argued in Section 5.3, a constitutive activity of science is empirical problem-solving.
Successful problem-solving requires more than a true theory: it requires being able to
apply the theory.¹⁶ For logically-omniscient beings, truth alone (or empirical adequacy)
suffices for applicability. This is not so for logically-imperfect beings. At one extreme, a
true theory would be mostly useless for an agent who could not reason at all. To borrow
an analogy from computability theory, having a true theory is akin to knowing a class of
decidable problems. Agents who know this will know what they can and cannot do with
their theory, in principle. However, this is a far cry from actually knowing a decision
procedure, i.e. possessing a method for going from ‘decidable’ to ‘decided.’ Successful
planning requires the latter, not merely the former.

To solve problems, agents need to figure out what suffices for a solution. This requires

¹⁵We could even assume that these agents know the logical relationships between their concepts but
not that these are the logical relationships. Their thinking about these relationships could be (temporarily)
caught in the musings of Lewis Carroll’s tortoise.

¹⁶In a similar vein, Loewer notes that “the information in a theory needs to be extractable in a way that
connects with the problems and matters that are of scientific interest” (2007, p. 325).
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formulating the theory such that it provides a usable problem-solving procedure, such as
an algorithm. For non-futuristic problem-solving, agents simply need to know a set of
sufficient conditions for solving the problems they will actually face. In the ideal of fu-
turistic problem-solving, agents need to be able to solve any possible problem they might
encounter. This requires figuring out what they need to know to solve problems of any
given problem-type. Overall then, scientific agents ought to determine what they need to
know and what suffices to know in order to solve any possible scientific problem. These
necessary and sufficient conditions for problem-solving are precisely what I have been
calling epistemic dependence relations (EDRs). Hence, we see that clarifying the epistemic
structure of a theory amounts to determining EDRs, i.e. epistemic relations relevant for
problem-solving.

These considerations show that for logically-imperfect agents, there is a further con-
stitutive aim of science, beyond truth or empirical adequacy. In order to be minimally
successful, logically-imperfect agents must clarify the epistemic structure of their theo-
ries. Otherwise, they will be unable to achieve planning adequacy.¹⁷ To clarify epistemic
structure, they will need to determine the epistemic dependence relations for all possi-
ble problem-types. This will require reformulating their theories and attendant problem-
solving procedures. In this way, reformulating is constitutive of the activity of clarifying
epistemic structure.

Recognizing the need to clarify epistemic structure justifies the ubiquity of reformu-
lations in science. Reformulations are not merely practically or instrumentally valuable
tools for greater truth or empirical adequacy: they are essential for logically-imperfect
scientific agents like ourselves. For such agents, reformulating is a constitutive aspect of
scientific inquiry. By reformulating, we gain knowledge of a theory’s epistemic structure.
Reformulating thereby manifests the gaining of this knowledge, as opposed to merely
putting us in a position to gain this knowledge. This contrast parallels a similar distinc-
tion that Sosa draws between constitutive vs. auxiliary intellectual virtues. On his view,
some intellectual virtues are “knowledge-constitutive,” as opposed to merely being auxil-
iary or practically or instrumentally useful for acquiring knowledge (2015, pp. 41–42).

For convenience, I will refer to the aim of clarifying epistemic structure as aiming

¹⁷My argument does not entail that logical omniscience is a further constitutive aim of science. Logical
omniscience is not required for scientific planning adequacy. One does not need to know all logical truths
to succeed at science.
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for epistemic suitability. This terminology emphasizes that clarifying epistemic struc-
ture is necessary for having a suitable problem-solving procedure. It also places this
aim within the same grammatical category as empirical adequacy. Just as both truth and
empirical adequacy are formal features of theories, epistemic suitability admits a formal
characterization. A theory formulation is epistemically suitable for solving problems of
type P provided that it provides a problem-solving procedure for determining answers
to P-problems. Some theory formulations are epistemically suitable for solving particu-
lar problem-types, but not others. In order to solve a particular problem using a theory,
sometimes it is necessary to reformulate, leading to an alternative theory formulation. In
this way, differences in epistemic suitability are analogous to different computer algo-
rithms. One algorithm might be able to solve a problem that another cannot, despite the
algorithms being in some sense aspects of “the same theory.” To solve the problem using
the latter algorithm, we must reformulate it, resulting in a new algorithm.¹⁸

Some aspects of scientific practice are instrumentally valuable: they aremeans to some
further end. The ends themselves have final value: they are valuable in and of themselves,
at least viewed from the lense of science.¹⁹ I take it that the constitutive aims of science
qualify as final ends of scientific inquiry. For instance, if science constitutively aims at
truth, then truth acquires the status of being an end of science. Learning a truth would
then have not only instrumental but also final value. In general, being a constitutive aim
seems sufficient for being an end in itself (relative to that domain or activity).²⁰ There-
fore, given that epistemic suitability is a constitutive aim, it too is an end of science. By
constituting the achievement of this aim, reformulations thereby accrue a form of final
value, as opposed to instrumental value alone. Gaining knowledge of epistemic depen-
dence relations is non-instrumentally valuable, in the same way that making a theory
more empirically adequate or true is non-instrumentally valuable. I take this to be the
most promising argument against instrumentalism about reformulations.

¹⁸For an illuminating discussion of algorithms, see Goldman (2017, 22ff.). Although seeking testimony
from experts prima facie counts as a solution procedure (e.g. writing a program that queries Wikipedia for
answers), I view this as a subsidiary, practical aspect of scientific methodology. The ability to seek expert
testimony is derivative on experts themselves having a non-testimonial solution procedure that articulates
the relevant EDRs.

¹⁹For this distinction between final vs. instrumental value, see Korsgaard (1983).
²⁰If science itself is only instrumentally valuable, then the ends of science are some further means to

some further end. Settling foundational questions about what—if anything—possesses final value tout court
lies outside the scope of my discussion here.
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As a formal feature of theories, epistemic suitability is not a practical matter. At least,
it is no more practical than truth or empirical adequacy. A theory formulation is either
epistemically suitable to solve certain kinds of problems, or it is not. It either provides a
solution procedure for these problems, or it does not. Nothing in this analysis depends
intrinsically on practical features. Likewise, the constitutive aim of epistemic suitability
is not a practical aim. At least, it is no more practical than the aims of truth or empirical
adequacy. It is a component of the minimal success criteria for science. Insofar as science
is an activity, these aims of coursemake reference to agents. Nevertheless, they do not rely
on any special interests or idiosyncratic features of agents beyond their desire for doing
science. In Section 5.7, I will contrast these constitutive aims with practical features of
scientific inquiry, such as problem-solving speed. First, I consider and rebut objections
that threaten to make epistemic suitability a pragmatic aim after all.

5.6 Is Epistemic Suitability a Pragmatic Aim?

Since the aim of epistemic suitability arises for logically-imperfect agents, one might
worry that it is inherently pragmatic. This aim appears to arise from a feature of agents,
namely their logical imperfection. Yet, the aims of truth or empirical adequacy are no
less pragmatic in this regard.²¹ As discussed in Section 5.3, the constitutive need for a
true or empirically adequate theory also comes from features of most agents, namely that
they are neither physically nor observationally omniscient (they have not yet achieved
planning adequacy).

Rather than view these aims as arising for agents in particular, contingent epistemic
situations, it is better to view them as universal aims of science. The constitutive aims of
science apply to any agent engaged in science, no matter their epistemic situation. It is
just that some agents already trivially satisfy certain constitutive aims. Observationally-
omniscient agents trivially satisfy the aim of empirical adequacy. Logically-omniscient
agents trivially satisfy the aim of epistemic suitability. Their commitment to science binds
them to this aim, while particular features of their cognition conveniently discharge it.

²¹Indeed, one might worry that empirical adequacy does fundamentally appeal to agents, since what
counts as ‘observable’ is relative to an epistemic community. Neither truth nor epistemic suitability depend
on agents in this way. In response, a constructive empiricist could attempt to define observability in terms
of the visual system of a computer.
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Human scientists are bound to the same aims, without such cognitive advantages.
One might object that unlike these other aims, epistemic suitability references

problem-solving, and problem-solving is an aspect of the use of a theory and to that
extent pragmatic. Addressing this further worry requires distinguishing between (i)
pragmatic (or practical) matters and (ii) (non-practical) epistemic matters. I will consider
a few ways of drawing these contrasts. The upshot will be that if “pragmatic” is defined
too broadly, then many matters of epistemic interest are pragmatic. Regardless, I take
it that we can meaningfully distinguish between non-practical and practical epistemic
matters (even if these matters are in some deeper sense ‘pragmatic,’ a claim that some
pragmatists would endorse (Brandom 2011, p. 58)). It is at least in this sense that the aim
of epistemic suitability is not pragmatic or practical, but distinctively intellectual (i.e.
concerning non-practical, epistemic matters).

van Fraassen’s Characterization

In developing constructive empiricism, van Fraassen posited a narrow conception of the
epistemic and a broad conception of the pragmatic. According to van Fraassen, epistemic
virtues bear on the truth or truth-conduciveness of a theory, concerning “howmuch belief
is involved in theory acceptance” (1980, p. 4). In contrast, any virtue related to people
counts as pragmatic, including howwe apply theories. Specifically, van Fraassen says that
“pragmatic virtues” concern “the use and usefulness of the theory; they provide reasons
to prefer the theory independently of questions of truth” (1980, p. 88).²² Likewise, he
characterizes a “pragmatic factor” as “any factor which relates to the speaker or audience”
(1980, p. 91).

On this construal of the pragmatic vs. the epistemic, the aim of epistemic suitability
does seem to count as pragmatic (but so doesmuch else, as wewill see). Epistemic suitabil-
ity concerns whether or not a theory formulation supports a problem-solving procedure
for a given problem. Problem-solving is clearly an aspect of the use or usefulness of a
scientific theory. At first glance then, constructive empiricism treats epistemic suitability
as a pragmatic virtue.

However, matters are not so simple. In distinguishing the pragmatic from the epis-

²²Earlier, van Fraasssen claims that “pragmatic virtues do not give us any reason over and above the
evidence of the empirical data, for thinking that a theory is true” (1980, p. 4).
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temic, van Fraassen is explicitly focused on the context of theory acceptance, where we
are choosing between rival theories. This context is importantly different from that which
arises when assessing compatible formulations. For in this context, we are not choosing
between rivals. Instead, we are assessing whether we can gain knowledge of the world
with a given theory formulation. If a particular theory formulation is not epistemically
suitable for a given class of problems, then we cannot actually solve these problems using
that formulation (we might need a different formulation). This results in a difference in
what agents can gain knowledge about. If such differences in knowledge acquisition don’t
qualify as epistemic, then I don’t know what does. It may be that differences in epistemic
suitability do not always matter for non-pragmatically choosing between rival theories.
Yet, there are other contexts of epistemic assessment besides this one.

Virtue Epistemology

Moreover, defining ‘pragmatic’ so broadly in all contexts leads to counterintuitive conse-
quences. In particular, it implausibly restricts what counts as non-practically epistemic
(i.e. intellectual). Standard assumptions in virtue epistemology provide a particularly
dramatic illustration of this problem. In its various forms, virtue epistemology focuses on
the intellectual virtues of believers, where these virtues can include abilities, dispositions,
competences, or character traits. Here, a ‘competence’ can be understood as “a disposition
to succeed in a given field of aimings” (Sosa 2015, p. 2). Knowledge is then understood as
true belief arising from exercising one’s intellectual virtue, e.g. an epistemic competence
like apt perception. Notice that acquiring knowledge involves an agent to apply an ability.
Consequently, van Fraassen’s broad characterization of the ‘pragmatic’ seems to render
all such epistemic acts as pragmatic.

Does this make virtue epistemology inherently pragmatic? Perhaps, but either way
we can distinguish the intellectual from the practical even within virtue epistemology.
We can meaningfully distinguish between virtues that seem constitutive of knowledge
vs. virtues that seem merely practically or instrumentally valuable for acquiring knowl-
edge. For instance, Sosa argues that a constitutive feature of some competences is that
they manifest knowledge. Knowledge-constitutive competences are purely intellectual,
as opposed to practical or auxiliary competences, such as being industrious rather than
lazy when it comes to gathering evidence. This contrast underwrites a notion of “purely
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intellectual virtues, with no admixture of practical assessment” (Sosa 2015, p. 45).
The thrust of this response does not require adopting virtue epistemology. The point

is rather that there are compelling ways to contrast epistemic and pragmatic matters that
van Fraassen’s 1980s characterization rules out in principle. I take this to indicate that
we should not define ‘pragmatic’ so broadly, at least not when teasing apart practical is-
sues from non-practical epistemic matters (even within a context that itself has pragmatic
factors).

Muller’s Characterization

Instead, I favor a broader notion of the epistemic and a narrower notion of the pragmatic,
such as that proposed by Muller (2005) in his rendition of constructive empiricism. Per-
sonally, I would prefer to stop contrasting the epistemic with the pragmatic, and rather
just talk about practical vs. non-practical dimensions of the epistemic. But the dominant
words are already in use, so there is little I can do to alter settled conventions. Muller
defines epistemic aspects of science as those features that are always relevant for de-
ciding whether a proposition of an accepted theory counts as knowledge (2005, p. 63).
Epistemic aspects include at least evidence, truth, and empirical adequacy. Unlike van
Fraassen’s characterization, Muller’s entails that many aspects of problem-solving are
genuinely epistemic. Figuring out what we need to know or what suffices to know to
solve a problem clearly matters for deciding whether a possible solution is a genuine so-
lution. In this sense, epistemic dependence relations are genuinely epistemic. Similarly,
differences in epistemic suitability matter for deciding whether to accept a putative solu-
tion as knowledge.

In contrast, Muller defines purely pragmatic aspects as features that are never involved
in deciding whether a proposition counts as knowledge. These include aspects of conve-
nience, speed, and efficiency, considered in Section 5.7. More generally, pragmatic fea-
tures are those that are not always relevant for deciding whether a proposition counts as
knowledge.²³ On this narrower definition of the pragmatic, only some features of the use
or usefulness of a theory are pragmatic. Again, since matters of epistemic suitability are
involved in determining whether propositions count as knowledge, Muller’s definition

²³As Muller notes, constructive empiricists—but not scientific realists—view explanation and inference
to the best explanation as pragmatic features.
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properly classifies epistemic suitability as epistemic rather than pragmatic or practical.
In sum, the applicability of a theory has a distinctively epistemic, non-practical di-

mension. Problem-solving is not inherently pragmatic. We often use theories to provide
reasons for believing or accepting claims about the way the world is. Theories provide
these epistemic reasons largely by solving problems. Problem-solving is a central com-
ponent of the epistemic role of theories. Moreover, the activity of problem-solving seems
to be no more pragmatic than the activity of constructing a theory. Indeed, a common
way of constructing theories is by unifying and connecting families of problem-solving
procedures. If theory construction is not inherently pragmatic, then these constituent
problem-solving procedures should not be inherently pragmatic either.

Still, one might worry that epistemic suitability simply tracks what an agent can or
cannot do in-practice, where such considerations are inherently pragmatic. Given that an
agent already has a true theory, can’t they already solve in-principle any problem they
might encounter? If their theory is futuristically true, it already in some sense “contains
the answer” to any scientific question they might ask.²⁴ But truth alone (or empirical
adequacy) does not entail that this solution is manifest or available, given your theory
formulation. Assuming that epistemic reasons are reasons for belief or acceptance, the the-
ory itself does not necessarily provide sufficient epistemic reasons to believe the answer
it contains. To acquire these epistemic reasons, it is necessary to formulate the theory
such that it is epistemically suitable for solving the given problem. This point is no more
pragmatic than needing an (approximately) empirically adequate theory in order to have
epistemic reasons in the first place.

To better understand the constitutive, non-pragmatic need for epistemic suitability,
consider problem-solving contexts where reformulating is necessary. Perhaps your cur-
rent theory formulation requires that you perform certain measurements in order to solve
a given problem. What happens if you can’t perform these measurements? This might
be the case if your measurement device breaks, and—as a result of cosmically bad luck—
remains broken forever. More prosaically, you simply might be set the problem: solve
such-and-such problem without appealing to information that your current theory for-
mulation requires. These are physically possible problem-solving contexts, and one ought

²⁴Likewise, an empirically adequate theory is guaranteed to have a model whose empirical substructure
is isomorphic to the relevant observable phenomena (van Fraassen 1980, p. 64).
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to plan accordingly. Scientific activity involves not just planning for when things go well,
but for when things go as poorly as possible. In these circumstances, reformulating your
theory is the only way to make it applicable. This is not something that you merely have
to do ‘in-practice:’ you have to do this in order to solve the given problem (or to know if it
can still be solved at all). If instead you were logically omniscient, then you would already
have at your disposal all non-trivially distinct theory formulations. There would be noth-
ing further for you to do. But for logically-imperfect beings, there is a real, in-principle
need to reformulate. Reformulations provide contingency plans: they offer alternative
epistemic routes to a solution that although ‘already encoded’ in a true or empirically
adequate theory, is not necessarily manifest or accessible.

5.7 A Need for Speed?

Are there any further constitutive aims of science, arising from further constitutive fea-
tures of science? It is possible that there are. Indeed, my argument for an overarching
constitutive aim of scientific planning adequacy—and its subsidiary aims—makes no claim
to completeness. In particular, one might wonder whether agents of finite lifespan have a
constitutive aim to solve problems as quickly as possible. Although one can pose purely
theoretical questions about problem-solving speed or complexity, I will argue that these
are separate from practical considerations that might motivate agents to solve problems
quickly. Hence, solving problems as quickly as possible (or within other computational
constraints) is never a constitutive aim of science, for anyone.

