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ABSTRACT

Understanding emergent many-body phenomena in correlated materials remains

one of the grandest challenges in solid-state quantum chemistry calculations. The in-

dividuality of electrons diminishes as correlation increases, which leads to the emer-

gence of new features in the system. Seeking to address such problems accurately

requires the aid of non-perturbative many-body techniques as well as the correspond-

ing high-quality basis sets. In periodic systems, a given element may be present in

different spatial arrangements displaying vastly different physical and chemical prop-

erties, and an elemental basis set independent of the physical properties of materials

may lead to significant simulation inaccuracies. In fact, with the rapid progress of

quantum chemistry methods in condensed-phase simulations, the need for a library of

reliable Gaussian basis sets explicitly designed for periodic calculations has become

urgent. In the meantime, the development of parameter-free, systematic and reliable

quantum chemistry methods for simultaneously treating weak and strong correlations

in periodic systems has never stopped. Their ability to treat realistic solid materials

needs to be tested, and the obtained results can serve as benchmarks for empirical

parameter-guided solid-state calculations.

In this thesis, we present numerical studies of various solid-state systems, em-

phasizing the design and optimization of Gaussian basis sets and assessing the band

structure properties of the periodic solid systems. The work begins by introducing

the theoretical framework of the electronic structure theory and presenting the fun-

damentals of a fully self-consistent GW approximation and the self-energy embedding

theory (SEET) in Chapters II and III. It continues with a description of the Gaussian

xiii



basis set optimization scheme we devised for solid-state quantum chemistry calcula-

tions. The scheme we present is designed to avoid a lack of material specificity within

a given basis set by simultaneously minimizing the total energy of the system and

optimizing the band energies when compared to the reference plane wave calculation

while accounting for the overlap matrix condition number. We compare the quality

of the Gaussian basis sets generated via our method against the existing basis sets.

And the optimization scheme is tested to yield improved results.

We finally present a quantitative study of electronic properties of realistic materi-

als with the treatment of Green’s function based weakly correlated self-consistent GW

approximation and the strongly correlated self-energy embedding theory. In the tran-

sition metal oxide BiVO3, we found the inaccurate illustration of orbitals including

t2g in transition metal Vanadium by DFT. Our calculation shows a systematic trend

of DFT failure in illustrating both insulating and metallic solutions, demonstrating

the dangers of using DFT when the experimental data is scarce.

xiv



CHAPTER I

Introduction

The exploration and synthesis of potentially useful materials for modern day tech-

nology can be costly and time-consuming using only experimental techniques. How-

ever, this process can be actively supported and facilitated by computational mod-

eling. Making testable predictions on properties of realistic materials requires a the-

oretical model that can accurately capture the relevant physics and simultaneously

is computationally feasible to obtain a solution. A reasonable choice of electronic

structure methods and a high-quality Gaussian basis set is always at the core of an

effective and accurate quantum chemistry periodic simulation.

The many fascinating phenomena in solids, such as Magnetism, Mott transi-

tions, Kondo and heavy-fermion behavior, and superconductivity, arises from the

motions and many-body interaction of electrons in the system. However, it is also

this electron-electron interaction that makes modeling and seeking solutions for such

systems challenging. With the extensive system size and a large number of electrons in

the periodic solids, solving the many-electron Hamiltonian conventionally with wave

function based methods is not feasible, as the number of Slater determinants required

for an accurate solution is significant. Alternatively, with its simple formalism and

its ability to treat systems with hundreds of atoms, Density-functional theory (DFT)

is considered the Standard Model for solid-state calculations. The success of DFT
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in explaining the physical and chemical properties of solids is considered remark-

able, however, the approximation to DFT, the local density approximation (LDA),

and its simple extensions fails for the systems in which the individuality of electrons

diminishes. In other words, standard DFT approximations face difficulty capturing

electron correlations in the solid systems, leading to quantitative errors in band gaps

prediction for insulators and semiconductors, especially for those with localized d shell

electrons. Furthermore, qualitative failures exist occasionally. For instance, Ge is in-

correctly predicted to be a semi-metal by LDA, while experimentally it is determined

to be a semi-conductor. The introduction of dynamical mean-field theory (DMFT)

combined with DFT is a remedy to this issue. However, this is realized at the price of

inducing adjustable parameters into the formalism of the method. Alternatively, dia-

grammatic perturbation methods free from empirical parameters can be considered.

One of the most fruitful and well-known methods among them is the GW approxi-

mation. Its success is phenomena in band gaps and spectral properties prediction of

solids. However, its perturbative nature leads to its failure in the capturing of strong

electronic correlation.

The search for a rigorous parameter-free ab-initio theory for simultaneously treat-

ing weakly and strongly correlated systems has always been an ongoing task. The

goal is to find approximate methods that could accurately treat the electronic correla-

tion while reasonably capturing the physics of the remaining system from a quantum

chemical perspective. In this work, we introduce and assess a diagrammatic ab initio

embedding theory: the self-energy embedding theory (SEET), which in combination

with the weakly correlated GW approximation, can give a reliable description of solid

systems with localized electrons involved. Transition metal oxides play vital roles in

many energy-related problems. In practice, various schemes were applied to such sys-

tems with inevitable success or failures, yet a universal tool for treating such systems

has not been found. For those transition metal oxides not being well characterized

2



experimentally, a parameter-free ab-initio becomes rather crucial. And considering

the correlated nature of transition metal d orbitals, such systems, therefore, can serve

as an ideal testbed for SEET.

In the meantime, with the rapid progress of quantum chemistry methods in

condensed-phase simulations, it becomes demanding for quantum chemists to de-

sign and optimize Gaussian basis sets for periodic calculations. In fact, the plane

wave basis was far more commonly used than any other type of basis sets for periodic

systems with delocalized electrons for many reasons, including its natural periodicity,

systematic convergence property, and the reduction of Hamiltonian second-quantized

terms in the plane wave representation. However, plane wave calculations are only

affordable due to the low computational scaling of DFT, as thousands of plane waves

are necessary to reach a basis set accuracy comparable to that of a Gaussian ba-

sis set with many fewer basis functions for most materials. For post-DFT ab-initio

calculations with a higher computational scaling, Gaussian basis sets become more

appealing.

Most of the existing Gaussian basis sets in quantum chemistry are made for atoms

and molecular simulations. Their application to close-packed solids is problematic,

as the basis sets are quickly getting linearly dependent. Also, due to the nature of

solids, a given element may display vastly different physical and chemical properties

in different spatial arrangements.

The rest of the dissertation is as follows. Chapter II and III introduce the nu-

merical algorithms of the electronic structure theory relevant to this work, with the

former one focusing on DFT while the latter one on Green’s function based corre-

lated methods GW and SEET. Chapter IV present and examine a material-specific

Gaussian basis optimization scheme for solids. Chapter V report results from a fully

self-consistent ab initio SEET calculation applied to a transition metal oxide system.

And chapter VI concludes this thesis.
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CHAPTER II

Background: Mean-field Methods

2.1 Mean-field Approximation

Understanding the properties of materials requires confronting the many-body

problem. The problem with calculating systems composed of interacting particles

exactly comes when one attempts to enumerate all the possible microstates and cal-

culate their energy. While at first, this appears to be an impossible task, substantial

progress has been made by combining physical insights with modern numerical ap-

proaches. The key strategy is to map the complex realistic many-body Hamiltonian

to a simpler auxiliary model that can be solved numerically. In computational chem-

istry, one of the commonly adopted and fundamental ways of picturing the electronic

structure of materials is to use the mean-filed model. In general, the mean-field the-

ory allows the replacement of an N-body system by a 1-body system that sits in a

suitably chosen external field. The external field is set equal to the average field due

to the remaining particles. Hence, this approximation technique allows one to map a

multi-body problem onto a one-body problem.

2.1.1 Electron Correlation

To chemical systems specifically, the mean-filed theory is treating every single

electron in the system of studying as they are moving in a mean-field formed by other
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electrons in the system. As a result, (for electronic structure methods which deploy

the mean-field approximation like Hartree-Fock), the repulsion energy between two

electrons is calculated between an electron and the average electron density formed by

the other electrons. This type of approximation gives rise to the problem of electron-

electron repulsion overestimation due to the fact that it doesn’t take into account the

instant motions of the other electrons when the selected electron approaches. This

instant motion diminished the repulsion energy, and this concept of electrons avoiding

each other is defined as “dynamical correlation”. The electronic energy quantity that

arises from this dynamic correlation is called the dynamic correlation energy.

While this energy appears to be small in quantity relative to the total electronic

energy of the system, it is crucial to include a certain level of description of it in the

calculation, as it may be crucial to the chemical properties of the system of interest. In

fact, the inclusion of correlation energy is especially important for solid-state systems

with closely packed electrons, as a pure mean-filed treatment of such systems may

give quantitative, or even qualitative wrong predictions. We have seen these examples

in the mean-field calculations like Hartree-Fock approximations (HF) and Density

Functional Theory (DFT), while both of them are well-known schemes designed to

model the properties of many-electron systems, the latter one is, in particular, most

commonly employed by the solid-state community, especially for the ground-state

total energies and charge densities. The next section of this chapter will explore the

fundamentals of DFT and its applications to crystalline solids.

2.2 Many-particle Problems in Solids

The quantum states of an N-particle isolated system can be described by a wave

function: ψ(r1, r2, . . . , rN), with ri representing the particle coordinate in three-
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dimensional space. By solving the electronic Schrödinger equation:

Ĥeψ(r1, r2, . . . , rN) = Eψ(r1, r2, . . . , rN) (2.1)

, the ground state of a collection of atoms in a crystalline solid can be found. The

electronic Hamiltonian of this N-particle system, with neglecting the the kinetic en-

ergy of the nuclei and the repulsion between the nuclei of the system, can be written

in three terms:

Ĥe = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA

|ri −RA|
+
∑
i<j

1

|ri − rj|
(2.2)

, with RA and ZA be the nuclear positions and charges in the system.

This is based on the Born-Oppenheimer approximation, the central concept of

quantum chemistry, which treats the nuclei in the system as fixed external poten-

tial faced by moving electrons, hence decoupling the dynamics of the two types of

particles.

The first term of (2.3) is known to be the operator for the kinetic energy of the N-

electrons; the second term represent the ionic potential between nuclei and electrons;

and the third term represent the pair-wise electronic repulsion. Hence, the electronic

Hamiltonian can be written as following:

Ĥe = T̂r + V̂ext + V̂U . (2.3)

For most of the crystalline systems, the computational complexity required to

solve (2.1) is beyond the reach of current technologies. To illustrate the dimension of

the Schrodinger equation, consider of solving the ground state energy of a simple solid-

state systems, for instance, silicon with 14 electrons per atom, and a total of 100 atoms

in the system. With three spatial coordinate per electronic position, the problem
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becomes 4200 dimensional. And for some slightly more complicated materials, this

number can soon reach 1e4-1e5. It is quite obvious that the exact many-body problem

becomes dramatically expensive as soon as the number of electrons in the system

increases. Computational chemists and physicists hence started to consider replacing

the highly complicated many-body wave functions, with a simple, three-dimensional

scalar function, the electronic density. This leads to the concept of density functional

theory (DFT) , one of an exact mean-field formalism for calculating the ground-

state properties of a many-electron system. The central idea of DFT lies on the fact

that there is no need to know the details of the N-particle wave functions in order to

calculate the ground-state properties. In fact, the knowledge of the electronic density,

n(r), is enough to obtain the ground state energy of the system and all quantities

that are related.

2.3 DFT and Kohn-Sham Equation

DFT is based on two fundamental theorems, which states that there is a one-to-

one correspondence between the ground-state density n0(r) and the external potential

as well as a variational principle for energy functional E[n0] ≤ E[n]. This is known as

the Hohenberg-Kohn theorem. The first statement in the Hohenberg-Kohn theorem

implies that the many-particle Hamiltonian is a functional of the ground-state density.

The latter statement allows one to obtain the ground state of a many-electron system

by the variation of its density, hence reducing the 3N-dimensional problems to a 3-

dimensional problem. The theorem stated above can be generalized to include spin.

The electronic Hamiltonian and the energy functional of the system can be written

as:

Ĥe = T̂r +

∫
vextn(r)dr+ V̂U (2.4)

E[n(r)] = F [n(r)] +

∫
vextn(r)dr (2.5)
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With vext(r), the second term in (2.5) is system dependent, which the rest of the

terms in the equation are universal. The fist term of (2.5) consists of 2 contributors,

a classical Coulomb interaction term and a non-classical self-interaction correction

term: ∫
n(r)n(r′)

|r− r′| drdr
′ + Etrue

xc (2.6)

and latter one is the so-called exchange-correlation term that requires approximation

in practice.

In 1965, Kohn and Sham introduced their new scheme of obtaining the ground

state electron density n0(r) that includes a transformation of the original N-particle

system into an non-interacting auxiliary particles in effective potential:

ψ(r1, r2, . . . , rN) = ψ1(r1)ψ2(r2) . . . ψN(rN) (2.7)

The Kohn-Sham equations are a set of N Schrodinger-like one-particle equations

with a modified effective potential:

(−1

2
∇2 + vext(r) + vH(r) + vxc(r))ψi(r) = ϵi(r)ψi(r) (2.8)

. The interaction of the system are hence accounted in the potential terms, with a

contribution from the quantum mechanical exchange-correlation term. Notice that

the explicit expression for vxc(r)) is inaccessible, and it is relatively small in quantity

with respect to the kinetic and coulomb term in (2.8). Although small in quantity,

however, the XC term plays a central role as it directly affects the accuracy and

efficiency of the theory. Solving N one-particle (2.8) is obviously easier than the

original 3N-dimensional problem. And the total energy of this N one-particle system

8



with effective potential can be expressed as:

E[n(r)] = T0[n(r)] +

∫
vextn(r)dr+ EH [n(r)] + Exc[n(r)] (2.9)

. In practice, the construction of an increasingly exact approximations to exchange-

correlation functionals Exc[n(r)] is still an on-going challenge within DFT. The next

section will explore some of the existing successes and some central considerations.

2.4 Exchange-Correlation Functionals

As stated in the Sec. 2.3, DFT does not explicitly describe how the gound-state

total energy depends on the ground-state electronic density. And this inexactness

is due to the unknown of the exact functional in the Hohenberg-Kohn theorem. In

practice, approximations are needed to express the kinetic term and the many-body

electron-electron interaction term as a functional of n(r). One thus have to leave the

exact DFT formalism, and reaches the complicated side of approximations with their

specific range of validity.

It is worth noting that, however, DFT can deliver reasonable results with certain

approximations for certain functionals in certain scenatios, even includes the LDA.

And this accuracy in combination with the simplicity of DFT formalism, which allows

systems with several hundred atoms to be calculated, leads to the phenomenal success

of DFT in terms of the number of users and systems studied.

Proposed by Hohenberg and Kohn in 1964, the LDA relies on the approxima-

tion assuming that the exchange-correlation energy for an electron located in spacial

location r only depends on the local value of the electronic density n(r). Such an

approximation is strictly valid only in the limit of a homogeneous electron gas. Hence,

LDA tends to be more reliable on 3-dimensional periodic systems than finite systems

with less homogeneous electron density distribution. In the paper (Hohenberg and
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Kohn, 1964b), Hohenberg and Kohn concluded that chance of LDA being successful

on realistic systems with strong variations of charge density is small. However, in

practice, LDA has demonstrated remarkable success: the accuracy is within 1% with

respect to experimental data for certain types of observables like lattice parameters

on certain non-metallic systems like diamonds and silicons. And when it comes to

band gap prediction, LDA result are mostly giving qualitatively correct, while quan-

titatively they are less reliable, especially for insulators and semiconductors. Band

gaps in those systems are often being underestimated approximately 1.0 eV or more.

For instance, LDA incorrectly predicts Ge to be a semi-metal (with a negative band

gap) instead of a semiconductor (Csonka et al., 2009; Aulbur et al., 2000).

