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Abstract

The recent emergence of data science as a scientific tool has led to the development

of data-driven approaches to create new computational models, and to improve exist-

ing models. In many complex applications such as turbulent flow modeling, however,

modeling accuracy can deteriorate drastically when these models are applied in physi-

cal conditions and geometries that are significantly different compared to those used in

training. In other words, models are not adequately generalizable, which in turn, severely

limits the scope of their applicability.

This work proposes a new class of approaches for generalizable physics-constrained data-

driven modeling. In contrast to parameter calibration, corrections are made to the struc-

ture of the model by inferring augmentation functions using high-fidelity data. The aug-

mentations are inferred as functions of local modeled quantities, referred to as features.

In particular, two different algorithms are proposed and applied to practical problems.

The first formalism, named “Learning and Inference assisted by Feature-space Engi-

neering (LIFE)”, based on strongly-coupled integrated inference and machine learning,

introduces methodological and algorithmic innovations to facilitate the inference of gen-

eralizable, robust and modular augmentations. The LIFE framework offers tools and

guiding principles to help modelers design a feature-space that is conducive for infer-

ence of generalizable augmentations by ensuring that the features have an appropriate

functional form such that the feature-space remains bounded and the physical conditions

pertaining to the inadequacy under consideration span the bulk of feature-space. The

set of techniques presented in this framework facilitate localized learning, which en-

sures that during a given inference iteration, augmentation behavior remains unchanged

in regions within feature-space where no data is available. Localized learning makes the
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augmentation more robust as it prevents spurious predictions and ensures that the aug-

mented model falls back to its baseline behavior for unseen physical conditions. Lastly,

the meticulous feature-space design and localized learning also pave way for hierarchical

augmentations, i.e., augmentations introduced within an already augmented model to

add capabilities that the original augmentation cannot provide. This allows a modeler

to infer several levels of augmentation in decreasing order of generalizability (increasing

order of specificity for a certain class of problems).

To demonstrate its capability, the LIFE framework is used to learn an augmentation intro-

duced within a bare-bones intermittency transport equation (which itself was introduced

into a variant of Wilcox’s 1988 k-ω turbulence model) to predict bypass transition. After

training on just two flat plate cases from the ERCOFTAC’s T3 dataset, the inferred aug-

mentation shows generalizably improved predictive accuracy across a range of different

geometries (flat plates, turbine cascades and compressor cascades) and inflow conditions

(significantly different Reynolds numbers, Mach numbers, freestream turbulence intensi-

ties, pressure gradients, etc.). This inference involves solving large inverse problems with

tens/hundreds of thousands of degrees of freedom and leverages adjoint-based optimiza-

tion. To improve the predictions for separation-induced bypass transition, a hierarchical

augmentation is introduced along with the previously inferred augmentation.

While the LIFE approach performs well when the feature-space is carefully designed,

the feature design process might not always be tractable. The problem is exacerbated

further when the feature-space is high-dimensional, the augmentation function is highly

nonlinear, and feature-space is sparsely populated with data. Embedding the augmen-

tation function within a complex numerical solver might have considerable time and

effort requirements, and hence can also present itself as a concern. In the light of these

potential issues, a weakly-coupled Integrated Inference and Machine Learning (IIML)

algorithm was developed, which offers the same benefits of learnability and consistency

as the strongly-coupled IIML framework. A non-intrusive implementation was also de-

veloped wherein the augmentation function is created externally and only the spatial

field of augmentation values needs to be passed to the numerical solver. Together, the

xviii



non-intrusive implementation and weakly-coupled IIML, facilitate a relatively effortless

setup to solve the inference problem. Each inference iteration begins with updating the

inadequacy fields for all the training cases independently (similar to an iteration per-

formed during field inversion). This is followed by a machine learning step where the

discrepancy between these newly updated fields and augmentation predictions is min-

imized. Finally to maintain consistency of the augmentation field with the converged

results corresponding to the learned augmentation function, the model is solved again

using the augmentation function for each training case and the resulting augmentation

field is treated as the optimization iterate.

The viability of the IIML approach is demonstrated by inferring an augmentation for

polymer electrolyte membrane fuel cells (PEMFCs) to improve the membrane water con-

tent predictions. The membrane water content is a critical control variable to ensure peak

working efficiency as too dry or too wet conditions can lead to considerable deteriora-

tion in performance. The obtained augmentation showed some extent of generalizability

in cases sharing the same geometry but different operating conditions. In addition to

improved water content predictions, the current density predictions also improve signifi-

cantly. Taken together, the LIFE and IIML approaches offer the modeler a choice between

high generalizability/robustness, and minimal implementation effort, respectively.
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Chapter 1

Overview

Analysis and optimization of complex physical systems constitute the central theme across

most, if not all, engineering disciplines. Numerical models present an effective alternative

for such applications, provided that the corresponding simulations offer sufficient predic-

tive accuracy within reasonable computational costs. Traditional development of such

models has relied on theoretical insight, empiricism and intuition.

While theoretical insight and intuition are aspects that remain unique to human intelli-

gence, formal numerical techniques can be used to extract intricate empirical relationships

within a model from available data. Experiments and high-fidelity simulations constitute

the sources of information that can provide such data. Note here that obtaining data

from either of these sources is both time- and resource-intensive, thus limiting its avail-

ability. This thesis presents guiding principles and techniques for use by expert modelers

to infer complex parametrizations from limited data with the potential to generalize well

to unseen configurations.

One of the most challenging problems, and of vital importance in engineering, is to model

turbulence in fluid flows. Turbulence is a complex physical phenomenon that occurs across

a multitude of scales separated by several orders of magnitude in both space and time.

Accurate modeling of turbulence is critical for analysis, design and optimization of flow

paths, as it can lead to enhanced mixing, which can further result in higher rates of

momentum and heat transfer – quantities that can directly affect performance of the

system in consideration. In order to alleviate computational costs of direct numerical
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simulations (DNS), several reduced-fidelity models have been developed in the past few

decades. Two major categories of such models are large eddy simulations (LES) and

Reynolds-Averaged Navier-Stokes (RANS) simulations. While these models attempt to

mimic the original system behavior, they tend to suffer from significantly inaccurate

predictions, especially for complex configurations.

Recent advances have enabled the development of data-driven frameworks to create new

low-fidelity models or modify existing ones by learning intricate functional relationships

from available high-fidelity data, to achieve better predictive accuracy. However, in gen-

eral, these “learned” models tend to poorly generalize to system configurations consider-

ably different from the ones used for training. In a number of cases, such models provide

poor predictions even for those canonical cases that were used to calibrate the existing

empirical models. This behavior can mainly be attributed to errors resulting from ex-

trapolation, over-fitted models, and/or inadequacies in the functional structure used for

learning.

Although it might be impossible to develop truly general low-fidelity models that pro-

vide reasonably accurate solutions for any configuration, efforts can be made towards

extending the applicability of data-driven reduced-fidelity models by designing them to

be as robust and generalizable as possible. While the methods discussed in this thesis

can be applied to improve any reduced-fidelity model that can be written as a system of

partial differential equations (PDEs), their development was mainly driven by the need

to improve turbulence models for RANS simulations.

This chapter begins by describing the “closure” problem that appears when a reduced-

fidelity model is constructed by coarse-graining the true governing equations (which in

this context refers to reducing the degrees of freedom via phenomenological approaches)

for any physical phenomena. Thereafter, LES and RANS equations are discussed in the

context of coarse-graining the Navier-Stokes equations. This is followed by some major

classes of model closures developed for RANS simulations in the past few decades. A

brief commentary on the different data-driven modeling techniques developed over the
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past few years is then provided along with their advantages and limitations. Finally, the

contributions and the structure of this thesis are laid out.

1.1 The closure problem

Consider a physical system described on a spatial domain Ω, the governing equations for

which can be represented with appropriate boundary conditions as follows

∂q

∂t
+ R(q) = 0 ∀ x ∈ Ω (1.1)

where q(x, t) represents the field of state variables that is fully-resolved in space and

time. To reduce the computational cost, one may choose to reduce the number of states

that need to be solved for via a coarse-graining operation (e.g., spatial filtering, ensemble

averaging, etc.). However, coarse-graining results in loss of information. Hence, there is

a component of the true states of the system that remains unresolved. Thus, the true

state variables can be decomposed into coarse-grained and fine-scale parts, represented

by q̃ and q̂, respectively. Performing the coarse-graining operation on the equations

representing the high-fidelity system results in an unknown closure term N (q), arising

from any non-linearities in the operator R and the resulting unaccounted contributions

from q̂. Note that the following representation is not an approximation.

∂q̃

∂t
+ R̃(q) = 0 ⇒ ∂q̃

∂t
+ R(q̃) + N (q) = 0 (1.2)

A reduced-fidelity model is designed to make use of only the coarse-grained states, q̃, in

order to reduce the computational costs. To achieve this, the function N needs to be

approximated in the model by a function of only coarse-grained quantities, Nm. This

results in the set of coarse-grained equations for the reduced-fidelity model as follows.

∂q̃m
∂t

+ R(q̃m) + Nm(q̃m) = 0 ∀ x ∈ Ω̃ (1.3)
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Note here that Ω̃ represents the correspondingly coarse-grained version of the domain,

and q̃m represents the solution to the reduced-fidelity model which may be different from

the true coarse-grained solution q̃, owing to the approximated function Nm. The closure

problem refers to the problem of designing a function Nm, such that the q̃m approximates

q̃ as closely as possible. Secondary variables s̃m can often be introduced into the model

which might help in approximating the closure term as Nm(q̃m, s̃m). The additional

equations required to close the system can be given as follows.

∂s̃m
∂t

+ Gm(s̃m, q̃m) = 0 ∀ x ∈ Ω̃ (1.4)

The construction of operators Nm and Gm is a tedious and meticulous process which

has evolved over decades through a combination of physical insight, mathematics and

empiricism. In this work, the focus is restricted to steady-state reduced-fidelity models,

which, using the terminology described above, can be represented as

R(q̃m) + Nm(q̃m, s̃m) = 0 ; Gm(s̃m, q̃m) = 0 (1.5)

For ease of notation, we shall refer to this system of equations in a compact manner

Rm(ũm; ξ) = 0, with the state variables and secondary variables combined into a single

vector of model variables ũm =
[
q̃Tm s̃Tm

]T
, and the inputs to the model (discretized

domain, boundary conditions, etc.) embedded into the notation via ξ.

1.1.1 Estimating model inadequacies

Any discrepancy between N (q) and Nm(ũm) is referred to as model inadequacy. Note

that there are several ways of expressing the model inadequacy e.g., N (q) − Nm(ũm),

N (q)/Nm(ũm), or a more complex function. The model inadequacy as a whole might

consist of several contributing inadequacies that only arise for a specific range of physical

conditions. Except for a few simplified instances, an exact functional form for the model

inadequacy is impossible to obtain in terms of the coarse-grained quantities. However,

even an approximate version of this function (hereafter termed as an “augmentation”
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function), when introduced within the model, could help in improving its predictive ac-

curacy significantly. There exist several techniques, including the ones in this thesis, that

can be used to infer such model augmentations from high-fidelity data. However, these

augmentations are not posed as direct functions of the model states. This is because pro-

hibitively complex functional forms might be needed to infer and learn the corresponding

functional relationship from data. Instead, they are posed as functions of some chosen lo-

cal quantities called “features”, η(ũm), which in turn are functions of model states, in the

hope that the functional form would be relatively simpler. Hereafter, the augmentation

functions are denoted as β(η(ũm)).

1.2 Coarse-graining the Navier-Stokes equations

1.2.1 Large Eddy Simulations (LES)

Large eddy simulations aim to resolve flow structures (referred to as eddies) of orders

of magnitude larger than or similar to the mesh spacing, while neglecting the sub-grid

scale (SGS) ones. Functionally, the corresponding coarse-graining of the true solution is

achieved by applying a spatial filter to the Navier-Stokes equations. The incompressible

LES equations are, then, given as follows.

∂ũi
∂xi

= 0

∂ũi
∂t

+ ũj
∂ũi
∂xj

= − ∂p̃

∂xi
+ ν

∂2ũi
∂xj∂xj

+
∂τSGSij

∂xj

(1.6)

Here, .̃ denotes the filtering operation which can be represented by the following generic

convolution operation where G is an appropriate convolution kernel chosen by the user.

ũj(x) =

∫∫∫
G(x− x′)uj(x′)dx′ (1.7)

The term shown in blue represents the closure term in the model representing the con-

tribution of subgrid scale stress, τSGSij = ũiuj − ũiũj. The first term in this expression

for τSGSij is clearly a function of the fully resolved velocity field. Thus, a closure for τSGSij
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needs to be designed. There exists a class of closure models which approximate the SGS

stress tensor analogous to the viscous stress tensor, using a modeled quantity referred to

as the eddy viscosity (νt) instead of the molecular viscosity (ν) as follows.

τSGSij = 2νtS̃ij (1.8)

Here, S̃ij is the mean strain rate tensor, defined as S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
. Appropriately,

these kinds of closures to the LES equations are termed as eddy viscosity models. The

Smagorinsky [68] model is an example of an eddy viscosity model which approximates

the eddy viscosity as νt = Cs∆
2

√
2S̃ijS̃ij, where Cs is a model constant and ∆ is a

measure of the local mesh spacing. The model needs to depend on the mesh spacing

as the coarse-graining operation (filtering) depends on the mesh spacing as well. Even

with this kind of coarse-graining, performing an accurate LES simulation still requires

significant computational resources/time, thus rendering LES simulations infeasible for

extensive use in design and optimization at present or in the near future.

1.2.2 Reynolds-Averaged Navier-Stokes (RANS) simulations

Reynolds-averaging decomposes any flow quantity φ as φ = φ + φ′, where φ is the en-

semble average of φ, and φ′ denotes the fluctuations. An important property of ensemble

averaging is that φ′ = 0. Applying Reynolds-averaging to the Navier-Stokes equations,

one obtains the RANS equations as follows.

∂ui
∂xi

= 0

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂x2

j

+
∂τij
∂xj

(1.9)

The term shown in blue is the closure term, which accounts for contributions from the

Reynolds stress tensor, τij = −u′iu′j. Note here that while the system of equations for

LES is consistent with Navier-Stokes equations, i.e., the equations transform into the

Navier-Stokes equations at infinitesimally small mesh-spacing and time-step, the RANS
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equations do not exhibit such asymptotic consistency. Owing to their considerably lower

computational costs, RANS simulations are the method of choice for preliminary design

and optimization of flow configurations. Several classes of closure models exist for the

Reynolds stress tensor, and these are given 1.3.

1.3 Closure Models for RANS Equations

1.3.1 Eddy-viscosity models

Eddy viscosity closures for RANS simulations rely on the hypothesis that owing to their

diffusive nature, the Reynolds stresses can be assumed to behave similarly to the viscous

stresses. This is known as Bousinessq’s hypothesis, which can be mathematically written

as follows.

− u′iu′j = νt

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
− 2

3
kδij (1.10)

Here, k = u′mu
′
m/2 is referred to as the turbulence kinetic energy. While Bousinessq’s

hypothesis reduces the complexity of these models by reducing the number of unclosed

quantities from the 6 Reynolds stress components to just the eddy viscosity, the under-

lying assumptions are problematic for two main reasons. Firstly, since the molecular

timescale is typically smaller compared to the turbulence time scale, the assumption

that the Reynolds stresses depend on the mean strain rate is, in general, invalid. Sec-

ondly, the hypothesis assumes that the Reynolds stresses are isotropic, which is incorrect.

For instance, the blocking effects near the wall dampen the wall-normal Reynolds stress

component much more than the other components. Despite these flaws, eddy-viscosity

models can provide sufficiently accurate predictions for attached flows on simple geome-

tries. This, along with their simplicity, makes them the closure models of choice for

RANS simulations. Several sub-classes of eddy viscosity models exist to evaluate the

eddy viscosity (νt) in different ways, three of which are described as follows.
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Algebraic models

These are the simplest eddy-viscosity models which relate the eddy viscosity directly

to flow quantities based on dimensional analysis. Prandtl [55] assumed the turbulence

velocity scale as `m

∣∣∣∣∂u∂y
∣∣∣∣, where `m is a mixing length that acts as the turbulence length

scale, and y is the spatial coordinate along the wall-normal direction. Correspondingly,

he approximated the eddy viscosity as shown in eqn. 1.11.

νt = `2
m

∣∣∣∣∂u∂y
∣∣∣∣ (1.11)

However, the values for `m can vary with spatial location and also depend on the flow

geometry and boundary conditions. Estimation of `m might even be intractable for

complex geometries. Hence, Prandtl’s model is incomplete in this sense. Other examples

of algebraic models include the Cebeci-Smith model [69] and the Baldwin-Lomax model

[6], where the eddy-viscosity is modeled differently in the inner and outer layers of the

turbulent boundary layer and a damping function is used to ensure that τij vanishes at

the wall with the correct slope.

Algebraic models, by design, are not equipped to handle effects of flow history. To include

these effects, additional PDEs can be solved for some modeled transport quantities along

with the RANS equations. These modeled quantities can then be used along with mean

flow quantities to calculate eddy-viscosity values. Such models are broadly categorized

based on the number of transport variables that are introduced. A few widely used one-

and two-equation models are briefly discussed as follows.

One-equation models

One equation models were introduced to include flow history effects in eddy viscosity

models. A modeled scalar transport quantity, φ, is chosen for such models, the transport

equations for which is specified in the following form.

∂φ

∂t
+ ui

∂φ

∂xi
= Pφ −Dφ + Tφ (1.12)
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The terms Pφ, Dφ and Tφ represent the production, dissipation and transport of the

quantity φ, respectively. While these terms are written separately for interpretability, it

is, in fact, the balance of these terms that characterizes the behavior of the model. Thus,

it is not unusual for each term to be inaccurate on its own but compensated by the other

terms in whole.

In one of the first one-equation models, Prandtl [80] modeled the turbulence kinetic

energy as a transport variable, the true governing equation for which is given in eqn.

1.13.

∂k

∂t
+ ui

∂k

∂xi
= τij

∂ui
∂xj
− ε+

∂

∂xi

[
ν
∂k

∂xi
+

1

2
u′ju

′
ju
′
i +

1

ρ
p′u′j

]
(1.13)

On the right hand side of eqn. 1.13, the three terms in their respective order are the

production, dissipation and transport of turbulence kinetic energy. The dissipation, ε, is

given by the correlation ν
∂u′i
∂xj

∂u′i
∂xj

. Within the transport term, the three terms refer to

the molecular diffusion, turbulent transport and pressure diffusion, respectively. Modeling

these terms in terms of resolved variables is necessary to obtain a model form similar to

eqn. 1.12 with φ = k. Using the gradient diffusion hypothesis, the turbulent transport

and pressure diffusion can be modeled similarly to molecular diffusion, which results in

the following expression for the modeled transport term (Tk),

Tk =
∂

∂xi

[(
ν +

νt
σk

)
∂k

∂xi

]

where σk is a model constant. τij appearing in the production term is readily modeled us-

ing the Boussinesq hypothesis. Finally, based on dimensional analysis, Prandtl proposed

the following approximation for the dissipation term Dk,

Dk = CDk
3/2`m

where `m is a turbulence length scale, and CD and σk are model constants. The eddy

viscosity is defined in this model based on dimensional analysis as νt = ck1/2`m, where

c is a constant value. Note here that in the presence of all these simplifications and ap-
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proximations, the behavior of the modeled turbulence kinetic energy will be significantly

different from the actual turbulence kinetic energy. Given the use of `m, this model is,

again, incomplete. Emmons [19] independently proposed a similar model.

Nee and Kovasznay [48] presented a one-equation model which directly modeled the

transport of eddy viscosity. This model still required a turbulence length scale within the

transport equation which rendered it incomplete. Baldwin and Barth [5] used a modified

turbulence Reynolds number, R̃T , to define the following transport quantity for their

one-equation model,

νR̃T =
νt

CµD1D2

(1.14)

where Cµ is a model constant, and D1 and D2 are functions of wall distance. Empirical

correlations and turbulent boundary layer analysis are used to define the production,

dissipation and transport terms for the corresponding transport equation. Since the

transport quantity is dimensionally consistent with and can be directly transformed to

the eddy viscosity (νt), this model precludes the need for an additional velocity, length or

time scale and is, hence, complete. A major limitation of this model is that the dissipation

is proportional to gradients of νt and RT , which in effect prevents any streamwise decay

of eddy viscosity in the freestream. Another drawback of this model is its destabilizing

effect on numerical stability for certain free-shear flows. In his book, Wilcox [92] notes

that the Baldwin-Barth model predicts a sharp discontinuity within mixing layers and

jets, making the numerical implementation unstable for any grid resolution.

Perhaps the most notable and widely used one-equation model is the Spalart-Allmaras

model [70]. Similar to the Baldwin-Barth model, the eddy viscosity is dimensionally

consistent with and an explicit function of the Spalart-Allmaras transport variable, ν̃.

Calibrated using simple metrics from fully developed mixing layer, far wake, and zero

pressure gradient flow over a flat plate, coefficients within the production, dissipation and

transport terms in this model are designed such that the log law is respected. Damping

functions are used to modulate the dissipation close to the wall, and the model behavior

below the log layer. As the dissipation term in the Spalart-Allmaras model is inversely
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proportional to the wall distance, this model, too, does not predict any streamwise decay

in the freestream eddy viscosity. Since its calibration does not include jet-like flows, this

model tends to significantly over-predict spreading rates for jets.

Other noteworthy one-equation models include the one proposed by Sekundov et al. [27]

and the Wray-Agarwal turbulence model [29].

Two-equation models

Two-equation models use two additional modeled quantities (one of which is nearly always

k), the transport equations for which can be written similar to eqn. 1.12. Kolmogorov

[35] was among the first to use a second transport equation in addition to the one for

k, to evaluate the specific dissipation, ω = ε/k. Several researchers including Chou [10],

Rotta [59], Zeierman and Wolfshtein [96] tried different scalar quantities for the second

transport equation based on the turbulence length, dissipation and time scales and then

related them, along with k, to the eddy viscosity (νt) via dimensional analysis. Similar to

the true transport equation for the turbulence kinetic energy as shown in eqn. 1.13, the

true transport equation for the dissipation of turbulence kinetic energy (ε) can also be

derived. Hanjalic, in his thesis [30], modeled the production, dissipation and transport of

ε in terms of resolved quantities (including the modeled k and ε) based on dimensional

analysis, and Boussinesq and gradient-diffusion hypotheses. These approximations were

used in the modeled ε transport equation used by Launder and Spalding in their k − ε

turbulence model [39], which is given in eqn. 1.15,

∂ε

∂t
+ ui

∂ε

∂xi
= Cε1

ε

k

(
τij
∂ui
∂xj

)
− Cε2

ε2

k
+

∂

∂xi

[
νt
σε

∂ε

∂xi

]
(1.15)

where Cε1, Cε2 and σε are model constants. The eddy viscosity for such a case can be

approximated via dimensional analysis as,

νt = Cµk
2/ε (1.16)
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where, Cµ is a model constant. Many models have been proposed with variants of the

same idea over the years. One of these models that is relevant to the current thesis is

Wilcox’s 1988 k-ω model. ω here refers to the specific dissipation of the turbulence kinetic

energy k and can be analytically given as ε/k. Wilcox modeled his production term as

τij
∂ui
∂xj

where τij refers to the turbulent shear stress which is calculated in the original

version as (µtS
2 − k∇ · u) where S is the magnitude of the strain rate tensor. A slightly

different variation of the model (which is used in this work) uses the vorticity magnitude

Ω instead of the strain rate tensor S for the same evaluation.

1.3.2 Reynolds Stress closures

This class of Reynolds transport closures seeks to model the dissipation, pressure strain

and turbulent transport terms in the Reynolds stress equations which can be obtaining

by taking the first moment of the momentum equations as shown in Eqn. 1.17.

∂u′iu
′
j

∂t
+ uj

∂u′iu
′
j

∂xj
+
∂Tkij
∂xk

= Pij +Rij − εij (1.17)

While the production term is known in the Reynolds stress model, the dissipation tensor

εij, the pressure-rate-of-strain tensor Rij and the turbulent transport Tkij need to be

modeled. In addition to transport equations for each of the components of the Reynolds

stress, an additional transport equation is needed to provide closure. Usually this trans-

port equation is written for the specific dissipation of TKE (ω). These models provide the

capability to account for complex turbulence phenomena involving anisotropy, streamline

curvature, rotating flows etc. Some notable model of this variety include those proposed

by Launder, Reece and Rodi [7] and Wilcox [92].

1.4 A Brief Review of Data-driven Turbulence Modeling

As seen in the previous section, turbulence modeling has relied on first-principles-based

and phenomenological approaches along with assumptions and empirical correlations to

choose the model structure, and on data to obtain the model coefficients associated
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with the chosen structure. Hence, turbulence modeling has always been data-driven to

some extent. However, epistemic uncertainties are prevalent within these models, given

their approximate nature and limited use of data for calibration. These can be broadly

classified into parametric and model-form uncertainties. Parametric uncertainties refer

to the uncertainty in the numerical values of parameters corresponding to a given model-

form. On the other hand, model-form uncertainties arise due to the inadequacies within

the model structure. These structural inadequacies are usually a consequence of the

approximations and assumptions made while building the model. Hence, even using the

“best” model parameters for a given problem could still result in discrepancies between

model predictions and data. The relatively obscure nature of model-form uncertainties

makes them harder to estimate compared to their parametric counterparts.

The work by Kennedy and O’Hagan [33] proposed a Bayesian calibration framework

to address model inadequacies which prepared the groundwork for several uncertainty

quantification studies across different disciplines including turbulence modeling [26, 17, 8].

They used Gaussian process models to approximate the model outputs as a function of

model states and model parameters, and the model inadequacies as a function of model

states. Bayesian inference was used to infer λ as well as parameters of the Gaussian

processes. However, as mentioned by Arendt et al [3], one of the major limitations of the

framework by Kennedy and O’Hagan is that the resulting solutions are not necessarily

identifiable, i.e., the accurate inference of the underlying true inadequacy field is not

guaranteed.

The work of Oliver and Moser [50] was among the first few to address the quantification of

model-form uncertainties in turbulence modeling, which they did by introducing discrep-

ancies in the Reynolds Stress tensor and modeling them as spatially-dependent Gaussian

random fields. Dow and Wang [13] also followed a similar approach to infer the spatial

field of eddy viscosity needed to match the DNS velocity fields. The discrepancy between

the eddy viscosity field predicted using the k-ω model and the one inferred using DNS

data was represented as a Gaussian random field and propagated to estimate uncertainty

bounds on the mean flow quantities.
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Edeling et al [17] used a different approach to address model-form uncertainties. They

used data from flat-plate boundary layers under various pressure gradients and performed

a Bayesian calibration to obtain coefficients for different turbulence models. Predictions

were then made using Bayesian Scenario Averaging over the individual predictions of

this set of turbulence models. They also developed a “smart scenario sensor” that could

automatically preferentally weight these predictions, which as they observed, not only

resulted in a better mean prediction but also reduced the variance in predictions to the

levels of measumerment error during experiments.