Consider scientific agents with finite computational resources, such as agents of finite
lifespan. Is solving problems with minimal resources (or as quickly as possible) a consti-
tutive aim for such agents? As an analogy, consider playing chess within finite time (as
most chess is played). Given that a chess player wants to win, they have a constitutive
aim to try to checkmate before their time expires. Likewise, given that a human scientist
wants to solve a scientific problem, they have a constitutive aim to try to solve it within
their lifetime. In both cases, these are constitutive aims at the agent-level. As discussed in
Section 5.2, both realism and empiricism focus on constitutive aims at the activity-level,
i.e. the constitutive aims of Chess or Science. Constitutive aims at the agent-level do
not entail constitutive aims at the activity-level. A feature or success criterion can be
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constitutive for an agent without being constitutive of the activity at large.
Considered anthropomorphically, the game of Chess does not care which player wins

(or if any player wins at all). Likewise, Science does not care which scientist solves any
particular problem, or when. Hence, the constitutive need for a finite agent to try to
solve problems as quickly as possible does not entail a constitutive need for speed at the
activity-level. As further support for this claim, recall that the ideal constitutive aims
of science are futuristic: the minimal criteria for ideal success concern an infinite time
frame, with limitless computational resources. Within this futuristic idealization, we treat
the activity as having an arbitrarily-long time frame. Even though particular games of
chess or scientific problem attempts are finite, the futuristic, ideal aims abstract away
from temporal constraints. The constitutive aim of science remains planning adequacy.
The computational limits of individual scientists do not affect this constitutive aim, nor
do they create an additional constitutive aim.

Although maximizing problem-solving speed or minimizing computational resources
are not constitutive aims of science, planning adequacy already encompass related the-
oretical questions about speed or resource minimization. It is constitutive of science to
seek knowing how quickly a problem can be solved, along with knowledge of a procedure
for solving it that quickly. Questions of speed or resource consumption are themselves
theoretical questions, such aswhat is the fastest physically possible solution to this problem?

These theoretical questions correspond to problem-solving contexts where the problem is
to solve a given sub-problem within a certain period of time. Since scientists ought to
prepare for any possible problem-solving context, they ought to investigate the speed at
which they can solve problems. The question of how quickly a problem can be solved is
yet another scientific question, generating its own problem to solve. These investigations
are a purely theoretical aspect of science (and mathematics), with attendant literatures,
e.g. on the minimization of proof length or the limits of computer speed. Scientists ought
to investigate questions about speed and computational resources, regardless of any prac-
tical benefits such investigations might yield.

Lest there remain a whiff of paradox, it is vital to distinguish two different kinds of
goals: (i) wanting to know how quickly a problem can be solved vs. (ii) wanting to solve
a problem as quickly as possible. The former is a purely theoretical aim (and includes
wanting knowledge of how to solve a problem as quickly as possible—e.g. if the world

147



demands it). The latter is a genuinely practical or pragmatic aim. Science itself does not
require one to care about how quickly they will actually solve problems (as opposed to
how quickly a problem could be solved). Of course, the motivations for asking questions
about speed are often practical, borne of a desire to have the fruits of an investigation
sooner rather than later. Nonetheless, we can do science as slowly or quickly as we please,
while doing science all the same. As Peirce notes, it is constitutive of inquiry to hope that
there is an answer to our problem.²⁵ It is not constitutive (of collective inquiry) to hope
that you yourself will find that answer within your lifetime, although you very well might
hope this.

One might have thought that desiring speed is non-constitutive because speed is
species-relative. What counts as fast for one kind of finite being might be hopelessly
slow for another. Yet the empiricist notion of observability is already species-relative,
as are the various grades of logical imperfection. Due to species-relativity, the content
of the aim of empirical adequacy is necessarily indexical. So it is not this indexical
nature which makes a desire for speed into a practical aim, preventing it from being
a constitutive aim of science. Instead, a desire for speed is non-constitutive because it
arises from the extra-scientific preferences of particular agents, relative to their particular
constraints. The only preference that matters for the constitutive aims of science is
the desire to do science. Some agents might aim to solve scientific problems quickly
or within a reasonable time, but these are practical goals. They typically arise from
contingent social structures, such as temporal requirements for career advancement. A
finite scientific agent will labor under more practical constraints than an infinite one, but
their constitutive aims remain the same. The need for speed is at most a non-constitutive
practical aim, at the agentive level.

5.8 Why Talk about Aims at All?

Some may be skeptical that it makes sense to talk about science as having aims. Such
worries might stem from a more general skepticism toward ‘the aims of activities,’ such as

²⁵Misak quotes Peirce as saying that “the only assumption upon which [we] can act rationally is the
hope of success,” which she interprets as meaning that “it is a regulative assumption of inquiry that, for
any matter into which we are inquiring, we would find an answer to the question that is pressing in on us”
(2013, p. 50).
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belief, inquiry, or assertion. Considering the so-called aim(s) of belief, Wedgwood rightly
quips that “Beliefs are not little archers armed with little bows and arrows: they do not
literally ‘aim’ at anything” (2002, p. 267). The same can of course be said for science:
if it makes sense to talk collectively about science at all, science is not literally aiming
at anything. Nonetheless, Wedgwood goes on to give a normative explication of claims
about the aim(s) of belief: such claims state correctness conditions for beliefs. Here, I
have pursued a similar strategy: constitutive aims of science provide criteria for minimal
success in scientific endeavors.²⁶

A common objection to aims-talk is that it presupposes a univocal or hegemonic aim,
where none is to be found. In his earlier work, Putnam expressed this criticism in a cou-
ple places, remarking that “it is hard to believe that there is such a thing as ‘the aim of
science’—there are many aims of many scientists” (1979 [1971], p. 355).²⁷ Earlier, he re-
marked that “The use of such expressions as ‘the aim of science’…is already extremely apt
to be misleading. For there is no one ‘aim of science’….Different scientists have different
purposes” (1979 [1965], p. 233). More recently, MacFarlane has expressed a similar worry
in the context of the aim of assertions. Considering the idea that assertions uniquely aim
at the truth, MacFarlane says, “This idea is pretty obscure anyway. Even if truth is an

internal normative aim of assertion, it is certainly not the only such aim” (2005, p. 227).
In developing my account of constitutive scientific aims, I have not assumed that sci-

ence has a unique aim. Instead, I have focused on identifying a constitutive aim of science,
namely, planning adequacy. I happily allow that science might have other constitutive
aims and of course many other non-constitutive aims. As a practical matter, scientists
presumably are trying to solve their most pressing problems as quickly as their energy
and resources allow.

Part of Putnam’s misgivings arise from the fact that individual scientists can them-
selves have many aims. I take this part of Putnam’s worry to lose its force once we
distinguish between aims at the agential-level vs. at the activity-level, as discussed in
Section 5.2. As I hope to have made clear, constitutive aims of science are largely insu-
lated from the aims of individual scientists. In order for there to be constitutive aims of

²⁶More broadly, Sosa argues that the notion of a constitutive aim is useful for understanding action, per-
ception, and knowledge: “We find unity across action, perception, and knowledge. All three are constituted
by aimings, by performances with a constitutive aim” (2015, p. 24).

²⁷I thank Gordon Belot for suggesting I review this essay by Putnam.
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science, it suffices that there are scientific agents aiming to do science.²⁸
The primary reason to talk about the aims of science is so simple that it is worth reit-

erating. In order to determine what it means for a scientific activity to succeed, we must
talk in terms of aims, goals, or purposes. These aims or goals define success criteria. As
van Fraassen notes, disagreements about “the aim pursued in science” lead to disagree-
ments about what “counts as scientific success” (1995, p. 143). Constitutive aims play a
special role in characterizing minimal success criteria for an activity. In this vein, Putnam
himself invokes “the aims of inquiry” in order to criticize conventionalist approaches to
logic, his point being that we need assurances that such approaches do not interfere with
the aim of having “a true description of the world” (1979 [1968], p. 188).

If an activity like science does not have criteria for minimal success, then it loses much
of its intellectual interest. If science doesn’t aim at anything, then scientists might as well
be flailing their arms around. And what intellectual grounds would we have to criticize
them? Insofar as we do have grounds to criticize methodologically-wayward scientists,
I take there to be a meaningful notion of constitutive aims for science. When we talk
about scientists who are failing to do science, we presuppose that there is at least some
overarching aim(s) to which such scientists are failing to contribute. Such scientists are
not even contributing to the minimal success of science.

Hence, I do not see talk of aims as being any more problematic than talk of correct-
ness conditions, or success conditions more generally. Insofar as particular practices have
standards for success, those practices have aims. There are many philosophical concepts
that I find deeply mysterious. Aims-talk is not one of them.

5.9 Conclusion

I have argued that one constitutive aim of science is to solve (all possible) problems about
the physical world. As a constitutive aim, this specifies a minimal success criterion for
science. Scientific realists contend that minimal success requires a true scientific the-
ory. Antirealists contend that truth is not necessary for minimal success. In particular,
constructive empiricists argue that empirically adequate solutions to scientific problems

²⁸Plausibly, we do not even need this much. We can talk about the constitutive aims of chess even if no
one plays chess ever again. Constitutive aims characterize criteria for minimal success in an activity were
there to be agents undertaking said activity.
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would suffice. Since resolving this contentious issue is unnecessary for my larger ar-
gument, I have remained neutral on the specific minimal criteria for solving a scientific
problem.

Instead, I have argued that—as presently formulated—both realism and antirealism
neglect a further constitutive aim of science. Planning adequacy requires more than an
empirically adequate or even true theory. In order to solve problems, we require an epis-
temically suitable formulation of a relevant theory or problem-solving procedure. The aim
of epistemic suitability requires that we identify a sufficient knowledge-base for reaching
a solution. Ideally, we should identify what we need to know in order to solve scientific
problems. Determining what we need to know or what suffices to know to solve prob-
lems requires that scientists reformulate their theories and problem-solving procedures.
Reformulations are thereby essential for attaining epistemic suitability. For this reason,
reformulations are non-instrumentally valuable. They are valuable as scientific ends in
themselves, not merely in the service of greater truth or empirical adequacy.

Each constitutive aim has both ideal and non-ideal dimensions. The non-ideal consti-
tutive aims of science concern what science has to achieve for minimal success within its
actual history. Non-ideally, we require epistemically suitable formulations only for the
problems that we will actually face. Solving problems non-ideally requires only approx-
imate truth or approximate empirical adequacy, where our actual practices settle what
counts as ‘good enough.’ The ideal constitutive aims of science specify what science would
have to achieve for minimal success in the limit of infinite time and resources. Ideally,
science would be able to solve any physically possible problem about the physical world.
This would require complete epistemic suitability for all physical problem-types. Addi-
tionally, ideal solutions would be as true or empirically adequate as physically possible,
e.g. up to the limits of physically possible measurement precision.

We can distinguish the constitutive aims from additional non-constitutive aims. No
doubt, science would go better if we developed faster problem-solving procedures. No
doubt, it would be a great success if we arrived at a fundamental language for describ-
ing reality. Although these achievements would constitute scientific success, they are
arguably not minimal success criteria for science.²⁹ They can be ideal aims, without being

²⁹Fundamentalist scientific realists might argue that seeking a canonical language for reality is a consti-
tutive aim of science. I take the arguments in Section 2.5 and Chapter 6 to undermine fundamentalism.
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ideal constitutive aims. If constructive empiricism is correct, then truth is also a non-
constitutive aim, along with providing explanations of physical phenomena. My defense
of epistemic suitability advantageously accounts for the value of reformulating without
appealing to explanations or differences in explanatory goodness. It thereby provides an
account that realists and antirealists alike can endorse.
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Chapter 6:

Making it Manifest: The Intellectual Value of Good Variables

6.1 Hidden Symmetries and Manifest Properties

When discussing the symmetries of models, physicists and chemists sometimes speak of
“hidden symmetries.” These are symmetries of the model that certain choices of variables
obscure. A system possesses a hidden symmetry when its full symmetry group is larger
than its “apparent” or “obvious” symmetry group. Paradigmatic examples include the
classical and quantum two-body problems (which have a hidden hyperspherical symme-
try) and the isotropic harmonic oscillator (which has a hidden special unitary symmetry).
A more recent example occurs in the context of N = 4 super Yang–Mills theory, whose
tree-level amplitudes possesses a hidden dual superconformal symmetry, along with a
larger hidden symmetry known as the Yangian.

By reformulating these models, physicists were able to make these hidden symmetries
manifest. The process of making a symmetry manifest distinguishes hidden symmetries
from their “obvious” counterparts: non-hidden symmetries were already made manifest
in a prior formulation. In some cases, a symmetry is manifest because it is “worn on the
sleeves” of a relevant expression. As we will see, this notion of wearing a property on the

sleeves is a special case of making a property manifest.
The phenomena of manifest symmetries suggests a problem for conceptualism that

fundamentalism avoids. Prima facie, it is intellectually significant to make a hidden sym-
metry manifest.¹ It does not seem to be merely a convenient re-expression of a theory or
model’s known properties. Yet, it is initially not clear how conceptualism can accommo-
date the intellectual significance of making a symmetry manifest. This is because there

¹Recall that ‘intellectual significance’ is a non-practical dimension of epistemic significance.
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is typically a translation procedure between variables that obscure a symmetry and vari-
ables that make this symmetry manifest. Hence, it initially seems that both sets of vari-
ables must express the same set of epistemic dependence relations. If this were so, then
conceptualism would fail to save the intuition that something of intellectual importance
can occur when scientists make a symmetry—or other property—manifest.

In contrast, fundamentalism suggests a simple account of the intellectual significance
of making properties manifest. Expressive means that make more fundamental proper-
ties manifest carve nature more closely at the joints. Insofar as a symmetry qualifies as
fundamental, making it manifest would likewise count as being intellectually significant.
Indeed, symmetries are connected with physical invariants, and invariants are typically
taken to be physically fundamental. If conceptualism cannot provide a satisfying account
of making symmetries manifest, it would seem as though fundamentalism has the upper
hand in this context. This chapter provides a conceptualist account of the significance of
making properties manifest, including symmetries. In keeping with the methodological
desiderata of Chapter 2, I will not appeal to ontologically-primitive differences in joint-
carving or fundamentality. Such differences might obtain, but I will remain agnostic as
to whether they do. Instead, I will locate a source of non-practical, epistemic value in
making properties manifest.

Section 6.2 begins with a general account of what it means for a fact to be manifest
rather than hidden. I then consider the ubiquitous phenomena of expressions that wear a
property “on the sleeves.” Section 6.2.1 analyzes this as a special case of making a property
manifest. I illustrate my account with simple examples from math, physics, and logic.
Next, Section 6.3 applies my account to a simple example from language translation: some
languages make the meaning of a word more manifest than others. Section 6.5 considers
the more complicated but still prosaic context of coordinate transformations.

In all of these cases, conceptualism threatens to either collapse into instrumentalism
or risk expanding into fundamentalism. For instance, if no coordinate choice carves the
system more closely at its joints, then how can we intellectually privilege one set of co-
ordinates over another? For many coordinate transformations, there seems to be nothing
but convenience to decide between them. Section 6.4 responds to these worries by clar-
ifying the non-practical epistemic value of making properties manifest. Making a prop-
erty manifest is valuable whenever it rules out epistemically possible solutions to a given
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problem. This ruling out of possibilities has epistemic value independently of any prac-
tical value. Since I do not appeal to primitive differences in fundamentality, my account
shows that fundamentalism is not needed even in this context. My argument comple-
ments Woodward’s (2016, p. 1056) argument that appeals to joint-carving do not help us
resolve philosophical problems about good variable choice.

Nevertheless, a fundamentalist might object that my account fails to preserve ordinary
judgments regarding relative fundamentality. Physicists and mathematicians commonly
view some variable choices as being more fundamental or deeper than others. Funda-
mentalism seems well-suited to vindicate these ordinary judgments of fundamentality.
In contrast, conceptualism faces the burden of accounting for them without appealing to
substantial metaphysical commitments. To meet this burden, Section 6.6 proposes an ex-
pressivist account of fundamentality. To judge that a formulation X is more fundamental
than a formulation Y is to express a mental state of being for privileging X over Y. Using the
example of gauge choices in quantum field theory, Section 6.7 develops a separate argu-
ment against fundamentalism. Making one fundamental property manifest often comes
at the cost of obscuring others. This provides some reason to be pessimistic that physics
will ever arrive at a fundamental language that avoids these trade-offs.

I end by considering examples that have motivated the entire enterprise: hidden sym-
metries. Section 6.8 illustrates my framework in the context of the hidden hyperspherical
symmetry of the nonrelativistic hydrogen atom. In many formulations of the hydrogen
atom, this symmetry is hidden while hydrogen’s spherical symmetry is manifest. By mov-
ing to momentum space, we canmake this hidden SO(4) symmetry manifest. Finally, Sec-
tion 6.9 considers hidden symmetries in the context of N = 4 super Yang–Mills theory. I
describe the chain of variable choices that allow us to make a hidden dual superconfor-
mal SU(2,2|4) symmetry manifest. At each step in this long chain of variable changes,
we acquire intellectually significant benefits.

6.2 Manifest vs. Hidden Facts

To account for the wide variety of cases that interest me, I propose the following account
of manifest facts: a fact is manifest at a given stage in a problem-solving plan provided
that an agent who implements that plan ought to infer that fact. More precisely:
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Manifest fact: a fact F is manifest in epistemic circumstance C provided that an
agent in state C ought to infer that the fact F obtains.

