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ABSTRACT

Many well-established classification algorithms such as support vector machines

(SVM) are originally proposed as large-margin classifiers from a single hyperplane.

This dissertation is divided into two halves, each half studying classification from the

perspective of using multiple hyperplanes.

The first half introduces a new framework for multiclass loss functions called the

permutation-equivariant and relative margin-based (PERM) losses, inspired by mul-

ticlass classification with multiple hyperplanes. Using our framework, we establish

statistical and optimization results on Weston-Watkins multiclass SVMs. Further-

more, we provide sufficient conditions for the classification-calibration of a general

family of PERM losses. These sufficient conditions subsume all previously known

and establish new classification-calibration results.

The second half focuses on hyperplane arrangement classifiers (HACs). When

implemented as neural networks, we show that the HACs can be overparameterized

yet still have small VC dimensions and further achieve minimax optimality (assuming

the empirical risk minimization can be solved to optimality). By using an ensemble

of randomly initialized HACs, we demonstrate for the first time an interpolating

ensemble method that is consistent for a broad class of distributions in arbitrary

dimensions. We discuss the significance of these results in the context of recent

advances in the theory of overparameterized learning.
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CHAPTER I

Introduction

Mathematics is the art of giving the

same name to different things

Henri Poincaré [Ver12]

This introduction can be read as a guided-tour for the rest of the thesis. The

focus will be on motivating each subject via simple examples.

In Section 1.1, we review binary classification with linear classifiers. The goal is

to review the main concepts of the ±1 label encoding, margins, discriminants and

margin losses. In binary classification, these concepts are essentially standardized.

However, in multiclass classification, there are several distinct notions of multiclass

label encodings and margins.

A key ingredient behind the theory developed in Chapters II, III and IV is a

novel label encoding for multiclass classification which we call the multiplicative label

encoding. Let k denote the number of classes. The multiplicative label encoding is

a set of (k − 1) × (k − 1) square matrices {ρ1, . . . ,ρk} which generalizes the well-

known ±1 label encoding for binary classification. In Section 1.3, we demonstrate the

multiplicative label encoding for the case of ternary classification, i.e., when k = 3.

Moreover, we give an overview of how this label encoding is used in the aforementioned

chapters towards deriving our main results.
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In Section 1.4, we review the concepts of hyperplane arrangements and their as-

sociated histogram classifiers which we refered to as simply hyperplane arrangement

classifiers (HACs). We provide an intuitive introduction to a class of partially quan-

tized neural networks which implement HACs, which is the focus of Chapter V. In

Section 1.5, we discuss random ensembles of these hyperplane arrangement classifiers,

which is the focus of Chapter VI.

1.1 Binary classification: two classes, one hyperplane

Let us consider one of the simplest non-trivial settings for classification: when

X = Rd is the Euclidean space and Y = {±1} is binary. Given a training dataset

{(xi, yi)}ni=1, our goal is to select a mapping Rd → {±1} that generalizes well to

unseen data.

A classical approach is to use linear classifiers x 7→ sgn(w⊤x). Although decep-

tively simple, linear classifiers have been continuously studied since the earliest days

of machine learning research under various guises and names (perceptrons [Ros57],

linear threshold functions [Blu+98], optimal margin separating hyperplanes [BGV92],

support vector machines [CV95], halfspaces [Kal+08]). Most relevant to this thesis

is the support vector machines. In the next few subsections, we recall definitions

and facts from the theory of binary support vector machine with a view toward its

multiclass extension. Some of these definitions seems unnecessarily complicated for

the binary case, but will be beneficial when transitioning into the multiclass case.

1.1.1 Discriminants and margins

We begin by defining the discriminant, a quantity of relevance to most if not all

binary classification algorithms (after replacing w⊤• : Rd → R by a general function

f : X → R):

disci := w⊤xi (1.1)
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and the margin:

margi := yi · disci = yiw
⊤xi. (1.2)

Margins

Discriminants

Instance space

Figure 1.1:
Discriminants and margins in binary classification. Here, yellow and blue
points represent the “positive” and “negative” classes, respectively. For
the yellow points, the margins and the discriminants are equal. For the
blue points, the margins are the reflections across the origin of their re-
spective discriminants.

The only difference between the discriminant and the margin is the yi multiplier

in front. By definition, the sign of the discriminant is the classifier’s predicted label.

The magnitude of the discriminant can be thought of intuitively as the “confidence”

of the classifier. See Figure 1.1.

On the other hand, the margin does take into account the label. A large (positive)

margin means that the classifier did a good job while a small (negative) margin means

that the classifier did a poor job. The definition of the margin (Eqn. 1.2) can be stated

in plain English as

“labels acting on discriminants by multiplication gives rise to margins”. (1.3)
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This definition seems unnecessary given the already clear mathematical definition

Eqn. 1.2. However, when we transition from the binary case Y = {±1} to the ternary

case Y = {1, 2, 3} and beyond, defining the margin is not as straightforward anymore.

This “supervised-label-as-an-action” perspective1 will serve as the blueprint for our

approach to the multiclass theory.

1.1.2 Margin-based loss functions

Finally, to formulate the hyperplane selection problem as an optimization, we re-

call margin-based loss functions [BJM06], i.e., nonnegative functions ψ : R → R≥0

that converts margins into penalties for use in regularized empirical ψ-risk minimiza-

tion2:

1

2
∥w∥22 + C

n∑
i=1

ψ(yiw
⊤xi︸ ︷︷ ︸

=margi

). (1.4)

Monotone non-increasing margin-based loss function formalizes the notion that

“a large (positive) margin means that the classifier did a good job while a small

(negative) margin means that the classifier did a poor job”. See Figure 1.2.

Another way to visualize this is via a partition of the space of margins, i.e., the real

line, into high and low penalty zones, namely the positive and the negative halves.

This partition perspective extends easily into the multiclass case, with the margins

being vector- instead of scalar-valued.

1This is an instance of “group action” in the mathematical subject of group theory. Here, the
labels {±1} is a group with group action by multiplication on the set R, where the discriminant
lives in.

2Following Bartlett et al. [BJM06], we consider nonnegative losses throughout the thesis. No
generality is gained by allowing the loss to be negative and while still lower bounded. In the full
general case when the loss is allowed to tend to −∞, empirical risk minimization may be −∞.
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Positive margin

Figure 1.2:
Loss function and the partition of the discriminant into high and low
penalty zones (the latter denoted by the checkered region).

1.1.3 Consistency

Finally, we need to circle back to our original problem: finding a w such that

x 7→ sgn(w⊤x) generalizes well. Unfortunately, if we require w to be a hyperplane

in finite-dimensional Euclidean space, this is essentially impossible except in highly

specialized settings3. Fortunately, if we allow w to be an element of a universal

reproducing kernel Hilbert space H and x to be replaced by its kernel embedding in

H, then the problem has a solution. Namely, if ψ is classification-calibrated (defined in

the next section), then there is a choice of hyperparameters C = Cn such that solving

the optimization Eqn. 1.4 results in asymptotically optimal choice of the “hyperplane”

w for the classifier x 7→ sgn(w⊤x) [Ste05].

Before proceeding, we recall some definitions. Let g : X → {±1}. The 01 -risk of

g is defined as

R01(g) := E(X,Y )∼P [I{Y ̸= g(X)}] (1.5)

3Learning w∗ that minimizes the number of misclassifications is well-known to be NP-hard.
See Guruswami et al. [GR09]. On the other hand, with additional assumptions, polynomial time
algorithms for finding such a w∗ is known, e.g., see Blum et al. [Blu+98] and Diakonikolas et al.
[DGT19] and the references therein.
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where I is the indicator function. For a function f : X → R the ψ-risk is defined as

Rψ(f) := E(X,Y )∼P [ψ(Y f(X))]. (1.6)

The ψ- and the 01-Bayes risk are defined as R∗
ψ := inff Rψ(f) and R∗

01 :=

inff R01(sgn ◦ f), respectively, where the infimum is taken over all Borel functions f .

The following theorem relates when an algorithm that performs well respect to Rψ

can be converted to one that performs well respect to R01:

Theorem I.1 ([BJM06]). Let ψ be a margin-based loss function. Let F be the set of

Borel functions X → R. If ψ is classification calibrated then the following holds: For

all sequence of function classes {Fn}n such that Fn ⊆ F ,
⋃
nFn = F , f̂n ∈ Fn and

all data generating probability distribution P , we have

Rψ(f̂n)
P→ R∗

ψ implies R01(sgn ◦ f̂n) P→ R∗
01.

Although the above theorem seems quite powerful, it does have limitations. For

instance, if F is a smaller function space (such as linear functions on finite-dimensional

Euclidean space), then all bets are off. As mentioned in Duchi et al. [DKR18], going

beyond the “F = all Borel functions” setting is an important research direction.

Partial progress have already been made by Duchi et al. [DKR18] and Zhang et al.

[ZA20].

1.1.4 Classification-calibration

The previous section established the significance of the notion of classification-

calibration in linking solution to the optimization Eqn. 1.4 and solution to the original

problem (in a universal RKHS). In this section, we review the notion of a margin-loss

being classification-calibrated.
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Definition I.2. Let ψ : R → R≥0 be a margin-based loss function. Define Cψ
p (t) =

pψ(t) + (1− p)ψ(−t) for all t ∈ R. We say that ψ is classification-calibrated if for all

p > (1/2, 1]

inf
t≤0

Cψ
p (t) > inf

t∈R
Cψ
p (t).

To understand the definition, consider the following scenario. Suppose that for

a fixed sample x, we have p := PY=+1|X=x > 1/2. Then a discriminant function f

should satisfy f(x) > 0 in order to minimize E[I{Y ̸= sgn(f(x))}|X = x], sometimes

called the conditional 01-risk (at x). Analogously, the conditional ψ-risk (at x) is

defined as E[ψ(Y f(x))|X = x] and is equal to Cψ
p .

Consequently, the above definition can be interpreted as “if sgn(f(x)) is subopti-

mal for the conditional 01-risk, then the discriminant t := f(x) is also suboptimal for

the conditional ψ-risk.” The converse of this says that “optimality for the conditional

ψ-risk implies optimality for the conditional 01-risk.”

There is a remarkable characterization of convex classification-calibrated losses:

ψ is differentiable at 0 and ψ′(0) < 0 [BJM06, Theorem 6]. Obtaining a similar

characterization in the multiclass setting is the is the goal of Chapter 4 of this thesis.

Now, the hinge loss ψ(t) := max{0, 1 − t} satisfies this characterization (in the

binary case). It has the interesting property that for p ∈ (0, 1/2), argmint∈R C
ψ
p (t) =

{−1} and for p ∈ (1/2, 1), argmint∈R C
ψ
p (t) = {1}. Thus, outside p ∈ {0, 1/2, 1}

(which has measure zero), minimizers for Cψ
p lies in {±1}. See Figure 1.3.

Disc

-1          0          1

Figure 1.3:
⋃
p∈(0,1/2)∪(1/2,1) argmintC

ψ
p (t) = {±1} for the hinge loss.

Chapter 2 of this thesis studies the Weston-Watkins (WW) hinge loss [WW99], one

of the various extension of the binary hinge loss proposed for multiclass SVMs. Unlike

the binary hinge loss, the WW hinge loss is not classification-calibrated. Nevertheless,

it has been shown to perform well in practice [DGI16]. The goal of Chapter 2 will
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be to attempt to salvage the failure to be classification-calibrated by considering a

different discrete loss.

1.2 Multiclass classification: Three classes, three hyper-

planes?

Moving on to the multiclass case, for exposition we consider the simplest nontrival

example of when Y = {1, 2, 3} is ternary. One way to define a hyperplane-based

classifier g : Rd → {1, 2, 3} is to use three hyperplanes W = [w1, w2, w3] ∈ Rd×3 and

define

g(x) = argmax
j∈{1,2,3}

w⊤
j x.

Clearly, this generalizes to k classes, where we need k hyperplanes w1, . . . , wk. Fig-

ure 1.4 shows a toy dataset with three classes that is completely interpolated by this

linear classifier.

Score ==> Label

Instance space

Figure 1.4:
A toy dataset overlayed with three hyperplanes (lines) in R2. The black
line represent the hyperplane itself, i.e., the set {x : w⊤

i x = 0}. The gray
thick arrow represents the normal vector to the hyperplane, i.e., wi.

However, the geometry of classifier is not apparent from the hyperplanes w1, w2, w3
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themselves, compared to the analogous “two classes, one hyperplane” picture. How

can we think about this classifier intuitively?

1.3 Multiclass classification: Three classes, two hyperplanes

Instead of plotting w1, w2, w3, the geometry becomes clear when we plot the dif-

ference of the hyperplanes w1 − w2, w1 − w3 and w2 − w3 instead (Figure 1.5).

Geometry of 
decision boundary
revealed by
difference of hyperplanes

Figure 1.5:
Difference of hyperplanes revealing the geometry of the decision regions
of the multiclass linear classifier.

Doǧan et al. [DGI16] introduced the term relative margins4. Figure 1.5 is indeed

in line with the relative margins as defined by Doǧan et al. [DGI16], which is defined

in a case-wise manner for each yi ∈ {1, 2, 3}. If yi = 1, then

margi =:

(w1 − w2)
⊤xi

(w1 − w3)
⊤xi

 . (1.7)

Pictorally, this correspond to Figure 1.7.

4We note that the term relative margin have been previously used by Jebara et al. [JS08] and
Shivaswamy et al. [SJ10], but used in a completely different way.
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Instance space can be
higher dimension
e.g., 

Figure 1.6:
For k = 3, the discriminants are 2-dimensional. For disambiguating the
instance space and the discriminant space, we take a toy dataset in 3-
dimension space that is a “jittered” version of the dataset from Figure 1.5

If yi = 2, then

margi =:

(w2 − w1)
⊤xi

(w2 − w3)
⊤xi

 . (1.8)

And finally, if yi = 3, then

margi =:

(w3 − w2)
⊤xi

(w3 − w1)
⊤xi

 . (1.9)

However, we observe the following “issues” regarding the above definitions:

1. The margin in the binary case (Eqn. 1.2) is defined via a single equation. How-

ever, here in the multiclass case, the margins need to be defined case-wise de-

pending on the label yi.

2. There is no analog to the discriminant (Eqn. 1.1).

Let us attempt to propose a definition of the discriminant in the multiclass case

as follows (see Figure 1.7)
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Discriminants

12

3

Figure 1.7: Discriminants when k = 3 for the toy dataset shown in Figure 1.6.

disci :=

(w1 − w2)
⊤xi

(w1 − w3)
⊤xi

 . (1.10)

Observe that the above definition of the discriminant (Eqn. 1.10) is equal to the

margin when yi = 1 (Eqn. 1.7). This is by design and is analogous to the binary case

where one arbitrary class is chosen as the “positive” class.

Now, we recall the definition/slogan

“labels acting on discriminants by multiplication =⇒ margins”.

Thus, if the labels were to act on the 2-dimensional vector-valued discriminant in

Eqn. 1.10 by multiplication (also see Figure 1.8 and 1.9), then they should be encoded

as 2× 2 matrices:

ρ1 =

1 0

0 1

 , ρ2 =

−1 0

−1 1

 , ρ3 =

1 −1
0 −1

 . (1.11)
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With this definition, it is straightforward to check that

margi = ρyidisci (1.12)

in all cases yi ∈ {1, 2, 3}. See Figure 1.9. Furthermore, note that by construction

yi = argmin
j∈{1,2,3}

w⊤
j xi if and only if margi ∈ R2

>0.

The action of the matrices ρ2 and ρ3 can be visualized as linear involutions (i.e.,

ρ2
j is the identity) on the discriminant space R2. Note that in binary classification,

the negative class label −1 is a linear involution on R, the binary discriminant space

(see Figure 1.8). The analogous definition for Eqn. 1.12 when k > 3 is given in

Chapter IV.

should be de ned so that

correctly classi ed point

has positive margin

 

Margins?

12

3

Figure 1.8: Defining “multiplication” by a label yi.

1.3.1 Margin-based multiclass loss functions

Having defined multiclass margins, we now define ternary margin-based loss func-

tions as multivariate-input, univariate-output function ψ : R2 → R≥0. The regular-
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Margins?

1

Margins?

2

Margins?

3

Figure 1.9: The matrices ρ1 (top), ρ2 (mid) and ρ3 (bottom).
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ized5 ψ-risk is defined as

1

2
∥W∥2F + C

n∑
i=1

ψ

ρyi

(w1 − w2)
⊤xi

(w1 − w3)
⊤xi


 . (1.13)

Like the binary case, we would like to formalizes the notion that “a large (positive)

margin means that the classifier did a good job while a small (negative) margin

means that the classifier did a poor job”. However, the formalization should take into

account the vector-valued nature of the multiclass margin. The analogous statement

is “a margin inside the positive orthant means that the classifier did a good job while

a margin outside the positive orthant means that the classifier did a poor job”. Thus,

the low-penalty zone in the space of margins, i.e., R2 in the ternary case, is the

positive orthant. See Figure 1.10

1.3.2 Multiclass classification-calibration

Is there is a simple characterization of convex classification-calibrated multiclass

losses extending the elegant result of Bartlett et al. [BJM06, Theorem 6]? Tewari

et al. [TB07] developed the theoretical foundation towards such a characterization.

However, ultimately, there remains a gap for a (relatively) simple to verify sufficient

condition for classification-calibration for a general multiclass loss ψ.

In Chapter 4, we define a class of loss called permutation equivariant and relative

margin-based losses, or PERM loss for short. For a PERM loss, we define a condition

which we refer to as total regularity. One of the key property of total regularity is that

the negative gradient ψ points into the positive orthant everywhere, i.e., −∇ψ(z) is

entrywise positive for all z ∈ Rk−1. Our main result is that if ψ is totally regular,

5It is an open question what is the “right” norm for regularizing Eqn. (1.13). Amit et al. [Ami+07]
proposes using the nuclear norm instead of the Frobenius norm. Lei et al. [Lei+19] proposes using
p-Schatten norms. Tatsumi et al. [TT14] propose a multi-objective approach that departs from the
framework of Eqn. (1.13) altogether. See Lee [Lee14] for an insightful perspective regarding whether
it is even worthwhile to ponder which norm to use.

14



Logistic margin lossMargins

0
.2
5

0.5

1

1

2

2
2

-2 0 2

-2

0

2

0
.2
5

0.5

1

1

2

2
2

Figure 1.10:
The low-penalty zone is in the positive orthant (denoted by the checkered
region).

then ψ is classification-calibrated. In comparison to Bartlett et al. [BJM06, Theorem

6], our result is not as powerful, since the gradient condition is global. Furthermore,

the regularity definition requires twice-differentiability. Nevertheless, our result is

sufficiently general to significantly expand the known classification-calibration results

regarding the recently proposed Fenchel-Young losses [BMN20; DKR18].

1.3.3 Weston-Watkins SVM: calibration

The Weston-Watkins (WW) SVM proposes solving Eqn. 1.13 with the “sum of

hinge of margin components” extension of the binary hinge loss:

ψ(z) :=
k−1∑
j=1

max{0, 1− zj}.

Let us call the above the WW hinge loss. The WW hinge loss is not classification-

calibrated but performs well in practice [DGI16]. Thus, a natural question is to
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understand why. This requires us to go beyond classification-calibration. Instead of

the 01 loss, we need to consider more general discrete losses. Instead of the classifier

mapping to Y = {1, . . . , k}, we must allow making predictions in more “exotic”

discrete spaces, which we’ll denote by D.

Some definitions are in order. Consider functions making predictions in D, i.e.,

g : X → D and a discrete loss ℓ : Y ×D → R≥0. The ℓ-risk of g is defined as

Rℓ(g) := E(X,Y )∼P [ℓ(Y, g(X))] . (1.14)

Like in Theorem I.1, we are interested ψ satisfying the property that there exists a

function pred : Rk → D such that

Rψ(f̂n)
P→ R∗

ψ implies Rℓ(pred ◦ f̂n) P→ R∗
ℓ .

This general theory behind calibration w.r.t arbitrary discrete losses were devel-

oped by Ramaswamy et al. [RA16] extending. Finocchiaro et al. [FFW19] developed

a framework for calibration for discrete losses particularly using polyhedral surrogate

losses, of which the WW hinge loss is one of. Ramaswamy et al. [RTA18] also charac-

terized the calibration theory for the Crammer-Singer hinge loss, another hinge loss

for the multiclass SVM that is not classification-calibrated. Using the label encod-

ing ρ1, . . . ,ρk, we completely characterize the optimizers of the conditional risk in

Chapter 2
k∑
j=1

pjψWW−Hinge(ρjz)

for all (p1, . . . , pk) ∈ the k-dimensional probability simplex. These optimizers, outside

of a measure zero subset of the k-simplex, form a finite discrete subset of the margin

space. We show that this finite discrete subset corresponds to a combinatorial object

known as the ordered partitions of {1, . . . , k}, denoted OPk. See Figure 1.11.
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Figure 1.11:
Finite discrete subset of minimizers of the conditional WW hinge-risk.
Vertices corresponds to the 12 non-trivial order partitions. (The trivial
order partition is the “everything in a single bin” partition).

Order partitions can be thought of the set of rankings on k objects, where ties are

allowed. When k = 3, below are a couple of examples of an ordered partition:

1 2︸︷︷︸
ranked 1st

| 3︸︷︷︸
2nd

2︸︷︷︸
1st
| 1︸︷︷︸

2nd
| 3︸︷︷︸

3rd
and 2︸︷︷︸

1st
| 1 3︸︷︷︸

2nd

We give an explicit formula for a discrete loss ℓ : Y ×OPk → R≥0 we call the ordered

partition loss for which the WW hinge loss is calibrated for. We use our calibration

results and the formula for ℓ to give theoretical justification for the empirical finding

of Doǧan et al. [DGI16].

1.3.4 Weston-Watkins SVM: Optimization

In Chapter 3, we turn to the practical and the theoretical question of solving the

WW-SVM. State-of-the-art techniques for solve the binary SVM and the Crammer-

Singer SVM both employ the so-called decomposition method. The decomposition

method breaks down the optimization into a series of subproblems. The overall

solver’s runtime is essentially proportion to how quickly the subproblem can be solved.
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For the Crammer-Singer SVM, a O(k log k) subproblem solver is well-known in the

literature [CS01; Duc+08; BFU14; Con16].

Using our novel reparametrization of the optimization objective Eqn. (1.13), we

are able to derive the first known algorithm that solves the WW-SVM subproblem

also in O(k log k) time.

1.4 Hyperplane arrangement classifiers and partially quan-

tized neural networks

Previously in Section 1.2, we considered k-ary multiclass classifier obtained from a

configuration of k hyperplanes. To derive a classifier, we used the “argmax” function

to convert a vector-valued discriminants to a classifier. In this section, we consider a

entirely different way to turn a vector-valued discriminants into a classifer based on

hyperplane arrangements. Consider a toy dataset as in Figure 1.12 which will be our

running example.

Figure 1.12: A toy binary classification dataset.

We will introduce hyperplane arrangement classifiers by demonstrating them in

action on the toy dataset. A hyperplane arrangement is simply a set of k hyperplanes

{(wi, bi)}ki=1. See Figure 1.13 left panel. We sometimes say an arrangement of k

hyperplanes if we need to specify the number of hyperplanes. In contrast to the

previous sections, k here no longer denote the number of classes for classification.

Instead, we use k to denote an arbitrary positive integer.
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w1

w2

w3

P3

P6

P5

P1

P4

P2

P7

Figure 1.13:
Left : An arrangement of three hyperplanes in R2. To lessen notational
clutter, we hide the intercept/offset. Right : Regions or cells of the
hyperplane arrangement.

Observe that in Figure 1.13 right panel, the input space has been partitioned

into seven regions labeled by Pi. Each region can be assigned by a unique sign

pattern, i.e., a vector of the form {±1}k. The sign pattern for a region Pi is simply

(sgn(w⊤
1 x + b1), . . . , sgn(w

⊤
k x + bk))

⊤ ∈ {±1}k for any x in the interior of Pi. For

notation simplicity, we drop the “1” in the sign patterns and write them as vectors

of the form {±}k instead. See Figure 1.14 left panel.
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Figure 1.14:
Left : Sign patterns of the hyperplane arrangement. Mid : The hyper-
plane arrangement overlaid with the toy dataset from Figure 1.12. Right :
An example of a hyperplane arrangement classifier.

We define hyperplane arrangement classifiers (HACs) as functions that are piece-

wise constant functions over the regions of the arrangement. In other words, all points

in a given region is assigned the same label. Consider the toy dataset visualized over

the hyperplane arrangements in Figure 1.14 mid panel. Then Figure 1.14 right panel

shows the decision region of one possible instance of a hyperplane arrangement clas-
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sifier. In fact, the decision for each region is decided by a majority voter.

Another way to think about a hyperplane arrangement classifier involves using a

boolean function/look-up table. A k-look-up table, or a k-LUT, is a function whose

domain is a subset of {±}k. Suppose that h is a k-look-up table so that all possible

sign vectors are in the domain of h. Then a hyperplane arrangement classifier can be

expressed as the composition of first mapping a point to its sign vector then applying

h to the sign vector. See Figure 1.15.
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Figure 1.15:
All points in gray region are mapped to a sign vector matching the second
row of the look up table. The second row of the look up table is mapped
to the “positive” class label.

Let B = {±}. We can alternatively visualize the classifier in Figure 1.15 into the

neural network-like architecture shown in Figure 1.16. Moreover, if the LUT is also

implemented as neural network, then the entire architecture is a neural network as

well.

X1

X2

X3
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Input Rd

p

Input Rd

Boolean Bk h : Bk → B
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−−+ +
−+− +
...

...
+ + + − hθ

Output

Y

Activation

Threshold

Figure 1.16:
A neural network-like architecture for representing a HAC. The input
vector (X1, X2) ∈ R2 is mapped to a sign vector B1B2B3 ∈ B3. The final
output is Y = h(B1B2B3). The LUT can itself be implemented via a
neural network hθ.
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Chapter V will analyze the VC dimension and the minimax theory of hyperplane

arrangement classifiers. Moreover, we will see that the VC dimension does not de-

pend on the size of the network used to implement the LUT. Hyperplane arrangement

neural networks (HANNs) belong to the family of what is sometimes referred to as

a quantized neural network. In practice, there’s often a performance gap between

quantized and non-quantized neural networks [Hub+16]. We benchmark hyperplane

arrangement neural networks on 121 UCI datasets and show that its performance

matches current state-of-the-art neural non-quantized networks tailored for unstruc-

tured datasets such as the UCI data [Kla+17; Wu+18].

1.5 Hyperplane arrangement and random partition kernels

In the previous section, we looked at hyperplane arrangement neural networks.

In this section, we consider ensemble of random hyperplane arrangement classifiers

such as the one shown in Figure 1.17. First, the hyperplanes are sampled randomly.

Next, each region is assigned label according to majority rule over data points inside

the region.

If we take the ensemble average of many random hyperplane arrangement clas-

sifiers as in Figure 1.17, the underlying data distribution becomes apparent in Fig-

ure 1.18. Subplot heading n = the size of the ensemble.

Towards rigorously understanding the pattern in Figure 1.18, consider the follow-

ing. Let HA denote a random k-hyperplane arrangement from some fixed distribution.

Fix two points x1, x2 in the sample space and consider the probability

Pr{x1 and x2 belong to the same region of HA}. (1.15)

Intuitively, we can interpret the above quantity as a similarity measure of the two

points. In fact, the above probability is precise the probability of HA having at least
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Figure 1.17:
An random hyperplane arrangement classifier for the moons datasets.
Each region is assigned the majority vote label. Regions without training
data is shown in white.

one hyperplane intersecting the line segment between x1 and x2. See Figure 1.19.

Eqn. (1.15) defines what is known as a random partition kernel [DG14]. Let us

denote this kernel as kRP (x1, x2). In general, it is difficult to write down an analytic

formula for kRP . The kernel depends on the distribution of the random hyperplane

arrangements.

There is a special case where the kernel can be expressed analytically: when

the data xi and the hyperplane arrangements are restricted to the unit sphere. See

Figure 1.20 for an geometric picture of spherical random hyperplane arrangements.

In this case, the random partition kernel is given by kRP (x1, x2) = (1−∠(x1, x2)/π)k

where ∠(x1, x2) is the angle between the two unit vectors and k is the number of

hyperplanes.

If we project the moon dataset onto the unit sphere in R3 and take an ensemble

of hyperplane arrangement classifiers6, we get exactly the kernel smoothing classifier

6For technical reasons that will become clear in Chapter VI, we are able to prove this result when
the hyperplane arrangement classifiers use a weighted majority vote rather than the vanilla majority
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Figure 1.18: Ensemble of n random hyperplane arrangement classifiers.

Figure 1.19:
Three random hyperplane arrangements. In the left two panels, the
points shown do not belong to the same region. In the right panel, the
two points belong to the same region.

with the kernel kRP :

x 7→
n∑
i=1

yikRP (x, xi).

This classifier is plotted in the bottom right panel of Figure 1.21. Note that the

bottom right panel is the theoretically computed infinite ensemble. Observe that as

n ∈ {1, 10, 100} increases, the behavior of the finite ensemble approaches the classifier

in the bottom right panel. In Chapter VI, we prove these facts rigorously. Further-

vote.
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Figure 1.20: Spherical hyperplane arrangement.

more, we use the theoretical tools we develop to obtain the first demonstration of an

interpolating ensemble method that is consistent for a broad class of distributions in

arbitrary dimensions.
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Figure 1.21: Ensemble classifier of hyperplane arrangement classifiers.
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CHAPTER II

Weston-Watkins Hinge Loss and Ordered

Partitions

Multiclass extensions of the support vector machine (SVM) have been formulated

in a variety of ways. A recent empirical comparison of nine such formulations [DGI16]

recommends the variant proposed by Weston and Watkins (WW), despite the fact

that the WW-hinge loss is not calibrated with respect to the 0-1 loss. In this work

we introduce a novel discrete loss function for multiclass classification, the ordered

partition loss, and prove that the WW-hinge loss is calibrated with respect to this

loss. We also argue that the ordered partition loss is minimally emblematic among

discrete losses satisfying this property. Finally, we apply our theory to justify the

empirical observation made by Doǧan et al. [DGI16] that the WW-SVM can work

well even under massive label noise, a challenging setting for multiclass SVMs.

2.1 Introduction

Classification is the task of assigning labels to instances, and a common approach

is to minimize misclassification error corresponding to the 0-1 loss. However, the 0-1

loss is discrete and typically cannot be optimized efficiently. To address this, the 0-1

loss is often replaced by a surrogate loss during training. If the surrogate is calibrated
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with respect to the 0-1 loss, then a classifier minimizing the expected surrogate loss

will also minimize the expected 0-1 loss in the infinite sample limit.

For multiclass classification, several different multiclass extensions of the support

vector machine (SVM) have been proposed, including the Weston-Watkins (WW)

[WW99], Crammer-Singer (CS) [CS01], and Lee-Lin-Wahba (LLW) [LLW04] SVMs.

The pertinent difference between these multiclass SVMs is the multiclass generaliza-

tion of the hinge loss. Below, we refer to the hinge loss from WW-SVM as the WW

hinge loss and so on. It is well-known that the LLW-hinge is calibrated with respect

to the 0-1 loss, while the WW- and CS-hinge losses are not [Liu07; TB07].

Despite this result, the LLW-SVM is not more widely accepted than the WW-, CS-

, and other SVMs. The first reason for this is that while the LLW-SVM is calibrated

with respect to the 0-1 loss, this did not lead to superior performance empirically. In

particular, Doǧan et al. [DGI16] found that the LLW-SVM fails in low dimensional

feature space even under the noiseless setting. On the other hand, Doǧan et al.

[DGI16] observed that the WW-SVM is the only multiclass SVM that succeeded in

both the noiseless and noisy setting in their simulations. Indeed, Doǧan et al. [DGI16]

concluded that, among 9 different competing multiclass SVMs, the WW-SVM offers

the best overall performance when considering accuracy and computation. The second

reason is that the calibration framework is not limited to the 0-1 loss. There could be

other discrete losses with respect to which a surrogate is calibrated, and which help

to explain its performance. Indeed, Ramaswamy et al. [RTA18] recently showed that

the CS-hinge loss is calibrated with respect to a discrete loss for classification with

abstention.

In a vein similar to [RTA18], we show that the WW-hinge loss is calibrated with

respect to a novel discrete loss that we call the ordered partition loss. Our results

leverage the embedding framework for analyzing discrete losses and convex piecewise

linear surrogates, introduced recently by Finocchiaro et al. [FFW19]. We also give
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theoretical justification for the empirical performance of the WW-SVM observed by

Doǧan et al. [DGI16].

2.1.1 Related work

Cortes et al. [CV95] introduced the support vector machine for learning a binary

classifier, using the hinge loss as a surrogate for the 0-1 loss. Steinwart [Ste02] showed

that the binary SVM is universally consistent, a desirable property of a classification

algorithm that ensures its convergence to the Bayes optimal classifier in the large

sample limit. Steinwart [Ste05] later used calibration to give a more general proof of

SVM consistency with respect to the 0-1 loss. Around that time, more general theories

of when a loss is calibrated with respect to 0-1 loss, or “classification calibrated,”

began to emerge [Zha04a; BJM06; Ste07], and since then a proliferation of papers

have extended these ideas to a variety of learning settings (see Bao et al. [BSS20] for

a recent review).

Several natural extensions of the binary SVM exist, including the Weston-Watkins

(WW) [WW99], Crammer-Singer (CS) [CS01], and Lee-Lin-Wahba (LLW) [LLW04]

SVMs. Tewari et al. [TB07] extended the definition of calibration with respect to

the 0-1 loss to the multiclass setting. Liu [Liu07] and Tewari et al. [TB07] analyzed

these hinge losses and showed that WW and CS hinge losses are not calibrated with

respect to the 0-1 loss while the LLW hinge loss is. Doǧan et al. [DGI16] introduced

a framework that unified existing multiclass SVMs, proved the 0-1 loss consistency of

several multiclass SVMs when the kernel is allowed to change, and also conducted ex-

tensive experiments. Despite not being calibrated with respect to the 0-1 loss, Zhang

[Zha04a] showed that the Crammer-Singer SVM is consistent given the “majority

assumption”, i.e., the most probable class has greater than 1/2 probability. When

the majority assumption is violated, experiments conducted by Doǧan et al. [DGI16]

suggested that the CS-SVM fails, while the WW-SVM continues to perform well.
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The LLW-hinge loss is calibrated with respect to the 0-1 loss while the WW-

hinge loss is not [Liu07]. Nevertheless, the WW-SVM often outperforms the LLW-

SVM in experiments [DGI16] which ostensibly undermines using calibration be as a

justification for performance. To reconcile this, we refer the reader to the discussion

in Doǧan et al. [DGI16, Section 3.3] on relative and absolute margin losses. Doǧan

et al. [DGI16] argued that the poorer performance of losses based on absolute margin,

including the LLW-hinge, is due to the issue of the absolute margin being incompatible

the decision function. On the other hand, the CS and WW-hinge losses are relative

margin based and do not suffer the same issue. We remark that Fathony et al.

[Fat+16] proposed a relative margin hinge loss which is calibrated with respect to the

0-1 loss that outperforms the WW-hinge loss at the expense of greater computational

complexity.

Ramaswamy et al. [RA16] extended the notion of calibration to an arbitrary dis-

crete loss used in general multiclass learning. The general multiclass learning frame-

work unifies several learning problems, including cost-sensitive classification [Sco12],

classification with abstain option [RTA18], ranking [DMJ13], and partial label learn-

ing [Cid12]. Furthermore, Ramaswamy et al. [RA16] introduced the concept of convex

calibration dimension which is defined for a discrete loss to be the minimum dimension

required for the domain of a convex surrogate loss to be calibrated with respect to the

given discrete loss. Ramaswamy et al. [RTA18] proved the consistency of CS-SVM

with respect to the abstention loss where the cost of abstaining is 1/2 by showing that

the CS hinge is calibrated with respect to this abstention loss. They also proposed

a new calibrated convex surrogate loss in dimension ⌈log2 k⌉ for the abstention loss,

implying that the CS hinge is suboptimal from the CC-dimension perspective.

Recently, several new multiclass hinge-like losses have been proposed, as well as

frameworks for constructing convex losses. Doǧan et al. [DGI16] used their framework

to devise two new multiclass hinge losses, and using ideas from adversarial multiclass
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classification, Fathony et al. [Fat+16] proposed a new multiclass hinge-like loss; all

three are calibrated with respect to the 0-1 loss. Blondel et al. [BMN20] introduced

a class of losses known as Fenchel-Young losses which contains non-smooth losses

such as the CS hinge loss as well as smooth losses such as the logistic loss. Tan et

al. [TZ20] proposed an approach for constructing hinge-like losses using generalized

entropies. Finocchiaro et al. [FFW19] studied the calibration properties of polyhedral

losses using the embedding framework that they developed. They analyzed several

polyhedral losses in the literature including the CS hinge, the Lovász hinge [YB18],

and the top-n loss [LHS17].

2.1.2 Our contributions

We introduce a novel discrete loss ℓ, the ordered partition loss. We show in theo-

rem II.8 that the Weston-Watkins hinge loss L embeds the ordered partition loss ℓ.

Our embedding result together with results of [FFW19] imply that L is calibrated

with respect to ℓ (corollary II.9). To the best of our knowledge, this is the first

calibration-theoretic result for the WW-hinge loss. We also introduce the notion of

the minimally emblematic discrete loss that a polyhedral loss can embed and argue

that the ordered partition loss is minimally emblematic for the WW-hinge loss. In

section 2.5, we use properties of the ordered partition loss to give theoretical sup-

port for the empirical observations made by Doǧan et al. [DGI16] on the success of

WW-SVM in the massive label noise setting.

2.1.3 Notations

Let k ≥ 3 be an integer which denotes the number of classes. For a positive integer

n, we let [n] = {1, . . . , n}. If v = (v1, . . . , vk) ∈ Rk and i ∈ [k] is an index, then let

[v]i := vi. Define max v = maxi∈[k] vi and argmax v = {i ∈ [k] : vi = max v}.

Let Sk denote the set of permutations on [k], i.e., elements of Sk are bijections
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σ : [k]→ [k]. Given σ ∈ Sk and v ∈ Rk, the vector σv ∈ Rk is defined entrywise where

the i-th entry is [σv]i = vσ(i). Equivalently, we view Sk as the set of permutation

matrices in Rk×k.

Let R+ denote the set of nonnegative reals. Denote ∆k = {(p1, . . . , pk) ∈ Rk
+ :

p1 + · · · + pk = 1} the probability simplex. For p ∈ ∆k, we write Y ∼ p to denote a

discrete random variable Y ∈ [k] whose probability mass function is p. Let ⟨·, ·⟩ be

the usual dot-product between vectors. Denote by I{input} the indicator function

which returns 1 if input is true and 0 otherwise.

2.1.4 Background

Recall the general multiclass learning framework as described in [RA16]: X is a

sample space and P is a joint distribution over X × [k]. A multiclass classification

loss is a function ℓ : R → Rk
+ where R is called the prediction space and [ℓ(r)]y ∈ R+

is the penalty incurred for predicting r ∈ R when the label is y ∈ [k]. If R is finite,

we refer to ℓ as a discrete loss. For example, a common setting for classification is

R = [k] and ℓ is the 0-1 loss. The ℓ-risk of a hypothesis function f : X → R is

erℓP (f) := EX,Y∼P {[ℓ(f(X))]Y } . (2.1)

The goal is to design ℓ-consistent algorithms, i.e., procedures that output a hypothesis

fn based on an input of n training samples sampled i.i.d from P such that erℓP (fn)→

erℓ,∗P = inff :X→R erℓP (f) as n→∞. Since ℓ is discrete, eq. (2.1) is difficult to directly

minimize. To circumvent this difficulty, we consider a convex surrogate loss L : Rd →

Rk for some positive integer d. The following property relates the surrogate loss L

and the discrete loss ℓ.

Definition II.1 (Calibration). For each p ∈ ∆k, define γℓ(p) := argminr∈R⟨p, ℓ(r)⟩.

We say that L is calibrated with respect to ℓ if there exists a function ψ : Rd → R
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such that for all p ∈ ∆k

inf
u∈Rd:ψ(u)̸∈γℓ(p)

⟨p, L(u)⟩ > inf
v∈Rd
⟨p, L(v)⟩.

By Ramaswamy et al. [RA16, Theorem 3], L being calibrated with respect to

ℓ is equivalent to the following: there exists ψ : Rd → R such that for all joint

distributions P on X × [k] and all sequences of functions gn : X → Rd, we have

erLP (gn)→ erL,∗P implies erℓP (ψ ◦ gn)→ erℓ,∗P

where erL,∗P = infg:X→Rd erLP (g). Thus, the calibration property allows us to focus on

finding L-consistent algorithms. In general it can be difficult to check that a given L

is calibrated with respect to ℓ. Finocchiaro et al. [FFW19] introduced the following

definition:

Definition II.2 (Finocchiaro et al. [FFW19]). The loss L : Rd → Rk embeds ℓ :

R → Rk if there exists an injection φ : R → Rd called an embedding such that

1. L(φ(r)) = ℓ(r) for all r ∈ R

2. r ∈ argminr∈R⟨p, ℓ(r)⟩ if and only if φ(r) ∈ argminv∈Rd⟨p, L(v)⟩.

The notion of embedding is important due to the following result from [FFW19,

Theorem 3]:

Theorem II.3 (Finocchiaro et al. [FFW19]). Let L be convex piecewise-linear and ℓ

be discrete. If L embeds ℓ, then L is calibrated with respect to ℓ.

Given L, ℓ and φ, Finocchiaro et al. [FFW19, Definition 6] provided an explicit

construction for ψ with excess risk bound proved in [FFW19, Theorem 6].

In this work, we are interested in the case when L is the WW-hinge loss:
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Figure 2.1:
The gray triangle represents the probability simplex ∆3, where
(p1, p2, p3) ∈ ∆3 is plotted as (p2, p3) in the plane. The interior of each
polygonal region contains p ∈ ∆3 such that minS∈OPk

⟨p, ℓ(S)⟩ has a
unique minimizer. For the derivations, see Section 2.8. Ordered parti-
tions are represented as follows:
({1}, {2, 3}) 7→ 1|23,
({1}, {2}, {3}) 7→ 1|2|3,
...

({3}, {2}, {1}) 7→ 3|2|1.

Definition II.4. For v ∈ Rk, define the Weston-Watkins hinge loss [WW99] L(v) ∈

Rk
+ entrywise by

[L(v)]y =
∑

i∈[k] : i ̸=y

h(vy − vi), y ∈ [k]

where h : R→ R+ is the hinge function defined by h(x) = max{0, 1− x}.

By theorem II.3, to prove that L is calibrated with respect to ℓ, it suffices to show

that L embeds ℓ. Going forward, L will refer to the WW-hinge loss. We now work

toward showing that L embeds the ordered partition loss ℓ, which we introduce next.

2.2 The ordered partition loss

The prediction space R that we use is the set of ordered partitions, which we now

define:
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Definition II.5. An ordered partition on [k] of length l is an ordered list S =

(S1, . . . , Sl) of nonempty, pairwise disjoint subsets of [k] such that S1 ∪ · · · ∪ Sl = [k].

Denote by OPk the set of all ordered partitions on [k] with length ≥ 2. We write the

length of S as lS to be precise when working with multiple ordered partitions.

Ordered partitions can be thought of as a complete ranking of k items where ties

are allowed. They are widely studied in combinatorics [Man12; Gro62; IKZ08]. In

the ranking literature, ordered partitions are called bucket orders [Fag+04] and the

Sis are called the buckets. The first bucket S1 contains the highest ranked items, and

so on. There is only one ordered partition with lS = 1, namely the trivial partition

S = ([k]). Thus, OPk is the set of nontrivial ordered partitions.

We now define the following discrete loss over the ordered partitions:

Definition II.6. The ordered partition loss ℓ : OPk → Rk
+ is defined, for i ∈ [k] and

S = (S1, . . . , Sl) ∈ OPk, as [ℓ(S)]i = |S1|−1+
∑lS−1

j=1 |S1∪· · ·∪Sj+1|·I{i ̸∈ S1∪· · ·∪Sj}.

The intuition behind the ordered partition loss is that we want to rank the labels,

where ties are allowed and each Si is a set of labels that are tied. We want the correct

label to be as high up the ranking as possible. The lower the true class is ranked, the

larger the loss.

To build intuitions about ℓ, let Y ∼ p and consider the random variable [ℓ(S)]Y

whose expectation is

EY∼p {[ℓ(S)]Y } = |S1| − 1 +

lS−1∑
j=1

|S1 ∪ · · · ∪ Sj+1| · Pr
Y∼p
{Y ̸∈ S1 ∪ · · · ∪ Sj} . (2.2)

Note that EY∼p {[ℓ(S)]Y } = ⟨p, ℓ(S)⟩. In fig. 2.1, we visualize the decision rule

for the Bayes optimal classifier in the k = 3 case by plotting the function p 7→

argminS∈OPk
⟨p, ℓ(S)⟩. When lS = 2, we have

EY∼p {[ℓ(S)]Y } = |S1| − 1 + k Pr
Y∼p
{Y ̸∈ S1} . (2.3)
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Thus, we have a trade-off where adding elements to S1 increases the |S1| − 1 term

but decreases the k PrY∼p {Y ̸∈ S1} term. More generally, when lS ≥ 2, the ordered

partition loss requires the predictor to associate each test instance x with a nested

sequence of sets S1, S1∪S2, · · · where these sets are designed to balance the probability

of containing x’s label with the size of the set. In the learning with partial labels

settings [CST11; Cid12], for each training instance the learner observes a set of labels,

one of which is the true label. The sets S1, S1 ∪ S2, . . . might be called progressive

partial labels in the spirit of partial label learning [CST11; Cid12].

Next, we define the embedding that satisfies definition II.2 when L is the WW-

hinge loss and ℓ is the ordered partition loss:

Definition II.7. The embedding φ : OPk → Rk is defined as follows: Let S =

(S1, . . . , Sl) ∈ OPk. Define φ(S) ∈ Rk entrywise so that for all i ∈ [lS] and all j ∈ Si,

we have [φ(S)]j = −(i− 1).

With the discrete loss ℓ and the embedding map φ defined, we now proceed to

the main results.

2.3 Main results

In this work, we establish that the WW-hinge loss embeds the ordered partition

loss:

Theorem II.8. The Weston-Watkins hinge loss L : Rk → Rk embeds the ordered

partition loss ℓ : OPk → Rk with embedding φ as in definition II.7.

In light of theorem II.3, theorem II.8 implies

Corollary II.9. L is calibrated with respect to ℓ.

In the remainder of this section, we develop the tools necessary to prove theo-

rem II.8.
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2.3.1 Vectorial representation of ordered partitions

First, we define the set SkCZ whose elements serve as realizations of ordered

partitions inside Rk.

Definition II.10. Define the following sets:

C := {v ∈ Rk : v1 = 0, vk ≤ −1, vi−vi+1 ∈ [0, 1], ∀i ∈ [k−1]}, CZ := C∩Zk (2.4)

and finally SkCZ :=
⋃
σ∈Sk

σCZ where σCZ = {σv : v ∈ CZ}.

A vector v ∈ Rk is monotonic non-increasing if v1 ≥ v2 ≥ · · · ≥ vk. Note

that vectors in CZ are nonconstant, integer-valued monotonic non-increasing such

that consecutive entries decrease at most by 1. Furthermore, by construction, SkCZ
consists of all possible permutations of elements in CZ. Therefore, the entries of

an element v ∈ SkCZ take on every value in 0,−1, . . . ,−(l − 1) for some integer

l ∈ {2, . . . , k}. Thus, v ∈ SkCZ can be thought of as vectorial representation of the

ordered partition S = (S1, . . . , Sl) where Si = {j : vj = −(i− 1)} for each i ∈ [l]. In

proposition II.13 below, we make this notion precise.

Lemma II.11. The image of φ is contained in SkCZ.

Proof. Let S ∈ OPk. It suffices to prove that there exists some σ ∈ Sk such that

σφ(S) ∈ CZ. Note that by definition, we have the set of unique values of φ(S) is

{[φ(S)]j : j ∈ [k]} = {0,−1,−2, . . . ,−(lS − 1)}.

Thus, let σ ∈ Sk be such that σφ(S) is monotonic non-increasing. Then σφ(S) ∈

CZ.

Next, we define the inverse of φ.
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Definition II.12. The quasi-link map ψ̃ : SkCZ → OPk is defined as follows: Given

v ∈ SkCZ, let l = 1−minj∈[k] vj. Define Si = {j ∈ [k] : vj = −(i− 1)} for each i ∈ [l].

Finally, define ψ̃(v) = (S1, . . . , Sl).

The tilde in ψ̃ is to differentiate the quasi-link from ψ in definition II.1.

Proposition II.13. The embedding map φ : OPk → SkCZ given in definition II.7 is

a bijection with inverse given by the quasi-link map ψ̃ from definition II.12.

Proof. We first show that for all ψ̃(φ(S)) = S for all S = (S1, . . . , Sl) ∈ OPk.

Observe that Si = {j ∈ [k] : [φ(S)]j = −(i − 1)} for all i = 1, 2, . . . , l. This implies

that ψ̃(φ(S)) = S.

Next, we show that φ(ψ̃(v)) = v for all v ∈ SkCZ. Let S = (S1, . . . , Sl) = ψ̃(v).

Then [φ(S)]j = −(i − 1) if and only if j ∈ Si. By definition Si = {j ∈ [k] : vj =

−(i− 1)}. Hence, [φ(S)]j = −(i− 1) if and only if vj = −(i− 1) which implies that

φ(S) = v, as desired.

In the next section, using φ, we prove a relationship between the inner risk func-

tions of L and ℓ.

2.3.2 Inner risk functions

Define the inner risk functions L : ∆k → R+ and ℓ : ∆k → R+ as follows:

L(p) = inf
v∈Rk
⟨p, L(v)⟩, and ℓ(p) = inf

S∈OPk

⟨p, ℓ(S)⟩. (2.5)

Note that these functions appear in the second part of definition II.2, although here

we have inf instead of min. Since OPk is finite, the infimum in the definition of ℓ is

attained. Later, we will argue that the infimum in the definition of L is also attained.

We now state the main structural result regarding L:
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Theorem II.14. For all p ∈ ∆k, we have

L(p) = min
v∈SkCZ

⟨p, L(v)⟩.

Sketch of proof. Note that L is invariant under translation by any scalar multiple of

the all ones vector. Thus, L has an extra degree of freedom. We introduce a loss

function ℓ : Rk−1 → Rk called the reduced WW-hinge loss, which removes this extra

degree freedom. Furthermore, there exists a mapping π : Rk → Rk−1 such that

⟨p, L(v)⟩ = ⟨p, ℓ(π(v))⟩ for all p ∈ ∆k and v ∈ Rk. Letting z = π(v) ∈ Rk−1, we show

that for a fixed p, the function Fp(z) := ⟨p, ℓ(z)⟩ is convex and piecewise-linear and the

minimization of which can be formulated as a linear program [BT97]. Furthermore,

since Fp is nonnegative, the infimum infz∈Rk−1 Fp(z) is attained [BT97, Corollary 3.2],

which implies that the infimum in the definition of L in eq. (2.5) is attained as well.

The linear program is shown to be totally unimodular, which implies that an integral

solution exists [Law01], i.e., minz∈Rk−1 Fp(z) = Fp(z
∗) for some z∗ ∈ Zk−1. From z∗,

we obtain an integral v∗ ∈ Zk such that L(p) = ⟨p, L(v∗)⟩. Finally, we construct

an element v† ∈ SkCZ from v∗ in such a way that the objective does not increase,

i.e., ⟨p, L(v∗)⟩ ≥ ⟨p, L(v†)⟩, which implies that L(p) = ⟨p, L(v†) by the optimality of

v∗.

The ordered partition loss ℓ and the WW-hinge loss L are related by the following:

Theorem II.15. For all p ∈ ∆k and all S ∈ OPk, we have

⟨p, ℓ(S)⟩ = ⟨p, L(φ(S))⟩,

where φ is the embedding map as in definition II.7.

Sketch of proof. Let S = (S1, . . . , Sl) ∈ OPk and p ∈ ∆k. Let T ∈ Rk×k consist of

ones on and below the main diagonal and zero everywhere else. Letting D = T−1, we
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have

⟨p, L(φ(S))⟩ = ⟨p, TDL(φ(S))⟩ = ⟨T ′p,DL(φ(S))⟩.

Next, we observe that [T ′p]i = pi+ · · ·+ pk for each i ∈ [k]. We then show through a

lengthy calculation that for each i ∈ [k]

1. If i = 1, then [T ′p]1 = 1 and [DL(φ(S))]1 = |S1| − 1.

2. If i > 1 and i = |S1 ∪ · · · ∪ Sj| + 1 for some j ∈ [l], then [T ′p]i =

PrY∼p {Y ̸∈ S1 ∪ · · · ∪ Sj} and [DL(φ(S))]i = |S1 ∪ · · · ∪ Sj+1|.

3. For all other i, [DL(φ(S))]i = 0 (in which case the value of [T ′p]i is irrelevant).

From this, we deduce that ⟨T ′p,DL(φ(S))⟩ is equal to eq. (2.2).

Next, we show that the inner risks of L and ℓ from eq. (2.5) are in fact identical:

Corollary II.16. For all p ∈ ∆k, we have L(p) = ℓ(p).

Proof. Observe that

ℓ(p)
(a)
= min

S∈OPk

⟨p, ℓ(S)⟩ (b)= min
S∈OPk

⟨p, L(φ(S))⟩ (c)= min
v∈SkCZ

⟨p, L(v)⟩ (d)= L(p)

where (a) follows from definition of ℓ, (b) from theorem II.15, (c) from the fact that

φ : OPk → SkCZ is a bijection (proposition II.13), and (d) from theorem II.14.

Having developed all the tools necessary, we turn toward the proof of our main

result theorem II.8.

2.3.3 Proof of theorem II.8

We check that the two conditions in definition II.2 holds. The first condition is

that L(φ(S)) = ℓ(S) for all S ∈ OPk, which follows from theorem II.15. To see this,
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note that for all i ∈ [k] the i-th elementary basis vector ei ∈ ∆k. Thus, we have

[L(φ(S))]i = ⟨ei, L(φ(S))⟩ = ⟨ei, ℓ(S)⟩ = [ℓ(S)]i

for all i ∈ [k]. This implies that L(φ(S)) = ℓ(S), which is the first condition of

definition II.2.

Next, we check the second condition. Let p ∈ ∆k. Define γ(p) :=

argminS∈OPk
⟨p, ℓ(S)⟩, and Γ(p) := argminv∈Rk⟨p, L(v)⟩. Furthermore, by the defi-

nition of γ, S ∈ γ(p) if and only if ⟨p, ℓ(S)⟩ = ℓ(p). Likewise, φ(S) ∈ Γ(p) if and only

if ⟨p, L(φ(S))⟩ = L(p). By corollary II.16 and theorem II.15, we have ⟨p, ℓ(S)⟩ = ℓ(p)

if and only if ⟨p, L(φ(S))⟩ = L(p). Putting it all together, we get S ∈ γ(p) if and only

if φ(S) ∈ Γ(p), which is the second condition of definition II.2.

2.4 Minimially emblematic losses

Going forward, let L : Rd → Rk
+ be a generic surrogate loss. The WW-hinge loss

is denoted by LWW and the CS-hinge loss by LCS. Likewise, let ℓ : R → Rk
+ be a

generic discrete loss. The ordered partition loss is denoted by ℓOP and the 0-1 loss

by ℓzo.

We define a “dual” notion to the embedding dimension Finocchiaro et al. [FFW20,

Definition 6]:

Definition II.17. Let L : Rd → Rk
+ be a loss. Define the embedding cardinality of L

as

emb.card(L) := min
{
n ∈ {2, 3, . . . } | there exists a discrete loss ℓ:[n]→Rk

such that L embeds ℓ

}
.

A discrete loss ℓ : R → Rk is said to be minimally emblematic for L if |R| =

emb.card(L) and L embeds ℓ.
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Remark II.18. Intuitively, ℓ is minimally emblematic for L with embedding φ if φ(R)

captures all the essential information contained in the surrogate L in the most com-

pact way. Let us say that a set of vectors E ⊆ Rk is an emblem of L if for all p ∈ ∆k,

the set E ∩ argminv⟨p, L(v)⟩ is nonempty. Then we can equivalently define ℓ with φ

to be minimally emblematic for L if φ(R) is an emblem of L of minimal cardinality.

In other words, φ(R) is a minimal set of minimizers of all possible L-inner risks.

For each k ∈ {3, . . . , 15}, we showed by a computer search that for all S ∈ OPk,

there exists p ∈ ∆k such that S is the unique minimizer of minT∈OPk
⟨p, ℓ(T)⟩. A

consequence of this is that

Proposition II.19. For k ∈ {3, . . . , 15}, emb.card(LWW ) = |OPk|. In other words,

the ordered partition loss is minimally emblematic for the WW-hinge loss.

We conjecture this result holds for all k ≥ 3.

2.5 The argmax link

Define γℓ(p) := argminr∈R⟨p, ℓ(r)⟩ and ΓL(p) := argminv∈Rd⟨p, L(v)⟩. For multi-

class classification into k classes, most multiclass SVMs typically output a vector of

scores v ∈ Rk which is converted to a class label by taking argmax v. In this section,

we analyze the argmax as a “link” function. Recall from section 2.1.3, argmax is a

set-valued function. Define

ΩL := {p ∈ ∆k : | argmax p| = 1, argmax v = argmax p, ∀v ∈ ΓL(p)}.

When L is calibrated with respect to ℓzo, we have that ΩL = {p ∈ ∆k : | argmax p| =

1}. Hence, ∆k \ ΩL has measure zero. For other L not necessarily calibrated with

respect to ℓzo, it is desirable that ΩL be as large as possible. Below, we will prove

that ΩLCS is a proper subset of ΩLWW .
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Figure 2.2:
The gray triangle represents the probability simplex ∆3, where
(p1, p2, p3) ∈ ∆3 is plotted as (p2, p3) in the plane. The light gray regions
are ΩLWW (left) and ΩLCS (right). For the derivation, see Section 2.8.

Recall that X is a sample space and P is a distribution on X×[k]. For each x ∈ X ,

define the class conditional distribution ηP (x) ∈ ∆k by [ηP (x)]y = PrX,Y∼P (Y =

y|X = x).

Proposition II.20. Let P be a joint distribution on X × [k] such that ηP (x) ∈ ΩL

for all x and L : Rd → Rk
+ be a loss. Let g∗ : X → Rk be such that g∗(x) ∈ ΓL(ηP (x))

for all x ∈ X . Then argmax ◦g∗ is Bayes optimal with respect to the 0-1 loss.

Proof. By definition of ΩL, we have argmax ◦g∗(x) = argmax ηP (x) for all x ∈ X .

The following theorem asserts that for any v ∈ ΓLWW (p), the argmax v is contained

in the top bucket S1 for some S ∈ γℓOP (p).

Theorem II.21. Let p ∈ ∆k be such that max p > 1
k
and v ∈ ΓLWW (p). Then there

exists S = (S1, . . . , Sl) ∈ γℓOP (p) such that argmax v ⊆ S1.

Below, we consider two conditions on p ∈ ∆k such that for all S ∈ γℓOP (p), the top

bucket S1 = argmax p. By theorem II.21, for such p ∈ ∆k, we can recover argmax p

from any v ∈ ΓLWW (p). The first condition covers p ∈ ∆k such that the top class has

a majority:

Proposition II.22. Let p ∈ ∆k satisfy the “majority condition”: max p > 1/2. Then

for all S = (S1, . . . , Sl) ∈ γℓOP (p), we have |S1| = 1 and S1 = argmax p.
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While proposition II.22 does not guarantee that γℓOP (p) is a singleton, all S ∈

γℓOP (p) have the same top bucket. The second condition covers p ∈ ∆k whose top class

may not have a majority, yet argmax p can still be recovered from any v ∈ ΓLWW (v)

by taking argmax v:

Proposition II.23. Fix a number α such that 1 > α > 1
k
. Let p ∈ ∆k satisfy the

“symmetric label noise (SLN) condition”: there exists j∗ ∈ [k] so that pj∗ = α and

pj =
1−α
k−1

for all j ̸= j∗. Then ({j∗}, [k] \ {j∗}) is the unique element of γℓOP (p).

In particular, when α < 1/2, p violates the majority condition. Under SLN, we

have argmax p = {j∗} since α − 1−α
k−1

= (k−1)α−1+α
k−1

= kα−1
k−1

> 1−1
k−1

= 0. In light of

theorem II.21, we have

Corollary II.24. If p ∈ ∆k satisfies the majority or the SLN condition, then p ∈

ΩLWW .

Thus, in two common regimes where for all x ∈ X the class conditional ηP (x)

satisfies the SLN or the majority condition, the Bayes optimal ordered partition has

a top bucket consisting of a single element. When this occurs, the argmax link

recovers the most probable class, i.e., the unique element from the top bucket. This

supports the observation by Doǧan et al. [DGI16] that the WW-SVM performs well

under the SLN condition, even with significant label noise. For the CS-hinge loss, it

is known that ΩLCS = {p ∈ ∆k : p satisfies the majority condition} [Liu07, Lemma

4]. In particular, ΩLCS is a proper subset of ΩLWW . For k = 3, we show in fig. 2.2 the

regions ΩLWW and ΩLCS . Our finding provides theoretical support for the finding of

[DGI16] that WW outperforms CS.

2.6 Conclusion and future work

We proved that the Weston-Watkins hinge loss is calibrated with respect to the

ordered partition loss, which we argue is minimally emblematic for the WW-hinge
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loss. Furthermore, we showed the advantage of WW-hinge loss over the Crammer-

Singer hinge loss when the popular “argmax” link is used. An interesting direction

is to apply the ordered partition loss to other multiclass learning problems such as

partial label and multilabel learning.

2.7 Omitted proofs

2.7.1 Additional notations

We introduce notations in addition to those already defined previously in sec-

tion 2.1.3.

• L always denotes the WW-hinge loss (definition II.4) and ℓ always denotes the

ordered partition loss (definition II.6). So far, we sometimes works with generic

losses L and ℓ. However, below, we focus exclusively on the WW-hinge and the

ordered partition loss. The exception is the last section section 2.8.2, where the

explicit names LWW and LCS are used.

• All vectors are column vectors unless stated otherwise.

• R+ and Z+ denotes the set of non-negative reals and integers, respectively.

