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Abstract 

Machine learning, while common in other disciplines, has slowly started to become used 

more education research. My project seeks to answer the call from researchers for guidance 

about the nature of machine learning and illustration in how to use machine learning. First, I 

address the nature of machine learning and provide examples of its capabilities in education 

policy research. Second, I examine what value machine learning adds over traditional regression 

in predicting vulnerable student populations for early intervention. Third, I probe how machine 

learning can aid in identifying students at risk for dropping out of high school. My project will be 

one of the few projects in the field of education to espouse the potential benefits of machine 

learning and interrogate its value added to traditional quantitative research methods.  

 



 

 

1 
 

 

  

 
 

Introduction 

Machine learning, while common in other disciplines, is rarely used in education 

research. Often conflated with buzzwords like “data science,” “artificial intelligence,” and “big 

data,” researchers without a strong background in computer science can be left out of the 

conversation. Machine learning is an automated process that discovers patterns of variation 

within datasets and is a powerful tool that can be used to answer new research questions in 

education that previous methods could not address. Like other quantitative methods, it has the 

potential to both address and perpetuate inequity in education and therefore needs to be 

understood carefully (Athey, 2019; Jacobucci & Grimm, 2020; Mullainathan & Spiess, 2017). 

My project seeks to answer the call from researchers for more guidance and illustration in how to 

use machine learning by explicitly addressing the nature of machine learning and providing 

examples of its capabilities in education policy research (Gibson & Ifenthaler, 2017). I will do 

this by examining what value machine learning adds in predicting different types of vulnerable 

student populations for early intervention. My project will be one of the few projects in the field 

of education to espouse the potential benefits of machine learning and interrogate its value added 

to traditional quantitative research methods. I will also be one of the few authors to discuss its 

policy implications for use with the type of datasets that are both readily available to 

administrators and often smaller than datasets historically used with machine learning: 

administrative data. 

My project consists of three related papers aimed at illustrating when machine learning 

can be a helpful, equity- and justice-oriented tool in the education researcher’s methodological 
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toolbox. The first paper will be conceptual in nature, seeking to explain what machine learning 

is, how it can be used in education policy research, and ways it can complement causal inference 

methods. It will serve as a reference for education researchers unfamiliar with machine learning 

by explaining the basics of machine learning, highlighting relevant examples, and providing 

resources for further learning. Rather than positing that machine learning can be a silver bullet to 

solve all methodological issues, as it is sometimes positioned, this paper will examine when 

machine learning can be beneficial versus when it may be superfluous or even harmful in order 

to help researchers discern its value for education policy research. 

After laying this foundation, my second and third papers will be empirical studies 

highlighting the value of predictive machine learning and probing the circumstances under which 

it is beneficial. One empirical paper will focus on how predictive analytics can be helpful in 

identifying two different vulnerable student populations in the early elementary years: students 

who were chronically absent in kindergarten, first, and second grades and students who began 

kindergarten not identified as needing special education but were later identified as needing 

special services by first and second grade. It will then explore the value added of one researcher-

collected measure when combined with the districted-collected measures. Identifying these 

students earlier could improve their learning trajectories as these are groups who might benefit 

from early supports and differentiation of instruction, and district administrators expressed 

interest in working more with these student groups (Coleman et al., 2019; Diamond et al., 2013; 

Guralnick, 1998; Robinson et al., 2018). This paper will use both administrative and rich 

demographic and assessment data from the Boston Public Schools, available to me through my 

involvement in a longstanding research-practice partnership. 
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My second empirical paper will examine how well machine learning can predict students 

at risk of dropping out of high school. Using administrative data from Michigan that includes 

every public-school K-12 student for five years, I will test to what extent different grades’ worth 

of administrative data from fourth through ninth grade predict which students are most at risk of 

dropping out to identify for early intervention. This study will build upon a handful of existing 

studies that explore the value added of machine learning for identifying this important vulnerable 

student population (Lakkaraju et al., 2015; Orooji & Chen, 2019; Sansone, 2019). 

Contribution 

My goal for my overall project is to be pedagogical in nature by probing the questions of 

how machine learning can be helpful in education policy research, particularly in advancing an 

equity and justice agenda, and under which conditions its use can be advantageous compared to 

traditional quantitative methods. I seek to demystify the confusion surrounding machine learning 

and shed light on when it is beneficial to use in education research by providing a comprehensive 

overview plus two in-depth applicative examples. 

Additionally, to be a helpful tool for education policy research, it is important to study 

how machine learning fares with the type of data typically available to educators and 

administrators: administrative data. This project would be one of the first in the field of 

education that intentionally explores how well machine learning algorithms function under 

realistic sample sizes available to school personnel. Furthermore, by focusing on vulnerable 

student populations that would benefit from effective early intervention, my project will promote 

equity for these students. By examining the performance of machine learning under real world 

circumstances, the project will demonstrate the policy relevance of a new tool of great potential. 
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My dissertation will also be one of the few in the field to explicitly compare how 

supervised machine learning techniques perform versus traditional regression under different 

types of input data. By building up my models incrementally, I will deepen the conversation 

around the utility of various predictive analytic approaches by investigating for which data 

combinations machine learning is more helpful than traditional methods. 

Purpose and Research Questions 

 My dissertation will consist of three related yet standalone papers that I will submit for 

publication in peer-reviewed journals. My research questions for each paper are: 

Paper 1: “Machine learning for education policy research: What is it and why should I care?” 

1. How can machine learning be used in education research? 

2. How does machine learning work? 

3. Can machine learning be used for causal inference? 

Paper 2: “What can machine learning offer when predicting special education and chronic 

absenteeism for early elementary students?” 

1. How does machine learning compare to traditional regression methods when 

identifying students who began kindergarten not identified as requiring special 

education services but are later identified as needing services by the end of first and 

second grade? How does this performance vary based on the type and timing of data 

used? 

2. How does machine learning compare to traditional regression methods when 

identifying students who are chronically absent during kindergarten, first, and second 

grade? How does this performance vary based on the type and timing of data used? 
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3. If the district could add one assessment to its standard operations, which researcher-

collected assessment would enhance prediction best?   

Paper 3: “The role of machine learning in early warning systems for predicting high school 

dropout in Michigan” 

1. How does machine learning compare to traditional regression methods when 

identifying students who do not graduate from high school? How does this 

performance vary based using data from different grades as predictors?  

2. Do the models work equally well for student racial, socioeconomic, gender, and 

special education subgroups? 
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Paper 1: Machine Learning for Education Policy Research:  

What is it and Why Should I Care? 

Machine learning, while common in other disciplines, is slowly becoming more common in 

education research. Researchers without a strong background in computer science can be left out 

of the conversation as machine learning is often conflated with buzzwords like “data science,” 

“artificial intelligence,” and “big data.” I seek to answer the call from researchers for more 

guidance and illustration in how to use machine learning by explicitly addressing the nature of 

machine learning and providing examples of its capabilities in education policy research (Gibson 

& Ifenthaler, 2017). Machine learning is an automated process that discovers patterns of 

variation within datasets (Hastie et al., 2009). It is a powerful tool that can be used to increase 

the efficiency of existing methods (such as precisely predicting students at risk of dropping out 

of high school) and to answer new research questions in education that previous methods could 

not address (such as identifying complex patterns among students at risk of dropping out) 

(Athey, 2019; Mullainathan & Spiess, 2017). Like other quantitative methods, it has the potential 

to both address and perpetuate inequity in education depending on the data used and therefore 

needs to be understood carefully (Jacobucci & Grimm, 2020). 

Other disciplines have adopted machine learning more readily than the broader education 

research community. For example, machine learning has been used to harness the wealth of 

electronic medical records data to predict in-hospital mortality, unplanned readmission, longer 

than expected hospital stays, and final discharge diagnosis (Crown, 2019). Political scientists 

have used machine learning to study how people discuss politics in online discussion boards and 
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express their political beliefs with social media (Grimmer, 2015). In the field of criminal justice, 

researchers have used machine learning to predict the risk of arrested people released on bail 

being charged with committing a crime before the trial in order to study racial discrepancies in 

the judges’ initial decision to allow for release (Kleinberg et al., 2017). 

Although education scholars have generally not used machine learning methods to the extent 

of other fields, those who have are presenting encouraging results. For example, machine 

learning has been shown to be helpful in predicting which students are most at-risk of failing 

pivotal exams in order to target for early intervention (Porter, 2019). Researchers have also 

shown its value by creating an automated process to provide timely formative feedback for 

teachers about their questioning techniques using audio from classrooms (Donnelly et al., 2017). 

Machine learning is also helpful for analyzing large amounts of text that would be cumbersome 

to study manually, such as when researchers reviewed thousands of documents to better 

understand administrators’ response to No Child Left Behind (Sun et al., 2019). These initial 

applications indicate that machine learning can be a beneficial tool when studying various 

educational contexts and offer a glimpse into what machine learning can offer the field of 

education. 

My goal is for this manuscript to function as an accessible entry point for education 

researchers to learn how machine learning can be helpful in both opening up new research 

questions and improving the efficiency of existing quantitative methods. I particularly focus on 

readers who use quantitative methods such as regression and econometrics yet are unfamiliar 

with machine learning. Rather than positioning machine learning as panacea for the pitfalls of 

traditional research methods, I will discuss the nuances of when and how machine learning can 

add value to a study. 
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As with any decision in research design, there is a tradeoff for using machine learning 

compared to traditional methods: namely foregoing a level of transparency due to the complexity 

of the algorithms in order to gain more predictive precision. It may not be beneficial to the 

broader research study to use a new method that the field at large is unfamiliar with if it does not 

function better than more simple and traditional methods. The value that machine learning adds 

needs to be clear in order to justify its use over traditional methods that are broadly accepted in 

the field. In addition to its methodological contributions, researchers should also be aware of the 

potential for machine learning algorithms to replicate existing biases in datasets. Therefore, it is 

important for researchers to understand the conditions under which machine learning is worth 

pursuing (Athey, 2017; Singer, 2019).  

I bring these conditions to light by examining three points: 

1: How can machine learning be used in education research? 

2: How does machine learning work? 

3: Can machine learning be used for causal inference? 

Point 1: How Can Machine Learning Be Used in Education Research? 

Over the last fifteen years, researchers have begun using machine learning to study 

different aspects of education, such as predicting students at risk of dropping out of high school 

(Lakkaraju et al., 2015) and grouping reform efforts in response to policy changes (Sun et al., 

2019). From this work, I can see that the two highly useful applications of machine learning for 

education research are predicting and grouping. Prediction analysis, called supervised machine 

learning, occurs when researchers use a large set of covariates to predict an outcome, either 

binary (such as dropping out of high school) or continuous (such as a test score). Grouping 

analysis, called unsupervised machine learning, occurs when researchers take a large number of 
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either variables or observations and group them into sets that are internally similar yet different 

from other groups. Both of these can be used with what has traditionally been considered in 

education research to be quantitative (i.e., numbers) and qualitative (i.e., text) data. By using 

machine learning on its own as well as in conjunction with other methods, researchers have 

begun to illustrate the applications of machine learning for education, such as predicting students 

at risk of dropping out of high school and grouping reform efforts in response to policy changes. 

Predicting 

Prediction to Identify Students for Intervention 

 One of the most commonly used applications of machine learning so far in education 

research has been using supervised machine learning to predict at-risk student populations to 

target for intervention. Porter (2019) used machine learning to help identify students at risk of 

failing the end-of-third-grade reading exam (which would then lead to retention) in order to place 

students into a reading intervention program. By using diagnostic testing data from first, second, 

and third graders, Porter created three models to determine the value added from machine 

learning. First, she used the diagnostic reading assessment information from the beginning of 

third grade to determine which students would likely pass the end-of-year exam using the criteria 

from the assessment creator. Second, she used traditional regression techniques (such as logistic 

models) to establish a quantified relationship between the score on the diagnostic exam from the 

beginning of third grade and whether students passed the end-of-year exam using data from the 

previous cohort; she then applied this relationship to the current cohort to predict which students 

were at risk of failing. Third, she used all available data from the diagnostic exams from first and 

second grades plus the scores from the beginning of third grade with supervised machine 

learning to predict failing the end of year exam by training her model on the previous cohort. 
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Across these three models, Porter’s machine learning algorithm correctly identified a 

higher percentage of students who were likely to fail the end-of-year test (78%) compared to 

using the publisher’s guidelines from the screening exam (54%) or the traditional regression 

model (57%). However, the machine learning algorithm also produced a higher false positive 

rate as well (14% versus 5%) (Porter, 2019). Although a limitation of this study is that the author 

didn’t strictly compare the performance of machine learning and traditional regression under 

every combination of data, it is still a positive indication about the predictive capacity of 

machine learning. In a context where high-stakes third grade reading laws are becoming more 

common, machine learning is a promising tool because more accurate predictive analytics can be 

useful for education policy research (Council of Chief State School Officers, 2019). 

Similarly, another study from Greece used predictive machine learning1 with 

demographic and academic data from 354 students to identify students at risk of dropping out of 

a distance-learning higher education program. Researchers created two machine learning models: 

one with baseline demographic factors only and a second with demographic plus academic 

performance data. They found that the model with demographic information correctly identified 

63% of students at risk of dropping out while the second model correctly identified 83%. When 

they compared this to logistic regression results, they found similar accuracy rates (60% and 

83%, respectively), indicating that machine learning may not provide a distinct advantage for 

this sample (Kotsiantis et al., 2003). 

 An increasing number of studies have been conducted in the last five years using machine 

learning to predict which students are at risk of dropping out of high school prior to graduation. 

 
1 Specifically, researchers used a naïve Bayes, neural network, nearest neighbor, support vector machine, and 
decision tree algorithms. See Table 2 for more details about the individual algorithms. 
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Many school systems across the country established an early warning system to target students 

for intervention based on the established literature (using traditional regression and structural 

equation modeling) that found factors associated with high school drop-out, such as academic 

achievement and frequent absences (Battin-Pearson et al., 2000; O’Cummings & Therriault, 

2015; Parr & Bonitz, 2015; Rumberger & Larson, 1998). However, new studies have explored 

how predictive machine learning compared to traditional regression techniques (most commonly, 

logistic regression) when predicting high school dropout. While they varied in the algorithms, 

data sources (i.e., administrative versus large scale survey), and geographic location (i.e., United 

States, Denmark, South Korea, and Mexico), the studies all show high (>90%) accuracy rates 

with machine learning models (Ara et al., 2015; Chung & Lee, 2019; Lakkaraju et al., 2015; 

Márquez-Vera et al., 2016; Orooji & Chen, 2019; Pagani et al., 2008; Sansone, 2019). 

Furthermore, the study that compared the results of models fit using machine learning techniques 

versus traditional regression methods (i.e., logistic regression) showed that the most accurate 

predictions came from the machine learning models2 when using the same input variables 

because of its inherent ability to be more flexible and fit the data better than the logistic 

regression models (Lakkaraju et al., 2015). 

These studies show that machine learning is a promising technique for accurately 

identifying which students to target for intervention, which is particularly helpful when schools 

want to maximize the efficiency of their limited resources by targeting them towards students 

who need help the most (Engler, 2020). For school personnel, the question of how much better 

machine learning techniques are compared to more traditional regression methods when 

identifying students for intervention largely remains unanswered in the literature. Given how 

 
2 The most predictive machine learning model used the random forest algorithm. 
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machine learning algorithms are considered more of a black box than their traditional regression 

counterparts, they would need to be substantially more accurate to convince schools to use them, 

an avenue for future research (Bruch et al., 2020). 

Prediction to Improve Classroom Instruction 

 Another area of emerging machine learning research is improving classroom instruction 

by automating the process of understanding aspects of classroom instruction that would 

otherwise be cumbersome to study manually. For example, researchers used machine learning 

algorithms to analyze transcripts from 1,000 fourth and fifth grade language arts classes to 

determine the amount of time teachers spent in six different areas of instruction. They then 

combined these elements into constructs, validated them psychometrically, and examined 

associations between the time spent in constructs and students’ value-added assessment scores 

(Jing & Cohen, 2021). Similarly, researchers from another study recorded the audio from 37 

different middle school classes on literature, language arts, and civics classes across 11 teachers. 

After first coding a portion of the audio transcripts manually to use as a starting point to train the 

machine learning model, they then used machine learning3 to parse apart the remaining audio in 

order to identify when teachers were asking questions and categorize the types of questions they 

asked (Donnelly et al., 2017). Both studies are first steps towards the ultimate goal of providing 

personalized formative feedback to teachers about classroom instruction by using an automated 

process that would be both faster and more efficient than observing classrooms in person.  

 Machine learning can also be used to detect students’ affectation. By using cameras, a 

machine learning algorithm coded 137 students’ facial expressions and body movements in real 

 
3 Specifically, researchers used the naïve Bayes, logistic, random forest, decision trees, and k-nearest neighbor 
algorithms. 
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time while playing a computer physics game in order to determine the students’ level of 

engagement by categorizing students’ affect as boredom, confusion, delight, engagement, 

frustration, or off-task. Part of affect detection studies, this study illustrates how machine 

learning can be used to provide feedback quickly on student behavior in order to alter the mode 

of instruction, such as adapting the code of the computer game to change in response to student 

engagement. The authors found the algorithm to perform similarly for different genders and 

ethnicities but would have benefitted from a larger sample of students of color to dig deeper into 

variation across ethnicities (Bosch et al., 2016). By studying both teacher and student behavior, 

machine learning can provide insight into what is happening in classrooms and has promise to 

examine discrepancies in instruction among student subgroups in order improve instruction 

(Petrilli, 2018). 

Prediction to Help Students Make Decisions 

 Researchers have theorized and shown how machine learning can help students make 

decisions by providing them with data and analyses about which college to attend and courses to 

take in order to mitigate mismatching (Arndt & Guercio, 2016). One study in China (Ye, 2018) 

illustrated this by using administrative data from a highly centralized, national higher education 

application process. In this type of admissions system, an appropriately ranked list was important 

to increase odds of a successful match because the author noted that previous work had shown 

that students commonly both under- and overestimated their likelihood of placing into 

universities, resulting in an ill-ranked list. The researcher used machine learning4 to determine 

the predicted probability of acceptance for 5,647 students; they then provided students with their 

predicted probability to being accepted into various universities in the country. This intervention 

 
4 Specifically, researchers used a random forest algorithm. 
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helped students craft their ranked order list of universities that would better match with the 

universities’ ranked list of students, increasing students’ likelihood of acceptance. Not only did 

the predicted probabilities help students make decisions, but the process also mimicked part of a 

teacher or advisor’s role in this crucial process. Because the machine learning algorithm was able 

to provide help to many more students than teachers could in their limited time, this machine 

learning-based intervention democratized the valuable knowledge of student acceptance 

probabilities for a larger number of students who may not otherwise have access to personalized 

guidance from teachers. Additionally, machine learning relieved teachers of this aspect of 

advising students and allowed them to focus their efforts elsewhere, increasing the efficiency of 

teachers as well as assisting students in the application process (Ye, 2018).   

Prediction with Modeling Complicated Relationships 

The flexibility of machine learning algorithms can more easily allow for complicated 

modeling techniques – particularly multiple interaction effects and nonlinear relationships within 

the same model – than traditional regression techniques that can be hampered by collinearity and 

power concerns. For example, researchers in the United Kingdom were interested in studying the 

impact of high school curriculum on labor market outcomes (Johnes, 2005). Because students 

were able to specialize in the courses they took, researchers were particularly interested in 

modeling the relationship between the various possible course combinations and adult earnings. 

To explore the added benefit of machine learning, the authors compared results of predictive 

machine learning models5 to those with traditional regression methods for 2,970 students and 

found the machine learning approach predicted earnings more accurately (Johnes, 2005). 

Although this one study does not represent a referendum on the value added of machine learning 

 
5 Specifically, researchers used a neural network algorithm. 
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over traditional regression when modeling complicated relationships, it is a promising indicator 

of machine learning’s utility. 

Similarly, machine learning can be helpful for examining heterogeneity when modeling 

multiple interaction and nonlinear terms. When researchers wanted to better understand the 

relationship between various student- and school-level inputs and academic achievement for 

92,035 students across nine countries, they used machine learning6 to determine not only which 

variables were most predictive of achievement but also which types of interactions between 

those variables were most predictive. Then, they were able to examine geographic differences in 

these inputs and found that when predicting achievement across countries, the interaction 

between school size and economic makeup of the student body varied (Masci et al., 2018). By 

leveraging the functional flexibility inherent in machine learning algorithms, researchers can 

explore nuanced relationships that linear regression may struggle to appropriately model. 

Potential Prediction Pitfall 

 Although prediction algorithms have been demonstrated to be beneficial in education 

research, researchers must be careful of potential bias, including but not limited to race, 

ethnicity, gender, class, and ability (Baker & Hawn, 2021; Broussard, 2018; Criado Perez, 2019; 

D’Ignazio & Klein, 2020; O’Neil, 2016; Porter et al., 2020). As an example, uses of machine 

learning algorithms outside of education have had important racial implications. In both 

healthcare and policing, predictive algorithms have increased racial disparities due to the 

preexisting racial inequities in the data used to create the machine learning models. When 

hospitals used machine learning to predict healthcare costs as a proxy for illness, the algorithms 

under-identified illness among Black patients. This was because the data used in generating the 

 
6 Specifically, researchers used a random forest algorithm. 



 

 

16 
 

 

machine learning models reflected the fact that Black patients were less likely to seek medical 

care because they were less likely to have health insurance compared to White patients 

(Obermeyer et al., 2019). 

Similarly, research has shown that police forces that use predictive modeling to predict 

criminal activity in order to efficiently allocate resources over-estimate the rate of unlawfulness 

among Black citizens. The machine learning algorithms that created these predictions were 

constructed using data that reflected the racial bias that officers traditionally exhibited in making 

arrests, so the predictions replicated these racial biases (Lum & Isaac, 2016; Richardson et al., 

2019). Racial problems have also been seen in predictive policing when the police use facial 

recognition software to identify potential criminals. Depending on the data used to construct the 

facial recognition software, the algorithms can be less accurate when identifying Black faces 

compared to White faces, leading to a disproportionate number of misidentification of Black 

people (Garvie et al., 2016; Hill, 2020). 

As predicting machine learning becomes more commonly used to predict education 

outcomes, researchers must learn from these examples in order not to perpetuate structural 

racism. We can do this by questioning potential biases in the data used to create the models in 

order to mitigate what is referred to as “algorithmic bias” (Baker & Hawn, 2021; Gebru, 2021). 

This is not a problem unique to machine learning algorithms, however. Traditional quantitative 

methods are also subject to misrepresentative findings when using biased data, such as data that 

contains measurement error or reflects broader systemic inequities. Rather than disregarding 

these methods completely, I argue that researchers should think critically about the data used 

because the machine learning algorithms will reflect and often amplify any existing biases in the 

data (Engler, 2021; Gillborn et al., 2018; Jacobucci & Grimm, 2020; Lee et al., 2021; Porter et 
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al., 2020). More broadly, I call for researchers to be critical about the results of analyses 

conducted with any method, including machine learning, to prevent blindly accepting output. 

In addition to being aware of existing biases in the data, I also call for researchers to 

explicitly interrogate their results in two ways. The first is to look for patterns in the identified 

students. For example, if a machine learning algorithm predicts students at-risk of dropping out 

of high school with a high degree of precision yet all the students identified are from the same 

neighborhood, then researchers have an ethical responsibility to question the validity of that 

model. Is there truly some geographic phenomenon happening, or is the model picking up on 

underlying characteristics that lead to an overrepresentation of students from that neighborhood 

while leaving vulnerable students from other neighborhoods to go unnoticed? 

The second recommendation is to explicitly examine model performance for important 

student subgroups. For example, after creating a model to predict high school dropout, 

researchers should calculate the model performance statistics for students subgroups who drop 

out at higher rates than their counterparts on average, such as students of color and students from 

families with low incomes (Hussar et al., 2020). If the model doesn’t perform as well for the 

subgroups as it does for the full sample, then researchers should caution the use of that original 

model and refine it to work well for subgroups. It is possible that certain model performance 

statistics – such as the true positive, false positive, true negative, and false negative rates – vary 

by subgroup. By assuming that a model is measured equally well for every subgroup, it is 

possible to miss important variation that can lead to biased predictions (Porter et al., 2020). For 

predictive models that rely on machine learning to be useful in education, they need to work for 

all types of students (Gebru, 2021; Kantayya, 2020).  

Grouping 



 

 

18 
 

 

Grouping to Understand Student Behavior 

 In addition to prediction, machine learning can also be used to identify groups of students 

based on similar behaviors that would not necessarily be obvious from the data otherwise. For 

example, researchers wanted to better understand how preservice teachers responded 

differentially to writing tasks. They used data from an online learning platform that tracked how 

long students spent on different types of writing assignments as part of a larger problem-solving 

study. Harnessing patterns in the data, researchers used a grouping machine learning algorithm7 

to group students into five categories based on the amount of time they spent on each type of 

writing task, such as students who spent time on deciphering the writing task description versus 

students who spent time on researching relevant resources. Similarly, researchers applied a 

similar approach8 when using data from undergraduate engineering students that tracked their 

activity on online homework platform to better understand the differences in problem solving 

techniques between high- and low- performing students. In both studies, researchers used the 

machine learning algorithm to cluster students together according to how the students behaved 

similarly (within the groups) and differently (between the groups) and then were able to 

understand the key identifier of each cluster by applying theories of problem-solving techniques. 

Furthermore, they were able to do so using multiple variables that would have been cumbersome 

and difficult to do manually (Antonenko et al., 2012). 

 Grouping algorithms can also be used to provide insight into student behavior in order for 

educators and schools to respond more efficiently. When researchers in one study wanted to 

identify students who had generally performed poorly at the halfway point in a first-year 

 
7 Specifically, researchers used the Ward’s clustering algorithm. 
8 Specifically, researchers used the k-means clustering algorithm. 
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undergraduate engineering course, they used machine learning9 to group students into three 

different levels of performance (high, medium, and low) using all of the assessment data from 

the first half of the term. Professors then used these groupings to identify which students to seek 

out for extra help for the second half of the term (Shovan & Haque, 2012). Another study used 

grouping to better understand if students’ decision to attend a particular vocational high school 

varied by how far away from the school they lived. They used machine learning10 with data on 

their reported reason for attending and measures on how far away they lived from the school to 

group students into five categories, such students who chose to attend based on their close 

proximity versus students who attended because of certain academic offerings. The school then 

used this information to better focus its recruitment efforts for future students (Abadi et al., 

2018). These studies illuminate the potential for using machine learning to uncover groupings of 

students that may not be obvious in order to better understand student behaviors and to respond 

differentially. 

Grouping to Identify Topics in Text  

Machine learning can also be helpful when sorting text11 into previously uncategorized 

patterns (Sun et al., 2019). When schools in Washington State were tasked with reform 

initiatives to address student absenteeism and low student achievement under No Child Left 

Behind, school administrators had leeway to determine how they would address the problems at 

their institution. Beyond the administrative data used to evaluate the reforms at a macro level, 

researchers wanted to better understand the decisions at individual schools and how those 

 
9 Specifically, researchers used the k-means clustering algorithm. 
10 Specifically, researchers used the k-means clustering algorithm. 
11 For a more technical guide on how to scrape educational documents for useful information, see (Anglin, 2019). 
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reforms were associated with change. Using machine learning,12 they sorted through the text of 

planning documents and reports in order to identify twenty different topics of reforms that 

administrators implemented, such as creating in-house leadership teams to review data for school 

improvement purposes. After identifying these topics, they were able to determine descriptively 

the percentage of reform efforts spent on each topic and link the reform themes to the key 

outcomes, ultimately helping to explain which reform actions helped reduce absenteeism and 

improve achievement (Sun et al., 2019). By using text as data combined with automated machine 

learning, researchers were able to more efficiently study documents to learn about patterns in 

reform efforts. 

 In one of the few examples of published research that uses machine learning in early 

childhood education, researchers used machine learning to identify aspects of early childhood 

education centers that were important to parents. They did this by using a grouping algorithm13 

that read through a large amount of text from over 8,000 online Google and Yelp reviews, 

identified nine topics that emerged in the text data, such as warmth and communication, and 

determined the topics discussed in each review. These results provided insight into the issues 

important to parents, the prevalence of each issue, and how parents’ ratings of the overall center 

corresponded to the topics that they mentioned in their review. Machine learning enabled 

researchers to use data from an unconventional source to learn more about what parents think 

about their early childhood education providers in a way that would have been extremely 

difficult to do manually given how much data was studied (Early & Li, 2020). 

 
12 Specifically, researchers used a latent dirichlet allocation algorithm. 
13 Researchers used topic modeling. 
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 Overall, machine learning offers a helpful tool when conducting education policy 

research by automating descriptive statistics via predicting and grouping large amounts of data. 

By potentially providing more accurate predictions than other methods, machine learning can 

help researchers identify students who may need interventions the most (Lakkaraju et al., 2015; 

Porter, 2019). By uncovering groups of subjects, machine learning offers a way to examine 

profiles of students and themes in text that would otherwise be difficult to detect (Antonenko et 

al., 2012; Sun et al., 2019). However, machine learning may replicate biases that exist in the 

datasets, so researchers should use caution when determining which data to use with machine 

learning algorithms (Gebru, 2021). 

Point 2: How Does Machine Learning Work? 

Part of the emergence of “big data,” computer scientists and statisticians developed 

machine learning to analyze large datasets more efficiently with potentially thousands of 

variables and/or observations. Typically considered a subset of artificial intelligence, machine 

learning is sometimes conflated with the term “data science.” Data science generally refers to the 

process of conducting research with large data sets using multiple methodologies, one of which 

is machine learning. At its most basic level, machine learning is a way to automate the process of 

uncovering patterns of variation in large datasets. For education research, machine learning is 

most helpful for automating descriptive analyses through prediction and grouping. Its value 

comes from its ability to learn from existing patterns in the data while navigating large datasets. 

There are multiple algorithms for this learning process, and the user specifies which one(s) to 
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use.14 Whether the goal is predicting or grouping, the most salient research design choices for the 

researcher are the algorithm and dataset selection. 

Machine learning may be best understood by its comparison to traditional regression 

methods, particularly those drawn from microeconomics, already widely used in education 

policy research (Table 1). In traditional regression analysis, the researcher chooses the type of 

regression model to fit (such as a linear or logistic model) and specifies which variables and their 

functional form to be included in the analysis that produces model coefficients. This choice is 

driven by theory and evidence from previous literature about the relationship between variables. 

For example, if a researcher wants to study which students are most at risk of dropping out of 

high school, they may use a logistic regression to predict a binary indicator of dropping out. 

They then will choose independent variables according to what the literature has shown to be 

important predictors of dropping out, such as academic achievement and absenteeism, while also 

making sure not to choose covariates that would be collinear (Battin-Pearson et al., 2000; Parr & 

Bonitz, 2015; Rumberger & Larson, 1998). They can then use the results in two ways. First, the 

fact that regression results display the magnitude and statistical significance of the parameter 

estimates covariates allows the research to determine which variables are related to dropping out 

of high school. Second, the researcher can use the predictive capacity of the model to determine 

how accurately the model identified students who dropped out.  

Compared to this deductive process, machine learning presents an inductive approach 

(Singer, 2019). In machine learning, the researcher selects an algorithm (such as a predicting or 

grouping algorithm) and a dataset. Depending on the algorithm used, the algorithm can 

 
14 When doing predictive modeling, it is common for researchers to use multiple predictive machine learning 
algorithms and compare their results. See (Lakkaraju et al., 2015) as an example. 
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determine the optimal functional form between the predictor and outcome variables and 

capitalize on the specific input variables most predictive of the outcome. Some algorithms also 

have an option where, if selected, the algorithm will choose the subset of input variables that 

most increases model performance to use instead of the full set of predictor variables. For 

prediction algorithms, algorithms are designed to maximize the predictive capabilities, 

conceptually similar to trying to reach the highest R2 value as possible when traditional 

regression is used for predictive analytics. For grouping, algorithms are designed to create 

groups that are as internally homogenous as possible while being as different from others; this is 

similar to the concepts of within- and between-group variance used in traditional ANOVA 

calculations (Hastie et al., 2009; James et al., 2013). 

Due to the nature of the machine learning algorithms, collinearity is not a concern like it 

is in traditional regression15 because the models do not present the statistical significance of 

variables that collinearity can suppress. Instead, machine learning algorithms automatically 

select the variables that maximize their function. For example, when predicting which students 

are at risk of dropping out of high school using machine learning, the researcher will specify 

which prediction algorithm to use and the set of variables that will act as the data frame. Then 

the algorithm will sort through the full dataset according to the rules stipulated in the particular 

algorithm to determine which subset of variables to use. Prediction algorithm results do not 

generally display the magnitude and statistical significance of the input variables like traditional 

regression does. Instead, the focus in interpreting the algorithm’s output how accurate the 

algorithm was in predicting high school dropout (i.e., true positive, false positive, true negative, 

 
15 The exception to this is when traditional regression methods, such as logistic regression, are used for predictive 
analytics. 
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and false negative rates) along with which variables where most important in determining those 

predictions (Athey, 2019; Mullainathan & Spiess, 2017). 

Types of Machine Learning 

While there are several machine learning algorithms already in existence and more that 

continue to be created, I can broadly condense those that are most applicable to education 

research into two conceptual groups: predicting (supervised machine learning) and grouping 

(unsupervised machine learning) (Jordan & Mitchell, 2015). Just as there are different types of 

traditional regression models to use for different types of outcome variables and the error 

structure of the model, there are multiple algorithms for both predicting and grouping as 

discussed more below. For both predicting and grouping machine learning algorithms, there are 

parametric (i.e., able to be modeled with an equation) and nonparametric (i.e., not able to be 

modeled by a single equation) algorithm options (Athey, 2019; Mullainathan & Spiess, 2017).  

Predicting (Supervised Machine Learning) 

Supervised machine learning is commonly known as “predictive analytics” because it is 

used to predict a known outcome from a set of variables. This is the type of machine learning 

most conceptually similar to traditional regression in that the goal is to use an algorithm that 

takes a large set of input variables (X) to predict an outcome (Y) for every subject as accurately 

as possible. Algorithms can be used to predict both continuous and categorical outcomes, and 

one of the most powerful uses of machine learning for education policy research may be its 

ability to predict binary outcomes, such as identifying which students are most likely to fail an 

end of year reading exam (Porter, 2019) or drop out of high school (Lakkaraju et al., 2015; 

Pagani et al., 2008) in order to target for an intervention. The machine learning process is often 

referred to as “classification” when predicting a binary outcome coded as a 0 or 1 and called 
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“regression” when the outcome variable is a binary variables treated as continuous to predict 

likelihood or a traditionally continuous variable (Athey, 2019; Mullainathan & Spiess, 2017). 

The overall goal of prediction is to use information from a dataset with known outcomes 

to estimate, i.e., predict, outcomes for a second dataset with unknown outcomes. Supervised 

machine learning algorithms are designed to be flexible, meaning that they are designed to 

maximize their goodness of fit and explanatory power by fitting the data well. This inherent 

design leads to one of the major concerns of machine learning algorithms: achieving a balance 

between producing an optimal prediction and overfitting the model. Overfitting the model occurs 

when an algorithm is so well tailored to the nuances of one dataset that it would not perform well 

with a similar dataset. This dilemma is referred to as the “variance-bias tradeoff,” where 

optimizing the predictive power leads to minimized variance yet overfitting leads to biased 

estimates for a similar model (Athey, 2019; Mullainathan & Spiess, 2017). For example, when 

predicting which students are at risk of dropping out of high school, machine learning algorithms 

may function well because they can take into account massive amounts of variables available 

from administrative and assessment data. However, a researcher does not want to adjust the 

model to the point where it works so exceptionally well for one cohort of students that it does not 

perform well for the next cohort. Instead, the goal is to create a model that works well for both 

cohorts. 

Researchers attempt to navigate the balance by splitting16 their dataset into two groups: 

“training data” and “testing data.” Models are first fit using the training data to maximize the 

 
16 There are multiple ways to split the training and testing data, such as randomly selecting the original data 
following an 80/20 split, using a previous cohort as the training data and the current data cohort as the testing data, 
or a process known as k-fold cross validation. This occurs when the entire dataset is split into k groups, one group is 
selected as the test data while the other k-1 are used for training, and then the evaluation indices are averaged across 
the models creating by cycling through each group as the test data (Hastie et al., 2009; James et al., 2013). Because 
there is no universally agreed upon best approach for the process of determining the training and testing data, it is up 
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flexibility, statistically, by minimizing a loss function. Just like the statistical theory underlying 

traditional regression that seeks to minimize the sum of squared residuals, every supervised 

machine learning algorithm has a different loss function motivating the algorithm that whose fit 

statistic measures how accurate the predicted outcome is to the true outcome (Hastie et al., 2009; 

James et al., 2013). Then, the fit model is applied to the testing data to obtain the performance 

measures, acting as a check on overfitting to the training data. For example, when predicting 

high school dropout, researchers may use the first cohort as the training data and the second 

cohort as the testing data if there is information from two cohorts. If there is only one cohort 

available, then researchers may randomly select a certain percentage of the cohort as the training 

data and use the remaining students for the testing data (Athey, 2019; Mullainathan & Spiess, 

2017). 