In practice, it remains an central issue in DFT field to improve from the LDA

approximation. There exist two main trend of functional development. The first

requires the functionals to satisfy exact mathematical relations like XC hole sum rule,

while the second path consists of fitting functional parameters against experimental

data.

For the former path, one practice is to account for the charge inhomogeneities

in true electron density, and this includes considering not only the local density

but also its gradient. The information of inhomogeneity allows corrections based

on the changes in density away from the coordinate. Since mid-1980s, the so-

called generalized gradient approximations (GGA) started to become popular and

substantially increased the accuracy of DFT. The GGA family consists of some

well-known functionals, like the Becke’s exchange functional B88 (Becke, 1988),

the Perdew–Burke–Ernzerhof’s exchange correlation functional PBE (Perdew et al.,

1997), the Perdew–Wang’s PW91 (Perdew et al., 1992) and the Lee–Yang–Parr’s

LYP (Lee et al., 1988) correlation functionals. And as result, PBE, for instance,

leads to better predictions than LDA on metallic systems, but shows no significant

improvement for non-metallic systems (Perdew et al., 2009; Csonka et al., 2009).
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With the well-known existing limitations of LDA and GGA functionals as dis-

cussed above, a new approach has been proposed, and in which HF and DFT are

being combined and mixed. These so-called hybrid functionals are in principle a form

of DFT generalization, and are nowadays most effective and popular funcitonals.

In hybrid functionals, Exc[n(r)] consists of a portion of one-body-orbital dependent

exact exchange. This comes from the fact that the total exchange-correlation energy

are predominantly contributed by the exchange energy. In practice, it is common to

dive Exc into seperate functionals:

Exc = Ex + Ec (2.10)

, namely the exchange and correlation terms, and each of them are modeled separately.

It is therefore reasonable for one to consider replacing the local and semilocal Ex in

LDA and GGA, with an essentially non-local exact exchange energy (HF), which

includes only the Fermi electron correlation with identical spins.

Due to this additional cost from HF, this type of functionals are more expensive

than pure density funcitonals. The advantages of hybrid functionals, however, stems

from the fact that HF tends to overestimate gaps due to the lack of correlations as

discussed in the previous section. This is completely on the contrary to Kohn-Sham

DFT result. The mixing of certain amount of exact exchange with DFT XC potentials

hence leads to better gaps.

This has been exemplified with B3LYP functional, which includes 20% (a0 =

0.2) of exact exchange (Becke, 1993), which provides better description accuracy

than some of the non-hybrid functionals. And this successfulness stimulated the

development of new hybrid functionals. It is worth noting that numerical parameters

taken in Ehybr
xc are obtained by fitting computational results against experimental

data. In practice, the criteria for selecting the proper amount of exact exchange for a
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given system is therefore challenging if one wishes to preserve an ab initio approach.

Also, due to this experimental data dependent functional parameters fitting scheme,

developing or choosing appropriate DFT functional may becomes problematic for

computational researchers when there is a lack of enough empirical guidance.

2.5 Limitations

It is very important to reiterate the fact that DFT calculations in practice are not

exact solutions of the full Schrödinger equation. There is an intrinsic uncertainty that

exists between the energies calculated with DFT and the true ground-state energies

of the Schrödinger equation from time to time. Therefore, one should not expect

DFT to be physically accurate in all scenario.

The first situation where DFT calculations have limited accuracy is in the calcu-

lation of electronic excited states, and this is majorly because DFT is restricted to

ground-state properties in its original formulation.

Band structure calculation, with the need of electronic energy levels information,

is therefore beyond the reach of standard DFT. In practice, it is common to exploit

Kohn-Sham eigenvalues, the solutions of the N one-particle equations with effective

potential (2.8), for band structure plot generation. The solution of the Kohn-Sham

eigenvalue equation yields a whole spectrum of single-particle states. One may be

tempted to identify the corresponding eigenvalues with excitation energies, however,

the rationale for such correspondence has not been firmly established. This is par-

tially due to the fact that the Kohn-Sham eigenvalues are better to be interpreted as

mathematical tools (Lagrange multipliers) without an actual physical meaning. Ad-

ditionally, the sum of Kohn-Sham eigenvalues over occupied energy states is different

from the ground-state total energy of an N-electron system. Consequently, the band

gap prediction of Kohn-Sham DFT is known to suffer from certain level of failures.

One example would be the LDA underestimation of band gaps in semiconducting
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and insulating materials, such error can go up to 2 factors with comparing to the

experimental data. Another well-known failure of LDA is in the case of germanium.

While experimentally measured to be semiconductor, Ge was computationally gauged

as semi-metal. This failure of band gap prediction can relate to the lack of sensitivity

of local charge density with respect to the subtraction or addition of a electron (elec-

tron delocalized). This gap estimation tendency is supported by results presented

Chapter V as well, a detailed discussion can be seen in the later chapter.

Other limitations of DFT includes the many-electron self-interaction error, which

can be eliminated by using exact exchange functional. These intrinsic deficiencies

restrain the accuracy of calculations on realistic solids. Qualitative, and sometimes

quantitative failures exist and are not limited to the cases discussed above. Among a

number of documented situations, one of the most prominent failure of DFT is on its

treatment of strongly correlated materials, like transition metal oxides (Imada et al.,

1998).
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CHAPTER III

Green’s Function Based Correlated Methods

While ground state DFT could tremendously help in gaining physical and intuitive

insight for weakly correlated systems, more explicit methods are occasionally needed

in order to correct them, especially when the electronic correlation of the system

becomes strong. For certain observable like spectra, explicit expressions in terms of

density or the density matrix are unknown. And to merge time and temperature

information into the solution, it is natural for Green’s function formalism, an elegant

alternative to DFT, to be considered.

The primary development of Green’s function theory can be traced back to 1950’s

and early 60’s. In 1954, the Lehmann representation was devised by Lehmann

(1954). A summarize of the perturbative approach to Green functions can be found in

Abrikosov et al. (1975). In the 60’s, a functional approach was developed by Joaquin

Luttinger and John Ward (Luttinger and Ward , 1960) , while Matsubara presented

a temperature-dependent formalism of Green’s function in 1955 (Matsubara, 1955).

We present the Green’s function based correlated electronic structures methods,

GW approximation, and on top of it, the quantum embedding method SEET, in the

following chapter.
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3.1 GW approximation

3.1.1 One-particle Green’s Function in Second-Quantized Form

The one-body Green’s function is an efficient mathematical tool that describes

electron addition or subtraction to or from a system, and is defined as:

G(r, t; r′, t′) = −i ⟨Ψ|T [ψ̂(r, t)ψ̂†(r′, t′)]|Ψ⟩

= −i ⟨Ψ|ψ̂(r, t)ψ̂†(r′, t′)|Ψ⟩ θ(t− t′) + i ⟨Ψ|ψ̂†(r′, t′)ψ̂(r, t)|Ψ⟩ θ(t′ − t)

(3.1)

where T is the Wick time-ordering operator, which rearranges operators in ascending

time arguments from right to left:

T [ψ̂(r, t)ψ̂†(r′, t′)] =

 ψ̂(r, t)ψ̂†(r′, t′) for t > t′

ψ̂†(r′, t′)ψ̂(r, t) for t′ > t
(3.2)

and θ(t) is the Heaviside step function:

θ(t) =

 1 for t > 0

0 for t < 0
(3.3)

, ψ† and ψ are the creation and annihilation field operators in the Heisenberg represen-

tation, respectively. Notice that the spin dependence are not taken account explicitly

here, however, it can be taken as part of the spatial coordinate r if necessary.

Following Eq. 3.1, the electron density of the system can be expressed in terms of

G via:

n(r, t) = ⟨Ψ|T [ψ̂(r, t)ψ̂†(r′, t′)]|Ψ⟩ = −iℏG(r, t; r, t+ η) (3.4)

, with η be an infinitesimal positive number. It helps to enforce the proper time
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ordering of the field operator. The Fourier transform of G(r, t; r′, t′) (t − t′ → ω) to

the frequency space using the Fourier transform of the Heaviside side function takes

the Lehmann representation below:

G(r, r′;ω) =
∑
i

ψN+1
i (r)ψN+1∗

i (r′)

ℏω − ϵN+1
i + iη

+
ψN−1
i (r)ψN−1∗

i (r′)

ℏω − ϵN−1
i − iη

(3.5)

It is observed that pole exist in G(r, r′;ω) at the many-particle exitation energy ϵiN±1.

And ϵiN+1 and ϵiN−1 correspond to the excitation energy measured in the inverse and

direct photoemission spectroscopy.

Since Eq. 3.5 requires the knowledge of many-body wavefunctions that are hard

to calculate and store in systems with more than few electrons, it appears to be less

useful in practice. Following from that, an alternative class of approach has been

proposed. It can be shown that G(r, r′;ω) obeys the Dyson equation:

G(r, r′;ω) = G0(r, r
′;ω) +

∫ ∫
G0(r, r

′′;ω)Σ(r′′, r′′′;ω)G(r′′′, r′;ω)d3r′′d3r′′′ (3.6)

where G0 is the Green’s function of a non-interacting system, and the non-local Σ

is frequency dependent, and is the so-called self-energy that describes the scattering

event.

As an type of single-particle propagator, the one-body Green’s function can be

interpreted as the probability amplitude that detects either: an electron at (r, t) when

an electron is injected to the system at (r′, t′), or an hole at (r, t) when an electron

is deleted from the system at (r′, t′). Since the propagation process can includes

different order, the Green’s function is defined as the summation of the possibility

amplitude for each of the possible particle interaction process. This leads to a typical

equation of scattering theory:

G = G0 +G0ΣG0 +G0ΣG0ΣG0 +G0ΣG0ΣG0ΣG0 + · · · (3.7)
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where the terms in Eq. 3.7 describes zero, single, double, triple, etc., scattering pro-

cess.

This geometric series expression is derived from Eq. 3.6, and can be rewritten into

a symbolic form:

G = G0 +G0ΣG (3.8)

By inserting Eq. 3.5 into Eq. 3.6 to obtain the quasi-particle equation:

(−1

2
∇2 + vext(r) + vH(r))ψi(r) +

∫
Σ(r, r′; ϵi)ψi(r)d

3r′︸ ︷︷ ︸
Approximations

= ϵi(r)ψi(r) (3.9)

where the Coulomb interaction is constituted by a classical electrostatic Hartree po-

tential:

vH =

∫
n(r′)

|r− r′|d
3r′ (3.10)

Recall from Chapter II that the KS equation takes the following form:

(−1

2
∇2 + vext(r) + vH(r))ψi(r) + vxc(r)ψi(r)︸ ︷︷ ︸

Approximations

= ϵi(r)ψi(r) (3.11)

which is similar to Eq. 3.9, with Hartree potential, kinetic energy and local external

potential terms appear in the same way, but the local KS potential replaced by the

non-local
∫
Σ(r, r′; ϵi)ψi(r)d

3r′. It is worth noting that the wave functions ψi(r) and

the energies in Eq. 3.9 should not be taken as single-particle quantities, as the self-

energy contains all the dynamical many-particle processes. Another difference to KS-

DFT is that the interacting G obtained from Σ can directly producing the complete

excitation spectrum, while KS results yields a series of single-particle states, and their

corresponding eigenvalues in principle shall not be interpreted as excitation energies.

Additionally, due to the non-locality of the Fock exchange, it cancels with the self-

interaction contained in the Hartree potential. Nevertheless, the under-braced portion
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of both the KS equation and the quasi-particle is where approximations come into

play. One of the most well known way of finding approximations to the self-energy Σ

is via the GW approximation.

3.1.2 The self-consistent GW Approximation

The GW approximation scheme has been derive and discussed extensively in but

not limited to the following works:Hedin (1965); Ehrenreich et al. (1978); Hedin

(1999); Aryasetiawan and Gunnarsson (1998b); March (1999). It has gained suc-

cesses in the past for various solid-state band gaps and spectral properties calculations

(Aryasetiawan and Gunnarsson, 1998c; Godby et al., 1988), with mostly being G0W0,

GW0 or semi self-consistent GW. Solid GW calculations carried out in a fully self-

consistent manner are being rare due to multiple reasons including computational

challenges for large realistic systems, as well as the existing debate regarding the

many-body self-consistency effect (Ku and Eguiluz , 2002; Delaney et al., 2004).

However, scGW can also be appealing for it provides a consistent framework for

treating the ground- and excited-states of the system. This advantage arises from the

nonperturbative nature of scGW, as opposed to the perturbative G0W0. Moreover,

in contrast to the perturbative theories, scGW produces ground and excited states

that are independent of the starting point. Additionally, scGW is completely free of

empirical parameters. This can be beneficial especially in the circumstances where the

guidance from experimental data are limited. In this section, we present a fully self-

consistent finite-temperature GW approximation implementation scheme in atomic

orbital (AO) basis for periodic systems.

In the self-consistent GW approximation (scGW), G represent the one-body

Green’s function and W is defined as the dynamically screened Coulomb potential,

as oppose to the bare Coulombs interaction in the exchange self-energy. This work

uses the Matsubara formalism of the the Green’s function, in which a temperature-
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dependent feature is naturally embedded. The self-energy of GW approximation

can be decomposed into two part, a static Hartree-Fock self-energy and a frequency

dependent self-consistent correction term:

(ΣGW )k(iωn) = (ΣGW
∞ )k + (Σ̃GW )k(iωn). (3.12)

, where ωn = (2n + 1)/β is the fermionic Matsubara frequency, β is the inverse

temperature.

The dynamic part of Eq. 3.12 in time domain takes a simple yet elegant mathe-

matical form Σ = −GW :

(Σ̃GW )kiσ,jσ′(τ) = − 1

Nk

∑
q

∑
a,b

Gk−q
aσ,bσ′(τ)W̃

k,k−q,k−q,k
i,a,b,j (τ) (3.13)

with W̃ be the spin independent effective dynamical screened interaction.

In practice of scGW, the starting Green’s function G0 is initialized with either a

HF or a DFT result. We use the non-orthogonal Guassian-based Bloch waves ϕk
i (r)

as the single-particle basis for periodic systems:

ϕk
i (r) =

∑
R

ϕR
i (r)e

ik·R (3.14)

, where k is the wave vector of the first Brillouin zone, R is the unit cell index and

i is the Gaussian atomic orbital index. The summation in Eq. 3.14 allows the basis

to extend over the lattice. We define the four component Coulomb interaction in the

ϕk
i (r) basis as:

Uk1,k2,k3,k4

i,j,k,l =

∫
Ω

dr1

∫
R3

dr2ϕ
k∗
1

i (r1)ϕ
k2
j (r1)

1

|r1 − r2|
ϕ
k∗
3

k (r2)ϕ
k4
l (r2) (3.15)

To preserve the translational invariance, it is assumed that k1−k2+k3−k4 = 0.
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The expression in 3.15 can be decomposed for the sake of storage into three- and

two-body tensors with introducing another set of auxiliary Gaussian Bloch wave set:

Uk1,k2,k3,k4

i,j,k,l =
∑
Q

V k1,k2

i,j (Q)V k3,k4

k,l (Q) (3.16)

, where Q is the auxiliary index and V k,k′

i,j (Q) is a three-point integral.

Following from Eq. 3.16, the effective screened interaction W̃ in Eq. 3.13 can then

be expressed:

W̃ k,k−q,k−q,k
i,a,b,j (τ) =

∑
Q,Q′

V k,k−q
i,a (Q)P̃ q(τ ;Q,Q′)V k−q,k

b,j (Q′) (3.17)

with

P̃ q(τ ;Q,Q′) =
1

β

∑
n

P̃ q
QQ′(iΩn)e

−iΩnτ (3.18)

, where the auxiliary re-normalized polarization function P̃ q(iΩn) forms a NQ ×NQ

matrix for every momentum q:

P̃ q(iΩn) = [I− P̃ q
0 (iΩn)]

−1P̃ q
0 (iΩn) (3.19)

and

P̃ q
0;Q,Q′(iΩn) =

−1

Nk

∑
k

∑
σ,σ′

∑
a,b,c,d

V k,k+q
d,a (Q)

×Gk
cσ′,dσ(−τ)Gk+q

aσ,bσ′(−τ)V k+q,k
b,c (Q′)

(3.20)

, Ωn = 2nπ/β (n = 0,±1, · · · ) is the bosonic Matsubara frequency.

