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ABSTRACT

There is an increasing emphasis on the utility of large-scale biological experiments to advance
our understanding of human biological processes. The analysis of data from these studies, however,
can face challenges associated with data size and complexity. For instance, two large pharmacoge-
nomic databases, the Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line
Encyclopedia (CCLE), have been widely used to explore genetic predictors of drug sensitivity and
to develop and study hypotheses about new anti-cancer therapies. At the same time, several pa-
pers have reported only moderate levels of agreement in drug sensitivity estimates between GDSC
and CCLE with the discordance largely attributed to experimental and analytical factors, including
differences in cell viability assay, range of tested drug concentrations, and construction of dose-
response curves. There has been no published in-depth exploration, however, of the raw drug
screening data from GDSC and CCLE. Therefore, we examine the raw data from both studies and
identify technical variation such as complex spatial biases and batch-specific outliers. We show
how these errors propagate through downstream calculations of relative viability and measures of
drug sensitivity. Additionally, we note that technical error can interact with aspects of plate design
such as the location of control wells along plate edges and the consistent orientation of drugged
wells across replicates creating challenges for analysis. These findings highlight the importance of
exploring the raw drug screening data prior to pursuing an analysis. They also inform a number of
strategies for improving experimental design, such as randomized plate layouts.

To eliminate the effects of such between-plate variation in high-throughput drug screening stud-
ies, intensity measurements for treated wells are often normalized to the control wells. Such
normalization allows for comparability across plates and across studies. However, within-plate
variability, including spatial biases, cannot be alleviated by normalization to the controls. There-
fore, we provide a normalization framework that addresses multiple types of spatial effects and
can handle complex plate layouts. We carefully apply this normalization framework to the drug
screening data from GDSC. Our normalization produces more reliable measures of drug sensitivity
than current methods.

Finally, many existing methods for high-dimensional classification, including those used for
pharmacogenomic data, require a substantial amount of computing time and power. Specifically,
the use of cross-validation for tuning parameter selection and error estimation can be particularly

xvi



time-consuming. Therefore, we introduce an approximate leave-one-out cross-validation approach
for principal component linear discriminant analysis that is computationally more efficient than
existing methods. In particular, our method obviates the need to select tuning parameter values and
optimizes computational efficiency through a series of matrix downdates. We apply our method to
simulated data as well as to pharmacogenomic data from GDSC. For the type of genomic data for
which this method is intended, it has comparable accuracy to existing approaches, while improving
on computation time.
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CHAPTER 1

Introduction

The analysis of data from biological experiments has long been a goal of statisticians. In recent
years, however, many biological datasets have become increasingly large and incredibly diverse,
and the questions scientists use those data to answer are more complex and precise than ever. In
particular, the analysis of many modern biological datasets aims to push forward our understanding
of human biological processes and improve precision medicine. An important source of data for
improving precision cancer treatments, for instance, are large-scale cancer drug screening studies.
The first step in developing new cancer treatments, drug screening studies involve testing a wide
range of potential anti-cancer drugs on a diverse set of cancer cell lines, cancer cells that have been
harvested from a tumor and grown in a laboratory for research purposes. The goal of such drug
screening studies is to capture each drug’s efficacy at inhibiting cancer cell growth.

The Genomics of Drug Sensitivity in Cancer (GDSC) project and the Cancer Cell Line Ency-
clopedia (CCLE) are two large-scale and publicly available cancer drug screening studies we focus
on in this thesis (Yang et al., 2013; Barretina et al., 2012). These studies contain efficacy data for
hundreds of potential anti-cancer drugs tested on over one thousand cancer cell lines at several
concentrations each (see Appendix A for more details). These studies also provide detailed data
about the cell lines themselves, including gene expression, methylation, and copy number variation
levels. In the analysis of these data, it is common to combine estimated drug efficacy with cell line
genomic information to identify genomic predictors of drug sensitivity.

One of the main benefits of these databases is their size; GDSC and CCLE contain a tremendous
amount of information from many different sources. At the same time, their size and complexity
complicate the analysis process. Throughout this dissertation, we consider and address several of
the challenges that arise in the use of large-scale biological data. Before introducing some of those
challenges, we note that in this chapter, and in this thesis, we largely focus our discussion on data
from large-scale cancer drug screening studies. Many of our ideas and methods, however, can also
be applied to a broad range of high-throughput biological experiments.

When datasets are large, they can suffer from particularly complex errors and widespread noise.
While we expect the data from any experiment to contain errors, the errors are likely to be more
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complicated and diverse in large and high-throughput experiments. In particular, both the amount
of data collected and the length of time over which data collection takes place increases the like-
lihood that the type and structure of error will vary widely throughout the dataset. For example,
error structure is likely to be different for data collected on the fifth day of the study and for data
collected two and half years later. Additionally, we expect batch effects to be more widespread,
corresponding, for instance, to different laboratories, different machines, and even different sea-
sons of the year.

The manual identification of such errors that may be preferred for small datasets will no longer
be feasible when the collected data span millions of rows (e.g., the raw GDSC datasets 1 and 2 and
CCLE data have 3.7, 6.6, and 2.3 million rows, respectively). To address these issues, it is crucial
to understand the types and frequencies of errors that are present in a given dataset (discussed in
Chapter 2 for GDSC and CCLE). Eliminating the effects of these errors can be facilitated by smart
experimental design choices and targeted data preprocessing techniques (discussed in Chapters 2
and 3, respectively).

Further, it is often desirable to combine multiple large biological datasets across studies for a
unified analysis. This can be a way to combine different types of data (e.g., drug efficacy with gene
expression levels) or a strategy for increasing the number of biological replicates. When combin-
ing data sources, however, potential differences in experimental procedures become important. For
instance, GDSC and CCLE both measure drug efficacy, but they differ in the size of microplates
on which the tests are performed, the assay for quantifying cell growth, and the number and con-
centration of tested drug doses, among many other factors (Yang et al., 2013; Barretina et al.,
2012). Further, just as the types of errors can vary throughout a single dataset, there can also be
vastly different error structures between datasets. Together, these differences make it difficult to
meaningfully combine data or compare results across studies (addressed in Chapter 3).

Additionally, the unique features of each drug screening study can create challenges for the
development of data processing and analysis methods that are broadly applicable. When each
study uses its own experimental design that includes different types of control wells, plate layouts,
and patterns of missing values, it may not be feasible to use the same processing and analysis
techniques across all studies. At the same time, it is not practical to develop specific processing
methods for each new experiment. Overall, the challenges of analyzing a single large biological
study are exacerbated when combining the analysis of several.

Finally, the sheer size of many such datasets can affect the feasibility of a desired analysis. Par-
ticularly, many large-scale biological experiments produce high-dimensional data, with hundreds
of thousands of features for each observation or sample in the study. In such a high-dimensional
setting (n observations≪ p features), standard statistical techniques will be ineffective. Instead,
a proper analysis will require additional assumptions about the data structure or the use of regu-
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larization. While there exist many techniques for handling such high-dimensional settings, they
can be computationally expensive. Even beyond high-dimensionality, the computation time and
memory needed to process and analyze a large dataset poses challenges. Some procedures will
be impossible to perform on a personal computer, while others will simply take an impractical
amount of time to complete. In Chapter 4, we discuss the computational difficulties of modern
data-analysis techniques for large-scale data. We show the long computation times of traditional
cross-validated classification methods and introduce a new, and faster, algorithm.

The rest of this thesis is organized as follows. In Chapter 2, we do a deep dive into the raw and
processed drug screening data in the GDSC and CCLE databases. Motivated by extensive literature
on the disagreement between the two studies and our own findings of disagreement within each
study, we identify several types of technical variation in the raw data and highlight how these errors
propagate through downstream calculations. Additionally, we note that technical error can interact
with aspects of plate design, such as the location of control wells and the consistent orientation
of drugged wells across replicates, creating challenges for analysis. These findings highlight the
importance of exploring the raw drug screening data prior to pursuing an analysis and inform a
number of strategies for improving experimental design, such as randomized plate layouts.

In Chapter 3, we introduce a new framework for normalizing the raw data from large biological
studies. As previously described, such data can suffer from substantial non-biological variation
both within and across assays and studies. Many existing normalization strategies are only able to
address one type of technical variation. Others are not effective in settings with complex experi-
mental designs. Therefore, we provide a normalization framework that addresses multiple types
of technical variation and can handle complex data settings. We carefully apply this normaliza-
tion framework to the drug screening data from GDSC, addressing many of the errors outlined in
Chapter 2. Our normalization produces more reliable measures of drug sensitivity than current
methods.

In Chapter 4, we introduce a fast and approximate version of leave-one-out cross-validation
for high-dimensional linear discriminant analysis (LDA). While LDA is a common and simple
linear classifier, adapting it to high dimensions can be extremely computationally intensive. Our
approach to high-dimensional LDA combines dimensionality reduction via principal components
with covariance matrix regularization in such a way that no tuning parameter selection is needed.
Additionally, we introduce approximations in the LOO CV fitting procedure, implement quick
downdating for large matrix calculations, and take advantage of the data structure to avoid redun-
dant calculations. We combine these techniques in the nPC-LDA with FAST-CV algorithm. On
the type of genomic data for which it was developed, nPC-LDA with FAST-CV is a cross-validated
classifier that performs substantially faster than, but with comparable accuracy to, existing cross-
validated methods.
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Finally, in Chapter 5, we conclude and discuss future possibilities for this work. This includes
methods for flagging widespread technical errors in drug screening data and connecting the design
of drug screening experiments to principled data processing methods.
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CHAPTER 2

Technical Variation in Drug Screening Studies

2.1 Introduction

The Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line Encyclopedia
(CCLE) are two large-scale pharmacogenomic studies containing a wide range of genetic and
pharmacological data (Yang et al., 2013; Barretina et al., 2012). These publicly available databases
have been widely used to explore genetic predictors of drug sensitivity and to accelerate the dis-
covery of novel anti-cancer therapies (Weinstein and Lorenzi, 2013; Genomics of Drug Sensitivity

in Cancer). In the years since their publication, however, GDSC and CCLE have been at the cen-
ter of a broad discussion about the concordance of pharmacogenomic data across studies (e.g.,
Haibe-Kains et al. (2013); The Cancer Cell Line Encyclopedia and Genomics of Drug Sensitivity

in Cancer Investigators (2015); Safikhani et al. (2016a); Bouhaddou et al. (2016); Geeleher et al.

(2016); Mpindi et al. (2016); Safikhani et al. (2016b)). While the gene expression data from GDSC
and CCLE has been found to be highly concordant, several papers have reported only moderate lev-
els of agreement for the drug screening data between the two studies. These previous publications
use a wide range of analysis techniques, but focus almost exclusively on analyzing summarized
drug sensitivity measures such as the drug concentration at which 50% of cell growth is inhibited
(IC50) and the area under the dose-response curve (AUC).

The primary contribution of this chapter is a thorough investigation of the raw intensity data
from GDSC and CCLE. We identify systematic and consequential technical error in the raw data
from both studies. Notably, the same types of error, including spatial effects, checkerboard pattern,
batch-specific outliers, and noise, are present in both GDSC and CCLE. This technical variation
is likely an important factor in the previous reports of inconsistency in drug sensitivity measures.
Our findings highlight the importance of exploring the raw data before beginning an analysis, and
we provide a Shiny app to facilitate such an exploration of the GDSC and CCLE data.

This chapter also demonstrates the ways in which technical error can interact with aspects of
the experimental design, including plate layout and the location of control wells. Such interactions
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can cause systematic errors in sensitivity estimates with implications for downstream analysis.
We discuss small changes to design, including employing randomization and multiple forms of
replication, that can mitigate the effects of these errors.

2.2 Previous Comparisons of GDSC and CCLE

In a comparison analysis of GDSC and CCLE, Haibe-Kains et al. (2013) found high concordance
for gene expression data, both within GDSC (median Spearman rank correlation of 0.97) and
between GDSC and CCLE (median correlation of 0.85). A comparison of drug sensitivity, as
measured by IC50 and AUC, however, resulted in only moderate to poor concordance (median
correlation of 0.28 for IC50 and 0.35 for AUC). The authors found similarly low consistency after
discretizing drug response to calls of “sensitive”, “intermediate”, and “resistant” for each cell line,
and also after removing insensitive cell lines. Further, they showed that discrepancies in drug
sensitivity data, rather than in genomic data, drove inconsistencies in significant genetic predictors
of drug sensitivity selected in GDSC and CCLE.

A series of follow-up studies attempted to find both better consistency between the two studies
and explanations for the purported differences (The Cancer Cell Line Encyclopedia and Genomics

of Drug Sensitivity in Cancer Investigators, 2015; Haverty et al., 2016; Pozdeyev et al., 2016;
Bouhaddou et al., 2016; Geeleher et al., 2016; Mpindi et al., 2016; Safikhani et al., 2016b; Rahman

et al., 2018; Hu et al.). Somewhat better agreement was found by using different measures of
concordance, different measures of drug sensitivity, and different comparison techniques.

In a combined analysis, The Cancer Cell Line Encyclopedia and Genomics of Drug Sensitivity

in Cancer Investigators (2015) noted that high correlation should not be expected when most cell
lines are insensitive to the tested drug, as was true for many compounds in these studies; in such sit-
uations, noise is the dominant effect. To alleviate this issue, the authors measured consistency with
Pearson correlation and truncated IC50 estimates for insensitive cell lines to the maximum tested
drug concentration. Using these methods, they found improved concordance (median correlation
of 0.54 for IC50 and 0.45 for AUC). In their analysis, however, up to 98% of IC50 estimates were
truncated for a given drug, leading to concerns that the reported correlations were overestimated
(Pozdeyev et al., 2016).

Several studies accounted for differences in the range of tested drug concentrations between
GDSC and CCLE. Somewhat better consistency was found for both AUC (Pozdeyev et al., 2016)
and IC50 (Rahman et al., 2018) when adjusting by the range of tested concentrations. Bouhaddou

et al. (2016) tried to find improved consistency by fitting dose-response curves with only the over-
lapping doses between GDSC and CCLE. When considering IC50 estimates for sensitive drug-cell
line combinations, however, the authors found Pearson correlation greater than 0.5 for only two of
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the six drugs with sufficient cell lines.
Revisiting their earlier analysis (in Haibe-Kains et al. (2013)) with updated data, Safikhani et al.

(2016b) chose the best combination of sensitivity measure and consistency metric for each individ-
ual drug. They found moderate to good concordance for five drugs, but a lack of concordance or an
insufficient number of sensitive cell lines for the remaining ten drugs. Further, whether comparing
between cell lines or across cell lines (Geeleher et al., 2016; Mpindi et al., 2016), gene expression
data remained more consistent than drug sensitivity data, confirming their previous findings.

It has been suggested that the general discordance in drug sensitivity can largely be attributed to
experimental and analytical factors. Such factors include differences in cell viability assay, man-
agement and delivery of compounds, cell culture conditions (seeding density, culture media, etc.),
range of tested drug concentrations, and construction of dose-response curves (Hatzis et al., 2014;
Haverty et al., 2016; Ding et al., 2017; Larsson et al., 2020). Wang et al. (2020) also recognize
the potential presence of variability in raw drug screening data that can lead to unacknowledged
uncertainty in summaries of drug sensitivity.

2.3 Overview of the Data

GDSC The version 17 release of the GDSC drug sensitivity data contains 1,057 cancer cell lines
and 265 anti-cancer drugs scanned on 15,631 plates (Yang et al., 2013). While additional GDSC
data has since been released, version 17 contains the data we have most thoroughly examined
and will focus on in this chapter. Each plate, scanned at either Massachusetts General Hospital
(MGH) or Wellcome Trust Sanger Institute (WTSI), was plated with one cell line, but multiple
compounds. Each compound was tested over a 256-fold concentration range, at either 9 doses
with two-fold dilution or 5 doses with four-fold dilution. Between the two sites, there were 125
different plate layouts, with different plate sizes (384- or 96-well), compounds, and number and
location of control wells (Figure 2.1). All plates included both untreated control wells (containing
cells, but no compound) and blank control wells (containing no cells and no compound). Every
plate also had wells with missing intensity measurements; most missing values were due to the use
of propriety compounds for which no data was publicly released, while others were due to quality
control failures. Two different assays were used to capture cell viability, SYTO 60 and Resazurin.
These were constant across a plate.

While most drug-cell line combinations appear in the GDSC database at most once, four drugs
(AZD6482, refametinib, PLX-4720, and pictilisib) were replicated over the same range of concen-
trations for more than 700 cell lines. These replicates consist of 3,232 drug-cell line combinations
scanned on 4,161 different plates. Three of these drugs were tested twice at WTSI, while AZD6482
was repeated between the two sites. Replicate assays for AZD6482 typically took place within two

7



a

b

c

Figure 2.1: Layout of GDSC and CCLE plates. Example plate layouts for (a) a GDSC plate with drugs
applied at 9 concentrations, (b) a GDSC plate with drugs applied at 5 concentrations, and (c) a CCLE plate.

years, while replicates within WTSI tended to be either about one year or three years apart.