Early attempts related to introducing model corrections to alleviate structural inade-

quacies include the work by Parneix et al. [52] who obtained apriori estimates for the

accuracy of second moment closures for computations on a backward facing step geome-

try. This was done by evaluating the values for one variable at a time while holding other

variables constant at values predicted by DNS. The model equations were correspond-

ingly modified to improve predictions on the same case. Raiesi et al. [57] tried a similar

approach for one- and two-equation models. However the authors found that substituting

the modeled turbulence quantities (such as k and ω) with the values of their high-fidelity

counterparts did not improve the predictive accuracy of the model. In fact, for some

cases such straightforward substitution led to deterioration in performance. This occurs

because there is a considerable difference between the behavior of modeled turbulence

variables and their real counterparts.

Tracey et al. [81], in 2013 proposed the idea of transforming inadequacy fields, i.e.,

functions of space, to functions of features (known local functions of model states). This

idea was applied to learn the functional relationship between some chosen features – viz.,

eigenvalues of the anisotropy tensor, ratio of production-to-dissipation rate of turbulent

kinetic energy, and a marker function to mask the free shear layer regions in the flow – and

the discrepancies in the eigenvalues of the Reynolds anisotropy tensor
(
aij = u′iu

′
j − 2

3
kδij

)
between the flow predicted by the RANS solver and those obtained from DNS data.

Xiao and coworkers [94] went further and modeled the discrepancies in turbulent kinetic

energy and eigenvectors of the anisotropy tensor, in addition to the discrepancies in the
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eigenvalues while using a broader set of features.

In 2017, Ling and Templeton introduced Tensor Basis Neural Networks (TBNNs) [42] in

order to learn a non-linear Reynolds Stress model from data by inferring the coefficients

of the tensor basis expansion chosen to approximate these stress tensors. The features

used in this work were five invariant quantities calculated using the mean strain rate and

vorticity tensors. Since then, TBNNs have been used in different works to model scalar

fluxes and turbulent heat fluxes.

A different class of methods based on symbolic regression techniques to obtain such

functional relationships between features and inadequacies have also been introduced

in several works. Weatheritt and Sandberg [89] used genetic programming methods to

construct closures for the Reynolds anisotropy tensor in terms of invariant quantities

derived from the velocity gradient tensor. Schmelzer et al. [62] used sparse regression

techniques over a library of some chosen candidate functions (features) to obtain an

algebraic Reynolds stress closure. An advantage of taking this route to infer data-driven

models is the resulting simplicity and interpretability of the obtained model-forms.

In their original form, the aforementioned techniques for extracting model inadequacies

do not explicitly enforce model consistency. In other words, the inadequacy inferred from

these techniques is not necessarily consistent with the behavior of the model itself as

the high-fidelity quantities which are directly used in the inference process may have a

significantly different behavior compared to their modeled counterparts. For instance,

the turbulence kinetic energy in a DNS can behave very differently when compared to

the modeled turbulence kinetic energy in a RANS simulation. Hence, while an incon-

sistent inference of model inadequacy can work well for the cases used to perform the

inference (training cases), this inherent incompatibility prevents such a model-form for

inadequacy to be reliably used for other cases. Several model-consistent frameworks have

also been proposed in order to get around this problem, all of which tend to ensure

model-consistency via solving an inverse problem to find the optimal model-form for the

inadequacy in consideration. A detailed discussion on model-consistency in this context
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can be found in a recent review [14].

Parish and Duraisamy [51] introduced the field inversion and machine learning (FIML)

framework, which has since then been primarily used to improve predictive accuracy of

RANS models for different kinds of flows [64, 65, 66]. However, the framework is ap-

plicable to virtually any problem involving the use of PDE-based mathematical models.

Besides being model-consistent, the FIML framework can also make use of sparsely avail-

able high-fidelity field data. FIML infers the inadequacy term in two steps. Firstly, an

inverse problem (field inversion) is solved to obtain the optimal spatial field of values

corresponding to the inadequacy term. Then, the inadequacy term is hypothesized as a

function of some locally-defined flow quantities (features) and the functional form for the

same is fixed. A second inverse problem (machine learning) is then solved to obtain opti-

mal parameters within this functional form. Although the inadequacy functions inferred

using FIML are observed to work better compared to the baseline models on flows with

geometries and boundary conditions similar to those in the training configurations, the

accuracy deteriorated for flows with significantly different ones. Holland et al. [31, 32]

further proposed an improvement in the framework where the two inference problems

can be integrated into one. This integrated version of FIML, in general, considerably

reduces the loss in information during the machine learning step and hence ensures bet-

ter “learnability” during the process. As the framework proposed in this thesis heavily

relies on it, FIML will be discussed in considerable detail in chapter 2. Franceschini et al.

[20] used variational data assimilation, an idea similar to field inversion, to infer scalar

and vector inadequacy corrections to the scalar- and momentum-transport equations in

the Spalart Allmaras model, respectively using dense and sparse measurements from the

velocity field. Similar to the idea of classic FIML, Volpiani et al. [85] built on this and

added a machine learning step following data assimilation to obtain functional forms

for a vector inadequacy term in the momentum-transport equation using DNS data for

periodic hill geometries exhibiting separated flows. Strofer and Xiao [73] presented an

end-to-end differentiable framework to formulate data-driven turbulence models. In their

framework, a neural network is used to predict the coefficients in the integrity basis ex-
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pansion of the anisotropy tensor. Since both the solver and the neural network are fully

differentiable and since the neural network is embedded within the solver, the framework

can make use of adjoint-driven techniques to directly evaluate the sensitivities w.r.t. the

weights/biases of the neural network. Gradient-based optimization techniques are then

used to minimize the discrepancy between the RANS predictions and high-fidelity data.

Model-consistent inference and learning has also been used by Sirignano et al. [67] to

introduce subgrid-scale closures in LES equations in the form of deep neural networks.

The weights/biases of these deep neural networks are then optimized using sensitivities

obtained using, what they refer to as, the stochastic adjoint method.

Other recent works that use symbolic identification to approximate inadequacy terms

have also emphasized the importance of model-consistent (or as they call it, CFD-driven)

approaches. Saidi et al [61] proposed a CFD-driven symbolic identification approach to

obtain data-driven generalized eddy viscosity models for RANS simulations. In their

work, they introduced tensor corrections in the Reynolds stress anisotropy tensor and

the production term in the turbulence kinetic energy transport equation. They then

expressed these tensor corrections in terms of a minimal integrity basis of ten tensors

(calculated using strain rate tensor Sij and vorticity tensor Ωij), the coefficients of which

are functions of five invariants. Gene expression programming was subsequently used to

obtain optimal functional forms for these coefficients which tend to minimize the discrep-

ancies between the fields of flow quantities obtained from DNS (data) and corresponding

RANS simulations (predictions). While noting the significant advantage of not neces-

sitating the use of full numerical fields and second-order statistics unlike the CFD-free

version, they reported comparable predictive improvements between the two approaches.

Waschkowski et al [88] proposed a similar multi-objective CFD-driven approach where

they use the EVE (EVolutionary algorithm for the development of Expressions) frame-

work to infer different discrepancies simultaneously to obtain a nonlinear eddy viscosity

model. An interesting observation in the context of data-driven turbulence modeling

was made in that work, rightly pointing out that if different corrections in a model are

trained independently, the resulting interplay between these corrections when used to-
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gether would result in inaccurate predictions – an argument which they further use to

make a case for simultaneous inference of different inadequacies as the only solution. How-

ever, as demonstrated in this thesis, being model-consistent also provides an option of

hierarchical inference of different inadequacy terms. In other words, once an inadequacy

term for the baseline model has been inferred from data, another inadequacy term can be

inferred w.r.t. the new baseline model (containing the already inferred inadequacy term).

Since the framework is model-consistent, the new inadequacy term will automatically be

compatible with the one already present in the model. Thus, hierarchical inference of

different inadequacies can work as an alternative to simultaneous inference.

1.5 Limitations of previous work

While Field Inversion and Machine Learning (FIML) provides a model-consistent frame-

work to extract usable augmentations from high-fidelity data, it suffers from the following

limitations:

• Limited learnability from inferred results: Even when the field inversion

extracts augmentation fields, which when injected into the model can predict very

accurately for the corresponding training case, the machine learning step might not

be able to recreate these fields due to the following reasons:

1. Poor correlation between the features and the augmentation: If the

chosen features are poorly correlated with the augmentation, the augmentation

might end up having very different values for feature values which are quite

close to each other. If the chosen functional form is not expressive enough,

the augmentation function will be significantly inaccurate. If the functional

form is expressive enough, the augmentation function will be very noisy (as

a consequence of high gradients) and the solver might anyway predict with a

lower accuracy. The solver convergence will also suffer as the slightest changes

in state values made via time-stepping might result in large changes to the

augmentation which will translate into large residuals.
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2. Inconsistency across training cases: Since the field inversion procedure

is performed independently on each dataset and since significantly different

augmentation fields can result in similar improvements in accuracy, even if

the features correlate well with the augmentation for each training case, these

correlations themselves may be inconsistent across cases. Thus, this will result

in a cumulative deterioration in the correlation between the features and the

augmentation and result in similar problems as mentioned in the previous

point.

3. Expressivity of the augmentation: The functional form chosen for the

augmentation might be inadequate to represent the functional relationship

between the features and the augmentation. In such a case, the training error

will never reduce beyond a certain value as the augmentation would be struc-

turally incapable of achieving more accurate results, thus rendering a part of

the inferred results unlearnable.

• Limited generalizability: Assuming that an augmentation function captures

enough information from the field inversion results, its applicability is usually re-

stricted to cases with geometries and boundary conditions similar to those in the

training dataset for the following two reasons:

1. Minimal constraints on feature design: The FIML framework specified

that the features ought to be non-dimensional, local and Galilean-invariant.

However, these do not constitute enough conditions to ensure generalizabil-

ity. For instance, consider the following questions. How does one decide

the number of features to be used? How does one decide the method for

non-dimensionalizing the features? How does one decide the amount of data

required to create a generalizable augmentation with desirable predictive ca-

pabilities? These concerns are not addressed in the FIML methodology in

detail.

2. No control over augmentation behavior: While the FIML methodology
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is agnostic to the functional forms used to learn the augmentation, it does not

discuss the consequences of using functional forms which are conventionally

used in the machine learning community. While an augmentation that derives

from such classes of functions can be learned with a decent degree of accuracy

in the regions of feature-space where data is available (from field inversion),

the augmentation is free to assume any value in the rest of the feature-space.

This can lead to spurious behavior for cases which exhibit significantly different

physics, in a part or the entirety of the spatial domain.

In addition to these limitations, the FIML framework (and other data-driven mod-

eling techniques) addresses extrapolation as the ability of the model to predict

accurately for a case outside the range of geometries and/or boundary conditions

used during training. However, this description is technically inaccurate because the

augmentation is defined to be a function of the chosen features and hence extrap-

olation would be defined as making predictions for features which are significantly

far from the training datapoints in the feature-space. In this sense, it is impossible

to guarantee accuracy under extrapolation without any prior knowledge about the

behavior of the augmentation function in feature-space regions that are devoid of

any training datapoints.

1.6 Contributions of the Present Work

1. Learning and Inference assisted by Feature-space Engineering:

The main contribution of this thesis is a data-driven model augmentation framework

termed as “Learning and Inference assisted by Feature-space Engineering (LIFE)”

which can infer model-consistent, generalizable, robust and modular augmentations

(see Chapters 3 and 4). Contributions within the LIFE framework are listed as

follows:

(a) Improving generalizability via feature-space engineering

It is important to recognize that the apparent extrapolation of predictive accu-
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racy that any data-driven modeling method in literature provides, is rarely an

extrapolation in its true sense. While the physical conditions and/or the geom-

etry of a test case might seem to lie outside the range of the ones that were used

for training, the feature values obtained for such a configuration might very

well lie within the range of feature values observed in the training set. Hence,

although such a case might seem to provide evidence for improved predictive

accuracy under extrapolation, it is in fact just a demonstration of good inter-

polation characteristics in the feature-space - something that modelers have

used to their advantage. As mentioned before, it is mathematically impossible

to guarantee predictive accuracy without any prior knowledge. However, while

a data-driven model cannot be trusted to provide accurate predictions under

extrapolation in the feature-space, the feature-space itself can be transformed

to bring in as many configurations as possible within the range of interpola-

tion of existing data. This work provides guiding principles to design efficient

feature-spaces (combinations of features along with their chosen functional

forms and non-dimensionalizations) using expert knowledge (physical under-

standing), empirical relationships and heuristics to minimize the chances of

extrapolation.

(b) Localized learning

Even with a well-designed feature-space, the available data might be insuffi-

cient to populate all regions inside it. The best one can do for regions with

very sparse or no datapoints, in absence of additional information, is to re-

vert to the baseline model behavior. Hence, the learning technique should

be flexible enough to learn the augmentation only in regions where data are

present and leave the other regions unperturbed, something which is hard to

do for traditional learning frameworks like neural networks and decision trees

in their original form. This work provides details on implementation of differ-

ent variants of localized learning along with the advantages and disadvantages

associated with each of those.
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(c) Hierarchically modular augmentations

While generalizability is a desired trait in a reduced-fidelity model, a specific

application may require the model to be custom-tuned to predict with high

accuracy for some preferred set of geometries and/or physical conditions even

if it leads to reduced accuracy for other unrelated cases. Given the feature-

space engineering guidelines and localized learning techniques proposed in this

work, one can design augmentations for specific applications on top of any

existing augmentations which are more generic. This can ensure consistency

and robustness by forcing the model to revert to the behavior of the generic

augmentation if a case ever arises that requires extrapolation in the feature

space. This property can then be used to design several augmentations in

increasing levels of specificity, while maintaining consistency with each other.

This work demonstrates how hierarchically modular augmentations can be

used in the context of transition models.

2. Weakly-coupled Integrated Inference and Machine Learning (IIML)

When dealing with a new solver, quickly embedding and setting up the integrated

FIML framework can seem to be a daunting task, especially if the code-base is

very large. A part of this work describes a novel weakly-coupled IIML strategy

(see Chapter 5) that can be used to infer model augmentations while leveraging a

non-intrusive and iterative solution strategy to solve the augmented model. Such a

solution strategy only requires two nominal changes to the solver code: (1) Reading

augmentation values predicted by an externally implemented augmentation func-

tion into an array, and (2) Replacing the inadequacy term within the augmented

model with the appropriate entries from the array. Note that, for cases where

the features cannot be designed to facilitate a one-to-one augmentation function,

strongly-coupled IIML might struggle to preserve augmentation behavior in parts

of the feature-space across inference iterations. This could result in poor predictive

accuracy despite achieving excellent training accuracy. Weakly-coupled IIML, how-

ever, offers a more robust alternative in this regard. This technique is demonstrated
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via application to a model of a polymer electrolyte membrane fuel cell to improve

membrane water content predictions.

3. Robust Design Optimization via Interval-based estimates of Model-form

Uncertainty

A minor contribution of this thesis (see Appendix A) is a simple yet effective strat-

egy to use the FIML (or any other model augmentation) framework to develop

several augmented models which can then be used to approximately quantify the

model-form uncertainty using an interval-based estimate. This technique was used

for aerodynamic shape optimization of an aircraft engine nozzle under non-linear

constraints.

1.7 Organization

This thesis is organized as follows:

• Chapter 2 describes the existing Field Inversion and Machine Learning (FIML)

frameworks in necessary detail.

• Chapter 3 describes the guiding principles and techniques presented under the LIFE

framework illustrated using a 1D channel flow example.

• Chapter 4 introduces and describes a data-driven transition model inferred using

the LIFE framework. Appropriate comparisons are provided to demonstrate both

the advantages of LIFE over the existing FIML frameworks and the associated

challenges that need to be addressed. A hierarchical model is also inferred using

the LIFE framework to improve predictions for separation-induced transition for

compressor cascade geometries.

• Chapter 5 introduces and describes a weakly-coupled IIML approach along with a

non-intrusive iterative method to solve the augmented model which requires only

minimal changes to the solver code. This is demonstrated by augmenting a poly-

mer electrolyte membrane fuel cell (PEMFC) model via the weakly-coupled IIML

framework.
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• Chapter 6 summarizes the thesis and presents recommendations for future work.

24



Chapter 2

Background

2.1 Premise

In Section 1.1, it was argued that model-form inadequacy could be approximated (either

in part or in full) by an augmentation function β(η(ũm)) (where η are called features).

The model-form inadequacy, as a whole, could consist of several smaller inadequacies.

These contributing inadequacies might affect predictions within some physical regime

and not the other. In most cases, there is little knowledge about the model-form inade-

quacy and it cannot be guaranteed that physical regimes corresponding to all contributing

inadequacies are present in a finite dataset. Consequently, without sufficient prior knowl-

edge, it cannot be guaranteed that the underlying model-form of the inadequacy can

be fully inferred from finite data. Consider the following example. A turbulence model

might be inaccurate while predicting skin friction under adverse pressure gradients and

also while predicting spreading rate of a turbulent jet. The true functional form of the

corresponding model-form inadequacy must contain appropriate terms that alleviate both

these inaccuracies. However, if a training dataset contains data only from wall-bounded

flows, then it is virtually impossible to improve predictive accuracy for a turbulent jet.

Similarly, there could be other inadequacies unbeknownst to the user which might remain

unaddressed even if the turbulent jet cases are included in the training dataset.

Assuming that we wish to address only the partial inadequacy that is manifested within

the training dataset, the first step to quantify it is to choose how exactly it affects the

model. To achieve this, an inadequacy term δ is introduced within the model formulation
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as Rm(ũm; δ, ξ). Examples of how such inadequacy terms have been introduced into

turbulence models in the available literature include multiplication with the production

term of the Spalart-Allmaras model by Singh et al. in [66], addition to the eigenvalues of

the Reynolds anisotropy tensor by Xiao et al. [81, 94], etc. Indeed, δ can also represent

the vector of coefficients in the tensor basis expansion for the Reynolds anisotropy tensor

as proposed by Ling et al. [41]. The following subsections deal with how numerical

estimates for δ are obtained from a given configuration, how β(η) can be learned using

the inferred δ, and why model-consistent inference is required for predictive use.

2.1.1 Estimating model-form inadequacy

For most practical problems of interest, it is prohibitively difficult (if not impossible)

to directly address the true functional form of the inadequacy term δ. It is relatively

easier to estimate an optimal spatial inadequacy field δ(x) (consisting of numerical val-

ues for the inadequacy term for every discretized spatial location) by solving an inverse

problem. However, the term “optimal” has a subjective context here. Depending on

the applications that the augmented model is intended for, accurate prediction of some

quantities may be more important compared to others. Hence, it is natural to orient this

“optimality” such that these quantities of interest (QoI’s) are predicted as accurately as

possible. The QoI’s can be local quantities (e.g., velocity, skin friction, etc.) or integral

quantities (e.g., lift coefficient). Hereafter, y and ym shall refer to the high-fidelity data

and model predictions for the QoI’s. This can be done by designing an appropriate cost

function (C) to quantify the “optimality” of a given δ(x). A simple example for the cost

function can be defined as the L2 norm of the difference between the predictions and true

values of QoI’s, i.e., C(y,ym) = ‖ym − y‖. Thus, the inverse problem is transformed

into an optimization problem which aims to minimize the cost function. From what we

have discussed until now, the following factors affect what part of the inadequacy is being

estimated:

• what training configurations are chosen;

• how δ is introduced into the model; and
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• how the cost function C is formulated.

2.1.2 Approximating inadequacies via augmentation functions

The inadequacy field, δ(x), while useful to quantify model-form inadequacy for a given

case, cannot be used for predictive improvements on its own. However, if a functional

relationship could be extracted between δ(x) and corresponding values of some carefully-

chosen features, η(ũm, ζ), this function could replace the δ(x) field in the numerical model

for predictive use. Here, ζ denotes local quantities independent of the state or secondary

variables (e.g., distance from the closest wall) which are used to design features. Note that

for the augmentation to be usable in a predictive setting with a wide range of applicability,

features must strictly consist of local quantities. Note here that quantities such as two-

point correlations, gradients, filters, etc. are treated as local quantities as well. The

features must be invariant [93, 14] to appropriate transformations (e.g., rotation, as they

must not depend on the orientation of the coordinate axes). Replacing the inadequacy

term with the augmentation function, the model can be written as shown in Eqn. 2.1.

Rm(ũm; β(η(ũm, ζ);w), ξ) = 0 (2.1)

It should be mentioned here that once the functional form of the augmentation (e.g., a

neural network) is chosen, the goal is to infer the augmentation function parameters w

that minimize the discrepancy between β(η) and δ(x). Several techniques exist in the

machine learning literature to solve this optimization problem.

2.1.3 Significance of Model-consistent Inference

If the full high-fidelity field of state variables is available, a naive way to solve for δ(x)

could be to simply plug high-fidelity data into the model equations and estimate the

numerical values of the inadequacy at all the spatial locations. However, it should be

noted that the modeled states (especially the secondary variables s̃m) could behave sig-

nificantly differently compared to their physical counterparts. Hence, a functional rela-

tionship extracted between the features calculated using high-fidelity quantities and the
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δ(x) obtained by substituting high-fidelity values into the model equations would not be

consistent with the behavior of the model states ũm. As a consequence, the augmented

model could predict results which are considerably different compared to those obtained

using δ(x).

The solution is to use a model-consistent approach (similar to the one detailed in Section

2.1.1) which requires solving an inverse problem to obtain δ(x) such that the augmented

model predicts ym as close to y as possible. Since the model is used to make predictions,

the features used to obtain the augmentation function parameters will depend on ũm

and hence, the augmentation will be model-consistent. Apart from providing model

consistency, solving an inverse problem also allows for the use of integral quantities and

sparsely available measurements as data sources in the inference process. This makes

the framework conducive to use experimentally obtained data or sparsely available data

from computational simulations as well. In his thesis, Singh [63] noted that even using a

single scalar quantity (the lift coefficient) the augmentation function was able to correct

the flow field in order to obtain a more accurate distribution of the pressure coefficient on

the surface of an airfoil. This is a testament to the robustness of the FIML approach as

far as the use of sparsely available data (in physical domain) is concerned. It must also

be noted that such success also depends on the accuracy of the chosen baseline model.

The following section details the different versions of the Field Inversion and Machine

Learning framework.

2.2 Field Inversion and Machine Learning

The Field Inversion and Machine Learning (FIML) framework, originally proposed by Du-

raisamy and co-workers [81, 15, 82, 51, 64, 65, 66], was formulated to reduce inadequacies

in a numerical model by inferring optimal augmentation functions from higher-fidelity

data such that the predictive accuracy is improved. FIML provides a model-consistent

framework that leverages solution methods for inverse problems and hence can make use

of sparsely available data in the computational domain or, in some cases, even a single

scalar quantity like the coefficient of lift for an airfoil [63]. The next iteration of the FIML
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approach was introduced by Holland et al [31, 32] and is referred to here as “Integrated

Inference and Machine Learning (IIML)”. This version of FIML addresses the concerns

regarding the consistency and learnability of the inadequacy fields obtained from different

training cases. The two main variants of this framework are discussed as follows.

2.2.1 Classic FIML

FIML seeks to obtain the optimal augmentation function parameters w by dividing the

problem into two steps: (1) a “Field Inversion” problem is solved separately for each

dataset to infer optimal inadequacy fields δ(x) in the respective discretized domains;

which is followed by (2) a “Machine Learning” step that uses supervised learning to

extract w from the augmentation fields (and respective features) obtained using the field

inversion process for all spatial coordinates across all training datasets.

Field Inversion

δ∗i(x) = arg min
δi(x)

{
Ci(yi,yim(ũim)) + λiδT iδ (δi(x))

}
s.t. Rm(ũim; δi(x), ξi) = 0 ∀ i = 1, 2, . . . , N

(2.2)

Equation 2.2 represents the field inversion problem which is solved individually over each

of the N training cases (cases for which available high-fidelity data is to be used to infer

the augmentation function parameters) to obtain optimal inadequacy fields δ∗i(x) in the

respective domains, where i is the case index. The inadequacy field is optimal in the

sense that it minimizes an objective function, which consists of a cost function, Ci, and a

regularization term, T iδ , with λiδ as the regularization constant. Hence, it should be noted

here that the optimal inadequacy field (and consequently the augmentation function)

depends on the objective function being minimized, i.e., a different objective function

might result in a completely different field for the same inadequacy term. The cost

function, as described previously, quantifies the discrepancy between the available data

and the corresponding model predictions for observables belonging to a given case. The

objective function can be regularized to help with the ill-posedness of the field inversion

problem. Multiple regularization terms can be used which can serve as weak constraints
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to numerically limit or impose a physical requirement on the resulting inadequacy field.

One of the simplest combinations of cost function and regularization is to use an L2 norm

to estimate both these quantities as shown below.

Ci = ‖yi − yim(ũim)‖2
2 T i = ‖βi(x)− β0‖2

2 (2.3)

where β0 is the baseline value of the model, i.e., β0 = 0 if β was added to some term in the

model and β0 = 1 if it was multiplied to some term in the model. Here, it is also worth

noting that it is preferred to multiply the augmentation to some term in the model as then

the augmentation is a dimensionless quantity which could, arguably, make generalization

easier. Note here that an additive inadequacy term which is non-dimensionalized with

the same turbulent length and time scales as the source term, can also be viewed as

a multiplicative inadequacy term. This kind of a regularization would ensure that the

augmentation field being predicted remains close to the baseline value.

Given the very high-dimensional nature of the augmentation fields that need to be in-

ferred, the field inversion problem is usually solved using a gradient-based optimization

technique where the gradients can be computed via techniques like finite differences,

complex-step differentiation, discrete adjoints, etc. The details for the discrete adjoint

approach to sensitivity evaluation can be found in Appendix B. In case the reduction in

the objective function relative to its baseline value is not sufficient, the procedure can

be repeated by starting from the last obtained augmentation field with a reduced step

size, if needed. This does not imply that the objective function will be minimized to

a value close to zero for every inference problem. This is because the inadequacy term

being considered might not be capable to correct the QoI’s to exactly their high-fidelity

values.

Machine Learning

Once the field inversion problem is solved for all available datasets, the supervised

learning problem can be solved using the augmentation fields and correspondingly cal-

culated feature fields from all datasets to optimize for the function parameters w as
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w = arg minw′ L(δ∗, β(η∗;w′)) where, δ∗ refers to the stacked vector containing optimal

augmentation fields across all datasets, and η∗ contains the respectively stacked feature

values. This can be written as a vector/matrix created by stacking vectors/matrices from

individual cases one below another

δ∗ =



δ∗1(x)

δ∗2(x)

...

δ∗N(x)


η∗ =



η(ũ∗1m (x), ζ1(x))

η(ũ∗2m (x), ζ2(x))

...