• Define Rk
↑ = {v ∈ Rk : v1 ≤ v2 ≤ · · · ≤ vk}. Likewise, define Rk

↓ .

• For a positive integer n, we let [n] := {1, . . . , n}. By convention, [0] = ∅.

• Let 1k ∈ Rk denote the vector all ones.

• For a number t ∈ R, let [t]+ = max{0, t}. For a vector v, we denote by [v]+ the

vector resulting from applying [·]+ entrywise to v. The hinge loss h : R → R+

is defined by h(x) = [1− x]+.

• For a vector v ∈ Rk, we use [v]i to denote the i-th entry of v in conjunction

with the usual notation vi.
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• Given a vector v ∈ Rk, we define

max v := max
i∈[k]

vi and argmax v := {i ∈ [k] : vi = max v}

Define min v and argmin v likewise.

• Probability simplex

∆k = {p = (p1, . . . , pk) ∈ Rk
+ : p1 + · · ·+ pk = 1}

and non-increasing probability simplex

∆k
↓ = {p ∈ ∆k : p1 ≥ p2 ≥ · · · ≥ pk} = ∆k ∩Rk

↓ .

• For p ∈ ∆k, we write Y ∼ p to denote a discrete random variable Y ∈ [k] whose

probability mass function is p.

• For each i, j ∈ [k], σ(i,j) ∈ Rk×k is the permutation matrix that switches the

i-th and j-th index. By convention, if i = j, then σ(i,j) is the identity. Also, for

brevity, define σi = σ(1,i).

• According to the definition above, σ(i,j) acts on Rk. However, we abuse notation

and allow σ(i,j) to act on [k] in the obvious way. In such cases, we write σ(i,j)(ℓ)

for ℓ ∈ [k].

2.7.2 Main results

Lemma II.25. For all v ∈ Rk and c ∈ R, we have L(v) = L(v + c1k).

Proof. For all y ∈ [k], we have that

[L(v + c1)]y =
∑

i∈[k] : i ̸=y

h(vy + c− (vi − c)) =
∑

i∈[k] : i ̸=y

h(vy − vi) = [L(v)]y.
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Lemma II.26. For all j ∈ [k], we have L(σjv) = σjL(v).

Proof. If j = 1, then the result is trivial. Hence, let j > 1. We prove

[L(σjv)]y = [L(v)]σj(y)

for the following three cases: y ̸∈ {1, j}, y = 1 and y = j. Before we go through the

cases, note that

[L(σjv)]y =
∑

i∈[k]:i ̸=y

h([σjv]y − [σjv]i) =
∑

i∈[k]:i ̸=y

h(vσj(y) − vσj(i)).

Now, for the first case, suppose that y ̸∈ {1, j}. Then σj(y) = y and so

[L(σjv)]y =
∑

i∈[k]:i ̸=y

h(vy − vσj(i))

= h(vy − vσj(1)) + h(vy − vσj(j)) +
∑

i∈[k] : i ̸∈{1,j,y}

h(vy − vσj(i))

= h(vy − vj) + h(vy − v1) +
∑

i∈[k] : i ̸∈{1,j,y}

h(vy − vi)

=
∑

i∈[k] : i ̸∈{y}

h(vy − vi)

= [L(v)]y = [L(v)]σj(y).

Next, suppose that y = 1. Thus, we have σj(y) = σj(1) = j. So

[L(σjv)]y = [L(σjv)]1 =
∑

i∈[k]:i ̸=1

h(vj − vσj(i))

=
∑

i∈[k]:i ̸=j

h(vj − vi)

= [L(v)]j = [L(v)]σj(y).

46



Finally, if y = j, σj(y) = 1

[L(σjv)]y = [L(σjv)]j =
∑

i∈[k]:i ̸=j

h(v1 − vσj(i))

=
∑

i∈[k]:i ̸=1

h(vj − vi)

= [L(v)]1 = [L(v)]σj(j) = [L(v)]σj(y).

Lemma II.27. Let i, j ∈ {2, . . . , k} be distinct. Then σiσjσi = σ(i,j).

Proof. This is simply an exhaustive case-by-case proof over all inputs y ∈ [k]. First,

let y = 1. Then σ(i,j)(1) = 1 since 1 ̸∈ {i, j}. On the other hand σiσjσi(1) = σiσj(i) =

σi(i) = 1. Now, let y ∈ {2, . . . , k}. If y ̸∈ {i, j}, then σ(i,j)(y) = y and σiσjσi(y) =

σiσj(y) = σi(y) = y. If y = i, then σ(i,j)(i) = j and σiσjσi(i) = σiσj(1) = σi(j) = j. If

y = j, then σ(i,j)(j) = i and σiσjσi(j) = σiσj(j) = σi(1) = i.

Corollary II.28. Every σ ∈ Sk can be written as a product σ = σi1σi2 · · ·σil.

Proof. We prove the equivalent statement that the set S := {σi : i ∈ {2, . . . , k}}

generates the group Sk. A standard result in group theory states that the set of

transpositions T generates Sk. By lemma II.27, transpositions between labels in

{2, . . . , k} can be generated by S. Furthermore, σi = σ(1,i) by definition, so transpo-

sition between 1 and elements of {2, . . . , k} can be generated by S as well. Hence, all

of T can be generated by S.

Corollary II.29. For all v ∈ Rk and σ ∈ Sk, we have

L(σv) = σL(v).
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Proof. By corollary II.28, we may write σ = σi1σi2 · · ·σim . Hence,

L(σv) = L(σi1σi2 · · ·σimv) (2.6)

= σi1L(σi2 · · ·σimv) (2.7)

...

= σi1σi2 · · ·σimL(v) (2.8)

= σL(v), (2.9)

where for eq. (2.7) to eq. (2.8) we used lemma II.26.

Lemma II.30. Let v ∈ Rk and j, j′ ∈ [k] be distinct such that vj ≥ vj′. Then

[L(v)]j ≤ [L(v)]j′. Furthermore, if vj > vj′, then [L(v)]j < [L(v)]j′.

Proof. We have

[L(v)]j − [L(v)]j′

=
∑

i∈[k]:i ̸=j

h(vj − vi)

−
∑

i∈[k]:i ̸=j′
h(vj′ − vi)

= h(vj − vj′) +
∑

i∈[k]:i ̸∈{j,j′}

h(vj − vi)

− h(vj′ − vj)−
∑

i∈[k]:i ̸∈{j,j′}

h(vj′ − vi)

= h(vj − vj′)− h(vj′ − vj)

+
∑

i∈[k]:i ̸∈{j,j′}

h(vj − vi)− h(vj′ − vi).

Since and h is monotonically non-increasing, we have

vj − vj′ ≥ 0 ≥ vj′ − vj =⇒ h(vj − vj′)− h(vj′ − vj) ≤ 0 (2.10)
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For the same reason, we have h(vj − vi)− h(vj′ − vi) ≤ 0. Putting it all together, we

have [L(v)]j − [L(v)]j′ ≤ 0, as desired.

For the “furthermore” part, note that under the assumption vj > vj′ , all inequal-

ities in eq. (2.10) becomes strict.

For reasons that will become clear later, we define for each n ∈ [k − 1]

Ln(p) := inf
v∈Rk : | argmax v|≥n

⟨p, L(v)⟩. (2.11)

Since argmax v is always nonempty, the condition that | argmax v| ≥ 1 is always true.

Thus, we have L1 = L.

Lemma II.31. For all n ∈ [k − 1], p ∈ ∆k and σ ∈ Sk, we have Ln(p) = Ln(σp).

Proof. Define Rk,n := {v ∈ Rk : | argmax v| ≥ n}. Since | argmax v| = | argmaxσv|,

we have σRk,n = Rk,n. Introducing the change of variables u = σv, we have

Ln(p) = inf
v∈Rk,n

⟨p, L(v)⟩

= inf
σ′u∈Rk,n

⟨p, L(σ′u)⟩ ∵ Definition of u

= inf
u∈σRk,n

⟨p, L(σ′u)⟩ ∵ σ−1 = σ′

= inf
u∈Rk,n

⟨p, L(σ′u)⟩ ∵ σRk,n = Rk,n

= inf
u∈Rk,n

⟨p, σ′L(u)⟩ ∵ corollary II.29

= inf
u∈Rk,n

⟨σp, L(u)⟩

= Ln(σp).

Lemma II.32. Let p ∈ Rk
↓ , q ∈ Rk be arbitrary and σ ∈ Sk be such that σq ∈ Rk

↑ .

Then ⟨p, q⟩ ≥ ⟨p, σq⟩.
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Proof. Consider the “bubble sort” algorithm applied to q:

1. Initialize q(0) = q, t← 0

2. While there exists i ∈ [k − 1] such that q
(t)
i > q

(t)
i+1, do

(a) q(t+1) ← σ(i,i+1)q
(t)

(b) t← t+ 1

3. Output monotone non-decreasing vector q(t)

We claim that at every step, we have ⟨p, q(t)⟩ ≥ ⟨p, q(t+1)⟩. Let a = q
(t)
i and b = q

(t)
i+1

as in step 2 above. Let c = pi and d = pi+1. Hence, we have a > b and c ≥ d. Observe

that

⟨p, q(t)⟩ − ⟨p, q(t+1)⟩ = ac+ bd− (ad+ bc) = (a− b)(c− d) ≥ 0

which proves the claim. Thus, we have

⟨p, q⟩ = ⟨p, q(0)⟩ ≥ ⟨p, q(1)⟩ ≥ · · · ≥ ⟨p, q(t)⟩.

By construction, there exists τ ∈ Sk such that τq = q(t). We must have τq = σq

since both vectors are monotone non-increasing, although τ may not equal σ.

Define the matrix T ∈ Rk×k

Tij =


1 i ≥ j

0 otherwise.

(2.12)

Also, define D ∈ Rk×k

Dij =


1 : i = j

−1 : i = j + 1

0 : otherwise.
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In other words, D is the matrix with 1s on the main diagonal, −1s on the subdiagonal

below the main diagonal, and 0 everywhere else. We have

[Dv]i =


v1 : i = 1

vi − vi−1 : i > 1.

Lemma II.33. D−1 = T .

Proof. Using Gaussian elimination for inverting a matrix, it is easy to see that D′T ′

is the identity.

Definition II.34. Define the following sets:

M = {v ∈ Rk : v1 = 0 and 0 ≤ vi − vi+1, ∀[k − 1]},

C = {v ∈ Rk : v1 = 0, vk ≤ −1, and 0 ≤ vi − vi+1 ≤ 1, ∀[k − 1]},

MZ =M∩ Zk and CZ = C ∩ Zk.

Lemma II.35. We have the following equality of sets:

MZ = {−Tc : c ∈ Zk
+, c1 = 0}

CZ = {−Ts : s ∈ {0, 1}k, s1 = 0, and ∃i ∈ {2, . . . , k} : si = 1}

Proof. If v ∈ CZ, then we have vi ∈ Z+ and vi − vi+1 ∈ [0, 1]. These two conditions

together implies that vi−vi+1 ∈ {0, 1} for all i ∈ [k−1]. Hence, −Dv ∈ {0, 1}k−1 with

[Dv]1 = −v1 = 0. Let −Dv = s. Then lemma II.33 implies that −Ts = TDv = v.

By construction, s1 = 0. Furthermore, if si = 0 for all i ∈ [k], then we would have

v = 0 as well, which contradicts the fact that vk ≤ −1. Hence, there must exists

i ∈ {2, . . . , k} such that si = 1. Clearly, all v ∈ CZ arise this way. The statement

aboutMZ is similar.
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Lemma II.36. Let c ∈ Zk
+ and define s ∈ {0, 1}k entrywise where for each i ∈ [k],

si = I{ci ≥ 1}. Then we have [L(−Tc)]y ≥ [L(−Ts)]y for all y ∈ [k].

Proof. By definition, we have

[L(−Tc)]y − [L(−Ts)]y

=
∑

i∈[k]:i ̸=y

h([−Tc]y − [−Tc]i)− h([−Ts]y − [−Ts]i)

=
∑

i∈[k]:i ̸=y

h([Tc]i − [Tc]y)− h([Ts]i − [Ts]y)

It suffices to show that h([Tc]i− [Tc]y)− h([Ts]i− [Ts]y) ≥ 0 for all i ∈ [k] such that

i ̸= y.

First, consider when i > y. We have

[Tc]i − [Tc]y =
i∑

j=y+1

cj

Similarly, we have

[Ts]i − [Ts]y =
i∑

j=y+1

sj =
i∑

j=y+1

I{cj ≥ 1}.

From this, we see that

[Ts]i − [Ts]y ≥ 1 =⇒ [Tc]i − [Tc]y ≥ 1

[Ts]i − [Ts]y = 0 =⇒ [Tc]i − [Tc]y = 0.

For i > y, we have h([Ts]i − [Ts]y) = h([Tc]i − [Tc]y).

Next, let i < y. We have

[Tc]i − [Tc]y =

y∑
j=i+1

−cj.
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Similarly, we have

[Ts]i − [Ts]y =

y∑
j=i+1

−I{cj ≥ 1}.

Since cj ≥ I{cj ≥ 1}, we have [Ts]i − [Ts]y ≥ [Tc]i − [Tc]y which implies that

h([Ts]i − [Ts]y) ≤ h([Tc]i − [Tc]y).

Definition II.37. Let v = (v1, . . . , vk) ∈ Rk. Define the linear map π : Rk → Rk−1

π(v) = (v1 − v2, v1 − v3, . . . , v1 − vk).

We observe that for each i ∈ [k − 1], we have

[πv]i = v1 − vi+1.

Definition II.38. Given k ≥ 2, define the following (k−1)-by-(k−1) square matrices

ρ1, ρ2, . . . , ρk ∈ R(k−1)×(k−1):

1. ρ1 is the identity,

2. Let z = (z1, . . . , zk−1) ∈ Rk−1 be a vector. For each i > 1, define ρi(z) ∈ Rk−1

entrywise for each j ∈ [k − 1] by

[ρi(z)]j =


zj − zi−1 : j ̸= i− 1

−zi−1 : j = i− 1.

(2.13)

Lemma II.39 (Commuting relations). For all i ∈ [k], we have πσi = ρiπ.

Proof. If i = 1, then σi and ρi are both identity matrices and there is nothing to

show. Otherwise, suppose that i > 1. Consider v ∈ Rk. We first calculate πσiv. For
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each j ∈ [k − 1], we have

[πσiv]j = [σiv]1 − [σiv]j+1 = vi − vσi(j+1) =


vi − vj+1 : i ̸= j + 1

vi − v1 : i = j + 1.

(2.14)

Now, we compute ρiπv. Likewise, for each j ∈ [k − 1],

[ρiπv]j =


[πv]j − [πv]i−1 : j ̸= i− 1

−[πv]i−1 : j = i− 1.

Consider the two cases above separately: for j ̸= i− 1, we have

[πv]j − [πv]i−1 = (v1 − vj+1)− (v1 − vi) = vi − vj+1.

On the other hand, for i = j + 1, we have

−[πv]i−1 = −(v1 − vi) = vi − v1.

Thus, we have [πσiv]j = [ρiπv]j for all j which implies that πσiv = ρiπv. Since v was

arbitrary, we have πσi = ρiπ.

Definition II.40. The reduced WW hinge function H : Rk−1 → R≥0 is defined as

H(z) =
k−1∑
i=1

h(zi).

Definition II.41. For z ∈ Rk−1, the reduced WW hinge loss ℓ(z) ∈ Rk is defined

entrywise for each y ∈ [k] by

[ℓ(z)]y = H(ρyz).

Lemma II.42. For all v ∈ Rk, we have ℓ(πv) = L(v).
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Proof. We first check for all y ∈ [k] that

∑
i∈[k] : i ̸=y

h(vy − vi) = H(πσiv). (2.15)

Unpacking the definition, we have H(πσyv) =
∑

i∈[k−1] h([πσyv]i). Now, if y = 1, then

[πv]i = v1 − vi+1 for all i ∈ [k− 1]. Hence, eq. (2.15) holds. If y > 1. Then eq. (2.15)

follows from the expression for [πσyv]i computed in eq. (4.13). Thus, we have proven

eq. (2.15) for all y ∈ [k]. To conclude, we have

[L(v)]y =
∑

i∈[k] : i ̸=y

h(vy − vi) (2.16)

= H(πσyv) (2.17)

= H(ρyπv) (2.18)

= [ℓ(πv)]y (2.19)

where in eq. (2.18), we applied lemma IV.34.

Lemma II.43. Let n ∈ [k − 1]. If p ∈ ∆k
↓, then

Ln(p) = min
v∈CZ : vn=0

⟨p, L(v)⟩.

Proof. Define

N n = {v ∈ Rk : v1 = · · · = vn = 0, vi ≤ 0, ∀i ∈ [k]}.

We first claim that

Ln(p) = inf
v∈Nn
⟨p, L(v)⟩. (2.20)

Since N n ⊆ {v ∈ Rk : | argmax v| ≥ n}, the “≤” part of eq. (2.20) is obvious. For

the “≥” part, let v ∈ Rk be such that | argmax v| ≥ n. Then w = v − 1kmaxi∈[k] vi

55



is such that w ∈ N n. Furthermore, by lemma II.25, we have ⟨p, L(v)⟩ = ⟨p, L(w)⟩.

Thus, we have proven the claim.

Next, observe that if v ∈ N n, then

[πv]i = v1 − vi+1


= 0 : i ≤ n− 1

≥ 0 : i ≥ n.

Therefore, we have

π(N n) = {z ∈ Rk−1 : z ≥ 0, zi = 0,∀i ∈ [n− 1]}

where [0] = ∅. Introducing the change of variable z = πv ∈ Rk−1, we have

inf
v∈Nn
⟨p, L(v)⟩ = inf

v∈Nn
⟨p, ℓ(πv)⟩ ∵ lemma II.42 (2.21)

= inf
z∈π(N )

⟨p, ℓ(z)⟩ (2.22)

= inf
z∈Rk−1:z≥0
zi=0, ∀i∈[n−1]

⟨p, ℓ(z)⟩ (2.23)

Below, let 1 := 1k−1. Unwinding the definition, we have

⟨p, ℓ(z)⟩ =
∑
i∈[k]

piH(ρiz) =
∑
i∈[k]

pi1
′ [1− ρiz]+ .

Using slack variables ξi ≥ [1− ρiz]+, we can rewrite eq. (2.23) as the following linear
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program:

min
z∈Rk−1

min
(ξ1,...,ξk) : ξi∈Rk−1

∑
i

pi1
′ξi (2.24)

s.t. ξi ≥ 1− ρiz (2.25)

ξi ≥ 0, ∀i ∈ [k] (2.26)

z ≥ 0, (2.27)

zi = 0, ∀i ∈ [n− 1]. (2.28)

By Bertsimas et al. [BT97, Corollary 3.2], for a linear programming minimization

problem over a nonempty polyhedron, one of the following must be true: 1) the

optimal cost is −∞ or 2) a feasible minimum exists. Since eq. (2.24) is nonnegative

and the feasible region is nonempty, a feasible minimum exists. Let

R =



ρ1

ρ2
...

ρk


∈ Rk(k−1)×(k−1), X =



ξ1

ξ2
...

ξk


∈ Rk(k−1), p⊗ 1 =



p11

p21

...

pk1


∈ Rk(k−1).

We claim that

Ln(p) = min
z∈Rk−1

+ :zi=0∀i∈[n−1]
⟨p, ℓ(z)⟩. (2.29)

We first consider the case when n = 1 where we have L1 = L. In this case, the linear
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program eq. (2.24) can be rewritten as

L(p) = min
z∈Rk−1

min
X∈Rk(k−1)

(p⊗ 1)′X

s.t. X +Rz ≥ 1

X ≥ 0

z ≥ 0.

For a positive integer m, let Im denote the m×m identity matrix. Thus,

min
z∈Rk−1, X∈Rk(k−1)

(p⊗ 1)′X (2.30)

s.t.


R Ik(k−1)

Ik−1 0

0 Ik(k−1)


︸ ︷︷ ︸

=:A

 z
X

 ≥

1

0

0

 . (2.31)

We prove that A is totally unimodular (TUM). The matrix R has the property that

every row has at most one 1 and at most one −1, with all other entries being zeros.

Hence, R is TUM by the Hoffman’s sufficient condition Lawler [Law01]. Thus, (hor-

izontally) concatenating R with an identity matrix, i.e., R0 :=

[
R Ik(k−1)

]
results

in another TUM matrix R0. Finally, A is the (vertical) concatenation of R0 with

another identity matrix, i.e., A =

 R0

Ik(k−1)

. Hence, A is also TUM.

By a well-known result in combinatorial optimization Lawler [Law01], there exists

an integral solution (X∗, z∗) to eq. (2.30). In particular, z∗ ∈ Zk−1
+ . Thus, we have

proven that

L(p) = ⟨p, ℓ(z∗)⟩ = min
z∈Zk−1

+

⟨p, ℓ(z)⟩.

This proves eq. (2.29) for the case when n = 1. For n > 1, we define the matrix
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J ∈ R(n−1)×(k−1) to be the first n− 1 rows of the (k − 1)-by-(k − 1) identity matrix.

In other words, for i ∈ [n− 1] and j ∈ [k − 1],

Jij =


1 : i = j

0 : i ̸= j

.

Thus, we have

Ln(p) = min
z∈Rk−1, X∈Rk(k−1)

(p⊗ 1)′X

s.t.



R Ik(k−1)

Ik−1 0

0 Ik(k−1)

−J 0


︸ ︷︷ ︸

=:B

 z
X

 ≥


1

0

0

0


.

The matrix B is formed by duplicating rows of A and multiplying the duplicated row

by −1. Thus, B is also TUM. This proves eq. (2.29).

Below, let z∗ be a solution to eq. (2.29). Define v∗ =

 0

−z∗

. Furthermore,

π(v∗) = z∗ and so

Ln(p) = ⟨p, ℓ(z∗)⟩

= ⟨p, ℓ(π(v∗))⟩

= ⟨p, L(v∗)⟩.

Pick σ ∈ Sk such that σv∗ ∈ Rk
↓ . First we note that L(σv∗) ∈ Rk

↑ by lemma II.30.

Next, by corollary II.29, L(σv∗) = σL(v∗). Hence, by lemma II.32

⟨p, L(v∗)⟩ ≥ ⟨p, σL(v∗)⟩ = ⟨p, L(σv∗)⟩
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which implies that σv∗ is optimal. Also, we observe that σv∗ ∈MZ. By lemma II.35,

we can write σv∗ = −Tc for some c ∈ Zk
+. Note that since z∗1 = · · · = z∗n−1 = 0,

the vector v∗ has at least n entries equal to 0. Since v∗ ≤ 0, we must have that

v1 = · · · = v∗n = 0. Thus, c1 = · · · cn = 0 as well. Let s ∈ {0, 1}k be as defined in

lemma II.36. Then we have

Ln(p) ≥ ⟨p, L(σv∗)⟩ = ⟨p, L(−Tc)⟩ ≥ ⟨p, L(−Ts)⟩.

Hence, we have L(p) = ⟨p, L(−Ts)⟩. Since si = I{ci ≥ 1}, we have s1 = · · · = sn = 0

which implies that [−Ts]1 = · · · = [−Ts]n = 0. Consider the case when there exists

some i ∈ {n + 1, . . . , k} such that si = 1, then we have −Ts ∈ CZ which completes

the proof of lemma II.43. Now, consider the case where there does not exists such i.

Then we must have s = 0 and also −Ts = 0. Therefore, we have Ln(p) = ⟨p, L(0)⟩.

Define ṽ ∈ Rk entrywise by

[ṽ]i =


0 : i ̸= k

−1 : i = k

Noting that k ∈ argmini∈[k] pi by the assumption that p ∈ ∆k
↓. By lemma II.44 below,

we get that ⟨p, L(ṽ)⟩ ≤ ⟨p, L(0)⟩ which implies that ⟨p, L(ṽ)⟩ = Ln(v). Clearly, ṽ ∈ CZ
and ṽn = 0, which implies that ṽ is feasible for the optimization in lemma II.43.

Lemma II.44. Let p ∈ ∆k and i∗ ∈ argmini∈[k] pi. Consider the vector ṽ ∈ Rk

defined by

[ṽ]i =


0 : i ̸= i∗

−1 : i = i∗

Then

1. pi∗ ≤ 1
k

2. pi =
1
k
for all i if and only if pi∗ =

1
k
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3. ⟨p, L(0)⟩ ≥ ⟨p, L(ṽ)⟩ with equality if and only if pi∗ =
1
k
.

Proof. If pi∗ > 1
k
, then we would have

∑
i pi ≥ kpi∗ > 1, a contradiction. This

proves that pi∗ ≤ 1
k
. For the second item, the “only if” direction is obvious. For

the “if” direction, note that if pi >
1
k
for any i, then we again obtain

∑
i pi > 1, a

contradiction. For the third item, first observe that

[L(0)]i =
∑

j∈[k]:j ̸=i

h(0) = k − 1.

Thus, L(0) = (k − 1)1k and ⟨p, L(0)⟩ = k − 1. Next, we only L(ṽ). For i ̸= i∗, we

have

[L(ṽ)]i =
∑

j∈[k]:j ̸=i

h(ṽi − ṽj) = h(1) +
∑

j∈[k]:j ̸=i,j ̸=i∗
h(0) = k − 2.

When i = i∗, we have

[L(ṽ)]i∗ =
∑

j∈[k]:j ̸=i∗
h(ṽi∗ − ṽj) =

∑
j∈[k]:j ̸=i∗

h(−1) = 2(k − 1) = k − 2 + k.

From this, we deduce that

⟨p, L(ṽ)⟩ = k − 2 + kpi∗ .

Therefore, we have pi∗ ≤ 1
k
and so

⟨p, L(ṽ)⟩ = k − 2 + kpi∗ ≤ k − 2 + 1 = k − 1 = ⟨p, L(0)⟩.

Note if if pi∗ <
1
k
, then the inequality above is strict.
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2.7.2.1 Proof of theorem II.14

Proof of theorem II.14. Recall that L(p) = minv∈Rk⟨p, L(v)⟩. Since Rk ⊇ SkCZ, we

immediately have L(p) ≤ minv∈SkCZ⟨p, L(v)⟩. Below, we focus on the other inequality.

Pick σ ∈ Sk such that σp ∈ ∆k
↓. By lemma II.43 where n = 1, we have

L(σp) = min
v∈CZ
⟨σp, L(v)⟩.

Now, by corollary II.29, we have

⟨σp, L(v)⟩ = ⟨p, σ′L(v)⟩ = ⟨p, L(σ′v)⟩.

Thus,

L(p) = L(σp) ∵ lemma II.31

= min
v∈CZ
⟨p, L(σ′v)⟩

= min
v∈σ′CZ

⟨p, L(v)⟩ ∵ change of variables

≥ min
v∈SkCZ

⟨p, L(v)⟩

where for the last equality, we used the fact that σ′CZ ⊆ SkCZ.

Lemma II.45. Let s ∈ {0, 1}k be such that s1 = 0. Then

[DL(−Ts)]y =


min{i ∈ [k] : si = 1} − 2 : y = 1

min{i ∈ [k] : si = 1, i > y} − 1 : sy = 1, y > 1

0 : sy = 0, y > 1

(2.32)
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Proof. By the definition of T , we have

[Ts]j =

j∑
i=1

si. (2.33)

First, consider the case when y = 1. Then by eq. (2.33) we have [−Ts]1 = 0.

Furthermore,

[DL(−Ts)]1 = [L(−Ts)]1

=
∑

i∈[k]:i ̸=1

h([−Ts]1 − [−Ts]i)

=
∑

i∈[k]:i ̸=1

h([Ts]i)

Note that by eq. (2.33), we have [Ts]i ≥ 1 if i ≥ min{j : sj = 1} and [Ts]i = 0

otherwise. Hence, we get

[DL(−Ts)]1 =
∑

i∈[k]:1<i<min{j:sj=1}

h([Ts]i)

=
∑

i∈[k]:1<i<min{j:sj=1}

1

= min{j ∈ [k] : sj = 1} − 2.
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This proves the first case of eq. (2.32). Below, let y > 1. We have

[DL(−Ts)]y (2.34)

=
∑

i∈[k]:i ̸=y

h([−Ts]y − [−Ts]i)−
∑

i∈[k]:i ̸=y−1

h([−Ts]y−1 − [−Ts]i) (2.35)

=
∑

i∈[k]:i ̸=y

h([Ts]i − [Ts]y)−
∑

i∈[k]:i ̸=y−1

h([Ts]i − [Ts]y−1) (2.36)

=
∑

i∈[k]:i<y−1

h([Ts]i − [Ts]y)− h([Ts]i − [Ts]y−1) (2.37)

+ h([Ts]y−1 − [Ts]y)− h([Ts]y − [Ts]y−1) (2.38)

+
∑

i∈[k]:i>y

h([Ts]i − [Ts]y)− h([Ts]i − [Ts]y−1) (2.39)

If sy = 0, then [Ts]y = [Ts]y−1 and so we have [DL(−Ts)]y = 0. This proves the last

case of eq. (2.32).

Below, assume the setting of the second case, i.e., y > 1 and sy = 1. We first

evaluate eq. (2.37). Since i < y − 1, we have

([Ts]i − [Ts]y)− ([Ts]i − [Ts]y−1) = [Ts]y−1 − [Ts]y = −1

and

([Ts]i − [Ts]y−1) ≤ 0.

The two preceding facts together imply that

h([Ts]i − [Ts]y)− h([Ts]i − [Ts]y−1) = 1

and so ∑
i∈[k]:i<y−1

h([Ts]i − [Ts]y)− h([Ts]i − [Ts]y−1) = y − 2.
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Next, we evaluate eq. (2.38)

h([Ts]y−1 − [Ts]y)− h([Ts]y − [Ts]y−1) = h(−1)− h(1) = 2.

Finally, we evaluate eq. (2.39). Since i > y, we have

[Ts]i − [Ts]y =
i∑

j=y+1

si.

From this, we see that

[Ts]i − [Ts]y


= 0 : i < min{j ∈ [k] : j > y, sj = 1}

≥ 1 : otherwise.

Hence,

h([Ts]i − [Ts]y)


= 1 : i < min{j ∈ [k] : j > y, sj = 1}

= 0 : otherwise.

On the other hand, [Ts]i− [Ts]y−1 =
∑i

j=y si ≥ sy = 1 and so h([Ts]i− [Ts]y−1) = 0.

Therefore,

∑
i∈[k]:i>y

h([Ts]i − [Ts]y)− h([Ts]i − [Ts]y−1)

= min{j ∈ [k] : j > y, sj = 1} − y − 1

Putting it all together, we have

[DL(−Ts)]y = y − 2 + 2 + min{j ∈ [k] : j > y, sj = 1} − y − 1

= min{j ∈ [k] : j > y, sj = 1} − 1.
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2.7.2.2 Proof of theorem II.15

Proof of theorem II.15. Let S = (S1, . . . , Sl) ∈ OPk. Pick σ such that σφ(S) is

monotonic non-increasing. Hence, we have

σφ(S) = −[ 0, . . . , 0︸ ︷︷ ︸
|S1|-times

, 1, . . . , 1︸ ︷︷ ︸
|S2|-times

, . . . , l − 1, . . . , l − 1︸ ︷︷ ︸
|Sl|-times

].

For each i = 1, . . . , l − 1, define ci(S) = |S1|+ · · ·+ |Si|.

Note that

S1 ∪ · · · ∪ Si = {j ∈ [k] : 0 ≥ [φ(S)]j ≥ −(i− 1)} (2.40)

= {σ(1), σ(2), . . . , σ(ci(S))}. (2.41)

Also, note that by definition, ci(S) is precisely the index in [k − 1] such that


[σφ(S)]ci(S) = −(i− 1)

[σφ(S)]ci(S)+1 = −i.

Motivated by this, we define ζ(S) ∈ {0, 1}k where

[ζ(S)]j =


1 : j = ci(S) + 1 for some i = 1, . . . , l − 1

0 : otherwise.

Then

σφ(S) = −Tζ(S). (2.42)
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Next, note that

⟨p, L(φ(S))⟩ = ⟨p, L(σ′σφ(S))⟩ (2.43)

= ⟨p, σ′L(σφ(S))⟩ (2.44)

= ⟨σp, L(σφ(S))⟩ (2.45)

= ⟨T ′(σp), DL(σφ(S))⟩ (2.46)

= ⟨T ′(σp), DL(−Tζ(S))⟩ (2.47)

where eq. (2.43) is by σ′ = σ−1, eq. (2.44) is by corollary II.29, eq. (2.45) is a basic

property of the dot product, eq. (2.46) is by lemma II.33, eq. (2.47) is by eq. (2.42).

We first calculate DL(−Tζ(S)) by applying eq. (2.32) from lemma II.45 to s =

ζ(S). For the case y = 1 of eq. (2.32), we have

[DL(−Tζ(S))]1 = min{j ∈ [k − 1] : [ζ(S)]j = 1} − 2

= c1(S) + 1− 2

= |S1| − 1.

By definition, for y > 1, we note that [ζ(S)]y = 1 if and only if y = ci(S)+1 for some

i ∈ {1, . . . , l − 1}. Thus,

[DL(−Tζ(S))]ci(S)+1 = min{j ∈ [k] : [ζ(S)]j = 1, j > ci(S) + 1} − 1

= (ci+1(S) + 1)− 1 = ci+1(S).
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We summarize the above as follows:

[DL(−Tζ(S))]y =


|S1| − 1 : y = 1

ci+1(S) : y = ci(S) + 1 for some i ∈ [l − 1]

0 : otherwise.

Next, we calculate T ′(σp). Note that

[T ′(σp)]y = pσ(y) + pσ(y+1) + · · ·+ pσ(k)

= 1−
(
pσ(1) + · · ·+ pσ(y−1)

)
.

In particular, [T ′(σp)]1 = 1. Hence,

⟨p, L(φ(S))⟩

= ⟨T ′(σp), DL(−Tζ(S))⟩

= [T ′(σp)]1(|S1| − 1)

+
l−1∑
i=1

(
[T ′(σp)]ci(S)+1

)
ci+1(S)

= |S1| − 1

+
l−1∑
i=1

(
1−

(
pσ(1) + · · ·+ pσ(ci(S))

))
ci+1(S).

Recall from eq. (2.41)

{σ(1), σ(2), . . . , σ(ci(S))} = S1 ∪ · · · ∪ Si.

Hence, (
1−

(
pσ(1) + · · ·+ pσ(ci(S))

))
= Pr

Y∼p
(Y ̸∈ S1 ∪ · · · ∪ Si).
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Putting it all together, we have

⟨p, L(φ(S))⟩ = |S1| − 1 +

lS−1∑
i=1

|S1 ∪ · · · ∪ Si+1| Pr
Y∼p

(Y ̸∈ S1 ∪ · · · ∪ Si)

= EY∼p [[ℓ(S)]Y ]

= ⟨p, ℓ(S)⟩

This concludes the proof of theorem II.15.

2.7.3 Minimally emblematic losses

We first introduce some basic properties of hyperplane arrangements that will be

needed later.

Definition II.46. A hyperplane in Rd is a subset H ⊆ Rd of the form H = {v ∈

Rk : b− ⟨a, v⟩ = 0} for some (column) vector a ∈ Rk and b ∈ R.

Definition II.47. Define the following:

1. A hyperplane arrangement is a set of hyperplanes {Hn}n∈I indexed by a finite

set I. Let the hyperplanes be written as Hn = {v ∈ Rk : b(n) − ⟨a(n), v⟩ = 0}

for each n ∈ I.

2. Define s : Rk → {−1, 0, 1}I entrywise by

[s(v)]n = sgn
(
b(n) − ⟨a(n), v⟩

)
, where ∀t ∈ R, sgn(t) =


1 : t > 0

0 : t = 0

−1 : t < 0

.

3. Define the set Θ := s(Rk) ⊆ {−1, 0, 1}I .
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4. For each θ ∈ Θ, define

P̃θ := s−1(θ) = {v ∈ Rk : s(v) = θ} and Pθ := cl(P̃θ)

where cl denotes the closure of a set in Rk with the Euclidean topology.

Definition II.48. An affine subspace of Rk is a set of the formW +v whereW ⊆ Rk

is a linear subspace and v ∈ Rk is a vector. Let C be a convex set. The affine hull

Aff(C) of C is defined as the smallest affine subspace containing C. The relative

interior of C, denoted relint(C), is defined as the subset of v ∈ C such that for all

ϵ > 0 sufficiently small, we have that

Aff(C) ∩ {w ∈ Rk : ∥w − v∥ < ϵ} ⊆ C.

In other words, relint(C) is an open subset of Aff(C). Here ∥ • ∥ is the Euclidean

2-norm on Rk.

The following result is “folklore”. Since we cannot find its proof, we prove it here.

Lemma II.49. Let {Hn}n∈I be an arrangement of hyperplanes. Adopt all notations

from definition II.47. The following are true:

1. For all θ ∈ Θ, P̃θ =

v ∈ Rk :


θn(b

(n) − ⟨a(n), v⟩) > 0 : θn ̸= 0

b(n) − ⟨a(n), v⟩ = 0 : θn = 0

, ∀n ∈ I

,

2. For all θ ∈ Θ, Pθ =

v ∈ Rk :


θn(b

(n) − ⟨a(n), v⟩) ≥ 0 : θn ̸= 0

b(n) − ⟨a(n), v⟩ = 0 : θn = 0

, ∀n ∈ I

,

3. For all θ ∈ Θ, relint(Pθ) = P̃θ,

4.
⊔
θ∈Θ relint(Pθ) = Rk as a disjoint union.
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Proof. First, we note that item 1 follows directly from definition.

For item 2, let Qθ denote the set on the right hand side of the identity. We want

to show that Pθ = Qθ. Recall that Pθ = cl(P̃θ) is by definition the smallest closed set

containing P̃θ. Clearly, Qθ is a closed set. Furthermore, by item 1, we have P̃θ ⊆ Qθ.

Thus, we have the Pθ ⊆ Qθ.

Conversely, let v ∈ Qθ and w ∈ P̃θ. Then by item 1, we have that (1−λ)w+λv ∈ P̃θ
for all λ ∈ [0, 1). Now, limλ→1(1 − λ)w + λv = v. Since cl(P̃θ) is closed, it contains

all limits. Hence v ∈ cl(P̃θ) = Pθ, as desired. This proves that Qθ ⊆ Pθ, as desired.

Next, we prove item 3. From the first paragraph of Ben-Tal et al. [BN20, Section

1.1.6.D], we have relint(P̃θ) ⊆ P̃θ ⊆ cl(P̃θ). By Ben-Tal et al. [BN20, Theorem 1.1.1

(iv)], we have relint(P̃θ) = relint(cl(P̃θ)). By definition Pθ = cl(P̃θ). Putting it all

together, we get relint(Pθ) ⊆ P̃θ.

For the other inclusion, let v ∈ P̃θ. Let

W = {v ∈ Rk : b(n) − ⟨a(n), v⟩ = 0, ∀n ∈ I such that θn = 0}.

Then by item 2, W is an affine subspace containing Pθ. Thus, by definition of the

affine hull, we have W ⊇ Aff(Pθ). Furthermore, by item 1, we have, for all ϵ > 0

sufficiently small, that W ∩ {w ∈ Rk : ∥w − v∥ < ϵ} ⊆ Pθ. This proves that

v ∈ relint(Pθ) and so P̃θ ⊆ relint(Pθ).

Finally, we prove item 4

⊔
θ∈Θ

relint(Pθ) =
⊔
θ∈Θ

P̃θ =
⊔

θ∈s(Rk)

s−1(θ) = Rk,

where for the middle equality, we recall that Θ = s(Rk) by definition.
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2.7.3.1 Semiordered hyperplane arrangement

Below, we apply the results of lemma II.49 to the “semiorder hyperplane arrange-

ment”, which is closely connected to the WW-hinge loss.

Definition II.50. The semiorder hyperplane arrangement is the hyperplane arrange-

ment in Rk indexed by the finite set I = {(i, j) ∈ [k] × [k] : i ̸= j} with the (i, j)-th

hyperplane given by H(i,j) = {v ∈ Rk : 1− (vi − vj) = 0}.

Lemma II.51. Let L : Rk → Rk
+ be the WW-hinge loss and SkCZ be as in defini-

tion II.10. Let {H(i,j)}(i,j)∈I be the semiorder hyperplane arrangement as in defini-

tion II.50. Adopt all notations from definition II.47. Then we have for all θ ∈ Θ

that

1. the restriction of L to Pθ, denoted L|Pθ
, is an affine function,

2. Pθ ∩SkCZ is nonempty.

Proof. For the first item, fix some i ∈ [k] and note that

[L(v)]i =
∑

j∈[k]:j ̸=i

max{0, 1− (vi − vj)}.

Fix (i, j) ∈ I where I is as in definition II.50. Then by lemma II.49 item 2, for all

v ∈ Pθ, we have

max{0, 1− (vi − vj)} =


1− (vi − vj) : θ(i,j) = 1

0 : otherwise.

In either case, max{0, 1− (vi − vj)} is affine over Pθ.

Next, we prove the second item. Define H0 = {v ∈ Rk :
∑

i∈[k] vi = 0}. Then

H0 ∩ Pθ is nonempty for all θ ∈ Θ. To see this, first note that Pθ is nonempty by

72



construction. Furthermore, if v ∈ Pθ then v + c1k ∈ Pθ as well for any c ∈ R. Thus,

v + (−(1/k)∑i∈[k] vi)1
k ∈ H0 ∩ Pθ.

Lemma II.52. H0 ∩ Pθ does not contain any line.

Proof. Suppose that this is false, i.e., l ⊆ H0∩Pθ where l ⊆ Rk is a line. In particular,

l ⊆ H0. This means that l = {cw : c ∈ R} where w ∈ H0 is a nonzero vector. Thus,

there exists i ̸= j such that wi > 0 and wj < 0. Recall from definition II.47 that

[s(cw)](i,j) = sgn (1− c(wi − wj)). Thus, as c ranges over R, we have that [s(cw)](i,j)

takes on all three values in {−1, 0, 1}. However, by lemma II.49 item 2, [s(cw)](i,j)

can only take on at most two distinct values in {−1, 0, 1}.

Before proceeding, we recall a definition:

Definition II.53. A polyhedron P in Rk is a set of the form P = {x ∈ Rk : ⟨a(n), x⟩ ≤

b(n), ∀n ∈ [m]} where m is a positive integer, a(n) ∈ Rk and b(n) ∈ R for all n ∈ [m].

For each n ∈ [m], the tuple (a(n), b(n)) is called a constraint of P . A point x ∈ P is a

basic feasible solution (BFS) if there exists n1, . . . , nk ∈ [m] such that

1. ⟨a(ni), x⟩ = b(ni) for all i ∈ [k], and

2. A := {a(n1), . . . , a(nk)} is a basis for Rk.

By Bertsimas et al. [BT97, Theorem 2.6] and [BT97, Theorem 2.3], a polyhedron

which does not contain any line always have a BFS. Earlier, we proved that H0 ∩ Pθ
does not contain any line. Hence, H0 ∩ Pθ contains a BFS. For the remainder of this

proof, let x ∈ Rk be such a BFS with associated basis A = {a(n1), . . . , a(nk)} as in

definition II.53.

Let ei ∈ Rk be the i-th elementary basis vector in Rk. By definition of Pθ ∩H0,

we have

A ⊆ {ei − ej : (i, j) ∈ I} ∪ {1k}
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where we recall that I is as in definition II.50. Observe that ⟨1k, ei − ej⟩ = 0 for all

(i, j) ∈ I. Hence, we must have that 1k ∈ A, since otherwise A cannot span Rk.

This implies that we necessarily have 1k ∈ A. Without the loss of generality, let

a(nk) = 1k. Since A is linearly independent, we have

B := A \ {a(nk)} = {a(n1), . . . , a(nk−1)} ⊆ {ei − ej : (i, j) ∈ I}.

Now, for each i ∈ [k − 1], let (ti, hi) ∈ I be such that a(ni) = eti − ehi . By the

definition of Pθ, we have ⟨a(ni), x⟩ = xti − xhi = ±1. Note that this implies that x is

not a scalar multiple of 1k.

Next, consider the directed graph G with vertices V (G) = [k] and edges are

E(G) = {(ti, hi) : i ∈ [k − 1]}. Since B is linearly independent, we observe that

if (ti, hi) ∈ E(G), then (hi, ti) ̸∈ E(G). Let Gu be the undirected graph obtained

from G by forgetting the edge orientations. By the preceding observation, we have

|E(Gu)| = k − 1. An undirected edge is denoted as {α, β} ∈ E(Gu).

Observe that if {α, β} ∈ E(Gu), then xα − xβ = ±1.

Lemma II.54. Gu is a tree, i.e., a connected graph without cycles.

Proof. Note that Gu does not contain any cycles. To see this, note that if Gu had

a cycle, then A cannot be linearly independent. Thus, Gu is a disjoint union of

trees {T1, . . . , Tf} where f is a positive integer. Since each Ti is a tree, we have
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|E(Ti)| = |V (Ti)| − 1. On the other hand, we have

k − 1 = |E(Gu)|

= |E(T1)|+ · · ·+ |E(Tf )|

= |V (Ti)|+ · · ·+ |V (Tf )| − f

= |V (Gu)| − f

= k − f

which implies that f = 1. In other words, Gu is a tree to begin with.

Although we know that Gu is a tree, we only need the fact that Gu is connected.

Let α, β ∈ V (Gu). A path of length l from α to β is a sequence ϕ1, . . . , ϕl ∈ V (Gu)

such that

1. ϕ1 = α and ϕl = β

2. {ϕi, ϕi+1} ∈ E(Gu) for all i ∈ [m− 1].

The fact that Gu is connected implies that there exists a path between any two

vertices α, β ∈ V (Gu). Define x := maxx and x := minx.

Lemma II.55. For all β ∈ [k], we have x− xβ ∈ Z.

Proof. Let α ∈ argmaxx and consider a path ϕ1, . . . , ϕl ∈ V (Gu) from α to β.

Observe that xα − xβ =
∑

i∈[l−1] xϕi − xϕi+1
. Since {ϕi, ϕi+1} ∈ E(Gu), we have

xϕi − xϕi+1
= ±1. This proves that xα − xβ ∈ Z.

Let D := x− x. Since xβ ≥ x, we have 0 ≤ x− xβ ≤ D. Apply lemma II.55 with

β ∈ argminx, we get x− x = D ∈ Z. In summarize, we have proven that

{xβ − x : β ∈ [k]} ⊆ {−D,−D + 1, . . . ,−1, 0}. (2.48)
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Below, we will show that the inclusion in eq. (2.48) is in fact an equality.

Next, let ϱ ∈ argmaxx and ϱ ∈ argminx. Let ϕ1, . . . , ϕl ∈ V (Gu) be a path

between ϱ and ϱ. Note that by definition we have

1. xϕ1 = x and xϕl = x,

2. xϕi − xϕi+1
= ±1 for all i ∈ [l − 1].

Consider the sequence of numbers

S := (xϕ1 − x︸ ︷︷ ︸
=−D

, xϕ2 − x, . . . , xϕl−1
− x, xϕl − x︸ ︷︷ ︸

=0

).

Notice that the difference between consecutive entries of S is ±1. Thus, the sequence

S takes on every value in {−D,−D + 1, . . . ,−1, 0} at least once. This proves that

eq. (2.48) holds with equality, i.e.,

{xβ − x : β ∈ [k]} = {−D,−D + 1, . . . ,−1, 0}. (2.49)

Now, let σ ∈ Sk be the element such that σx is monotonic non-increasing. Earlier, we

argued that x is not a scalar multiple of 1k. Thus, eq. (2.49) implies that σx− x1k ∈

CZ. Consequently, we have x − x1k ∈ SkCZ. Since x ∈ Pθ, we have x − x1k ∈ Pθ

as well. This proves that Pθ ∩ SkCZ is nonempty, which concludes the proof of

lemma II.49.

2.7.3.2 Proof of proposition II.19

Proof of proposition II.19. Let m = |OPk|. Index the elements of OPk by [m], i.e.,

OPk = {S1, . . . ,Sm}.
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For each i ∈ [m], let p(i) ∈ ∆k be such that {Si} = argminS∈OPk
⟨p, ℓ(S)⟩. The exis-

tence of such p(i)s was confirmed by computer search for k ∈ {3, . . . , 15}. Equivalently,

Si is the unique element of OPk such that

⟨p(i), ℓ(Si)⟩ = ℓ(p(i)) = L(p(i)) (2.50)

where the second equality is by corollary II.16.

Next, suppose L embeds another discrete loss λ : R → Rk
+ with embedding

map χ : R → Rk. Our goal is to show that |R| ≥ |OPk|. To this end, let R =

{r1, . . . , rn}. Since L embeds λ via χ, we have by definition that L(p) = λ(p) =

minr∈R⟨p, L(χ(r))⟩. In particular, for a fixed i ∈ [m], there exists ι(i) ∈ [n] such that

L(p(i)) = ⟨p(i), L(χ(rι(i)))⟩. Note that this defines a mapping

ι : [m]→ [n]. (2.51)

Let v(i) := χ(rι(i)). Combined with eq. (2.50), we have

⟨p(i), L(v(i))⟩ = L(p(i)) = ℓ(p(i)). (2.52)

Consider {Pθ}θ∈Θ as in lemma II.51. For each v ∈ Rk, let θ(v) ∈ Θ be the unique ele-

ment such that v ∈ relint
(
Pθ(v)

)
. The existence and uniqueness of θ(v) is guaranteed

by lemma II.49 item 4.

By eq. (2.52), we have v(i) ∈ argminv∈Rk⟨p(i), L(v)⟩. By lemma II.51, the func-

tion v 7→ ⟨p(i), L(v)⟩ is affine over the domain Pθ(v(i)). Furthermore, it is minimized

at v(i) ∈ relint(Pθ(v)). Thus, by Ben-Tal et al. [BN20, Lemma 1.2.2], the function

v 7→ ⟨p(i), L(v)⟩ is constant over the domain v ∈ Pθ(v(i)). Since v(i) ∈ Pθ(v(i)) and
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⟨p(i), L(v(i))⟩ = L(p(i)) by eq. (2.52), we have

⟨p(i), L(v)⟩ = L(p(i)), ∀v ∈ Pθ(v(i)) (2.53)

Next, recall that Pθ ∩ SkCZ is nonempty for all θ ∈ Θ. In particular, Pθ(v(i)) ∩

SkCZ is nonempty. By proposition II.13, we have SkCZ = φ(OPk). All elements

of Pθ(v(i)) ∩ SkCZ are of the form φ(S) for some S ∈ OPk. Fix such an S so that

φ(S) ∈ Pθ(v(i)) ∩SkCZ. Now,

⟨p(i), L(φ(S))⟩ eq. (2.53)= L(p(i))
eq. (2.52)

= ℓ(p(i)).

Recall from right before eq. (2.50), we have that Si is the unique element of OPk
such that ⟨p(i), L(φ(S(i)))⟩ = ℓ(p(i)). This proves that S = Si. Thus, we have shown

that

Pθ(v(i)) ∩SkCZ = {φ(Si)}. (2.54)

Finally, we are now ready to prove that n = |R| ≥ |OPk| = m. It suffices to show

that the mapping ι : [m] → [n] defined at eq. (2.51) is injective. Suppose that there

exists distinct i, j ∈ [m] such that ι(i) = ι(j). Then

rι(i) = rι(j)

=⇒ v(i) = v(j) ∵ definition of v(i) := χ(rι(i))

=⇒ θ(v(i)) = θ(v(j))

=⇒ Pθ(v(i)) ∩SkCZ = Pθ(v(j)) ∩SkCZ

=⇒ {φ(Si)} = {φ(Sj)} ∵ eq. (2.54)

=⇒ φ(Si) = φ(Sj)

=⇒ Si = Sj ∵ φ is a bijection
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which contradicts i ̸= j. Thus, we have that ι : [m] → [n] is injective which implies

that n ≥ m.

2.7.4 The argmax link

Definition II.56. For σ ∈ Sk and S = (S1, . . . , Sl) ∈ OPk, define σ(S) ∈ OPk by

σ(S) = (σ(S1), . . . , σ(Sl))

where σ(Si) = {σ(j) : j ∈ Si} for each i ∈ [l].

Lemma II.57. For σ ∈ Sk and S = (S1, . . . , Sl) ∈ OPk, we have

σ′φ(S) = φ(σ(S)).

Proof. By definition, we have

[φ(σ(S))]j = −(i− 1), ∀j ∈ σ(Si).

Since j ∈ σ(Si) ⇐⇒ σ−1(j) ∈ Si, we have

[φ(σ(S))]j = −(i− 1), ∀j ∈ [k] : σ−1(j) ∈ Si.

Introduce the change of variable m = σ−1(j), we have

[φ(σ(S))]σ(m) = −(i− 1), ∀m ∈ Si.

On the other hand, we have

[σ′φ(S)]σ(m) = [φ(S)]σ′σ(m) = [φ(S)]m = −(i− 1), ∀m ∈ Si.
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This proves that σ′φ(S) = φ(σS).

Corollary II.58. For all S ∈ OPk and σ ∈ Sk, we have σℓ(S) = ℓ(σ′S).

Proof. Since ∆k spans Rk, it suffices to check that ⟨p, σℓ(S)⟩ = ⟨p, ℓ(σ′S)⟩ for all

p ∈ ∆k. To this end, we have

⟨p, ℓ(σ′S)⟩ = ⟨p, L(φ(σ′S))⟩ ∵ theorem II.15

= ⟨p, L(σφ(S))⟩ ∵ lemma II.57

= ⟨p, σL(φ(S))⟩ ∵ corollary II.29

= ⟨σ′p, L(φ(S))⟩

= ⟨σ′p, ℓ(S)⟩ ∵ theorem II.15

= ⟨p, σℓ(S)⟩

as desired.

For p ∈ ∆k, define

γ(p) := argmin
S∈OPk

⟨p, ℓ(S)⟩, (2.55)

Γ(p) := argmin
v∈Rk

⟨p, L(v)⟩. (2.56)

Lemma II.59. Let p ∈ ∆k
↓, v ∈ Γ(p), and σ be such that σv ∈ Rk

↓ . Then σp = p and

σv ∈ Γ(p).

Proof. Let i ∈ [k − 1] be such that vi < vi+1. We first prove that pi = pi+1. Let
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τ = σ(i,i+1). Since τ is a transposition, we have τ ′ = τ . Now,

0 ≤ ⟨p, L(τv)⟩ − ⟨p, L(v)⟩ ∵ Optimality of v

= ⟨p, τL(v)⟩ − ⟨p, L(v)⟩ ∵ corollary II.29

= ⟨τp, L(v)⟩ − ⟨p, L(v)⟩ ∵ τ ′ = τ .

= (pi+1 − pi)[L(v)]i + (pi − pi+1)[L(v)]i+1

= (pi+1 − pi)([L(v)]i − [L(v)]i+1)

By lemma II.30, we have [L(v)]i − [L(v)]i+1 > 0. By assumption, we have pi ≥ pi+1.

If we have pi > pi+1, then

(pi+1 − pi)︸ ︷︷ ︸
<0

([L(v)]i − [L(v)]i+1︸ ︷︷ ︸
>0

) < 0

which is a contradiction. Hence, we must have pi = pi+1. Repeating the proof with

the update v ← τv, we obtain a composition of transpositions

σ := σ(i1,i1+1)σ(i2,i2+1) · · ·σ(im,im+1)

such that σv ∈ Rk
↓ and σp = p. Finally,

L(p) = ⟨p, L(v)⟩ = ⟨p, σ′σL(v)⟩ = ⟨σp, L(σv)⟩ = ⟨p, L(σv)⟩

implies that σv ∈ Γ(p).

Lemma II.60. Let σ ∈ Sk and v ∈ Rk. Then argmaxσv = σ−1(argmax v).
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Proof. Let M = max v = maxσv.

argmaxσv = {j ∈ [k] : [σv]j =M}

= {j ∈ [k] : [v]σ(j) =M}.

On the other hand,

σ−1(argmax v) = {j ∈ [k] : σ(j) ∈ argmax v}

= {j ∈ [k] : [v]σ(j) =M}

= argmaxσv

as desired.

Lemma II.61. Let p ∈ ∆k
↓ be such that max p > 1

k
. Let v ∈ Γ(p), then there exists

S = (S1, . . . , Sl) ∈ γ(p) such that argmax v ⊆ S1.

Proof. Recall by definition, v ∈ Γ(p) if and only if L(p) = ⟨p, L(v). We first claim that

v is not a scalar multiple of the all ones vector. Suppose it is, then L(p) = ⟨p, L(v)⟩ =

⟨p, L(0)⟩ by lemma II.25, which implies that 0 ∈ Γ(p). Now, by lemma II.44, we have

0 ̸∈ Γ(p) since min p < 1
k
by the assumption that max p > 1

k
. This is a contradiction.

Hence, the claim is proved.

Next, let n = | argmax v|. By our claim that v is non-constant, we have that

n ∈ [k − 1]. Let σ ∈ Sk be such that σv ∈ Rk
↓ . Thus, by construction, we have

argmax v = [n]. Hence, we have, by lemma II.60,

[n] = argmaxσv = σ−1(argmax v)

or, equivalently, argmax v = σ([n]). Since n = | argmax v| ∈ [k − 1], v is feasible for
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the right hand side of eq. (2.11). Thus, we have

L(p) = Ln(p).

By lemma II.43

Ln(p) = min
w∈CZ :wn=0

⟨p, L(w)⟩. (2.57)

Let w∗ be a minimizer of the above optimization. Since w∗ ∈ CZ, consider S =

(S1, . . . , Sl) := ψ̃(w∗). Hence, by the definition of ψ̃, we have that S1 = argmaxw∗.

Note that

L(p) = Ln(p) = ⟨p, L(w∗)⟩

= ⟨p, L(φ(S))⟩ ∵ proposition II.13

= ⟨p, ℓ(S)⟩ ∵ theorem II.15

= ⟨σp, ℓ(S)⟩ ∵ σp = p by lemma II.59

= ⟨p, σ′ℓ(S)⟩

= ⟨p, ℓ(σS)⟩ ∵ corollary II.58.

Putting it all together, we have

⟨p, ℓ(σS)⟩ = L(p) = ℓ(p)

where the second equality follows from corollary II.16. This proves that σS ∈ γ(p).

Note that since w∗ is feasible for the optimization on the right hand side of eq. (2.57),

we have argmaxw∗ = {i ∈ [k] : w∗
i = 0} ⊇ [n]. Furthermore, recall that S1 =

argmaxw∗. Putting it all together, we have σ(S1) ⊇ σ([n]) = argmax v. Thus, σ(S)

satisfies the desired conditions.
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Lemma II.62. For all p ∈ ∆k and σ ∈ Sk, we have

S ∈ γ(σp) ⇐⇒ σS ∈ γ(p), (2.58)

v ∈ Γ(σp) ⇐⇒ σ′v ∈ Γ(p). (2.59)

Proof. We first prove eq. (2.58). Let S ∈ γ(σp). Then

ℓ(σp) = ⟨σp, ℓ(S)⟩

= ⟨p, σ′ℓ(S)⟩

= ⟨p, ℓ(σS)⟩ ∵ corollary II.58

≥ ℓ(p).

By the same argument, we have ℓ(p) ≥ ℓ(σp). Thus, ℓ(p) = ℓ(σp) and σS ∈ γ(p).

This proves the =⇒ direction eq. (2.58). To prove the other direction, we first write

p = σ′σp and note that

σS ∈ γ(σ′σp) =⇒ σ′σS ∈ γ(σp) ⇐⇒ S ∈ γ(σp).

Next, we prove eq. (2.59). By lemma II.31, we have L(σp) = L(p). Let v ∈ Γ(σp),

then

L(p) = L(σp) = ⟨σp, L(v)⟩

= ⟨p, σ′L(v)⟩

= ⟨p, L(σ′v)⟩ ∵ corollary II.29.

Thus, σ′v ∈ Γ(p). This proves the =⇒ direction of eq. (2.59). For the other

direction,

σ′v ∈ Γ(σ′σp) =⇒ σσ′v ∈ Γ(σp) ⇐⇒ v ∈ Γ(σp).
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2.7.4.1 Proof of theorem II.21

Proof of theorem II.21. Let σ ∈ Sk be such that σp ∈ ∆k
↓. By lemma II.62, we

have σv ∈ Γ(σp). Then by lemma II.61, there exists S = (S1, . . . , Sl) ∈ γ(σp) such

that S1 ⊇ argmaxσv = σ−1(argmax v), where the equality is due to lemma II.60.

Applying σ, to both side, we have σS1 ⊇ argmax v. By lemma II.62, we have

σS ∈ γ(p). Hence, we are done.

Lemma II.63. Let p ∈ ∆k
↓ be such that argmax p = {1} and S = (S1, . . . , Sl) ∈ γ(p).

Then 1 ∈ S1.

Proof. Let v = φ(S). Since S is nontrivial, we have max v > min v. By construction,

we have argmax v = S1. Hence, if 1 ̸∈ S1, then there exists some j ∈ {2, . . . , k} such

that vj > v1. Then lemma II.30 implies that [L(v)]1 > [L(v)]j and so

⟨p, L(v)⟩ − ⟨p, σjL(v)⟩ = (p1 − pj)([L(v)]1 − [L(v)]j) > 0.

But ℓ(p) = ⟨p, ℓ(S)⟩ = ⟨p, L(v)⟩ and

⟨p, σjL(v)⟩ = ⟨p, L(σjv)⟩ = ⟨p, L(σjφ(S)⟩ = ⟨p, L(φ(σjS))⟩ = ⟨p, ℓ(σjS)⟩

Thus, we have

⟨p, ℓ(S)⟩ − ⟨p, ℓ(σjS)⟩ > 0

which contradicts that S ∈ γ(p).

Definition II.64. A Sk-invariant property is a boolean function

B : ∆k → {true, false} (2.60)
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such that B(p) =⇒ B(σp) for all σ ∈ Sk and p ∈ ∆k. Here, “ =⇒ ” denotes logical

implication.

Lemma II.65. Let B and C be Sk-invariant properties. Suppose that for all p ∈ ∆k
↓,

B(p) implies C(p). Then for all p ∈ ∆k, we have B(p) implies C(p).

Proof. Let p ∈ ∆k be arbitrary. Pick σ such that σp ∈ ∆k
↓. Then

B(p) =⇒ B(σp) =⇒ C(σp) =⇒ C(p)

where for the first and last implications we used the Sk-invariance property of B and

C, and for the implication in the middle we used the assumption in the lemma.