CCLE The raw CCLE drug screening data contains information about 613 cancer cell lines and
27 compounds scanned on 14,187 plates (Barretina et al., 2012, 2019). Each compound was tested
over 8 concentrations with 3.16-fold dilution and a maximum concentration of 8 µM. Replicates
are available for almost every drug-cell line combination (median 4, minimum 1, maximum 10),
but like GDSC, all replicates are on separate plates, i.e., there are no within-plate replicates. The
screening was done on 1,536-well plates, though intensities for the vast majority of wells were
not released; the most complete plates have intensities for fewer than 10% of wells (Figure 2.1;
Appendix B.1). Every plate contains both untreated and blank control wells. Cell viability was
captured using Cell Titer Glo, a method that uses ATP as an indicator of viable cells.

Within-Study Replication Existing literature has investigated the concordance of drug sensitiv-
ity measures for drug-cell line combinations replicated between GDSC and CCLE. Both studies,
however, have internal replication, and we used these repeated measurements to evaluate AUC
agreement within each study. For GDSC, we focused on the four replicated drugs described above.
For CCLE, we considered all 27 drugs; when there were more than two replicates for a given
drug-cell line combination, we randomly selected two to consider.

We found varying levels of consistency across cell lines for each drug. Similar patterns were
apparent for both GDSC (Figure 2.2; Table B.1) and CCLE (Figure B.1). Median Pearson correla-
tion for CCLE replicates is 0.65, with a range from 0.34 to 0.85. As expected, correlation tends to
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Figure 2.2: Within-study agreement for GDSC drugs. AUC estimates for the four drugs replicated within
GDSC. Each point is one cell line (n = 829, 801, 844, and 758, respectively). Pearson correlation is provided
at the top of each plot.

be higher for more broadly effective compounds (median correlation of 0.64 for narrowly effective
and 0.78 for broadly effective CCLE drugs; Appendix B.2). Previous work suggests that noise is
an important factor when low consistency is observed for drug sensitivity measures, especially for
narrowly effective compounds (The Cancer Cell Line Encyclopedia and Genomics of Drug Sensi-

tivity in Cancer Investigators, 2015). This chapter shows that, in addition to noise, other types of
technical variation are also affecting these levels of concordance.

2.4 Technical Variation

Many GDSC and CCLE plates are high-quality. Figure 2.3a-b shows a GDSC scan with no appar-
ent spatial effects or outliers, but with several drugs that are effective at high concentrations. This
is the biology of interest, and it is clearly apparent. Many other plates in these studies, however,
have noticeable errors. We identified four types of technical error that we believe are contributing
to the lack of concordance in drug sensitivity. These errors appeared in both the GDSC and CCLE
data and are outlined below.

Spatial Effects Many plates show systematic spatial bias. Figure 2.3c shows a plate-wide diago-
nal gradient with higher intensities in the upper left fading to lower intensities in the bottom right.
Frequently, spatial bias appears as this type of systematic and gradual change in well intensity
over a whole plate. We quantified the extent to which such spatial effects exist on GDSC plates
and found that more than half of all plates scanned at WTSI have horizontal spatial effects with a
magnitude of at least 0.1 log2 units (Appendix B.3). This causes the viability in untreated control
wells, for instance, to vary by more than 10% across the plate (note: 20.1 ≈ 1.1). As we discuss
below, this type of spatial bias can have a large impact on relative viability and drug sensitivity
estimation.
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Figure 2.3: Technical error in raw GDSC and CCLE data. (a) A high-quality GDSC plate with no spatial
effects, but with several effective drugs. Each cell displays well intensity on the log2 scale. Grey cells
indicate missing intensities. (b) Dose-response curve for an effective drug on GDSC plate 91023 (plot a;
row 15, columns 3–11). Relative viabilities are normalized to the median of the untreated controls. (c) A
GDSC plate with systematically higher intensities in the upper left and lower intensities in the lower right.
The magnitude of horizontal spatial effects is approximately 0.4 log2 units. The vertical spatial effects
appear to be larger, but are more difficult to quantify (Appendix B.3). (d) Two dose-response curves from
GDSC plate 41524 (plot c). The drug in row 4 (columns 4–12) is in black; the drug in row 12 (columns
4–12) is in red. Neither drug appears particularly effective, but the spatial effects create a dramatic shift
in relative viabilities. (e) A GDSC plate with a checkerboard pattern. (f) Dose-response curve for row 15
(columns 4–12) of GDSC plate 26460 (plot e). (g) A CCLE plate with a checkerboard pattern. (h) Dose-
response curve for column 26 of CCLE plate VA40003905 (plot g).

In CCLE, the sparsity of the released data prevents similar visualization of plate-wide gradients.
Further, the untreated control wells are always located on the right edge of the plate, making it
difficult to use them to identify spatial effects (Figure 2.1). Nonetheless, evidence of spatial bias is
apparent when examining wells treated with the lowest drug doses. We would expect intensities in
these wells to be no greater than intensities in the untreated control wells. However, the intensity
in the lowest dose drugged well is at least 10% higher than the median untreated control intensity
for 32% of all CCLE drug-cell line combinations.

Checkerboard Pattern Another form of systematic variation is a checkerboard pattern, which
is characterized by alternating wells of high and low intensity (Figure 2.3e-h). When a strong
checkerboard pattern is present, the majority of wells are surrounded by wells with higher (or
lower) intensities, regardless of drug concentration. We find that about 10% of GDSC plates con-
tain a substantial amount of checkerboard pattern (Appendix B.4; Figure B.3). Observations for
any given CCLE plate are too sparse to similarly calculate prevalence.
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Batch-Specific Outliers We found groups of plates containing local artifacts that are repeated
across many scans. For example, almost all GDSC plates scanned on November 9, 2011 contain-
ing AZD6482 (drug 1066) have large outliers in columns 5 and 6 of row 7 (Figure B.4). Other
examples are discussed in Appendix B.5.

Noise Many plates exhibit strong and seemingly random variability that is neither spatial nor
checkerboard (Figure B.4).

2.5 Implications for Downstream Analysis

The technical errors described above can impact AUC estimation and contribute to the reported
inconsistency in drug sensitivity. These errors interact with each other, with plate layouts, and with
other aspects of the experimental design to create challenges for downstream analytical methods.

2.5.1 Impact of Technical Variation

When analyzing drug screening data, the raw intensities obtained through the screening process
must be normalized into relative viabilities. We ideally want to normalize each treated well by the
intensity that would have been observed if that well had not been treated. Therefore, a common
approach to obtain relative viabilities is to divide raw drugged intensities by the median intensity
of the untreated control wells. This is the approach used in the CCLE study and in this chapter
(see Chapter 3 for a more in-depth discussion of relative viability normalization). Notably, the
normalizing factor used in this approach (the median intensity of the untreated control wells) is
the same for all wells on a plate; there is no allowance for spatial variation. In actuality, however,
plates are affected by spatial bias and checkerboard pattern, causing the appropriate normalizing
factor to vary across a plate. Therefore, the median of the untreated control wells is not sufficient,
and spatial bias can cause shifts in relative viabilities and disagreement between replicates (Figure
2.4a-b).

Such inaccuracy in relative viability estimation further affects drug sensitivity measures, like
AUC (Appendix B.6). Consider, for example, a plate containing spatial effects on the order of 0.25
log2 units (14.5% of GDSC plates scanned at WTSI have spatial effects larger than 0.25; Appendix
B.3). On this plate, consider a drug with no effect such that all relative viabilities should equal 1.
If the drug is tested in a high intensity region of the plate compared to the untreated controls,
however, the spatial effects might cause all relative viabilities to equal 1.2 (note: 20.25 ≈ 1.2). The
AUC would be 1.2, and the drug would accurately be labeled ineffective.

Alternatively, consider a drug tested in a low intensity region of the plate such that the spatial
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Figure 2.4: Spatial effects in raw data shift dose-response curves. (a) Dose-response curves for two screens
of pictilisib on cell line NKM-1 in GDSC and (b) dovitinib on cell line Hs 578T in CCLE. Black points
correspond to replicate 1 and red points correspond to replicate 2. The shape of the dose-response curves is
similar across replicates, but the red observations are shifted above the black observations, likely a result of
spatial bias. Relative viabilities are plotted on the log2 scale to highlight that differences in relative viability
are proportionally consistent across doses. (c) Hypothetical dose-response curve for an ineffective drug
where spatial effects cause the relative viabilities to be high. The AUC is 1.2. (d) Dose-response curve
for an ineffective drug where spatial effects cause the relative viabilities to be low. The AUC is 0.8. (e)
Dose-response curve for an effective drug. The AUC is 0.8.

effects cause all relative viabilities to equal 0.8, with an AUC of 0.8. Without context, this AUC
could reasonably indicate an effective drug (Figure 2.4c-e), suggesting that spatial effects in the
raw data can impact the interpretability of downstream drug sensitivity measures.

Many commonly used plate layouts present challenges when trying to analytically adjust for
this type of spatial bias (Figure 2.1). Untreated control wells are often placed around the edges
of a plate or in a single block, which prevents them from fully capturing technical variation, par-
ticularly spatial effects. Additionally, for each drug, consecutive doses are applied to consecutive
wells, making it difficult to deconfound spatial gradients and biology. Together, these factors com-
plicate the process of understanding and correcting spatial bias. There are similar challenges with
checkerboard pattern, extreme outliers, and random noise, making it difficult to accurately estimate
the appropriate normalizing factor and calculate relative viabilities when these errors compound.

The compounding challenges of technical variation and plate design do not only produce unre-
liable AUC estimates for individual drug-cell line combinations, but can also produce errors that
are systematic in nature. In our analysis, we noticed several GDSC and CCLE drugs producing
consistent responses across cell lines: in addition to drugs with broad and tissue-specific effects,
there were several compounds that appeared to be widely promoting cell growth on hundreds of
plates (Figure 2.5a). Further investigation into these apparent growth promoting drugs, however,
indicated that technical effects related to plate layouts, not biology, is causing this phenomenon.
The CCLE drug L-685458 is a particularly interesting example that highlights the compounding
challenges of technical error and plate design (arrow in Figure 2.5a).

Drug L-685458 was tested 2,004 times on 607 different cell lines in the CCLE study. Of these
tests, 1,497 (75%) have an AUC larger than 1, suggesting L-685458 promotes growth. If in fact
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Figure 2.5: Effects of technical variation and plate design on drug L-685458. (a) AUC values for all CCLE
drug-cell line combinations (one value of each replicate was randomly chosen). Black cells indicate drug-
cell line combinations that were not tested. The arrow points to CCLE drug L-685458. See Figure B.5 for
a more detailed plot. (b) AUC estimates for tests done in column 18 and in column 36 for L-685458. The
distributions are similar. (c) Slopes for tests done in column 18 and in column 36 for L-685458. Column
18 has largely negative slopes while column 36 has largely positive slopes. The same cell lines were tested
in each column. (d) Dose response plot for L-685458 tested on cell line RKO in column 18 and (e) column
36. The AUC values are similar across replicates, but the column 18 slope is negative while the column 36
slope is positive.

this drug promotes growth, we might also expect to see dose-response curves that are increasing.
Therefore, we fit a simple linear regression for each cell line, regressing log2 intensity on log2

drug dose and used slope as an indicator of dose-response relationship. Overall, the slopes are not
suggestive of broad growth promotion (mean: -0.0213; median: -0.00232; Figure B.6; Appendix
B.7).

Further, each plate contained drug L-685458 in either column 18 or 36, and we identified sub-
stantial differences in dose-response results between the columns. For the 380 cell lines that were
tested at least once in both column 18 and 36, we found almost identical distributions of AUC
values between the columns, but very different distributions of slope (Figure 2.5b-c). The majority
of tests done in column 18 have slopes less than 0, while the majority of tests done in column 36
have slopes greater than 0. Further, for a given cell line, the slopes for tests done in column 18 are
systematically lower than the slopes for tests done in column 36 (Figure B.6).

Thus, the large AUC values for drug L-685458 do not necessarily indicate growth promotion.
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There are hundreds of cell lines with an AUC greater than 1 and a slope less than 0. Further,
the differences between column 18 and column 36 indicate clear technical effects that may be
explained by the layout of CCLE plates. Drugs tested in column 18 are tested on the top half
of the plate (rows 2 through 16) and the highest doses are near the plate’s top edge. On the
other hand, drugs tested in column 36 are tested on the bottom half of the plate (rows 18 through
32) and the lowest doses are near the plate’s bottom edge (Figure 2.1). Therefore, edge effects
can cause the lowest doses in column 36 and the highest doses in column 18 to have artificially
low intensities. Further, a checkerboard pattern can cause similar issues and exacerbate existing
edge effects (Figure 2.5d-e). Therefore, we conclude that large AUC values for drugs like L-
685458 are caused by the compounding of spatial effects, checkerboard pattern, and plate layout,
not widespread growth promotion.

Similar interplay between technical error and plate design is likely also affecting drugs that
appear to be widely inhibiting growth. Therefore, some of the biological signal we are most inter-
ested in could simply be a technical effect and a result of where a drug is consistently tested on the
plate.

The importance of testing location can also be seen when examining the consistency of drug
sensitivity measures across replicates. Within CCLE, we found AUC correlation to be quite high
when both replicates were tested in the same location on different plates (median: 0.77); correlation
was low when replicates were tested in different locations on different plates (median: 0.54; Figure
2.6; Appendix B.8; Figures B.7-B.8). This suggests strong systematic differences based on the
location in which a drug-cell line combination is tested.

While there is good replicability for drug-cell line combinations tested in the same location, this
does not suggest that using consistent plate layouts is the best strategy for producing high quality
data. If each drug is always tested in the same location, then location-dependent spatial effects and
technical artifacts will be confounded with biology, preventing sensitivity from being accurately

Figure 2.6: Testing location affects AUC agreement. Replicated AUC values for five CCLE drugs. Each
point is one cell line (n = 603, 597, 597, 609, and 598, respectively). There is good agreement for replicates
that were tested in the same location across plates.
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compared across drugs. Randomization of plate layouts, in addition to replication, however, will
allow this type of technical variation to be quantified and addressed, providing comparability across
both drugs and cell lines.

2.5.2 Challenges for Analytical Methods

Many methods that are traditionally used to process and analyze drug screening data are not suc-
cessful when plate layout, technical variation, and biology interact (Appendix B.9).

In particular, two common methods to address spatial bias, linear regression and loess regres-
sion, attempt to estimate the spatial effects on each plate and remove them. These techniques,
however, do not work well for the GDSC and CCLE studies. Agreement between replicates does
not improve after applying a linear regression spatial correction to the GDSC data (Figure B.9).
Further, it is infeasible to widely apply a loess spatial correction due to the layout of many GDSC
and all CCLE plates.

In both GDSC and CCLE, consecutive drug doses are placed in consecutive wells (every other
well for CCLE). This design makes it difficult to differentiate between a gradient in drugged in-
tensities caused by biology and a gradient caused by technical error. Trying to regress out spatial
effects on a plate with several effective drugs can end up introducing spatial bias to that plate
(Figure B.10).

Both GDSC and CCLE cap relative viabilities at 1 when estimating AUC values, a technique
that attempts to mitigate errors, but can eliminate important biological information. Consider, for
instance, a drug-cell line combination where the shape of the dose-response curve indicates the cell
line is sensitive to the drug, but spatial effects have caused all relative viabilities to be larger than
1. Capping will eliminate the variability in the relative viabilities and incorrectly make the cell
line look insensitive. As a result, capping relative viabilities often increases concordance between
replicates, but the improved agreement may be largely artificial (Figure B.11).

Finally, fitting parametric dose-response curves is a common method for summarizing drug-
cell line relationships. It is difficult, however, to accurately fit such a curve to drug screening
data affected by the types of technical variation present in GDSC and CCLE, particularly strong
checkerboard patterns (Figure B.12).

2.6 Non-Technical Variation

While we have focused on the technical error present in GDSC and CCLE, non-technical factors
also appear to contribute to the discordance between replicates, as discussed in previous work
(Hatzis et al., 2014; Haverty et al., 2016; Ding et al., 2017; Larsson et al., 2020). We found
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Figure 2.7: Disagreement caused by non-technical error. Dose-response curves for (a) two scans of drug
AZD6482 on cell line Mo-T in GDSC (replicate 1 in black, replicate 2 in red), (b) two scans of irinotecan
on cell line GIST882-F in CCLE, and (c) two scans of sorafenib on cell line NB-4, one in GDSC (black)
and one in CCLE (red). For each plot, the dose-response relationship across replicates is different. These
differences could indicate a difference in the biological response of the cells to the drug across the repeated
measurements.

many drug-cell line combinations with fundamentally different dose-response relationships across
replicates (Figure 2.7). These discrepancies seem to indicate a difference in the biological response
of the cells to the drug across the repeated measurements. Differences in experimental factors like
seeding density and culture media could be contributing to the discordance in these dose-response
relationships. Alternatively, biological factors like genetic variation within cell lines have been
shown to have a considerable impact on drug response metrics (Ben-David et al., 2018).

2.7 Experimental Design

For both the GDSC and CCLE studies, we have seen that systematic technical variation, aspects
of experimental design such as plate layout, and the interplay between them, impede the accurate
estimation of drug sensitivity. Relatively small changes to experimental design and data sharing
procedures, however, could go a long way towards mitigating the inevitable errors present in high-
throughput drug screening data and making downstream statistical analysis more tractable (Figure
2.8a). Chief among these are randomizing plate layouts, employing multiple forms of replication,
and releasing full data and documentation.