η(ũ∗Nm (x), ζN(x))


L(., .) refers to some appropriate loss function that measures the discrepancy between the

optimal augmentation field data obtained from field inversion and predictions made by

the augmentation function under training with respective features as inputs. A simple

loss function is the squared L2 norm of the difference between the two, given as follows

L(δ∗, β(η∗;w′)) = ‖δ∗ − β(η∗;w′)‖2
2

If the functional form for the augmentation is chosen to be a neural network, a mini-batch

gradient descent technique is well-suited to learn the function parameters in most cases

when used with Adam or L-BFGS optimizer. Note that, while the inferred augmentation

from the field inversion step is fully consistent with the underlying model, the augmenta-

tion field provided by the field inversion process is not necessarily learnable as a function

of the chosen features [32]. This can lead to a loss of information extracted in the field

inversion step. As discussed previously, the augmentation field obtained from field inver-

sion is not unique, it is possible that the field inversion results obtained from two different

datasets correspond to different features-to-augmentation mappings. This inconsistency

can also degrade the learnability of the model. The more recent variant of FIML, referred

to as integrated inference and machine learning addresses these concerns.
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2.2.2 Integrated Inference and Machine Learning

Integrated Inference and Machine Learning (IIML) frameworks are versions of the classic

FIML framework where, throughout the inference process, there must exist some set of

parameters w such that δi(xj) = β(η(ũim,j, ζ
i
j);w) (where j is the index for a spatial

location in a discretized computation domain). Compared to the field inversion problem,

the IIML framework constrains the optimization, either strongly or weakly, to proceed

within a learnable manifold in the space of inadequacy fields (RN i
x) and ensures that the

optimization iterates lie strictly in this manifold. N i
x refers to the number of discrete

spatial locations within the computational domain for the ith training case. While cur-

rently available techniques are predominantly strongly-coupled in nature (FIML-Direct

by Holland et al. [31, 32] for RANS, DPM by Sirignano et al. [67], End-to-end differ-

entiable learning by Xiao and coworkers), there do exist weakly-coupled strategies like

FIML-Embedded by Holland et al. [31] as well. It should be noted here that while DPM

and end-to-end differentiable learning frameworks share similarities with FIML, they were

developed independently and contain variations that allow their application to problems

which the FIML framework, in its original form, was unequipped to handle.

The FIML-embedded technique detailed by Holland et al. in [31] essentially couples

the machine learning step with solver iterations while solving the forward model (as a

part of the field inversion strategy). The augmentation function is embedded within

the solver and it is the augmentation predictions that enter into the model equations.

Using the sensitivities obtained from the previous inference iteration, a field inversion step

produces a target inadequacy field that needs to be predicted at solver convergence by

the augmentation function. Following every solver iteration, the augmentation function

is trained using the current feature values from all spatial locations to minimize the

discrepancy between the augmentation predictions and the corresponding values in the

target inadequacy field. However, training an augmentation between solver iterations is

problematic as the feature-to-augmentation map should not be inferred while the residuals

are significantly high as it can introduce spurious behavior within the augmentation
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function. Even if the training begins after a significant number of iterations to make sure

that the solver has converged, there is no guarantee that the residuals will continue to

be small later. Other drawbacks (as listed in their paper) include potential convergence

issues due to inclusion of learning iterations within solver iterations and a lack of any

straightforward implementations to simultaneously infer the augmentation from multiple

training cases. Chapter 5 details a novel weakly-coupled IIML strategy that resolves

these issues and offers a robust alternative for cases where augmentations resulting from

strongly-coupled IIML do not predict well despite good training accuracy due to the

augmentation behavior being overwritten in parts of the feature-space during the inference

process.

A brief description of a strongly-coupled IIML technique (specifically FIML-Direct [31,

32], although DPM and end-to-end differentiable learning are very similar) is provided

along with its benefits and limitations as follows.

Strongly-coupled IIML

The strongly-coupled version of IIML completely bypasses the inference of an inadequacy

field. Instead, the augmentation function is embedded within the model and a single

inference problem is solved to directly optimize the augmentation function parameters w.

Mathematically, the coupled inverse problem can be posed as the following optimization

problem which needs to be solved simultaneously over all datasets.

w = arg min
w′

N⊔
i=1

(
Ci(yi,yim(ũim)) + λiδT iδ (β(η(ũim, ζ

i);w′))
)

s.t. Rm(ũim; β(η(ũim, ζ
i);w′), ξi) = 0 ∀ i = 1, 2, . . . , N,

(2.4)

where
⊔

is a generic assembly operator to build a composite objective function using the

individual objective functions from all N training cases calculated for each dataset. The

assembly operator can be as simple as a sum, if all datasets are equally important for

the inference, or it could be a weighted sum, if some datasets are to be assigned more

importance than others, or it could be something even more complex as designed/needed
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by the user. Notice here that using several cases at once adds an implicit regularization

to the problem. Like the field inversion problem, gradient based optimization techniques

are usually employed to solve this optimization problem. For simple functions, the deriva-

tives of the augmentation function w.r.t. η and w are usually calculated analytically.

For complex functions, algorithmic differentiation can be used. In the machine learning

community, algorithmic differentiation of neural networks is termed backpropagation.

If discrete adjoints are used to obtain sensitivities required to solve the optimization

problem, there exists an efficient and flexible way to embed the augmentation function

within the solver which is described as follows. The forward simulation requires only the

augmentation values at all the discrete spatial locations in the computational domain.

When using discrete adjoints, the operators for sensitivities w.r.t. ũim and w can be

written as follows

d

dw
=

N∑
i=1

N i
x∑

j=1

dβij
dw

d

dβij
(2.5)

d

dũim,jk
=

∂

∂ũim,jk
+

nη∑
`=1

∂ηij`
∂ũim,jk

∂βij
∂ηij`

∂

∂βij
(2.6)

where N i
x refers to the total number of discretized spatial locations in the computational

domain of the ith training case and nη refers to the number of features used to characterize

the augmentation. ũim,jk and ηij` refer to the kth state and `th feature, respectively, at the

jth spatial location for the ith training case. As can be seen from Eqn 2.5, sensitivities

w.r.t. w can be assembled from sensitivities w.r.t. the spatial fields βi(x) (βij simply

corresponds to the jth entry in this field). Also, note here that βi(x) is nothing but the

inadequacy field predicted by the augmentation function for the ith training case. Now to

evaluate sensitivities w.r.t. βij using discrete adjoints, one would need to use the operator

d

dũim,jk
which only requires the derivatives

∂βij
∂ηij`

and does not depend on the functional

form of the augmentation. Hence, one only needs to pass a linearized version of the

augmentation function into the solver, which makes the solver conveniently agnostic of

how the augmentation is implemented and eliminates the need to change the solver code

every time a change is made to the functional form of the augmentation. However, it
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must be noted that despite the convenience provided by such a linearized version, the

augmentation needs to be evaluated for each solver iteration and hence the augmentation

function needs to be called within the residual calculation part of the code. This still

requires significant changes to the solver code which could require considerable effort if

the solver makes use of custom datatypes and external libraries.

Benefits over classic FIML

• It has been observed that classic FIML can suffer from a loss of information during

the machine learning step owing to the inability of the chosen functional form to

accurately approximate the augmentation inferred during the field inversion step

as a function of the specified features. Integrated inference and training bypasses

this problem as the weights are directly updated and consequently, the obtained

augmentation field remains consistent with the functional form of the augmentation.

Thinking in terms of the augmentation field, this constrains the optimization to

minimize the objective function to find an augmentation field which is realizable

w.r.t. its functional form.

• Since integrated inference and learning can infer the function parameters w while

simultaneously assimilating data from multiple datasets, the augmentation fields

for all datasets are constrained to be realizable w.r.t. the functional form of the

augmentation as explained in the previous point. This has an added advantage that

this procedure, unlike classic FIML, is by design prevented from learning augmen-

tation fields from different datasets that behave differently in the feature space. In

other words, consistency in the features-to-augmentation mapping across datasets

is automatically enforced when using integrated inference and learning.

• Building on the previous point, this means that if we have even a handful of

DNS(Direct Numerical Simulation) fields from which true augmentation values

can be extracted (or are readily available), they can be used to enforce a near-

physical relationship between the features and augmentation by simultaneously

using a plethora of other sparse field data from experiments or higher fidelity sim-
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ulations. This is critical from the viewpoint of generalizable and physical

augmentations.

Limitations

• Unlike the classic FIML approach, the task of designing an appropriate feature

space must precede the inference from data. This, at times, could be difficult

for the modeler and demonstrates the preliminary need of an independent field

inversion step which can lend crucial information about the quantities correlated

to the augmentation field that may then be used to formulate features.

• In its original form, integrated inference and learning does not consider the signifi-

cance of localized learning. For practical problems, the data being used might not

populate the entire feature space, which means that if the optimization problem is

not constrained to change the augmentation only in the vicinity of the feature space

locations for which data is available, it might lead to spurious predictions in other

regions, which might not only result in worse accuracy compared to the baseline

model but also severely affect the stability of the numerical solver.

• When using complex learning algorithms such as neural networks or decision trees,

the augmented model inherits non-linearities from the baseline model and the learn-

ing algorithm. This, combined with the previous point, can lead to a disorderly

optimization behavior when solving the inference problem, in addition to the afore-

mentioned potential deterioration in accuracy and/or numerical stability with every

successive optimization iteration.

36



Chapter 3

Learning and Inference Assisted by Feature-space

Engineering

To alleviate the limitations in integrated inference and machine learning and make the

augmentation generalizable, a set of guiding principles is presented to choose augmen-

tation points and design appropriate features. The notion of localized learning in the

feature-space is also introduced to reduce spurious behavior in the augmented model.

Since the framework requires significant efforts in feature design and deciding how learn-

ing takes place in different feature-space regions, we call this version of integrated in-

ference and learning as “Learning and Inference assisted by Feature-space Engineering

(LIFE)”.

This chapter is structured as follows. Section 3.1 describes and lists the hurdles when

trying to infer robust, efficient and generalizable augmentation functions. Section 3.2 then

describes a 1D model used to predict fully developed turbulent channel flow. 3.3 and 3.4

propose guiding principles to take into consideration when introducing the augmentation

and designing the features, respectively, and demonstrate these principles by augmenting

the model presented in section 3.2. Section 3.5 deals with the notion of localized learning

and provides three different ideas on how to make it work. Finally, section 3.6 presents

a hierarchical augmentation framework that could be used to infer augmentations with

varying levels of generalizability/specificity.
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3.1 Identifying Challenges

3.1.1 Generalizability

While the FIML approaches described in chapter 2 perform well for problems with similar

geometries and flow conditions, the resulting augmented models, in many instances, can

perform worse than the baseline models on several geometries and/or boundary condi-

tions which are significantly different from those used during training. The augmented

model may perform worse than the baseline model on even those canonical configura-

tions which were used to calibrate the baseline model. Evidence of this behavior can

be seen in the work by Rumsey et al. [60] where inferring an augmentation for an ad-

verse pressure gradient case resulted in a deterioration in predictive accuracy for a zero

pressure gradient case. Such losses in existing predictive accuracy within a model are

undesirable as the user can never be sure of whether a prediction made by the augmented

model is more accurate/trustworthy compared to that made by the baseline model. To

alleviate this problem, Rumsey et al. [60] proposed including data from the canonical

configurations to ensure that the augmentation does not alter the model behavior for

these configurations. While this is effective, doing so would be expensive and difficult for

cases exhibiting physical conditions which belong to parts in the feature-space where the

baseline model performs well and hence, where the augmentation function should leave

the model unaltered. Although it is seemingly impossible to infer an augmentation from

limited data that is applicable with high accuracy on any general problem, it is important

that the behavior of the augmented model can be controlled in scenarios in which the

augmentation has not been trained.

During the inference/calibration of any model using data, the task at hand, in essence, is

to fit a function such that the available datapoints are predicted with little (if not zero)

error. The underlying assumption is that this function will closely approximate the true

functional dependence between the respective quantities if there is “enough” data. The

term “enough”, here, means that the available data densely populates any part of the

feature-space which can be accessed while solving any arbitrary configuration. Note here,
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that there might be parts of a feature-space which can never be realized physically and

hence, there can never be any possibility of training/prediction outside this “realizable”

part of the feature-space.

The data-driven modeling community, at times, misuses the terms “interpolation” and

“extrapolation” while describing input parameters and boundary conditions used during

model validation being within or outside the range of those used during model training,

respectively. Instead, the true test of good predictions under extrapolation would be

when the model performs well for feature values encountered during model testing which

are outside the range of feature values encountered during model training. Mathemati-

cally speaking, in general, predictions based on extrapolation in the feature-space cannot

be trusted. The story does not end here, though. For complex problems like RANS mod-

eling, more often than not, one would not have a feature-space densely populated with

datapoints. In such cases, even interpolated predictions could be significantly inaccurate,

especially when the true inadequacy has a highly non-linear functional form.

Given these concerns, a model augmentation should be called generalizable only when the

augmented model produces consistently better results compared to the baseline model

across test cases with significantly different geometries and boundary conditions. Note

that, while we do not make it a requirement for the augmented model to predict accurate

results when comparing with data, this notion of generalizability would still result in

models which are objectively better than the existing ones.

Finally, the issue of feature design needs to be addressed. If the chosen features are not

descriptive enough, physical conditions which require significantly different augmentation

values might share nearly identical feature values. This would require a very nonlinear

augmentation which in turn would require a large amount of data to resolve the aug-

mentation behavior within the feature-space. If the behavior cannot be resolved the

augmentation function might not be inferred accurately enough, which is undesirable.

Thus, the features should be chosen carefully such that physical conditions requiring dif-

ferent augmentation values remain in distinctly separate feature-space regions. Achieving
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this is not a trivial task and requires good physical understanding, expert knowledge and

intuition.

3.1.2 Efficiency

Since the augmentation needs to be evaluated at every solver iteration for every discrete

spatial location within the computational domain, it is important that the calculation of

the augmentation function is fast and resource-efficient in order to maintain the benefits

of using a reduced-fidelity model. To do so, it is important that the functional form is

as mathematically simple as possible, and is implemented in the most efficient manner

possible as a computer program.

While the physical quantities used to formulate the features should be chosen based on

a combination of empirical evidence, physical understanding, and expert knowledge, the

functional forms of features that these quantities are transformed into could drastically

impact the functional form of the augmentation itself. To illustrate this point, consider

the following example. Let a single feature be denoted by η and the true augmentation

function be denoted by β(η) ≡ c2η
2. Now, if a neural network, using conventional

activation functions, needs to approximate this relationship, one or more hidden layers

containing several nodes will be required. However, if the functional form of the feature

is changed from η to η2 the same function becomes linear, i.e., the augmentation function

becomes much simpler and the overall computational cost is significantly reduced. While

this is a very trivial example, changing the functional forms of the features might very well

mean the difference between hard-to-learn expensive augmentations and easily-inferred

inexpensive ones for a complex problem. Practically, this could even mean that a poor

functional form might result in augmentation functions that are virtually impossible to

learn.

In addition to the functional form of the features, the manner in which the augmentation

term is introduced can also affect the functional form of the augmentation function. For

instance, assume that there exists a term which we need to augment in the model of
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the form (1 + f(ũm))g(ũm). This can be augmented in several ways, some of which are

mentioned as follows.

• β(η)(1 + f(ũm))g(ũm)

• (β(η) + f(ũm))g(ũm)

• (1 + β(η)f(ũm))g(ũm)

Each of these will result in a different augmentation function, and one of these might be

simpler in structure compared to others in terms of some already chosen features.

3.1.3 Robustness

It is undesirable for an augmentation implemented into a numerical solver to adversely

impact solver stability and residual convergence characteristics. To prevent this, care

must be taken while introducing the augmentation into the model and also when learning

its functional form. When an augmentation is introduced into a solver with implicit time-

stepping, it changes the Jacobian (or its approximation) of residuals w.r.t. states. The

Jacobian is required to calculate the updated states in a time-stepping iteration. Thus,

if possible, the augmentation should not drastically affect the stability characteristics

associated with this Jacobian. In the interest of solver stability, it must be ensured

that the augmentation remains continuous and that it does not exhibit large-amplitude

small-scale fluctuations in the realizable part of the feature space. This is because such

a behavior of the augmentation function would increase the numerical stiffness of the

augmented model, which would result in poor residual convergence or could even yield

diverging residuals. Additionally, for higher order numerical schemes, the augmentation

can affect quadrature requirements as well.
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3.2 A Sample Problem for Illustration - Fully-developed Tur-

bulent Channel Flow

3.2.1 Problem Description

Fluid flow between parallel flat plates placed a finite distance apart is termed as planar

channel flow. The plates may or may not be in relative motion parallel to each other.

When such a flow has traveled a significant distance, the flow velocities become invariant

along the flow direction and the flow is referred to as a fully-developed channel flow. If the

relative velocity between the plates is aligned with the direction of the pressure gradient,

this results in the flow becoming essentially 1D in nature, i.e., the only direction in

which flow quantities (except pressure) vary is the direction normal to the plates. Hence,

in an incompressible setting, after neglecting the derivatives in the flow (x-) direction,

the mass and momentum conservation can be written as follows under the Boussinesq

approximation for steady-state Reynolds-averaged Navier-Stokes equations.

∂v

∂y
= 0⇒ v = 0

v
∂u

∂y
= −∂p

∂x
+

∂

∂y

(
(ν + νt)

∂u

∂y

)
= 0 (as v = 0)

Hence, given a pressure gradient, the following PDE describes the x-velocity profile in

the y-direction.

∂

∂y

(
(ν + νt)

∂u

∂y

)
=
∂p

∂x
(3.1)

At low speeds, the flow can be assumed to be incompressible and ν (i.e., the kinematic

molecular viscosity) can be approximated only as a function of temperature. Further, if

the temperature of the fluid throughout the domain is the same as the temperature of

the flat plates, ν becomes a constant. νt (i.e., kinematic eddy viscosity), on the other

hand, varies along the y-direction. There exist several models in the literature which can

approximate the distribution of νt along y, based on the velocity distribution.
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The Spalart-Allmaras (SA) Turbulence Model - a short description

The Spalart-Allmaras model [70] is mathematically expressed (without transition modifi-

cation) by the following PDE for steady flows, which can be used to evaluate an estimate

of νt.

ui
∂ν̃

∂xi
= cb1Ŝν̃ +

1

σ

[
∂

∂xi

(
(ν + ν̃)

∂ν̃

∂xi

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
− cw1fw

ν̃2

d2
(3.2)

Here, ν̃ is the Spalart-Allmaras working variable and can be used to calculate eddy

viscosity as follows.

νt = fv1ν̃ (3.3)

fv1 =
χ3

c3
v1 + χ3

(3.4)

χ =
ν̃

ν
(3.5)

The full model description with the values and expressions for all parameters/functions

can be found in [70]. The original calibration of the model by Spalart and Allmaras is

briefly described as follows. The parameters cb1, cb2 and σ were calibrated to predict

the growth rate of a fully developed mixing layer and far wake with reasonable accuracy.

Then, the parameter cw was calculated using these parameters to ensure that the log-law

is respected in a fully turbulent boundary layer. Following this a dampening function fw

was designed to predict the correct skin friction coefficient on a flat plate geometry under

zero-pressure gradient at the location corresponding to Rex = 104. Finally, the limiter

fv1 was designed to ensure that the eddy viscosity diminishes to zero close to the wall.

This knowledge of how the baseline model works will be relevant when discussing model

augmentation in the following sections.

3.2.2 Discrepancy under consideration

Looking at the results from the baseline simulation of a 1D Poiseuille flow (Channel flow

with plates stationary w.r.t. each other under a specified pressure gradient) in figures,

3.1 and 3.2, there exists a significant discrepancy between the results obtained using

the SA model and those obtained via direct numerical simulation (DNS) in the buffer
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(a) Reτ = 395 (b) Reτ = 550 (c) Reτ = 950

(d) Reτ = 2000 (e) Reτ = 4200 (f) Reτ = 5200

Figure 3.1: Velocity gradient data vs. Spalart-Allmaras predictions for 1D Poiseuille flow

(a) Reτ = 395 (b) Reτ = 550 (c) Reτ = 950

(d) Reτ = 2000 (e) Reτ = 4200 (f) Reτ = 5200

Figure 3.2: Reynolds stress data vs. Spalart-Allmaras predictions for 1D Poiseuille flow

44



layer region (around the peaks in figure, 3.1). Although there exist slight discrepancies

in the outer layer too, we shall target the model inadequacy responsible for only the

discrepancy in the buffer layer region. In the following sections, we methodically lay a

set of guiding principles which can help to introduce generalizable, efficient and robust

model augmentations.

3.3 Guiding Principles for Introducing the Inadequacy Term

The following aspects could be taken into consideration while deciding how to introduce

an augmentation in the baseline model:

3.3.1 Generalizability - reducing spurious behavior

The augmentation should be introduced such that it does not corrupt model behavior in

regions where the inadequacy under consideration is not a concern. This is important

for two reasons. First of all and most importantly, it restricts the augmentation from

deteriorating the existing baseline model accuracy for regions in the feature space that

have not been encountered during training. Secondly, it gives more freedom during feature

design because the augmentation acts in isolated regions of the flow by design, and hence

it does not have to depend on the features to figure this out. Obviously, this might not be

possible for all cases, but modelers should always be on the lookout for such augmentation

locations.

For the 1D channel flow example, it is undesirable to perturb the calibrations for free

shear flows and hence directly augmenting the production or diffusion terms should be

avoided. As the cw coefficient ensures the log-law behavior, augmenting it would be

unwise. Although there is debate over whether the log-law is indeed ubiquitous and

sacred, that is not the discrepancy we are targeting here. Since the fw function was

designed to control the eddy viscosity in the outer layer, it would not serve as a good

augmentation point either. However, augmenting the fv1 function could do the trick. By

design, fv1 = 1 outside the inner layer, and hence, any augmentation here will result

in changes only within the inner layer, thus isolating the region of interest. The main
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parameter that dictates how ν̃ gets dampened into νt by fv1 is χ, and hence χ was chosen

to be augmented.

3.3.2 Efficiency

The augmentation should be introduced such that its functional form would be as simple

as possible. While it is impossible, in most cases, to determine the complexity of the aug-

mentation function beforehand, a good understanding of the model can help choose the

manner in which the augmentation is introduced within a model such that the augmenta-

tion function becomes simpler. Note that, in the context of simplicity of the augmentation

function, the manner in which the augmentation is introduced might affect the features

that should be used and vice-versa.

For the 1D channel flow example, this is relatively simple. An additive, multiplicative or

divisive augmentation can be chosen as χ + β, βχ or χ/β, respectively. This is because

of the following reasons. Firstly, the features for this augmentation would have to be

functions of ν̃ and ν as there is no other physical/modeled quantity the augmentation

needs to depend on as only the functional behavior of fv1 needs to be corrected. Also,

observing the data and baseline predictions especially in Fig. 3.2, the discrepancy would

not require χ to be changed beyond its baseline value by any extravagant amount and this

change would be seemingly smooth w.r.t. χ, as will be demonstrated later by inference

results. Note that these are assumptions made before inferring the augmentation. If the

obtained augmentation violates any of these assumptions, it indicates that there might

exist a more efficient way to augment the model. In this particular case, we choose a

multiplicative augmentation as βχ.

3.3.3 Robustness

As has been discussed before, robustness requires that the augmentation does not have

large-amplitude small-scale fluctuations in the feature space and that the stability char-

acteristics of the Jacobian are not deteriorated.

For the 1D channel flow case, the Jacobian is slightly modified only in the regions with
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small ν̃ and that too by a small amount as the augmentation β need not change χ

by a huge amount. Since the behavior of the features, the augmented term and the

discrepancy in observables is relatively smooth and nicely behaved, it is safe to assume

that the augmentation function should be smooth and free of fluctuations as well. If

this assumption is found false however, corrective measures need to be taken in order to

maintain good convergence characteristics of the numerical solver.

3.4 Guiding principles for Feature Design

To determine the features that the augmentation function would depend on, one should

use the following guiding principles.

3.4.1 Choice of features based on expert knowledge

The choice of features has a major role to play in how effective the augmentation function

can be at addressing the model inadequacy in consideration. While automated feature

selection techniques exist in literature, they heavily (if not prohibitively) depend on

data to find the best features from amongst hundreds/thousands of possible candidate

functions of local quantities for a complex problem like transition or turbulence. The

author, hence, believes that human intuition and expert knowledge can lead the way in

feature selection as it has proven effective for traditional modeling. This is one of the

major reasons why the LIFE framework is aimed towards use by expert modelers. While

choosing features, it is desired that there exists a causal relationship between the chosen

features and the inadequacy targeted by the augmentation function. However, for steady-

state models, the augmentation in turn influences the features by virtue of feedback, and

hence quantities which do not share a causal relationship with the inadequacy and, rather

are only correlated with it, can also serve as features.

For 1D channel flow, we assume that simply correcting the functional form of fv1 can

achieve the desired result. Hence, the quantities chosen to design features are just ν̃ and

ν. Since this is a steady-state model and since νt is a quantity derived from ν̃, νt can

also be used as a flow quantity in feature design. In case the aforementioned assumption
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is false, more flow quantities would need to be brought in to design features.

3.4.2 Physics-based non-dimensionalization

Once the quantities to be used as features are chosen, they must be non-dimensionalized

in order to be generalizably used for prediction. This is because similar physical phe-

nomena can occur for significantly different magnitudes of dimensional model quantities

and, since the LIFE framework aims at using as little data as possible to discover gener-

alizable augmentation functions, proper non-dimensionalization of the features becomes

imperative. While statistics from the training datasets can be used to non-dimensionalize

features, the available data might not be sufficiently representative of the complete range

of values that could be encountered during prediction on an unseen case. Thus, it is

better to make use of physical/model quantities to non-dimensionalize features.

For 1D channel flow, taking inspiration from the existing non-dimensionalized term χ,

we can use ν̃/ν, ν̃/νt or νt/ν as a feature. All of these are dimensionless quantities, and

given a specific augmentation function, are indicative of different locations in the inner

layer.

We shall see more creative non-dimensionalization strategies later in this chapter.

3.4.3 Effectively-bounded Feature-space

While non-dimensionalization is critical, it should be noted that a non-dimensionalized

feature can still be unbounded (e.g., νt/ν). Since the data used to learn the augmentation

is limited, this can lead to extrapolated predictions by the augmentation function for

features outside the range of values available from the training data. To circumvent this,

the functional form of the non-dimensionalized feature must be chosen such that either

the feature is mathematically bounded or it takes non-baseline values (baseline value is 0

for an additive augmentation and 1 for a multiplicative augmentation) only in a bounded

part of the feature space. We shall call such a feature as “effectively” bounded, hereafter.

Effective boundedness minimizes extrapolation errors and makes the augmentation more

robust and generalizable.
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For 1D channel flow, a mathematically bounded feature-space can be created. For in-

stance, using the non-dimensionalized quantity νt/ν, a bounded feature can be designed

as ν/(νt + ν). This change in functional form or limiting of the feature must be done

mindfully in order to ensure that the augmentation function does not vary too much in

a small part of the feature space as this might lead to a sub-optimally fitted augmenta-

tion in addition to robustness issues. For 1D channel flow, the aforementioned bounded

functional form works because we are targeting regions characterized by values of νt not

more than a few times that of ν.

3.4.4 Appropriate functional form for features

Several functional forms of a non-dimensionalized feature can offer effective boundedness.