Another way that researchers can approach this variance-bias balance is by taking 

advantage of extra researcher-dictated specifications that are baked into some of the algorithms. 

Called “hyper parameters” or “tuning parameters,” these are ways to limit the scope of the 

machine learning algorithm by imposing certain constraints in the hopes of making it less likely 

to overfit to the training data. For example, in a certain predictive algorithm called a decision tree 

(see more below) that is constructed using recursive partitioning of the dataset, a hyper 

parameter researchers may opt to use is setting a maximum number of partitions the algorithm 

can use (Hastie et al., 2009; James et al., 2013). 

An important decision for researchers to make for both traditional regression and 

machine learning is which type of model to choose (Table 2). In traditional regression, 

 
to the researchers’ discretion to use the method most appropriate for their dataset. It is becoming increasingly 
common in the handful of education studies that have employed classification to use multiple algorithms and 
compare them across multiple fit statistics (Ara et al., 2015; Lakkaraju et al., 2015; Orooji & Chen, 2019; Sansone, 
2019). 
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researchers may opt to use a linear model when estimating test scores and a logistic model when 

predicting high school dropout. In machine learning, researchers have several options for 

algorithms when predicting an outcome. For parametric options (i.e., algorithms that are based 

on an equation with traditional parameters), the most common algorithms for education research 

include naïve Bayes, linear and quadratic discriminant analysis, neural networks, ridge 

regression, and LASSO (Least Absolute Shrinkage and Selection Operator). Popular 

nonparametric options (i.e., algorithms that are built without using traditional equations) include 

nearest neighbor, decision trees (aggregated to random forests), and vector support machines 

(Hastie et al., 2009; James et al., 2013). (For an in-depth exploration and example of decision 

trees and random forests, see the Appendix.) 

Model selection for supervised machine learning is often not as clear cut as it is with 

traditional regression. In traditional regression, there are some clear guides for which type of 

models to use based on the distribution of the outcome variable (such as using a logistic, probit, 

or linear probability model when predicting a binary outcome) and researchers often have 

latitude when determining the error structure (such as using multilevel modeling or clustered 

standard errors for nesting). While there are a few guiding principles for algorithm selection 

(such as that neural networks need large datasets to predict with high accuracy), there are 

generally fewer constraints on which type of situations call for which type of predictive 

algorithm (Hastie et al., 2009; James et al., 2013). Therefore, it has become increasingly 

common for education researchers to use a handful of different predictive algorithms and 

compare their performance. For example, when predicting high school dropout, researchers used 
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four different machine learning algorithms,17 compared their performance to logistic regression, 

and found the random forest algorithm to be the most consistently predictive across multiple 

performance metrics (Lakkaraju et al., 2015). 

Similarly, there are multiple ways to evaluate the performance of a predictive machine 

learning model. In traditional regression, researchers can look at the R2 to determine how well 

the model explains variation in the data and can justify model fit based on theory and measures 

such as the intraclass correlations for multilevel modeling (Snijders & Bosker, 2012). For 

predictive algorithms, researchers use a variety of performance indicators, including correct and 

misclassification rates for binary outcomes and Area Under the Curve for continuous likelihoods 

(Table 3) (Hastie et al., 2009; James et al., 2013). Just as it has become common to use multiple 

algorithms, it can be helpful to use multiple performance measures to further nuance results, 

depending on the situation. For example, when predicting the likelihood of an educational 

outcome to identify students for intervention, researchers can first measure model performance 

using Area Under the Curve. Then they can pick a cut point in the likelihood to dichotomize the 

data and examine the true and false positives and negatives to simulate how school personnel 

would use such a prediction algorithm as part of an early warning system (Bruch et al., 2020). 

Grouping (Unsupervised Machine Learning) 

Compared to supervised machine learning that takes all of the input variables (X) to 

predict an outcome (Y), unsupervised algorithms only focus on finding patterns among one 

group of variables. This is typically used to find groups among the covariates but can also be 

used for the outcome variables. Generally, unsupervised machine learning is helping for taking a 

 
17 Researchers used decision trees, random forests, AdaBoost, and support vector machines to predict high school 
dropout. 
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large number of variables and finding ways to group them that are not initially clear (Athey, 

2019). For example, when examining patterns in high school dropout, researchers may want to 

look at heterogeneity in the types of students that dropout. Although researchers could make 

theoretically constructed groups defined by variables the literature has shown to be salient to 

dropout, such as income status and race/ethnicity, a grouping machine learning algorithm would 

be able to take a large number of variables into account to form groups that may be more 

complex than those defined by a single variable. 

One way to do this is called “clustering,” in which the algorithms organize the subjects 

into non-labeled groups where the subjects within the groups are similar to each other, yet the 

groups are different from other groups. Graphically speaking, the algorithms accomplish this by 

minimizing the distance between the data within each cluster while maximizing the distance 

between clusters. Clustering algorithms include K-means, hierarchical, density-based, and 

parametric model-based clustering. Clustering models can be judged by comparing measures of 

the inter- and intra-cluster distance, referred to as the Between Sum of Squares Error and Within 

Sum of Squares Error, respectively, as well as other distance metrics. These within- and 

between-group variance measurements are similar to the traditional ANOVA. This balance 

between wanting similarity within clusters and dissimilarity among clusters is a way to quantify 

the variance-bias tradeoff inherent in every machine learning algorithm (Hastie et al., 2009; 

James et al., 2013). There is also a modified version of this type of clustering called “fuzzy 

clustering” that relaxes the stipulation that each group must be separate, allowing the groups to 

potentially overlap (Kaufman & Rousseeuw, 1990). This type of clustering is often used in 

education research when conducting text analysis (algorithms include latent dirichlet allocation 

and topic modeling) to find topics in text documents and then to determine which topics are 
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represented in each document, such as seen in the reform initiative example from Washington 

discussed above (Sun et al., 2019). Whether grouping subjects or text data, clustering can be 

helpful for identifying groups in a large dataset that would be difficult to do manually. 

Another use of unsupervised machine learning is to reduce the dimensionality of a large 

data set by using a “principal component analysis” algorithm. This algorithm groups the 

variables into constructs such that each observation has a numerical value for each construct. For 

example, a principal component analysis may take a dataset with twenty education variables and 

reduce it to constructs that may conceptually represent classroom characteristics, child 

demographics, assessment data, and community information. The algorithm does this by creating 

linear combinations (i.e., weighted combinations) of the variables that maximize the amount of 

variance captured. It is considered a type of linear projection and therefore has measures of 

distance between the factors to help evaluate the performance of the algorithm (Hastie et al., 

2009; James et al., 2013). Principal component analysis also plays a role in “principal component 

regression,” which is when dimensionality reduction is used for traditional regression with 

datasets where the number of predictors is larger than the number of observations, leading to 

concerns about multicollinearity with traditional regression models (Vigneau et al., 1997). 

A principal component analysis is very similar to the Exploratory Factor Analyses from 

the field of psychometrics in the sense that both approaches are used for dimension reduction. 

There are some slight differences between principal component analysis and Exploratory Factor 

Analysis, the first one being that Exploratory Factor Analysis relies more heavily on the theory 

underlying the constructs, places more emphasis on the interpretability of the constructs, and has 

more guidelines around measuring the fit of the constructs (Furr & Bacharach, 2014; Hu & 

Bentler, 1999; Worthington & Whittaker, 2006) whereas a principal component analysis is more 
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purely data driven without much regard for the context of the data (Hastie et al., 2009). The 

second difference is that a principal component analysis automatically produces as many 

constructs as number of variables (Hastie et al., 2009). Conversely, an Exploratory Factor 

Analysis undergoes an iterative process where it first fits all of the items onto one construct, 

checks for model fit, and repeats with an additional construct until it achieves a desired level of 

fit (Furr & Bacharach, 2014). Given that the Exploratory Factor Analysis was originally 

designed to measure psychological constructs while the principal component analysis was 

created purely for dimension reduction, these nuanced differences can help explain the purpose 

of using each method. 

Point 3: Can Machine Learning Be Used for Causal Inference? 

 For education research, machine learning is generally most helpful for automating 

descriptive statistics via predicting and grouping. Descriptive statistics provide valuable insight 

into the nature and variation of the educational landscape, and machine learning may help 

provide descriptive statistics more efficiently than traditional methods, particularly with large 

datasets (Loeb et al., 2017). As useful as machine learning is for producing descriptive statistics, 

it is generally not very helpful for conducting causal inference18 analysis for education research 

by determining causality. For most algorithms, there is nothing inherent about the nature of the 

algorithms that automatically produces causal estimates. Machine learning algorithms are often 

considered to be a more black box approach to their more transparent traditional regression 

 
18 The answer to the question of whether machine learning can be used for causal inference largely depends on how 
causal inference is defined: the Directed Acyclic Graphs (DAG) framework proposed by Pearl or the Potential 
Outcomes (PO) framework supported by Rubin, Fisher, and Nyman (Angrist & Pischke, 2015; McElreath, 2020; 
Murnane & Willett, 2010; Pearl & Mackenzie, 2018; Rubin, 1974; Shadish et al., 2002). Because the DAG 
framework relies heavily on the existence of correlation between variables, machine learning offers more 
possibilities for causal inference under this framework. For example, supervised machine learning algorithms can 
model complex relationship among many variables, offering more potential uses under the DAG approach to 
causality, particularly when examining mediation. While there are few to no examples of this yet for education 
research, this is an emerging area of research (Imbens, 2019; Zhao & Hastie, 2021). 
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counterparts, but there is nothing within that box that magically transforms a set of observational 

data into a source of exogenous variation with a ready counterfactual in order to make a causal 

claim19 (Athey, 2019; Imbens, 2019). 

However, when considering applications to education policy research in particular – 

given that the majority of causal inference work conducted has employed the potential outcomes 

framework – I posit that machine learning algorithms can be most helpful to increase the 

efficiency of existing causal methods. Just as descriptive and causal methods are generally 

complementary, machine learning methods can improve the overall richness of a study by 

combining it with traditional methods (Athey, 2015; Imbens, 2019; Loeb et al., 2017). I provide 

examples of this for both experimental and quasi-experimental methods. 

Experimental Methods 

Identifying a Sample Frame 

One of the most salient ways that machine learning can complement experimental 

methods is by identifying a sample frame with supervised machine learning (Crown, 2019). For 

example, in order to study the effect of a reading intervention for struggling readers at risk of 

failing a high stakes reading exam, researchers could use a classification algorithm to predict 

which students are most at risk of failing the reading exam (Porter, 2019). Then researchers 

could use this list of students as their sample frame, randomizing intervention receipt among 

these students. This would produce both a treatment and control group of students identified as 

poor readers, ensuring that the intervention is targeted to students who would most benefit. 

 
19 There are a few niche extensions of the base machine learning algorithms who developers claim to produce causal 
estimates under the PO framework. These include an extension of random forests called causal forests (Athey & 
Imbens, 2016; Wager & Athey, 2018) and a double robust estimator called Targeted Maximum Likelihood 
Estimator whose inherent flexibility works well when approaching the bias-variance tradeoff in supervised machine 
learning algorithms (Crown, 2019; Schuler & Rose, 2017). 
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While it would be ideal to be able to provide help to every student who needs it, researchers are 

often operating in environments with limited resources. Random assignment is ideal for both 

identifying the causal impact of an intervention and getting needed buy-in from students if they 

perceive that they had an equal chance of being selected as their peers. By restricting the sample 

frame to students most at risk of failing the exam, resources are assured to be delivered to the 

students who are most likely to have the maximum benefit (Murnane & Willett, 2010). 

Creating Blocks 

Another way that machine learning can be used to improve the efficiency of randomized 

control trials is by using unsupervised machine learning to create blocks of participants for 

stratified random sampling. Sometimes simple randomization can result in undesired imbalances 

between treatment and control groups. To address this, researchers have found that certain 

machine learning algorithms can be used to create blocks of participants that are internally 

homogenous yet are different from other blocks. After randomizing within each group, 

researchers found that there were fewer imbalances between the overall treatment and control 

group using the blocks than there were when the counterfactual was created via simple 

randomization (Grimmer, 2015; Higgins et al., 2014). 

Assigning Treatment Status 

In a situation with multiple types of treatment as opposed to a binary treatment indicator, 

machine learning builds on the notion of “multiarmed bandits.” Multiarmed bandits are 

Bayesian-based algorithms that use information on how previous subjects responded to different 

types of treatment in order to determine which treatment to assign to new subjects (Scott, 2010). 

Machine learning algorithms have taken this a step further to incorporate the characteristics of 

the setting as well as the individual’s characteristics into account in algorithms known as 
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“contextual bandits.” The inherent balance with bandits is the need to exploit the previously 

learned information in order to optimize personalized treatment status for each subject while still 

wanting to randomly assign treatment in order to identify the causal impact of the treatment 

(Athey, 2019). In education, this could be helpful when determining the impact of various 

pedagogical approaches on different types of students in differing classroom contexts, such as 

low-achieving students in a classroom with high-achieving peers. Bandits have been shown to be 

most helpful in improving the efficiency of experiments in situations with limited resources, 

indicating potential future applications to education (Dimakopoulou et al., 2017). 

Exploring Heterogeneous Treatment Effects 

After a randomized control trial has taken place, it is common to analyze differences in 

response to the treatment based on certain characteristics with a subgroup analysis (Bloom & 

Michalopoulos, 2013). While these subgroups are often defined by a pre-intervention 

characteristic, such as teacher education and experience (Bloom & Michalopoulos, 2013), 

machine learning offers a way to construct groups who may differentially respond to the 

treatment based on a combination of large numbers of covariates in a way that traditional 

regression cannot via grouping algorithms (Chernozhukov et al., 2016, 2018; Grimmer, 2015). 

Researchers have used different types of supervised machine learning algorithms, such as 

support vector machines and special types of random forests called “causal forests,” to split their 

treatment group into two groups: one predicted to respond positively to the treatment and the 

other not predicted to respond positively. Then the control is also split according to these 

defining subgroup characteristics, allowing researchers to compare the difference in outcomes 

between the treatment and control groups for each subgroup. 
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This type of analysis is typically considered exploratory, conducted in a post-hoc manner, 

and should be specified in a pre-analysis plan to avoid looking for grouping variables that offer 

statistically significant differences in treatment response (Athey & Imbens, 2016; Davis & 

Heller, 2017; Friedberg et al., 2019; Imai & Ratkovic, 2013; Wager & Athey, 2018). While this 

approach is conceptually similar to the process of endogenous stratification (Abadie et al., 2013), 

the ability of machine learning algorithms to work with high-dimensional datasets allows for 

more variables to be taken into account. Similarly, work has also been done using the flexible 

nature of machine learning algorithms, specifically the Bayesian Additive Regression Tree, to 

automate an examination of a large number of interactions and nonlinear relationships between 

variables when looking at heterogeneous treatment effects. Researchers note that this broadening 

of methodological choices frees the researcher from making potentially restrictive decisions 

about which relationships to include and exclude from the model (Green & Kern, Holger, 2012). 

Quasi-Experimental Methods 

Creating Synthetic Control Groups 

The key to quasi-experimental methods is identifying an appropriate counterfactual to 

serve as a control group, and one way to do this is with a synthetic control group that has been 

used as an alternative to researcher-specified control groups (Abadie et al., 2010; Ben-Michael et 

al., 2021). Machine learning offers an alternative approach to generate control group. One study 

has shown that a control group created using a grouping machine learning algorithm20 performed 

better than the Abadie, Diamond, and Hainmueller synthetic control group across six different 

simulated data sets on three21 different performance metrics. The machine learning-generated 

 
20 Specifically, researchers used principal component analysis. 
21 Researchers evaluated performance with the Mean Square Error, squared bias, and variance. 
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control group particularly performed better when the underlying data distribution was noisy as 

opposed to cleanly following a certain distribution because the machine learning algorithm is 

designed to be more flexible and thus fit the data well (Kinn, 2018). 

Improving Matching 

Machine learning has also been shown to improve the efficiency of matching techniques 

that use observed characteristics to create a control group by matching treatment participants to 

control participants (Cannas & Arpino, 2019; Grimmer, 2015; Hazlett, 2016; Linden & Yarnold, 

2016; Sales et al., 2017). For example, one way this has been done is by examining the data that 

is leftover after the initial matching process was done. Researchers have created an algorithm 

that uses the unused covariates and unmatched subjects (known as the remnant) to generate more 

precise estimated treatment effects by decreasing the variance (Sales et al., 2017). Similarly, 

another study has found a way to use the flexible nature of machine learning algorithms to 

produce a method for matching the subjects to create treatment and control groups that are more 

balanced on covariate distributions than traditional matching methods (Grimmer, 2015; Hazlett, 

2016). These specific applications of machine learning demonstrate the potential capacity of 

machine learning to improve estimation methods in the future. 

Determining Variable Selection and Functional Form 

 Researchers have shown how one predictive machine learning algorithm - LASSO (Least 

Absolute Shrinkage and Selection Operator) – can be helpful for two quasi-experimental designs. 

One study demonstrated how using the LASSO algorithm for covariate variable selection for 

regression discontinuity designs improved treatment effect estimates by reducing the standard 

error estimates. The authors’ simulations showed that using this approach was particularly 

effective for data sets with fewer than 200 observations, making it appealing for using in 
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education (Anastasopoulos, 2020). Relatedly, researchers of another study used the LASSO 

algorithm to conduct variable selection and determine functional form for their first stage 

empirical model for a two-stage least squares regression. Using data to examine the relationship 

between education and earnings instrumenting on quarter of birth, the researchers found that 

using the first stage model determined by the LASSO analysis avoided overfitting in the first 

stage, reduced bias in the second stage, and produced smaller standard error estimates than their 

traditional first stage model approach (Belloni et al., 2011). Both studies showed how machine 

learning can be useful for increasing the efficiency of models where the researcher already has 

an identification strategy for causality.  

Conclusion 

 I have sought to answer the call from researchers to embrace machine learning, 

understand its strengths and limitations, and interrogate how it can be useful in education 

research (Gibson & Ifenthaler, 2017; Singer, 2019). Machine learning can be useful in 

conducting education policy research by helping to automate descriptive statistics by predicting 

and grouping. It has the potential advantage of over traditional regression when working with 

large datasets by maximizing its explanatory power to create precise predictions and find 

seemingly hidden groups of subjects and variables (Athey, 2019; Mullainathan & Spiess, 2017). 

Predictive machine learning algorithms can sort through a vast number of variables and 

observations to make accurate predictions while taking multiple interaction and nonlinear 

relationships into account (Johnes, 2005; Masci et al., 2018). Grouping machine learning 

algorithms are able to take hundreds of variables into account to create clusters more efficiently 

than humans alone (Sun et al., 2019). This means that machine learning is helpful for answering 
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research questions such as, “Which students are most at risk of dropping out of high school?” 

and “What patterns are there among students who drop out of high school?” 

Limitations 

Limitations of Machine Learning 

When incorporated into observational methods, machine learning algorithms have the 

potential to improve internal validity. However, using machine learning algorithms does not 

necessarily improve the external validity of an observational study. Unless the datasets used with 

machine learning algorithms are sampled with the same care as those used in traditional 

econometric methods, researchers should use caution when making generalized claims about 

results that extend beyond its dataset (Dede et al., 2016). Similarly, most machine learning 

algorithms do not inherently produce causal estimates when analyzing observational data. 

Instead, I argue that machine learning can complement traditional causal methods by increasing 

their efficiency (Athey, 2019). For example, instead of being used to answer the research 

question, “What impact does an intervention have on reducing high school drop out?”, machine 

learning algorithms are generally better suited to answer the question, “Which students should be 

targeted for an intervention to reduce high school dropout?”  

Likewise, at a simplified level, most predictive machine learning algorithms do not 

usually report the statistical significance of the relationships between covariates and outcomes in 

the way that traditional regression methods do. For example, if a researcher wants to determine 

which student characteristics are statistically significantly associated with dropping out of high 

school, traditional regression is generally more appropriate because machine learning algorithms 

do not necessarily produce beta coefficient, standard error, and resulting statistical significance 

estimates. Although some predictive machine learning algorithms can report which predictor 
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variables were most important in generating the predictions, that is a different type of analysis 

than traditional statistical significance. While predictive machine learning algorithms seek to 

optimize a function that can be used to create as precise and efficient predictions as possible, 

they are generally not helpful when exploring theories about why those students are likely to be 

identified (Hastie et al., 2009). 

As previously discussed, some of the concerns that plague traditional regression methods 

can also present problems in machine learning algorithms, such as measurement error and biased 

data (Jacobucci & Grimm, 2020). If there is inherent bias – such as racial or gender – in the data, 

the machine learning algorithm may amplify that bias (Gebru, 2021). Therefore, researchers 

must be just as critical of the dataset they use for machine learning as they are of the data used 

with traditional quantitative methods in order to produce biases in analytic results (Goldacre, 

2008). By being aware of the ways that using machine learning can potentially perpetuate 

inequity, researchers will be well positioned to avoid that outcome. Furthermore, they could even 

follow the example of other researchers and use machine learning to explicitly address racial 

inequity, such as the researchers who used machine learning to analyze police bodycam footage 

from traffic stops. When they discovered that police spoke to Black residents more 

disrespectfully than they did to White residents on average, they presented evidence for the 

department to use in addressing the issue and a method for automating inequality tracking in the 

future (Voigt et al., 2017). 

Limitations of This Paper 

One of the limitations of this paper is the need to balance breadth and depth about 

machine learning. To operate as an entry point for researchers new to machine learning, I did not 

include several technical details about how to use machine learning or present more advanced 
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machine learning methods, instead focusing on conceptual applications. To learn more about 

these, I point readers toward my list of recommended readings below. For example, there are 

ways to combine machine learning methods – called “ensemble learning” – that may hold 

promise for education research that I did not discuss (Hothorn et al., 2006). I also did not cover 

every aspect and type of machine learning, rather focusing only on those that I deemed most 

relevant to education research. Especially as machine learning is a constantly evolving field, 

there are continuously new innovations in the field that may ultimately be useful for education 

research. 

Policy Implications 

Machine learning has the potential to enable researchers to answer new types of research 

questions and approach analyses more efficiently, such as by automating labor intensive 

processes (Donnelly et al., 2017). It is better at some tasks (i.e., automating descriptive statistics 

with predicting and grouping) than others (i.e., causal inference). It has the potential to influence 

education policies, such as how early warning systems are crafted and how teachers receive 

feedback on their teaching. 

When considering the policy implications of using predictive machine learning 

algorithms, it is important to consider the contextual implications of true and false positive and 

negative rates. For example, when predicting which students are most likely to drop out of high 

school, there are different implications for the true positive rate (i.e., correctly identifying the 

students who dropped out), true negative rate (i.e., correctly identifying the students who did not 

drop out), false positive rate (i.e., predicting students to drop out who actually did not), and false 

negative rate (i.e., predicting students not to drop out who actually did). From a policy 

perspective in this instance, it is most important to correctly identify the students most likely to 
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drop out to target for intervention. Yet, it still may be acceptable to over-identify students 

because this ensures that the students who need the intervention receive it and does not 

necessarily hurt the students who may not need the intervention to receive extra support, 

assuming that there are enough resources for all these students. Because the desire to maximize 

and minimize these rates changes based on the context, school personnel should examine these 

different rates across multiple algorithms as they will not be constant for every model when 

determining which predictive algorithm to use. Although this is a notable problem for any type 

of classification strategy, such as with simpler models based on a set of indicators (Cattell & 

Bruch, 2021), it is important to keep this possibility in mind when using predicting algorithms to 

determine the most efficiently allocation of resources. 

Future Work 

Although the research conducted so far is promising, more research is needed to better 

understand under what conditions machine learning improves upon existing methods (Bird et al., 

2021). I see a need to interrogate when it is advantageous to use machine learning for which 

types of outcomes, data sets, and general contexts. For example, are administrative data sets with 

only child level information sufficient for accurately predicting high school dropout, or does the 

addition of family and community level variables enhance the predictive capacity? Furthermore, 

does this relationship hold for important student subgroups, or are their important nuances to 

clarify about the performance of machine learning models depending on the students studied? 

Similarly, when predicting students to target for intervention, more research is needed about the 

timing of the data used to be useful in a real world – versus research – setting. For example, 

when predicting high school dropout, while using data from a student’s junior year may yield 

accurate results, it would be helpful to know if data from earlier grades also produced accurate 
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results. By intervening earlier in a student’s career, school personnel may be able to make more 

impact on a student and use fewer resources. 

Another important area of focus for the field is how well machine learning techniques 

work for different sized samples. Given that machine learning was originally designed to work 

with big data, how do smaller sample sizes generally seen in education research influence the 

performance of machine learning algorithms? While there have been a few promising studies 

that use machine learning with small sample sizes (Anastasopoulos, 2020; Bosch et al., 2016; 

Donnelly et al., 2017), there is more work to be done to convince the field that machine learning 

works well for small sample sizes. As the education research community better understands the 

role and applications of machine learning, researchers should consider adding to this technique to 

their methodological toolbox.  

Recommended Texts for Further Reading 

There is a vast literature on machine learning and its multiple subspecialities. To help 

navigate through this multitude, I recommend the following texts based on personal preference 

for ease of reading while recognizing that there are multiple other excellent texts not mentioned. 

To learn more about machine learning from an economist perspective, I recommend reading the 

following texts: Athey (2017), Athey (2019), and Mullainathan & Spiess (2017). To learn more 

about machine learning from a statistical and computer science perspective, I recommend 

reading the following text: Hastie, Tibshirani, & Friedman (2009). To learn more about how to 

measure model performance, I recommend the following texts: Berrar (2019) and Mandrekar 

(2010). To learn more about how to use machine learning to study education research, I 

recommend reading the following texts: Bruch et al. (2020), Porter (2019), Donnelly et al. 

(2017), Sun et al. (2019), Lakkaraju et al. (2019), and Chung & Lee (2019). To learn more about 
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how machine learning can be used with causal inference methods, I recommend reading Athey 

(2019) and Davis & Heller (2017). To learn more about the ethical implications of using machine 

learning algorithms, I recommend listening to Gebru’s (2021) talk, Kantayya’s (2020) 

documentary, and Lum & Isaac (2016). 
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Paper 2: What Can Machine Learning Offer when Predicting Special Education and 

Chronic Absenteeism for Early Elementary Students? 

Early warning systems are important for effectively targeting students for intervention. To 

decrease misidentification of students and use limited resources efficiently, these systems need to 

be built on accurate prediction models (Engler, 2020; U.S. Department of Education, 2016). In 

addition to the research on the use of predictive machine learning models in identifying students 

likely to fail high stakes exams (Porter, 2019), drop out of high school (Ara et al., 2015; Chung 

& Lee, 2019; Lakkaraju et al., 2015; Márquez-Vera et al., 2016; Orooji & Chen, 2019; Pagani et 

al., 2008; Sansone, 2019), and drop out of college (Kotsiantis et al., 2003), there is an emerging 

field of research that uses these techniques for identifying students who receive special education 

services (Bone et al., 2016; Duda et al., 2016; Thabtah & Peebles, 2020) and are chronically 

absent (Bruch et al., 2020) in early elementary school. While this research establishes that 

machine learning models can accurately predict students who are likely to receive special 

education services and be chronically absent, none of the research used to identify special 

education and chronically absent students compares machine learning model performance to 

traditional regression methods that are more likely to be used in existing early warning systems 

(O’Cummings & Therriault, 2015). 

Our paper speaks to this gap by explicitly comparing how well predictive models perform 

when based on two traditional regression methods (linear probability and logistic) and three 

machine learning algorithms (elastic net, decision tree, and random forest). We examine model 
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performance when predicting receipt of special education services in first and second grade for 

students who were not identified as needing services in kindergarten as well as predicting 

chronic absenteeism in kindergarten, first grade, and second grade. Our sample consisted of N = 

1,012 students from Boston Public Schools who were in kindergarten during the 2017-2018 

school year who we followed into first and second grades.  

In addition to examining five types of models, we also explored model performance with 

different conceptual blocks of predictor variables. To do so, we draw on an unusually rich data 

set, spanning the kinds of administrative data common in public schools, district-collected 

assessments, and additional researcher-collected data on academic achievement, socioemotional 

measures, family data, and teacher characteristics. Data available on K-2 students typically are 

less robust than data for older students (Weiland et al., 2021); our rich dataset presents the 

opportunity to test whether any additional, less-typical data may be particularly useful in early 

warning systems. Using these data, we compared model performance using the area under the 

receiver operating characteristic curve (AUC) (Mandrekar, 2010). We then extended our primary 

analysis to examine model performance for student subgroups, model performance for data only 

collected by the district, empirically defined likelihood thresholds for identifying students for 

intervention, true and false positive and negative rates, and the value added of one additional 

researcher-collected assessment. 

Overall, we found that it is possible to create models that are predictive of special education 

status but not chronically absenteeism that met acceptable performance standards. For the special 

education models that performed well, the best models came from two of the three machine 

learning algorithms (elastic net and random forest) and that these models performed well when 

fit with student demographics and researcher-collected fall of kindergarten academic and 
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executive functioning assessments. Additionally, we found that model performance using only 

the district-collected data improved when adding one researcher-collected teacher report data 

source, either the Social Skills Improvement System or the Teacher-Child Rating Scale. We also 

discuss important policy implications and limitations to our work that we feel shed light on the 

discussion of how best to identify students to target for intervention. 

Review of Literature 

Special Education 

Importance of Identification for Intervention 

 Across the wide spectrum of special education identifications, students benefit from high-

quality, evidence-based interventions that are tailored to their specific learning needs (Rafferty et 

al., 2003; Sullivan & Field, 2013). In the short term, interventions have been shown to improve 

the cognitive development (Guralnick, 1998), literacy and language skills (Diamond et al., 2013; 

Snowling, 2013), and math achievement (Hanushek et al., 2002) of students with a variety of 

learning disabilities. Receiving special education services also reduces the likelihood of students 

being referred for punishment or being suspended due to disruptive behavior (Hurwitz et al., 

2021). Research has also shown the importance of effective interventions for longer term 

impacts, such as decreasing the likelihood of being identified as needing special education 

services in subsequent school years (Ullery & Katz, 2016), improving academic outcomes by 

increasing school attendance (Ansari & Gottfried, 2018), and raising the likelihood of 

completing high school and enrolling in postsecondary education (Ballis & Heath, 2019). 

Because special education interventions have been shown to be successful for addressing 

multiple academic and behavioral outcomes, it is imperative that students who need extra support 

receive it. 
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Current Process of Identification 

 Although there are different types of screening tools used to diagnose students in need of 

special education services based on the type and severity of the disability (Snowling, 2013), the 

traditional approach begins with a referral. This referral most likely comes from a child’s 

healthcare provider, teacher, or parent (Thabtah & Peebles, 2020). In recent years, an alternative 

approach to this referral process in which every student participates in a universal screener has 

become more popular. Students identified as potentially at-risk then complete a second round of 

more in-depth screenings to determine an appropriate intervention as early as possible in order to 

mitigate the need for more intensive supports in the future (National Center on Response to 

Intervention, 2010).  

However, the current identification process for special education has opened the door for 

equity implications. The literature is mixed on whether this process leads to an over- or under-

identification of students from minoritized backgrounds, particularly students of color and non-

native English speakers when the identification system is based on referrals (Elder et al., 2021; 

Morgan et al., 2015; Voulgarides et al., 2017). But one thing is clear – identification processes 

for these student subgroups appear to be different from their majority-culture peers, likely due to 

multiple factors, including cultural and linguistic barriers between students, families, and 

schools, implicit racial bias towards students of color, environmental factors, and lower access to 

resources (Elder et al., 2021; Morgan et al., 2015). Studies also suggest a “frog pond effect” 

where the same student is less likely to be identified for special education if they are in a 

classroom with a higher percentage of students in need of special education services compared to 

if they were one of the few students in a classroom (Elder et al., 2021; Morgan et al., 2015; 

Voulgarides et al., 2017). 
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 Correct identification for special education students is important for both students who 

should and should not receive special education services. When students who need special 

education services are misclassified, they and their general education peers perform worse 

academically (Ballis & Heath, 2021). Likewise, when students who do not require special 

education services are incorrectly identified as needing them, they are likely to suffer from 

lowered self-efficacy that can lead to decreased high school graduation and college enrollment 

rates. This is particularly true for Black students who are at risk of over-identification (Ballis & 

Heath, 2021). Just as it is important to receive intervention services as early as possible when 

they are needed, it is vital to minimize misclassification in order to reduce negative effects on 

students and to decrease misappropriating limited resources. 

Machine Learning for Identification 

 As a contrasting approach for identifying students in need of special education, machine 

learning has been shown to be beneficial in special education classification in a few cases, 

particularly for autism spectrum disorder. Using data from a traditional autism spectrum disorder 

screening questionnaire, researchers compared the performance of multiple supervised machine 

learning algorithms and found all models to be between 85%-90% accurate (i.e., true positive 

rate) for predicting correct identification for adolescents and 90%-95% for adults. Compared to a 

traditional screening approach that was anecdotally considered subjective and slow, authors 

found the machine learning approach to be more accurate (Thabtah & Peebles, 2020). A similar 

study used data from two autism screening questionnaires and found that a machine learning 

algorithm was able to correctly identify people with autism spectrum disorder at 96.7% accuracy 

(i.e., true positive rate) for people over ten years old and 89.2% below ten. However, the 

algorithm did not perform as well when correctly identifying people without autism spectrum 
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disorder; the true negative rate was only 53.4% for those over ten years old and 59% for those 

below ten (Bone et al., 2016).  

 In addition to being an accurate predictive tool, machine learning can be helpful for 

narrowing down the number of items needed on autism spectrum disorder screeners. One study 

found that compared to the original 65 questions on a traditional screening tool, the multiple 

predictive machine learning algorithms were highly accurate (over 90%) in correctly discerning 

(i.e., true positive rate) between autism spectrum disorder and attention deficit hyperactivity 

disorder for children and adolescents using only five questions (Duda et al., 2016). Although 

there is limited evidence on using machine learning to identify special education status, 

preliminary results look promising and invite more exploration. 

 There are some limitations to these studies when considering their scalability and external 

validity. Although the Bone et al. (2016) study showed high true positive rates, it used data from 

a screening questionnaire that took an average of two to three hours per child to administer, 

which is not scalable for a school to administer to every student (Bone et al., 2016). Another 

study attempted to address this scalability issue by using simplified data from a screening 

questionnaire, yet their sample consisted of adults aged 17 to 64, making it an imperfect match 

for our study that focused on students aged 5 to 6.5 (Thabtah & Peebles, 2020). Although the 

Duda et al., 2016 study included children in their sample such that the median age was 8.6 years 

old, their entire sample consisted of participants with either autism spectrum disorder or attention 

deficit hyperactivity disorder, which may present an inherently different approach to 

classification compared to determining students who need any type of special education services 

versus those who do not (Duda et al., 2016). Additionally, all three of these studies did not 

explicitly compare how well machine learning algorithms compared to traditional linear 
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regression models, meaning the value-added of newer machine learning methods in these early 

warning systems is unknown. 

Chronic Absenteeism 

Importance of Identification for Intervention 

 Although traditionally discussed for older students (Nield & Balfanz, 2006; Rumberger & 

Thomas, 2000), the prevalence of chronic absenteeism among early elementary students has 

recently come to light. While 10% of kindergarten through third grade students are chronically 

absent nationally (Chang & Romero, 2008), this statistic hides the fact that 25% of kindergarten 

students are chronically absent. Indeed, kindergarten students experience the highest rate of 

chronic absenteeism until middle school (Ansari & Gottfried, 2018; Chang & Davis, 2015). It is 

important to identify students who are likely to be chronically absent to target for invention 

because chronic absenteeism is associated with lower academic achievement and an increased 

risk of repeating grades and ultimately dropping out of school (Ansari & Purtell, 2018; Chang & 

Davis, 2015; Morrissey et al., 2014; Nield & Balfanz, 2006; Rumberger & Thomas, 2000). The 

potential implications of chronic absenteeism do not take years to come to fruition. Due to both 

missing instruction and out-of-school factors (Pyne et al., 2021), being chronically absent in 

kindergarten is associated with lower academic performance in first grade (Chang & Romero, 

2008). Additionally, chronic absenteeism can have a multiplier effect because students who are 

chronically absent in early grades are more likely to be chronically absent in later grades 

(Balfanz & Byrnes, 2012). 