In particular, randomizing the entire plate layout, both control wells and drugged wells, will
make it easier to handle systematic bias (Niepel et al., 2019). With a randomized layout, the control
wells are scattered across the plate, rather than placed along edges or in a single block, making them
more useful and representative. Further, randomization reduces confounding between technical
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variation and biology, allowing the unbiased estimation of each. For example, if the heatmap
of a randomized plate displays a spatial gradient or a checkerboard pattern, a simple regression
can address these spatial effects without inadvertently removing biological signal. In this way,
randomization allows the use of general analytical methods.

Replication is another important aspect of experimental design, and it can take many forms. For
each drug-cell line combination, replication can occur within a single plate, where either the entire
dose range or just a few doses are repeated in different locations; alternatively, replicates can be
tested across different plates. In any form, replication provides many distinct benefits for identify-
ing, quantifying, and fixing errors. For instance, comparing replicates provides a straightforward
way to perform quality control and identify batch-specific outliers, spatial bias and checkerboard
pattern. Replication is also critical for identifying other sources of variability, such as the non-
technical variation we found in both GDSC and CCLE (Figure 2.7). All types of replication also
allow for quantifying error; measuring the variability between replicates enables estimation of un-
certainty in raw intensity measurements and summary values such as AUC. Finally, replication can
also help reduce and remove errors. Most famously, averaging replicates can reduce overall error;
this is particularly true when replication is combined with randomization. Moreover, comparing
replicates improves the ability to estimate and remove systematic variation such as spatial effects.
In particular, within-plate replication of wells treated with high drug doses allows the estimation
of spatial effects in low intensity wells. This is valuable as the magnitude of spatial variation may
differ across drug dose, and the untreated control wells are only able to accurately estimate spatial
effects in high intensity wells.

Notably, both randomization and replication allow for the comparison of intensities across lo-
cation. Within-plate replication provides direct comparability for wells containing the same drug
dose in two different locations. This improves the ability to differentiate between drug effects,
spatial effects, and noise. Alternatively, randomization provides comparability between locations
when averaging across many scans. In general, comparability across location translates to compa-
rability across drugs, which is particularly important for identifying the most effective drug for a
given cell line.

Finally, combining both randomization and replication on the same plate allows for the quantifi-
cation of error, including obtaining more accurate standard error estimates and performing princi-
pled statistical inference. In particular, the use of both randomization and replication helps to jus-
tify the assumptions behind methods like analysis of variance (ANOVA). When both within-plate
and between-plate replication are present, such methods can be used to quantify the contributions
of within-plate variability, between-plate variability, and inherent biological variability to overall
error. In general, designing plates with both randomization and replication will allow for a wide
range of analyses to be performed.
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Experimental Design Suggestions

Plate Randomization

• Produces more representative control wells

• Reduces confounding between technical error and
biology

• Improves modeling and removing error

• Provides principled basis for statistical inference

• Enables more accurate estimation of standard
error

Within Plate Replication

• Improves identification of batch-specific outliers

• Improves estimation of spatial effects and noise

• Enables averaging of observations

• Enables estimation of an interaction between drug
effect and spatial effect

• Enables differentiation between spatial effects and
noise

• Enables calculation of standard error
Whole Plate Replication

• Improves identification of problematic plates

• Improves identification of experimental variation

• Enables averaging of observations

• Enables quantification of experimental variation

Complete Plates

• Improves identification, mitigation, and
quantification of plate-wide artifacts like spatial
effects and checkerboard pattern

a

Minimum Information

For each plate:

• Cell line name

• Date of experiment

• Plate layout information

• Cell viability assay

• Culture media details

•

•For each well:

• Plate identifier

• Well type (drugged, control)

• Well position (row, column)

• Drug name

• Drug concentration

• Raw intensity

• Seeding density

b
Ways to Assess Data Quality

• Randomly sample 100 drug-cell line combinations and plot the
raw dose-response data.

• Randomly sample 100 plates and plot heatmaps.

• Compare intensities in drugged wells treated with the lowest
doses to intensities in untreated control wells.

• Calculate the checkerboard measure and the spatial gradient
measure (Appendix B.3 and B.4) and examine plates with
large values. These methods will depend on the location
of control wells.

• Examine plates for edge effects; the feasibility of this will
depend on the plate layout.

• Look for large jumps in relative viability that do not agree with
the dosing scheme (e.g. big decrease in relative viability
as drug dose decreases).

• Calculate AUC (no truncation or fitted model) and examine
drug-cell line combinations with large AUCs.

• Compare AUC across replicates and examine drug-cell line
combinations with discordant AUCs.

c

Figure 2.8: Considerations for designing and analyzing drug screening studies. (a) Ways in which im-
proved experimental design can benefit the analysis of drug sensitivity data. Red bullets indicate benefits for
identifying error, green bullets indicate benefits for fixing error, blue bullets indicate benefits for quantifying
error, and gray bullets indicate benefits for all three. (b) The minimum information about a drug screening
experiment that is needed for accurate and effective downstream analysis. (c) Suggestions for assessing the
quality of raw drug screening data.

Additionally, many more processing and analysis techniques would be feasible if all collected
data were released. All GDSC and CCLE plates that were publicly released contain missing values;
for CCLE, more than 90% of all wells are missing. This incompleteness of the data creates an
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additional challenge for analysis. Many of these missing values are due to the proprietary nature
of tested compounds. To mitigate this problem, experiments could be designed so that proprietary
compounds are tested on separate plates from those compounds that can be publicly released. If
such separation is not feasible, then the proprietary drugs could be anonymized and included in
the full data release. Similarly, observations that have failed quality control could also be released,
with a quality control flag, as they might provide useful information for understanding plate-wide
technical variation. Releasing all data at every processing level will facilitate a more reliable and
accurate analysis (Figure 2.8b).

2.8 Discussion

Both GDSC and CCLE contain similar technical artifacts in their raw drug screening data, in-
cluding spatial effects, checkerboard pattern, batch-specific outliers, and noise. Such artifacts are
inevitable in high-throughput experiments and, on their own, do not necessarily prevent new dis-
coveries. Many of the biological signals of interest in drug screening studies are reasonably strong,
including individual cell lines that are highly sensitive to a specific drug (“hits”), as well as broader
classes of cell lines that are at least moderately sensitive to a drug. It is possible to discover these
strong signals even in the presence of technical variation. The ability to do so, and the reliability
of those findings, however, depends on experimental design. In GDSC and CCLE, the interplay
between systematic technical error and features of design produces confounding between error and
biology and reduces the reliability of apparent biological signals.

Small changes to plate design can substantially improve the reliability of analyses (Figure 2.8a).
Specifically, randomized plate layouts and within-plate replication can help mitigate the effects of
complex errors and produce independence between error and the biology of interest. While raw
data might contain strong artifacts, these experimental design choices can go a long way towards
lessening the impact of such technical variation and producing more reliable downstream analysis.
Several of these features are already in use, including between-plate replication in CCLE and
some within- and between-plate replication in newer GDSC releases. Employing multiple forms of
replication consistently and introducing plate randomization will improve data quality even further.
Notably, the high concordance we found for CCLE replicates tested in the same location across
plates is strong evidence that simply adding randomization to existing experimental methods could
greatly improve data analysis (Figure 2.6).

These changes to design, as well as the release of full experimental information, are particularly
important given the trend toward widespread use of public data from a few large pharmacogenomic
studies. Well-documented experimental protocols and complete data will allow researchers from
around the world to use these large databases effectively and efficiently for anti-cancer drug dis-
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covery.
For existing drug screening data from studies like GDSC and CCLE, a cautious assessment

of data quality is important (Figure 2.8c). Whether using these data to identify novel anti-cancer
drugs, validate the results from an independent study, or examine the relationship between a single
drug and cell line, the technical variation and experimental design considerations outlined in this
paper may be relevant. To that end, our Shiny app allows the visualization of individual dose-
response curves and plate-wide heatmaps to facilitate an exploration of the GDSC and CCLE data.
Developing methods to quantify the prevalence of each type of technical error on individual plates
could also provide further understanding of data quality. In general, thoroughly examining drug
screening data at every level and carefully considering the impact of the experimental design will
allow data from high-throughput drug screening studies to be used more effectively and reliably.
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CHAPTER 3

Flexible and Spatially Varying Normalization for
Well-Based Assays

3.1 Introduction

Data collected in high-throughput well-based biological assays must be adjusted to reduce both
between-plate and within-plate variability. For example, in the drug screening studies discussed
in Chapter 2, researchers test a wide range of potential pharmaceutical drugs against cell lines,
exploring their effectiveness at inhibiting cell growth. These experiments produce an intensity
measurement for each well on the microplate that quantifies cell activity in that well. The magni-
tude of intensity measurements, however, can vary widely from plate to plate due to factors like
differences in lab conditions across experiments. Therefore, to accurately analyze drug screening
data, raw intensities are often normalized into relative viabilities that share a unified scale; this
allows comparability across plates and across studies.

In addition, we, and others, have shown how individual plates can be impacted by within-plate
technical variation, including complex spatial biases (Brideau et al., 2003; Mpindi et al., 2015;
Caraus et al., 2015; Haverty et al., 2016; Niepel et al., 2019; Wang et al., 2020; Rehnberg et al.,
In Preparation). These errors, such as row and column effects, edge effects, and checkerboard
patterns, must be eliminated for accurate analysis of the data.

Some plate layouts, however, can make it difficult to accurately separate biological signal from
technical artifacts within a given plate. Often, control wells are located on plate edges and con-
secutive drug doses are tested in consecutive wells which can lead to confounding between spatial
gradients and biology. Further, publicly released data may have large numbers of wells with miss-
ing intensity measurements corresponding to tests of proprietary compounds for which the data
were not released. Together, these greatly increase the difficulty of adjusting for between-plate and
within-plate variability and calculating accurate normalized scores.

The main contribution of this chapter is a framework for normalization in the context of such
complex spatial errors and complex plate designs. Specifically, we frame the normalization prob-

21



lem as a counterfactual estimation problem. In this setting, the quality of our normalization de-
pends on our ability to accurately estimate the counterfactual for each treated well. Therefore,
we leverage the flexibility of this framework and carefully combine two counterfactual estimation
approaches that, together, produce more reliable results than either on its own.

While this framework is broad enough to accommodate different types of well-based biological
data, we focus much of this chapter on data from high-throughput drug screening studies. For
example, our normalization method takes advantage of the sparsity of drugs that are effective at
low concentrations in such studies. We use these low dose treated wells alongside control wells to
improve the performance of our normalization procedure.

Further, we carefully apply this normalization framework to the drug screening data from GDSC
(Yang et al., 2013). When applied to GDSC, our normalization approach produces more reasonable
estimates for area under the dose-response curve (AUC) than existing methods. We produce fewer
overly large AUC estimates, while still capturing small AUCs corresponding to sensitive drug-cell
line combinations. We also improve agreement in AUC estimates for replicated drug-cell line
combinations for many of the tested compounds.

3.2 Normalization Frameworks

There are many different techniques for processing data from microplate-based biological exper-
iments that fall under the umbrella of “data normalization”. Each of these methods specifies a
different targeted output and makes different assumptions about the experimental design and error
structure in the data. We make the general claim, however, that, at its core, data normalization is
simply a process that aims to accurately isolate the biology of interest and minimize the influence
of errors, while often adding interpretability, as well.

More specifically, we assert that a normalization method should

(a) produce scores that are on an interpretable scale.

(b) produce scores that can be meaningfully compared within plates, across plates, and across
studies.

(c) remove errors, artifacts, and non-biological variation in the data.

(d) keep all biological signal.

Many existing normalization techniques for well-based assays do not meet all of these goals in
complex experimental and data settings. In particular, existing methods tend to focus either on
mitigating between-plate variability or removing within-plate errors. Existing methods also typi-
cally make strict assumptions about data structure to simplify their approach. These assumptions,
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however, are often unrealistic in complex data settings, causing the methods to fall short of their
stated goals. We discuss several of these existing methods, and their drawbacks, in Section 3.2.1.
In Section 3.2.2, we introduce a new normalization framework based on counterfactual estimation.
This approach is flexible, interpretable, and addresses all four normalization goals.

3.2.1 Existing Methods for Normalization

Consider an experiment with plates indexed by k = 1, . . . , K and individual wells indexed by row
i = 1, . . . , I and column j = 1, . . . , J . For well (i, j) on plate k, the observed intensity is denoted
by Yijk. Several existing methods for normalizing these observed intensities are discussed below.

Relative Viabilities Relative viability methods aim to quantify the cell growth in well (i, j) as
a proportion of uninhibited cell growth. The normalized values are on a unified scale from 0
to 1, giving them a clear interpretation: a relative viability of 0 indicates no cell growth in well
(i, j), while a relative viability of 1 indicates uninhibited cell growth in that well. This approach
aims to eliminate between-plate variability by relating each well intensity on plate k to that plate’s
reference intensity (Mpindi et al., 2015).

The intensities in untreated control wells, i.e., wells that contain cells but no drug, are often
used to gauge what uninhibited cell growth looks like. A common approach to relative viability
normalization, therefore, is to use the median intensity of the untreated control wells on plate k to
scale the drugged intensities on that plate. This produces what we will call untreated control (UC)
relative viabilities:

Vuc
ijk =

Yijk

Ũk

, (3.1)

where Ũk is the median of the untreated control wells on plate k. This relative viability definition
is used, for instance, in a large drug screening study, the Cancer Cell Line Encyclopedia (CCLE)
(Barretina et al., 2012).

The UC normalization method improves the interpretability of drug screening data by relating
each raw intensity to the intensity associated with uninhibited cell growth. Additionally, it im-
proves the comparability of data across plates and across studies by mitigating the plate-to-plate
differences in the baseline magnitude of well intensities. The quality of this normalization method,
however, can be affected by the presence of technical variation within a given plate (Mpindi et al.,
2015). As discussed in Chapter 2, many plates suffer from within-plate spatial bias; UC normaliza-
tion does not address this type of error. More generally, because UC normalization simply rescales
the data on a plate by plate basis, it is unable to mitigate the effects of any within-plate variability.
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There are many variations on this relative viability calculation. In addition to the untreated
control wells, some methods also depend on the use of blank control wells. These wells contain
no cells and no drug. Blank controls correspond to a viability of 0, or the well intensity when all
cell activity has stopped. The normalization procedure applied by GDSC, for instance, uses both
types of control wells to calculate relative viabilities,

V GDSC
ijk =

Yijk − B̄k

Ūk − B̄k

,

where B̄k is the mean of the blank controls on plate k and Ūk is the mean of the untreated controls
on plate k (Vis et al., 2016). The use of blank control wells can add substantial noise into the
relative viability calculation; therefore, in this chapter, we choose to focus on the UC relative
viabilities defined in Equation 3.1 (see Appendix C.2 and Mpindi et al. (2015)).

Another common aspect of relative viability normalization is truncation. In an attempt to pre-
vent noise from pushing relative viabilities outside the reasonable range, these methods may in-
clude truncation at a minimum relative viability of 0 and a maximum relative viability of 1. Such
truncation, however, could also eliminate meaningful biological signal. This could happen, for in-
stance, on a plate with technical error that manifests as a gradient in well intensities. If the drugged
wells on such a plate are located in a high intensity region compared to the control wells, the calcu-
lated relative viabilities will be larger than 1. Truncation in this case will eliminate all variability,
both technical and biological.

Z-Scores Z-score normalization indicates how many standard deviations the intensity in a given
treated well on plate k is from the mean treated intensity on that plate (Mpindi et al., 2015; Murie

et al., 2014; Caraus et al., 2015). The Z-score for treated well (i, j) on plate k, for example, is
calculated as follows:

Zijk =
Yijk − Ȳk

sk
,

where Ȳk and sk are the mean and standard deviation (SD) of the treated wells on plate k, respec-
tively.

It is an implicit assumption of this method that the SD of the treated wells should be the same
across plates. In reality, however, the SD may vary meaningfully from plate to plate (Brideau et al.,
2003). Importantly, some of this variation is caused by the selection of drugs tested on each plate
and is, therefore, related to the biology of interest. For example, a plate with all ineffective drugs
will have a small SD, while a plate with a mixture of effective and ineffective drugs will have a
large SD. As a result, the same Z-score will be calculated for both a slightly low intensity well on
a plate with a small SD and for a very low intensity well on a plate with a large SD. That is, the
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Z-score for a given well depends on the intensities in the other drugged wells on the same plate,
implying that Z-scores are not necessarily comparable across plates.

Another clear drawback of Z-scores, like relative viability normalization, is their inability to
deal with spatial effects (Brideau et al., 2003; Caraus et al., 2015). Finally, this method ignores
the presence of any control wells that were included in the experiment for the purpose of between-
plate normalization.

Spatial Regression Adjustment With regression-based methods, the raw intensities for a given
plate are regressed on plate location, often row and column number. The residuals from the fitted
model indicate the well intensities that remain after removing within-plate spatial effects. A sep-
arate regression is fit for each plate, allowing spatial bias to differ across plates. Further, any type
of regression, i.e., linear, loess, etc., can be used to adjust the raw data. One such regression-based
method is as follows (Mpindi et al., 2015):

Ŷijk = Yijk − (Ŷ r
ijk −median(Ŷ r

ijk)), (3.2)

where Ŷ r
ijk is the fitted value from the regression for well (i, j) on plate k and the median is taken

across all such wells on plate k. The resulting shifted residuals, Ŷijk, can be used in place of raw
intensities when calculating relative viabilities.