But, only a few of these forms might address the inadequacy in a major part of the feature

space. For instance, the part of the feature space covered by the feature ν/(νt+ν) between

the values of 0 and 0.3 reduces to being covered between the values 0 and 0.000729 for

a different form of the same feature, viz., (ν/(νt + ν)6). Note that, both features have

the same mathematical range between 0 and 1. However, by the virtue of different

functional forms, the regions denoting the same physical conditions span very differently

in the feature space. For an augmentation which is predominantly affected within the

said range, the feature ν/(νt + ν) offers a better-conditioned learning problem. Hence,

the choice of which among different effectively bounded non-dimensional functional forms

of a feature to use can play a significant role in setting up a well-conditioned learning

problem.

For 1D channel flow, the feature ν/(νt + ν) was found adequate enough to improve the

model predictions.

3.4.5 Parsimonious combination of features vs. one-to-one mapping

Finally, the augmentation should be a function of as small a number of features as possi-

ble to maintain simplicity, as a simpler augmentation could mean better generalizability

when training on limited data. On the other hand, the features should be chosen such that
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there exists a one-to-one feature-to-augmentation mapping. While a perfect one-to-one

mapping might be exceedingly difficult to achieve in the entire feature space, the property

should be virtually preserved (i.e., if more than one optimal augmentation values corre-

spond to a single location in the feature space, all of them should be sufficiently close to

each other) in as large a region of the effectively bounded feature space as possible. More

features imply a better chance of ensuring such a mapping, as more physical conditions

can be uniquely attributed to a location in the feature space. Note that “mapping” here

refers to the true relation between features and corresponding optimal augmentation val-

ues for all locations in the feature space. It does not refer to the augmentation function

(which is one-to-one by definition and tries to approximate this mapping). While such

a mapping is difficult to comprehend apriori, solving a field inversion problem can help

in getting an approximate idea of how the mapping should look. If the mapping is not

one-to-one, then during the inference and learning process, sensitivities from two different

datapoints might try to pull the augmentation value at some location in the feature space

in opposite directions and the so-obtained optimal augmentation function would predict

a compromise between two significantly different values which are optimal w.r.t. each of

the two datapoints. Physically, this translates to the feature space being inadequate to

uniquely represent distinct physical phenomena corresponding to significantly different

augmentation values. If the features are insufficient, the mapping will not be one-to-one

and the training accuracy will suffer. On the other hand, if there is are more features

than required, the available data would be sparser implying more interpolation error and

the predictive accuracy on the test cases will suffer. Thus, a balance has to be attained

by choosing just enough features to ensure a virtually one-to-one mapping in most of the

effectively bounded feature space.

Since we have hypothesized that a single feature ν/(νt+ν) is sufficient for the 1D channel

flow problem, the guidelines in this subsection do not apply here. But, we can still solve

a field inversion problem and check the behavior of the augmentation function w.r.t. the

feature. The following sum-squared discrepancy in velocity was used as the objective
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(a) Objective minimization (b) Velocity

(c) Velocity Gradient (d) Reynolds stress

Figure 3.3: Field Inversion for 1D Poiseuille flow (Reτ = 950)

function to solve the field inversion problem.

J = ‖upred − uDNS‖2
2 + λ‖δ − 1‖2

2 (3.6)

Steepest gradient descent was used to solve the optimization problem with a step size

of
0.1∥∥∥∥ ∂J

∂δ(x)

∥∥∥∥
∞

. The convergence of the objective function and the fields corresponding

to the resulting inverse solution for the case Reτ = 950 are shown in Fig. 3.3. The

feature-to-augmentation relationships extracted from such field inversion problems for

all the available cases are shown in Fig. 3.4. From this figure, it can be observed that

the feature-to-augmentation relationships for all Reynolds numbers seem to coincide,
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Figure 3.4: Feature-to-Augmentation relationships

especially for higher Reynolds numbers. For lower Reynolds numbers, there seems to be

discrepancy for lower values of ν/(νt + ν) but that corresponds to regions of very high

νt/ν and hence would affect regions either in the outer layer or the outer part of the

buffer layer. This lack of a one-to-one relationship in a small part of the feature-space

which would not affect the predictive accuracy by a large amount can be accepted. An

augmentation function can then be hand-fitted to approximately trace these relationships

as shown by the black dashed line. This hand-fitted augmentation function is given as

follows.

β(η) = sgm(φ2(η), φ4(η), 555− 600η)

φ4(η) = sgm(φ3(η), 1.01, 298.8− 300η)

φ3(η) = 1.42− 60(η − 0.915)2

φ2(η) = sgm(φ1(η), 1, 65.1− 70η)

φ1(η) =
1

7.8
log(exp(7.8(3.1η − 0.96)) + exp(7.8(0.71η + 0.675)))

− 0.04 exp(−600(0.078− η)2) + sgm(0, 0.32− 0.7η, 100η − 6)
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(a) Reτ = 395 (b) Reτ = 550 (c) Reτ = 950

(d) Reτ = 2000 (e) Reτ = 4200 (f) Reτ = 5200

Figure 3.5: Velocity gradient data vs. augmented Spalart-Allmaras predictions for 1D
Poiseuille flow

where the feature η = ν/(νt + ν) and the modified sigmoid function (sgm) is defined as

sgm(x, y, z) = x+
y − x

1 + exp(z)

Using this augmentation function, the results for all cases of Poiseuille flow are shown in

Fig. 3.5 and 3.6. Consistent and significant improvements across all cases of Poiseuille

flow are seen using the hand-fitted augmentation function. A kink around y+ = 5 can

be observed for all predictions and is a result of the hand-fitted augmentation function

not accurately matching the behavior of the inadequacy fields obtained via field inver-

sion for regions with low values of ν/(νt + ν). When applied to a case of a Couette

flow (channel flow with plates moving relative to each other and zero pressure gradient),

similar improvements were noted as seen in Fig. 3.7. Thus, we have, with a very sim-

ple example, demonstrated that by adopting the above guiding principles and practices,

generalizability of a model can be improved. However, it should be noted that designing

augmentations and features is a complicated and intricate process for complex problems.

Also, while field inversion provides with inadequacy fields which share a consistent re-

53



(a) Reτ = 395 (b) Reτ = 550 (c) Reτ = 950

(d) Reτ = 2000 (e) Reτ = 4200 (f) Reτ = 5200

Figure 3.6: Reynolds stress data vs. augmented Spalart-Allmaras predictions for 1D Poiseuille
flow

(a) Velocity gradient (b) Reynolds Stress

Figure 3.7: Data vs augmented Spalart-Allmaras predictions for a Couette flow
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lationship across all training cases for this particular problem and provides predictions

that are consistently more accurate using these inadequacy fields, it is fraught with lim-

itations and inconsistencies as described in chapter 2. Thus, for more complex problems

integrated inference and learning is recommended.

3.5 Localized Learning

Notice that in the 1D channel flow case shown above, the training data from different

spatial locations in the discretized domain populate the entire feature-space (as seen in

Fig. 3.4) for each training case, hence, characterizing the behavior of the augmentation

function in the entire feature-space. Hereafter, we shall refer to such individual points

in the feature-space, the coordinates for which are given by the feature values calcu-

lated at corresponding locations in the discretized physical domain of a training case,

as a datapoint. For complex problems, the available data might not sufficiently pop-

ulate the feature space to characterize the behavior of the augmentation function. A

lack of datapoints in certain parts of the feature-space could lead to large errors during

interpolation/extrapolation as has already been discussed in section 3.1, thus resulting

in spurious predictions and deteriorating the performance of the augmented model even

below that of the baseline model. Additionally, for steady-state models like RANS, the

feature values obtained in one solver iteration influence the feature values obtained in

the next iteration. The inference and learning process, however, works only with the fea-

ture values obtained at solver convergence. This means that the solver might be accessing

non-populated parts of the feature-space when the residuals are not converged, and hence

the augmentation values in these regions can affect the converged result. While there is

no way to ascertain true augmentation behavior in the absence of data for a region in

the feature-space, to make the augmented model always perform at least as well as the

baseline model, these regions must be constrained to predict baseline values. This, in

essence, implies that learning should take place only close to the available datapoints in

the feature-space. This statement leads to two major concerns – (1) How can such a

“localized” learning be ensured; and (2) How large of a vicinity should a datapoint affect
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in the feature-space? These questions are discussed in the following subsections.

3.5.1 How to perform localized learning?

While there may exist other ways of achieving this, we propose the following three meth-

ods to perform localized learning.

Neural Networks with artificial training datapoints

In their original form, conventional learning techniques relying on function architectures

like neural networks, decision trees etc. are focused at learning a global representation

of a single underlying function. Note here that this is not the case for kernel regression,

but its implementation would make the computation of the augmentations slow and ex-

pensive, especially when the training dataset has a large number of datapoints. In order

to perform localized learning with neural networks, significant numbers of artificial dat-

apoints must be used to enforce the baseline behaviour in regions of the feature-space

which are not populated by inferred datapoints. This would, firstly, require identification

of regions in the feature-space outside the vicinity of any datapoints, and subsequently

artificial datapoints would have to be sampled from such regions and used along with

inferred data to update the function parameters (weights and biases). This is similar to

what what done in [60], except that the artificial datapoints, here, are not sampled from

any canonical case but are added for all regions that have few or no datapoints. A simple

example of how artificial datapoints can be added for classic FIML and strongly-coupled

IIML is illustrated in Fig. 3.8. In this particular example, a grid of “candidates” for

artificial datapoints is constructed within the feature-space. Then, radial basis functions

centered at the available datapoints are used to define the neighborhood that will be

influenced by each datapoint. Note that this neighborhood can vary in the feature-space.

All candidates for artificial datapoints that fall within this neighborhood are discarded

and the remaining are accepted. The augmentation values for all the accepted artifi-

cial datapoints are, then, either set to the baseline value in the case of classic FIML,

or calculated based on the previous iterate of the augmentation function parameters for
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Figure 3.8: Example of localized Learning by introducing artificial datapoints

strongly-coupled IIML. The parameters of the augmentation function are then updated

using both, artificial datapoints and available data. Note that, for any generic point

within the feature-space which is outside the neighborhood of any available datapoint,

the updated augmentation may not exactly predict baseline values. However, the pres-

ence of artificial datapoints in the update process acts as a regularizer to ensure that the

predictions are close to the baseline value. Localized learning via neural networks can

be difficult for the following reasons. The neural network architecture must have enough

complexity to represent local behavior of the augmentation function in several distinct

regions of the feature-space. This could require a large number of hidden layers and/or

nodes per hidden layer. Even if the architecture is complex enough to facilitate an intri-

cate augmentation function, initialization of weights and biases within a neural network

can affect learning and sometimes can prevent the neural network from representing the

augmentation behavior accurately in all feature-space regions. More efficient methods to

achieve localized learning with a neural network (including better initialization strategies)
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are, hence, a subject for further research.

Interpolation on a discretized feature-space

Conventional learning architectures can also be avoided altogether, and alternative ar-

chitectures, which are more conducive for localized learning, can be introduced. One of

the crudest of these architectures is discretizing the feature-space and parametrizing the

augmentation function using augmentation values at the nodes/centroids of the result-

ing grid elements. Note that the local grid spacing, here, characterizes the vicinity of

a datapoint in the feature-space. This offers a fast and efficient way of calculating the

augmentation value at any point in the feature-space by the virtue of interpolation and

can isolate learning for different regions in the feature-space. A downside of this approach

is that it suffers from the curse of dimensionality and cannot handle a large number of

features with sufficiently fine discretizations. It should be noted here that this method of

localized learning does not employ neural networks or decision trees and is the method

demonstrated in Chapter 4 of this work. Two implementations of this approach shall be

discussed in greater detail in Chapter 4.

Neural networks on a discretized feature-space

As mentioned above, using a neural network in the entire feature-space to approximate

a complex augmentation function might require a large number of parameters. One way

of possibly reducing the number of parameters is by discretizing the feature-space and

then learning individual neural networks for each grid element. This would reduce the

number of parameters used by a single neural network and thus, make the calculation of

augmentation values cheaper and faster. This might also facilitate easier localized learning

using neural networks as they would be exposed to only a part of the feature-space where

the augmentation mapping will be less intricate compared to that in the entire feature-

space. In addition, the ability of neural networks to approximate complex functional

forms (and hence offer complex interpolations within grid elements in the feature-space)

implies that discretizations which are coarser than those required when using a discretized
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feature-space without neural networks can also perform well. This would lead to the curse

of dimensionality becoming weaker in such a hybrid implementation.

3.5.2 How large of a vicinity should a datapoint affect in the feature-space?

The region in the feature-space in the immediate vicinity of a datapoint ηd that it mod-

ifies during localized learning will, hereafter, be referred to as the datapoint’s range of

influence which can be characterized by an influence function, I(η;ηd). Also, the

influence function might not be isotropic in the feature-space. In other words, the range

of influence for a point in the feature-space could be larger along one feature direction

compared to another.

The range of influence is an important quantity when balancing training accuracy against

generalizability. If the range of influence is too small, the training accuracy will be high

but the augmentation would have poor generalization as most of the feature-space would

still assume baseline values. On the other hand, if the range of influence is too large, a

datapoint could affect far-off regions in the feature-space and hence the training accuracy

might suffer. This trade-off is very similar to the over-fitting vs generalization trade-off

encountered during training of a neural network.

For an augmentation formulated in a discretized feature-space such that augmentation

values are predicted using an interpolation function for every feature-space grid cell, the

range of influence can be directly controlled by controlling the grid spacing and there is

no need for an explicit influence function. On the other hand, if the functional form of

an augmentation is based on neural networks, the use of an influence function becomes

important. The parameters of the influence function can be hypothesized as functions

of the features themselves. While finding the optimal influence function might not be

feasible, approximations can be made for the same, based on heuristics. For instance, a

simple approximation for an influence function can be written as follows.

I(η;ηd) = exp
(
−(η − ηd)TC(ηd)(η − ηd)

)
(3.7)
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Here, C(ηd) is a covariance matrix which is a function of the feature values at the dat-

apoint. These components can themselves be approximated as simple functions (linear,

quadratic, etc.), and several inference problems can be solved by varying the parameters

of these component functions to find the ones that provide the best training and valida-

tion accuracy w.r.t. available high-fidelity datasets. Note here that validation accuracy

can be considered as a proxy to generalizability if the validation datasets are significantly

different from training datasets in geometry and physical conditions. Clearly, there ex-

ists ample scope to explore different localized learning techniques along with strategies

to optimally choose influence functions. However, the main objective of this work

w.r.t. localized learning is to introduce it in the LIFE framework and em-

phasize its importance in creating robust and generalizable augmentations,

and the explorations of such sophisticated localized learning techniques and

strategies is left as a subject for future work.

3.6 Hierarchical Augmentations

There may be situations in real-world applications where a single augmentation cannot

address all sources of model-form inadequacies within the model. There are two ways to

deal with such issues: (1) Use a larger set of features to better characterize the augmen-

tation; or (2) Use multiple augmentations with smaller numbers of features to address

specific parts of the discrepancy. In the author’s opinion, it is almost always better to

take the second route, since a larger set of features could lead to a loss of generalizability

as more features could over-specify physical conditions, and also because it provides the

modeler with a chance to introduce multiple augmentation terms within the model. The

functional form of each of these multiple augmentations could be much simpler compared

to that of a single augmentation trying to resolve all sources of inadequacy. Now, these

multiple augmentations could be inferred all at once, or one-by-one. While inferring

all augmentation functions at once might be possible, it might take a large number of

inference iterations to do so. Again, in the author’s opinion, it is better to deal with

augmentations one-by-one beginning with the one that is the most generic (i.e., will af-
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fect the widest range of problems) and making way to the most specific augmentation

(i.e., one which affects only a particular class of problems). To do so, an augmentation is

introduced in a manner that does not affect problems other than the class of problems it

is intended for. Once inferred, the resulting augmented model can serve as the baseline

model for the next level of augmentation and the process can be repeated. The augmenta-

tions built using this methodology are termed here as hierarchical augmentations. While

the biggest challenge in designing hierarchical augmentations is ensuring that the effect

of each subsequent augmentation is restricted to the problems it is intended for, it has

two major practical benefits. Firstly, one can obtain several models in decreasing level

of generalizability (i.e., increasing level of specificity to a class of problems). Hence, to

adapt for a new class of problems, an existing level of the hierarchically augmented model

with the appropriate level of generalizability can be picked off the shelf and tweaked as

required. Secondly, it removes the necessity of re-using a dataset (which has been used for

any preceding levels of augmentation) to constrain the learning process in order to ensure

that model does not lose accuracy on such datasets, thus cutting down on training time.

A hierarchical augmentation is presented in Section 4.3 to improve predictive accuracy

for flows involving separation-induced transition.
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Chapter 4

Application of LIFE - Bypass Transition Modeling

4.1 Introduction

Accurately predicting laminar-to-turbulent transition is crucial for reduced-fidelity fluid

flow models as it can improve the preliminary design process of different flow surfaces

such as aircraft wings, wind turbine blades, automobiles, gas turbine components (com-

pressor and turbine blades) etc. Laminar-to-turbulent transition (hereafter referred to as

transition) can be caused either by the amplification of small perturbations in the flow

characterized by the so-called Tollmien-Schlichting waves, or via external disturbances

such as freestream turbulence, surface roughness, flow separation, impinging wakes etc.

where turbulent spots are introduced into the flow. The former is referred to as the

natural transition and the latter is referred to as bypass transition. Predicting either

modes of transition is a difficult task as they involve intricate interactions between flow

quantities across a range of spatio-temporal scales. We shall focus our attention here to

bypass transition modeling.

In fluid flows which are characterized by a freestream turbulence intensity of more than

1%, boundary layers can transition without the occurrence of the Tollmien-Schlichting

waves [44]. Instead, the freestream turbulence triggers elongated disturbances (referred

to as Klebanoff modes) which precede the onset of transition. These are formed due to

the low-frequency disturbances from the freestream which penetrate the boundary layer.

Given their 3-D nature, Klebanoff modes manifest themselves in the flow as forward and

backward moving jets (or streaks) along the streamwise direction. As these streaks get
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lifted up towards the edge of the boundary layer, they interact with the high-frequency

freestream disturbances, which leads to formation of turbulent spots that eventually

lead to transition. Alternatively, transition can also be caused when a boundary layer

undergoes separation and the shear layer encounters an inflection-point instability that

triggers transition. In such a case, the consequent turbulent shear layer can reattach

to the surface due to enhanced mixing resulting in what is referred to as a laminar-

separation turbulent-reattachment bubble. It has been seen that the bubble length in

the freestream direction is very sensitive to changes in the Reynolds number and angle

of attack [45]. Note that for cases with high enough freestream turbulence, the flow may

exhibit all three kinds of instabilities - inflection point, Tollmien-Schlichting waves, and

Klebanoff modes - simultaneously, which interact with each other. Other pathways to

bypass transition include surface roughness and wake impingement. Since it is impossible

to capture minute details and interactions of such spatio-temporal structures using a

steady Reynolds-Averaged Navier-Stokes (RANS) model for either of the aforementioned

routes to bypass transition, empirical correlations are often used to predict transition

onset and transition length for such simulations.

There are two major categories of approaches to model bypass transition in the context of

RANS simulations - data correlation models and transport equation based models. Data

correlation models make use of empirical correlations to predict the transition location

where a switch can be made from laminar to turbulent computation to make predictions.

Mayle [44] correlated the transition onset location for zero pressure gradient flow by a

relatively simple expression as shown in Eqn. 4.1.

Reθ,t = 400 Tu−0.625 (4.1)

Abu-Ghannam and Shaw [1] presented such a correlation in 1980 to predict the momen-

tum thickness at transition location while accounting for pressure gradients as shown in
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Eqn. 4.2.

Reθ,t = 163 + exp

[
F (λθ)−

F (λθ)

6.91
Tu

]

F (λ) =

6.91 + 12.75λθ + 63.64λ2
θ if λθ ≥ 0

6.91 + 2.48λθ − 12.27λ2
θ otherwise

(4.2)

Here θ refers to the momentum thickness, λθ =
θ2

ν

∂U∞
∂x

refers to the local pressure

gradient parameter, and Tu =
100
√

2k/3

U∞
refers to the freestream turbulence intensity.

Suzen et al. [79] provided a similar correlation (Eqn. 4.3) which provides slightly better

predictions for favorable pressure gradients.

Reθ,t =
(
120 + 150 Tu−2/3

)
coth (1.2− 40000K) (4.3)

Here K =
ν

U2
∞

∂U∞
∂x

refers to the acceleration parameter. Note that the switch from lam-

inar to turbulent computation for data correlation models can be made gradual instead

of a sudden jump across the transition location by introducing an intermittency term.

Intermittency is a statistical quantity which is defined as the fraction of the time that the

flow remains turbulent at a given location. Thus, intermittency is zero in fully laminar

regions of the flow and unity in fully turbulent regions. Several algebraic models have

been introduced to model the behavior of intermittency along the streamwise direction.

One of the earliest and widely used among such models is the one proposed by Dhawan

and Narasimha [12] which builds on the probability transition theory put forward by

Emmons [18].

γ = 1− e−(x−xt)2/`2t ∀ x ≥ xt (4.4)

This model is given in Eqn. 4.4 where `t = ν/(
√
n̂σU∞) refers to a transition length.

n̂σ is related to the propagation rate of turbulent spots in a laminar boundary layer. A

correlation for n̂σ was provided by Steelant and Dick [72] in terms of Tu and K.

Transport equation based models, on the other hand, introduce additional transport
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equations into the RANS model corresponding to new scalar quantities that are used

to diminish the eddy viscosity in the pre-transitional regions within the boundary layer

either directly or indirectly. These models provides a more powerful approach to model

the bypass transition phenomena as they account for the flow history effects and can also

make use of existing empirical correlations in an approximate sense. Nearly all transport

equation models use either laminar kinetic energy (energy contained within Klebanoff

modes in a laminar boundary layer), kL, or the intermittency (γ) as the transport scalar.

Based on this choice, they are categorized into laminar fluctuation models and intermit-

tency transport models, respectively.

Laminar fluctuation models, in general, are written as shown in Eqn. 4.5.

DkL
Dt

= PL −DL + ∇ · TL −R (4.5)

Here, PL, DL, and TL refer to production, destruction and transport of the laminar kinetic

energy. The term R refers to the energy transfer from Klebanoff modes to turbulent

fluctuations. R is also added as an extra source term in the transport equation for

turbulent kinetic energy. Also note here that the term TL is assumed to be purely viscous

in nature. Notable laminar fluctuation models include the ones by Mayle and Schulz [45],

Lardeau et al. [38], and Walters and Cokljat [86] among others.

Intermittency transport models, on the other hand, take effect by restricting the eddy

viscosity to low values in the pretransitional regions of the boundary layer. This is done

by multiplying either the eddy viscosity or the production term in the transport equation

for turbulent kinetic energy with the intermittency variable. It should be noted that the

intermittency transport models are a relatively new development and have proved more

successful compared to their laminar fluctuation counterparts. The underlying transport

equation stems from Eqn. 4.6 which can be derived from the correlations presented by

Dhawan and Narasimha [12] for x ≥ xt (where xt refers to the transition location) under

the approximation of small γ. Readers are directed to section 2.3.3.2 of [22] for the
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derivation in detail.

dγ

dt
+ u ·∇γ = 2(1− γ)

√
γ
|u|
`t

+ ∇ · ((ν + νt)∇γ) (4.6)

Note here that while this transport equation does not contain xt within its formulation,

it has been derived using the algebraic correlation defined for x ≥ xt. Hence, the corre-

sponding source term must remain inactive until the flow reaches the transition location or

else the model shall predict fully turbulent flow at all locations. Most of the intermittency

transport models achieve this by introducing an additional sink term which suppresses

the intermittency in the pretransitional region. One of the earliest intermittency function

models was proposed by Steelant and Dick [72] where a data correlation model was used

to predict the transition onset location but its use was limited to only boundary layer

computations. Suzen and Huang [78] extended this model to predict realistic γ distri-

butions in the cross-stream direction. However, this extended model still depended on

data correlation to predict the transition onset. Langtry and Menter [37] proposed one

of the most widely used transition models in 2009 by modifying the SST k-ω model. In

their method, data correlation was replaced by an auxiliary transport equation for the

transition Reynolds number Reθ,t. This auxiliary transport equation uses a source term

which activates outside the boundary layer to solve for Reθ,t using correlations to local

flow quantities and turns off within the boundary layer to let these values diffuse from

the freestream. A local quantity, viz., the vorticity Reynolds number (ReΩ = d2Ω/ν),

was used as a surrogate to Reθ (which is an integral quantity) when comparing with the

critical Reynolds number (Reθ,c) to predict the onset of transition. Critical Reynolds

number corresponds to the location where intermittency starts ramping up from zero

and the transition occurs slightly downstream of this location. Note here that Reθ,c is

computed within the model as an empirical function of Reθ,t. It should be noted that the

computation of Reθ,t, in their model, requires solving an implicit algebraic equation for

the acceleration parameter λθ. The main criticism against this model is that it makes use

of streamline direction and mean velocity (when estimating Tu and λθ to evaluate Reθ,t

in the freestream) which are not Galilean invariant and can be an issue for configurations

66



with multiple moving surfaces. In 2012, Durbin [16] proposed a model which attempted

to alleviate this problem by using only local Galilean invariant quantities. The model

form he used is shown in Eqn. 4.7 and looks very similar to Eqn. 4.6.

dγ

dt
+ u ·∇γ = Fγ|Ω|(γmax − γ)

√
γ + ∇ ·

((
ν

σl
+
νt
σt

)
∇γ

)
(4.7)

γmax is set to a constant value of 1.1. This value is chosen to enable the intermittency to

rapidly increase to unity. To ensure its value does not exceed beyond 1, the intermittency

is explicitly reduced if it exceeds unity at all spatial locations in the computational domain

after every solver iteration. The Fγ term is a limiter which serves two purposes. First, it

activates when the ratio of ReΩ and (νtΩ)/(νω) exceeds beyond a empirically obtained

constant value. Second, even when this criterion is reached, it deactivates if ReΩ is too

small. Note the absence of a sink term in the model. As discussed before, without a

sink term the intermittency would reach unity in the entire domain by virtue of diffusion.

To circumvent this issue, this model requires the intermittency to be explicitly set to

zero for spatial locations where the eddy viscosity is significantly less than the molecular

viscosity and/or ReΩ is less than a predefined threshold after each solver iteration. An

improved version of this model [23] was presented by Ge et al. in 2014. Major changes in

this version included the introduction of a sink term and a modification to improve the

predictive accuracy for separation-induced transition.