 There are important equity issues when studying which types of students are most likely 

to be chronically absent because chronic absenteeism is more common for children living in 

poverty, students of color (except for Asian Americans), special education students, students in 
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poor health, immigrants, and English language learners (Chang & Davis, 2015; Chang & 

Romero, 2008). In addition to being more likely to experience chronic absenteeism, many of 

these groups of students experience the impacts of chronic absenteeism more severely. Although 

being chronically absent is associated with lower academic achievement for students regardless 

of gender, race, ethnicity, and income (Balfanz & Byrnes, 2012; Chang & Romero, 2008; 

Morrissey et al., 2014), this relationship is stronger for students from families with low incomes 

and special education students as well as students of color (Balfanz & Byrnes, 2012; Chang & 

Romero, 2008; Ready, 2010). Therefore, it is vital to identify students at risk of chronic 

absenteeism for all students and especially those from disadvantaged circumstances. 

 While missing academic instruction is an important effect of being absent, research has 

shown that absences – particularly unexcused absences – are a signal of broader out-of-school 

factors that are associated with student outcomes (Pyne et al., 2021). The research that has shown 

that there are effective interventions for reducing chronic absenteeism for young students targets 

some of these influential factors. One approach for prekindergarten students in Chicago aimed at 

changing parental beliefs about the importance of attendance increased the average number of 

days attended by 2.4 days and reduced chronic absenteeism by 9.3% (Kalil et al., 2019). A 

second study found that intervention also targeting parental beliefs decreased chronic 

absenteeism in kindergarten through fifth grade students by 15% (Robinson et al., 2018). Other 

work has also shown that chronic absenteeism may be reduced by smaller class sizes, race match 

between students of color and teachers (Tran & Gershenson, 2021), and serving breakfast during 

school hours (Kirksey & Gottfried, 2021). This recent research indicates that if students can be 

properly identified, there are successful interventions for reducing chronic absenteeism, 
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particularly in resource limited environments where schools may not be able to implement these 

interventions universally. 

Current Process of Identification 

 As the potential dangers of chronic absenteeism become more widely known, schools 

that have traditionally only tracked attendance information for accountability purposes are 

beginning to use it to identify students at risk for chronic absenteeism (Balfanz & Byrnes, 2012; 

Chang & Romero, 2008). In particular, schools historically only tracked and reported the average 

daily attendance for the entire student body, which could mask massive variation in attendance 

for individual students.  

As schools have begun to devote data on student absenteeism, there have been conflicting 

definitions of chronic absenteeism. While most schools define chronically absent as missing at 

least 10% of school days, some use a 15-day cutoff. Additionally, some schools also track 

“severe” or “excessive” chronic absenteeism that refers to missing at least 20% of school days. 

Depending on the state, some schools only include students who were enrolled for the entire 

academic year in their chronic absenteeism reporting while others include any student who was 

enrolled for at least 90 days. Across all of these definitions and nuances, chronic absenteeism is 

clearly defined as both the sum of excused and unexcused absences as opposed to truancy, which 

only focuses on unexcused absences and conventionally is associated with misbehavior (Chang 

& Romero, 2008). 

 After establishing a method for tracking absences for students, schools are increasingly 

using early warning systems to identify which students are at risk of being chronically absent to 

intervene before students miss several days of school (Bruch et al., 2020; U.S. Department of 

Education, 2016). Similar to the early warning systems used in high schools to target students at 
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risk of dropping out (Battin-Pearson et al., 2000; O’Cummings & Therriault, 2015; Parr & 

Bonitz, 2015; Rumberger & Larson, 1998), these systems typically use factors known to be 

associated with chronic absenteeism for their predictions (Bruch et al., 2020; U.S. Department of 

Education, 2016). At the child and family level, a student is more likely to be chronically absent 

if they are from an immigrant family, are a non-native English speaker, low income, in poor 

health, require special education services, are of color, or had parents who had negative 

experiences with schools themselves (Chang & Davis, 2015; Chang & Romero, 2008). At the 

school level, a student is more likely to be chronically absent if their school lacks resources and a 

coordinated system in place to conduct home visits and reach out to families individually (Chang 

& Romero, 2008). 

Overall, the prevalence of such early warning systems for chronic absenteeism for early 

elementary students is unclear given the somewhat recent attention to the issue and the 

proprietary nature of the exact predictions (O’Cummings & Therriault, 2015). For example, one 

organization found that seven states have statewide policies in place requiring the use of early 

warning systems, but there is little to no data examining how these students operate in practice 

(National Association of State Boards of Education, n.d.).  

Given this paucity of evidence, when considering the structure of early warning systems 

for chronic absenteeism in the early grades, it may be helpful to consider how early warning 

systems for high school dropout – a historically more established system – function. As of 2015, 

52% of public high schools had an early warning system to identify students likely to drop out. 

Although larger schools are more likely to use an early warning system than smaller schools are, 

there is no statistical difference in a school’s likelihood of having a system in place based on 

graduation rate, poverty level, or location. Additionally, at the school level, administrators and 
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guidance counselors are the most common school personnel to monitor the system for updated 

projects, and they most commonly check the system weekly (U.S. Department of Education, 

2016). In terms of effectiveness, one randomized trial study found that high schools in Michigan, 

Indiana, and Ohio that used early warning systems to monitor chronic absenteeism, among other 

outcomes, reduced their rate of chronically absent students from 14% to 10% (Faria et al., 2017). 

Despite not having a more comprehensive look at early warning systems that focus on chronic 

absenteeism, particularly in early elementary school, it is clear that the accuracy of these systems 

is crucial in order to identify students who would benefit from early intervention 

These identification systems have become more important during the COVID-19 

pandemic because school attendance decreased significantly across the country, with one report 

estimating three million students having little to no access to education during the pandemic 

(Korman et al., 2021). Students were more likely to miss school if they were from families with 

low incomes, students of color, English language learners, had a disability, in foster care, in a 

high poverty district, in a district that predominantly served students of color, or experienced 

remote instruction (Carminucci et al., 2021; Korman et al., 2021). These absences have 

important equity implications looking forward, so the use of an accurate system to detect 

students likely to be absent may be helpful in mitigating the effects of absenteeism. 

Machine Learning for Identification 

 Despite how machine learning has proven effective in identifying other types of students 

in need of additional supports under certain circumstances with high levels of accuracy 

(Lakkaraju et al., 2015; Porter, 2019), little work has been done using machine learning to 

predict students at risk of chronic absenteeism. To our knowledge, only one study has used 

machine learning to predict students at risk of chronic absenteeism. It used data from two school 
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districts in Pennsylvania, one large (N = 28,719) and one small (N = 4,614), with three different 

machine learning algorithms. It found that the best performing model correctly identified 75% 

elementary students who were chronically absent for the larger district and 74% for the smaller 

district; likewise, the model for the larger district had a false positive rate of  31% and 34% for 

the smaller district (Bruch et al., 2020). In this study, the authors used demographic variables, 

course performance, state test scores, and behavior incidents as predictors. This study indicates 

that machine learning may be a useful tool for accurately predicting students at risk of chronic 

absenteeism, but more research is needed. 

Current Study 

Our exploratory study seeks to build on prior work by examining how – and under what 

circumstances – machine learning compares to traditional regression methods when predicting 

special education and chronically absent students in early elementary school. We address three 

research questions: 

1. How does machine learning compare to traditional regression methods when 

identifying students who began kindergarten not identified as requiring special 

education services but are later identified as needing services by the end of first and 

second grade? How does this performance vary based on the type and timing of data 

used? 

2. How does machine learning compare to traditional regression methods when 

identifying students who are chronically absent during kindergarten, first, and second 

grade? How does this performance vary based on the type and timing of data used? 

3. If the district could add one assessment to its standard operations, which researcher-

collected assessment would enhance prediction best?   
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 Our study addresses several gaps in the current literature.  Notably, no studies to date 

have explicitly compared machine learning algorithms to traditional linear or logistic regression 

that are more likely to be used in early warning systems. The most similar approach that one 

study (Bruch et al., 2020) used was an elastic net with a logistic base. Although an elastic net is 

considered a machine learning algorithm, it is more like traditional regression than other 

algorithms. In this study, we use an elastic net algorithm as a bridge between both a linear and 

logistic regression and the more functionally free non-parametric machine learning algorithms 

(i.e., decision tree and random forest). This study will contribute to the gap in the literature by 

clearly comparing multiple types of machine learning algorithms to traditional regression. 

 Additionally, our study builds on existing work by exploring under what conditions all 

the models – both traditional regression and machine learning – operate with different sets of 

data. In addition to district-collected administrative and academic achievement data, we also 

have access to rich researcher-collected data on student academic achievement, student 

intrapersonal and interpersonal skills, family characteristics, and teacher characteristics that 

school districts typically do not have access to due to limited resources. Our dataset is richer and 

more nuanced with respect to academic and socioemotional achievement, parental variables, and 

teacher information than the dataset used in the most similar existing study (Bruch et al., 2020) 

By capitalizing on this depth data source, we can interrogate whether models respond better to 

data that school personnel often do not have, leading to potential policy implications if this 

additional data enhance model performance. 

Method 

Participants and Setting 
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 The sample for this study consists of 1,012 students who were in enrolled in kindergarten 

in the Boston Public Schools (BPS) during the 2017-2018 academic year. We recruited students 

from 130 classrooms and 64 schools as part of a larger longitudinal study examining the effects 

of the BPS public prekindergarten program (cite Attender, Lottery, and Sustaining Environment 

papers). We followed these students via administrative data if they stayed in BPS as they 

progressed to first grade during the 2018-2019 school year (N = 894; 88% of study sample) and 

second grade during the 2019-2020 school year (N = 825; 82% of study sample).  

 Students were diverse with respect to gender, race/ethnicity, income, and language status 

and were representative of the wider school district (cite Attender paper). On average at the 

beginning of kindergarten as described in Appendix C Table 1, the study participants were 48% 

female, 60% eligible for free or reduced-price lunch, 14% Asian, 25% Black, 33% Latinx, 25% 

White, 3% mixed or other race/ethnicity, 51% Dual Language Learners, and 39% Limited 

English Proficient. 63% of students reported English as their first language, 74% noted English 

as their home language, and 75% reported English as their parental language preference. The 

students were an average of 5.49 years old (SD = 0.29) as of September 1, 2017. 

 In terms of our two outcomes, our sample was not representative of the broader school 

district with respect to special education. This was due to how the initial sample was constructed 

because substantially separate special education classrooms were excluded in the prekindergarten 

sample, creating a lower percentage of our kindergarten sample identified as special education 

than the district kindergarten average (sample 7% versus district 14%). However, given our 

wider recruitment strategy for our kindergarten sample, the percentage of our sample receiving 

special education services in first (sample 12% versus district 19%) and second (sample 14% 

versus district 21%) grade is closer to the district average albeit still lower. Our sample was also 
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differed from the broader school district when considering the percentage of students who were 

chronically absent. Our sample had lower rates of chronic absenteeism than the district in 

kindergarten (sample 16% versus district 25%), first grade (sample 12% versus district 20%), 

and second grade (sample 9% versus district 15%) (Table 4). We return to these differences in 

the limitations section of this paper. 

Procedure 

 This study was conducted with the approval of IRB (Institutional Review Board) at the 

lead and partner institutions under the approval number was HUM00193769. 

School and Classroom Recruitment 

The sample for this study is drawn from a larger study sample that initially began its 

sample with prekindergarten students by randomly selecting 25 public schools offering the BPS 

public prekindergarten program. Of these, 21 consented to participate and one was chosen as a 

pilot school, leaving 20 remaining schools for the primary study. Within these 20 schools, all 

general education and inclusion teachers were invited to participate and 96% (N = 51) agreed. As 

the sample children progressed from prekindergarten to kindergarten, we invited all of the 

kindergarten teachers assigned to these students to participate and 95% (N = 93) agreed (cite 

Attender, Lottery, and Sustaining Environment papers).  

Student Recruitment 

 As part of the broader study sample, all children in the initial 20 prekindergarten 

classrooms were invited to participate. Of the 81% of students for whom we received completed 

consent forms from their parents, we randomly selected 50% (~6-10 students) from each 

classroom to be a part of the study sample. For this study, we followed these children into 

kindergarten if they stayed within BPS. In their kindergarten classes, we repeated this same 
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consent process with the participating classrooms in the fall of 2017 to re-consent the students 

from our prekindergarten sample and to add additional students from their kindergarten 

classrooms, bring our total baseline sample size of 1,012. 

Administrative Data 

 We used administrative records from BPS from the 2017-2018, 2018-2019, and 2019-

2020 school years that provided information on students’ demographic information including 

first, home, and parental language information. We also used this administrative data to confirm 

and replace when missing which students attended the BPS public prekindergarten enrollment as 

reported by parents as well as which classrooms and schools students were enrolled in. The 

administrative data also included our outcomes of interest: special education status and 

attendance and enrollment records used to create the chronic absenteeism indicators. For the 

2019-2020 school year – when our students were in second grade – the attendance and 

enrollment variables were truncated at March 14, 2020 to account for students’ move to at-home 

schooling as a result of the COVID-19 pandemic. 

Direct Assessments 

 To directly assess children on their math, receptive vocabulary, and executive functioning 

skills, we trained staff to reliability and conducted the assessments in the fall of 2017 (September 

22 – December 18) and again in the spring of 2018 (April 2 – June 11). All of the assessments 

were conducted on the same day in a quiet place outside of the child’s classroom, such as an 

empty office or classroom. It took an average of 45 minutes per child to administer all 

assessments at each time point. In order to ensure high quality administration, a master’s-level 

supervisor observed 10% of all field assessments. To determine the language of assessments, we 

used the Pre-language Assessment Scale (PreLAS) Simon Says and Art Show tests (Duncan & 
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DeAvila, 1998) as a warm-up to the assessment battery and to determine the administration 

language for a subset of assessments (Barrueco et al., 2012). 964 (95%) children participated in 

the fall PreLAS assessment and 923 (91%) participated in the spring PreLAS assessment. Of the 

964 children who participated in the fall PreLAS, 23 (2%) did not pass and completed a subset of 

assessments in Spanish in the fall. Likewise, of the 923 who participated in the spring PreLAS, 6 

(1%) did not pass the PreLAS and completed assessments in Spanish in the spring; all 6 students 

who did not pass the spring screener also did not pass the fall screener. Spanish was the first 

language for all students who did not pass the PreLAS at either time point. The exceptions to this 

process were some of the literacy and language assessments – the Dynamic Indicators of Basic 

Literacy Skills – Next (DIBELS) subscales as discussed more in the measures section below – 

were administered by the district teachers as opposed to researchers as part of their normal 

district assessment activities. 

Teacher Reports 

We asked teachers of participating students to complete a short report on each student 

assessing children’s socio-emotional and self-regulation skills. Teachers completed these reports 

in the fall of 2017 (September 25 – January 30) and again in the spring of 2018 (April 23 – July 

24). Of the 1,012 students in the study, 825 (82%) had completed teacher reports in the fall and 

878 (87%) in the spring. 

Parent Surveys 

In the fall of 2017, we reached out to the parents of the consented study students via 

email and text message to ask them to complete the 20-minute parent survey. We also sent 

biweekly reminders to the parents asking them to complete the survey and used backpack mail 

for parents who did not complete the survey electronically. The survey consisted of parental 
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demographic information along with questions about educational experiences and parental 

perceptions about the importance of schooling and attendance. Although the majority of parents 

completed the survey in English, we also translated the survey into Spanish, Vietnamese, and 

Mandarin. For completing the survey, parents received a $25 gift card. Of the 1,012 students in 

our study, 437 (43%) of parents completed the survey in kindergarten. When possible, we 

replaced missing values of the parent survey with data from the parent survey from the first year 

of the larger study, bringing the total parent survey completion rate to 488 (48%). 

Teacher Surveys 

In the spring of 2018, we asked teachers of study participants to complete a survey asking 

demographic questions as well as questions about their educational background and teaching 

license. Of the 130 teachers in our study, 128 (98%) completed the teacher survey, representing 

915 (90%) of the 1,012 study students. Teachers completed the survey between April 23 and July 

24. 

Measures 

Special Education and Attendance Data from Administrative Data 

 We used administrative data from BPS to identify our two primary outcome variables: 

special education and chronic absenteeism status in kindergarten, first, and second grades. We 

operationalized our binary indicator of special education status if students were flagged as such 

in the administrative records at any point during the school year. For our main models, we 

included a student in our special education indicator if they were identified in the administrative 

data as special education, regardless of the type of special education designation. We discuss this 

later in the limitation sections of our paper. 
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In the administrative data, we had records of the number of school days the students were 

enrolled in BPS and the number of days that they were absent. Although the records included the 

number of days students had both excused and unexcused absences, we added together these two 

types of absences for our analysis following the literature in order to examine the number of days 

those students were absent regardless of the reason. If students switched classrooms and/or 

schools during the school year, we were able to follow them through these moves and took all 

attendance and enrollment data into account. We used the attendance records to construct binary 

indicators of chronic absenteeism. We defined chronic absenteeism as a student being absent – 

either as excused or unexcused - for 10% or more of school days enrolled for students enrolled 

for at least 90 days (Chang & Romero, 2008). In Appendix A, we present results using 

alternative definitions of chronic absenteeism. 

Demographic Data from Administrative Data 

 We used also administrative data from BPS for information on child demographics for 

the fall of students’ kindergarten year. We created binary indicators variables to denote whether 

students were female, their race/ethnicity (Asian, Black, Latinx, White, or mixed/other race), and 

whether their first language was English, home language was English, and parental language 

preference was English. We created indicators for whether students received free or reduced-

price lunch (FRPL), were Dual Language Learners, and were classified as Limited English 

Proficient. We also used a continuous variable for their age as of September 1, 2017. We then 

used the administrative data to supplement the information about children’s prekindergarten 

experience when possible if it was missing information from the parental surveys as described 

below. We chose these predictor variables in order to align with previous work done with this 
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sample (McCormick et al., 2020) and because previous literature showed their relationship to 

child outcomes (Choi et al., 2018; Powell et al., 2010; Reardon & Portilla, 2016). 

Achievement Measures from Direct Assessments 

 We used multiple measures of literacy/language, math, and executive functioning, all of 

which have been used and discussed in more detail in previous work with our sample 

(McCormick et al., 2020). 

Literacy and Language Measures.  To measure receptive vocabulary, we used the raw 

score from the Peabody Picture Vocabulary Test IV (PPVT) in the fall and spring of 

kindergarten. The PPVT is a nationally normed exam with strong reliability estimates (Dunn & 

Dunn, 1997). For this measure only, we assessed all students in English regardless of their 

PreLAS performance in order to obtain a measure of English vocabulary.  

To measure students’ literacy skills, we used the raw scores from the teacher-

administered22 Dynamic Indicators of Basic Literacy Skills – Next (DIBELS). The DIBELS has 

excellent validity and is widely used (Good et al., 2011). We used subtests to measure students’ 

letter knowledge (Letter Naming Fluency: LNF), phonological awareness (First Sound Fluency: 

FSF; Phoneme Segmentation Fluency: PSF), and alphabetic principle (Nonsense Word Fluency 

Correct Letter Sounds: CLS; Nonsense Word Fluency Whole Word Read: WWR). In accordance 

with their curriculum, teachers administered the FSF and LNF subtests in the fall and LNF, PSF, 

CLS, and WWR subtests in the spring. 

Math Measures.  To measure math skills, we used the raw scores from both the 

Woodcock Johnson Applied Problems III (WJAP) and Research-Based Early Mathematics 

Assessment (REMA). The WJAP assesses numeracy and early mathematics and has strong 

 
22 The DIBELS was the only direct assessment administered by teachers. For more, see (cite Attender paper). 
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psychometric properties (Woodcock et al., 2001). For students who did not pass the PreLAS, we 

assessed them using the Spanish language equivalent called the Batería III Woodcock Muñoz 

(Schrank et al., 2005). We used the WJAP in both the fall and spring of kindergarten. The 

REMA assessment goes beyond numeracy to include geometry and measurement skills and has 

high internal reliability across subscales (Clements & Sarama, 2007). For students who did not 

pass the PreLAS, we used the Spanish language equivalent (Clements & Sarama, 2007). We only 

assessed students with the REMA in the spring of kindergarten. 

Executive Functioning Measures.  To measure short-term memory, we used the 

categorical score of the Forward Digit Span (FDS) assessment (Gathercole, 1999). This 

assessment has good test-retest reliability (Lipsey et al., 2017) and is predictive of student 

achievement (Bull et al., 2008). We used the FDS in both the fall and spring of kindergarten and 

assessed students in Spanish if they did not pass the PreLAS. To measure working memory, we 

used the categorical score of the Backward Digit Span (BDS) assessment. This measure is 

commonly used to measure working memory (Coulacoglou & Saklofske, 2017; Holdnack, 

2019). Like the FDS, we assessed students using the BDS in both fall and spring of kindergarten 

and used the Spanish version if students did not pass the PreLAS. 

We also used the percent correct scores of the Hearts and Flowers (H&F) assessment. We 

used the mixed subscale to measure cognitive flexibility and the incongruent subscale to measure 

inhibitory control, one of the three components of executive function (Weiland et al., 2014). This 

measure has strong reliability scores for young children through young teenagers (Davidson et 

al., 2006). We used both trials of H&F in the fall and spring of kindergarten and administered the 

assessment in Spanish for students who did not pass the PreLAS. To measure self-regulation, we 

used the raw scores from the Preschool Self-Regulation Assessment (PSRA). The PSRA is an 
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assessor report with strong reliability evidence, and we used the attention-impulsivity (AI) and 

positive emotion (PE) subscales (Raver et al., 2011; Smith-Donald et al., 2007).  

Additional Assessments from Teacher Reports 

 We designed the reports that teachers completed on every student in both the fall and 

spring using questions from two assessments that measure various aspects of students’ 

intrapersonal and interpersonal competencies: the Social Skills Improvement System (SSIS) and 

the Teacher-Child Rating Scale (TCRS). Both assessments asked teachers to complete a battery 

of Likert-scale questions that have been previously validated to form constructs. From the SSIS, 

we used questions to measure six constructs: students’ cooperation, engagement, self-control, 

externalizing behavior, internalizing behavior, and hyperactivity/inattention (Gresham & Elliott, 

2008). From the TCRS, we used questions to measure students’ academic orientation (Hightower 

et al., 1986). 

Family Data from Parent Surveys 

 We used the parental surveys to create a set of binary indicator variables describing the 

parents’ education level (high school diploma or less, two-year degree, Bachelor’s degree, and 

advanced degree). We also created a set of continuous variables to measure the age of both the 

mother and father at first child’s birth, the parental age when completing the survey, and the 

household size. We also created binary indicator variables to denote whether there was at least 

one person in the household working full time (defined as 35 hours per week), whether parental 

respondent was married or had a partner, whether the child had received an Early Intervention 

Services or Individualized Family Service Plan, whether the parent considered both daily 

prekindergarten and kindergarten attendance very important (a score of 5 on a 1 to 5 Likert 

scale), and whether the parent was satisfied with their child’s school assignment. We created 



 

 

66 
 

 

binary indicators to represent whether the child had attended prekindergarten in the BPS public 

program, a non-BPS center-based prekindergarten program, or did not received center-based 

care. To measure household income, we created binary indicators to denote whether the 

household income was less than $25,000, between $25,000 and $59,999, and over $60,000. We 

also asked parents to what extent they engaged with constrained and unconstrained 

literacy/language and math activities23 as well as experiential learning activities with their 

children on a weekly basis. We also included a continuous measure of how many children’s 

books – including library books – were in the home. We chose these predictor variables in order 

to align with previous work done with this sample (McCormick et al., 2020) and because 

previous literature showed their relationship to child outcomes (Bloom & Weiland, 2015; Puma 

et al., 2005; Weiland et al., 2018). 

Teacher Data  

 From the teacher surveys, we used continuous measures of teachers’ years of teaching 

experience generally, years of teaching experience in kindergarten, and their age. We also 

created binary indicators of whether teachers were female and their race/ethnicity (White, Black, 

and Latinx). We also created binary indicators of the type of their highest degree (education 

specialist/professional diploma, Associate’s, Bachelor’s, Master’s, or Doctorate), the area of 

their highest education degree (early childhood education, elementary education, special 

education, child development, reading specialist, curriculum and instruction, bilingual/bicultural 

education, other type of education, and other non-education), and the area of their current 

teaching license (early childhood education, elementary education, English Language Learners, 

 
23 For more detailed information on constrained versus unconstrained literacy/language and math activities, see 
(McCormick et al., 2020). 
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teacher of students with moderate disabilities, teacher of students with severe disabilities, other 

type of teacher, teacher specialist, administrator, professional support personnel, or none). We 

chose these variables given the previous work done showing their relationship to child outcomes 

(Early et al., 2007; Landry et al., 2006; Lin & Magnuson, 2018). 

Analytic Approach 

Missing Data 

 We had varying rates of missing data depending on the data source. We had no 

missingness for our outcome or child demographic variables because those came from 

administrative data. Specifically, we had between 6%-11% missingness for the fall researcher-

collected direct assessments; 23% missingness for the fall district-collected academic 

assessments; 18-19% on the fall teacher report assessments; 9%-24% missingness for the spring 

researcher-collected direct assessments; 22% missingness for the spring district-collected 

academic assessments; 13-14% on the spring teacher report assessments; 34-60% on the family 

data from the parent surveys; and 8-14% on the teacher data from the teacher surveys (Appendix 

C Table 1). 

We used conditional mean imputation, also known as regression imputation, for the 

variables with missingness by replacing missing values with estimates derived from regression 

equations fit using non-missing values (Enders, 2010; Harrell Jr., 2015). Although conditional 

mean imputation can lead to biased parameter estimates and dampened standard error estimates 

under certain circumstances that multiple imputation may resolve (Enders, 2010), we chose this 

approach because the focus of our models is on predictive power rather than parameter 

estimation. By using a simpler missing data strategy, we also hoped to create a model that would 

be transparent to practitioners. To retain information about which students originally had missing 
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information in case the missingness was informative for the models, we also included a binary 

indicator for each variable that had missingness that denoted whether a student initially was 

missing a value for that variable. We also include a version of our analysis conducted using 

multiple imputation in Appendix A as a robustness check. 

RQ1 & 2: Identifying Special Education & Chronic Absenteeism Status 

 We operationalized our two outcome measures (indicators of special education and 

chronic absenteeism status) as binary indicators. When coding our predictive models, we forced 

the software to recognize the binary variables as continuous from zero to one, inclusive, to act as 

a likelihood risk score to provide more nuanced model interpretation for practitioners and policy 

makers. This analytical decision could ultimately allow schools to set their own risk threshold 

when identifying at-risk students (Bruch et al., 2020). 

To compare traditional regression to machine learning model performance, we first fit the 

data with a both linear probability and logistic model. Then we fit the data with three different 

machine learning algorithms that were common in the machine learning education literature 

(Bruch et al., 2020; Chung & Lee, 2019; Lakkaraju et al., 2015; Márquez-Vera et al., 2016): 

elastic net with a linear base, decision tree, and random forest. In addition to their previous use in 

the literature, we also choose these algorithms in order to include both parametric (elastic net) 

and nonparametric (decision tree and random forest) options. While the elastic net model is a 

machine learning algorithm, we chose it to function as a bridge between the traditional linear 

probability and logistic models and the more statistically flexible decision tree and random forest 

models. In contrast to traditional regression models where there is generally a consensus on the 

main type of model to fit based on the nature of the outcome variable, there are multiple machine 

learning algorithms designed to be used for the same purpose. Therefore, it is becoming 
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increasingly common to use three to five algorithms and compare predictive performance across 

models (cite paper 1). 

 Similarly, there is not a universally agreed upon method of dividing the dataset into the 

training and testing data for the machine learning algorithms in the education literature. Given 

the relatively small size and structure of our dataset (i.e., not having multiple cohorts), we 

randomly selected 80% of the students to be in our training dataset and remaining 20% in our 

testing dataset. We fit all five models (linear probability, logistic, elastic net, decision tree, and 

random forest) using the training data in order to establish parameter estimates that define the 

models. We then used these to predict the outcomes using the testing data. While fitting the 

model with the training data optimizes its flexibility, we obtained the fit statistics used to 

measure model performance from the testing data. The use of training and testing data is 

commonly used in machine learning work as it acts as a check on overfitting the models (Athey, 

2019; Mullainathan & Spiess, 2017). To account for our relatively small sample size, especially 

after splitting into testing and training data, we repeated this 80/20 split four more times to create 

a total of five model iterations and averaged the fit statistics across the five sets of testing data 

for our final value of model performance. 

 To examine the part of the research question that specifies examining how model 

performance varies based on the input data used, we fit all five models using conceptual blocks 

of data: Block 1 = child demographics, Block 2 = Block 1 with direct assessments (fall of K), 

Block 3 = Block 2 with teacher assessments (fall of K), Block 4 = Block 3 with family data, 

Block 5 = Block 4 with teacher data, Block 6 = Block 5 with direct assessments (spring of K), 

Block 7 = Block 6 with teacher assessments (spring of K). We chose to fit the conceptual blocks 
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in this order to imitate the timeline of when schools would be able to access similar types of data 

in practice. 

  To evaluate model performance given that the outcome will be operationalized as a 

continuous variable, we used the area under the receiver operating characteristic curve (AUC). 

AUC is a commonly used measure that ranges from zero to one, with measures closer to one 

indicating better performance. Generally, an AUC of 0.5 suggests no model discrimination, 0.7-

0.8 is acceptable, 0.8-0.9 is excellent, and greater than 0.9 is outstanding model performance 

(Mandrekar, 2010). The AUC measures the area under the curve created by graphing the 

sensitivity (i.e., the proportion of true positives out of total actual positive, also known as true 

positive rate or recall) versus 1 – specificity (i.e., the proportion of true negative out of total 

actual negative, also known as the true negative rate) at every possible threshold from zero to 

one for turning the continuous likelihood into a binary classification. Just as using a continuous 

outcome operationalization provides a more granular and nuanced measure, the AUC provides 

an analogous measure compared to the performance metrics obtained from using a binary 

classification (i.e., true/false positive/negative rates) (Bruch et al., 2020). 

RQ3: Value Added of One Additional Researcher-Collected Data Point 

 We examined the potential value that one additional assessment would add if BPS were 

able to invest in one research-collected assessment to add to their district-collected data. To 

calculate this, we fit eight models, all using the student demographics and fall of kindergarten 

DIBELS assessments plus one researcher-collected assessment collected in the fall of 

kindergarten. The first model included the Peabody Picture Vocabulary Test (PPVT), the second 

the Woodcock Johnson Applied Problems (WJAP), the third the Research-Based Early 

Mathematics Assessment (REMA), the fourth the Digit Span Forward (FDS), the fifth both the 



 

 

71 
 

 

mixed and incongruent subscales of the Hearts and Flowers (H&F) assessment, the sixth both the 

attention/impulse control and positive emotion subscales of the Preschool Self-Regulation 

Assessment (PSRA), the seventh the academic orientation subscale of Teacher-Child Rating 

Scale (TCRS), and the eighth the cooperation, engagement, self-control, externalizing behavior, 

internalizing behavior, and hyperattention/inattention subscales of the Social Skills Improvement 

System (SSIS) assessment. We then repeated these models using data from both the fall and 

spring of kindergarten, i.e., the student demographics, fall and spring of kindergarten DIBELS 

assessments, and the fall and spring of kindergarten additional researcher-collected assessment. 

Similar to the first and second research questions, we randomly selected 80% of students to be in 

the training data and the remaining 20% in the testing data. We also repeated this process for a 

total of five times and averaged the fit statistics across the five testing datasets. We used the 

AUC values to compare model performance to the models fill with the full set of researcher-

collected predictors from the first two research questions. 

Results 

RQ1: Predicting Special Education Status 

 In our models predicting receipt of special education services, we found overall that 

model performance improved most with the addition of the fall of kindergarten academic and 

executive functioning assessments and that the elastic net and random forest models performed 

best. When predicting first grade special educations status, the linear probability model only had 

an acceptable model performance when using the fall of kindergarten academic, executive 

functioning, intra-, and interpersonal assessments (AUC = 0.702, Table 5, Panel A) but had an 

acceptable fit for every model except for the only with demographics when predicting second 

grade special education status (Table 5, Panel A). The logistic models did not converge for either 
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grade after the addition of the fall of kindergarten academic and executive functioning 

assessments. Of the logistic models that did converge, the only one that had acceptable 

performance was the model predicting second grade special education status using fall of 

kindergarten academic and executive functioning assessments (AUC = 0.763, Table 5, Panel B). 

 For the machine learning models, none of the decision tree models performed well (Table 

5, Panel D). The elastic net and random forest models performed comparably, with both models 

reaching an acceptable model performance for both grades for the model that incorporated fall of 

kindergarten academic and executive functioning assessments and maintaining either an 

acceptable or excellent fit for every subsequent model (Table 5, Panels C and E). The models 

with the best performance for predicting first grade special education status was the random 

forest model with all predictor groups (AUC = 0.770, Table 5, Panel E) and elastic net with all 

predictor groups for predicting second grade special education status (AUC = 0.844, Table 5, 

Panel C). 

RQ2: Predicting Chronic Absenteeism Status 

 Overall, every model had a poor performance when predicting chronic absenteeism for 

every grade. There was a large amount of variability in model performance in that it was unclear 

how the inclusion of different sets of predictor variables influenced performance, and the linear 

probability, elastic net, and random forest models had the best performance. For the linear 

probability models, the best performing model was that predicting first grade chronic 

absenteeism using fall of kindergarten academic, executive functioning, intra-, and interpersonal 

assessments (AUC = 0.674, Table 6, Panel A). Like the special education models, the logistic 

models did not converge for most of the predictor variable groups (Table 6, Panel A). 
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 For the machine learning models, the best performing model predicting kindergarten 

chronic absenteeism was the elastic net model with fall of kindergarten academic, executive 

functioning, intra-, and interpersonal assessments (AUC = 0.647, Table 6, Panel C). The best 

machine learning model for first grade chronic absenteeism was the elastic net model with fall of 

kindergarten academic and executive functioning assessments (AUC = 0.666, Table 6, Panel C). 

The best machine learning model for second grade chronic absenteeism was the elastic net model 

with fall of kindergarten academic, executive functioning, intra-, and interpersonal assessments 

plus the family data (AUC = 0.666, Table 6, Panel C). 

RQ3: Value Added of One Additional Researcher-Collected Data Point 

 Overall, the results indicated that either the SSIS or TCRS would be the best assessment 

the district could invest in to improve predictive model performance, particularly if that model 

was fit with both fall and spring of kindergarten data. When predicting special education services 

using data from the fall of kindergarten, the best performing model predicting receipt of special 

education services for first grade was the elastic net model using the SSIS (AUC = 0.733, Table 

7, Panel C, Column 1) while the best model for second grade was the random forest model that 

used the PSRA (AUC = 0.829, Table 7, Panel E, Column 2). When predicting chronic 

absenteeism using data from the fall of kindergarten, the best kindergarten model was the 

random forest model with the TCRS (AUC = 0.676, Table 7, Panel E, Column 3), first grade was 

the linear probability model with the WJAP (AUC = 0.675, Table 7, Panel A, Column 4), and 

second grade was the elastic net model with the TCRS (AUC = 0.684, Table 7, Panel C, Column 

5). All the special education and chronically absent models fit with one additional fall 

researcher-collected assessment performed either the same or, in most cases, better than the best 
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performing model fit with only fall of kindergarten district-collected data (see extension analysis 

below). 

 For the models fit with an additional assessment collected both in the fall and spring of 

kindergarten, all the models performed best with the addition of either the TCRS or SSIS. The 

best performing model predicting receipt of special education services in both the first and 

second grades using data from both the fall and spring of kindergarten was the elastic net model 

with the SSIS (AUC = 0.779, Table 8, Panel C, Column 1 for first grade; AUC = 0.851, Table 8, 

Panel C, Column 2 for second grade). When predicting chronic absenteeism using data from the 

fall and spring of kindergarten, the best kindergarten model was the linear probability model 

with the SSIS (AUC = 0.683, Table 8, Panel A, Column 3), first grade was the elastic net model 

with the WJAP (AUC = 0.672, Table 8, Panel C, Column 4), and second grade was the elastic 

net model with the TCRS (AUC = 0.670, Table 8, Panel C, Column 5). All the special education 

and chronically absent models fit with one additional fall and spring researcher-collected 

assessment performed either the same or, in most cases, better than the best performing model fit 

with fall and spring of kindergarten district-collected data. 