A related spatial regression adjustment method is based on fitting a separate regression to each
row and column of each plate:

Ŷijk = Yijk ×
r̄i
rij
× c̄j

cij
, (3.3)

where r̄i is the mean of the row i fitted values, rij is the row i fitted value for column j, c̄j is the
mean of the column j fitted values, and cij is the column j fitted value for row i (Caraus et al.,
2015).

These regression-based methods aim to eliminate within-plate spatial bias, but they can be
ineffective, and even harmful, when plates are not randomized (Caraus et al., 2015). On plates
where consecutive drug doses are tested in consecutive wells, for instance, an effective compound
appears as a gradient across treated wells. A regression adjustment method can falsely identify
these biological effects as spatial bias and inadvertently introduce error to a previously clean plate
(Rehnberg et al., In Preparation). This concern is particularly relevant for the method introduced in
Equation 3.3 where a separate regression is fit to each row and column of the plate. For regression-
based methods to be effective, therefore, randomization is key. Further, these methods must be
paired with other normalization approaches that target between-plate variability.
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B-Scores The B-score normalization method relies on Tukey’s iterative median polish algorithm
to remove row and column effects (Mpindi et al., 2015; Brideau et al., 2003; Makarenkov et al.,
2007; Caraus et al., 2015). Like the regression-based methods above, B-scores aim to eliminate
within-plate spatial bias and can be used in lieu of raw intensities in relative viability calculations.
For well (i, j) on plate k, the B-score is calculated as

Bijk =
Yijk − (µ̂k + r̂ik + ĉjk)

MADk

,

where µ̂k, r̂ik, and ĉjk are the global effect, row effect, and column effect estimated by median
polish for plate k, respectively. MADk is the median absolute deviation (MAD) of the residuals,
eijk = Yijk − (µ̂k + r̂ik + ĉjk), for all wells on plate k.

A related procedure, the spatial polish and well normalization (SPAWN) method, is an adapta-
tion of the B-score that uses trimmed mean instead of median in the polish algorithm (Murie et al.,
2014; Caraus et al., 2015). Further, the score in well (i, j) is shifted by the median of the scores in
location (i, j) across all plates and then scaled again by the MAD of plate k. This additional step
allows SPAWN to address both within-plate and between-plate variation.

By relying on the polish algorithm, as with regression-based techniques, these methods implic-
itly assume that every row and column of every plate contains only a small number of wells sensi-
tive to the applied drug, i.e., wells with low intensities (Mpindi et al., 2015). When plate layouts
are not randomized, however, it is typical for a single column to contain the highest concentration
of all drugs tested on that plate. This column will tend to have systematically low intensities. The
polish algorithm can therefore introduce bias by picking up on this biological signal and removing
it. Further, many publicly released screening datasets have large numbers of missing wells. While
the polish algorithm can handle missing values, taking the median or trimmed mean of a row with
only three non-missing wells is not a meaningful way to capture spatial effects.

Finally, the MAD re-scaling in the B-score denominator means that the normalized score for a
given well depends on the efficacy of the other drugs on the plate (Mpindi et al., 2015). This has
a similar effect to the SD re-scaling of Z-scores, as discussed above. Namely, testing a drug-cell
line combination on two different plates containing different sets of compounds will produce dif-
ferent MAD denominators and different normalized values. This means the scores are not entirely
comparable across plates or studies.

Well Correction The well correction procedure focuses on mitigating artifacts that affect each
well location across time (Caraus et al., 2015; Makarenkov et al., 2007). For a batch of plates
tested within a week, for instance, this method could eliminate the effects of cell line drift that may
have occurred throughout the testing window. Well correction involves multiple steps and aims to
eliminate non-biological variation both within and across plates (Algorithm 1).
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Algorithm 1: Well Correction
Perform Z-score normalization within each plate.
for each well location do

Linear (polynomial, spline, etc.) regression of Z-score on plate number.
Residualization based on regression fit.
Z-score normalization across plates.

end

This procedure, however, may not be effective when the plates under consideration have been
tested over several years, as is common in many large-scale drug screening studies. A simple
regression of well intensities across time will not be adequate to eliminate such between-plate
variation. Additionally, well correction can be ineffective when all plates in the study have consis-
tent layouts (Caraus et al., 2015). If, for instance, well (i, j) always contains the highest drug dose
across plates, that well may have consistently low intensities. This drug effect will be incorrectly
identified as a systematic error specific to that well, captured in the intercept of the regression, and
eliminated during residualization. Therefore, the use of consistent plate layouts can cause the well
correction method to remove biological signal of interest.

Control Plate Regression The control plate regression (CPR) procedure uses plates containing
only control wells in addition to plates containing only treated wells, instead of relying on in-plate
controls. In this normalization method, each treated well is regressed on the control plate well
located in the same position. CPR combines within-plate spatial correction and between-plate
normalization into a single procedure (Murie et al., 2014). The CPR score for well (i, j) on treated
plate k is calculated as

CPRijk =
Yijk − (µ̂k + β̂Pij)

ŝk
,

where µ̂k is the global effect for treated plate k, β̂ is the estimated coefficient, Pij is the intensity
in well (i, j) on the control plate (or the median for well (i, j) across many control plates), and ŝk

is the robustly estimated scale parameter (e.g., re-scaled MAD of the residuals) for plate k.
A drawback of CPR is the use of completely separate control plates. Not only does this in-

crease the total number of plates that need to be tested, it also necessitates the assumption that the
structure and magnitude of spatial effects on separately constructed and scanned treated plates and
control plates are the same. In an attempt to satisfy this assumption, many control plate replicates
must be run close in time to, and interspersed with, the treated plates they hope to reflect (Murie

et al., 2014). Even with these considerations, however, plate construction can lead to plate-specific
effects that differ between treated and control plates (Mpindi et al., 2015).
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Finally, as with the B-score and SPAWN methods, the MAD re-scaling in the CPR score de-
nominator means that the normalized CPR score for a given well depends on the efficacy of the
other drugs on the plate. The scores are not entirely comparable across plates or studies.

Comments Each of the outlined normalization methods specifies one or more types of non-
biological variation it is trying to remove. Spatial regression methods, for instance, are targeting
within-plate spatial bias, while relative viability methods attempt to eliminate between-plate vari-
ability in the magnitude of well intensities. Often, however, the types of errors present in large-
scale biological data are complex and require multiple of these methods to be used in tandem.

Further, each normalization technique must also make a set of assumptions about the study
design and the error structure in the data. These assumptions can include the use of randomized
plate layouts, consistency in data variability from plate to plate, and the presence of only one type
of error in the raw data. If the specific assumptions are not met, as is often the case, these existing
normalization methods can be ineffective, and even harmful. In many real-world settings, they are
unable to consistently meet all of our specified normalization goals.

3.2.2 Counterfactual Estimation Framework

We introduce a normalization framework that aims to be broadly effective for a diverse set of nor-
malization problems and data settings. This framework is grounded in the idea of counterfactual
estimation, a concept we borrow from causal inference (Splawa-Neyman et al., 1990; Rubin, 1974).
Specifically, in an ideal normalization setting, the intensity of each treated well would be normal-
ized by the intensity that would have been observed if that well had not been treated. We define
the counterfactual, denoted by Y 0

ijk, as the intensity that would have been observed in treated well
(i, j) if no drug had been applied. The only difference between the observed intensity in well (i, j)
and the counterfactual in the same well is the drug treatment. Therefore, the ratio of the observed
intensity to the counterfactual gives the effect of the drug, which is the quantity of interest (e.g.,
Vijk =

Yijk

Y 0
ijk

).
It is only possible, however, to observe one potential intensity, either Yijk or Y 0

ijk. Therefore, for
each drugged well, the counterfactual must be estimated. This makes the normalization problem
a counterfactual estimation problem where the quality of our normalization depends on our ability
to obtain good potential outcome estimates.

Importantly, this framework provides a useful starting point for addressing all of our normaliza-
tion goals. The scores produced by this approach have a simple interpretation; they simply result
from relating each observed data value to the counterfactual. Further, the use of a careful counter-
factual estimation approach can ensure that scores are comparable within and across plates, have
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as much error removed as is feasible, and retain all biological signal.
Additionally, the flexibility of this framework makes it easy to combine multiple counterfactual

estimation approaches in an ensemble method. Each individual approach will have both strengths
and weaknesses, but we can combine them in a manner that emphasizes the strengths of each. This
type of ensemble can be particularly useful in complex data settings and increase our ability to
remove non-biological variation while avoiding the biological signal of interest. We outline our
use of such an ensemble estimation method within the counterfactual framework for normalizing
drug screening data below.

3.3 Flexible Normalization for Drug Screening Studies

We develop a normalization procedure for processing data from large-scale drug screening studies
within the counterfactual estimation framework. This approach is motivated by common classes of
errors in this type of data and by the structure of many high-throughput drug screening studies. We
develop two counterfactual estimation approaches, including one that allows the counterfactual to
vary spatially. Our final normalization procedure carefully combines these two estimation methods
in an adaptive manner, capitalizing on the strengths of each.

3.3.1 Motivation

We aim to use the counterfactual estimation framework to calculate relative viabilities for large-
scale drug screening data. This is not, however, a straightforward task. Several of the normalization
methods introduced above fit into the counterfactual estimation framework, including UC relative
viability normalization (Equation 3.1) and regression-based normalization (Equation 3.2). These
methods highlight some of the challenges associated with counterfactual estimation.

In UC normalization, for instance, the counterfactual is estimated by the median of the un-
treated control wells. Importantly, this approach relies on a single estimated counterfactual value
for the entire plate. As detailed in Chapter 2, large-scale drug screening studies have been shown to
contain a wide range of technical variation, including spatial gradients and checkerboard patterns
(Figure 3.1). When a plate contains such spatial biases, simple counterfactual estimation tech-
niques, such as the UC relative viability calculation, struggle. The single summary value cannot
accurately represent the untreated intensity for every drugged well on the plate. The median of the
untreated controls, for instance, will overestimate the true counterfactual value for a drugged well
located in a low intensity region of the plate compared to the control wells. To accurately estimate
relative viabilities, therefore, the counterfactual must be able to vary as spatial effects vary across
the plate.
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a b c

Figure 3.1: Technical variation in raw drug screening data. (a, b) Heatmaps of two plates containing spatial
effects. Grey cells indicate missing wells. For each heatmap, white corresponds to the median intensity of
the untreated control wells on the plate. (c) Dose-response curve for a drug-cell line combination with a
pronounced checkerboard pattern.

Regression-based normalization, as in Equation 3.2, produces a value that can be interpreted as
a spatially-varying counterfactual estimate. In this approach, the counterfactual for each individual
well is estimated by that well’s regression fitted value, centered by the plate median. While this
method gives a different counterfactual estimate for each well on the plate, it depends on the spatial
regression only picking up on spatial bias and not biology. Many commonly used plate layouts,
however, are not randomized; they have (1) control wells placed around the edges of a plate or
in a single block, (2) consecutive drug doses applied to consecutive wells, and (3) drugs tested
in consistent locations across plates. Together, these aspects of design can confound the biology
of interest with spatial effects and interfere with counterfactual estimation via a regression-based
method.

Overall the UC relative viability and regression-based normalization methods struggle to pro-
duce reliable counterfactual estimates. The challenges they face highlight the complex nature of
counterfactual estimation. In response, we combine two different, and complementary, estima-
tion approaches, loosely based on the above UC and spatial regression approaches, into a single
ensemble method. We discuss this method below.

3.3.2 Normalization Procedure

We developed an ensemble method for normalizing drug screening data that depends on two coun-
terfactual estimation approaches; one is based primarily on the untreated control wells and the
other on the drugged wells. Rather than simply averaging these two estimates, we approximate
the complex error structure of each estimator and use an adaptive procedure to combine them.
For each drugged well, our normalization method produces a likely estimate of the counterfactual,
given the observed data. We then use these counterfactual estimates to normalize each observed
intensity and obtain relative viabilities:
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V̂ijk =
Yijk

Ŷ 0
ijk

. (3.4)

We introduce the two approaches for estimating Y 0
ijk and the adaptive method for combining them,

below.

Approach 1 We use the UC normalization method as our first counterfactual estimation ap-
proach. For each plate, Y 0

ijk is estimated by the median of the untreated control wells on that
plate (Equation 3.1). The biggest benefit of this method is that it is universally applicable; we can
quickly calculate the median of the untreated control wells for any plate, regardless of the layout
and the amount of missing data. In particular, Approach 1 can be applied to all plates that contain
untreated control wells, including those in the GDSC and CCLE studies. Further, this method uses
untreated wells to estimate the intensity that would have been observed if other wells had also been
untreated. This is a very interpretable and intuitive approach.

This method does, however, have limitations, many of which we have previously discussed.
Specifically, Approach 1 provides the same counterfactual estimate for every well on a given plate.
This is true regardless of any underlying spatial variation in well intensity. Additionally, while
this method can be applied to any plate that contains untreated control wells, it will not always
produce a high-quality counterfactual estimate. Plates tested in the CCLE study, for instance, have
all of their untreated control wells placed along the right edge of the plate (Figure 2.1c). With
this format, the untreated controls may suffer from edge effects or have systematically different
intensities than what would have been observed for untreated control wells placed in the center or
on the left side of the plate.

Approach 2 To complement the strengths and weaknesses of Approach 1, we use a localized
counterfactual estimate for Approach 2. This estimation method depends on a unique feature of
high-throughput drug screening studies. Specifically, in such studies, many drugs are ineffective,
particularly at low concentrations. This means that the intensity in the wells treated with the lowest
drug concentration is similar to the intensity that would have been seen in that well if no drug had
been applied (i.e., Yijk ≈ Y 0

ijk when well (i, j) contains the lowest drug concentration). Further,
we might expect Yijk ≈ Y 0

i′j′k for some well (i′, j′) close to (i, j). Therefore, Yijk could be a good
estimate of the counterfactual for nearby wells treated with higher concentrations of the drug.

More formally, consider a drug that is tested at d doses in d consecutive wells on plate k. For
this drug-cell line combination, we use the intensity from the well treated with the lowest drug
dose as our counterfactual estimate. All d wells where this drug is tested on plate k will have the
same estimated counterfactual.
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Unlike with Approach 1, however, there are circumstances in which this method can seriously
fail. Specifically, if a drug is effective at the lowest dose, the intensity in that well will be low. This
lowest dose treated intensity will not be similar to the expected untreated intensities for that drug,
and the Approach 2 estimate of the counterfactual will be poor. On a smaller scale, the presence of
technical errors, including random noise, can cause the intensity in the lowest dose treated well to
be a poor estimate of the counterfactual in nearby wells. Finally, if d is large, spatial effects may
also hurt our estimation quality.

Adaptive Combination Procedure We aim to combine the counterfactual estimates from Ap-
proach 1 and Approach 2 in a way that capitalizes on the strengths of each and produces an estimate
that is plausible with the observed data. We base our combination procedure on the following in-
tuition. When the drug of interest is ineffective at low concentrations, the intensity from the well
treated with the lowest drug dose will likely be a better estimator for Y 0

ijk than the untreated con-
trols. That is, we prefer the counterfactual estimate from Approach 2 (Figure 3.2ab). If the drug is
effective at low doses, however, it will be better to estimate Y 0

ijk with the median of the untreated
control wells. In this scenario, we prefer the counterfactual estimate from Approach 1 (Figure
3.2c).

It is not always simple, however, to determine the best estimation approach. While Figure
3.2a-c shows three dose-response curves where the observed intensities, both drugged and control,
clearly indicate the appropriate counterfactual estimate, the situation is not as clear for Figure
3.2d. In particular, we do not know what the behavior of this drug-cell line combination would be
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Figure 3.2: The estimated counterfactual must be appropriate given the observed data. (a) A dose-response
curve where the median of the untreated control wells does not accurately represent uninhibited growth for
this drug-cell line combination. Estimating the counterfactual with the lowest dose intensity will be pre-
ferred. The black dotted line indicates the lowest dose intensity; the red dashed line indicates the median
of the untreated controls. (b) A dose-response curve where the median of the untreated control wells coin-
cides with the lowest dose intensity. Either counterfactual estimation approach will be appropriate. (c) A
dose-response curve where the drug is effective at all tested doses. Estimating the counterfactual with the
median of the untreated controls will be preferred. (d) A dose-response curve where it is not clear which
counterfactual estimation approach will be preferred.
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at drug doses lower than those tested. Further, it is not obvious whether or not spatial artifacts are
present on this plate. Therefore, we need an automated normalization procedure that will take in
the observed data and produce the most likely counterfactual estimate.

To combine our counterfactual estimates in this manner, we must understand the error structure
of each estimator. To do so, we introduce some notation. For plate k, we let the median of the
untreated control wells be denoted Ũk. This is the counterfactual estimate from Approach 1. We
define εijk = Ũk − Y 0

ijk, where εijk gives the error of Ũk as an estimator for Y 0
ijk. It follows that

Ũk = Y 0
ijk+εijk. Importantly, because the counterfactual, Y 0

ijk, cannot be observed, the value of εijk
is also never observed. Nevertheless, we assign εijk a density f and estimate the error distribution
f(ε) from the data. We estimate this distribution across all plates by taking the difference between
the median of the untreated control wells and each lowest dose treated well on the plate, taking care
to ignore effective drugs (see Appendix C.4 for details). The resulting estimated error distribution
is symmetric, but has heavy tails due to the presence of noise, outliers, and spatial bias that can
impact the quality of the median of the untreated controls as a counterfactual estimate.