We refer the reader to references Iskakov et al. (2020a); Yeh et al. (2022) for a

detailed discussion.

Self-consistency is achieved by computing ΣGW and updating G by solving the

Dyson equation 3.8 repeatedly. Compact in size but accuracy preserved imaginary
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time and frequency grid are realized through orthogonal polynomial transformations

and interpolations.

The total energy of a many-electron system is a explicit functional of the Green’s

function, and can be expressed in multiple ways. Examples includes the Luttinger-

Ward functional and the Klein functional that are stationary at self-consistent G, and

the Galitskii-Migdal formulation that is known to be nonvariational. For scGW that

obeys the Dyson equation 3.8, all different approaches in principle yields the same

solution to the total energy. The Galitskii-Migdal equation therefore appears to be

appealing due to its simplicity:

EGM =
1

2
Tr[(h+ F )ρ] +

2

β

Nω∑
n

Re(Tr[G(iωn)Σ(iωn)]) (3.21)

The GW approximation has achieved great success for systems ranging from

atoms, molecues to solids (Aryasetiawan and Gunnarsson, 1998b; Caruso et al., 2013).

However, it also suffers from certain drawbacks including but not limited to electron

self-screening and wrong atomic limit. The latter one directly leads to its failure in

the capturing of strong electronic correlations.

3.2 The Self-energy Embedding Theory

To properly address the correlation effects beyond GW, embedding theories such as

density functional theory and dynamical mean-field theory (DFT+DMFT) (Georges

and Kotliar , 1992; Georges et al., 1996; Kotliar et al., 2006), GW approximation

and dynamical mean-Field theory(GW+DMFT) (Biermann et al., 2003; Werner and

Casula, 2016), density matrix embedding theory (DMET) (Knizia and Chan, 2012,

2013; Welborn et al., 2016), G W and extended dynamical mean-field(GW+EDMFT)

(Boehnke et al., 2016; Nilsson et al., 2017; Petocchi et al., 2020). the self-energy

embedding theory (SEET) (Lan et al., 2016; Zgid and Gull , 2017a; Lan and Zgid ,
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2017; Lan et al., 2017a; Tran et al., 2018; Rusakov et al., 2018; Iskakov et al., 2020c;

Yeh et al., 2021) has been devised.

Among the above methods, SEET combines the weakly correlated GW approxima-

tion with non-perturbative quantum impurity solver, and has been tested extensively

on 2D Hubbard model and molecular systems. In SEET, solutions to the theory are

obtained in a thermodynamic consistent fashion, and conservation laws are satisfied.

Unlike the DMFT methods that suffers from either the need of screened interaction

terms or ’double-counting’ and the impurity interaction parameters, SEET is free

from any empirical parameter inputs.

We describe the fundamental setup of SEET in this chapter. It’s application to

realistic solids has been demonstrated in Chapter V on a particular transition metal

oxide BiVO3.

3.2.1 SEET with GW

In the application of self-embedding theory to periodic systems, symmetrized

atomic orbitals (SAO) are used for the construction of the electronic structure Hamil-

tonian. The fully self-consistent GW result (GGW )k and (ΣGW )k serves as a starting

point for SEET. The former term is the GW momemtum-resolved Green’s funtion of

the lattice system, and is defined by the following Dyson equation:

(GGW (iωn))
k = [(iωn + µ)I− h0,k − (ΣGW (iωn))

k]−1. (3.22)

The fundamental idea of self-energy embedding is to insert non-perturbative cor-

rections to the GW self-energy ΣGW on a selected subset of orbitals that could poten-

tially have strong correlations involved. The self-energy expression in SEET is hence
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modified to be:

(ΣSEET )k = (ΣGW )k +
∑
A

((Σimp
A )ij − (ΣDC−GW

A )ij)δ(i,j)∈A
. (3.23)

In Eq.3.23, ΣGW represent the weakly correlated self-energy of the entire system, A is

a selected subset of orbitals denoted as impurity, with indices i, j ∈ A. These so-called

active orbitals or impurity orbitals are typically the most physically relevant orbitals

for the correlated problem that requires treatment from quantum impurity solvers

like Exact Diagonalization (ED). The term Σimp
A contains the non-perturbatively

self-energy contribution in the orbital sets A, and the corresponding double counting

correction is subtracted via the term ΣDC−GW
A .

Consequently, the interacting propagator G of the lattice is defined as:

(GSEET (iωn))
k = [(iωn + µ)I− h0,k − (ΣSEET (iωn))

k]−1. (3.24)

3.2.2 SEET Impurity Problem

To select the set of impurity orbitals local to each individual unit cell of the lattice,

one needs to perform Fourier transform of (GSEET (iωn))
k, (ΣSEET )k and h0,k from

k-space to real space, with Eq. 3.23 reformulated as:

(ΣSEET )RR′
= (ΣGW )RR′

+
∑
A

((Σimp
A )ij − (ΣDC−GW

A )ij)δRR′δ(i,j)∈A
(3.25)

, where R and R′ are indices of unit cells. The term δRR′ implies that the non-

perturbative self-energy correlation is applied to only the central unit cell of the

lattice for selected impurity orbitals. This leads to the definition of Green’s function

restricted to subspace A in SEET:

(GSEET (iωn))
RR
ij∈A = [(iωn + µ)I− h0,RR

ij∈A − (ΣSEET )RR
ij∈A −∆A

ij∈A(iωn)]
−1. (3.26)
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, where ∆A
ij is a matrix that contains the hybridization information between the

impurity orbitals and the environment. It is therefore important to notice that

[(GSEET )RR
ij∈A]

−1 ̸= (GSEET,−1)RR
ij∈A, and the differences between these two term is

where the hybridization function stems from. Eq. 3.26 can be re-ordered into To

solve for the for Σimp
A )ij, the auxiliary impurity GA propagator is defined as follows:

G−1
A = (iωn + µ)δij − (h0,RR

ij∈A + (ΣGW
∞ )RR

ij∈A − (ΣDC
∞,A)ij∈A)− Σimp

ij∈A −∆A
ij∈A (3.27)

, with Σ∞ be the static frequency independent self-energy.

3.2.3 SEET Self-Consistency

With the solved impurity problems and a known Σimp
A , one can update/evaluate

the total self-energy and the corresponding Green’s function of the lattice through

Eq. 3.23 and 3.24. New self-consistent loop start by Fourier transform into real space

(Eq. 3.26 and followed by a new solution to the impurity.

A self-consistency reached in Eq. 3.26 is viewed as a ’inner self-consistency loop’

of SEET. The loop can be continued with an updated one iteration of GW solution

followed by one iteration of ED impurity solver, and the ultimate converged solution

can be obtained with this so-called ’outer self-consistency loop’.
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CHAPTER IV

Gaussian Basis Sets for Solid-State Calculations

The work presented in this chapter has been published in the following paper:

Yanbing Zhou, Emanuel Gull, and Dominika Zgid, ”Material-Specific Optimization

of Gaussian Basis Sets against Plane Wave Data”, Journal of Chemical Theory and

Computation 2021 17 (9), 5611-5622

4.1 Introduction

In simulations of molecular systems, choosing a basis set for representing the

electronic wave function is a well established procedure (Nagy and Jensen, 2017;

Helgaker et al., 2000b; Davidson and Feller , 1986; Huzinaga, 1985). Gaussian basis

sets that express a single orbital as a linear combination of primitive Gaussian orbitals

are the most common molecular choice and multiple basis sets are available for most

elements (Schuchardt et al., 2007; Pritchard et al., 2019; Nagy and Jensen, 2017;

Boys , 1950).

In simulations of periodic solids, many more choices of computational bases are

commonly employed, including plane waves (Ihm et al., 1979; Kresse and Furthmüller ,

1996a) and linear augmented plane waves (LAPW) (Blaha et al., 2020b). Over the

years, DFT (Hohenberg and Kohn, 1964a; Kohn and Sham, 1965) calculations of

solids in the plane wave basis (Ihm et al., 1979; Kresse and Furthmüller , 1996a) were
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far more commonly used than Gaussian (Martin, 2004; Dovesi et al., 2018) or any

other basis set. This is due to the sparsity of the 2-body integrals in the plane wave

representation, as well as the systematic convergence of the basis with respect to the

number of plane waves (Kresse and Furthmüller , 1996b).

However, plane wave calculations are only affordable due to the low computa-

tional scaling of DFT. Thousands of plane waves are necessary to reach an accuracy

comparable to that of a Gaussian basis set (Kresse and Furthmüller , 1996b; Tosoni

et al., 2007) with many fewer basis functions. Consequently, when considering post-

DFT, ab-initio calculations with a higher scaling than the O(n3) scaling of DFT in

the number n of basis functions, Gaussian basis sets with fewer basis functions are an

appealing choice. For instance, even simple post-DFT methods such as the second or-

der Møller-Plesset perturbation theory (MP2) (Ayala et al., 2001; Pisani et al., 2005;

Maschio et al., 2007; Usvyat et al., 2007; Maschio et al., 2010; Del Ben et al., 2012;

Usvyat et al., 2011) result usually in higher a computational scaling with respect to

the number of basis functions than DFT.

Moreover, when a physical or chemical interpretation of results is desired, Gaussian

basis functions provide an invaluable tool to gain direct insight into the behavior of

electrons in chemically relevant atomic orbitals. While similar insight can be obtained

in a plane wave or LAPW calculation, it requires an additional projection procedure,

for example to Wannier orbitals (Marzari et al., 2012; Blaha et al., 2020a). Finally,

any calculation that requires the inclusion of core orbitals, such as the study of core

ionization processes, requires an explicit representation of those orbitals as provided

by Gaussian basis sets, rather than an effective treatment via pseudopotentials.

While there are many advantages of employing a Gaussian basis for the description

of solids, there are also clear drawbacks. First, while there is a systematic way of

improving a plane wave basis by adding additional orthogonal high-energy functions,

this is not easily possible in a Gaussian basis, since the basis functions do not form
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an orthonormal set. It is frequently observed that it is impractical or impossible to

reach convergence with respect to the number of basis functions by simply adding

additional Gaussian orbitals. This is due to linear dependencies that appear once

a large number of Gaussians with small exponents (describing diffuse orbitals) are

present (Cox and Fry , 1977; Karpfen, 1979; Suhai et al., 1982; Kudin and Scuseria,

2000; Heyd et al., 2005; Usvyat et al., 2011). Second, unlike in the case of plane waves,

the exponents and coefficients of Gaussians need to be optimized for a given reference

atomic problem. A minimization of the electronic energy with respect to a DFT

calculation may optimize the basis function spanning the space of occupied orbitals

(which determine the ground state energy) well, while leaving the ones necessary to

express unoccupied orbitals relatively unoptimized.

Direct comparisons of results obtained with plane waves to those obtained with

Gaussians are difficult, since plane wave bases rely on pseudopotentials, while Gaus-

sian basis either explicitly treat core orbitals or employ different types of pseudopo-

tentials. The differing description of core orbitals results in overall energy shifts of the

remaining orbitals, making it somewhat cumbersome to compare the band structures

between plane wave and Gaussian codes. Whether a differing band structure is a

result of an insufficient Gaussian basis or of a different description of the core is often

difficult to determine.

Despite of these disadvantages, the compactness of the basis and the ease of chemi-

cal/physical interpretation in the language of atomic orbitals are powerful advantages.

However, the overall availability of Gaussian basis sets for solids is very limited, and

the number of published basis sets for solids is a small fraction of the basis sets avail-

able for molecular systems (Peintinger et al., 2013; Vilela Oliveira et al., 2019; Laun

et al., 2018; Daga et al., 2020; Morales and Malone, 2020). This is especially true for

the 5th row transition metals such as lanthanides, and actinides that are common in

many newly synthesized interesting compounds. It motivates our work on revisiting
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the basis set optimization for solids.

One of the difficulties in choosing a good Gaussian basis for the description of solids

is that the same element may display vastly different physical and chemical properties

depending on its surroundings. For instance, different arrangements of carbon atoms

create graphite, diamond, and graphene crystal lattices with both insulating and

metallic character, respectively. Capturing these different behaviors with a single

generic basis set, as is done in molecular systems, is difficult. We therefore explore a

different paradigm in this work: rather than generating generic basis sets for solids,

we optimize our basis sets in a material specific way (see also (Daga et al., 2020) for

related ideas).

The ground state energy remains an important target for the optimization. In

addition, we minimize deviations from the orbital eigenvalues of a reference plane-

wave calculation, while keeping basis functions as linearly independent as possible.

Using the orbital eigenvalues of a reference calculation as an optimization target has

two effects. First, it avoids getting trapped in local energy minima which occur in

the optimization of deep-lying orbitals. Second, it allows us to also optimize the

unoccupied orbitals, which do not directly enter the expressions for the ground state

energy.

The material specific optimization approach retains the obvious advantage of

Gaussian orbitals in that it produces compact bases with straightforward physi-

cal/chemical interpretation that can then be used in beyond-DFT calculations with

higher-scaling methods. At the same time, by estimating the discrepancies between

a Gaussian basis set and a non-Gaussian reference calculation, it eliminates the main

disadvantage of working in a potentially incomplete basis set, and allows us to quan-

tify basis set errors. We stress that this procedure is general and other reference

calculations such as numerical bases or LAPWs may be used instead of plane waves.

In the reminder of this chapter, we describe the optimization algorithm (Sec. 4.2),
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discuss results for commonly studied solids (Sec. 4.3), and present conclusions in

Sec. 4.4.

4.2 Method

Our basis set construction consists of two parts: (I) an atom-specific but materials-

independent generation of exponents and coefficients for an initial Gaussian basis set,

followed by (II) the optimization of the initial basis set in a material specific manner

for a given compound. In this section, we introduce Gaussian basis functions in 4.2.1,

describe the initial optimization of the atomic problem in 4.2.2, and describe the

subsequent material-specific optimization of the valence states in 4.2.3. The procedure

is illustrated in Fig. 4.1.

4.2.1 Gaussian Orbitals

A basis set is defined as a set of single-particle functions (usually non-orthogonal

atomic orbitals) that are then employed to build molecular orbitals (Slater , 1930). In

Gaussian basis sets, contracted Gaussian-type orbitals (cGTOs) are used to approxi-

mate atomic orbitals. The expansion of a single cGTO employs a linear combination

of primitive Gaussian-type orbitals (GTOs) (Jensen, 2006; Helgaker et al., 2000a)

ΦcGTO(x, y, z) = N

Nprim∑
i=1

ciΦ
GTO
i (x, y, z), (4.1)

where ci is the contraction coefficient, Nprim describes the number of primitive GTOs,

and N is a normalization constant. A primitive GTO, ΦGTO(x, y, z) is expressed in

terms of spatial coordinates x, y, and z and integer exponents a, b, and c as

ΦGTO(x, y, z) = Ñxaybzce−ζr2 , (4.2)
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basis set generation

valence optimization

generate set of Gaus-
sian exponents {ζi}

obtain uncontracted basis
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high level correlated
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conjugate gradient optimizer

update {Ak}
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optimization
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basis set pruning
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ral orbital occupations
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Gaussian basis set

periodic DFT-LDA calculation{ζi} and {ci}
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electron part

no
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Figure 4.1: The basis set optimization scheme. Upper block: algorithmic steps for
the generation of the initial exponents and contraction coefficients of the
basis set. Lower block: steps for material-specific optimization of the
valence orbitals.
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where a+ b+ c controls the angular momentum quantum number, ζ is the exponent

of the GTO controlling the width of the orbital, and Ñ is a normalization constant.

Large ζ results in a tight function while small ζ gives a diffuse function.