Lemma II.66. Let p ∈ ∆k. Consider the statement B1(p) which returns true if and

only if

for all S ∈ γ(p), |S1| = 1 and S1 = argmax p. (2.61)

Then B1 is a Sk-invariant property.

Proof. Let p ∈ ∆k and σ ∈ Sk. Suppose B1(p) is true. We need to show that B1(σ′p)

is true. Let S ∈ γ(σp). By lemma II.62, we have σS ∈ γ(p). Since B1(p) is true, we

have |σ(S1)| = 1 and σ(S1) = argmax p. Thus, we immediately get that |S1| = 1. By

lemma II.60, we have S1 = σ−1(argmax p) = argmaxσp. The two preceding facts is

equivalent to B1(p) being true, by definition.

2.7.4.2 Proof of proposition II.22

Proof of proposition II.22. By lemma II.66 and lemma II.65, we may assume p ∈ ∆k
↓.

lemma II.63 implies that 1 ∈ S1. If |S1| = 1, then S1 = {1} and the result is proven.

Below, suppose |S1| > 1. We define

S ′
1 = {1}, S ′′

1 = S1 \ {1}.
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Define

S′ = (S ′
1, S

′′
1 , S2, . . . , Sl) ∈ OPk.

We claim that ⟨p, ℓ(S′)⟩ < ⟨p, ℓ(S)⟩. Given the claim, we would have a contradiction

that S ∈ γ(p) and so |S1| = 1 must be true. Let Y ∼ p and define

β :=
l−1∑
j=1

|S1 ∪ · · · ∪ Sj+1|Pr(Y ̸∈ S1 ∪ · · · ∪ Sj)

Observe that

⟨p, ℓ(S′)⟩ = |S ′
1| − 1 + |S ′

1 ∪ S ′′
1 |Pr(Y ̸∈ S ′

1) + β

= |S1|Pr(Y ̸= 1) + β

<
1

2
|S1|+ β.

On the other hand, we have

⟨p, ℓ(S)⟩ = |S1| − 1 + β.

Hence, we have

⟨p, ℓ(S)⟩ − ⟨p, ℓ(S′)⟩ = |S1| − 1− |S1|Pr(Y ̸= 1)

> |S1| − 1− 1

2
|S1|

=
1

2
|S1| − 1

≥ 2

2
− 1

= 0.

which proves the claim.
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2.7.4.3 Proof of proposition II.23

Proof of proposition II.23. Since argmax p = {j∗}, we have ({j∗}, [k] \ {j∗}) =

(argmax p, [k]\argmax p).We check that the statement below defines a Sk-invariant

property:

“p satisfies (argmax p, [k] \ argmax p) is the unique element of γ(p).” (2.62)

Let p satisfy eq. (2.62). By lemma II.62, we have σ−1(argmax p, [k] \ argmax p) is

the unique element of γ(σp). By definition,

σ−1(argmax p, [k] \ argmax p) = (σ−1 argmax p, σ−1([k] \ argmax p)).

By lemma II.60, we have σ−1 argmax p = argmaxσp. Thus, we have

σ−1(argmax p, [k] \ argmax p) = (argmaxσp, [k] \ argmaxσ−1p)

is the unique element of γ(σp). In other words, σp satisfies eq. (2.62), as desired.

Furthermore, “p satisfies the symmetric noise condition.” is obviously Sk-

invariant. Hence, by lemma II.66 and lemma II.65, we may assume p ∈ ∆k
↓. Pick

S = (S1, . . . , Sl) ∈ γ(p). lemma II.63 implies that 1 ∈ S1. By definition II.5 of OPk,

we have l ≥ 2. We first show that l = 2 by contradiction. Suppose that l > 2. Define

S′ = (S ′
1, . . . , S

′
l−1) where

S ′
1 := S1, S ′

2 := S2 ∪ S3, S ′
j := Sj+1, ∀j ∈ {3, · · · , l − 1}.

Let Y ∼ p and

β :=
l−1∑
j=3

|S1 ∪ · · · ∪ Sj+1|Pr(Y ̸∈ S1 ∪ · · · ∪ Sj).
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Then we have

⟨p, ℓ(S)⟩ = |S1| − 1 + |S1 ∪ S2|Pr(Y ̸∈ S1)

+ |S1 ∪ S2 ∪ S3|Pr(Y ̸∈ S1 ∪ S2) + β

and

⟨p, ℓ(S′)⟩ = |S ′
1| − 1 + |S ′

1 ∪ S ′
2|Pr(Y ̸∈ S ′

1)

+
l−2∑
j=2

|S ′
1 ∪ · · · ∪ S ′

j+1|Pr(Y ̸∈ S ′
1 ∪ · · · ∪ S ′

j)

= |S1| − 1 + |S1 ∪ S2 ∪ S3|Pr(Y ̸∈ S1)

+
l−2∑
j=2

|S1 ∪ · · · ∪ Sj+2|Pr(Y ̸∈ S1 ∪ · · · ∪ Sj+1)

= |S1| − 1 + |S1 ∪ S2 ∪ S3|Pr(Y ̸∈ S1)

+
l−1∑
j=3

|S1 ∪ · · · ∪ Sj+1|Pr(Y ̸∈ S1 ∪ · · · ∪ Sj)

= |S1| − 1 + |S1 ∪ S2 ∪ S3|Pr(Y ̸∈ S1) + β

Putting it all together, we have

⟨p, ℓ(S)⟩ − ⟨p, ℓ(S′)⟩ = |S1 ∪ S2|Pr(Y ̸∈ S1)

+ |S1 ∪ S2 ∪ S3|Pr(Y ̸∈ S1 ∪ S2)

− |S1 ∪ S2 ∪ S3|Pr(Y ̸∈ S1)

= |S1 ∪ S2 ∪ S3|Pr(Y ̸∈ S1 ∪ S2)

− |S3|Pr(Y ̸∈ S1).
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Define si := |Si| for each i ∈ [l]. Then

|S1 ∪ S2 ∪ S3|Pr(Y ̸∈ S1 ∪ S2) = (s1 + s2 + s3)(k − s1 − s2)
1− α
k − 1

and

|S3|Pr(Y ̸∈ S1) = s3(k − s1)
1− α
k − 1

.

Now, we have

(s1 + s2 + s3)(k − s1 − s2)− s3(k − s1)

= ((s1 + s2) + s3)((k − s1)− s2)− s3(k − s1)

= (s1 + s2)(k − s1)− s2(s1 + s2)− s2s3

= (s1 + s2)k − (s1 + s2)
2 − s2s3

≥ (s1 + s2)(s1 + s2 + s3)− (s1 + s2)
2 − s2s3

= s1s3

where for the inequality, we used the fact that k ≥ s1 + s2 + s3. Finally, we now get

a contradiction of the optimality of S:

|S1 ∪ S2 ∪ S3|Pr(Y ̸∈ S1 ∪ S2)− |S3|Pr(Y ̸∈ S1) ≥ s1s3
1− α
k − 1

> 0

implies

⟨p, ℓ(S)⟩ − ⟨p, ℓ(S′)⟩ > 0.

This proves the claim that if S = (S1, . . . , Sl) ∈ γ(p), then l = 2 and so S =

(S1, [k] \ S1). Next, we show that S1 = {1}. We already have shown that 1 ∈ S1. We
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calculate

⟨p, ℓ((S1, [k] \ S1))⟩ = |S1| − 1 + k Pr(Y ̸∈ S1)

= |S1| − 1 + k(k − |S1|)
(
1− α
k − 1

)
= |S1|

(
1− k

(
1− α
k − 1

))
+ C

where C = −1 + k2
(
1−α
k−1

)
does not depend on |S1|. To prove that |S1| = 1, by

minimality of S it suffices to show that

1− k
(
1− α
k − 1

)
> 0.

To see this, note that

1 > k

(
1− α
k − 1

)
⇐⇒ 1

k
>

1− α
k − 1

⇐⇒ k − 1

k
= 1− 1

k
> 1− α

⇐⇒ α >
1

k

where the last line is part of our assumption in the lemma statement.
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2.8 Derivation of the figures

We discuss how figs. 2.1 and 2.2 are obtained.

2.8.1 fig. 2.1

When k = 3, there are 12 nontrivial ordered partitions. Below, we represent OP3

vectorially in R3 using proposition II.13:

OPk = [-2 -2 -1 -1 -1 -1 0 -1 0 0 0 0 ;

0 -1 0 0 0 -1 0 -2 -1 -1 -1 -2 ;

-1 0 0 -1 -2 0 -1 0 0 -1 -2 -1 ]

Every column of the matrix OPk is a nontrivial ordered partition, e.g., the first

column


−2

0

−1

 7→ 2|3|1. Consider the following matrix whose columns are ℓ(S) =

LWW (φ(S)) ∈ R3
+ where ℓ is the ordered partition loss and S ∈ OP3.

ell = [ 5 5 4 3 2 3 1 2 1 0 0 0 ;

0 2 1 0 0 3 1 5 4 3 2 5 ;

2 0 1 3 5 0 4 0 1 3 5 2 ]

For example, the first column of ell is the result of applying LWW : Rk → Rk
+ to

the first column of OPk , i.e.,


5

0

2

 = LWW



−2

0

−1


 = ℓOP(2|3|1). Finally, to get the

region in fig. 2.3 labelled by “2|3|1”, we plot the (p2, p3) coordinates of the following

polytope:

Reg(2|3|1) := {p ∈ ∆3 : ⟨p, ℓ(2|3|1)− ℓ(S)⟩ ≤ 0, ∀S ∈ OP3, S ̸= 2|3|1}.

Repeat this procedure for all of OP3, we obtain fig. 2.3.
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Figure 2.3:
Each polygonal region is the polytope Reg(S) projected onto its last two

coordinates overall S ∈ OP3.

2.8.2 fig. 2.2

For the left panel of fig. 2.2, we compute ΩLWW

ΩLWW := {p ∈ ∆k : | argmax p| = 1, argmax v = argmax p, ∀v ∈ ΓLWW (p)}.

Thus, the region in light gray in the left panel of fig. 2.2 is the union of the polygons

of fig. 2.1 labelled by an ordered partition whose the top bucket has 2 elements. This

characterize ΩLWW up to a set of Lebesgue measure zero.

For the right panel, consider v ∈ ΓLCS(p). Liu [Liu07, Lemma 4] states that if

max p < 1/2, then v = (0, 0, 0). Furthermore, if max p > 1/2, then argmax v =
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argmax p. This characterize ΩLCS up to a set of Lebesgue measure zero.
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CHAPTER III

An Exact Solver for the Weston-Watkins SVM

Subproblem

Recent empirical evidence suggests that the Weston-Watkins support vector ma-

chine is among the best performing multiclass extensions of the binary SVM. Current

state-of-the-art solvers repeatedly solve a particular subproblem approximately using

an iterative strategy. In this work, we propose an algorithm that solves the subprob-

lem exactly using a novel reparametrization of the Weston-Watkins dual problem.

For linear WW-SVMs, our solver shows significant speed-up over the state-of-the-art

solver when the number of classes is large. Our exact subproblem solver also allows

us to prove linear convergence of the overall solver.

3.1 Introduction

Support vector machines (SVMs) [BGV92; CV95] are a powerful class of al-

gorithms for classification. In the large scale studies by Fernández-Delgado et al.

[Fer+14] and by Klambauer et al. [Kla+17], SVMs are shown to be among the best

performing classifers.

The original formulation of the SVM handles only binary classification. Sub-

sequently, several variants of multiclass SVMs have been proposed [LLW04; CS01;
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WW99]. However, as pointed out by Doǧan et al. [DGI16], no variant has been

considered canonical.

The empirical study of Doǧan et al. [DGI16] compared nine prominent variants of

multiclass SVMs and demonstrated that the Weston-Watkins (WW) and Crammer-

Singer (CS) SVMs performed the best with the WW-SVM holding a slight edge in

terms of both efficiency and accuracy. This work focuses on the computational issues

of solving the WW-SVM optimization efficiently.

SVMs are typically formulated as quadratic programs. State-of-the-art solvers

such as LIBSVM [CL11] and LIBLINEAR [Fan+08] apply block coordinate descent

to the associated dual problem, which entails repeatedly solving many small subprob-

lems. For the binary case, these subproblems are easy to solve exactly.

The situation in the multiclass case is more complex, where the form of the sub-

problem depends on the variant of the multiclass SVM. For the CS-SVM, the sub-

problem can be solved exactly in O(k log k) time where k is the number of classes

[CS01; Duc+08; BFU14; Con16]. However, for the WW-SVM, only iterative algo-

rithms that approximate the subproblem minimizer have been proposed, and these

lack runtime guarantees [Kee+08; IHG08].

In this work, we propose an algorithm called Walrus1 that finds the exact solution

of the Weston-Watkins subproblem in O(k log k) time. We implement Walrus in C++

inside the LIBLINEAR framework, yielding a new solver for the linear WW-SVM.

For datasets with large number of classes, we demonstrate significant speed-up over

the state-of-the-art linear solver Shark [IHG08]. We also rigorously prove the linear

convergence of block coordinate descent for solving the dual problem of linear WW-

SVM, confirming an assertion of Keerthi et al. [Kee+08].

1WW-subproblem analytic log-linear runtime solver
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3.1.1 Related works

Existing literature on solving the optimization from SVMs largely fall into two cat-

egories: linear and kernel SVM solvers. The seminal work of Platt [Pla98] introduced

the sequential minimal optimization (SMO) for solving kernel SVMs. Subsequently,

many SMO-type algorithms were introduced which achieve faster convergence with

theoretical guarantees [Kee+01; FCL05; SHS11; TAD21].

SMO can be thought of as a form of (block) coordinate descent where where

the dual problem of the SVM optimization is decomposed into small subproblems.

As such, SMO-type algorithms are also referred to as decomposition methods. For

binary SVMs, the smallest subproblems are 1-dimensional and thus easy to solve

exactly. However, for multiclass SVMs with k classes, the smallest subproblems are

k-dimensional. Obtaining exact solutions for the subproblems is nontrivial.

Many works have studied the convergence properties of decomposition focusing

on asymptotics [LS04], rates [CFL06; LS09], binary SVM without offsets [SHS11],

and multiclass SVMs [HL02]. Another line of research focuses on primal convergence

instead of the dual [Hus+06; LS07; Lis+07; BPS18].

Although kernel SVMs include linear SVMs as a special case, solvers specialized

for linear SVMs can scale to larger data sets. Thus, linear SVM solvers are often

developed separately. Hsieh et al. [Hsi+08] proposed using coordinate descent (CD)

to solve the linear SVM dual problem and established linear convergence. Analo-

gously, Keerthi et al. [Kee+08] proposed block coordinate descent (BCD) for mul-

ticlass SVMs. Coordinate descent on the dual problem is now used by the current

state-of-the-art linear SVM solvers LIBLINEAR [Fan+08], liquidSVM [ST17], and

Shark [IHG08].

There are other approaches to solving linear SVMs, e.g., using the cutting plane

method [Joa06], and stochastic subgradient descent on the primal optimization

[Sha+11]. However, these approaches do not converge as fast as CD on the dual
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problem [Hsi+08].

For the CS-SVM introduced by Crammer et al. [CS01], an exact solver for the

subproblem is well-known and there is a line of research on improving the solver’s

efficiency [CS01; Duc+08; BFU14; Con16]. For solving the kernel CS-SVM dual

problem, convergence of an SMO-type algorithm was proven in [Lin02]. For solving

the linear CS-SVM dual problem, linear convergence of coordinate descent was proven

by Lee et al. [LC19]. Linear CS-SVMs with ℓ1-regularizer have been studied by

Babichev et al. [BOB19]

The Weston-Watkins SVM was introduced by Bredensteiner et al. [BB99], We-

ston et al. [WW99], and Vapnik [Vap98]. Empirical results from Doǧan et al. [DGI16]

suggest that the WW-SVM is the best performing multiclass SVMs among nine promi-

nent variants. The WW-SVM loss function has also been successfully used in natural

language processing by [SS21].

Hsu et al. [HL02] gave an SMO-type algorithm for solving the WW-SVM, although

without convergence guarantees. Keerthi et al. [Kee+08] proposed using coordinate

descent on the linear WW-SVM dual problem with an iterative subproblem solver.

Furthermore, they asserted that the algorithm converges linearly, although no proof

was given. The software Shark [IHG08] features a solver for the linear WW-SVM

where the subproblem is approximately minimized by a greedy coordinate descent-

type algorithm. MSVMpack [DL15] is a solver for multiclass SVMs which uses the

Frank-Wolfe algorithm. The experiments of [BG16] showed that MSVMpack did not

scale to larger number of classes for the WW-SVM. To our knowledge, an exact solver

for the subproblem has not previously been developed.

3.1.2 Notations

Let n be a positive integer. Define [n] := {1, . . . , n}. All vectors are assumed to

be column vectors unless stated otherwise. If v ∈ Rn is a vector and i ∈ [n], we use
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the notation [v]i to denote the i-th component of v. Let 1n and 0n ∈ Rn denote the

vectors of all ones and zeros, respectively. When the dimension n can be inferred

from the context, we drop the subscript and simply write 1 and 0.

Let m be a positive integer. Matrices w ∈ Rm×n are denoted by boldface font.

The (j, i)-th entry of w is denoted by wji. The columns of w are denoted by the

same symbol w1, . . . , wn using regular font with a single subscript, i.e., [wi]j = wji.

A column of w is sometimes referred to as a block. We will also use boldface Greek

letter to denote matrices, e.g., α ∈ Rm×n with columns α1, . . . , αn.

The 2-norm of a vector v is denoted by ∥v∥. The Frobenius norm of a matrix w

is denoted by ∥w∥F . The m × m identity and all-ones matrices are denoted by Im

and Om, respectively. When m is clear from the context, we drop the subscript and

simply write I and O.

For referencing, section numbers from our supplementary materials will be prefixed

with an “A”, e.g., Section 3.8.4.

3.2 Weston-Watkins linear SVM

Throughout this work, let k ≥ 2 be an integer denoting the number of classes. Let

{(xi, yi)}i∈[n] be a training dataset of size n where the instances xi ∈ Rd and labels

yi ∈ [k]. The Weston-Watkins linear SVM 2 solves the optimization

min
w∈Rd×k

1

2
∥w∥2F + C

n∑
i=1

∑
j∈[k]:
j ̸=yi

hinge(w′
yi
xi − w′

jxi) (P)

where hinge(t) = max{0, 1− t} and C > 0 is a hyperparameter.

Note that if an instance xi is the zero vector, then for any w ∈ Rd×k we have

hinge(w′
yi
xi − w′

jxi) = 1. Thus, we can simply ignore such an instance. Below, we

2Similar to other works on multiclass linear SVMs [HL02; Kee+08], the formulation eq. (P) does
not use offsets. For discussions, see Section 3.7.
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assume that ∥xi∥ > 0 for all i ∈ [n].

3.2.1 Dual of the linear SVM

In this section, we recall the dual of eq. (P). Derivation of all results here can be

found in Hsu et al. [HL02] and Keerthi et al. [Kee+08].

We begin by defining the function f : Rk×n → R

f(α) :=
1

2

∑
i,s∈[n]

x′sxiα
′
iαs −

∑
i∈[n]

∑
j∈[k]:
j ̸=yi

αij

and the set

F :=
{
α ∈ Rk×n |

0 ≤ αij ≤ C, ∀i ∈ [n], j ∈ [k], j ̸= yi,

αiyi = −
∑

j∈[k]\{yi}

αij, ∀i ∈ [n]
}
.

The dual problem

min
α∈F

f(α). (D1)

The primal and dual variables w and α are related via

w = −
∑
i∈[n]

xiα
′
i. (3.1)

State-of-the-art solver Shark [IHG08] uses coordinate descent on the dual problem

eq. (D1). It is also possible to solve the primal problem eq. (P) using stochastic

gradient descent (SGD) as in Pegasos [Sha+11]. However, the empirical results of

Hsieh et al. [Hsi+08] show that CD on the dual problem converges faster than SGD

on the primal problem. Hence, we focus on the dual problem.
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3.2.2 Solving the dual with block coordinate descent

Block coordinate descent (BCD) is an iterative algorithm for solving the dual

problem eq. (D1) by repeatedly improving a candidate solution α ∈ F . Given an

i ∈ [n], an inner iteration performs the update α← α̃ where α̃ is a minimizer of the

i-th subproblem:

min
α̂∈F

f(α̂) such that α̂s = αs, ∀s ∈ [n] \ {i}. (S1)

An outer iteration performs the inner iteration once for each i ∈ [n] possibly in a

random order. By running several outer iterations, an (approximate) minimizer of

eq. (D1) is putatively obtained.

Later, we will see that it is useful to keep track of w so that eq. (3.1) holds

throughout the BCD algorithm. Suppose that α and w satisfy eq. (3.1). Then w

must be updated via

w← w − xi(α̃i − αi)′ (3.2)

prior to updating α← α̃.

3.3 Reparametrization of the dual problem

In this section, we introduce a new way to parametrize the dual optimization

eq. (D1) which allows us to derive an algorithm for finding the exact minimizer of

eq. (S1).

Define the matrix π :=

[
1 −I

]
∈ R(k−1)×k. For each y ∈ [k], let τy ∈ Rk×k be

the permutation matrix which switches the 1st and the yth indices. In other words,
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given a vector v ∈ Rk, we have

[τy(v)]j =


v1 : j = y

vy : j = 1

vj : j ̸∈ {1, y}.

Define the function g : R(k−1)×n → R

g(β) :=
1

2

∑
i,s∈[n]

x′sxiβ
′
iπτyiτysπ

′βs −
∑
i∈[n]

1′βi

and the set

G :=
{
β ∈ R(k−1)×n |

0 ≤ βij ≤ C, ∀i ∈ [n], j ∈ [k − 1]
}
.

Consider the following optimization:

min
β∈G

g(β). (D2)

Up to a change of variables, the optimization eq. (D2) is equivalent to the dual

of the linear WW-SVM eq. (D1). In other words, eq. (D2) is a reparametrization of

eq. (D1). Below, we make this notion precise.

Definition III.1. Define a map Ψ : G → Rk×n as follows: Given β ∈ G, construct

an element Ψ(β) := α ∈ Rk×n whose i-th block is

αi = −τyiπ′βi. (3.3)

The map Ψ will serve as the change of variables map, where π reduces the dual
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variable’s dimension from k for αi to k − 1 for βi. Furthermore, τyi eliminates the

dependency on yi in the constraints. The following proposition shows that Ψ links

the two optimization problems eq. (D1) and eq. (D2).

Proposition III.2. The image of Ψ is F , i.e., Ψ(G) = F . Furthermore, Ψ : G → F

is a bijection and

f(Ψ(β)) = g(β).

Sketch of proof. Define another map Ξ : F → R(k−1)×n as follows: For each α ∈ F ,

define β := Ξ(α) block-wise by

βi := proj2:k(τyiαi) ∈ Rk−1

where

proj2:k =

[
0 Ik−1

]
∈ R(k−1)×k.

Then the range of Ξ is in G. Furthermore, Ξ and Ψ are inverses of each other. This

proves that Ψ is a bijection.

3.3.1 Reparametrized subproblem

Since the map Ψ respects the block-structure of α and β, the result below follows

immediately from proposition III.2:

Corollary III.3. Let β ∈ G and i ∈ [n]. Let α = Ψ(β). Consider

min
β̂∈G

g(β̂) such that β̂s = βs, ∀s ∈ [n] \ {i}. (S2)

Let β̃ ∈ F be arbitrary. Then β̃ is a minimizer of eq. (S2) if and only if α̃ := Ψ(β̃)

is a minimizer of eq. (S1).

Below, we focus on solving eq. (D2) with BCD, i.e., repeatedly performing the up-
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date β ← β̃ where β̃ is a minimizer of eq. (S2) over different i ∈ [n]. By corollary III.3,

this is equivalent to solving eq. (D1) with BCD, up to the change of variables Ψ.

The reason we focus on solving eq. (D2) with BCD is because the subproblem can

be cast in a simple form that makes an exact solver more apparent. To this end, we

first show that the subproblem eq. (S2) is a quadratic program of a particular form.

Define the matrix Θ := Ik−1 +Ok−1.

Theorem III.4. Let v ∈ Rk−1 be arbitrary and C > 0. Consider the optimization

min
b∈Rk−1

1

2
b′Θb− v′b (3.4)

s.t. 0 ≤ b ≤ C.

Then algorithm 2, solve subproblem(v, C), computes the unique minimizer of

eq. (3.4) in O(k log k) time.

We defer further discussion of theorem III.4 and algorithm 2 to the next section.

The quadratic program eq. (3.4) is the generic form of the subproblem eq. (S2), as

the following result shows:

Proposition III.5. In the situation of corollary III.3, let β̃i be the i-th block of the

minimizer β̃ of eq. (S2). Then β̃i is the unique minimizer of eq. (3.4) with

v := (1− πτyiw
′xi)/∥xi∥22 +Θβi

and w as in eq. (3.1).

3.3.2 BCD for the reparametrized dual problem

As mentioned in section 3.2.2, it is useful to keep track of w so that eq. (3.1)

holds throughout the BCD algorithm. In proposition III.5, we see that w is used to
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compute v. The update formula eq. (3.2) for w in terms of α̃ can be cast in terms of

β and β̃ by using eq. (3.3):

w← w − xi(α̃i − αi)′ = w + xi(β̃i − βi)′πτyi .

We now have all the ingredients to state the reparametrized block coordinate

descent pseudocode in algorithm 1.

Algorithm 1 Block coordinate descent on eq. (D2)

1: β ← 0(k−1)×n
2: w← 0d×k
3: while not converged do
4: for i← 1 to n do
5: v ← (1− πτyiw

′xi)/∥xi∥22 +Θβi
6: β̃i ← solve subproblem(v, C) (algorithm 2)

7: w← w + xi(β̃i − βi)′πτyi
8: βi ← β̃i
9: end for
10: end while

Multiplying a vector by the matrices Θ and π both only takes O(k) time. Multi-

plying a vector by τyi takes O(1) time since τti simply swaps two entries of the vector.

Hence, the speed bottlenecks of algorithm 1 are computing w′xi and xi(β̃i−βi)′, both

taking O(dk) time and running solve subproblem(v, C), which takes O(k log k) time.

Overall, a single inner iteration of algorithm 1 takes O(dk + k log k) time. If xi is

s-sparse (only s entries are nonzero), then the iteration takes O(sk + k log k) time.

3.3.3 Linear convergence

Similar to the binary case [Hsi+08], BCD converges linearly, i.e., it produces an

ϵ-accurate solution in O(log(1/ϵ)) outer iterations:

Theorem III.6. algorithm 1 has global linear convergence. More precisely, let βt be β

at the end of the t-th iteration of the outer loop of algorithm 1. Let g∗ = minβ∈G g(β).
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Then there exists ∆ ∈ (0, 1) such that

g(βt+1)− g∗ ≤ ∆(g(βt)− g∗), ∀t = 0, 1, 2 . . . (3.5)

where ∆ depends on the data {(xi, yi)}i∈[n], k and C.

Luo et al. [LT92] proved asymptotic3 linear convergence for cyclic coordinate de-

scent for a certain class of minimization problems where the subproblem in each

coordinate is exactly minimized. Furthermore, Luo et al. [LT92] claim that the same

result holds if the subproblem is approximately minimized, but did not give a precise

statement (e.g., approximation in which sense).

Keerthi et al. [Kee+08] asserted without proof that the results of Luo et al. [LT92]

can be applied to BCD for WW-SVM. Possibly, no proof was given since no solver,

exact nor approximate with approximation guarantees, was known at the time. theo-

rem III.6 settles this issue, which we prove in Section 3.8.3 by extending the analysis

of Luo et al. [LT92] and Wang et al. [WL14] to the multiclass case.

3.4 Sketch of proof of theorem III.4

Throughout this section, let v ∈ Rk−1 and C > 0 be fixed. We first note that

eq. (3.4) is a minimization of a strictly convex function over a compact domain, and

hence has unique minimizer b̃ ∈ Rk−1. Furthermore, it is the unique point satisfying

the KKT conditions, which we present below. Our goal is to sketch the argument that

algorithm 2 outputs the minimizer upon termination. The full proof can be found in

Section 3.8.4.

3Asymptotic in the sense that eq. (3.5) is only guaranteed after t > t0 for some unknown t0.
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3.4.1 Intuition

We first study the structure of the minimizer b̃ in and of itself. The KKT condi-

tions for a point b ∈ Rk−1 to be optimal for eq. (3.4) are as follows:

∀i ∈ [k − 1],∃λi, µi ∈ R satisfying

[(I+O)b]i + λi − µi = vi stationarity (KKT)

C ≥ bi ≥ 0 primal feasibility

λi ≥ 0, and µi ≥ 0 dual feasibility

λi(C − bi) = 0, and µibi = 0 complementary slackness

Below, let maxi∈[k−1] vi =: vmax, and ⟨1⟩, . . . , ⟨k − 1⟩ be an argsort of v, i.e., v⟨1⟩ ≥

· · · ≥ v⟨k−1⟩.

Definition III.7. The clipping map clipC : Rk−1 → [0, C]k−1 is the function defined

as follows: for w ∈ Rk−1, [clipC(w)]i := max{0,min{C,wi}}.

Using the KKT conditions, we check that b̃ = clipC(v− γ̃1) for some (unknown)

γ̃ ∈ R and that γ̃ = 1′b̃.

Proof. Let γ̃ ∈ R be such that Ob̃ = γ̃1. The stationarity condition can be rewritten

as b̃i + λi − µi = vi − γ̃. Thus, by complementary slackness and dual feasibility, we

have

b̃i


≤ vi − γ̃ : b̃i = C

= vi − γ̃ : b̃i ∈ (0, C)

≥ vi − γ̃ : b̃i = 0

Note that this is precisely b̃ = clipC(v − γ̃1).

For γ ∈ R, let bγ := clipC(v − γ1) ∈ Rk−1. Thus, the (k− 1)-dimensional vector

b̃ can be recovered from the scalar γ̃ via bγ̃, reducing the search space from Rk−1 to
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R.

However, the search space R is still a continuum. We show that the search space

for γ̃ can be further reduced to a finite set of candidates. To this end, let us define

Iγu := {i ∈ [k − 1] : bγi = C}

Iγm := {i ∈ [k − 1] : bγi ∈ (0, C)}.

Note that Iγu and Iγm are determined by their cardinalities, denoted nγu and nγm, re-

spectively. This is because

Iγu = {⟨1⟩, ⟨2⟩, . . . , ⟨nγu⟩}

Iγm = {⟨nγu + 1⟩, ⟨nγu + 2⟩, . . . , ⟨nγu + nγm⟩}.

Let TkU := {0} ∪ [k− 1]. By definition, nγm, n
γ
u ∈ TkU. For (nm, nu) ∈ TkU2, define

S(nm,nu), γ̂(nm,nu) ∈ R by

S(nm,nu) :=
nu+nm∑
i=nu+1

v⟨i⟩, (3.6)

γ̂(nm,nu) :=
(
C · nu + S(nm,nu)

)
/(nm + 1). (3.7)

Furthermore, define b̂(nm,nu) ∈ Rk−1 such that, for i ∈ [k − 1], the ⟨i⟩-th entry is

b̂
(nm,nu)
⟨i⟩ :=


C : i ≤ nu

v⟨i⟩ − γ(nm,nu) : nu < i ≤ nu + nm

0 : nu + nm < i.

Using the KKT conditions, we check that

b̃ = b̂(n
γ̃
m,n

γ̃
u ) = clipC(v − γ̂(n

γ̃
m,n

γ̃
u )1).
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Proof. It suffices to prove that γ̃ = γ̂(n
γ̃
m,n

γ̃
u ). To this end, let i ∈ [k − 1]. If i ∈ I γ̃m,

then b̃i = vi − γ̃. If i ∈ I γ̃u , then b̃i = C. Otherwise, b̃i = 0. Thus

γ̃ = 1′b̃ = C · nγ̃u + S(nγ̃
m,n

γ̃
u ) − γ̃ · nγ̃m (3.8)

Solving for γ̃, we have

γ̃ =
(
C · nγ̃u + S(nγ̃

m,n
γ̃
u )
)
/(nγ̃m + 1) = γ̂(n

γ̃
m,n

γ̃
u ),

as desired.

Now, since (nγ̃m, n
γ̃
u) ∈ TkU2, to find b̃ we can simply check for each (nm, nu) ∈ TkU2

if b̂(nm,nu) satisfies the KKT conditions. However, this naive approach leads to anO(k2)

runtime.

To improve upon the naive approach, define

ℜ := {(nγm, nγu) : γ ∈ R}. (3.9)

Since (nγ̃m, n
γ̃
u) ∈ ℜ, to find b̃ it suffices to search through (nm, nu) ∈ ℜ instead of TkU2.

Towards enumerating all elements of ℜ, a key result is that the function γ 7→ (Iγm, I
γ
u )

is locally constant outside of the set of discontinuities:

disc := {vi : i ∈ [k − 1]} ∪ {vi − C : i ∈ [k − 1]}.

Proof. Let γ1, γ2, γ3, γ4 ∈ R satisfy the following: 1) γ1 < γ2 < γ3 < γ4, 2) γ1, γ4 ∈

disc, and 3) γ ̸∈ disc for all γ ∈ (γ1, γ4). Assume for the sake of contradiction that

(Iγ2m , I
γ2
u ) ̸= (Iγ3m , I

γ3
u ). Then Iγ2m ̸= Iγ3m or Iγ2u ̸= Iγ3u . Consider the case Iγ2m ̸= Iγ3m .

Then at least one of the sets Iγ2m \ Iγ3m and Iγ3m \ Iγ2m is nonempty. Consider the case

when Iγ2m \ Iγ3m is nonempty. Then there exists i ∈ [k − 1] such that vi − γ2 ∈ (0, C)
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but vi − γ3 ̸∈ (0, C). This implies that there exists some γ′ ∈ (γ2, γ3) such that

vi − γ′ ∈ {0, C}, or equivalently, γ′ ∈ {vi, vi − C}. Hence, γ′ ∈ disc, which is a

contradiction. For the other cases not considered, similar arguments lead to the same

contradiction.

Thus, as we sweep γ from +∞ to −∞, we observe finitely many distinct tuples of

sets (Iγm, I
γ
u ) and their cardinalities (nγm, n

γ
u). Using the index t = 0, 1, 2 . . . , we keep

track of these data in the variables (I tm, I
t
u) and (ntm, n

t
u). For this proof sketch, we

make the assumption that |disc| = 2(k − 1), i.e., no elements are repeated.

By construction, the maximal element of disc is vmax. When γ > vmax, we check

that nγm = nγu = ∅. Thus, we put I0m = I0u = ∅ and (n0
m, n

0
u) = (0, 0).

Now, suppose γ has swept across t − 1 points of discontinuity and that

I t−1
m , I t−1

u , nt−1
m , nt−1

u have all been defined. Suppose that γ crossed a single new point

of discontinuity γ′ ∈ disc. In other words, γ′′ < γ < γ′ where γ′′ is the largest

element of disc such that γ′′ < γ′.

By the assumption that no elements of disc are repeated, exactly one of the two

following possibilities is true:

there exists i ∈ [k − 1] such that γ′ = vi, (Entry)

there exists i ∈ [k − 1] such that γ′ = vi − C. (Exit)

Under the eq. (Entry) case, the index i gets added to I t−1
m while I t−1

u remains

unchanged. Hence, we have the updates

I tm := Iγm = I t−1
m ∪ {i}, I tu := Iγu = I t−1

u (3.10)

ntm := nγm = nt−1
m + 1, ntu := nγu = nt−1

u . (3.11)

Under the eq. (Exit) case, the index i moves from I t−1
m to I t−1

u . Hence, we have the
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updates

I tm := Iγm = I t−1
m \ {i}, I tu := Iγu = I t−1

u ∪ {i} (3.12)

ntm := nγm = nt−1
m − 1, ntu := nγu = nt−1

u + 1. (3.13)

Thus, {(ntm, ntu)}2(k−1)
t=0 = ℜ. The case when disc has repeated elements requires more

careful analysis which is done in the full proof. Now, we have all the ingredients for

understanding algorithm 2 and its subroutines.

3.4.2 A walk through of the solver

If vmax ≤ 0, then b̃ = 0 satisfies the KKT conditions. algorithm 2-line 3 handles

this exceptional case. Below, we assume vmax > 0.

Algorithm 2 solve subproblem(v, C)

1: Input: v ∈ Rk−1

2: Let ⟨1⟩, . . . , ⟨k − 1⟩ sort v, i.e., v⟨1⟩ ≥ · · · ≥ v⟨k−1⟩.
3: if v⟨1⟩ ≤ 0 then HALT and output: 0 ∈ Rk−1.

4: n0
u := 0, n0

m := 0, S0 := 0

5: (δ1, . . . , δℓ)← get up dn seq() (Subroutine 3)

6: for t = 1, . . . , ℓ do
7: (ntm, n

t
u, S

t)← update vars() (Subroutine 4).

8: γ̂t := (C · ntu + St)/(ntm + 1)

9: if KKT cond() (Subroutine 5) returns true then

10: HALT and output: b̂t ∈ Rk−1 where

b̂t⟨i⟩ :=


C : i ≤ ntu
v⟨i⟩ − γt : ntu < i ≤ ntu + ntm
0 : ntu + ntm < i.

11: end if
12: end for

algorithm 2-line 4 initializes the state variables ntm and ntu as discussed in the

last section. The variable St is also initialized and will be updated to maintain
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St = S(nt
m,n

t
u) where the latter is defined at eq. (3.6).

algorithm 2-line 5 calls Subroutine 3 to construct the vals ordered set, which is

similar to the set of discontinuities disc, but different in three ways: 1) vals consists

of tuples (γ′, δ′) where γ′ ∈ disc and δ′ ∈ {up, dn} is a decision variable indicating

whether γ′ satisfies the eq. (Entry) or the eq. (Exit) condition, 2) vals is sorted so

that the γ′s are in descending order, and 3) only positive values of disc are needed.

The justification for the third difference is because we prove that algorithm 2 always

halts before reaching the negative values of disc. Subroutine 3 returns the list of

symbols (δ1, . . . , δℓ) consistent with the ordering.

Subroutine 3 get up dn seq Note: all variables from algorithm 2 are assumed
to be visible here.
1: vals ← {(vi, dn) : vi > 0, i = 1, . . . , k − 1} ∪ {(vi − C, up) : vi > C, i =

1, . . . , k − 1} as a multiset, where elements may be repeated.
2: Order the set vals = {(γ1, δ1), . . . , (γℓ, δℓ)} such that γ1 ≥ · · · ≥ γℓ, ℓ = |vals|,

and for all j1, j2 ∈ [ℓ] such that j1 < j2 and γj1 = γj2 , we have δj1 = dn implies
δj2 = dn.
Note that by construction, for each t ∈ [ℓ], there exists i ∈ [k − 1] such that
γt = vi or γt = vi − C.

3: Output: sequence (δ1, . . . , δℓ) whose elements are retrieved in order from left to
right.

In the “for” loop, algorithm 2-line 7 calls Subroutine 4 which updates the variables

ntm, n
t
u using eq. (3.11) or eq. (3.13), depending on δt. The variable St is updated

accordingly so that St = S(nt
m,n

t
u).

Subroutine 4 update vars Note: all variables from algorithm 2 are assumed to
be visible here.
1: if δt = up then
2: ntu := nt−1

u + 1, ntm := nt−1
m − 1

3: St := St−1 − v⟨nt−1
u ⟩

4: else
5: ntm := nt−1

m + 1, ntu := nt−1
u .

6: St := St−1 + v⟨nt
u+n

t
m⟩

7: end if
8: Output: (ntm, n

t
u, S

t)
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We skip to algorithm 2-line 9 which constructs the putative solution b̂t. Observe

that b̂t = b̂(n
t
m,n

t
u) where the latter is defined in the previous section.

Going back one line, algorithm 2-line 8 calls Subroutine 5 which checks if the

putative solution b̂t satisfies the KKT conditions. We note that this can be done

before the putative solution is constructed.

Subroutine 5 KKT cond Note: all variables from algorithm 2 are assumed to be
visible here.
1: kkt cond← true
2: if ntu > 0 then
3: kkt cond← kkt cond ∧

(
C + γ̂t ≤ v⟨nt

u⟩
)

Note: ∧ denotes the logical “and”.
4: end if
5: if ntm > 0 then
6: kkt cond← kkt cond ∧

(
v⟨nt

u+1⟩ ≤ C + γ̂t
)

7: kkt cond← kkt cond ∧
(
γ̂t ≤ v⟨nt

u+n
t
m⟩
)

8: end if
9: if ntd := k − 1− ntu − ntm > 0 then
10: kkt cond← kkt cond ∧

(
v⟨nt

u+n
t
m+1⟩ ≤ γ̂t

)
11: end if
12: Output: kkt cond

For the runtime analysis, we note that Subroutines 5 and 4 both use O(1) FLOPs

without dependency on k. The main “for” loop of algorithm 2 (line 6 through 11)

has O(ℓ) runtime where ℓ ≤ 2(k − 1). Thus, the bottlenecks are algorithm 2-line 2

and 5 which sort lists of length at most k − 1 and 2(k − 1), respectively. Thus, both

lines run in O(k log k) time.

3.5 Experiments

LIBLINEAR is one of the state-of-the-art solver for linear SVMs [Fan+08]. How-

ever, as of the latest version 2.42, the linear Weston-Watkins SVM is not supported.

We implemented our linear WW-SVM subproblem solver, Walrus (algorithm 2),

along with the BCD algorithm 1 as an extension to LIBLINEAR. The solver and
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Table 3.1:
Data sets used. Variables k, n and d are, respectively, the number of
classes, training samples, and features.

Data set k n d

dna 3 2,000 180
satimage 6 4,435 36
mnist 10 60,000 780
news20 20 15,935 62,061
letter 26 15,000 16
rcv1 53 15,564 47,236
sector 105 6,412 55,197
aloi 1,000 81,000 128

code for generating the figures are available4.

We compare our implementation to Shark [IHG08], which solves the dual sub-

problem eq. (S1) using a form of greedy coordinate descent. For comparisons, we

reimplemented Shark’s solver also as a LIBLINEAR extension. When clear from

the context, we use the terms “Walrus” and “Shark” when referring to either the

subproblem solver or the overall BCD algorithm.

We perform benchmark experiments on 8 datasets from “LIBSVM Data: Classi-

fication (Multi-class)5” spanning a range of k from 3 to 1000. See table 3.1.

In all of our experiments, Walrus and Shark perform identically in terms of testing

accuracy. We report the accuracies in Section 3.9.3. Below, we will only discuss

runtime.

For measuring the runtime, we start the timer after the data sets have been loaded

into memory and before the state variables β and w have been allocated. The primal

objective is the value of eq. (P) at the current w and the dual objective is −1 times

the value of eq. (D2) at the current β. The duality gap is the primal minus the

dual objective. The objective values and duality gaps are measured after each outer

iteration, during which the timer is paused.

4See Section 3.9.
5See Section 3.9.2.
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For solving the subproblem, Walrus is guaranteed to return the minimizer in

O(k log k) time. On the other hand, to the best of our knowledge, Shark does not

have such guarantee. Furthermore, Shark uses a doubly-nested for loop, each of

which has length O(k), yielding a worst-case runtime of O(k2). For these reasons, we

hypothesize that Walrus scales better with larger k.

As exploratory analysis, we ran Walrus and Shark on the satimage and sector

data sets6, which has 6 and 105 classes, respectively. The results, shown in fig. 3.1,

support our hypothesis: Walrus and Shark are equally fast for satimage while Walrus

is faster for sector.

We test our hypothesis on a larger scale by running Walrus and Shark on the

datasets in table 3.1 over the grid of hyperparameters C ∈ {2−6, 2−5, . . . , 22, 23}. The

results are shown in fig. 3.2 where each dot represents a triplet (data set, C, δ) where

δ is a quantity we refer to as the duality gap decay. The Y-axis shows the comparative

metric of runtime ETδWalrus/ET
δ
Shark to be defined next.

Consider a single run of Walrus on a fixed data set with a given hyperparameter

C. Let DGtWalrus denote the duality gap achieved by Walrus at the end of the t-th

outer iteration. Let δ ∈ (0, 1). Define ETδWalrus to be the elapsed time at the end of

the t-th iteration where t is minimal such that DGtWalrus ≤ δ · DG1Walrus. Define DGtShark

and ETδShark similarly. In all experiments DG1Walrus/DG
1
Shark ∈ [0.99999, 1.00001]. Thus,

the ratio ETδWalrus/ET
δ
Shark measures how much faster Shark is relative to Walrus.

From fig. 3.2, it is evident that in general Walrus converges faster on data sets

with larger number of classes. Not only does Walrus beat Shark for large k, but it

also seems to not do much worse for small k. In fact Walrus seems to be at least as

fast as Shark for all datasets except satimage.

The absolute amount of time saved by Walrus is often more significant on datasets

with larger number of classes. To illustrate this, we let C = 1 and compare the times

6The regularizers are set to the corresponding values from Table 5 of the supplementary material
of Doǧan et al. [DGI16] chosen by cross-validation.
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Figure 3.1:
Runtime comparison of Walrus and Shark. Abbreviations: pr. = primal
and du. = dual. The X-axes show time elapsed.
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for the duality gap to decay by a factor of 0.01. On the data set satimage with

k = 6, Walrus and Shark take 0.0476 and 0.0408 seconds, respectively. On the data

set aloi with k = 1000, Walrus and Shark take 188 and 393 seconds, respectively.

We remark that fig. 3.2 also suggests that Walrus tends to be faster during early

iterations but can be slower at late stages of the optimization. To explain this phe-

nomenon, we note that Shark solves the subproblem using an iterative descent algo-

rithm and is set to stop when the KKT violations fall below a hard-coded threshold.

When close to optimality, Shark takes fewer descent steps, and hence less time, to

reach the stopping condition on the subproblems. On the other hand, Walrus takes

the same amount of time regardless of proximity to optimality.

For the purpose of grid search, a high degree of optimality is not needed. In

Section 3.9.3, we provide empirical evidence that stopping early versus late does not

change the result of grid search-based hyperparameter tuning. Specifically, table 3.7

shows that running the solvers until δ ≈ 0.01 or until δ ≈ 0.001 does not change the

cross-validation outcomes.

Finally, the optimization eq. (3.4) is a convex quadratic program and hence can

be solved using general-purpose solvers [VL04]. However, we find that Walrus, being

specifically tailored to the optimization eq. (3.4), is orders of magnitude faster. See

tables 3.9 and 3.10 in the Appendix.

3.6 Discussions and future works

We presented an algorithm called Walrus for exactly solving the WW-subproblem

which scales with the number of classes. We implemented Walrus in the LIBLINEAR

framework and demonstrated empirically that BCD usingWalrus is significantly faster

than state-of-the-art linear WW-SVM solver Shark on datasets with a large number

of classes, and comparable to Shark for small number of classes.

One possible direction for future research is whether Walrus can improve kernel
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Figure 3.2: X-coordinates jittered for better visualization.

WW-SVM solver. Another direction is lower-bounding time complexity of solving

the WW-subproblem eq. (3.4).

3.7 Regarding offsets

In this section, we review the literature on SVMs in particular with regard to

offsets.

For binary kernel SVMs, Steinwart et al. [SHS11] demonstrates that kernel SVMs

without offset achieve comparable classification accuracy as kernel SVMs with offset.

Furthermore, they propose algorithms that solve kernel SVMs without offset that are

significantly faster than solvers for kernel SVMs with offset.

For binary linear SVMs, Hsieh et al. [Hsi+08] introduced coordinate descent for

the dual problem associated to linear SVMs without offsets, or with the bias term

included in the w term. Chiu et al. [CLL20] studied whether the method of Hsieh

et al. [Hsi+08] can be extended to allow offsets, but found evidence that the answer is

negative. For multiclass linear SVMs, Keerthi et al. [Kee+08] studied block coordinate

descent for the CS-SVM and WW-SVM, both without offsets. We are not aware of a

multiclass analogue to Chiu et al. [CLL20] although the situation should be similar.
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The previous paragraph discussed coordinate descent in relation to the offset.

Including the offset presents challenges to primal methods as well. In Section 6 of

Shalev-Shwartz et al. [Sha+11], the authors argue that including an unregularized

offset term in the primal objective leads to slower convergence guarantee. Further-

more, Shalev-Shwartz et al. [Sha+11] observed that including an unregularized offset

did not significantly change the classification accuracy.

The original Crammer-Singer (CS) SVM was proposed without offsets [CS01]. In

Section VI of [HL02], the authors show the CS-SVM with offsets do not perform

better than CS-SVM without offsets. Furthermore, CS-SVM with offsets requires

twice as many iterations to converge than without.

3.8 Omitted proofs

3.8.1 Proof of proposition III.2

Below, let i ∈ [n] be arbitrary. First, we note that −π′ =

−1′
Ik−1

 and so

π′βi =

−1′βi
βi

 . (3.14)

Now, let j ∈ [k], we have by eq. (3.3) that

[αi]j = [−τyiπ′βi]j = [−π′βi]τyi (j). (3.15)

Note that if j ̸= yi, then τyi(j) ̸= 1 and so [αi]j = [−π′βi]τyi (j) = [βi]τyi (j)−1 ∈ [0, C].

On the other hand, if j = yi, then τyi(yi) = 1 and [αi]yi = [−π′βi]1 = −1′βi =

−∑t∈[k−1][βi]t = −∑t∈[k]:t̸=yi [βi]τyi (t)−1 = −∑t∈[k]:t̸=yi [αi]t. Thus, α ∈ F . This

proves that Ψ(G) ⊆ F .
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Next, let us define another map Ξ : F → R(k−1)×n as follows: For each α ∈ F ,

define β := Ξ(α) block-wise by

βi := proj2:k(τyiαi) ∈ Rk−1

where

proj2:k =

[
0 Ik−1

]
∈ R(k−1)×k.

By construction, we have for each j ∈ [k − 1] that [βi]j = [τyiαi]j+1 = [τyiαi]j+1 =

[αi]τyi (j+1) Since j + 1 ̸= 1 for any j ∈ [k − 1], we have that τyi(j + 1) ̸= yi for any

j ∈ [k − 1]. Thus, [βi]j = [αi]τyi (j+1) ∈ [0, C]. This proves that Ξ(F) ⊆ G.

Next, we prove that for all α ∈ F and β ∈ G, we have Ξ(Ψ(β)) = β and

Ψ(Ξ(α)) = α.

By construction, the i-th block of Ξ(Ψ(β)) is given by

proj2:k(τyi(−τyiπ′βi)) = −proj2:k(τyiτyiπ′βi)

= −proj2:k(π′βi)

= −
[
0 Ik−1

] 1′

−Ik−1

 βi
= Ik−1βi = βi.

For the second equality, we used the fact that τ 2y = I for all y ∈ [k]. Thus, Ξ(Ψ(β)) =

β.

Next, note that the i-th block of Ψ(Ξ(α)) is, by construciton,

−τyiπ′proj2:k(τyiαi) = −τyiπ′
[
0 Ik−1

]
τyiαi = −τyi

[
0 π′

]
τyiαi (3.16)
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Recall that π′ =

 1′

−Ik−1

 and so

[
0 π′

]
=

0 1′

0 −Ik−1

. Therefore,
[[

0 π′

]
τyiαi

]
1

=
k∑
j=2

[τyiαi] =
∑

j∈[k]:j ̸=yi

[αi]j = −[αi]yi = −[τyiαi]1

and, for j = 2, . . . , k, [[
0 π′

]
τyiαi

]
j

= −[τyiαi]j.

Hence, we have just shown that

[
0 π′

]
τyiαi = −τyiαi. Continuing from eq. (3.16),

we have

−τyiπ′proj2:k(τyiαi) = −τyi(−τyiαi) = τyiτyiαi = αi.

This proves that Ψ(Ξ(α)) = α. Thus, we have shown that Ψ and Ξ are inverses of

one another. This proves that Ψ is a bijection.

Finally, we prove that

f(Ψ(β)) = g(β).

Recall that

f(α) :=
1

2

∑
i,s∈[n]

x′sxiα
′
iαs −

∑
i∈[k]

∑
j∈[k]:
j ̸=yi

αij

Thus,

α′
iαs = (−τyiπ′βi)

′(−τysπ′βs) = β′
iπτyiτ

′
ysπ

′βs

On the other hand, eq. (3.3) implies that τyiαi = −π′βi. Hence

∑
j∈[k]\{yi}

αij =
∑

j∈[k]:j ̸=1

[αi]τyi (j) =
∑

j∈[k]:j ̸=1

[τyiαi]j =
∑

j∈[k]:j ̸=1

[−π′βi]j =
∑

j∈[k−1]

[βi]j = 1′βi.
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Thus,

f(α) :=
1

2

∑
i,s∈[n]

x′sxiα
′
iαs −

∑
i∈[k]

∑
j∈[k]:
j ̸=yi

αij =
1

2

∑
i,s∈[n]

x′sxiβ
′
iπτyiτ

′
ysπ

′βs −
∑
i∈[k]

1′βi = g(β)

as desired. Finally, we note that τy = τ ′y for all y ∈ [k]. This concludes the proof of

proposition III.2.

3.8.2 Proof of proposition III.5

We prove the following lemma which essentially unpacks the succinct proposi-

tion III.5:

Lemma III.8. Recall the situation of corollary III.3: Let β ∈ G and i ∈ [n]. Let

α = Ψ(β). Consider

min
β̂∈G

g(β̂) such that β̂s = βs, ∀s ∈ [n] \ {i}. (3.17)

Let w be as in eq. (3.1), i.e., w = −∑i∈[n] xiα
′
i. Then a solution to eq. (3.17) is given

by [β1, . . . , βi−1, β̃i, βi+1, . . . , βn] where β̃i is a minimizer of

min
β̂i∈Rk−1

1

2
β̂′
iΘβ̂i − β̂′

i

(
(1− πτyiw

′xi)/∥xi∥22 +Θβi
)
such that 0 ≤ β̂i ≤ C.

Furthermore, the above optimization has a unique minimizer which is equal to the

minimizer of eq. (3.4) where

v := (1− ρyiπw
′xi +Θβi∥xi∥22)/∥xi∥22

and w is as in eq. (3.1).
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Proof. First, we prove a simple identity:

ππ′ =

[
1 −Ik−1

] 1′

−Ik−1

 = I+O = Θ. (3.18)

Next, recall that by definition, we have

g(β) :=

1

2

∑
s,t∈[n]

x′sxtβ
′
tπτytτysπ

′βs

−
∑
s∈[n]

1′βs

 .

Let us group the terms of g(β) that depends on βi:

g(β) =
1

2
x′ixiβ

′
iπτyiτyiπ

′βi

+
1

2

∑
s∈[n]:s ̸=i

x′sxiβ
′
iπτyiτysπ

′βs

+
1

2

∑
t∈[n]:t̸=i

x′ixtβ
′
tπτytτyiπ

′βi

+
1

2

∑
s,t∈[n]

x′sxtβ
′
tπτytτysπ

′βs −
∑
s∈[n]

1′βs

=
1

2
x′ixiβ

′
iΘβi ∵ τ 2yi = I and eq. (3.18)

+
∑

s∈[n]:s ̸=i

x′sxiβ
′
iπτyiτysπ

′βs

− 1′βi

+
1

2

∑
s,t∈[n]

x′sxtβ
′
tπτytτysπ

′βs −
∑

s∈[n]:s ̸=i

1′βs︸ ︷︷ ︸
=:Ci

where Ci is a scalar quantity which does not depend on βi. Thus, plugging in β̂, we

have

g(β̂) =
1

2
∥xi∥22β̂′

iΘβ̂i +
∑

s∈[n]:s ̸=i

x′sxiβ̂
′
iπτyiτysπ

′βs − 1′β̂i + Ci. (3.19)
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Furthermore,

∑
s∈[n]:s ̸=i

x′sxiβ̂
′
iπτyiτysπ

′βs =
∑

s∈[n]:s ̸=i

β̂′
iπτyiτysπ

′βsx
′
sxi

= β̂′
iπτyi

 ∑
s∈[n]:s ̸=i

τysπ
′βsx

′
s

xi

= β̂′
iπτyi

−τyiπ′βix
′
i +
∑
s∈[n]

τysπ
′βsx

′
s

xi

= β̂′
iπτyi

−τyiπ′βix
′
i −

∑
s∈[n]

αsx
′
s

xi ∵ eq. (3.3)

= β̂′
iπτyi (−τyiπ′βix

′
i +w′)xi ∵ eq. (3.1)

= β̂′
i

(
−πτyiτyiπ′βi∥xi∥22 + πτyiw

′xi
)

= β̂′
i

(
πτyiw

′xi − ππ′βi∥xi∥22
)

∵ τ 2yi = I

= β̂′
i

(
πτyiw

′xi −Θβi∥xi∥22
)

∵ eq. (3.18)

Therefore, we have

g(β̂) =
1

2
∥xi∥22β̂′

iΘβ̂i + β̂′
i

(
πτyiw

′xi −Θβi∥xi∥22 − 1
)
+ Ci

=
1

2
∥xi∥22β̂′

iΘβ̂i − β̂′
i

(
1− πτyiw

′xi +Θβi∥xi∥22
)
+ Ci

Thus, eq. (3.17) is equivalent to

min
β̂∈G

1

2
∥xi∥22β̂′

iΘβ̂i − β̂′
i

(
1− πτyiw

′xi +Θβi∥xi∥22
)
+ Ci

s.t. β̂s = βs, ∀s ∈ [n] \ {i}.

Dropping the constant Ci and dividing through by ∥xi∥22 does not change the mini-
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mizers. Hence, eq. (3.17) has the same set of minimizers as

min
β̂∈G

1

2
β̂′
iΘβ̂i − β̂′

i

(
(1− πτyiw

′xi)/∥xi∥22 +Θβi
)

s.t. β̂s = βs, ∀s ∈ [n] \ {i}.

Due to the equality constraints, the only free variable is β̂i. Note that the above

optimization, when restricted to β̂i, is equivalent to the optimization eq. (3.4) with

v := (1− πτyiw
′xi)/∥xi∥22 +Θβi

and w is as in eq. (3.1). The uniqueness of the minimizer is guaranteed by theo-

rem III.4.

3.8.3 Proof of theorem III.6: global linear convergence

Wang et al. [WL14] established the global linear convergence of the so-called

feasible descent method when applied to a certain class of problems. As an appli-

cation, they prove global linear convergence for coordinate descent for solving the

dual problem of the binary SVM with the hinge loss. Wang et al. [WL14] considered

optimization problems of the following form:

min
x∈X

f(x) := g(Ex) + b′x (3.20)

where f : Rn → R is a function such that ∇f is Lipschitz continuous, X ⊆ Rn is

a polyhedral set, argminx∈X f(x) is nonempty, g : Rm → R is a strongly convex

function such that ∇g is Lipschitz continuous, and E ∈ Rm×n and b ∈ Rn are fixed

matrix and vector, respectively.

Below, let PX : Rn → X denote the orthogonal projection on X .

Definition III.9. In the context of eq. (3.20), an iterative algorithm that produces
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a sequence {x0, x1, x2, . . . } ⊆ X is a feasible descent method if there exists a sequence

{ϵ0, ϵ1, ϵ2, . . . } ⊆ Rn such that for all t ≥ 0

xt+1 = PX
(
xt −∇f(xt) + ϵt

)
(3.21)

∥ϵt∥ ≤ B∥xt − xt+1∥ (3.22)

f(xt)− f(xt+1) ≥ Γ∥xt − xt+1∥2 (3.23)

where B,Γ > 0.

One of the main result of [WL14] is

Theorem III.10 (Theorem 8 from [WL14]). Suppose an optimization problem

minx∈X f(x) is of the form eq. (3.20) and {x0, x1, x2, . . . } ⊆ X is a sequence generated

by a feasible descent method. Let f ∗ := minx∈X f(x). Then there exists ∆ ∈ (0, 1)

such that

f(xt+1)− f ∗ ≤ ∆(f(xt)− f ∗), ∀t ≥ 0.

Now, we begin verifying that the WW-SVM dual optimization and the BCD

algorithm for WW-SVM satisfies the requirements of theorem III.10.

Given β ∈ R(k−1)×n, define its vectorization

vec(β) =


β1
...

βn

 ∈ R(k−1)n.
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Define the matrix Pis = πτyix
′
ixsτysπ

′ ∈ R(k−1)×(k−1), and Q ∈ R(k−1)n×(k−1)n by

Q =



P11 P12 · · · P1n

P21 P22 · · · P2n

...
...

. . .
...

Pn1 Pn2 · · · Pnn


.

Let

E =



x1τy1π
′

x2τy2π
′

...

xnτynπ
′


.

We observe that Q = E′E. Thus, Q is symmetric and positive semi-definite. Let

∥Q∥op be the operator norm of Q.

Proposition III.11. The optimization eq. (D2) is of the form eq. (3.20). More

precisely, the optimization eq. (D2) can be expressed as

min
β∈G

g(β) = φ(Evec(β))− 1′vec(β) (3.24)

where the feasible set G is a nonempty polyhedral set (i.e., defined by a system of linear

inequalities, hence convex), φ is strongly convex, and ∇g is Lipschitz continuous with

Lipschitz constant L := ∥Q∥op. Furthermore, eq. (3.24) has at least one minimizer.
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Proof. Observe

g(β) =
1

2

∑
i,s∈[n]

x′sxiβ
′
iπτyiτysπ

′βs −
∑
i∈[n]

1′βi

=
1

2
vec(β)′Qvec(β)− 1′vec(β)

=
1

2
(Evec(β))′(Evec(β))− 1′vec(β)

= φ(Evec(β))− 1′vec(β)

where φ(•) = 1
2
∥ • ∥2. Note that vec(∇g(β)) = Qvec(β) − 1. Hence, the Lipschitz

constant of g is ∥Q∥op. For the “Furthermore” part, note that the above calculation

shows that eq. (3.24) is a quadratic program where the second order term is positive

semi-definite and the constraint set is convex. Hence, eq. (3.24) has at least one

minimizer.

Let B = [0, C]k−1. Let βt be β at the end of the t-iteration of the outer loop of

algorithm 1. Define

βt,i := [βt+1
1 , · · · , βt+1

i , βti+1, · · · , βtn].

By construction, we have

βt+1
i = argmin

β∈B
g
(
[βt+1

1 , · · · , βt+1
i−1 , β, β

t
i+1, · · · , βtn]

)
(3.25)

For each i = 1, . . . , n, let

∇ig(β) =

[
∂g

∂β1i
(β),

∂g

∂β2i
(β), . . . ,

∂g

∂β(k−1)i

(β)

]′
.