While one of these models can be chosen as a baseline model and augmented to im-

prove predictive accuracy, this work presents a bare-bones intermittency-based transition

model inspired from Durbin’s model (2012) to demonstrate the capability of the LIFE

framework. This chapter is broadly divided into two main parts. Section 4.2 details the

inference of a model that can be used to predict transition due to freestream turbulence

using the LIFE framework. Following that, section 4.3 describes the development of a

hierarchical model that when used with the one described in section 4.2 can be used to

predict separation-induced transition.
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4.2 A Data-driven Bypass Transition Model

To build a data-driven model that can predict bypass transition triggered by turbulent

fluctuations in the freestream, an augmented intermittency transport equation, similar

in structure to the one in Durbin’s 2012 model [16], was added to the Wilcox’s 1988

k-ω model (with a vorticity based source term). A bounded feature-space was then

carefully designed to enable identification of pre-transitional regions in the boundary

layer where TKE production needs to be diminished. To enable localized learning, a

simple interpolation-based functional form were chosen. Only two cases from the T3

dataset [58], viz., T3A and T3C1, were used to infer the augmentation function. The

so-obtained augmentation was then tested on the T3B, T3C2, T3C3 and T3C4 cases from

the T3 dataset; and the MUR116, MUR129, MUR224 and MUR241 cases from the VKI

turbine cascade dataset. The augmentation shows good generalizability across all these

different datasets which are characterized by different geometries, freestream turbulence

intensities, Reynolds numbers, Mach Numbers, pressure gradients, etc.

4.2.1 Augmenting the 1988 k-ω turbulence model

Wilcox’s k-ω model from 1988 [90] (with the production term modified to use vorticity

magnitude instead of strain-rate magnitude) was chosen as the baseline turbulence model

to be augmented for transition prediction. The PDEs for this two-equation model are

given in equation 4.8.

ρ
∂k

∂t
+ ρu ·∇k = µtΩ

2 − 2

3
ρk∇ · u− Cµρkω + ∇ ·

((
µ+

µt
σk

)
∇k

)

ρ
∂ω

∂t
+ ρu ·∇ω = Cω1

ω

k

(
µtΩ

2 − 2

3
ρk∇ · u

)
− Cω2ρω

2 + ∇ ·
((

µ+
µt
σω

)
∇ω

) (4.8)

Here, the eddy viscosity (µt) is simply k/ω. Taking inspiration from Durbin’s model from

2012 [16], an augmented PDE for intermittency can be written as in equation 4.9. Note

that the term β1 replaces the γmax term in Durbin’s model. While in Durbin’s model,

γmax has a constant value, β1 in the current model is a function and hence can make the
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source term act either like a production or a destruction term, as needed.

ρ
∂γ

∂t
+ ρu ·∇γ = ρ (β1(η)− γ)

√
γΩ + ∇ ·

((
µ

σl
+
µt
σk

)
∇γ

)
(4.9)

The intermittency term is then multiplied to the production term in the k-equation, and

hence, the entire augmented model can be written as in equation 4.10.

ρ
∂k

∂t
+ ρu ·∇k = γ

(
µtΩ

2 − 2

3
ρk∇ · u

)
− Cµρkω + ∇ ·

((
µ+

µt
σk

)
∇k

)

ρ
∂ω

∂t
+ ρu ·∇ω = Cω1

ω

k

(
µtΩ

2 − 2

3
ρk∇ · u

)
− Cω2ρω

2 + ∇ ·
((

µ+
µt
σω

)
∇ω

)

ρ
∂γ

∂t
+ ρu ·∇γ = ρ (β1(η)− γ)

√
γΩ + ∇ ·

((
µ

σl
+
µt
σk

)
∇γ

)
(4.10)

A few salient points regarding the construction of this augmented intermittency equation

are as follows:

• The structure of the production term is identical to Durbin’s model in order to make

sure that the distribution of the intermittency is consistent with what Dhawan and

Narsimha proposed in 1957.

• The diffusion term is again identical to Durbin’s model with the reasoning that the

diffusion characteristics of intermittency should remain, more or less, the same for

both the models.

• The augmentation is introduced instead of the term γmax in Durbin’s model. In

essence, this model-form of the intermittency equation would constrain the inter-

mittency field to be as close to the augmentation field as possible. This also pre-

cludes the need for a sink term in the model as the augmentation function can act

as both a source and a sink term.

• An intermittency equation was used instead of simply multiplying the production
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term in the k-equation with the augmentation so that the augmentation field can

be smoothed into an intermittency field to aid solver stability and convergence.

• This particular way of augmenting the model results in a bounded augmentation

(between 0 and 1) as the intermittency is a mathematically bounded quantity. A

bounded augmentation would, in general, require a simpler functional form com-

pared to an unbounded augmentation. Although, there might be certain cases char-

acterized by separation-induced transition where the intermittency might slightly

exceed 1, but would still remain below a conservative upper-bound of 2.

• All the information about which regions in the flow need to be laminar and which

regions need to be turbulent, i.e., the information about the model inadequacy in

Wilcox’s k-ω model that we are trying to alleviate, comes from the augmentation

itself.

4.2.2 Feature Design

The task of designing features for a complex application like predicting bypass transition

requires considerable effort. This section outlines the rationale behind consideration

of different feature candidates in an attempt to illustrate the nuances involved in this

process.

In order to design a parsimonious feature-space which can distinguish between physical

conditions relevant to the bypass transition phenomena at different locations in the flow,

some basic understanding of the interplay between various model quantities is required.

At any stage in the simulation, if the production of k can be suppressed around the region

in the buffer layer where ω is barely low enough to facilitate a net production of k in the

first place, the value of k will drop in this region. This would result in the values of k

dropping in neighboring regions which are farther from the wall too as a result of diffusion,

thus lowering the value of µt in these regions. A drop in µt will lower the production term,

thus making k drop even further. The negative feedback of k (by the virtue of the source

term), cascade of lowering k values farther from the wall (by the virtue of diffusion term),
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and the lowered/nullified influence of high values of k downstream (by the virtue of the

convective term) would result in the flow laminarizing at a given streamwise location.

Since the intermittency (γ) is being used to suppress the production of k (and hence

locally laminarize the flow), very low values of γ would clearly be correlated to regions

within a laminar boundary layer. Note that there do exist other laminar regions in the

flow, viz., regions within the viscous sublayer of the turbulent parts of the boundary layer.

Now that the task at hand is clear, appropriate features need to be designed to accomplish

flow laminarization up to the transition location. This would require:

1. Feature(s) that can diagnose if the streamwise location that they correspond to is

downstream or upstream of the transition location.

2. Feature(s) that can distinguish between points inside the viscous sublayer of a

turbulent boundary layer and those within a laminar boundary layer.

3. Feature(s) that can distinguish between laminar and turbulent parts of the flow.

The following subsections will detail the different requirements and resulting feature

choices that arose in a logical sequence.

Identifying whether transition has occurred

As described in section 4.1, several algebraic models (e.g., [1]) make use of comparisons be-

tween the local value of Reθ and an estimate of Reθ,t (obtained via empirical correlations)

to ascertain whether a given streamwise location lies in the laminar or turbulent part of

the boundary layer. Note here, that while transition momentum thickness Reynolds num-

ber, Reθ,t (i.e., where the transition starts) is different from critical momentum thickness

Reynolds number, Reθ,c (i.e., where the intermittency starts increasing), in the interest

of simplicity it was decided that only an Reθ,t estimate shall be used in the process of

feature design.

Since Reθ is a non-local quantity (not to mention that it is very hard to compute it in

the presence of strong pressure gradients), a local, more robust and preferably easy-to-
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compute quantity is required for feature design. Similarly, better correlations are required

for Reθ,t that depend on as much local information as possible.

A surrogate for Reθ: The vorticity Reynolds number, ReΩ, is a local flow quantity

which is defined as follows in equation 4.11

ReΩ =
ρΩd2

w

µ
(4.11)

Here, Ω is the vorticity magnitude and dw is the wall distance. This quantity was first

used in the context of transition by van Driest and Blumer [83], where they proposed that

the onset of transition can be modeled to occur when ReΩ crosses a set threshold. Using

the Blasius boundary layer solution given by Wilcox [91], Menter et al. [46] noted that

the maximum value of ReΩ in the wall-normal direction can be scaled to match Reθ for

any streamwise location in a Blasius boundary layer profile with good accuracy. Different

researchers provide slightly different values for this scaling. In this work, the following

scaling is used (as given by Durbin [16]).

Rev =
ReΩ

2.188
, max

dw
Rev ≈ Reθ (4.12)

In addition, Langtry and Sjolander [36] observed that for different streamwise locations,

the wall-normal location corresponding to maximum ReΩ roughly matches the respective

wall-normal location corresponding to the most rapid growth of laminar fluctuations (as

observed from experimental data) very well. In Falkner-Skan boundary layers, Rev < Reθ

for favorable gradients and Rev > Reθ for adverse pressure gradients. Since the flow

transitions at lower values of Reθ in regions of adverse pressure gradient and vice versa,

this means that the same threshold for Rev will cause the flow to transition sooner in

regions of adverse pressure gradients and delay it in regions of favorable pressure gradients,

which is desirable. This makes Rev a very strong candidate for use as a surrogate to Reθ

for transition applications.

A surrogate for Reθ,t: The transition momentum thickness Reynolds number Reθ,t

depends on several factors, viz., freestream turbulence intensity, pressure gradient, Mach
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number etc. All of these quantities are determined by the inviscid part of the flow,

i.e., the flow outside the boundary layer. This means that we need to estimate Reθ,t

outside the boundary layer and somehow transfer that value within the boundary layer.

For instance, this has been done using an additional transport equation for Reθ,t in the

Langtry-Menter model. In this model, however, we choose a simpler route. Given that

the freestream quantities will be only marginally modified (if at all) even with different

intermittency distributions within the boundary layer, one can – for a given flow geometry

and boundary conditions – assume the values of Reθ,t in all the cells as flow parameters

themselves. In such a case, a crude way of transferring information from the freestream

into the boundary layer is by copying the freestream Reθ,t estimates to all cells along the

wall-normal direction. In this work, the index of the closest wall face is stored for all cells

in the computational domain. Then, for every wall face, the freestream quantities are

estimated as the average values of all cells that are located at a distance between r−δr/2

and r + δr/2 from the wall and have the wall face in consideration as their closest wall

face. r and δr are user-specified constant values such that the boundary layer thickness

at all locations is less than r and δr is sufficiently large to import values from at least

one cell per wall face.

The task, now, is to find a simple approximation for Reθ,t. Praisner and Clark [54] ob-

tained a simple correlation between the transition onset momentum thickness Reynolds

number Reθ,t, turbulence intensity at the edge of the boundary layer (Tue), turbulence

length scale at the edge of boundary layer (λe), and momentum thickness. This correla-

tion is given as follows.

Reθ,t = A

(
Tue

λe
θ

)B
(4.13)

The values of the constants A and B were calibrated as 8.52 and -0.956, respectively,

in order to match the transition onset data for several turbomachinery configurations

spanning a range of Mach numbers, freestream turbulence intensities, pressure gradients

and wall temperatures. In their paper, they further simplified the expression using Tue =
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100(u′e/Ue) and assuming B ≈ −1 as

100

(
u′e
λe

)(
ρeθ

2
t

µe

)
= A1 (4.14)

In this form, they found A1 = 7.0±1.1. In Wilcox’s k-ω model u′e/λe can be approximated

using Cµωe. Using this approximation along with the value Cµ = 0.09, the relationship

can be rewritten as follows.

θ2
t =

7νe
9ωe

(4.15)

Here, it must be noted that in order for this approximation to hold, the freestream

boundary condition for ω must be appropriately chosen such that the decay of turbulence

intensity is consistent with observations from experiments or high-fidelity simulations.

Finally we can write the surrogate for Reθ,t as follows.

Reθ,t =

√
7U2

e

9νeωe
(4.16)

Note here that Reθ,t is only an approximation of and can be different from the true value

of Reθ,t. Also note that while the estimate of Ue can be used with sufficient certainty

in moderate pressure gradient problems, the quantity could be ambiguous for very high

pressure gradients. The maximum value of Rev in the wall-normal direction approximates

Reθ for zero pressure gradients and hence, max
dw

Rev would also poorly estimate Reθ for

very high pressure gradients. On a different note, Ue does not follow Galilean invariance

and hence might pose problems when predicting for configurations involving multiple

moving surfaces.

Functional form for the resulting feature: The objective of this feature is to compare

the surrogate values of Reθ and Reθ,t in order to predict whether transition has occurred.

Although several approximations have been made while evaluating Rev and Reθ,t, they

should still scale correctly. We are interested in regions where intermittency exhibits

values significantly far from zero or unity and this behaviour would clearly correspond to

regions where O(Rev) ≈ O(Reθ,t). At other locations, if Rev is small, the intermittency
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needs to be predicted close to zero, and if it is too high intermittency needs to be predicted

close to unity. The region of interest would thus correspond to values of Rev/Reθ,t around

1. If this ratio is too high, the intermittency should be 1. A conservative upper-bound

of 3 is used for this feature. Note that the feature can only assume positive values and

hence a lower-bound is not required. The final functional form of the first feature then

becomes as shown in equation 4.17

η1 = min

(
Rev

Reθ,t
, 3

)
(4.17)

There, however, arise two new issues when using this feature. Firstly, the same value

of Rev can correspond to different locations within the laminar and turbulent boundary

layer regions which might require different treatments. Secondly, the vorticity magnitude

might not vanish away from the wall resulting in increasing values of Rev as wall distance

increases beyond the boundary layer. Hence, features are needed to: (1) classify laminar

and turbulent regions and; (2) isolate laminar boundary layer regions from the regions

outside the boundary layer as the augmentation needs to deviate from its baseline value

only within the laminar regions of the boundary layer.

Identifying laminar and turbulent regions

Turbulent length scales can be used to identify regions inside the boundary layer which

are laminar and turbulent. This can be done by using the ratio of wall distance (dw) and

turbulent length scale (estimated as
√
k/ω in the k-ω model) in order to compare them

against each other. Note here that according to the sublayer analysis shown by Wilcox

[90] we have the following.

ω → 6ν

βd2
w

and k ∼ d3.23
w for dw → 0 (4.18)

This means that the estimated turbulent length scale,
√
k/ω will vary in proportion

to d3.615
w close to a wall. So, behaviorally it would be better if the turbulent length

scale was compared against d3.615
w but that would not result in a non-dimensional fea-
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ture which would result in a severe loss of generalizability. The highly turbulent regions

in a boundary layer (where intermittency would be close to unity) will correspond to

dw/(
√
k/ω) � 1. Locations within the pre-transitional boundary layer, regions in vis-

cous sublayer close to the wall and regions in freestream far enough from the wall will

correspond to dw/(
√
k/ω) � 1. Note here that the third feature is designed to ensure

that, among these three regions, the intermittency is predicted close to zero only for lo-

cations within the pre-transitional boundary layer. Finally, in order to make the feature

bounded, the functional form is changed to as shown in equation 4.19.

η2 =
dw

dw +
√
k/ω

(4.19)

Thus, η2 → 0 corresponds to dw/(
√
k/ω)� 1, and η2 → 1 corresponds to dw/(

√
k/ω)�

1.

Feature 3 - Distinguishing the pre-transitional boundary layer

Assuming the augmentation predicts low enough intermittency such that the eddy vis-

cosity in the pre-transitional boundary layer is calculated as νt < ν, and also assuming

that the freestream values of νt would always remain more than ν, regions in the pre-

transitional boundary layer and those in the freestream can be distinguished using the

quantity ν/νt. As far as the viscous sublayer is concerned, we have,

lim
d→0

η2 = lim
d→0

dw

dw +
√
k/ω

≈ lim
d→0

1

1 + Cd2.615
w

= 1 (4.20)

Thus, η2 would start from 1 at the wall and decrease away from it, slowly in the viscous

sublayer and then rapidly thereafter as the production of k picks up. On the other hand,

ν/νt → ∞ as dw → 0 and it will start decreasing rapidly as one moves away from the

wall as well. Note that very close to the wall, it is very difficult to distinguish between

the viscous sublayer of a turbulent boundary layer and a laminar boundary layer. Thus

the intermittency will be predicted significantly lower than 1 very close to the wall. This

is fine because the net production of k is nearly zero and a dampening the production
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makes, virtually, no difference in the prediction of the wall shear stress. As one moves

farther from the wall, the decreasing values of η2 and ν/νt cause the intermittency to

increase and hence, at a distance where the net k production reaches significant values,

γ catches up and becomes close to 1. Finally, to make ν/νt bounded, the functional form

is changed to obtain the feature as shown in equation 4.21

η3 =
ν

ν + νt
(4.21)

Unused feature candidates

While the features mentioned above were used as inputs to the augmentation function,

several other candidates were also considered. Note here that the fact that attempts

made using these candidates rendered inferior results compared to the aforementioned

features does not mean that no variations of these candidates can be used as inputs to

the augmentation function. They are listed here along with the rationale behind their

consideration to help the reader in the development of similar features for fluid flow

applications.

While deliberating the use of wall distance dw in η2, attempts were made to use the

laminar length scale
√
ν/Ω, instead. However, for all variations that were tried out,

it was observed that this caused the inference process to laminarize the entire boundary

layer. Following this, bounded non-dimensional functions involving laminar and turbulent

energy scales (viz., νΩ and k respectively) were also considered as candidates for η2 and

η3. However, similar problems involving laminarization of the entire boundary layer were

encountered when using these feature candidates as well. Also note that such a feature

cannot differentiate between a laminar boundary layer and a laminar sublayer within a

turbulent boundary layer by itself and hence must be used with a feature like η2. Different

functional forms involving either specific dissipation Reynolds number (Reω = d2
wω/ν) or

its wall-normal derivative scaled by dw were also considered as both feature candidates

and surrogates for Reθ,t. However, both of these attempts resulted in inferior results

compared to the current feature set. This is mainly because the behavior of Reω differs

77



significantly when compared to ReΩ in the buffer layer and lower log layer regions and this

is the region where the augmentation takes effect. Even so, Reω seems to be an interesting

alternative to Reθ,t and further investigations need to be made to fully explore its viability

in data-driven transition modeling.

4.2.3 Functional form of the augmentation

The functional form of the augmentation chosen here is defined by linear interpolation

on a uniform grid constructed in a bounded feature-space. This belongs to the second

family of approaches (interpolation on a discretized feature-space) described in Section

3.5.1. Cell-centered values are used to estimate Green-Gauss gradients which are then

used to perform linear interpolation within every grid cell. This is illustrated with a

two-dimensional feature-space example in Fig. 4.1. The cell-centered augmentation val-

Figure 4.1: Schematic of a Green-Gauss interpolation-based two-dimensional augmentation
map

ues, hence, are the parameters of the augmentation function in this instance, and the

size of cells (defined by grid spacing) decides the region of feature-space influenced by

these augmentation function parameters. The grid spacing also controls the “accuracy vs

generalizability” tradeoff described in Chapter 3. A smaller grid spacing would help infer

a better-resolved augmentation function in the feature-space but would also increase the

requirement of diverse data that can populate a significant region of the feature-space.

Hence, when faced with limited data, grid spacing should be treated as a hyper-parameter
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that can be optimized, if needed.

4.2.4 Results

Inferring the Augmentation

Only two flat plate cases from the T3 dataset by ERCOFTAC [58], viz., T3A and T3C1,

were used to infer the augmentation function. The T3A case is characterized by a zero

pressure gradient flow with the freestream turbulence intensity of 3.5% at the inlet. The

T3C cases, on the other hand, are characterized by a monotonically increasing pressure

gradient along the flow direction. This is achieved by contouring the top surface of the

domain using a correlation given by Suluksna et al. [74]. Fig. 4.2 shows the comparison of

“estimated” freestream velocity profile in the streamwise direction with the experimental

data. Since it is difficult to ascertain a constant distance away from the wall where the

Figure 4.2: Comparison between predictions and data for U∞/Uin profile

freestream velocity can be recorded, surface pressure, pw(x) is used to obtain an estimate

of the freestream velocity as U∞(x) =
√

2(pin − pw(x))/ρ+ U2
in, where pin and Uin are

inflow pressure and inflow velocity, respectively. The trends seem to agree except for a

slight discrepancy in the favorable pressure gradient region which might be caused due

to the highly curved top wall in this region causing an error in the estimated freestream

velocity. Presented in Fig. 4.3 are the decay profiles of freestream turbulence intensity

with flow direction for the T3A and T3C1 cases which match very well with experimental

data. The corresponding meshes for the T3A/T3B case and T3C cases are shown in
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Figs. 4.4 and 4.5, respectively. This verifies that the boundary conditions for ω are

(a) T3A (b) T3C1

Figure 4.3: Comparisons between predictions and data for decay of freestream turbulence

Figure 4.4: Mesh used for simulations of T3A and T3B flat plate cases

Figure 4.5: Mesh used for simulations of T3C cases

set correctly. Hence, the flow is subjected to favorable pressure gradients for the initial

section of the plate followed by a region of adverse pressure gradients. For the T3C1 case,

the transition occurs in the favorable pressure gradient region. The boundary conditions

for both these flows is summarized in Table 4.1. The three-dimensional feature space
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Cases T3A T3C1
Tuin 0.035 0.1
νtin/ν 14.0 50.0
L(in m) 1.5 1.65
ReL,in 520000 660000

ωin(in s−1) 9.1 24.0

Table 4.1: Inflow conditions for the T3 cases used for training

is discretized into a uniform grid with 30, 10, and 10 cells along features 1, 2 and 3,

respectively. The combined cost function is defined to be the sum of mean squared

discrepancies between skin friction values at all spatial locations where data is available

for both the cases.

C =
ncase∑
icase

‖Cf,icase − Cdata
f,icase‖

2
2

No regularization is used for this problem as using a standard Tikhonov regularization

like ‖β1 − 1‖2
2 would prevent β from reaching low enough values to cause laminarization.

Also, it should be noted that there is ample implicit regularization present from three

different sources:

1. The augmentation map is constrained to be a function of the chosen features

2. The augmentation map is required to provide best possible results for multiple

training cases at the same time

3. The chosen functional form constrains the augmentation to manifest itself within a

restricted family of functions

A steepest gradient descent algorithm is used to solve the optimization problem. The step

length used for this gradient descent was
0.1∥∥∥∥∂J∂w
∥∥∥∥
∞

. The minimization of the objective

function is shown in Fig. 4.6. While the objective function for either cases does not

reach close to zero, the Cf plots for both the cases (see Fig. 4.7) clearly show that the

augmented model predicts the transition locations well for both the cases. Note here

that the baseline model simply uses β1 = 1 everywhere in the computational domain and

hence, in essence, predicts fully turbulent flow. Note that the Cf values for both the cases

81



(a) T3A (b) T3C1

Figure 4.6: Objective minimization for simultaneous inference and learning from T3A and
T3C1 cases

(a) T3A (b) T3C1

Figure 4.7: Skin friction coefficient distributions for the inference cases

are slightly higher compared to the data in the respective pre-transitional regions. Also

note that the transitional region for T3C1 is significantly more gradual compared to what

the augmented model predicts. One of the main reasons for this behavior could be the

constrained structure chosen for the augmentation function. This happens because the

boundary layers are not fully laminarized in the pretransitional region of the boundary

layer. This could be either due to the augmentation values not being predicted sufficiently

low and/or insufficient thickness of the region within the boundary layer containing low

augmentation values (see Fig. 4.8). The residual convergence plots for T3A corresponding

to different inference iterations are shown in Fig. 4.9. The dashed lines correspond to the

baseline model residuals, the solid lines correspond to the augmented model residuals,
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(a) T3A (b) T3C1

Figure 4.8: Intermittency contours (γ) predicted by the augmented models for the cases used
in inference. White line marks U = 0.95U∞. The scaling is 40x in the wall normal direction.

and the partially transparent curves correspond to the 23 inference iterations preceding

the final iterate. Note that as the inference progresses the residual convergence grows

(a) Forward (b) Adjoint

Figure 4.9: Forward and adjoint residual convergence across inference iterations for the T3A
case

slightly worse while still remaining acceptable. The underlying reason for the residuals

not converging to machine precision levels was later found to be the discontinuous nature

of the augmentation at the cell interfaces in the feature-space grid.

The resulting augmentation map is shown in Fig. 4.10. It can be observed that the

augmentation values are inferred to be small in regions of high η2 and η3 which correspond

to laminar regions of the flow. Also, the augmentation reduces intermittency below a

value of η1 of about 0.75, above which the flow is always predicted turbulent.
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(a) η1 = 0.05 (b) η1 = 0.15 (c) η1 = 0.25

(d) η1 = 0.35 (e) η1 = 0.45 (f) η1 = 0.55

(g) η1 = 0.65 (h) η1 = 0.75 (i) η1 = 0.85

Figure 4.10: Augmentation contours of β1 on feature space slices after training on T3A and
T3C1 datasets

To illustrate the need of using a functional form capable of localized learning, Figs. 4.11

and 4.12 show the inference results from the functional forms being chosen as neural

networks with three different architectures: with 2 hidden layers containing 7 nodes each,

1 hidden layer containing 600 nodes and 2 hidden layers containing 45 and 60 nodes,

respectively. As shown in the plots, all three of these neural networks fail to infer

the augmentation function from the T3A and T3C1 cases. The neural networks cause

partial laminarization at all streamwise locations and, in some cases, this can lead to a

continuous increase in objective function values with inference iterations as seen in Fig.

4.11. Note here that this is not a commentary on the ability of the neural network to
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(a) T3A (b) T3C1

Figure 4.11: Objective minimization for simultaneous inference and learning from T3A and
T3C1 cases using Neural Networks

(a) T3A (b) T3C1

Figure 4.12: Skin friction coefficient distributions for the inference cases with Neural Network
based augmentation

represent the augmentation, rather its inability to prevent learned information in one

part of the feature-space from being modified by inferred information in another part of

the feature-space across training iterations.

Predictions on Unseen Cases

The augmentation function inferred from T3A and T3C1 as mentioned above was sub-

sequently used to predict the skin friction distributions for other T3 cases, viz., T3B,

T3C2, T3C3 and T3C5. Note that all of these case are subjected to different levels of

freestream turbulence intensities at the inlet, pressure gradients, and Reynolds numbers.
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Table 4.2 shows the boundary conditions for all of the T3 cases used to test the inferred

model.

Cases T3B T3C2 T3C3 T3C5

Tuin 0.065 0.037 0.034 0.043

νtin/ν 100.0 12.0 8.0 17.0

L(in m) 1.5 1.65 1.65 1.65

ReL,in 940000 550000 418000 946000

ωin(in s−1) 7.943 11.4083 10.982 18.70738

Table 4.2: Inflow conditions for the T3 test cases

As seen in Fig. 4.13, the decay of freestream turbulence intensity is consistent with

experimental data for all four cases, thus verifying the boundary conditions for ω. T3B is

characterized by a zero pressure gradient flow. Transition occurs in a favorable pressure

gradient region for T3C5 and in adverse pressure gradient regions for the T3C2 and

T3C3 cases. The predictions for these cases are shown in Fig. 4.14. While the model

successfully predicts the transition locations for T3B, T3C2, and T3C5 cases, it predicts

transition locations which are significantly upstream for the T3C3 case. This is expected

as the augmentation function was inferred using cases which exhibit transition within

zero pressure gradient and favorable pressure gradient regions. In addition, this inability

to predict transition for adverse pressure gradient cases might also signal to a deficiency

in the surrogate chosen to predict Reθ,t.