The models fit with only the district-collected data plus one extra researcher-collected 

data point performed similarly to the models fit with all the researcher-collected academic and 

executive functioning assessments as seen in the first and second research questions. Although 

the models predicting receipt of special education services improved their performance by 

adding the fall and spring of kindergarten additional assessment measures, the models predicting 

chronic absenteeism that used the fall and spring of kindergarten additional assessment 

performed approximately the same as the models using only the fall of kindergarten additional 
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assessment. Overall, these results indicate that BPS will have more accurate predictive models 

by investing in one additional assessment, mainly either the TCRS or SSIS. 

Robustness Checks 

 We conducted sensitivity analyses to address five different threats to the model 

performance and to determine the robustness of our findings. We considered an alternative way 

to address missing data using multiple imputation, removed students who received special 

education services during kindergarten, addressed model performance using a different definition 

of chronic absenteeism that relies on students missing at least 15 school days, refit our models 

with separate conceptual blocks of predictor variables, and removed the student demographic 

variables. A full description of these in included in Appendix A. Overall, we found our results to 

be generally robust to these five threats. While there was some variation in model performance, 

particularly for the models predicting chronic absenteeism using multiple imputation compared 

to those fit using conditional mean imputation, the results were not consistent enough to indicate 

a strong reason to deviate from our primary analytic approach. 

Extension Analyses 

 We extended our main analysis in four ways: subgroup analysis, models fit with only 

district-collected data, Youden statistic, and confusion matrices (results are in Appendix B). This 

extension analysis provides a more tangible way of conceptualizing the results by demonstrating 

how the models presented in the main analysis would be used in an educational setting where 

school personnel have to set a cut point in the likelihood of dropping out of high school in order 

to identify students for intervention (Bruch et al., 2020). 

Subgroup Analysis 
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 First, to address the question of consequential validity of using predicting models that do 

not work equally well for important subgroups of students (Brussow, 2018; Gebru, 2021; 

Kantayya, 2020), we determined the AUC values for our main models when restricting our 

sample to students identified as Dual Language Learners at baseline and again for students not 

identified as Dual Language Learners (DLL). In the limitations section, we discuss how we 

would ideally perform subgroup analysis for other student subgroups but are limited by our 

sample size. 

Overall, the special education models for the DLL students (Appendix C, Table 2) 

performed worse than the models for the non-DLL students (Appendix C, Table 3), particularly 

for first grade special education status. We saw a similar trend in the chronically absent models. 

For all grades, the DLL models (Appendix C, Table 4) again performed worse than the non-DLL 

models (Appendix C, Table 5). While all of the chronically absent models for the full sample had 

poor fit, a few of the non-DLL elastic net models for chronic absenteeism in second grade had an 

acceptable fit. Even though 51% of the sample was identified DLL and the DLL students had 

approximately similar rates of being chronically absent, these results indicate that the models do 

not perform equally well for both DLL and non-DLL students. This means that school personnel 

should use caution when applying these predictive models to DLL students. 

District-Collected Data Only 

 Second, we identified a set of models where all the data was collected by district 

personnel, i.e., excluding the researcher-collected data that we had access to in this study that the 

district normally does not have access to – the extra academic assessments, intra- and 

interpersonal assessments, family data, and teacher characteristics. These models use the student 

characteristics from the administrative data as seen in Block 1 of the main models plus the 
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assessments (DIBELS) administered by the district teachers as part of their normal assessment 

activities as the predictor variables. We present two versions of these models. The first one uses 

the administrative data plus the fall of kindergarten DIBELS assessments. The second version 

uses all the predictors from the first iteration plus the spring of kindergarten DIBELS 

assessments. To further understand model performance, we included the distribution of the AUC 

values across the five model iterations for these two models fit with district-collected data along 

with the first model from the primary analysis that only used student demographic variables. The 

distribution of AUC values for all remaining models are available upon request. 

Compared to model 1 in the main analysis results that uses only student demographics 

where none of the models had an acceptable performance, almost every special education model 

with fall and spring DIBELS information performed better when predicting first grade special 

education. Particularly, the logistic and random forest models had an acceptable performance. 

Additionally, every model had either an acceptable or excellent performance when predicting 

second grade special education with either fall only or fall and spring DIBELS scores (Appendix 

C, Table 6, Columns 1 and 2). Just like the main models, none of the chronic absenteeism 

models fit with only the DIBELS had an acceptable performance (Appendix C, Table 6, 

Columns 3-5). These results indicate the models fit only with the district-collected data perform 

well only in certain circumstances. 

When considering the distribution of AUC values across model iterations, the overall 

pattern is that the distribution widens as the grade level increases. Within each model type, the 

distribution of the AUC values from the models predicting first-grade special education status 

(Appendix B, Figure 1) was narrower than that of the second-grade special education models 

(Appendix B, Figure 2). Similarly, the distributions of the AUC values within model type from 
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the models predicting chronic absenteeism in kindergarten (Appendix B, Figure 3) and first 

grade (Appendix B, Figure 4) were narrower than that of second grade (Appendix B, Figure 5). 

This indicates that the amount of sampling variability arising from the partitioning of the full 

dataset into the testing and training datasets increased as the models predicted higher grades. 

Youden Statistic 

 Third, following the example of Bruch et al. (2020), we then extended our analysis of 

performance metrics by finding the optimal point on the receiver operating characteristic curves 

that optimizes the balance between the sensitivity and specificity. This point on the curve is 

known as the Youden statistic (also known as Youden’s J statistic) and is defined as 𝐽 =

𝑚𝑎𝑥!{𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑡) + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑡) − 1} (Berrar, 2019; Youden, 1950). Sensitivity is true 

positive rate while specificity is the true negative rate (cite paper 1). While the Youden statistic 

is the empirically-defined optimal risk score in balancing true positive and negatives, we use it as 

an example of how schools can choose a risk score that reflects their preferences in which 

students to prioritize due to resource constraints and policy directives (Bruch et al., 2020). We 

present the Youden statistic for the models that only use district-collected data available to 

district personnel under normal circumstances (i.e., the models with only the student 

characteristics from administrative data, the models fit with the administrative data plus the fall 

of kindergarten DIBELS assessments, and the models with the administrative data and fall and 

spring of kindergarten DIBELS assessments). Youden statistics for all remaining models are 

available upon request. Additionally, we included the distribution of the Youden statistic values 

across the five model iterations for these two models fit with district-collected data along with 

the first model from the primary analysis that only used student demographic variables. The 

distributions of Youden statistic values for all remaining models are available upon request. 
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Overall, for the best performing special education models (i.e., elastic net and random 

forest), the Youden statistic increased as more predictor variables were added. For example, the 

elastic net model using only student demographics predicting second grade special education 

status had a cut point of 0.062, 0.098 with the fall of kindergarten DIBELS, and 0.127 with the 

fall and spring of kindergarten DIBELS (Appendix C, Table 7, Column 2, Panel C). This means 

that the empirically defined optimal balance point between the true positive and negatives for the 

elastic net models ranged from a 6.2% to 12.7% likelihood of being identified as needing special 

education services based on the predictor variables used. Compared to the special education 

models, the models predicting chronic absenteeism generally tended to have smaller Youden 

statistics as the grade increased across model type. For example, based on the predictor variables 

used, the Youden statistic for the elastic net models ranged from 0.148 to 0.166 for kindergarten, 

0.130 to 0.136 for first grade, and 0.085 to 0.093 for second grade (Appendix C, Table 7, 

Columns 3-5, Panel C). This means that if the district followed the empirically based risk score 

for elastic net models to identify students likely to be chronically absent, they will need to use 

between 8.5% and 16.6% as their cut point, depending on their exact model used. 

Compared to the AUC value distributions, there is no clear pattern in the distribution of 

Youden statistic values across the five model iterations other than the distributions for the 

machine learning models predicting chronic absenteeism across all grades tend to be slightly 

wider than the traditional regression models predicting chronic absenteeism (Appendix B, 

Figures 6-10). Overall, this indicates that there is variability in the Youden statistic based on the 

random sampling done to obtain the testing and training sets. As we are presenting the Youden 

statistic values as an example of an empirically defined cut score that schools could use to 
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identify students, we also want to stress that schools should investigate alternative cut points for 

their specific context. 

Confusion Matrices 

 Fourth, we present a confusion matrix that is derived by dichotomizing the dataset based 

on the Youden statistic for one sampling dataset. This extends the analysis done with the Youden 

statistic to provide an example for how schools can use a cutoff point in the predicted likelihood 

of receiving special education services or being chronically absent to determine the predicted 

true positive, false positive, true negative, and false negative rates (Berrar, 2019). We did this to 

examine model performance in a more tangible way than the more fine-grained AUC value 

provides. We present confusion matrices for the models that only use the district-collected data 

(i.e., the models with only the student characteristics from administrative data, the models fit 

with the administrative data plus the fall of kindergarten DIBELS assessments, and the models 

with the administrative data and fall and spring of kindergarten DIBELS assessments). 

Confusion matrices for all remaining models are available upon request. 

Even though the confusion matrices were created using the Youden statistic as a cut point 

that should optimize both the true positive and negative rates, there is great variability in these 

rates across models. For example, the decision tree model predicting first grade special education 

status using only student demographic data showed a very high specificity (99.5%) yet a low 

sensitivity (10%), meaning that while it was very good at correctly identifying students who 

were not receiving special education services, the model did poorly at correctly identifying 

students who did receive special education services (Appendix C, Table 8, Model 1, Panel D). 

Conversely, the logistic model predicting second grade chronic absenteeism also using only 

student demographic data showed both moderately high specificity (72.3%) and sensitivity 
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(76.9%), implying the model did well both in correctly identifying students who were and were 

not chronically absent (Appendix C, Table 12, Model 1, Panel B). Similar trends were seen 

across the models predicting special education in second grade (Appendix C, Table 9) and 

chronic absenteeism in kindergarten (Appendix C, Table 10) and first grade (Appendix C, Table 

11). Overall, these results indicate that there is a wide variation in how well the models correctly 

identify students who do and do not receive special education services and are chronically 

absent; school administrators must consider which group they would like to prioritize when 

selecting a predictive model to use. Additionally, these results were obtained when using the 

Youden statistic as the cut point and may change based on the use of a different cut point based 

on district priorities and resources. 

Discussion 

 We sought to understand the ability of machine learning versus traditional regression 

models to predict two outcomes in early elementary education that have important equity 

implications: receipt of special education services and chronic absenteeism. Students from 

families with low incomes, students of color, and English language learners suffer 

disproportionately from being misidentified for special education services and being chronically 

absent (Chang & Davis, 2015; Chang & Romero, 2008; Elder et al., 2021; Morgan et al., 2015). 

Not receiving special education services when needed and being chronically absent are both 

associated with lower academic achievement (Balfanz & Byrnes, 2012; Chang & Romero, 2008; 

Diamond et al., 2013; Guralnick, 1998; Hanushek et al., 2002; Morrissey et al., 2014; Snowling, 

2013), future school attendance (Ansari & Gottfried, 2018), behavior (Hurwitz et al., 2021), and 

completing high school and enrolling in postsecondary education (Ballis & Heath, 2019). Thus, 

it is important to identify students who need special education services and who are likely to be 
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chronically absent as early as possible in order to mediate with proven interventions (Kalil et al., 

2019; Kirksey & Gottfried, 2021; Rafferty et al., 2003; Robinson et al., 2018; Sullivan & Field, 

2013; Tran & Gershenson, 2021). 

 While there are a few studies showing the promising value of machine learning 

algorithms in predicting need for special education services (Bone et al., 2016; Thabtah & 

Peebles, 2020), particularly for students on the autism spectrum, and chronic absenteeism (Bruch 

et al., 2020) in early elementary students, this is the first study to both explore how machine 

learning algorithms compare to traditional regression models as well as how all of these models 

perform with different types of predictor variables. In addition to administrative data, we had 

access to rich data on student academic achievement and socioemotional skills and family and 

teacher characteristics that extends previous studies and provided the opportunity to examine 

model performance using data that is not usually available to school administrators. Analyses of 

these data point to measures not typically collected that may be worth consideration for districts 

interested in early warning systems. 

Special Education Results 

When looking at our models predicting receipt of special education services, we found 

that none of our models had an acceptable performance when using student demographics alone. 

Adding the fall of kindergarten academic achievement and executive functioning measures 

increased the elastic net and random forest models to an acceptable performance level for first 

grade and excellent for second grade. Although adding the additional conceptual blocks of 

predictor variables did not consistently improve model performance, every elastic net and 

random forest model with additional predictor variables had either an acceptable or excellent 

performance. Additionally, the linear probability models predicting second grade special 
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education status also had an acceptable performance. This indicates that it is possible for schools 

to construct well-performing models that predict special education receipt in first and second 

grade for students who did receive services in kindergarten using certain model types and 

predictor variables. We discuss further nuanced implications of this below. 

Although we cannot directly compare our main results to the previous studies predicting 

special education status because we compared model performance using AUC values instead of 

true and false positive rates, the confusion matrices that we presented in our additional extended 

analysis allow us a better opportunity to put our results in context. Compared to previous studies 

that reported a 85-90% correct identification rate for adolescents (Thabtah & Peebles, 2020) and 

89.2% for participants under the age of ten (Bone et al., 2016) when predicting the presence of 

autism spectrum disorder, our models predicting receipt of special education services had true 

positive rates ranging from 8.3% (decision tree for second grade) to 100% (linear probability for 

second grade) with an average of 54.3% across grades when using only child demographic 

information. This average increases to 56.1% when including the DIBELS fall of kindergarten 

district-collected data and 60.2% when including both the fall and spring DIBELS information. 

Although our results look less promising than those previously found in the literature, we also 

had faced issues due to sample size, as discussed in limitations. 

Chronic Absenteeism Results 

We found that when predicting chronic absenteeism, none of our models had an 

acceptable performance. Unlike the special education models, the chronic absenteeism models 

did not improve in performance with the addition of the fall of kindergarten academic 

achievement and executive functioning measures nor any subsequent sets of predictor variables. 

Even though none of the models performed well when predicting the likelihood of being 
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chronically absent, the models with the best performance were the linear probability, elastic net, 

and random forest models. Of these, there was no clear pattern for which grade the models 

performed best.  

To put our results in context with the prior literature, the one study predicting chronic 

absenteeism for elementary school also used AUC values to compare model performance (Bruch 

et al., 2020). The authors found AUC values of between 0.75 and 0.77 depending on model type. 

None of our models predicting chronic absenteeism had AUC values as strong as those in Bruch 

et al. (2020). This study also presented true positive rates of 74% and 75% for its elementary 

chronic absenteeism models that is created using a Youden statistic. Comparatively, we had an 

average true positive rate of 65.1% when predicting kindergarten chronic absenteeism using 

child demographic data (64.2% when including fall of kindergarten DIBELS and 62.4% when 

including fall and spring of kindergarten DIBELS), 62.9% when predicting first-grade chronic 

absenteeism using child demographic data (57.2% when including fall of kindergarten DIBELS 

and 52.8% when including fall and spring of kindergarten DIBELS), and 87.8% when predicting 

first-grade chronic absenteeism using child demographic data (86.5% when including fall of 

kindergarten DIBELS and 72.5% when including fall and spring of kindergarten DIBELS). This 

indicates that our models predicting chronic absenteeism did not perform as well as those in 

Bruch et al., 2020. Similarly, a follow up study to Bruch et al. (2020) found that models 

predicting chronic absenteeism using machine learning performed similarly to models based on a 

simple set of indicators (Cattell & Bruch, 2021). Although this methodological approach is not 

exactly the same as ours, our findings were in line with theirs since we also found that the 

machine learning models performed similarly to our traditional regression models. 

Policy Implications 
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 Because the school district had access to student characteristics from the administrative 

data at baseline and administered the DIBELS literacy and language assessments in the fall and 

spring of kindergarten to every student in the district, we consider the first model from the main 

results plus the models conducted using the child demographics plus the DIBELS in Appendix B 

to be the most policy relevant in terms of limited resources if the district wanted to construct 

predictive models without collecting any more data. Overall, the model using the child 

demographics plus fall of kindergarten DIBELS data performed better than the model with only 

child demographics, and the model with child demographics and fall and spring of kindergarten 

DIBELS data performed better than the model with child demographics and only fall of 

kindergarten DIBELS data. Yet all three of these models generally performed comparably or 

slightly worse than the main text models with child demographic data plus the full range of 

academic assessments in the fall of kindergarten. Additionally, while almost all of the models 

with child demographics and fall and spring of kindergarten DIBELS data had an acceptable 

performance when predicting receipt of special education services in both grades, none of the 

models predicting chronic absenteeism had an acceptable model performance. We interpret this 

to mean that the district may fit acceptable models predicting both special education using 

district-collected data, but they would be restricted in the model type they use (i.e., any type for 

predicting special education service receipt but only linear probability, logistic, and elastic net 

for chronic absenteeism). They would also forgo better fitting models by not collecting more 

data, particularly either the SSIS or TCRS, which are quick teacher reports compared to more 

time-intensive direct assessments. 

 Similarly, it is important for school administrators to consider the trade-offs of forgoing 

an early warning system built on a traditional regression technique versus one built on a machine 
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learning algorithm. Although machine learning algorithms show promise for accurate predictions 

due to their statistically flexible nature (Ara et al., 2015; Bone et al., 2016; Bruch et al., 2020; 

Chung & Lee, 2019; Duda et al., 2016; Kotsiantis et al., 2003; Lakkaraju et al., 2015; Márquez-

Vera et al., 2016; Orooji & Chen, 2019; Pagani et al., 2008; Porter, 2019; Sansone, 2019; 

Thabtah & Peebles, 2020), they are also inherently less transparent than a linear or logistic 

model. It may be more difficult to get buy-in from stakeholders who would work with the 

students these prediction models identify because the predictions come from a system that is 

often viewed as a black box (cite paper 1). Therefore, we suggest that school officials consider 

how much better prediction models built on machine learning algorithms need to work compared 

to traditional regression models in order to justify their use.  

 Another important aspect for school administrators to consider when deciding to 

construct predictive models is the timeline to accessing data. As researchers, we are privileged to 

use data that may take multiple months to collect, validate, and clean, such as the fall of 

kindergarten academic assessments. It took the research staff the entire fall semester (from 

September 22 to December 18) to collect this data, and it is very possible that it would take 

longer to conduct these assessments on every student rather than those in the study sample in 

addition to using more resources given how relatively labor-intensive they are. Meanwhile, 

teachers conducted the DIBELS assessments on their students in 1.5 months (from September 14 

to October 31). Although the special education models using these assessments generally had 

acceptable model performance, schools may be able to get access to the DIBELS data faster than 

other academic achievement assessments and thus able to identify students sooner. This is 

particularly important when considering that the research shows that successful interventions to 

reduce chronic absenteeism include targeting parental beliefs (Kalil et al., 2019; Robinson et al., 
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2018) and smaller classes, race match between students and teachers (Tran & Gershenson, 2021), 

and serving breakfast during school hours (Kirksey & Gottfried, 2021), all of which take time to 

implement. When building these models in real time, administrators should consider how quickly 

they can access data in order to intervene in a timely and effective manner. 

 Other policy considerations for administrators to keep in mind are the consequences of 

true and false positive and negative rates because there are differential impacts for these groups 

of students (Brussow, 2018). Administrators must pick a threshold in the likelihood of students 

receiving special education services and being chronically absent, and that threshold can vary 

based on resources and the desire to optimize the type of students identified. In this context for 

the models predicting special education receipt, the false negatives are students who the model 

does not predict to need special education services yet actually receive them while the false 

positives are students who the model predicts to need services yet actually do not receive them. 

While it is ideal to minimize the numbers of students in both groups, we argue that there are 

greater implications for the false negative students because those are students who would not 

receive important services that they need (Ansari & Gottfried, 2018; Ballis & Heath, 2019; 

Diamond et al., 2013; Guralnick, 1998; Hanushek et al., 2002; Hurwitz et al., 2021; Snowling, 

2013; Ullery & Katz, 2016) compared to the false positive students who would go through extra 

screening only to later be determined that they do not need special education services (National 

Center on Response to Intervention, 2010). Even though the confusion matrices we present in 

Appendix B are based on the Youden statistic that is designed to empirically balance the true 

positive and negative rates (Berrar, 2019; Youden, 1950), our analysis showed that certain 

models vastly favored one of the other. Therefore, administrators should be cautious of this and 

not assume an equality of rates even when using the data-based cut point. 
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 Similarly, it is important to consider what a context-specific threshold would be for a 

model to qualify as having an acceptable performance. Although we based our decision of an 

AUC value of 0.7 as this threshold following the statistical literature (Mandrekar, 2010) and 

previous work done in this field (Bruch et al., 2020), we recognize that the application of the 

AUC in the field of education early warning systems is novel enough to not have a large enough 

precedence to have definitively established a threshold agreed upon throughout both the research 

and practitioner communities. Furthermore, this threshold may vary based on context, including 

geography, school and district size, and outcome studied. Thus, administrators should consider 

what an appropriate cutoff would be for their particular context when deciding which statistical 

model to use for an early warning system. 

With these implications in mind, and considering the limitations discussed below, we 

stress that this work is preliminary. Given the scant amount of existing work of this nature that 

we are building on, this exploratory research indicates that schools may be well served in 

investing resources into more research on the feasibility and performance of these predictor 

models under practical circumstances. While we have made every attempt to replicate what we 

believe to be operating school conditions, school personnel would be better equipped to make 

decisions such as how to simulate the types of data readily available to them, which types of 

performance metrics to focus on, and how logistically reasonable an early warning system would 

be given staffing capabilities. Our results indicate that such an early warning system based on 

predictor models shows promise, particularly for special education in first and second grades, yet 

we present our results as a first step towards putting them into practice. 

Limitations 



 

 

89 
 

 

 We note several important limitations to our work that should be taken into consideration 

when interpreting our results. The first is that our sample size is smaller compared to other 

similar studies. The other studies examining special education status had larger sample sizes (N = 

1726; Bone et al., 2016) and/or larger percentages of their samples identified as special education 

than our study did (26.8%, Thabtah & Peebles, 2020; 73.2%, Bone et al., 2016). Similarly, the 

study that used machine learning to predict chronic absenteeism had a much larger sample size 

than our study (N = 28, 719 for one model and N = 4,614 for another model; Bruch et al., 2020). 

Because machine learning models were designed to capitalize on large data sets, it is possible 

that our three machine learning models would have performed better with a larger sample size 

(cite paper 1). However, given that the average school district in the United States enrolls 

approximately 3,583 K-12 students, our sample size is not unrealistic for the average number of 

elementary students in a school district (U.S. Department of Education National Center for 

Education Statisics, 2019). Similarly, predictive models may be most helpful in execution when 

using data from previous cohorts of students to predict the performance of future cohorts of 

students. The fact that our sample consisted of only one cohort indicates that future research 

ideally should be done using not only larger sample sizes but students across multiple cohorts. 

 Our sample size also means that we were not able to differentitate between excused and 

unexecused absences in our chronic absenteeism models. Although we followed the literature on 

the most common approach of defining chronic absenteeism in our main text (missing 10% or 

more of school days while being enrolled for at least 90 days) and then another common 

definition on our robustness check (missing at least 15 school days without a minimum number 

of days enrolled) that count combined both excused and unexcused absences together (Chang & 

Romero, 2008), research also indicates an important difference in out-of-school factors that 
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contribute to long-term effects between students who have a higher number of excused absences 

versus unexcused absences (Pyne et al., 2021). Ideally, a model predicting chronic absenteeism 

for a school would be able to distinguish between these two types of absences. 

 Likewise, our relatively low sample size meant that we were not able to look at model 

performance based on two subgroups that we know from research are important for both special 

education and chronic absenteeism identification: students of color and students from families 

with low incomes (Chang & Davis, 2015; Chang & Romero, 2008; Elder et al., 2021; Morgan et 

al., 2015). Although we were able to have a large enough sample size to look at model 

performance based on Dual Language Learner (DLL) status, we were only able to do this 

because 51% of our sample identified as DLL; even for those models, it is very possible that they 

would have performed better with a larger sample size. Similarly, we had to aggregate all of the 

special education students in our sample together for our analysis despite knowing that there are 

important differences between types of special education identification and that they therefore 

require different types of intervention (Rafferty et al., 2003; Snowling, 2013; Sullivan & Field, 

2013). For example, one study that used machine learning techniques to differentiate between 

autism spectrum disorder and attention deficit hyperactivity disorder had a sample size of N = 

2925 that was solely comprised of two diagnosis options (Duda et al., 2016). 

Another limitation relates to the generalizability of our study. As we noted in our Participants 

and Setting section, our study sample is not perfectly representative of the larger BPS school 

district, particularly with respect to our two outcomes. Our sample has a lower percentage of 

students identified as receiving special education services in kindergarten, first grade, and second 

grade; our sample also had lower rates of chronic absenteeism in all three grades. Because these 

lower rates could be related to lower model performance, it is possible that our models could 



 

 

91 
 

 

have performed differently if our sample had larger percentages of special education and 

chronically absent students that were more representative of the district. 

When interpreting our results, it is important to keep in mind two additional cautions. The 

first is that our special education models were predicting receipt of special education services, 

not the inherent need for such services. Our data only shows which students have been identified 

by the district as needing services. Although the district employs a universal screener that 

hopefully mitigates the inequity that is more common with a referral system (National Center on 

Response to Intervention, 2010; Thabtah & Peebles, 2020), it is possible that there is existing 

bias in the data that we are replicating with our models due to structural and implicit bias 

affecting students with color, students from families with low incomes, and students from non-

majority cultural and linguistic backgrounds (Elder et al., 2021; Morgan et al., 2015; Voulgarides 

et al., 2017). 

The second additional caution is that our paper should not be interpreted as an ultimate 

referendum on the value of traditional regression versus machine learning models when 

predicting receipt of special education and chronic absenteeism in early elementary grades. As 

discussed in (cite paper 1), it is common to use multiple supervised machine learning algorithms 

when conducting predictive analytics. We chose three such algorithms based on their previous 

use in the literature and their methodological relevance to this study (Bruch et al., 2020; Chung 

& Lee, 2019; Lakkaraju et al., 2015; Márquez-Vera et al., 2016), but there are several more 

predictive machine learning algorithms that exist that we could have chosen (Athey, 2019; Hastie 

et al., 2009; James et al., 2013). Additionally, we could have adjusted our existing models using 

their internal hyperparameters that could have resulted in a different model performance (Hastie 

et al., 2009; James et al., 2013). Given the possibility for a different outcome based on these 
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decisions, we want to clarify that our results should be interpreted only in the context of the 

analysis we conducted. 

Conclusion 

 Despite these limitations, our findings offer insight into how traditional regression 

models (linear probability and logistic) compared to machine learning models (elastic net, 

decision tree, and random forest) when predicting two important outcomes for early elementary 

students with important equity implications: receipt of special education services and chronic 

absenteeism. We build on the existing literature that shows that it is possible to construct 

predictive machine learning models with acceptable performance for those two outcomes in this 

age group (Bone et al., 2016; Bruch et al., 2020; Duda et al., 2016; Thabtah & Peebles, 2020) 

and extend it by comparing model performance to traditional regression methods. We also 

examine under what circumstances – i.e., choice of predictor variables – model performance 

changes given our access to rich administrative, assessment, parent, and teacher data. Our work 

demonstrates that there are ways to approach building early warning systems that incorporate 

both traditional and new methods that can achieve the goal of predicting students as early as 

possible for intervention. 
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Paper 3: The Role of Machine Learning in Early Warning Systems for Predicting High 

School Dropout in Michigan 

Dropping out of high school is associated with worse financial, familial, and societal 

outcomes later in life (Alliance for Excellent Education, 2011; Bridgeland et al., 2006).   

Accordingly, a great deal of attention and resources have been directed to creating effective 

interventions to reduce dropout (Dynarski et al., 2008). One such intervention is the use of early 

warning systems that alert school personnel to which students are at high risk of dropping. These 

systems are designed to more effectively target intervention resources by identifying which 

students do and do not need intervention (O’Cummings & Therriault, 2015; U.S. Department of 

Education, 2016). 

To be useful and efficient given limited resources, the predictive models underlying these 

systems need to be as accurate as possible (Engler, 2020; U.S. Department of Education, 2016). 

Recent research has shown that machine learning offers a promising avenue for constructing 

highly predictive models when predicting students likely to drop out of high school (Ara et al., 

2015; Chung & Lee, 2019; Coleman et al., 2019; Lakkaraju et al., 2015; Márquez-Vera et al., 

2016; Orooji & Chen, 2019; Pagani et al., 2008; Sansone, 2019). However, machine learning 

techniques are somewhat opaque and complex for localities to operate, particularly compared to 

traditional regression models.  None of the studies to date examining the accuracy of machine 

learning techniques in predicting dropout have compared the performance of newer ML models 

to traditional regression models. Prior studies also have not explicitly explored model 



 

 

94 
 

 

performance for student subgroups that have differential dropout rates. This is an important 

consideration given prior work in other fields have showed that predictive machine learning 

models do not necessarily work equally well for subgroups, leading to bias in the predictions 

(Garvie et al., 2016; Hill, 2020; Obermeyer et al., 2019). 

 Using administrative data from the entire state of Michigan for five cohorts of students (N 

= 416,105) expected to graduate high school between academic years 2012-2013 and 2016-2017, 

I seek to help address these two critical gaps in the literature. I compare traditional regression 

models to machine learning models, exploring how early in a student’s career the models can 

accurately predict their likelihood of dropping out, and how the models perform for important 

student subgroups. Leveraging Michigan’s longitudinal database, I was able to collect data on 

students spanning back to fourth grade. Using information on student demographics, attendance, 

behavior, and academic performance, I fit two types of traditional regression models (linear 

probability and logistic) and three types of machine learning models (elastic net, decision tree, 

and random forest) predicting the likelihood of dropping out of high school using multiple 

conceptual blocks of predictors beginning with data in fourth grade. I used the area under the 

receiver operating characteristic curve (AUC) to evaluate model performance (Mandrekar, 

2010). Then I example model performance for four types of student subgroups with differential 

dropout rates: gender, race and ethnicity, socioeconomic, and receipt of special education 

services. 

 Overall, I found that the random forest models were most accurate, yet the linear 

probability, logistic, and elastic net models performed almost as well, to the point where it was 

not convincing that the machine learning models performed better than the traditional regression 

models. I also found that the models fit with fourth and fifth grade data had a strong model 
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performance and that this performance increased with each additional grade’s worth of data. On 

average across the four best performing model types, the models had approximately a 71.5% 

chance of correctly identifying students who dropped out of high school using data from fourth 

and fifth grade. This increased by an average of between 1-2% for each additional grade of data 

added to the model. When analyzing model performance across subgroups, I found that while it 

was possible to construct well performing models for each subgroup, it should not be assumed 

that models fit for the full sample work equally well for every subgroup. I then discuss 

implications for policy and limitations to consider when interpreting the results on how to build 

predictive models for early warning systems to identify students likely to drop out of high 

school. 

Review of Literature 

Importance of Identification for Intervention 

 It is crucial to accurately identify students who are at risk of dropping out of high school 

because students who do not finish high school are more likely to experience worse financial, 

familial, and social outcomes later in life. For example, students who do not finish high school 

earn on average 71% of the earnings of their peers who hold only a high school diploma, 54% 

for an Associate’s degree, and 42% for a Bachelor’s degree (Alliance for Excellent Education, 

2011). Students who drop out of high school are also more likely to be unemployed, receive 

social assistance benefits, live in poverty, commit crimes, take drugs, be in prison, be unhealthy, 

have a shorter life span, vote, volunteer, be a teenage parent, be either divorced or a single 

parent, have unhealthy children, and raise a child who does not graduate from high school 

(Alliance for Excellent Education, 2011; Bridgeland et al., 2006). Given these negative impacts 
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of dropping out of high school, early warning systems can help schools use their resources more 

efficiently to better identify students with a high likelihood of dropping out of high school.  

 Although there are multiple ways of defining high school graduation and dropout rate, it 

is clear across definitions that not every student is equally likely to be at risk. Nationally, the 

adjusted cohort graduation rate, which considers students who transfer in and out of the school, 

indicates that 85% of high school students graduate with a traditional diploma within four years 

of entering high school. This average masks important variation across race and ethnic lines; 

although 92% of Asian and Pacific Islander and 89% of White students graduate within four 

years, only 81% of Hispanic, 79% of Black, and 74% of American Indian or Alaska Native 

students do (Hussar et al., 2020). Similarly, another measure is the status dropout rate metric, 

which is calculated as the percentage of 16 to 24-year-olds who are not enrolled in school and 

have not earned either a traditional high school diploma or a GED (General Educational 

Development) equivalent. Nationally, the average status dropout rate is 5.3%, yet the Pacific 

Islander rate is 8.1%, Hispanic 8.0%, Black 6.4%, multiracial 5.2%, White 4.2%, and Asian 

1.9% (Hussar et al., 2020). Additionally, in almost every racial/ethnic category, males are more 

likely to drop out then females, students in institutionalized settings (such as adult and juvenile 

jails and prison and health care facilities) are more likely to drop out than those who are not, and 

foreign-born students are more likely drop out compared to U.S.-born students. Furthermore, 

students with a disability are 2.3 times more likely to drop out than students without a disability. 

All of these statistics indicate important equity concerns when studying which students are most 

are risk of dropping out of high school (Hussar et al., 2020). 

 Fortunately, there are evidence-based interventions that have been shown to be effective 

in mitigating high school dropout, including proper student identification, student-level, and 
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school-level interventions. Researchers recommend that schools track key student data 

longitudinally to better identify which students are most at risk of dropping out, often via an 

early warning system as discussed more below. Effective student-level interventions include 

assigning students an individual adult advocate who are appropriately trained with low enough 

caseloads such that they can meet regularly with students; providing students with extra 

academic support such as individual or small group tutoring, extra study time, and credit 

recovery; and implementing support programs to improve students’ classroom behavior, often 

coordinating with social services and mental health programs as needed. At the school-wide 

level, interventions that lead to a higher quality of learning for all students have been shown to 

help reduce dropout. These include fostering a personalized learning environment via small 

classes or learning communities, team teaching, and student participation in extracurricular 

activities that promote a sense of belonging among students as well as providing high-quality, 

engaging instruction that prepares students for life after high school, such as professional 

development for teachers, integrating academic and career-ready content, and work internships 

(Dynarski et al., 2008). Because every intervention is not appropriate for every student, schools 

show discretion in which interventions to use for their students, such as higher-poverty schools 

using adult advocates and credit recovery more often than lower-poverty schools (U.S. 

Department of Education, 2016). As schools are often limited in the resources they can allocate 

to dropout prevention, it is important to be as precise as possible when identifying which 

students need intervention (Engler, 2020). Indeed, to help control intervention costs, research 

recommends using an early warning system to identify students who are likely to drop out of 

high school (Dynarski et al., 2008) 

Current Process of Identification 
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 Over half of U.S. states24 use an early warning system for school improvement, including 

to flag students who are at risk of dropping out of high school (Data Quality Campaign, 2013; 

O’Cummings & Therriault, 2015; U.S. Department of Education, 2016). Part of an initiative to 

reduce dropout, early warning systems are used to identify students to determine an appropriate 

intervention based on the circumstances indicating why the individual students are deemed at-

risk. In some districts, early warning systems also use data to detect students who are at risk of 

not being reading proficient by the end of third grade and who are not ready for the transition 

from elementary to middle school and high school to college (Faria et al., 2017; O’Cummings & 

Therriault, 2015). 