On this characterization, solutions are always manifest at the end of a successful problem-
solving plan: an agent that implements the plan ought to infer the solution. I take this
feature to be a conceptual requirement of any definition of ‘manifest fact.’ It is constitutive
of a successful problem-solving plan that it makes the solution manifest. Otherwise, the
plan has not reached its aim and to that extent remains unsuccessful.

By ‘agents,’ I mean to include both sapient and non-sapient problem-solvers, such as
algorithms implemented by a computer program. Sapient agents have a further capacity
for grasping a problem-solving plan, thereby understanding it in a psychological sense.
Sapient agents can not only implement a plan but also understand it.

My characterization ofmanifest facts treats it as a normative aspect of problem-solving
plans. Whether or not a fact is manifest depends on what we epistemically ought to
infer. Some may be wary of normativity, but there is nothing to fear, even for a hard-
nosed empiricist or naturalist like myself. Gibbard (2012) provides an ontologically non-
mysterious account of what constitutes these ought-claims. They simply amount to plans
for action or belief. In particular, “epistemic ought beliefs amount to plans for degrees
of credence” (2012, p. 178). To simplify the discussion, I will typically talk in terms of
full-belief, although it is straightforward to generalize the account to degrees of credence.
Degrees of credence accommodate problem-solving plans that involve inductive rather
than deductive reasoning.

We can likewise characterize what it means for a fact not to be manifest, i.e. to be
non-manifest. We simply negate the characterization of a manifest fact:

Non-manifest fact: a fact F is not manifest in epistemic circumstance C provided
that it is not the case that an agent in state C ought to infer F .

For instance, solutions are not manifest at the beginning of problem-solving (otherwise,
one would not need to engage in problem-solving). It is not the case that one ought to
infer the solution to a problem before carrying out an adequate problem-solving plan.

That a fact is not manifest does not necessarily entail that it is hidden or obscured. It
may sometimes be permissible for an agent to infer a fact that is not manifest. To char-
acterize what it means for a fact to be hidden, I propose the following logically stronger
definition:
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Hidden fact: a fact F is hidden in epistemic circumstance C provided that it is im-
permissible for an agent in state C to infer that F obtains.

Equivalently, a fact is hidden provided that an agent ought not infer it.
Epistemic-ought claims play an important role in my account of manifest, non-

manifest, and hidden facts. But what does it mean to say that an agent in a particular
circumstance ought to infer a given fact? We can gloss this as follows: if an agent ought to
infer F , but they fail to infer F , then their inferential omission warrants disapproval. This
disapproval is of a specifically epistemic variety: it is disapproval on epistemic grounds.
In the cases I consider, it involves disapproval of the agent’s subsequent epistemic state.²

If an agent fails to infer the correct answer, then they either (i) infer an incorrect
answer, (ii) fail to realize that they knowhow to solve the problem (e.g. by falsely believing
that they do not have enough information), or (iii) simply do not know how to solve
the problem. The first two cases involve a kind of epistemic mistake: the agent believes
something false (either the wrong answer or an erroneous belief about what is possible).
In the third case, the agent displays an epistemic deficiency: they are unable to implement
an appropriate problem-solving plan. Of course, this third case warrants disapproval only
if the agent ought to know better, i.e. ought to be able to implement the plan. In the cases
I consider, I will assume that the agent either knows or ought to know how to implement
such a plan. A computer program can malfunction in all three of these different ways.
It might halt at the wrong answer, fail to halt when it should, or simply stop working
entirely (and not because it has been turned off!).

A simple example from graph theory illustrates the various components of my ac-
count. Given a graph (i.e. a collection of edges and vertices), one general question is
whether the graph has the property of planarity. Planar graphs admit a representation
such that no edges cross in the plane. For any given planar graph, most of its repre-
sentations hide the fact that it is planar. These representations hide the planarity of the
graph by representing two or more edges as crossing. In contrast, other representations
demonstrate that a planar embedding is possible: they make manifest the planarity of the
graph.³

²In general, wemight also epistemically disapprove of an agent’s epistemic process. For instance, we dis-
approve of an agent who gets the right answer but for the wrong reasons, such as by accidental cancellation
of two compensating mistakes.

³Elsewhere in pure mathematics, number theory provides numerous cases where reformulating a prob-
lem makes otherwise hidden patterns manifest (Ash and Gross 2008).
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If a student of graph theory is shown a planar representation of a graph, the student
ought to infer that the graph is planar. If they do not make this inference—drawing some
other inference instead—then their inference warrants epistemic disapproval. For they
have either i) inferred that the graph is not planar, ii) inferred that there is not enough
information to solve the problem, or iii) realized that they don’t know how to solve the
problem. In the first two cases, they make an epistemic mistake. In the third case, they
display a deficiency that they ought not have (given their background training in graph
theory). They show that they lack sufficient understanding of graph theory, whereas they
ought to have this understanding.

Of course, if it is not the case that an agent ought to have this background knowl-
edge, then they make neither an epistemic mistake nor display an inexcusable epistemic
deficiency. If you show a kindergartner a planar representation of a graph and ask them
whether the graph is planar, they can permissibly reply that they have no idea what you
are talking about. Although the kindergartner has an epistemic deficiency, they are ex-
cused from disapproval. It is not the case that they ought to understand graph theory.
Likewise, if someone simply loses interest in solving a problem and walks away, we can-
not epistemically disapprove of them for this. We might still, nonetheless, disapprove of
their values and goals.

The definitions of manifest, non-manifest, and hidden facts reference an epistemic cir-
cumstance C. This circumstance encompasses both i) the background knowledge and ca-
pacities that the agent has and also ii) what information they are being presented with in a
given problem-solving context. Sometimes, it will be convenient to isolate the latter infor-
mation, calling it the problem-specific epistemic circumstance P. In the case above, both the
graph theory student and the kindergartner are presented with the same problem-specific
circumstance P, i.e. the same representation of the graph. But overall they are in different
epistemic circumstances based on their different background knowledge. The planarity
of the graph is manifest for the student of graph theory but not for the kindergartner.

The phenomena of perfect (or absolute) pitch helps illustrate why it is necessary to
index what we ought to infer to our background knowledge and capacities. Consider two
musicians presented with the same sound, such as a musical note sustained on a violin.⁴

⁴In virtue of being musicians, these agents understand the naming conventions linking frequencies to
pitches.
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The first musician has perfect pitch. In virtue of this, they ought to infer the pitch class of
the note played, e.g. that it is a B-flat. To do this, they do not need any measuring device
or even a reference pitch. The second musician does not have perfect pitch. Hence, it is
not the case that they ought to infer that the note is a B-flat, just from hearing it. It is
epistemically permissible for them not to know the pitch. In order for the pitch to become
manifest to the second agent, they need ameasuring device, such as a tuning fork, a digital
tuner, or testimony. Using a digital tuner alters their epistemic circumstance, such that
the pitch of the note becomes manifest. As described below, formulations that “wear a
property on the sleeves” are analogous to having perfect pitch. They make it the case that
one ought to infer the property without needing intermediary expressions, analogous to
how someone with perfect pitch does not need an intermediary measuring device.⁵

The capacity of logical omniscience provides another illustration of howwhat an agent
ought to infer can depend on their capacities. Logically omniscient agents ought to infer
any logical consequence of a sentence or group of sentences. For them, all logical conse-
quences are manifest. Clearly, this is not the case for us, in virtue of our lack of logical
omniscience. As in Chapter 5, I am interested in agents that are not logically omniscient.
Most of the epistemic differences that interest me here do not arise for logically omni-
scient agents. Unlike humans, such agents would have no reason to reformulate in many
of the cases described below.

6.2.1 Simple examples, on the sleeves

My account of manifest facts leads straightforwardly to an account of what it means for
an expression to wear a property “on its sleeves.” I propose to understand this as follows:

To wear on the sleeves (‘sleeve properties’): a representation or expression E wears
a property P on its sleeves provided there is a problem-solving plan that both
(i) makes P manifest and
(ii) does so solely on the basis of manifest facts about E .

Unpacked, this definition comes to the following: applying an appropriate plan to the

⁵My account of manifest properties sheds light on Wittgenstein’s discussion of what he calls “aspect-
blindness” in Fragment xi of the Philosophy of Psychology. Wittgenstein is concerned with humans that
lack “the ability to see something as something.” He asks whether this “defect” would be comparable “to
not having absolute pitch” and later answers that “aspect-blindness will be akin to the lack of a ‘musical
ear’” (2009 [1949], 224–225, §257, 260). In my terminology, aspect-blindness occurs when the changing of
aspects—such as the Gestalt shift of the Necker cube—is not manifest to an agent.
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expression E makes the property P manifest. Importantly, this plan must rely solely on
properties of E that are already manifest (before implementing the plan). Collectively,
the expression and the plan generate an epistemic circumstance in which the property is
manifest. Typically, these plans are built around a central epistemic dependence relation,
which we exploit to make the property P manifest. In this section, I illustrate my account
using some simple examples from logic and physics.

Sleeve Properties in Truth-Functional Logic

Sentential logic provides a wellspring of examples of “sleeve properties.”⁶ Among different
but truth-functionally equivalent sentences, often one wears a property on the sleeves
that another obscures. Much of the interest in certain kinds of normal forms for truth-
functional sentences comes from making certain properties manifest.⁷

The completed truth table of a sentence wears many of the sentence’s truth-functional
properties on its sleeves. These include whether the sentence is a tautology, a contradic-
tion, or contingent (i.e. true under some but not all truth-value assignments). For instance,
to determine if a sentence is a tautology, it suffices to check whether it is true under every
possible truth-value assignment to its atomic sentence letters. This epistemic dependence
relation supplies an appropriate plan for determining whether a sentence is a tautology.
The completed truth table makes manifest the sentence’s truth-values, e.g. by collecting
them under the sentence’s main connective. In other words, given the completed truth
table, one ought to infer the sentence’s truth-value for every truth-value assignment to its
atomic sentence letters. Then, by applying the preceding EDR for a tautology, the truth
table makes manifest whether the sentence is a tautology. The truth table thereby wears
this property on the sleeves, namely, the property of being a truth table of a tautology.
Provided that one sees the truth table and applies this EDR, they ought to infer that the
sentence is a tautology.

Some sentences wear their tautological status on their sleeves all by themselves, no
truth table needed! As a simple example, consider the sentence (p∨¬p)∧(¬r∨q∨s∨¬q),
which is in conjunctive normal form (CNF). To see that this sentence is a tautology, we

⁶Using an ellision introduced below, we could elide “sleeve properties” to the simpler “manifest proper-
ties,” where this notion would now encompass properties manifest to the 0th or 1st degree.

⁷The following discussion draws heavily upon Goldfarb (2003, pp. 67, 73–74), which first exposed me to
the idea of an expression wearing a property on its sleeves.
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can rely solely on features of it that are already manifest. For instance, it is manifest
that the sentence consists of two conjuncts, each of which is a disjunction of negated and
unnegated sentence letters. Anyone who understands the sentence ought to infer these
surface-level properties; they are trivially manifest—what we might call ‘manifest to the
0th degree.’ Moreover, any agent who knows the following EDR also ought to infer that
the sentence is a tautology: to determine if a conjunction of disjunctions is a tautology,
it suffices to check whether each conjunct contains a sentence letter that occurs both
negated and unnegated. In the first conjunct, it is manifest that p occurs negated and
unnegated, whereas q occurs negated and unnegated in the second conjunct. Hence, each
conjunct is a tautology, so the sentence itself is a tautology. Combined, the sentence and
this EDRmakemanifest that the sentence is a tautology (wemight say that this property is
‘manifest to the 1st degree’). In general, any sentence in conjunctive normal form wears
the property of being a tautology (or not) on its sleeves. We simply use the following
epistemic dependence relation: to determine whether a sentence in CNF is a tautology, it
suffices to check whether each conjunct contains a sentence letter and its negation.

A sentence is in disjunctive normal form (DNF) provided that it is a disjunction of
conjunctions of sentence letters or their negations, such as the following sentence: (p∧
q)∨ (¬s∧ r)∨ (¬p∧ p). DNF makes manifest whether a sentence is satisfiable, i.e. is true
on some truth-value assignment. This follows from logical properties of disjunctions and
conjunctions. A disjunction is satisfiable if and only if it has a satisfiable disjunct. In DNF,
each disjunct is a conjunction. Hence, we note further that a conjunction is satisfiable if
and only if it is not truth-functionally equivalent to a contradiction, such as “p∧¬p.” Col-
lectively, these two facts yield the following epistemic dependence relation: to determine
whether a sentence in DNF is satisfiable, it suffices to check whether at least one disjunct
does not contain a sentence letter and its negation. Similarly, to determine whether a
sentence in DNF is unsatisfiable (i.e. false on every truth-value assignment), it suffices to
check whether every disjunct contains a sentence letter and its negation (in which case
every disjunct is a contradiction). Provided we implement these two EDRs, a sentence in
DNF wears its satisfiability or unsatisfiability on its sleeves. More generally, disjunctive
normal form makes manifest the truth-value assignments on which the sentence is true
(it wears these assignments on its sleeves).
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Manifest Lorentz Covariance

Physicists commonly refer to some expressions as being “manifestly Lorentz covariant.”
For instance, the following equation is manifestly Lorentz covariant: aρaνbρµ = Bµ

ν . This
simply means, I will argue, that this expression wears the property of Lorentz covari-
ance on its sleeves. In conjunction with an appropriate EDR, one ought to infer that this
expression is Lorentz covariant, solely on the basis of properties that are already manifest.

A suitable plan for checking whether an expression is Lorentz covariant comes from
the following fact: an equation in tensor form is Lorentz covariant provided that i) non-
repeated upper and lower indices on either sidematch and ii) repeated indices appear once
lower and once upper on the same side of the equation. This fact yields the following EDR:
to check whether a tensor equation is Lorentz covariant, it suffices to check whether these
two conditions are met. Notice that these conditions rely on properties of the equation
that are already manifest, namely the occurrence and placement of indices. Hence, an
agentwho understands this EDR and sees the expression ought to infer that the equation is
Lorentz covariant. Likewise for any other expression that satisfies these conditions. Such
expressions wear Lorentz covariance on their sleeves. (For a non-conscious agent, we can
replace talk of ‘seeing’ and ‘understanding,’ with notions of being given the expression as
input and implementing this problem-solving plan.)

My account also illuminates what it means to say that an expression is manifestly
Lorentz invariant. When physicists say this, they simply mean that the expression wears
Lorentz invariance on its sleeves. An example is the expression FµνFµν . Here, each
lower index is paired with a matching upper index, and there are no free indices. These
manifest facts suffice for inferring that the expression transforms as a scalar under Lorentz
transformations. Hence, in conjunction with this problem-solving plan, the expression
FµνFµν wears its Lorentz invariance on its sleeves.

In contrast, some expressions are Lorentz invariant, but this property is not worn
on the sleeves (it is hidden). One can prove that such expressions transform as a scalar,
but it is not the case that one ought to infer this solely on the basis of properties that are

already manifest. Instead, one must rely on properties that become manifest only after
starting the proof. A well-known example is the Lorentz invariant measure

´ d3k
(2π)32wk

,

where wk = +

√
|k|2 +m2. One can prove that this measure is invariant under proper
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orthochronous Lorentz transformations. By the end of this proof, its Lorentz invariance
is manifest. But the expression itself does not wear this property on its sleeves, in the
way that “FµνFµν” does. At least, I do not know of any appropriate EDR that makes
this property manifest solely on the basis of properties of “

´ d3k
(2π)32wk

” that are already
manifest.

These examples illustrate a general epistemic difference between expressions that
wear a property on the sleeves vs. those that do not (but that still possess the prop-
erty). In both cases, to make the property manifest, we must engage in problem-solving.
We must apply an epistemic dependence relation(s) that forms the basis of a problem-
solving plan. When the property is worn on the sleeves, we do not need to consider any
intermediary expressions. The expression itself contains sufficient information for deter-
mining whether the property obtains. In contrast, when the property is not worn on the
sleeves, we must construct intermediary expressions, such as a truth table. It is from these
intermediaries that the property ultimately becomes manifest (i.e. at the end of problem-
solving). Section 6.4 analyzes this kind of epistemic difference in terms of a difference in
the ruling out of epistemic possibilities. A formulation that makes a property manifest
rules out possibilities that the non-manifest formulation does not. This kind of epistemic
difference contributes to the non-practical epistemic value of making properties manifest,
i.e. to its intellectual significance.

From these considerations, we begin to see how one could construct a gradated notion
of manifest properties. Clearly, there is a sense in which properties that are worn on the
sleeves aremoremanifest than those that are not. Moreover, we have seen that some prop-
erties are trivially manifest, and thereby trivially worn on the sleeves. Above, I referred to
these as being “manifest to the 0th degree.” Properties that are non-trivially worn on the
sleeves are “manifest to the 1st degree”: we make sleeve properties manifest by relying on
an EDR that exploits only properties that are 0th-degree manifest. Often, when scientists
and mathematicians talk about “manifest properties,” they really mean properties that are
non-trivially worn on the sleeves. Such properties are not immediately manifest, but they
become manifest once we apply an EDR that relies solely on already manifest proper-
ties. Section 6.4.3 develops a more general proposal for a gradated account of manifest
properties.
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6.3 Manifest Meanings

As discussed briefly in Section 2.6, languages can differ in how manifest they make the
meaning of a word. At first glance, the German word “die Speisekarte” is completely syn-
onymous with the English word “the menu.” Both mean what we can denote at the level of
thought by ‘menu.’ Yet, due to the sub-word structure of “die Speisekarte,” German makes
the meaning of this word more manifest than English. On my account, this means that
there are problem-solving contexts where a German speaker ought to infer the meaning
of “die Speisekarte,” whereas an English speaker in the same (non-linguistic) epistemic
circumstance ought not infer the meaning of “menu.”