By Lemma 24 [WL14], we have

βt+1
i = PB(βt+1

i −∇ig(β
t,i))
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where PB denotes orthogonal projection on to B. Now, define ϵt ∈ R(k−1)×n such

that

ϵti = βt+1
i − βti −∇ig(β

t,i) +∇ig(β
t).

Proposition III.12. The BCD algorithm for the WW-SVM is a feasible descent

method. More precisely, the sequence {β0,β1, . . . } satisfies the following conditions:

βt+1 = PG
(
βt −∇g(βt) + ϵt

)
(3.26)

∥ϵt∥ ≤ (1 +
√
nL)∥βt − βt+1∥ (3.27)

g(βt)− g(βt+1) ≥ Γ∥βt − βt+1∥2 (3.28)

where L is as in proposition III.11, Γ := mini∈[n]
∥xi∥2

2
, G is the feasible set of eq. (D2),

and PG is the orthogonal projection onto G.

The proof of proposition III.12 essentially generalizes Proposition 3.4 of [LT93] to

the higher dimensional setting:

Proof. Recall that G = B×n := B×· · ·×B. Note that the i-th block of βt−∇g(βt)+ϵt

is

βti−∇ig(β
t)+ϵti = βti−∇ig(β

t)+(βt+1
i −βti−∇ig(β

t,i)+∇ig(β
t)) = βt+1

i −∇ig(β
t,i).

Thus, the i-th block of PG(β
t −∇g(βt) + ϵt) is

PB(βt+1
i −∇ig(β

t,i)) = βt+1
i .

This is precisely the identity eq. (3.26).
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Next, we have

∥ϵti∥ ≤ ∥βt+1
i − βti∥+ ∥∇ig(β

t,i)−∇ig(β
t)∥

≤ ∥βt+1
i − βti∥+ L∥βt,i − βt∥

≤ ∥βt+1
i − βti∥+ L∥βt+1 − βt∥.

From this, we get that

∥ϵt∥ =

√√√√ n∑
i=1

∥ϵti∥2

≤

√√√√ n∑
i=1

(∥βt+1
i − βti∥+ L∥βt+1 − βt∥)2

≤

√√√√ n∑
i=1

∥βt+1
i − βti∥2 +

√√√√ n∑
i=1

L2∥βt+1 − βt∥2

= ∥βt+1 − βt∥+√nL∥βt+1 − βt∥

= (1 +
√
nL)∥βt+1 − βt∥.

Thus, we conclude that ∥ϵt∥ ≤ (1 +
√
nL)∥βt+1 − βt∥ which is eq. (3.27).

Finally, we show that

g(βt,i−1)− g(βt,i) +∇ig(β
t,i)′(βt+1

i − βti) ≥ Γ∥βt+1
i − βti∥2

where Γ := mini∈[n]
∥xi∥2

2
.

Lemma III.13. Let β1, · · · , βi−1, β, βi+1, · · · , βn ∈ Rk−1 be arbitrary. Then there

exist v ∈ Rk−1 and C ∈ R which depend only on β1, . . . , βi−1, βi+1, . . . , βn, but not on

β, such that

g ([β1, · · · , βi−1, β, βi+1, · · · , βn]) =
1

2
∥xi∥2β′β − v′β − C.
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In particular, we have

∇ig ([β1, · · · , βi−1, β, βi+1, · · · , βn]) = ∥xi∥2β − v.

Proof. The result follows immediately from the identity eq. (3.19).

Lemma III.14. Let β1, · · · , βi−1, β, η, βi+1, · · · , βn ∈ Rk−1 be arbitrary. Then we

have

g ([β1, · · · , βi−1, η, βi+1, · · · , βn])− g ([β1, · · · , βi−1, β, βi+1, · · · , βn])

+∇ig ([β1, · · · , βi−1, β, βi+1, · · · , βn])′ (β − η)

=
∥xi∥2
2
∥η − β∥2

Proof. Let v, C be as in lemma III.13. We have

g ([β1, · · · , βi−1, η, βi+1, · · · , βn])− g ([β1, · · · , βi−1, β, βi+1, · · · , βn])

=
∥xi∥2
2
∥η∥2 − v′η − ∥xi∥

2

2
∥β∥2 + v′β

=
∥xi∥2
2

(∥η∥2 − ∥β∥2) + v′(β − η)

and

∇ig ([β1, · · · , βi−1, β, βi+1, · · · , βn])′ (β − η)

= (∥xi∥2β − v)′(β − η)

= ∥xi∥2(∥β∥2 − β′η)− v′(β − η).

Thus,
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g ([β1, · · · , βi−1, η, βi+1, · · · , βn])− g ([β1, · · · , βi−1, β, βi+1, · · · , βn])

+∇ig ([β1, · · · , βi−1, β, βi+1, · · · , βn])′ (β − η)

=
∥xi∥2
2

(∥η∥2 − ∥β∥2) + v′(β − η) + ∥xi∥2(∥β∥2 − β′η)− v′(β − η)

=
∥xi∥2
2

(∥η∥2 − ∥β∥2) + ∥xi∥2(∥β∥2 − β′η)

= ∥xi∥2
(
1

2
(∥η∥2 − ∥β∥2) + (∥β∥2 − β′η)

)
= ∥xi∥2

(
1

2
(∥η∥2 + ∥β∥2)− β′η

)
=
∥xi∥2
2
∥η − β∥2

as desired.

Applying lemma III.14, we have

g(βt,i−1)− g(βt,i) +∇ig(β
t,i)′(βt+1

i − βti) ≥
∥xi∥2
2
∥βt+1

i − βti∥2.

Since eq. (3.25) is true, we have by Lemma 24 of [WL14] that

∇ig(β
t,i)′(βti − βt+1

i ) ≥ 0

Equivalently, ∇ig(β
t,i)′(βt+1

i − βti) ≤ 0. Thus, we deduce that

g(βt,i−1)− g(βt,i) ≥ ∥xi∥
2

2
∥βt+1

i − βti∥2 ≥ Γ∥βt+1
i − βti∥2

Summing the above identity over i ∈ [n], we have

g(βt,0)− g(βt,n) =
n∑
i=1

g(βt,i−1)− g(βt,i) ≥ Γ
n∑
i=1

∥βt+1
i − βti∥2 = Γ∥βt+1 − βt∥2
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Table 3.2: Variables used in Section 3.8.4

Variable(s) defined in nota bene

t algorithm 2 iteration index

ℓ, vals, δt, γt Subroutine 3 t ∈ [ℓ] is an iteration index

up, dn Subroutine 3 symbols

b̃, γ̃, vmax lemma III.16

⟨1⟩, . . . , ⟨k − 1⟩ algorithm 2

ntm, n
t
u, S

t, γ̂t, b̂t algorithm 2 t ∈ [ℓ] is an iteration index

TkU, Iγu , I
γ
m, n

γ
u , n

γ
m definition III.17 γ ∈ R is a real number

S(nm,nu), γ̂(nm,nu), b̂(nm,nu) definition III.20 (nm, nu) ∈ TkU2

vals+ definition III.25

u(j), d(j) definition III.26 j ∈ [k − 1] is an integer

crit1, crit2 definition III.27

KKT cond() Subroutine 5

Since (βt,0) = βt and βt,n = βt+1, we conclude that g(βt) − g(βt+1) ≥ Γ∥βt+1 −

βt∥2.

To conclude the proof of theorem III.6, we note that proposition III.12 and propo-

sition III.11 together imply that the requirements of Theorem 8 from [WL14] (restated

as theorem III.10 here) are satisfied for the BCD algorithm for WW-SVM. Hence, we

are done.

3.8.4 Proof of theorem III.4

The goal of this section is to prove theorem III.4. The time complexity analysis

has been carried out at the end of section 3.4 of the main article. Below, we focus on

the part of the theorem on the correctness of the output. Throughout this section,

k ≥ 2, C > 0 and v ∈ Rk−1 are assumed to be fixed. Additional variables used are

summarized in table 3.2.
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3.8.4.1 The clipping map

First, we recall the clipping map:

Definition III.15. The clipping map clipC : Rk−1 → [0, C]k−1 is the function

defined as follows: for w ∈ Rk−1, [clipC(w)]i := max{0,min{C,wi}}.

Lemma III.16. Let vmax = maxi∈[k−1] vi. The optimization eq. (3.4) has a unique

global minimum b̃ satisfying the following:

1. b̃ = clipC(v − γ̃1) for some γ̃ ∈ R

2. γ̃ =
∑k−1

i=1 b̃i. In particular, γ̃ ≥ 0.

3. If vi ≤ 0, then b̃i = 0. In particular, if vmax ≤ 0, then b̃ = 0.

4. If vmax > 0, then 0 < γ̃ < vmax.

Proof. We first prove part 1. The optimization eq. (3.4) is a minimization over a

convex domain with strictly convex objective, and hence has a unique global minimum

b̃. For each i ∈ [k−1], let λi, µi ∈ R be the dual variables for the constraints 0 ≥ bi−C

and 0 ≥ −bi, respectively. The Lagrangian for the optimization eq. (3.4) is

L(b, λ, µ) = 1

2
b′(I+O)b− v′b+ (b− C)′λ+ (−b)′µ.

Thus, the stationarity (or gradient vanishing) condition is

0 = ∇bL(b, λ, µ) = (I+O)b− v + λ− µ.
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The KKT conditions are as follows:

for all i ∈ [k − 1], the following holds:

[(I+O)b]i + λi − µi = vi stationarity (3.29)

C ≥ bi ≥ 0 primal feasibility (3.30)

λi ≥ 0 dual feasibility (3.31)

µi ≥ 0 " (3.32)

λi(C − bi) = 0 complementary slackness (3.33)

µibi = 0 " (3.34)

Equations (3.29) to (3.34) are satisfied if and only if b = b̃ is the global minimum.

Let γ̃ ∈ R be such that γ̃1 = Ob̃. Note that by definition, part 2 holds. Further-

more, eq. (3.29) implies

b̃ = v − γ̃1− λ+ µ. (3.35)

Below, fix some i ∈ [k − 1]. Note that λi or µi cannot both be nonzero. Otherwise,

eq. (3.33) and eq. (3.34) would imply that C = b̃i = 0, a contradiction. We claim the

following:

1. If vi − γ̃ ∈ [0, C], then λi = µi = 0 and b̃i = vi − γ̃.

2. If vi − γ̃ > C, then b̃i = C.

3. vi − γ̃ < 0, then b̃i = 0.

We prove the first claim. To this end, suppose vi−γ̃ ∈ [0, C]. We will show λi = µi = 0

by contradiction. Suppose λi > 0. Then we have C = b̃i and µi = 0. Now, eq. (3.35)

implies that C = b̃i = vi − γ̃ − λi. However, we now have vi − γ̃ − λi ≤ C − λi < C,
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a contradiction. Thus, λi = 0. Similarly, assuming µi > 0 implies

0 = b̃i = vi − λ+ µi ≥ 0 + µi > 0,

a contradiction. This proves the first claim.

Next, we prove the second claim. Note that

C ≥ b̃i = vi − γ̃ − λi + µi > C − λi + µi =⇒ 0 > −λi + µi ≥ −λi.

In particular, we have λi > 0 which implies C = b̃i by complementary slackness.

Finally, we prove the third claim. Note that

0 ≤ b̃i = vi − γ̃ − λi + µi < −λi + µi ≤ µi

Thus, µi > 0 and so 0 = b̃i by complementary slackness. This proves that b̃ =

clipC(v − γ̃1), which concludes the proof of part 1.

For part 2, note that γ̃ =
∑k−1

i=1 b̃i holds by definition. The “in particular” portion

follows immediately from b̃ ≥ 0.

We prove part 3 by contradiction. Suppose there exists i ∈ [k − 1] such that

vi ≤ 0 and b̃i > 0. Thus, by eq. (3.34), we have µi = 0. By eq. (3.29), we have

bi + γ̃ ≤ bi + γ̃ + λi = vi ≤ 0. Thus, we have −γ̃ ≥ bi > 0, or equivalently, γ̃ < 0.

However, this contradicts part 2. Thus, b̃i = 0 whenever vi ≤ 0. The “ in particular”

portion follows immediately from the observation that vmax ≤ 0 implies that vi ≤ 0

for all i ∈ [k − 1].

For part 4, we first prove that γ̃ < vmax by contradiction. Suppose that γ̃ ≥ vmax.

Then we have v−γ̃1 ≤ v−vmax1 ≤ 0. Thus, by part 1, we have b̃ = clipC(v−γ̃1) = 0.

By part 2, we must have that γ̃ =
∑k−1

i=1 b̃i = 0. However, γ̃ ≥ vmax > 0, which is a

contradiction.
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Finally, we prove that γ̃ > 0 again by contradiction. Suppose that γ̃ = 0. Then

part 2 and the fact that b̃ ≥ 0 implies that b̃ = 0. However, by part 1, we have b̃ =

clipC(v). Now, let i
∗ be such that vi∗ = vmax. This implies that b̃i∗ = clipC(vmax) >

0, a contradiction.

3.8.4.2 Recovering γ̃ from discrete data

Definition III.17. For γ ∈ R, let bγ := clipC(v − γ1) ∈ Rk−1. Define

Iγu := {i ∈ [k − 1] : bγi = C}

Iγm := {i ∈ [k − 1] : bγi ∈ (0, C)}

nγu := |Iγu |, and nγm := |nγm|.

Let TkU := {0} ∪ [k − 1]. Note that by definition, nγm, n
γ
u ∈ TkU.

Note that Iγu and Iγm are determined by their cardinalities. This is because

Iγu = {⟨1⟩, ⟨2⟩, . . . , ⟨nγu⟩}

Iγm = {⟨nγu + 1⟩, ⟨nγu + 2⟩, . . . , ⟨nγu + nγm⟩}.

Definition III.18. Define

disc+ := {vi : i ∈ [k − 1], vi > 0} ∪ {vi − C : i ∈ [k − 1], vi − C > 0} ∪ {0}.

Note that disc+ is slightly different from disc as defined in the main text.

Lemma III.19. Let γ′, γ′′ ∈ disc+ be such that γ ̸∈ disc+ for all γ ∈ (γ′, γ′′). The
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functions

(γ′, γ′′) ∋ γ 7→ Iγm

(γ′, γ′′) ∋ γ 7→ Iγu

are constant.

Proof. We first prove Iλm = Iρm. Let λ, ρ ∈ (γ′, γ′′) be such that λ < ρ. Assume

for the sake of contradiction that Iλm ̸= Iρm. Then either 1) i ∈ [k − 1] such that

vi − λ ∈ (0, C) but vi − ρ ̸∈ (0, C) or 2) i ∈ [k − 1] such that vi − λ ̸∈ (0, C) but

vi−ρ ∈ (0, C). This implies that there exists some γ ∈ (λ, ρ) such that vi−γ ∈ {0, C},

or equivalently, γ ∈ {vi, vi − C}. Hence, γ ∈ disc+, which is a contradiction. Thus,

for all λ, ρ ∈ (γ′, γ′′), we have Iλm = Iρm.

Next, we prove Iλu = Iρu . Let λ, ρ ∈ (γ′, γ′′) be such that λ < ρ. Assume for the

sake of contradiction that Iλu ̸= Iρu . Then either 1) i ∈ [k − 1] such that vi − λ ≥ C

but vi − ρ < C or 2) i ∈ [k − 1] such that vi − λ < C but vi − ρ ≥ C. This implies

that there exists some γ ∈ (λ, ρ) such that vi − γ = C, or equivalently, γ = vi = C.

Hence, γ ∈ disc+, which is a contradiction. Thus, for all λ, ρ ∈ (γ′, γ′′), we have

Iλu = Iρu .

Definition III.20. For (nm, nu) ∈ TkU2, define S(nm,nu), γ̂(nm,nu) ∈ R by

S(nm,nu) :=
nu+nm∑
i=nu+1

v⟨i⟩,

γ̂(nm,nu) :=
(
C · nu + S(nm,nu)

)
/(nm + 1).
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Furthermore, define b̂(nm,nu) ∈ Rk−1 such that, for i ∈ [k − 1], the ⟨i⟩-th entry is

b̂
(nm,nu)
⟨i⟩ :=


C : i ≤ nu

v⟨i⟩ − γ(nm,nu) : nu < i ≤ nu + nm

0 : nu + nm < i.

Below, recall ℓ as defined on Subroutine 3-line 2.

Lemma III.21. Let t ∈ [ℓ]. Let ntm, n
t
u, and b̂

t be as in the for loop of algorithm 2.

Then γ̂(n
t
m,n

t
u) = γ̂t and b̂(n

t
m,n

t
u) = b̂t.

Proof. It suffices to show that St = S(nt
m,n

t
u) where the former is defined as in algo-

rithm 2 and the latter is defined as in definition III.20. In other words, it suffices to

show that

St =
∑

j∈[k−1] :nt
u<j≤nt

u+n
t
m

v⟨j⟩. (3.36)

We prove eq. (3.36) by induction. The base case t = 0 follows immediately due to

the initialization in algorithm 2-line 4.

Now, suppose that eq. (3.36) holds for St−1:

St−1 =
∑

j∈[k−1] :nt−1
u <j≤nt−1

u +nt−1
m

v⟨j⟩. (3.37)

Consider the first case that δt = up. Then we have ntu + ntm = nt−1
u + nt−1

m and

ntu = nt−1
u + 1. Thus, we have

St = St−1 − v⟨nt−1
u ⟩ ∵ Subroutine 4-line 3,

=
∑

j∈[k−1] :nt−1
u +1<j≤nt−1

u +nt−1
m

v⟨j⟩ ∵ eq. (3.37)

=
∑

j∈[k−1] :nt
u<j≤nt

u+n
t
m

v⟨j⟩
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which is exactly the desired identity in eq. (3.36).

Consider the second case that δt = dn. Then we have ntu + ntm = nt−1
u + nt−1

m + 1

and ntu = nt−1
u . Thus, we have

St = St−1 + v⟨nt
u+n

t
m⟩ ∵ Subroutine 4-line 6,

=
∑

j∈[k−1] :nt−1
u +1<j≤nt−1

u +nt−1
m +1

v⟨j⟩ ∵ eq. (3.37)

=
∑

j∈[k−1] :nt
u<j≤nt

u+n
t
m

v⟨j⟩

which, again, is exactly the desired identity in eq. (3.36).

Lemma III.22. Let γ̃ be as in lemma III.16. Then we have

b̃ = b̂(n
γ̃
m,n

γ̃
u ) = clipC(v − γ̂(n

γ̃
m,n

γ̃
u )1).

Proof. It suffices to prove that γ̃ = γ̂(n
γ̃
m,n

γ̃
u ). To this end, let i ∈ [k − 1]. If i ∈ I γ̃m,

then b̃i = vi − γ̃. If i ∈ I γ̃u , then b̃i = C. Otherwise, b̃i = 0. Thus

γ̃ = 1′b̃ = C · nγ̃u + S(nγ̃
m,n

γ̃
u ) − γ̃ · nγ̃m

Solving for γ̃, we have

γ̃ =
(
C · nγ̃u + S(nγ̃

m,n
γ̃
u )
)
/(nγ̃m + 1) = γ̂(n

γ̃
m,n

γ̃
u ),

as desired.
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3.8.4.3 Checking the KKT conditions

Lemma III.23. Let (nm, nu) ∈ TkU2. To simplify notation, let b := b̂(nm,nu), γ :=

γ̂(nm,nu). We have Ob = γ1 and for all i ∈ [k − 1] that

[(I+O)b]⟨i⟩ =


C + γ : i ≤ nu

v⟨i⟩ : nu < i ≤ nu + nm

γ : nu + nm < i.

(3.38)

Furthermore, b satisfies the KKT conditions Equations (3.29) to (3.34) if and only

if, for all i ∈ [k − 1],

v⟨i⟩


≥ C + γ : i ≤ nu

∈ [γ, C + γ] : nu < i ≤ nu + nm

≤ γ : nu + nm < i.

(3.39)

Proof. First, we prove Ob = γ1 which is equivalent to [Ob]j = γ for all j ∈ [k − 1].

This is a straightforward calculation:

[Ob]j = 1′b =
∑

i∈[k−1]

b⟨i⟩

=
∑

i∈[k−1] : i≤nu

b⟨i⟩ +
∑

i∈[k−1] :nu<i≤nu+nm

b⟨i⟩ +
∑

i∈[k−1] :nu+nm<i

b⟨i⟩

=
∑

i∈[k−1] : i≤nu

C +
∑

i∈[k−1] :nu<i≤nu+nm

v⟨i⟩ − γ

= C · nu + S(nt
m,n

t
u) − nmγ

= γ.

Since [(I+O)b]i = [Ib]i + [Ob]i, the identity eq. (3.38) now follows immediately.
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Next, we prove the “Furthermore” part. First, we prove the “only if” direction.

By assumption, we have b = b̃ and so γ = γ̃. Furthermore, from lemma III.16 we have

b̃ = clipC(v− γ̃1) and so b = clipC(v−γ1). To proceed, recall that by construction,

we have

b⟨i⟩ =


C : i ≤ nu

v − γ : nu < i ≤ nu + nm

0 : nu + nm < i

Thus, if i ≤ nu, then C = b⟨i⟩ = [clipC(v − γ1)]⟨i⟩ implies that v⟨i⟩ − γ ≥ C. If

nu < i ≤ nu + nm, then b⟨i⟩ = v⟨i⟩ − γ. Since bj ∈ [0, C] for all j ∈ [k − 1], we

have in particular that v⟨i⟩ − γ ∈ [0, C]. Finally, if nu + nm < i, then 0 = b⟨i⟩ =

[clipC(v − γ1)]⟨i⟩ implies that v − γ ≤ 0. In summary,

v⟨i⟩ − γ


≥ C : i ≤ nu

∈ [0, C] : nu < i ≤ nu + nm

≤ 0 : nu + nm < i.

Note that the above identity immediately implies eq. (3.39).

Next, we prove the “if” direction. Using eq. (3.38) and eq. (3.39), we have

[(I+O)b]⟨i⟩ − v⟨i⟩


≤ 0 : i ≤ nu

= 0 : nu < i ≤ nu + nm

≥ 0 : nu + nm < i.
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For each i ∈ [k − 1], define λi, µi ∈ R where

λ⟨i⟩ =


−([(I+O)b]⟨i⟩ − v⟨i⟩) : i ≤ nu

0 : nu < i ≤ nu + nm

0 : nu + nm < i

and

µ⟨i⟩ =


0 : i ≤ nu

0 : nu < i ≤ nu + nm

[(I+O)b]⟨i⟩ − v⟨i⟩ : nu + nm < i.

It is straightforward to verify that all of Equations (3.29) to (3.34) are satisfied for

all i ∈ [k − 1], i.e., the KKT conditions hold at b.

Recall that we use indices with angle brackets ⟨1⟩, ⟨2⟩, . . . , ⟨k − 1⟩ to denote a

fixed permutation of [k − 1] such that

v⟨1⟩ ≥ v⟨2⟩ ≥ · · · ≥ v⟨k−1⟩.

Corollary III.24. Let t ∈ [ℓ] and b̃ be the unique global minimum of the optimization

eq. (3.4). Then b̂t = b̃ if and only if KKT cond() returns true during the t-th iteration

of algorithm 2.

Proof. First, by lemma III.16 we have b̂t = b̃ if and only if b̂t satisfies the KKT

conditions Equations (3.29) to (3.34). From lemma III.21, we have b̂(n
t
m,n

t
u) = b̂t and

γ̂(n
t
m,n

t
u) = γ̂t. To simplify notation, let γ = γ̂(n

t
m,n

t
u). By lemma III.23, b̂(n

t
m,n

t
u) satisfies
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the KKT conditions Equations (3.29) to (3.34) if and only if the following are true:

v⟨i⟩


≥ C + γ : i ≤ ntu

∈ [γ, C + γ] : ntu < i ≤ ntu + ntm

≤ γ : ntu + ntm < i.

Since v⟨1⟩ ≥ v⟨2⟩ ≥ · · · , the above system of inequalities holds for all i ∈ [k− 1] if and

only if 
C + γ ≤ v⟨nt

u⟩ : if ntu > 0.

γ ≤ v⟨nt
u+n

t
m⟩ and v⟨nt

u+1⟩ ≤ C + γ : if ntm > 0,

v⟨nt
u+n

t
m+1⟩ ≤ γ : if ntu + ntm < k − 1.

Note that the above system holds if and only if KKT cond() returns true.

3.8.4.4 The variables ntm and ntu

Definition III.25. Define the set vals+ = {(vj, dn, j) : vj > 0, j = 1, . . . , k −

1} ∪ {(vj − C, up, j) : vj > C, j = 1, . . . , k − 1}. Sort the set vals+ =

{(γ1, δ1, j1), . . . , (γℓ, δℓ, jℓ)} so that the ordering of {(γ1, δ1), . . . , (γℓ, δℓ)} is identical

to vals from Subroutine 3-line 2.

Definition III.26. Define

u(j) := max{τ ∈ [ℓ] : v⟨j⟩−C = γτ}, and d(j) := max{τ ∈ [ℓ] : v⟨j⟩ = γτ}, (3.40)

where max ∅ = ℓ+ 1.
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Definition III.27. Define the following sets

crit1(v) = {τ ∈ [ℓ] : γτ > γτ+1}

crit2(v) = {τ ∈ [ℓ] : γτ = γτ+1, δτ = up, δτ+1 = dn}

where γℓ+1 = 0.

Later, we will show that algorithm 2 will halt and output the global optimizer b̃

on or before the t-th iteration where t ∈ crit1(v) ∪ crit2(v).

Lemma III.28. Suppose that t ∈ crit1(v). Then

#{j ∈ [k − 1] : d(j) ≤ t} = #{τ ∈ [t] : δτ = dn},

and

#{j ∈ [k − 1] : u(j) ≤ t} = #{τ ∈ [t] : δτ = up}.

Proof. First, we observe that

#{τ ∈ [t] : δτ = up} = #{(γ, δ, j′) ∈ vals+ : δ = up, γ ≥ γt}

Next, note that j 7→ (γd(j), up, ⟨j⟩) is a bijection from {j ∈ [k − 1] : d(j) ≤ t}

to {(γ, δ, j′) ∈ vals+ : δ = up, γ ≥ γt}. To see this, we view the permutation

⟨1⟩, ⟨2⟩, . . . viewed as a bijective mapping ⟨·⟩ : [k − 1] → [k − 1] given by j 7→ ⟨j⟩.

Denote by ⟩ · ⟨ the inverse of ⟨·⟩. Then the (two-sided) inverse to j 7→ (γd(j), up, ⟨j⟩)

is clearly given by (γ, up, j′) 7→⟩j′⟨. This proves the first identity of the lemma.

The proof of the second identity is completely analogous.

Lemma III.29. The functions u and d : [k − 1] → [ℓ + 1] are non-decreasing.

Furthermore, for all j ∈ [k − 1], we have u(j) < d(j).
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Proof. Let j′, j′′ ∈ [k − 1] be such that j′ < j′′. By the sorting, we have v⟨j′⟩ ≥ v⟨j′′⟩.

Now, suppose that d(j′) > d(j′′), then by construction we have γd(j′) < γd(j′′). On the

other hand, we have

γd(j′) = v⟨j′⟩ ≥ v⟨j′′⟩ = γd(j′′)

which is a contradiction.

For the “Furthermore” part, suppose the contrary that u(j) ≥ d(j). Then we have

γu(j) ≤ γd(j). However, by definition, we have γu(j) = v⟨j⟩ > v⟨j⟩ − C = γd(j). This is a

contradiction.

Lemma III.30. Let t ∈ crit1(v). Then n
t
u = #{j ∈ [k−1] : u(j) ≤ t}. Furthermore,

[ntu] = {j ∈ [k − 1] : u(j) ≤ t}. Equivalently, for each j ∈ [k − 1], we have j ≤ ntu if

and only if u(j) ≤ t.

Proof. First, we note that

ntu = #{τ ∈ [t] : δτ = up} ∵ Subroutine 4-line 2

= #{j ∈ [k − 1] : u(j) ≤ t} ∵ lemma III.28

This proves the first part. For the “Furthermore” part, let N := #{j ∈ [k − 1] :

u(j) ≤ t}. Since u is monotonic non-decreasing (lemma III.29), we have {j ∈ [k− 1] :

u(j) ≤ t} = [N ]. Since N = ntu by the first part, we are done.

Lemma III.31. Let t̂, ť ∈ crit1(v) be such that there exists t ∈ [ℓ] where

ntm = #{j ∈ [k − 1] : d(j) ≤ ť } −#{j ∈ [k − 1] : u(j) ≤ t̂ }. (3.41)

Then d(j) ≤ ť and t̂ < u(j) if and only if nt̂u < j ≤ nt̂u + ntm.

Proof. By lemma III.30 and eq. (3.41), we have #{j ∈ [k− 1] : d(j) ≤ ť } = nt̂u + ntm.

By lemma III.29, d is monotonic non-decreasing and so [nt̂u + ntm] = {j ∈ [k − 1] :
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d(j) ≤ ť }. Now,

{j ∈ [k − 1] : d(j) ≤ ť, t̂ < u(j)}

= {j ∈ [k − 1] : d(j) ≤ ť } ∩ {j ∈ [k − 1] : t̂ < u(j)}

= {j ∈ [k − 1] : d(j) ≤ ť } \ {j ∈ [k − 1] : u(j) ≤ t̂ }

= [nt̂u + ntm] \ [nt̂u],

where in the last equality, we used lemma III.30.

Corollary III.32. Let t ∈ crit1(v). Then d(j) ≤ t and t < u(j) if and only if

ntu < j ≤ ntu + ntm.

Proof. We apply lemma III.31 with t = t̂ = ť, which requires checking that

ntm = #{j ∈ [k − 1] : d(j) ≤ t} −#{j ∈ [k − 1] : u(j) ≤ t}.

This is true because from Subroutine 4-line 2 and 5, we have

ntm = #{τ ∈ [t] : δτ = dn} −#{τ ∈ [t] : δτ = up}.

Applying lemma III.28, we are done.

Lemma III.33. Let t ∈ crit1(v). Let ε > 0 be such that for all τ, τ ′ ∈ crit1(v)

where τ ′ < τ , we have γτ ′ − ε > γτ . Then (ntm, n
t
u) = (nγt−εm , nγt−εu ).

Proof. We claim that

v⟨j⟩ − γt + ε


< 0 : t < d(j)

∈ (0, C) : d(j) ≤ t < u(j)

> C : u(j) ≤ t.

(3.42)
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To prove the t < d(j) case of eq. (3.42), we have

v⟨j⟩ − γt + ε = γd(j) − γt + ε ∵ eq. (3.40)

< −ε+ ε = 0 ∵ t < d(j) implies that γt − ε > γd(j).

To prove the d(j) ≤ t < u(j) case of eq. (3.42), we note that

v⟨j⟩ − γt + ε = γd(j) − γt + ε eq. (3.40)

≥ ε > 0 ∵ d(j) ≤ t implies γd(j) ≥ γt.

For the other inequality,

v⟨j⟩ − γt + ε = γu(j) + C − γt + ε ∵ eq. (3.40)

< −ε+ C + ε = C ∵ t < u(j) implies γt − ε > γu(j).

Finally, we prove the u(j) ≤ t case of eq. (3.42). Note that

v⟨j⟩ − γt + ε = γu(j) + C − γt + ε ∵ eq. (3.40)

≥ C + ε > C ∵ u(j) ≤ t implies that γu(j) ≥ γt.

Thus, we have proven eq. (3.42). By lemma III.30 and corollary III.32, eq. (3.42)

can be rewritten as

v⟨j⟩ − γt + ε


< 0 : ntu + ntm < j,

∈ (0, C) : ntu < j ≤ ntu + ntm,

> C : j ≤ ntu.

(3.43)

Thus, we have Iγt−εu = {⟨1⟩, . . . , ⟨ntu⟩} and Iγt−εm = {⟨ntu + 1⟩, . . . , ⟨ntu + ntm⟩}. By the
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definitions of nγt−εu and nγt−εm , we are done.

Lemma III.34. Let t ∈ crit2(v). Then (ntm, n
t
u) = (nγtm , n

γt
u ).

Proof. Let t̂ ∈ crit1(v) be such that γt̂ = γt, and ť = max{τ ∈ crit1(v) : γτ > γt}.

We claim that

v⟨j⟩ − γt̂


≤ 0 : ť < d(j),

∈ (0, C) : d(j) ≤ ť, t̂ < u(j),

≥ C : u(j) ≤ t̂.

(3.44)

Note that by definition, we have γť > γt̂, which implies that ť < t̂.

Consider the first case of eq. (3.44) that ť < d(j). We have by construction that

v⟨j⟩ = γd(j) and so v⟨j⟩ − γt = γd(j) − γť ≤ 0.

Next, consider the case when d(j) ≤ ť and t̂ < u(j). Thus,

v⟨j⟩ − γt̂ > v⟨j⟩ − γť ∵ γť > γt

= γd(j) − γť ∵ definition of d(j)

≥ 0 ∵ d(j) ≤ ť =⇒ γd(j) ≥ γť.

On the other hand

v⟨j⟩ − γt̂ = γu(j) + C − γt̂ ∵ definition of u(j)

< C ∵ t̂ < u(j) =⇒ γt̂ > γu(j)

Thus, we’ve shown that in the second case, we have v⟨j⟩ − γt̂ ∈ (0, C).

We consider the final case that u(j) ≤ t̂. We have

v⟨j⟩ − γt̂ = γu(j) + C − γt̂ ∵ definition of t

≥ C ∵ u(j) ≤ t̂ =⇒ γu(j) ≥ γt̂.
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Thus, we have proven eq. (3.44).

Next, we claim that t, t̂, ť satisfy the condition eq. (3.41) of lemma III.31, i.e.,

ntm = #{j ∈ [k − 1] : d(j) ≤ ť } −#{j ∈ [k − 1] : u(j) ≤ t̂ }.

To this end, we first recall that

ntm = #{τ ∈ [t] : δτ = dn} −#{τ ∈ [t] : δτ = up}.

By assumption on t, for all τ such that ť < τ ≤ t, we have δτ = up. Thus,

#{τ ∈ [t] : δτ = dn} = #{τ ∈ [ť ] : δτ = dn} = #{j ∈ [k − 1] : d(j) ≤ ť }

where for the last equality, we used lemma III.28. Similarly, for all τ such that

t < τ ≤ t̂, we have δτ = dn. Thus, we get that analogous result

ntu = #{τ ∈ [t] : δτ = up} = #{τ ∈ [t̂ ] : δτ = up} = #{j ∈ [k − 1] : u(j) ≤ t̂ } = nt̂u.

(3.45)

Thus, we have verified the condition eq. (3.41) of lemma III.31. Now, applying

lemma III.30 and lemma III.31, we get

v⟨j⟩ − γt̂


≤ 0 : nt̂u + ntm < j,

∈ (0, C) : nt̂u < j ≤ nt̂u + ntm

≥ C : j ≤ nt̂u.

(3.46)
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By eq. (3.45) and that γt = γt̂, the above reduces to

v⟨j⟩ − γt


≤ 0 : ntu + ntm < j,

∈ (0, C) : ntu < j ≤ ntu + ntm

≥ C : j ≤ ntu.

(3.47)

Thus, Iγtu = {⟨1⟩, . . . , ⟨ntu⟩} and Iγtm = {⟨ntu +1⟩, . . . , ⟨ntu + ntm⟩}. By the definitions of

nγtu and nγtm , we are done.

3.8.4.5 Putting it all together

If vmax ≤ 0, then algorithm 2 returns 0.

Otherwise, by lemma III.16, we have γ̃ ∈ (0, vmax).

Lemma III.35. Let t ∈ [ℓ] be such that (ntm, n
t
u) = (nγ̃m, n

γ̃
u). Then during the t-

th loop of algorithm 2 we have b̃ = b̂t and KKT cond() returns true. Consequently,

algorithm 2 returns the optimizer b̃ on or before the t-th iteration.

Proof. We have

b̃ = b̂(n
γ̃
m,n

γ̃
u ) ∵ lemma III.22

= b̂(n
t
m,n

t
u) ∵ Assumption

= b̂t ∵ lemma III.21.

Thus, by corollary III.24 KKT cond() returns true on the t-th iteration. This means

that algorithm 2 halts on or before iteration t. Let τ ∈ [ℓ] be the iteration where

algorithm 2 halts and outputs b̂τ . Then τ ≤ t. Furthermore, by corollary III.24,

b̂τ = b̃, which proves the “Consequently” part of the lemma.

By lemma III.35, it suffices to show that (ntm, n
t
u) = (nγ̃m, n

γ̃
u) for some t ∈ [ℓ].
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We first consider the case when γ̃ ̸= γt for any t ∈ crit1(v). Thus, there exists

t ∈ crit1(v) such that γt+1 < γ̃ < γt, where we recall that γℓ+1 := 0.

Now, we return to the proof of theorem III.4.

(ntm, n
t
u) = (nγt−εm , nγt−εu ) ∵ lemma III.33

= (nγ̃m, n
γ̃
u) ∵ lemma III.19, and that both γ̃ and γi − ε ∈ (γt+1, γt).

Thus, lemma III.35 implies the result of theorem III.4 under the assumption that

γ̃ ̸= γt for any t ∈ crit1(v).

Next, we consider when γ̃ = γt for some t ∈ crit1(v). There are three possibilities:

1. There does not exist j ∈ [k − 1] such that v⟨j⟩ = γt,

2. There does not exist j ∈ [k − 1] such that v⟨j⟩ − C = γt,

3. There exist j1, j2 ∈ [k − 1] such that v⟨j1⟩ = γt and v⟨j2⟩ − C = γt.

First, we consider case 1. We claim that

(nγtm , n
γt
u ) = (nγt−ε

′

m , nγt−ε
′

u ) for all ε′ > 0 sufficiently small. (3.48)

We first note that nγtu = nγt−ε
′

u for all ε′ > 0 sufficiently small. To see this, let

i ∈ [k − 1] be arbitrary. Note that

i ∈ Iγtu ⇐⇒ vi − γt ≥ C ⇐⇒ vi − γt + ε′ ≥ C, ∀ϵ′ > 0, sufficiently small

⇐⇒ i ∈ Iγt−ε′u ,∀ϵ′ > 0, sufficiently small.

Next, we show that nγtm = nγt−ε
′

m for all ε′ > 0 sufficiently small. To see this, let
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i ∈ [k − 1] be arbitrary. Note that

i ∈ Iγtm ⇐⇒ vi − γt ∈ (0, C)
†⇐⇒ vi − γt + ε′ ∈ (0, C), ∀ϵ′ > 0, sufficiently small

⇐⇒ i ∈ Iγt−ε′m ,∀ϵ′ > 0, sufficiently small

where at “
†⇐⇒ ”, we used the fact that vi−γt ̸= 0 for any i ∈ [k− 1]. Thus, we have

proven eq. (3.48). Taking ε′ > 0 so small so that both eq. (3.48) and the condition in

lemma III.33 hold, we have

(ntm, n
t
u) = (nγt−ε

′

m , nγt−ε
′

u ) = (nγtm , n
γt
u ) = (nγ̃m, n

γ̃
u).

This proves theorem III.4 under case 1.

Next, we consider case 2. We claim that

(nγtm , n
γt
u ) = (nγt+ε

′′

m , nγt+ε
′′

u ) for all ε′′ > 0 sufficiently small. (3.49)

We first note that nγtu = nγt−ε
′′

u for all ε′′ > 0 sufficiently small. To see this, let

i ∈ [k − 1] be arbitrary. Note that

i ∈ Iγtu ⇐⇒ vi − γt ≥ C
‡⇐⇒ vi − γt − ε′′ ≥ C, ∀ϵ′′ > 0, sufficiently small

⇐⇒ i ∈ Iγt+ε′′u ,∀ϵ′′ > 0, sufficiently small.

where at “
‡⇐⇒ ”, we used the fact that vi − γt ̸= C for any i ∈ [k − 1]. Next, we

show that nγtm = nγt−ε
′′

m for all ε′′ > 0 sufficiently small. To see this, let i ∈ [k − 1] be

arbitrary. Note that

i ∈ Iγtm ⇐⇒ vi − γt ∈ (0, C)
‡⇐⇒ vi − γt − ε′′ ∈ (0, C), ∀ϵ′′ > 0, sufficiently small

⇐⇒ i ∈ Iγt+ε′′m ,∀ϵ′′ > 0, sufficiently small
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where again at “
‡⇐⇒ ”, we used the fact that vi − γt ̸= C for any i ∈ [k − 1]. Thus,

we have proven eq. (3.49). Since γ̃ = γt ∈ (0, vmax) and γ1 = vmax, we have in

particular that γt < γ1. Thus, there exists τ ∈ crit1(v) such that τ < t and γt < γτ .

Furthermore, we can choose τ such that for all γ ∈ (γt, γτ ), γ ̸∈ crit1(v). Let ε
′′ > 0

be so small that γt + ε′′, γτ − ε′′ ∈ (γt, γτ ), and furthermore both eq. (3.49) and the

condition in lemma III.33 hold. We have

(nτm, n
τ
u) = (nγτ−ε

′′

m , nγτ−ε
′′

u ) ∵ lemma III.33

= (nγt+ε
′′

m , nγt+ε
′′

u ) ∵ lemma III.19 and γt + ε′′, γτ − ε′′ ∈ (γt, γτ )

= (nγtm , n
γt
u ) ∵ eq. (3.49)

= (nγ̃m, n
γ̃
u) ∵ Assumption.

This proves theorem III.4 under case 2.

Finally, we consider the last case. Under the assumptions, we have t ∈ crit2(v).

Then lemma III.34 (ntm, n
t
u) = (nγtm , n

γt
u ) = (nγ̃m, n

γ̃
u). Thus, we have proven theo-

rem III.4 under case 3.

3.9 Experiments

The Walrus solver is available at:

https://github.com/YutongWangUMich/liblinear

The actual implementation is in the file linear.cpp in the class Solver MCSVM WW.

All code for downloading the datasets used, generating the train/test split, running

the experiments and generating the figures are included. See the README.md file for

more information.

All experiments are run on a single machine with the following specifications:

Processor: Intel(R) Core(TM) i7-6850K CPU @ 3.60GH

Memory: 31GiB System memory
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3.9.1 On Sharks linear WW-SVM solver

Shark’s linear WW-SVM solver is publicly available in the GitHub repos-

itory https://github.com/Shark-ML. Specifically, the C++ code is in

Algorithms/QP/QpMcLinear.h in the class QpMcLinearWW. Our reimplementation

follows their implementation with two major differences. In our implementations,

neither Shark nor Walrus use the shrinking heuristic. Furthermore, we use a stopping

criterion based on duality gap, following [SHS11].

We also remark that Shark solves the following variant of the WW-SVM which is

equivalent to ours after a change of variables. Let 0 < A ∈ R be a hyperparameter.

min
u∈Rd×k

FA(u) :=
1

2
∥u∥2F + A

n∑
i=1

∑
j∈[k]:
j ̸=yi

hinge
(
(u′yixi − u′jxi)/2

)
. (3.50)

Recall the formulation eq. (P) that we consider in this work, which we repeat here:

min
w∈Rd×k

GC(w) :=
1

2
∥w∥2F + C

n∑
i=1

∑
j∈[k]:
j ̸=yi

hinge(w′
yi
xi − w′

jxi). (3.51)

The formulation eq. (3.50) is used by Weston et al. [WW99], while the formulation

eq. (3.51) is used by Vapnik [Vap98]. These two formulations are equivalent under

155

https://github.com/Shark-ML


the change of variables w = u/2 and A = 4C. To see this, note that

GC(w) = GC(u/2)

=
1

2
∥u/2∥2F + C

n∑
i=1

∑
j∈[k]:
j ̸=yi

hinge((u′yixi − u′jxi)/2)

=
1

8
∥u∥2F + C

n∑
i=1

∑
j∈[k]:
j ̸=yi

hinge((u′yixi − u′jxi)/2)

=
1

4

1

2
∥u∥2F + 4C

n∑
i=1

∑
j∈[k]:
j ̸=yi

hinge((u′yixi − u′jxi)/2)


=

1

4
F4C(u) =

1

4
FA(u).

Thus, we have proven

Proposition III.36. Let C > 0 and u ∈ Rd×k. Then u is a minimizer of F4C if and

only if u/2 is a minimizer of GC.

In our experiments, we use the above proposition to rescale the variant formulation

to the standard formulation.

3.9.2 Data sets

The data sets used are downloaded from the “LIBSVM Data: Classification

(Multi-class)” repository:

https://csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

We use the scaled version of a data set whenever available. For testing accuracy,

we use the testing set provided whenever available. The data set aloi did not have an

accompanying test set. Thus, we manually created a test set using methods described

in the next paragraph. See table 3.3 for a summary.

The original, unsplit aloi dataset has k = 1000 classes, where each class has 108
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Table 3.3:
Data sets used from the “LIBSVM Data: Classification (Multi-class)”
repository. Variables k, n and d are, respectively, the number of classes,
training samples, and features. The scaled column indicates whether a
scaled version of the dataset is available on the repository. The test set
provided column indicates whether a test set of the dataset is provided
on the repository.

Data set k n d scaled test set available

dna 3 2,000 180 yes yes
satimage 6 4,435 36 yes yes
mnist 10 60,000 780 yes yes
news20 20 15,935 62,061 yes yes
letter 26 15,000 16 yes yes
rcv1 53 15,564 47,236 no yes
sector 105 6,412 55,197 yes yes
aloi 1,000 81,000 128 yes no

instances. For creating the test set, we split instances from each class such that first

81 elements are training instances while the last 27 elements are testing instances.

This results in a “75% train /25% test” split with training and testing set consisting

of 81,000 and 27,000 samples, respectively.

3.9.3 Classification accuracy results

For both algorithms, we use the same stopping criterion: after the first iteration

t such that DGt• < δ · DG1•. The results are reported in table 3.5 and table 3.6 where

δ = 0.009 and δ = 0.0009, respectively. The highest testing accuracies are in bold.

Note that going from table 3.5 to table 3.6, the stopping criterion becomes more

stringent. The choice of hyperparameters achieving the highest testing accuracy are

essentially unchanged. Thus, for hyperparameter tuning, it suffices to use the more

lenient stopping criterion with the larger δ.
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3.9.4 Comparison with convex program solvers

For solving eq. (3.4), we compare the speed of Walrus (algorithm 2) versus the

general-purpose, commercial convex program (CP) solver MOSEK. We generate ran-

dom instances of the subproblem eq. (3.4) by randomly sampling v. The runtime

results of Walrus and the CP solver are shown in table 3.9 and table 3.10, where each

entry is the average over 10 random instances.

Table 3.9:
Runtime in seconds for solving random instances of the problem eq. (3.4).

The parameter C = 1 is fixed while k varies.

log2(k − 1) 2 4 6 8 10 12

Walrus 0.0009 0.0001 0.0001 0.0001 0.0002 0.0005

CP solver 0.1052 0.0708 0.0705 0.1082 0.5721 12.6057

Table 3.10:
Runtime in seconds for solving random instances of the problem eq. (3.4).

The parameter k = 28 + 1 is fixed while C varies.

log10(C) -3 -2 -1 0 1 2 3

Walrus 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

CP Solver 0.1177 0.1044 0.1046 0.1005 0.1050 0.1127 0.1206

As shown here, the analytic solver Walrus is faster than the general-purpose com-

mercial solver by orders of magnitude.
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CHAPTER IV

Permutation Equivariant Relative Margin Losses

for Multiclass Classification

We introduce the permutation equivariant and relative margin-based (PERM) loss

for k-ary multiclass classification, and the multiplicative label encoding, which gener-

alizes the {±1} binary label encoding. By using these tools in conjunction, we can

formulate multiclass classification in a way that directly generalize discriminant-based

binary classification and prove an extension of the seminal classification-calibration

(CC) result of Bartlett et al. [BJM06] to the multiclass setting. PERM losses in-

clude the Gamma-Phi [Bei+14], and Fenchel-Young loss families [BMN20]. Using

our theoretical framework, we prove sufficient conditions for CC of these two previ-

ous families. We demonstrate that the only previously-known sufficient condition for

Gamma-Phi loss proposed by Pires et al. [PS16] turns out to be insufficient. Thus, our

work establishes the first sufficient condition for general Gamma-Phi losses. For the

Fenchel-Young losses, our result recover all known CC sufficient conditions [NBR19;

Blo19]. Moreover, we establish CC for Fenchel-Young losses not satisfying previously

known sufficient conditions. While this work mainly concerns CC, we believe our

framework will be useful for other problems in multiclass classfication.
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4.1 Introduction

Multiclass classification into k ≥ 2 categories is one of the most common tasks

in machine learning. Labelled training instances Trainn := {(xi, yi)}ni=1 are drawn

from a joint distribution P over X × [k] where [k] := {1, . . . , k} and X is a space of

unlabelled instances. The goal is to select a classifier g : X → [k] that makes as few

mistakes as possible on test instances. In other words, g should have low 01 -risk,

defined as

R01(g) := E(X,Y )∼P [I{Y ̸= g(X)}] (4.1)

where I is the indicator function. However, directly minimizing the 01 risk is difficult.

To address this, many classification algorithms often minimize a surrogate risk based

a surrogate loss L : [k]×Rk → R+. Discrete “hard label” classifiers g are replaced by

continuous “soft label” classifiers f : X → Rk. Instead of minimizing the (empirical)

01-risk, surrogate-based approach seeks to minimize the L-risk, defined as

RL(f) := E(X,Y )∼P [L(Y, f(X))]. (4.2)

The L-Bayes risk is defined as R∗
L := inff RL(f) where the infimum is over all Borel

functions f . Note that R∗
L is the optimal achievable L-risk for any classifier. However,

note that the original goal is to minimize the 01-risk, i.e., to approach the 01-Bayes

risk R∗
01 := infg R01(g) where the infimum is over all Borel functions g.

The theory of classification-calibration of loss functions is concerned with the

following question. A score function f : X → Rk has components (f1, . . . , fk) repre-

senting the score assigned to each of the k classes, where higher score implies greater

preference for the corresponding class. The final predicted label for an instance x is

argmaxj=1,...,k fj(x). Suppose that {f (n)} is a sequence of score functions X → Rk,

obtained from, say, empirical L-risk minimization on Trainn. In this setup, a natural

question is: if RL(f
(n))→ R∗

L as n→∞, then does R01(argmax f (n))→ R∗
01 as well?
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If this is the case for all P , then we say that L is classification-calibrated.

For the binary case when k = 2, the classification-calibration of L is relatively

well-understood with easy to check sufficient conditions available [Zha04b; BJM06].

In contrast, the theory of multiclass losses is less developed than its binary coun-

terpart. Zhang [Zha04a] and Tewari et al. [TB07] derived an abstract definition of

multiclass classification-calibration and provided sufficient conditions in special cases.

Nevertheless, new multiclass loss functions continue to be introduced and developed.

Two prominent families of loss functions are the Gamma-Phi and the Fenchel-Young

losses, introduced by Beijbom et al. [Bei+14] and Blondel et al. [BMN20], respec-

tively. Gamma-Phi losses have been successfully applied in multiclass boosting algo-

rithsm [SV19]. Fenchel-Young losses are defined using a procedure of constructing

multiclass loss functions from generalized entropies [DKR18]. The multinomial lo-

gistic/cross entropy loss is perhaps the most well-known example and is constructed

using the Shannon entropy.

Many works have analyzed sufficient conditions for classification-calibration (CC)

of Gamma-Phi [Zha04a; PS16] and Fenchel-Young losses [NBR19; Blo19]. However,

several important theoretical gaps remain. Towards addressing these gaps, we in-

troduce the permutation-equivariant and relative margin-based (PERM) multiclass

classification loss family subsuming both the Gamma-Phi and Fenchel-Young losses.

We prove sufficient condition for PERM losses to be CC and apply this theory to

Fenchel-Young losses, expanding previously known sufficient conditions. We also es-

tablish the first sufficient conditions for a general subfamily of Gamma-Phi loss.

A key ingredient in the analysis of PERM losses is a novel label encoding for

multiclass classification which we call multiplicative label encoding. Multiplicative

label encoding generalizes the {±1} encoding in binary classification. Taken together,

our framework consisting of PERM losses and multiplicative label encoding provides

a natural formulation of margin-based multiclass classification. In the next section,
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we discussed our results in greater details.

4.1.1 Our contributions

Establishing the first sufficient condition of CC for Gamma-Phi losses.

Prior to our work, Pires et al. [PS16] proposed the only existing sufficient condition

of CC for Gamma-Phi loss. However, we show that their proposed conditions turns

out to be insufficient. Namely, we construct a Gamma-Phi loss in Section 4.9.1 that

is not classification-calibrated but satisfies the conditions of Pires et al. [PS16]. Thus,

our Theorem IV.15 establishes the first sufficient condition of CC for Gamma-Phi

loss.

Expanding previous sufficient conditions of CC for Fenchel-Young losses.

The key ingredient of a Fenchel-Young loss is the so-called negenetropy. The recent

line of work on Fenchel-Young losses [NBR19; Blo19] proved sufficient conditions for

CC under the assumption that the negentropy is strongly convex. Our Theorem IV.22

shows that CC holds for the more general strictly convex negentropy. Moreover, we

exhibit in Section 4.8.2 a large class of negentropies that are strictly convex but

not strongly convex. Thus, calibration-classification of the Fenchel-Young losses cor-

responding to these aforementioned negentropies are guaranteed by our sufficient

conditions, and not by any previous ones.

PERM loss and multiplicative label encoding — bridging the gap between

binary and multiclass margin loss. Binary classification commonly uses a dis-

criminant function, i.e., a function f : X → R mapping an instance x to a real

number f(x) ∈ R called the discriminant. The sign of f(x) is used to classify x as

either the positive or the negative class. The margin is the multiplication of the train-

ing label y ∈ {±1} and the discriminant f(x). A margin-based loss is characterized

by a function ψ : R → R. The learner incurs a penalty of ψ(yf(x)) for outputing

f(x) given training label y.
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To generalize the above to the multiclass case, we view the multiclass discriminant

of an instance as a (k− 1)-dimensional vector f(x) ∈ Rk−1, where k is the number of

classes. Our multiplicative label encoding is a set of k square matrices {ρ1, . . . ,ρk},

where each matrix is of the size (k−1)×(k−1). As in the binary case, a (vector-valued)

margin is the multiplication of the training label, encoded as ρy, and the discriminant

f(x) ∈ Rk−1. A PERM loss is characterized by a function ψ : Rk−1 → R. The learner

incurs a penalty of ψ(ρyf(x)) for outputing f(x) given training label y.

A seminal result of Bartlett et al. [BJM06] in the binary case shows that a convex

margin loss is classification-calibrated if and only if ψ is differentiable at 0 and has

negative derivative at there. Our sufficient condition for classification-calibration

result (Theorem IV.27) can be viewed as a multiclass partial extension of the seminal

result of Bartlett et al. [BJM06] in the binary case. While this work focuses on

classification-calibration, we foresee that the PERM loss and the multiplicative label

encoding framework could have many implications for the theory and practice of

multiclass classification. For instance, in Chapters II and III, the multiplicative label

encoding plays an important role in establishing new theoretical results regarding the

Weston-Watkins support vector machine.

4.1.2 Related works

Gamma-Phi losses. Gamma-Phi losses were introduced and studied in a se-

ries of papers [SV19; SV11; Bei+14]. They have been shown to perform well in

boosting [SV19]. Classification-calibration have been shown for special instances of

Gamma-Phi, namely for the coherence loss [Zha+09] and the pairwise-comparison

loss [Zha04a]1.

Fenchel-Young losses. Fenchel-Young losses were developed by Duchi et al.

1However, the pairwise-comparison loss proof by Zhang [Zha04a] is incomplete (see Re-
mark IV.16). Our sufficient condition (Theorem IV.15) for Gamma-Phi losses subsumes that of
pairwise comparison loss ([Zha04a, Theorem 6]).
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[DKR18] and Blondel et al. [BMN20]. While our focus is on multiclass classifica-

tion, Fenchel-Young losses apply more generally to other learning problems such as

label proportion estimation and dependency parsing [BMN20]. Furthermore, Mensch

et al. [MBP19] applies a Fenchel-Young loss in the “infinite-dimensional” problem

of distribution learning using a strictly convex negentropy known as the Sinkhorn

negentropy2.

Multiclass frameworks — label encodings, margins and losses. The simplex

encoding [BG16; Mro+12] is a (k−1)-vector-valued encoding of the labels, which have

been proposed to analyze specific losses used in multiclass support vector machines.

[SV19] applied simplex encoding in the context of multiclass boosting with Gamma

Phi loss. The error-correcting output codes [DB94] encodes the k-ary labels as a

bit-string of zeros and ones. In contrast, our work encodes the labels as matrices

that directly generalizes the binary case. As the result, in our framework, the label

encoding, the margin, and the margin loss are clearly separated and can thus be

studied in isolation.

There are other frameworks for analyzing multiclass loss functions in the literature.

Williamson et al. [WVR16] proposes the family of losses known as the composite

multiclass losses. However, neither frameworks provided a sufficient condition for

classification-calibration3. Tan et al. [TZ22] proved a sufficent condition for non-

differentiable multiclass hinge losses to be classification-calibrated. In contrast, our

sufficient conditions are for differentiable losses.

Zou et al. [ZZH08] proposed definitions of multiclass margin vectors and margin

2To the best of our knowledge, this negentropy is only known to be strictly convex as strong
convexity was not discussed [MBP19; Fey+19]. However, we note that our result on Fenchel-Young
loss is specifically for multiclass classification and thus does not apply to their setting. Expanding
our analysis to their setting is an interesting direction of future work.

3Somewhat confusingly, Williamson et al. [WVR16] re-defines the term “classification-calibrated”
to be different from the definitions of Zhang [Zha04a] and Tewari et al. [TB07]. Williamson et al.
[WVR16] establishes a sufficient condition (characterization in fact) for their redefined version of
classification-calibration, which is no longer necessarily related to the 01-consistency of surrogate
risk minimization.
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losses. They proved classification-calibration guarantees that required certain sum-to-

zero constraints. However, in practice, enforcing these sum-to-zero constraints leads

to significantly slower computations, while simply dropping the constraint result in

poor model accuracy [DGI16]. Doǧan et al. [DGI16] developed a framework using

relative-margins to unify the analysis of several variants of multiclass support vector

machines. Our work builds upon the relative-margins notion by introducing a natural

label encoding that allowed losses defined over relative margins to be analyzed.

Multiclass losses and overparametrized learning. Loss functions for multi-

class classification have recently been studied in the context of learning in over-

parametrized settings where models can interpolate the training data. While the

cross-entropy/multinomial logistic loss is the de facto choice in training neural net-

works, recent works have questioned this convention and pushed forward understand-

ing of alternative losses such as the squared loss [HB20; Mut+21].

Calibration beyond classification. While this paper is concerned with

classification-calibration, we remark that there are many works calibration for other

learning tasks. Steinwart [Ste07] introduced the extension of loss calibration-theory

to cost-sensitive classification, regression and unsupervised learning tasks such as

density estimation. Ramaswamy et al. [RA16] developed theory for multiclass clas-

sification with abstain option and, more generally, losses defined over finite sets i.e.,

discrete losses. Finocchiaro et al. [FFW19] showed that there exists polyhedral losses

that are calibrated with respect to arbitrary discrete losses.

4.1.3 Notations

Denote by k ≥ 2 the number of classes and by ∆k = {p ∈ Rk
≥0 :

∑k
j=1 pj = 1} the

k-probability simplex. Let ∆k
desc = {p ∈ ∆k : p1 ≥ · · · ≥ pk}.

Operations on vectors. Let the square bracket with subscript [·]j be the projection

of a vector onto its j-th component, i.e., [v]j := vj where v = (v1, . . . , vk) ∈ Rk. Given
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Mathematical object Notation Example

Vector Bold lower case v,w
Entries of vector Normal font lower case v1

Special vector Blackboard font
All zeros/ones vector in Rn 0n, 1n
i-th elem. basis vector in Rn eni

Matrix Bold upper case A
j-th Column [A]:j
n× n Identity Idn

Permutations Lower case sigma or tau σ, τ
Transpositions Lower case tau & subscripts τ(i,j)

Table 4.1: Symbols used throughout this work.

two vectors w,v ∈ Rk, we write w ≥ v if wj ≥ vj for all j ∈ [k]. Likewise, we write

w > v if wj > vj for all j ∈ [k].

Permutations. A bijection from [k] to itself is called a permutation (on [k]). Denote

by Sym(k) the set of all permutations on [k]. We often write σσ′ instead of σ ◦ σ′ for

the compositions of two permutations σ, σ′ ∈ Sym(k). For i, j ∈ [k], let τ(i,j) ∈ Sym(k)

denote the transposition which swaps i and j, leaving all other elements unchanged.

More precisely, τ(i,j)(i) = j, τ(i,j)(j) = i and τ(i,j)(y) = y for y ∈ [k] \ {i, j}. Define

the notational shorthand τi := τ(1,i), the transposition that swaps 1 and i.

Permutation matrices. For each σ ∈ Sym(k), let Sσ denote the permutation matrix

corresponding to σ. In other words, if v ∈ Rk is a vector, then [Sσv]j = [v]σ(j) = vσ(j).

Note that if σ, σ′ ∈ Sym(k), then Sσσ′ = SσSσ′ . Define the notational shorthand

T(i,j) := Sτ(i,j) the matrix corresponding to the transposition of i and j. Likewise,

define Ti := T(1,i).

Topology. Let S be a subset of a topological space. Let int(S) and bdry(S) denote

the interior and the boundary of the set S, respectively. See Table 4.1 for the full list

of symbols.
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4.2 Permutation equivariant and margin based (PERM)

losses

In this section, we state the definitions used throughout the rest of this work.

Definition IV.1 (Loss functions). Let L : Rk → Rk be a vector-valued function,

whose component functions are denoted L1, . . . ,Lk where Ly : Rk → R for each

y ∈ [k]. We say that L is a k-ary multiclass loss function if for all v ∈ Rk and all

y, y′ ∈ [k], vy ≤ vy′ implies Ly(v) ≥ Ly′(v).

To understand the definition, suppose that f : X → Rk is a score function and

(x, y) ∈ X × [k] is a training data instance. Let v := f(x) be the k-dimensional score

assigned to the instance x. The quantity Ly(v) is the loss incurred at the training

data instance (x, y). In the loss function literature, a standard approach is to analyze

L via only the vector v of class scores, while the score function f and the unlabelled

instance x are “abstract away”. We take this approach as well.