To test the model on a geometry other than a flat plate, predictions for four single-stage

high pressure turbine cascade cases from the VKI dataset are presented. The mesh used

to perform the RANS simulations is shown in Fig. 4.15. The blade chord is 0.067 m

in length and makes an angle of 55◦ with the flow direction. The inlet is located 0.055

m upstream of the leading edge while the outlet boundary is 0.242 m downstream of

the leading edge. The mesh resolution next to the wall is on the order of y+ ≈ 1.

The boundary conditions for the same are presented in Table 4.3. As can be seen from

Fig. 4.16, the heat transfer coefficients plots show that transition locations are predicted
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(a) T3B (b) T3C2

(c) T3C3 (d) T3C5

Figure 4.13: Comparisons between predictions and data for decay of freestream turbulence

well for the case MUR129 and MUR224. Looking closely at the data for the MUR241

case, while transition length is experimentally observed to be short for one of the surfaces

(transition occurs between x ≈ 0.025 and x ≈ 0.028), transition seems to be quite gradual

for the other surface. The corresponding predictions fail to predict this gradual transition.

Note that while the predicted transition location is within this gradual transition range,

it changes based on the wall distance value chosen for extraction of quantities at the edge

of the boundary layer to estimate Reθ,t. Lastly, observing the case MUR116, transition

occurs significantly upstream of the actual transition locations on both the sides. To

diagnose the issue with this case, this anomaly is juxtaposed with the sudden transition

predicted for the MUR241 case. Looking at the contours of features 1 and 2, and the

corresponding intermittency contours for both the cases near the predicted transition

87



(a) T3B (b) T3C2

(c) T3C3 (d) T3C5

Figure 4.14: Skin friction coefficient profiles predicted using the augmentation inferred from
the T3A and T3C1 cases

Figure 4.15: Mesh used to simulate VKI turbine cascade cases

locations as shown in Figs. 4.17 and 4.18, we can make the following observations. For

the case MUR116, the intermittency quickly rises in a region where 0.1 ≤ η1 ≥ 0.2 and

η3 ≤ 0.8. It seems that the available data was not sufficient for the augmentation to be

inferred in this region of the feature-space. On the other hand, for the case MUR241, the

sudden transition is in fact predicted within a region with relatively higher η1 and η3 in the
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Cases MUR116 MUR129 MUR224 MUR241
Tuin 0.008 0.008 0.06 0.06
νtin/νin 3 1.556 43.537 15.465

p0,in(in bar) 3.269 1.849 0.909 3.257
T0,in(in K) 418.9 409.2 402.6 416.4
pout(in bar) 1.550 1.165 0.522 1.547
Twall(in K) 300.0 300.0 300.0 300.0
ωin(in s−1) 1.5× 104 1.5× 104 1.5× 104 1.5× 105

Table 4.3: Inflow, wall and outflow conditions for VKI test cases

(a) MUR116 (b) MUR129

(c) MUR224 (d) MUR241

Figure 4.16: Heat transfer coefficient profiles predicted using the augmentation inferred from
the T3A and T3C1 flat plate cases for the VKI turbine cascade cases

feature space where the augmentation was inferred indeed, however there could be several

factors which might have contributed to prediction of a steep transition rather than a

gradual one. These include imperfect features, insufficient resolution in the feature-space

region in consideration and insufficient data to characterize the local behavior of the

augmentation.
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(a) Feature 1 (b) Feature 3 (c) Intermittency

Figure 4.17: Contours for MUR116 near the transition location

(a) Feature 1 (b) Feature 3 (c) Intermittency

Figure 4.18: Contours for MUR241 near the transition location

The effects of using a finer discretization in the feature-space, using a different user-

specified distance to extract freestream quantities for use in calculation of η1, or using only

the T3A case for inference are illustrated in Appendix C. In summary, the supplementary

results demonstrate that using a discretization in the feature-space that is too fine, while

resulting in similar training accuracy as that obtained using the discretization shown

here, could result in poorer generalizability. This observation also serves as motivation

for future work to develop adaptive localized learning techniques to achieve a better

balance between accuracy and generalizability. This is because a finer discretization

with the same amount of available data results in a larger region of the feature-space

remaining unaffected by the inference. Using predictions on VKI cases, it has been shown

in Appendix C that small variations in the user-defined distance from where freestream

quantities are extracted, in most cases, result in virtually similar transition locations.

Moreover, using just the T3A case for inference could result in an inferior generalizability,
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as the use of multiple cases adds an implicit physical regularization to the inference

problem and prevents the augmentation from overfitting to the needs of a single case.

4.3 Hierarchical Augmentation: Separation-induced Transition

The model developed in section 4.2 predicts the transition location well for most of the

cases where transition occurs in the favorable and zero pressure gradient regions, how-

ever it predicts early transition within adverse pressure gradient regions of the flow as

seen for the T3C3 flat plate case. To design a hierarchical augmentation, we consider

transition prediction for compressor cascade geometries where flow separation is the pre-

dominant cause of bypass transition. LES data (provided by RTRC) are available for

6 single-stage configurations with the blade geometries belonging to the NACA65 fam-

ily of airfoils. The meshes used for RANS simulations of all these cases are structured

multiblock meshes. The full mesh for NACA65-010 is shown in Fig. 4.19. Fig. 4.20

shows the airfoil geometries used in all the six cases. The stagnation pressure, stagnation

temperature, turbulent intensity and viscosity ratio for all the cases is shown in Table

4.4. The outlet back-pressures and flow angles are mentioned in Table 4.5. When

Quantities p0,in T0,in Tuin νt,in/ν∞
Values 14.7705724 PSI 288.5672892 K 1 % 10

Table 4.4: Inflow conditions common for all compressor cascade cases

Cases pb (in PSI) Flow angles (in degrees)
NACA65-010 14.695946 45
NACA65-410 14.715946 45
NACA65-1210 14.725946 45
NACA65-1810 14.725946 45
NACA65-1510 14.735946 60
NACA65-2110 14.735946 60

Table 4.5: Outlet back-pressure and flow angles for compressor cascade cases

applied to the compressor cascade cases, the augmented model obtained in Section 4.2

predicts transition near the location where flow separates, as can be observed from the

comparisons between the predicted skin friction and the corresponding LES data. The
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Figure 4.19: Mesh for the NACA65-010 single-stage compressor cascade case

Figure 4.20: Blade Geometries used in the compressor cascade cases (along with respective
blade stagger angles)
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corresponding prediction on NACA65-010 is shown in Fig. 4.21. As discussed before, the

baseline solution (shown in red) is fully turbulent at all locations.

Figure 4.21: Using the augmented model from Section 4.2 to predict on the NACA65-010
compressor cascade geometry

Attempts were made to simultaneously infer a single augmentation from the flat plate and

compressor cascade cases which could predict well for both attached and separated flows.

The first hurdle in the process was that for any inference strategy, the solver convergence

would keep deteriorating with optimization iterations, which would eventually cause the

adjoint solver to diverge and the optimization to stop. The cause for this behavior was

found to be the discontinuous nature of the augmentation function. Since the functional

form chosen for the augmentation in Section 4.2 makes use of Green-Gauss gradients

within every cell in the feature-space, there could be jump discontinuities in the resulting

augmentation along the cell boundaries. To avoid this, a C0-continuous augmentation

function was devised using multi-linear interpolation as shown in Section 4.3.1.

Once the issue with solver convergence was resolved, a single augmentation (with the

same features as used before), when trained simultaneously using the T3 flat plate cases

and compressor cascade cases, was unable to predict accurately for even the training

cases. Since the physical mechanisms involved in bypass transition due to turbulent
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fluctuations in the freestream are very different compared to those involved in separation-

induced transition, it is not unexpected that a single augmentation would struggle to

model both these phenomena. In order to differentiate between the two mechanisms, the

introduction of an additional feature was attempted. However, the generalizability of

the model was severely compromised in all such cases. This happened, probably, due to

the overspecification of physical conditions which led to the augmentation differentiating

between physical conditions requiring the same treatment from the augmentation.

In the end, the following hierarchical augmentation strategy was considered. The source

term in the intermittency transport equation is modified to (β1β2 − γ)
√
γΩ where β2 is

a new augmentation and is a function of the same features as β1. Holding β1 constant,

the LIFE framework is used to infer optimal parameters for β2 using LES data for the

NACA65-010 case. A blending function σ is then designed. Ideally, σ should assume the

value of unity for regions with flow separation (making β2 fully active) and zero otherwise

(making β2 inactive). The source term in the intermittency transport equation is then

modified yet again to incorporate σ as (β1β
σ
2 − γ)

√
γΩ.

4.3.1 Improving Solver Convergence: A Continuous Functional Form

The discontinuous nature of the augmentation function was found to prevent the com-

pressor cascade simulations from converging after a few inference iterations. To correct

this, a slightly different interpolation-based functional form was chosen which could be

continuous while supporting localized learning. To achieve this, the parameters of the

augmentation were changed from cell-centered values to nodal values in the feature-space

grid. The interpolation strategy was also changed from a linear interpolation based on

Green-Gauss gradients to multi-linear interpolation. Note here that as the number of

features increases, so does the size of the feature space and correspondingly the nodal

values to be used for multi-linear interpolation within each grid cell grows exponentially.

Since the augmentation calculation needs to take place for all spatial locations in the

computational domain, it is important that the interpolation subroutine is written as

optimally as possible to reduce computational time. Using an augmentation within the
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(a) T3A (b) T3C1

Figure 4.22: Skin friction coefficient distributions for the inference cases

(a) Forward (b) Adjoint

Figure 4.23: Residual minimization plots for the T3A case for the augmented model

3-dimensional feature-space designed in section 4.2.2, the results for inference from the

T3A and T3C1 cases are shown in Fig. 4.22. The feature-space was discretized into 45,

15, and 15 cells (46× 16× 16 nodes) along the three feature directions and an step size

of
0.1∥∥∥∥∂J∂w
∥∥∥∥
∞

was used for the steepest gradient descent algorithm. The inferred results

exhibit better laminarization in the pretransitional regions of the boundary layer com-

pared to the discontinuous augmentation function inferred in section 4.2 (especially for

the T3A case). The solver convergence plots for the augmented model are shown in Fig.

4.23 which show considerably better values of converged residuals when compared to that

obtained using the Green-Gauss based interpolation method (Fig. 4.9). The correspond-

95



ing predictions for the rest of the T3 cases cases using the augmented model are shown in

Fig. 4.24. As can be observed from these plots, while the transition location is predicted

(a) T3B (b) T3C2

(c) T3C3 (d) T3C5

Figure 4.24: Skin friction coefficient predictions for T3 cases using the inferred continuous
augmentation

well for the T3B and T3C5 cases, transition is predicted significantly upstream compared

to the experimentally observed location for cases T3C2 and T3C3. While this behav-

ior can be attributed to the model not being exposed to transition occurring in regions

of adverse pressure gradient, these predictions are even more inaccurate than the ones

predicted with the previously shown discontinuous augmentation. When using a discon-

tinuous functional form the intermittency can jump significantly across the cell interfaces

in the feature-space. However, when using the aforementioned continuous functional form

it has to do so gradually along the length of the cell and hence it is impossible to rep-
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resent sharp gradients in the feature-space with a coarse discretization which causes the

relatively high inaccuracies when compared to discontinuous augmentations. A potential

solution for this problem is to create a finer discretization within the feature-space, but

that would increase the amount of data required to infer a generalizable augmentation.

Since the objective, here, is to demonstrate hierarchical augmentation, such investigations

are topics for future work.

4.3.2 Inferring β2 from the NACA 65-010 geometry

The sum squared discrepancy between the LES data and predictions for the wall shear

stress was chosen as the cost function as shown in Eqn. 4.22.

C = ‖τpred
wall − τ

data
wall ‖2

2 (4.22)

Again, no regularization is used for the same reasons as mentioned in section 4.2. The

mesh used to perform the RANS simulations on this geometry is shown in Fig. 4.19. The

step size for the steepest gradient descent was chosen to be
0.1∥∥∥∥∂J∂w
∥∥∥∥
∞

and the feature-

space for β2 was discretized into 30, 10 and 10 cells along the η1, η2, and η3 directions,

respectively. The plots for the optimization history along with residual convergence are

shown in Fig. 4.25. The residual convergence for the baseline model is shown in red and

that for the most optimal iterate (iteration 27) is shown in green. Fig. 4.26 shows the

comparison between the baseline model augmented only with β1 and the hierarchically

augmented model. The hierarchically augmented model predicts the transition location

very accurately compared to the predictions when β1 is used on its own. However, the wall

shear stress is under-predicted in the fully turbulent region. Similar to the turbine cascade

cases, this discrepancy is attributed to the turbulence model. Since the under-prediction

of the wall shear stress was not the inadequacy in consideration, this discrepancy should

be ignored while evaluating the capability of the hierarchical augmentation. It should

be noted that since the augmentation function outputs are limited between the physical

values of 0 and 1 and since the intermittency field closely follows the augmentation field,
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the intermittency cannot amplify the production term in the k-transport equation to

compensate for this inadequacy.

(a) Objective Minimization (b) Residual Convergence

Figure 4.25: Objective minimization and residual convergence while inferring β2 from the
NACA 65-010 case

Figure 4.26: Objective minimization for inference and learning from NACA 65-010 case

4.3.3 Formulating a blending function

To create a blending function σ that varies between zero and unity, one or more sigmoid

functions can be applied to an appropriate quantity fσ. One of the first candidates chosen
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for fσ was dwΩ/(dwΩ + U), with the rationale that this quantity would always remain

below 0.5 for boundary layer velocity profiles that do not exhibit an inflection point.

Since inflection points are observed when the flow is subjected to high adverse pressure

gradients and also when the flow undergoes separation, this candidate can potentially

detect regions characterized by adverse pressure gradients and flow separation. However,

since this quantity involves the velocity magnitude U , a different choice was explored to

reduce the dependency of the model on quantities which do not follow Galilean invariance.

Ge [22] used the function ωdw(nw ·∇)|S|/
√

2|S|2 to differentiate the separated regions

of the flow. Here nw is the wall-normal direction corresponding to the nearest point on

the wall. This can be calculated by evaluating the gradient of the wall distance (dw) and

normalizing the result (to ensure that the magnitude is unity). Note that for body-fitted

grids with low cell skewness, this approximation is fairly accurate close to the walls and

that is exactly where the blending function is needed. |S| denotes the magnitude of the

strain rate tensor. Some changes made to this function in order to be effectively used as

a candidate for fσ are mentioned as follows:

• The vorticity magnitude Ω = |Ω| was used instead of |S|

• The laminar length scale ` =
√
ν/Ω is used instead of dw as it produced better

results. Note here that ` calculated at the wall corresponds to a length equal

to ∆y+ = 1. Since the vorticity reduces away from the wall for velocity profiles

without inflection points, ` would correspondingly increase away from the wall. For

attached flows under adverse pressure gradients ` decreases for some distance away

from the wall and then starts increasing. For separated flows, this quantity would

increase to a very high value as one moves away from the wall until a location with

zero vorticity is reached. Beyond this location, ` would first decrease to a minimum

value and then keep on increasing with wall distance.

• The functional form was bounded in order to restrict the variation of fσ between

-1 and 1. Note that bounding fσ is not necessary, but doing so allows for its use as

an additional feature in future work.
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Figure 4.27: Schematic depicting velocity and its wall normal derivative (signed vorticity) in
a separated flow

The final functional form of the chosen fσ is shown in Eqn. 4.23.

fσ =

( √
ν(nw ·∇)Ω√

ν|(nw ·∇)Ω|+ Ω1.5

)(
ω√

2Ω + ω

)
(4.23)

The following analysis explains why this function can help in differentiating separated

flows from attached flows. For velocity profiles with no inflection, the wall normal deriva-

tive of the vorticity magnitude (and hence fσ) is always non-positive. Within the laminar

regions of the flow, the production term in the ω transport equation is nearly zero. Thus,

ω decays rapidly (faster than even an exponential) with dw. Next to the wall, ω is very

high compared to Ω owing to the boundary condition for ω for smooth walls. Hence,

ω/(
√

2Ω + ω) is very close to 1 next to the wall and decreases with wall distance to a

point and then starts increasing again (as ω in the freestream is some non-zero value

but Ω is close to zero). For attached flows under adverse pressure gradients, the vor-

ticity increases up to the point of inflection resulting in comparatively lower values of

ω/(
√

2Ω + ω) near the point of inflection. As can be seen in the schematic shown in Fig.

4.27, it is clear that there exists a region around the edge of the separation bubble where

the vorticity magnitude increases with wall distance, i.e., where fσ is positive. β2 needs to
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be applied within this region. However, the threshold needs to be set to a slightly nega-

tive value to ensure that β2 is enabled in a region thick enough to lower the intermittency

values sufficiently in order to laminarize the boundary layer. Also note that, around the

upper boundary of this positive region where fσ ≈ 0, i.e., where Ω reaches its maximum

value, the values of ReΩ (and hence η1) might be high enough to make β1 predict high

intermittency values which makes it even more important to make sure that β2 keeps the

intermittency suppressed in this region as much as possible, thus necessitating a slightly

negative threshold. A side effect of this negative threshold is that β2 can start affecting

very thin regions in attached flows. This effect is more pronounced for regions under ad-

verse pressure gradients. Finally, for locations where fσ is negative within the separation

bubble, the value of Ω and dw is sufficiently small that η1 would not cause β1 to ramp the

intermittency up. When practically applied, some trial and error is required to obtain

an optimal value for this negative threshold such that separation-induced transition is

predicted well without compromising the accuracy of the attached flows by a significant

amount. For this problem, a thresholding value of −0.05 is chosen, below which β2 is

inactive. The final functional form of σ is given in Eqn. 4.24.

σ =
1

1 + exp(−(fσ − 0.05)/0.003)
(4.24)

4.3.4 Predictions using a blended hierarchical augmentation

Using the blending function σ designed in section 4.3.3, the predictions for cases in the

T3 dataset and other cases in the RTRC dataset are shown in Figs. 4.28 and 4.29

respectively. As can be seen, the negative threshold implemented within the blending

function slightly delays the transition location for cases where transition takes place

within regions of favorable pressure gradients (T3A, T3B, T3C1, T3C5) with significant

delays observed for attached flows where it takes place under adverse pressure gradients

(T3C2 and T3C3) which improves the predictions in these cases. Looking closely at

predictions for unseen compressor cascade cases (which exhibit separated flow) in Fig.

4.29, a few observations can be made.
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(a) T3A (b) T3C1

(c) T3B (d) T3C2

(e) T3C3 (f) T3C5

Figure 4.28: Skin friction predictions for T3 flat cases using the hierarchical augmentation
with and without the blending function
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(a) NACA 65-010 (b) NACA 65-410

(c) NACA 65-12-10 (d) NACA 65-15-10

(e) NACA 65-18-10 (f) NACA 65-12-10

Figure 4.29: Wall shear stress predictions for RTRC cases using hierarchical augmentation
with and without the blending function
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• The transition location is predicted with large errors, when the model is augmented

with β1 alone.

• Using β2 consistently improves predictive accuracy across all cases. However, the

predicted transition location may still be slightly upstream when compared with

data. The results may be improved by using better features and/or using a more

optimal discretization in the feature space. These are subjects for future work.

• Finally, the blending function has a very small effect on the predictions made using

β2, which demonstrates that the blending function works well.

4.4 Remaining Challenges

While the LIFE framework did enable inference of generalizable transition models, a num-

ber of challenges remain to be addressed. Firstly, as discussed in the previous sections,

while a discontinuous functional form with the same discretization allows the augmenta-

tion function to have sharper gradients in the feature-space and hence improves predictive

accuracy on unseen cases, a continuous functional form enables superior solver conver-

gence. While this thesis applies interpolation-based strategies for localized learning, other

strategies like training neural networks with artificial datapoints also need to be tested.

Such strategies might help in resolving the augmentation behavior in the feature-space

while minimally affecting stability of the numerical solver. Secondly, the features used

in this thesis need to be improved and modified such that the augmentation can discern

different physical conditions more effectively. The use of freestream quantities is undesir-

able and makes for a rather ambiguous implementation and hence correlations involving

local quantities must be developed for use in feature design. Finally, there is a need for

uncertainty quantification strategies that can leverage the fact that some regions of the

feature-space are not accessed at all during the inference process and that predictions

involving such regions carry high epistemic uncertainties. Such uncertainty quantifica-

tion methods, when combined with existing uncertainty quantification and propagation

methods, can result in a powerful engineering design tool for practical aerodynamic ap-
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plications.
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Chapter 5

Weakly-Coupled Integrated Inference and Machine

Learning

While the LIFE framework presented and demonstrated in the previous chapters helps

in creating generalizable augmentations, designing a good feature-space can be a long

and difficult process. However, several industrial applications do not require full gener-

alizability and rather focus on only a limited range of physical configurations. In such

cases, feature design is not as important as creating a usable augmentation that improves

the predictive accuracy of an existing model for such limited range of applications. An-

other practical problem of interest is that the solver codes are intricate and might involve

complex datatypes and libraries which could make the embedding of an augmentation

within the model difficult and time-consuming. Such scenarios demand for an easy-to-

use methodology which can bypass these hurdles and accelerate development of viable

augmentations while still retaining desirable characteristics of integrated inference and

machine learning. In this chapter, a novel weakly-coupled IIML methodology is pre-

sented which is subsequently demonstrated by augmenting a reduced-fidelity polymer

electrolyte membrane fuel cell (PEMFC) model. A non-intrusive iterative method to

solve augmented model equations is used to bypass the requirement of embedding the

augmentation (or its linearized form) within the solver code. Note here that the ap-

proach used in this chapter does not used localized learning. Instead conventional neural

networks are used as functional forms for the augmentation functions.
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5.1 A Non-intrusive Iterative Method to Solve Augmented Model

Equations

In order to perform strongly-coupled integrated inference and machine learning, the aug-

mentation function has to be embedded into the solver for both evaluation of the objective

function and its sensitivities to the parameters w. However, embedding the augmenta-

tion involves significant changes to the solver code, thus requiring considerable effort.

When testing several augmentation candidates and/or working with an intricate solver,

being able to work with an augmentation function that does not need to be implemented

within the numerical solver can save time, effort and resources while allowing increased

flexibility, ease-of-use and portability.

Assuming that an augmentation function β(η;w) is given, we need to solve the model as

described in eqn. 5.1.

R(ũm; δ(x), ξ) = 0 s.t. δ(x) = β(η(ũm; ξ);w) (5.1)

To do this without embedding the augmentation function β(η) into the solver, one can

solve the augmented model in an iterative manner as shown in eqn. 5.2.

R(ũm,i+1; δi(x), ξ) = 0 s.t. δi(x) = ρδi−1(x) + (1− ρ)β(η(ũm,i; ξ);w) (5.2)

Here, ρ is a relaxation factor to avoid stability issues in the numerical solver. In the

current work, ρ is chosen as 0.3 by trial and error to allow the iterative solver to converge

for all training cases. δ(0)(x) can assume a constant value of 0 or 1 throughout the domain

depending on whether the augmentation term is additive or multiplicative, respectively.

An augmentation residual can be defined as shown in eqn. 5.3.

Raug = ‖δi(x)− δi−1(x)‖2 (5.3)

A stopping criterion of Raug < 10−3 was found to be enough for the simulations per-

formed in this work to achieve reasonably converged field solutions. While convergence
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and stability are not guaranteed, an overwhelming number of the configurations tested

in this work converged, while the remaining exhibited an oscillatory behavior in the aug-

mentation residual. It is noteworthy here, that since the augmentation field changes in

increasingly smaller amounts from one augmentation iteration to the next (given a well-

chosen value of the relaxation factor ρ), the computational cost required for the solver

to converge keeps decreasing as iterations progress. Hence, while the computational cost

to solve the augmented model is significantly greater than that required to solve the

baseline model, it does not exactly scale with the number of augmentation iterates for

a well-chosen value of rho. Thus, carefully choosing the convergence criterion can be

instrumental in significantly reducing the computational costs of solving a model with

the aforementioned non-intrusive iterative solution method.

5.2 Weakly-coupled Integrated Inference and Machine Learn-

ing

This version of IIML constrains the inadequacy field to stay consistent with the functional

form chosen for the augmentation by solving the field inversion and machine learning

problems in a predictor-corrector fashion. Here, the weakly-coupled IIML framework is

described in detail which can simultaneously infer from multiple data sources.

This is done by learning the augmentation each time the inadequacy field is updated, i.e.,

after every iteration of field inversion. Note that while the inadequacy fields are updated

independently for all training cases, the machine learning step acts a synchronizing step

for these individual optimization problems. Data from the inadequacy fields (δi(x)) and

corresponding feature fields (ηi(x)) is collated from all training cases and a sufficient

number of machine learning iterations (epochs) are performed to ensure that the feature-

to-augmentation map learns any new information from the updated flow fields. After

the machine learning step, a “field correction” is performed by solving the model again

with the newly learned augmentation function (β(η(ũim, ζ
i);w)). When the simulation

converges, the predicted augmentation field (βi(x) = β(η(ũ(i,β)
m , ζi);w)) is used as the

input to the field inversion for the next inference iteration. The superscript (i, β) denotes
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that the velocity field corresponds to the ith training case and is obtained by solving

the model with the augmentation function. Solving the model again with the updated

augmentation function is crucial to ensure that the model predictions are consistent

with the augmentation function throughout the inference process. Finally, the sensitivity

dJ
dβ(x)

is calculated and the inadequacy field is updated using a steepest gradient method,

similar to a field inversion iteration. The step length αi needs to be set manually. In

this work, it was set to
0.05∥∥∥∥ dJ i

dβi(x)

∥∥∥∥
∞

. In summary, the following three consistencies are

ensured when using the weakly-coupled IIML described above.

1. Formulating the objective as a function of model predictions ensures that the inad-

equacy field iterates βi(x) are model-consistent.

2. Machine learning ensures that inadequacy field iterates βi(x) are always consistent

with the functional form of the augmentation function across all iterations.

3. Field correction ensures that the augmentation field iterates βi(x) correspond to

the converged solution obtained by solving the augmented model characterized by

the updated augmentation function parameters w.

A flowchart describing this process is shown in Fig. 5.1.

It should be noted here that the optimization trajectory for weakly-coupled IIML could

be significantly different from that for its strongly-coupled counterpart. The reason for

this is explained as follows. For the ith training case, the computational domain for

which consists of N i
x discrete spatial location, the discretized inadequacy field can be rep-

resented in an RN i
x . Now, the set ∆i of all inadequacy fields δi(x) for which there exist

some set of parameters w such that δi(x) = β(η(ũim, ζ
i);w) and Rm(ũim; δi(x), ξi) = 0,

will form a nonlinear manifold in RN i
x . Strongly-coupled IIML is, by structure, con-

strained to explore only this nonlinear manifold. The field inversion process (which only

consists of gradient-descent-based inadequacy field updates), however, is free to find an

optimal solution in the entire N -dimensional space. By introducing the machine learn-

ing and field correction steps between gradient-descent-based inadequacy field updates,
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Figure 5.1: Flowchart showing the weakly-coupled IIML procedure

the weakly-coupled IIML performs a nonlinear projection operation from a point in the

N -dimensional space to a point within the learnable manifold. Hence, within each in-

ference iteration, the inadequacy field can jump out of the learnable manifold after the

gradient-descent-based update and is projected back into the manifold by the machine

learning and field correction step. This difference in how the iterations progress for the

strongly- and weakly-coupled IIML can result in different optimization trajectories within

the manifold.