Consider two agents, Gertrude and Ender, who are native speakers of German and
English, respectively. Gertrude has forgotten the meaning of “die Speisekarte” while En-
der has forgotten the meaning of “menu.” Thanks to the semantic substructure of “die
Speisekarte,” Gertrude is in an epistemically superior position. In German, “die Speise”
means dish or food, while “die Karte” means caRd or chaRt. Hence, Gertrude ought to
increase her credence that “die Speisekarte” means a card or chart that displays dishes or
food, i.e. that it means menu. In contrast, Ender is not permitted to make a similar infer-
ence. Knowing the meanings of “dish” and “card” is of no use here, since the English word
“menu” does not have an analogous substructure. On the basis of what he can remember,
Ender ought not increase his credence that “menu” means menu. Hence, German sup-
ports a problem-solving plan that English does not. In virtue of this plan, German makes
manifest the meaning of “die Speisekarte,” whereas English does not make manifest the
meaning of “menu.”⁸

In order for Ender to carry out Gertrude’s problem-solving plan, Ender would
effectively need to ‘change variables’ by translating into German. For instance, Ender
would need to know that the English word “menu” is synonymous with the German
“die Speisekarte,” and that “die Speise” means dish/food while “die Karte” means
caRd/chaRt. Given this additional information, Ender ought to increase his credence
that “menu” means menu. But notice how Ender requires knowledge of a translation
procedure, whereas Gertrude does not. This provides another way of seeing that German,

⁸Similar examples of this kind include the German for ‘attractions’—die Sehenswürdigkeiten (things
worthy of seeing)—and for ‘deranged’—geistesgestört (distortion of the mind or spirit). The German for
‘attractions’ makes manifest that these are things that are typically worth seeing.
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but not English, makes the meaning of this word manifest.
Of course, there are other ways to make the meaning of a word manifest. For any-

one with sufficient background knowledge, a dictionary makes manifest the meaning of
unknown words. Ender could look up the meaning of “menu” in an English dictionary.
Its meaning would be made manifest by a definition such as this: “a list from which to
request food dishes at a restaurant or social event.” Provided that Ender knows the mean-
ings of enough of these words, he ought to increase his credence that “menu” means
menu. Gertrude could likewise follow this alternative problem-solving plan, consulting a
German dictionary for the meaning of “die Speisekarte.”

Perhaps one might worry at this point: is there really any philosophically interesting
difference between Gertrude inferring the meaning of “die Speisekarte” from the mean-
ings of its sub-words vs. inferring its meaning from a dictionary? Indeed, in both cases,
Gertrude infers the meaning of “die Speisekarte” on the basis of knowing other words.
As we have seen above in the context of sleeve properties, there is at least one important
difference. Through the former problem-solving plan, the word “die Speisekarte” makes
its meaning manifest, solely using features of it that are already manifest (namely, its sub-
word structure). A German does not need a German dictionary for this. Whereas in the
latter problem-solving plan, a dictionary does the work (indeed, a good dictionary does
this work in any language, for any word—at least for speakers with sufficient knowledge
of the language). Relative to the problem-solving plan that relies on a dictionary, there
is no epistemic difference between Gertrude and Ender. Relative to the problem-solving
plan that involves a decomposition into sub-words, an epistemic difference arises.

This example illustrates that it is not the expressive means on its own that makes
a property manifest. Rather, it is the expressive means in conjunction with a problem-
solving plan. Whether a property is made manifest depends on how one plans to use an
expressive means. Ender could make the meaning of “menu” manifest if he chooses to
use an English dictionary. But Gertrude does not need a dictionary, provided that she
plans to infer the word’s meaning from known sub-words. This example is particularly
striking because it shows how the problem-solving plans that are available can depend on
the choice of expressive means, e.g. language or notation. Ender is not even able to carry
out the sub-word decomposition plan that Gertrude follows. If Ender tries to apply this
EDR, it takes him nowhere, for “menu” does not decompose into English sub-words.
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6.4 The Value of Making it Manifest

Having expounded my account of what it means to make a property manifest, I return
now to this chapter’s central question: what is the value of making properties manifest?
More precisely, what is required for it to be valuable? This question is a special case of
Chapter 2’s investigation into the value of compatible reformulations. As before, at least
three dimensions of value suggest themselves: instrumental/practical, metaphysical, and
non-practical epistemic (what I am calling ‘intellectual’ value). After presenting instru-
mentalist and fundamentalist accounts of the value of manifest properties, I propose a
conceptualist middle ground.

Both instrumentalism and fundamentalism give straightforward criteria for when it is
valuable to make a property manifest. According to instrumentalism, making a property
manifest is valuable whenever it contributes to the achievement of other scientific aims.
For instance, provided that making a property manifest makes problem-solving more con-
venient or efficient, it is valuable by the lights of instrumentalism. The instrumentalist
denies that making a property manifest ever constitutes on its own the achievement of
a scientific aim. The most austere form of instrumentalism—conventionalism—contends
that making properties manifest is merely convenient.

In contrast, fundamentalism contends that making a property manifest can constitute
the realization of an aim of science, namely the aim of describing reality in ever more
fundamental terms. On this view, a variable choice is valuable at least when it leads to
a more fundamental or joint-carving description of a given phenomenon. Consequently,
making a property manifest is valuable whenever doing so constitutes a more fundamen-
tal description of the phenomena. Ceteris paribus, a variable choice that makes a more
fundamental property manifest qualifies as more valuable than a choice that obscures
such a property.

To fare at least as well as these accounts, conceptualism must provide clear criteria
for when it is valuable to make a property manifest. Such criteria must underwrite an
evaluative asymmetry between those variable choices that make a property manifest vs.
those that do not. The former are better or more valuable than the latter, other things
equal. Fortunately, an empiricist-friendly, epistemic criterion lies ready at hand, which I
articulate in Section 6.4.1.
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As a warm-up, consider the simple case where our epistemic end is to determine
whether an expression or system possesses a particular property. By making that prop-
erty manifest, we achieve our epistemic end. In this context, making a property manifest
constitutes the achievement of our goal. Insofar as achieving this goal is epistemically
valuable, so is making the property manifest. Variable choices that fail to make the prop-
erty manifest fall short of this goal, and are to that extent less valuable. Such variable
choices do not preclude us from obtaining this knowledge, but they do not suffice for it.

To see this, recall the graph theory example from Section 6.2. By making planarity
manifest, we already achieve our aim of determiningwhether the graph is planar. In virtue
of this property being manifest, we ought to infer planarity. In contrast, a non-planar
representation of the graph does not suffice for achieving our aim. Doing so requires a
further epistemic transformation, such as constructing a planar representation from the
non-planar one.

My conceptualist account has important differences with both instrumentalism and
fundamentalism. In contrast with instrumentalism, making a property manifest is not
merely an instrument for achieving scientific aims. Instead, it can constitute the achieve-
ment of epistemic aims, such as knowing whether or not a system has a particular prop-
erty.

Additionally, the kind of epistemic value that conceptualism identifies is logically in-
dependent from what is all-things-considered most practically valuable. In the context of
determining the meaning of ‘menu,’ it will typically be more convenient to use an English
dictionary than to translate ‘menu’ into German, learn the meanings of some German
subwords, and then translate back. Nevertheless, there remains a sense in which German
is epistemically better suited to solve this problem. Similarly, we can imagine contexts
where someone with perfect pitch would prefer to use a measurement device to determine
the pitch of a sound. Perhaps the sound is extremely loud, and they desire to protect their
ears by measuring the sound while in a different room. Hence, the conceptualist criterion
for significance has nothing intrinsically to do with speed, convenience, or other practical
dimensions of value.

The 20th century Russian physicist Vladimir Fock’s commitment to Marxism provides
an illuminating historical example. Motivated by dialectical materialism, Fock developed
harmonic coordinates as a preferred coordinate system for expressing equations in general
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relativity (Graham 2000, p. 34). One can imagine it being prudent—in certain political
contexts—to prefer Fock’s formulation regardless of its epistemic benefits. Vice versa,
one might sometimes prefer to use harmonic coordinates for their intellectual advantages,
even while denouncing Marxism in all its forms.⁹

In contrast with fundamentalism, conceptualism contends that the value of making
a property manifest does not depend on that property being relatively fundamental. In
the simple case of checking whether a system has a property, all that matters is that we
have a prior epistemic aim of determining whether the system has this property. The
conceptualist account applies to any kind of property of interest, regardless of whether
such properties are relatively fundamental. The same sorts of epistemic differences can
arise for properties that are completely non-fundamental or ‘gruified.’

This flexibility presents one of the chief advantages of conceptualism over fundamen-
talism. At least part of the epistemic value of making properties manifest floats free from
the relative fundamentality of those properties. In many contexts, none of the properties
that we make manifest seems to be most metaphysically fundamental. Section 6.5 pro-
vides a simple example stemming from the choice of Cartesian vs. polar coordinates. It
is implausible that one set of coordinates counts as ‘metaphysically more fundamental’
than another. After all, coordinates are ways of representing states of affairs, rather than
properties of those states of affairs. Nonetheless, the kinds of epistemic differences that
arise in these cases completely parallel the differences that arise in cases where funda-
mentalism might get traction, such as the case of hidden symmetries or gauge choices.
Yet as Section 6.7 shows in the context of gauge choices in quantum field theory, making
one (fundamental) property manifest often comes at the expense of obscuring others. To
assess the relative value of these gauge choices, the fundamentalist requires some way of
comparing these trade-offs. Conceptualism does not require this kind of accounting in
order to make sense of why it can be valuable to make different properties manifest in
different contexts.

6.4.1 Ruling out epistemically possible solutions

Of course, in many cases our task is more complicated than simply checking whether or
not an expression has a property. Section 6.5 illustrates one such context, where the task

⁹Thanks to Gordon Belot for suggesting this example.
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is to determine the equation of a line. For a horizontal line, I argue that it is intellectually
valuable to make the vertical degree of freedom manifest, although this is not the same
as determining the equation of the line. Hence, we need a more general criterion for the
intellectual value of making properties manifest. For ease of discussion, I introduce some
terminology: let’s call a formulation or choice of variables that makes a property (more)
manifest a “(more) manifest formulation.” Conversely, let’s call a formulation that fails to
make a property manifest a “non-manifest formulation” (or at least a “less manifest” one).

In general, a manifest formulation has the following epistemic advantage: it rules out
epistemically possible solutions that a non-manifest formulation does not. To see this, it
helps to reconsider some prior examples. A planar representation of a planar graph rules
out the epistemic possibility that the graph is not planar. In contrast, when presented
with a non-planar representation, it remains epistemically possible that the graph is not
planar. Consider next a person with perfect pitch. In virtue of pitch being manifest to
them, they immediately rule out epistemic possibilities that an ordinary person can rule
out only via a measurement device. Clearly, there is an epistemic advantage to having
perfect pitch, even for someone who chooses not to use it for practical reasons. Similarly,
when we present an expression in manifestly covariant form, we rule out the epistemic
possibility that the expression is not Lorentz covariant. A non-covariant form leaves open
this epistemic possibility, in the sense that it is not the case that we ought to infer that the
expression is Lorentz covariant.

Of course, what matters isn’t simply the number of epistemic possibilities that are
ruled out. What matters is ruling out epistemically possible solutions, rather than epis-
temic possibilities tout court. Relative to the aim of solving a particular problem, there
is little-to-no value in ruling out epistemic possibilities that have nothing to do with that
problem. If I am trying to determine whether a sentence is a tautology, I do not advance by
noting that I am wearing pink socks (despite the fact that this observation rules out many
epistemic possibilities). Indeed, as the examples in Sections 6.5 and 6.7 demonstrate (con-
cerning coordinate choices and gauge choices, respectively), a formulation that is non-
manifest with respect to one property can be manifest with respect to another. Hence, if
we were to naïvely count the epistemic possibilities that such formulations rule out tout
court, we would miss key epistemic differences between them.

I am proposing that the value of making a property manifest derives from ruling out
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possibilities that we could rationally entertain in the course of problem-solving.¹⁰ Un-
surprisingly, the class of possibilities that matters changes across different kinds of prob-
lems. As Section 6.4.3 discusses, a problem’s epistemically possible solutions constitute
a ‘search space’ for that problem. Making a property manifest is epistemically valuable
when it constrains this search space.

As noted above, conceptualism does not deny the instrumental or practical value of
making properties manifest. Indeed, this practical value often stems from the conceptu-
alist criterion I have just proposed: by ruling out more epistemically possible solutions,
manifest formulations are often more convenient for problem-solving. By eliminating
these possibilities, it typically becomes easier or faster to solve a problem. Of course,
other practical considerations can intervene, such as the pedagogical costs of learning a
manifest formulation. Hence, as I have been arguing, these are genuinely independent
dimensions of value. Although greater convenience is often a symptom of intellectual
significance, it is not a criterion.

Section 6.9 provides a striking illustration of this moral, involving a kind of case that
arises frequently with symmetries. By reformulating such that a symmetry is put on the
sleeves, we gain the ability to construct increasingly complicated expressions that man-
ifestly respect this symmetry. In this case, we gain the ability to build more complex
invariants out of starting points that are manifestly invariant under the symmetry. Un-
surprisingly, this ability is incredibly convenient in many contexts. It is so convenient
that it is easy to lose sight of its underlying intellectual significance, which obtains inde-
pendently of these practical benefits. By making the symmetry into a sleeve property, one
ought to infer that a given expression has that symmetry. Whereas otherwise, it would
be a live possibility that the expression is not invariant. Due to this epistemic possibility,
it would be necessary to check—via calculation—that the expression has the symmetry
in question. Section 6.9’s example, involving supersymmetry, also makes salient the fact
that making a symmetry into a sleeve property can take a lot of work. In many contexts,
it would not be practically worth doing this work, unless one was faced with multiple
problems that could practically benefit from it.

¹⁰Such rationally-entertainable possibilities just are the epistemically possible solutions. If we follow
Gibbard (1990) in giving an expressivist treatment of rationality, then judgments about possible solutions
are inherently normative.
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6.4.2 Less surprising, more intelligible

By ruling out epistemic possibilities, a more manifest formulation makes the phenomena
of interest less surprising ormysterious. If we start with amore restricted space of possible
solutions, the fact that the solution has a given property is typically less surprising than it
otherwise would be. (If we were to apply a principle of indifference, we would begin with
different priors concerning the property of interest, depending onwhether we start within
amoremanifest formulation vs. a lessmanifest one.) I take this decrease in surprise to be a
sufficient condition for greater intelligibility. More manifest formulations often make the
solution to a problemmore intelligible, at least by typically decreasing surprise. Assuming
that science aims to make phenomena as intelligible as possible, we gain a non-practical
epistemic reason to prefer formulations that make a given phenomenon more manifest.

A simple example from quantum field theory illustrates these connections between
epistemic possibilities, surprise, and intelligibility. The Lagrangian density below initially
appears to describe an interacting scalar field ϕ , due to the terms third-order and higher,
such as ϕ 3 (Cheung 2017, p. 2):

L=
1
2
[1+λ1ϕ +

1
2!

λ2ϕ 2 +
1
3!

λ3ϕ 3 + . . . ]∂µϕ∂ µϕ (6.4.1)

Written in this form, the Lagrangian density leaves open the possibility that it describes
an interacting field. It is not the case that one ought to know whether the amplitudes that
describe scattering n-many particles vanish. We might then go on to calculate the ‘tree-
level’ amplitude for scattering four particles (i.e. to first order in perturbation theory).
We would find that it vanishes, reflected by the cancellation of a few Feynman diagrams.
Intrigued, we might press on, calculating 5-point amplitudes and higher. We would find
that each vanishes. As Cheung notes, “the 14-particle amplitude also vanishes, albeit
through the diabolical cancellation of upwards of 5 trillion Feynman diagrams” (2017,
p. 3). Well before this point, we might already suspect that the Lagrangian density (6.4.1)
actually describes a free scalar field.

Indeed, by performing a suitable field redefinition, we can transform the density (6.4.1)
into one that manifestly describes a free scalar field.¹¹ A manifestly free theory rules

¹¹In general, scattering matrix elements are invariant under field redefinitions ϕ → f (ϕ) such that f’(0)
=1 (Cheung 2017, p. 3). For at least this reason, we ought not take the Lagrangian density or the Feynman
rules for vertices too literally!
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out the possibility that there are non-vanishing amplitudes describing particle scattering.
Hence, the vanishing of these n-point amplitudes becomes unsurprising and to that extent
more intelligible. We expect that a free scalar has trivial interactions with itself. In a
claim consilient with many themes of this chapter, Cheung notes that “a poor choice of
field basis may obscure or altogether conceal certain underlying structures of the theory”
(2017, p. 3).

A similar moral arises in the context of conjunctive normal form and tautological
sentences. Given a structurally complicated or ‘concealed’ tautology, we might check
whether it is a tautology by computing each row of its truth table. As we proceed, we
might begin to suspect that we are dealing with a tautology. The truth-value of certain
rows might initially seem surprising. By contrast, if we were to convert this sentence
into a logically equivalent conjunctive normal form, then its tautological status would be
manifest. It would then be unsurprising that each row of its truth table evaluates to true.
The possibility of any row evaluating to false would have already been ruled out.