4.2.2 Generation of Initial Basis Set

The first step of our procedure (top panel of Fig. 4.1) generates exponents and

contraction coefficients for each of the atoms. This procedure is not material specific

and it is primarily used to optimize the cGTOs for the atomic core.

While the basis set generation procedure detailed above is not new, we describe

it here for the sake of completeness. For many elements, it may be possible to start

from existing atomic basis sets. However, for “more exotic” elements such as rare

earth metals a generation of the atomic basis may be either necessary or desired.

4.2.2.1 Generation of starting exponents

To find an initial set of exponents ζi for the primitive Gaussians ΦGTO
i that will

later be assembled into cGTOs, we follow the procedure described in Ref. (Petersson

et al., 2003). There, the natural logarithm of each of the exponents ζi, i = 1, . . . , Nprim

is expanded into an orthonormal Legendre polynomial expansion

ln ζi =
kmax∑
k=0

AkPk(
2i− 2

Nprim − 1
− 1), (4.3)

in terms of coefficients Ak which are common for different ζi exponents. Nprim is

the number of Gaussian primitives in a given contracted orbital, Pk is the Legendre

polynomial of order k. The initial set of parameters Ak are obtained according to

the procedure described in Ref. (Petersson et al., 2003). In our work, we set kmax =

Nprim − 1 or kmax = 6, whichever is greater. The expansion into a Legendre basis

eliminates the problem of linear dependencies that occurs when initial values of the
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exponents are optimized independently.

4.2.2.2 Initial optimization of exponents and coefficients

With the initial set of {ζi} obtained, a first uncontracted atomic basis set is

generated with a total number of kmax + 1 variational parameters Ak. This uncon-

tracted basis is employed as a starting guess for the energy minimization in an atomic

Hartree-Fock (HF) calculation. We use a conjugate gradient minimization (Hestenes

and Stiefel , 1952; Adams et al., 2014) scheme to find the variational parameters {Ak}

that minimize the electronic energy of the atom. Subsequently, the atom parameters

are re-optimized in the configuration interaction singles and doubles (CISD) method.

Once the optimization of the ζi converges, contraction coefficients ci for cGTOs

can be found. They are generated as described in Ref. (Almlof and Taylor , 1987) by

evaluating the expansion coefficients of the natural orbitals obtained by CISD in the

basis of primitive GTOs. After this step, the number of cGTOs is then equal to the

number of uncontracted functions.

4.2.2.3 Basis set pruning

Based on the natural orbital occupations of the CISD solution, many cGTOs typ-

ically have occupancies close to zero. We eliminate these cGTOs from the calculation

by choosing to retain only the ones with an occupation threshold greater than 0.001.

In addition, diffuse Gaussian primitives with exponents smaller than 0.1 are elim-

inated, in analogy to Refs. (Dovesi et al., 1990; Peintinger et al., 2013; Vilela Oliveira

et al., 2019). This approximation was found to remove numerical instabilities in the

calculation of solids. The resulting atomic orbitals can then be separated into core

and valence orbitals.
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4.2.3 Valence Optimization

The set of exponents and contraction coefficients obtained from Sec. 4.2.2.2 and

pruned in Sec. 4.2.2.3 form the starting point of the valence optimization. Unlike the

calculations in Sec. 4.2.2.2 and Sec. 4.2.2.3, this procedure is material specific and

adjusts the valence orbitals to the chemical environment present in a given solid, while

the core configuration is assumed to be material-independent and remains frozen.

A basis optimization where only the total energy Etot is minimized has the ten-

dency to optimize only the lowest eigenvalues well. However, the optimization of

higher occupied orbitals may then become more difficult, since they contribute only

little to the lowering of the overall DFT total electronic energy which is partially

proportional to the sum of occupied orbital eigenvalues. As a consequence, the opti-

mization may get stuck in a local minimum.

To remedy this issue, we choose an additional optimization criterion based on the

difference between the molecular orbital (MO) energy at each k-point between the

Gaussian calculation and a reference calculation. In our case, the reference is derived

from a plane-wave calculation of the same system, taking advantage of the fact that

the quality of the plane-wave basis set can be systematically controlled by a single

parameter, the cut-off energy (ecut), and can be converged with respect to the basis

set size. Note, however that different pseudopotential present in the Gaussian and/or

the plane wave calculation may lead to an overall shift of all energy bands. This shift

is captured by an overall orbital-independent but potentially k-dependent energy shift

parameter Λ(k). The procedure of finding Λ(k) is explained in Sec. 4.2.3.1.

The minimization of the deviation from a reference band structure is characterized

by a functional ∥G({ζi, ci})− P (ecut)− Λ(k)∥F , where G({ζi, ci}) are MO eigenvalues

of the Gaussian basis set calculation at each k-point, P (ecut) are the corresponding

plane-wave eigenvalues, and Λ(k) is a k-dependent shift value. || · ||F denotes the

Frobenius norm (Golub and Van Loan, 1996).
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A third optimization criterion is given by the condition numbers (Cheney and

Kincaid , 2007) of the overlap matrices at each k-point, which are minimized to obtain

as little linear dependence in the resulting basis as possible. In a nearly linearly

dependent Gaussian basis, the condition number can be very large or even infinite.

Acceptable conditions numbers usually are smaller than 105. Consequently, denoting

the vector of condition numbers of the overlap matrices as κ⃗, the minimization of

the term γ2∥κ⃗({ζi, ci}∥2), with ∥ · ∥2 denoting the Euclidian norm, provides a penalty

for linearly dependent solutions. Constraints on the condition number of the overlap

matrix are frequently used in this context, see e.g. Refs. (VandeVondele and Hutter ,

2007b; Kuhne et al., 2020; Lu et al., 2019; Daga et al., 2020).

These three conditions lead to a minimization problem of the valence orbitals for a

set of exponents of the Gaussian primitives and corresponding contraction coefficients

{ζi, ci} that minimize the functional

Ω({ζi, ci}) = Etot({ζi, ci})+

+ γ1∥G({ζi, ci})− P (ecut)− Λ(k)∥F (4.4)

+ γ2∥κ⃗({ζi, ci})∥2,

where γ1 and γ2 are weight factors that control the relative contributions of each of

the three terms. In this work, γ1 was set between 100 and 103 and γ2 between 10−5

and 1.

In practice, we minimize the functional Ω({ζi, ci}) with a combination of a conju-

gate gradient optimizer and a non-gradient based pattern search (Hooke and Jeeves ,

1961) optimization which we use to overcome local minima.

The bottom half of Fig. 4.1 illustrates the workflow for optimizing the basis func-

tions for the valence orbitals. After convergence of the valence optimization, the core

orbitals can be selectively re-optimized.
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Note that the valence optimization method described here can also be applied

to established basis sets, adapting a general-purpose basis set to a specific material

context.

4.2.3.1 The value of Λ in the eigenvalue optimization

A systematic shift Λ(k) is frequently present between the plane wave and Gaussian

basis set codes. This quantity frequently makes the comparisons of band diagrams

between the plane wave codes and Gaussian orbital codes inconvenient. While in

general the value of Λ is k-dependent, in practice since the core orbitals are well

localized they form flat and approximately k-independent energy bands. This is why

in this work, we assume that Λ is k-independent.

The value of Λ(k) can be evaluated by noticing several facts. First, we assume

that the pseudopotential in the converged plane wave calculations was created to

account for the low lying occupied orbitals and it recovers the energies of low lying

occupied orbitals very accurately. (Cao and Dolg , 2011; Dolg and Cao, 2012) Then

an all-electron calculation or a calculation with an accurate pseudopotential in an

infinite/optimal Gaussian basis set can yield eigenvalues that are different only by a

constant factor that is result of a freedom to add a constant shift in the pseudopo-

tentials employed during the plane wave calculation.

Consequently, for every k-point, in an optimized bases the value of the shift Λ

can be found using the least square fit between eigenvalues pj in the plane wave basis

and gj Gaussian basis min
∑Neig

j (pj − gj − Λ)2, where Neig is a chosen number of

eigenvalues in the summation (Neig can be equal to the number of occupied eigenvalues

or it can also include some unoccupied eigenvalues, see the following discussion). We

can find the shift Λ by finding the minimum of the above equation as a function of
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Λ, ∂
∂Λ

(
∑Neig

j (pj − gj − Λ)2) = 0. Finally, the value of the Λ shift is given by

Λ =

Neig∑
j

(pj − gj)

2Neig

. (4.5)

The knowledge of the value of Λ allows us to use the constraint:

∥G({ζi, ci})− P (ecut)− Λ(k)∥F helping the optimization of eigenvalues and to match

approximately (within the desired criteria) the occupied eigenvalues. It also can be

used to optimize and match a selected number of unoccupied eigenvalues. In this

way, the quality of the Gaussian basis is rather systematically improved since we can

choose how many unoccupied eigenvalues are being optimized. We can also observe

which groups of AO orbitals have to be added to the basis to match increasingly

higher lying virtual eigenvalues.

Moreover, finding the value of the shift described above, allows us to easily examine

the quality of Gaussian basis sets prior to their usage by comparing the results to a

converged plane wave calculation. Note also the even if a user does not desire to use

such a specific constraint relying on matching the eigenvalues, it can be used to drive

the optimization in the initial optimization steps and subsequently can be released

allowing us to only insist on the optimization of the value of the total energy during

the later steps.

4.3 Results

In this section, we assess the generation and optimization scheme described in the

previous sections. Our discussion consists of two parts. In Sec. 4.3.1, we showcase

the accuracy of the bases generated for simple monoatomic solids such as diamond,

graphite, and silicon. We then use the optimization scheme developed in Sec. 4.2.3 to

optimize the existing basis sets pob-DZVP-rev2(Peintinger et al., 2013; Vilela Oliveira

et al., 2019; Laun et al., 2018) and pob-TZVP-rev2 in a material specific way for the

36



solids BN, MnO, MoS2, NiO. We also to assess the quality of existing GTH basis

sets (VandeVondele and Hutter , 2007a).

Unless otherwise mentioned, all the calculations presented here using Gaussian

basis sets are performed with CRYSTAL17 (Dovesi et al., 2017) using DFT with the

LDA. The reference calculations were performed in a plane wave basis in GPAW

(Mortensen et al., 2005) with an energy cutoff of 2000 eV and a Monkhorst-Pack

grid of 8 × 8 × 8 k-points. We use the DAKOTA (Adams et al., 2014) conmin-frcg

DAKOTA coliny-pattern-search package as optimizers. For all cases analyzed, the

optimizer converges within 100 optimization steps.

4.3.1 Basis generation for diamond, graphite, and silicon

This basis generation scheme is intended to be material specific and a different

basis set should be generated for every compound examined. While some of these

bases for a given atom may be transferable between different materials, we generally

believe that due to significantly different properties of solids containing the same

atoms (eg. diamond, graphite, and graphene), a materials specific basis optimization

is preferred in calculations of solids.

The initial atomic basis sets for C and Si are generated using the method described

in Sec. 4.2.2.1 and schematically presented in the yellow shaded block of Fig. 4.1. Note

that the high level method used to perform correlated calculations in an uncontracted

basis for C and Si atoms is configuration interaction singles and doubles (CISD) from

Psi4 (Parrish et al., 2017). This step allows us to find the initial set of exponents and

contraction coefficients that are then pruned, taking advantage of natural orbitals.

Subsequently, each shell present in the core part of the basis is first optimized in-

dividually using the functional from Eq. 4.4. The resulting core basis functions are

then frozen and the valence basis functions are optimized by the conjugate gradient

optimizer, with a pattern search optimizer as a further refinement tool. This opti-
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Basis Sets Diamond Graphite Silicon

OPT 4s3p1d 6s5p1d 4s3p1d

CATTI-1993 3s2p1d 3s2p1d *

DOVESI-1990 3s2p1d 3s2p1d *

VALENZANO-2006 3s2p1d 3s2p1d *

GATTI-1994 3s2p1d 3s2p1d *

NADA-1996 * * 4s3p1d

PASCALE-2005 * * 5s4p1d

NADA-1990 * * 4s3p1d

DARCO-1993 * * 5s4p1d

TOWLER-1998 * * 6s5p1d

POB-TZVP-2012 4s3p1d 4s3p1d 5s4p1d

HEYD-2005 4s3p1d 4s3p1d 6s5p1d

POB-DZVP-REV2 3s2p1d 3s2p1d 4s3p1d

POB-TZVP-REV2 4s3p1d 4s3p1d 5s4p1d

dcm[Cdiam]-TZVP 5s3p2d1f * *

Table 4.1: Number of shells in each of the basis sets listed in Fig. 4.2. A star (*)
denotes that a given basis was not employed in a given simulation.

mization procedure can be done for the atom or in a material specific way, where the

valence part of the basis is then reoptimized again for each of the compounds.

To examine the quality of the generated basis sets, we compare them to a list of

existing basis sets for solid state calculations (CRYSTAL, 2021) of diamond, graphite,

and silicon. In Fig. 4.2 we show the results of the comparison between the basis set

obtained from the atomic level optimization, the material specific optimized basis set,

and the existing basis sets listed in literature.

For diamond (see Fig. 4.2 panel a)) the basis set generated has 4 s shells, 3 p

shells, and 1 d shell. The number of primitives in each shell is illustrated in Tab. 4.3.

We observe that this initial atomic basis set, before the material specific optimiza-
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5

III. RESULTS

In this section, we assess the generation and optimiza-
tion scheme described in the previous sections. Our dis-
cussion consists of two parts. In Sec. IIIA, we show-
case the accuracy of the bases generated for simple
monoatomic solids such as diamond, graphite, and sil-
icon. We then use the optimization scheme developed in
Sec. II C to optimize the existing basis sets pob-DZVP-
rev2 and pob-TZVP-rev2 in a material specific way for
the solids BN, MnO, MoS2, NiO. We also to assess the
quality of existing GTH basis sets.

Unless otherwise mentioned, all the calculations pre-
sented here using Gaussian basis sets are performed with
CRYSTAL17 [51] using DFT with the local density ap-
proximation (LDA). The reference calculations were per-
formed in a plane wave basis in GPAW [52] with an en-
ergy cuto↵ of 2000 eV and a Monkhorst-Pack grid of
8⇥8⇥8 k-points. We use the DAKOTA [42] conmin-frcg
DAKOTA coliny-pattern-search package as optimizers.
For all cases analyzed, the optimizer converges within
100 optimization steps.

A. Basis generation for diamond, graphite, and
silicon

This basis generation scheme is intended to be material
specific and a di↵erent basis set should be generated for
every compound examined. While some of these bases for
a given atom may be transferable between di↵erent mate-
rials, we generally believe that due to significantly di↵er-
ent properties of solids containing the same atoms (eg.
diamond, graphite, and graphene), a materials specific
basis optimization is preferred in calculations of solids.

The initial atomic basis sets for C and Si are generated
using the method described in Sec. II B 1 and schemat-
ically presented in the yellow shaded block of Fig. I.
Note that the high level method used to perform cor-
related calculations in an uncontracted basis for C and
Si atoms is configuration interaction singles and doubles
(CISD) from Psi4 [53]. This step allows us to find the
initial set of exponents and contraction coe�cients that
are then pruned, taking advantage of natural orbitals.
Subsequently, each shell present in the core part of the
basis is first optimized individually using the functional
from Eq. 4. The resulting core basis functions are then
frozen and the valence basis functions are optimized by
the conjugate gradient optimizer, with a pattern search
optimizer as a further refinement tool. This optimiza-
tion procedure can be done for the atom or in a material
specific way, where the valence part of the basis is then
reoptimized again for each of the compounds.

To examine the quality of the generated basis sets, we
compare them to a list of existing basis sets for solid
state calculations [54] of diamond, graphite, and silicon.
In Fig. 2 we show the results of the comparison between
the basis set obtained from the atomic level optimization,

the material specific optimized basis set, and the existing
basis sets listed in literature.

(a)

(b)

(c)

Figure 2. A comparison of generated bases with existing
Gaussian bases for : (a) diamond; (b) graphite; (c) silicon.