Also note here that the way in which the augmentation function is updated between the

two methods is significantly different. While the augmentation function parameters are

updated in a single step in the strongly-coupled approach, the weakly-coupled approach

provides the flexibility to partially learn from the inadequacy field to drop the loss function

L below some threshold and stop. This flexibility is instrumental for problems where

the features are designed such that the true feature-to-augmentation map might not be

one-to-one in several parts of the domain. If the strongly-coupled approach is used for

such a setup, then there is a possibility that the augmentation behavior being learned
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during a given inference iteration might be overwritten in some part of the feature-space

during a later iteration. This problem worsens if the forward solver restarts from its

converged state from the previous learning iteration because it would not access the

feature-space locations needed to reach that restart state and hence would not react

to the corresponding augmentation behavior being overwritten. This might result in a

better training accuracy but when used with a different set of initial conditions, even

the training cases might lose the accuracy they gained, or even perform worse in some

cases. While the weakly-coupled approach does not eliminate this problem, the partial

learning capability helps in retaining the previously learned augmentation behavior for a

larger number of inference iterations. This property was instrumental in augmenting the

fuel cell model in this work as the problem of poor predictive performance despite good

training results was observed when strongly-coupled IIML was used.

5.3 Polymer Electrolyte Membrane Fuel Cells (PEMFCs)

5.3.1 Introduction

The automotive industry is one of the leading producers of greenhouse gas emissions.

To meet the challenges of climate change and reduce greenhouse gas emissions, there

has been a steady push for development of alternative power-train systems with lower

emissions. One such alternative is the Fuel cell (FC) [49], which is an electrochemical

device that directly convert chemical energy into electricity with high efficiency. Despite

major advancements, the cost and durability of PEMFC vehicles remain a challenge for

their large scale adoption in the market. For better control and management of a fuel cell,

it is necessary to have physics-based models on-board a vehicle that can run efficiently

in real-time with sufficient predictive accuracy [11, 95]. This is due to the fact that

direct measurements of important internal states of a fuel cell are very difficult and/or

prohibitively expensive in real-time [56]. For instance, one such quantity that significantly

affects the performance of a fuel cell is the water content inside the channels and it is

difficult to reliably measure in a reasonably feasible manner, thus bringing in the utility

of the aforementioned models. There are number of different approaches for modeling
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fuel cells going from simple 1D models to complex 3D models [4]. On the other hand,

the present reduced order fuel cell models [24, 84], which meet the limited computational

requirements of an embedded computer, do not achieve satisfactory performance (in terms

of model accuracy) or are too difficult to calibrate due to a lack of available information

on internal system states. The past few years have seen an emergence of a variety of

data-driven techniques which can be used to improve the predictive accuracy of existing

low-fidelity models by inferring model-form corrections from available high-fidelity data.

Among such techniques are Field Inversion and Machine Learning, symbolic identification

approaches, etc. as described in Chapter 1.

In the past few years, machine learning methods have been used to design data-driven

surrogate models and control strategies. A brief literature review for the same can be

given as follows. Zhu et al. [97] used artificial neural networks (ANN) with considerable

success to create a surrogate model for a high temperature proton exchange membrane

fuel cell which was further used to conduct a parameter study for the fuel cell geometry

and operating conditions - quantities that also served as the inputs to the ANN. Li et

al. [40] used data-driven classification strategies supported by carefully chosen feature

extraction and data labeling techniques for the diagnosis of water related faults such as

membrane drying and flooding. Sun et al. [77] used a hybrid methodology (using both

model-based and data-driven) to construct optimal PID and ADRC control strategies for

the fuel cell stack cooling. Napoli et al. [47] used classical neural networks along with

stacking strategies to develop data-driven fuel cell models to predict the output voltage

and cathode temperature of a fuel cell given the stack current and the flow rates for

different gases. Ma et al. [43] used recurrent neural networks with G-LSTM (grid long

short-term memory) neurons to train and predict the degradation to a fuel cell’s perfor-

mance due to impurities in the incoming hydrogen or changes in the operating conditions.

Wang et al. [87] used support vector machines (SVM) to create a data-driven surrogate

model from 3D simulation data which was then used to optimize the catalyst layer com-

position using a genetic algorithm. Using inlet pressures of hydrogen and oxygen, stack

temperature and relative humidity as inputs, Han et al. [28] compared the voltage and
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current predictions obtained from data-driven surrogate models trained using neural net-

works and support vector machines. A common theme among the aforementioned works

is that the data-driven models can predict scalar outputs like stack voltage and stack

current but not field quantities within the fuel cell itself. Secondly, most of these models

are purely data-driven and do not incorporate physical laws manifested in the traditional

models.

In this work, we used the weakly-coupled IIML methodology with the non-intrusive it-

erative solution strategy to improve the accuracy of an existing linearized 1+1D fuel cell

model, in order to match higher-fidelity water content data obtained from the predic-

tions of a proprietary 2D model from Toyota while using only a handful of the available

datasets.

5.3.2 Physical modeling of Fuel Cells

A fuel cell is an electrochemical energy conversion device that directly converts chemical

energy to electrical energy. In polymer electrolyte membrane fuel cells (PEMFC), hydro-

gen gas is supplied as the fuel. Hydrogen travels through the gas diffusion layer (GDL) to

the catalyst layer. At the anode catalyst layer, a hydrogen oxidation reaction produces

protons and electrons.

H2 −→ 2H+ + 2e−

Electrons flow through an external circuit to create an electric current, while protons cross

the polymer electrolyte membrane. Finally, in the cathode catalyst layer, electrons and

protons recombine together with oxygen/air (which is supplied to the cathode channel)

to create water in an oxygen reduction reaction.

1

2
O2 + 2H+ + 2e− −→ H2O

Modeling of fuel cells requires a description of dynamics in both the through-plane and

along-channel dimensions. A schematic is presented in Fig. 5.2 to better illustrate the

structure and working of a fuel cell. Due to the large discrepancy in length scales between
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O2, N2, H2O

H2, N2, H2O
Anode Inlet:  
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P, T
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Cathode Channel
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Anode CL

Membrane

Cathode GDL

Cathode CL

Anode Channel

Figure 5.2: Schematic detailing variation of quantities within a fuel cell. The sketch highlights
the concentration and temperature gradients across the membrane, catalyst layers, and gas
diffusion layers in the through-plane direction.

these dimensions (the aspect ratio is around 10−3, with a 100µm thick GDL and 10cm

long channels), the model is usually decomposed into a through-plane model (along the x-

direction) an an along-the-channel model (along the y-direction), with coupling between

the two dimensions at the GDL-channel interface only (a ‘1+1D’ model).

Full through-cell model

The full through-cell model is a transient model, based on the steady-state model pre-

sented by Vetter and Schumacher [84]. The modeling domains are channels, gas diffusion

layers (GDLs), and catalyst layers (CLs) in the anode and cathode, with a polymer elec-

trolyte membrane between them as shown by the dashed box in Fig. 5.2 for transport

in the x-direction. The letter Ω is used to indicate a modeling domain. The subscripts

ch, gdl, cl, and mb arer used to denote a channel, gas diffusion layer (GDL), catalyst

layer (CL), or polymer electrolyte membrane (PEM) domains respectively, the and su-

perscripts ca or an denote the cathode and anode sides, respectively. Microporous layers

are ignored in this model (following [84]).

Conservation of current and Ohm’s law result in the following elliptic system relating the

electron potential φe and the proton potential φp, to the current densities ip and ie and
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the interfacial current density j.

∂ip
∂x

= aj where ip = −σp(λ, T )
∂φp
∂x

(5.4)

∂ie
∂x

= −aj where ie = −σe
∂φp
∂x

(5.5)

Here, a refers to the surface area density, and σp and σe refer to the electrical conductivity

for the protons and electrons, respectively. The conservation of the ionomer water content,

λ, is enforced using the water transport model introduced by Springer [71], which consists

of a diffusion term and an electro-osmotic drag term, as shown in the following equation.

εi
Vm

∂λ

∂t
= −∂Nλ

∂x
+ Sad + rH2O where Nλ = −Dλ(λ, T )

Vm

∂λ

∂x
+
nd(λ)

F
ip (5.6)

Here, εi represents the ionomer volume fraction (which is assumed constant in this model),

Vm refers to the equivalent volume of dry membrane, Dλ refers to the diffusivity of the

membrane, F is the Faraday’s constant, and rH2O refers to the rate at which water is

produced within the membrane as a consequence of the oxygen reduction reaction in the

cathode catalyst layer. Sad is the source term which controls the adsorption/desorption

of water within the ionomer membrane. This term is given as follows.

Sad =
kad
hclVm

(λeq − λ) (5.7)

Here, λeq refers to the equilibrium membrane water content and is usually given as a

function of temperature and relative humidity. kad refers to the rate of adsorption (when

λ < λeq) or desorption (when λ > λeq) and is usually a function of λ and temperature.

Gas transport is modeled using gas concentrations (denoted by c) instead of the typi-

cally used gas mole fractions. Fickian diffusion is used for the fluxes with an effective

diffusivity factor to account for the reduced diffusivity in the porous medium. Addi-

tional source terms are used for phase changes from adsorption/desorption and evapora-
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tion/condensation.

∂

∂t
(εgcH2O) = −∂NH2O

∂x
− Sad − Sec where NH2O = −Deff

H2O(s, T )
∂cH2O

∂x
(5.8)

The gas porosity, εg, is given in terms of the liquid water saturation s and the porosity

εp. Similarly, we can obtain transport equations for hydrogen and oxygen gases, with

their source terms arising from the chemical reactions.

∂

∂t
(εgcH2) = −∂NH2

∂x
+ rH2 where NH2 = −Deff

H2
(s, T )

∂cH2

∂x
(5.9)

∂

∂t
(εgcO2) = −∂NO2

∂x
+ rO2 where NO2 = −Deff

O2
(s, T )

∂cO2

∂x
(5.10)

The liquid water saturation, s, is governed by the following equation.

1

Vw

∂

∂t
(ε`cs) = −∂Ns

∂x
+ Sec where Ns = −D

eff
s (s, T )

Vw

∂cs
∂x

(5.11)

The liquid volume fraction, ε`, is given as ε` = sεp and the capillary liquid water diffu-

sivity, Ds, is given as Ds =
κ

µ

∂pc
s

. It should be noted that this model is isothermal, so

the channel temperature is assumed uniform in the through-cell direction.

The respective source term definitions are given as follows. The Butler-Volmer relation

is used to model the exchange-current density jcl induced by the half-reactions in the

catalyst layers.

jcl = i0(ck, T )

(
exp

(
2βF

RT
η

)
− exp

(
−2(1− β)F

RT
η

))
where k ∈ {O2, H2} (5.12)

Here, η is the overpotential given by

η = φe − φp − U(ck, T ) where k ∈ {O2, H2} (5.13)

i0 is the exchange-current density and U is the reversible potential difference, both of

which are functions of temperature T and the appropriate concentration (cH2 or cO2). F
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is the Faraday constant. The sign convention used here assumes that jcl is positive at

the anode (where the oxidation of hydrogen occurs). Since no reactions occur outside the

catalyst layers, the interfacial current density can be written as follows.

j =

jcl, x ∈ Ωcl

0, otherwise
(5.14)

The rate of consumption of hydrogen and oxygen can be written in terms of the interfacial

current density as follows.

rH2 = − aj
2F

, rO2 =
aj

4F
(5.15)

The evaporation/condensation source term can be given as follows in terms of the water

vapor concentration and saturation concentration (which is a function of the saturation

pressure psat, which in turn varies with temperature).

Sec = γec(cH2O − csat), csat =
psat(T )

RT
(5.16)

The rate of evaporation and condensation is given as follows.

γec =

 γe(T )sred, cH2O < csat

γc(T )(1− sred) cH2O > csat

(5.17)

Here, sred is the reduced liquid water saturation and is given as sred = (s− sim)/(1− sim)

with sim referring to the immobile saturation.

1-D channel model

The through-cell model is coupled to a 1-D channel model through its boundary con-

ditions, and the channel model governs how these boundary conditions vary along the

channel spatial variable y. A counter-flow channel configuration is considered in this

model as shown in Fig. 5.2.

The anode and cathode channels have different lengths, but must be modeled on the same
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1-D grid to capture the coupling through the membrane. Thus, the spatial dimensions in

each channel are non-dimensionalized by the channel length Lch, so that a common spatial

variable y ∈ [0, 1] can be used for computations. The concentrations of water, hydrogen,

oxygen and nitrogen, are governed by the conservation of mass and their transport is

modeled using a convective-diffusive flux. Thus, for any gas k ∈ {H2O,O2,H2,N2}, we

have

∂ck,ch
∂t

= − 1

Lch

∂Nk,ch

∂y
+

w

hch
Sk,ch where Nk,ch = −Dk,ch

Lch

∂ck,ch
∂y

+ ck,chvch (5.18)

The gas flow velocity in the channel, vch, is governed by the following equation

∂vch
∂y

=
RTch
Lchpch

w

hch

∑
k

Sk,ch (5.19)

The source term of a species into a channel is equal to the flux of that species from the

GDL into the channel in consideration. Hence,

Sank,ch = −Nk|x=0 and Scak,ch = Nk|x=htot (5.20)

To ensure the conservation of mass in the model, it is important to keep track of the

liquid water in the channels. Any accumulated liquid water in the channel is convected

away by the gas flow velocity with velocity vch.

∂sch
∂t

= − 1

Lch

∂(schvch)

∂y
+

w

hch
Ss,ch (5.21)

It is assumed that the temperature in both the channels is equal to the temperature in the

cooling channel which is assumed to vary linearly in y. The cooling channel is oriented in

the same direction as the anode channel with inlet at y = 1 and outlet at y = 0. Thus, we

can write Tch = Tin + ∆T (1−y). Similarly, it is assumed that the pressure varies linearly

in both the channels as well. Note that, pressure unlike temperature can be significantly
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different in the two channels. Thus, one may write,

panch = panin + ∆pan(1− y) and pcach = pcain + ∆pcay (5.22)

Lastly, the channel current density, ich, and the cathode channel potential, φcae,ch, are

related by Ohm’s law in the channel.

ich = − σch
(Lcach)

2

∂2φcae,ch
∂y2

The need for a reduced order model

Solving a full order model, with appropriately discretized through-cell and channel length

scales is exceedingly expensive for on-board real-time use in control systems of devices

using PEMFCs. This computational cost can be compounded by any inadequacies in

the model which might require further data-driven computations to improve predictions.

Thus, it is imperative to use a reduced-order model for quick computations. While there

might be additional inadequacies in such a potentially inexpensive model, these inade-

quacies may be compensated for using data-driven techniques for model augmentation, as

is done in this work using integrated inference and learning. To this end a reduced-order

through-cell model by Sulzer et al. [76] is used in addition to the aforementioned full

channel model for this work. The two models are coupled in the sense that the through-

cell model provides the boundary conditions for the channel model and the channel model

provides information to evaluate the source term in the through-cell model.

5.3.3 Augmenting the Numerical Solver

The reduced-order through-cell model along with the full channel model construct a sys-

tem of differential algebraic equations (DAEs) which are implemented in python using the

PyBaMM library [75] and numerically solved within the CasADi framework [2] via the

Sundials solver. After testing different ways to augment the model, the most promising

approach seems to be modifying the algebraic model used to evaluate the equilibrium
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water content, λeq (used to calculate Sad in Eqn. 5.8), by multiplying it with the aug-

mentation function β, as it was observed that λ (membrane water content) remained

sensitive to it across various physical conditions, viz., dry/humid, low/high current den-

sity, low/high temperatures etc. The augmented form of the source term Sad (see Eqn.

5.7) is shown in Eqn. 5.23.

Saug
ad =

kad
hclVm

(βaug(ηaug;w)λeq − λ) (5.23)

Here, ηaug represents the features and w represents the parameters that characterize the

augmentation function. The feature set used for this application contained the following

quantities.

1. Mole fraction of water vapor in the anode channel

2. Temperature inside the cathode channel

3. Mole fraction of water vapor in the cathode channel

4. Water content in the anode catalyst layer

5. Water vapor concentration in the anode catalyst layer

6. Water content in the cathode catalyst layer

7. Water vapor concentration in the cathode catalyst layer

8. Membrane water content

In this work, the functional form for the augmentation was chosen to be a neural network

with 2 hidden layers containing 7 nodes each. The sigmoid activation function was used

in the hidden layers. The ReLU activation function was used in the output layer to

ensure that the augmentation was non-negative. The Keras library [9] was used to create

and train the network. The Adam optimizer [34] was used to train the model for a total

of 500 epochs after every gradient-descent-based update of the augmentation field. The

learning rate was set to be 10−3.
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5.4 Results

The available dataset contains 1224 cases, each uniquely characterized by different inflow

conditions. The high-fidelity data used to infer the augmentation function is the resulting

steady-state x-averaged membrane water content. The cost function for any case with

index j was defined as

Cj = ‖λj − λdata,j‖2
2 (5.24)

where λ refers to the spatial field of the membrane water content along the channel

direction y. Since no regularization is used, the cost function is identical to the individual

objective function for a given case. The combined objective function for all the cases is

calculated as the weighted sum of the individual cost functions of all training cases with

all weights set to unity. Mathematically,

J =
∑
i

αiCi (5.25)

where αj represents the weights for the jth case which in this particular instance are all

set to 1.

The spatial domain used to solve the model is discretized along the channel into 20

spatial nodes. As mentioned before, the unsteady model is used to obtain the steady-state

solution by running it for a sufficiently long amount of physical time which in this case was

1000 seconds. Due to the relatively low dimensionality of the spatial discretization, finite

differences were found feasible to obtain the sensitivities of the cost function w.r.t. the

augmentation field, β. The step-size used for finite differences was 10−4. The model was

trained on only 14 configurations out of 1224. The corresponding IDs for these training

cases in the dataset are 40, 100, 125, 155, 190, 230, 400, 685, 740, 840, 865, 1000, 1090

and 1200.

A representative plot for the residual histories of the states being solved for a given

augmentation field is shown in Fig. 5.3. As can be seen, the residuals approach zero

within the chosen time interval that the model is solved for. It must be noted that no
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Figure 5.3: Representative plot for residual decay of all the state variables being solved for
by the model

residual-based stopping criteria is built into the DAE solver used for this work.

A representative plot for the augmentation residual (Raug) history resulting from the

iterative solution of the augmented model is presented in Fig. 5.4. Such iterative solutions

need to be performed during both training and prediction. Note here that a stopping

condition of Raug < 10−3 was found to provide a sufficiently converged result. While there

do exist a few cases where such a convergence cannot be achieved and the residuals keep

oscillating, no cases exhibit divergent behavior. Even in the cases where the augmentation

residuals keep oscillating, the residual magnitudes are very small (of the order of 10−2).

5.4.1 Training

The minimization history of the combined objective function for all 14 cases is shown in

Fig. 5.5. The optimization could not proceed beyond iteration 23 because any subsequent

augmentation function iterates caused the solver to diverge. Predictive improvements in

ionomer water content (λ) distributions w.r.t. available high-fidelity data for all training

cases are plotted in Fig. 5.6. As can be seen in the figure, some cases show very good

improvements while some improve only marginally. This behavior can be attributed to

the combined objective function being less sensitive to the feature-space regions where the

features corresponding to the marginally improved cases lie. While a more careful choice

of the training cases and the corresponding weights to the individual objective functions
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Figure 5.4: Representative plot for Raug convergence across the iterative solution of the aug-
mented model

Figure 5.5: Optimization history for weakly-coupled inference and learning

within the combined objective function might help, the objective here is to demonstrate

the viability of the IIML approach to obtain generalizable improvements to the model.

5.4.2 Testing

Once the training was completed, the resulting model was further tested over all avail-

able 1224 cases, the results for which are summarized in Fig. 5.7 using the following
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(a) Case ID = 40 (b) Case ID = 100 (c) Case ID = 125

(d) Case ID = 155 (e) Case ID = 190 (f) Case ID = 230

(g) Case ID = 400 (h) Case ID = 685 (i) Case ID = 740

(j) Case ID = 840 (k) Case ID = 865 (l) Case ID = 1000

(m) Case ID = 1090 (n) Case ID = 1200

Figure 5.6: Ionomer water content predictions for the training cases

performance metrics, P1 and P2, which are defined for any quantity of interest q as

P1(q) =
2 ‖qbaseline − qdata‖2

‖qaugmented − qdata‖2 + ‖qbaseline − qdata‖2

− 1 (5.26)
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(a) P1

(b) P2

Figure 5.7: Performance metrics for ionomer water content predictions across all 1224 cases
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(a) Case ID = 250 (b) Case ID = 450 (c) Case ID = 500

(d) Case ID = 730 (e) Case ID = 920 (f) Case ID = 1215

Figure 5.8: Ionomer water content predictions for cases with high P1 values

(a) Case ID = 110 (b) Case ID = 600 (c) Case ID = 811

Figure 5.9: Ionomer water content predictions for cases with P1 values closest to zero

(a) Case ID = 847 (b) Case ID = 1023 (c) Case ID = 1066

Figure 5.10: Ionomer water content predictions for cases with low P1
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P2(q) =
P1(q) ‖qaugmented − qbaseline‖2

‖qaugmented − qdata‖2 + ‖qbaseline − qdata‖2

(5.27)

The performance metric P1, by design, are positive for cases where the augmented model

gives a smaller L2 error compared to the baseline model and vice versa. The performance

metric P2 scales P1 with a relative difference between the predictions from the aug-

mented and baseline models. Thus, for a given case, a high ratio P1/P2 means that the

baseline and augmented profiles are very close and that the baseline profile was reason-

ably accurate in the first place. The cases where accuracy has improved are shown in

green whereas the cases where it has deteriorated are shown in red. 1087 out of 1224 cases

exhibited a lower L2 error compared to the baseline. Figs. 5.8, 5.9 and 5.10 show repre-

sentative results associated with highly improved, marginally different and significantly

deteriorated performance metrics. As can be seen in the results, the model seems to im-

prove the predictions for a range of different physical conditions after training on just 14

representative cases. Also, it should be noticed that for some cases with only a marginal

difference between L2 errors, the predictions are significantly different while predicting

more accurately in one part of the physical space while falling short of even the baseline

model in others. Given the complex interactions between various sub-models within the

fuel-cell model itself and such a high-dimensional feature-space, a model would require a

highly intricate functional form and a large amount of data to make accurate predictions

for any given inflow conditions, if such predictions are possible at all. The objective here

is to demonstrate the range of applicability of such models. A small number of training

cases are used to eliminate the possibility of a significant number of testing cases being

very similar to the training cases.

5.4.3 Changes in Current Density Predictions

To judge the quality of predictions for other physical quantities, individual comparisons

for the current density distributions are presented in Figs. 5.11 and 5.12 for a few selected

cases which show better and worse results compared to the corresponding high-fidelity

data, respectively. The performance metrics w.r.t. the predictions for current density

distributions are summarized in 5.13. Since the current density is not the intended
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(a) Case ID = 203 (b) Case ID = 452 (c) Case ID = 693

Figure 5.11: Current density predictions for cases with high performance metrics

(a) Case ID = 52 (b) Case ID = 1030 (c) Case ID = 1199

Figure 5.12: Current density predictions for cases with low performance metrics

output of the augmented model, the presented results are not completely unexpected.

However, it should be noted here that even for several cases with fairly low P1, P2 is

significantly smaller in magnitude, i.e., the predictions from the augmented model are

close to those from the baseline model. Thus, for most cases, the augmented model either

stays close to the baseline model or improves it. For several cases with high performance

metrics, we do see a significant correction in the current density predictions. Finally, note

that for a few cases (e.g., case 1199), even though the prediction error for the ionomer

water content decreases, even the qualitative trends for the water content are wrong,

and correspondingly, the current density predictions also contain significant errors when

compared to the high-fidelity data. Further work and analysis is needed to ascertain

whether such cases require a different treatment during the inference process.

5.4.4 Effects of a smaller training dataset

To illustrate the impact of adding/removing training configurations, a second model was

trained using only 7 training configurations (case IDs 40, 125, 190, 400, 740, 865 and 1090)

instead of 14, and as can be seen from Fig. 5.14, the performance of the augmented model

immediately deteriorates and it is able to achieve better-than-baseline performance for
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(a) P1

(b) P2

Figure 5.13: Performance metrics for current density predictions across all 1224 cases
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only 777 cases out of a total of 1224 that it was tested for. It can also be seen that

Figure 5.14: Performance metric for all cases when trained with only 7 (instead of 14) cases

the performance metric for many cases deteriorates drastically, while it improves for a

handful of cases. These are either cases which were used during training or which share

very similar inflow conditions with them. This behavior is caused by the inference and

learning process overfitting to the augmentation behavior specific to the few training cases

it has been provided with. While it improves predictions on the training cases, overfitting

is an undesirable outcome as it results in poorer predictive accuracy for cases different

than those in the training dataset and hence, hurts generalizability. Thus, an ideal

training dataset contains as low number of configurations as possible while representing

as wide a range of physical behaviors as possible.
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Chapter 6

Summary

Machine learning techniques offer systematic approaches to extract model-form inade-

quacies as intricate functions of modeled quantities from available data. Several such

data-driven frameworks have been introduced in the past few years and progress has

been made in the direction of extracting model-consistent relationships from data ob-

tained via experiments or high-fidelity simulations. In practice, however, improvement

in predictive accuracy is typically limited to geometries and boundary conditions similar

to those in the training dataset. Moreover, data-driven techniques can sometimes lead to

a deterioration in predictive accuracy compared to the baseline model, even in canonical

problems only mildly different from those in the training dataset.

This thesis presents new principles, techniques and infrastructure associated with learning

and inference of data-driven model augmentations. Two complementary model-consistent

frameworks were proposed: (1) Learning and Inference assisted by Feature-space Engi-

neering (LIFE); and (2) Non-intrusive Weakly-coupled Integrated Inference and Learning

(IIML); which offer a choice between high generalizability/robustness, and minimal im-

plementation effort, respectively.

6.1 LIFE

The LIFE framework is based on strongly-coupled inference and machine Learning, and

offers modelers tools and guiding principles to design the feature-space, and techniques

to construct a functional form for the augmentation capable of localized learning. While
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a meticulous choice of features is critical to generalizability, localized learning offers ro-

bustness by minimizing unknown spurious behavior in the resulting augmentation. The

following guiding principles were laid out in the framework to help design features that

are conducive for a generalizable augmentation.

1. Physical quantities sharing a direct causal relationship with the inadequacy should

be used to design features. This requirement can be relaxed for steady-state models,

where correlated quantities may also be used.

2. Physics-based non-dimensionalization must be used wherever possible as it offers far

better generalization of the inferred augmentation compared to its statistics-based

counterpart.