6.4.3 Degrees of manifestness

The connection between i) making a property manifest and ii) ruling out epistemic pos-
sibilities suggests a promising strategy for gradating the notion of manifestness. A for-
mulation makes a property manifest to the extent that it rules out possibilities where the
property does not obtain. For instance, consider a musician who has ‘good but not perfect
pitch,’ someone who can typically identify a tone to ‘plus or minus’ the actual pitch-class.
Intuitively, the pitch is more manifest to them than to someone who completely lacks a
musical ear. On the criterion I am proposing, this is because a musician with good-but-
not-perfect pitch rules out more epistemically possible solutions than an ordinary person.

To make this criterion precise, we require a measure on the space of epistemically
possible solutions. To determine which of two formulations or variable choices makes a
given property more manifest, we must compare the possible solutions that they rule out.
Perhaps there is a uniform way of quantifying such epistemic possibilities.¹² Regardless,
it seems that we can at least suggest plausible measures in many problem-solving con-
texts. For instance, when it comes to determining whether a truth-functional sentence

¹²Perhaps such criteria could be constructed from information theory, topology, or truth-maker seman-
tics.
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is a tautology, each row of the truth table contributes two epistemic possibilities: true or
false under that truth value assignment. A choice of expressive means that rules out more
of these possibilities counts as making a given property more manifest.

Moreover, there seem to be good independent reasons for taking seriously the idea
of “a space of epistemically possible solutions” for a problem. Generically, we can
understand problem-solving as a process of structuring a space of possible solutions.
Epistemically-different problem-solving plans result in different structurings of this
space: they rule out or in different possibilities. Other things equal, we have epistemic
reasons to prefer those problem-solving plans that restrict the space of solutions as much
as possible. Applying the account of better understanding from Section 4.5, this means
that manifest formulations provide better understanding of the phenomena (i.e. we have
a non-practical epistemic reason for preferring a manifest formulation). The same kind
of reasoning applies to the use of symmetry groups of differential equations: identifying
such groups epistemically constrains the solutions of differential equations that obey
those symmetries. This is one of the insights that led Wigner to apply symmetries to
quantum mechanics in the 1920s.

At least in some scientific contexts, the space of possible solutions seems highly con-
crete and far frommetaphorical. Physicists provide precise characterizations of such epis-
temic possibilities whenever they construct a space of possible values for an unknown
parameter. Many experimental searches in cosmology and particle physics aim to restrict
this space of epistemically possible values as much as possible. Although we may not be
able to achieve this level of precision in an arbitrary problem-solving context, it at least
supplies a helpful model for philosophical theorizing about reformulations.

6.4.4 Problem-solving adequacy and fruitfulness

In many of the examples from Sections 6.2 and 6.3, the more manifest formulation makes
available a problem-solving plan that a less manifest formulation does not support. This
is particularly striking in the case of ‘sleeve properties.’ By wearing a property on the
sleeves, the manifest formulation allows us to solve the problem by ‘reading of’ this
property from the expression. For instance, a manifestly Lorentz covariant expression
supports a problem-solving plan for Lorentz covariance that a non-manifestly covariant
expression does not support (at least without further transformations). Similarly for the
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case of German vs. English: German makes available a problem-solving plan for guessing
the meaning of ‘die Speisekarte’ that English does not support for ‘menu.’

By making alternative problem-solving plans available, these kinds of reformulations
contribute to the aim of problem-solving adequacy (introduced in Chapter 5). They supply
plans that can succeed in a wider variety of epistemic circumstances. For instance, when
it comes to solving the ‘menu’ problem, a German speaker does not need a dictionary.
Likewise, when it comes to determining the pitch-class of a tone, someone with perfect
pitch does not require a measuring device.

I conjecture that a more manifest formulation supports alternative problem-solving
plans in virtue of ruling out more epistemically possible solutions. Because the English
language does not place constraints on the meaning of ‘menu’ from English subwords, a
pure-English speaker has no other recourse than to consult a dictionary (or some other
testimonial source). In contrast, German lets us decrease credence in many epistemic
possibilities for the meaning of ‘die Speisekarte,’ such that no dictionary is necessary (at
least not necessary for increasing our credence in the meaning of this word).

These differences in problem-solving adequacy amount to differences in fruitfulness.
The more manifest formulation supports a plan that can succeed in a wider range of
problem-solving contexts, such as contexts where we lack a measuring device for tone
or lack a dictionary. Recall that in Chapter 2, I argued that bald appeals to fruitfulness
do not provide a satisfying account of the intellectual differences between reformulations.
Instead, I urged seeking a local understanding of these differences. Wherever possible, we
ought to be able to appraise compatible formulations within a shared domain of problem-
solving. Here, we see a local strategy for accounting for differences in fruitfulness: at
least some such differences seem to arise from differences in the ruling out of epistemi-
cally possible solutions.

6.5 Coordinate Transformations

Coordinate transformations provide one of the simplest cases of philosophically interest-
ing variable changes. Different kinds of coordinate systems sometimes make different
properties manifest. Below, I will demonstrate why this matters, using two-dimensional
Cartesian vs. polar coordinates as a detailed example. We will see that Cartesian coor-
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dinates make manifest the properties of being horizontal or vertical, whereas polar coor-
dinates make manifest the properties of having constant polar angle or constant radius
(i.e. being a circle). Other examples of intellectually significant coordinate choices include
rectangular vs. spherical vs. cylindrical coordinates in three dimensions, Cartesian vs. in-
ternal coordinates in the modeling of molecules, and Eulerian vs. Lagrangian coordinates
in fluid dynamics. Although we can express many of the same epistemic dependence
relations in these coordinate systems, different coordinate choices nevertheless lead to
differences in what we need to know to solve problems.

Of course, not all coordinate transformations are intellectually significant. Some co-
ordinate transformations are instead trivial notational variants: they may provide differ-
ences in convenience (up to our idiosyncratic conventional preferences), but they evince
no intellectually significant differences. As described in Section 2.6, transforming be-
tween two Cartesian coordinate systems typically does not provide any differences in
EDRs. Such transformations are analogous to systematically replacing every instance of
the numeral “5” with “V” in our numeral system. This kind of notational change does not
alter what we need to know to solve problems.

One case where coordinate transformations do seem to make an intellectual difference
is when a system has a symmetry or invariant. For instance, if we are modeling a cylin-
der, then it is intellectually significant to passively transform to cylindrical coordinates
where the z-direction lies along the length direction of the cylinder (so that circular cross-
sections of the cylinder are perpendicular to this axis). This makes manifest the length
of the cylinder. More precisely, the z-axis now wears the cylinder’s length on its sleeves.
Such choices amount to a separation of degrees of freedom. Indeed, the examples below
involving Cartesian vs. polar coordinates illustrate the same moral. Cartesian and po-
lar coordinates are adapted to equations with different kinds of symmetries or invariant
degrees of freedom.

Cartesian vs. Polar Coordinates

Although there is a simple translation procedure between Cartesian and polar coordi-
nates, these coordinate systems are not trivial notational variants. For certain problems,
these notations support epistemically different problem-solving procedures. In virtue of
these differences in problem-solving plan, Cartesian and polar coordinates make differ-
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ent properties manifest. According to my account of manifest properties, this means that
they change when we ought to infer that a system has a given property.

Figure 7 illustrates the different properties that Cartesian and polar coordinates make
manifest.¹³ These properties define different kinds of graphs. Given a horizontal or vertical
line, Cartesian coordinates make manifest the relevant invariant degrees of freedom (the
y-coordinate and x-coordinate, respectively). Likewise, given a circle or a diagonal line,
polar coordinates make manifest the relevant invariant degrees of freedom (the radius
and polar angle, respectively).

(a) Cartesian coordinates make manifest hori-
zontal and vertical lines.

(b) Polar coordinates make manifest circles and
diagonal lines, e.g. those through the origin.

Figure 7: Cartesian vs. Polar Coordinates

By Cartesian coordinates, I mean the following expressive means: a choice of x and
y axes has been made on the plane, with a right angle between them (so that the axes
are orthogonal). To represent the equation of a line, we must represent it using these
variables x and y. We can imagine working on standard grid paper, representing many
distance measurements that we can make using a ruler. By polar coordinates, I mean the
following expressive means: a choice of reference axis has been made from which to
measure the polar angle θ . A choice of origin has been made from which to measure
the radial distance r. Again, we can imagine working on polar grid paper, with circles of
increasing radii surrounding the origin, and various polar angles indicated with diagonal
lines passing through the origin. In both cases, to describe multiple functions at once in
a commensurable way, we must keep the reference choices fixed. Hence, in solving the

¹³This image comes from https://xaktly.com/MathPolarCoordinates.html.
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problems below, it is impermissible to alter the reference choices (e.g. placement of the
x-axis, y-axis, angular reference axis, or the origin). This prevents us from trivializing a
given problem simply by making a convenient choice of reference axis.

To identify epistemic differences between Cartesian and polar coordinates, I will com-
pare two agents: Carla and Paula. Carla works within a Cartesian coordinate system,
whereas Paula works within a polar coordinate system. They are engaged in solving var-
ious problems in Euclidean geometry. The philosophical challenge is to locate differences
in what these agents need to know at various stages of problem-solving—differences that
go beyond the stipulated fact that Carla understands Cartesian coordinates, while Paula
understands polar coordinates. If there were no such differences, then Cartesian and po-
lar coordinates would be trivial notational variants after all, in the same way that the
English “here is a dog” is synonymous with the German “hier ist ein Hund”. Of course,
there is trivially an epistemic difference between knowing English and knowing German,
but as Section 2.6 describes, that kind of language-dependent epistemic difference does
not qualify as intellectually significant.

Here is the first problem: you are presented with a horizontal line drawn in your
coordinate system. What is the equation of this line? There are a variety of different
ways to proceed, based on different epistemic dependence relations. Using point–slope
form, it suffices to know two points on the line, subsequently using these to calculate
the slope and intercept of an axis. Alternatively, since the line is horizontal, it suffices to
express its vertical displacement from a reference line. Imagine that both Carla and Paula
plan to rely on this latter EDR. The question then is whether in executing their plans, any
differences arise in which facts are manifest. Specifically, is there a point at which Carla,
but not Paula, ought to infer the equation of the horizontal line?

Suppose that Carla and Paula begin in the same way, measuring the vertical displace-
ment of the horizontal line using a ruler (or, perhaps Carla uses the markings on her
y-axis, Paula the markings on her r-axis). It turns out that for the given line, the vertical
displacement is 5 units from their respective reference lines. At this point, I contend, their
problem-solving plans diverge. Since the vertical displacement just is her y-coordinate,
Carla ought to infer that the equation of the line is y = 5, thereby arriving at the Cartesian
solution. In contrast, Paula cannot yet express the equation of the line in her coordinate
system, despite knowing that the vertical displacement is 5 units. Paula needs to know
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something further, namely she needs to know how to express vertical displacement in
polar coordinates. Specifically, Paula needs to know that y = rsinθ , relating the height of
a right triangle to its hypotenuse and the angle opposite the height. In contrast, Carla did
not need to invoke any translation procedure. There is thus a difference in what Carla and
Paula need to know, even once we control for language-dependent epistemic differences.
Compare the structurally parallel example from Section 6.3: Ender would need to trans-
late ‘menu’ into German in order to carry out Gertrude’s problem-solving plan (which
relies on the linguistic substructure of ‘die Speisekarte’).

This example shows that Cartesian coordinates make manifest the property of being
horizontal. A line is horizontal whenever its vertical displacement is invariant. Cartesian
coordinates focus attention on the vertical displacement as one of the basic degrees of free-
dom, namely the coordinate y. They trivially wear vertical displacement on the sleeves.
Hence, upon measuring the vertical displacement of a horizontal line, Carla ought to infer
the equation of this line in Cartesian coordinates. Since polar coordinates do not focus
on the vertical displacement as one of the basic degrees of freedom, it is not the case that
Paula ought to infer the equation of the line in polar coordinates. Indeed, it is tempting
to make the stronger claim that it would be impermissible for Paula to infer the equation
of the line in polar coordinates until she performs this translation. Arguably, Paula needs
to know how to express the vertical displacement in polar coordinates. This effectively
involves translating from the Cartesian coordinate y to polar coordinates. Mutatis mutan-

dis, we see that Cartesian coordinates also make manifest the property of being vertical,
i.e. of having invariant horizontal displacement from a reference line.

Polar coordinates make different properties manifest.¹⁴ These include the properties of
i) having constant polar angle and ii) having constant radius (being a circle). Imagine that
Carla and Paula are presented with a diagonal line passing through the origins of their
respective coordinate systems. Both plan to exploit the following epistemic dependence
relation: to determine the equation of a diagonal line through the origin, it suffices to
measure the angle between it and a given reference line (the x-axis in the case of Carla;
the θ = 0 axis in the case of Paula). To keep things as epistemically symmetric as possible,
suppose that both use a protractor to measure the angle, determining that it is 45 degrees.

¹⁴Such properties are not alwaysmutually exclusive. Both Cartesian and polar coordinatesmakemanifest
the defining property of a vertical line through the origin: it has both zero horizontal displacement and
constant polar angle 90 degrees.
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At this point, Paula ought to infer that the equation of the line is θ = 45◦. The equation
of the line is already manifest to her.

In contrast, Carla is not yet permitted to infer the equation of the line in Cartesian co-
ordinates (namely, the fact that y = x). Instead, she needs to know a further fact, namely
how to relate this reference angle of 45 degrees to an expression involving the Cartesian
coordinates x and y. Carla has effectively measured the polar angle θ , and she needs to
know how to translate this angular degree of freedom into Cartesian coordinates. Specif-
ically, she needs to know that θ = arctan(y/x). From this equation, she can infer that
y/x = tan(θ) = tan(45◦) = 1. After this series of inferences, Carla ought to infer that
y = x, thereby solving the problem in Cartesian coordinates. Although Carla exploited
the same initial plan as Paula—namely, the directive to measure the angle that the line
makes with a reference line passing through the origin—she required additional knowl-
edge to solve the problem, knowledge that Paula did not require in polar coordinates.

Mutatis mutandis, the same lesson applies to circles centered at the origin. Since these
geometric objects have constant radii, polar coordinates make their equations manifest.
For instance, upon measuring the radius of such a circle to be 5 units, Paula ought to
immediately infer that its equation is r = 5. In contrast, Carla needs to know how to relate
this radius to Cartesian coordinates, using the trigonometric fact that r =

√
x2 + y2.

These examples evince subtle epistemic differences in the choice of expressive means.
To appreciate them, it may help to recall the case of a person with perfect pitch. When it
comes to horizontal and vertical lines, Carla is like someone with ‘perfect pitch’ for these.
Upon a minimal measurement (analogous to hearing the pitch), she ought to immediately
infer the equation of the line. Likewise, Paula has ‘perfect pitch’ for diagonal lines through
the origin and circles centered at the origin. Upon measuring the polar angle or radius,
Paula ought to immediately infer the equations for these kinds of geometric objects. In
contrast, Carla is like someone who lacks perfect pitch for these geometric objects: she
has to do further inferential work in order to determine their equations.

As a final and perhaps more dramatic example, consider Archimedean spirals. Polar
coordinates make manifest the defining property of Archimedean spirals: the radius in-
creases as a constant proportion of the polar angle, i.e. r = a+ bθ , for some constants
a and b. Cartesian coordinates obscure this property. In the simplest case where r = θ ,
the corresponding Cartesian equation is y = x tan(

√
x2 + y2). This equation points to an-
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other interesting epistemic difference: in polar coordinates, it is possible to characterize r

explicitly in terms of the polar angle θ . Yet, it is (seemingly) not possible to characterize y

explicitly in terms of the Cartesian coordinate x. Instead, the best we can do is represent
the graph of the Archimedean spiral implicitly in Cartesian coordinates.¹⁵

6.6 Preferences, Fundamentality, and Privileging

Thus far, I have analyzed the notion of “manifest properties” in terms of what we ought
to infer in a particular epistemic circumstance. Reformulating can change our epistemic
circumstance, thereby changing what properties are manifest. Nevertheless, some might
worry that my account does not go far enough to capture the significance of reformu-
lations that make properties manifest. It is common for scientists and mathematicians
to think that one formulation is more fundamental than another, but it is unclear how
fundamentality could reduce to the epistemic differences that conceptualism focuses on.
On this basis, a fundamentalist might claim that conceptualism owes us an account of
common judgments of fundamentality. In keeping with the empiricist scruples of Chap-
ter 2, conceptualism must provide an account of fundamentality that avoids metaphysi-
cally substantial commitments. To meet this demand, I will provide a non-metaphysical
account using resources from metaethical expressivism.

Recapping Expressivism

Metaphysicians and philosophers of science typically assume that declarative sentences
about the world should be interpreted as playing a representational role. Expressivism
rejects this assumption, observing that “not everything we think or say need be under-
stood as representing the world as being some way” (Brandom 2011, p. 11). As Carnap
wrote in 1934, “We have here to distinguish two functions of language, which we may call
the expressive function and the representative function” (1935, p. 27).¹⁶ Hoping to elimi-

¹⁵Note that we could perform another variable transformation to an (r,θ ) phase space where r and θ are
orthogonal. In this space, the simplest Archimedian spiral r = θ is characterized by an invariant ϕ , which
corresponds to the angle measured from the θ axis. This further choice of variables makes this invariant
property of Archimedean spirals even more manifest. In this parameterization, we effectively “unroll” the
Archimedean spiral into a straight line passing at 45 degrees through the origin; we linearize the graph.