In our complementary approach, we consider the drug-cell line combination tested in the d

consecutive wells that includes well (i, j). We let the intensity of the well treated with the lowest
dose of that drug be denoted Lijk. This is the counterfactual estimate for well (i, j) from Approach
2. We let δijk be the error of Lijk as an estimator for Y 0

ijk, and define δijk = Lijk − Y 0
ijk. It follows

that Lijk = Y 0
ijk + δijk. Again, we never observe the value of δijk, but we assign δijk a density g

and estimate the error distribution g(δ) from the data. We estimate this distribution by taking the
difference in intensity measurements between lowest dose treated wells that are tested in adjacent
locations. The resulting estimated distribution of δijk is entirely less than 0 and has a long left tail
(see Appendix C.4 for details). This tail is caused by drugs that are effective at low doses.

With these estimated distributions, we now use a procedure that selects the most likely value
of the counterfactual for well (i, j) on plate k given the observed data for that well (Ũk and Lijk).
Optimizing a parameter value given data is essentially the idea of maximum likelihood. Therefore,
we write down the likelihood of Y 0

ijk, which is a function that depends only on the difference
between Lijk and Ũk:

L(Y 0; Ũ , L) = f(Ũ − Y 0)g(L− Y 0)

= f(ε)g
(
(L− Ũ) + ε

)
.

The above formulation depends on the assumption that, for any given well, εijk and δijk are inde-
pendent. In practice, this is not true. As is often seen with the naive Bayes classifier, however, we
believe this approach can be effective even when the independence assumption is violated.

Therefore, we maximize L(Y 0; Ũ , L) to get an estimate for the counterfactual for well (i, j) on
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plate k, Ŷ 0
ijk. With this counterfactual estimate, relative viabilities are calculated as in Equation

3.4. This relative viability is the ratio of the drugged intensity in well (i, j) on plate k to the most
likely estimate of the counterfactual for that well. We expect this normalized score to isolate the
drug effect and be interpretable across plates and studies.

3.3.3 Extensions

One of the biggest strengths of this ensemble normalization procedure is the flexibility it provides.
In particular, the counterfactual estimation methods used in Approach 1 and Approach 2 can be
tailored to the specific experimental design or error structure of the study being analyzed. We have,
for example, tailored the above procedure to the GDSC data described in Section 3.4 below.

We first focus on Approach 1 and its difficulty with within-plate spatial bias. In some versions
of the GDSC data, the untreated control wells are spread across the entire plates. Therefore, instead
of estimating the counterfactual with the median of the untreated controls, we use those wells to
model the spatial effects across each plate. That is, instead of using a single summary measure of
the control wells as an estimate of the counterfactual, we fit a spatial model that predicts what the
counterfactual should be for each drugged well.

Further, as in Approach 2, we take advantage of the ineffectiveness of most drugs at low con-
centrations. We use the drugged wells treated with the two lowest drug doses to supplement the
untreated controls. This strategy allows us to use a larger number of wells to model spatial vari-
ation. Specifically, for plate k, we let the intensities in the untreated control wells and the wells
treated with the two lowest doses of each drug represent “untreated” intensities. We then use a
robust loess regression to estimate the spatial variation in these “untreated” wells and to produce
a prediction of the untreated intensity for each drugged well (Appendix C.4.1 has a more precise
definition; Cleveland et al. (1992)). For GDSC, we use this prediction in place of the median of
the untreated control wells as the counterfactual estimate from Approach 1.

We also improve Approach 2, tailoring it to mitigate the effects of common errors in the GDSC
data. In particular, the intensity from the lowest concentration drugged well can be affected by
technical errors. The presence of random noise and extreme outliers, for instance, can cause the
observed intensity in any single well to be noisy and a poor estimate of Y 0

ijk. Additionally, the
presence of a checkerboard pattern could cause us to systematically over- or underestimate the
counterfactual for every well on the plate.

Therefore, for each drug-cell line combination, instead of simply estimating the counterfactual
with the intensity from the well treated with the lowest drug dose, we fit a dose-response curve
to the d observed measurements (Appendix C.4.2). We then take the average of the fitted values
for the wells treated with the two lowest drug concentrations. This average is our GDSC-specific
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counterfactual estimate from Approach 2. We use the average of the two lowest concentrations,
rather than just the lowest concentration, to mitigate the effects of checkerboard pattern and noise.
Further, we developed a dose-response curve fitting procedure that is robust to outliers and checker-
board pattern (Appendix C.4.2). Specifically, we iterate between regressing out checkerboard pat-
tern and fitting a logistic curve to the residuals.

These improved counterfactual estimates are still combined in the maximum likelihood manner
previously introduced. We apply this normalization procedure to the GDSC data below.

3.4 Application to Drug Screening Data

We apply our tailored normalization method to drug screening data from GDSC (Yang et al., 2013).
For this application, we use a different version of the data than in Chapter 2; here, we focus on
release 8.2 of the GDSC2 data. In this version of the study, 196 compounds were tested against
809 cancer cell lines. All tests were conducted on 1,536-well microplates, each containing one cell
line and multiple drugs. Each drug was tested at 7 concentrations, and consecutive drug doses were
applied to consecutive wells. In addition to drugged wells, each plate also had untreated control
wells which contain cells, but no compound. All plates also have wells with missing intensity
values; 18% of plates have missing values for more than half of all wells.

In GDSC, many drug-cell line combinations were tested more than once, either on the same
plate or across different plates. We considered these replicates separately when doing our normal-
ization (i.e., we did not average replicate observations). Additionally, we implemented a set of
quality control measures before analyzing the GDSC data. We developed these measures to iden-
tify and eliminate the noisiest plates for which normalization would not be effective (Appendix
C.2 has details).

3.4.1 Results

For each drug-cell line combination in the GDSC study, we calculated relative viabilities using
the UC normalization and our new normalization method (denoted EML for empirical maximum
likelihood), both with and without truncation at 1. We then calculated AUC estimates from each
set of relative viabilities, resulting in four AUC estimates for each drug-cell line combination.
We found that our normalization produces a more reasonable distribution of AUC values than the
UC normalization does (Figure 3.3a). Our method produces far fewer AUCs larger than 1. This
illustrates our ability to handle spatial effects that cause insensitive drug-cell line combinations
to have overly large UC relative viabilities and AUCs. Further, our normalization method still
captures small AUC values for sensitive drug-cell line combinations.
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Figure 3.3: Our flexible and spatially-varying normalization method improves AUC reliability. (a) His-
togram of AUC values calculated with the UC and our (EML) normalization methods (n = 231,209 drug-
cell line combinations). Our normalization produces fewer unreasonably large AUC values while still cap-
turing low AUC values for sensitive drug-cell line pairs. AUC is the numerically integrated area under the
dose-response curve. (b) Absolute difference in AUC for ribociclib (n = 47 cell lines) and (c) nutlin-3a
(-) (n = 753 cell lines). Our normalization produces better agreement for both drugs. T EML and T MUC
indicate the truncated versions of the EML and MUC relative viabilities. (d) Replicated AUC values for the
drug nutlin-3a (-) (n = 753 cell lines). The squares indicate a cell line where our normalization improves
agreement; the triangles indicate a cell line where agreement is poor for both normalization methods, po-
tentially reflecting biological differences between the replicates. (e) Dose-response plots for the cell line
marked with the squares. (f) Dose-response plots for the cell line marked with the triangles.

Next, we considered AUC agreement for replicated drug-cell line combinations. For each repli-
cated drug, we compared the median absolute difference in AUC values across replicates when
using our method and when using UC normalization. A smaller median absolute difference, and a
distribution of differences closer to 0, indicates better agreement between replicates. To compare
the normalizations, we defined three categories: drugs where we increase agreement, drugs where
agreement is similar across normalizations, and drugs where we decrease agreement (Appendix
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C.5.2). Overall, we found that our normalization method increases agreement in AUC estimates
over truncated UC normalization for 37% of drugs, while decreasing agreement for less then 3%.
The drugs where our method produces better AUC agreement include ribociclib (Figure 3.3b) and
nutlin-3a (-) (Figure 3.3cd).

We further investigated the impact of testing location on the performance of our normalization
method. Specifically, a drug-cell line combination can be replicated in the same location across
plates or in different locations across plates. We considered drugs that were replicated on at least
10 cell lines with each replication scheme and found that our normalization method has a more
pronounced positive effect for replicates tested in different locations. Our normalization increased
agreement in AUC estimates over truncated UC normalization for 17% of drugs whose replicates
were tested in the same location across plates, but for 54% of drugs whose replicates were tested
in different locations. In both scenarios, our method did not decrease agreement for any drugs.
This increased benefit for replicates tested in different locations indicates that our normalization
method is mitigating the impact of location-specific systematic effects on AUC estimates (see e.g.,
Figure 2.6).

Finally, we can see the impact of our normalization method on individual drug-cell line com-
binations. For many combinations, agreement is improved over UC normalization; for others,
agreement is poor regardless of the normalization method used. For example, while agreement
for nutlin-3a (-) largely improves with our normalization (Figure 3.3de), there are some cell lines
for which agreement remains poor (Figure 3.3df). For such drug-cell line combinations, we often
observe that the dose-response relationship is completely different across replicates, potentially
indicating a difference in the biological response of the cells to the drug. In such cases, we be-
lieve that the dose-response curves for these replicates simply cannot be made to agree, i.e., the
differences are beyond the scope of any normalization, and additional investigation is needed to
understand the discrepancies (Rehnberg et al., In Preparation).

3.5 Discussion

Normalization is a vital step in the analysis of drug screening data. A good normalization procedure
needs to remove technical variation, both within plates and between plates, to produce biologically
meaningful normalized scores. This task is made challenging by the presence of complex spatial
biases and the use of non-randomized plate designs that can cause confounding between technical
error and the biology of interest. Our relative viability normalization method specifically targets
these issues and improves the reliability of drug sensitivity results in the GDSC study. With this
approach, we frame normalization as a counterfactual estimation problem.

This normalization framework is effective for the GDSC drug screening data, and we expect
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some of our innovations to be more broadly applicable. For instance, there is a large class of
normalization problems that can be viewed through a counterfactual estimation lens. For some
applications, the counterfactual definition may be a bit less concrete than the counterfactual used
for drug screening studies. For example, when normalizing microarray data to eliminate batch
effects, we may think of the counterfactual as the data we would have observed if no batch effects
had been present. The counterfactual in this case is arguably more hypothetical, but may still be a
fruitful way to frame the normalization problem.

There are also several unique aspects of our normalization technique that may be applied more
broadly. In particular, we use the wells treated with the lowest drug doses as surrogate untreated
control wells. This capitalizes on the fact that, in preliminary drug screens, most compounds are
completely ineffective at low concentrations. Such a strategy can help to mitigate concerns about
the location of untreated control wells on a given plate and the distance between drugged wells and
the nearest control wells.

Additionally, our normalization framework optimizes between two imperfect counterfactual
estimation methods. On their own, each approach has substantial drawbacks, while their combina-
tion preforms well. When the errors and artifacts in collected data are complex, using this type of
flexible ensemble normalization approach may produce more reliable results.

Finally, due to the identification of checkerboard pattern in multiple high-throughput drug
screening studies, we incorporate checkerboard mitigation features in our normalization frame-
work. These features include averaging across pairs of wells that may suffer from a checkerboard
pattern and implementing a dose-response curve fitting procedure that regresses out the checker-
board pattern before fitting a logistic curve. In general, looking out for the potential consequences
of complex spatial biases can improve the analysis of high-throughput biological data.

Applying this, or any, normalization method, however, is not a substitute for improving the ex-
perimental design of drug screening studies, as described in Chapter 2. Small changes to design
including randomizing plate layouts and consistently using replication will allow straightforward
statistical methods to be used to understand, model, and remove many types of technical variation.
A randomized plate layout, for instance, reduces confounding between technical variation and bi-
ology and allows a simple regression to remove spatial effects without removing biological signal.
With this type of design, accurately and reliably normalizing drug screening data becomes a more
feasible task.
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CHAPTER 4

Computationally Efficient Approximate
Cross-Validation for High-Dimensional Linear

Discriminant Analysis

4.1 Introduction

High-dimensional classification can be very computationally expensive. Consider a dataset con-
sisting of a thousand observations and half a million features, and where hundreds of separate
classifiers must be fit; in pharmacogenomic studies, for instance, a classifier is fit for each of sev-
eral hundred compounds under consideration. Further, many common classifiers require tuning
parameter selection, which is typically done through a cross-validation (CV) procedure. To get ac-
curate error estimates, another round of CV must be performed. Together, these nested CV loops,
run for hundreds of classifiers, can take a week to complete. On top of this, researchers might
be interested in the effects of different data preprocessing methods on classifier performance or in
how the classifier behaves on different subsets of the data. These goals would require the entire
analysis to be performed repeatedly, necessitating an impractical amount of time and computing
power.

In this chapter, we focus specifically on how these challenges impact a simple linear classifier,
linear discriminant analysis (LDA). This method classifies observations based on a linear com-
bination of their features. To build an LDA classifier, we must estimate only class means, class
probabilities, and the inverse of the pooled covariance matrix. Despite this simplicity, however,
LDA can still suffer from lengthy computation times.

Further, high-dimensional data can cause the usual estimates of population parameters to be
poor. For instance, when there are fewer observations n than features p, the sample covariance
matrix will be singular. Regularization of the covariance matrix may be necessary to fit a high-
dimensional model, including a high-dimensional LDA classifier. Further, such regularization
typically requires the selection of the regularization parameter via CV.
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Addressing the challenges of high-dimensional classification and lengthy CV computation
times is not a new goal. One approach is to reduce the dimensions of the feature matrix via
univariate feature selection, principal component analysis, or partial least squares (Krzanowski

et al., 1995). The resulting low-dimensional feature matrix can then be used to fit classical models,
but choosing the optimal amount of dimension reduction will require CV. Other methods directly
target the singularity of the sample covariance matrix; this includes using generalized inverses,
such as the Moore-Penrose inverse (Krzanowski et al., 1995; Guo et al., 2006; Xu et al., 2009; Cai

and Liu, 2011). A more common approach is to create a modified covariance matrix. The inde-
pendence rule, for instance, diagonalizes the sample covariance matrix based on the assumption
of independence between features (Bickel and Levina, 2004; Cai and Liu, 2011). Alternatively, a
large class of methods focus on covariance matrix regularization, creating a modified covariance
matrix that is non-singular (Krzanowski et al., 1995; Thomaz et al., 2006; Guo et al., 2006). Again
however, many of these regularization methods require CV to tune the regularization parameter,
a costly task. One such method that does not require parameter tuning is maximum uncertainty
LDA (MLDA) (Thomaz et al., 2006; Xu et al., 2009). This technique modifies the sample covari-
ance matrix so that all eigenvalues smaller than the mean eigenvalue are replaced with the mean.
By replacing the null eigenvalues with a non-zero value, the modified matrix will be invertible.
Payne and Gagnon-Bartsch (2022) also introduce a regularization-based LDA method that does
not require parameter tuning. We build upon their method in this chapter.

Approaches that regularize the sample covariance matrix solve the non-invertibility problem
caused by high-dimensions; however, the computation time needed to invert the modified p × p

covariance matrix is still O(p3). This inversion is often the most computationally-intensive step
in fitting a model with large p (Cawley and Talbot, 2003; Hastie and Tibshirani, 2004; Guo et al.,
2006; Treder, 2018). Therefore, several strategies have been developed to reduce the dimensions
of necessary matrix inversions. Particularly, LDA and other methods can be adapted to require
the inversion of n × n matrices rather than p × p matrices, a big improvement when n ≪ p.
Such dimension-reduction can be achieved via singular value decomposition of the feature matrix
(Hastie and Tibshirani, 2004; Guo et al., 2006) or via the Sherman-Morrison-Woodbury formula
(van de Wiel et al., 2021). Further, Cai and Liu (2011) noted that the covariance matrix only
appears in the LDA model inverted and multiplied with the class means. Therefore, rather than
estimating these quantities separately, they directly estimate their product. This linear program
discriminant rule (LPD) eliminates the need to invert a large, and potentially singular, covariance
matrix, improving computation time.

There has also been a specific focus on improving the speed of CV implementations; many of
these improvements, however, have focused on ridge regression rather than LDA. The most intu-
itive strategy avoids the recalculation of large matrices at each CV iteration. Instead, intermediate
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matrix values can be saved and used for more computationally efficient calculations within the CV
loop (Cawley and Talbot, 2003; Treder, 2018; Hastie et al., 2019; van de Wiel et al., 2021). In
particular, Hastie et al. (2019) focused on leave-one-out (LOO) CV and introduced a shortcut ver-
sion for high-dimensional ridgeless regression. This method produces a LOO CV error estimate
with computation time equivalent to fitting just a single ridgeless regression model. Others have
focused on fast CV for LDA, demonstrating that the covariance matrix does not need to be fully
re-calculated and inverted at each CV iteration (Cawley and Talbot, 2003; Treder, 2018). Finally,
the computation speed of CV for ridge regression has been improved with an approximate CV
procedure. Meijer and Goeman (2013) developed a method that approximates the parameter esti-
mates for each CV iteration with a Taylor expansion around the full data parameter estimates. This
strategy requires the full model to be fit only once.