Definition IV.2 (PERM loss). Let L : Rk → Rk be a loss function. We say that L

is

1. permutation equivariant if L(Sσ(v)) = Sσ(L(v)) for all v ∈ Rk and σ ∈ Sym(k),

2. relative margin-based if there exists a vector-valued function ℓ : Rk−1 → Rk,

whose component functions are denoted ℓ1, . . . , ℓk where ℓy : Rk−1 → R, such

that

Ly(v) = ℓy(v1 − v2, . . . , v1 − vk)

for all y ∈ [k],

3. PERM if L is both permutation equivariant and relative margin-based.

The function ℓ is called the reduced form associated to L.

The term “relative margin” was introduced by Doǧan et al. [DGI16] in the context
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of multiclass SVMs 4 to distinguish with another type of margin called “absolute

margin”. Here, the adjective “relative” refers to the situation when the loss L only

depends on the set of differences of the scores vi− vj where i, j ∈ [k] such that i ̸= j.

If L depends on the quantity vj as well, then L is said to be absolute margin-based.

Below, we only consider relative margin-based losses.

Proposition IV.3 (Template of a PERM loss). Let L be a multiclass loss function.

Then L is PERM if and only if there exists a symmetric function5 ψ : Rk−1 → R

such that

L1(v) = ψ(v1 − v2, v1 − v3, . . . , v1 − vk), and (4.3)

Ly(v) = ψ(vy − v1, . . . , vy − vy−1, vy − vy+1, . . . , vy − vk), for y ∈ {2, . . . , k}

(4.4)

for all y ∈ [k]. Below, we often denote the (k − 1)-dimensional vector (v1 − v2, v1 −

v3, . . . , v1 − vk) as z.

Proposition IV.3 states that there is an one-to-one correspondence between PERM

losses and symmetric template functions. Thus, we can refer to a PERM loss and

its template interchangeably without ambiguity. We will prove Proposition IV.3 in

Section 4.5 where we will state a more detailed result relating L, its reduced form,

and its template in Proposition IV.33.

Remark IV.4. The notation ψ is chosen intentionally to match that of Bartlett et al.

[BJM06]. Recall from Bartlett et al. [BJM06] that a (binary) margin based loss is

a function ψ : R → R≥0 such that the loss incurred by a function f : X → R on

a sample (x, y) is ψ(yf(x)). In Proposition IV.33 below, we show that the template

leads to a multiclass analog of this scenario in the binary case.

4Unfortunately, the term “relative margin” conflicts with another unrelated definition of the same
name proposed by Jebara et al. [JS08] in the context of binary support vector machines.

5a function f : Rn → R is symmetric if f ◦ σ = f for all σ ∈ Sym(n).
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Next, we recall the Gamma-Phi and Fenchel-Young losses.

Example IV.5 (Gamma-Phi losses). Let γ : R≥0 → R≥0 and ϕ : R → R≥0 be

functions. Introduced and studied in a series of papers [SV19; SV11; Bei+14], the

Gamma-Phi loss associated to γ and ϕ is the PERM loss L whose y-th component is

given by

Ly(v) := γ

 ∑
y′∈[k]:y′ ̸=y

ϕ(vy − vy′)

 . (4.5)

Thus, ψ(z) := γ
(∑

j∈[k−1] ϕ(zj)
)
. When γ(•) := log(1 + •) and ϕ(•) := exp(−•), we

recover the multinomial logistic/cross entropy loss. When γ(•) = T log(1 + •) and

ϕ(•) = exp((1 − •)/T ) where T > 0 is a hyperparameter, we recover the coherence

loss [Zha+09]. When γ is the identity and ϕ is a decreasing function, we recover the

pairwise comparison loss [Zha04a, Section 4.1].

Example IV.6 (Fenchel-Young losses). Let Ω : ∆k → R be a continuous function

and µ ∈ R≥0. Define cy := µ(1k − eky). Introduced by Blondel et al. [BMN20], the

Fenchel-Young loss associated to Ω and µ is the loss function L : Rk → Rk whose

y-th component is given by

Ly(v) := max
p∈∆k

−Ω(p) + Ω(eky) + ⟨v + cy,p− eky⟩. (4.6)

The reason for the name is that the above is actually a convex conjugate, also known

as the Fenchel conjugate. See Definition IV.18. Later in Proposition IV.86, we show

that the Fenchel-Young loss is a PERM loss with template

ψ(z) = max
p̃∈∆̃k

−Ω̃(p) + µ1⊤p̃− ⟨p̃, z⟩ (4.7)

where ∆̃k is defined in Eqn. (4.9) and Ω̃ in Eqn. 4.10.

Remark IV.7. Blondel et al. [BMN20] allow the vector cy ∈ Rk to be arbitrary, in

174



which case the resulting loss is known as cost-sensitive Fenchel-Young loss. However,

known calibration results are limited to the case in Example IV.6 above where cy has

the special form [Blo19; NBR19].

4.2.1 Classification-calibration and Consistency

In this section, we review fundamental definitions in the theory of classification-

calibration and recall the key result Theorem IV.12.

Definition IV.8. The conditional risk of L is the function CL
p : Rk → R defined by

CL
p (v) =

∑
y∈[k]

pyLy(v).

The conditional Bayes risk is defined as CL,∗
p := infv∈Rk CL

p (v). When there is no

ambiguity about the loss function, we drop the superscript L and simply write Cp(v)

and C∗
p.

This terminology was used in Bartlett et al. [BJM06]. It was also called inner

L-risk by Steinwart [Ste07].

The following is from Zhang [Zha04a, Definition 1].

Definition IV.9. A loss L has the infinite-sample consistency (ISC) prop-

erty if for all p ∈ ∆k and y such that py < maxj pj, we have CL,∗
p <

inf
{
CL

p (v) : v ∈ Rk, vy = maxv
}
.

As explained in Zhang [Zha04a], the name “infinite-sample consistency” is chosen

precisely because the property in Definition IV.9 implies that “L-surrogate risk min-

imization is 01-consistent”. See Theorem IV.12 below. Next, we review the closely

related concept of multiclass classification-calibration as developed in Tewari et al.

[TB07].
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Definition IV.10 (Range and its convex hull). Let f : Rm → Rn be a function.

Denote by R(f) := {f(x) : x ∈ Rm} the range of f . Define S(f) := conv(R(f)) to

be the convex hull of the range of f .

The following is from Tewari et al. [TB07, Definition 1].

Definition IV.11. A set S ⊆ Rk
+ is classification-calibrated if there exists a function6

θ : Rk → [k] such that

inf{⟨p, ζ⟩ : ζ ∈ S : pθ(ζ) < maxp} > inf
ζ∈S
⟨p, ζ⟩ (4.8)

for all p ∈ ∆k.

Intuitively, Definition IV.11 says that the lowest achievable conditional risk when

predicting the wrong label (Eqn. (4.8) LHS) is still strictly larger than the conditional

Bayes risk (Eqn. (4.8) RHS). Formally, the importance of Definitions IV.9 and IV.11

is manifested by the following theorem, which paraphrases Zhang [Zha04a, Theorem

3] and one implication7 of Tewari et al. [TB07, Theorem 2] when L is a permutation

equivariant loss. Define argmax : Rk → [k] by argmax(v) = min{i ∈ [k] : vi =

maxj∈[k] vj}. When L is permutation equivariant and classification-calibrated, we can

assume that θ from Definition IV.11 is argmax. See [TB07, Lemma 4].

Theorem IV.12 ([Zha04a; TB07]). Let L : Rk → Rk
+ be a permutation equivari-

ant loss function. Let F be the set of Borel functions X → Rk. If either S(L) is

classification-calibrated or L has the ISC property, then L-surrogate risk mini-

mization is 01-consistent, namely: For all sequence of function classes {Fn}n
such that Fn ⊆ F ,

⋃
nFn = F , f̂n ∈ Fn and all data generating probability distribu-

6The function θ is called a calibrated link for S.
7Tewari et al. [TB07, Theorem 2] says the other implication is true as well: L-surrogate risk

minimization being 01-consistent implies that S(L) is classification-calibrated. However, we do not
need the implication in this direction. It is nevertheless a curious question if there exists L having
the ISC property when S(L) is not classification-calibrated.
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tions P

RL(f̂n)
P→ R∗

L implies R01(argmax ◦ f̂n) P→ R∗
01.

4.3 Sufficient conditions for classification-calibration

In this section is divided into three subsections, each containing a sufficient con-

dition of classification-calibration of the loss family in the subsection’s title.

4.3.1 Gamma-Phi loss

In this section, we consider the Gamma-Phi loss as in Example IV.5.

Definition IV.13 (Conditions on γ). Let γ : R≥0 → R≥0 be a function with the

property that supx∈[0,∞) γ(x) = +∞. We say that γ satisfies condition (G1) if γ is

strictly increasing, i.e., γ(x) < γ(x̃) if x < x̃, and condition (G2) if γ is continuously

differentiable and dγ
dx
(x) > 0 for all x ≥ 0.

Note that condition (G2) implies condition (G1), but the converse is not true.

Definition IV.14 (Condition on ϕ). Let ϕ : R→ R≥0 be a function with the property

that supx∈R ϕ(x) = 0. We say that ϕ satisfies condition (F) if ϕ is differentiable where

dϕ
dx
(x) ≤ 0 for all x ∈ R, and dϕ

dx
(0) < 0.

Theorem IV.15. Let L be the Gamma-Phi loss as in Example IV.5 where γ satisfies

Definition IV.13 condition (G2), and ϕ satisfies Definition IV.14 condition (F). Then

L has the ISC property.

In light of Theorem IV.12, if L satisfies the conditions of Theorem IV.15, then

L-surrogate risk minimization is 01-consistent. As stated in the introduction, Theo-

rem IV.15 establishes the first sufficient condition of CC for Gamma-Phi loss. The

only previously proposed sufficient condition by Pires et al. [PS16] turns out to be

insufficient. See Section 4.9.1.
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Remark IV.16. Both the coherence loss and pairwise comparison loss (see Exam-

ple IV.5) clearly satisfy the conditions of Theorem IV.15. On the other hand, the

ISC property for both of these two losses have not been established previously. For

the coherence loss, Zhang et al. [Zha+09] proves only a restricted form of ISC, i.e.,

when p > 0 entrywise in Definition IV.9. For the pairwise comparison loss, the proof

of the sufficient condition for ISC, i.e., Zhang [Zha04a, Theorem 6], explicitly omits

the edge case where the minimizers in Definition IV.9 occur at infinity and asserts

that the extension to handle this edge case is trivial. In Section 4.9, we handle this

edge case which turn out to be rather involved. Moreover, we significantly general-

ize the result of Zhang [Zha04a] to cover Gamma-Phi losses, a much larger family

encompassing pairwise comparison losses.

Remark IV.17. The multiclass savage loss [SV19] is a Gamma-Phi loss with γ(x) =

(x/(1 + x))2 and ϕ(x) = exp(−2x) which does not satisfy the condition of Theo-

rem IV.15. More precisely, the condition supx∈[0,∞) γ(x) = +∞ fails. While the

binary savage loss is classification-calibrated [MV08], to the best of our knowledge it

is unknown whether the multiclass savage loss has the ISC property.

4.3.2 Fenchel-Young loss

In this section, we consider the Fenchel-Young loss as in Example IV.6. Define

the reduced k-probability simplex as

∆̃k := {p̃ := (p2, . . . , pk) ∈ [0, 1]k :
k∑
i=2

pi ≤ 1}. (4.9)

In other words, ∆̃k is simply ∆k without the first coordinate. To every function

Ω : ∆k → R with domain on the k-simplex, we define a corresponding function
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Ω̃ : ∆̃k → R called the reduced form of Ω,

Ω̃(p̃) := Ω

(
1−

k∑
i=2

pi, p2, . . . , pk

)
, ∀p̃ = (p2, . . . , pk)

⊤ ∈ ∆̃k. (4.10)

Clearly, Eqn. 4.10 gives a one-to-one correspondence between functions Ω : ∆k → R

on the simplex ∆k and functions Ω̃ : ∆̃k → R on the reduced simplex ∆̃k.

Next, we briefly review the theory of convex analysis and Legendre transformation

following Rockafellar [Roc70, Section 26]

Definition IV.18. Let D ⊆ Rn be a closed convex set. Let f : D → R be a

function. Define D∗ := {y ∈ Rn : supx∈D⟨y, x⟩ − f(x) < ∞}. The convex conjugate

of a function f : D → R is the function f ∗ : D∗ → R given by

f ∗(y) = sup
x∈D
⟨y, x⟩ − f(x).

Definition IV.19. Let D ⊆ Rn be a closed convex set. A convex function f : D → R

is said to be of Legendre type if

1. C := int(D) is an open convex subset of Rn,

2. f is strictly convex and differentiable on C,

3. for all sequences {xi} ⊆ C such that limi→∞ xi ∈ bdry(D) we have

limi→∞ ∥∇f (xi)∥ = +∞.

For example, when D = ∆̃k and f = −H is the negative Shannon entropy, then

f : D → R≤0 is of Legendre type. See paragraph immediately following Blondel et al.

[BMN20, Definition 3].

Definition IV.20 (Regular negentropy). A function Ω : ∆k → R is a negentropy if :

1. Ω is closed (maps closed sets to closed sets) and convex,

2. Ω is symmetric, i.e., Ω(σ(p)) = Ω(p) for all p ∈ ∆k and σ ∈ Sym(k),

3. −Ω(p) ≥ 0 for all p ∈ ∆k and Ω(eki ) = 0 for all i ∈ [k].
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If in addition the reduced form Ω̃ is of Lengedre type and twice differentiable, then

Ω is a regular negentropy.

The term “negentropy” was previously used by Mensch et al. [MBP19], although

the origin of the term is unclear. To the best of our knowledge, the definition of a

regular negentropy is new. Since Eqn. 4.10 is a one-to-one correspondence between

functions on the simplex ∆k and functions on the reduced simplex ∆̃k, we sometimes

refer to a negentropy by its reduced form Ω̃.

For n ∈ {2, . . . , k}, define injk−1
n−1 : ∆̃

n → ∆̃k by padding zeros, i.e.,

injk−1
n−1(q̃) = (q2, . . . , qn, 0, . . . , 0) ∈ ∆̃k, ∀q = (q2, . . . , qn) ∈ ∆̃n.

Definition IV.21 (Totally regular negentropy). Let Ω̃ : ∆̃k → R be a negentropy

and n ∈ {2, . . . , k}. The n-ary retracted negentropy of Ω̃, which we denote by Ω̃(n) :

∆̃n → R, is defined as

Ω̃(n)(q) := Ω̃(injk−1
n−1(q)), ∀q ∈ ∆̃n.

We say that Ω is a totally regular negentropy if Ω(n) is a regular negentropy for each

n ∈ {2, . . . , k}.

To the best of our knowledge, the definition of a totally regular negentropy is new.

The next result establishes it as a sufficient condition for classification-calibration:

Theorem IV.22. Let Ω be a totally regular negentropy, µ ∈ R+ be fixed, and L be the

Fenchel-Young loss associated to Ω and the µ. Then S(L) is classification-calibrated.

In light of Theorem IV.12, if Ω satisfies the conditions of Theorem IV.22, then

L-surrogate risk minimization is 01-consistent. As stated in the abstract, Theo-

rem IV.22 recovers all known classification-calibration sufficient conditions [NBR19;
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Blo19]. Moreover, Theorem IV.22 establish classification-calibration for Fenchel-

Young losses not satisfying previously known sufficient conditions. See Section 4.8.2.

4.3.3 Regular PERM losses

In this section, we define regular and totally regular PERM losses, which general-

izes Fenchel-Young losses with regular and totally regular negentropies, respectively.

Definition IV.23. A function f : Rn → R is

1. coercive if for all c ∈ R, the c-sublevel set {v ∈ Rn : f(v) ≤ c} is bounded,

2. semi-coercive if for all c ∈ R there exists b ∈ R such that

{v ∈ Rn : f(v) ≤ c} ⊆ {v ∈ Rn : minv ≥ b}.

The definition of a coercive function is well-known. However, semi-coercivity

appears to be a novel concept. Intuitively, a function is semi-coercive if, for all c ∈ R,

its c-sublevel set is contained in a translate of the positive orthant.

Definition IV.24 (Regular PERM loss). Let L be a PERM loss with template ψ. We

say that L is regular if ψ is nonnegative, twice differentiable, strictly convex, semi-

coercive, the partial derivative ∂ψ
∂z1

: Rk−1 → R is semi-bounded, and the gradient

∇ψ(z) < 0 is entrywise negative for all z ∈ Rk−1.

We note that the condition ∇ψ(z) < 0 in Definition IV.24 is reminiscient of a

condition in Bartlett et al. [BJM06, Theorem 6], which shows that in the binary case

a convex margin loss ψ is classification-calibrated if and only if ψ is differentiable at 0

and ψ′(0) < 0. However, Definition IV.24 requires the strict negativity of the gradient

for all of Rk−1, whereas the derivative of ψ is only required to be negative at 0 in

Bartlett et al. [BJM06, Theorem 6]. Compared to the binary case, the multiclass case

ostensibly requires much stronger assumption to establish classification-calibration.

Future work will investigate whether this can be weakened.
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Proposition IV.25 (Retraction of a PERM loss). Let L : Rk → Rk
≥0 be a regular

PERM loss with template ψ : Rk−1 → R. Define a function called the retraction of

ψ by ret[ψ] : Rk−2 → R by ret[ψ](w) := limλ→∞ ψ

([
w⊤ λ

]⊤)
for all w ∈ Rk−1.

Then ret[ψ] is a well-defined (the limit exists in R) symmetric function.

Proof. The condition that ∇ψ(z) < 0 implies that the function λ 7→ ψ

([
w⊤ λ

]⊤)
is (strictly) decreasing as a function of λ. Thus, the limit exists for all w. The

symmetry of ret[ψ] follows immediately from the symmetry of ψ.

Definition IV.26 (Totally regular PERM loss). Let L : Rk → Rk
≥0 be a regular

PERM loss with template ψ : Rk−1 → R. For each n ∈ {2, . . . , k}, define the

symmetric functions ψ(n) : Rn−1 → R by ψ(n) := ret ◦ · · · ◦ ret︸ ︷︷ ︸
(k − n)-times

[ψ]. Let L(n) be the

PERM loss associated to ψ(n) (see Proposition IV.3). Below, we refer to L(n) as the

n-ary retracted loss associated to L. We say that L is a totally regular PERM loss if

L(n) is regular for each n ∈ {2, . . . , k}.

The n-ary retracted loss captures the behavior of ψ when the last k− n inputs to

the function approach +∞. We now state our main theorem:

Theorem IV.27. If L is totally regular, then S(L) is classification-calibrated.

We will see in Section 4.9 that Theorem IV.27 implies sufficient condition for

classificaiton-calibration of Fenchel-Young loss (Theorem IV.22). On the other hand,

proof of the analogous result for Gamma-Phi loss, i.e., Theorem IV.15, requires a

different set of techniques introduced in the following section.

4.4 Conditional risks of permutation equivariant losses

In this section, we study some of the basic properties of the conditional risk

(Definition IV.8) of permutation equivariant losses Definition IV.2 part 1.
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Lemma IV.28. Let L be a permutation-equivariant loss. Let σ ∈ Sym(k), v ∈ Rk and

p ∈ ∆k be arbitrary. Then Cp(v) = Cσ(p)(σ(v)). Furthermore, we have C∗
p = C∗

σ(p).

Proof. For the first assertion, we have

Cp(v) =
∑
y∈[k]

pyLy(v) =
∑
y∈[k]

pσ(y)Lσ(y)(v) =
∑
y∈[k]

[σ(p)]yLy(σ(v)) = Cσ(p)(σ(v)).

For the “Furthermore” part, note that σ : Rk → Rk is a bijection. Hence,

C∗
p = inf{Cp(v) : v ∈ Rk}

= inf{Cp(σ
−1(v)) : v ∈ Rk}

= inf{Cσ(p)(σ(σ−1(v))) : v ∈ Rk}.

The right hand side is equal to inf{Cσ(p)(v) : v ∈ Rk} = C∗
σ(p).

Lemma IV.29. Suppose that L is permutation equivariant. Let p ∈ ∆k, y, y′ ∈ [k]

and v ∈ Rk. Let τ ∈ Sym(k) be the transposition of y and y′, i.e., τ(y) = y′, τ(y′) = y

and τ(j) = j for all j ∈ [k] \ {y, y′}. Then Cp(v) − Cp(τ(v)) = (py − py′)(Ly(v) −

Ly′(v)).
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Proof. This is a straightforward computation:

Cp(v)− Cp(τ(v))

=

∑
j∈[k]

pjLj(v)

−
∑
j∈[k]

pjLj(τ(v))


=

∑
j∈[k]

pjLj(v)

−
∑
j∈[k]

pjLτ(j)(v)

 ∵ Definition IV.2

= (pyLy(v) + py′Ly′(v))− (pyLy′(v) + py′Ly(v))

= py(Ly(v)− Ly′(v)) + py′(Ly′(v)− Ly(v))

= (py − py′)(Ly(v)− Ly′(v)),

as desired.

Proposition IV.30. Let p ∈ ∆k
desc. Let v ∈ Rk be arbitrary. Let σ ∈ Sym(k) be

such that vσ(1) ≥ vσ(2) ≥ · · · ≥ vσ(k). Then Cp(v) ≥ Cp(σ(v)).

Proof. This proof is essentially Lemma S3.8 from Wang et al. [WS20] Supplemental

Materials. First, we note that if σ̃ ∈ Sym(k) is another permutation such that vσ̃(1) ≥

vσ̃(2) ≥ · · · ≥ vσ̃(k), then σ̃(v) = σ(v). Thus, it suffices to prove the result while

assuming that the permutation σ that sorts v is given by the bubble sort algorithm:

L1. Initialize the iteration index t← 0 and v0 := v,

L2. While there exists i ∈ [k] such that vti < vti+1, do

(a) Let τ t ∈ Sym(k) be the permutation that swaps i and i + 1, leaving other

indices unchanged.

(b) vt+1 ← τ t(vt)

(c) t← t+ 1

L3. Output vT , where T ← t is the final iteration index.

Let ⟨·, ·⟩ be the ordinary dot product on Rk. Note that Cp(v) = ⟨p,L(v)⟩.
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Furthermore, at termination, there exists σ ∈ Sym(k) such that vT = σ(v) is sorted

as in the statement of Proposition IV.30. We claim that at every intermediate step t ∈

{0, . . . , T}, we have ⟨p,L(vt)⟩ ≥ ⟨p,L(vt+1)⟩. This would prove Proposition IV.30,

since ⟨p,L(v0)⟩ = Cp(v) and ⟨p,L(vT )⟩ = Cp(σ(v)).

Now, towards proving our claim, let t be an intermediate iteration of the above

“bubble sort” algorithm, and let i ∈ [k] be as in L2. Then we have

⟨p,L(vt)⟩ − ⟨p,L(vt+1)⟩

= ⟨p,L(vt)⟩ − ⟨p,L(τ t(vt))⟩ ∵ Definition on L2.(b)

= (pi − pi+1)(Li(vt)− Li+1(v
t)) ≥ 0, Lemma IV.29

as desired.

4.5 Multiplicative label encoding

The goal of this section is to prove Proposition IV.3. In the following definition, we

introduce the multiplicative label code, a set of matrices {ρ(k)
1 , . . . ,ρ

(k)
k } generalizing

of the familiar {±1} label in binary classification to the k-ary multiclass classification.

Definition IV.31 (Multiplicative label code). For k ≥ 2 and i ∈ [k], define matrices

ρ
(k)
i ∈ R(k−1)×(k−1) as follows: For i = 1, ρ

(k)
1 is the identity. For i ∈ {2, . . . , k}, define

ρ
(k)
i column-wise by

[ρ
(k)
i ]:j :=


e
(k)
j : j ̸= i− 1

−1k : j = i− 1,

for each j ∈ {1, . . . , k − 1}.

When there is no ambiguity, we write ρi to denote ρ
(k)
i .

Note that for i ∈ {2, . . . , k}, the matrix ρ
(k)
i acts on a vector z = (z1, . . . , zk−1)

⊤ ∈
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Rk−1 by

∀j ∈ [k − 1],
[
ρ
(k)
i z
]
j
:=


zj − zi−1 : j ̸= i− 1

−zi−1 : j = i− 1.

(4.11)

Definition IV.32. Define the linear map M(k) : Rk → Rk−1

M(k)(v) = (v1 − v2, v1 − v3, . . . , v1 − vk)⊤, where v = (v1, . . . , vk)
⊤ ∈ Rk.

Observe that [M(k)(v)]i = v1 − vi+1 for i ∈ [k − 1]. When there is no ambiguity, we

write M = M(k). Note that M(k) =

[
1k−1 −Idk−1

]
as a matrix.

Proposition IV.33. Let L : Rk → Rk be a PERM loss with template ψ and reduced

form ℓ. Then ψ : Rk−1 → R is symmetric and for all y ∈ [k] and v ∈ Rk, we have

[L(v)]y = ℓy(Mv) = ψ(ρyMv). (4.12)

Conversely, given a symmetric function ψ : Rk−1 → R, define L : Rk → Rk by

[L(v)]y = ψ(ρyMv). Then L is a PERM loss whose template is ψ.

The proof of Proposition IV.33 will be given at the end of this section after de-

veloping the necessary machinery.

Lemma IV.34. For all i ∈ [k], we have MTi = ρiM. In particular, for all i > 1

and j ∈ [k − 1], we have

[ρiMv]j =


vi − vj+1 : i ̸= j + 1

vi − v1 : i = j + 1.

Proof. If i = 1, then Ti and ρi are both identity matrices and there is nothing to

show. Otherwise, suppose that i > 1. Consider v ∈ Rk. We first calculate MTiv.
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For each j ∈ [k − 1], we have

[MTiv]j = [Tiv]1 − [Tiv]j+1 = vi − vτi(j+1) =


vi − vj+1 : i ̸= j + 1

vi − v1 : i = j + 1.

(4.13)

Next, we compute ρiMv. Using Eqn. 4.11, we have for each j ∈ [k − 1] that

[ρiMv]j =


[Mv]j − [Mv]i−1 : j ̸= i− 1

−[Mv]i−1 : j = i− 1.

For the j ̸= i− 1 case, we have

[Mv]j − [Mv]i−1 = (v1 − vj+1)− (v1 − vi) = vi − vj+1.

For the i = j + 1 case, we have

−[Mv]i−1 = −(v1 − vi) = vi − v1.

Thus, [MTiv]j = [ρiMv]j for all j, which implies that MTiv = ρiMv. Since v was

arbitrary, we have MTi = ρiM.

Let M† denote the Moore-Penrose inverse of M. Since M is surjective, MM† is

the identity. Define a mapping Π : Sym(k)→ R(k−1)×(k−1) by

Π(σ) := MSσM
†.

Lemma IV.35. For all i ∈ [k], we have Π(τi) = ρi.

Proof. Lemma IV.34 says that ρiM = MTi which implies that ρi = ρiMM† =

MTiM
† = Π(τi).
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Lemma IV.36. For all σ, σ′ ∈ Sym(k), we have Π(σσ′) = Π(σ)Π(σ′).

Proof. Unwinding the definition of Π, it suffices to show MSσSσ′M† =

MSσM
†MSσ′M†. First, we observe that kerM = {v ∈ Rk : v1 = v2 = · · · = vk}

which follows directly from the definition ofM. Next, letR ⊆ Rk denote the subspace

R := {v ∈ Rk : v1+ · · ·+vk = 0}. Then we have {v ∈ Rk : v1 = v2 = · · · = vk} = R⊥

is the subspace of vectors orthogonal to R. A fundamental result in linear al-

gebra states that ranM† = ranM⊤ = (kerM)⊥. Thus, ranM† = R. Taken

together, if we let P := M†M ∈ Rk×k, then P is a projection matrix on R.

Thus, P(v) = v for all v ∈ R. Since Sσ′ is a permutation matrix, we have

Sσ′(R) ⊆ R. Thus, ran(Sσ′M†) ⊆ R which implies that PSσ′M† = Sσ′M†. This

proves MSσSσ′M† = MSσPSσ′M† = MSσM
†MSσ′M† as desired.

Lemma IV.37. For all i ∈ [k], ρ2
i is the identity.

Proof. Using Lemma IV.35 and Lemma IV.36, we have ρ2
i = Π(τi)Π(τi) = Π(τ 2i ).

Since τi is a transposition, τ 2i is the identity. Thus, ρ2
i is also the identity.

Lemma IV.38. Let i1, i2 ∈ {2, . . . , k} be distinct. Then τi1τi2τi1 = τ(i1,i2) and

Ti1Ti2Ti1 = T(i1,i2).

Proof. This is simply an exhaustive case-by-case proof over all inputs j ∈ [k]. First,

let j = 1. Then τ(i1,i2)(1) = 1 since 1 ̸∈ {i1, i2}. On the other hand τi1τi2τi1(1) =

τi1τi2(i1) = τi1(i1) = 1. Now, let j ∈ {2, . . . , k}. If j ̸∈ {i1, i2}, then τ(i1,i2)(j) = j and

τi1τi2τi1(j) = τi1τi2(j) = τi1(j) = j. If j = i1, then τ(i1,i2)(i1) = i2 and τi1τi2τi1(i1) =

τi1τi2(1) = τi1(i2) = i2. If j = i2, then τ(i1,i2)(i2) = i1 and τi1τi2τi1(i2) = τi1τi2(i2) =

τi1(1) = i1.

Corollary IV.39. Every σ ∈ Sym(k) can be written as a product σ = τi1τi2 · · · τil.
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Proof. We prove the equivalent statement that the set S := {τi : i ∈ {2, . . . , k}}

generates the group Sym(k). A standard result in group theory states that the set of

transpositions T generates Sym(k). By Lemma IV.38, transpositions between labels

in {2, . . . , k} can be generated by S. Furthermore, τi = τ(1,i) by definition, so trans-

position between 1 and elements of {2, . . . , k} can be generated by S as well. Hence,

all of T can be generated by S.

Lemma IV.40. Let i1, i2 ∈ {2, . . . , k} be distinct. Then T(i1−1,i2−1) = ρi1ρi2ρi1 .

Proof. First, we note that

ρi1ρi2ρi1 = Π(τi1)Π(τi2)Π(τi1) ∵ Lemma IV.35

= Π(τi1τi2τi1) ∵ Lemma IV.36

= Π(τ(i1,i2)) ∵ Lemma IV.38

Now, let v ∈ Rk be arbitrary. Then, by definition, for all j ∈ [k − 1], we have

[MT(i1,i2)v]j = v1 − vτ(i1,i2)(j+1).

On the other hand,

[T(i1−1,i2−1)Mv]j = [Mv]τ(i1−1,i2−1)(j) = v1 − vτ(i1−1,i2−1)(j)+1.

Since τ(i1,i2)(j + 1) = τ(i1−1,i2−1)(j) + 1 for all j ∈ [k − 1], we have

T(i1−1,i2−1)Mv = MT(i1,i2)v

which proves that T(i1−1,i2−1)M = MT(i1,i2). To conclude, we have

T(i1−1,i2−1)
(1)
= T(i1−1,i2−1)MM† (2)

= MT(i1,i2)M
† (3)
= Π(τ(i1,i2))
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where (1) follows from MM† being the identity, (2) follows from multiplying both

sides of T(i1−1,i2−1)M = MT(i1,i2) on the right by M†, and (3) follows from the

definition of Π.

Corollary IV.41. For all i, j ∈ [k − 1], we have T(i,j)M = MT(i+1,j+1).

Proof. By Lemma IV.40, we have

T(i,j)M = ρi+1ρj+1ρi+1M ∵ Lemma IV.40

= MTi+1Tj+1Ti+1 ∵ Lemma IV.34

= MT(i+1,j+1) ∵ Lemma IV.34

Lemma IV.42. Let i, j ∈ [k]. Then

ρτi(j) =


T(j−1,i−1)ρjρi : i, j ∈ {2, . . . , k}

ρjρi : otherwise.

(4.14)

Proof. Suppose that i = j, then τi(j) = τi(i) = 1. Hence, the left hand side is the

identity by definition. For the right hand side, we observe that T(i−1,j−1) reduces to

the identity element. Furthermore, ρjρi = ρ2
i is also the identity by Lemma IV.37.

Thus, below, we may assume that i ̸= j.

Consider the i, j ∈ {2, . . . , k} case first. In this case, we must have τi(j) = j, thus

ρτi(j) = ρj. For the right hand side of eq. (4.14), we have

T(j−1,i−1)ρjρi = (ρjρiρj)ρjρi ∵ Lemma IV.40

= ρjρiρi ∵ Lemma IV.37

= ρj ∵ Lemma IV.37.
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Next, consider the case when j = 1 and i > 1. Then τi(j) = τi(1) = i. So

ρτi(j) = ρi. The right hand side of eq. (4.14), we have ρjρi = ρi since ρj = ρ1 is the

identity.

Finally, consider the case when i = 1 and j > 1. Then τ1(j) = j and so ρτi(j) = ρj.

Similar to the previous case, the right hand side of eq. (4.14) is also ρj.

Proposition IV.43. Let σ ∈ Sym(k − 1) and define σ′ ∈ Sym(k) by σ′(1) = 1 and

σ′(i) = σ(i− 1) for i ∈ {2, . . . , k}. Then we have SσM = MSσ′.

Proof. Let σ = τ(i1,j1)τ(i2,j2) · · · τ(in,jn). By Corollary IV.41, we have

SσM = T(i1,j1)T(i2,j2) · · ·T(in,jn)M

= MT(i1+1,j1+1)T(i2+1,j2+1) · · ·T(in+1,jn+1)

= MSσ′

where the last equality follows from the observation that σ′ =

τ(i1+1,j1+1)τ(i2+1,j2+1) · · · τ(in+1,jn+1).

Proof of Proposition IV.33. We first check that ψ : Rk−1 → R is symmetric. Let

z ∈ Rk−1 and σ ∈ Sym(k − 1) be fixed and arbitrary. Our goal is to show that

ψ(Sσz) = ψ(z).

To this end, first pick v ∈ Rk such that Mv = z. Define σ ∈ Sym(k) as in

Proposition IV.43. Recall that by definition ψ(z) = ℓ1(z). Thus, it suffices to show

that ℓ1(Sσz) = ℓ1(z). This is just a straight forward computation:

[ℓ(Sσz)]1 = [ℓ(MSσ′v)]1 = [L(Sσ′v)]1 = [Sσ′L(v)]1

= [L(v)]σ′(1) = [L(v)]1 = [ℓ(Mv)]1 = [ℓ(z)]1.

This proves that ψ is symmetric.
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Next, we prove Eqn. 4.12, i.e., [L(v)]y = ψ(ρyMv) for all y ∈ [k]. Again, this is

a straight forward computation: [L(v)]y = [TyL(v)]1 = [L(Tyv)]1 = [ℓ(MTyv)]1 =

[ℓ(ρyMv)]1 = ψ(ρyMv). This proves Eqn. 4.12.

For the “conversely” part, we note that L is margin-based by construction. It

remains to check that L is permutation equivariant. Let v ∈ Rk be arbitrary. We

claim that L(Tiv) = TiL(v) for all i ∈ [k]. To see this, we have

[TiL(v)]y = [L(v)]τi(y) ∵ Definition of Ti

= ψ(ρτi(y)Mv) ∵ Definition of L

=


ψ(T(y−1,i−1)ρyρiMv) : i, y ∈ {2, . . . , k}

ψ(ρyρiMv) : otherwise

∵ Lemma IV.42

= ψ(ρyρiMv) ∵ ψ is symmetric

= ψ(ρyMTiv) ∵ Lemma IV.34

= [L(Tiv)]y ∵ Definition of L

This proves that TiL(v) = L(Tiv).

Now, for an arbitrary σ ∈ Sym(k), write σ = τi1 · · · τil as in Corollary IV.39. Then

we have

L(Sσv) = L(Ti1 · · ·Tilv) = Ti1L(Ti2 · · ·Tilv) = · · · = Ti1 · · ·TilL(v) = SσL(v).

This proves that L is permutation equivariant.

4.6 Regular PERM losses

In this section, we will prove several key properties of regular PERM losses which

was introduced in Definition IV.24. Recall that a regular PERM loss has a template
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ψ such that ψ is nonnegative, twice differentiable, strictly convex, semi-coercive, the

partial derivative ∂ψ
∂z1

: Rk−1 → R is semi-bounded, and the gradient ∇ψ(z) < 0 is

entrywise negative for all z ∈ Rk−1. Section 4.6.1 focuses on consequences of the

semi-coercivity condition. Sections 4.6.2 and 4.6.3 focus on consequences of the other

aforementioned conditions. Finally, Section 4.7 presents the proof of one of our main

result Theorem IV.27

4.6.1 Semi-coercive functions

Lemma IV.44. Let L : Rk → Rk
+ be a nonnegative PERM loss whose ψ is semi-

coercive. Let ℓ be the reduced form of L. Then, for all ζ ∈ Rk, the set {z ∈ Rk−1 :

ℓ(z) ≤ ζ} is bounded.

Proof. Observe that

{z ∈ Rk−1 : ℓ(z) ≤ ζ} =
⋂
i∈[k]

{z ∈ Rk−1 : ℓi(z) ≤ ζi} (4.15)

=
⋂
i∈[k]

{z ∈ Rk−1 : ψ(ρiz) ≤ ζi} ∵ Eqn. (4.12) (4.16)

=
⋂
i∈[k]

ρi
(
{z ∈ Rk−1 : ψ(z) ≤ ζi}

)
(4.17)

where for the last equality, we used the fact that ρi = ρ−1
i (Lemma IV.37) and that

{z ∈ Rk−1 : ψ(ρiz) ≤ ζi} = ρ−1
i

(
{z ∈ Rk−1 : ψ(z) ≤ ζi}

)
.

By assumption, there exists bi ∈ R such that {z ∈ Rk−1 : ψ(z) ≤ ζi} ⊆ {z ∈

Rk−1 : min z ≥ bi}. Putting it all together, we have

{z ∈ Rk−1 : ℓ(z) ≤ ζ} ⊆
⋂
i∈[k]

ρi({z ∈ Rk−1 : min z ≥ bi}) =: B (4.18)
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Thus, it suffices to show that B is bounded. Below, we prove this.

Recall that the infinity-norm is defined as ∥u∥∞ = max{|ui| : i ∈ [k − 1]}. More-

over,

∥u∥∞ = max {|maxu|, |minu|} . (4.19)

Since the empty set is bounded, we may assume that B is nonempty. Define M1 =

max{|bi| : i ∈ [k]} and M2 = max{|bi + bj| : i ∈ [k], j ∈ [k]}. Finally, define

M = max{M1,M2}. To show that B is bounded, if suffices to prove that ∥u∥∞ ≤M

for an arbitrary u ∈ B. Below, fix such a u ∈ B.

First, we note that minu ≥ b1. To see this, recall that ρ1 is the identity. So from

Eqn. 4.18 we have u ∈ B ⊆ {z ∈ Rk−1 : min z ≥ b1}.

Let j ∈ argminu. From Eqn. 4.18, we have u ∈ ρj+1({z ∈ Rk−1 : min z ≥

bj+1}). Thus, ρj+1u ∈ {z ∈ Rk−1 : min z ≥ bj+1} and in particular, [ρj+1u]j ≥ bj+1.

Moreover, by Equation (4.11), we have [ρj+1u]j = −uj = −minu, and thus minu ≤

−bj+1. Note that we now have minu ∈ [b1,−bj+1] and, in particular, |minu| ≤M1.

Next, let i ∈ argmaxu (and j be as above). First consider the case when i = j.

Then u is a constant vector and ∥u∥∞ = |minu|. Thus, in this case, we have shown

that ∥u∥∞ ≤M1 ≤M .

Next, consider the case when i ̸= j. Then we have [ρi+1u]j = uj − ui = (minu)−

(maxu) by Equation (4.11). By similar argument as in the preceding paragraph, we

have [ρi+1u]j ≥ bi+1. Thus, maxu ≤ minu − bi+1 ≤ −(bj+1 + bi+1). Furthermore,

maxu ≥ minu ≥ b1. Thus, we’ve shown that maxu ∈ [b1,−(bj+1 + bi+1)]. This

implies that |maxu| ≤ max{M1,M2} =M . Since |minu| ≤M , by Equation (4.19),

we get ∥u∥∞ ≤M .

Proposition IV.45. If ψ is semi-coercive, then CL
p is coercive for all p ∈ int(∆k).
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Proof. Let C = {z ∈ Rk−1 : ⟨p, ℓ(z)⟩ ≤ c}. Observe that for all z ∈ C we have

c ≥ ⟨p, ℓ(z)⟩ =
∑
i∈[k]

piψ(ρiz) ≥ piψ(ρiz)

for all i ∈ [k]. Thus, C ⊆ ⋂i∈[k]{z ∈ Rk−1 : ψ(ρiz) ≤ c/pi}. By Lemma IV.44, the

right hand side is a bounded set. Hence, C is also bounded.

4.6.2 The link function

In this section, we study the set of minimizers of the conditional risk of a PERM

loss L, i.e., the set argminz∈Rk−1 CL
p (z). When L is the multinomial cross entropy

(Example IV.5), this argmin is a singleton set for all p ∈ int(∆k) and the mapping

from p to this unique minimizer recovers the logit function.

For a general loss L, this mapping is sometimes referred to as the link func-

tion [NBR19; WVR16]. See Definition IV.48 below. This section will study the

properties of the link function, culminating in a sufficient condition for when the link

function is a bijection (Proposition IV.52).

Proposition IV.46. Let L be a PERM loss with template ψ. If ψ is convex, then

CL
p is convex for all p ∈ ∆k. Furthermore, if ψ is strictly convex, then CL

p is strictly

convex for all p ∈ int(∆k).

Proof. Recall that CL
p (z) =

∑
i∈[k] piψ(ρiz) where ρi is an invertible matrix by

Lemma IV.37. Thus, if ψ is (strictly) convex, then z 7→ ψ(ρiz) is (strictly) con-

vex for each i ∈ [k]. For each p ∈ ∆k, CL
p is a convex combination of convex function

and is thus convex. Furthermore, if p ∈ int(∆k), then CL
p is a convex combination

of strictly convex function and is thus strictly convex. See Boyd et al. [BV04, Section

3.2.1] for instance.

An easy consequence of the above result is the following:
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Corollary IV.47. Let p ∈ int(∆k) be arbitrary and L be a nonnegative PERM

loss whose ψ is semi-coercive. If ψ is convex, then the infimum infz∈Rk−1 CL
p (z) is

attained. Furthermore, if ψ is strictly convex, then the infimum is attained by a

unique minimizer, i.e., argminz∈Rk−1 CL
p (z) is a singleton set.

Proof. By Proposition IV.45, CL
p is coercive. By Proposition IV.46, CL

p is strictly

convex. By the Extreme Value Theorem, a continuous and coercive functions have

at least one global minimum. Furthermore, a strictly convex functions have at most

one global minimum. See Boyd et al. [BV04, Section 4.2] for instance.

In view of Corollary IV.47, we define:

Definition IV.48. Let L be a PERM loss whose template ψ is nonnegative, strictly

convex and semi-coercive. Define the link function lnkL : int(∆k)→ Rk−1 by letting

lnkL(p) be the unique element of argminz∈Rk−1 CL
p (z).

In this section, we give a sufficient condition on L for lnkL of Definition IV.48

to be a bijection. We will need the concept of an M-matrix, which is reviewed in

Section 4.11.1.

Lemma IV.49. Let L : Rk → Rk
+ be a regular PERM loss. For all z ∈ Rk−1, the

(k − 1)× (k − 1) matrix

A(z) :=


∇ℓ2(z)

...

∇ℓk(z)


is a non-singular M-matrix. Thus, by Theorem IV.113, A(z) is a monotone matrix.

Furthermore, A(z) is strictly monotone.

Note that we use the convention that the gradient of a multivariate-input

univariate-output function is a row vector. Conversely, the gradient of a univariate-

input multivariate-output function is a column vector. See Section 4.11.2.
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Proof. First, we compute the Jacobian of ℓ = (ℓ1, . . . , ℓk) : Rk−1 → Rk. For each

i ∈ [k], we have ℓi(z) = ψ(ρiz) (Eqn. 4.12). Thus, by the chain rule and Eqn. (4.12),

we have

∇ℓi(z) = ∇ψ(ρiz)ρi. (4.20)

Next, fix i ∈ {2, . . . , k} and z ∈ Rk. Let w := ∇ψ(ρiz). Then by assumption, we

have w < 0. Note that w is a row vector. Now, ∇ℓi(z) = ∇ψ(ρiz)ρi = wρi. Thus,

for each j ∈ [k − 1], we have [wρi]j = w[ρi]:j. Recall that

[ρi]:j =


ek−1
j : j ̸= i− 1

−1k−1 : j = i− 1.

Thus, we have

[wρi]j =


wj : j ̸= i− 1

−∑l∈[k−1]wl : j = i− 1.

In particular, [wρi]j ≤ 0 for all j ̸= i − 1 which proves that A(z) is a Z-matrix.

Furthermore, note that the fact w < 0 and [wρi]i−1 = −
∑

l∈[k−1]wl implies that the

diagonals of A(z) are positive. Observe that wρi has the property that

|[wρi]i−1| = −
∑

l∈[k−1]

wl

> −
∑

l∈[k−1]:l ̸=i−1

wl

=
∑

l∈[k−1]:l ̸=i−1

|[wρi]l|.

This proves that A(z) is strictly diagonally dominant. By Corollary IV.112, we have

that A(z) is a non-singular M-matrix. For the “Furthermore” part, we can apply

Lemma IV.114 since the diagonal elements of A(z) are positive.
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Lemma IV.50. Let L : Rk → Rk
+ be a regular PERM loss. Let z ∈ Rk−1 and

p ∈ ∆k. Then z minimizes CL
p if and only if

−p1∇ψ(z) =

[
p2 · · · pk

]
A(z) (4.21)

where A(z) is defined as in Lemma IV.49. Furthermore, if z minimizes CL
p , then

p ∈ int(∆k).

Proof. Proposition IV.46 asserts that CL
p is convex. For a differentiable convex func-

tion, recall that the gradient-vanishing condition is necessary and sufficient for opti-

mality [BV04]. Thus, z minimizes CL
p if and only if

0 = ∇CL
p
(z) =

∑
j∈[k]

pj∇ℓj(z) = p1∇ψ(z) +

[
p2 · · · pk

]
A(z). (4.22)

Rearranging Equation (4.22), we get

−p1∇ψ(z) =

[
p2 · · · pk

]
A(z). (4.23)

For the “Furthermore” part, first note that Lemma IV.49 says A(z) is a non-singular

M-matrix. If p1 = 0, then Equation (4.23) reduces to

0 =

[
p2 · · · pk

]
A(z) (4.24)

Since A(z) is non-singular, we have p2 = · · · = pk = 0 which contradicts that p ∈ ∆k.

Thus, p1 > 0 and so −p1∇ψ(z) > 0. From Lemma IV.49, we have that A(z) is strictly

monotone. Thus, Equation 4.23 implies that pi > 0 for each i = 2, . . . , k as well.

The “Furthermore” part of Lemma IV.50 immediately implies the following.

Corollary IV.51. If p ∈ ∆k \ int(∆k), then argminz∈Rk−1 CL
p (z) = ∅.
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Proposition IV.52. Let L be a regular PERM loss. Recall the mapping lnkL :

int(∆k)→ Rk−1 from Definition IV.48. Then lnkL is a bijection.

Proof. First, we prove that lnk is injective. Suppose that p,q ∈ int(∆k) are such

that lnkL(p) = lnkL(q) =: z. Then by Lemma IV.50, we have that

−∇ψ(z)A(z)−1 = p−1
1

[
p2 · · · pk

]
= q−1

1

[
q2 · · · qk

]
. (4.25)

Thus, (1− p1)/p1 = (p2 + · · ·+ pk)/p1 = (q2 + · · ·+ qk)/q1 = (1− q1)/q1 implies that

p1 = q1. Therefore, Equation 4.25 implies that pi = qi for each i = 2, . . . , k as well.

This proves that lnk is injective.

Next, we prove that lnk is surjective. Pick z ∈ Rk−1. From Lemma IV.49, we have

that A(z) is non-singular and strictly monotone. Since A(z) is non-singular, there

exists v ∈ Rk−1 such that −∇ψ(z) = vA(z). Furthermore, since −∇ψ(z) > 0 and

A(z) is strictly monotone, we have v > 0. Define p1, . . . , pk by p1 := (1 + v1 + · · · +

vk−1)
−1 and pi := vi−1p1 for each i = 2, . . . , k. Clearly, we have p = (p1, . . . , pk) > 0.

Furthermore,

p1 + p2 + · · ·+ pk = p1(1 + v1 + · · ·+ vk−1) = 1.

Thus, we have p ∈ int(∆k). By construction, z and p satisfy Equation 4.21. This

proves that lnkL(p) = z.

Remark IV.53. Before proceeding, we remark that Proposition IV.52 gives theoretical

support to the conjectural observation in Nowak-Vila et al. [NBR19, Remark 3.1]

regarding the injectivity of the link function.

4.6.3 Geometry of the loss surface

Recall from Definition IV.10 and Theorem IV.12 that the classification-calibration

of the set S(L) implies the classification-calibration of the loss L. In general, the set

S(L) may be difficult to compute. In this section, we study the geometry of the set
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R(L) when L is a regular PERM loss which enables us to compute the convex hull

S(L) of R(L). One of the main tools is the mapping defined below:

Corollary IV.54. Let L be a regular PERM loss with reduced form ℓ. Then ℓ :

Rk−1 → Rk is injective.

Proof. Suppose that z,w ∈ Rk−1 are such that ℓ(z) = ℓ(w). By Proposition IV.52,

there exists p ∈ int(∆k) such that lnkL(p) = z. Now, ⟨p, ℓ(z)⟩ = ⟨p, ℓ(w)⟩ implies

that both z,w minimize CL
p . By Corollary IV.47, we have z = w and so ℓ is injective.

Definition IV.55. Given a PERM loss L with reduced form ℓ, we define two func-

tions F and G mapping from Rk−1 ×R to Rk by

F (z, λ) = ℓ(z) + λ1, and G(z, t) = ℓ(z) + te
(k)
k .

Below, we will study the properties of the two functions from Definition IV.55.

4.6.3.1 Properties of the F function

Lemma IV.56. Let L be a regular PERM loss with reduced form ℓ and F be as

in Definition IV.55. Then F is injective, i.e., if ℓ(z) + λ1 = ℓ(w) + µ1 for some

z,w ∈ Rk−1 and λ, µ ∈ R. Then z = w and λ = µ.

Proof. If z = w, then ℓ(z) = ℓ(w) and so λ = µ. Thus, z = w implies λ = µ.

If λ = µ, then we have ℓ(z) = ℓ(w). By Corollary IV.54, we have z = w.

Therefore, λ = µ implies z = w.

It remains to show that z ̸= w and λ ̸= µ leads to a contradiction. Without loss

of generality, suppose that λ > µ. Then we have ℓ(z) + (λ − µ)1 = ℓ(w). Thus, for

all p ∈ ∆k, we have

⟨p, ℓ(w)⟩ = ⟨p, ℓ(z) + (λ− µ)1⟩ > ⟨p, ℓ(z)⟩.
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Thus, w is never the minimizer of CL
p for any p ∈ ∆k. But this contradicts since

Proposition IV.52 implies that lnk is surjective.

Lemma IV.57. Let L be a regular PERM loss with reduced form ℓ. Let F be as in

Definition IV.55. Then for all (z, λ) ∈ Rk−1 ×R, ∇F (z, λ) is non-singular.

Proof. Let v ∈ Rk be arbitrary. It suffices to check that if v⊤∇F (z, λ) = 0 then

v = 0. Note that

∇F (z, λ) =

[
∇ℓ(z) 1

]
where ∇ℓ(z) ∈ Rk×(k−1) and 1 ∈ Rk.

Hence, v⊤∇F (z, λ) = 0 implies v⊤∇ℓ(z) = 0 and v⊤1 = v1 + · · ·+ vk = 0. Replacing

v by −v if necessary, we can assume that v1 ≥ 0. The equation v⊤∇ℓ(z) = 0 can be

rewritten as

−v1∇ψ(z) =

[
v2 · · · vk

]
A(z) (4.26)

Since A(z) is monotone and −v1∇ψ(z) ≥ 0, we get that vi ≥ 0 for each i = 2, . . . , k.

Now, v⊤1 = v1 + · · ·+ vk = 0 implies that v = 0, as desired.

Now, by applying the inverse function theorem (Theorem IV.116), we immediately

have the following.

Corollary IV.58. Let L be a regular PERM loss with reduced form ℓ. Let F be as in

Definition IV.55. For all (z, λ) ∈ Rk−1×R, there exist open neighborhoods U ∋ (z, λ)

and V ∋ F (z, λ) such that F |U : U → V is a diffeomorphism.

Proposition IV.59. Let L be a regular PERM loss with reduced form ℓ. Let F be

as in Definition IV.55. The map F is a bijection.

Proof. Lemma IV.56 shows that F is injective. To show that F is surjective, we

prove that R(F ) is both open and closed as a subset of Rk. This would imply that

R(F ) = Rk since the only subets of Rk that are both open and closed are ∅ and Rk.
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Now, Lemma IV.58 shows that R(F ) is an open subset of Rk. It remains to

prove that R(F ) is closed. To this end, consider a sequence {(z(i), λ(i))}∞i=1 such that

F (z(i), λ(i)) = ℓ(z(i))+λ(i)1 converges to ζ ∈ Rk. Our goal is to show that ζ ∈ R(F ).

To this end, first pick ϵ > 0. For the rest of this proof, 1 := 1k denotes the

k-dimensional vector of all ones.

There exists M such that

ζ − ϵ1 ≤ ℓ(z(i)) + λ(i)1 ≤ ζ + ϵ1

for all i ≥M . Before proceeding, we prove a helper lemma.

Lemma IV.60 (Helper lemma). Let L be a PERM loss with reduced form ℓ and

template ψ such that ∇ψ ≤ 0. Then for all z ∈ Rk−1, we have that min(ℓ(z)) ≤

ψ(0k−1) =: C, where 0k−1 is the (k − 1)-dimensional all-zeros vector.

Proof of helper lemma. Let v ∈ Rk be such that M(v) = z. For instance, we can

take v = [0 − z⊤]⊤. Let y ∈ argmaxv. Then by Definition IV.1, we have that

min(ℓ(z)) = min(L(v)) = [L(v)]y. Next by Eqn. 4.12, we have

[L(v)]y = ℓy(z).

Let w := σ(1,y)(v). Note that by construction we have 1 ∈ argmaxw. Recall that

σ(1,y) ∈ Sym(k) is the transposition that swaps 1 and y. By permutation-equivariance,

we have

[L(v)]y = [L(v)]σ(1,y)(1) = [L(σ(1,y)(v))]1 = [L(w)]1.

By Eqn. 4.12, we have

[L(w)]1 = ψ(M(w)).

Since 1 ∈ argmaxw, we have that M(w) ∈ Rk−1
≥0 belongs to the non-negative or-
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thtant. In other words, M(w) ≥ 0k−1. Furthermore, since ∇ψ ≤ 0, we have that

ψ(M(w)) ≤ ψ(0k−1), as desired.

We now return to the proof of the proposition. Let C be as in the helper lemma.

Then we have

min(ℓ(z(i)) + λ(i)1) = min(ℓ(z(i))) + λ(i) ≤ C + λ(i).

Thus, we have

min(ζ)− ϵ ≤ C + λ(i)

and so −λ(i) ≤ C + ϵ−min(ζ) =: D. From this, we get that

ℓ(z(i)) ≤ ζ + ϵ1− λ(i)1 ≤ ζ + (ϵ+D)1

Thus, z(i) ∈ {z ∈ Rk−1 : ℓ(z) ≤ ζ+(ϵ+D)1} which is a bounded set by Lemma IV.44.

By passing to a subsequence, we may assume that z(i) converges to some z∗ ∈ Rk−1.

Thus, we have λ(i)1 converges to ℓ(z∗) + ζ, which implies in particular that λ(i) con-

verges to some λ∗. Putting it all together, we have shown that F (z(i), λ(i)) converges

to ζ = F (z∗, λ∗) and so R(F ) is closed.

Corollary IV.61. Let L be a regular PERM loss with reduced form ℓ. Let F be as in

Definition IV.55. The map F is a diffeomorphism, i.e., F is a differentiable bijection

with a differentiable inverse. In particular, F is a homeomorphism.

Proof. Lee [Lee13, Proposition 4.6 (f)] states that every bijective local diffeomorphism

is a (global) diffeomorphism. Thus, the result follows in view of the facts that F is a

bijection (Proposition IV.59) and that F is a local diffeomorphism (Corollary IV.58).

Proposition IV.62. Let L be a regular PERM loss with reduced form ℓ. Let F be as
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in Definition IV.55. Consider v,x ∈ Rk and t ∈ R. Let α(t) and β(t) be such that

tv + x = F (α(t), β(t)) = ℓ(α(t)) + β(t)1. Then for all t ∈ R, we have

1. α and β are differentiable.

2. If v > 0, then ∇β(t) > 0.

3. β is concave, i.e., ∇2
β(t) ≤ 0.

Proof. To prove the first part, first note that we have (α(t), β(t)) = F−1(tv + x).

Hence, α and β are differentiable.

Next, we prove the second part. Pick i ∈ [k]. The i-th coordinate of tv + x =

ℓ(α(t)) + β(t)1 is

vit+ xi = ℓi(α(t)) + β(t). (4.27)

Differentiating (4.27) on both sides with respect to t, we get

vi = ∇ℓi(α(t))∇α(t) +∇β(t). (4.28)

We claim that ∇ℓi(α(t))∇α(t) ≤ 0 for some i.

Lemma IV.63. Let L be a regular PERM loss with reduced form ℓ. Let z,w ∈ Rk−1.

Then there exists i ∈ [k] such that ∇ℓi(z) ·w ≤ 0.

Proof. Suppose for the sake of contradiction that ∇ℓi(z) ·w > 0 for all i ∈ [k]. Then

0 <



∇ψ(z) ·w

∇ℓ2(z) ·w
...

∇ℓk(z) ·w


=



∇ψ(z)

∇ℓ2(z)

...

∇ℓk(z)


w =

∇ψ(z)

A(z)

w.

In other words, we have A(z)w > 0 and ∇ψ(z) · w > 0. Since A(z) is strictly

monotone, we have w > 0. But ∇ψ(z) < 0 by assumption that L is a regular PERM
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loss. Hence, ∇ψ(z) ·w < 0, a contradiction.

Applying Lemma IV.63 with w = ∇α(t), we get the desired claim. Now, pick

i ∈ [k] such that ∇ℓi(α(t)) · ∇α(t) ≤ 0. Thus, from Eqn. (4.28) we have

∇β(t) = vi −∇ℓi(α(t)) · ∇α(t) > 0.

This proves the second part of Lemma IV.63.

Finally, we prove the last part of Lemma IV.63. Note that (4.28) can be rewritten

as follows:

vi = ⟨∇ℓi(α(t))
⊤,∇α(t)⟩+∇β(t). (4.29)

Differentiating (4.29) with respect to t, we get

0 =
〈(
∇2
ℓi
(α(t))∇α(t)

)⊤
,∇α(t)

〉
+
〈
∇ℓi(α(t))

⊤,∇2
α(t)

〉
+∇2

β(t) (4.30)

= ∇α(t)
⊤∇2

ℓi
(α(t))∇α(t) +∇ℓi(α(t))∇2

α(t) +∇2
β(t). (4.31)

Thus, we have

−∇2
β(t) = ∇α(t)

⊤∇2
ℓi
(α(t))∇α(t) +∇ℓi(α(t))∇2

α(t).

Since ℓi is convex, we have ∇α(t)
⊤∇2

ℓi
(α(t))∇α(t) ≥ 0. Next, we claim that

for some choice of i ∈ [k], we have have ∇ℓi(α(t))∇2
α(t) ≥ 0. The claim follows

immediately from applying Lemma IV.63 with z = α(t) and v = −∇2
α(t). Below,

pick i ∈ [k] such that ∇ℓi(α(t))∇2
α(t) ≥ 0. Then for such a choice of i, we have

−∇2
β(t) = ∇α(t)

⊤∇2
ℓi
(α(t))∇α(t) +∇ℓi(α(t))∇2

α(t) ≥ 0,

or equivalently, ∇2
β(t) ≤ 0. This proves that β is concave.
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4.6.3.2 Properties of the G function

Lemma IV.64. Let L be a regular PERM loss with reduced form ℓ. Let G be as

in Definition IV.55. Then for all (z, t) ∈ Rk−1 × R, the Jacobian matrix ∇G(z, t) is

non-singular.

Proof. Let v ∈ Rk be arbitrary. It suffices to check that v⊤∇G(z, λ) = 0 implies

v = 0. Note that

∇G(z, λ) =

[
∇ℓ(z) e

(k)
k

]
where ∇ℓ(z) ∈ Rk×(k−1) and e

(k)
k =

[
0 · · · 0 1

]⊤
.

Thus, v⊤∇G(z, λ) = 0 implies v⊤e
(k)
k = vk = 0 and

v⊤∇ℓ(z) =

[
v1 · · · vk−1 0

]
∇ℓ1(z)

...

∇ℓk(z)

 =

[
v1 · · · vk−1

]
∇ℓ1(z)

...

∇ℓk−1
(z)


︸ ︷︷ ︸

†

= 0.

Thus, it only remains to show that the matrix marked by † is non-singular. To

this end, we first recall from Lemma IV.49 that

A(z) :=


∇ℓ2(z)

...

∇ℓk(z)

 .

Let j ∈ {2, . . . , k}, then we have ∇ℓj(ρkz). By the chain rule (Theorem IV.115),

we have ∇ℓj(ρk•)(z) = ∇ℓj(ρkz)ρk. Below, we will use the • notation to denote the

placeholder for the input of a function. For instance, ℓj(ρk•) denotes the function
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z 7→ ℓj(ρk•). Now, note that

ℓj(ρk•) = ψ(ρjρk•) ∵ Eqn. 4.12

= ψ(T(j−1,k−1)ρσk(j)•) ∵ Lemma IV.42

= ψ(ρσk(j)•) ∵ ψ is symmetric (Proposition IV.33)

=


ψ(ρj•) : j ̸= k

ψ(ρ1•) : j = k

∵ Definition of σk (Section 4.1.3)

=


ℓj(•) : j ̸= k

ℓ1(•) : j = k

∵ Eqn. 4.12.

The above calculation shows that

∇ℓj(ρk•)(z) =


∇ℓj(z) : j ̸= k

∇ℓ1(z) : j = k

.