¹⁶See also Sellars (1958, p. 282), who denies that “the business of all non-logical concepts is to describe.”
Unlike Carnap, Sellars draws a more egalitarian moral, noting that “many expressions which empiricists
have relegated to second-class citizenship in discourse are not inferior, just different.” Carnap’s 1934 lectures
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natemetaphysics from analytic philosophy, Carnap proceeded to claim that “metaphysical
propositions—like lyrical verses—have only an expressive function, but no representative
function.…They express not so much temporary feelings as permanent emotional or voli-
tional dispositions” (1935, p. 29). With Carnap, I agree that metaphysical statements play
an expressive role. However, unlike Carnap, I am agnostic on whether this is the only
role that metaphysical statements play. I will argue that we can at least make sense of
physicists’ judgments of fundamentality as playing a particular expressive role, regardless
of whether they play a representational role as well.

Expressivism is a kind of philosophical naturalism: it explicates otherwise puzzling
vocabularies in terms of non-mysterious, naturalistically acceptable ones (Price 2011). In
this case, I will argue that we can understand physicists’ talk about fundamentality in
terms of their attitudes toward privileging some formulations or variable choices over
others. Some philosophers may nevertheless hanker after something more than this kind
of anthropological analysis. Namely, they may desire a representational or descriptive
analysis of judgments of fundamentality. I am not inclined to stop them, although I will
resist if they contend that I ought to hanker after something more as well. Brandom
phrases this resistance to representationalism rather eloquently:

If the practices themselves are all in order from a naturalistic point of view, any diffi-
culties we might have in specifying the kind of things those engaged in the practices
are talking about, how they are representing the world as being, ought to be laid
at the feet of a Procrustean semantic paradigm that insists that the only model for
understanding meaningfulness is a representational one. (Brandom 2011, p. 192).

In Section 4.5, I provided an expressivist account of comparative judgments of un-
derstanding. I argued that we can understand judgments of the form “X provides better
understanding than Y” as expressing a mental state of being for intellectually-preferring X

to Y. Equivalently, when someone judges a formulation X to provide better understanding
than Y (for a particular problem), they endorse a set of norms that permit intellectually-
preferring formulation X to formulation Y (at least for this kind of problem). In this
way, we can vindicate scientists’ and mathematicians’ ordinary judgments about com-
parative understanding without having to posit metaphysically substantial facts or prop-
erties about comparative intellectual value. Structurally, this parallels how metaethical

have been reprinted in Carnap (1996 [1935]).
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expressivists aim to vindicate ordinary moral (or normative) judgments without posit-
ing metaphysically substantial facts or properties about moral rightness or wrongness (or
primitive ought-claims, in the case of normativity) (Blackburn 1998; Gibbard 2003).

Expressivism about Fundamentality

Here, I propose a similar expressivist analysis of fundamentality. Indeed, there is a close
connection between judgments of fundamentality and comparative judgments of under-
standing. To judge that X is more fundamental than Y typically entails that X provides a
better understanding of some class of problems or phenomena than Y. As noted in Sec-
tion 4.5, this judgment of better understanding might be aim-relative. For instance, un-
derstanding the human heart as a collection of molecules provides a better understanding
relative to certain aims, but not all. A molecular understanding of the heart obscures the
mechanical understanding we might achieve by describing the heart at a higher length
scale, focusing on biological tissue. Still, there is a sense in which the molecular under-
standing is more fundamental than the biological understanding.

On my proposal, comparative judgments of fundamentality express an attitude of be-
ing for privileging. To judge that X is more fundamental than Y expresses a mental state
of being for privileging X to Y. Privileging is a particularly committal form of preference.
In contrast to preferring something, to privilege something typically entails that it is to
be uniquely preferred, at least along a certain dimension. Privilege is a kind of maximal

preference: to privilege something is to believe it is uniquely best in some regard. Whereas
judgments of comparative or relative fundamentality involve privileging X over Y, we can
provide a similar analysis of absolute fundamentality. To judge that X is absolutely funda-
mental is to express a mental state of being for privileging X, relative to all alternatives.

Often, when physicists and mathematicians call a fact—or entity, structure, principle,
etc.—‘fundamental,’ they express an attitude of privileging that fact in derivations of other
facts. Other things equal, a fact X is more fundamental than a fact Y when X figures in
a derivation of Y (but not vice versa). This dimension of fundamentality is intricately
connected to metaphysical notions of grounding and truth-making. At first glance, such
connections might seem to pose a problem for expressivism about fundamentality. Fortu-
nately, Barker has developed a promising expressivist approach to truth-making claims.
To say that some fact(s) X (non-causally) makes it the case that Y is to express a commit-
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ment to using X to derive Y (2012, p. 273). Hence, I am optimistic that we can understand
this pervasive dimension of fundamentality in terms of a pro-attitude of privileging some
facts for certain derivational roles.

Overall, my expressivist analysis of fundamentality provides a simple response to the
objection raised above. Conceptualism can sanction scientists’ and mathematicians’ ordi-
nary judgments of relative and absolute fundamentality. Consider a physicist who claims
that variables that makes the hidden hyperspherical symmetry of hydrogen manifest are
more fundamental than variables that obscure this symmetry. This judgment of relative
fundamentality amounts to endorsing a set of norms that permit privileging the manifest
variable choice to the non-manifest variables. As we will see in Sections 6.8 and 6.9, there
are a variety of reasons to privilege variables that make a symmetry manifest. Hence,
we can endorse these judgments of fundamentality as a rational aspect of scientific and
mathematical practice. These judgments play an important functional role in coordinat-
ing scientific and mathematical problem-solving. They help scientists converge on vari-
able choices that have instrumental and epistemic value. We can endorse these judgments
without committing ourselves to metaphysically substantial facts or properties about fun-
damentality. Instead, we simply focus on the non-descriptive functional roles that judg-
ments of fundamentality perform.

Fundamentality and Invariants

In problem solving, we are often interested in invariant properties. Such properties allow
us to characterize systems or objects across varying contexts. They provide a stable point
of reference. Hence, scientists and mathematicians have a good epistemic reason to prefer
expressive means that make an invariant property manifest. Expressive means that wear
an invariant on their sleeves are better suited to make invariance manifest. In some sense,
theyminimize what we need to know to determine invariance. This is perhaps one reason
why we often associate invariant degrees of freedom with more fundamental properties.
Additionally, in physics, observables must be invariant under the symmetries of a the-
ory. Expressive means that obscure these invariances are therefore rightly viewed as less
fundamental, ceteris paribus: we have at least an epistemic reason to disprefer them.

In general, scientific preferences for variable choices might align with the following
methodological advice: if one plans to use an epistemic dependence relation that involves
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a particular degree of freedom, then it is better to express that EDR in a notation that
trivially wears that degree of freedom on the sleeves (i.e. is manifest to the 0th degree).
Doing so will typically make a property of interest manifest, namely the property that we
are using the EDR to assess. Accepting this methodological advice does not involve any
further metaphysical commitments to whether this degree of freedom is fundamental in
any deep sense.

Moreover, to say that a notation is particularly well-suited for expressing a particular
EDR is not to say that it is uniquely suited. There could be a wide variety of expressive
means that are equally well-suited for making a particular property manifest. Hence, on
the account I defend, we do not have to view scientists as aiming for a single, overarching,
most fundamental language. Instead, we can interpret their judgments of fundamentality
as often being implicitly relativized: X is more fundamental than Y relative to a certain
class of problems or a certain set of aims.

My expressivist account of fundamentality does not preclude a descriptivist or rep-
resentationalist account. For all I say here, some such account could be correct. I sim-
ply claim the following: regardless of whether physicists’s judgments of fundamentality
amount to anything more, they at least play the functional roles that my expressivist
account describes. For my purposes, it is enough to vindicate physicists’s ordinary judg-
ments of fundamentality. Unlike Carnap, I do not intend to rule out or eliminate substan-
tial metaphysics. I have a weaker aim, namely to show that many of us can responsibly go
on without such metaphysics. As Brandom notes, “a successful local expressivism about
some vocabulary [e.g. fundamentality] would show that, while it might be possible to of-
fer a representational semantics for that vocabulary, it is not necessary to do so in order
to show it to be [naturalistically] legitimate” (2011, p. 195).

An Objection from Instrumentalism

An instrumentalist about reformulations (see Section 2.4) might object to my account of
fundamentality as follows: sometimes, our overall reasons for privileging a choice of vari-
ables contains a confluence of epistemic and practical values. For instance, even though
polar coordinates make manifest the invariant polar angle of a diagonal line, we might
still prefer to use Cartesian coordinates to determine the equation for this line. We might
prefer Cartesian coordinates for a variety of practical or idiosyncratic reasons: perhaps we
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dislike polar coordinates in general, or do not have a protractor, or prefer to always find
the equations of straight lines using point–slope form (since this works for any straight
line), etc. Surely—the instrumentalist objection continues—these reasons for privileging
Cartesian coordinates have nothing to do with fundamentality.

To respond to this instrumentalist objection, it suffices to note the following: expres-
sivism does not rely on a dispositional account of our attitudes or preferences. Instead, it
relies on a fitting-attitudes account. Certain reasons are fitting for particular attitudes. For
instance, an expressivist about humor does not say that jokes are funny because people
laugh at them. Instead, jokes are funny when people ought to laugh at them. There are a
wide variety of non-humor related reasons why someone might laugh at a joke. Expres-
sivism can rightly classify those non-humor-related reasons as irrelevant to the comedic
value of the joke.

Similarly, even if we dislike polar coordinates, we can still recognize that they make
manifest the invariant degrees of freedom of a number of different kinds of equations.
We can recognize that this gives us a reason for viewing polar coordinates as more fun-
damental than Cartesian coordinates for describing such equations. In other words, we
recognize that reasons of personal preference are not the right kinds of reasons for judg-
ments of fundamentality. They are not fitting to this end. Hence, an expressivist about
fundamentality can agree with the instrumentalist that we often prefer certain variables
for instrumental or idiosyncratic reasons. All the while, we can recognize that these in-
strumental reasons are not the right kinds of reasons for viewing one formulation as more
fundamental than another.

6.7 Gauge Choices

In Lagrangian quantum field theory, gauge choices provide an illuminating example of
how different formulations can make different properties manifest. In particular, different
gauge choices illustrate trade-offs that can arise between different formulations. As we
have already seen in the simpler context of polar vs. Cartesian coordinates, making one
property manifest can come at the cost of obscuring others.

Indeed, one such trade-off arises whenever we introduce gauge degrees of freedom in
the first place. On physical grounds, we know that a massless gauge field with non-zero
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spin—such as the photon field—has only two degrees of freedom (two physical polariza-
tion states). Nevertheless, in order to write the Lagrangian density (and hence the action)
in a manifestly Lorentz invariant form, we introduce two redundant, gauge degrees of
freedom. These allow us to write the gauge field Aµ as a 4-vector, supporting our syntac-
tic criteria for manifest Lorentz covariance. As Cheung puts it, “these redundant modes
are a necessary evil of manifest Lorentz covariance” (2017, p. 2). Hence, we trade-off man-
ifest physical degrees of freedom for manifest Lorentz invariance. Why do physicists so
often make this trade? By enforcing Lorentz invariance in the Lagrangian density, we
massively constrain the space of possible interaction terms. This strategy has tremendous
epistemic power for theory construction.

Here, I will focus on comparing two families of gauge choices: i) manifestly Lorentz
covariant gauges vs. ii) manifestly unitary gauges. As their names indicate, they respec-
tively make manifest the properties of Lorentz covariance and unitarity. They also each
obscure the property that the other makes manifest, illustrating a trade-off. We can un-
derstand these gauges as having a symbiotic relationship: to prove that a quantum field
theory is unitary, it is best to use a manifestly unitary gauge. In contrast, for most other
calculations, it is best to use a manifestly Lorentz covariant gauge, since they tend to sim-
plify calculations (Siegel 2005, p. 30). Fortunately, since these are compatible formulations,
we are not forced to choose between them. Gauge choices like these provide evidence that
we can understand particle physicists as exploiting different variable choices in different
contexts, rather than as aiming at a single fundamental language for describing scatter-
ing processes. As Siegel notes, we have “different gauges for different uses” (2005, p. 13).
Against Maudlin’s (2018, pp. 14, 16) methodological recommendations, I deny any need
to interpret these gauge choices as leading to competing or rival ontologies.¹⁷

Before delving into these gauge choices, a few remarks on “unitarity,” i.e. the property
of being unitary. A quantum field theory is unitary provided that it satisfies two condi-
tions: i) all probabilities for scattering processes are non-negative and ii) probability is
conserved, i.e. the probabilities of all possible processes sum to one. This second con-

¹⁷It is only in contexts where we view the gauge field Aµ as being a calculational device—such as some
interpretations of classical electromagnetism—that Maudlin sanctions interpreting different gauge choices
as leading to compatible formulations. By also interpreting different gauge choices in quantum field theory
as leading to compatible formulations, I violate Maudlin’s interpretive norms. Maudlin may view me as
being afflicted with “the attitude of the engineer rather than the natural philosopher” (2018, p. 6). So much
the worse for the natural philosopher, say I!
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dition amounts to the Hamiltonian being Hermitian, i.e. H† = H (Siegel 2005, p. 355).¹⁸
The first condition requires that the inner product on Hilbert space is positive definite.
This condition is more difficult to check, and it is the one that unitary gauges help make
manifest.

Manifestly Lorentz Covariant Gauges

Lorenz gauge provides a constraint on the gauge field Aµ that is manifestly Lorentz co-
variant: ∂µAµ = 0. By constraining the gauge field in a manifestly covariant manner,
we preserve the manifest covariance of those expressions that were already manifestly
covariant before we imposed this constraint.

In Lagrangian quantum field theory, we generalize Lorenz gauge to the family of Rξ

gauges. To gauge-fix in this manner, we add amanifestly Lorentz invariant term to the La-
grangian: − (∂µ Aµ )2

2ξ . Different values of the parameter ξ result in different gauge-fixings.
Provided that the Lagrangian is already manifestly Lorentz invariant, the additional Rξ

term preserves this manifest Lorentz invariance.
Two common Rξ gauges are Landau gauge and Feynman–’t Hooft gauge, which set

ξ equal to zero and one, respectively. Landau gauge recovers Lorenz gauge in the limit
as ξ goes to zero. Feynman–’t Hooft gauge (ξ = 1) is particularly advantageous for ex-
plicit calculations because it tends to give the simplest form for the propagator terms. In
general, propagators in Rξ gauge take the form 2[ηab

p2 +(ξ −1) pa pb
(p4)

] (Siegel 2005, p. 389).
Clearly, setting ξ = 1 results in the simplest propagator term: 2ηab

p2 . These gauges also
have the advantage of easily generalizing from Abelian to non-Abelian symmetry groups.

According to Siegel, the Rξ gauges “manifest as many global invariances as possible”
(2005, p. 386). By preserving manifest Lorentz covariance, the Rξ gauges trivialize the
preservation of these space-time symmetries. In other words, it becomes unnecessary to
explicitly calculate that these symmetries are preserved. Instead, the expressions continue
towear these properties on the sleeves. Wearing properties on the sleeve has non-practical
epistemic value (in addition to any practical value it might have as well). The symmetry
properties of these expressions become more intelligible, at least on account of becoming
less surprising.

¹⁸Alternatively, a unitary quantum field theory has a unitary evolution operatorU , where this means that
U(t2, t1)†U(t2, t1) = I. This requirement amounts to the conservation of probabilities (Siegel 2005, p. 298).
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Manifestly Unitary Gauges

I turn now to manifestly unitary gauges. These include light cone and space cone gauge.
Not only do these gauges make unitarity manifest, but also they eliminate unphysical
degrees of freedom (such as those coming from ghost fields). I will focus in particular on
light cone gauge, which according to Siegel is “the simplest for analyzing physical degrees
of freedom, since themaximumnumber of degrees of freedom is eliminated” (2005, p. 211).

Light cone gauge relies on a light cone basis, which uses a different basis for the metric
ηab. Rather than focus on the A0 and A1 components of the gauge field Aµ , we focus
on their linear combinations, calling the resulting components A+ and A−, where A± =

1√
2
(A0±A1). To work in the light cone gauge, we first fix one degree of freedom by setting

A+ = 0. To eliminate the second gauge degree of freedom, we introduce the component
A− as an auxiliary field in the Lagrangian density L, ultimately eliminating it (Siegel
2005, p. 210). We thereby reduce the four degrees of freedom in Aµ to two, representing
the actual physical degrees of freedom of the gauge field.

As mentioned above, unitarity requires that the inner product on Hilbert space be
positive definite (this amounts to a requirement that the energy is positive). The sign of
the energy is intimately connected with the sign of the kinetic term in the Lagrangian
density. By eliminating unphysical degrees of freedom, light cone gauge sets up a simple
correspondence between the sign of the kinetic terms and unitarity. Hence, one can ‘read
of’ unitarity from the Lagrangian density when it is written in light cone gauge. We
simply require that boson fields have a negative kinetic energy term while fermion fields
have a positive one (Siegel 2005, p. 357). In this way, the Lagrangian density in light cone
gauge wears unitarity on the sleeves, thereby making it manifest.

Trade-offs and Fundamentality

These two families of gauge choices illustrate the kinds of trade-offs that frequently arise
when we change variables. On the one hand, manifestly Lorentz covariant gauges make
manifest a (contextually) fundamental symmetry. Nevertheless, they obscure both unitar-
ity and some physical degrees of freedom. On the other hand, manifestly unitary gauges
obscure Lorentz invariance, despite eliminating a greater number of unphysical degrees
of freedom. A fundamentalist might be inclined to weigh these trade-offs in an attempt
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to determine which choice of variables is more fundamental tout court, or which leads to
a more virtuous physical theory (perhaps Maudlin (2018, p. 20) would make this recom-
mendation). I am pessimistic about the prospects of this approach. Clearly, we can use
both gauge choices in different contexts. Insofar as a physicist might be inclined to say
that one gauge choice is more fundamental in a particular context, we can understand
them as expressing an attitude of being for privileging this gauge choice in such contexts
(Section 6.6).