For diamond (see Fig. 2 panel a)) the basis set gener-
ated has 4 s shells, 3 p shells, and 1 d shell. The number
of primitives in each shell is illustrated in Tab. III.

We observe that this initial atomic basis set, before

Figure 4.2: A comparison of generated bases with existing Gaussian bases for :(a) dia-
mond;(b) graphite;(c) silicon. On the Y axis, Total Energy stands for the
total energy obtained in an LDA calculation Etot({ζi, ci}) from Eq. 4.4,
MO Energy Norm corresponds to the ∥G({ζi, ci})− P (ecut)− Λ(k)∥F
term from Eq. 4.4, OMCN stands for the overlap matrix condition num-
ber which is the 3rd term ∥κ⃗({ζi, ci})∥2 from Eq. 4.4.
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tion, has moderately high electronic energy comparable to older available basis sets

such as the one optimized by Gatti (Gatti et al., 1994) in 1994. However, both its

energy and its MO norm are much lower than pob-DZVP-rev2 (Vilela Oliveira et al.,

2019). The optimized basis is comparable to pob-TZVP-rev2 (Vilela Oliveira et al.,

2019) and the original pob-TZVP (Peintinger et al., 2013) basis as well as the basis

developed by Heyd (Heyd et al., 2005). While the electronic energy in these bases is

slightly lower, the overlap norm and the MO eigenvalue norm are higher.

We also compared our optimized basis to the material specific optimized basis set

for diamond listed in Ref. (Daga et al., 2020), that we call it here dcm[Cdiam]-TZVP.

The electronic energy in the dcm[Cdiam]-TZVP basis is somewhat lower than in pob-

TZVP-rev2 while the overlap norm is greatly minimized. while our optimized basis

yields a higher energy than the dcm[Cdiam]-TZVP basis, we have significantly fewer

basis functions in our basis explaining the difference in energy. For the number of

basis functions in each of the listed bases see Tab. 4.1. These results suggest that

both of these bases that were optimized in material specific way are good alternatives

to the standard library basis sets and they can yield excellent energies while avoiding

problems with the linear dependencies appearing in bases for periodic problems. A

list of the most diffuse exponents present in the bases listed in Fig. 4.2 is given in

Tab. 4.2.

For graphite (see Fig. 4.2 panel b)), the basis set generated has the same shell

structure as the diamond basis, while the number of Gaussian primitives are slightly

different, as shown in Tab. 4.4. The optimized basis is again comparable in its quality

to the pob-TZVP-rev2 (Vilela Oliveira et al., 2019). However, it has a much lower

MO norm while the norm of the overlap remains comparable.

For silicon (see Fig. 4.2 panel c)), the basis set generated has 4 s shells, 3 p

shells, and 1 d shell. The number of primitives in each shells is shown in Tab. 4.5.

The optimized basis yields comparable results to the pob-TZVP bases. However, the
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Basis Sets Diamond Graphite Silicon

OPT 0.226 0.189 0.110

CATTI-1993 0.260 0.260 *

DOVESI-1990 0.196 0.196 *

VALENZANO-2006 0.146 0.146 *

GATTI-1994 0.169 0.169 *

NADA-1996 * * 0.193

PASCALE-2005 * * 0.130

NADA-1990 * * 0.170

DARCO-1993 * * 0.270

TOWLER-1998 * * 0.127

POB-TZVP-2012 0.164 0.164 0.115

HEYD-2005 0.185 0.185 0.120

POB-DZVP-REV2 0.210 0.210 0.140

POB-TZVP-REV2 0.164 0.164 0.135

dcm[Cdiam]-TZVP 0.201 * *

Table 4.2: The exponent of the most diffuse GTO for each basis sets. A star (*)
denotes that a given basis was not employed in a given simulation.
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optimized basis has a lower MO norm while having a slightly higher overlap norm.

In general, the total energies of our basis sets are comparable to the pob-TZVP

basis sets, while the MO energy norms are much lower and the overlap condition

numbers remain reasonable. This is partly due to the fact that we are optimizing

multiple parameters at once, i.e., optimizing both the eigenvalue norm and the total

energy together, instead of minimizing the energy alone. Note that the MO constraint

causes the equal optimization of all eigenvalues, independent of their magnitude. This

means that we can design a basis to optimize a particular set of eigenvalues of interest,

either in the occupied part, or in the unoccupied part. We can also choose to optimize

a certain number of bands in a specific energy window.

It is also worth mentioning that, although the three terms in Ω({ζi, ci}) from

Eq. 4.4 may appear independent of each other, mutual dependencies between them

are observed. As demonstrated in Fig. 4.2, the MO norm and the total energy value

varying patterns are consistent with each other independent of a specific basis set.

When the MO norm is high the total energy associated with it also tends to be

higher, and once the MO norm is minimized the resulting energy is low. This trend

is expected and confirms that MO norm is a good indicator of the basis set quality

and can be used as a driving factor during the basis set optimization. The overlap

norm anti-correlates with the value of the total energy. When the overlap norm is

very small, the total energy tends to increase. This is expected, as the optimization

of any basis has to balance orthogonality of the basis functions with the overall the

lowering of the total energy.

4.3.2 Material specific optimization of existing bases

4.3.2.1 MoS2

For MoS2 (Pearson symbol: hP6, crystal system: hexagonal, space group number:

194) the calculations performed in the pob-DZVP-rev2 basis show that the high
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Shell
Index

s-shell p-shell d-shell

1 6

2 4 4

3 1 1 1

4 1 1

Table 4.3: Number of Gaussian primitives in each shell in the optimized C-diamond
basis set.

Shell
Index

s-shell p-shell d-shell

1 6

2 4 3

3 1 1 1

4 1 1

Table 4.4: Number of Gaussian primitives in each shell in the optimized C-graphite
basis set.

Shell
Index

s-shell p-shell d-shell

1 8

2 8 4

3 1 2 1

4 1 1

5 1 1

6 1 1

Table 4.5: Number of Gaussian primitives in each shell in the optimized Si basis set.
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(a) (b) (c) (d)

Figure 3. MoS2 band structure plots: (a) plane-wave basis calculation with cut o↵ energy: 2000eV; (b) Gaussian basis
calculation with original pob-DZVP-rev2-basis; (c) Gaussian basis calculation with original pob-TZVP-rev2-basis; and, (d)
Gaussian basis calculation with optimized pob-TZVP-rev2-basis.

Figure 4. Values of the total energy (purple curve), MO en-
ergy norm (dark green curve), and overlap norm (light green
curve) during the minimization of the functional ⌦ of Eq. 4
for solid MoS2. The minimization was performed using a con-
jugate gradient optimizer. For details see Sec. III B 1.

present in Eq. 4 separately and examine the value of the
total energy, the norm of the overlap matrix, and the
di↵erence in the MO eigenvalues for every k-point after
accounting for the presence of the constant shift.

In the optimization process, we find that the Mo op-
timized pob-TZVP-rev2 is significantly di↵erent from its
library version. The changes due to the optimization of
the pob-TZVP-rev2 basis of S are less pronounced but
also important.

2. NiO

For NiO (Pearson symbol: cF8, crystal system: fcc
rocksalt, space group number 225, AFM) the calculated
band structure Fig.5(b) and Fig.5(c) using pob-DZVP-
rev2 and pob-TZVP-rev2 basis,respectively are both
qualitatively inconsistent with the reference Fig.5(a) for

the unoccupied band marked in light green. Moreover,
the pob-TZVP-rev2 basis does not lead to any significant
improvement over pob-DZVP-rev2. We attempted the
optimization of both pob-DZVP-rev2 and pob-TZVP-
rev2. However, an optimization with the existing number
of shells in these bases did not improve the quality of the
resulting band structure. To remedy this, we added an
additional 4d valence shell to the oxygen atom in the
pob-TZVP-rev2-basis. In Fig.5(d), we illustrate that af-
ter optimizing the basis set in this updated format, the
inconsistency for the unoccupied bands of the Gaussian
basis set is fully removed when compared to the plane
wave basis.

C. Assessment of the basis set quality

The di↵erence in the eigenvalues between the plane
wave and Gaussian basis set kG � P � ⇤kF can be used
as a criterion for a quick assessment of the basis quality
in addition to the visual inspection of the di↵erences.
Here, we examine di↵erences between the pob-DZVP-
rev2 and pob-TZVP-rev2 bases for the NiO and MoS2

solids studied previously, in addition to hexagonal BN
and MnO solids. We show the band diagrams below for
BN and MnO. the band diagrams for NiO and MoS2 were
presented in the previous section.

1. BN

For BN (Pearson symbol: hP4, crystal system: hexag-
onal, space group number: 194), as shown in Fig. 6, the
pob-DZVP-rev2-basis shows a qualitative discrepancy in
the unoccupied part of the band structure near the Fermi
level (that is marked in light green on the band structure
diagram) when compared to the plane-wave reference cal-

Figure 4.3: MoS2 band structure plots: (a) plane-wave basis calculation with cut off
energy: 2000eV; (b) Gaussian basis calculation with original pob-DZVP-
rev2-basis; (c) Gaussian basis calculation with original pob-TZVP-rev2-
basis; and, (d) Gaussian basis calculation with optimized pob-TZVP-
rev2-basis.

lying occupied band marked in light green and shown in Fig. 4.3 panel b) do not

show the band crossings that are present in the reference plane waves calculations.

The calculations conducted in the pob-TZVP-rev2 presented in Fig. 4.3 panel c)

do not show a qualitative improvement when compared to pob-DZVP-rev2 results.

Optimization procedures following Sec. 4.2.2.3 are performed with Mo’s ECP (Andrae

et al., 1990), 4s, 4p and 4d shell frozen and S’s 1s, 2s and 2p core frozen. We observe

that with the existing number of shells in the basis set, the optimization of pob-

DZVP-rev2 basis does not recover the band crossing present in the reference. For the

pob-TZVP-rev2 basis, our optimization scheme helps to improve the predicted band

structure, see Fig. 4.3 panel d), and is showing a consistently better band structure

behavior when comparing to the reference result. Fig. 4.4 shows the convergence of

the material specific optimization process where we start with the pob-TZVP-rev2

basis. The values of the three individual terms of Eq. 4.4: the value of the total

energy, the norm of the overlap matrix, and the difference in the MO eigenvalues

for every k-point after accounting for the presence of the constant shift are displayed

separately for each of the cycles.
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(a) (b) (c) (d)

Figure 3. MoS2 band structure plots: (a) plane-wave basis calculation with cut o↵ energy: 2000eV; (b) Gaussian basis
calculation with original pob-DZVP-rev2-basis; (c) Gaussian basis calculation with original pob-TZVP-rev2-basis; and, (d)
Gaussian basis calculation with optimized pob-TZVP-rev2-basis.

Figure 4. Values of the total energy (purple curve), MO en-
ergy norm (dark green curve), and overlap norm (light green
curve) during the minimization of the functional ⌦ of Eq. 4
for solid MoS2. The minimization was performed using a con-
jugate gradient optimizer. For details see Sec. III B 1.

present in Eq. 4 separately and examine the value of the
total energy, the norm of the overlap matrix, and the
di↵erence in the MO eigenvalues for every k-point after
accounting for the presence of the constant shift.

In the optimization process, we find that the Mo op-
timized pob-TZVP-rev2 is significantly di↵erent from its
library version. The changes due to the optimization of
the pob-TZVP-rev2 basis of S are less pronounced but
also important.

2. NiO

For NiO (Pearson symbol: cF8, crystal system: fcc
rocksalt, space group number 225, AFM) the calculated
band structure Fig.5(b) and Fig.5(c) using pob-DZVP-
rev2 and pob-TZVP-rev2 basis,respectively are both
qualitatively inconsistent with the reference Fig.5(a) for

the unoccupied band marked in light green. Moreover,
the pob-TZVP-rev2 basis does not lead to any significant
improvement over pob-DZVP-rev2. We attempted the
optimization of both pob-DZVP-rev2 and pob-TZVP-
rev2. However, an optimization with the existing number
of shells in these bases did not improve the quality of the
resulting band structure. To remedy this, we added an
additional 4d valence shell to the oxygen atom in the
pob-TZVP-rev2-basis. In Fig.5(d), we illustrate that af-
ter optimizing the basis set in this updated format, the
inconsistency for the unoccupied bands of the Gaussian
basis set is fully removed when compared to the plane
wave basis.

C. Assessment of the basis set quality

The di↵erence in the eigenvalues between the plane
wave and Gaussian basis set kG � P � ⇤kF can be used
as a criterion for a quick assessment of the basis quality
in addition to the visual inspection of the di↵erences.
Here, we examine di↵erences between the pob-DZVP-
rev2 and pob-TZVP-rev2 bases for the NiO and MoS2

solids studied previously, in addition to hexagonal BN
and MnO solids. We show the band diagrams below for
BN and MnO. the band diagrams for NiO and MoS2 were
presented in the previous section.

1. BN

For BN (Pearson symbol: hP4, crystal system: hexag-
onal, space group number: 194), as shown in Fig. 6, the
pob-DZVP-rev2-basis shows a qualitative discrepancy in
the unoccupied part of the band structure near the Fermi
level (that is marked in light green on the band structure
diagram) when compared to the plane-wave reference cal-

Figure 4.4: Values of the total energy (purple curve), MO energy norm (dark green
curve), and overlap norm (light green curve) during the minimization of
the functional Ω of Eq. 4.4 for solid MoS2. The minimization was per-
formed using a conjugate gradient optimizer. For details see Sec. 4.3.2.1.

45



In the optimization process, we find that the Mo optimized pob-TZVP-rev2 is

significantly different from its library version. The changes due to the optimization

of the pob-TZVP-rev2 basis of S are less pronounced but also important. 8

(a) (b) (c) (d)

Figure 5. NiO band structure plots: (a) plane-wave basis calculation with cut o↵ energy: 2000eV; (b) Gaussian basis calculation
with original pob-DZVP-rev2-basis; (c) Gaussian basis calculation with original pob-TZVP-rev2-basis; and, (d) Gaussian basis
calculation with pob-TZVP-rev2-basis and an additional d shell.

(a) (b) (c)

Figure 6. BN band structure plots: (a) plane-wave basis calculation with cut o↵ energy: 2000eV; (b) Gaussian basis calculation
with pob-DZVP-rev2-basis; (c) Gaussian basis calculation with pob-TZVP-rev2-basis.

culations. The pob-TZVP-rev2-basis is qualitatively con-
sistent with the reference.

2. MnO

For MnO (Pearson symbol: cF8, crystal system: fcc
rocksalt, space group number: 225, AFM) the pob-
DZVP-rev2 basis produces a better band structure re-
sult than the pob-TZVP-rev2-basis when compared with
the plane wave reference. This indicates that the extra
shells added in the TZVP basis are not essential or not
optimized enough for a quantitatively correct description
of the higher lying bands of MnO. This is illustrated in
Fig.7, where the incorrectly recovered bands are marked
in light green.

In Tab. IV, we show the MO eigenvalue norm eval-
uated for pob-DZVP-rev2 and pob-TZVP-rev2 for the
systems studied in this paper. We stress that this norm
is evaluated for the valence orbitals and does not include
core orbitals. The norms for the valence occupied and
unoccupied orbitals are printed separately.

From Tab. IV, we see that for BN there is a dramatic
improvement once the basis set is increased.

For NiO, the quality of the pob-DZVP-rev2 and pob-
TZVP-rev2 is unchanged and is consistent with the band
diagram plotted in Fig. 5. However, our observation does
not indicate that the total DFT energy evaluated in pob-
TZVP-rev2 is higher than in the pob-DZVP-rev2 basis.
The pob-TZVP-rev2 energy is lower due to the optimiza-
tion that happened for the core orbitals, while the valence
bands remained mostly una↵ected.

Figure 4.5: NiO band structure plots: (a) plane-wave basis calculation with cut off
energy: 2000eV; (b) Gaussian basis calculation with original pob-DZVP-
rev2-basis; (c) Gaussian basis calculation with original pob-TZVP-rev2-
basis; and, (d) Gaussian basis calculation with pob-TZVP-rev2-basis and
an additional d shell.