 Early warning systems offer a data-driven approach to identifying at-risk students as 

opposed to solely relying on educators’ intuition about which students should receive 

interventions. While some districts use their own historical student data to create a tailored set of 

indicators for flagging students, other districts rely on the established literature about the factors 

commonly associated with dropping out of high school (Faria et al., 2017; O’Cummings & 

Therriault, 2015; Therriault et al., 2017). For example, previous research has shown that students 

are more likely to drop out of high school if they move frequently (Rumberger & Larson, 1998), 

have poor academic achievement (Battin-Pearson et al., 2000; Parr & Bonitz, 2015), are 

frequently absent, have low parental involvement (Parr & Bonitz, 2015), engage in deviant 

behavior, bond with antisocial peers, and are from families with low-incomes (Battin-Pearson et 

al., 2000). This research has been distilled into three main categories of commonly-used 

indicators for early warning systems: attendance, behavior, and course performance (Therriault 

et al., 2017; U.S. Department of Education, 2016). Although the exact indicators used for early 

 
24 For a full list of states, see Data Quality Campaign (2013). 
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warning systems are typically considered proprietary information, known flags include whether a 

student missed 20% of instructional time in middle school or 10% in high school, failed either an 

English or math course in middle school or any course in high school, had a GPA of 2.0 or lower 

in high school, and lacked enough course credits to advance to the next grade in high school 

(O’Cummings & Therriault, 2015; Therriault et al., 2017). Additionally, high-poverty schools 

and schools with particularly low graduation rates tend to also use data from out-of-school 

factors, such as homelessness status and experience with the juvenile justice system (U.S. 

Department of Education, 2016). Regardless of the precise indicators that schools use, early 

warning systems rely on data to identify students who are likely to drop out of high school before 

they do so to keep them in school. 

 There is variation in whether early warning systems are administered and monitored at 

the district or school level. Although larger schools are more likely to use an early warning 

system than smaller schools are, there is no statistically significant difference in a school’s 

likelihood of having a system in place based on graduation rate, poverty level, or location. 

Within a school, researchers found that school administrators and guidance counselors are the 

most common personnel who monitor the early warning systems, followed by student support 

teams, teachers, case managers, district administrators, and mentors. With respect to how often 

educators monitor the early warning system, 44% of schools reported checking the data weekly, 

citing capacity constraints for not being able to check it more often. Research has also shown 

that school educators and administrators generally like early warning systems because they find 

them accessible, easy to interpret, and accurate (U.S. Department of Education, 2016). Also, in 

large schools where teachers are siloed in departments, early warning systems alert teachers to 

the fact that students struggling in their class may also be do poorly in other classes, broadening 
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the focus from a single course to the whole student (O’Cummings & Therriault, 2015). The 

widespread adoption and benefits of early warning systems indicate that they are expected to 

continue to be used in the future. 

Machine Learning for Identification 

 Traditionally, the research investigating the factors associated with dropping out of high 

school that were used to create the indicators in early warning systems was conducted using 

traditional regression (Rumberger & Larson, 1998) and structural equation modeling (Battin-

Pearson et al., 2000; Parr & Bonitz, 2015). However, recent research has shown that a relatively 

new technique – machine learning – holds promise for predicting which students are at-risk of 

dropping out of high school very accurately, i.e., potentially over 90% correctly predicted (Ara et 

al., 2015; Chung & Lee, 2019; Coleman et al., 2019; Lakkaraju et al., 2015; Márquez-Vera et al., 

2016; Orooji & Chen, 2019; Pagani et al., 2008; Sansone, 2019). 

Among this research, there is a wide variety of the geographic areas studied and the type 

of data used in the models. For example, machine learning has been used to predict high school 

drop out in Louisiana (Orooji & Chen, 2019), large U.S. unnamed cities (Coleman et al., 2019; 

Lakkaraju et al., 2015), across the entire United States (Sansone, 2019), Denmark (Ara et al., 

2015), South Korea (Chung & Lee, 2019), Quebec (Pagani et al., 2008), and Mexico (Márquez-

Vera et al., 2016). While most of the studies used only administrative data (Ara et al., 2015; 

Chung & Lee, 2019; Lakkaraju et al., 2015; Orooji & Chen, 2019), two studies used 

administrative data plus extra assessment data (Coleman et al., 2019; Márquez-Vera et al., 2016) 

while two other studies used nationally-representative survey data instead (Pagani et al., 2008; 

Sansone, 2019). 
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Consistent with the use of machine learning studying other educational outcomes (cite 

dissertation paper 1), researchers conducted their analyses with different algorithms and 

performance metrics, making it difficult to directly compare the performance of the new machine 

learning models both to each other and to than traditional regression or binary indicator methods. 

However, trends indicate that machine learning is most predictive with large sample sizes (Ara et 

al., 2015; Chung & Lee, 2019; Coleman et al., 2019; Lakkaraju et al., 2015; Márquez-Vera et al., 

2016; Orooji & Chen, 2019; Pagani et al., 2008; Sansone, 2019). While the majority of these 

studies did not explicitly compare the performance of machine learning models to traditional 

regression methods, the one study that did showed that machine learning models were more 

accurate than logistic regression (Lakkaraju et al., 2015). This is most likely due to the flexible 

nature of machine learning models compared to traditional regression; without the constraints of 

regression models, most machine learning algorithms can fit the nuances of individual datasets 

well. Additionally, machine learning models are able to consider more input variables than 

traditional methods are because collinearity is not a concern (Hastie et al., 2009; James et al., 

2013). 

Although these studies demonstrate the capacity of machine learning for identifying 

which students are likely to drop out of high school, I build on this research by addressing three 

gaps. First, I address the call for an explicit examination of the potential added of machine 

learning over the traditional regression approach widely used already. Second, I examine model 

performance when using predictor variables that are measured prior to entering high school, 

something that only half of the existing studies did (Coleman et al., 2019; Lakkaraju et al., 2015; 

Orooji & Chen, 2019; Pagani et al., 2008). If it is possible to accurately predict students who are 

likely to drop out of high school as early as possible, then that may give school personnel more 
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time to intervene. Third, I study model performance for student subgroups, something that no 

previous study did. Because the literature demonstrates that students are differentially likely to 

drop out based on their gender, race/ethnicity, special education, and socioeconomic status 

(Hussar et al., 2020) and given the consequential validity of using a tool that should be attuned to 

these nuances in the data (Brussow, 2018), it is important not to assume that a model fit on an 

entire student sample would work equally well for these important student subgroups. If this 

assumption is not explored, it could lead to algorithmic bias and biased predictions (Gebru, 2021; 

Kantayya, 2020). This study will further nuance the conversation about how to construct 

predictive models for early warning systems addressing high school dropout. 

Current Study 

This exploratory study seeks to build on prior research by examining how – and under 

what circumstances – machine learning compares to traditional regression methods when 

predicting high school dropout. I answer two research questions:   

1. How does machine learning compare to traditional regression methods when 

identifying students who do not graduate from high school? How does this 

performance vary based using data from different grades as predictors?  

2. Do the models work equally well for student racial, socioeconomic, gender, and 

special education subgroups? 

Method 

Participants and Setting 
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 The sample consists of 416,105 students in five cohorts who were expected25 to graduate 

high school across the entire state of Michigan between academic years 2012-2013 and 2016-

2017. I used administrative data to retroactively collect data on these students from fourth 

through twelfth grade. Because I used demographic, attendance, behavior, and assessment data 

from fourth through tenth grade as predictor variables, I only included students in my sample for 

whom I had a value for at least one predictor variable. For example, this means that my sample 

includes students who transferred into Michigan beginning in tenth grade and reached their 

expected four-year high school graduation yet excludes students who transferred into Michigan 

beginning in eleventh grade and reached their expected four-year high school graduation. Of the 

416,105 students for whom I had graduation data, I was able to get fourth grade data on 342,533 

students (82%); 346,344 students in fifth grade (83%); 351,743 students in sixth grade (85%); 

356,883 students in seventh grade (86%); 360,103 students in eighth grade (87%); 387,161 

students in ninth grade (93%); and 386,608 students in tenth grade (93%) across the five cohorts. 

Students were diverse with respect to gender, race and ethnicity, and socioeconomic 

status. 48% of my sample was female, 68% White, 20% Black, 6% Latinx, 3% Asian, 1% Native 

American or Alaskan Native, 2% multiracial, and less than 1% Hawaiian or Pacific Islander. 

39% of my sample was classified as being economically disadvantaged, defined by the state of 

Michigan as a student being either classified as free/reduced price lunch, receiving SNAP or 

TANF benefits, migrant, homeless, or in foster care. 11% of my sample received special 

education services while 4% of my sample was identified as being Limited English Proficient. 

11% of students in our sample dropped out of high school, and virtually 100% (99.92%) of 

 
25 The state of Michigan defines the expected graduation year as four years after a student’s first year in ninth grade 
(Center for Educational Performance and Information, 2021). 
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students in my sample were enrolled in a public school when they were expected to graduate 

(Table 9). 

Procedure 

This study was conducted with the approval of IRB (Institutional Review Board) at the 

lead institution under the approval number was HUM00192810. 

Administrative Data 

 I used administrative records spanning every student enrolled in the state of Michigan for 

five cohorts of students who were expected to graduate high school between 2012-2013 and 

2016-2017. All the variables came from this administrative data as it was comprehensive in 

including graduation records, demographic variables, and information on attendance, behavior, 

and assessments. I restricted the study to students who were expected to graduate between the 

2012-2013 and 2016-2017 school years due to the state consistently giving assessments across 

grades during those years. 

Measures  

Drop Out Status 

 I used administrative data to measure our outcome of interest: dropping out of high 

school. According to the state of Michigan, students are only classified as dropping out if they 

did not earn a traditional high school diploma in four years or less (71% of our sample), did not 

earn a traditional high school diploma in five years or more (4%), did not earn a GED (1%), did 

not earn another type of certificate (1%), did not graduate in four years but are still continuing in 

school (2%), are exempt for reasons such as reaching the maximum special education age or 

moving out of state (5%), or have a missing expected record (5%). Thus, although the four year 

graduation rate is 71%, the dropout rate is only 11% instead of 100% – 71% = 29% (Center for 
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Educational Performance and Information, 2021). I coded the outcome as a binary indicator 

where 1 = dropped out and 0 = any other outcome. 

Demographics 

 For the student demographic variables from the administrative data, I used baseline 

measures. These consisted of gender, and mutually exclusive race and ethnicity indicator 

variables (White, Black, Latinx, Asian, Native American or Alaskan Native, Hawaiian or Pacific 

Islander, or multiracial), and indicators of being identified as Limited English Proficient, 

receiving special education services, and being economically disadvantaged (i.e., defined as an 

indicator for if a student received SNAP or TANF benefits, was migrant, was homeless, or was 

in foster care).  

Attendance 

Following research showing that attendance is an important variable to use in early 

warning systems predicting students likely to drop out of high school (Therriault et al., 2017; 

U.S. Department of Education, 2016), I used a continuous variable tracking attendance in fourth 

through tenth grades. Because schools had a different number of required school days, I used the 

percentage of school days each student attended in a given school year from administrative data. 

Behavior 

 Similarly to attendance, research shows that early warning systems should include 

measures of student behavior (Therriault et al., 2017; U.S. Department of Education, 2016). 

Using administrative data, I included indicator variables that noted whether students were 

suspended in-school, suspended out-of-school, or expelled at least once during the school year. I 

also used four binary variables that indicated whether a student was involved in four types of 

incidents during the school year. I included whether students were involved in a violent incident, 
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an incident involving a weapon, an incident involving substance abuse, or another type of 

incident. A student received a value of one for each variable if they were involved in at least 

incident in a given school year. 

Although I had this data for fourth through tenth grade, I dropped some of the variables 

from the earlier grades because no students in my sample were suspended, expelled, or involved 

in any incidents. Specially, I excluded both in- and out-of-school suspension and expulsion 

variables from fourth, fifth, and sixth grade. There were no students who had incidents that were 

violent or involved weapons or another type of incident in fourth or fifth grade. I also dropped 

the substance abuse incident variable in fourth, fifth, and sixth grade. 

Assessments 

 The third category of variables that research indicates is important to use for early 

warning systems addressing high school dropout is academic performance (Therriault et al., 

2017; U.S. Department of Education, 2016). From the administrative data, I used values from the 

state-wide standardized exams (Michigan Education Assessment Program, MEAP) in various 

subjects across years. I only included subjects that were tested in every grade across the five 

cohorts in my sample. Therefore, I included values from the math assessment in fourth through 

eighth grade, reading in fourth through eighth grade, social studies in sixth and ninth grades, and 

science in eighth grade. All assessments were measured in scaled scores. 

Analytic Approach 

Missing Data 

 I had varying rates of missing across grades data due to both natural missingness and 

given the changing number of students present in each grade across all the cohorts (Table 9). I 

had no missingness in the dropout rate, by design, as well as no missingness in the gender and 
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race/ethnicity variables. There was 18% missingness for economically disadvantaged, receiving 

special education services, and Limited English Proficient. The missingness for percent of school 

days attended ranged from 8% to 19% across years. There was between 7% and 14% 

missingness for both suspension variables and the expulsion indicator. For the indicators of being 

involved in a violent, weapons, or other type of incident, missingness ranged from 7% to 15% 

and from 7% to 14% for a substance abuse incident. Math assessment scores missingness ranged 

from 19% to 22%, reading 18% to 23%, social studies 13% to 20%, and science 18%. 

 I used conditional mean imputation, also known as regression imputation, for the 

variables with missingness by replacing missing values with estimates derived from regression 

equations fit using non-missing values (Enders, 2010; Harrell Jr., 2015). Although conditional 

mean imputation can lead to biased parameter estimates and dampened standard error estimates 

under certain circumstances that multiple imputation may resolve (Enders, 2010), I chose this 

approach because the focus of our models is on predictive power rather than parameter 

estimation. By using a simpler missing data strategy, I also hoped to create a model that would 

be transparent to practitioners. To retain information about which students originally had missing 

information in case the missingness was informative for the models, I also included a binary 

indicator for each variable that had missingness that denoted whether a student initially was 

missing a value for that variable. To account for the fact that our missingness was a combination 

of naturally occurring missingness and different numbers of students across grades, I included a 

version of my analysis conducted using only the students who were present in every grade in 

Appendix D. 

RQ1: Machine Learning and Traditional Regression Analyses 
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I operationalized the outcome measure of dropping out of high school as a binary 

indicator for the descriptive statistics. Then, when coding the predictive models, I forced the 

software to recognize the binary variable as continuous from zero to one, inclusive, to act as a 

risk score to provide more nuanced model interpretation for practitioners and policy makers. By 

doing this, it would allow schools to set their own risk threshold when identifying at-risk 

students (Bruch et al., 2020). 

To compare traditional regression to machine learning model performance, I first fit the 

data with a both linear probability and logistic model. Next, I fit the data with three different 

machine learning algorithms that were common in the machine learning education literature 

(Bruch et al., 2020; Chung & Lee, 2019; Lakkaraju et al., 2015; Márquez-Vera et al., 2016): 

elastic net with a linear base, decision tree, and random forest. As well as their previous use in 

the literature, I also choose these algorithms to include both parametric (elastic net) and 

nonparametric (decision tree and random forest) options. While the elastic net model is 

technically a machine learning algorithm, I selected it to function as a bridge between the 

traditional linear probability and logistic models and the more statistically flexible decision tree 

and random forest models. Compared to traditional regression models where there is generally a 

consensus on the main type of model to use based on the nature of the outcome variable and the 

error structure based on how the dataset is structured, there are multiple machine learning 

algorithms designed to be used for the same purpose. To that end, it is becoming increasingly 

common to use multiple algorithms and compare predictive performance across models (cite 

paper 1). 

 Similarly, in the education literature, there is not a universally agreed upon method of 

dividing the dataset into the training and testing data. To simulate how such predictive models 
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could be implemented in early warning systems where data from previous students was used to 

predict the performance of future students, I used the first four cohorts (2012-2013 through 

2015-2016) of students as my training dataset and the most recent cohort (2016-2017) as my 

testing dataset. I fit all five models (linear probability, logistic, elastic net, decision tree, and 

random forest) using the training data to establish parameter estimates that define the models. I 

then used these model values to predict the outcome using the testing data. While fitting the 

model with the training data optimizes its flexibility, I used the model applied to the testing data 

to obtain the statistics used to measure model performance. It is common to use training and 

testing data because it acts as a check on overfitting the models (Athey, 2019; Mullainathan & 

Spiess, 2017). 

 To examine the aspect of the research question that specifies looking at how model 

performance varies based on year of data used, I fit all five models using conceptual blocks of 

data: Block 1 = fourth grade measures, Block 2 = Block 1 with all fifth grade measures, Block 3 

= Block 2 with all sixth grade measures, Block 4 = Block 3 with all seventh grade measures, 

Block 5 = Block 4 with all eighth grade measures, Block 6 = Block 5 with all ninth grade 

measures, Block 7 = Block 6 with all tenth grade measures, and Block 8 = Block 7 with 

demographics. I chose to fit the conceptual blocks in this order to explore how early schools 

could set up early warning systems to make accurate predictions of students likely to drop out of 

high school for intervention and to align with the literature on what information is typically 

included in an early warning system (Therriault et al., 2017; U.S. Department of Education, 

2016).  

  Given that the outcome was operationalized as continuous variable, I used the area under 

the receiver operating characteristic curve (AUC) to evaluate model performance. AUC is a 
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commonly used measure that ranges from zero to one, with measures closer to one indicating a 

better performance. Generally, an AUC of 0.5 suggests no model discrimination, 0.7-0.8 is 

acceptable, 0.8-0.9 is excellent, and greater than 0.9 is outstanding model performance 

(Mandrekar, 2010). The AUC measures the area under the curve created by graphing the 

sensitivity (i.e., the true positive rate - the proportion of true positives out of total actual positive) 

versus 1 – specificity (i.e., the true negative rate - the proportion of true negative out of total 

actual negative) at every possible threshold from zero to one for turning the continuous 

likelihood into a binary classification. In context, the AUC can be interpreted as the percent 

chance a model has of correctly identifying students to drop out of high school (Bruch et al., 

2020). Just as using a continuous outcome operationalization provides a more granular and 

nuanced measure, the AUC provides an analogous measure compared to the performance 

statistics obtained from using a binary classification (i.e., true/false positive/negative rates) and is 

commonly used in the literature evaluating predictive models (Ara et al., 2015; Bruch et al., 

2020; Chung & Lee, 2019; Coleman et al., 2019; Lakkaraju et al., 2015; Márquez-Vera et al., 

2016; Sansone, 2019). 

RQ2: Comparing Model Performance Across Student Subgroups 

To address the important assumption that early warning systems should work equally 

well for student subgroups (Brussow, 2018; Gebru, 2021; Kantayya, 2020), particularly for 

subgroups that the literature shows are more likely to drop out (Hussar et al., 2020), I fit the 

models from the first research question restricted to the subgroup of interest. I did this for four 

types of student subgroups based on gender, race and ethnicity, socioeconomic status, and receipt 

of special education services. For gender, I fit the models first only with females and again only 

with males. Then, for race and ethnicity, I fit the models separately for each category: White, 
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Black, Latinx, Asian, Native American or Alaskan Native, Hawaiian or Pacific Islander, or 

multiracial. Lastly, for the economically disadvantaged and special education subgroups, I fit the 

models separately for students who were identified as being economically disadvantaged or 

receiving special education services and again for the students who were not identified as such. 

Because these two subgroups were allowed to vary across grades compared to gender and 

race/ethnicity, I used the imputed baseline (i.e., fourth grade) value to determine subgroup status 

for this analysis. 

Results 

RQ1: Machine Learning and Traditional Regression Analyses 

 Overall, we found that almost every model type performed well beginning with the fourth 

and fifth grade data and with performance improving as each additional year’s worth of data was 

added (Table 10). Specifically, the linear probability (AUC = 0.715), logistic (AUC = 0.715), 

elastic net (AUC = 0.715), and random forest (AUC = 0.716) models all had acceptable model 

performance with the second block of predictors. This means that it was possible to construct 

well performing models predicting high school dropout using data on attendance and academic 

performance from fourth and fifth grade. Unsurprisingly, these four models improved their 

performance monotonically as each year of data was added, and their performance went from 

acceptable to excellent (AUC = 0.806 for linear probability, AUC = 0.800 for logistic, AUC = 

0.806 for elastic net, AUC = 0.818 for random forest) in the sixth model iteration (i.e., the model 

fit with fourth through ninth grade data). In context, these results imply that, on average across 

the four best performing model types, the models had approximately a 71.5% chance of correctly 

identifying students who dropped out of high school using data from only fourth and fifth grade. 
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This increased by an average of between 1-2% for each additional grade of data added to the 

model. 

Although the random forest model performed slightly better than the other mode types 

(i.e., 0.5% to 1.5% more accurate when identifying students who dropped out), the linear 

probability, logistic, and elastic net models performed almost as well, to the point where my 

results were not convincing that machine learning models produced more accurate predictions. 

The slight outlier was the decision tree model that performed well once it reached the fourth 

model iteration (i.e., fourth through seventh grade data), but it consistently underperformed 

compared to the other four types.  

RQ2: Comparing Model Performance Across Student Subgroups 

 Descriptively, there were differential graduation rates based on the four types of 

subgroups. Compared to the full sample dropout rate of 11%, females had a dropout rate of 8% 

compared to 13% for males. Based on race and ethnicity, White students saw a dropout rate of 

8%, Black students 19%, Latinx students 15%, Asian students 4%, Native American or Alaskan 

Native students 16%, Hawaiian or Pacific Islander students 10%, and multiracial students 11%. 

Students who were identified as being economically disadvantaged had a 18% dropout rate 

compared to their peers who were not economically disadvantaged who had a dropout rate of 

5%. Lastly, students who received special education services had a dropout rate of 18% 

compared to the 10% of students who did not receive services. 

 Overall, the predictive models performed differentially based on subgroups, favoring the 

subgroup with the lower dropout rate. In terms of gender, the model performed slightly better for 

females than it did for the full sample with an average AUC value of 0.07 higher (Table 11, 

Panel A). The model performed approximately the same for males as it did for the full sample 
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(Table 11, Panel B). For the model performance based on race and ethnicity, the model 

performed slightly better for White subgroup compared to the full sample with an average ACU 

of 0.006 higher (Table 12, Panel A). It also performed better for the Asian subgroup compared to 

the full sample models with an average AUC value of 0.04 higher (Table 12, Panel D). However, 

the remaining subgroups performed worse than the full sample. The model performed an average 

AUC value of 0.04 lower for Black students compared than the full sample (Table 12, Panel B), 

Latinx 0.06 lower (Table 12, Panel C), Native American/Alaskan Native 0.03 lower (Table 12, 

Panel E), Hawaiian/Pacific Islander between 0.06 lower (Table 12, Panel F), and multiracial 0.02 

lower (Table 12, Panel G). In context, these results indicate that the model has between a 2% and 

6% lower chance of correctly identifying Black, Latinx, Native American/Alaskan Native, 

Hawaiian/Pacific Islander, and multiracial students compared to the full sample. 

For the students that were economically disadvantaged (Table 13, Panel A) or received 

special education services (Table 14, Panel A), the model performed approximately 7-9% worse 

compared to the full sample. For these subgroups, the model did not have an acceptable 

performance until eighth grade data was incorporated. The model performed as well as or 

slightly better for students who were not economically disadvantaged (Table 13, Panel B) or did 

not receive special education services (Table 14, Panel B) compared to the full sample.  

For all subgroups, the random forest models performed slightly better than the linear 

probability, logistic, and elastic net models on average but not to the point where its advantages 

were convincing. Additionally, like the full sample, almost every model type improved its 

performance with each additional grade’s worth of data. These results indicate that although it is 

possible to construct well performing models for every subgroup of interest, it should not be 
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assumed that the models designed for the full sample will automatically perform equally well for 

the subgroups. 

Robustness Checks 

 I conducted sensitivity analyses to address four different threats to model performance 

and to determine the robustness of my findings. I fit models to address the possibility that results 

were driven by student demographics, a saturation of predictor variables, an unstable number of 

students across grades, and different model performance based on urbanicity. A full description 

of these in included in Appendix D. Overall, I found the results to be robust to the first two of 

these threats. I found that model performance improved when the model was fit with students 

present in all grades, indicating that our results may be slightly dampened by error introduced 

with imputation. Additionally, I found that the model performed slightly worse for students in a 

city or town compared to a suburb or rural area, implying that it cannot be assumed that a model 

fit for an entire state automatically works equally well for students from different geographic 

areas. 

Extension Analyses 

I extended the main analysis by examining the Youden statistic and resulting specificity 

and sensitivity rates and confusion matrices (results are in Appendix E). This extension analysis 

provides a more tangible way of conceptualizing the results by demonstrating how the models 

presented in the main analysis would be used in an educational setting where school personnel 

have to set a cut point in the likelihood of dropping out of high school in order to identify 

students for intervention (Bruch et al., 2020). For brevity, I only included the extension analyses 

for the first research question; similar analyses for the second research question are available 

upon request. 
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Youden Statistic 

 First, following the example of Bruch et al. (2020) and (cite paper 2), I examined what it 

would look like to take the nuanced continuously measured AUC measure and apply a cut point 

in the risk score of dropping out of high school. I did this by finding the optimal point on the 

receiver operating characteristic curve that optimizes the balance between the sensitivity and 

specificity. This point on the curve is known as the Youden statistic (also known as Youden’s J 

statistic) and is defined as 𝐽 = 𝑚𝑎𝑥!{𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑡) + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑡) − 1} (Berrar, 2019; 

Youden, 1950). Sensitivity is true positive rate (i.e., the likelihood of correctly identifying 

students who dropped out) while specificity is the true negative rate (i.e., the likelihood of 

correctly identifying students who did not drop out) (cite paper 1). While the Youden statistic is 

the empirically defined optimal risk score in balancing true positive and negatives, I presented it 

as an example of how schools can choose a risk score that reflects their preferences in which 

students to prioritize due to resource constraints and policy directives (Bruch et al., 2020), as I 

mention later in the discussion.  

 Across all model types, the Youden statistic was approximately similar, ranging from 

0.075 for the logistic models 2-4 (Appendix E, Table 1, Panel A, Column 2) to 0.137 for the 

decision tree models 7-8 (Appendix E, Table 1, Panel A, Column 4). In practice, this means that 

the empirically defined cut point for identifying students for intervention to prevent high school 

dropout would be between 7.5% and 13.7%, depending on the predictive model used. The linear 

probability, elastic net, and random forest models consistently had the highest Youden statistics 

on average although the decision tree models had the absolute highest scores. On average, it 

appears that the Youden statistic increases in response to using models with more years’ worth of 

data (Appendix E, Table 1, Panel A). 
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Specificity, Sensitivity, and Confusion Matrices 

 Because the Youden statistic is defined to maximize both the specificity and sensitivity 

across all options derived from the possible cut points, Appendix E, Table 1, Panels B and C 

shows the resulting specificity and sensitivity rates, respectively, when calculated using the 

Youden statistics presented in Appendix E, Table 1, Panel A. These results can also be derived 

using the confusion matrices presented for the linear probability (Appendix E, Table 2), logistic 

(Appendix E, Table 3), elastic net (Appendix E, Table 4), decision tree (Appendix E, Table 5), 

and random forest (Appendix E, Table 6) models. Overall, the models had similar specificity 

rates within model type, ranging from 0.556 for the linear probability model 2 (Appendix E, 

Table 1, Panel B, Column 1) to 0.830 for the decision tree models 7-8 (Appendix E, Table 1, 

Panel B, Column 4). This means that, across all model types, the percentage of students who did 

not drop out who were correctly identified as not dropping out ranged from 55.6% to 83%. While 

the decision tree models were the most unstable in terms of specificity, the other four model 

types had somewhat consistent specificity values. On average, the specificity values increased as 

data from more years was added to the models (Appendix E, Table 1, Panel B). 

 Across all models, the sensitivity rates ranged from 0.611 for the decision tree models 7-8 

(Appendix E, Table 1, Panel C, Column 4) to 0.824 for the random tree model 8 (Appendix E, 

Table 1, Panel C, Column 5), meaning that the percentage of students who dropped out who 

were correctly identified to drop out ranged from 61.1% to 82.4%. Similar to the specificity 

results, the sensitivity rates were most stable among the linear probability, logistic, elastic net, 

and random forest models. Additionally, the sensitivity rates increased on average as the models 

added more years’ worth of data for the linear probability, logistic, elastic net, and random forest 

models (Appendix E, Table 1, Panel C). 
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Discussion 

 I interrogated how traditional regression models compared to machine learning models in 

predicting how likely students were to drop out of high school. Additionally, I wanted to explore 

how early in a student’s educational career these predictive models could be built and if the 

models would work equally well for significant student subgroups. It is important to identify 

students who are likely to drop out of high school because dropping out of high school is 

associated with worse financial and social outcomes later in life, including lower lifetime 

earnings, a shorter life span, and a higher likelihood of living in poverty, committing crimes, 

taking drugs, and being incarcerated  (Alliance for Excellent Education, 2011; Bridgeland et al., 

2006). Additionally, students are more likely to drop out of high school if they are male,  Pacific 

Islander, Latinx, Black, multiracial, live in an institutionalized setting, or have a disability 

(Hussar et al., 2020), meaning that preventing high school dropout is also an issue with deep 

equity implications. Given that there are proven effective interventions to reduce high school 

dropout (Dynarski et al., 2008; U.S. Department of Education, 2016) and that schools are often 

limited in the amount of resources they can allocate for intervention (Engler, 2020), schools need 

a way to accurately detect students who are likely to drop out. 

 Overall, I found that it is possible to build predictive models with good performance for 

the full sample using data from fourth and fifth grade and that model performance improves with 

each addition of a grade’s worth of data. Of the five types of model types that I used, the random 

forest models performed slightly better than the linear probability, logistic, and elastic net 

models while the decision tree models had the worst performance. I then examined model 

performance across four student subgroups that have differential dropout rates: gender, race and 

ethnicity, economically disadvantaged, and receipt of special education services. These results 
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generally showed that the model did not perform well for most subgroups with higher dropout 

rates (i.e., male, Black, Latinx, Asian, Native American/Alaskan Native, Hawaiian/Pacific 

Islander, multiracial, economically disadvantaged, and special education students) compared to 

either their counterparts nor the full sample. Although it was possible to construct predictive 

models that perform well for every subgroup using multiple years’ worth of data, this indicates 

that it should not be assumed that models fit with the full sample will automatically work equally 

well for every subgroup. 

Comparison to Prior Literature 

 There is a growing literature that uses machine learning to develop models to predict 

students likely to drop out of high school (Ara et al., 2015; Chung & Lee, 2019; Coleman et al., 

2019; Lakkaraju et al., 2015; Márquez-Vera et al., 2016; Orooji & Chen, 2019; Pagani et al., 

2008; Sansone, 2019). This research spans multiple geographic boundaries, including individual 

school districts (Coleman et al., 2019; Lakkaraju et al., 2015) and states (Orooji & Chen, 2019) 

in the United States plus nationally representative samples (Sansone, 2019) as well as Denmark 

(Ara et al., 2015), South Korea (Chung & Lee, 2019), Quebec (Pagani et al., 2008), and Mexico 

(Márquez-Vera et al., 2016). However, only one of these papers looks at data from an entire state 

– Louisiana –  (Orooji & Chen, 2019), so this research adds to the literature about how predictive 

models can inform early warning systems at a state-wide level. Additionally, this is the first 

paper to study machine learning models predicting high school drop out in for students across 

Michigan. 

Similarly, administrative data is the type of data that school personnel would have readily 

available to use to construct an early warning system without having to collect additional data. 

This paper builds on the work of other research that exclusively uses administrative data to build 
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predictive models (Ara et al., 2015; Chung & Lee, 2019; Lakkaraju et al., 2015; Orooji & Chen, 

2019) as compared to using additional assessment data (Coleman et al., 2019; Márquez-Vera et 

al., 2016) or survey data (Pagani et al., 2008; Sansone, 2019). Accordingly, this approach is 

particularly scalable and cost effective. 

 From all of the work exploring how machine learning can predict high school dropout, 

only one other study explicitly compared the performance of machine learning based models to 

traditional regression models (Lakkaraju et al., 2015), something that will be crucial to convince 

school personnel to buy into using new methods that seem more opaque than traditional methods 

with which they are more familiar (cite paper 1). While this study found that random forest 

models performed 9% better than logistic regression when identifying students who dropped out 

(Lakkaraju et al., 2015), my results showed a much closer margin to the point where my results 

were not substantially convincing that machine learning models were better.  

 This study is the first to explicitly examine predictive model performance for subgroups 

when examining the likelihood of dropping out of high school. Given that my sample has 

differential high school dropout rates for the four subgroups that I examined in my second 

research question, i.e., subgroups based on gender, race and ethnicity, economic background, and 

receipt of special education services, and that work from other disciplines showed that machine 

learning models did not work equally well for subgroups from traditionally disadvantaged 

backgrounds (Garvie et al., 2016; Gebru, 2021; Kantayya, 2020; Lum & Isaac, 2016; Obermeyer 

et al., 2019; Richardson et al., 2019), it is important not to assume that a model fit for the full 

sample works equally well for these subgroups. To explicitly address this, I followed suit of 

other predictive modeling work in education to examine model performance for each subgroup 

(Bruch et al., 2020; Cattell & Bruch, 2021). A similar concern that is not so easily empirically 
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tested is the idea of replicating inherent bias in the data, a concept that I discuss further in the 

limitation section. Although no previous work on predicting high school dropout discusses this, 

it should be noted that after using predictive modeling to identify students likely to drop out of 

high school, one study used another machine learning method to group these students into 

internally homogenous groups to more effectively target for intervention (Sansone, 2019).  

Policy Implications 

 When constructing an early warning system to identify students likely to drop out of high 

school, one important consideration for school personnel is how early they can make accurate 

predictions. My models showed that it is possible to fit models that predict high school dropout 

accurately (i.e., an approximate 71.5% chance of correctly identifying students who dropped out 

of high school) using data from only fourth and fifth grade. This is encouraging if schools have 

resources to intervene as early as fifth grade as it may be more cost effective to intervene earlier 

and more impactful for the student. There is a breadth of research discussing effective 

interventions to prevent high school drop out across a student’s P-12 educational experience, 

including with high-quality early childhood education and family engagement in early grades 

(National Dropout Prevention Center, 2022). 

However, schools should also consider how much more accurate their early warning 

system would be if they waited one or more years to use more data. On average, my results 

indicated that the models improved their accuracy of correctly identifying students who dropped 

out of high school between 1-2% for every grade of data added after fifth grade. Additionally, 

both the sensitivity and specificity of the models increased with each additional year’s worth of 

data, implying that models become more accurate in identifying students who do and do not drop 

out of high school with more data. Schools should balance the desire for more accurate models 
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that come from more years’ worth of data, the value of early intervention, and their ability to 

intervene early due to limited resources (Engler, 2020). 

When considering the potential consequences of using a model that does not work 

equally well for subgroups in producing biased predictions (Brussow, 2018), schools should 

consider waiting until a model has enough years’ worth of data that is has an acceptable 

performance for all subgroups of interest. For example, the model that incorporated fourth 

through seventh grade was the first model iteration that had an acceptable model performance 

(i.e., AUC value of 0.7 or greater) for all racial and ethnic subgroups. Given that it may be 

difficult to construct a model that works equally well (i.e., the same AUC and true and false 

positive and negative values) for every subgroup, a potential first step toward addressing this 

equity issue would be to make sure that a model achieves a specified performance threshold for 

each subgroup. Although this would not eliminate the possibility of identifying students at 

differential rates, it would be preferrable to using a model that has an acceptable model 

performance only for the full sample. 

 Similarly, administrators should keep in mind the consequences of true and false positive 

and negative rates in terms of differential impacts for these groups of students (Brussow, 2018). 

Like how I used the Youden statistic to dichotomize the continuous likelihood, administrators 

must pick a threshold in the likelihood of students dropping out of high school. That threshold 

can vary based on resources and the desire to optimize the type of students identified. Because 

these models predicted students dropping out of high school, the false negatives were students 

who the model did not predict to drop out yet actually did while the false positives were students 

who the model predicted to drop out yet actually did not. While it is ideal to minimize the 

numbers of students in both groups, I argue that there are greater implications for the false 
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negative students because those are students who would not receive the intervention that they 

need. Given that the type of interventions shown to reduce high school dropout include actions 

that may be generally helpful to all students, such as extra tutoring, a more personalized learning 

environment, and wraparound services (Dynarski et al., 2008), it would most likely not be as 

harmful to provide intervention to students who end up not needing it compared to withholding 

intervention from those who do. All of this is tempered by the resources that schools have to 

allocate for intervention, stressing the need for the most accurate models possible. 

 Similarly, it is important to consider what an appropriate threshold would be for a model 

to qualify as having an acceptable performance for this specific context. Although I based my 

decision of an AUC value of 0.7 as this threshold following the statistical literature (Mandrekar, 

2010) and previous work done in this field (Bruch et al., 2020), I recognize that there has not 

been enough work in the field of education early warning systems using AUC values to have 

definitively established a threshold agreed upon throughout both the research and practitioner 

communities. Furthermore, this threshold may vary based on context, including geography, 

school and district size, and outcome studied. Thus, administrators should consider what an 

appropriate cutoff would be for their particular context when deciding which statistical model to 

use for an early warning system. 