Perhaps a fundamentalist might reason as follows: it is epistemically possible for there
to be a variable choice that makes manifest all of these properties, with none of the draw-
backs. Such a choice of variables or gauge would make manifest i) Lorentz covariance,
ii) unitarity, and iii) eliminate unphysical degrees of freedom. If we had such a choice,
it would be more fundamental than either of the gauge choices discussed above. Per-
haps then, physicists or metaphysicians should be aiming for such a choice of variables.
In many ways, spinor–helicity variables accomplish some of these aims. Yet, they also
introduce trade-offs of their own. In particular, spinor–helicity variables i) obscure the
property of locality and ii) introduce unphysical complex momenta (Elvang and Huang
2015, p. 61). This provides grounds for pessimism that physics will in general arrive at
a choice of variables that make manifest all fundamental properties. At least sometimes,
when we make one physically significant property manifest, it comes at the cost of ob-
scuring others.¹⁹ Of course, I have looked at only a small set of cases. Nevertheless, these
examples motivate a more extensive inductive argument (for future work) that would
parallel the Pessimistic Meta-Induction against scientific realism.

6.8 Manifest vs. Hidden Symmetries of Hydrogen

The symmetries of the hydrogen atom provide a striking contrast between manifest vs.
hidden properties. In elementary presentations, the hydrogen atom has a manifest spher-
ical symmetry but a hidden hyperspherical symmetry. My account of manifest vs. hidden
properties from Section 6.2makes these claims precise. There is an epistemic circumstance
where i) one ought to infer that hydrogen has spherical symmetry but where ii) it seems
impermissible to infer that hydrogen has a larger hyperspherical symmetry (at least in this

¹⁹I thank Henriette Elvang for encouraging me to weaken some more sweeping claims in favor of pes-
simism.
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epistemic circumstance). Before making this further inference, more inferential work is
required: one must transform the given epistemic circumstance into a different one.

Many models exist for the hydrogen atom, but not all of them exhibit a hidden hyper-
spherical symmetry. Hence, I will focus on amodel for a nonrelativistic, spinless hydrogen
atom. This model was the first to be worked out after the advent of quantum mechanics
(Pauli 1926). Despite neglecting relativity and electron spin, this simple model provides a
robust first-order approximation of the hydrogen atom’s energy-level spectrum.²⁰

Manifest Spherical Symmetry

In nonrelativistic quantum mechanics, we determine properties of a system by analyzing
its Hamiltonian, often in conjunctionwith the Schrödinger equation. For a nonrelativistic,
spinless hydrogen atom, the Hamiltonian consists of two terms: a kinetic term for a free
particle and a potential energy term given by Coulomb’s law of electrostatics:²¹

H =
p2

2µ
+V (x,y,z) =− h2

8π2µ
∇2 − e2

4πε0r
(6.8.1)

On its own, the Hamiltonian (6.8.1) makes manifest that the hydrogen atom has spher-
ical symmetry. This is because both the kinetic and potential terms are manifestly invari-
ant under arbitrary rotations in three-dimensional Euclidean space, entailing that H is
likewise spherically symmetric (since a sum of spherically symmetric terms is spherically
symmetric). Clearly, the various constant terms in the expression are invariant under
three-dimensional rotations, so all we need to do is check the invariance of the non-
constant functions, namely ∇2 and 1/r. To see that the kinetic term is spherically symmet-
ric, it suffices to unpack the ∇2 operator, known as the Laplacian: ∇2 = ∂

∂x2 +
∂

∂y2 +
∂

∂ z2 .
With each Cartesian coordinate on equal footing, this term is invariant under three-
dimensional rotations. Turning to the potential term, the function 1/r = 1/

√
x2 + y2 + z2

again places each of the three Cartesian coordinates on equal footing, so its rotational
invariance is manifest. Since each term is rotationally invariant, so is the Hamiltonian.
It thus has at least the symmetry of the group of proper rotations in three-dimensional

²⁰More sophisticated treatments using the Dirac equation and quantum electrodynamics later accounted
for higher-order features of the hydrogen spectrum. However, they break the special “dynamical” symmetry
of this simple model.

²¹Here, µ is the reduced electron mass memp
me+mp

, a function of the electron and proton masses.
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Euclidean space, known as the special orthogonal group in three-dimensions, SO(3).
Based on the account in Section 6.2, to say that the Hamiltonian H has manifest spher-

ical symmetry is to say that we ought to infer that it is spherically symmetric. More pre-
cisely, provided that we implement the problem-solving plan described above, we are in
an epistemic circumstance where we ought to infer SO(3) symmetry. Since hydrogen has
a spherically symmetric Hamiltonian, it follows that the hydrogen atom has at least this
symmetry.²² If we do not make this inference based on the reasoning above, then we have
made an epistemic mistake. We would be doing something epistemically deficient.

Indeed, the foregoing analysis shows that we can say something even stronger: the
Hamiltonian in (6.8.1) wears its spherical symmetry on the sleeves. The property is not
only manifest, but it is made manifest solely on the basis of features of equation (6.8.1)
that are already manifest, i.e. manifest before we implement the problem-solving plan
detailed above. These already-manifest properties include the placement and identity of
the various terms in the expression. On the basis of these syntactical properties, we ought
to infer that the constant terms, ∇2, and 1/r are all spherically invariant.²³ On the basis
of these inferences, we then ought to infer that H is spherically invariant as well. SO(3)

symmetry is a sleeve property of the hydrogen atom Hamiltonian.

Hidden Hyperspherical Symmetry

We can now contrast the manifest status of SO(3) symmetry with the completely different
epistemic situation for hydrogen’s hidden symmetry. This hidden symmetry is associated
with special features of the two-body problem with a 1/r-potential, leading many physi-
cists to deem it a “dynamical symmetry”—in contrast with “geometrical symmetries” that
arise from spacetime symmetries.²⁴ It turns out that this simple model of the hydrogen

²²In this context, the symmetry group of a system is defined as the group of operators that commute
with its Hamiltonian. Since the Hamiltonian is invariant under three-dimensional rotations, all of these
operators commute with H , i.e. [H,R] = HR−RH = H −H = 0, for any R ∈ SO(3).

²³As shown above, the spherical invariance of these terms becomes manifest when we implement a
problem-solving plan for them, such as writing out ‘1/r’ explicitly as a function of Cartesian coordinates.
This example thereby illustrates the gradated nature of manifest properties.

²⁴In this context, a dynamical symmetry refers to a symmetry that is associated with the particular form
and nature of the dynamics, e.g. the particular form of a force law, number of interacting subsystems,
or energy state of the system (bound or scattering). Note that this is a narrower notion of “dynamical
symmetry” than that commonly found in the philosophy of physics literature, where dynamical symmetries
are those that leave themodel’s equations of motion invariant. In this broader sense of dynamical symmetry,
hydrogen’s SO(3) symmetry is also dynamical.
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atom has a much larger symmetry group, namely the symmetry of a four-dimensional
Euclidean hypersphere. Formally, this group is known as the special orthogonal group in
four dimensions, denoted by ‘SO(4).’

Following the account of Section 6.2, we can at least say that this hyperspherical sym-
metry is not manifest: when presented merely with the Hamiltonian in equation (6.8.1), it
is not the case that we ought to infer that this Hamiltonian has hyperspherical symmetry.
We do not make an epistemic mistake if we fail to make this inference. Thus, there is an
epistemic circumstance C where i) we ought to infer that hydrogen has SO(3) symmetry,
but ii) it is not the case that we ought to infer that it has SO(4) symmetry.

Indeed, I am tempted to assert a stronger claim: not only is the hyperspherical sym-
metry not manifest in this epistemic circumstance, it is hidden. In other words, if we
were to infer that H has hyperspherical symmetry solely on the basis of this epistemic
circumstance, then we would make an epistemically impermissible inference. We would
be jumping to conclusions in an irrational manner.²⁵ In order to license the inference
that hydrogen has hyperspherical symmetry, more epistemic work is required. We must
transform our epistemic circumstance into one where we are rationally permitted to infer
this symmetry.

It is precisely this transformation of epistemic circumstances that Fock undertook in
his analysis of the hydrogen atom (1935b).²⁶ By changing variables to momentum space,
Fock was able to make manifest the hyperspherical symmetry of hydrogen. Schemati-
cally, Fock’s argument proceeds as follows: we write the integral form of the Schrödinger
equation in momentum space. Using a stereographic projection from the three-sphere S3

to Euclidean three-space R3, we then demonstrate that this equation is equivalent to an
integral equation for the four-dimensional spherical harmonics. We thereby see that the
four-dimensional spherical harmonics are solutions to the hydrogen atom’s Schrödinger
equation. Since these spherical harmonics have SO(4) symmetry, so must the hydrogen
atom. Hence, by the end of this argument, the hyperspherical symmetry of hydrogen
has become manifest (although it is plausibly not worn on the sleeves of a corresponding
expression). This schematic discussion suffices for my philosophical aims here. For the

²⁵Compare Field’s (2018, p. 5) discussion (stemming from Boghossian) of someone applying an inference
rule that—although sound—has not yet been demonstrated to be sound. Such a person would plausibly
strike us as being irrational, even if their inference follows a reliable pattern.

²⁶See Fock (2005) for an English translation. See also Fock (1935a).
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interested reader, I provide more details about Fock’s argument below. Less interested
readers can happily skip ahead to Section 6.9.

Fock’s Argument, in more Detail

Using the Hamiltonian in equation (6.8.1), we canwrite the time-independent Schrödinger
equation Hψ = Eψ for the hydrogen atom, where E is an energy eigenvalue of the hy-
drogen wavefunction ψ . This results in the following equation, written in position space:

− h2

8π2µ
∇2ψ(x,y,z)− e2/4πε0√

x2 + y2 + z2
ψ(x,y,z) = Eψ(x,y,z) (6.8.2)

Fock performs a Fourier transform on this Schrödinger equation, expressing it in mo-
mentum space:

ℏ2

2m
|p|2 ψ(p)− e2

√
2
π

ˆ
R3

ψ(p′)d p′

|p− p′|2
= Eψ(p) (6.8.3)

The form of this equation motivated Fock to consider a stereographic projection from S3

to R3. According to McIntosh, “In this form, the kernel can be recognized as the Jacobian
determinant for a stereographic projection from the surface of a four-dimensional sphere
to three dimensions, which in turn suggests writing the Schrödinger equation in terms of
angular variables on the hyperspherical surface” (1971, p. 81). Fock denotes these angular
variables as (α,θ ,ϕ), and introduces a function Ψ(α,θ ,ϕ) defined on the hypersphere.
Ψ(α,θ ,ϕ) depends as well on the momentum and energy of the atomic state. Using this
function, he expresses the Schrödinger equation on the hyperspherical surface as follows:

Ψ(α,θ ,ϕ) =
λ

2π2

ˆ
Ψ(α ′,θ ′,ϕ ′)dΩ′

4sin2(ω/2)
(6.8.4)

Here, λ = me2

h
√
−2mE

and dΩ is the surface element for the 3-sphere. The term 4sin2(ω/2)

in the denominator of the integrand represents the square of the distance between the
two points (α,θ ,ϕ) and (α ′,θ ′,ϕ ′) on the 3-sphere (hence, ω is the arclength of the great
circle that connects the two points) (Fock 2005, p. 288).

Fock then compares this reformulation of the Schrödinger equation to the integral
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equation for the four-dimensional spherical harmonics:

rn−1Ψn(α,θ ,ϕ) =
n

2π2

ˆ
Ψn(α ′,θ ′,ϕ ′)dΩ′

1−2rcos(ω)+ r2 (6.8.5)

Setting λ = n and r = 1, we recover the same form as the Schrödinger equation (6.8.4).
McIntosh interprets this case as being “the Poisson kernel for a hyperspherical surface
harmonic in the degenerate case inwhich the field point has fallen onto the surface,” where
r = 1 specifies the surface (1971, p. 81). Physically, the integer n is the principal quantum
number, labeling the hydrogen atom’s energy levels. Due to this correspondence between
the two equations, we see that the hydrogen atom wavefunctions can be expressed in
terms of the hyperspherical harmonics. Hence, any symmetry of these harmonics is a
symmetry of the hydrogen atom wavefunctions, and thus of the hydrogen atom itself.²⁷

Fock summarizes the conclusion of his argument as follows:

Thus we have shown that the Schrödinger equation (6.8.3) or (6.8.4) can be solved
with four-dimensional spherical harmonic functions. At the same time the transfor-
mation group of the Schrödinger equation has been found: this group is obviously
identical to the four-dimensional rotation group. (Fock 2005, p. 289)

Alternatively, we can interpret Fock as having constructed a representation of the group
SO(4) on the phase space of the hydrogen atom (namely, the space of square integrable
functions on R3). Fock implicitly shows that this representation commutes with the
Hamiltonian for hydrogen. This entails that the hydrogen atom has hyperspherical sym-
metry (Singer 2005, p. 283).

More precisely, this symmetry applies only to bound states of hydrogen, namely those
where the electron has negative potential energy. These states constitute the discrete or
‘point’ spectum for hydrogen. If the electron acquires enough energy, it enters a scat-
tering state (positive potential energy), leading to a continuous spectrum. In this case,
the symmetry is that of the Lorentz group, and the geometrical interpretation relies on a
hyperboloid rather than a hypersphere (McIntosh 1971, p. 81; Fock 2005, p. 292).

Note that Fock’s momentum space representation (6.8.3) of the hydrogen atom
Schrödinger equation plausibly does not wear the hyperspherical symmetry on its
sleeves. Hence, although we have made the symmetry manifest by the end of the

²⁷Note that the four-dimensional hyperspherical harmonics have hyperspherical symmetry in virtue of
being the angular part of the solutions to the Laplace equation in four dimensions.
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derivation (one ought to infer that the system has the symmetry), we have not done so
by making the symmetry into a sleeve property of a corresponding expression.

6.9 Hidden Symmetries in N = 4 super Yang–Mills Theory

Precision calculations for predictions at the Large Hadron Collider increasingly require
calculations at third-order or higher in perturbation theory. These calculations are nec-
essary to gain a better theoretical understanding of background processes. Without theo-
retical knowledge of the background, it is impossible to isolate new physics from already
understood processes. This task is challenging largely because of how quickly the num-
ber of terms grows in perturbation theory. To manage this computational complexity,
physicists have had to repeatedly reformulate their calculational techniques. Feynman di-
agrams provide one such reformulation, but these techniques become infeasible for scat-
tering more than a few particles, due to the rapid growth of diagrams. More recently,
physicists have reformulated pertubation theory calculations using spinor–helicity vari-
ables, in a method known as on-shell recursion. At tree-level, this method factorizes ampli-
tudes involving n-many particles into products of scattering amplitudes with fewer than
n-particles. At loop-level, on-shell recursion takes advantage of unitarity cuts to factorize
loop amplitudes into lower order amplitudes. In this way, we arrive at general recursion
relations for computing higher-order scattering processes.²⁸

On-shell recursion illustrates how different choices of variables can make certain
properties or patternsmanifest. For instance, an elegant relationship known as the Parke–
Taylor formula requires hundreds of pages to prove using Feynman diagrams but only a
three-page inductive proof using the on-shell formulation. Progress in particle physics
often comes from figuring out how to re-package perturbation series into ever more con-
venient forms, where otherwise-mysterious cancellations become clear. As noted in Sec-
tion 6.1, somemetaphysicians might be tempted to describe these examples as the result of
finding a more fundamental language. In contrast, I agree with Woodward (2016, p. 1056)
that metaphysical appeals to joint-carving do not give us a satisfying account of the rele-
vant epistemological issues. The challenge is to understand how certain variable choices
can make previously mysterious calculational patterns and cancellations intelligible.

²⁸For background, see Henn and Plefka (2014), Dixon (2016), and Cheung (2017).
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On-shell methods for scattering amplitudes illuminate a hidden symmetry that the
tree-level superamplitudes possess in N= 4 super Yang–Mills theory. This theory has an
“obvious” superconformal symmetry SU(2,2|4) that leaves its superamplitudes invari-
ant.²⁹ Additionally, the tree-level superamplitudes of this theory possess a non-obvious
dual superconformal symmetry. This hidden symmetry is also expressed by the symmetry
group SU(2,2|4), but now acting on a different set of variables defined in a different space
than ordinary momentum variables (Elvang and Huang 2015, p. 95). Accounting for the
intellectual significance of this hidden symmetry has numerous parallels to interpreting
the hidden SO(4) symmetry of the nonrelativistic hydrogen atom. As we saw in Sec-
tion 6.8, an elementary presentation of the Hamiltonian for hydrogen does not make this
hyperspherical symmetry manifest, although it does wear an “obvious” SO(3) symmetry
on the sleeves. Furthermore, this hidden symmetry is made manifest by moving to mo-
mentum variables. Similarly, in N = 4 super Yang–Mills theory, the Lagrangian does not
make manifest the hidden dual superconformal symmetry of the tree-level amplitudes.
This hidden symmetry is made manifest by doing a series of variable changes, first mov-
ing to twistor space, then to a dual space, and finally to momentum twistor space. This
section describes this series of variable transformations and the epistemic advantages we
gain along the way.