Combined with the result earlier that ∇ℓj(ρk•)(z) = ∇ℓj(ρkz)ρk, we have

∇ℓj(ρkz)ρk =


∇ℓj(z) : j ̸= k

∇ℓ1(z) : j = k.

Multiplying both side by ρk, we get

∇ℓj(ρkz) =


∇ℓj(z)ρk : j ̸= k

∇ℓ1(z)ρk : j = k.

Thus, we have

207



A(ρkz) =


∇ℓ2(ρkz)

...

∇ℓk(ρkz)

 =



∇ℓ2(z)ρk
...

∇ℓk−1
(z)ρk

∇ℓ1(z)ρk


=



∇ℓ2(z)

...

∇ℓk−1
(z)

∇ℓ1(z)


︸ ︷︷ ︸

‡

ρk.

By Lemma IV.49, the left-hand side is nonsingular. Lemma IV.37 says that ρk is

its own inverse and hence nonsingular. Finally, the matrix marked by ‡ is clearly

obtainable by permuting the rows of the matrix marked by † from earlier. Thus, the

matrix marked by † is nonsingular.

While the next lemma is not about the G function per se, the proof of the lemma

uses the G function heavily. Define prj(k) to be the projection Rk → Rk−1 that drops

the last coordinate, i.e., prj(k)([v1, . . . , vk]
⊤) = [v1, . . . , vk−1]

⊤. When k is clear from

context, we drop the superscript (k) from prj(k).

Lemma IV.65. Let L be a regular PERM loss with reduced form ℓ. Let z ∈ Rk−1

and w ∈ Rk−2. Suppose that prj(ℓ(k)(z)) = ℓ(k−1)(w). Then there exists z∗ ∈ Rk−1

and t∗ ∈ R such that t∗ > 0 and prj(ℓ(k)(z∗) + t∗1) = ℓ(k−1)(w).

Proof. Before proceeding, first let F and G be as in Definitions IV.55. Let z̃(·, ·) :

Rk−1 × R → Rk−1 denote the first k − 1 component functions of F−1 ◦ G. Likewise,

let λ̃(·, ·) : Rk−1 × R → R denote the last component function of F−1 ◦ G. In other

words, we have

F−1 ◦G(z, t) =

z̃(z, t)
λ̃(z, t)

 (4.32)

for all z ∈ Rk−1 and t ∈ R. (Note that the fact that F has an inverse was proven in

Corollary IV.61.)

Similar to earlier, we will use the • notation to denote the placeholder for the

input of a function with the understanding that • represents an input tuple, e.g., (z, t).
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Now, by the chain rule (Theorem IV.115), we have ∇F−1◦G(•) = ∇F−1(G(•))∇G(•).

By the inverse function theorem (Theorem IV.116 and Corollary IV.117), we have

∇F−1(•) = ∇F (F
−1(•))−1. Putting these two equations together, we get

∇F−1◦G(•) = ∇F (F
−1 ◦G(•))−1∇G(•).

Now, G(z, 0) = ℓ(z) = F (z, 0). Thus we have F−1(G(z, 0)) = (z, 0) and

∇F−1◦G(z, 0) = ∇F (F
−1 ◦G(z, 0))−1∇G(z, 0) = ∇F (z, 0)

−1∇G(z, 0).

Furthermore, recall from the proofs of Lemmas IV.57 and IV.64 that the Jacobians

of F and G are given by

∇F (z, λ) =

[
∇ℓ(z) 1

]
and ∇G(z, λ) =

[
∇ℓ(z) e

(k)
k

]
.

Next, recall z̃(z, t) and λ̃(z, t) as defined at the beginning of this proof.

Thus, we have

 ∂
∂z⊤

z̃(z, t)

∂
∂z⊤

λ̃(z, t)

 =

[
∇ℓ(z) 1

]−1

∇ℓ(z) =

Idk−1

0⊤k−1

 .
Putting it all together, we have

 ∂
∂t
z̃(z, t)

∂
∂t
λ̃(z, t)

 =

[
∇ℓ(z) 1

]−1

∇ℓ(z) =

Idk−1
∂
∂t
z̃(z, t)

0⊤k−1
∂
∂t
λ̃(z, t)


Since the above matrix is non-singular, we must have that ∂

∂t
λ̃(z, t) ̸= 0. On the other

hand, the fact that (z̃(z, t), λ̃(z, t)) = F−1(G(z, 0)) = (z, 0) implies that λ̃(z, 0) = 0.

We claim that there exists t∗ ∈ R such that λ̃(z, t∗) > 0. To prove the claim,

suppose that it is not true. Then λ̃(z, t) ≤ 0 for all t ∈ R. Earlier, we saw that

209



λ̃(z, 0) = 0. Thus, viewed as a function of t, we have that λ̃(z, t) attains a maximum

at t = 0. This implies that ∂
∂t
λ̃(z, 0) = 0, a contradiction.

Now, fix a t∗ ∈ R such that λ̃(z, t∗) > 0. Then we have

ℓ(z) + t∗e
(k)
k = G(z, t∗) = F (z̃(z, t∗), λ̃(z, t∗)) = ℓ(z̃(z, t∗)) + λ̃(z, t∗)1.

Note that we have prj(ℓ(z̃(z, t∗)) + λ̃(z, t∗)1) = prj(ℓ(k)(z) + t∗e
(k)
k ) = ℓ(k−1)(w)

as desired.

Definition IV.66. Let f : Rm → Rn be a function. Define the following sets:

1. S×(f) := {ζ + λ1 : ζ ∈ R(f), λ ∈ [0,∞)}

2. S◦(f) := {ζ + λ1 : ζ ∈ R(f), λ ∈ (0,∞)}

When f = ℓ is a PERM loss, the above two sets are closely related to S(ℓ)

(Definition IV.10), as the following lemma and Proposition IV.70 show. The reason

we define them is because they are convenient alternative characterizations.

Lemma IV.67. Let L be a regular PERM loss. Then we have the following:

1. R(ℓ) is closed.

2. S×(ℓ) is closed and bdry(S×(ℓ)) = R(ℓ).

3. S◦(ℓ) = int(S×(ℓ)) and bdry(S◦(ℓ)) = R(ℓ).

Proof. For part one, define the set C = Rk−1×{0} which is a closed subset of Rk−1×R.

Now, note that R(ℓ) = F (C). Since F is a homeomorphism, we have F (C) is closed

as well.

Next, note that D = Rk−1 × [0,∞) is a closed subset of Rk−1 × R. Furthermore,

S×(ℓ) = F (D) by construction. Thus, S×(ℓ) is closed. Next, we have

bdry(S×(ℓ)) = bdry(F (D))=F (bdry(D)) = F (C) = R(ℓ),
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where the second equality from the left follows from F being a homeomorphism

(Corollary IV.61).

Finally, let E = Rk−1 × (0,∞). Then similar to the above, we have

int(S×(ℓ)) = int(F (D)) = F (int(D)) = F (E) = S◦(ℓ),

as desired. To conclude, note that bdry(S◦(ℓ)) = bdry(F (E)) = F (bdry(E)) =

F (C) = R(ℓ).

Proposition IV.68. Let L be a regular PERM loss. Then S×(ℓ) is convex.

Proof. Let ζ, ξ ∈ S×(f). Write ζ = ℓ(z) + λ1 and ξ = ℓ(w) +µ1, where z,w ∈ Rk−1

and λ, µ ∈ [0,∞). Let v = ξ − ζ ∈ Rk and x = ζ. Take α and β as defined in

Proposition IV.62, i.e., we have for all t ∈ R that

tv + x = F (α(t), β(t)) = ℓ(α(t)) + β(t)1. (4.33)

Plugging in t = 0 into (4.33), we get ζ = ℓ(α(0))+β(0). Thus, α(0) = z and β(0) = λ.

Likewise, plugging in t = 1, we get α(1) = w and β(1) = µ. In particular, we have

β(0) ≥ 0 and β(1) ≥ 0. By Proposition IV.62, β is concave. Thus, β(t) ≥ 0 for all

t ∈ [0, 1]. In other words,

tv +w = tξ + (1− t)ζ = ℓ(α(t)) + β(t)1 ∈ S×(ℓ)

for all t ∈ [0, 1]. This proves that S×(ℓ) is convex.

We will need the following result from [BS13, Theorem 9].

Theorem IV.69 (Beltagy et al. [BS13]). Let C be a nonempty closed convex subset

of Rn. If C contains no hyperplane, then C = conv(bdry(C)).
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Proposition IV.70. Let L be a regular PERM loss with reduced form ℓ. Then

S(ℓ) = S×(ℓ) and bdry(S(ℓ)) = R(ℓ).

Proof. Clearly, S×(ℓ) is nonempty. Furthermore, by Lemma IV.67 and Lemma IV.68,

S×(ℓ) is closed and convex. Next, note that S×(ℓ) lies in the nonnegative quadrant

[0,∞)k. Since no hyperplane lies entirely inside the nonnegative quadrant, S×(ℓ)

cannot contain any hyperplane. Hence, we have verified that S×(ℓ) satisfies the

condition of Theorem IV.69. To finish the proof, we have

S(ℓ) = conv(R(ℓ)) ∵ Definition of S(ℓ) (4.34)

= conv(bdry(S×(ℓ))) ∵ Lemma IV.68 (4.35)

= S×(ℓ) ∵ Theorem IV.69 (4.36)

This proves the first part. For the second part, note that by Lemma IV.68, we have

bdry(S(ℓ)) = bdry(S×(ℓ)) = R(ℓ).

Before we move on, we summarize the important results on S(ℓ) below:

Corollary IV.71. Let L be a regular PERM loss with reduced form ℓ. Recall from

Definition IV.66

S◦(ℓ) := {ζ + λ1 : ζ ∈ R(ℓ), λ ∈ (0,∞)}.

Then S(ℓ) is a closed and convex set with the following properties:

1. S(ℓ) = {ζ + λ1 : ζ ∈ R(ℓ), λ ∈ [0,∞)}

2. int(S(ℓ)) = S◦(ℓ) (see Definitions IV.10 and IV.66)

3. bdry(S(ℓ)) = bdry(S◦(ℓ)) = R(ℓ).

Before we proceed, we state one more result about the set S◦(ℓ) which will be

useful later.
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Lemma IV.72. Let L be a regular PERM loss with reduced form ℓ. Then S◦(ℓ) =

{ζ ∈ Rk : ∃z ∈ Rk−1 such that ζ > ℓ(z)}.

Proof. Recall that by definition we have S◦(ℓ) = {ℓ(z) + λ1 : z ∈ Rk−1, λ ∈ (0,∞)}.

Thus, the “⊆” direction is immediate. For the other inclusion, take ζ = ℓ(z) + v

where z ∈ Rk−1 and v > 0. Let x = ℓ(z). Take α and β as defined in Proposition

IV.62, i.e., we have for all t ∈ R that

tv + x = F (α(t), β(t)) = ℓ(α(t)) + β(t)1. (4.37)

Plugging in t = 0 into (4.37), we get x = ℓ(z) = ℓ(α(0)) + β(0). Thus, α(0) = z

and β(0) = 0. Recall that v = ζ − ℓ(z) ≥ 0 by assumption. Hence, by Proposition

IV.62, β is strictly increasing. Hence, β(1) > β(0) = 0. Now, plugging in t = 1 into

(4.37), we get v + x = v + ℓ(z) = ζ = ℓ(α(1)) + β(1)1. This shows that ζ ∈ S◦(ℓ),

as desired.

Remark IV.73. From basic topology, we know that S(ℓ) = int(S(ℓ)) ∪ bdry(S(ℓ)).

Hence, a consequence of Lemma IV.72 and Lemma IV.67 is that S(ℓ) is precisely the

superprediction set of ℓ (see Williamson et al. [WVR16, Definition 15] and Kalnishkan

et al. [KV08]):

S(ℓ) = {ζ ∈ Rk : ∃z ∈ Rk−1 such that ζ ≥ ℓ(z)}.

Recall [TB07, Definition 5]:

Definition IV.74 (Tewari et al. [TB07]). Let S ⊆ Rk
+ be a set and ζ ∈ Rk

+. Define

the set

N (ζ;S) := {p ∈ ∆k : ⟨ξ − ζ,p⟩ ≥ 0, ∀ξ ∈ S}.

We say that S is admissible if for all ζ ∈ bdry(S) and p ∈ N (ζ;S) we have

argmin(ζ) ⊆ argmax(p).
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Proposition IV.75 (Tewari et al. [TB07]). Let S ⊆ Rk
+ be a symmetric set. If

|N (ζ;S)| = 1 for all ζ ∈ bdry(S), then S is admissible.

Lemma IV.76. Let L be a regular PERM loss with reduced form ℓ. Let ζ ∈ R(ℓ).

Then we have N (ζ;R(ℓ)) = N (ζ;S(ℓ)) = N (ζ;S◦(ℓ)).

Proof. We first prove that N (ζ;R(ℓ)) = N (ζ;S(ℓ)). Since S(ℓ) ⊇ R(ℓ), we im-

mediately have N (ζ;R(ℓ)) ⊇ N (ζ;S(ℓ)). For the other inclusion, we first note

that S(ℓ) = S×(ℓ) by Proposition IV.70. Thus, every ξ ∈ S(ℓ) can be written as

ξ = α+ β1 for some α ∈ R(ℓ) and β ≥ 0. Now, let p ∈ N (ζ;R(ℓ)) and let ξ ∈ S(ℓ)

be decomposed as in the preceding sentence. Then

⟨ξ − ζ,p⟩ = ⟨α+ β1− ζ,p⟩ = ⟨α− ζ,p⟩+ β⟨1,p⟩ ≥ 0

where the last inequality holds since (1) ⟨α− ζ,p⟩ ≥ 0 because p ∈ N (ζ;R(ℓ)), and

(2) β ≥ 0. Hence, such a p satisfies ⟨ξ − ζ,p⟩ ≥ 0, ∀ξ ∈ S(ℓ) as well which implies

that p ∈ N (ζ;S(ℓ)), as desired.

Next, we prove N (ζ;S(ℓ)) = N (ζ;S◦(ℓ)). Again, since S(ℓ) ⊇ S◦(ℓ), we imme-

diately have N (ζ;S◦(ℓ)) ⊇ N (ζ;S(ℓ)). For the other inclusion, we first note that

cl(S◦(ℓ)) = S(ℓ). Suppose p ∈ ∆k is such that ⟨ξ− ζ,p⟩ ≥ 0 for al ξ ∈ S◦(ℓ). Then

by continuity, we must have that ⟨ξ − ζ,p⟩ ≥ 0 for all ξ ∈ cl(S◦(ℓ)) = S(ℓ).

Proposition IV.77. Let L be a regular PERM loss with reduced form ℓ. Then S(ℓ)

and S◦(ℓ) are both admissible.

Proof. By Proposition IV.75, it suffices to check the following two claims hold:

1. for all ζ ∈ bdry(S(ℓ)) we have |N (ζ;S(ℓ))| = 1, and

2. for all ζ ∈ bdry(S◦(ℓ)) we have |N (ζ;S◦(ℓ))| = 1.

By Corollary IV.71, we have bdry(S(ℓ)) = bdry(S◦(ℓ)) = R(ℓ). Hence, by Lemma

IV.76, to show both claims it suffices to show that |N (ζ;R(ℓ))| = 1 for all ζ ∈ R(ℓ).
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Note that here we can replace N (ζ;S(ℓ)) and N (ζ;S◦(ℓ)) by N (ζ;R(ℓ)) because of

Lemma IV.76. Below, fix ζ = ℓ(z) ∈ R(ℓ) where z ∈ Rk−1. Then

N (ζ;R(ℓ)) = {p ∈ ∆k : ⟨ξ − ζ,p⟩ ≥ 0, ∀ξ ∈ R(ℓ)}

= {p ∈ ∆k : ⟨ℓ(w)− ℓ(z),p⟩ ≥ 0, ∀w ∈ Rk−1} ∵ Corollary IV.54

=

{
p ∈ ∆k : z ∈ argmin

w∈Rk−1

CL
p (w)

}
∵ minimizer exists by

=

{
p ∈ int(∆k) : z ∈ argmin

w∈Rk−1

CL
p (w)

}
∵ Corollary IV.51

= {p ∈ int(∆k) : z = lnkL(p)} ∵ Definition IV.48 and Corollary IV.47

By Proposition IV.52, lnkL is an injection. Thus, |
{
p ∈ int(∆k) : z = lnkL(p)

}
| =

1.

4.7 Proof of Theorem IV.27

Throughout this section, assume that we are in the following situation:

1. L is totally regular. For each n ∈ {2, . . . , k},

2. L(n) is the n-ary retracted loss of L,

3. ψ(n) is the template of Ln (Proposition IV.3)

4. ℓ(n) is the reduced form of Ln (Definition IV.2)

For the reader’s convenience, we restate Theorem IV.27, whose proof is the goal

of this section:

Theorem (IV.27, restated). If L is totally regular, then S(L) is classification-

calibrated.

Unpacking the definition of totally regular PERM (Definition IV.26), we have that

the n-ary retracted loss is a PERM loss for each n ∈ {2, . . . , k}.
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Lemma IV.78. For all z ∈ Rk−1 and all j ∈ [k − 1], we have prj
(
ρ
(k)
j z
)

=

ρ
(k−1)
j prj(z).

Proof. If j = 1, then ρ
(k−1)
1 and ρ

(k)
1 are both identity matrices. Thus, below we

assume that j > 1. For each i ∈ [k − 2], we have

[
prj

(
ρ
(k)
j z
)]

i
= [ρ

(k)
j z]i =


zi − zj−1 : i ̸= j − 1

−zj−1 : i = j − 1.

On the other hand, let w = prj(z). Then

[
ρ
(k−1)
j w

]
i
=


wi − wj−1 : i ̸= j − 1

−wj−1 : i = j − 1.

Note that wi = zi and wj−1 = zj−1 since i, j − 1 ∈ [k − 2].

Lemma IV.79. Assume that we are in the situation stated at the beginning of

Section 4.7. Let z ∈ Rk−1 and x ∈ [0,∞)k. Define z̃ := prj(z) ∈ Rk−2 and

x̃ := prj(x) ∈ [0,∞)k−2. Then we have

lim
λ→+∞

prj
(
ℓ(k)
(
z+ λe

(k−1)
k−1

)
+ x
)
= ℓ(k−1)(z̃) + x̃ (4.38)

and

prj
(
ℓ(k) (z) + x

)
> ℓ(k−1)(z̃). (4.39)

Proof. For brevity, let u = e
(k−1)
k−1 . First, we claim that ρ

(k)
j u = u for each j ∈ [k− 1].

To see this, first note that if j = 1, then ρ
(k)
1 is the identity. For k − 1 ≥ j > 1, we

recall that

∀i ∈ [k − 1], [ρ
(k−1)
j u]i =


ui − uj−1 : i ̸= j − 1

−uj−1 : i = j − 1.
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Since j − 1 < k − 1, we have uj−1 = 0 and so

∀i ∈ [k − 1], [ρ
(k)
j u]i =


ui : i ̸= j − 1

uj−1 = 0 : i = j − 1.

This shows that [ρ
(k)
j u]i = ui for all i ∈ [k − 1], which proves our claim.

Next, still assuming j ∈ [k − 1], we have

ℓ
(k)
j (z+ λu) = ψ(k)(ρ

(k)
j (z+ λu)) = ψ(k)(ρ

(k)
j z+ λu).

Hence, we have

lim
λ→+∞

ℓ
(k)
j (z+ λu) = lim

λ→+∞
ψ(k)(ρ

(k)
j z+ λu) ∵ Proposition IV.33.

= ψ(k−1)(prj(ρ
(k)
j z)) ∵ Proposition IV.25

= ψ(k−1)
(
ρ
(k−1)
j (prj(z))

)
∵ Lemma IV.78

= ψ(k−1)
(
ρ
(k−1)
j z̃

)
∵ Definition of z̃

= ℓ
(k−1)
j (z̃) ∵ Proposition IV.33.

Thus,

lim
λ→+∞

prj
(
ℓ(k)(z+ λu) + x

)
= ℓ(k−1)(z̃) + x̃.

Next, for every j ∈ [k − 1], we note that the function

gj(λ) := ℓ
(k)
j (z+ λu) = ψ(k)(ρ

(k)
j z+ λu)

is strictly decreasing. To see this, by the chain rule, we have

∇gj(λ) = ∇ψ(k)(ρ
(k)
j z+ λu)u < 0.
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Thus, ℓ
(k)
j (z) = gj(0) > limλ→+∞ gj(λ) = ℓ

(k−1)
j (z̃), which proves that

prj
(
ℓ(k)(z) + x

)
> ℓ(k−1)(z̃) + x̃ ≥ ℓ(k−1)(z̃)

as desired.

Lemma IV.80. Assume that we are in the situation stated at the beginning of Sec-

tion 4.7. Then prj(S(ℓ(k))) ⊆ S◦(ℓ(k−1)) and cl[prj(S(ℓ(k)))] = S(ℓ(k−1)).

Proof. Let C := prj(S(ℓ(k))) and take ζ ∈ C. We first prove C ⊆ S◦(ℓ(k−1)). By the

characterization of S(ℓ(k)) from Corollary IV.71 item 1, there exists z ∈ Rk−1 and

x ∈ [0,∞)k such that ζ = prj(ℓ(z) + x). Applying Eqn. (4.39) from Lemma IV.79,

we get

ζ = prj (ℓ(z) + x) > ℓ(k−1)(z̃)

where we recall that z̃ = prj(z). In particular, by the characterization of S◦(ℓ(k−1))

from Lemma IV.72, we have that ζ ∈ S◦(ℓ(k−1)). This proves that C ⊆ S◦(ℓ(k−1)).

Next, we prove cl[C] = S(ℓ(k−1)). We first show that cl[C] ⊇ S(ℓ(k−1)) by proving

that every point S(ℓ(k−1)) is a limit point of C.

Let ζ ∈ S(ℓ(k−1)). By the characterization of S(ℓ(k−1)) as in Corollary IV.71, there

exists z̃ ∈ Rk−2 and x̃ ∈ [0,∞)k−1 such that ζ = ℓ(k−1)(z̃) + x̃. Now, pick z ∈ Rk−1

and x ∈ [0,∞)k such that z̃ = prj(z) and x̃ = prj(x). Applying Lemma IV.79

Eqn. (4.38), we get that ζ is a limit point of S, which proves the desired claim. This

proves that cl(C) ⊇ S(ℓ(k−1)). By the first part, we know that C ⊆ S◦(ℓ(k−1)). By

Corollary IV.71, S◦(ℓ(k−1)) = int(S(ℓ(k−1))) ⊆ S(ℓ(k−1)). Putting it all together, we

have

C ⊆ S◦(ℓ(k−1)) ⊆ S(ℓ(k−1)) ⊆ cl(C).

From Corollary IV.71, we have that S(ℓ(k−1)) is closed. Since by definition cl(C) is

the smallest closed set containing C, we get that S(ℓ(k−1)) = cl(C), as desired.
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Theorem IV.81 (Blackwell et al. [BG79]). Let C ⊆ Rn be a convex set. Then

int(C) = int(cl(C)).

Proposition IV.82. Assume that we are in the situation stated at the beginning of

Section 4.7. Then we have prj(S(ℓ(k))) = S◦(ℓ(k−1))

Proof. For brevity, let C := prj(S(ℓ(k))). By Corollary IV.71, S(ℓ(k−1)) is convex.

Since convexity is preserved under projection, we have that C is convex as well. Now,

int(C) = int(cl(C)) ∵ Theorem IV.81 (4.40)

= int(S(ℓ(k−1))) ∵ Lemma IV.80 (4.41)

= S◦(ℓ(k−1)) ∵ Lemma IV.67 (4.42)

⊇ C ∵ Lemma IV.80 (4.43)

Since C ⊇ int(C) by definition, we conclude that C = S◦(ℓ(k−1)).

Proposition IV.83. Assume that we are in the situation stated at the beginning of

Section 4.7. Then we have prj(S◦(ℓ(k))) = S◦(ℓ(k−1)).

Proof. By the preceding Proposition IV.82, we have prj(S(ℓ(k))) = S◦(ℓ(k−1)). Since

S◦(ℓ(k)) ⊆ S(ℓ(k)) we have prj(S◦(ℓ(k))) ⊆ prj(S(ℓ(k))). Thus, to prove the result we

only have to show prj(S◦(ℓ(k))) ⊇ S◦(ℓ(k−1)).

To this end, let ℓ(k−1)(w) ∈ S◦(ℓ(k−1)) and z ∈ S(ℓ(k)) be such that prj(ℓ(k)(z)) =

ℓ(k−1)(w). By Lemma IV.65, there exist z∗ ∈ Rk−1 and t∗ ∈ R such that t∗ > 0

and prj(ℓ(k)(z∗) + t∗1) = ℓ(k−1)(w). Since ℓ(k)(z∗) + t∗1 ∈ S◦(ℓ(k)), we get that

ℓ(k−1)(w) ∈ prjkn(S◦(ℓ(k))) as desired.

Below, let prj(n) denote the n-fold iterated composition of prj. In other words,

prj(n) := prj ◦ · · · ◦ prj repeated n times.

Proposition IV.84. Assume that we are in the situation stated at the beginning of

Section 4.7. Then we have prj(n)(S(ℓ(k))) = S◦(ℓ(k−n)) for each n ∈ {1, . . . , k − 2}.
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Proof. We prove by induction. The case when n = 1 is simply Lemma IV.80. Now,

suppose that the result holds for n where 1 < n < k − 2. Then

prj(n+1)(S(ℓ(k))) = prj(prj(n)(S(ℓ(k))))

= prj(S◦(ℓ(k−n))) ∵ Induction hypothesis

= S◦(ℓ(k−n−1)) ∵ Proposition IV.84

= S◦(ℓ(k−(n+1))).

This completes the induction step and the desired result follows.

We recall the following from [TB07, Theorem 7]:

Theorem IV.85 (Tewari et al. [TB07]). Let S ⊆ Rk
+ be a symmetric convex set.

Then S is classification calibrated if and only if S is admissible and prj(n)(S) is

admissible for all n ∈ {1, . . . , k − 2}.

Proof of Theorem IV.27. Assume that we are in the situation stated at the begin-

ning of Section 4.7. Let S = S(ℓ(k)). By Theorem IV.85, it suffices to prove that

S is admissible and prj(n)(S) is admissible for all n ∈ {1, . . . , k − 2}. From Propo-

sition IV.77, we have that S = S(ℓ(k)) is admissible. For each n ∈ {1, . . . , k − 2},

we have by Proposition IV.84 that prj(n)(S(ℓ(k))) = S◦(ℓ(k−n)). Again by Proposi-

tion IV.77, S◦(ℓ(k−2)) is admissible, which proves the theorem in view of Theorem

IV.85.

4.8 Classification-Calibration of Fenchel-Young losses

The goal of this section is two fold. The first subsection presents the proof of Theo-

rem IV.22. The second subsection shows the existence of a totally regular negentropy

that is strictly convex, but not strongly convex.
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4.8.1 Proof of Theorem IV.22

Before proceeding with the proof, we establish two key results.

Proposition IV.86. Let Ω be a negentropy (Definition IV.20) and µ ∈ R. Then the

Fenchel-Young loss L associated to Ω and µ is a PERM loss that is closed, convex,

and non-negative. The template ψ of L is semi-coercive and is given by

ψ(z) = max
p̃∈∆̃k

−Ω̃(p) + µ1⊤p̃− ⟨p̃, z⟩.

Furthermore, if Ω is a regular negentropy, then L is a regular PERM loss.

Proof. In this proof, all elementary basis vectors are implicitly assumed to be k-

dimensional, i.e., we write ey instead of eky . First, recall that the Fenchel conjugate

of a closed convex function is again closed convex [Roc70]. Next, we show that L is

permutation equivariant:

[σjL(v)]y = [L(v)]σj(y)

= max
p∈∆k

Ω(eσj(y))− Ω(p) + ⟨v + cσj(y),p− eσj(y)⟩

= max
p∈∆k

Ω(ey)− Ω(p) + ⟨σj(v + cσj(y)), σj(p− eσj(y))⟩

= max
p∈∆k

Ω(ey)− Ω(σj(p)) + ⟨σj(v) + cy, σj(p)− ey)⟩

= max
p∈∆k

Ω(ey)− Ω(p) + ⟨σj(v) + cy,p− ey)⟩

= [L(σj(v))]y.

This shows that σL = Lσ.

Next, we show that L is margin-based. Recall that

[L(v)]y = max
p∈∆k

Ω(ey)− Ω(p) + ⟨cy,p− ey⟩+ ⟨v,p− ey⟩
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Since the only term that depends on v is the last summand ⟨v,p − ey⟩, which we

show to only depend on M(v). First, we observe that

⟨v,p⟩ = p1v1 + · · ·+ pkvk

= (1− (p2 + · · ·+ pk))v1 + p2v2 + · · ·+ pkvk

= v1 − (p2(v1 − v2) + · · ·+ pk(v1 − vk))

= v1 − ⟨p̃,M(v)⟩

where we write p̃ to denote the vector (p2, . . . , pk)
⊤. Thus,

⟨v,p− ey⟩ = ⟨v,p⟩ − vy = v1 − vy − ⟨p̃,M(v)⟩

From this, we deduced that

⟨v,p− ey⟩ =


[M(v)]y−1 − ⟨p̃,M(v)⟩ : y > 1

−⟨p̃,M(v)⟩ : y = 1.

This shows that L is margin-based.

Furthermore,

L1(v) = max
p∈∆k

Ω(e1)− Ω(p) + ⟨c1,p− e1⟩ − ⟨p̃,M(v)⟩.

Thus,

ψ(z) = max
p∈∆k

Ω(e1)− Ω(p) + ⟨c1,p− e1⟩ − ⟨p̃, z⟩.

Since e1 ∈ ∆k and [e1]i = 0 for i ∈ {2, . . . , k}, we have by construction that

ψ(z) ≥ Ω(e1)− Ω(e1) + ⟨c1, e1 − e1⟩ − ⟨0, z⟩ = 0.
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When c1 = µ(1− e1) and Ω(e1) = 0, we have

ψ(z) = max
p̃∈∆̃k

−Ω̃(p̃) + µ1⊤p̃− ⟨p̃, z⟩. (4.44)

Finally, we prove that ψ is semi-coercive. Let c ∈ R and z ∈ Rk−1 be such that

c ≥ ψ(z). Let j ∈ argmin z. Then since ej = ek−1
j ∈ ∆̃k, we have

c ≥ ψ(z) = sup
p∈∆̃k

−Ω̃(p)− ⟨p, z⟩ ≥ −Ω̃(ej) + µ− ⟨ej, z⟩ ≥ −zj = −min z.

Thus, we have c ≥ ψ(z) implies that min z ≥ −c.

Next, we prove the “Furthermore” part. By the first part, it remains to show

that ψ is strictly convex, twice differentiable and ∇ψ(z) < 0 for all z ∈ Rk−1. Define

Υ(p̃) := Ω̃(p̃)− µ1⊤p̃. Then Υ : ∆̃k → R is also of Legendre type. Note that

ψ(z) = max
p̃∈∆̃k
⟨p̃,−z⟩ − Ω̃(p̃) + µ1⊤p̃ ∵ Eqn. (4.44)

= max
p̃∈∆̃k
⟨p̃,−z⟩ −Υ(p̃)

= Υ∗(−z) ∵ definition of Fenchel conjugate

We recall the following fundamental theorem regarding convex conjugates [Roc70].

Theorem IV.87 (Rockafellar [Roc70]). If (C, f) is a convex function of Legendre

type, then (C∗, f ∗) is a convex function of Legendre type. The map ∇f : C → C∗ is

a homeomorphism and ∇f∗ = (∇f )
−1.

By Theorem IV.87, we have

1. The function Υ∗, and hence ψ, is of Legendre type. In particular, ψ is strictly

convex.

2. The derivative ∇Υ : int(∆̃k) → Rk−1 is a bijection and the derivative of Υ∗
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satisfies ∇Υ∗ = (∇Υ)
−1 : Rk−1 → int(∆̃k).

It follows that if Υ is twice differentiable, then so is Υ∗. Finally, by the chain rule,

we have ∇ψ(z) = −∇Υ∗(z). Since ∇Υ∗(z) ∈ int(∆̃k) for all z, we have in particular

that ∇Υ∗(z) > 0. Thus, ∇ψ(z) < 0 for all z.

Theorem IV.88. Let L be the Fenchel-Young loss corresponding to Ω and µ. Let

n ∈ {2, . . . , k}. Let Ω(n) be the n-ary retracted negentropy of Ω (Definition IV.21).

Then the n-ary retracted loss L(n) of L (Definition IV.26) is the Fenchel-Young loss

corresponding to the n-ary retracted negentropy Ω(n) and µ.

Definition IV.21. Let Ω̃ : ∆̃k → R be a negentropy and n ∈ {2, . . . , k}. The n-ary

retracted negentropy of Ω̃, which we denote by Ω̃(n) : ∆̃n → R, is defined as

Ω̃(n)(q) := Ω̃(injk−1
n−1(q)), ∀q ∈ ∆̃n.

Proof. Fix z ∈ Rk−1 and let w = prj(z) ∈ Rk−2. Let u := e
(k−1)
k−1 . Let H̃(k−1) :=

−Ω̃(k−1). To simplify the notation, elements of ∆̃k will be denoted as p instead of p̃

(same for ∆̃k−1). Our goal is to show that

lim
λ→+∞

max
p∈∆̃k

H̃(k)(p) + µ1⊤p− ⟨z+ λu,p⟩ = max
q∈∆̃k−1

H̃(k−1)(q) + µ1⊤q− ⟨w,q⟩.

Note that the left-hand side is prj[ψ](w) := limλ→∞ ψ

([
w⊤ λ

]⊤)
as in Proposi-

tion IV.25 where ψ is the template of the Fenchel-Young loss of Ω(k) defined as in

Eqn. 4.7. Moreover, note that the right-hand side is ψ′(w) where ψ′ is the template

corresponding to the Fenchel-Young loss correspondin to Ω(k−1). A priori, it is not

immediately obvious why prj[ψ] = ψ′. This proof will confirm that this equality

indeed hold.

For brevity, we define g(λ) := maxp∈∆̃k H̃(k)(p) + µ1⊤p − ⟨z + λu,p⟩. For all

λ ∈ R, let p∗
λ be an arbitrary element of argmaxp∈∆̃k H̃(k)(p) − ⟨z + λu,p⟩. Note
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that g : R→ R+ is monotone non-increasing: For λ, ν ∈ R such that λ ≤ ν, we have

g(ν) = H̃(k)(p∗
ν) + µ1⊤p∗

ν − ⟨z+ νu,p∗
ν⟩

≤ H̃(k)(p∗
ν) + µ1⊤p∗

ν − ⟨z+ λu,p∗
ν⟩ ∵ ν ≥ λ

= g(λ).

Next, let q∗ ∈ argmaxq∈∆̃k−1 H̃(k−1)(q)+µ1⊤q−⟨w,q⟩ and let r∗ = injk−1
n−1(q

∗) ∈

∆̃k. Then we observe that

g(λ) ≥ H̃(k)(r∗) + µ1⊤r∗ − ⟨z+ λu, r∗⟩

= H̃(k)(r∗) + µ1⊤r∗ − ⟨z, r∗⟩ ∵ ⟨u, r∗⟩ = 0

= H̃(k−1)(q∗) + µ1⊤q∗ − ⟨z, r∗⟩ ∵ 1⊤q∗ = 1⊤r∗

= H̃(k−1)(q∗) + µ1⊤q∗ − ⟨w,q∗⟩.

Thus, we have that for all λ ∈ R,

g(λ) ≥ H̃(k−1)(q∗) + µ1⊤q∗ − ⟨w,q∗⟩. (4.45)

Now, take a sequence {λt}t such that limt→∞ λt = +∞ and p∗
λt

converges to some

p = [p1, . . . , pk]
⊤ ∈ ∆̃k as t→∞. Such a sequence exists because ∆̃k is compact.

We claim that pk = 0. Suppose that this is false. Then for all t sufficiently large,

there exists an ϵ > 0 such that

[p∗
λt ]k ≥ ϵ.
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Now, we have

g(λt) = H̃(k)(p∗
λt) + µ1⊤p∗

λt − ⟨z+ λtu,p
∗
λt⟩

= H̃(k)(p∗
λt) + µ1⊤p∗

λt − ⟨z,p∗
λt⟩ − λt⟨u,p∗

λt⟩

≤ g(0)− λt⟨u,p∗
λt⟩ ∵ definition of g

≤ g(0)− λt[p∗
λt ]k ∵ definition of u

≤ g(0)− λtϵ

Thus, we have limt→∞ g(λt) = −∞, which contradicts (4.45). This proves the claim.

Define q := prj(p). Note that the claim we just proved implies that inj(q) = p.

Then, we have

lim
t→∞

g(λt)

= lim
t→∞

H̃(k)(p∗
λt) + µ1⊤p∗

λt − ⟨z,p∗
λt⟩

= H̃(k)(p) + µ1⊤p− ⟨z,p⟩ ∵ continuity

= H̃(k)(inj(q)) + µ1⊤inj(q)− ⟨z, inj(q)⟩

= H̃(k)(inj(q)) + µ1⊤q− ⟨w,q⟩

= H̃(k−1)(q) + µ1⊤q− ⟨w,q⟩ ∵ H̃(k−1) is a nested ∆-family

≤ H̃(k−1)(q∗) + µ1⊤q∗ − ⟨w,q∗⟩ ∵ Definition of q∗.

From Eqn. (4.45), we get the other inequality

lim
t→∞

g(λt) ≥ H̃(k−1)(q∗) + µ1⊤q∗ − ⟨w,q∗⟩.

Thus, we conclude that limt→∞ g(λt) = H̃(k−1)(q∗)+µ1⊤q∗−⟨w,q∗⟩ as desired. This

proves the theorem for the case when n = k−1. (Note that the case n = k is vacuous

and thus trivial). Applying the theorem to L(k−1), we get the n = k − 2 case and so
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on.

For the reader’s convenience, we restate Theorem IV.22.

Theorem (IV.22, restated). Let Ω be a totally regular negentropy, µ ∈ R+ be

fixed, and L be the Fenchel-Young loss associated to Ω and the µ. Then S(L) is

classification-calibrated.

Proof. By Theorem IV.27, it suffices to show that L is totally regular. For each n ∈

{2, . . . , k}, let L(n) be the n-ary retracted loss of L. Our goal is show is to show that

L(n) is regular. Let Ω(n) be the n-ary retracted negentropy of Ω (Definition IV.21).

By Theorem IV.88, L(n) is the Fenchel-Young loss corresponding to Ω(n) and µ. By

assumption, Ω(n) is a regular negentropy. Thus, by Proposition IV.86, L(n) is regular,

as desired.

4.8.2 Totally regular negentropy that is not strongly convex

In this section, we show that there exists totally regular entropies that are not

strongly convex. See Example IV.94. Thus, the associated Fenchel-Young loss is cal-

ibrated by Theorem IV.22. Moreover, this calibration result is outside of the purview

of previously established results [Blo19; NBR19] which requires strong convexity

Proposition IV.89. Let f : D → R≥0 be of Legendre type and g : R≥0 → R be

convex, differentiable and strictly increasing. Let C = int(D). Suppose that D is

compact and there exists x∗ ∈ C such that infx∈D f(x) = f(x∗). Then g ◦ f : D → R

is of Legendre type.

Proof. We check that the items of Definition IV.19 hold. Item 1 clearly holds since

f and g ◦ f have the same domain.

Now for Item 2, note that g◦f is differentiable by the Chain Rule. Thus it remains

to show that g ◦ f is strictly convex. For all x, y ∈ D such that x ̸= y and λ ∈ (0, 1),
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we have

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y).

This is due to f being strictly convex. Next, since g is strictly increasing, we have

g(f(λx+ (1− λ)y)) < g(λf(x) + (1− λ)f(y))

By the convexity of g, we have g(λf(x) + (1− λ)f(y)) ≤ λg(f(x)) + (1− λ)g(f(y)))

which shows that g ◦ f is strictly convex.

For Item 3, we check that limi→∞ ∥∇g◦f (x
i)∥ = +∞ for all sequences {xi} ⊆ C

such that limi→∞ xi ∈ ∂D. To this end, we first prove the claim that there exists ϵ > 0

such that for all sequences {xi} ⊆ C with limi→∞ xi ∈ ∂D we have limi→∞ f(xi) ≥ ϵ.

Since f is convex on D, we know that f is continuous on D. This is Rockafellar

[Roc70, Corollary 10.1.1]. In particular, f is continuous on ∂D = D\C as well. Since

∂D is compact, we have infx∈∂D f(x) = f(x†) for some x† ∈ ∂D. Since x† ̸= x∗, we

must have f(x†) ̸= f(x∗) by the strict convexity of f . In particular, f(x†) > f(x∗).

Now, letting ϵ = f(x†), the claim follows.

Next we prove that g′(ϵ) > 0. Since g is increasing, we have g ≥ 0. We proceed

by considering the two cases g′(0) > 0 and g′(0) = 0 separately. In the first case, the

convexity of g implies that g′ is non-decreasing and so g′(ϵ) > 0 holds. In the second

case, if g′(ϵ) = 0, then we must have g′(t) = 0 for all t ∈ [0, ϵ]. But this implies that

g is constant on [0, ϵ] which contradicts that g is strictly increasing. Thus, g′(ϵ) > 0.

Finally, by the Chain Rule, we have ∇g◦f (x) = ∇g(f(x))∇f (x) = g′(f(x))∇f (x).

Thus,

lim
i→∞
∇g◦f (x

i) = lim
i→∞

g′(f(xi)) lim
i→∞
∇f (x

i) ≥ g′(ϵ) lim
i→∞
∇f (x

i).

Since g′(ϵ) > 0 and does not depend on i, we have limi→∞ ∥∇g◦f (x
i)∥ = +∞, as

desired.
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Lemma IV.90. Let f and g be as in Proposition IV.89. If g′(0) = 0 and x∗ ∈ int(D)

is such that infx∈D f(x) = f(x∗) = 0, then the Hessian of g ◦ f vanishes at x∗, i.e.,

∇2
g◦f (x

∗) = 0.

Proof. First, we have by the Chain Rule that ∇g◦f (x) = g′(f(x))∇f (x) and

∇2
g◦f (x) = g′′(f(x))∇f (x)

⊤∇f (x) + g′(f(x))∇2
f (x).

Note that∇f (x) is a row vector by our convention. By assumption, we have∇f (x
∗) =

0 and g′(f(x)) = g′(0) = 0. Thus, in light of the formula for ∇2
g◦f (x) derived above,

we are done.

Corollary IV.91. Let f and g be as in Lemma IV.90. Then g ◦ f is not α-strongly

convex for any α > 0.

Proposition IV.92. Let Ω : ∆k → R be a regular negentropy and let g : R≥0 → R≥0

be as in Proposition IV.89. Furthermore, suppose that g is twice differentiable. Let

a ∈ R be a negative number such that a ≤ Ω(p) for all p ∈ ∆k. Define Θ : ∆k → R

by

Θ(p) := g(Ω(p)− a)− g(−a), ∀p ∈ ∆k.

Then Ω is a regular negentropy.

Proof. We first check that Θ is a negentropy. Clearly, Θ is symmetric (item 2 of

Definition IV.20). Below, let p ∈ ∆k be arbitrary and let p̃ = (p2, . . . , pk)
⊤ ∈ ∆̃k.

By assumption on a, we have 0 ≤ Ω(p)−a ≤ −a. Therefore, by g being monotone,

we have g(Ω(p) − Ω(u)) ≤ g(−a). This proves that Θ(p) ≤ 0. Since Ω(eki ) = 0, we

have Θ(eki ) = 0 as well. This proves item 3 of Definition IV.20.

Next, since g : R≥0 → R≥0 is continuous and strictly increasing, g is a homeomor-

phism. In particular, g is closed. Since Ω and g are both closed, it follows that Θ is

also closed.
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It is easy to see that Θ̃(p̃) := g(Ω̃(p̃)− a)− g(−a). Thus, Θ̃ is twice differentiable

in the interior of ∆̃k. Furthermore, by Proposition IV.89, we get that Θ̃ is of Legendre

type. In particular, Θ̃ is strictly convex, and so Θ is convex. This proves item 1 of

Definition IV.20. Thus, we have prove that Θ is a regular negentropy.

Proposition IV.93. Let Ω : ∆k → R be a totally regular negentropy and let

g : R≥0 → R≥0 be as in Proposition IV.89. Furthermore, suppose that g is twice dif-

ferentiable. Let u := (1/k)1k ∈ ∆k be uniform probability vector. Define Θ : ∆k → R

by

Θ(p) := g(Ω(p)− Ω(u))− g(−Ω(u)), ∀p ∈ ∆k.

Then Θ is a totally regular negentropy. Furthermore, if g′(0) = 0, then Θ is not

strongly-convex.

Proof. By Definition IV.21, we must show that Θ(n) is a regular negentropy for each

n ∈ {2, . . . , k}. Let a = Ω(u). Note that since Ω is symmetric and convex, we must

have that a ≤ Ω(p) for all p ∈ ∆k. Furthermore, it is easy to see that Θ̃(n)(q̃) :=

g(Ω̃(n)(q̃) − a) − g(−a) for all q ∈ ∆̃n. Now, apply Proposition IV.92 to Θ(n) and

a = Ω(u), we get the desired result.

The “Furthermore” part follows immediately from Corollary .

Example IV.94. For a concrete example, take Ω = −H to be the negative Shannon

entropy and g(x) = x2 the square function.

4.9 Gamma-Phi loss

Definition IV.95 (Convergence in extended reals). Let R := R∪{±∞} and R≥0 =

R≥0 ∪ {+∞}. A sequence {zt}t ⊆ R has a limit in R if one of the following holds: 1)

{zt} has a limit in the usual sense, 2) for all c ∈ R, we have zt ≥ c (resp. zt ≤ c) for

all t≫ 0 in which case we say limt z
t = +∞ (resp. limt z

t = −∞).
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We have the following elementary properties regarding convergence in the ex-

tended reals:

Proposition IV.96. Let {zt} and {z̃t} be sequences in R that has a limit in R. Then

zt + z̃t has a limit in R equal to limt z
t + limt z̃

t if any of the following holds:

1. at least one of limt z
t or limt z̃

t is finite, i.e., ∈ R,

2. {zt}t and {z̃t}t are both ⊆ [0,∞),

3. {zt}t and {z̃t}t are both ⊆ (−∞, 0].

Definition IV.97. A function f : R → R is monotone non-increasing (resp. non-

decreasing) if f(x) ≥ f(y) for all x, y ∈ R such that x ≤ y (resp. x ≥ y).

Lemma IV.98. Let f : R→ R be continuous and monotone non-increasing. Suppose

that {zt}t ⊆ R has a limit z∗ ∈ R. Then f(zt) has a limit ∈ R and

lim
t
f(zt) =


f(z∗) : z∗ ∈ R

infx∈R f(x) : z∗ = +∞

supx∈R f(x) : z∗ = −∞.

(4.46)

Thus, the statement limt f(z
t) = f(limt z

t) is correct. When f is monotone non-

decreasing, Equation (4.46) holds with the inf and sup swapped.

Proof. If z∗ ∈ R, then the result is simply the definition of continuity. Next, suppose

that z∗ = +∞. Our goal is to show that limt f(z
t) exists and converges to I :=

infx∈R f(x).

Consider the case that I = −∞. Then for any U ∈ R, there exists u ∈ R such

that f(u) ≤ U . Since z∗ = +∞, zt ≥ u for all t ≫ 0 sufficiently large, and in which

case f(zt) ≤ f(u) ≤ U . Since U ∈ R is arbitrary, we have that limt f(z
t) = −∞

(Definition IV.95).

Now, consider the case that I ∈ R. Then by definition f(zt) ≥ I for all t.

Furthermore, for any ϵ > 0, there exists u such that f(u) ≤ I + ϵ. Again, since
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z∗ = +∞, zt ≥ u for all t≫ 0 sufficiently large, in which case f(zt) ≤ f(u) ≤ I + ϵ.

Since ϵ > 0 is arbitrary, this proves that limt f(z
t) = I. The proof for the case when

z∗ = −∞ is completely analogous. Furthermore, when f is monotone non-decreasing,

the roles of inf and sup are clearly swapped.

Definition IV.99. A sequence of vectors {vt}t ∈ Rk is totally convergent if for all

y, j ∈ [k], both sequences of real numbers {vty} and {vty − vtj} have limits in R.

Lemma IV.100. Every sequence {vt}t ∈ Rk has a subsequence that is totally con-

vergent.

Proof. Every sequence of real numbers has a convergent subsequence with limit in

R ∪ {±∞}. By repeatedly passing to convergent subsequences, first for all j ∈ [k],

then for all pairs j, j′ ∈ [k] with j < j′, we get the desired result.

Lemma IV.101. Let {vt}t ⊆ Rk be a totally convergent sequence and p ∈ ∆k.

Then the limit limtCp(v
t) exists and is ∈ [0,+∞]. If {ṽt}t ⊆ Rk is another totally

convergent sequence such that limt v
t
y − vtj = limt ṽ

t
y − ṽtj for all y, j ∈ [k], then

limtCp(v
t) = limtCp(ṽ

t).

Proof. Define aty :=
∑

j∈[k]:j ̸=y ϕ(v
t
y − vtj) and ãty :=

∑
j∈[k]:j ̸=y ϕ(ṽ

t
y − ṽtj). We proceed

stepwise as follows:

Step 1: limt ϕ(v
t
y − vtj) = limt ϕ(ṽ

t
y − ṽtj) as elements of [0,+∞],

Step 2: limt a
t
y = limt ã

t
y as elements of [0,+∞],

Step 3: limt γ(a
t
y) = limt γ(ã

t
y) as elements of [0,+∞]

Step 4: limt

∑
y∈[k] pyγ(a

t
y) = limt

∑
y∈[k] pyγ(ã

t
y)

Proof of Step 1. From Lemma IV.98 and that fact that ϕ is monotone and contin-

uous, we get that limt ϕ(v
t
y−vtj) = ϕ(limt v

t
y−vtj) and limt ϕ(ṽ

t
y− ṽtj) = ϕ(limt ṽ

t
y− ṽtj).

Note that Lemma IV.98 also guarantees that these limits exist. Non-negativity of the

limit values follows from the non-negativity of ϕ.
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Step 2. From Proposition IV.96 and the non-negativity of ϕ, we have

lim aty =
∑

j∈[k]\{y}

lim
t
ϕ(vty − vtj) =

∑
j∈[k]\{y}

lim
t
ϕ(ṽty − ṽtj) = lim ãty

where the equality in the middle follows from Step 1. Note that Proposition IV.96

also guarantees that these limits exist.

Step 3. This follows from Step 2, Lemma IV.98 and the non-negativity of γ on

[0,∞).

Step 4. This follows from Step 3 and Proposition IV.96.

Corollary IV.102. Let {vt}t ⊆ Rk be a totally convergent sequence and S ⊆ [k] be

a set such that limt v
t
y ∈ R for all y ∈ S. Define {ṽt}t ⊆ Rk by ṽtj := vtj if j ̸∈ S and

ṽtj := limt v
t
j if j ∈ S. Then limtCp(v

t) = limtCp(ṽ
t) as elements of [0,+∞].

Proof. Note that {vt}t and {ṽt}t satisfy the conditions of Lemma IV.101.

Proposition IV.103. Let L be the Gamma-Phi loss as in Example IV.5 where γ

satisfies Definition IV.13 condition (G2) and ϕ satisfies Definition IV.14 condition

(F). Let p ∈ ∆k and y, y′ ∈ [k] be such that py′ > py. Suppose {vt}t ⊆ Rk is a sequence

where lim inft v
t
y − vty′ > 0 and limtC

L
p (v

t) < +∞ exists. Then limtC
L
p (v

t) > CL∗
p .

Proof. Suppose that limtCp(v
t) = C∗

p. We show that this leads to a

contradiction. Since limtCp(v
t) < +∞ and py′ > py ≥ 0, we have

lim supt py′γ
(∑

j∈[k]\{y′} ϕ(v
t
y′ − vtj)

)
< ∞. By our assumptions on γ from Theo-

rem IV.15, we have

M := lim sup
t

∑
j∈[k]\{y′}

ϕ(vty′ − vtj) <∞.

By assumption, there exists ϵ > 0 such that vty ≥ vty′ + ϵ for all t≫ 0. Below, we

assume t is in this sufficiently large regime. Hence, for all j ∈ [k] we have vty − vtj >
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vty′−vtj and consequently ϕ(vty−vtj) ≤ ϕ(vty′−vtj). Furthermore, vty−vty′ ≥ ϵ > 0 > −ϵ ≥

vty′−vty and so ϕ(vty−vty′) ≤ ϕ(ϵ) < ϕ(−ϵ) ≤ ϕ(vty′−vty). Let at =
∑

j∈[k]\{y′} ϕ(v
t
y′−vtj)

and bt =
∑

j∈[k]\{y} ϕ(v
t
y−vtj). Furthermore, define ãt := ϕ(−ϵ)+∑j∈[k]\{y,y′} ϕ(v

t
y′−vtj)

and b̃t := ϕ(ϵ) +
∑

j∈[k]\{y,y′} ϕ(v
t
y − vtj). Observe that

ãt − b̃t = ϕ(−ϵ)− ϕ(ϵ) +
∑

j∈[k]\{y,y′}

ϕ(vty′ − vtj)− ϕ(vty − vtj) ≥ ϕ(−ϵ)− ϕ(ϵ).

In summary, we have 0 ≤ bt ≤ b̃t ≤ ãt ≤ at ≤ M < ∞. Let τ ∈ Sym(k) be the

permutation that swaps y and y′. By Lemma IV.29, we have

Cp(v
t)− Cp(τ(vt)) = (py − py′)(Ly(vt)− Ly′(vt)) = (py − py′)(γ(at)− γ(bt)).

By the Fundamental Theorem of Calculus, we have

γ(at)− γ(bt) =
at∫
bt

γ′(x)dx ≥
ãt∫
b̃t

γ′(x)dx ≥ (ãt − b̃t) inf
x∈[b̃t,ãt]

γ′(x)

≥ (ϕ(−ϵ)− ϕ(ϵ)) inf
x∈[0,M ]

γ′(x).

By our assumption on γ, we have δ := infx∈[0,M ] γ
′(x) > 0. Thus,

lim
t→∞

Cp(v
t)− Cp(τ(v

t)) ≥ (py − py′)(ϕ(−ϵ)− ϕ(ϵ))δ > 0

where the right hand side is a positive quantity independent of t. Therefore,

lim
t→∞

Cp(v
t) > lim

t→∞
Cp(τ(v

t)).

This contradicts that limt→∞Cp(v
t) = C∗

p.

Before proceeding, we adopt the notation {vt}t ≡ α to denote that vt = α for all
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t, where {vt}t ⊆ R is a sequence of real numbers and c ∈ R is a constant.

Proposition IV.104. Let L be the Gamma-Phi loss as in Example IV.5 where γ

satisfies Definition IV.13 (G1) and ϕ satisfies Definition IV.14 (F). Let p ∈ ∆k
desc

and z ∈ [k] be such that C∗
p = inf{Cp(v) : v ∈ Rk, vz = maxv}. Then there exists a

sequence {vt}t ⊆ Rk−1 satisfying the following properties:

1. limt→∞CL
p (v

t) = C∗
p

2. there exists an index ℓ ∈ [k] and a vector α := (α1, . . . , αℓ) ∈ Rℓ such that for

each j ∈ {1, . . . , ℓ} we have {vtj} ≡ αj and limt v
t
j = −∞ for j > ℓ. In addition,

α1 = 0.

3. Let q := (
∑ℓ

j=1 pj)
−1 (p1, . . . , pℓ) ∈ ∆ℓ

desc. Then Cq(α) = C∗
q.

Furthermore, suppose γ satisfies Definition IV.13 (G2), z > 1, and pz−1 > pz. Then

{vt} can be chosen to further satisfy αj = 0 for all j ∈ [z] .

Proof. Let {vt}t ⊆ Rk−1 be a sequence such that limt→∞CL
p (v

t) = C∗
p and vtz =

maxvt for all t ∈ N. Throughout, t denotes the index of the sequence where “for

all t” means “for all t ∈ N”. We will refine the sequence vt until all properties P1-5

below are met in addition. Properties marked by (⋆) are only guaranteed when γ

satisfies Definition IV.13 (G2), i.e., the condition in the “Furthermore” part of the

result.

Properties

I. maxvt = 0 for all t

II. {vt}t is totally convergent and {vtj}t has a limit in [−∞, 0] for each j ∈ [k]

III. (⋆) the sequence {vtj}t ≡ 0 for each j ∈ [z]

IV. there exists an ℓ ∈ [k] such that for each j ∈ [ℓ], we have {vtj} ≡ αj where

αj ∈ (−∞, 0] and for each j ∈ [k] \ [ℓ] := {ℓ+ 1, . . . , k}, we have limt v
t
j = −∞.

V. (⋆) ℓ ≥ z.

Properties I and II. To begin, note that Cp(v) = Cp(v−c1) for any c ∈ R and any
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v ∈ Rk. Replacing each vt by vt−(maxvt)1 for all t, we may assume vtz = maxvt = 0

for all t. In particular, vtj ∈ (−∞, 0] for all j ∈ [k] and t. Passing to a subsequence if

necessary, we may assume that {vt}t is totally convergent (Lemma IV.100).

Property III. (⋆) By Property I, we already have vtz = maxvt = 0. By the

assumption that pz−1 > pz and that p ∈ ∆k
desc, we have pj > pz for each j ∈

[z − 1]. Furthermore, by Property 2, vtz − vtj = −vtj has a limit in [0,∞]. By

Proposition IV.103, limt−vtj ̸∈ (0,∞]. Thus limt−vtj = 0. Now, define the sequence

{ṽt} by

ṽtj :=


0 : j ∈ {1, . . . , z − 1}

vtj : j ∈ {z, . . . , k}

for all t. By Corollary IV.102, we have {ṽt}t is also totally convergent, limtCp(ṽ
t) =

limtCp(v
t). Thus, limtCp(ṽ

t) = C∗
p. Replacing vt by ṽt, we have that Property III

holds.

Property IV. Let σt ∈ Sym(k) be the permutation that sorts vt in non-increasing

order as in Proposition IV.30, i.e., vtσt(1) ≥ · · · ≥ vtσt(k). By Proposition IV.30,

Cp(σ
t(vt)) ≤ Cp(v

t) and hence limtCp(σ
t(vt)) = C∗

p as well. We now replace vt by

σt(vt). Due to the sorting, the new vt may no longer be totally convergent. However,

passing to a subsequence if necessary, we can still assume that the new vt is totally

convergent. Note that Property III still holds after sorting. From Property I, we have

that maxvt = 0 and so {vt1}t ≡ 0.

By Property II, we have limt v
t
j ∈ [−∞, 0]. By the sorting in the preceding

paragraph, we have that limt v
t
1 ≥ · · · ≥ limt v

t
k. Now, let ℓ ∈ [k] be the largest

index such that limt v
t
ℓ > −∞. Such an index exists because limt v

t
1 = 0. Let

αj := limt v
t
j ∈ (−∞, 0] for each j ∈ {1, . . . , ℓ}. Define ṽt such that {ṽtj}t ≡ αj

for j ∈ {1, . . . , ℓ} and {ṽtj}t = {vtj}t for j > ℓ. Then by Corollary IV.102, we have ṽt

is totally convergent, and limtCp(ṽ
t) = limtCp(v

t). Replace vt by ṽt.
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Property V. (⋆) By Property III, {vtj} ≡ 0 for each j ∈ [z]. Hence, by the

definition of ℓ, we have ℓ ≥ z.

We now proceed with the rest of the proof for Proposition IV.104. Consider the

sequence {vt}t constructed as above. Then items 1 and 2 of Proposition IV.104, as

well as the “Furthermore” part already hold. It only remains to check item 3 of

Proposition IV.104. Below, we write [k] \ [ℓ] := {ℓ+ 1, . . . , k}. Now, note that

lim
t
Cp(v

t) (4.47)

=
∑
y∈[k]

pyγ(
∑

j∈[k]:j ̸=y

ϕ(lim
t
vty − vtj)) (4.48)

=
∑
y∈[ℓ]

pyγ(
∑

j∈[k]:j ̸=y

ϕ(lim
t
vty − vtj)) +

∑
y∈[k]\[ℓ]

pyγ(
∑

j∈[k]:j ̸=y

ϕ(lim
t
vty − vtj))︸ ︷︷ ︸

=:A

(4.49)

= (p1 + · · ·+ pℓ︸ ︷︷ ︸
=:S

)
∑
y∈[ℓ]

qyγ(
∑

j∈[k]:j ̸=y

ϕ(lim
t
vty − vtj)) + A. (4.50)

Now, we focus on limt v
t
y − vtj case by case:

lim
t
vty − vtj =


αy − αj : y ∈ [ℓ], j ∈ [ℓ]

αy − limt v
t
j = +∞ : y ∈ [ℓ], j ∈ [k] \ [ℓ]

limt v
t
y − αj = −∞ : y ∈ [k] \ [ℓ], j ∈ [ℓ].

Note that we omitted the y ∈ {ℓ+1, . . . , k}, j ∈ {ℓ+1, . . . , k} case in which we leave

limt v
t
y − vtj as is without further simplification. Now,

ϕ(lim
t
vty − vtj) =


ϕ(αy − αj) : j ∈ [ℓ]

ϕ(+∞) = 0 : j ∈ {ℓ+ 1, . . . , k}.
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Putting it all together, we have

lim
t
Cp(v

t) (4.51)

= S
∑
y∈[ℓ]

qyγ(
∑

j∈[k]:j ̸=y

ϕ(lim
t
vty − vtj)) + A (4.52)

= S
∑
y∈[ℓ]

qyγ(
∑

j∈[ℓ]:j ̸=y

ϕ(αy − αj) +
∑

j∈[k]\[ℓ]:j ̸=y

ϕ(+∞)) + A (4.53)

= S
∑
y∈[ℓ]

qyγ(
∑

j∈[ℓ]:j ̸=y

ϕ(αy − αj)) + A (4.54)

= S · Cq(α) + A. (4.55)

Now, let β = (β1, . . . , βℓ) ∈ Rℓ be arbitrary and define a sequence {wt} ⊆ Rk by

wtj :=


βj : j ∈ [ℓ]

vtj : j ∈ [k] \ [ℓ].