Another point for school personnel to consider when choosing the method underlying 

their early warning system is whether to choose a traditional regression method that is often 

more familiar versus a machine learning method that is likely newer and more opaque. Generally 

speaking, predictive machine learning algorithms hold promise for this type of application given 

their statistically flexible nature to fit the data better than traditional regression models do (Hastie 

et al., 2009; James et al., 2013). However, the trade-off for this highly predictive nature is a less 
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transparent model, potentially making it difficult to garner support from stakeholders to agree to 

an approach that is often considered a black box (cite paper 1). Although the results for the 

whole sample indicate that the random forest models performed slightly better than the linear 

probability and logistic models (i.e., 0.5% to 1.5% more accurate when identifying students who 

dropped out), their AUC values may not be different enough to convince stakeholders to use a 

less traditional approach. 

 With these implications in mind, and considering the limitations discussed below, it is 

important to keep in mind that this work is preliminary. This exploratory research indicates that 

schools may be well served by investing resources into more research on the feasibility and 

performance of these predictor models under practical circumstances. While I have attempted to 

replicate what I believe to be operating school conditions, school personnel would be better 

equipped to make decisions such as how to simulate the types of data readily available to them, 

which types of performance metrics to focus on, and how logistically reasonable an early 

warning system would be given staffing capabilities. Although my results indicate that such an 

early warning system based on predictor models shows promise, I present my results as a first 

step towards putting them into practice. 

Limitations 

There are several limitations to my study that should be taken into consideration when 

interpreting the results. First, the results of the predictive models are only as good as the data 

used to construct them. If there is any inherent bias in the data reflecting structural and/or 

systemic issues that lead to certain types of students being more likely to drop out of high school, 

then the models will replicate that bias by design (Goldacre, 2008). For example, my data 

descriptively showed that students of color, except for Asian students, were more likely to drop 
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out of high school compared to White students, very likely reflecting the presence of such 

barriers that would be reflected in the predictive models. Although making sure that the models 

work equally well for these racial and ethnic subgroups is a helpful check on this, it is still a 

limitation to consider. 

Similarly, it is possible that the models would be more predictive if schools used different 

data as predictive variables. Despite using variables from each of the three categories used to 

build early warning systems (i.e., attendance, behavior, and performance) (Therriault et al., 2017; 

U.S. Department of Education, 2016), it is possible that there are other variables in these 

categories that would improve model performance. For example, whereas I used student 

performance on standardized assessments, other studies used grade point average, grades in 

individual courses, and credits earned as proxies for academic performance (Coleman et al., 

2019; Lakkaraju et al., 2015; Márquez-Vera et al., 2016). Similarly, my models may have 

performed differently if I had used variables measured at the classroom, school, or district level. 

The literature on situational context beyond an individual student is vast, and just as it is possible 

that a single student may perform differently in alternative contexts, the models predicting 

outcomes for individual students may perform better taking these variables into account (Elder et 

al., 2021; Masci et al., 2018; Rumberger & Thomas, 2000). Before committing to a set model for 

an early warning system, schools should consider alternate variables that they have access to in 

case those variables improve model performance. 

Another limitation is the size of my subgroups for the second research question. Compared to 

the full sample of 416,105 students, only 429 (<1%) students identified as Hawaiian or Pacific 

Islander. While the other student race and ethnicity subgroups were large enough to not be 

concerning, this subgroup was small enough to potentially have underpowered results. It is 
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possible that I would have found a different model performance – perhaps one closer to that of 

the full sample – if this subgroup had been larger. Therefore, the differential subgroup 

performance for this group in particular should not automatically be assumed to be fully 

attributable to bias. 

In terms of generalizability, the models based on students in Michigan may not directly 

translate to other students in other states. Michigan has an excellent longitudinal data collection 

system that allowed me to track students as far back as the 2004-2005 school year that other 

states may not have. Michigan may also be different from other states based on its dropout rate. 

While my sample had a dropout rate of 11%, the national status dropout rate is 5.3% (Hussar et 

al., 2020). Likewise, the demographic composition of Michigan may not apply to other states. 

Compared to the rest of the country, my sample from Michigan had a higher proportion of White 

students and a lower proportion of Black, Latinx, Native American/Alaskan Native, Asian, 

Hawaiian/Pacific Islander, and multiracial students compared to the rest of the country (Irwin et 

al., 2021). Therefore, caution should be applied when extrapolating these results to other states. 

Lastly, this paper should be not interpreted as the conclusive answer to how traditional 

regression models compare to machine learning models when predicting high school dropout. 

Although I chose commonly used algorithms that have been used in previous studies (Ara et al., 

2015; Chung & Lee, 2019; Coleman et al., 2019; Lakkaraju et al., 2015; Márquez-Vera et al., 

2016; Orooji & Chen, 2019; Pagani et al., 2008; Sansone, 2019), there are several more 

algorithms in existence that could provide different results (Athey, 2019; Hastie et al., 2009; 

James et al., 2013). Additionally, I could have used alternative ways of splitting my sample into 

training and testing data, such as randomly selecting 80% of students to be in my training dataset 

and the remaining 20% to be in my testing dataset or using the first three cohort as the training 
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data with later two cohorts as the testing data. Similarly, I could have used hyperparameters 

specific to each algorithm to adjust model performance (Hastie et al., 2009; James et al., 2013). 

Given different model choices could produce alternative results, I want to impress that these 

results should be interpreted only in the context of the analysis I conducted. 

Conclusion 

 Despite these limitations, these results offer important insight into how machine learning 

models compare to traditional regression models when predicting the likelihood of students 

dropping out of high school. Additionally, I explored how accurate these models were using 

multiple years’ worth of data and model performance for specific student subgroups. Similar to 

previous studies (Ara et al., 2015; Chung & Lee, 2019; Coleman et al., 2019; Lakkaraju et al., 

2015; Márquez-Vera et al., 2016; Orooji & Chen, 2019; Pagani et al., 2008; Sansone, 2019), I 

found that the best performing model was based on a machine learning algorithm, specifically 

the random forest model. However, I extended beyond the previous literature by finding that the 

linear probability, logistic, and elastic net models performed almost as well, to the point where 

the random forest model’s superiority was not convincing. I also found that it is possible to 

construct well performing models using data from fourth and fifth grade for the full sample. My 

results also indicated that although it is possible to create well performing models for each 

subgroup, it should not be assumed that the full models fit for the full sample automatically work 

equally well for each subgroup. These results provide helpful insight for schools looking to build 

robust early warning systems to identify students likely to drop out of high school to identify for 

intervention. 
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Conclusion 

 My dissertation spoke to the need in the field for a pedagogical paper that explained the 

role of machine learning in education policy research to scholars unfamiliar with the relatively 

new methodology. In this first paper, I identified the ability to predict students for intervention as 

one of the most promising uses of machine learning but noted that while most of the research 

conducted on this showed highly accurate results, very few explicitly compared how machine 

learning algorithms compared to traditional regression methods. 

I used this as the basis for both of my empirical papers, investigating the value added of 

machine learning over linear probability and logistic models in early warning systems. My 

second paper used researcher- and district-collected data from Boston Public Schools to predict 

chronic absenteeism and receipt of special education services for kindergarten through second 

grade students. My third paper used administrative data from Michigan to predict high school 

dropout across five cohorts of students. In both empirical papers, I compared the performance of 

three machine learning algorithms (elastic net, decision tree, and random forest) to two 

traditional regression models (linear probability and logistic). I also used sample sizes that were 

realistic for educational settings and placed an emphasis on the feasibility of timing for 

practitioners using data in real world applications that was absent in some of the previous work 

done on this topic. 

 For both empirical papers, I found that the machine learning models performed well, 

reinforcing the fact that it is possible to build accurate predictive models for all my outcomes. 
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However, in the third paper, I also found that the machine learning models did not perform better 

enough than the traditional regression methods to be convincing for school personnel to embrace 

the new methodology as part of an early warning system that is based on traditional methods. 

Furthermore, both the machine learning and traditional regression models did not perform 

equally well for important student subgroups as they did for the full sample, a caution for schools 

looking for build early warning systems that are unbiased and work equally well for all students. 

 Although my dissertation addressed an important gap in the field, it should not be 

considered the ultimate referendum on either the role of machine learning in education policy 

research or how predictive machine learning algorithms compare to traditional regression 

models. This is a vast field of study that is constantly evolving, and future research may 

contradict my findings as methods evolve. Looking forward, I hope to build on these three 

papers to further nuance and better understand how researchers and practitioners can leverage 

machine learning to improve educational experience and outcomes for all students. 

  



 

 

129 
 

 

Table 1. Main conceptual differences between traditional regression and machine learning. 

 Traditional regression Machine learning 

Key focus area Estimating parameters 
Precise prediction of outcome 
(supervised)/groups variables 

or subjects (unsupervised) 

Attention on variables 
Emphasis on magnitude and 

statistical significance of 
coefficients 

Rarely consider point 
estimates, sometimes do not 

know which variables are 
used, can look at which 

variables are most important 

Role of researcher Specifies variables and model 
structure to use 

Specifies dataset and 
algorithm to use 

Type of approach Theory-driven (deductive) Data-driven (inductive) 

Major concerns Collinearity, spurious 
variables 

Balance between predicting 
and overfitting (variance-bias 

trade-off) 
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Table 2. Sample of commonly used algorithms in education research. 

Algorithm Function Approach Example R 
code 

Example 
Stata code* 

Example 
article using 

method 

Decision tree Predicting Recursive 
partitioning “tree” “crtrees” Lakkaraju et 

al. (2015) 

Random 
forest Predicting 

Combining 
multiple 
decision 

trees 

“randomForest” 
“crtees” with 

“rforests” 
option 

Chung & 
Lee (2019) 

Neural 
network Predicting 

Two-step 
prediction 
through 

hidden layer 

“neuralnet” - Johnes 
(2005) 

Naïve Bayes Predicting Uses Bayes 
rule “naivebayes” - 

Márquez-
Vera et al. 

(2016) 

Support 
vector 
machine 

Predicting 

Generate line 
that 

graphically 
separates 
groups 

“e1071” “svmachines” Lakkaraju et 
al. (2015) 

K-means Grouping 

Grouping 
closest 
subjects 

iteratively  

“kmeans” “cluster 
kmeans” 

Antonenko 
et al. (2012) 

Latent 
dirichlet 
allocation 

Grouping 

Parses about 
individual 
words then 

groups 

“topicmodels” “ldagibbs” Sun et al. 
(2019) 

* Beginning with Stata 16, Stata officially recommends implementing machine learning 
algorithms with integrated Python code. We present sample user-written packages for 
algorithms. 
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Table 3. Sample of commonly used performance metrics for predictive algorithms. 

Metric Definition Equation Also known 
as 

True positive (TP) Predicted positive subjects who are 
actually positive - - 

False positive (FP) Predicted positive subjects who are 
actually negative - - 

True negative (TN) Predicted negative subjects who are 
actually negative - - 

False negative (FN) Predict negative subjects who are 
actually positive - - 

Accuracy Proportions of correct predictions 
out of total predictions  (TP+TN)/(TP+FP+TN+FN) - 

Sensitivity Proportion of true positives out of 
total actual positive TP/(TP+FN) True positive 

rate, recall 

Specificity Proportion of true negative out of 
total actual negative TN/(TN+FP) True negative 

rate 

Precision Proportion of true positive out of 
total predicted positive TP/(TP+FP) - 

Area Under the 
Curve (AUC)* 

Area under the curve when plotting 
(1-specificity) versus sensitivity - 

Area under 
ROC 

(receiver 
operating 

characteristic) 
curve 

Note: Often, a 2x2 grid called a “confusion table” or “confusion matrix” displays the true 
positive, false positive, true negative, and false negative rates (Berrar, 2019). See Chung & Lee 
(2019) page 349 as an example. 
*Typically, AUC values of 0.7 or greater indicate acceptable model performance (Mandrekar, 
2010). 
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Table 4. Descriptive statistics for special education and attendance variables for paper two. 

Variable Mean/Percent Standard 
deviation N 

Special education    

Identified as SPED in kindergarten 0.07 - 66 
Identified as SPED in first grade  0.12 - 103 
   Identified as SPED in first grade but not in kindergarten 0.05 - 44 
Identified as SPED in second grade  0.14 - 112 
   Identified as SPED in second grade but not in kindergarten 0.08 - 63 
Attendance & enrollment    
Days enrolled in kindergarten 177.51 5.75 978 
Days enrolled in first grade 178.97 7.59 878 
Days enrolled in second grade 115.73 1.67 804 
Days absent in kindergarten 10.55 9.59 978 
Days absent in first grade 9.14 7.85 878 
Days absent in second grade 4.81 4.82 804 
Percent of days absent in kindergarten 0.06 0.05 978 
Percent of days absent in first grade 0.05 0.04 878 
Percent of days absent in second grade 0.04 0.04 804 
Chronically absent in kindergarten 0.16 - 153 
Chronically absent in first grade 0.12 - 103 
Chronically absent in second grade 0.09 - 69 

Notes: N = 1,012 in kindergarten, N = 894 in first grade, N = 825 in second grade. There is no 
missing data for any of these variables. For attendance and chronic absenteeism variables, 
samples are restricted to students who are enrolled at least 90 days. Chronically absent 
defined as missing ten percent or more of days enrolled. For the 2019-2020 school year, the 
attendance and enrollment data stopped at March 14, 2020 due to the COVID-19 pandemic. 

  



 

 

133 
 

 

Table 5. AUC values for models predicting special education status for paper two. 

Model type First grade Second grade 
(1) (2) 

Panel A. Linear Probability Model   

   Demographics 0.522 0.641 
   + Fall of K academic/executive functioning 0.683 0.781 
   + Fall of K intra/interpersonal 0.702 0.774 
   + Family data 0.680 0.702 
   + Teacher data 0.680 0.719 
   + Spring of K academic/executive functioning 0.697 0.754 
   + Spring of K intra/interpersonal 0.698 0.745 
Panel B. Logistic Model   
   Demographics 0.501 0.614 
   + Fall of K academic/executive functioning 0.657 0.763 
   + Fall of K intra/interpersonal - - 
   + Family data - - 
   + Teacher data - - 
   + Spring of K academic/executive functioning - - 
   + Spring of K intra/interpersonal - - 
Panel C. Elastic Net   
   Demographics 0.543 0.631 
   + Fall of K academic/executive functioning 0.713 0.813 
   + Fall of K intra/interpersonal 0.737 0.820 
   + Family data 0.733 0.809 
   + Teacher data 0.734 0.818 
   + Spring of K academic/executive functioning 0.720 0.828 
   + Spring of K intra/interpersonal 0.769 0.844 
Panel D. Decision Tree   
   Demographics 0.517 0.579 
   + Fall of K academic/executive functioning 0.599 0.709 
   + Fall of K intra/interpersonal 0.511 0.701 
   + Family data 0.626 0.582 
   + Teacher data 0.579 0.627 
   + Spring of K academic/executive functioning 0.568 0.594 
   + Spring of K intra/interpersonal 0.637 0.634 
Panel E. Random Forest   
   Demographics 0.563 0.649 
   + Fall of K academic/executive functioning 0.735 0.813 
   + Fall of K intra/interpersonal 0.750 0.814 
   + Family data 0.696 0.794 
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   + Teacher data 0.709 0.805 
   + Spring of K academic/executive functioning 0.731 0.812 
   + Spring of K intra/interpersonal 0.770 0.843 
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Table 6. AUC values for models predicting chronic absenteeism for paper two. 

Model type Kindergarten First grade Second grade 
(1) (2) (3) 

Panel A. Linear Probability Model    

   Demographics 0.618 0.634 0.616 
   + Fall of K academic/executive functioning 0.609 0.691 0.580 
   + Fall of K intra/interpersonal 0.625 0.674 0.560 
   + Family data 0.615 0.620 0.618 
   + Teacher data 0.593 0.642 0.589 
   + Spring of K academic/executive functioning 0.570 0.649 0.614 
   + Spring of K intra/interpersonal 0.610 0.650 0.635 
Panel B. Logistic Model    
   Demographics 0.617 0.628 0.619 
   + Fall of K academic/executive functioning 0.608 0.676 0.577 
   + Fall of K intra/interpersonal 0.625 0.650 - 
   + Family data - - - 
   + Teacher data - - - 
   + Spring of K academic/executive functioning - - - 
   + Spring of K intra/interpersonal - - - 
Panel C. Elastic Net    
   Demographics 0.649 0.637 0.604 
   + Fall of K academic/executive functioning 0.630 0.666 0.612 
   + Fall of K intra/interpersonal 0.647 0.662 0.654 
   + Family data 0.643 0.649 0.666 
   + Teacher data 0.633 0.627 0.656 
   + Spring of K academic/executive functioning 0.633 0.643 0.652 
   + Spring of K intra/interpersonal 0.653 0.643 0.654 
Panel D. Decision Tree    
   Demographics 0.608 0.591 0.564 
   + Fall of K academic/executive functioning 0.576 0.579 0.472 
   + Fall of K intra/interpersonal 0.550 0.573 0.556 
   + Family data 0.572 0.524 0.520 
   + Teacher data 0.571 0.542 0.550 
   + Spring of K academic/executive functioning 0.586 0.554 0.563 
   + Spring of K intra/interpersonal 0.563 0.545 0.559 
Panel E. Random Forest    
   Demographics 0.661 0.647 0.554 
   + Fall of K academic/executive functioning 0.613 0.627 0.578 
   + Fall of K intra/interpersonal 0.617 0.627 0.629 
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   + Family data 0.618 0.615 0.601 
   + Teacher data 0.616 0.602 0.618 
   + Spring of K academic/executive functioning 0.613 0.616 0.611 
   + Spring of K intra/interpersonal 0.592 0.620 0.625 
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Table 7. AUC values for models predicting receipt of special education services and chronic 
absenteeism for with student demographics, fall of Kindergarten DIBELS assessments, and one 
extra fall of Kindergarten assessment for paper two. 

 Special education Chronic absenteeism 

Model type 
First 
grade 

Second 
grade Kindergarten First 

grade 
Second 
grade 

(1) (2) (3) (4) (5) 
Panel A. Linear Probability Model      

   PPVT 0.660 0.809 0.640 0.661 0.587 
   WJAP 0.667 0.805 0.630 0.675 0.595 
   REMA 0.643 0.801 0.627 0.650 0.608 
   FDS 0.688 0.818 0.635 0.662 0.593 
   H&F 0.653 0.784 0.626 0.664 0.532 
   PSRA 0.688 0.809 0.638 0.668 0.619 
   TCRS 0.692 0.809 0.658 0.670 0.593 
   SSIS 0.692 0.803 0.645 0.656 0.577 
Panel B. Logistic Model      
   PPVT 0.667 0.812 0.639 0.653 0.588 
   WJAP 0.676 0.804 0.631 0.663 0.570 
   REMA 0.671 0.817 0.629 0.649 0.586 
   FDS 0.706 0.827 0.634 0.660 0.590 
   H&F 0.637 0.801 0.626 0.655 0.582 
   PSRA 0.690 0.815 0.637 0.663 0.624 
   TCRS 0.691 0.821 0.654 0.664 0.616 
   SSIS 0.686 0.802 0.644 0.633 0.564 
Panel C. Elastic Net      
   PPVT 0.675 0.822 0.637 0.647 0.578 
   WJAP 0.692 0.814 0.636 0.648 0.604 
   REMA 0.678 0.820 0.640 0.651 0.615 
   FDS 0.700 0.826 0.635 0.660 0.590 
   H&F 0.673 0.804 0.627 0.638 0.571 
   PSRA 0.712 0.820 0.637 0.667 0.612 
   TCRS 0.728 0.825 0.665 0.651 0.684 
   SSIS 0.733 0.826 0.648 0.647 0.633 
Panel D. Decision Tree      
   PPVT 0.639 0.740 0.542 0.581 0.539 
   WJAP 0.651 0.691 0.576 0.578 0.549 
   REMA 0.577 0.746 0.554 0.587 0.558 
   FDS 0.641 0.718 0.540 0.564 0.515 
   H&F 0.652 0.746 0.551 0.545 0.560 
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   PSRA 0.615 0.725 0.558 0.598 0.589 
   TCRS 0.618 0.746 0.602 0.619 0.534 
   SSIS 0.523 0.681 0.543 0.556 0.538 
Panel E. Random Forest      
   PPVT 0.660 0.810 0.634 0.626 0.594 
   WJAP 0.682 0.793 0.641 0.625 0.585 
   REMA 0.695 0.812 0.650 0.647 0.601 
   FDS 0.688 0.826 0.643 0.636 0.592 
   H&F 0.685 0.801 0.636 0.617 0.579 
   PSRA 0.711 0.829 0.638 0.655 0.600 
   TCRS 0.668 0.805 0.676 0.602 0.627 
   SSIS 0.697 0.790 0.632 0.601 0.594 

Notes: All models fit with student demographics, fall of K DIBELS measures, and one extra fall 
of K assessment as noted. Model 1 = Peabody Picture Vocabulary Test (PPVT), Model 2 = 
Woodcock Johnson Applied Problems (WJAP), Model 3 = Research-Based Early 
Mathematics Assessment (REMA), Model 4 = Digit Span Forward (DSF), Model 5 = 
Hearts and Flowers (H&F) both mixed and incongruent subscales, Model 6 = Preschool 
Self-Regulation Assessment (PSRA) both attention/impulse control and positive emotion 
subscales, Model 7 = Teacher-Child Rating Scale (TCRS) academic orientation subscale, 
Model 8 = Social Skills Improvement System (SSIS) cooperation, engagement, self-control, 
externalizing behavior, internalizing behavior, and hyperattention/inattention subscales. 

 
  



 

 

139 
 

 

 
Table 8. AUC values for models predicting receipt of special education services and chronic 
absenteeism for with student demographics, fall and spring of Kindergarten DIBELS 
assessments, and one extra fall and spring of Kindergarten assessment for paper two. 

 Special education Chronic absenteeism 

Model type 
First 
grade 

Second 
grade Kindergarten First 

grade 
Second 
grade 

(1) (2) (3) (4) (5) 
Panel A. Linear Probability Model      

   PPVT 0.694 0.814 0.654 0.638 0.606 
   WJAP 0.690 0.815 0.652 0.660 0.612 
   REMA 0.674 0.810 0.650 0.654 0.609 
   FDS 0.708 0.814 0.654 0.646 0.582 
   H&F 0.696 0.810 0.643 0.647 0.606 
   PSRA 0.718 0.824 0.650 0.656 0.613 
   TCRS 0.740 0.825 0.681 0.669 0.609 
   SSIS 0.729 0.816 0.683 0.652 0.590 
Panel B. Logistic Model      
   PPVT 0.693 0.814 0.646 0.635 0.607 
   WJAP 0.683 0.801 0.641 0.655 0.610 
   REMA 0.694 0.819 0.638 0.651 0.608 
   FDS 0.719 0.820 0.647 0.643 0.606 
   H&F 0.702 0.819 0.635 0.641 0.572 
   PSRA 0.713 0.817 0.642 0.655 0.616 
   TCRS 0.748 0.824 0.670 0.664 0.606 
   SSIS 0.727 0.808 0.673 0.632 0.591 
Panel C. Elastic Net      
   PPVT 0.702 0.830 0.633 0.650 0.617 
   WJAP 0.707 0.832 0.645 0.672 0.618 
   REMA 0.701 0.834 0.644 0.659 0.619 
   FDS 0.707 0.830 0.627 0.665 0.614 
   H&F 0.697 0.834 0.627 0.657 0.607 
   PSRA 0.722 0.831 0.635 0.671 0.631 
   TCRS 0.772 0.845 0.661 0.661 0.670 
   SSIS 0.779 0.851 0.665 0.654 0.624 
Panel D. Decision Tree      
   PPVT 0.650 0.689 0.596 0.501 0.492 
   WJAP 0.616 0.660 0.587 0.585 0.486 
   REMA 0.596 0.699 0.550 0.573 0.516 
   FDS 0.650 0.703 0.573 0.570 0.511 
   H&F 0.572 0.616 0.558 0.558 0.435 
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   PSRA 0.646 0.653 0.588 0.543 0.484 
   TCRS 0.628 0.642 0.570 0.561 0.514 
   SSIS 0.566 0.673 0.544 0.459 0.523 
Panel E. Random Forest      
   PPVT 0.700 0.821 0.623 0.601 0.575 
   WJAP 0.721 0.810 0.628 0.623 0.574 
   REMA 0.721 0.816 0.633 0.632 0.562 
   FDS 0.736 0.821 0.621 0.610 0.572 
   H&F 0.728 0.820 0.603 0.618 0.600 
   PSRA 0.764 0.850 0.634 0.638 0.566 
   TCRS 0.749 0.847 0.647 0.617 0.592 
   SSIS 0.777 0.839 0.622 0.593 0.583 

Notes: All models fit with student demographics, fall and spring of K DIBELS measures, and 
one extra fall and spring of K assessment as noted. Model 1 = Peabody Picture Vocabulary Test 
(PPVT), Model 2 = Woodcock Johnson Applied Problems (WJAP), Model 3 = Research-Based 
Early Mathematics Assessment (REMA), Model 4 = Digit Span Forward (DSF), Model 5 = 
Hearts and Flowers (H&F) both mixed and incongruent subscales, Model 6 = Preschool Self-
Regulation Assessment (PSRA) both attention/impulse control and positive emotion subscales, 
Model 7 = Teacher-Child Rating Scale (TCRS) academic orientation subscale, Model 8 = Social 
Skills Improvement System (SSIS) cooperation, engagement, self-control, externalizing 
behavior, internalizing behavior, and hyperattention/inattention subscales. 
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Table 9. Descriptive statistics for variables for paper three. 

Variable Mean or 
percent 

Standard 
deviation 

Percent 
missing 

Outcome    

Dropout of high school 0.11 - 0% 
Predictors    
Female 0.48 - 0% 
White 0.68 - 0% 
Black 0.20 - 0% 
Latinx 0.06 - 0% 
Asian 0.03 - 0% 
Native American/Alaskan Native 0.01 - 0% 
Hawaiian/Pacific Islander <0.01 - 0% 
Two or more races 0.02 - 0% 
Economically disadvantaged 0.39 - 18% 
Special education 0.11 - 18% 
Limited English Proficient 0.04 - 18% 
Percent of school days attended    
  G4 0.96 0.06 19% 
  G5 0.96 0.06 18% 
  G6 0.95 0.07 17% 
  G7 0.95 0.08 15% 
  G8 0.95 0.08 14% 
  G9 0.94 0.11 8% 
  G10 0.93 0.12 8% 
Suspended: In-school    
  G7 <0.01 - 14% 
  G8 <0.01 - 13% 
  G9 0.01 - 7% 
  G10 0.01 - 7% 
Suspended: Out-of-school    

  G7 <0.01 - 14% 
  G8 <0.01 - 13% 
  G9 0.01 - 7% 
  G10 0.02 - 7% 
Expelled    
  G7 <0.01 - 14% 
  G8 <0.01 - 13% 
  G9 <0.01 - 7% 
  G10 <0.01 - 7% 
Incident: Violent    
  G6 <0.01 - 15% 
  G7 <0.01 - 14% 
  G8 <0.01 - 13% 
  G9 0.01 - 7% 
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  G10 0.01 - 7% 
Incident: Weapon    
  G6 <0.01 - 15% 
  G7 <0.01 - 14% 
  G8 <0.01 - 13% 
  G9 <0.01 - 7% 
  G10 <0.01 - 7% 
Incident: Substance abuse    
  G7 <0.01 - 14% 
  G8 <0.01 - 13% 
  G9 <0.01 - 7% 
  G10 <0.01 - 7% 
Incident: Other    
  G6 <0.01 - 15% 
  G7 <0.01 - 14% 
  G8 0.01 - 13% 
  G9 0.03 - 7% 
  G10 0.03 - 7% 
Assessments: Math    
  G4    

  G5 422.55 24.03 22% 
  G6 518.32 27.05 21% 
  G7 619.31 28.62 20% 
  G8 722.28 27.23 19% 
Assessments: Reading    
  G4 425.37 26.40 23% 
  G5 525.84 29.24 22% 
  G6 624.32 27.49 20% 
  G7 723.61 29.96 19% 
  G8 821.84 25.79 18% 
Assessments: Social studies    
  G6 614.68 22.75 20% 
  G9 916.99 25.12 13% 
Assessments: Science    
  G8 820.13 25.65 18% 

Notes: N = 416,105. Percent missing includes differential number of students across grades. G4 
= fourth grade, G5 = fifth grade, G6 = sixth grade, G7 = seventh grade, G8 = eighth grade, G9 = 
ninth grade, G10 = tenth grade. Economically disadvantaged indicates that a student was either 
classified as free/reduced price lunch, receiving SNAP or TANF benefits, migrant, homeless, or 
in foster care. Suspended, expelled, and incident variables indicate event occurred at least one 
per school year.  There were no students who were suspended in- or out-of-school or expelled in 
G4, G5, or G6. There were no students who had incidents that were violent or involved weapons 
or another type of incident in G4 or G5. There were no students who had a substance abuse 
incident in G4, G5, or G6. Assessments are in scale scores. 
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Table 10. AUC values for models with full sample for paper three. 

Model type 
Linear 

probability  Logistic  Elastic net Decision 
tree 

Random 
forest 

(1) (2) (3) (4) (5) 
 G4 data 0.696 0.696 0.696 0.609 0.698 
 + G5 data 0.715 0.715 0.715 0.616 0.716 
 + G6 data 0.740 0.740 0.740 0.642 0.746 
 + G7 data 0.759 0.756 0.759 0.704 0.768 
 + G8 data 0.782 0.777 0.783 0.724 0.790 
 + G9 data 0.806 0.800 0.806 0.730 0.818 
 + G10 data 0.825 0.819 0.826 0.728 0.843 
 + Demographics 0.837 0.833 0.838 0.728 0.850 

Notes: N = 416,105. G4 = fourth grade, G5 = fifth grade, G6 = sixth grade, G7 = seventh grade, 
G8 = eighth grade, G9 = ninth grade, G10 = tenth grade. 
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Table 11. AUC values for models with based on gender for paper three. 

Model type 
Linear 

probability  Logistic  Elastic net Decision 
tree 

Random 
forest 

(1) (2) (3) (4) (5) 
Panel A. Females      
 G4 data 0.705 0.705 0.705 0.613 0.706 
 + G5 data 0.723 0.723 0.723 0.628 0.723 
 + G6 data 0.747 0.747 0.748 0.646 0.754 
 + G7 data 0.766 0.763 0.766 0.710 0.776 
 + G8 data 0.789 0.784 0.790 0.734 0.798 
 + G9 data 0.813 0.807 0.814 0.741 0.827 
 + G10 data 0.833 0.828 0.834 0.736 0.852 
 + Demographics 0.842 0.838 0.843 0.736 0.856 
Panel B. Males      
 G4 data 0.686 0.686 0.686 0.600 0.690 
 + G5 data 0.707 0.707 0.707 0.610 0.709 
 + G6 data 0.733 0.733 0.733 0.639 0.739 
 + G7 data 0.751 0.750 0.752 0.699 0.760 
 + G8 data 0.775 0.769 0.775 0.717 0.782 
 + G9 data 0.798 0.794 0.799 0.724 0.810 
 + G10 data 0.818 0.812 0.819 0.723 0.834 
 + Demographics 0.826 0.822 0.827 0.723 0.840 
Notes: N = 201,533 for females, N = 214,572 for males. G4 = fourth grade, G5 = fifth grade, G6 

= sixth grade, G7 = seventh grade, G8 = eighth grade, G9 = ninth grade, G10 = tenth grade. 
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Table 12. AUC values for models with based on race and ethnicity for paper three. 

Model type 
Linear 

probability  Logistic  Elastic net Decision 
tree 

Random 
forest 

(1) (2) (3) (4) (5) 
Panel A. White      
 G4 data 0.699 0.699 0.699 0.608 0.702 
 + G5 data 0.719 0.718 0.719 0.613 0.718 
 + G6 data 0.745 0.743 0.745 0.630 0.750 
 + G7 data 0.765 0.761 0.765 0.699 0.774 
 + G8 data 0.790 0.783 0.791 0.724 0.799 
 + G9 data 0.815 0.808 0.816 0.722 0.829 
 + G10 data 0.834 0.827 0.835 0.714 0.853 
 + Demographics 0.848 0.843 0.849 0.714 0.861 
Panel B. Black      
 G4 data 0.652 0.651 0.652 0.587 0.653 
 + G5 data 0.674 0.671 0.674 0.583 0.665 
 + G6 data 0.698 0.697 0.698 0.631 0.700 
 + G7 data 0.718 0.715 0.719 0.671 0.725 
 + G8 data 0.739 0.735 0.739 0.675 0.744 
 + G9 data 0.755 0.753 0.756 0.704 0.770 
 + G10 data 0.780 0.778 0.781 0.721 0.799 
 + Demographics 0.788 0.786 0.788 0.721 0.803 
Panel C. Latinx      
 G4 data 0.636 0.635 0.636 0.568 0.642 
 + G5 data 0.651 0.650 0.651 0.574 0.664 
 + G6 data 0.686 0.684 0.686 0.613 0.700 
 + G7 data 0.701 0.697 0.701 0.669 0.717 
 + G8 data 0.725 0.720 0.725 0.682 0.738 
 + G9 data 0.754 0.748 0.755 0.685 0.772 
 + G10 data 0.782 0.774 0.783 0.697 0.804 
 + Demographics 0.792 0.785 0.793 0.697 0.809 
Panel D. Asian      
 G4 data 0.748 0.751 0.748 0.670 0.737 
 + G5 data 0.782 0.785 0.781 0.691 0.788 
 + G6 data 0.795 0.797 0.795 0.678 0.792 
 + G7 data 0.803 0.803 0.802 0.714 0.800 
 + G8 data 0.821 0.821 0.822 0.729 0.823 
 + G9 data 0.853 0.847 0.853 0.755 0.865 
 + G10 data 0.870 0.860 0.871 0.733 0.882 
 + Demographics 0.871 0.863 0.872 0.733 0.881 
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Panel E. Native 
American or Alaskan 
Native 

     

 G4 data 0.667 0.666 0.667 0.591 0.666 
 + G5 data 0.668 0.672 0.668 0.605 0.682 
 + G6 data 0.684 0.688 0.684 0.590 0.690 
 + G7 data 0.706 0.712 0.706 0.649 0.728 
 + G8 data 0.718 0.719 0.718 0.632 0.732 
 + G9 data 0.766 0.766 0.766 0.700 0.777 
 + G10 data 0.781 0.783 0.782 0.708 0.807 
 + Demographics 0.791 0.791 0.790 0.708 0.817 
Panel F. Hawaiian or 
Pacific Islander      

 G4 data 0.737 0.742 0.737 0.598 0.692 
 + G5 data 0.693 0.703 0.692 0.646 0.690 
 + G6 data 0.760 0.773 0.759 0.725 0.772 
 + G7 data 0.776 0.770 0.776 0.734 0.770 
 + G8 data 0.749 0.763 0.755 0.710 0.759 
 + G9 data 0.743 0.767 0.756 0.661 0.790 
 + G10 data 0.753 0.768 0.766 0.619 0.759 
 + Demographics 0.779 0.811 0.795 0.619 0.789 
Panel G. Two or more 
races      

 G4 data 0.659 0.659 0.658 0.562 0.662 
 + G5 data 0.682 0.683 0.682 0.588 0.692 
 + G6 data 0.716 0.713 0.716 0.614 0.726 
 + G7 data 0.748 0.744 0.748 0.697 0.763 
 + G8 data 0.773 0.770 0.774 0.722 0.793 
 + G9 data 0.818 0.811 0.818 0.736 0.828 
 + G10 data 0.829 0.823 0.829 0.736 0.850 
 + Demographics 0.836 0.830 0.837 0.736 0.855 
Notes: N = 283,553 for White students, N = 85,830 for Black students, N = 24,048 for Latinx 

students, N = 10,883 for Asian students, N = 3,500 for Native American or Alaskan Native 
students, N = 429 for Hawaiian or Pacific Islander students, N = 7,862 for students of two or 
more races. G4 = fourth grade, G5 = fifth grade, G6 = sixth grade, G7 = seventh grade, G8 
= eighth grade, G9 = ninth grade, G10 = tenth grade. 
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Table 13. AUC values for models with based on economically disadvantaged status for paper 
three. 