Our main contribution in this chapter is a fast approximation to leave-one-out cross-validated
high-dimensional linear discriminant analysis. Our approach to high-dimensional LDA combines
dimensionality reduction via principal components (PCs) with covariance matrix regularization.
Importantly, we pair these techniques in such a way that there is no need for tuning parameter se-
lection. While our method does require a regularization parameter, we follow the lead of Thomaz

et al. (2006) and Payne and Gagnon-Bartsch (2022) by identifying a natural value of that pa-
rameter. Beyond this approach, we vastly improve the speed of CV for high-dimensional LDA.
Specifically, we introduce model approximations in the LOO CV fitting procedure, implement
quick downdating for large matrix calculations within the CV loop, and take advantage of the data
structure to avoid redundant, and expensive, calculations.

Simulations indicate that this approach allows us to fit a classifier and calculate approximate
LOO CV accuracies substantially faster than existing methods. Further, our estimates of model
performance, obtained via approximate LOO CV, are almost identical to the model performance
estimates obtained with classical LOO CV; the approximations aimed at decreasing computation
time do not hinder our ability to recover theoretical accuracies. On real pharmacogenomic data, our
fast and approximate LOO CV method performs orders of magnitude faster than existing methods
and obtains comparable classification quality. We have made this method available through the R
package fastLDA.

4.2 Background and Motivation

In the standard classification setting, the goal is to predict class labels (e.g., does a cancer drug
work?) from a set of features (e.g., tumor gene expression levels). We let Z be an observed
predictor matrix with n observations and p features, and let Y be an observed n × d indicator
matrix of class labels. We suppose there are d classes.
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While many methods exist for performing classification in a high-dimensional setting (i.e.,
n < p), such an analysis is not always straightforward. Here we discuss existing methods of
generalizing the low-dimensional LDA algorithm to high dimensions and the challenges that can
arise. Many of these issues are related to tuning parameter selection and computation time.

4.2.1 Linear Discriminant Analysis in High Dimensions

Linear discriminant analysis (LDA) is a common, and simple, classification approach that uses a
linear combination of the features to predict class labels. This method assumes that the features
are normally distributed, conditional on class label, with mean µk for class k = 1, . . . , d and with
common covariance matrix across classes, Σ. The LDA score for class k, obtained for an out-of-
sample observation, Z̃, is calculated as follows

ŝk = Z̃Σ̂−1µ̂k + log(π̂k)−
1

2
µ̂⊺
kΣ̂

−1µ̂k, (4.1)

where the parameter values (π̂k, µ̂k, Σ̂) are estimated from the training data (Z, Y ). We can further
define β̂

(k)
1 = Σ̂−1µ̂k and β̂

(k)
0 = log(π̂k)− 1

2
µ̂⊺
kΣ̂

−1µ̂k so that ŝk = Z̃β̂
(k)
1 + β̂

(k)
0 . For each out-of-

sample observation, the score is calculated for every class. The observation is then assigned to the
class that produces the largest score.

A key assumption of LDA is that the features are normally distributed given the class labels.
Formally, we must assume Z|Y = k ∼ N (µk,Σ) for class k = 1, . . . , d. In this work, we use a
more specific version of this assumed model that further assumes the presence of low-dimensional
biological factors. As such, we model

Zn×p = Ln×ℓαℓ×p + εn×p, (4.2)

where L|Y ∼ N (Y η,Ψ), with η ∈ Rd×ℓ. Here, L represents the low-dimensional biological
factors and ε ∼ N (0, σ2Ip) represents the variation not accounted for by L. With this model, the
features in Z are related to the class labels in Y through the low-dimensional factor matrix L.

We can understand this model through the lens of binary drug screening classification. In this
setting, the variable of interest, Y , indicates whether or not each sample is sensitive to the tested
drug. The feature matrix, Z, contains gene expression levels for each of those samples. Gene
expression levels, however, will be affected by biological variables beyond our single variable of
interest, including original tissue source, tumor size, and cancer metastasis. Not only do these
variables affect the expression levels of many genes at once, but they are also related to whether
or not a drug is effective. Most of the variation in Z can be captured by these few main biological
factors contained in L, making this low-dimensional factor model appropriate.
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When modeling this type of data it can be useful to perform principal component analysis and
use only the top PCs, corresponding to the few informative dimensions, in model building. There-
fore, rather than traditional LDA, principal component linear discriminant analysis (PC-LDA), a
related method that first performs dimensionality reduction on the feature matrix, may be pre-
ferred. This approach is also beneficial as traditional LDA performs poorly in high-dimensions
(Peck and Van Ness, 1982). To perform PC-LDA, first compute the singular value decomposition
of Z such that Z = UDV ⊺. Then, project Z onto the top r < n right singular vectors of Z to
get the n × r principal component scores matrix W = ZV . We are now in a low-dimensional
setting and can proceed by training a traditional LDA classifier to predict Y from W . To use this
approach, however, we must estimate the best value of r.

An alternative adaptation of LDA for high-dimensional settings is regularized or ridged LDA.
This approach focuses on addressing the singularity of the sample covariance matrix that is caused
by having fewer observations than features. While there are many different formulations of covari-
ance matrix regularization, a common approach uses

Σ̃ = Σ̂ + γIp, (4.3)

where γ ∈ [0,∞) is the regularization parameter (Guo et al., 2006; Hastie and Tibshirani, 2004).
The regularized covariance matrix Σ̃ will be invertible and can thus be used in place of Σ̂ in
traditional LDA.

While both PC-LDA and regularized LDA are better suited for high dimensions than traditional
LDA, they each depend on the use of a tuning parameter. Selecting the optimal number of prin-
cipal components for PC-LDA and the optimal regularization parameter for regularized LDA are
important, and computationally expensive, steps.

4.2.2 Computational Challenges

There are many aspects of training and evaluating a classifier that can be computationally expen-
sive. As indicated above, this includes tuning model parameters. To select the optimal tuning
parameter value for a given classification problem, cross-validation (CV), either k-fold or leave-
one-out (LOO), is typically performed. To perform 10-fold CV, for instance, the data are divided
into 10 complementary training and hold-out sets. For every value of the tuning parameter under
consideration, the classifier is built on each of the 10 training sets and then used to predict the out-
comes for the corresponding hold-out sets. The tuning parameter value with the best performance
across all 10 hold-out samples is typically selected.

In addition to tuning model parameters, it is also desirable to estimate the predictive perfor-
mance of the classifier on out-of-sample observations. This is again done via CV. Using the same
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CV procedure to both tune model parameters and evaluate model performance, however, will give
biased accuracy estimates that are overly optimistic. This results from using the same data to select
tuning parameters and evaluate performance. Therefore, nested CV, with tuning parameter selec-
tion nested within accuracy estimation, is required to obtain accurate performance estimates. Such
a nested procedure, however, substantially increases the number of unique models that must be fit
and drastically increases computation time.

Further, an exploratory analysis process might require the entire nested CV procedure to be run
more than once. For example, if the class labels are created by discretizing a continuous variable,
it may be worthwhile to perform the analysis with different numbers of classes and different cut-
off thresholds. Similarly, if the feature matrix has missing values, it could be useful to perform
classification after implementing several different data imputation methods. More generally, in
any analysis, there will be many modeling choices to explore, so the ability to quickly build and
evaluate models is important. Additionally, in this type of analysis, it is crucial to get accurate
model performance estimates. While rough estimates of accuracy might suffice in other applica-
tions, here we are using model performance to evaluate and directly compare the effectiveness of
different data preprocessing steps. For this to be an effective approach, our performance estimates
need to be both accurate and reliable. Obtaining those accurate estimates, however, comes at a
cost; performing nested CV with such a complex and iterative analysis process requires extended
computation times.

4.3 Eliminating Tuning Parameter Selection

Prompted by the tension between accurately estimating model performance and running an anal-
ysis in a practical amount of time, we implement a high-dimensional LDA method that does not
depend on parameter tuning. This approach begins like PC-LDA with the calculation of principal
components. To perform traditional PC-LDA, CV is typically used to determine the optimal num-
ber of principal components onto which to project the feature matrix. In this approach, however,
we eliminate the need to tune that parameter. Instead, we use the maximum number of principal
components, n. We will refer to this approach as nPC-LDA.

With this technique, we perform our classification in n dimensions rather than in p dimensions,
using reasoning similar to Ye and Wang (2006) and Ramey et al. (2017). Specifically, in high-
dimensional settings, while the feature space is p-dimensional, we observe only n < p vectors in
that space. This leaves p − n dimensions where we do not observe any variation. Further, the
p-dimensional sample covariance matrix will have at least p− n null eigenvalues.

It turns out, however, that adding a ridge term to the p-dimensional sample covariance matrix
(e.g., Σ̃ = Σ̂ + λIp) is equivalent to adding the same ridge term to the n-dimensional principal
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component sample covariance matrix; both approaches will produce the same classifier. This is
because the d class sample mean vectors, µ̂k, are orthogonal to the p − n unused dimensions.
Further, the covariance matrix appears in LDA only via the product Σ̂−1µ̂k. Therefore, these unin-
formative dimensions are irrelevant, and anything we do to ridge the eigenvalues corresponding to
those dimensions will not matter (Ramey et al., 2017).

In this high-dimensional classification setting, however, using n principal components still pro-
duces a singular covariance matrix due to the estimation of the d class means. Therefore, we must
introduce regularization for the covariance matrix. We suggest, however, that there is a natural way
to perform this regularization without the need to tune the regularization parameter.

Specifically, we are predicting the n×d class labels Y from the n×n predictor matrix W = ZV .
In this setting, Y is an indicator matrix such that Yik = 1 if observation i is in class k and Yik = 0

otherwise; the row sums of Y are equal to 1 as each observation belongs to only one class. We let
µ̂k =

1
nk

∑
i:Yik=1 Wi be the estimated mean vector for class k and

Σ̂k =
1

nk

∑
i:Yik=1

(Wi − µ̂k)
⊺(Wi − µ̂k)

be the estimated covariance matrix for class k. We then define the overall covariance matrix to be

Σ̂ =
d∑

k=1

nk

n
Σ̂k =

1

n
W ⊺RYW,

where RY = I − Y (Y ⊺Y )−1Y ⊺ is the residual operator of Y . We note that Σ̂ has rank n − d

due to the estimation of the d class means. Therefore, Σ̂ has d null eigenvalues and is singular. To
regularize Σ̂, and create an invertible modified covariance matrix, we replace the d null eigenvalues
with a non-zero value, λ. In this setting, a natural choice is to replace the null eigenvalues with
a value similar to the other smallest eigenvalues of the covariance matrix (Thomaz et al., 2006;
Xu et al., 2009; Payne and Gagnon-Bartsch, 2022). We note that the smallest eigenvalues of the
covariance matrix are all equal to σ2, the error variance introduced in Equation 4.2; while a few
eigenvalues are larger, most are exactly equal to σ2. Therefore, in practice, we let λ be the median
of the eigenvalues of G = ZZ⊺. The resulting regularized covariance matrix is defined as

Σ̃ = Σ̂ + λPW−1Y ,

where PW−1Y is the projection operator of W−1Y . While similar in form to the regularization
introduced in Equation 4.3, this formulation is more targeted. Specifically, the matrix PW−1Y is a
projection matrix with d eigenvalues equal to 1 and the remainder equal to 0. Further, PW−1Y is
in the null space of Σ̂. Therefore, the eigenvectors of PW−1Y corresponding to an eigenvalue of 1
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span the null space of Σ̂, which corresponds to the eigenvectors of Σ̂ with an eigenvalue of 0. The
modified covariance matrix Σ̃, therefore, has only the d null eigenvalues of Σ̂ replaced by λ.

Together, this combination of PC-LDA and regularized LDA is the basis of our nPC-LDA
classifier. For an out-of-sample observation Z̃, we can write down the expression for Z̃β̂1 =

(Z̃β̂
(1)
1 , . . . , Z̃β̂

(d)
1 ) as follows,

Z̃β̂1 = Z̃V Σ̃−1µ̂ = Z̃V [
1

n
W ⊺RYW + λPW−1Y ]

−1(OYW )⊺, (4.4)

where OY = (Y ⊺Y )−1Y ⊺ is the regression operator of Y . Equation 4.4 can be further simplified
into an expression that is fast to compute. Specifically, we calculate

Z̃β̂1 = nZ̃Z⊺(ZZ⊺)−1[In − A(I2d +BA)−1B]O⊺
Y , (4.5)

where

H = Y (Y ⊺Y )−1/2,

K =
√
nλ(ZZ⊺)−1Y (Y ⊺(ZZ⊺)−1Y )−1/2,

A =
[
−H K

]
, and

B =

[
H⊺

K⊺

]

(see Appendix D.1 for the derivation). This is the main calculation needed to apply the nPC-LDA
classifier to an out-of-sample observation.

Performing nPC-LDA on high-dimensional data in the above manner is fairly computationally
inexpensive; we have, for instance, eliminated the need for parameter tuning and the inversion of
any p× p matrices. Performing LOO CV to asses nPC-LDA accuracy, on the other hand, is not as
efficient. Specifically, implementing LOO CV requires the inversion of several matrices at each of
the n CV iterations, a lengthy task even with a moderate sample size. We address these concerns
below.

4.4 Fast, Approximate, and Stable LOO CV for nPC-LDA

The nPC-LDA classifier is efficient to implement on high-dimensional data, but still requires CV to
evaluate its performance. To increase the computational efficiency of this task, we have identified
and implemented several methods that improve the speed of performing LOO CV for nPC-LDA.
These techniques include (1) identifying key quantities that can be stably approximated in the LOO
procedure, (2) downdating large matrices to reduce the number of redundant calculations, and (3)
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taking advantage of the shared structure of drug screening data.

4.4.1 Stable Cross-Validation Terms

We implement approximations in the LOO CV procedure to improve the computational efficiency
of evaluating model performance. To do so, we identify key terms in Equation 4.5 that can be
approximated instead of fully recomputed at each CV iteration. Specifically, we consider the term
(I2d+BA)−1BO⊺

Y . The resulting matrix has dimension 2d×d; in the binary classification setting,
for instance, (I2d + BA)−1BO⊺

Y will be a 4× 2 matrix. More importantly, the dimensions of this
matrix do not grow with n.

This low-dimensionality ensures that (I2d +BA)−1BO⊺
Y is essentially unchanged whether cal-

culated with the full data or when holding out the ith observation, i.e., this term is “stable” (Ap-
pendix D.1.2). Therefore, we calculate this matrix once, with the full data, and then plug it in
during each iteration of the LOO loop. This substantially reduces the number of required compu-
tations without hurting our ability to accurately estimate model performance.

4.4.2 Matrix Downdating

We reduce the number of expensive and redundant calculations in LOO cross-validated nPC-LDA.
Rather than re-calculating large matrix inverses, minus the ith observation, at each iteration of the
CV loop, we instead introduce downdates that are less computationally expensive. For example,
consider ZiZ

⊺
−i(Z−iZ

⊺
−i)

−1, where Zi is the ith row of Z and Z−i is Z without the ith row. This
matrix appears in the LOO version of the nPC-LDA scores (i.e., let Z̃ = Zi and Z = Z−i in
Equation 4.5). Therefore, this matrix must be calculated for each value of i; however, calculating
it separately at each LOO iteration would require inverting an (n − 1) × (n − 1) matrix n times.
Instead of repeatedly performing this inversion, however, we use the following fact:

ZiZ
⊺
−i(Z−iZ

⊺
−i)

−1 =
−1
G−1

ii

G−⊺
i Di, (4.6)

where G−1
i is the ith column and G−1

ii is the (i, i) element of G−1 = (ZZ⊺)−1, and Di is the n× n

identity matrix with the ith column removed (Appendix D.1.1 and Hastie et al. (2019)). When the
full G−1 is known, the right side of this equation is fast and simple to calculate; it only requires
subsetting and rescaling G−1 at each CV iteration.

In particular, the naive formulation, directly calculating ZiZ
⊺
−i(Z−iZ

⊺
−i)

−1 at each LOO itera-
tion, requires a computational complexity of O(n2p+n3) at all n iterations, for an overall complex-
ity of O(n3p+n4). In contrast, calculating −1

G−1
ii

G−⊺
i Di requires the calculation of G−1 = (ZZ⊺)−1

once, with a complexity of O(n2p + n3). This calculation, however, will have already been per-

47



formed when fitting nPC-LDA to the full data, and it does not need to be repeated. Therefore, the
complexity of calculating ZiZ

⊺
−i(Z−iZ

⊺
−i)

−1 via the downdate within each CV iteration is reduced
to O(n), resulting in an overall complexity of O(n2). This saves substantial computation time over
the original calculation.

4.4.3 Data Structure

We further take advantage of downdating the computationally expensive G and G−1 matrices
within the setting of large drug screening studies. In these studies, the goal is to predict drug
efficacy from cell line genomic information for each of the T drugs under consideration. We must
build a separate classifier for each drug. Importantly, however, the only information that differs
between drugs is the response vector (how the cells respond to the drug) and the subset of cell lines
on which the drug was tested. That is, the cell line genetic information itself is independent of the
drug.