Then similar to the above, we have the decomposition

lim
t
Cp(w

t
j) =

∑
y∈[ℓ]

pyγ(
∑

j∈[k]:j ̸=y

ϕ(lim
t
wty − wtj)) +

∑
y∈[k]\[ℓ]

pyγ(
∑

j∈[k]:j ̸=y

ϕ(lim
t
wty − wtj))︸ ︷︷ ︸

=:B

.

We claim that A = B and limtCp(w
t) = S · Cq(β) + A. We first prove that A = B.

To this end, observe that

lim
t
wty − wtj =



βy − βj : y ∈ [ℓ], j ∈ [ℓ]

βy − limt v
t
j = +∞ : y ∈ [ℓ], j ∈ [k] \ [ℓ]

limt v
t
y − βj = −∞ : y ∈ [k] \ [ℓ], j ∈ [ℓ]

limt v
t
y − vtj : y ∈ [k] \ [ℓ], j ∈ [k] \ [ℓ].
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In particular, for y ∈ [k] \ [ℓ], j ∈ [ℓ], we have limtw
t
y − wtj = −∞ = limt v

t
y − vtj.

Thus,

B =
∑

y∈[k]\[ℓ]

pyγ(
∑

j∈[ℓ]:j ̸=y

ϕ(lim
t
wty − wtj) +

∑
j∈[k]\[ℓ]:j ̸=y

ϕ(lim
t
wty − wtj))

=
∑

y∈[k]\[ℓ]

pyγ(
∑

j∈[ℓ]:j ̸=y

ϕ(−∞) +
∑

j∈[k]\[ℓ]:j ̸=y

ϕ(lim
t
vty − vtj))

= A.

Next, we have

lim
t
Cp(w

t) =
∑
y∈[ℓ]

pyγ(
∑

j∈[k]:j ̸=y

ϕ(lim
t
wty − wtj)) + A

= S
∑
y∈[ℓ]

qyγ(
∑

j∈[ℓ]:j ̸=y

ϕ(βy − βj) +
∑

j∈[k]\[ℓ]:j ̸=y

ϕ(+∞)) + A

= S · Cq(β) + A.

Since limtCp(w
t) ≥ limtCp(v

t) = C∗
p, we have Cq(β) ≥ Cq(α). Since β is arbitrary,

this proves that Cq(α) = C∗
q.

Lemma IV.105. Let L be the Gamma-Phi loss as in Example IV.5 where γ satisfies

Definition IV.13 (G1) and ϕ satisfies Definition IV.14 (F). Let {vt}t be any sequence

satisfying items 1, 2 and 3 of Proposition IV.104. If py = 0 for each y > ℓ, then

Cq(α) = limtCp(v
t).

Proof. In Equation (4.51), we showed that limtCp(v
t) = S ·Cq(α)+A.Where S and

A are defined on Equations (4.50) and (4.49) respectively. If py = 0 for all y > ℓ,

then clearly S = 1 and A = 0.

Proposition IV.106. Let L be the Gamma-Phi loss as in Example IV.5 where γ

satisfies Definition IV.13 condition (G2), and ϕ satisfies Definition IV.14 condition
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(F). Suppose that q ∈ ∆ℓ and α ∈ Rℓ are such that α is a minimizer of Cq(·) and

α1 = α2. Then q1 = q2.

Proof. Recall that

Cq(v) =
∑
y∈[ℓ]

qyγ

 ∑
j∈[k]\{y}

ϕ(vy − vj)

 .

For each y, define Γy(v) := γ′
(∑

j∈[k]\{y} ϕ(vy − vj)
)
. Thus

∂Cq

∂vy
(v) =

qyΓy(v) ∑
j∈[k]\{y}

ϕ′(vy − vj)

−
 ∑
j∈[k]\{y}

qjΓj(v)ϕ
′(vj − vy)

 .

The vanishing of the first two partial derivatives

[
∂Cq

∂v1
(v) ∂Cq

∂v2
(v)

]
= 0 can be cast

in matrix form equivalently as follows:



q1Γ1(v)

q2Γ2(v)

q3Γ3(v)

...

qkΓk(v)



⊤ 

∑
j∈[k]\{1} ϕ

′(v1 − vj) −ϕ′(v1 − v2)

−ϕ′(v2 − v1)
∑

j∈[k]\{2} ϕ
′(v2 − vj)

−ϕ′(v3 − v1) −ϕ′(v3 − v2)
...

...

−ϕ′(vk − v1) −ϕ′(vk − v2)


= 0.

The above equation is satisfied at v = α, which satisfies α1 = α2 by assumption.



q1Γ1(α)

q2Γ2(α)

q3Γ3(α)

...

qkΓk(α)



⊤ 

∑
j∈[k]\{1} ϕ

′(α1 − αj) −ϕ′(0)

−ϕ′(0)
∑

j∈[k]\{2} ϕ
′(α2 − αj)

−ϕ′(α3 − α1) −ϕ′(α3 − α1)

...
...

−ϕ′(αk − α1) −ϕ′(αk − α1)


= 0.
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Equivalently, we can rearrange the above equation as

q1Γ1(α)

q2Γ2(α)


⊤ ∑j∈[k]\{1} ϕ

′(α1 − αj) −ϕ′(0)

−ϕ′(0)
∑

j∈[k]\{2} ϕ
′(α2 − αj)



=


q3Γ3(α)

...

qkΓk(α)


⊤ 

ϕ′(α3 − α1)

...

ϕ′(αk − α1)


︸ ︷︷ ︸

=:d

[
1 1

]
= d1⊤

Furthermore, note that

∑
j∈[k]\{1}

ϕ′(α1 − αj) = ϕ′(α1 − α2) +
∑

j∈[k]\{1,2}

ϕ′(α1 − αj)

= ϕ′(0) +
∑

j∈[k]\{1,2}

ϕ′(α1 − αj)

= ϕ′(0) +
∑

j∈[k]\{1,2}

ϕ′(α2 − αj)

=
∑

j∈[k]\{2}

ϕ′(α2 − αj).

Likewise, Γ1(α) = γ′(ϕ(0) +
∑

j∈[k]\{1,2} ϕ(v1 − vj)) = Γ2(α). Let a := ϕ′(0), b :=∑
j∈[k]\{1,2} ϕ

′(α1 − αj), and c := Γ1(α). Since γ′(·) > 0, we have c > 0 and so

c

q1
q2


⊤ a+ b −a

−a a+ b

 = d1⊤ =⇒

a+ b −a

−a a+ b


q1
q2

 =
d

c
1.

Note that since ϕ′ ≤ 0 and ϕ′(0) ̸= 0, we have a ∈ (−∞, 0) and b ∈ (−∞, 0]. First

consider the case when b < 0. Then det


a+ b −a

−a a+ b


 = (a+ b)2−a2 > 0 which

241



implies that

q1
q2

 =
d

c((a+ b)2 − a2)

a+ b a

a a+ b

1 =
d

c((a+ b)2 − a2)

2a+ b

2a+ b

 .
And thus, when b < 0, we have q1 = q2. On the other hand, if b = 0, then

 a −a

−a a


q1
q2

 =
d

c
1 =⇒ a(q1 − q2) = a(q2 − q1) =⇒ q1 − q2 = 0.

Thus, in the case that b = 0, we have q1 = q2 as well.

Lemma IV.107. Suppose L does not satisfy the ISC property. Then there exists a

probability vector p ∈ ∆k
desc and an index z ∈ {2, . . . , k} satisfying 1) pz−1 > pz and

2) C∗
p = inf{Cp(v) : v ∈ Rk, vz = maxv}.

Proof. By Definition IV.9, there exists some q ∈ ∆k and y ∈ [k] such that qy <

maxj∈[k] qj and

C∗
q = inf{Cq(v) : v ∈ Rk, vy = max

j∈[k]
vj}.

The above implies that there exists a sequence {vt}t ⊆ Rk such that limtCq(v
t) = C∗

q

and vty = maxj∈[k] v
t
j for all t. Let σ ∈ Sym(k) be such that σ(q) ∈ ∆k

desc. Let ỹ :=

σ−1(y) and z ∈ [k] be the smallest index such that qσ(z) = qσ(ỹ) (note that σ(ỹ) = y

by definition). Furthermore, we have that z > 1 since qσ(1) = maxq > qy = qσ(z).

Let τ ∈ Sym(k) be the permutation that swaps z and ỹ while leaving all other

elements of [k] unchanged. Note that if z = ỹ, then τ is the trivial permutation, i.e.,

the identity map on [k]. Define p := τ(σ(q)), and wt := τ(σ(vt)). Observe that

p = τ(σ(q)) = σ(q) and thus p ∈ ∆k
desc as well. We claim that pz−1 > pz. To see

this, note that

pz−1 = [τ(σ(q))]z−1 = [σ(q)]τ(z−1) = [σ(q)]z−1 = qσ(z−1) > qσ(z) = qy
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and

pz = [τ(σ(q))]z = [σ(q)]τ(z) = [σ(q)]ỹ = qσ(ỹ) = qy.

By Lemma IV.28, we have

lim
t
Cp(w

t) = lim
t
Cτ(σ(q))(τ(σ(v

t))) = lim
t
Cq(v

t) = C∗
q = C∗

τ(σ(q)) = C∗
p.

Furthermore, we have maxvt = maxσ(vt) = maxwt and so

wtz = [wt]z = [τ(σ(vt))]z = [σ(vt)]τ(z) = vtσ(τ(z)) = vtσ(ỹ) = vty = maxvt = maxwt.

In summary, we have an index z ∈ [k] where z > 1 and a probability vector

p ∈ ∆k
desc such that pz−1 > pz. Furthermore, we have a sequence {wt}t such that

limtCp(w
t) = C∗

p and wtz = maxwt. This implies the desired condition in the state-

ment of Lemma IV.107.

Proof. (of Theorem IV.15). Let p ∈ ∆k
desc and z ∈ {2, . . . , k} be as in Lemma IV.107,

which states that p and z satisfies the conditions of Proposition IV.104. Next, let

ℓ ∈ [k], α ∈ Rℓ, and q ∈ ∆ℓ
desc be as in Proposition IV.104, which satisfy Cq(α) = C∗

q

and qz < qz−1 ≤ q1 = maxq. Let τ ∈ Sym(ℓ) be the permutation which swaps z and

2 leaving all elements in [ℓ] \ {2, z} unchanged. Then

C∗
τ(q) = C∗

q = Cq(α) = Cτ(q)(τ(α)).

Let q̃ := τ(q) and α̃ := τ(α). Then [α̃]1 = [α]τ(1) = α1 = 0 and [α̃]2 = [α]τ(2) = αz =

0. In particular, α̃1 = α̃2. Thus, by Proposition IV.106, we have q̃1 = q̃2. However,

q̃1 = [q]τ(1) = q1 and q̃2 = [q]τ(2) = qz. Since qz < q1, we have a contradiction.
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4.9.1 A Gamma-Phi loss that is not ISC

In this section, we show an example of a Gamma Phi loss that satisfies the con-

ditions of [PS16] and yet is not classification-calibrated. The paragraph before Pires

et al. [PS16, Section 3.4.2] states that the Gamma-Phi loss is calibrated when γ is

strictly increasing and ϕ satisfies the same condition as [Zha04a, Theorem 6], namely

that ϕ is non-negative, non-increasing and ϕ′(0) < 0. However, in the following

example, we give a counterexample to the aforementioned statement.

Proposition IV.108. Let L be the Gamma-Phi loss as in Example IV.5 where

γ(x) =


1− (x− 1)2 : x < 1

2(x− 1)2 + 1 : x ≥ 1

and ϕ(x) = exp(−x). Then L is not ISC.

For r ∈ (1
2
, 1), define p := [r, 1− r, 0, . . . , 0] ∈ ∆k

desc. Thus, for a generic v ∈ Rk,

we have

Cp(v) = rγ

 ∑
j∈[k]\{1}

ϕ(v1 − vj)

+ (1− r)γ

 ∑
j∈[k]\{2}

ϕ(v2 − vj)

 .

Consider the set SEQ of all sequences {vt}t satisfying Proposition IV.104 all items

1, 2 and 3. For sequence {vt}t ∈ SEQ, there exists an ℓ ∈ [k] as in Proposition IV.104

item 2 such that limt v
t
j = −∞ if and only if j ∈ [k] satisfies j > ℓ. Below,

fix a sequence {vt}t ∈ SEQ such that ℓ is as small as possible. (4.56)

Furthermore, let q ∈ ∆ℓ
desc, α ∈ Rℓ be from Proposition IV.104 item 3. Recall that

we have limtCp(v
t) = C∗

p and that Cq(α) = C∗
q. Furthermore, Proposition IV.104

asserts that vt1 = 0.
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Claim. ℓ = 2 and α = [0, 0].

We first show that ℓ = 2. To this end, we show that assuming ℓ = 1 or ℓ ∈

{3, . . . , k} both lead to contradictions. First, assume that ℓ = 1. Then we have

limt v
t
2 = · · · = limt v

t
k = −∞. Since γ is increasing and ϕ ≥ 0, we have for any

v ∈ Rk that

Cp(v) ≥ rγ

 ∑
j∈[k]\{1}

ϕ(v1 − vj)

+ (1− r)γ (ϕ(v2 − v1)) .

Since vt1 = 0 for all t, we have

lim
t
Cp(v

t) ≥ lim
t
rγ

 ∑
j∈[k]\{1}

ϕ(−vj)

+ (1− r)γ (ϕ(v2))

= rγ ((k − 1)ϕ(+∞)) + (1− r)γ (ϕ(−∞))

= rγ(0) + (1− r)γ(+∞)

≥ +∞. ∵ γ(+∞) = +∞ (Definition IV.13)

This is a contradiction since Cp(0) = γ ((k − 1)ϕ(0)) < +∞.

Next, we assume that ℓ ∈ {3, . . . , k} and derive a contradiction. For a generic

w ∈ Rℓ, recall that

Cq(w) = rL1(w) + (1− r)L2(w)

where for y ∈ {1, 2}, we have

Ly(w) = γ

 ∑
j∈[ℓ]\{y}

ϕ(wy − wj)

 .
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Let ϵ > 0 and define β ∈ Rℓ by

βj =


αj : j ̸= 3

αℓ − ϵ : j = ℓ.

For y ∈ {1, 2}, since βℓ < αℓ and βj = αj for j ∈ [k] \ {ℓ}, we have


βy − βj = αy − αj : j ̸= ℓ

βy − βℓ > αy − αℓ : j = ℓ

=⇒


ϕ(βy − βj) = αy − αj : j ̸= ℓ

ϕ(βy − βℓ) ≤ ϕ(αy − αℓ) : j = ℓ

=⇒ Ly(β) = γ

 ∑
j∈[ℓ]\{y}

ϕ(βy − βj)

 ≤ γ

 ∑
j∈[ℓ]\{y}

ϕ(αy − α)

 = Ly(α).

Thus, Cq(α) ≥ Cq(β) and so Cq(α) ≥ limϵ→∞Cq(β) as well. By Lemma IV.105 and

that py = 0 for y ≥ 2, we have limtCp(v
t) = Cq(α). Now, define {ṽt}t ⊆ Rk by

ṽtj :=


vtj : j ̸= ℓ

−t : j = ℓ.

By construction we have limtCp(ṽ
t) = limϵ→∞Cq(β) and {ṽt}t ∈ SEQ. Furthermore,

since limt ṽ
t
ℓ = −∞, we have a contradiction of the minimality of ℓ (Equation 4.56).

Below, we can assume that ℓ = 2, where we have q = [r, 1− r] ∈ ∆2
desc and so

Cq(α) = rγ (ϕ(−α2)) + (1− r)γ (ϕ(α2)) = inf
w∈R2

Cq(w).
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Consider the function

F (x) = rγ (ϕ(x)) + (1− r)γ (ϕ(−x)) .

Then we have Cq(α) = infx F (x). Now, let us compute the derivative of F (x). Using

the chain rule, we have

dF

dx
(x) = r

dγ

dx
(ϕ(x))

dϕ

dx
(x)− (1− r)dγ

dx
(ϕ(−x))dϕ

dx
(−x).

Now, dϕ
dx
(x) = − exp(−x) and

dγ

dx
(x) =


−2(x− 1) : x < 1

4(x− 1) : x ≥ 1.

If x > 0, then ϕ(x) < 1 and ϕ(−x) > 1. Thus, when x > 0, we have

dF

dx
(x) = r(−2(exp(−x)− 1))(− exp(−x))− (1− r)(4(exp(x)− 1))(− exp(x))

= 2r(exp(−x)− 1) exp(−x) + 4(1− r)(exp(x)− 1) exp(x)

=: G+(x).

If x ≤ 0, then ϕ(x) ≥ 1 and ϕ(−x) ≤ 1. Thus, when x ≤ 0, we have

dF

dx
(x) = r(4(exp(−x)− 1))(− exp(−x))− (1− r)(−2(exp(x)− 1))(− exp(x))

= −4r(exp(−x)− 1) exp(−x)− 2(1− r)(exp(x)− 1) exp(x)

=: G−(x).
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Thus, by definition, we have

dF

dx
(x) =


G+(x) : x > 0

G−(x) : x < 0

0 : x = 0.

Lemma IV.109. If r ∈ [1
3
, 2
3
], then dF

dx
(x) vanishes only at x = 0.

We now consider the zeros of both G+(x) and G−(x), i.e., x ∈ R where the

functions vanish. Clearly, both functions vanish at x = 0. For x ̸= 0, we compute

0 = G+(x) = 2r(exp(−x)− 1) exp(−x) + 4(1− r)(exp(x)− 1) exp(x)

⇐⇒ r

2(1− r) = − exp(x)(exp(x)− 1)

exp(−x)(exp(−x)− 1)
.

Simplifying the right hand side, we have

− exp(x)(exp(x)− 1)

exp(−x)(exp(−x)− 1)
= − exp(2x)

exp(x)− 1

exp(−x)− 1

= − exp(2x) exp(x)
1− exp(−x)
exp(−x)− 1

= exp(3x).

Thus,

0 = G+(x) ⇐⇒
1

3
ln

(
r

2(1− r)

)
= x.

Similarly, for the zeroes of G(x) we have

0 = G−(x) ⇐⇒
1

3
ln

(
2r

(1− r)

)
= x.
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Thus, G+(x) has a zero on x > 0 if and only if

1

3
ln

(
r

2(1− r)

)
> 0 ⇐⇒ r

2(1− r) > 1 ⇐⇒ r > 2/3.

Similarly, G−(x) has a zero on x < 0 if and only if

1

3
ln

(
2r

1− r

)
< 0 ⇐⇒ 2r

1− r < 1 ⇐⇒ r < 1/3.

Taken together, we see that if r ∈ [1
3
, 2
3
], then dF

dx
(x) only vanishes at x = 0. Thus,

we conclude that when r ∈ (1
2
, 2
3
], we must have α = [0, 0] ∈ R2. Now, define another

sequence {wt}∞t=1 ⊆ Rk where

wtj :=


0 : j = 1

1/t : j = 2

−t : j ∈ {3, . . . , k}.

Then we have limtCp(w
t) = C∗

p and argmaxj∈[k]w
t
j = 2 for all t. Thus, we have

demonstrated an example of p and y ∈ [k] where

C∗
p = inf{Cp(v) : v ∈ Rk, vy = maxv},

namely when p = [r, 1− r, 0, . . . , 0] ∈ ∆k
desc and y = 2. This shows that L is not ISC

(Definition IV.9).

4.10 Discussion

We proved sufficient conditions for two families of losses: the Gamma-Phi and

the Fenchel-Young losses. We also showed that previous attempts to prove sufficient

condition for the Gamma-Phi loss did not account for behavior at infinity. As such,
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we were able to construct a counterexample of a non-classification-calibrated loss that

would previously have been deemed to be calibrated. Thus, our work augments the

repertoire of the existing sufficient conditions.

Moving forward, there are many important open questions. Perhaps the most im-

portant question is whether classification-calibration results translates into the “real

world” where classifiers are from a restricted candidate set H strictly smaller than the

set of all Borel functions F from Theorem IV.12. Progress in this area have already

been made by Duchi et al. [DKR18] where H are certain quantized functions, and by

Zhang et al. [ZA20] where H are linear functions.

Another interesting future direction would be bounding the regret functions of

PERM losses as Nowak-Vila et al. [NBR19] and Blondel [Blo19] have done for Fenchel-

Young losses of strongly convex negentropy. Frongillo et al. [FW21] showed the poly-

hedral losses (such as the hinge loss) are, under certain conditions, optimal from the

perspective of regret functions. Exploring the relationship between the quality of the

regret function and the empirical performance, e.g., comparing polyhedral losses with

Fenchel-Young losses, will be interesting.

Much progress have been made on implicit regularization of optimization algo-

rithms [Sou+18; Ji+20] for binary classification. However, to the best of our knowl-

edge, the only known result regarding implicit regularization in multiclass classifica-

tion is for the cross entropy [Sou+18]. In the binary case, Ji et al. [Ji+20] showed

that implicit regularization depends on the loss function in a subtle way. Therefore,

we believe that understanding implicit regularization for multiclass losses besides the

cross-entropy is an important future direction.
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4.11 Mathematical Backgrounds

4.11.1 Non-singular M-matrix

We recall some definitions from linear algebra.

Definition IV.110. Let A = (aij) ∈ Rn×n be a matrix. We say that A is a

1. Z-matrix if aij ≤ 0 whenever i ̸= j.

2. M-matrix if A is a Z-matrix and all eigenvalues of A have nonnegative real

parts.

3. strictly diagonally dominant matrix if |aii| >
∑

j∈[n]:j ̸=i |aij| for all i ∈ [n].

4. monotone matrix if for all x ∈ Rn, Ax ≥ 0 implies x ≥ 0. If, in addition,

Ax > 0 implies x > 0, then A is said to be strictly monotone.

The following result is known as the Levy–Desplanques theorem and the Gersh-

gorin circle theorem.

Theorem IV.111. Let A be a strictly diagonally dominant matrix. Then A is non-

singular and all eigenvalues of A have nonnegative real parts.

The above result immediately implies the following:

Corollary IV.112. If A is a strictly diagonally dominant Z-matrix, then A is a

non-singular M-matrix.

Non-singular M-matrix has many equivalent characterizations. The one relevant

to us is the following:

Theorem IV.113 ([Ple77]). Let A be a Z-matrix. Then A is a non-singular M-

matrix if and only A is a monotone matrix.

Lemma IV.114. Let A = (aij) ∈ Rn×n be a non-singular M-matrix. If the diagonals

of A are positive, then A is strictly monotone.
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Proof. From Theorem IV.113, we have that A is monotone. Thus, Ax > 0 implies

x ≥ 0. We only have to check additionally that x > 0. Since A is a Z-matrix, the

off-diagonals are non-positive, i.e., aij ≤ 0 for i ̸= j. Let i ∈ [n]. We need to check

that xi > 0. To this end, note that

0 < [Ax]i =
n∑
j=1

aijxj = aiixi +
∑
j ̸=i

aijxj︸ ︷︷ ︸
≤0

≤ aiixi.

Since aii > 0, we get xi > 0.

4.11.2 Vector calculus

Given a differentiable function f = (f1, . . . , fm)
′ : Rn → Rm, the Jacobian of f at

x ∈ Rn, denoted ∇f (x) is the m× n matrix whose (i, j)-th entry is

[∇f (x)]ij =
∂fi
∂xj

(x)

where i ∈ [m] and j ∈ [n]. Note that we can write the above as

∇f (x) =


∇f1(x)

...

∇fm(x)

 .

If f is a linear map, i.e., f(x) = Ax for some a matrix A ∈ Rm×n, then ∇f (x) = A.

Theorem IV.115 (Chain rule). If f : Rn → Rm and g : Rm → Rl are differentiable,

then ∇g◦f (x) = ∇g(f(x)) · ∇f (x).

The follow is taken from Munkres [Mun18, Theorem 8.2].

Theorem IV.116 (Inverse function theorem). Let U be open in Rn, f : U → Rn

be r-times continuously differentiable and V = f(U). If f is one-to-one on U and if
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∇f (x) is non-singular for all x ∈ U , then V is open in Rn and the inverse function

g : V → U is r-times continuously differentiable.

The following is an immediate consequence of Theorems IV.116 and IV.115:

Corollary IV.117. In the setting of Theorem IV.116, we have ∇f−1(f(x)) =

∇f (x)
−1.
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CHAPTER V

VC Dimension of Partially Quantized Neural

Networks in the Overparametrized Regime

Vapnik-Chervonenkis (VC) theory has so far been unable to explain the small

generalization error of overparametrized neural networks. Indeed, existing applica-

tions of VC theory to large networks obtain upper bounds on VC dimension that are

proportional to the number of weights, and for a large class of networks, these upper

bound are known to be tight. In this work, we focus on a subclass of partially quan-

tized networks that we refer to as hyperplane arrangement neural networks (HANNs).

Using a sample compression analysis, we show that HANNs can have VC dimension

significantly smaller than the number of weights, while being highly expressive. In

particular, empirical risk minimization over HANNs in the overparametrized regime

achieves the minimax rate for classification with Lipschitz posterior class probability.

We further demonstrate the expressivity of HANNs empirically. On a panel of 121

UCI datasets, overparametrized HANNs match the performance of state-of-the-art

full-precision models.
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5.1 Introduction

Neural networks have become an indispensable tool for machine learning practi-

tioners, owing to their impressive performance especially in vision and natural lan-

guage processing [GBC16]. In practice, neural networks are often applied in the

overparametrized regime and are capable of fitting even random labels [Zha+21]. Ev-

idently, these overparametrized models perform well on real world data despite their

ability to grossly overfit, a phenomenon that has been dubbed “the generalization

puzzle” [NK19].

Toward solving this puzzle, several research directions have flourished and offer

potential explanations, including implicit regularization [CB20], interpolation [CL21],

and benign overfitting [Bar+20]. So far, VC theory has not been able to explain the

puzzle, because existing bounds on the VC dimensions of neural networks are on the

order of the number of weights [Maa94; Bar+19]. It remains unknown whether there

exist neural network architectures capable of modeling rich set of classfiers with low

VC dimension.

The focus of this work is on a class of neural networks with threshold activation

that we refer to as hyperplane arrangement neural networks (HANNs). Using the

theory of sample compression schemes [LW86], we show that HANNs can have VC

dimension that is significantly smaller than the number of parameters. Furthermore,

we apply this result to show that HANNs have high expressivity by proving that

HANN classifiers achieve minimax-optimality when the data has Lipschitz posterior

class probability in an overparametrized setting.

We benchmark the empirical performance of HANNs on a panel of 121 UCI

datasets, following several recent neural network and neural tangent kernel works

[Kla+17; Wu+18; Aro+19; Sha+20]. In particular, [Kla+17] showed that, using a

properly chosen activation, overparametrized neural networks perform competitively

compared to classical shallow methods on this panel of datasets. Our experiments
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show that HANNs, a partially-quantized model, match the classification accuracy

of the self-normalizing neural network [Kla+17] and the dendritic neural network

[Wu+18], both of which are full-precision models.

5.2 Notations

The set of real numbers is denoted R. The unit interval is denoted [0, 1]. For an

integer k ≥ 1, let [k] = {1, . . . , k}. We use X to denote the feature space, which in

this work will either be Rd or [0, 1]d where d ≥ 1 is the ambient dimension/number

of features.

Denote by I{input} the indicator function which returns 1 if input is true and

0 otherwise. The sign function is given by sgn(t) = I{t ≥ 0} − I{t < 0}. For vector

inputs, sgn applies entry-wise.

The set of labels for binary classification is denoted B := {±1}. Joint distributions

on X × B are denoted by P , where X, Y ∼ P denotes a random instance-label

pair distributed according to P . Let f : X → B be a binary classifier. The risk

with respect to P is denoted by RP (f) := P (f(X) ̸= Y ). For an integer n ≥ 1,

the empirical risk is the random variable R̂P,n(f) := 1
n

∑n
i=1 I{f(Xi) ̸= Yi}, where

(X1, Y1), . . . , (Xn, Yn) ∼ P are i.i.d. The Bayes risk inff :X→BRP (f) with respect to

P is denoted by R∗
P .

Let f, g : {1, 2, . . . } → R≥0 be nonnegative functions on the natural numbers.

We write f ≍ g if there exists α, β > 0 such that for all n = 1, 2, . . . we have

αg(n) ≤ f(n) ≤ βg(n).

5.3 Hyperplane arrangement neural networks

A hyperplane H in Rd is specified by its normal vector w ∈ Rd and bias b ∈ R.

The mapping x 7→ sgn(w⊤x + b) indicates the side of H that x lies on, and hence
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induces a partition of Rd into two halfspaces. A set of k ≥ 1 hyperplanes is referred

to as a k-hyperplane arrangement, and specified by a matrix of normal vectors and a

vector of offsets:

W = [w1 · · ·wk] ∈ Rd×k and b = [b1, . . . , bk]
⊤.

Let qW,b(x) := sgn(W⊤x+ b) for all x ∈ Rd. The vector qW,b(x) ∈ Bk is called a sign

vector and the set of all realizable sign vectors is denoted SW,b := {qW,b(x) : x ∈ Rd}.

Each sign vector s ∈ SW,b uniquely defines a set {x ∈ Rd : qW,b(x) = s} known as a

cell of the hyperplane arrangement. The set of all cells forms a partition of Rd. For

an example, see fig. 5.1-left.

A classical result in the theory of hyperplane arrangement due to [Buc43] gives

the following tight upper bound on the number of distinct sign patterns/cells:

|SW,b| ≤
(
k

≤ d

)
:=


2k : k < d,(
k
0

)
+
(
k
1

)
+ · · ·+

(
k
d

)
: k ≥ d.

(5.1)

See [Fuk15] Theorem 10.1 for a simple proof. A hyperplane arrangement classifier

assigns a binary label y ∈ B to a point x ∈ Rd solely based on the sign vector

qW,b(x).

Definition V.1. Let BX be the set of all functions from X to B. A concept class C

over X is a subset of BX . Fix r, k positive integers, r ≤ min{d, k}. Let Boolk be the

set of all Boolean functions Bk → B. The hyperplane arrangement classifier class is

the concept class, denoted HAC(d, r, k), over Rd defined by

HAC(d, r, k) = {h ◦ qW,b : h ∈ Boolk, qW,b(x) := sgn(W⊤x+ b),

W ∈ Rd×k, rank(W) ≤ r, b ∈ Rk}.
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Figure 5.1:
Left: An arrangement of 3 hyperplanes {H1, H2, H3} in R2. There are 7
sign patterns. Middle: An example of a lookup table (see Remark V.2).
Right: the resulting classifier.

See fig. 5.2 for a graphical representation of HAC(d, r, k). When the set of Boolean

functions is realized by a neural network, we refer to the resulting classifier as a

hyperplane arrangement neural network (HANN).

Remark V.2. Consider a fixed hyperplane arrangement W, b and Boolean function

h ∈ Boolk. When performing prediction with the classifer h ◦ qW,b, the feature vector

x is mapped to a sign vector to which h is applied. Thus, we do not need to know

how h behaves outside of SW,b. The restriction of h to SW,b is a partially defined

Boolean function or a lookup table.

X1

X2

X3

X4

B1

B2

B3
Input Rd

Latent Rr

Boolean Bk h : Bk → B
B1B2B3 Y

−−− −
−−+ +
−+− +
...

...
+ + + −

Output

Y

hθ

Activations

Linear

Threshold

Figure 5.2:
The HAC(d, r, k) concept class as a neural network where d = 4, r = 2 and
k = 3. The Boolean function h is realized as a neural network hθ.

Remark V.3. The hidden layer of width r in fig. 5.2 allows the user to impose the

restriction that the hyperplane arrangement classifier depends only on r relevant

features, which can be either learned or defined by data preprocessing. When r =
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d, no restriction is imposed. In this case, the input layer is directly connected to

the Boolean layer. This is consistent with Definition V.1 where the rank constraint

rank(W) ≤ r becomes trivial.

Our next goal is to upper bound the VC dimension of HAC(d, r, k).

Definition V.4 (VC-dimension). Let C ⊆ BX be a concept class over X . A set

S := {x1, . . . , xn} ⊆ X is shattered by C if for all sequences (y1, . . . , yn) ∈ Bn, there

exists f ∈ C such that f(xi) = yi for all i ∈ [n]. The VC-dimension of C is defined as

VC(C) = sup{|S| : S ⊆ X , S is shattered by C}.

The VC-dimension has many far-reaching consequences in learning theory and,

in particular, classification. One of these consequences is a sufficient (in fact also

necessary) condition for uniform convergence in the sense of the following well-known

theorem. See [SB14] Theorem 6.8.

Theorem V.5. Let C be a concept class over X . There exists a constant C > 0 such

that for all joint distributions P on X ×B and all f ∈ C, we have |R̂P,n(f)−RP (f)| ≤

C
√
(VC(C) + log(1/δ))/n with probability at least 1 − δ with respect to the draw of

(X1, Y1), . . . , (Xn, Yn).

The above VC bound is useless in the overparametrized setting if VC(C) =

Θ(# of weights) ≫ n. We now present our main result: an upper bound on the

VC dimension of HAC(d, r, k).

Theorem V.6. Let d, r, k ≥ 1 be integers and HAC(d, r, k) be defined as in Defini-

tion V.1. Then

VC(HAC(d, r, k)) ≤ 8 ·
(
k(d+ 1) + k(d+ 1)(1 + ⌈log2 k⌉) +

(
k

≤ r

))
.
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In the next section, we will prove this result using a sample compression scheme.

Before proceeding, we comment on the significance of the result.

Remark V.7. Since
(
k
≤r

)
= O(kr), we have VC(HAC(d, r, k)) = O(kr + dk log k) which

only involves the input dimension d and the width of the first two hidden layers r and

k. For constant d and r ≥ 2, this reduces to VC(HAC(d, r, k)) = O(kr). In particular,

the number of weights used by an architecture to implement the Boolean function h

does not affect the VC dimension at all and can be even infinitely wide.

For instance, [MB17] Lemma 2.1 states that a 1-hidden layer neural network with

ReLU activation can model any k-input Boolean function if the hidden layer has

width ≥ 2k. Note that this network uses ≥ k2k weights, and k2k ≫ kr for fixed r and

k large.

[BV19] study implementation of Boolean functions using threshold networks. A

consequence of their Theorem 9.3 is that a 2-hidden layer network with widths ≥

c2k/2/
√
k can implement all k input Boolean functions, where c is a constant not

depending on k. This requires ≥ c22k/k weights which again is exponentially larger

than kr. Furthermore, this lower bound on the weights is also necessary as k →∞.

5.4 A sample compression scheme

In this section, we will construct a sample compression scheme for HAC(d, r, k).

As alluded to in the Related Work section, the size of a sample compression scheme

upper bounds the VC-dimension of a concept class, which will be applied to prove

theorem V.6. We first recall the definition of sample compression schemes with side

information introduced in [LW86].

Definition V.8. Let C be a concept class. A length n sequence {(xi, yi) ∈ X ×B}i∈[n]
is C-labelled if there exists f ∈ C such that f(xi) = yi for all i ∈ [n]. Denote by LC(n)

the set of C-labelled sequences of length at most n. Denote by LC(∞) the set of all
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C-labelled sequences of finite length. The concept class C over X has an m-sample

compression scheme with s-bits of side information if there exists a pair of maps (ρ, κ)

where

κ : LC(∞)→ LC(m)× Bs, ρ : LC(m)× Bs → BX

such that for all C-labelled sequences S := {(xi, yi)}i∈[n], we have ρ(κ(S))(xi) = yi for

all i ∈ [n]. The size of the sample compression scheme is size(ρ, κ) := m+ s.

Intuitively, κ and ρ can be thought of as the compression and the reconstruction

maps, respectively. The compression map κ keeps m elements from the training set

and s bits of additional information, which ρ uses to reconstruct a classifier that

correctly labels the uncompressed training set.

The main result of this section is:

Theorem V.9. HAC(d, r, k) has a sample compression scheme (ρ, κ) of size

size(ρ, κ) = k(d+ 1) + k(d+ 1)(1 + ⌈log2 k⌉) +
(
k

≤ r

)
.

Both the hyperplane arrangement (W, b) and the Boolean function h contribute

to the number of parameters/weights, which ≫ size(ρ, κ) for h in the examples of

Remark V.7. The rest of this section will work toward the proof of theorem V.9.

The following result states that a C-labelled sequence can be labelled by a hyperplane

arrangement classifier of a special form.

Proposition V.10. Let {(xi, yi)}i∈[n] be HAC(d, r, k)-labelled. Then there exist V =

[v1 · · · vk] ∈ Rd×k, c ∈ Rk and h ∈ Boolk such that for all i ∈ [n], we have 1)

yi = h(sgn(V⊤xi + c)), 2) rank(V) ≤ r and 3) |v⊤j xi + cj| ≥ 1 for all i ∈ [n], j ∈ [k].

The proof, given in Section 5.8.1, is similar to showing the existence of a max-

margin separating hyperplane for a linearly separable dataset.
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Definition V.11. Let I be a finite set and let ai ∈ Rn for each i ∈ I. Let A = {ai}i∈I .

A conical combination of A is a linear combination
∑

i∈I λiai where the weights λi ∈

R≥0 are nonnegative. The conical hull of A, denoted coni(A), is the set of all conical

combinations of A, i.e., coni({ai}i∈I) :=
{∑

i∈I λiai : λi ∈ R≥0, ∀i ∈ I
}
.

The result below follows easily from the Carathédory’s theorem for the conical

hull [LP09]. For the sake of completeness, we included the proof in Section 5.8.2.

Proposition V.12. Let a1, . . . , am ∈ Rn and b1, . . . , bm ∈ R. For each subset I ⊆

[m], define PI := {x ∈ Rn : a⊤i x ≤ bi ∀i ∈ I}. Suppose that P[m] is nonempty. Then

1) minx∈PI

1
2
∥x∥2 has a unique minimizer, denoted by x∗I below, and 2) there exists a

subset J ⊆ [m] such that |J | = min{m,n} and for all I ⊆ [m] with J ⊆ I, we have

x∗[m] = x∗I .

Proof of theorem V.9. Let (xi, yi) be HAC(d, r, k)-realizable, and V, c and h be as in

Proposition V.10. For each i ∈ [n], define the Boolean vectors si := sgn(V⊤xi + c) ∈

{±1}k and sij = sgn(v⊤j xi+cj) denote the j-th entry of si. Note that sij(v
⊤
j xi+cj) =

|v⊤j xi + cj| ≥ 1.

We first outline the steps of the proof:

1. Using a subset of the samples {(xiℓ , yiℓ) : ℓ ∈ [d(k + 1)]} with additional k(d+

1)(1 + ⌈log2 k⌉) bits of side information {(siℓjℓ , jℓ) : ℓ ∈ [d(k + 1)]}, we can

reconstruct W, b such that sgn(W
⊤
xi + b) = si for all i ∈ [n].

2. Using an additional subset of samples {(xιℓ , yιℓ) : ℓ = 1, . . . ,
(
k
≤r

)
} in conjunction

with the W, b reconstructed in the previous step, we can find g ∈ Boolk such

that g(si) = h(si) for all i.

Now, consider the set

P :=
{
(W, b) ∈ Rd×k ×Rk : sij(w

⊤
j xi + bj) ≥ 1, ∀i ∈ [n], j ∈ [k]

}
.
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Note that P is a convex polyhedron in (d+1)k-dimensional space. Let (W, b) be the

minimum norm element of P . Note that sgn(W
⊤
xi + b) = sgn(V⊤xi + c) = si by

construction.

By Proposition V.12, there exists a set of tuples

{(iℓ, jℓ)}ℓ=1,...,(d+1)k , where (iℓ, jℓ) ∈ [n]× [k]

such that W, b is also the minimum norm element of

P ′ :=
{
(W, b) ∈ Rd×k ×Rk : siℓjℓ(w

⊤
jℓ
xiℓ + bjℓ) ≥ 1, ℓ = 1, . . . , d(k + 1)

}
.

To encode the defining equations of P ′, we need to store

samples {(xiℓ , yiℓ)}
d(k+1)
ℓ=1 and side information {(siℓjℓ , jℓ)}

d(k+1)
ℓ=1 . (5.2)

Note that each siℓjℓ requires 1 bit while each jℓ ∈ [k] requires ⌈log2 k⌉ bits. In total,

encoding P ′ requires storing d(k + 1) samples and d(k + 1)(1 + ⌈log2 k⌉) of bits.

To reconstruct g ∈ Boolk that agrees with h on all the samples, it suffices to

know h when restricted to {si}ni=1. Since {si}ni=1 is a subset of SW,b, we have by

eq. (5.1) that |{si}ni | ≤
(
k
≤r

)
. Thus, {si}ni=1 has at most

(
k
≤r

)
unique elements. Let{

sιℓ : ℓ = 1, . . . ,
(
k
≤r

)}
be a set containing all such unique elements. Thus, we store

samples {(xιℓ , yιℓ) : ℓ = 1, . . . ,
(
k
≤r

)
}. (5.3)

Using W, b as defined above, we have sιℓ = sgn(W
⊤
xιℓ + b). Now, simply choose g

such that g(sιℓ) = yιℓ for all ℓ = 1, . . . ,
(
k
≤r

)
.

To summarize, we formally define the compression and reconstruction functions

(κ, ρ). Let κ take the full sample {(xi, yi)}ni=1 and output the subsample (and side

263



information) in eq. (5.2) and eq. (5.3). The reconstruction function ρ first constructs

W, b using eq. (5.2). Next, ρ constructs g using W, b and the samples of eq. (5.3).

Now, the following result together with the sample compression scheme for

HAC(d, r, k) we constructed imply theorem V.6 from the previous section.

Theorem V.13 ([LW86]). If C has sample compression scheme (ρ, κ), then VC(C) ≤

8 · size(ρ, κ).

Remark V.14. Note that the reconstruction function ρ is not permutation-invariant.

Furthermore, the overall sample compression scheme ρ, κ is not stable in the sense

of [HK21]. In general, sample compression schemes with permutation-invariant ρ

[FW95] and stable sample compression schemes [HK21] enjoy tighter generalization

bounds compared to ordinary sample compression schemes. We leave as an open

question whether HAC(d, r, k) has such specialized compression schemes.

5.5 Minimax-optimality for learning Lipschitz class

In this section, we show that empirical risk minimization (ERM) with respect to

the 0-1 loss over HAC(d, r, k), for properly chosen r and k, is minimax optimal for

classification where the posterior class probability function is L-Lipschitz, for fixed

L > 0. Furthermore, the choices for r and k is such that the associated HANN, the

neural network realization of HAC(d, r, k), is overparametrized for the Boolean function

implementations discussed in Remark V.7.

Below, let X ∈ [0, 1]d and Y ∈ B be the random variables corresponding to a

sample and label jointly distributed according to P . Write ηP (x) := P (Y = 1|X = x)

for the posterior class probability function.

Let Σ(L, [0, 1]d) denote the class of L-Lipschitz functions f : [0, 1]d → R, i.e.,

|f(x)− f(x′)| ≤ L∥x− x′∥2, ∀x, x′ ∈ [0, 1]d.
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The following minimax lower bound result1 concerns classification when ηP is L-

Lipschitz:

Theorem V.15 ([AT07]). There exists a constant C > 0 such that

inf
f̃n

sup
P : ηP∈Σ(L,[0,1]d)

E[R(f̃n)]−R∗
P ≥ Cn− 1

d+2 .

The infimum above is taken over all possible learning algorithms f̃n, i.e., mappings

from (X × B)n to Borel measurable functions X → B. When f̂n is an empirical risk

minimizer (ERM) over HAC(d, r, k) where d = r for k = n
1

d+2 , this minimax rate is

achieved.

Theorem V.16. Let d ≥ 1 be fixed. Let f̂n be an ERM over HAC(d, d, k) where

k = k(n) ≍ n
1

d+1 . Then there exists a constant C ′ such that

sup
P : ηP∈Σ(L,[0,1]d)

E[R(f̂n)]−R∗
P ≤ C ′n− 1

d+2 .

Proof sketch (see Section 5.8.3 for full proof). We first show that the histogram

classifier over the standard partition of [0, 1]d into smaller cubes is an element of

C := HAC(d, d, k), thus reducing the problem to proving minimax-optimality of the

histogram classifier. Previous work [Gyö+06] Theorem 4.3 established this for the his-

togram regressor. The analogous result for the histogram classifier, to the best of our

knowledge, has not appeared in the literature and thus is included for completeness.

The neural network implementation of HAC(d, d, k) where k ≍ n1/(d+2) in theo-

rem V.16 can be overparametrized. Using either the 1- or the 2-hidden layer neural

network implementations of Boolean functions as in Remark V.7, the resulting HANN

is overparametrized and has number of weights either ≥ k2k or ≥ c22k/k respectively.

Both k2k and c22k/k ≫ n exponentially while VC(HAC(d, d, k)) = o(n).

1The result we cite here is a special case of [AT07, Theorem 3.5], which gives minimax lower
bound for when ηP has additional smoothness assumptions.
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5.6 Empirical results

In this section, we discuss experimental results of using HANNs for classifying

synthetic and real datasets. Our implementation uses TensorFlow [Aba+16] with the

Larq [GT20] library for training neural networks with threshold activations. Note

that theorem V.16 holds for ERM with respect to the 0-1 loss over HANNs, which

is intractable in practice. Furthermore, our theory is for binary classification, while

some of the datasets in the experiments are multiclass.

Synthetic datasets. We apply a HANN (model specification shown in fig. 5.3-

top left) to the moons synthetic dataset with two classes with the hinge loss.

The heuristic for training networks with threshold activation can significantly

affect the performance [Kim+19]. We consider two of the most popular heuristics:

the straight-through-estimator (SteSign) and the SwishSign, introduced by [Hub+17]

and [Dar+19], respectively. SwishSign reliably leads to higher validation accuracy

(fig. 5.3-bottom left), consistent with the finding of [Dar+19]. Subsequently, we use

SwishSign and plot a learned decision boundary in fig. 5.3-right.

By [MB17] Lemma 2.1, any Boolean function Bk → B can be implemented by a

1-hidden layer ReLU network with 2k hidden nodes. Here, the width of the hidden

layer is 210 = 1024. Thus, the architecture in fig. 5.3 can assign labels to the bold

boundary cells arbitrarily without changing the training loss. Nevertheless, the opti-

mization appears to be biased toward a topologically simpler classifier. This behavior

is consistently reproducible. See fig. 5.7.

Real-world datasets. [Kla+17] introduced self-normalizing neural networks

(SNN) which were shown to outperform other neural networks on a panel of 121 UCI

datasets. Subsequently, [Wu+18] proposed the dendritic neural network architecture,

which further improved classification performance on this panel of datasets. Following

their works, we evaluate the performance of HANNs on the 121 UCI datasets.

A crucial hyperparameter for HANN is k, the number of hyperplanes used. We ran
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Figure 5.3:
Top left. Architecture of HANN used for the moons dataset. Bottom
left. Validation accuracies from 100 independent runs with random ini-
tialization and data generation. Right. Data points (circles) drawn from
make moons in sklearn colored by ground truth labels. The hyperplane
arrangement is denoted by dotted lines. Coloring of the cells corresponds
to the decision region of the trained classifier. A cell ∆ is highlighted by
bold boundaries if 1) no training data lies in ∆ and 2) ∆ does not touch
the decision boundary.

the experiments with k ∈ {15, 100} to test the hyperparameter’s impact on accuracy.

The Boolean function h is implemented as a 1-hidden layer residual network [He+16]

of width 1000. The logistic loss is used.

We use the same train, validation, and test sets from the public code repository

of [Kla+17]. The reported accuracies on the held-out test set are based on the best

performing model according to the validation set. The models will be referred to as

HANN15 and HANN100, respectively. The results are shown in fig. 5.4. The accuracies

of SNN and DENN are obtained from Table A1 in the supplemental materials of

[Wu+18]. Full details for the training and accuracy tables can be found at the end

of the chapter.

The HANN15 model (top row of fig. 5.4) already achieves median accuracy within

1.5% of both SNN and DENN. With the larger HANN100 model (bottom row), the

gap is reduced to zero. The largest training set in this panel of datasets has size

77904. The HANN15 and HANN100 models use ≈ 104 and 105 weights, respectively.
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Figure 5.4:
Each blue tick above the x-axis represents a single dataset, where the
x-coordinate of the tick is the difference of the accuracy of HANN and
either SNN (left) or DENN (right) on the dataset. The solid black curves
are kernel density estimates for the blue ticks. The number of hyperplanes
used by HANN is either 15 (top) or 100 (bottom). The quantities shown
in the top-left corner of each subplot are the median, 20-th and 80-th
quantiles of the differences, respectively, rounded to 1 decimal place.

By comparison, the average numbers of weights2 used by SNN and DENN are both

≥ 5 ∗ 105. Thus, all three models considered here, namely HANN, SNN and DENN,

are overparametrized for this panel of datasets.

5.7 Discussion

We have introduced an architecture for which the VC theorem can be used to prove

minimax-optimality of ERM over HANNs in an overparametrized setting with Lips-

chitz posterior. To our knowledge, this is the first time VC theory has been used to

analyze the performance of a neural network in the overparametrized regime. Further-

more, the same architecture leads to state-of-the-art performance over a benchmark

collection of unstructured datasets.

2Details on these estimates are included in Section 5.10.
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To the best of our knowledge, no existing theoretical bound for overparametrized

NNs yields meaningful results. Yet there is immense interest in understanding what

aspects of deep NNs can explain their performance, even if the bounds aren’t yet small

[BFT17; Ney+17; Jia+19]. Our work shows that the compressibility of the network,

as reflected by the sample compression scheme, is a useful avenue, and one that has

not previously been explored – ours is the first work applying sample compression to

NNs. This seems likely to open the door to further analysis of quantized NNs.

5.8 Omitted proofs

5.8.1 Proof of Proposition V.10

By definition, there exists h ∈ Boolk, W ∈ Rd×k of rank at most r, and b ∈ Rk

such that yi = h(sgn(W⊤xi + b)).

Now, let j ∈ [k] be fixed. Since |w⊤
j xi + bj| ≥ 0 for all i ∈ [n], there exists

a small perturbation c̃j of bj such that |w⊤
j xi + c̃j| > 0 for all i ∈ [n]. Now, let

λj := mini∈[n] |w⊤
j xi + c̃j| which is positive. Define vj := wj/λj and cj = c̃j/λj, we

have |v⊤j xi + cj| ≥ 1 for all i ∈ [n], as desired. Note that rank(V) = rank(W). □

5.8.2 Proof of Proposition V.12

Let gi(x) = a⊤i x − bi for each i ∈ [m] and f(x) = 1
2
∥x∥22. Then ∇f(x) = x and

∇gi(x) = ai. By definition, x∗I is a minimizer of

min
x∈Rn

f(x) s.t. gi(x) ≤ 0, ∀i ∈ I,

which is a convex optimization with strongly convex objective. Thus, the minimizer

x∗I is unique and furthermore is the unique element x of Rn satisfying the KKT
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conditions:

x ∈ PI and ∃ a set of nonnegative weights {λi}i∈I such that − x =
∑
i∈I

λiai.

Thus, x∗I can be equivalently characterized as the unique element of x ∈ Rn

satisfying

x ∈ PI and − x ∈ coni({ai}i∈I). (5.4)

In particular, x∗[m] ∈ P[m] and −x∗[m] ∈ coni({ai}i∈[m]). By the Carathédory’s theorem

for the conical hull [LP09], there exists I ⊆ [m] such that |I| = n and −x∗[m] ∈

coni({ai}i∈I). Thus, for any J ⊆ [m] such that I ⊆ J , we have−x∗[m] ∈ coni({ai}i∈J).

Furthermore, J ⊆ [m] implies PJ ⊇ P[m]. In particular, x∗[m] ∈ PJ . Putting it all

together, we have x∗[m] ∈ PJ and −x∗[m] ∈ coni({ai}i∈J). By the uniqueness, we have

x∗J = x∗[m]. □

5.8.3 Proof of theorem V.16

In this proof, the constant C does not depending on n, and may change from line

to line.

We fix a joint distribution P such that ηP ∈ Σ(L, [0, 1]d) throughout the proof.

Thus, the notation for risks will omit the P in their subscript, e.g., we write R̂n(f)

instead of R̂P,n(f) and R∗ instead of R∗
P . Below, let β > α > 0 be constants such

that αdn1/(d+2) ≤ k ≤ βdn1/(d+2). Let k̃ := ⌈k/d⌉.

Let R1,R2, . . . ,Rk̃d denote the hypercubes of side length ℓ = 1/k̃ forming a

partition of [0, 1]d. For each i ∈ [k̃d], let R−
i := {x ∈ Ri : ηP (x) < 1/2} and

R+
i := {x ∈ Ri : ηP (x) ≥ 1/2}.
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Let f̃ : [0, 1]d → B be the classifier such that

f̃(x) =


+1 : x ∈ Ri,

∫
Ri
ηP (x)dP (x) ≥

∫
Ri
(1− ηP (x))dP (x)

−1 : x ∈ Ri,
∫
Ri
ηP (x)dP (x) <

∫
Ri
(1− ηP (x))dP (x).

In other words, f̃ classifies all x ∈ Ri as +1 if and only if P (Y = 1|X ∈ Ri) ≥ 1/2.

This is commonly referred to as the histogram classifier [Gyö+06]. It is easy to see

that

P (f̃(X) ̸= Y,X ∈ Ri) = min


∫
Ri

(1− ηP (x))dP (x),
∫
Ri

ηP (x)dP (x)


For the remainder of this proof, we write “

∑
i” to mean “

∑
i∈[k̃d]”. Thus,

R(f̃) =
∑
i

P (f̃(X) ̸= Y,X ∈ Ri) =
∑
i

min


∫
Ri

(1− ηP (x))dP (x),
∫
Ri

ηP (x)dP (x)

 .

Next, we note that f̃ ∈ HAC(d, d, k). To see this, let j ∈ [d]. Take

Hj1, . . . , Hj(k̃−1) ⊆ Rd to be the hyperplanes perpendicular to the j-th coordinate

where, for each ℓ ∈ [k̃], Hjℓ intersects the j-th coordinate axis at ℓ/k̃. Consider the

hyperplane arrangement consisting of all {Hjℓ}j∈[d],ℓ∈[k̃−1] and let {C1, C2, . . . } be its

cells. Then {C1 ∩ [0, 1]d, C2 ∩ [0, 1]d, . . . } = {R1, . . . ,Rk̃d} is the partition of [0, 1]d

by 1/k̃ side length hypercubes. See fig. 5.5.

Let W be the matrix of normal vectors and b be the vector of offsets representing

this hyperplane arrangement, which requires d(k̃ − 1) = d(⌈k/d⌉ − 1) ≤ d(k/d) = k

hyperplanes. Since f̃ is constant on Ri, there exists a Boolean function h ∈ Boolk

such that h ◦ qW,b|[0,1]d = f̃ . From this, we conclude that f̃ ∈ HAC(d, d, k).
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Figure 5.5:
Partition of [0, 1]d into 1/k̃ hypercubes via arrangement of d(k̃ − 1) hy-
perplanes, where d = 2 and k̃ = 3. Shaded region is [0, 1]d. Dotted region
is a cell of the hyperplane arrangement.

Thus R̂n(f̂n)− R̂n(f̃) ≤ 0 and so

R(f̂n)−R∗ = R(f̂n)− R̂n(f̂n) + R̂n(f̂n)− R̂n(f̃)︸ ︷︷ ︸
≤0

+R̂n(f̃)−R(f̃) +R(f̃)−R∗

≤ R(f̂n)− R̂n(f̂n)︸ ︷︷ ︸
Term 1

+ R̂n(f̃)−R(f̃)︸ ︷︷ ︸
Term 2

+R(f̃)−R∗︸ ︷︷ ︸
Term 3

.

We now bound Terms 1 and 2 using the uniform deviation bound. From theorem V.6,

we know that there exists a constant C independent of n such that

VC(HAC(d, d, k)) ≤ 8 ·
(
k(d+ 1) + k(d+ 1)(1 + ⌈log2(k)⌉) +

(
k

≤ d

))
≤ Ckd.

Thus, by theorem V.5 with δ = 1/(2n) and a union bound, with probability at least

1− 1/n

max
{
|R̂n(f̂n)−R(f̂n)|, |R̂n(f̃)−R(f̃)|

}
≤ C

√
kd + log(n)

n
(5.5)

for some C > 0.

Next, we focus on Term 3. Recall that

R∗ =

∫
[0,1]d

min{ηP (x), 1− ηP (x)}dP (x) =
∑
i

∫
Ri

min{ηP (x), 1− ηP (x)}dP (x)
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and that

R(f̃) =
∑
i

min


∫
Ri

ηP (x)dP (x),

∫
Ri

1− ηP (x)dP (x)

 .

Fix some i ∈ [kd]. Our goal now is to bound the difference between the i-th summands

in the above expressions for R(f̃) and R∗:

min


∫
Ri

ηP (x)dP (x),

∫
Ri

1− ηP (x)dP (x)

−
∫
Ri

min{ηP (x), 1− ηP (x)}dP (x). (5.6)

First, consider the case that

min


∫
Ri

ηP (x)dP (x),

∫
Ri

1− ηP (x)dP (x)

 =

∫
Ri

ηP (x)dP (x). (5.7)

We claim that there must exist x0 ∈ Ri such that ηP (x0) ≤ 1/2. Suppose ηP (x) > 1/2

for all x ∈ Ri. Then ηP (x) > 1/2 > 1− ηP (x). Since ηP (x) is continuous, this would

contradict eq. (5.7).

Continue assuming eq. (5.7), we further divide into two subcases: (1) ηP (x) ≤ 1/2

for all x ∈ Ri, and (2) there exists some x1 ∈ Ri such that ηP (x1) > 1/2.

Under subcase (1), min{ηP (x), 1 − ηP (x)} = ηP (x) for all x ∈ Ri in which case

eq. (5.6) = 0.

Under subcase (2), since ηP (x0) ≤ 1/2 < ηP (x1), we know by the intermediate
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value theorem that there must exist x′ ∈ Ri such that ηP (x
′) = 1/2. Now,

eq. (5.6) =

∫
Ri

(ηP (x)−min{ηP (x), 1− ηP (x)})dP (x)

≤
∫
R+

i

(ηP (x)−min{ηP (x), 1− ηP (x)})dP (x)

+

∫
R−

i

(ηP (x)−min{ηP (x), 1− ηP (x)})dP (x)

=

∫
R+

i

(ηP (x)− (1− ηP (x))dP (x) ∵ Definition of R±
i

+

∫
R−

i

(ηP (x)− ηP (x))dP (x)

=

∫
R+

i

(2ηP (x)− 1)dP (x)

= 2

∫
R+

i

(ηP (x)− ηP (x′))dP (x) ∵ 2ηP (x
′) = 1

≤ 2L

∫
R+

i

∥x− x′∥2dP (x)

≤ 2L
√
dPr(Ri)/k̃ ∵ ∥x− x′∥2 ≤

√
d∥x− x′∥1 ≤

√
d(1/k̃)

≤ 2Ld3/2 Pr(Ri)/k ∵ 1/k̃ = 1/⌈k/d⌉ ≤ 1/(k/d) = d/k.

Thus, under assumption eq. (5.7), we have proven that eq. (5.6) ≤ 2Ld3/2/k. For

the other assumption, i.e., the minimum in eq. (5.7) is attained by
∫
Ri

1−ηP (x)dP (x),

a completely analogous argument again shows that eq. (5.6) ≤ 2Ld3/2/k.

Putting it all together, we have

R(f̃n)−R∗ ≤ 2Ld3/2
∑
i

P (Ri)/k = 2Ld3/2/k. (5.8)
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We have shown that, with probability at least 1− 1/n,

R(f̂n)−R∗ ≤ C

√
kd + log(n)

n
+

2Ld3/2

k
.

Using αdn1/(d+2) ≤ k ≤ βdn1/(d+2), we have with probably at least 1− 1/n that

R(f̂n)−R∗ ≤ C

√
kd + log(n)

n
+

2Ld3/2

k

≤ C

√
(βd)dnd/(d+2) + log(n)

n
+

2Ld3/2

αdn1/(d+2)

≤ C

(√
nd/(d+2)

n
+ n−1/(d+2)

)
∵ log(n) = o(n1/d+2)

= C
(√

n−2/(d+2) + n−1/(d+2)
)

≤ Cn− 1
d+2 .

Taking expectation, we have E[R(f̂n)]− R∗ ≤ (1− 1/n)Cn− 1
d+2 + 1/n · 1 ≤ Cn− 1

d+2 .

□

5.9 Training details

Data preprocessing. The pooled training and validation data is centered and

standardized using the StandardScaler function from sklearn. The transformation

is also applied to the test data, using the centers and scaling from the pooled training

and validation data:

scaler = StandardScaler ().fit(X_train_valid)

X_train_valid = scaler.transform(X_train_valid)

X_test = scaler.transform(X_test)

If the feature dimension and training sample size are both > 50, then the data is

dimension reduced to 50 principal component features:

if min(X_train_valid.shape) > 50:
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pca = PCA(n_components = 50).fit(X_train_valid)

X_train_valid = pca.transform(X_train_valid)

X_test = pca.transform(X_test)

Note that this is equivalent to freezing the weights between the Input and the Latent

layer in fig. 5.2.

Validation and test accuracy. Every 10 epochs, the validation accuracy during

the past 10 epochs are averaged. A smoothed validation accuracy is calculated as

follows:

val_acc_sm = (1-sm_param)*val_acc_sm + sm_param*val_acc_av

## Variable description:

# sm_param = 0.1

# val_acc_av = average of the validation in the past 10 epochs

# val_acc_sm = smoothed validation accuracy

The predicted test labels is based on the snapshot of the model at the highest

smoothed validation accuracy, at the end once max epochs is reached.

Heuristic for coarse gradient of the threshold function. We use the Swish-

Sign from the Larq library [GT20].

# import larq as lq

qtz = lq.quantizers.SwishSign ()

Dropout. During training, dropout is applied to the Boolean output of the

threshold function, i.e, the variables B1, B2, . . . , Bk in fig. 5.2. This improves general-

ization by preventing the training accuracy from reaching 100%.

# from tensorflow.keras.layers import Dense , Dropout

hyperplane_enc = Dense(n_hyperplanes , activation = qtz)(inputs)

hyperplane_enc = Dropout(dropout_rate)(hyperplane_enc)

Implementation of the Boolean function. For the Boolean function h, we

use a 1-hidden layer residual network [He+16] with 1000 hidden nodes:

# from tensorflow.keras.layers import Dense , Add
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# output_dim = num_classes

n_hidden = 1000

hidden = Dense(n_hidden , activation="relu")(hyperplane_enc)

out_hidden = Dense(output_dim , activation = "linear")(hidden)

out_skip = Dense(output_dim , activation = "linear")(hyperplane_enc)

outputs = Add()([out_skip ,out_hidden ])

Hyperparameters. HANN15 is trained with a hyperparameter grid of size 3 where

only the dropout rate is tuned. The hyperparameters are summarized in Table 5.2.