Model type 
Linear 

probability  Logistic  Elastic net Decision 
tree 

Random 
forest 

(1) (2) (3) (4) (5) 
Panel A. Economically 
disadvantaged      

 G4 data 0.621 0.619 0.620 0.563 0.622 
 + G5 data 0.638 0.636 0.638 0.568 0.636 
 + G6 data 0.659 0.656 0.659 0.600 0.666 
 + G7 data 0.680 0.675 0.680 0.649 0.689 
 + G8 data 0.707 0.699 0.708 0.665 0.713 
 + G9 data 0.734 0.725 0.734 0.676 0.747 
 + G10 data 0.760 0.751 0.761 0.698 0.780 
 + Demographics 0.770 0.765 0.770 0.698 0.786 
Panel B. Not 
economically 
disadvantaged 

     

 G4 data 0.706 0.706 0.706 0.616 0.709 
 + G5 data 0.723 0.723 0.723 0.622 0.726 
 + G6 data 0.751 0.750 0.751 0.635 0.753 
 + G7 data 0.770 0.767 0.770 0.699 0.779 
 + G8 data 0.796 0.789 0.796 0.724 0.807 
 + G9 data 0.822 0.815 0.822 0.728 0.837 
 + G10 data 0.842 0.835 0.843 0.707 0.859 
 + Demographics 0.847 0.840 0.848 0.707 0.864 
Notes: N = 180,091 for students who are economically disadvantaged, N = 236,014 for students 

who are not economically disadvantaged. G4 = fourth grade, G5 = fifth grade, G6 = sixth 
grade, G7 = seventh grade, G8 = eighth grade, G9 = ninth grade, G10 = tenth grade. 
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Table 14. AUC values for models with based on receipt of special education services for paper 
three. 

Model type 
Linear 

probability  Logistic  Elastic net Decision 
tree 

Random 
forest 

(1) (2) (3) (4) (5) 
Panel A. Received 
services      

 G4 data 0.588 0.583 0.587 0.520 0.597 
 + G5 data 0.610 0.604 0.609 0.540 0.608 
 + G6 data 0.638 0.631 0.639 0.590 0.646 
 + G7 data 0.655 0.645 0.656 0.629 0.667 
 + G8 data 0.700 0.677 0.701 0.654 0.711 
 + G9 data 0.731 0.714 0.733 0.663 0.750 
 + G10 data 0.758 0.742 0.761 0.695 0.781 
 + Demographics 0.768 0.753 0.770 0.695 0.787 
Panel B. Did not receive 
services      

 G4 data 0.699 0.699 0.699 0.606 0.701 
 + G5 data 0.719 0.719 0.719 0.612 0.720 
 + G6 data 0.745 0.744 0.745 0.634 0.750 
 + G7 data 0.765 0.763 0.765 0.704 0.773 
 + G8 data 0.787 0.783 0.788 0.724 0.794 
 + G9 data 0.810 0.806 0.811 0.730 0.823 
 + G10 data 0.830 0.825 0.831 0.730 0.847 
 + Demographics 0.843 0.840 0.843 0.730 0.855 
Notes: N = 49,003 for students who received special education services, N = 367,102 for students 

who did not receive special education services. G4 = fourth grade, G5 = fifth grade, G6 = 
sixth grade, G7 = seventh grade, G8 = eighth grade, G9 = ninth grade, G10 = tenth grade. 
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Appendix A 

Decision trees are one of the easiest supervised machine learning algorithms to 

conceptually understand and also have the added benefit of often having lower error rates than 

more complicated algorithms in education research conducted so far, such as support vector 

machines and naïve Bayes (Ara et al., 2015; Lakkaraju et al., 2015). This nonparametric 

approach classifies data points using “recursive partitioning.” The algorithm sorts through the 

entire dataset and determines which variable (at which value) divides the dataset into the desired 

outcome groups with the least amount of error. After this first partition, it repeats this process for 

each partition until the data is sufficiently portioned or until it reaches the maximum number of 

variables or partitions used if specified by the researcher ahead of time. This iterative process can 

also be thought of graphically by plotting each data point in a k-dimensional space with k number 

of covariates. Each partition slices through the plane corresponding to the variable used to create 

the partition, physically separating data points into classified groups (Hastie et al., 2009; James 

et al., 2013; Strobl et al., 2009). 

 Decision trees are aptly named because their output looks like a tree. Starting at the top, 

the researcher can trace the classification decision for individual data point by moving to the left 

at each partition of the decision is true and to the right if the decision is false. The example seen 

in Appendix Figure 1 was constructed with a mock dataset consisting of N = 298 students to 

predict which students would drop out of high school during their junior year. The covariate 

variables consisted of the number of days absent that school year and demographic variables 
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(gender, bilingual status, free-reduced price lunch (FRPL) status, and race/ethnicity indicators). 

Of the 298 students in the dataset, N = 249 (84%) did not drop out of high school. This decision 

tree did not use all of the possible covariates and repeated one variable (days absent) twice 

(Appendix A Figure 1). The option to repeat variables is one of many possible the user-dictated 

hyper parameters, along with the number of partitions to create. 

 Despite their benefits, decisions have some drawbacks, namely that they can be become 

unstable (i.e., difficult to replicate due to overfitting) with large amounts of input variables 

because a slight change in the covariates could potentially change the entire tree structure 

depending on that variable’s classification utility. Therefore, instead of using a single decision 

tree, most researchers use a “random forest,” which is a large number (such as N = 1,000) of 

decision trees. Each decision tree within the forest is generated using a random sample of the 

input variables, and the data used to create each tree is comprised of bootstrapped (i.e., random 

sampling with replacement) samples from the training data in a process called “bagging.” The 

ultimate classification decision is taken from an average across all of the trees in the forest. It is 

also possible to determine which variables were most important in the classification process on 

average across the forest. Random forests are more reliable than single decision trees and are not 

as complicated as some other algorithms (Hastie et al., 2009; James et al., 2013; Strobl et al., 

2009).  
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Appendix A Figure 1 
Sample decision tree with corresponding data points. 
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Appendix B 

Overview of Robustness Checks for Paper 2 

Threats to the robustness of our results include: 1) missing data, 2) inclusion of students 

identified as receiving special education services in kindergarten, 3) sensitivity of using 

alternative definitions of chronic absenteeism, 4) saturation of predictor variables, and 5) 

sensitivity of using student demographics. Overall, we found our results to be robust to these five 

threats. In all models, just as in our primary analytic strategy, we used five model types (linear 

probability, logistic, elastic net, decision tree, and random forest) with seven conceptual blocks 

of predictor variables (Model 1 = child demographics, Model 2 = Model 1 with academic and 

executive functioning assessments (fall of K), Model 3 = Model 2 with inter- and intrapersonal 

assessments (fall of K), Model 4 = Model 3 with family data, Model 5 = Model 4 with teacher 

data, Model 6 = Model 5 with academic and executive functioning assessments (spring of K), 

Model 7 = Model 6 with inter- and intrapersonal assessments (spring of K)). The exception to 

this was the models addressing threat 4, which fit models with separate conceptual blocks of 

predictor variables, and threat 5, which removed the student demographics from all conceptual 

blocks. For threats 2-5, we used the conditional mean imputation as used in the primary analysis. 

We examined the stability of the AUC values across models and compared them to the primary 

results. 

Threat 1: Missing data. To address the missing data in our sample, we refit our models 

using multiple imputation (Graham, 2009). We imputed 100 datasets using a multivariate normal 

distribution and only imputed predictor variables. Overall, we found our results to be robust. 
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When predicting special education status, the linear probability and logistic results performed 

better than the primary results to the point where they mirrored the elastic net and random forest 

primary analysis results (Appendix B, Table 1, Panels A and B). For the chronic absenteeism 

models, the results were very similar to the primary analysis results (Appendix B, Table 2). 

Although a few models had an acceptable fit whereas none of the primary analysis models did, 

there was not a clear pattern to this. Because most of the multiple imputation models were robust 

to the mean conditional imputation models, we feel confident focusing on our main primary 

analytic approach. 

Threat 2: Inclusion of students identified as receiving special education services in 

kindergarten. In the primary analytic approach for the models predicting receipt of special 

education services, we included all students who we had data for at baseline. This meant that 

students who were identified as receiving special education services during kindergarten were 

not included in the group receiving special education services in either first or second grade, i.e., 

they were counted as zero in the outcome variable. To address the possibility that the inclusion 

of these students was hindering the ability of the models to pick up the variation among the 

remaining students, we refit our special education models excluding the students (N = 66) who 

were identified as receiving special education services during kindergarten. 

Overall, the refit models performed the same as the conditional mean imputation models 

except for the linear probability models, which performed better. Even though several of the 

linear probability models had an acceptable performance, the elastic net and random forest 

models performed the best, consistent with the main results. On average, the second-grade 

models performed better than the first-grade models, also consistent with the main results 

(Appendix B, Table 3). These results indicate that including the students who were identified as 
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receiving special education services during kindergarten was an appropriate choice. 

Threat 3: Sensitivity of using alternative definitions of chronic absenteeism. As Chang 

and Romero (2008) discuss, schools and districts use varying definitions of chronic absenteeism. 

While our primary analytic approach uses a definition of students missing at least 10% of school 

days, while enrolled a minimum of 90 days, refit our chronic absentee models using a definition 

of chronic absenteeism where students miss at least 15 school days with no minimum days of 

enrollment (Chang & Romero, 2008). We only did this for models predicting chronic 

absenteeism in kindergarten and first grade because the sample size of students missing at least 

15 school days in second grade was too small due to the attendance data being truncated on 

March 14, 2020 to account for students’ move to at-home schooling as a result of the COVID-19 

pandemic. Using this definition of chronic absenteeism, N = 218 (21.5%) students were 

identified as being chronically absent in kindergarten while N = 159 (17.8%) students were 

identified as being chronically absent in first grade. 

Overall, the models refit using this new definition of chronic absenteeism performed 

approximately the same in that all but one model had an unacceptable fit. The AUC values 

ranged between 0.543 and 0.690, and the only model that had an acceptable fit was the elastic 

model with every predictor group (AUC = 0.700, Appendix B, Table 4). Overall, these results 

indicate that model performance was not sensitive to the definition of chronic absenteeism used. 

Threat 4: Saturation of predictor variables. Even though we built up our main analysis 

models using conceptual blocks of predictor variables in the chronological order that we thought 

district would have access to throughout the kindergarten school year, we also wanted to address 

the possibility that some blocks of predictor variables may be more predictive on their own 

instead of combined with other blocks. Overall, we found that most of the models fit with 
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separate conceptual blocks of predictor variables performed the same or worse than the main 

analytic models. This was true for models predicting both receipt of special education services 

(Appendix B, Table 5) and chronic absenteeism (Appendix B, Table 6). Also, for both types of 

outcomes, there were different logistic models that converged compared to the main text models, 

such as the spring of kindergarten academic achievement and intra- and interpersonal skills 

measures. Interestingly, there were a few linear probability and logistic models that had an 

acceptable fit, including the spring of kindergarten assessment and teacher report measures. With 

these few well-fitting models as exceptions, we take these results as indication that our primary 

analytic models were an appropriate choice. 

 Threat 5: Sensitivity of using demographic variables. To address the possibility that 

our results were being driven by the demographic variables, we refit all our models removing the 

demographic variables. This is consistent with previous work on early warning systems that 

focus on attendance, behavior, and course performance variables instead of demographic 

variables (Therriault et al., 2017; U.S. Department of Education, 2016). Overall, we found our 

results to be robust to the exclusion of demographic variables with the exception that several of 

the special education linear probability models and the second-grade special education logistic 

models had an acceptable performance (Appendix B, Table 7). Consistent with the main results, 

none of the chronic absenteeism models had an acceptable performance (Appendix B, Table 8). 

On average, we take these results as indication that our primary analytic results were not driven 

by the inclusion of demographic variables. 
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Appendix B Table 1 (Addresses Threat 1) 
AUC Values for Models Predicting Special Education Status using Multiple Imputation 

Model type First grade Second grade 
(1) (2) 

Panel A. Linear Probability Model   

   Demographics 0.425 0.696 
   + Fall of K academic/executive functioning 0.725 0.893 
   + Fall of K intra/interpersonal 0.752 0.887 
   + Family data 0.726 0.771 
   + Teacher data 0.765 0.816 
   + Spring of K academic/executive functioning 0.779 0.851 
   + Spring of K intra/interpersonal 0.787 0.858 
Panel B. Logistic Model   
   Demographics 0.447 0.674 
   + Fall of K academic/executive functioning 0.717 0.874 
   + Fall of K intra/interpersonal 0.743 0.871 
   + Family data - 0.736 
   + Teacher data - - 
   + Spring of K academic/executive functioning - - 
   + Spring of K intra/interpersonal - - 
Panel C. Elastic Net   
   Demographics 0.500 0.582 
   + Fall of K academic/executive functioning 0.923 0.889 
   + Fall of K intra/interpersonal 0.910 0.884 
   + Family data 0.894 0.806 
   + Teacher data 0.884 0.749 
   + Spring of K academic/executive functioning 0.668 0.546 
   + Spring of K intra/interpersonal 0.739 0.614 
Panel D. Decision Tree   
   Demographics 0.547 0.532 
   + Fall of K academic/executive functioning 0.609 0.680 
   + Fall of K intra/interpersonal 0.645 0.716 
   + Family data 0.518 0.578 
   + Teacher data 0.564 0.531 
   + Spring of K academic/executive functioning 0.646 0.674 
   + Spring of K intra/interpersonal 0.674 0.672 
Panel E. Random Forest   
   Demographics 0.503 0.683 
   + Fall of K academic/executive functioning 0.774 0.827 
   + Fall of K intra/interpersonal 0.805 0.867 
   + Family data 0.759 0.846 
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   + Teacher data 0.771 0.889 
   + Spring of K academic/executive functioning 0.793 0.935 
   + Spring of K intra/interpersonal 0.793 0.934 
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Appendix B Table 2 (Addresses Threat 1) 
AUC Values for Models Predicting Chronic Absenteeism using Multiple Imputation 

Model type Kindergarten First grade Second grade 
(1) (2) (3) 

Panel A. Linear Probability Model    

   Demographics 0.624 0.688 0.721 
   + Fall of K academic/executive functioning 0.601 0.733 0.720 
   + Fall of K intra/interpersonal 0.628 0.743 0.723 
   + Family data 0.632 0.637 0.530 
   + Teacher data 0.571 0.622 0.572 
   + Spring of K academic/executive functioning 0.571 0.615 0.621 
   + Spring of K intra/interpersonal 0.584 0.578 0.636 
Panel B. Logistic Model    
   Demographics 0.617 0.680 0.722 
   + Fall of K academic/executive functioning 0.592 0.733 0.696 
   + Fall of K intra/interpersonal 0.617 0.739 0.701 
   + Family data 0.587 - - 
   + Teacher data 0.546 - - 
   + Spring of K academic/executive functioning - - - 
   + Spring of K intra/interpersonal - - - 
Panel C. Elastic Net    
   Demographics 0.634 0.690 0.510 
   + Fall of K academic/executive functioning 0.668 0.603 0.492 
   + Fall of K intra/interpersonal 0.689 0.554 0.474 
   + Family data 0.760 0.490 0.487 
   + Teacher data 0.665 0.514 0.474 
   + Spring of K academic/executive functioning 0.694 0.519 0.537 
   + Spring of K intra/interpersonal 0.725 0.605 0.535 
Panel D. Decision Tree    
   Demographics 0.601 0.611 0.630 
   + Fall of K academic/executive functioning 0.601 0.576 0.519 
   + Fall of K intra/interpersonal 0.601 0.578 0.552 
   + Family data 0.553 0.585 0.421 
   + Teacher data 0.571 0.580 0.465 
   + Spring of K academic/executive functioning 0.570 0.577 0.388 
   + Spring of K intra/interpersonal 0.549 0.578 0.501 
Panel E. Random Forest    
   Demographics 0.622 0.637 0.630 
   + Fall of K academic/executive functioning 0.675 0.701 0.644 
   + Fall of K intra/interpersonal 0.621 0.671 0.700 
   + Family data 0.731 0.774 0.764 
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   + Teacher data 0.714 0.699 0.803 
   + Spring of K academic/executive functioning 0.747 0.723 0.863 
   + Spring of K intra/interpersonal 0.739 0.701 0.842 
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Appendix B Table 3 (Addresses Threat 2) 
AUC Values for Models Predicting Special Education Status without Students who Received 

Special Education Services in Kindergarten 

Model type First grade Second grade 
(1) (2) 

Panel A. Linear Probability Model   

   Demographics 0.593 0.728 
   + Fall of K academic/executive functioning 0.727 0.818 
   + Fall of K intra/interpersonal 0.744 0.810 
   + Family data 0.704 0.794 
   + Teacher data 0.689 0.769 
   + Spring of K academic/executive functioning 0.678 0.775 
   + Spring of K intra/interpersonal 0.700 0.775 
Panel B. Logistic Model   
   Demographics 0.589 0.737 
   + Fall of K academic/executive functioning - - 
   + Fall of K intra/interpersonal - - 
   + Family data - - 
   + Teacher data - - 
   + Spring of K academic/executive functioning - - 
   + Spring of K intra/interpersonal - - 
Panel C. Elastic Net   
   Demographics 0.578 0.709 
   + Fall of K academic/executive functioning 0.769 0.844 
   + Fall of K intra/interpersonal 0.789 0.846 
   + Family data 0.773 0.843 
   + Teacher data 0.768 0.846 
   + Spring of K academic/executive functioning 0.777 0.855 
   + Spring of K intra/interpersonal 0.810 0.863 
Panel D. Decision Tree   
   Demographics 0.513 0.555 
   + Fall of K academic/executive functioning 0.650 0.662 
   + Fall of K intra/interpersonal 0.621 0.725 
   + Family data 0.601 0.700 
   + Teacher data 0.506 0.683 
   + Spring of K academic/executive functioning 0.610 0.646 
   + Spring of K intra/interpersonal 0.632 0.609 
Panel E. Random Forest   
   Demographics 0.626 0.671 
   + Fall of K academic/executive functioning 0.824 0.844 
   + Fall of K intra/interpersonal 0.807 0.858 
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   + Family data 0.787 0.839 
   + Teacher data 0.779 0.828 
   + Spring of K academic/executive functioning 0.804 0.844 
   + Spring of K intra/interpersonal 0.820 0.862 
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Appendix B Table 4 (Addresses Threat 3) 
AUC Values for Models Predicting Chronic Absenteeism with Alternative Definition of Chronic 

Absenteeism 

Model type Kindergarten First grade 
(1) (2) 

Panel A. Linear Probability Model   

   Demographics 0.646 0.591 
   + Fall of K academic/executive functioning 0.664 0.675 
   + Fall of K intra/interpersonal 0.672 0.667 
   + Family data 0.689 0.652 
   + Teacher data 0.683 0.655 
   + Spring of K academic/executive functioning 0.679 0.640 
   + Spring of K intra/interpersonal 0.675 0.647 
Panel B. Logistic Model   
   Demographics 0.643 0.618 
   + Fall of K academic/executive functioning 0.661 0.671 
   + Fall of K intra/interpersonal - 0.654 
   + Family data - - 
   + Teacher data - - 
   + Spring of K academic/executive functioning - - 
   + Spring of K intra/interpersonal - - 
Panel C. Elastic Net   
   Demographics 0.647 0.637 
   + Fall of K academic/executive functioning 0.668 0.666 
   + Fall of K intra/interpersonal 0.673 0.664 
   + Family data 0.692 0.647 
   + Teacher data 0.685 0.632 
   + Spring of K academic/executive functioning 0.690 0.637 
   + Spring of K intra/interpersonal 0.700 0.640 
Panel D. Decision Tree   
   Demographics 0.608 0.584 
   + Fall of K academic/executive functioning 0.575 0.601 
   + Fall of K intra/interpersonal 0.601 0.578 
   + Family data 0.590 0.580 
   + Teacher data 0.620 0.555 
   + Spring of K academic/executive functioning 0.598 0.570 
   + Spring of K intra/interpersonal 0.588 0.543 
Panel E. Random Forest   
   Demographics 0.626 0.647 
   + Fall of K academic/executive functioning 0.645 0.638 
   + Fall of K intra/interpersonal 0.643 0.618 
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   + Family data 0.664 0.586 
   + Teacher data 0.676 0.605 
   + Spring of K academic/executive functioning 0.681 0.622 
   + Spring of K intra/interpersonal 0.686 0.617 
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Appendix B Table 5 (Addresses Threat 4) 
AUC Values for Models Predicting Special Education Status with Separate Predictor Variable 

Blocks 

Model type First grade Second grade 
(1) (2) 

Panel A. Linear Probability Model   

   Demographics 0.522 0.641 
   Fall of K academic/executive functioning 0.706 0.784 
   Fall of K intra/interpersonal 0.698 0.723 
   Family data 0.577 0.607 
   Teacher data 0.533 0.590 
   Spring of K academic/executive functioning 0.716 0.821 
   Spring of K intra/interpersonal 0.784 0.806 
Panel B. Logistic Model   
   Demographics 0.501 0.614 
   Fall of K academic/executive functioning 0.665 0.757 
   Fall of K intra/interpersonal 0.691 0.711 
   Family data - - 
   Teacher data 0.525 0.583 
   Spring of K academic/executive functioning 0.721 0.821 
   Spring of K intra/interpersonal 0.797 0.803 
Panel C. Elastic Net   
   Demographics 0.543 0.631 
   Fall of K academic/executive functioning 0.720 0.808 
   Fall of K intra/interpersonal 0.735 0.758 
   Family data 0.519 0.568 
   Teacher data 0.500 0.492 
   Spring of K academic/executive functioning 0.719 0.820 
   Spring of K intra/interpersonal 0.802 0.810 
Panel D. Decision Tree   
   Demographics 0.517 0.579 
   Fall of K academic/executive functioning 0.626 0.675 
   Fall of K intra/interpersonal 0.576 0.656 
   Family data 0.548 0.514 
   Teacher data 0.505 0.508 
   Spring of K academic/executive functioning 0.617 0.727 
   Spring of K intra/interpersonal 0.674 0.675 
Panel E. Random Forest   
   Demographics 0.563 0.649 
   Fall of K academic/executive functioning 0.720 0.800 
   Fall of K intra/interpersonal 0.658 0.648 
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   Family data 0.527 0.545 
   Teacher data 0.553 0.584 
   Spring of K academic/executive functioning 0.762 0.841 
   Spring of K intra/interpersonal 0.765 0.798 
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Appendix B Table 6 (Addresses Threat 4) 
AUC Values for Models Predicting Chronic Absenteeism with Separate Predictor Variable 

Blocks 

Model type Kindergarten First grade Second grade 
(1) (2) (3) 

Panel A. Linear Probability Model    

   Demographics 0.618 0.634 0.616 
   Fall of K academic/executive functioning 0.577 0.690 0.552 
   Fall of K intra/interpersonal 0.618 0.612 0.622 
   Family data 0.589 0.594 0.620 
   Teacher data 0.577 0.507 0.577 
   Spring of K academic/executive functioning 0.648 0.660 0.603 
   Spring of K intra/interpersonal 0.687 0.689 0.650 
Panel B. Logistic Model    
   Demographics 0.617 0.628 0.619 
   Fall of K academic/executive functioning 0.569 0.685 0.548 
   Fall of K intra/interpersonal 0.618 0.609 0.623 
   Family data - - - 
   Teacher data 0.577 0.532 0.578 
   Spring of K academic/executive functioning 0.635 0.665 0.588 
   Spring of K intra/interpersonal 0.688 0.689 0.653 
Panel C. Elastic Net    
   Demographics 0.649 0.637 0.604 
   Fall of K academic/executive functioning 0.588 0.633 0.582 
   Fall of K intra/interpersonal 0.621 0.592 0.674 
   Family data 0.618 0.577 0.498 
   Teacher data 0.501 0.500 0.488 
   Spring of K academic/executive functioning 0.607 0.658 0.624 
   Spring of K intra/interpersonal 0.652 0.615 0.628 
Panel D. Decision Tree    
   Demographics 0.608 0.591 0.564 
   Fall of K academic/executive functioning 0.549 0.587 0.514 
   Fall of K intra/interpersonal 0.597 0.591 0.541 
   Family data 0.538 0.530 0.502 
   Teacher data 0.507 0.490 0.527 
   Spring of K academic/executive functioning 0.515 0.597 0.552 
   Spring of K intra/interpersonal 0.637 0.661 0.557 
Panel E. Random Forest    
   Demographics 0.661 0.647 0.554 
   Fall of K academic/executive functioning 0.571 0.575 0.558 
   Fall of K intra/interpersonal 0.583 0.576 0.581 
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   Family data 0.577 0.587 0.553 
   Teacher data 0.649 0.537 0.567 
   Spring of K academic/executive functioning 0.600 0.605 0.593 
   Spring of K intra/interpersonal 0.619 0.595 0.632 
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Appendix B Table 7 (Addresses Threat 5) 
AUC Values for Models Predicting Special Education Status without Demographic Variables 

Model type First grade Second grade 
(1) (2) 

Panel A. Linear Probability Model   

   Fall of K academic/executive functioning 0.706 0.784 
   + Fall of K intra/interpersonal 0.702 0.773 
   + Family data 0.672 0.713 
   + Teacher data 0.675 0.721 
   + Spring of K academic/executive functioning 0.700 0.760 
   + Spring of K intra/interpersonal 0.706 0.758 
Panel B. Logistic Model   
   Fall of K academic/executive functioning 0.665 0.757 
   + Fall of K intra/interpersonal 0.639 0.732 
   + Family data - - 
   + Teacher data - - 
   + Spring of K academic/executive functioning - - 
   + Spring of K intra/interpersonal - - 
Panel C. Elastic Net   
   Fall of K academic/executive functioning 0.720 0.808 
   + Fall of K intra/interpersonal 0.742 0.814 
   + Family data 0.736 0.812 
   + Teacher data 0.734 0.818 
   + Spring of K academic/executive functioning 0.722 0.822 
   + Spring of K intra/interpersonal 0.769 0.844 
Panel D. Decision Tree   
   Fall of K academic/executive functioning 0.626 0.675 
   + Fall of K intra/interpersonal 0.525 0.716 
   + Family data 0.589 0.606 
   + Teacher data 0.515 0.627 
   + Spring of K academic/executive functioning 0.585 0.603 
   + Spring of K intra/interpersonal 0.634 0.667 
Panel E. Random Forest   
   Fall of K academic/executive functioning 0.720 0.800 
   + Fall of K intra/interpersonal 0.743 0.815 
   + Family data 0.687 0.797 
   + Teacher data 0.722 0.797 
   + Spring of K academic/executive functioning 0.739 0.826 
   + Spring of K intra/interpersonal 0.770 0.844 
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Appendix B Table 8 (Addresses Threat 5) 
AUC Values for Models Predicting Chronic Absenteeism without Demographic Variables 

Model type Kindergarten First grade Second grade 
(1) (2) (3) 

Panel A. Linear Probability Model    

   Fall of K academic/executive functioning 0.577 0.690 0.552 
   + Fall of K intra/interpersonal 0.589 0.661 0.574 
   + Family data 0.614 0.625 0.601 
   + Teacher data 0.599 0.640 0.592 
   + Spring of K academic/executive functioning 0.610 0.648 0.597 
   + Spring of K intra/interpersonal 0.629 0.655 0.605 
Panel B. Logistic Model    
   Fall of K academic/executive functioning 0.569 0.685 0.548 
   + Fall of K intra/interpersonal 0.589 0.640 0.559 
   + Family data - - - 
   + Teacher data - - - 
   + Spring of K academic/executive functioning - - - 
   + Spring of K intra/interpersonal - - - 
Panel C. Elastic Net    
   Fall of K academic/executive functioning 0.588 0.633 0.582 
   + Fall of K intra/interpersonal 0.616 0.627 0.658 
   + Family data 0.630 0.613 0.676 
   + Teacher data 0.626 0.606 0.661 
   + Spring of K academic/executive functioning 0.631 0.626 0.659 
   + Spring of K intra/interpersonal 0.650 0.634 0.656 
Panel D. Decision Tree    
   Fall of K academic/executive functioning 0.549 0.587 0.514 
   + Fall of K intra/interpersonal 0.529 0.563 0.582 
   + Family data 0.622 0.523 0.522 
   + Teacher data 0.588 0.538 0.537 
   + Spring of K academic/executive functioning 0.581 0.547 0.566 
   + Spring of K intra/interpersonal 0.559 0.533 0.545 
Panel E. Random Forest    
   Fall of K academic/executive functioning 0.571 0.575 0.558 
   + Fall of K intra/interpersonal 0.566 0.609 0.632 
   + Family data 0.592 0.589 0.602 
   + Teacher data 0.557 0.596 0.630 
   + Spring of K academic/executive functioning 0.607 0.614 0.616 
   + Spring of K intra/interpersonal 0.614 0.618 0.616 
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Appendix C 

Supplementary Tables and Figures for Paper 2 

Appendix C Table 1 
Descriptive Statistics for Predictor Variables 

Variable Mean/Percent Standard 
deviation 

Percent 
missing 

Child demographics (Fall of K)    

Female 0.48 - 0% 
Asian 0.14 - 0% 
Black 0.25 - 0% 
Latinx 0.33 - 0% 
White 0.25 - 0% 
Mixed/other race 0.03 - 0% 
First language: English 0.63 - 0% 
Home language: English 0.74 - 0% 
Parent language preference: English 0.75 - 0% 
Free or reduced-priced lunch 0.60 - 0% 
Dual language learner 0.51 - 0% 
Limited English proficient 0.39 - 0% 
Age of Sept 1, 2017 5.49 0.29 0% 
Direct assessments (Fall of K)    

PPVT (raw score) 91.05 26.80 6% 
DIBELS FSF 16.47 12.66 23% 
DIBELS LNF 25.52 17.17 23% 
WJAP (raw score) 16.41 5.13 5% 
REMA (raw score) 11.96 5.94 7% 
FDS (categorical score) 3.58 0.97 7% 
H&F mixed 0.71 0.21 10% 
H&F incongruent 0.85 0.25 11% 
PSRA AI 2.65 0.46 10% 
PSRA PE 2.40 0.46 10% 
Direct assessments (Spring of K)    

PPVT (raw score) 103.84 25.87 9% 
DIBELS LNF 52.83 18.54 22% 
DIBELS PSF 43.53 17.64 22% 
DIBELS CLS 41.02 26.47 22% 
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DIBELS WWR 7.64 11.07 22% 
WJAP (raw score) 19.53 4.77 9% 
REMA (raw score) 16.51 8.23 9% 
FDS (categorical score) 3.80 0.89 9% 
BDS (categorical score) 2.53 0.76 24% 
H&F mixed 0.77 0.21 11% 
H&F incongruent 0.91 0.20 11% 
PSRA AI 2.65 0.46 10% 
PSRA PE 2.40 0.46 10% 
Teacher report assessments (Fall of K)    

Academic orientation 3.42 1.08 19% 
Cooperation 3.15 0.68 18% 
Engagement 3.23 0.56 18% 
Self-control 3.07 0.68 19% 
Externalizing behavior 1.50 0.51 19% 
Internalizing behavior 1.43 0.44 19% 
Hyperactivity/inattention 1.79 0.65 19% 
Teacher report assessments (Spring of K)    

Academic orientation 3.57 1.10 14% 
Cooperation 3.22 0.65 13% 
Engagement 3.34 0.53 13% 
Self-control 3.13 0.67 13% 
Externalizing behavior 1.49 0.51 13% 
Internalizing behavior 1.44 0.43 13% 
Hyperactivity/inattention 1.75 0.64 13% 
Family data    

Parent ed: High school diploma or less 0.31 - 51% 
Parent ed: Two-year degree 0.31 - 51% 
Parent ed: Bachelor’s degree 0.17 - 51% 
Parent ed: Advanced degree 0.21 - 51% 
Age of mother at first child’s birth 26.19 6.65 53% 
Age of father at first child’s birth 24.50 13.36 57% 
Parent age when completing survey 36.27 7.09  
Household size 4.28 1.37 51% 
At least one adult in household working full time  0.89 - 51% 
Married/partner 0.55 - 58% 
Child had Early Intervention Services or Individualized 
Family Service Plan 0.16 - 58% 

PreK experience: BPS PreK 0.64 - 34% 
PreK experience: Something other than BPS PreK 0.24 - 34% 
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PreK experience: No center-based care 0.12 - 34% 
Parental perception that PreK attendance is important 0.82 - 52% 
Parental perception that daily school attendance is important 0.83 - 59% 
Parent satisfaction with school assignment 3.58 0.67 60% 
Parental engagement: Literacy constrained 2.98 0.73 52% 
Parental engagement: Language unconstrained 3.02 0.66 51% 
Parental engagement: Math constrained 2.79 0.70 52% 
Parental engagement: Math unconstrained 2.47 0.76 52% 
Household income: Less than $25000 0.31 - 55% 
Household income: Between $2500-$59999 0.32 - 55% 
Household income: $60000 or more 0.37 - 55% 
Experiential learning activities   0.24 0.17 50% 
Number of children’s books at home (including library 
books) 5.53 3.67 52% 

Teacher data    

Years of teaching experience 13.11 7.51 9% 
Years of Kindergarten teaching experience 9.10 0.25 14% 
Female 0.93 - 14% 
White 0.59 - 14% 
Black 0.14 - 14% 
Asian 0.04 - 11% 
Latinx 0.23 - 8% 
Age 39.05 9.19 11% 
Highest education: Education specialist/professional diploma 0.03 - 8% 
Highest education: Associate’s or other 0.01 - 8% 
Highest education: Bachelor’s 0.11 - 8% 
Highest education: Master’s 0.84 - 8% 
Highest education: Doctorate 0.01 - 8% 
Major of highest degree: Early childhood education 0.43 - 8% 
Major of highest degree: Elementary education 0.25 - 8% 
Major of highest degree: Special education 0.32 - 10% 
Major of highest degree: Child development 0.04 - 8% 
Major of highest degree: Reading specialist 0.07 - 10% 
Major of highest degree: Curriculum & instruction 0.07 - 10% 
Major of highest degree: Bilingual/bicultural education 0.04 - 10% 
Major of highest degree: Other education 0.13 - 8% 
Major of highest degree: Other non-education 0.02 - 10% 
Current teaching license: Early childhood education 0.94 - 8% 
Current teaching license: Elementary education 0.42 - 8% 
Current teaching license: English Language Learners 0.54 - 8% 
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Current teaching license: Speech 0.00 - 10% 
Current teaching license: Teacher of students with moderate 
disabilities 0.49 - 8% 

Current teaching license: Teacher of students with severe 
disabilities 0.03 - 10% 

Current teaching license: Other teacher 0.03 - 10% 
Current teaching license: Teacher specialist 0.03 - 10% 
Current teaching license: Administrator 0.04 - 10% 

Notes: N = 1,012. PPVT = Peabody Picture Vocabulary Test, FSF = First sound fluency score, 
LNF = Letter naming raw score, PSF = Phoneme segmentation fluency score, CLS = Nonsense 
word fluency correct letter sounds score, WWR = Nonsense word fluency whole word read 
score, WJAP = Woodcock Johnson Applied Problems, REMA = Research-Based Early 
Mathematics Assessment, FDS = Digit Span Forward, BDS = Digit Span Backward, H&F = 
Hearts and Flowers, PSRA = Preschool Self-Regulation Assessment, AI = Attention/Impulse 
Control, PE = Positive Emotion. Major of highest degree and currently teaching license for 
teachers are not mutually exclusive to allow for dual degree and license. 
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Appendix C Table 2 
AUC Values for Models Predicting Special Education Status for Dual Language Learners 

Model type First grade Second grade 
(1) (2) 