This observation suggests a downdating procedure. We calculate G and G−1 from the full Z
matrix that includes all cell lines in the study. Then, for each drug, we downdate G and G−1 based
on the subset of cell lines upon which the drug was tested. Specifically, let drug t ∈ 1, . . . , T be
tested against a subset of nt cell lines, with the subset denoted Tt. To build a classifier for drug t,
we need ZTt , GTt , and G−1

Tt . The computation time to obtain G−1
Tt directly is O(n2

tp+ n3
t ). We can,

however, use downdating to obtain G−1
Tt in a more computationally efficient manner.

Without loss of generality, assume the cell lines we want to drop appear in rows 1 through nd,
while the cell lines in Tt appear in rows nd + 1 through n of Z, such that nd + nt = n. Then we
can downdate G−1 as follows,

G−1
Tt =

[
G−1 −G−1U(−I2nd

+ V G−1U)−1V G−T
]
(−1:nd,−1:nd)

,

where Un×2nd
= (b, a), V2nd×n = (a⊺, b⊺)⊺, an×nd

contains the first nd columns of G, and bn×nd

is the tall identity matrix augmented by zeroes. After the initial calculation of G and G−1, this
downdating procedure reduces the total computational complexity for each subsequent drug to
O(n2

t+n2nd), when nt is large. Importantly, this downdating procedure eliminates any calculations
depending on the number of features p. If nt is substantially smaller than n, however, it is more
computationally efficient to fully recalculate G−1

Tt from scratch.

4.4.4 The Algorithm

We combine the nPC-LDA classification method introduced in Section 4.3 with the computational
improvements to LOO CV outlined in Sections 4.4.1 through 4.4.3. Together, these techniques

48



form a fast and computationally efficient approximate LOO cross-validated nPC-LDA method that
we can apply to high-dimensional data.

As outlined in Algorithm 2, this technique first trains an nPC-LDA classifier on the full data.
This is the model that will be used to predict class labels for out-of-sample observations. To assess
the performance of that model, we use a fast, approximate, and stable LOO CV approach (FAST-
CV). In particular, at each CV iteration, we combine the stable terms that have been calculated
from the full data with the downdated matrices that are re-calculated within the CV loop. For
each iteration, this produces an approximate nPC-LDA model trained on n − 1 observations that
we use to predict the class label for the held-out sample. The predicted class labels are then
used to estimate model performance. Below, we show the improved computation time for this
algorithm over existing methods for high-dimensional data. Much of the improvement is due to
our approximate LOO CV approach. For a single iteration of our algorithm, the computational
complexity of calculating Ziβ̂1 as in Equation 4.5 is O(nd2); the computational complexity for the

Algorithm 2: nPC-LDA with FAST-CV
Data: (Zn×p, Yn×d)
Calculate (or downdate):

G← ZZ⊺

G−1 ← (ZZ⊺)−1

λ← median of eigenvalues of G
π ← vector of d class proportions
b̂stable ← (I2d +BA)−1BO⊺

Y as defined in Equation 4.5

Build nPC-LDA on (Z, Y ):
b̂1 ← nG−1(O⊺

Y − Ab̂stable) where β̂1 = Z⊺b̂1 as in Equation 4.5

β̂0 ← log(π)− 1
2

diag(OYGb̂1)

Estimate nPC-LDA performance via FAST-CV:
for i in 1, . . . , n do

Downdate matrices:
b̂
(i)
stable ←

√
n−1
n
b̂stable

C(i) ← −1
G−1

ii

G−⊺
i Di as defined in Equation 4.6

Calculate non-stable terms from (Z−i, Y−i):
O

(i)
Y and A(i)

Calculate approximate nPC-LDA scores for observation i:
Ziβ̂

(i)
1 ← (n− 1)

[
C(i)⊺O

(i)
Y − C(i)A(i)b̂

(i)
stable

]
ŝi ← Ziβ̂

(i)
1 + β̂0

Assign observation i to the class with the largest score.
end
Compare predicted classes to observed classes to estimate model performance.
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entire loop is O(n2d2).

4.5 Simulations

We run several simulations to evaluate the performance of nPC-LDA with FAST-CV. In these
simulations, we generate data according to two models, “uninformative” and “informative”; these
models are modified from the simulation settings in Payne and Gagnon-Bartsch (2022). We use
the simulated data to compare nPC-LDA with FAST-CV to nPC-LDA with traditional LOO CV,
as well as to other LDA-based methods under several CV schemes. We compare both the accuracy
of CV error estimates and computation time for each of these approaches. Simulations to evaluate
computation time were performed on a 2020 MacBook Pro with a 2 GHz Quad-Core Intel Core i5
processor.

4.5.1 Data Generation

In both the uninformative and informative settings, we generate Y , a binary class vector of dimen-
sion n with balanced classes, and Z, an n× p feature matrix. Under the uninformative model, the
feature matrix is Gaussian white noise. We define Z(u) as follows:

Z
(u)
n×p = εn×p,

where ε ∼ N (0, Ip). For the informative model, we let there be ℓ = 3 latent factors, denoted by L,
as introduced in Equation 4.2. These factors are correlated with the class labels and provide useful
information for classification. We generate Z(i) as follows:

Z
(i)
n×p = Z

(u)
n×p + Ln×ℓαℓ×p,

where Ln×ℓ ∼ N (Yn×1η1×ℓ, Iℓ), η = [ 1√
3
, 1√

3
, 1√

3
], and αℓ×p ∼ N (0, 6√

p
Ip). In this setting the

features are informative for predicting class labels.
In these simulations, we let n range from 6 to 1000 and consider p = 20,000, 100,000, and

500,000. For each combination of n and p we generate many simulated data sets and average
accuracy rates and computation time across replicates. To make the computations feasible, we
vary the number of replicates with n (Appendix D.3).

4.5.2 Methods

We test the speed and model performance estimation capabilities of nPC-LDA with LOO CV
and nPC-LDA with FAST-CV on the simulated data. We compare these methods to PC-LDA
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with a fixed number of PCs (r = 3 and r = 50). We perform PC-LDA in R via the svd()
and MASS::lda() functions. We do not use CV to select the optimal r due to computation
constraints, as discussed below. Instead, we consider a small value of r (equal to the number of
low-dimensional factors in the informative model) and a large value of r.

In these simulations, we use two different CV schemes, LOO and 10-fold, to get CV error esti-
mates for PC-LDA. For both LOO and 10-fold CV, we perform “correct” CV, where the principal
components are re-computed within each CV iteration, and “incorrect” CV, where the principal
components are only computed on the full data and then subsetted within each CV iteration. The
“incorrect” version is implemented as a fast alternative to the “correct” method. When evaluating
the accuracy of LOO CV, we were not always able to perform the “correct” CV version as it is too
computationally inefficient for the size of our simulated data (Figure 4.2). Additionally, we cannot
perform PC-LDA with r = 50 on our simulated sample sizes of n = 6, 10, and 20. We also did
not perform 10-fold CV on our simulated sample sizes of n = 6 and 10.

4.5.3 Results

In these simulations, most of the tested methods are able to reliably recover theoretical accuracy
rates via CV; nPC-LDA with FAST-CV, however, vastly outperforms the other methods in terms of
computation time. We begin our analysis by investigating the performance of the MASS::lda()
implementation of PC-LDA and the ability of various CV methods to recover theoretical accuracy
rates. When performing 10-fold CV in the “correct” manner, we obtain accuracy estimates that
are very close to the theoretical accuracy rates. This is true both when PC-LDA is performed with
3 PCs and with 50 PCs (Figure 4.1). Performing CV in the “incorrect” way, however, does not
always allow us to accurately recover those true accuracy rates. In particular, in the informative
setting, “incorrect” CV substantially underestimates theoretical accuracy when r = 50. The un-
derestimation is present for most tested sample sizes (Figure 4.1b). Performing “incorrect” CV for
PC-LDA with r = 3, on the other hand, allows for good recovery of theoretical accuracy rates at
large sample sizes, but overestimates theoretical accuracy at moderate and small sample size. We
hypothesize that the overestimation of “incorrect” CV for PC-LDA with r = 3 is likely because
the generated data actually have three (latent) informative factors. With this setup, “incorrect” CV
is using the most informative subset of the full data to build the model on each CV training set.
For a given CV iteration, data from the test set is incorporated into the fitted model, producing
overly optimistic performance estimates. Therefore, performing CV, whether LOO or 10-fold, in
the “correct” manner is necessary for guaranteeing reliable estimates of model performance.

There is a trade-off, however, between accurate error estimation and computation time. Per-
forming “correct” LOO CV, for instance, takes n times as long as performing “incorrect” LOO CV
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Figure 4.1: Mean CV accuracies for a PC-LDA classifier with (a) r = 3 and (b) r = 50 principal compo-
nents and p = 20,000 features. Sample size (n) is displayed on a square-root scale. The black dashed lines
indicate the theoretical classification accuracy rates for a PC-LDA classifier with r principal components
built on the generated data. “Incorrect” CV involves only calculating the principal components on the full
data, while “correct” CV involves calculating the principal components for each individual CV training set.
Neither PC-LDA with 50 PCs nor 10-fold CV can be run on small sample sizes.

(e.g., 18.5 seconds vs. 0.3 seconds for n = 60 and p = 20,000; Figure 4.2). As n grows, it quickly
becomes infeasible to perform “correct” LOO CV. Therefore, 10-fold CV is a commonly used al-
ternative to the LOO approach. When performing 10-fold CV, the “incorrect” method is about 8
times faster than the “correct” method; this difference can be substantial, but does not depend on
n.
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Figure 4.2: Median computation times for p = 20,000. Time (in seconds) is displayed on a log10 scale. Our
implementation of nPC-LDA with FAST-CV has the fastest computation time across all values of n; even at
n = 1000, it takes just over 10 seconds to complete. Note: we did not run PC-LDA with 50 PCs and LOO
CV performed in the “correct” way for n = 1000 due to computation constraints.
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Lengthy computation times are further extended when using CV to select the optimal number
of PCs onto which to project the feature matrix (rather than just selecting a fixed r, as was done in
these simulations). Performing nested 10-fold CV, for instance, will take 10 times as long as the
“correct” 10-fold CV procedure displayed in Figure 4.2.

Our implementation of nPC-LDA with FAST-CV, however, performs well when considering
both speed and accuracy. Across all tested values of n, nPC-LDA with FAST-CV has the fastest
computation time when compared to nPC-LDA with LOO CV and all forms of CV for PC-LDA
with 50 PCs. It takes just 11 seconds to run nPC-LDA and obtain a FAST-CV accuracy rate when
n = 1000 and p = 20,000. Further, the FAST-CV accuracy rates are reliable. In both simulation
settings, the approximate LOO CV accuracy of performing nPC-LDA with FAST-CV is almost
identical to the classical LOO CV accuracy, both of which closely match the theoretical accuracy
rates for nPC-LDA (Figure 4.3). This indicates that the approximations we make in FAST-CV are
effective at reducing computation time while not seriously hurting our ability to estimate model
performance. Our approximate procedure is fast and recovers the theoretical accuracy rates well.

Overall, these simulations show the strengths of our nPC-LDA classifier and FAST-CV algo-
rithm. Our computation speeds are much faster than traditional methods, even those that sacrifice
accuracy to be more computationally efficient. The FAST-CV procedure also recovers true accu-
racy rates at the level of a full CV procedure. The other tested methods are unable to perform as
well on both metrics.
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Figure 4.3: Mean CV accuracies for nPC-LDA obtained via LOO CV and FAST-CV for p = 20,000. Sam-
ple size (n) is displayed on a square-root scale. The black dashed lines indicate the theoretical classification
accuracy rates for an nPC-LDA classifier built on the generated data.
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4.6 Evaluation on Pharmacogenomic Data

We evaluate the performance of our nPC-LDA classifier with FAST-CV on the large-scale and
publicly available pharmacogenomic data from the GDSC study (Yang et al., 2013). This database
contains genomic information about more than 1000 cancer cell lines in addition to drug efficacy
data for almost 200 potential anti-cancer drugs tested on those cell lines. As in Chapter 3, we use
release 8.2 of the GDSC2 drug efficacy data in this application.

We first consider predicting cell line tissue type from gene expression levels. GDSC contains
several different tissue and tumor type labels for each cell line; we chose to focus on two. The
tissue type label separates 968 cell lines into 19 distinct classes such as non-small cell lung cancer,
urogenital system cancers, leukemia, etc. The tumor histology label separates 932 cell lines into 11
distinct classes including carcinoma, lymphoid neoplasm, and glioma (we removed 18 histologies
that had fewer than 5 cell lines each). These class labels constitute a multiclass classification
setting (k > 2) for both tissue type (k = 19) and histology (k = 11). Further, the histology data
contains a serious class imbalance: around 60% of cell lines are labeled carcinomas, while only
40% of cell lines are left to the other 10 classes (see Appendix D.4.1for more details). GDSC also
provides gene expression data for each cell line. This contains expression levels for 17,737 genes.

We compared the performance of the nPC-LDA algorithm to off-the-shelf random forest and
LDA methods. Initially, we estimated model performance via classical LOO CV for nPC-LDA
and MASS:lda, via classical 10-fold CV for maximum uncertainty LDA (MLDA), and via out-
of-bag (OOB) voting for random forests. In terms of estimated classification accuracy, F1-score,
and Matthews correlation coefficient (MCC), the nPC-LDA algorithm performs better than the
other tested methods for tissue type classification, but slightly worse than MLDA for histology
classification (Table 4.1). Notably, the MASS package implementation of high-dimensional LDA

Tissue Type Histology
Model Accuracy F1-score MCC Accuracy F1-score MCC

nPC-LDA 0.800 0.788 0.785 0.959 0.853 0.932
Random Forest 0.693 – 0.672 0.901 – 0.831
MASS::lda() 0.054 0.052 0.001 0.093 0.060 0.003

MLDA 0.768 0.724 0.751 0.982 0.958 0.970

Table 4.1: Estimated model performance for predicting cell line tissue type and histology from gene ex-
pression levels. Model performance was estimated via LOO CV for nPC-LDA and MASS::lda(), via
10-fold CV for MLDA, and via OOB voting for random forests. nPC-LDA performs better than random
forests and MASS::lda(), but comparably with MLDA. The random forests do not have a meaningful
F1-score because precision is undefined for two tissue types and four histologies. Random forests were im-
plemented via the randomForest::randomForest() function in R; LDA was implemented via the
MASS::lda() function in R; MLDA was implemented via the HiDimDA::Mlda() function in R.
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Tissue Type Histology
CV Method Accuracy F1-score MCC Time (s) Accuracy F1-score MCC Time (s)
FAST-CV 0.794 0.785 0.780 16.5 0.957 0.854 0.928 15.2
LOO CV 0.800 0.788 0.785 1244.4 0.959 0.853 0.932 1097.7

Table 4.2: Estimated model performance and computation speed for an nPC-LDA classifier predicting cell
line tissue type and histology from gene expression levels. Model performance was estimated via FAST-CV
and LOO CV. The two methods produce quite similar estimates for all model performance metrics. The
FAST-CV algorithm, however, has computation times around two orders of magnitude faster than classical
LOO CV.

in R performs no better than random guessing (i.e., 1
19

= 0.053 and 1
11

= 0.091, matching the
MASS:lda() estimated accuracies). Our nPC-LDA method, however, performs substantially
better on both classification problems.

Additionally, as shown in simulations, the model performance of nPC-LDA estimated via
FAST-CV is almost identical to the model performance of nPC-LDA estimated via classical LOO
CV (Table 4.2). Further, nPC-LDA with FAST-CV achieved this performance with computation
speeds more than 70 times faster than nPC-LDA with LOO CV (more than 20 times faster than
randomForest::randomForest() and more than 40 times faster than MASS::lda() and
HiDimDA::Mlda(); Table D.3). Overall, nPC-LDA implemented with FAST-CV performs
quite well, both in terms of model performance and computation speed, for both multiclass data
and data with substantial class imbalances (see Appendix D.4.1 for more details).

We also used the GDSC data to predict drug efficacy from cancer cell line gene expression
levels. GDSC contains drug efficacy data for 198 potential anti-cancer drugs tested on 805 cancer
cell lines (Yang et al., 2013). For each drug-cell line combination, drug efficacy is summarized by
the area under the dose-response curve (AUC), where small AUC values indicate an effective drug
(equivalently, a sensitive cell line). To create a binary response variable suitable for classification,
we discretized the estimated AUC values into calls of “sensitive” (small AUCs) and “insensitive”
(large AUCs; Appendix D.4.2). For each drug, we further down-sampled observations from the
majority class to impose class balance and improve the interpretability of model performance esti-
mates; this resulted in 147 drugs with sufficient cell lines. The average drug was tested on 238 cell
lines (minimum 20, maximum 792). These drug sensitivity calls form the binary response vec-
tor in our classification problem. The feature matrix in this analysis is the same gene expression
data used for the tissue type classification above. We consider other types of genetic information,
including methylation levels, in Section 4.7.