4.3.2.2 NiO

For NiO (Pearson symbol: cF8, crystal system: fcc rocksalt, space group number

225, AFM) the calculated band structure Fig. 4.5 panel b) and Fig. 4.5 panel c)

using pob-DZVP-rev2 and pob-TZVP-rev2 basis,respectively are both qualitatively

inconsistent with the reference Fig. 4.5 panel a) for the unoccupied band marked

in light green. Moreover, the pob-TZVP-rev2 basis does not lead to any significant

improvement over pob-DZVP-rev2. We attempted the optimization of both pob-

DZVP-rev2 and pob-TZVP-rev2. However, an optimization with the existing number

of shells in these bases did not improve the quality of the resulting band structure.

To remedy this, we added an additional 4d valence shell to the oxygen atom in the

pob-TZVP-rev2-basis. In Fig. 4.5 panel d), we illustrate that after optimizing the

basis set in this updated format, the inconsistency for the unoccupied bands of the
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Gaussian basis set is fully removed when compared to the plane wave basis.

4.3.3 Assessment of the basis set quality

The difference in the eigenvalues between the plane wave and Gaussian basis set

∥G− P − Λ∥F can be used as a criterion for a quick assessment of the basis quality

in addition to the visual inspection of the differences. Here, we examine differences

between the pob-DZVP-rev2 and pob-TZVP-rev2 bases for the NiO and MoS2 solids

studied previously, in addition to hexagonal BN and MnO solids. We show the

band diagrams below for BN and MnO. the band diagrams for NiO and MoS2 were

presented in the previous section.

4.3.3.1 BN

8

(a) (b) (c) (d)

Figure 5. NiO band structure plots: (a) plane-wave basis calculation with cut o↵ energy: 2000eV; (b) Gaussian basis calculation
with original pob-DZVP-rev2-basis; (c) Gaussian basis calculation with original pob-TZVP-rev2-basis; and, (d) Gaussian basis
calculation with pob-TZVP-rev2-basis and an additional d shell.

(a) (b) (c)

Figure 6. BN band structure plots: (a) plane-wave basis calculation with cut o↵ energy: 2000eV; (b) Gaussian basis calculation
with pob-DZVP-rev2-basis; (c) Gaussian basis calculation with pob-TZVP-rev2-basis.

culations. The pob-TZVP-rev2-basis is qualitatively con-
sistent with the reference.

2. MnO

For MnO (Pearson symbol: cF8, crystal system: fcc
rocksalt, space group number: 225, AFM) the pob-
DZVP-rev2 basis produces a better band structure re-
sult than the pob-TZVP-rev2-basis when compared with
the plane wave reference. This indicates that the extra
shells added in the TZVP basis are not essential or not
optimized enough for a quantitatively correct description
of the higher lying bands of MnO. This is illustrated in
Fig.7, where the incorrectly recovered bands are marked
in light green.

In Tab. IV, we show the MO eigenvalue norm eval-
uated for pob-DZVP-rev2 and pob-TZVP-rev2 for the
systems studied in this paper. We stress that this norm
is evaluated for the valence orbitals and does not include
core orbitals. The norms for the valence occupied and
unoccupied orbitals are printed separately.

From Tab. IV, we see that for BN there is a dramatic
improvement once the basis set is increased.

For NiO, the quality of the pob-DZVP-rev2 and pob-
TZVP-rev2 is unchanged and is consistent with the band
diagram plotted in Fig. 5. However, our observation does
not indicate that the total DFT energy evaluated in pob-
TZVP-rev2 is higher than in the pob-DZVP-rev2 basis.
The pob-TZVP-rev2 energy is lower due to the optimiza-
tion that happened for the core orbitals, while the valence
bands remained mostly una↵ected.

Figure 4.6: BN band structure plots: (a) plane-wave basis calculation with cut off
energy: 2000eV; (b) Gaussian basis calculation with pob-DZVP-rev2-
basis; (c) Gaussian basis calculation with pob-TZVP-rev2-basis.

For BN (Pearson symbol: hP4, crystal system: hexagonal, space group number:

194), as shown in Fig. 4.6, the pob-DZVP-rev2-basis shows a qualitative discrepancy

in the unoccupied part of the band structure near the Fermi level (that is marked
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in light green on the band structure diagram) when compared to the plane-wave

reference calculations. The pob-TZVP-rev2-basis is qualitatively consistent with the

reference.

4.3.3.2 MnO

For MnO (Pearson symbol: cF8, crystal system: fcc rocksalt, space group number:

225, AFM) the pob-DZVP-rev2 basis produces a better band structure result than the

pob-TZVP-rev2-basis when compared with the plane wave reference. This indicates

that the extra shells added in the TZVP basis are not essential or not optimized

enough for a quantitatively correct description of the higher lying bands of MnO.

This is illustrated in Fig. 4.7, where the incorrectly recovered bands are marked in

light green. 9

(a) (b) (c)

Figure 7. MnO band structure plots: (a) plane-wave basis calculation with cut o↵ energy: 2000eV; (b) Gaussian basis calculation
with pob-DZVP-rev2-basis; (c) Gaussian basis calculation with pob-TZVP-rev2-basis.

For MnO, pob-TZVP-rev2 is worse for the unoccupied
bands than pob-DZVP-rev2, according to the assessment
using the di↵erence of eigenvalues. This is consistent with
the band diagram plotted in Fig. 7.

For MoS2, the quality of pob-DZVP-rev2 and pob-
TZVP-rev2 seems to be similar with some small worsen-
ing of the unoccupied part in the pob-TZVP-rev2 basis.

Subsequently, we also employ this criterion to ana-
lyze briefly and schematically the quality of the GTH
basis [56] for BN. GTH bases are another family of the
systematically developed bases that are commonly used
for solid state calculation.

In the BN case, see Tab. V, where both DZ and TZ
bases are available, the gth-dzvp-molopt-sr basis with
gth-pade as the pseudo-potential is yielding a similar de-
viation of the norm as the gth-tzvp-molopt-sr with the
same pseudopotential. However, the maximal di↵erence
in the eigenvalues is larger for the unoccupied part of gth-
tzvp-molopt-sr. This is consistent with the band diagram
illustrated in Fig.8, where a spike in the unoccupied part
of the band diagram arises for the gth-tzvp-molopt-sr ba-
sis.

IV. CONCLUSIONS

We have presented a Gaussian basis set optimization
scheme for solid state calculations. This optimization
scheme results in the minimization of the total DFT en-
ergy, the condition number of the overlap matrix, as well
as minimization of the di↵erence between the eigenval-
ues evaluated in the reference plane wave basis and the
currently optimized Gaussian basis set.

System
OCC UNOCC

DZVP TZVP DZVP TZVP

BN 0.7186 0.2096 10.7039 4.2203
NiO 0.5911 0.7998 5.9098 5.9848
MnO 0.7328 0.7906 1.6521 2.3830
MoS2 0.8715 0.8703 0.6222 0.7930

Table IV. MO eigenvalue norms calculated with respect to
plane-wave basis calculations. Basis sets used are pob-DZVP-
rev2 and pob-TZVP-rev2, respectively. BN: 8 occupied bands
and 6 unoccupied bands are used; NiO: 22 occupied bands and
6 unoccupied bands are used; MoS2: 10 ocuupied bands and
6 unoccupied bands are used; MnO: 11 occupied bands and 6
unoccupied bands are used.

Basis
Norm Max. Di↵

OCC UNOCC OCC UNOCC

DZVP 0.2260 3.0873 2.0691 4.8523
TZVP 0.2432 3.0329 2.0668 4.8795

Table V. BN MO eigenvalue norm calculated with respect to
plane-wave basis calculation. Basis sets used are DZVP-GTH
and TZVP-GTH, respectively, with pseudo-potential GTH-
PADE. 8 occupied bands and 6 unoccupied bands are used in
norm calculation.

Our aim of designing such a material specific op-
timization scheme is to employ the moderately sized
optimized bases in correlated periodic ab-initio calcu-
lations such as second-order Green’s function theory
(GF2) [57–66], GW [67–75], and self-energy embedding
theory (SEET) [76–79] in order to evaluate and interpret
spectral functions of solids. Gaussian bases are very use-
ful for the physical interpretation of the peaks present
in spectral functions and for assigning them to electron

Figure 4.7: MnO band structure plots: (a) plane-wave basis calculation with cut off
energy: 2000eV; (b) Gaussian basis calculation with pob-DZVP-rev2-
basis; (c) Gaussian basis calculation with pob-TZVP-rev2-basis.

In Tab. 4.6, we show the MO eigenvalue norm evaluated for pob-DZVP-rev2 and

pob-TZVP-rev2 for the systems studied in this paper. We stress that this norm is

evaluated for the valence orbitals and does not include core orbitals. The norms for
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the valence occupied and unoccupied orbitals are printed separately.

From Tab. 4.6, we see that for BN there is a dramatic improvement once the basis

set is increased.

For NiO, the quality of the pob-DZVP-rev2 and pob-TZVP-rev2 is unchanged and

is consistent with the band diagram plotted in Fig. 4.5. However, our observation

does not indicate that the total DFT energy evaluated in pob-TZVP-rev2 is higher

than in the pob-DZVP-rev2 basis. The pob-TZVP-rev2 energy is lower due to the

optimization that happened for the core orbitals, while the valence bands remained

mostly unaffected.

For MnO, pob-TZVP-rev2 is worse for the unoccupied bands than pob-DZVP-

rev2, according to the assessment using the difference of eigenvalues. This is consistent

with the band diagram plotted in Fig. 4.7.

For MoS2, the quality of pob-DZVP-rev2 and pob-TZVP-rev2 seems to be similar

with some small worsening of the unoccupied part in the pob-TZVP-rev2 basis.

Subsequently, we also employ this criterion to analyze briefly and schematically

the quality of the GTH basis (VandeVondele and Hutter , 2007a) for BN. GTH bases

are another family of the systematically developed bases that are commonly used for

solid state calculation.

In the BN case, see Tab. 4.7, where both DZ and TZ bases are available, the

gth-dzvp-molopt-sr basis with gth-pade as the pseudo-potential is yielding a similar

deviation of the norm as the gth-tzvp-molopt-sr with the same pseudopotential. How-

ever, the maximal difference in the eigenvalues is larger for the unoccupied part of

gth-tzvp-molopt-sr. This is consistent with the band diagram illustrated in Fig. 4.8,

where a spike in the unoccupied part of the band diagram arises for the gth-tzvp-

molopt-sr basis.
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(a) (b) (c)

Figure 8. BN band structure plots calculated with GTH basis sets: (a) plane-wave basis calculation with cut o↵ energy: 2000eV;
(b) Gaussian basis calculation with DZVP-GTH basis; (c) Gaussian basis calculation with TZVP-GTHP basis.

attachment or removal processes from s, p, or d orbitals.
Since these ab-initio methods are computationally de-
manding, a moderately sized Gaussian basis is extremely
advantageous in carrying out these calculations and com-
paring them to experiment.

We believe that this scheme will be particularly use-
ful for periodic calculations, where a given element may
display vastly di↵erent properties depending on the sur-
rounding crystal lattice environment. A significantly
changed basis may then capture the changes in the va-
lence orbitals arising from di↵erent physical/chemical
properties of the crystal, while remaining of moderate
size.

The improvement of basis sets quality for crystalline
systems is not as straightforward as for molecular ones,
for multiple reasons. We have shown in this work that
for some compounds simply increasing basis set size by
following the typical double, triple, and quadruple zeta
hierarchy (eg. using a pob-TZVP-rev2 instead of pob-
DZVP-rev2 for NiO) may not necessarily lead to an im-
provement of the basis set quality without additional ma-
terial specific optimization. Moreover, the onset of linear
dependence issues in periodic systems may be delayed by
having a material specific optimization, thereby allowing
one to employ bases of moderate sizes that are geared
towards recovering experimental results. The advantage
of the scheme presented here is the possibility of building
a basis set of user desired quality by insisting that band
after band is optimized when compared to a plane wave
calculation. Alternatively, if so desired by a user, a series
of bands within a given energy window can be optimized.

The obvious drawback of the scheme proposed here is
a possible lack of transferability between di↵erent com-
pounds. However, our main motivation of designing this
scheme is to use it for ab-initio post-DFT calculations of
strongly correlated compounds. For these materials, few

basis sets are readily available thus an optimization is
frequently necessary before starting calculations. More-
over, for some of the materials of interest the experi-
mental data may be scarce and calculations should have
predictive quality. In such cases, material specific opti-
mization is helpful to ensure that even a moderately sized
basis set is the most optimal for the calculated mate-
rial and all possible di↵erences when comparing against
experimental data come for the computational method
employed. Finally, we believe that as post-DFT, corre-
lated, ab-initio calculations for solids in Gaussian bases
will become more prevalent, a database of material spe-
cific bases can be created, thus alleviating the issue of
transferability.

At last, we reiterate that the scheme presented here
is not only useful for basis set optimization but also for
a quick assessment of the basis set quality as illustrated
in Sec. III C. In such a case, a score based on the eigen-
value di↵erences between the plane wave and Gaussian
basis can be assigned in order to aid the visual inspection
necessary for the assessment of the basis set quality.
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Figure 4.8: BN band structure plots calculated with GTH basis sets: (a) plane-wave
basis calculation with cut off energy: 2000eV; (b) Gaussian basis calcula-
tion with DZVP-GTH basis; (c) Gaussian basis calculation with TZVP-
GTHP basis.

System
OCC UNOCC

DZVP TZVP DZVP TZVP

BN 0.7186 0.2096 10.7039 4.2203

NiO 0.5911 0.7998 5.9098 5.9848

MnO 0.7328 0.7906 1.6521 2.3830

MoS2 0.8715 0.8703 0.6222 0.7930

Table 4.6: MO eigenvalue norms calculated with respect to plane-wave basis calcu-
lations. Basis sets used are pob-DZVP-rev2 and pob-TZVP-rev2, respec-
tively. BN: 8 occupied bands and 6 unoccupied bands are used; NiO:
22 occupied bands and 6 unoccupied bands are used; MoS2: 10 occupied
bands and 6 unoccupied bands are used; MnO: 11 occupied bands and 6
unoccupied bands are used.
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Basis
Norm Max. Diff

OCC UNOCC OCC UNOCC

DZVP 0.2260 3.0873 2.0691 4.8523

TZVP 0.2432 3.0329 2.0668 4.8795

Table 4.7: BN MO eigenvalue norm calculated with respect to plane-wave basis cal-
culations. Basis sets used are DZVP-GTH and TZVP-GTH, respectively,
with pseudo-potential GTH-PADE. 8 occupied bands and 6 unoccupied
bands are used in the norm calculation.

4.4 Conclusions

We have presented a Gaussian basis set optimization scheme for solid state cal-

culations. This optimization scheme results in the minimization of the total DFT

energy, the condition number of the overlap matrix, as well as minimization of the

difference between the eigenvalues evaluated in the reference plane wave basis and

the currently optimized Gaussian basis set.

Our aim of designing such a material specific optimization scheme is to employ the

moderately sized optimized bases in correlated periodic ab-initio calculations such as

second-order Green’s function theory (GF2) (Dahlen and van Leeuwen, 2005; Phillips

and Zgid , 2014; Phillips et al., 2015; Rusakov et al., 2014; Rusakov and Zgid , 2016;

Welden et al., 2016; Kananenka et al., 2016a,b; Kananenka and Zgid , 2017; Gull et al.,

2018), GW (Hedin, 1965; Aryasetiawan and Gunnarsson, 1998a; van Schilfgaarde

et al., 2006; Stan et al., 2006; Koval et al., 2014; Luo et al., 2002; Caruso et al., 2016;

Holm and von Barth, 1998; Lan et al., 2017b), and self-energy embedding theory

(SEET) (Kananenka et al., 2015; Zgid and Gull , 2017b; Rusakov et al., 2019; Iskakov

et al., 2020b) in order to evaluate and interpret spectral functions of solids. Gaussian

bases are very useful for the physical interpretation of the peaks present in spectral

functions and for assigning them to electron attachment or removal processes from

s, p, or d orbitals. Since these ab-initio methods are computationally demanding,
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a moderately sized Gaussian basis is extremely advantageous in carrying out these

calculations and comparing them to experiment.