In both examples, we can account for the intellectual significance of hidden symmetry
in terms of epistemic dependence relations: moving to variables that make the symmetry
manifest changes what it suffices to know to figure out if a given mathematical expression
possesses the relevant symmetry. As discussed at the end of Section 6.4.1, by constructing
objects that possess manifest dual superconformal symmetry, one can immediately infer
that a more complicated object constructed from these invariant pieces also possesses this
symmetry. There is surely part of this variable change that is merely convenient, but the
change in epistemic dependence relations is also intellectually significant.

The main method for showing that superamplitudes possess a given symmetry is to
show that the generators of that symmetry annihilate the superamplitudes. For instance,

²⁹This symmetry group comprises a conformal part SU(2,2) and an R-symmetry-part SU(4). SU(2,2)
consists of 4×4 complex matrices of determinant one that preserve a Hermitian quadratic form of signature
(−1,−1,1,1). It is locally isomorphic to the conformal group SO(2,4) of spacetime. The R-symmetry SU(4)
acts on the supersymmetry generators QA and Q†

A, where the index A ranges from one to four. These four
‘supercharges’ generate the supersymmetry transformations that transform bosons into fermions and vice
versa.
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tree-level superamplitudes possess Poincare symmetry because the ten generators of the
Poincare group (four translations and six rotations/boosts) annihilate these amplitudes
(Elvang and Huang 2015, p. 96). This holds for the super-Poincare group as well, which
adds 16 fermionic supersymmetry generators QAa and Q̃ȧ

A. To show invariance under the
superconformal group, the proof focuses on 16 additional fermionic conformal supersym-
metry generators SAa and S̃A

ȧ along with properties of the momentum delta function and
supermomentum Grassmann delta function (Elvang and Huang 2015, p. 99).

Changing to Twistor Variables

Representing the 62 superconformal symmetry generators of the graded Lie algebra
su(2,2|4) in spinor-helicity variables fails to treat these generators on equal footing. For
instance, the translation generator has no derivative terms, the rotation/boost generators
have one derivative term, and the conformal boost has two derivatives (Elvang and
Huang 2015, p. 97). A desire to place these generators on equal footing with regards to
derivative terms motivates the first change of variables. By moving to twistor variables,
it is possible to provide a representation of these generators where every generator is
a 1-derivative operator, which means that each has been linearized (Elvang and Huang
2015, p. 100). Just as the hydrogen atom case involves a Fourier transform from position
space to momentum space, this variable change involves a Fourier transform from angle
spinor variables to twistor variables. The resulting variablesWA

i are called supertwistors,
and they consist of a triple of a square spinor, the Fourier transform of an angle spinor,
and a Grassmann variable. This leads to a compact expression for every generator of
the superconformal algebra where every generator is treated uniformly (Elvang and
Huang 2015, p. 100). Furthermore, since the supertwistors scale homogenously under
little group transformations, the resulting expression for the symmetry generators are
invariant under this transformation.³⁰ This leads to a projective characterization of the
twistors and supertwistors. The bosonic twistor part can be defined as a point in complex
projective three space CP3. The supertwistors are points in CP3|4 space.

Changing variables to twistor space leads to a geometric interpretation of n-gluon
tree-level amplitudes. It turns out that a tree-level gluon amplitude with q-many posi-

³⁰In this context, the little group is the subgroup of the Poincare group that leaves the 4-momentum of a
particle invariant. For massless particles, this is the two-dimensional Euclidean group ISO(2), comprising
translations in space and rotations around the direction of motion.
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tive helicity gluons corresponds to a set of twistor points on a (q−1)-dimensional curve
in bosonic twistor space CP3. For instance, anti-MHV amplitudes have two positive he-
licity gluons, so they correspond to a 1-dimensional curve. Hence, the amplitude itself
comprises n twistors that lie on the same line in CP3 (Elvang and Huang 2015, p. 101).

Using Dirac’s embedding formalism, one can provide an interpretation of twistors as
a projective representation of spacetime points and null-lines. In the embedding formal-
ism, the conformal group SO(2,4) is realized as the Lorentz group of a six dimensional
spacetime with metric (−,−,+,+,+,+). Twistors are then defined as spinors on a con-
formal 4-dimensional subspace that satisfies a null condition X ·X = 0 and projectively
identifies the 6-dimensional vector X with any scalar multiple rX . Each point X in this
four-dimensional subspace is fixed by two twistor variables Wi and Wj. In other words, a
line in twistor space corresponds to a point in the four-dimensional embedded spacetime.
Conversely, any of two (six-dimensional) spacetime points Xi and X j define a null-line,
and they share the same twistor (since each twistor is identified with any scalar multiple
of itself—resulting in twistor space being againCP3). Thus, a null-line in spacetime corre-
sponds to a point in twistor space. In this way, twistor space is dual to the 4-dimensional
embedded spacetime (dual in the same sense that lines and points are dual to each other
in projective geometry).

Changing to Dual Coordinates

There are a few expressive disadvantages of twistor variables that motivate yet another
variable change (taking us closer to making the hidden dual superconformal symmetry
manifest). In the twistor variables, the translation generators of the Poincare group do
not have a linear action on spinor variables. This means that the spinor variables are not
invariant under translation, and hence both momentum and supermomentum are not au-
tomatically conserved in the supertwistor formalism. Instead, momentum and supermo-
mentum conservation are enforced using delta functions (Elvang and Huang 2015, p. 103).
Just as one of the motivations for spinor–helicity variables is to automatically enforce the
on-shell condition (to “trivialize” this condition), the next variable change is motivated by
a desire to automatically enforce conservation of momentum. We do this by interpret-
ing momentum conservation geometrically, as a closed, convex contour, represented by a
polygon. The momenta 4-vectors are directed edges of this n-sided polygon. The closure
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condition provides a geometric interpretation of the n-many momenta summing to zero.
A key step in characterizing the hidden symmetry is to move from the edges of this

polygon (the momenta 4-vectors) to the dual notion, i.e. the points that define the ver-
tices/cusps of the polygon. These dual coordinates yµ

i define a dual space that although
consisting of dual momentum variables is not itself characterized using spacetime coor-
dinates. In this dual space, momentum conservation for scattering n-many particles is
enforced by requiring that the (n+ 1)-th cusp yn+1 is the same as the first cusp of the
polygon y1, i.e. by requiring that the cusps are periodic (Elvang and Huang 2015, p. 103).
Unlike the 4-momenta variables, these dual coordinates are invariant under translations.
They thereby wear momentum conservation on their sleeves.

We proceed to re-express previous tree-level amplitude expressions using these dual
space coordinates (and corresponding dual space coordinates for fermion variables). Since
these amplitudes are now defined in dual space, it is possible to investigate a new class
of symmetries, namely those encapsulated by dual superconformal symmetry. In this
analysis, the dual inversion operator I plays a special role because the conformal boost
generators Kµ can be defined as intertwined with the translation operator by inversion:
Kµ = IPµ I. Since the dual coordinates are invariant under dual translation, this rela-
tionship makes it easy to see how the dual coordinates transform under other symmetry
generators of the dual superconformal group. Ultimately, using the super-BCFW recur-
sion relations re-expressed in these variables, it can be shown that all of the tree-level
superamplitudes ofN= 4 SYM are invariant under dual superconformal symmetry. Even
though this symmetry group is the same as that for regular superconformal symmetry,
the symmetries are distinct. For instance, the tree amplitudes for gluon scattering in pure
Yang–Mills theory are conformally invariant but not invariant under the corresponding
symmetries of the dual conformal group (Elvang and Huang 2015, p. 105).

The two superconformal groups (ordinary and dual) can be combined into an even
larger symmetry group known as the Yangian. This group has a countably infinite-
dimensional algebra, where the lowest level generators correspond to the generators of
the ordinary superconformal group. Since the tree-level superamplitudes are invariant
under both ordinary and dual superconformal symmetry, they are ultimately invariant
under the Yangian as well, manifesting an even larger hidden symmetry (Elvang and
Huang 2015, p. 106).
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Changing to Momentum Twistors

Despite demonstrating the dual superconformal symmetry by using dual coordinates,
these coordinates are not ideal for expressing this symmetry. They do not themselves
transform covariantly under the symmetry group (Elvang and Huang 2015, p. 107). Con-
sequently, the resulting expressions for tree-level superamplitudes also do not wear this
dual superconformal symmetry on their sleeves in dual coordinates. This is what ulti-
mately motivates moving to momentum twistors.

Just as the twistor variables are geometrically dual to spacetime coordinates, the mo-
mentum twistors are geometrically dual to the dual coordinates yµ

i . This means that a
momentum twistor corresponds to a null-line in the dual y-space, and a point in the y-
space corresponds to a line in the momentum twistor space. Furthermore, these momen-
tum twistors transform as spinors, i.e. they have spinor indices. For convenience, we will
call the momentum twistor space Z-space. The momentum twistor variables ZI

i trans-
form linearly under every transformation of the dual conformal group SU(2,2), leading
to a uniform and compact expression for the generators of this group (Elvang and Huang
2015, p. 108).

To re-express the amplitudes in a way that is manifestly invariant under dual confor-
mal transformations, we form an invariant object out of the momentum twistor variables
by contracting four of them with the Levi-Civita tensor for SU(2,2). This leads to an in-
variant object called the 4-bracket, allowing us to re-express both the on-shell propagators
and the tree-level amplitudes. Although the 4-bracket is convenient due to its symmetry
properties, it is more than merely convenient: by building further objects (such as am-
plitudes) out of 4-brackets, it follows that these objects inherit the symmetry properties
of dual conformal invariance. This is an instance of an epistemic dependence relation: to
know that a resulting expression is invariant under the dual conformal group, it suffices
to know that it is built out of component parts that are invariant.

By adding a corresponding Grassmann-variable to the momentum twistors, one forms
momentum supertwistors, which make the dual superconformal symmetry manifest (El-
vang and Huang 2015, p. 110). Here is a summary of the methodological upshot of all of
these variable changes:

Starting with the simple observation that momentum conservation is imposed in a
rather ad hoc fashion, we introduced the auxiliary variables yi such that momentum
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conservation is encoded in a geometric fashion. This led us to the realization of a new
symmetry of the tree amplitude for N = 4 SYM, namely superconformal symmetry
in the dual space yi. The new symmetry set us on a journey to search for new vari-
ables, the momentum (super)twistors, that linearize the transformation rules. This
culminated in the simple symmetric form of the n-point NMHV tree superamplitude.
(Elvang and Huang 2015, p. 111)

Finally, the momentum twistors and momentum supertwistors have a further expres-
sive property lacked by the dual coordinates in y-space. Although the y-space coordinates
trivialize momentum conservation, they are nevertheless forced by hand to obey an al-
gebraic constraint: (yi − yi+1)

2 = 0. This enforces the on-shell momentum condition for
the 4-momentum pi. In contrast, the Z-coordinates are not subject to any analogous con-
straint. These coordinates are thereby defined freely inCP3. Working in this space of free
Z-coordinates, we can study scattering amplitudes for n-many particles by picking any set
of n-many points Zi. To represent a scattering process, these points must ultimately form
a closed contour, which means that each line (edge) is characterized by connecting subse-
quent points, i.e. (Zi,Zi+1). Due to the projectively dual relationship between y-space and
Z-space, each of these lines (Zi,Zi+1) corresponds to a dual coordinate yi. The fact that
the contour is closed simply means that the nth line is (Z1,Zn), which entails the period-
icity condition in dual coordinate space, i.e. that yn+1 = y1. Recall that this periodicity
condition simply means that momentum is conserved. In this way, our construction of
a representation for scattering amplitudes in Z-space automatically enforces momentum
conservation. Furthermore, the mapping of lines in Z-space to points in y-space forces
adjacent yi and yi+1 coordinates to obey an incidence relation that forces these adjacent
y-coordinates to be null-separated. Since these adjacent coordinates are null-separated,
the associated 4-momenta pi are on-shell. In this way, the momentum twistor construc-
tion also automatically enforces that the represented scattering process is on-shell. This
is a key difference with the y-space formalism itself, where the on-shell condition had to
be enforced by hand (by requiring that adjacent y-coordinates be null-separated). Similar
remarks apply for the momentum supertwistors (Elvang and Huang 2015, p. 112).

Moreover, momentum twistors provide a geometric interpretation of the propagators.
In the dual space coordinates, propagators are expressed as 1/y2

i j, and a propagator is
on-shell when y2

i j = 0. Using the aforementioned 4-bracket (which is a dual conformal
invariant expressed in terms of four momentum twistors), the on-shell condition is re-
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expressed as requiring that the 4-bracket equals zero. Algebraically, this means that the
four momentum twistors defining the 4-bracket are linearly dependent. Geometrically,
this means that these four twistors belong to the same plane in CP3. This interpretation
can be extended further by recasting propagator poles y2

i j = 0 as the intersections between
certain lines and planes in momentum twistor space (Elvang and Huang 2015, p. 113).

To phrase this all more starkly: the reformulation using momentum twistors has en-
abled kinematic constraints (momentum conservation, on-shell momenta, and propagator
poles) that were previously expressed algebraically (i.e. as solutions to equations) to be ex-
pressed geometrically (i.e. in terms of the intersections of lines and planes at certain points
in momentum twistor space). This is yet another illustration of a difference in epistemic
dependence relations. Rather than needing to know that a certain algebraic condition is
satisfied by the variables of interest, the geometric reformulation shows that it suffices
to know that a given geometric relationship holds. This is an instance of a much larger
motif between algebraic and geometric expressive means that runs throughout various
parts of mathematics. The interpretation of scattering amplitudes in terms of the volume
of the amplituhedron takes this geometric reformulation even further. It shows that the
equivalence of various representations of scattering amplitudes (derived from the BCFW
recursion relations using different choices of line-shifts) is no coincidence, since they all
correspond to different ways of triangulating a mathematical object known as the ampli-
tuhedron.

Insofar as physicists have an epistemic reason to trivialize certain conservation prop-
erties, they have an epistemic reason to privilege variables that do so. Imagine then that
a physicist judges momentum twistor variables to be more fundamental than spinor–
helicity variables. Rather than construing this judgment as involving ametaphysical com-
mitment to joints in nature, we can apply the expressivist analysis from Section 6.6. In
making this judgment of relative fundamentality, we implicitly endorse a set of norms
on which one ought to prefer variables that can perform the various functional roles that
momentum twistors perform (but that spinor–helicity variables cannot). The same could
be said for viewing the dual coordinates as being more fundamental than spinor–helicity
variables, since the dual coordinates make manifest the conservation of momentum.
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6.10 Conclusion

We have seen that by changing variables, we can make otherwise obscured or hidden
properties manifest. Against instrumentalism, I have argued that good variable choices
can have non-instrumental epistemic value. Yet, the challenge of accounting for this
epistemic value initially seems to favor fundamentalism. Here, I have shown that con-
ceptualism has ample resources to accommodate the intellectual significance of making
properties manifest. Good variable choices make intelligible properties of expressions
and patterns in calculations. By changing variables, we sometimes make available new
problem-solving plans, with concomitant differences in EDRs.

Sections 6.2-6.5 provided numerous elementary examples of making properties mani-
fest. I showed how Cartesian coordinates make manifest the invariant degrees of freedom
of horizontal and vertical lines. Likewise, polar coordinates make manifest properties of
circles and diagonal lines. I provided a structurally similar illustration in the context of
translating between natural languages.

Section 6.6 considered a rebuttal on behalf of fundamentalism. Scientists and mathe-
maticians frequently judge one choice of variables to be more fundamental than another,
especially in the context of making properties manifest. Hence, there is a burden on con-
ceptualism to provide a non-metaphysical account of these practice-based judgments of
fundamentality. Using expressivism, I provided one way to discharge this burden. To
judge that a variable choice X is more fundamental than a variable choice Y is to express
an attitude of being for privileging X over Y. If we focus on non-metaphysical reasons
for privileging one variable choice over another, then this provides a non-metaphysically
committal account of fundamentality.

Finally, Sections 6.8-6.9 developed two case studies of making a hidden symmetry
manifest, concerning the hydrogen atom and supersymmetric Yang–Mills theory, respec-
tively. In both cases, making the symmetry manifest requires transforming to new vari-
ables. Particularly in the case of supersymmetric Yang–Mills theory, we saw that one can
use these new variables to construct objects that are manifestly invariant under the previ-
ously hidden symmetry. These manifestly-invariant objects can then be used to construct
others, which inherit the property of being manifestly-invariant. Section 6.9 also illus-
trated numerous epistemic reasons that motivate physicists to transform variables, such
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as a desire to trivialize conservation of momentum.
Overall, conceptualism provides a promising account of the value of making symme-

tries manifest and of good variable choices generally. The success of conceptualism in this
regard further undermines fundamentalism. Intuitively, manifest symmetries seem like a
case where fundamentalism starts out with the upper hand. By showing that we can avoid
metaphysically-committal notions of fundamentality even in these cases, we gain further
reason to believe that we can avoid such commitments generally. If fundamentalism is
not needed to account for the non-instrumental value of making properties manifest, it
is hard to see where fundamentalism is needed—at least when it comes to assessing the
value of compatible reformulations. Consequently, the arguments in this chapter insulate
conceptualism from one of the strongest objections that a fundamentalist might lever-
age against it. Indeed, insofar as fundamentalists typically endorse Occam’s razor, they
should value the ontological parsimony of my conceptualist account.³¹

³¹Even if one views facts about metaphysical structure as part of a theory’s ideology, rather than its
ontology, Sider still advocates parsimony considerations here as well (2011, p. 14).
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