3. Features must be designed, if possible, to be effectively bounded, as limited data

can populate a significant fraction of a bounded feature-space.

4. Features must be judiciously used, as using too few features might result in the

augmentation not being able to distinguish regions where different augmentation

values are required and using too many could lead to a distinction between feature-

space regions where the required augmentation values are very close, hence requiring

more data to characterize the feature-space.

Localized learning is pivotal in improving the robustness of an augmentation as it en-

sures that the augmentation values remain unaffected in feature-space regions which are

far from any available datapoint. Hence, if an unseen geometry or boundary condition

corresponds to a region within the feature-space which remained unpopulated by data-

points in the overall inference process, the model reverts to its baseline behavior instead

of predicting unreliable values. The range of influence of a datapoint is an important

quantity that determines the vicinity in which it modifies the augmentation behavior in

the feature-space. It needs to be either set by the user before the inference process, or

optimized as a hyperparameter. For an augmentation with an interpolation-based func-

tional form, the resolution of the grid constructed in the feature-space acts as the range

of influence. If the range of influence is too small, the training accuracy improves while

132



the generalizability deteriorates, and vice-versa. Thus, a balance has to be maintained for

optimal results. Finally, by virtue of localized learning within a bounded and parsimo-

nious feature-space, the LIFE framework also becomes modular. Augmented models can

be treated as baseline models to introduce newer augmentations which are referred to as

hierarchical augmentations. While isolating the effect of such hierarchical augmentations

to physical conditions of interest can sometimes be a challenge, the framework allows

users to build several levels of such augmentations in decreasing order of generalizability.

Note that this modularity cannot be achieved unless the augmentation behavior can be

characterized in all parts of the feature space which requires careful feature design and

localized learning.

6.2 IIML

The two main steps that could potentially require significant time and effort when con-

structing data augmented models include embedding the augmentation within the numer-

ical solver and designing a good feature-space. It must be noted here that it is not always

possible to design a feature-space that is conducive to generalizable augmentations. The

weakly-coupled IIML framework (when combined with the non-intrusive iterative method

to solve augmented model equations presented in Section 5.1) is designed to enable users

to setup the inference problem quickly and with minimal changes to the numerical solver.

This framework provides users with the same advantages as its strongly-coupled coun-

terpart, viz., constraining the inference problem on a learnable manifold and enforcing

consistency among the functional relationships shared between the features and the aug-

mentation across the training dataset. The methodology involves solving an inverse prob-

lem to obtain a spatial field of augmentation values such that each gradient-descent-based

update of this field (performed independently on each training case) during the inference

process is followed by a machine learning step that collects spatial fields of features and

augmentations from all training cases and extracts the learnable information from it.

Following the machine learning step, a forward run is carried out independently for each

dataset to ensure consistency of the converged solution with the augmented model. An
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added advantage of the weakly-coupled learning approach is that it can facilitate partial

learning (i.e., reducing the cost function to a set non-zero threshold or up to a set num-

ber of iterations) which can help the augmentation retain the information learned in the

previous iterations. This makes the augmentation more resilient against possible mod-

ifications in regions of the feature-space where the augmentation behavior has already

been learned. The ensuing robustness can be critical when learning augmentations in

sub-optimal and/or high-dimensional feature-spaces. While a sub-optimal feature-space

does significantly sacrifice on generalizability, the weakly-coupled framework is robust

enough to extract usable augmentations in such feature-spaces that improve predictions

on unseen cases similar to those present in the training dataset.

6.3 Application in Transition modeling

To demonstrate its capabilities, the LIFE framework was used to create a data-driven

model for bypass transition. A bare-bones intermittency transport equation was intro-

duced within a variant of Wilcox’s 1988 k-ω model. An augmentation was introduced

within this equation and a three-dimensional feature-space was carefully designed. An

interpolation-based functional form was chosen for the augmentation to facilitate local-

ized learning. When trained on only two flat plate cases, the model consistently improved

predictions across a diverse range of unseen cases which included other flat plate, tur-

bine cascade and compressor cascade cases characterized by different Reynolds numbers,

Mach numbers, freestream turbulence intensities, etc. It should be noted here that dis-

crepancies between the true transition locations and those predicted by the augmented

model were seen in a few cases. These were mainly caused either due to the augmen-

tation not being characterized in the corresponding feature-space regions or due to the

transition being induced by flow separation. To extend the capability of the model to

predict separation-induced transition, a hierarchical augmentation term was introduced

alongside the already inferred one. Its parameters were then inferred using LES data for

one of the compressor cascade cases while holding the original augmentation parameters

constant. To ensure that it activates only when separation-induced transition occurs, an
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appropriate blending function was also designed. The hierarchical augmentation further

improved predictions across all compressor cascade cases. While it offers generalizability,

robustness and modularity, the LIFE framework comes with the following caveats.

• Designing good features can be an arduous and time-consuming task and requires

knowledge, intuition and experience.

• Optimally resolving the feature-space is key to balance generalizability and accuracy

during localized learning.

• Isolating the effects of hierarchical augmentations to regions of interest could be

difficult.

Finally, the guiding principles outlined here are not to be considered exhaustive, and

future work (specific to a domain or otherwise) might help in making the framework

more robust and efficient.

6.4 Application in Fuel Cell Modeling

The weakly-coupled IIML framework was demonstrated by augmenting a Polymer Elec-

trolyte Membrane Fuel Cell (PEMFC) model to improve ionomer water content predic-

tions. The augmented model was solved using a non-intrusive iterative method which did

not require the augmentation function to be implemented within the numerical solver.

When trained on only a handful of representative cases to create a training dataset, the

overall predictive accuracy improved across a range of input configurations on the same

geometry. In addition to improvements in ionomer water content predictions, the respec-

tive current density distributions were also predicted more accurately. While there were

cases where the predictive accuracy deteriorated, these cases were comparatively far fewer

in number. It was also observed that while the predictive accuracy dropped when only a

subset of the training dataset was used, it improved for certain training cases as the aug-

mentation did not have to compromise as much during training to improve performance

across all training cases. Thus, it was shown that in cases in which strongly-coupled IIML
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was incapable of inferring an augmentation that is consistent across inference iterations

(and hence cannot be reliably used in a predictive setting), the weakly-coupled counter-

part offers a comparatively better alternative that reduces the chances of such a problem

occurring. Hence, if the application is restricted to configurations similar to those in the

training dataset, the weakly-coupled IIML can be used in conjunction with non-embedded

augmentations to quickly obtain “usable” augmentations without spending considerable

resources towards embedding the augmentation, feature design, localized learning etc.

6.5 Future Work

The current version of the LIFE framework makes use of a rudimentary functional form

capable of localized learning. Significant efforts need to be made to improve techniques

that can offer adaptive resolution for localized learning within the feature-space with-

out compromising computational efficiency. On the other hand, one needs to address

and estimate contributions from the following sources of epistemic uncertainties to make

meaningful predictions for use in design, analysis and optimization. The following are

directions for future work:

1. Chosen model-form: The way an augmentation term is introduced within the

model can lead it to address some part of the model inadequacy better than others.

2. Imperfect feature selection: If the chosen features are not optimal w.r.t. the

augmentation term introduced within the model, significantly different augmenta-

tion values might be needed for points that are very close in the feature-space in

order to improve the predictive accuracy.

3. Lack of data in a feature-space region: If no training datapoint is available

for a region in the feature-space, then even though the corresponding predictions

will have the baseline value by virtue of localized learning, they should be highly

uncertain.

4. Resolution in the feature-space: Given the limited availability of data, the
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augmentation function values need to be interpolated in the rest of the feature-

space and hence such interpolation might also contribute to the uncertainty.

5. Uncertainty quantification: A rudimentary uncertainty quantification strategy

would be to construct different augmentations by varying model-forms, features,

training data and functional forms and then estimating an interval-based measure

of uncertainty as demonstrated in Appendix B. However, more formal and sophis-

ticated techniques are needed to improve such estimates.

Note that points 2-5 are closely linked and hence cannot be tackled independently. Fi-

nally, The modularity resulting from the use of localized learning makes LIFE an excellent

candidate for use as a symbiotic architecture enabling both data-driven inference of gen-

eralizable models, and design-of-experiments, simultaneously – an avenue of practical

interest worth exploring in the future.

137



Appendices

138



Appendix A

Design under Model-form Uncertainty - A Case

Study

RANS models are currently the industry’s workhorse for preliminary design and optimiza-

tion of flow geometries, and will likely remain so for at least a couple of decades. However,

the inadequacies in these models lead to significant errors when predicting quantities of

interests for intricate geometries in multi-physics simulations. While model augmentation

strategies can attempt to correct these predictions, it is nearly impossible to account for

all sources of model inaccuracy and hence there will always exist some measure of model-

form uncertainty within the predictions from these models. Estimation and minimization

of these model-form uncertainties can result in better-informed simulation-based design

strategies, and can even play an important role in multi-fidelity optimization frameworks.

The work described in this appendix describes the robust design of an aircraft engine

nozzle under model-form uncertainties within a class of ML-augmented Spalart-Allmaras

models.

A.1 Creating a Data-driven Family of Models

An interval-based estimate of the uncertainty in the quantity of interest was used as a

measure of the model-form uncertainty within the family of models used. The afore-

mentioned family of models was constructed by inferring augmentations to the Spalart-

Allmaras model using the Field Inversion and Machine Learning (FIML) framework. The

augmentation term in consideration was introduced into the model by simply multiply-
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ing it with the production term within the model. Skin friction data from six different

model geometries are used to infer the augmentation term and build six respective ML-

augmented variants of the Spalart-Allmaras model. The “high-fidelity” skin friction data

used here to infer the augmentation function was obtained using the Wilcox stress-ω

model from 2008 [92]. The maximum aposteriori estimate for the numerical field of the

augmentation values obtained via Bayesian inference for each case independently is used

to generate feature values at all spatial locations in the respective computational domains.

The features used for this application are listed as follows:

η1 =
ρ|S|d2

w

µL

η2 =
µt|S|

max(τw, 10−10Nm−2)

η3 = dw

(A.1)

Figure A.1: Prediction of skin friction over the nozzle wall for four different nozzle geometries
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Using the feature-augmentation value pairs at all spatial locations, separate ML models

are trained for each case using the AdaBoost algorithm [21] (from the openly available

SKLearn library [53]). Fig. A.1 shows predictions of some of these ML variants for

their respective training cases. The bands seen around the red curves (predictions by

the augmented models) correspond to the confidence intervals which are a part of ML

predictions.

A.2 Setting up the Optimization Problem

The axisymmetric inner nozzle surface is parametrized by a 2-D cubic B-spline curve

consisting of 15 control points. Repeated knots at the inlet, throat and outlet of the

nozzle ensure desirable geometric characteristics at these locations. The first four control

points were fixed to guarantee a smooth geometry near the inlet, leaving 11 control points

(22 x-y coordinate pairs) free for optimization. The throat of the nozzle however is

characterized by two points with very close x-values and the same y-values to ensure that

the throat has the minimum cross-sectional area. Thus, 21 design variables (removing

the redundant y-coordinate from the count) characterize the geometry. The following

constraints were imposed on the control polygon to ensure that: (1) the variation in the

coordinates is within 40% of the initial values; (2) the nozzle converges upstream of the

throat and diverges downstream; (3) the throat always has the minimum cross section;

and (4) the gradients in the geometry are not too steep.

0.6xinitial
i < xi < 1.4xinitial

i for i ∈ [5, 15]

0.6yinitial
i < yi < 1.4yinitial

i for i ∈ [5, 15]

−1.0(xi − xi−1) < yi − yi−1 < 0 for i = 6

−1.8(xi − xi−1) < yi − yi−1 < 0 for i = 7

−0.20(xi − xi−1) < yi − yi−1 < 0 for i ∈ {5, 8}

0.04(xi − xi−1) < yi − yi−1 < 0.16(xi − xi−1) for i = 10

0.04(xi − xi−1) < yi − yi−1 < 0.20(xi − xi−1) for i = 11

0.07(xi − xi−1) < yi − yi−1 < 0.30(xi − xi−1) for i = 12

0 < yi − yi−1 < 0.20(xi − xi−1) for i = 13
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0 < yi − yi−1 < 0.10(xi − xi−1) for i = 14

0 < yi − yi−1 < 0.05(xi − xi−1) for i = 15

0.01 < xi − xi−1 for i ∈ [5, 15]

0.001 < yi − y8 for i ∈ [5, 15]− {8}

The objective of the deterministic optimization problem is to maximize the thrust (T )

predicted by the baseline Spalart-Allmaras model under the geometric constraints as

shown above.

maximize
x

TSA(x) (A.2)

This deterministic optimization was performed without and with the non-linear mass (m)

constraint.

m(x) < 75kg (A.3)

The objective of the robust design optimization problem is to minimize the maximum dis-

crepancy between thrust predicted using the baseline and all the ML-augmented variants

of the turbulence model.

minimize
x

max
Mi

(TMi(x))−min
Mi

(TMi(x))

s.t. TMi(x) > 21kN ∀ Mi

(A.4)

The subscript Mi refers to the ith model in the chosen family of models. Note that one

of these models is the baseline Spalart-Allmaras model itself. This robust design opti-

mization was also performed without and with an additional non-linear mass constraint

similar to the deterministic case (see eqn. A.3).

A.3 Computational Framework

The computational framework consisted of the DAKOTA optimization package calling

SU2 and Gmsh, to run flow simulations and return thrust values, and to remesh the

updated geometry for each optimization iteration, respectively. Sensitivity w.r.t. design

variables were obtained using the finite difference method, resulting in 22 (1 baseline + 21
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perturbed design variables) simulations per optimization iteration for the deterministic

case, which increased by a factor of 7 (1 baseline SA + 6 ML variants) for the robust design

optimization case. Within DAKOTA, the NPSOL subpackage, which uses sequential

quadratic programming, was used as the optimizer. A flowchart describing the entire

framework is shown in Fig. A.2.

Figure A.2: Computational framework used to solve the optimization problems

A.4 Results and Conclusions

A.4.1 Optimization without mass constraints

The thrust values across optimization iterations, for both the deterministic optimization

(which maximizes thrust) and robust design optimization (which minimizes discrepancy

in thrust across all model variants), are shown in Fig. A.3. A similar plot for thrust

discrepancy across iterations for the robust design optimization is shown in Fig. A.4. As

can be seen, the interval-based robust design optimization optimizes to a slightly lower

thrust compared to its deterministic counterpart. Note that the DUU-based optimization

reduces the discrepancy from 60 N in the baseline geometry to around just 1 N in the

corresponding optimized geometry. The optimized geometries for both the cases can also

be seen in Fig. A.5 along with the baseline geometry. It can be observed that the robust
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Figure A.3: Thrust values across iterations for both deterministic and DUU-based optimiza-
tion without mass constraints

Figure A.4: Thrust discrepancy values across iterations for DUU-based optimization without
mass constraints

Figure A.5: Baseline and optimized geometries (when optimized without mass constraints)

design optimization results in a geometry which is considerably longer compared to the

one optimized using its deterministic counterpart and hence has a considerably larger
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(a) Mach Number (b) Momentum Flux (c) Pressure

(d) Mach Number (e) Momentum Flux (f) Pressure

Figure A.6: Contours of Mach number, momentum flux and pressure for geometries obtained
via deterministic optimization (top) and DUU (bottom) without mass constraints

volume and mass. The contours for Mach numbers, pressure and momentum flux for all

the three geometries are shown in Fig. A.6. Plots comparing the momentum flux as well

as pressure with respective interval-based uncertainty bounds along the radial coordinate

at the nozzle exit plane for the baseline and DUU-optimized geometry are shown in Fig.

A.7.

A.4.2 Optimization with mass constraints

Repeating both the deterministic and DUU-based optimizations under the added mass

constraints resulted in the geometry shapes as shown in Fig. A.8. Note here that, with

the additional mass constraint, the DUU-based optimization results in a volume (and

hence mass) of the nozzle which comparable to the one obtained using deterministic

optimization, unlike the previous case. This can be seen in the values of mass across

optimization iterations for both the optimization types as shown in Fig. A.9, where

the optimal geometries have weights of around 60 kg and 70 kg for the deterministic
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(a) Momentum Flux

(b) Pressure

Figure A.7: Comparing baseline and optimized (DUU without mass constraints) properties
at the nozzle exit plane with uncertainty bounds

Figure A.8: Baseline and optimized geometries (when optimized with mass constraints)

optimization and DUU, respectively. The corresponding values of thrust and thrust

discrepancies across optimization iterations are plotted in figs. A.10 and A.11. As can
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Figure A.9: Mass corresponding to iterates of nozzle geometry

Figure A.10: Thrust values across iterations for both deterministic and DUU-based optimiza-
tion with mass constraints

be seen here, the difference in thrust produced by the two optimal geometries is marginal

compared to what it was without the use of mass constraints. Also, the discrepancy in

the thrust values is reduced to around 1 N, similar to what was observed before. This

indicates that there are multiple possible geometries with a minimal thrust discrepancy

and the geometry which one obtains after the DUU-based optimization heavily depends

on the constraints set during the formulation for the optimization problem. Finally, the

contours for the geometries obtained using both the optimization techniques are shown

in Fig. A.12 and the plots of momentum flux and pressure with their discrepancy bounds
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Figure A.11: Thrust discrepancy values across iterations for DUU-based optimization with
mass constraints

(a) Mach Number (b) Momentum Flux (c) Pressure

(d) Mach Number (e) Momentum Flux (f) Pressure

Figure A.12: Contours of Mach number, momentum flux and pressure for geometries obtained
via deterministic optimization (top) and DUU (bottom) with mass constraints

along the radial coordinate at the nozzle exit plane for the baseline and DUU-optimized

geometry are shown in Fig. A.13.
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(a) Momentum Flux

(b) Pressure

Figure A.13: Comparing baseline and optimized (DUU with mass constraints) properties at
the nozzle exit plane with uncertainty bounds
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Appendix B

Sensitivity Evaluation via Method of Adjoints

B.1 A Simple Introduction

Given a system of PDE’s represented as R(u, ξ) = 0, consider an objective function

J (u, ξ) that needs to be minimized. Here, u refers to the states of the system and ξ refers

to the inputs to the system. Since u is an implicit function of ξ (via the PDE system), the

corresponding optimization problem is constrained and can be mathematically written

as follows.

minimize
ξ

J (u, ξ) s.t. R(u, ξ) = 0

The optimization techniques can be broadly classified into gradient-based and gradient-

free. Gradient-free techniques are currently intractable for inputs which are high-dimensional

which is the case when inferring model augmentations. Gradient-based techniques, how-

ever, as the name suggests, require the sensitivities dJ /dξ. A naive approach would be

to evaluate finite difference approximations for each input variable. This would require as

many function evaluations as there are inputs which could be tedious and time-consuming.

However, the method of adjoints, which is explained as follows, offers a more efficient

alternative. Since the states are implicit functions of the inputs, the sensitivity of R and

J w.r.t. ξ can be written as follows.

dR

dξ
=
∂R

∂ξ
+
∂R

∂u

du

dξ

dJ
dξ

=
∂J
∂ξ

+
∂J
∂u

du

dξ
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Under the constraint that the residuals need to be zero, one can write

dR

dξ
=
∂R

∂ξ
+
∂R

∂u

du

dξ
= 0

which implies,

du

dξ
= −

[
∂R

∂u

]−1
∂R

∂ξ

Substituting this value into the expression for dJ /dξ, we have the following expression

dJ
dξ

=
∂J
∂ξ
− ∂J
∂u

[
∂R

∂u

]−1
∂R

∂ξ

The term−∂J
∂u

[
∂R

∂u

]−1

is referred to as ψT , i.e., the transpose of the adjoint vector. Note

here that only a single matrix-vector linear system is needed to be solved to obtain ψ as J

is a scalar quantity. On the other hand, if

[
∂R

∂u

]−1
∂R

∂ξ
is solved instead, it would require

solving as many matrix-vector systems as there are inputs. Clearly, solving for ψ is more

efficient. The partial derivatives involved in the sensitivity calculation can be calculated

using one of the following methods: finite differences, complex-step differentiation and

forward- or reverse-mode algorithmic differentiation (a.k.a. automatic differentiation or

AD). In the transition modeling work presented in this thesis, reverse-mode AD is used

from a readily available computational package called ADOL-C [25].

B.2 The Adjoint Vector as a Lagrange Multiplier: A Geometric

Interpretation

Given ξ0 and u0 such that R(u0, ξ0) = 0, R and J can be approximated by their

linearized versions in the immediate neighborhood of (u0, ξ0) in the u-ξ space. Fig. B.1

shows a representative set of contours for R and J for unidimensional u and ξ vectors

in such a neighborhood, along with a naive evaluation of sensitivities under the linear

approximation. The idea of using Lagrangian multipliers involves creating a function

L = J + λR that depends only on ξ in this neighborhood, i.e., it stays constant when

u is changed. Also note that, by design, for any given ξ, the value of L will be exactly
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Figure B.1: Schematic showing linearized contours of the R, J , and L functions in a small
neighborhood in the u-ξ space along with a naive sensitivity evaluation method

the same as J when R = 0. Hence,
∂L

∂ξ
must be the same as

dJ
dξ

. The only task which

remains now is to find the appropriate numerical values that constitute the Lagrangian

multiplier λ. This is trivial as we only need to impose that
∂L

∂u
= 0 resulting in the

expression as follows.

∂J
∂u

+ λ
∂R

∂u
= 0 ⇒ λ = −∂J

∂u

[
∂R

∂u

]−1

As can be seen, λ = ψT . Hence, geometrically speaking, the adjoint vector (or the

Lagrange multiplier) simply consists of the scaling factors needed to ensure that the

collective variation of R w.r.t. u cancels the variation of J with u. In other words,

the residuals when scaled with Lagrange multipliers and added to the objective function,

rotate the contour lines of J about the points where they intersect R = 0 resulting in

contour lines for L which run parallel to the u-axis (as shown in Fig. B.1).
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Appendix C

Supplementary Results for the Transition Model

C.1 Results when training only with T3A

The main issue with training only with T3A is that the behavior in the augmentation is

learnt only on the basis of data from a zero pressure gradient case. The more cases are

added to the mix, the stronger is the consistency of an optimal augmentation for different

problems.

C.1.1 Optimization convergence and feature space contours

Looking at Fig. C.1, although the convergence of the objective function appears simi-

lar to that observed when both T3A and T3C1 were simultaneously used to learn the

augmentation, the skin friction predictions and augmentation contours in the feature

space (Fig. C.2) have significant differences between the two cases. The effect of this

difference between the two augmentations can be seen in the following sections. It is how-

ever, noteworthy how a single additional case with unseen physical behavior can make

a considerable difference in the predictions. This suggests the ability of the framework

to effectively extract information about the features-to-augmentation functional relation-

ship.

C.1.2 Predictions on T3 cases

It can be seen in Fig. C.3 that the prediction trained on T3A alone is completely wrong

for T3C1 and T3B, while it appears reasonable for the other cases. Another important
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(a) Optimization convergence (b) Skin friction prediction

Figure C.1: Augmentation training using data from T3A only

(a) η1 = 0.05 (b) η1 = 0.15 (c) η1 = 0.25 (d) η1 = 0.35 (e) η1 = 0.45

(f) η1 = 0.55 (g) η1 = 0.65 (h) η1 = 0.75 (i) η1 = 0.85 (j) η1 = 0.95

Figure C.2: Feature maps (x-axis: η2, y-axis: η3, uniform color-bar range [0,1] across all plots)

observation is that the transition locations for T3C1, T3C2 and T3C3 are over-predicted.

This is due to the fact that the augmentation remains at a lower value for a longer distance

spuriously as the augmentation has no way of differentiating between how η1 changes for

different pressure gradients as the training is performed only for a zero pressure gradient

case.

C.1.3 Prediction on VKI cases

As can be seen in Fig. C.4, training a model only on the T3A data results in significantly

inaccurate transition location predictions on at least one side of the blade except MUR224

when compared to the results presented in the main text where both T3A and T3C1 cases
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(a) T3B (b) T3C1

(c) T3C2 (d) T3C3

(e) T3C5

Figure C.3: Skin friction coefficients for T3C cases

were used for training. This is in accordance with the explanation provided in the last

section. Since the transition model has little information on how the features behave

in the presence of non-zero pressure gradients, additional data which can highlight such

behavior (in the main text as the T3C1 case) is required to extract information about
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the behavior of the augmentation in feature space.

(a) MUR116 (b) MUR129

(c) MUR224 (d) MUR241

Figure C.4: Heat transfer coefficients for VKI cases

C.2 Effect of changing the user-specified freestream distance

As shown in Fig. C.5, we found that varying the user-specified wall distance used to

extract freestream quantities to calculate η1 usually has a small effect on the predictions

for the turbine blades. A minor discrepancy is observed in MUR116 (characterized by

a small bump in the heat transfer coefficient), whereas a major discrepancy, resulting in

considerable different transition behavior, is seen for MUR241.

C.3 Effect of using a finer discretization in feature-space

For comparison purposes, a finer feature-space discretization was also used to obtain the

augmentation function, the training results and augmentation contours on feature-space
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(a) MUR116 (b) MUR129

(c) MUR224 (d) MUR241

Figure C.5: Comparison between different preset distance intervals

slices for which are shown in Figs. C.6 and C.7. The feature space was divided into sub-

domains of size 1/30 along all three feature space directions (90, 30, and 30 cells along

the first, second, and third features respectively). As can be noticed in Fig. C.7, the

influence of the changes made by the data have been restricted to smaller regions owing

to the smaller cell sizes. Figs. C.8 and C.9 show the results from testing the augmenta-

tion on the T3B, T3C2, T3C3, T3C5, MUR116, MUR129, MUR224, and MUR241 cases.

As can be seen from the results, while the augmentation learned on the finer grid seems

to predict the transition locations for T3 cases with nearly similar accuracy (with little

laminarization in the T3B case and slightly premature transition in T3C5) as its counter-

part trained on the coarser grid, almost all results from the VKI cases exhibit premature

transition. This happens because the limited region of influence that the available data
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has in the feature space allow some feature space locations to exhibit baseline behavior

(which did not happen when using the augmentation learned on a coarser grid as the

region of influence covered a larger part of the feature space).

(a) Optimization history (T3A) (b) Optimization history (T3C1)

(c) Skin friction profile (T3A) (d) Skin friction profile (T3C1)

Figure C.6: Training results on a finer feature-space grid
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(a) η1 = 0.05 (b) η1 = 0.15 (c) η1 = 0.25 (d) η1 = 0.35

(e) η1 = 0.45 (f) η1 = 0.55 (g) η1 = 0.65 (h) η1 = 0.75

Figure C.7: Augmentation contours on feature-space slices when using a fine discretization

(a) T3B (b) T3C2

(c) T3C3 (d) T3C5

Figure C.8: Skin friction coefficient profiles for the T3 test cases obtained from augmentation
inferred on a finely-discretized feature-space
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(a) MUR116 (b) MUR129

(c) MUR224 (d) MUR241

Figure C.9: Heat transfer coefficient profiles for the VKI test cases obtained from the aug-
mentation inferred on a finely-discretized feature-space
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