We believe that this scheme will be particularly useful for periodic calculations,

where a given element may display vastly different properties depending on the sur-

rounding crystal lattice environment. A significantly changed basis may then capture

the changes in the valence orbitals arising from different physical/chemical properties

of the crystal, while remaining of moderate size.

The improvement of basis sets quality for crystalline systems is not as straight-

forward as for molecular ones, for multiple reasons. We have shown in this work

that for some compounds simply increasing basis set size by following the typical

double, triple, and quadruple zeta hierarchy (eg. using a pob-TZVP-rev2 instead of

pob-DZVP-rev2 for NiO) may not necessarily lead to an improvement of the basis

set quality without additional material specific optimization. Moreover, the onset of

linear dependence issues in periodic systems may be delayed by having a material

specific optimization, thereby allowing one to employ bases of moderate sizes that

are geared towards recovering experimental results. The advantage of the scheme

presented here is the possibility of building a basis set of user desired quality by in-

sisting that band after band is optimized when compared to a plane wave calculation.

Alternatively, if so desired by a user, a series of bands within a given energy window

can be optimized.

The obvious drawback of the scheme proposed here is a possible lack of trans-

ferability between different compounds. Moreover, in certain cases, such as energy

assessment for different polymorphs, a different basis for each of the polymorphs would

render such comparison invalid. However, even such a case, it is possible to optimize

a single basis that is common for all the group of polymorphs and evaluate energy in

such a basis. Our main motivation of designing this material specific scheme is to use

it for ab-initio post-DFT calculations of strongly correlated compounds. For these
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materials, few basis sets are readily available thus an optimization is frequently nec-

essary before starting calculations. Moreover, for some of the materials of interest the

experimental data may be scarce and calculations should have predictive quality. In

such cases, material specific optimization is helpful to ensure that even a moderately

sized basis set is the most optimal for the calculated material and all possible differ-

ences when comparing against experimental data come for the computational method

employed. Finally, we believe that as post-DFT, correlated, ab-initio calculations for

solids in Gaussian bases will become more prevalent, a database of material specific

bases can be created, thus alleviating the issue of transferability.

At last, it is worth reiterating that the scheme presented here is not only useful

for basis set optimization but also for a quick assessment of the basis set quality as

illustrated in Sec. 4.3.3. In such a case, a score based on the eigenvalue differences

between the plane wave and Gaussian basis can be assigned in order to aid the visual

inspection necessary for the assessment of the basis set quality.
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CHAPTER V

An ab-initio Tale of BiVO3 Under Pressure

5.1 Introduction

Computational post-DFT studies of oxide perovskites received a lot of attention

since they contain transition metal atoms that contribute to the onset of strongly

correlated behavior in these compounds. Consequently, multiple methods such as

LDA+DMFT or GW+EDMFT were used to study these compounds. Numerous

previous studies were conducted not always fully ab-initio and have used adjustable

parameters U and J to illustrate the emergence of strong correlation as a function

of these parameters. Only recently fully ab-initio descriptions of oxides perovskites

become available. Almost all such descriptions are done when the experimental data

are present allowing the theorists to verify their predictions. In this work, it is our

aim to conduct the description of BiVO3 in a completely ab-initio manner without the

full possibility of verification based on the experimental data. BiVO3 is synthesized

in a diamond anvil under pressure where only the X-ray crystalographical data are

collected. Such synthesis was described in Ref. Klein et al. (2019). Consequently,

it is impossible to assess if the synthesized compound is insulating or metallic based

solely on the experimental data present.

Since perovskites are ideal candidates for the materials’ design with specific mag-

netic and electronic functionalities, many of the newest perovskites based materials
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lead to promising photovoltaics, photocatalysts, and multiferroics. Bismuth–first-row

transition-metal oxide perovskites, BiMO3 , are particularly interesting (M = Sc, Cr,

Mn, Fe, Co, Ni) due to a range of possible chemical/physical behaviors. In BiMnO3,

the lone pair of Bi electrons is allegedly giving rise to (anti)ferroelectric behavior,

while the electronic spins on the Mn ions couple ferromagnetically, making BiMnO3

a magnetoelectric multiferroic.

The family of BiMO3 perovskites is almost completely synthesized and explored.

Only the perovskites with M = Ti3+ and V3+ were not previously synthesized. Bulk,

crystalline BiVO3 remained synthetically inaccessible at ambient pressure because the

Bi3+ ions oxidize the V3+ ions to form V5+ species and metallic bismuth Bi0. In such

a case, the high pressure synthesis enables the isolation of phases that, under ambient

pressures, are inaccessible.

This is why the theoretical investigation of the magnetic and electronic properties

of BiVO3 is very important since it can shed some light on its properties without

scaling up the synthesis route.

Previous calculations Klein et al. (2019) have shown that cubic BiVO3 is antiferro-

magnetic and metallic. This is an unusual case which deserves further computational

investigations. Commonly, undoped, magnetic transition-metal oxides fall into two

groups: semiconducting antiferromagnets and metallic ferromagnets. Only a couple

of metallic antiferromagnetic transition metal oxides are known: SrCrO3, CaCrO3,

Ca3Ru2O7, LaNiO3, LaCu3 Cr4O12, RuO2, and (La,Sr)3Mn2O7. The exact mecha-

nism for the anomalous antiferromagnetism in these metallic systems remains poorly

understood. We belive that our ab-initio studies can shed some light onto these

antiferromagnetic phases and investigate the possibility of band gap opening as the

pressure is decreased after the synthesis in the diamond anvil.
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5.2 Results

5.2.1 Computational Setup

We refer our readers to Chapter III and Appendix A for a comprehensive de-

scription of the theoretical setup of the self-consistent GW approximation and the

self-energy embedding theory (SEET) employed by this implementation.

Computationally, to describe the A- and C-antiferromagnetic orderings we double

the unit cell along the two different directions. The resulting unit cells are tetragonal

(A-phase) and orthorombic (C-phase) with two vanadium metal atoms per cell to

enforce antiferromagnatec orderings. We perform our calculations in a Gaussian gth-

dzvp-molopt-sr basis with gth-pbe pseudopotential and decompose the four-fermion

Coulomb integrals employing the density fitting in the def2-svpri as the auxiliary

basis. We use up to 4× 4× 4 k-points in the Brillouin zone for both GW and SEET

calculations. All the integrals as well as DFT calculations are carried out with the

open source PySCF package.

All quantities in SEET are computed on the imaginary time and frequency axis.

In this work, we use a compact intermediate representation (IR) grid with sparse

frequency sampling for all dynamical quantities such as Green’s functions and self-

energies. In IR, the grid size is governed by a dimensionless parameter Λ that should

be at least larger than β×ωmax where β is the inverse temperature and ωmax is the en-

ergy bandwidth of the system. Simulations are performed at temperature T= 1579K

(β = 200 1/a.u. ). The density of states (DOS) is computed based on a converged

single-particle Green’s function that is then analytically continued from the imagi-

nary to the real frequency axis using the Nevanlinna analytical continuation along

a high-symmetry k-path. This Nevanlinna continuation method ensures causality of

the continued function. A broadening parameter of η = 0.001 a.u. is used for all

calculations which sharpens the results. We find that such a broadening is crucial for
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achieving a sharp band structure necessary for the discussion of the emerging band

gaps.

The simplest possible strongly correlated subspace for BiVO3 is made out of local

vanadium 3d orbitals (split into t2g and eg). However, since BiVO3 has nominally

only a single electron in the vanadium d-shell, we consider only the t2g impurity in

its SEET description as is standard in many dynamical mean field theory (DMFT)

calculations.

5.2.2 A-phase

In Fig. 5.1, we present results for the highest experimentally obtained pressure

with a=3.791 Å in the unit cell. It is visible that the PBE0 functional yields a metallic

solution due to the band crossing at the X point but also due to bands crossing the

Fermi level at the Γ and R points. While the self-consistent, temperature dependent

GW seems to be reducing the band crossing at the X point, overall the compound

remains metallic. Similarly in SEET(GW/ED) the result is metallic. Both the GW

and SEET results are in qualitative agreement with the result obtained from the

PBE0.

Similarly, in Fig. 5.2, for the lowest experimentally obtained pressure, we observe a

metallic character for all the PBE0, GW, and SEET(GW/ED) solutions. Finally, we

theoretically “depressurize” the A-phase even further to achieve the ambient pressure

resulting in a=3.935 Å for the unit cell. In this case, we start to observe somewhat

qualitative disagreement between the GW and PBE0 results. GW is barely metallic

with only a single bands touching Fermi level at theX point while DFT shows crossing

of multiple bands in the vicinity of X point. SEET(GW/ED) further opens a gap

resulting in a semiconductor like physics and a narrow bandgap of less than 0.5 eV.

In Fig. 5.4, we list set of orbitals that are energetically closest to the Fermi level. It

is evident that Bi py and pz as well as V dxy are responsible for the band metallic or
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Figure 5.1: The band structure of the A-antiferromagnetic phase of BiVO3 with
unit cell distance a=3.791 Å corresponding to the highest experimentally
reached pressure from Ref. Klein et al. (2019). Top: DFT band structure
using the PBE0 functional Middle: Band structure using self-consistent
finite temperature GW Bottom: Band structure using SEET(GW/ED)

58



G X M G Z R A Z|X R|M A10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

En
er

gy
 (e

V)

0

1

2

3

4

5

6

(a)

G X M G Z R A Z|X R|M A10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

En
er

gy
 (e

V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(b)

G X M G Z R A Z|X R|M A10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

En
er

gy
 (e

V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(c)

Figure 5.2: The band structure of the A-antiferromagnetic phase of BiVO3 with
unit cell distance a=3.927 Å corresponding to the lowest experimentally
reached pressure from Ref. Klein et al. (2019). Top: DFT band structure
using the PBE0 functional Middle: Band structure using self-consistent
finite temperature GW Bottom: Band structure using SEET(GW/ED)
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semiconductor-like character in BiVO3.

5.2.3 C-phase

We conduct similar studies for the C-phase. Here, we start with analyzing the

highest experimentally reached pressure in Fig. 5.5. Here PBE0 results in a band

crossing along multiple k-points yielding a metallic solution. Both GW and SEET,

also result in a metallic solution, however, here bands do not cross and the C-phase

shows a semi-metallic character both at the GW and SEET level. The difference

with the PBE0 behavior is rather stark. Even though PBE0 also predicts metallic

solution, such a metal would have most likely quite different properties.

In both the lowest experimentally realized pressure and the lowest pressure to

which we extrapolated the results, we show that both GW and SEET consistently

predict semi-metal while PBE0 predicts a qualitatively different metallic solution.

This behavior can be traced to the wrong illustration of the occupied V dyz band that

is too high in energy for PBE0, see Fig. 5.8.

5.3 Conclusions

We have presented a band structure from post-DFT methods such as SEET for

the newly synthesized BiVO3 under pressure. The resulting band structure shows a

failure of DFT in illustrating both insulating and metallic solutions. While for the

A-phase in the high and lower pressure regimes, DFT gave quantitatively correct

answer, it did not predict an insulating phase for the lowest extrapolated pressure.

For the C-phase, DFT shows a qualitative breakdown yielding a metal instead of

semi-metal.

Our results demonstrate that the known dangers of using DFT when the exper-

imental data may be very scarce. While this is not surprising, it should be noted

that here it resulted in both quantitative and qualitative differences. The comparison
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Figure 5.3: The band structure of the A-antiferromagnetic phase of BiVO3 with unit
cell distance a=3.935 Å corresponding to the lowest extrapolated pressure
from Ref. Klein et al. (2019). Top: DFT band structure using the PBE0
functionalMiddle: Band structure using self-consistent finite temperature
GW Bottom: Band structure using SEET(GW/ED)
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Figure 5.4: orbitals closest to the Fermi level for the A-antiferromagnetic phase of
BiVO3 with unit cell distance a=3.935 Å corresponding to the low-
est extrapolated pressure from Ref. Klein et al. (2019). Left: DFT
band structure using the PBE0 functional Middle: Band structure us-
ing self-consistent finite temperature GW Right: Band structure using
SEET(GW/ED)
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Figure 5.5: The band structure of the C-antiferromagnetic phase of BiVO3 with
unit cell distance a=3.791 Å corresponding to the highest experimentally
reached pressure from Ref. Klein et al. (2019). Top: DFT band structure
using the PBE0 functional Middle: Band structure using self-consistent
finite temperature GW Bottom: Band structure using SEET(GW/ED)
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Figure 5.6: The band structure of the C-antiferromagnetic phase of BiVO3 with
unit cell distance a=3.927 Å corresponding to the lowest experimentally
reached pressure from Ref. Klein et al. (2019). Top: DFT band structure
using the PBE0 functional Middle: Band structure using self-consistent
finite temperature GW Bottom: Band structure using SEET(GW/ED)
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Figure 5.7: The band structure of the C-antiferromagnetic phase of BiVO3 with unit
cell distance a=3.935 Å corresponding to the lowest extrapolated pressure
from Ref. Klein et al. (2019). Top: DFT band structure using the PBE0
functionalMiddle: Band structure using self-consistent finite temperature
GW Bottom: Band structure using SEET(GW/ED)
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Figure 5.8: orbitals closest to the Fermi level for the C-antiferromagnetic phase of
BiVO3 with unit cell distance a=3.935 Å corresponding to the low-
est extrapolated pressure from Ref. Klein et al. (2019). Left: DFT
band structure using the PBE0 functional Middle: Band structure us-
ing self-consistent finite temperature GW Right: Band structure using
SEET(GW/ED)
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between GW and SEET data turned to be reassuring since both of them recover data

that is both qualitatively and quantitatively similar.
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CHAPTER VI

Conclusion

First principle computational simulations for the correlated electronic properties

of materials could aid and guide the experimental synthesis and discovery of new

correlated materials that could potentially benefit the advancement of modern-day

technologies. The impediments to an efficient correlated simulation typically include

the inappropriate choice of basis set used in the simulation, and failure in the cap-

turing of strong electronic correlations. This thesis, however, has contributed to the

solid-state quantum chemistry community by developing tools to circumvent the for-

mer hindrance and bench-marking ab-initio correlated methods designed to unravel

the latter. The thesis was divided into two major topics: the study of designing and

optimizing Gaussian basis sets for solid-state quantum simulations and the imple-

mentation of ab-initio self-consistent GW approximation and self-energy embedding

theory (SEET) on a transition metal cubic perovskite, BiVO3.

6.1 Summary

In Chapter IV, we proposed a material-specific Gaussian basis sets optimization

approach, which is shown to be computationally feasible and is tested to yield im-

proved result against the existing solid-state Gaussian basis sets. We designed the

proposed scheme to conduct correlated periodic ab-initio calculations such as GW
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and SEET, for which good-quality but moderate-in-size basis sets are needed. This

scheme has the feature of simultaneously minimizing the total energy of the system,

the condition number of the overlap matrix, as well as minimizing the difference be-

tween the eigenvalues evaluated in the reference plane wave basis and the currently

optimized Gaussian basis set. The basis quality improvement achieved by employing

the proposed scheme has been demonstrated in the work. Additionally, using the

scheme as a fast basis set quality assessment tool is recommended.

In Chapter V, We have analyzed the band structure properties of the cubic per-

ovskites BiVO3 with correlated d electrons by systematically adding non-perturbative

correlations to orbitals adjacent to Fermi energy. The results of BiVO3 simulation

overall demonstrates an inconsistent prediction of metallic character between the

DFT-PBE0 and our formulation. Individual band properties analysis exemplifies a

quantitative, in some cases, even qualitative adjustment to the transition metal t2g

and eg bands. This illustrates the failure of DFT in describing both insulating and

metallic solutions of BiVO3 under various pressure and antiferromagnetic phases.