Panel A. Linear Probability Model   

   Demographics 0.629 0.655 
   + Fall of K academic/executive functioning 0.632 0.795 
   + Fall of K intra/interpersonal 0.652 0.773 
   + Family data 0.729 0.663 
   + Teacher data 0.689 0.695 
   + Spring of K academic/executive functioning 0.731 0.701 
   + Spring of K intra/interpersonal 0.727 0.709 
Panel B. Logistic Model   
   Demographics 0.593 0.656 
   + Fall of K academic/executive functioning 0.614 0.782 
   + Fall of K intra/interpersonal - - 
   + Family data - - 
   + Teacher data - - 
   + Spring of K academic/executive functioning - - 
   + Spring of K intra/interpersonal - - 
Panel C. Elastic Net   
   Demographics 0.576 0.642 
   + Fall of K academic/executive functioning 0.667 0.838 
   + Fall of K intra/interpersonal 0.701 0.832 
   + Family data 0.690 0.827 
   + Teacher data 0.692 0.831 
   + Spring of K academic/executive functioning 0.686 0.847 
   + Spring of K intra/interpersonal 0.731 0.851 
Panel D. Decision Tree   
   Demographics 0.513 0.563 
   + Fall of K academic/executive functioning 0.543 0.743 
   + Fall of K intra/interpersonal 0.492 0.670 
   + Family data 0.555 0.648 
   + Teacher data 0.533 0.704 
   + Spring of K academic/executive functioning 0.517 0.645 
   + Spring of K intra/interpersonal 0.599 0.682 
Panel E. Random Forest   
   Demographics 0.628 0.677 
   + Fall of K academic/executive functioning 0.657 0.868 
   + Fall of K intra/interpersonal 0.711 0.843 
   + Family data 0.631 0.815 
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   + Teacher data 0.625 0.822 
   + Spring of K academic/executive functioning 0.679 0.841 
   + Spring of K intra/interpersonal 0.648 0.875 
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Appendix C Table 3 
AUC Values for Models Predicting Special Education Status for non-Dual Language Learners 

Model type First grade Second grade 
(1) (2) 

Panel A. Linear Probability Model   

   Demographics 0.562 0.659 
   + Fall of K academic/executive functioning 0.711 0.779 
   + Fall of K intra/interpersonal 0.734 0.794 
   + Family data 0.654 0.765 
   + Teacher data 0.669 0.789 
   + Spring of K academic/executive functioning 0.672 0.798 
   + Spring of K intra/interpersonal 0.670 0.773 
Panel B. Logistic Model   
   Demographics 0.578 0.646 
   + Fall of K academic/executive functioning 0.674 0.753 
   + Fall of K intra/interpersonal - - 
   + Family data - - 
   + Teacher data - - 
   + Spring of K academic/executive functioning - - 
   + Spring of K intra/interpersonal - - 
Panel C. Elastic Net   
   Demographics 0.513 0.619 
   + Fall of K academic/executive functioning 0.742 0.792 
   + Fall of K intra/interpersonal 0.771 0.812 
   + Family data 0.765 0.795 
   + Teacher data 0.769 0.808 
   + Spring of K academic/executive functioning 0.729 0.812 
   + Spring of K intra/interpersonal 0.793 0.834 
Panel D. Decision Tree   
   Demographics 0.516 0.624 
   + Fall of K academic/executive functioning 0.574 0.717 
   + Fall of K intra/interpersonal 0.568 0.603 
   + Family data 0.456 0.517 
   + Teacher data 0.524 0.519 
   + Spring of K academic/executive functioning 0.544 0.727 
   + Spring of K intra/interpersonal 0.503 0.582 
Panel E. Random Forest   
   Demographics 0.606 0.621 
   + Fall of K academic/executive functioning 0.753 0.753 
   + Fall of K intra/interpersonal 0.754 0.776 
   + Family data 0.727 0.767 
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   + Teacher data 0.747 0.786 
   + Spring of K academic/executive functioning 0.746 0.778 
   + Spring of K intra/interpersonal 0.801 0.804 
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Appendix C Table 4 
AUC Values for Models Predicting Chronic Absenteeism for Dual Language Learners 

Model type Kindergarten First grade Second grade 
(1) (2) (3) 

Panel A. Linear Probability Model    

   Demographics 0.546 0.595 0.628 
   + Fall of K academic/executive functioning 0.566 0.688 0.560 
   + Fall of K intra/interpersonal 0.583 0.677 0.647 
   + Family data 0.600 0.652 0.634 
   + Teacher data 0.596 0.675 0.662 
   + Spring of K academic/executive functioning 0.577 0.694 0.639 
   + Spring of K intra/interpersonal 0.581 0.688 0.642 
Panel B. Logistic Model    
   Demographics 0.543 0.597 0.627 
   + Fall of K academic/executive functioning 0.568 0.696 0.548 
   + Fall of K intra/interpersonal 0.587 0.691 - 
   + Family data - - - 
   + Teacher data - - - 
   + Spring of K academic/executive functioning - - - 
   + Spring of K intra/interpersonal - - - 
Panel C. Elastic Net    
   Demographics 0.637 0.600 0.678 
   + Fall of K academic/executive functioning 0.619 0.658 0.611 
   + Fall of K intra/interpersonal 0.647 0.648 0.636 
   + Family data 0.633 0.619 0.628 
   + Teacher data 0.614 0.606 0.600 
   + Spring of K academic/executive functioning 0.615 0.602 0.603 
   + Spring of K intra/interpersonal 0.647 0.580 0.609 
Panel D. Decision Tree    
   Demographics 0.556 0.531 0.561 
   + Fall of K academic/executive functioning 0.543 0.614 0.446 
   + Fall of K intra/interpersonal 0.548 0.601 0.567 
   + Family data 0.604 0.595 0.568 
   + Teacher data 0.605 0.662 0.644 
   + Spring of K academic/executive functioning 0.641 0.598 0.663 
   + Spring of K intra/interpersonal 0.593 0.568 0.602 
Panel E. Random Forest    
   Demographics 0.670 0.698 0.592 
   + Fall of K academic/executive functioning 0.616 0.561 0.634 
   + Fall of K intra/interpersonal 0.628 0.570 0.657 
   + Family data 0.594 0.556 0.632 
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   + Teacher data 0.592 0.597 0.632 
   + Spring of K academic/executive functioning 0.577 0.561 0.625 
   + Spring of K intra/interpersonal 0.550 0.535 0.618 
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Appendix C Table 5 
AUC Values for Models Predicting Chronic Absenteeism for non-Dual Language Learners 

Model type Kindergarten First grade Second grade 
(1) (2) (3) 

Panel A. Linear Probability Model    

   Demographics 0.680 0.660 0.635 
   + Fall of K academic/executive functioning 0.668 0.693 0.581 
   + Fall of K intra/interpersonal 0.676 0.670 0.587 
   + Family data 0.643 0.634 0.629 
   + Teacher data 0.618 0.619 0.638 
   + Spring of K academic/executive functioning 0.616 0.614 0.632 
   + Spring of K intra/interpersonal 0.660 0.594 0.654 
Panel B. Logistic Model    
   Demographics 0.681 0.645 0.633 
   + Fall of K academic/executive functioning 0.658 0.661 0.582 
   + Fall of K intra/interpersonal 0.665 0.613 - 
   + Family data - - - 
   + Teacher data - - - 
   + Spring of K academic/executive functioning - - - 
   + Spring of K intra/interpersonal - - - 
Panel C. Elastic Net    
   Demographics 0.674 0.639 0.585 
   + Fall of K academic/executive functioning 0.650 0.674 0.626 
   + Fall of K intra/interpersonal 0.656 0.675 0.681 
   + Family data 0.663 0.671 0.726 
   + Teacher data 0.663 0.653 0.718 
   + Spring of K academic/executive functioning 0.657 0.675 0.702 
   + Spring of K intra/interpersonal 0.655 0.687 0.727 
Panel D. Decision Tree    
   Demographics 0.659 0.608 0.577 
   + Fall of K academic/executive functioning 0.611 0.551 0.500 
   + Fall of K intra/interpersonal 0.571 0.536 0.546 
   + Family data 0.538 0.546 0.562 
   + Teacher data 0.539 0.512 0.580 
   + Spring of K academic/executive functioning 0.517 0.537 0.589 
   + Spring of K intra/interpersonal 0.518 0.523 0.527 
Panel E. Random Forest    
   Demographics 0.648 0.603 0.599 
   + Fall of K academic/executive functioning 0.614 0.663 0.562 
   + Fall of K intra/interpersonal 0.609 0.689 0.573 
   + Family data 0.636 0.658 0.592 
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   + Teacher data 0.620 0.618 0.580 
   + Spring of K academic/executive functioning 0.625 0.634 0.611 
   + Spring of K intra/interpersonal 0.639 0.660 0.615 
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Appendix C Table 6 
AUC Values for Models Predicting Special Education and Chronic Absenteeism Status with 

District-Collected Data 

Model type 
Special education Chronically absent 

First grade Second grade Kindergarten First grade Second grade 
(1) (2) (3) (4) (5) 

Panel A. Linear Probability Model      

   Demographics + Fall of K DIBELS 0.651 0.802 0.641 0.660 0.597 
   + Spring of K DIBELS 0.694 0.811 0.669 0.651 0.604 
Panel B. Logistic Model      
   Demographics + Fall of K DIBELS 0.665 0.814 0.637 0.653 0.604 
   + Spring of K DIBELS 0.701 0.819 0.656 0.649 0.604 
Panel C. Elastic Net      
   Demographics + Fall of K DIBELS 0.673 0.821 0.635 0.650 0.621 
   + Spring of K DIBELS 0.698 0.828 0.633 0.661 0.624 
Panel D. Decision Tree      
   Demographics + Fall of K DIBELS 0.657 0.733 0.542 0.560 0.542 
   + Spring of K DIBELS 0.620 0.702 0.607 0.534 0.475 
Panel E. Random Forest      
   Demographics + Fall of K DIBELS 0.645 0.798 0.650 0.632 0.594 
   + Spring of K DIBELS 0.704 0.806 0.593 0.617 0.578 
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Appendix C Table 7 
Youden Statistic Values for Models Predicting Special Education and Chronic Absenteeism 

Status with District-Collected Data 

Model type 
Special education Chronically absent 

First grade Second grade Kindergarten First grade Second grade 
(1) (2) (3) (4) (5) 

Panel A. Linear Probability Model      

   Demographics 0.029 0.058 0.173 0.139 0.078 
   + Fall of K DIBELS 0.065 0.104 0.164 0.096 0.076 
   + Spring of K DIBELS 0.075 0.124 0.156 0.117 0.100 
Panel B. Logistic Model      
   Demographics 0.040 0.079 0.160 0.119 0.074 
   + Fall of K DIBELS 0.052 0.062 0.143 0.106 0.081 
   + Spring of K DIBELS 0.024 0.060 0.129 0.089 0.087 
Panel C. Elastic Net      
   Demographics 0.043 0.062 0.166 0.136 0.085 
   + Fall of K DIBELS 0.058 0.098 0.148 0.133 0.093 
   + Spring of K DIBELS 0.068 0.127 0.151 0.130 0.089 
Panel D. Decision Tree      
   Demographics 0.176 0.110 0.134 0.142 0.069 
   + Fall of K DIBELS 0.036 0.041 0.137 0.091 0.140 
   + Spring of K DIBELS 0.048 0.064 0.128 0.240 0.220 
Panel E. Random Forest      
   Demographics 0.060 0.054 0.140 0.125 0.068 
   + Fall of K DIBELS 0.047 0.114 0.189 0.091 0.087 
   + Spring of K DIBELS 0.075 0.136 0.220 0.111 0.061 
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Appendix C Table 8 
Confusion Matrices Based on Youden Statistic Values for Models Predicting Special Education Status in First Grade with District-

Collected Data 

Model type 
  Model 1 Model 2 Model 3 
  Actual Actual Actual 
  Not SPED SPED Not SPED SPED Not SPED SPED 

Panel A. Linear Probability Model         
    Predicted Not SPED 80 5 111 3 179 5 
 SPED 112 5 81 7 13 5 
Panel B. Logistic Model         
    Predicted Not SPED 87 6 186 7 167 5 
    SPED 105 4 6 3 25 5 
Panel C. Elastic Net         
    Predicted Not SPED 45 1 125 4 177 6 
    SPED 146 10 66 7 14 5 
Panel D. Decision Tree         
    Predicted Not SPED 191 9 164 6 182 5 
    SPED 1 1 28 4 10 5 
Panel E. Random Forest         
 Predicted Not SPED 105 7 147 4 171 4 
    SPED 87 3 45 6 21 6 
Notes: Model 1 = child demographics from administrative data, Model 2 = Model 1 with fall of K DIBELS assessments, Model 3 = 

Model 2 with spring of K DIBELS assessments, SPED = received special education services. 
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Appendix C Table 9 
Confusion Matrices Based on Youden Statistic Values for Models Predicting Special Education Status in Second Grade with District-

Collected Data  

Model type 
  Model 1 Model 2 Model 3 
  Actual Actual Actual 
  Not SPED SPED Not SPED SPED Not SPED SPED 

Panel A. Linear Probability Model         
    Predicted Not SPED 79 0 170 5 181 4 
 SPED 111 12 20 7 9 8 
Panel B. Logistic Model         
    Predicted Not SPED 178 7 163 4 166 3 
    SPED 12 5 27 8 24 9 
Panel C. Elastic Net         
    Predicted Not SPED 96 2 116 2 113 5 
    SPED 88 16 68 16 71 13 
Panel D. Decision Tree         
    Predicted Not SPED 189 11 173 9 180 5 
    SPED 1 1 17 3 10 7 
Panel E. Random Forest         
 Predicted Not SPED 71 1 173 5 171 3 
    SPED 119 11 17 7 19 9 
Notes: Model 1 = child demographics from administrative data, Model 2 = Model 1 with fall of K DIBELS assessments, Model 3 = 

Model 2 with spring of K DIBELS assessments, SPED = received special education services. 
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Appendix C Table 10 
Confusion Matrices Based on Youden Statistic Values for Models Predicting Chronic Absenteeism in Kindergarten with District-

Collected Data 

Model type 
  Model 1 Model 2 Model 3 
  Actual Actual Actual 
  Not absent Absent Not absent Absent Not absent Absent 

Panel A. Linear Probability Model         
    Predicted Not absent 99 10 122 11 130 12 
 Absent 63 21 40 20 32 19 
Panel B. Logistic Model         
    Predicted Not absent 100 10 123 12 135 14 
    Absent 62 21 39 19 27 17 
Panel C. Elastic Net         
    Predicted Not absent 110 10 114 11 102 9 
    Absent 56 20 52 19 64 21 
Panel D. Decision Tree         
    Predicted Not absent 98 13 98 13 99 13 
    Absent 64 18 64 18 63 18 
Panel E. Random Forest         
 Predicted Not absent 101 11 98 8 123 10 
    Absent 61 20 64 23 39 21 
Notes: Model 1 = child demographics from administrative data, Model 2 = Model 1 with fall of K DIBELS assessments, Model 3 = 

Model 2 with spring of K DIBELS assessments. 
  



 

 

210 

 

Appendix C Table 11 
Confusion Matrices Based on Youden Statistic Values for Models Predicting Chronic Absenteeism in First Grade with District-

Collected Data 

Model type 
  Model 1 Model 2 Model 3 
  Actual Actual Actual 
  Not absent Absent Not absent Absent Not absent Absent 

Panel A. Linear Probability Model         
    Predicted Not absent 112 12 125 13 117 11 
 Absent 34 14 21 13 29 15 
Panel B. Logistic Model         
    Predicted Not absent 87 8 105 9 104 9 
    Absent 59 18 41 17 42 17 
Panel C. Elastic Net         
    Predicted Not absent 70 3 95 5 91 4 
    Absent 82 21 57 19 61 20 
Panel D. Decision Tree         
    Predicted Not absent 109 15 119 16 142 22 
    Absent 37 11 27 19 4 4 
Panel E. Random Forest         
 Predicted Not absent 100 10 126 16 128 15 
    Absent 46 16 20 10 18 11 
Notes: Model 1 = child demographics from administrative data, Model 2 = Model 1 with fall of K DIBELS assessments, Model 3 = 

Model 2 with spring of K DIBELS assessments. 
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Appendix C Table 12 
Confusion Matrices Based on Youden Statistic Values for Models Predicting Chronic Absenteeism in Second Grade with District-

Collected Data 

Model type 
  Model 1 Model 2 Model 3 
  Actual Actual Actual 
  Not absent Absent Not absent Absent Not absent Absent 

Panel A. Linear Probability Model         
    Predicted Not absent 89 2 95 2 108 4 
 Absent 52 11 46 11 33 9 
Panel B. Logistic Model         
    Predicted Not absent 102 3 93 2 104 4 
    Absent 39 10 48 11 37 9 
Panel C. Elastic Net         
    Predicted Not absent 66 0 99 3 79 2 
    Absent 81 14 48 11 68 12 
Panel D. Decision Tree         
    Predicted Not absent 61 2 61 2 122 7 
    Absent 80 11 80 11 19 6 
Panel E. Random Forest         
 Predicted Not absent 54 1 39 0 52 1 
    Absent 87 12 102 13 89 12 
Notes: Model 1 = child demographics from administrative data, Model 2 = Model 1 with fall of K DIBELS assessments, Model 3 = 

Model 2 with spring of K DIBELS assessments. 
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Appendix C Figure 1 
Distribution of AUC Values for Models Predicting First Grade Special Education Status 

  

  

 
Notes: Model 1 = child demographics from administrative data, Model 2 = Model 1 with fall of 

K DIBELS assessments, Model 3 = Model 2 with spring of K DIBELS assessments. 
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Appendix C Figure 2 
Distribution of AUC Values for Models Predicting Second Grade Special Education Status 

  

  

 
Notes: Model 1 = child demographics from administrative data, Model 2 = Model 1 with fall of 

K DIBELS assessments, Model 3 = Model 2 with spring of K DIBELS assessments. 
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Appendix C Figure 3 
Distribution of AUC Values for Models Predicting Kindergarten Chronic Absenteeism 

  

  

 
Notes: Model 1 = child demographics from administrative data, Model 2 = Model 1 with fall of 

K DIBELS assessments, Model 3 = Model 2 with spring of K DIBELS assessments. 
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Appendix C Figure 4 
Distribution of AUC Values for Models Predicting First Grade Chronic Absenteeism 

  

  

 
Notes: Model 1 = child demographics from administrative data, Model 2 = Model 1 with fall of 

K DIBELS assessments, Model 3 = Model 2 with spring of K DIBELS assessments. 
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Appendix C Figure 5 
Distribution of AUC Values for Models Predicting Second Grade Chronic Absenteeism 

  

  

 
Notes: Model 1 = child demographics from administrative data, Model 2 = Model 1 with fall of 

K DIBELS assessments, Model 3 = Model 2 with spring of K DIBELS assessments. 
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Appendix C Figure 6 
Distribution of Youden Statistic Values for Models Predicting First Grade Special Education 

Status 

  

  

 
Notes: Model 1 = child demographics from administrative data, Model 2 = Model 1 with fall of 

K DIBELS assessments, Model 3 = Model 2 with spring of K DIBELS assessments. 
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Appendix C Figure 7 
Distribution of Youden Statistic Values for Models Predicting Second Grade Special Education 

Status 

  

  

 
Notes: Model 1 = child demographics from administrative data, Model 2 = Model 1 with fall of 

K DIBELS assessments, Model 3 = Model 2 with spring of K DIBELS assessments. 
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Appendix C Figure 8 
Distribution of Youden Statistic Values for Models Predicting Kindergarten Chronic 

Absenteeism 

  

  

 
Notes: Model 1 = child demographics from administrative data, Model 2 = Model 1 with fall of 

K DIBELS assessments, Model 3 = Model 2 with spring of K DIBELS assessments. 
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Appendix C Figure 9 
Distribution of Youden Statistic Values for Models Predicting First Grade Chronic Absenteeism 

  

  

 
Notes: Model 1 = child demographics from administrative data, Model 2 = Model 1 with fall of 

K DIBELS assessments, Model 3 = Model 2 with spring of K DIBELS assessments. 
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Appendix C Figure 10 
Distribution of Youden Statistic Values for Models Predicting Second Grade Chronic 

Absenteeism 

  

  

 
Notes: Model 1 = child demographics from administrative data, Model 2 = Model 1 with fall of 

K DIBELS assessments, Model 3 = Model 2 with spring of K DIBELS assessments. 
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Appendix D 

Overview of Robustness Checks for Paper 3 

Threats to the robustness of my results include: 1) results being driven by student 

demographics, 2) saturation of predictor variables, 3) unstable numbers of students across 

grades, and 4) differential model performance based on urbanicity. Overall, I found the main 

results to be robust to these threats. In all models, just as in the primary analytic strategy, I used 

five model types (linear probability, logistic, elastic net, decision tree, and random forest) with 

seven conceptual blocks of predictor variables (Block 1 = fourth grade measures, Block 2 = 

Block 1 with all fifth grade measures, Block 3 = Block 2 with all sixth grade measures, Block 4 

= Block 3 with all seventh grade measures, Block 5 = Block 4 with all eighth grade measures, 

Block 6 = Block 5 with all ninth grade measures, Block 7 = Block 6 with all tenth grade 

measures, and Block 8 = Block 7 with demographics). The exceptions to this were the models 

addressing threat 1 that used only demographic information and threat 2 that were fit with 

separate blocks of predictors. I used conditional mean imputation for all models to address 

missingness. I examined the stability of the AUC values across models and compared them to the 

primary results. 

Threat 1: Results being driven by student demographics. To address the possibility that 

the results were driven by student demographics instead of the attendance, behavior, and 

academic performance variables, I refit the main models using only the demographic variables. I 

found that only one model had an acceptable performance – the logistic model – but this model 

did not perform as well as the main model fit with the fourth and fifth grade data (Appendix D, 
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Table 1). These results indicate that the main models with the full range of predictor variables 

represent the best approach. 

Threat 2: Saturation of predictor variables. Even though I built up the main analysis 

models using conceptual blocks of predictor variables in the chronological order that school 

personnel would have access to that data, I also wanted to address the possibility that some 

blocks of predictor variables may be more predictive on their own instead of combined with 

other blocks. To examine this, I refit the models using separate conceptual blocks of predictors 

(i.e., one grade per model). Overall, I found that although the models beginning with the fifth 

grade data had an acceptable performance, they performed worse than the main models fit with 

multiple years’ worth of data (Appendix D, Table 2). This indicates that while the main model 

specification is preferrable for optimal model performance, it is possible to build models with 

acceptable performance using a single grade’s worth of data if that is all that schools have access 

to in practice. 

Threat 3: Unstable numbers of students across grades. In the primary analysis, I choose 

to include any student who had at least one value of one predictor variable if they had a 

graduation record to simulate the circumstances under which school personnel would be using an 

early warning system. However, from a methodological standpoint, this instability and the 

resulting imputation that had to take place to address missingness could introduce error into the 

models. To address this, I refit the main models using only the 312,194 students who were 

present in the data for every grade for every year, i.e., fourth through tenth grade. The dropout 

rate for this subset of students was 7%, lower than the 11% in the full sample. I found that when 

restricting my sample to only students who were present in each year, the models performed 

better by an average AUC value of 0.02 compared to the models fit with the full sample 



 

 

224 

 

(Appendix D, Table 3). These results indicate that the results may be partially being driven by 

error introduced during imputation to account for different numbers of students across grades. 

Threat 4: Differential model performance based on urbanicity. Michigan is a large and 

diverse state with differential graduation rates based on urbanicity. Using definitions of 

urbanicity as defined by the National Center for Education Statistics, I used administrative data 

to determine the urbanicity of the school from where students were expected to graduate for 99% 

of my sample and found that 23% of the sample attended school in a city, 44% in a suburb, 11% 

in a town, and 22% in a rural area (Geverdt, 2018). The students who lived attended a school in a 

city had a 14% dropout rate compared to 10% for a suburb, 10% for a town, and 8% for a rural 

area. To address the possibility that the model may not perform well for every geographic area 

(Gebru, 2021; Kantayya, 2020), I examined model performance for students in each of the four 

geographic areas. The model for the students graduating from a school in a city and town 

performed slightly worse than the full sample while the model for those graduating from a school 

in a suburb or rural area performed the same as or slightly better than the full sample model 

(Appendix D, Table 4). This indicates that care should be taken when constructing a predictive 

model that covers students from a wide range of geographic areas. 
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Appendix D Table 1 (Addresses Threat 1) 
AUC Values for Models Fit with Demographic Data Only 

Linear 
probability  Logistic  Elastic net Decision 

tree 
Random 

forest 
(1) (2) (3) (4) (5) 

0.692 0.701 0.692 0.659 0.696 
Notes: N = 416,105.  
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Appendix D Table 2 (Addresses Threat 2) 
AUC Values for Models Fit with Separate Data by Grade 

Model type 
Linear 

probability  Logistic  Elastic net Decision 
tree 

Random 
forest 

(1) (2) (3) (4) (5) 
 G4 data 0.696 0.696 0.696 0.609 0.699 
 + G5 data 0.707 0.707 0.707 0.616 0.712 
 + G6 data 0.734 0.734 0.734 0.642 0.737 
 + G7 data 0.749 0.746 0.749 0.704 0.750 
 + G8 data 0.772 0.767 0.773 0.724 0.780 
 + G9 data 0.787 0.777 0.787 0.739 0.790 
 + G10 data 0.739 0.739 0.739 0.695 0.781 

Notes: N = 416,105. G4 = fourth grade, G5 = fifth grade, G6 = sixth grade, G7 = seventh grade, 
G8 = eighth grade, G9 = ninth grade, G10 = tenth grade.  
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Appendix D Table 3 (Addresses Threat 3) 
AUC Values for Models with Students Present in Every Year 

Model type 
Linear 

probability  Logistic  Elastic net Decision 
tree 

Random 
forest 

(1) (2) (3) (4) (5) 
 G4 data 0.723 0.718 0.723 0.629 0.716 
 + G5 data 0.741 0.734 0.741 0.637 0.729 
 + G6 data 0.759 0.753 0.759 0.643 0.755 
 + G7 data 0.776 0.769 0.776 0.666 0.777 
 + G8 data 0.797 0.791 0.798 0.724 0.800 
 + G9 data 0.821 0.814 0.822 0.745 0.825 
 + G10 data 0.838 0.832 0.839 0.721 0.849 
 + Demographics 0.851 0.850 0.851 0.721 0.858 

Notes: N = 312,194. G4 = fourth grade, G5 = fifth grade, G6 = sixth grade, G7 = seventh grade, 
G8 = eighth grade, G9 = ninth grade, G10 = tenth grade. 
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Appendix D Table 4 (Addresses Threat 4) 
AUC Values for Models with Based on Urbanicity 

Model type 
Linear 

probability  Logistic  Elastic net Decision 
tree 

Random 
forest 

(1) (2) (3) (4) (5) 
Panel A. City      
 G4 data 0.681 0.681 0.681 0.605 0.686 
 + G5 data 0.697 0.697 0.697 0.609 0.695 
 + G6 data 0.726 0.726 0.726 0.646 0.729 
 + G7 data 0.745 0.743 0.746 0.700 0.750 
 + G8 data 0.768 0.764 0.768 0.709 0.771 
 + G9 data 0.793 0.789 0.794 0.729 0.803 
 + G10 data 0.820 0.815 0.821 0.734 0.836 
 + Demographics 0.831 0.828 0.831 0.734 0.842 
Panel B. Suburb      
 G4 data 0.708 0.708 0.708 0.612 0.710 
 + G5 data 0.728 0.726 0.727 0.620 0.730 
 + G6 data 0.752 0.749 0.752 0.646 0.760 
 + G7 data 0.772 0.767 0.772 0.713 0.783 
 + G8 data 0.794 0.787 0.795 0.737 0.804 
 + G9 data 0.815 0.808 0.815 0.736 0.829 
 + G10 data 0.831 0.825 0.831 0.728 0.848 
 + Demographics 0.841 0.837 0.841 0.728 0.855 
Panel C. Town      
 G4 data 0.663 0.665 0.663 0.592 0.665 
 + G5 data 0.682 0.684 0.682 0.596 0.684 
 + G6 data 0.706 0.708 0.706 0.615 0.718 
 + G7 data 0.723 0.724 0.724 0.670 0.735 
 + G8 data 0.753 0.748 0.754 0.696 0.767 
 + G9 data 0.783 0.776 0.784 0.701 0.800 
 + G10 data 0.815 0.804 0.817 0.705 0.836 
 + Demographics 0.831 0.823 0.833 0.705 0.844 
Panel D. Rural      
 G4 data 0.685 0.686 0.685 0.600 0.687 
 + G5 data 0.709 0.709 0.709 0.607 0.710 
 + G6 data 0.732 0.732 0.732 0.626 0.735 
 + G7 data 0.753 0.751 0.753 0.690 0.761 
 + G8 data 0.777 0.772 0.777 0.713 0.782 
 + G9 data 0.804 0.798 0.805 0.717 0.816 
 + G10 data 0.817 0.812 0.818 0.715 0.837 
 + Demographics 0.830 0.827 0.831 0.715 0.845 
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Notes: N = 93,178 for students who graduated from a school in a city, N = 183,222 for students 
who graduated from a school in a suburb, N = 47,273 for students who graduated from a 
school in a town, N = 89,268 for students who graduated from a rural school. G4 = fourth 
grade, G5 = fifth grade, G6 = sixth grade, G7 = seventh grade, G8 = eighth grade, G9 = 
ninth grade, G10 = tenth grade. 
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Appendix E 

Supplementary Tables for Paper 3 

Appendix E Table 1 
Youden Statistic, Specificity, and Sensitivity Values for Models with Full Sample 

Model type 
Linear 

probability  Logistic  Elastic net Decision 
tree 

Random 
forest 

(1) (2) (3) (4) (5) 
Panel A. Youden Statistic      
 G4 data 0.091 0.078 0.091 0.096 0.087 
 + G5 data 0.086 0.075 0.085 0.103 0.083 
 + G6 data 0.096 0.075 0.095 0.087 0.107 
 + G7 data 0.093 0.075 0.093 0.080 0.086 
 + G8 data 0.101 0.077 0.100 0.075 0.093 
 + G9 data 0.104 0.076 0.101 0.080 0.113 
 + G10 data 0.099 0.079 0.099 0.137 0.112 
 + Demographics 0.108 0.087 0.107 0.137 0.105 
Panel B. Specificity      
 G4 data 0.570 0.563 0.570 0.597 0.587 
 + G5 data 0.556 0.567 0.551 0.633 0.568 
 + G6 data 0.614 0.595 0.612 0.710 0.655 
 + G7 data 0.617 0.613 0.617 0.609 0.610 
 + G8 data 0.658 0.631 0.653 0.598 0.641 
 + G9 data 0.704 0.659 0.693 0.645 0.711 
 + G10 data 0.718 0.727 0.716 0.830 0.731 
 + Demographics 0.718 0.742 0.716 0.830 0.717 
Panel C. Sensitivity      
 G4 data 0.735 0.741 0.735 0.646 0.715 
 + G5 data 0.779 0.765 0.784 0.622 0.760 
 + G6 data 0.761 0.773 0.764 0.556 0.714 
 + G7 data 0.784 0.780 0.784 0.755 0.793 
 + G8 data 0.775 0.792 0.781 0.788 0.799 
 + G9 data 0.764 0.798 0.776 0.753 0.777 
 + G10 data 0.784 0.764 0.787 0.611 0.801 
 + Demographics 0.808 0.771 0.812 0.611 0.824 
Notes: N = 416,105. G4 = fourth grade, G5 = fifth grade, G6 = sixth grade, G7 = seventh grade, 

G8 = eighth grade, G9 = ninth grade, G10 = tenth grade. 
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Appendix E Table 2 
Confusion Matrices Based on Youden Statistic Values for Models with Full Sample for Linear 

Probability Models 

Model type   Actual 
  Not Dropout Dropout 

G4 data Predicted Not Dropout 66551 2664 
Dropout 50191 7401 

     

+ G5 data Predicted Not Dropout 64860 2223 
Dropout 51882 7842 

     

+ G6 data Predicted Not Dropout 71712 2406 
Dropout 45030 7659 

     

+ G7 data Predicted Not Dropout 71994 2174 
Dropout 44748 7891 

     

+ G8 data Predicted Not Dropout 76792 2262 
Dropout 39950 7803 

     

+ G9 data Predicted Not Dropout 82237 2374 
Dropout 34505 7691 

     

+ G10 data Predicted Not Dropout 83844 2176 
Dropout 32898 7889 

     

+ Demographics Predicted Not Dropout 83865 1930 
Dropout 32877 8135 

Notes: N = 416,105. G4 = fourth grade, G5 = fifth grade, G6 = sixth grade, G7 = seventh grade, 
G8 = eighth grade, G9 = ninth grade, G10 = tenth grade. 
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Appendix E Table 3 
Confusion Matrices Based on Youden Statistic Values for Models with Full Sample for Logistic 

Models 

Model type   Actual 
  Not Dropout Dropout 

G4 data Predicted Not Dropout 65752 2610 
Dropout 50990 7455 

     

+ G5 data Predicted Not Dropout 66228 2364 
Dropout 50514 7701 

     

+ G6 data Predicted Not Dropout 69412 2281 
Dropout 47330 7784 

     

+ G7 data Predicted Not Dropout 71512 2210 
Dropout 45230 7855 

     

+ G8 data Predicted Not Dropout 73654 2090 
Dropout 43088 7975 

     

+ G9 data Predicted Not Dropout 76929 2037 
Dropout 39813 8028 

     

+ G10 data Predicted Not Dropout 84820 2371 
Dropout 31922 7694 

     

+ Demographics Predicted Not Dropout 86677 2302 
Dropout 30065 7763 

Notes: N = 416,105. G4 = fourth grade, G5 = fifth grade, G6 = sixth grade, G7 = seventh grade, 
G8 = eighth grade, G9 = ninth grade, G10 = tenth grade. 
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Appendix E Table 4 
Confusion Matrices Based on Youden Statistic Values for Models with Full Sample for Elastic 

Net Models 

Model type   Actual 
  Not Dropout Dropout 

G4 data Predicted Not Dropout 66556 2664 
Dropout 50186 7401 

     

+ G5 data Predicted Not Dropout 64280 2173 
Dropout 52462 7892 

     

+ G6 data Predicted Not Dropout 71402 2375 
Dropout 45340 7690 

     

+ G7 data Predicted Not Dropout 72015 2171 
Dropout 44727 7894 

     

+ G8 data Predicted Not Dropout 76246 2207 
Dropout 40496 7858 

     

+ G9 data Predicted Not Dropout 80908 2250 
Dropout 35834 7815 

     

+ G10 data Predicted Not Dropout 83629 2141 
Dropout 33113 7924 

     

+ Demographics Predicted Not Dropout 83560 1895 
Dropout 33182 8170 

Notes: N = 416,105. G4 = fourth grade, G5 = fifth grade, G6 = sixth grade, G7 = seventh grade, 
G8 = eighth grade, G9 = ninth grade, G10 = tenth grade. 
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Appendix E Table 5 
Confusion Matrices Based on Youden Statistic Values for Models with Full Sample for Decision 

Tree Models 

Model type   Actual 
  Not Dropout Dropout 

G4 data Predicted Not Dropout 69699 3576 
Dropout 47043 6498 

     

+ G5 data Predicted Not Dropout 73891 3800 
Dropout 42851 6265 

     

+ G6 data Predicted Not Dropout 82930 4469 
Dropout 33812 5596 

     

+ G7 data Predicted Not Dropout 71078 2462 
Dropout 45664 7603 

     

+ G8 data Predicted Not Dropout 69848 2129 
Dropout 46894 7936 

     

+ G9 data Predicted Not Dropout 75244 2487 
Dropout 41498 7578 

     

+ G10 data Predicted Not Dropout 96949 3913 
Dropout 19793 6152 

     

+ Demographics Predicted Not Dropout 96949 3913 
Dropout 19793 6152 

Notes: N = 416,105. G4 = fourth grade, G5 = fifth grade, G6 = sixth grade, G7 = seventh grade, 
G8 = eighth grade, G9 = ninth grade, G10 = tenth grade. 
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Appendix E Table 6 
Confusion Matrices Based on Youden Statistic Values for Models with Full Sample for Random 

Forest Models 

Model type   Actual 
  Not Dropout Dropout 

G4 data Predicted Not Dropout 68550 2869 
Dropout 48192 7196 

     

+ G5 data Predicted Not Dropout 66362 2417 
Dropout 50380 7648 

     

+ G6 data Predicted Not Dropout 76446 2880 
Dropout 40296 7185 

     

+ G7 data Predicted Not Dropout 71197 2088 
Dropout 45545 7977 

     

+ G8 data Predicted Not Dropout 74781 2022 
Dropout 41961 8043 

     

+ G9 data Predicted Not Dropout 83036 2249 
Dropout 33706 7816 

     

+ G10 data Predicted Not Dropout 85390 2007 
Dropout 31352 8058 

     

+ Demographics Predicted Not Dropout 83721 1774 
Dropout 33021 8291 

Notes: N = 416,105. G4 = fourth grade, G5 = fifth grade, G6 = sixth grade, G7 = seventh grade, 
G8 = eighth grade, G9 = ninth grade, G10 = tenth grade. 

 