The model with the highest smoothed validation accuracy is chosen.

The model HANN15 is trained with the following hyperparameters:

Table 5.1: HANN15 model and training hyperparameter grid

Optimizer SGD

Learning rate 0.01

Dropout rate {0.1, 0.25, 0.5}

Minibatch size 128

Boolean function 1-hidden layer resnet

with 1000 hidden nodes

Epochs 100 for miniboone, 5000 for all others

For HANN100, we only used 1 set of hyperparameters.
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Table 5.2: HANN100 model and training hyperparameter

Optimizer SGD

Learning rate 0.01

Dropout rate 0.5

Minibatch size 128

Boolean function 1-hidden layer resnet

with 1000 hidden nodes

Epochs 100 for miniboone, 5000 for all others

5.10 Parameter counts

The widest part of HANN15 and HANN100 models are the weights mapping from Bk

(k = number of hyperplanes) to R1000 (1000 = number of hidden layer of the boolean

function) where k ∈ {15, 100}. Thus, the two HANN models use ≥ 15× 1000 ≥ 104

and ≥ 100× 1000 = 105 weights, respectively.

The weight count estimates for the Self-normalized Neural Network (SNN)

and Dendritic Neural Network (DENN) use the formula (# layers − 1) ×

(# neurons per layer)2.

For the Self-normalized Neural Network (SNN), average number of layers = 10.8,

and the number of neurons per layers ≥ 256, found on page 7 and Table A4 of

[Kla+17], respectively. The number of weights is ≥ (10 − 1) ∗ (2562) = 655, 360

weights.

The parameters for the dendritic neural network (DENN) is found in the public

GitHub repository xiangwenliu/DENN of [Wu+18] which lists number of layers = 3

and number of neurons per layer = 512, found on line 41 and 52 of train uci.py,

respectively. The number of weights is ≥ (3− 1) ∗ (5122) = 524, 288 weights.
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5.11 Additional plots

Multiclass hinge versus cross-entropy loss. fig. 5.6 shows the accuracy dif-

ferences when the Weston-Watkins hinge loss is used. Compared to the results shown

in fig. 5.4, the performance for HANN100 is slightly worse and the performance for

HANN15 is slightly better.
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Figure 5.6:
Each blue tick above the x-axis represents a single dataset, where the x-

coordinate of the tick is the difference of the accuracy of HANN and either

SNN (left) or DENN (right) on the dataset. The number of hyperplanes

used by HANN is either 15 (top) or 100 (bottom). The quantities shown

in the top-left corner of each subplot are the median, 20-th and 80-th

quantiles of the differences, respectively, rounded to 1 decimal place.
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Implicit bias for low complexity decision boundary. In fig. 5.7, we show

additional results ran with the same setting for the moons synthetic dataset as in

the Empirical Results section. From the perspective of the training loss, the label

assignment in the bold-boundary regions is irrelevant. Nevertheless, the optimization

consistently appears to be biased toward the geometrically simpler classifier, despite

the capacity for fitting complex classifiers.

Figure 5.7:
Four independent runs of HANN on the moons synthetic dataset. Data
points (circles) drawn from make moons in sklearn colored by ground
truth labels. The hyperplane arrangement is denoted by dotted lines.
Coloring of the cells corresponds to the decision region of the trained
classifier. A cell C is highlighted by bold boundaries if 1) no training data
lies in C and 2) C does not touch the decision boundary.

5.12 Table of accuracies
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Table 5.3:
The table of accuracies used to make fig. 5.4. The last column
“HANN100trn” records the training accuracy at the epoch of the high-
est validation accuracy.
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CHAPTER VI

Consistent Interpolating Ensembles via the

Manifold-Hilbert Kernel

Recent research in the theory of overparametrized learning has sought to establish

generalization guarantees in the interpolating regime. Such results have been estab-

lished for a few common classes of methods, but so far not for ensemble methods. We

devise an ensemble classification method that simultaneously interpolates the training

data, and is consistent for a broad class of data distributions. To this end, we define

the manifold-Hilbert kernel for data distributed on a Riemannian manifold. We prove

that kernel smoothing regression and classification using the manifold-Hilbert kernel

are weakly consistent in the setting of Devroye et al. [DGK98]. For the sphere, we

show that the manifold-Hilbert kernel can be realized as a weighted random partition

kernel, which arises as an infinite ensemble of partition-based classifiers.

6.1 Introduction

Ensemble methods are among the most often applied learning algorithms, yet their

theoretical properties have not been fully understood [BS16]. Based on empirical

evidence, Wyner et al. [Wyn+17] conjectured that interpolation of the training data

plays a key role in explaining the success of AdaBoost and random forests. However,
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while a few classes of learning methods have been analyzed in the interpolating regime

[Bel+19; Bar+20], ensembles have not.

Towards developing the theory of interpolating ensembles, we examine an en-

semble classification method for data distributed on the sphere, and show that this

classifier interpolates the training data and is consistent for a broad class of data dis-

tributions. To show this result, we develop two additional contributions that may be

of independent interest. First, for data distributed on a Riemannian manifold M , we

introduce the manifold-Hilbert kernel KH
M , a manifold extension of the Hilbert kernel

[She68]. Under the same setting as Devroye et al. [DGK98], we prove that kernel

smoothing regression with KH
M is weakly consistent while interpolating the training

data. Consequently, the classifier obtained by taking the sign of the kernel smoothing

estimate has zero training error and is consistent.

Second, we introduce a class of kernels called weighted random partition kernels.

These are kernels that can be realized as an infinite, weighted ensemble of partition-

based histogram classifiers. Our main result is established by showing that when

M = Sd, the d-dimensional sphere, the manifold-Hilbert kernel is a weighted random

partition kernel. In particular, we show that on the sphere, the manifold-Hilbert ker-

nel is a weighted ensemble based on random hyperplane arrangements. This implies

that the kernel smoothing classifier is a consistent, interpolating ensemble on Sd. To

our knowledge, this is the first demonstration of an interpolating ensemble method

that is consistent for a broad class of distributions in arbitrary dimensions.

6.1.1 Problem statement

Consider the problem of binary classification on a Riemannian manifold M . Let

(X, Y ) be random variables jointly distributed onM×{±1}. Let Dn := {(Xi, Yi)}ni=1

be the (random) training data consisting of n i.i.d copies of X, Y . A classifier, i.e.,

a mapping from Dn to a function f̂(•∥Dn) : M → {±1}, has the interpolating-
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consistent property if, when X has a continuous distribution, both of the following

hold: 1) f̂(Xi∥Dn) = Yi, for all i ∈ {1, . . . , n}, and 2)

Pr{f̂(X∥Dn) ̸= Y } → inf
f :M→{±1} measurable

Pr{f(X) ̸= Y } in probability as n→∞.

(6.1)

Our goal is to find an interpolating-consistent ensemble of histogram classifiers, to be

defined below.

A partition on M , denoted by P , is a set of subsets of M such that P ∩ P ′ = ∅

for all P, P ′ ∈ P and M =
⋃
P∈P P . Given x ∈ M , let P [x] denote the unique

element P ∈ P such that x ∈ P . The set of all partitions on a space M is denoted

Part(M). The histogram classifier with respect to Dn over P is the sign of the

function ĥ(•∥Dn,P) :M → R given by

ĥ(x∥Dn,P) :=
n∑
i=1

Yi · I{x ∈ P [Xi]}, (6.2)

where I is the indicator function.

Definition VI.1. A weighted random partition (WRP) overM is a 3-tuple (Θ,P, α)

consisting of (i) parameter space of partitions : a set Θ where Pθ ∈ Part(M) for each

θ ∈ Θ, (ii) random partitions : a probability measure P on Θ, and (iii) weights : a

nonnegative function α : Θ→ R≥0.

Example VI.2 (Regular partition of the d-cube). Let M = [0, 1]d and Θ =

{1, 2 . . . } =: N+. For each n ∈ N+, denote by Pn the regular partition of M into

nd d-cubes of side length 1/n. For any probability mass function P on N+ and

weights α : N+ → R≥0, the 3-tuple (Θ,P, α) is a WRP.

Below, WRPs will be denoted with 2-letter names in the sans-serif font, e.g.,

“rp” for a generic WRP, and “ha” for the weighted hyperplane arrangement random

partition (Definition VI.14). The weighted random partition kernel associated to
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rp = (Θ,P, α) is defined as

Krp
M :M ×M → R≥0 ∪ {∞}, Krp

M(x, z) := Eθ∼P[α(θ)I{x ∈ Pθ[z]}]. (6.3)

When α ≡ 1, we recover the notion of unweighted random partition kernel introduced

in [DG14]. Note that the kernel is symmetric since I{x ∈ Pθ[z]} = I{z ∈ Pθ[x]}. If

Krp
M <∞, then Krp

M is a positive definite (PD) kernel. When Krp
M can evaluate to ∞,

the definition of a PD kernel is not applicable since the positive definite property is

defined only for to kernels taking finite values [BT11].

Let sgn : R∪{±∞} → {±1} be the sign function. For a WRP, define the weighted

infinite-ensemble

û(x∥Dn, Krp
M) :=

n∑
i=1

Yi ·Krp
M(x,Xi) = Eθ∼P[α(θ)ĥ(x∥Dn,Pθ)]. (6.4)

Note that the equality on the right follows immediately from linearity of the expec-

tation and the definition of ĥ(•∥Dn,Pθ) in Equation (6.2).

Main problem. Find a WRP such that sgn(û(•∥Dn, Krp
M)) has the interpolating-

consistent property.

6.1.2 Outline of approach and contributions

In the regression setting, we have (X, Y ) jointly distributed onM×R. Letm(x) :=

E[Y |X = x]. Recall from Belkin et al. [BRT19, Equation (7)] the definition of the

kernel smoothing estimator with a so-called singular 1 kernel K :M ×M → [0,+∞]:

m̂(x∥Dn, K) :=


Yi : ∃i ∈ [n] such that x = Xi∑n

i=1 YiK(x,Xi)∑n
j=1K(x,Xj)

:
∑n

j=1K(x,Xj) > 0

0 : otherwise.

(6.5)

1The “singular” modifier refers to the fact that K(x, x) = +∞ for all x ∈M .
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We note that Equation (6.5) is referred as the Nadaraya-Watson estimate in [BRT19].

Now, we simply write m̂n(x) instead of m̂(x∥Dn, K) when there is no ambiguity.

Similarly, we write ûn(x) instead of û(x∥Dn, K) from earlier. Note that sgn(m̂n(x)) =

sgn(ûn(x)) if
∑n

j=1K(x,Xj) > 0.

Observe that m̂n is interpolating by construction. Let µX denote the marginal

distribution of X. The L1-error of m̂n in approximating m is Jn :=
∫
M
|m̂n(x) −

m(x)|µX(dx). For M = Rd and the Hilbert kernel defined by KH
Rd(x, z) := ∥x− z∥−d,

Devroye et al. [DGK98] proved L1-consistency for regression: Jn → 0 in probability

when Y is bounded and X is continuously distributed.

Our contributions. Our primary contribution is to demonstrate an ensemble

method with the consistent-interpolating property. Toward this end, in Section 6.3,

we introduce the manifold-Hilbert kernel KH
M on a Riemannian manifold M . When

show that when M is complete, connected, and smooth, kernel smoothing regression

with KH
M has the same consistency guarantee (Theorem VI.4) as KH

Rd mentioned in

the preceding paragraph. In Section 6.5, we consider the case when M = Sd, and

show that the manifold-Hilbert kernel KH
Sd is a weighted random partition kernel

(Proposition VI.15).

Devroye et al. [DGK98, Section 7] observed that the L1-consistency of m̂n for

regression implies the consistency for classification of sgn ◦ ûn. Furthermore, m̂n is

interpolating for regression implies that sgn ◦ ûn is interpolating for classification.

These observations together with our results demonstrate the existence of a weighted

infinite-ensemble classifier with the interpolating-consistent property.

6.1.3 Related work

Kernel regression. Kernel smoothing regression, or simply kernel regression, is

an interpolator when the kernel used is singular, a fact known to Shepard [She68] in

1968. Devroye et al. [DGK98] showed that kernel regression with the Hilbert kernel is
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interpolating and weakly consistent for data with a density and bounded labels. Using

singular kernels with compact support, Belkin et al. [BRT19] showed that minimax

optimality can be achieved under additional distributional assumptions.

Random forests. Wyner et al. [Wyn+17] proposed that interpolation may be

a key mechanism for the success of random forests and gave a compelling intuitive

rationale. Belkin et al. [Bel+19] studied empirically the double descent phenomenon

in random forests by considering the generalization performance past the interpolation

threshold. The PERT variant of random forests, introduced by Cutler et al. [CZ01],

provably interpolates in 1-dimension. Belkin et al. [BHM18] pose as an interesting

question whether the result of Cutler et al. [CZ01] extends to higher dimension.

Many work have established consistency of random forest and its variants under

different settings [Bre04; BDL08; SBV15]. However, none of these work addressed

interpolation.

Boosting. For classification under the noiseless setting (i.e., the Bayes error is

zero), AdaBoost is interpolating and consistent (see Freund et al. [FS12, first para-

graph of Chapter 12]). However, this setting is too restrictive and the result does

not answer if consistency is possible when fitting the noise. Bartlett et al. [BT07]

proved that AdaBoost with early stopping is universally consistent, however without

the interpolation guarantee. To the best of our knowledge, whether AdaBoost or any

other variant of boosting can be interpolating and consistent remains open.

Random partition kernels. Breiman [Bre00] and Geurts et al. [GEW06] stud-

ied infinite ensembles of simplified variants of random forest and connections to certain

kernels. Davies et al. [DG14] formalized this connection and coined the term random

partition kernel. Scornet [Sco16] further developed the theory of random forest ker-

nels and obtained upper bounds on the rate of convergence. However, it is not clear

if these variants of random forests are interpolating.

Previously defined (unweighted) random partition kernels are bounded, and thus
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cannot be singular. On the other hand, the manifold-Hilbert kernel is always singular.

To bridge between ensemble methods and theory on interpolating kernel smoothing

regression, we propose weighted random partitions (Definition VI.1), whose associated

kernel (Equation 6.3) can be singular.

Learning on Riemannian manifolds. Strong consistency of a kernel-based

classification method on manifolds has been established by Loubes et al. [LP08].

However, the result requires the kernel to be bounded and thus the method is not

guaranteed to be interpolating. See Feragen et al. [FH16] for a review of theoretical

results regarding kernels on Riemannian manifolds.

Beyond kernel methods, other classical methods for Euclidean data have been ex-

tended to Riemannian manifolds, e.g., regression [Tho13], classification [YZ20], and

dimensionality reduction and clustering [ZZ04][Mar+22]. To the best of our knowl-

edge, no previous works have demonstrated an interpolating-consistent classifiers on

manifolds other than Rd.

In many applications, the data naturally belong to a Riemannian manifold. Spher-

ical data arise from a range of disciplines in natural sciences. See the influential text-

book by Mardia et al. [MJ00, Ch.1§4]. For applications of the Grassmanian manifold

in computer vision, see Jayasumana et al. [Jay+15] and the references therein. Topo-

logical data analysis [Was18] presents another interesting setting of manifold-valued

data in the form of persistence diagrams [Ani+16; LY18].

6.2 Background on Riemannian Manifolds

We give an intuitive overview of the necessary concepts and results on Riemannian

manifolds. A longer, more precise version of this overview is in the Section 6.6.1.

A smooth d-dimensional manifold M is a topological space that is locally diffeo-

morphic2 to open subsets of Rd. For simplicity, suppose that M is embedded in RN

2A diffeomorphism is a smooth bijection whose inverse is also smooth.
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for some N ≥ d, e.g., Sd ⊆ Rd+1. Let x ∈M be a point. The tangent space at x, de-

noted TxM , is the set of vectors that is tangent to M at x. Since linear combinations

of tangent vectors are also tangent, the tangent space TxM is a vector space. Tangent

vectors can also be viewed as the time derivative of smooth curves. In particular, let

x ∈ M . If ϵ > 0 is an open set and γ : (−ϵ, ϵ) → M is a smooth curve such that

γ(0) = x, then dγ
dt
(0) ∈ TxM .

A Riemannian metric on M is a choice of inner product ⟨·, ·⟩x on TxM for each

x such that ⟨·, ·⟩x varies smoothly with x. Naturally, ∥z∥x :=
√
⟨z, z⟩x defines a

norm on TxM . The length of a piecewise smooth curve γ : [a, b] → M is defined by

len(γ) :=
∫ b
a
∥γ̇(t)∥γ(t)dt. Define distM(x, ξ) := inf{len(γ) : γ is a piecewise smooth

curve from x to ξ}, which is a metric on M in the sense of metric spaces (see Sakai

[Sak96, Proposition 1.1]). For x ∈ M and r ∈ (0,∞), the open metric ball centered

at x of radius r is denoted Bx(r,M) := {ξ ∈M : distM(x, ξ) < r}.

A curve γ : [a, b] → M is a geodesic if γ is locally distance minimizing and has

constant speed, i.e., ∥dγ
dt
(τ)∥γ(τ) is constant. Now, suppose x ∈ M and v ∈ TxM are

such that there exists a geodesic γ : [0, 1]→M where γ(0) = x and dγ
dt
(0) = v. Define

expx(v) := γ(1), the element reached by traveling along γ at time = 1. See Figure 6.1

for the case when M = S2.

For a fixed x ∈ M , the above function expx, the exponential map, can be defined

on an open subset of TxM containing the origin. The Hopf-Rinow theorem ([Do 92,

Ch. 8, Theorem 2.8]) states that if M is connected and complete with respect to the

metric distM , then expx can be defined on all of TxM .

6.3 The Manifold-Hilbert kernel

Throughout the remainder of this work, we assume that M is a complete, con-

nected, and smooth Riemannian manifold of dimension d.
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logx
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R2 ≃ TxS2 S2

i. ii. iii. iv. v.

Figure 6.1:
An illustration of the exponential map expx for the manifold M = S2,
where x is the “northpole” (blue) and −x the “southpole” (orange). The
logarithm map logx, discussed in Section 6.4.1, is a right-inverse to expx,
i.e., expx ◦ logx is the identity. Panel i. The tangent space TxS2 visualized
as R2. The dashed circle encloses a disc of radius π. Panel ii. The tangent
space realized as the hyperplane tangent to sphere at x. Panel iii-v.
Animation showing expx as a bijection from the open disc of radius π
to S2 \ {−x}. The entire dashed circle in Panel i is mapped to −x the
southpole. Thus, logx maps the southpole −x to a point z on the dashed
circle.

Definition VI.3. We define the manifold-Hilbert kernel KH
M : M ×M → [0,∞] for

each x, ξ ∈M by KH
M(x, ξ) := distM(x, ξ)−d if x ̸= ξ and KH

M(x, x) :=∞ otherwise.

Let λM be the Riemann–Lebesgue volume measure ofM . Integration with respect

to this measure is denoted
∫
M
fdλM for a function f : M → R. For details of the

construction of λM , see Amann et al. [AE09, Proposition 1.5]. When M = Rd, λM is

the ordinary Lebesgue measure and
∫
Rd fdλRd is the ordinary Lebesgue integral. For

this case, we simply write λ instead of λRd .

We now state our first main result, a manifold theory extension of Devroye et al.

[DGK98, Theorem 1].

Theorem VI.4. Suppose that X has a density fX with respect to λM and that Y

is bounded. Let PY |X be a conditional distribution of Y given X and mY |X be its

conditional expectation. Let m̂n(x) := m̂(x∥Dn, KH
M). Then

1. at almost all x ∈M with fX(x) > 0, we have m̂n(x)→ mY |X(x) in probability,

2. Jn :=
∫
M
|m̂n(x)−mY |X(x)|fX(x)dλM(x)→ 0 in probability.

In words, the kernel smoothing regression estimate m̂n based on the manifold-
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Hilbert kernel is consistent and interpolates the training data, provided X has a

density and Y is bounded. As a consequence, following the same logic as in Devroye

et al. [DGK98], the associated classifier sgn ◦ ûn has the interpolating-consistent

property. Before proving Theorem VI.4, we first review key concepts in probability

theory on Riemannian manifolds.

6.3.1 Probability on Riemannian manifolds

Let BM be the Borel σ-algebra of M , i.e., the smallest σ-algebra containing all

open subsets of M . We recall the definition of M -valued random variables, following

Pennec [Pen06, Definition 2]:

Definition VI.5. Let (Ω,P,A) be a probability space with measure P and σ-algebra

A. A M-valued random variable X is a Borel-measurable function Ω → M , i.e.,

X−1(B) ∈ A for all B ∈ BM .

Definition VI.6 (Density). A random variable X taking values in M has a density

if there exists a nonnegative Borel-measurable function f :M → [0,∞] such that for

all Borel sets B in M , we have Pr(X ∈ B) =
∫
B
fdλM . The function f is said to be

a probability density function (PDF) of X.

Next, we recall the definition of conditional distributions, following Dudley

[Dud18, Ch. 10 §2]:

Definition VI.7 (Conditional distribution3). Let (X, Y ) be a random variable jointly

distributed on M × R. Let PX(·) be the probability measure corresponding to the

marginal distribution of X. A conditional distribution for Y given X is a collection

of probability measures PY |X(·|x) on R indexed by x ∈M satisfying the following:

1. For all Borel sets A ⊆ R, the function M ∋ x 7→ PY |X(A|x) ∈ [0, 1] is Borel-

measurable.

3also known as disintegration measures according to Chang et al. [CP97].
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2. For all A ⊆ R and B ⊆ M Borel sets, Pr(Y ∈ A,X ∈ B) =∫
B
PY |X(A|x)PX(dx).

The conditional expectation4 is defined as mY |X(x) :=
∫
R
yPY |X(dy|x).

The existence of a conditional probability for a joint distribution (X, Y ) is

guaranteed by Dudley [Dud18, Theorem 10.2.2]. When (X, Y ) has a joint den-

sity fXY and marginal density fX , the above definition gives the classical formula

PY |X(A|x) =
∫
A
fXY (x, y)/fX(x)dy when ∞ > fX(x) > 0. See the first example in

Dudley [Dud18, Ch. 10 §2].

6.3.2 Lebesgue points on manifolds

Devroye et al. [DGK98] proved Theorem VI.4 when M = Rd and, moreover, that

part 1 holds for the so-called Lebesgue points, whose definition we now recall.

Definition VI.8. Let f : M → R be an absolutely integrable function and x ∈ M .

We say that x is a Lebesgue point of f if f(x) = limr→0
1

λM (Bx(r,M))

∫
Bx(r,M)

fdλM .

For an integrable function, the following result states that almost all points are

its Lebesgue points. For the proof, see Fukuoka [Fuk06, Remark 2.4].

Theorem VI.9 (Lebesgue differentation). Let f :M → R be an absolutely integrable

function. Then there exists a set A ⊆ M such that λM(A) = 0 and every x ∈ M \ A

is a Lebesgue point of f .

Next, for the reader’s convenience, we restate Devroye et al. [DGK98, Theorem

1], emphasizing the connection to Lebesgue points.

Theorem VI.10 (Devroye et al. [DGK98]). Let M = Rd be the flat Euclidean space.

Then Theorem VI.4 holds. Moreover, Part 1 holds for all x that is a Lebesgue point

to both fX and mY |X · fX .

The above result will be used in our proof of Theorem VI.4 below.

4More often, the conditional expectation is denoted E[Y |X = x]. However, our notation is more
convenient for function composition and compatible with that of [DGK98].
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6.4 Proof of Theorem VI.4

The focal point of the first subsection is Lemma VI.11 which shows the Borel

measurability of extensions of the so-called Riemannian logarithm. The second sub-

section contains two key results regarding densities of M -valued random variables

transformed by the Riemannian logarithm. The final subsection proves Theorem VI.4

leveraging results from the preceding two subsections.

6.4.1 The Riemannian logarithm

Throughout, x is assumed to be an arbitrary point of M . Let UxM = {v ∈

TxM : ∥v∥x = 1} ⊆ TxM denote the set of unit tangent vectors. Define a function

τx : UxM → (0,∞] as follows5:

τx(u) := sup{t > 0 : t = distM(x, expx(tu))}.

The tangent cut locus is the set C̃x ⊆ TxM defined by C̃x := {τx(u)u : u ∈

UxM, τx(u) < ∞}. Note that it is possible for τx(u) = ∞ for all u ∈ UxM in which

case C̃x is empty. The cut locus is the set Cx := expx(C̃x) ⊆M .

The tangent interior set is Ĩx := {tu : 0 ≤ t < τx(u), u ∈ UxM} and the interior

set is the set Ix := expx(Ĩx). Finally, define D̃x := Ĩx ∪ C̃x. Note that for each

z = tu ∈ Ĩx, we have

∥z∥x = t = distM(x, expx(tu)) = distM(x, expx(z)). (6.6)

Consider the example where M = S2 as in Figure 6.1. Then τx(u) = π for all

u ∈ UxM . Thus, the tangent interior set Ĩx = B0(π,R
2), the open disc of radius π

centered at the origin.

5Positivity of τx is asserted at Sakai [Sak96, eq. (4.1)]
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When restricted to Ĩx, the exponential map expx |Ĩx : Ĩx → Ix is a diffeomor-

phism. Its functional inverse, denoted by logx |Ix , is called the Riemannian Logarithm

[BZA20; Zim17]. In previous works, logx |Ix is only defined from Ix to Ĩx. The next

result shows that the domain of logx |Ix : Ix → Ĩx can be extended to logx :M → D̃x

while remaining Borel-measurable.

Lemma VI.11. For all x ∈M , there exists a Borel measurable map logx :M → TxM

such that logx(M) ⊆ D̃x and expx ◦ logx is the identity on M . Furthermore, for all

x, ξ ∈M , we have distM(x, ξ) = ∥ logx(ξ)∥x.

Proof sketch. The full proof of the lemma is provided in Section 6.6.2. Below, we

illustrate the idea of the proof using the example when M = S2 as in Figure 6.1.

Let x ∈ S2 be the “northpole” (the blue point). The tangent cut locus C̃x is the

dashed circle in the left panel of Figure 6.1. The exponential map expx is one-to-one

on D̃x except on the dashed circle, which all gets mapped to −x, the “southpole”

(the orange point). A consequence of the measurable selection theorem6 is that logx

can be extended to be a Borel-measurable right inverse of expx by selecting z point

on C̃x such that logx(−x) = z.

6.4.2 Random variable transforms

In the previous subsection, we showed that logx :M → TxM is Borel-measurable.

Now, recall that TxM is equipped with the inner product ⟨·, ·⟩x, i.e., the Riemannian

metric. Below, for each x ∈M choose an orthonormal basis on TxM with respect to

⟨·, ·⟩. Then TxM is isomorphic as an inner product space to Rd with the usual dot

product.

Our first result of this subsection is a “change-of-variables formula” for computing

the densities of M -valued random variables after the logx transform. Recall that λM

6Kuratowski–Ryll-Nardzewski measurable selection theorem (see [BR07, Theorem 6.9.3])
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is the Riemann-Lebesgue measure on M and λ is the ordinary Lebesgue measure on

Rd = TxM .

Proposition VI.12. Let x ∈ M be fixed. There exists a Borel measurable function

νx :M → R with the following properties:

(i) Let X be a random variable on M with density fX and let Z := logx(X). Then

Z is a random variable on TxM with density fZ(z) := fX(expx(z)) ·νx(expx(z)).

(ii) Let f : M → R be an absolutely integrable function such that x is a Lebesgue

point of f . Define f : TxM → R by h(z) := f(expx(z)) · νx(expx(z)). Then

0 ∈ TxM is a Lebesgue point for h.

Proof sketch. The full proof of the proposition is in Section 6.6.3. The function

νx is the Jacobian of the change-of-variables formula for integrating
∫
B̃
fZdλ where

B̃ ⊆ TxM is a Borel subset. See Lemma VI.22 for the exact definition of νx. Part (i) is

a simple consequence of this change-of-variables formula, which says that
∫
B̃
fZdλ =∫

expx(B̃)
hdλM .

For part (ii), the key observations are that (a) νx(expx(0)) = νx(0) = 1 and

(b) the volumes of Bx(r,M) and B0(r, TxM) are equal as r → 0. More precisely,

limr→0
λM (Bx(r,M))
λ(B0(r,TxM))

= 1. From these two observations, it is straightforward to directly

verify Definition VI.8.

Proposition VI.13. Let (X, Y ) have a joint distribution on M × R such that the

marginal of X has a density fX on M . Let PY |X(·|·) be a conditional distribution for

Y given X. Let x ∈ M . Define Z := logx(X) and consider the joint distribution

(Z, Y ) on TpM × R. Then PY |Z(·|·) := PY |X(·| expx(·)) is a conditional distribution

for Y given Z. Consequently, mY |X ◦ expx = mY |Z.

Proof sketch. The full proof of the Proposition is in Section 6.6.4. The idea is the

same as in the proof of Proposition VI.12, except that the probability density fZ is

replaced by an appropriate conditional probability density.
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6.4.3 Finishing up the Proof of Theorem VI.4

Fix x ∈ M such that x is a Lebesgue point of fX and mY |X · fX . Note that by

Theorem VI.9, almost all x ∈M has this property. Next, let Z = logx(X) and fZ be

as in Proposition VI.12-(i). Then

1. fZ = (fX ◦ expx) · (νx ◦ expx), and

2. (mY |X ◦ expx) · fZ = (mY |X ◦ expx) · (fX ◦ expx) · (νx ◦ expx).

Now, proposition VI.12-(ii) implies that 0 is a Lebesgue point of both fZ and (mY |X ◦

expx) · fZ . Furthermore, by Proposition VI.13, we have mY |X ◦ expx = mY |Z . Thus,

0 is a Lebesgue point of fZ and mY |Z · fZ .

Now, let Dn := {(Xi, Yi)}i∈[n]. Define Zi := logx(Xi), which are i.i.d copies of the

random variable Z := logx(X), and let D̃n := {(Zi, Yi)}i∈[n]. Then we have

m̂(x∥Dn, KH
M)

(a)
=

∑n
i=1 Yi · distM(x,Xi)

−d∑n
j=1 distM(x,Xj)−d

(b)
=

∑n
i=1 Yi · ∥Zi∥−dx∑n
j=1 ∥Zj∥−dx

(c)
=

∑n
i=1 Yi · distRd(0, Zi)

−d∑n
j=1 distRd(0, Zj)−d

(d)
= m̂(0∥D̃n, KH

Rd)

where equations marked by (a) and (d) follow from Equation (6.5), (b) from

Lemma VI.11, and (c) from the fact that the inner product space TxM with ⟨·, ·⟩x
is isomorphic to Rd with the usual dot product. By Theorem VI.10, we have

m̂(0∥D̃n, KH
Rd)→ mY |Z(0) in probability. In other words, for all ϵ > 0,

lim
n→∞

Pr{|m̂(0∥D̃n, KH
Rd)−mY |Z(0)| > ϵ} = 0.

By Proposition VI.13, we have mY |Z(0) = mY |Z(expx(0)) = mY |Z(x). Therefore,

{
|m̂(0∥D̃n, KH

Rd)−mY |Z(0)| > ϵ
}
=
{
|m̂(x∥Dn, KH

M)−mY |X(x)| > ϵ
}

as events. Thus, m̂(x∥Dn, KH
M) → mY |X(x) converges in probability, proving Theo-
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rem VI.4 part 1. As noted in Devroye et al. [DGK98, §2], part 2 of Theorem VI.4 is

an immediate consequence of part 1.

6.5 Application to the d-Sphere

The d-dimensional round sphere is Sd := {x ∈ Rd+1 : x21 + · · ·+ x2d+1 = 1}. Here,

a round sphere assumes that Sd has the arc-length metric:

distSd(x, z) = ∠(x, z) = cos−1(x⊤z) ∈ [0, π]. (6.7)

Let S be a set and σ :M → S be a function. The partition induced by σ is defined

by {σ−1(s) : s ∈ Range(σ)}. For example, when M = Sd and W ∈ R(d+1)×h, then

the function σW : Sd → {±1}h defined by σW (x) = sgn(W⊤x) induces a hyperplane

arrangement partition.

Let N = {1, 2, . . . } and N0 = N∪{0} denote the positive and non-negative integers.

Definition VI.14 (Random hyperplane arrangement partition). Let d ∈ N and

M = Sd. Let q < 0 be a negative number, and let H be a random variable with

probability mass function pH : N0 → [0, 1] such that pH(h) > 0 for all h. Define the

following weighted random partition ha := (Θ,P, α):

1. The parameter space Θ =
⊔∞
h=0R

(d+1)×h is the disjoint union of all (d+ 1)× h

matrices. Element of Θ are matrices θ = W ∈ R(d+1)×h where the number

of columns h ∈ {0, 1, 2, . . . } varies. By convention, if h = 0, the partition

Pθ = PW is the trivial partition {Sd}. If h > 0, PW is the partition induced by

x 7→ sgn(W⊤x).

2. The probability P is constructed by the procedure where we first sample h ∼

pH(h), then sample the entries of W ∈ Rd×h i.i.d according to Gaussian(0, 1).

3. For θ ∈ Θ, define α(θ) := πqpH(h)
−1(−1)h

(
q
h

)
, where

(
q
h

)
:= 1

h!

∏h−1
j=0 (q − j).

Note that (−1)h
(
q
h

)
= 1

h!

∏h−1
j=0 (q − j) > 0 when q < 0.
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Theorem VI.15. Let ha = (Θ,P, α) be as in Definition VI.14. Then

Kha
Sd(x, z) =


∠(x, z)q : ∠(x, z) ̸= 0

+∞ : otherwise.

When q = −d, we have Kha
Sd = KH

Sd where the right hand side is the manifold-Hilbert

kernel.

Proof of Theorem VI.15. Before proceeding, we have the following useful lemma:

Lemma VI.16. Let rp = (Θ,P, α) be a WRP. Let H be a random variable. Let

θ ∼ P. Suppose that for all x, z ∈M , the random variables α(θ) and I{x ∈ Pθ[z]} are

conditionally independent given H. Then we have Krp
M(x, z) = EH

[
α(H) ·Eθ∼P[I{x ∈

Pθ[z]}|H]
]
where α(h) := Eθ∈P [α(θ)|H = h] for a realization h of H.

The lemma follows immediately from the Definition of Krp
M(x, z) in Equation 6.3

and the conditional independence assumption. Now, we proceed with the proof of

Theorem VI.15.

Let ϕ := ∠(x, z)/π. Let H ∼ pH and θ ∼ P be the random variables in Defi-

nition VI.14. Note that by construction, the following condition is satisfied: for all

x, z ∈ M , the random variables α(θ) and I{x ∈ Pθ[z]} are conditionally indepen-

dent given H. In fact, α(θ) = πqpH(h)
−1(−1)h

(
q
h

)
is constant given H = h. Hence,

applying Lemma VI.16, we have

Kha
Sd(x, z) = EH

[
α(H) · Eθ∼P[I{x ∈ Pθ[z]}|H]

]
=

∞∑
h=0

πq(−1)h
(
q

h

)
· Eθ∼P[I{x ∈ Pθ[z]}|H = h]

=
∞∑
h=0

πq(−1)h
(
q

h

)
· Pr{x ∈ Pθ[z]|H = h}.

Next, we claim that Pr{x ∈ Pθ[z]|H = h} = (1 − ϕ)h. When h = 0, x ∈ Pθ[z] is
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always true since Pθ = {Sd} is the trivial partition. In this case, we have Pr{x ∈

Pθ[z]|H = h} = 1 = (1− ϕ)0. When h > 0, we recall a result of Pinelis [Pin19]:

Lemma VI.17. Let x, z ∈ Sd. Let w ∈ Rd+1 be a random vector whose entries

are sampled i.i.d according to Gaussian(0, 1). Then Pr{sgn(w⊤x) = sgn(w⊤z)} =

1− (∠(x, z)/π).

Let W = [w1, . . . , wh] be as in Definition VI.14 where wj denotes the j-th column

of W . Then by construction, wj is distributed identically as w in Lemma VI.17.

Furthermore, wj and wj′ are independent for j, j
′ ∈ [h] where j ̸= j′. Thus, the claim

follows from

Pr{x ∈ Pθ[z]|H = h} (a)
= Pr{sgn(W⊤x) = sgn(W⊤z)|H = h}

(b)
=

h∏
j=1

Pr{sgn(w⊤
j x) = sgn(w⊤

j z)}
(c)
=

h∏
j=1

(1− ϕ) = (1− ϕ)h .

where equality (a) follows from Definition VI.14, (b) from W ∈ R(d+1)×h having i.i.d

standard Gaussian entries given H = h, and (c) from Lemma VI.17. Putting it all

together, we have

Kpart
P,α (x, z) =

∞∑
h=0

πq(−1)h
(
q

h

)
(1− ϕ)h = πq

∞∑
h=0

(
q

h

)
(ϕ− 1)h = ∠(x, z)q.

For the last step, we used the fact that for all q ∈ R the binomial series (1 + t)q =∑∞
h=0

(
q
h

)
th converges absolutely for |t| < 1 (when ϕ ∈ (0, 1]) and diverges to +∞ for

t = −1 (when ϕ = 0).

Corollary VI.18. Let q := −d and Kha
Sd be as in Theorem VI.15. The infinite-

ensemble classifier sgn(û(•∥Dn, Kha
Sd)) (see Equation 6.4 for definition) has the

interpolating-consistent property.

Proof. As observed in Devroye et al. [DGK98, Section 7], for an arbitrary kernel K,
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the L1-consistency of m̂(•∥Dn, K) for regression implies the consistency for classifi-

cation of sgn(û(•∥Dn, K)). Furthermore, m̂(•∥Dn, K) is interpolating for regression

implies that sgn(û(•∥Dn, K)) is interpolating for classification. While the argument

there is presented in the Rd case, the argument holds in the more general manifold

case mutatis mutandis.

Thus, by Theorem VI.4, we have sgn(û(•∥Dn, KH
Sd)) is consistent for classification,

i.e., Equation (6.1) holds. It is also interpolating since m̂(•∥Dn, K) is interpolating.

By Proposition VI.15, we have Kha
Sd = KH

Sd . Thus sgn(û(•∥Dn, Kha
Sd)) is an ensemble

method having the interpolating-consistent property.

6.6 Discussion

We have shown that using the manifold-Hilbert kernel in kernel smoothing re-

gression, also known as Nadaraya-Watson regression, results in a consistent estimator

that interpolates the training data on a Riemannian manifoldM . Furthermore, when

M = Sd is the sphere, we showed that the manifold-Hilbert kernel is a weighted ran-

dom partition kernel, where the random partitions are induced by random hyperplane

arrangements. This demonstrates an ensemble method that has the interpolating-

consistent property.

A limitation of this work is that the random hyperplane arrangement partition

is data-independent. Thus, the resulting ensemble method considered in this work

are easier to analyze than popular ensemble methods used in practice. Nevertheless,

we believe our work offers one theoretical basis towards understanding generalization

in the interpolation regime of ensembles of histogram classifiers over data-dependent

partitions, e.g., decision trees à la CART [Bre+84].
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6.6.1 Basics of Riemannian Manifolds

In this section, we review the main concepts from Riemannian manifold theory

essential to this work. Our main references are Sakai [Sak96] and Do Carmo [Do

92]. Throughout, d ∈ N denotes the dimension. We use the word smooth to mean

infinitely differentiable.

Manifolds. A smooth manifold M of dimension d is a Hausdorff, second count-

able topological space together with an atlas : a set Atlas := {(Uα, φα)}α∈A where

1). {Uα}α∈A is an open cover of M , 2). for each α ∈ A, φα : Uα → φα(Uα) ⊆ Rd is a

homeomorphism onto its image, and 3). φα ◦ φ−1
β : φβ(Uα ∩ Uβ) → φ−1

α (Uα ∩ Uβ) is

smooth for each pair α, β ∈ A. An element (U,φ) of Atlas is called a chart.

Smooth maps. A real-valued function f : M → R is a smooth function if

f ◦ φ−1 is smooth (in the elementary calculus sense) for all charts (U,φ). The set

of all smooth functions is denoted Fn(M), which forms an R-vectorspace. Let N be

another smooth manifold with atlas B. A function Φ : M → N is a smooth map if

g ◦ Φ ∈ Fn(M) for all g ∈ Fn(N).

Tangent space. Let x ∈M . A derivation at x is a linear function v : Fn(M)→ R

satisfying the product rule: v[fg] = f(x)v[f ] + g(x)v[g] for all f, g ∈ Fn(M). The

tangent space at x, denoted TxM , is the vector space of all derivations at x. Elements

of TxM are referred to as tangent vectors at x. For a given chart (U,φ) where x ∈ U ,

define a derivation at x, denoted ∂ix, by f 7→ d(f◦φ−1)
dzi

(φ(x)) where d
dzi

is the i-th

partial derivative in ordinary calculus. It is a fact that {∂ix : i = 1, . . . , d} is a basis

for TxM .

Although the above definition of a tangent vector is abstract, it can be concretely

interpreted in terms of derivative along a curve. Let a < t0 < b be real numbers.

A curve through x is a smooth map γ : (a, b) → M such that γ(t0) = x. Then

Fn(M) ∋ f 7→ d
dt
f(γ(t))|t=t0 ∈ R defines a derivation at x. Oftentimes, this derivation

is denoted γ̇(t0) ∈ TxM
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Riemannian metric. The tangent bundle is the set TM :=
⋃
x TxM , which

itself is a smooth manifold of dimension 2d. A vector field on M is a smooth map

V : M → TM such that V(x) ∈ TxM for all x ∈ M . The set of all vectors fields on

M is denoted Vf(M).

A Riemannian metric on M is a choice of an inner product ⟨·, ·⟩x (and thus, a

norm ∥ · ∥x) on TxM for each x ∈ M such that the function M → R given by

x 7→ ⟨V(x),U(x)⟩x is smooth for all V,U ∈ Vf(M). As shorthands, when x is clear

from context, we drop the subscripts and simply write ⟨·, ·⟩ and ∥·∥ instead. Choosing

an orthonormal basis for TxM with respect to ⟨·, ·⟩x for each x, we can identify TxM

with Rd with the ordinary dot inner product.

Let x ∈ M and (U,φ) be a chart such that x ∈ U . Define gij(x) = ⟨∂ix, ∂jx⟩x.

Denote by G(x) the d×d positive definite matrix [gij(x)]ij. Below, we will refer to the

function G : U → Rd×d as the coordinate representation of the Riemannian metric.

Define gij(x) := [G(x)−1]ij. The Christoffel symbols with respect to (U,φ) are defined

by Γkij :=
1
2

∑d
ℓ=1 g

kℓ(∂ixgjℓ + ∂jxgiℓ − ∂ℓxgij). Note that gkℓ, g
kℓ, G, Γkij, and ∂ixgjℓ

are all functions with domain U .

Geodesics. Fix a chart (U,φ). Consider a smooth curve γ : [a, b] → U . Let

ζi(t) := [φ(γ(t))]i be the i-th component functions. The curve γ is a geodesic if ζ

is a solution to the following system of second order ordinary differential equations

(ODEs): d2ζi
dt2

+
∑d

j,ℓ=1 Γ
i
jℓ ◦ γ dζjdt

dζℓ
dt

= 0 for all i = 1, . . . , d at all time t ∈ [a, b].

Geodesics are minimizers of the so-called energy functional E(γ) =

1
2

∫ b
a
∥γ̇(t)∥2γ(t)dt. The above system of ODEs are the analog of the “first deriva-

tive test” for local minimizers of E. Thus, geodesics are defined independently of the

choice of the chart.

Exponential map. For x ∈ M and v ∈ TxM , there exists ϵ > 0 and a unique

geodesic curve γv : [−ϵ, ϵ]→M such that γv(0) = x and γ̇v(0) = v. This follows from

the existence and uniqueness of the solution to an ODE given initial conditions where
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the ODE is as discussed above. Note that although geodesics are previously defined

in U where (U,φ) is a chart, they can be extended outside of U using additional

charts.

Let x ∈M and v ∈ TxM be fixed and let γv : [−ϵ, ϵ]→M be as in the preceding

paragraph. If ∥v∥x ≤ ϵ, then define expx(v) := γv(1). A fundamental fact is that

expx, known as the exponential map at x, can be defined on an open set of TxM

containing the origin.

Distance function. Let x, ξ ∈ M and a < b be real numbers. A piecewise

smooth curve from x to ξ is a piecewise smooth map γ : [a, b] → M such that

γ(a) = x and γ(b) = ξ. Assume that M is connected. Then for all x, ξ ∈ M ,

there exists a piecewise smooth curve from x to ξ. The length of γ is defined as

len(γ) :=
∫ b
a
∥γ̇(t)∥γ(t)dt. Define distM(x, ξ) := inf{len(γ) : γ is a piecewise smooth

curve from x to ξ}, which is a metric on M in the sense of metric spaces (see [Sak96,

Proposition 1.1]). For x ∈M and r ∈ (0,∞), the open ball centered at x of radius r

is denoted Bx(r,M) := {z ∈M : distM(x, z) < r}.

Complete Riemannian manifolds. A Riemannian manifold is complete if it is

a complete metric space under the metric distM . The Hopf-Rinow theorem ([Do 92,

Ch. 8, Theorem 2.8]) states that ifM is connected and complete, then the exponential

expx can be defined on the entire TxM .

6.6.2 Proof of Lemma VI.11

This section uses definitions and notations introduced in Section 6.4.1. In par-

ticular, recall the cut locus Cx, the tangent cut locus C̃x, the interior set Ix and the

tangent interior set Ĩx. The proof of Lemma VI.11 is presented towards the end of

the section. At this point, we compile some facts from various sources about the cut

locus.

Lemma VI.19. For all x ∈M , we have

312



1. Cx is a closed subset of M (Hebda [Heb87, Proposition 1.2]).

2. Ix ∩ Cx = ∅ and Ix ∪ Cx =M (Sakai [Sak96, Ch II, Lemma 4.4 (1)])

3. Ix is an open subset of M (immediate from 1 and 2 above)

4. expx : Ĩx → Ix is a diffeomorphism ([Sak96, Ch II, Lemma 4.4 (2)])

5. λM(Cx) = 0, where λM is the Riemann-Lebesgue measure ([Sak96, Lemma 4.4

(3)])

6. τx is continuous and infu∈UxM τx(u) > 0 ([Sak96, Ch II, Propositions 4.1 (2)

and 4.13 (1)])

While the following lemma is elementary, we provide a proof since we could not

find one in the literature.

Lemma VI.20. For all x ∈ M , the (topological) closure of Ĩx in TxM is D̃x. Fur-

thermore, for all x ∈M , we have expx(D̃x) =M .

Proof of Lemma VI.20. Take a convergent sequence {tiui}i∈N ⊆ Ĩx where ui ∈ UxM

and 0 ≤ ti < τx(ui). Let v
∗ = limi tiui. Our goal is to show that v∗ ∈ D̃x = Ĩx ∪ C̃x.

Since UxM is compact, we may assume that u∗ := limi ui exists after passing to

a subsequence if necessary. Furthermore, ∥tiui∥x = ti implies that t∗ := limi ti exists

as well (i.e., t∗ <∞). Hence, v∗ = t∗u∗.

Consider the case that τx(u
∗) = ∞. Then 0 ≤ t∗ < τx(u

∗) implies that v∗ =

t∗u∗ ∈ Ĩx. For the other case that t(u) <∞, we first note that tiui ∈ Ĩx implies that

ti < τx(ui). Taking the limit of both sides, we have t∗ = limi ti ≤ limi τx(ui) = τx(u
∗).

Note that the last limit can be exchanged since τx is continuous (Lemma VI.19 part

6). Thus, either t∗ < τx(u
∗) in which case v∗ ∈ Ĩx, or t

∗ = τx(u
∗) in which case

v∗ = τx(u
∗)u∗ ∈ C̃x.

For the “furthermore” part, note that

expx(D̃x) = expx(Ĩx ∪ C̃x) = expx(Ĩx) ∪ expx(C̃x) = Ix ∪ Cx =M
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where the last equality is Lemma VI.19 part 2.

Proof of Lemma VI.11. Denote by cl(TxM) the set of closed subsets of TxM . Define

ψ : M → cl(TxM) by ψ(ξ) := {x ∈ D̃x : expx(x) = ξ} = exp−1
x (ξ) ∩ D̃x. Note that

ψ(ξ) is a closed set by Lemma VI.20.

We claim that ψ is weakly-measurable, i.e., for every open set Ũ ⊆ TxM , the subset

of M defined by {ξ ∈M : ψ(ξ) ∩ Ũ ̸= ∅} is Borel. To see this, note that

{ξ ∈M : ψ(ξ) ∩ Ũ ̸= ∅}

= {ξ ∈M : exp−1
x (ξ) ∩ D̃x ∩ Ũ ̸= ∅}

= {ξ ∈M : expx(D̃x ∩ Ũ) ∋ ξ}

= expx(D̃x ∩ Ũ).

As inner product spaces, TxM and Rd are isomorphic (see Section 6.6.1-Riemannian

metric). Since, TxM and Rd are homeomorphic as topological spaces, Rd being locally

compact implies TxM is locally compact as well. Thus, we can write Ũ =
⋃
i∈N K̃i as

a countable union of compact sets K̃i ⊆ TxM . Furthermore, D̃x ∩ Ũ =
⋃
i∈N D̃x ∩ K̃i

and so expx(D̃x ∩ Ũ) =
⋃
i∈N expx(D̃x ∩ K̃i).

Since expx is continuous, expx(D̃x ∩ K̃i) is a compact subset of M , and hence

closed and bounded by the Hopf-Rinow theorem ([Do 92, Ch. 8, Theorem 2.8]).

Thus, expx(D̃x ∩ Ũ) =
⋃
i∈N expx(D̃x ∩ K̃i) is a countable union of closed sets, which

is Borel. This proves the claim that ψ is weakly Borel measurable.

By the Kuratowski–Ryll-Nardzewski measurable selection theorem (see [BR07,

Theorem 6.9.3]), there exists a Borel measurable function M → TxM , which we

denote by logx, such that logx(ξ) ∈ ψ(ξ) = exp−1
x (ξ) for all ξ ∈ M , as desired. By

construction, logx(ξ) ∈ exp−1
x (ξ) for all ξ ∈M , and so expx(logx(ξ)) = ξ is immediate.

For the “furthermore” part, let ξ ∈ M be arbitrary and let z := logx(ξ) ∈ D̃x.

Let {zi} ⊆ Ĩx be a sequence such that limi zi = z. By Equation (6.6), we

314



have distM(x, expx(zi)) = ∥zi∥x. By continuity of distM and expx, we have

distM(x, ξ) = distM(x, expx(z)) = limi distM(x, expx(zi)). To conclude, we have

limi distM(x, expx(zi)) = limi ∥zi∥x = ∥z∥x = ∥ logx(ξ)∥x, as desired.

6.6.3 Proof of Proposition VI.12

Recall from Section 6.6.1-Riemannian metric, given a chart (U,φ), one can de-

fine the matrix-valued function G : U → Rd×d referred to earlier as the coordinate

representation of the Riemannian metric. Now, Lemma VI.19 part 3 states that Ix

is an open neighborhood of x. Furthermore, Ĩx is an open subset of TxM , which is

identified with Rd using an orthonormal basis (see Section 6.6.1-Riemannian metric).

Hence, {(Ix, logx |Ix)}x∈M is an atlas of M (see Section 6.6.1-Manifolds).

Definition VI.21. The chart (Ix, logx |Ix) is called a normal coordinate system at

x. Let G : Ix → Rd×d be the coordinate representation of the Riemannian metric

for this chart. To emphasize the dependency on x, we write Gx := G. Denote by

G⊥
x : M → Rd×d the zero extension of Gx to the rest of M , i.e., G⊥

x (ξ) = Gx(ξ) for

ξ ∈ Ix and G⊥
x (ξ) is the zero matrix for ξ ̸∈ Ix.

The normal coordinate system has the property thatGx(x) = G⊥
x (x) is the identity

matrix. This is the result of Sakai [Sak96, Ch. II §2 Exercise 4].

Lemma VI.22 (Change-of-Variables). Let x ∈ M be fixed. Define the function

νx : M → R by νx(ξ) =
√
| detG⊥

x (ξ)| where G⊥
x is as in Definition VI.21. Then νx

is Borel-measurable. Furthermore, νx satisfies the following property: Let f :M → R

be an absolutely integrable function. Define the function

h : TxM → R by h(z) := f(expx(z)) · νx(expx(z)).

Then (i) h(0) = f(x) and (ii) for all Borel set B̃ ⊆ TxM we have
∫
B
fdλM =

∫
B̃
hdλ

where B := expx(B̃ ∩ Ĩx).
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Proof of Lemma VI.22. We first show that νx is Borel-measurable. Recall that G⊥
x :

M → Rd×d is the zero extension of Gx : Ix → R, which is by definition smooth (see

Section 6.6.1-Riemannian metric). In particular, Gx : Ix → R is continuous and so√
det(Gx(•)) is Borel-measurable. Now, note that

√
det(G⊥

x (•)) is the zero extension

of
√
det(Gx(•)) from Ix to M . Hence,

√
det(G⊥

x (•)), which is νx by definition, is

Borel-measurable.

Next, we prove the “Furthermore” part (i). Note that expx(0) = x. More-

over, G⊥
x (x) = Gx(x) is the identity matrix as asserted after Definition VI.21 (see

Sakai [Sak96, Ch. II §2 Exercise 4]). Thus, h(0) = f(expx(0))
√
| detG⊥

x (expx(0))| =

f(x)
√
1 = f(x), as desired.

For the “Furthermore” part (ii), we first note that B̃ = (B̃ ∩ Ĩx) ∪ (B̃ ∩ C̃x)

expresses B̃ as a disjoint union. Thus, B = expx(B̃) = expx(B̃ ∩ Ĩx) ∪ exp(B̃ ∩ C̃x)

expresses B as a disjoint union as well. Moreover, exp(B̃ ∩ C̃x) ⊆ exp(C̃x) = Cx,

which has λM -measure zero (Lemma VI.19 part 5).

Recall that λ is the shorthand for the ordinary Lebesgue measure λRd (see para-

graph right after Definition VI.3). Now, we directly compute to obtain the formula

∫
B̃

hdλ =

∫
B̃∩Ĩx

f ◦ expx
√
| det(G⊥

x ◦ expx)|dλ

=

∫
logx(expx(B̃∩Ĩx))

f ◦ expx
√
| det(G⊥

x ◦ expx)|dλ

=

∫
expx(B̃∩Ĩx)

fdλM ∵ Amann et al. [AE09, Ch XII, Thm 1.10]

=

∫
expx(B̃∩Ĩx)

fdλM +

∫
expx(B̃∩C̃x)

fdλM

=

∫
B

fdλM ,

as desired.
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Proposition VI.23. Let x ∈ M be fixed. Let X be a random variable on M with

density fX where the underlying probability space is (Ω,P,A) (see Definition VI.5).

Define Z := logx(X). Then Z is a random variable on TxM such that for all events

E ∈ A and Borel sets B̃ ⊆ TxM we have Pr(E ∩ {Z ∈ B̃}) = Pr(E ∩ {X ∈

expx(B̃ ∩ Ĩx)}),

Proof of Proposition VI.23. To start with, we have

Pr(E ∩ {Z ∈ B̃})

= Pr(E ∩ {Z ∈ B̃ ∩ D̃x}) ∵ logx(M) ⊆ D̃x

= Pr(E ∩ {Z ∈ B̃ ∩ Ĩx}) + Pr(E ∩ {Z ∈ B̃ ∩ C̃x}) ∵ D̃x = Ĩx ∪ C̃x, ∅ = Ĩx ∩ C̃x

= Pr(E ∩ {logx(X) ∈ B̃ ∩ Ĩx}) + Pr(E ∩ {logx(X) ∈ B̃ ∩ C̃x}).

Since expx : Ĩx → Ix is a diffeomorphism (Lemma VI.19-part 4) with inverse logx, we

have

E ∩ {logx(X) ∈ B̃ ∩ Ĩx} = E ∩ {X ∈ expx(B̃ ∩ Ĩx)}

as sets. On the other hand,

E ∩ {logx(X) ∈ B̃ ∩ C̃x} ⊆ {X ∈ Cx}.

Finally, Pr(X ∈ Cx) =
∫
Cx
fXdλM = 0 since Cx has λM -measure zero (Lemma VI.19-

part 5).

Proof of Proposition VI.12 part (i). Recall that λ is the shorthand for the ordinary

Lebesgue measure λRd (see paragraph right after Definition VI.3). Let E = Ω in
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Proposition VI.23. Then we have

Pr(Z ∈ B̃)

= Pr(X ∈ expx(B̃ ∩ Ĩx)) ∵ Part (i)

=

∫
expx(B̃∩Ĩx)

fXdλM ∵ fX is the density of X

=

∫
B̃∩Ĩx

(fX ◦ expx) · (νx ◦ expx)dλ ∵ Lemma VI.22

=

∫
B̃

fZdλ ∵ Definition of fZ

By assumption, fX is Borel-measurable. By Lemma VI.22, νx is Borel-measurable.

Since expx is continuous, we have that both fX ◦ expx and νx ◦ expx are Borel-

measurable. This proves that fZ is Borel-measurable. Hence, the integrand is Borel-

measurable and a density function for Z.

Proof of Proposition VI.12 part (ii). Recall that λ is the shorthand for the ordinary

Lebesgue measure λRd (see paragraph right after Definition VI.3). By Lemma VI.19

part 6, we have τ ∗x := infu∈UxM τx(u) > 0. Now, let r ∈ (0, τ ∗x). By the definition of r,

we have Bx(r,M) ⊆ Ĩx. Hence letting z = logx(ξ) for ξ ∈ Bx(r,M), by Equation (6.6)

we have

distM(x, ξ) = distM(x, expx(z)) = ∥z∥x. (6.8)

Thus,

logx(Bx(r,M)) = {z ∈ TxM : ∥z∥x < r} = B0(r, TxM) (6.9)

and

Bx(r,M) = expx(B0(r, TxM)). (6.10)
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Thus, by Lemma VI.22, we have

∫
Bx(r,M)

fdλM =

∫
B0(r,TxM)

hdλ. (6.11)

Before proceeding, we need the following lemma:

Lemma VI.24. For all x ∈M , we have limr→0
λM (Bx(r,M))
λ(B0(r,TxM))

= 1.

Proof of Lemma VI.24. Let ωd := πd/2/Γ(d
2
+1) be the volume of the unit ball in Rd

where Γ is the gamma function. Then λ(B0(r, TxM)) = ωdr
d. Next, [Sak96, Ch II.5

Exercise 3] states that

lim
r→0

rdωd − λM(Bx(r,M))

rd+2
=

ωd
6(d+ 2)

Sx

where Sx ∈ R is a constant that depends only on x (it is the scalar curvature of M

at x). By simple algebra, the above yields

0 = lim
r→0

1

r2

(
1− λM(Bx(r,M))

ωdrd
− Sxr

2

6(d+ 2)

)

In particular, we have limr→0 1− λM (Bx(r,M))
ωdrd

= 0, as desired.

Now we continue with the proof of Proof of Proposition VI.12 part (ii). We observe

that

f(x) = lim
r→0

∫
Bx(r,M)

fdλM

λM(Bx(r,M))
∵ x is a Lebesgue point of f

= lim
r→0

∫
B0(r,Tx(M))

hdλ

λM(Bx(r,M))
∵ definition of h and equation (6.11)

= lim
r→0

∫
B0(r,TxM)

hdλ

λM(Bx(r,M))

λM(Bx(r,M))

λ(B0(r, TxM))
∵ Lemma VI.24

= lim
r→0

∫
B0(r,TxM)

hdλ

λ(B0(r, TxM))
.
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Since f(x) = h(0) (Lemma VI.22) , we’ve shown that

g(0) = lim
r→0

∫
B0(r,TxM)

hdλ

λ(B0(r, TxM))
.

Thus, 0 is a Lebesgue point of h, as desired.

6.6.4 Proof of Proposition VI.13

Recall that λ is the shorthand for the ordinary Lebesgue measure λRd (see para-

graph right after Definition VI.3). Let A ⊆ R and B̃ ⊆ TxM be Borel subsets.

Then

∫
B̃

PY |Z(A|z)fZ(z)dλ(z)

=

∫
B̃

PY |X(A| expx(z))fZ(z)dλ(z) ∵ Definition of PY |Z=z

=

∫
expx(B̃∩Ĩp)

PY |X(A|x)fX(x)dλM(x) ∵ Lemma VI.22 and Proposition VI.12 (ii)

= Pr(Y ∈ A,X ∈ expx(B̃ ∩ Ĩx))

= Pr(Y ∈ A,Z ∈ B̃) ∵ Proposition VI.12 (i) with E := {Y ∈ A}

This proves that PY |Z(·|·) is a conditional probability for Y given Z.
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CHAPTER VII

Future directions

This thesis explored several algorithms defined via multiple hyperplanes, namely,

multiclass classification with linear discriminant functions, hyperplane arrangement

classifiers, and ensemble of random hyperplane arrangements on the sphere. Below,

we discuss questions inspired by this thesis research that do not fit neatly into any of

the chapters.

Exact characterization of the Natarajan dimension of linear classifiers. It

is well-known that the VC dimension of linear classifiers for binary classification in

Rd is exactly d + 1. This is proven using Radon’s theorem from convex geometry.

For the k-ary multiclass case, the Natarajan dimension of linear classifier is upper

bounded by 3kd log(kd). See [SB14, Lemma 29.5]. When we substitute in k = 2 to

the multiclass result, we get the upper bound 6d log(2d). Given that the Natarajan

dimension is the multiclass generalization of the VC dimension [SB14, Chapter 29],

can this logarithmic term be removed from this upper bound? Is there an analogous

Radon’s theorem for analyzing the Natarajan dimension for the multiclass linear

classifiers?

Multiclass hinge loss beyond SVMs. Fathony et al. [Fat+16] and Duchi et al.

[DKR18] proposed a variant of multiclass hinge loss (hereinafter referred to as the
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FD hinge loss) that is classification-calibrated. Frongillo et al. [FW21] proved the

polyhedral surrogate loss functions (including the FD hinge loss) has a regret function

that is superior to smooth surrogate (such as the cross-entropy). From this point of

view, the FD hinge loss is superior to the cross-entropy. Given this, can the FD hinge

loss be as competitive as the cross-entropy for training neural networks? If not, can

we pinpoint the reason?
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