And this was able to confirm the known dangers of using DFT when experimental

data may be deficient. At the meantime, this work also reiterates that the Bloch-wave

basis formed by Gaussian orbitals is handy for physically interpreting the individual

bands from given atomic orbitals and assigning them to electron excitation processes.

6.2 Outlook

Moving forward, there are many directions in which the material-specific Gaussian

basis optimization routine is improvable. As illustrated in 4.1, the basis generation

and optimization procedure in this work is limited to a full electron formalism. Never-

theless, due to the extensive system size of the typical solid-state simulations, it is not

rare for pseudo-potentials to be employed. Therefore, it is beneficial to have a tool

that could assess and potentially generate good-quality yet computationally efficient
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pseudo-potentials. Having a tool to aid in the quality assessment and generation of

good-quality yet simulation-wise efficient peuso-potentials is therefore beneficial to

the computationalist in the field.

Given the material-specific nature of the scheme, a distinct basis set might be

required for each specific polymorph. We believe that a database of material-specific

bases can be created to alleviate such cumbersome operations. The scheme could also

be incorporated to provide benefit to current existing solid-state quantum chemistry

packages as a preparatory optimization tool to improve the long-term simulation

quality from inexpensive short-term input.

While the material-specific scheme is currently being implemented in the scope

of DFT, the primary motivation for designing this scheme is for its application in

ab initio post-DFT calculations of strongly correlated compounds. Its transferability

can therefore be examined on selected computationally affordable systems. Moreover,

with a growth of interest in solid-state relativistic scGW and SEET, the applicability

of this scheme can be explored in the relativistic Gaussian basis sets.
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APPENDIX A

Ab-initio Self-consistent GW Approximation and

Self-energy Embedding

S. Iskakov, C. Yeh, E. Gull, and D. Zgid

Physical Review B 102, 085105 (2020)

We model a solid as an arrangement of atoms in a Bravais lattice with periodicity in

all three directions. We employ the Born-Oppenheimer approximation and choose a

basis of single-particle wave functions. In this work we use Bloch waves constructed

from Gaussian basis functions as

ϕki,i(r) =
∑
R

ϕR
i (R)eik·R, (A.1)

where ϕR
i (r) is a Gaussian atomic orbital centered in Bravais lattice cell R. These

states are not orthogonal and define the overlap matrix

sij =

∫
Ω

drϕ∗
ki,i

(r)ϕkj ,j(r)δki,kj
. (A.2)
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The electronic structure Hamiltonian in second quantization is

H =
∑
ij,σ

h0ijc
†
iσcjσ +

1

2

∑
ijkl
σσ′

vijklc
†
iσc

†
kσ′clσ′cjσ. (A.3)

Where ciσ (c†iσ) are annihilation (creation) operators corresponding to the single

particle state ϕki,i(r), with spin σ and index i(j,k, l) denotes the combined

orbital-momenta index i = (i,ki). The single-particle operator h0ij and two-particle

operator vijkl are defined respectively as

h0ij =

∫
Ω

drϕ∗
ki,i

(r)

[
−1

2
∇2

r −
∑
α

Zα

rα,r

]
ϕkj ,j(r), (A.4a)

vijkl =
1

V

∫
Ω

dr

∫
R3

dr′
ϕ∗
ki,i

(r)ϕkj ,j(r)ϕ
∗
kk,k

(r′)ϕkl,l(r
′)

|r− r′| , (A.4b)

where Zα is the nuclear charge of atom α, rα,r = |r− rα| is the distance to nucleus α

at rα, Ω is the volume of the unit cell and V is the volume of the system.

The primary object of interest in this paper is in the single-particle imaginary time

Green’s function GH,σ
ij (τ) for Hamiltonian H and indices i and j,

GH,σ
ij (τ) = − 1

Z Tr
[
e−(β−τ)(H−µN)ci,σe

−τ(H−µN)c†j,σ

]
. (A.5)

Here Z = Tr
[
e−β(H−µN)

]
is the grand partition function, µ is the chemical

potential, β is the inverse temperature and N is the number of particles in the

system. We define the non-interacting Green’s function as G0,σ
ij (τ) = GH0,σ

ij (τ),

where H0 =
∑

ij,σ h
0
ijc

†
iσcjσ, and the interacting one as Gσ

ij(τ) = GH,σ
ij (τ).

Translation symmetry implies that Green’s functions are diagonal in reciprocal
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space but dense in orbital space and can be defined as

Gkσ
ij (τ) = Gσ

ij(τ), (A.6)

with k = ki = kj.

The Matsubara frequency Green’s function is defined through the Fourier transform

Gσ
ij(ωn) =

β∫
0

dτGσ
ij(τ)e

iωnτ , (A.7)

where ωn = (2n+ 1)π
β
is the fermionic Matsubara frequency with n integer. The

self-energy is defined by the Dyson equation

Σσ
ij(ωn) =

(
G0,σ

ij (ωn)
)−1 −

(
Gσ

ij(ωn)
)−1

. (A.8)

Knowledge of the single particle Green’s function allows the computation of the

spectral function or density of states as

Gσ
ij(τ) =

∫
dω
Aσ

ij(ω)e
−τω

1 + e−βω
. (A.9)

A.0.1 GW approximation

In a first step, we solve the system in the fully self-consistent finite temperature GW

approximation introduced by Hedin. This approximation is thermodynamically

consistent and conserving but neglects second-order and higher exchange terms.
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The GW self-energy is given by

Σk,σ
ij (ωn) = − 1

βV

∑
m

k′,kl

[
Gk′,σ

lk (ωn + Ωm)W
kk′k′k
ilkj (Ωm)

−
∑
σ′

Gk′,σ′

lk (ωm)v
kkk′k′

ijkl

]
, (A.10)

where Ωm = 2mπ
β

are the bosonic Matsubara frequencies and the ‘screened

interaction’ W kkk′k′

ijkl is defined as

Wi1i2i3i4(Ωn) = vi1i2i3i4 + W̃i1i2i3i4(Ωn)

W̃i1i2i3i4(Ωn) =
1

V 2∑
i5i6i7i8

vi1i2i5i6Πi5i6i7i8(Ωn)Wi7i8i3i4(Ωn), (A.11)

with the approximate polarization operator

Πi1i2i3i4(Ωn) =
1

β

∑
m

Gσ
i1i3

(ωm)G
σ
i4i2

(ωm + Ωn). (A.12)

Eq. A.10 can be written as

Σk,σ
ij (ωn) = ΣHF,k,σ

ij + Σ̃k,σ
ij (ωn) (A.13a)

Σ̃k,σ
ij (ωn) = − 1

βV

∑
m

k′,kl

Gk′,σ
l,k (ωn + Ωm)W̃

kk′k′k
ilkj (Ωm), (A.13b)

where ΣHF,k,σ
ij is the Hartree-Fock self-energy. The self-consistent GW correction to

the Hartree-Fock self-energy, Σ̃k,σ
ij (ωn), contains an infinite series of ‘bubble’

diagrams as shown in Fig. A.1.

In our GW implementation, we use a Coulomb integral decomposition since due to

its size, it is not practical to store the full four-index Coulomb integral. Several

ways to employ its symmetry to decompose it are known, such as Cholesky
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Figure A.1: Diagrams beyond the Hartree diagram in the self-consistent GW approxi-
mation. Wiggly lines denote bare interactions v, lines with arrow dressed
Green’s functions G.

decomposition or the resolution of identity (also known as density fitting). Here, we

write vi1i2i3i4 = V Q
i1i2

V Q
i3i4

where Q is an auxiliary index and V Q
i1i2

is a three-point

integral defined as

V Q
i1i2

=
∑
P

∫
Ω

drdr′
ϕ∗
i1
(r)ϕi2(r)χ

q
P (r

′)

|r− r′| J−1
2
q

PQ, (A.14)

with momentum transfer q = k1 − k2 = k3 − k4, χ
q
P (r

′) an auxiliary basis function

and J−1 = J− 1
2J− 1

2 the inverse of

Jq
PQ =

∫
Ω

drdr′
χq
P (r)χ

q
Q(R

′)

|r− r′| . (A.15)

This allows to simplify Eq. A.11 to

W̃i1i2i3i4(Ωn) = − 1

V

∑
Q,Q′

V Q
i1i2

P̃ q
QQ′(Ωn)V

Q′

i3i4
, (A.16)

where the renormalized polarization matrix P̃ q(Ωn) is

P̃ q(Ωn) = [I− P̃ q
0 (Ωn)]

−1P̃ q
0 (Ωn), (A.17)
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and

P̃ q
0,Q,Q′(Ωn) =

1

V

∑
k,m,σ

i1,i2,i3,i4

V Q,k,k+q
i1i2

Gk,σ
i1,i4

(ωm)G
k+q,σ
i3,i2

(ωm + Ωn)V
Q′k+q,k
i3i4

. (A.18)

Eq. A.13b then simplifies to

Σ̃k,σ
i1i2

(τ) =

− 1

V

∑
q,i3,i4
Q,Q′

V Q,kk−q
i1,i4

Gk−q,σ
i3,i4

(τ)P̃ q
Q,Q′(τ)V

Q′,k−q,k
i3i2

. (A.19)

We diagrammatically represent this decomposition in Fig. A.2.

Figure A.2: Diagrams of Fig. A.1 expressed with the decomposition of Eq. A.13b.
Interrupted wiggly lines denote the auxiliary basis decomposition indices
Q and Q′.

A.0.2 Self-energy embedding method

GW is an approximate method with well known limitations. To capture correlation

effects beyond the GW approximation, either high-order diagrammatic methods or

quantum embedding methods can be used. Embedding theories that are Φ-derivable

and based on diagrammatic expansions such as DMFT, GW+EDMFT, SEET, or

self-energy functional theory aim to systematically improve low-order perturbative
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results. These embedding theories satisfy conservation laws and are

thermodynamically consistent.

Here, we briefly summarize the SEET equations used by in this paper. The real

space Green’s function and the lattice (k-space) Green’s function are related by the

Fourier transform

GRR′

ij (ωn) =
1

V

∑
k

eikRGk
ij(ωn)e

−ikR′
. (A.20)

The GW momentum resolved Green’s function of the entire lattice is defined as

(GGW(ωn))
k =

[
(ωn + µ)I− h0,k − (ΣGW)k

]−1
, (A.21)

where (ΣGW)k = (ΣGW
∞ )k + (ΣGW(ω))k. As a result of embedding procedure, we

define a lattice Green’s function in the following way

(G(ωn))
k =

[
(ω + µ)I− h0,k − Σk

]−1
, (A.22)

where

Σk
ij = (ΣGW )kij +

∑
A

(
(Σimp

A )ij − (ΣDC-GW
A )ij

)
δ(ij)∈A (A.23)

with Σimp = Σimp
∞ + Σimp(ωn) containing non-perturbatively added self-energy

diagrams and ΣDC-GW = ΣDC-GW
∞ + ΣDC-GW(ωn) subtracting those diagrams that are

contained both in the GW solution and the non-perturbative construction. Subsets

A of impurity orbitals with indices ij ∈ A, sometimes also called active orbitals, are

defined as groups of the most physically relevant orbitals for the problem that have

correlations that are necessary to be included at a higher than perturbative level.

To define the self-consistency condition used in SEET we perform Fourier transform
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of (G(ω))k, Σk, and h0,k from momentum to real space obtaining GRR′
, ΣRR′

, and

h0,RR′
. The Fourier transform results in the following structure of the self-energy

matrix in the real space

ΣRR′

ij = (ΣGW )RR′

ij

+
∑
A

(
(Σimp

A )ij − (ΣDC
A )ij

)
δRR′δ(ij)∈A, (A.24)

for unit cells away from central cell (R ̸= R′) the self-energies are treated at the

weakly correlated level ΣRR′
ij = (ΣGW )RR′

ij while the local, central cell self-energy for

R = R′ includes non-perturbative corrections (Σimp
A )ij for every orbital group A.

This leads us to a definition of an embedding condition in SEET, where we apply

the block-matrix inversions of real space quantities and absorb all terms containing

contributions connecting orbitals in A to the remainder of the system in the matrix

∆A
ij(ω) in the following way

(G(ωn))
RR
ij∈A =

[
(ωn + µ)I− h0,RR

ij∈A − ΣRR
ij∈A −∆A

ij(ωn)
]−1

. (A.25)

The hybridization matrix ∆A
ij(ωn) arises since an inverse of a subset is not equal to a

subset of an inverse, namely

(G(ωn))
RR
ij∈A ̸= [(G(ωn))

RR′
)−1]RR

ij∈A =
[
(ωn + µ)I− h0,RR

ij∈A − ΣRR
ij∈A

]−1
. Note that

Eq. A.25 can further be rewritten as

[(G(ωn))
RR
ij∈A]

−1 = (iωn + µ)I− h̃0,RR
ij∈A + (A.26)

− Σcorr,RR
ij∈A (ωn)− Σimp

ij∈A −∆A
ij(ωn),

where h̃0,RR
ij = h0,RR

ij + (ΣGW)RR
∞,ij − ΣDC

∞,ij is the renormalized noninteracting

Hamiltonian, and Σcorr,RR
ij (ωn) = (ΣGW)RR

ij (ωn)− ΣDC
ij (ωn) is the local correction

from the weakly correlated method.
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We emphasize that, in SEET, the substantial contribution of Σcorr,RR
ij∈A (ωn) to the

local correlated orbitals is included explicitly in the real space self-consistency

condition in Eq. A.25 and is not included as a part of hybridization as done in the

GW+DMFT schemes. These contributions stem from GW diagrams that have both

external legs i and j in the active space but contain one or more internal indices on

the remaining orbitals. Furthermore, the explicit treatment of Σcorr,RR
ij∈A (ωn) prevents

us from observing non-causality problems with hybridization. ∆A
ij(ωn) as defined in

Eq. A.25 is always causal.

To evaluate Σimp
ij∈A, we define the auxiliary propagator

G−1
A (ωn) = G0,−1

A (ωn)− Σimp
ij∈A, (A.27)

where the zeroth order G0,−1
A (ωn) is defined as

G0,−1
A (ωn) = (iωn + µ)δij − h̃0,RR

ij∈A −∆A
ij(ωn). (A.28)

As realized in the context of DMFT, a propagator of the form of Eq. A.27 can be

obtained by solving the quantum impurity model with impurity orbitals defined as

the active orbitals from a space A. In SEET, the two-body interactions in the

impurity remain the bare, unchanged interactions of the original lattice

Hamiltonian, since screening is included by the explicit treatment of Σcorr,RR
ij∈A (ωn) at

the level of the embedding condition and Eq. A.26.

The fact that the bare interactions do not need to be adjusted in the impurity

model is a major difference to formulations of GW+EDMFT. The GW+EDMFT

double counting correction due to the presence of screened W imp(ωn) removes local

correction to the self-energy from the weakly correlated method, therefore

Σcorr,RR
ij (ωn) ≡ 0.This GW+EDMFT construction containing W imp(ωn) leads to an

impurity model with a different hybridization and noninteracting Hamiltonian and,
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as the model needs to take into account correlations outside the active space

accordingly, to a rescaling of the interactions. However, while operationally

different, both GW+EDMFT and SEET are consistent, conserving, and contain

RPA screening by GW diagrams.

In practice, our method starts from a self-consistent finite temperature GW solution

of the lattice problem. It then proceeds by solving all independent impurity

problems for the different disjoint subspaces A independently. The non-perturbative

solution of Σimp
ij is used to update the lattice self-energy and the Green’s function

from Eq. A.23 and A.22, followed by a new calculation of the real space Green’s

function and hybridization (Eq. A.25) and a subsequent solution of the impurity

model. In principle, after obtaining the self-consistent solution of Eq. A.25, the GW

solution would need to be iterated again. This has not been done in this work.
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