The relationship between drug efficacy and cell line gene expression levels will differ across
drugs. Therefore, a separate classifier must be built for each compound under consideration; we
must fit 147 separate cross-validated classifiers in this analysis.
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We compared the performance of nPC-LDA with FAST-CV to that of an off-the shelf random
forest classifier. We first ran nPC-LDA with FAST-CV on the 147 drugs tested on sufficient cell
lines, producing approximate LOO CV accuracies for all drugs in about 50 seconds. To achieve
this computation speed, we performed the analysis in two steps. In the first step, we used Z,
the full predictor matrix with dimension 805 × 17737, to calculate G = ZZ⊺, G−1 = (ZZ⊺)−1,
and the median of the eigenvalues of G (as the regularization parameter λ) in just 8 seconds. We
then used these precomputed quantities to build the 147 separate classifiers. For each drug, our
implementation of nPC-LDA with FAST-CV downdated G and G−1 to the subset of cell lines on
which that drug was tested and then proceeded with classification. In total, this process calculated
approximate LOO CV error estimates for all 147 drugs in less than 1 minute, or in about 0.33
seconds per classifier.

In comparison, we built random forest classifiers for just 15 randomly selected drugs. This anal-
ysis produced OOB accuracy estimates for those 15 drugs in 22 minutes, or in almost 90 seconds
per classifier. At this rate, it would take more than 3.5 hours to build and evaluate all 147 ran-
dom forest classifiers. The nPC-LDA algorithm, implemented with FAST-CV, clearly outperforms
random forests in terms of computation time.

Importantly, the drastically improved computation time of nPC-LDA with FAST-CV does not
hurt classifier performance. For the 15 drugs analyzed by both methods, model performance for
nPC-LDA, estimated via approximate LOO CV, is comparable to model performance for random
forests, estimated via OOB voting. This similarity holds for accuracy, F1-score, and MCC (Figure

−0.1

0.0

0.1

accuracy F1−score MCC

nPC−LDA (FAST−CV) − random forest
Difference in Model Performance

Figure 4.4: Difference in model performance between nPC-LDA with FAST-CV and random forests for 15
randomly selected drugs. The two models have comparable accuracy, F1-score, and MCC.
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4.4), suggesting that not only does nPC-LDA with FAST-CV have incredibly fast computation
time, but it also does not hurt classification quality on several common performance metrics.

4.7 Application to Pharmacogenomic Data

We now take advantage of the speed and performance of nPC-LDA with FAST-CV to examine the
effects of various modeling decisions on classification quality. For instance, in Section 4.6, we
discretized the GDSC-provided AUC estimates into binary calls of “sensitive” and “insensitive”
for our classification response vector. There is not, however, a clear and biologically-meaningful
way to select the threshold between the two classes. We address this uncertainty by using nPC-
LDA with FAST-CV to quickly compare classifier performance for many different potential class
thresholds. We also move beyond simple binary classification to consider more complicated clas-
sification settings. Further, as the GDSC study contains cell lines from many different types of
cancer, we compare classifier performance, and the best class thresholds, between different tissue
types. At this stage of the analysis, we continue to focus on predicting drug efficacy, as estimated
by the GDSC-provided AUC estimates, from cell line gene expression levels.

In the simple binary classification setting, we look at how model performance varies when we
vary the class threshold, m. We let m range from 0.4 to 0.9, labeling cell lines with an AUC below
m as “sensitive” and cell lines with an AUC above m as “insensitive”. In this analysis, we consider
n = 32 drugs with sufficient cell lines in each class at all tested thresholds (Appendix D.4.3).
Across this range of thresholds, we observe that smaller values of m tend to produce better model
performance than larger values of m (Figures 4.5 and D.6; Table D.4). In particular, we observe the
best simple binary classification performance at a threshold of around m = 0.45 (median accuracy
of 0.82; median F1-score of 0.82; median MCC of 0.63). In general, at smaller threshold values,
the fitted nPC-LDA models are better able to discriminate between “sensitive” and “insensitive”
cell lines.

In performing this exploratory analysis, we had to fit and evaluate separate classifiers for 32
drugs at 51 different thresholds; this requires the fitting and evaluation of a total of 1,632 models.
Using nPC-LDA and FAST-CV, we were able to do this in less than 10 minutes on a personal
laptop. Without such speed, exploring the performance of simple binary classification, and finding
the best class threshold, may not have been feasible. Therefore, nPC-LDA with FAST-CV is
instrumental in improving our understanding of sensitive and insensitive cell lines.

Such simple binary classification, however, depends on the idea that a cell line with an AUC
just below the threshold is sensitive while a cell line with an AUC just above the threshold is
insensitive. In reality, we do not expect there to be such a definitive division between the two
classes, especially when we know the data contain widespread errors and noise. Therefore, we

57



0.00

0.25

0.50

0.75

1.00

0.4 0.5 0.6 0.7 0.8 0.9
threshold

Accuracy

F1 Score

MCC

Figure 4.5: Median nPC-LDA performance (accuracy, F1-score, and MCC) estimated via FAST-CV for
binary classification as the binary class threshold varies from 0.4 to 0.9. Performance tends to increase as
the class threshold decreases. At each threshold, we performed classification for the n = 32 drugs that have
sufficient cell lines in both classes at all tested thresholds. The median is taken across these drugs.

also consider binary classification where cell lines with moderate AUC values are discarded. More
concretely, for two thresholds m1 and m2 such that m1 < m2, we construct our response vector by
assigning AUCs < m1 to the “sensitive” class and AUCs > m2 to the “insensitive” class. AUCs
between m1 and m2 are dropped.

To evaluate model performance when the response vector is constructed with this discretization,
we build nPC-LDA classifiers for all combinations of lower threshold m1 between 0.4 and 0.85
and upper threshold m2 between 0.45 and 0.9 (Figures 4.6 and D.7). As with the simple binary
case, there is better model performance at smaller values of m1. In particular, we find the best
median accuracy and MCC when we let m1 = 0.4 and m2 = 0.6 (median accuracy of 0.87 and
median MCC of 0.74; the best median F1-score is achieved at m1 = 0.4 and m2 = 0.65). Here we
are able to fit and evaluate 1,760 nPC-LDA models with FAST-CV in just over five minutes.

Further, we consider how model performance, and the best values of m1 and m2, vary across
different types of cancer. Specifically, we perform a separate classification analysis for each can-
cer cell line tissue type. Table 4.3 shows not only how the best values of m1 and m2 vary across
tissue types, but also how they vary across three widely tested drugs (camptothecin, 5-fluorouracil,
and taselisib). In particular, we see that the behavior of leukemia and lymphoma cell lines, two
categories of blood cancer, are more similar to each other than to the other tested cancer types.
Leukemia and lymphoma have lower selected values of m1 and m2 than the other tissue types for
camptothecin and are the only two tissue types against which 5-fluorouracil has any effect. This
indicates that performing separate analyses for different tissue types and for different classes of
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Figure 4.6: Binary classification where moderate AUC values are dropped. (a) Median nPC-LDA accuracy
estimated via FAST-CV for binary classification where AUC values between the lower threshold (m1) and
the upper threshold (m2) are discarded. Accuracy tends to be larger for smaller values of m1. At each set of
thresholds, we performed classification for the n = 32 drugs that have sufficient cell lines in both classes at
all tested thresholds. The median is taken across these drugs. (b) Histogram of GDSC AUC values colored
by class label. Class labels are assigned based on the values of m1 and m2 that give the highest median
accuracy: m1 = 0.4 and m2 = 0.6.

drugs may improve the quality of classifier performance. It will also, however, increase computa-
tion time and resources necessitating the use of nPC-LDA with FAST-CV.

Finally, we introduce different types of genomic data into this classification problem. We ex-
pand our set of predictors to include methylation data in addition to gene expression levels. In
the GDSC study, there are 725 cell lines for which both gene expression data (17,737 genes) and
methylation data (476,559 sites) are available. After concatenating these datasets, our predictor
matrix now has dimension 725 × 494,296.

In this analysis, however, we find that adding methylation data to the gene expression data does

Camptothecin 5-Fluorouracil Taselisib
Tissue Type Accuracy m1 m2 Accuracy m1 m2 Accuracy m1 m2

urogenital system 0.766 0.8 0.9 – – – 0.773 0.7 0.85
NSCLC 0.618 0.8 0.9 – – – 0.769 0.75 0.85
leukemia 0.8 0.65 0.75 0.85 0.75 0.85 0.7 0.65 0.7

aero-digestive tract 0.792 0.85 0.9 – – – 0.733 0.7 0.85
lymphoma 0.727 0.6 0.8 0.885 0.7 0. 85 0.818 0.7 0.8

breast – – – – – – 0.682 0.8 0.9

Table 4.3: Thresholds corresponding to best model performance for the six largest tissue types and the
three most widely used drugs. The “--” entry indicates there were not sufficient cell lines with AUC values
smaller than 0.85 to perform this analysis.
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not substantially improve classification accuracy, in general. On its own, methylation data has
decent predictive power, producing model performance that is only slightly lower than the perfor-
mance we observed with gene expression data (Table 4.4). Model performance slightly increases
when we consider both methylation and gene expression data together, producing performance
that is quite similar to the expression-only analysis. This indicates that the methylation data is not
providing a substantial amount of new predictive information.

We are able to explore the influence of the methylation data and come to this conclusion be-

Gene Expression Methylation Both
m1 m2 Accuracy F1-score MCC Accuracy F1-score MCC Accuracy F1-score MCC
0.40 0.45 0.820 0.820 0.643 0.800 0.800 0.600 0.821 0.827 0.643
0.40 0.50 0.828 0.829 0.658 0.812 0.808 0.625 0.824 0.828 0.655
0.40 0.55 0.857 0.851 0.715 0.808 0.805 0.616 0.812 0.812 0.630
0.40 0.60 0.868 0.863 0.742 0.833 0.828 0.668 0.836 0.843 0.673
0.40 0.65 0.866 0.870 0.734 0.844 0.839 0.689 0.844 0.839 0.689
0.40 0.70 0.855 0.857 0.719 0.850 0.851 0.704 0.875 0.875 0.750
0.40 0.75 0.849 0.845 0.702 0.857 0.849 0.722 0.844 0.839 0.689
0.40 0.80 0.862 0.866 0.735 0.852 0.848 0.707 0.857 0.857 0.742
0.40 0.85 0.856 0.859 0.714 0.833 0.837 0.676 0.861 0.857 0.728
0.40 0.90 0.858 0.851 0.722 0.833 0.833 0.671 0.875 0.875 0.750
0.45 0.50 0.824 0.830 0.650 0.824 0.824 0.647 0.825 0.829 0.651
0.45 0.55 0.841 0.839 0.684 0.825 0.825 0.656 0.828 0.844 0.670
0.45 0.60 0.862 0.859 0.725 0.845 0.849 0.695 0.840 0.846 0.682
0.45 0.65 0.864 0.861 0.734 0.824 0.816 0.647 0.826 0.829 0.659
0.45 0.70 0.847 0.841 0.695 0.849 0.850 0.699 0.833 0.837 0.681
0.45 0.75 0.843 0.854 0.694 0.853 0.848 0.707 0.845 0.844 0.691
0.45 0.80 0.866 0.866 0.738 0.845 0.843 0.691 0.844 0.840 0.700
0.45 0.85 0.868 0.869 0.737 0.826 0.820 0.651 0.845 0.840 0.693
0.45 0.90 0.865 0.867 0.734 0.843 0.851 0.688 0.845 0.833 0.693
0.50 0.55 0.798 0.794 0.600 0.810 0.800 0.622 0.829 0.821 0.660
0.50 0.60 0.819 0.815 0.642 0.828 0.819 0.656 0.818 0.816 0.640
0.50 0.65 0.810 0.800 0.623 0.811 0.803 0.623 0.810 0.811 0.624
0.50 0.70 0.818 0.816 0.645 0.824 0.822 0.651 0.833 0.833 0.667
0.50 0.75 0.831 0.829 0.665 0.817 0.821 0.646 0.816 0.821 0.646
0.50 0.80 0.845 0.838 0.691 0.803 0.800 0.616 0.816 0.808 0.640
0.50 0.85 0.852 0.843 0.707 0.833 0.836 0.668 0.843 0.841 0.685
0.50 0.90 0.837 0.836 0.675 0.828 0.821 0.657 0.853 0.841 0.712
0.55 0.60 0.791 0.790 0.586 0.775 0.776 0.564 0.778 0.785 0.561
0.55 0.65 0.780 0.774 0.562 0.786 0.780 0.573 0.800 0.795 0.601
0.55 0.70 0.784 0.786 0.570 0.786 0.776 0.574 0.788 0.782 0.592
0.55 0.75 0.809 0.801 0.621 0.804 0.798 0.611 0.804 0.792 0.625
0.55 0.80 0.812 0.805 0.625 0.807 0.795 0.621 0.811 0.797 0.622
0.55 0.85 0.835 0.830 0.673 0.821 0.808 0.647 0.830 0.820 0.660
0.55 0.90 0.826 0.819 0.654 0.817 0.804 0.638 0.826 0.820 0.666

Table 4.4: Median model performance for nPC-LDA estimated via FAST-CV for predicting binary drug
efficacy from gene expression data, from methylation data, and from the concatenation of both. Class labels
were assigned by labeling AUC values less than m1 as ”sensitive” and greater than m2 as “insensitive”.
Bolded values indicate the best model performance for each predictor set and performance metric.
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cause of the computational efficiency of nPC-LDA with FAST-CV. It takes less than 3 minutes to
calculate G, G−1, and λ for our 725 × 494,296-dimensional feature matrix. Once these quantities
are calculated, we can then rapidly fit a large number of classifiers with widely varying response
vectors. For instance, we fit, and evaluate the performance of, 1,705 classifiers (corresponding to
n = 31 drugs and 55 sets of thresholds) in about 4.5 minutes.

The data exploration done in this section represents only a small portion of the exploration
and analysis that can be performed with these data. Researchers might have other methods of
forming the classification response vector, might bring in different genetic information to use as
predictors, such as copy number variation or mutation data, or might try other forms of predictor
preprocessing, including missing value imputation and predictor transformations. Regardless of
the modeling decisions to be explored, the speed and quality of nPC-LDA with FAST-CV provides
huge benefits to performing exploratory analysis on large-scale and high-dimensional data.

4.8 Discussion

In the development of the nPC-LDA classifier and our fast, approximate, and stable LOO CV
approach, computational efficiency was the main priority. While many classical regression and
classification methods have been successfully adapted to high-dimensions, including LDA-based
methods, they often require an impractical amount of computation time, especially when n and
p are both large. For example, the introduction of a regularization or penalty term, or the use
of dimensionality reduction techniques, can be too time- and memory-intensive to complete on a
personal computer, particularly when paired with error estimation via nested CV.

In our nPC-LDA method with FAST-CV, however, we adapt LDA to high-dimensional data
with an emphasis on fast model building and evaluation. Specifically, by combining covariance
matrix regularization with principal components-based dimensionality reduction, we can suggest
a natural regularization parameter that eliminates the need for tuning. Further, we forgo exact
CV in favor of a more computationally efficient approximate version. We carefully evaluated
the R implementation of both nPC-LDA and FAST-CV to speed optimize the code. We offer
implementations of both nPC-LDA with LOO CV and nPC-LDA with FAST-CV in the fastLDA
package.

Further, in our implementation of nPC-LDA with FAST-CV, we prioritized the ability to handle
complex and iterative workflows. Beyond using a computationally efficient classifier, we also
achieved this via the separability of necessary, but expensive, computations. In particular, nPC-
LDA requires the calculation of G = ZZ⊺, G−1 = (ZZ⊺)−1, and the regularization parameter
λ = the median of the eigenvalues of G. These three calculations are the most computationally
expensive aspect of fitting an nPC-LDA classifier, by far. Once they have been calculated, however,
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a new model can be built almost instantaneously to predict any response vector from the feature
matrix Z, or from a subset of the samples in Z. Therefore, to improve performance, the user can
pre-calculate G, G−1, and λ, providing them as inputs for future models depending on Z. The
nPC-LDA algorithm will downdate these quantities rather than re-calculating from scratch, saving
computation time. This feature is ideal, for instance, for an iterative workflow that examines
classifier performance for different response vectors and the same set of features.

Finally, while our development of both nPC-LDA and FAST-CV was motivated by the chal-
lenges of analyzing large-scale drug screening studies, these techniques are more widely applica-
ble. In general, the nPC-LDA classifier, both with LOO CV and FAST-CV, is not tailored to drug
screening data. While our techniques can particularly improve computation time via downdating
when several hundred classifiers must be fit to similar feature matrices, this is not a requirement for
nPC-LDA or FAST-CV to be effective. Overall, if a classifier must be built for a high-dimensional
dataset, our algorithm will efficiently fit an nPC-LDA model and obtain accurate approximate LOO
CV performance estimates.
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CHAPTER 5

Discussion and Future Work

This dissertation has discussed several challenges associated with collecting, processing, and ana-
lyzing data from large-scale and high-throughput drug screening studies. Such challenges include
the presence of systematic technical errors, the confounding between errors and biological signal,
the use of non-optimal experimental designs, and the computational complexity of analyzing high-
dimensional data. Each chapter in this dissertation has focused on highlighting and addressing the
challenges associated with a different stage in the experimental process.

We begin with data collection and exploration. Chapter 2 makes clear the need to deeply in-
vestigate raw drug screening data for the presence of systematic errors. While we focus on the
errors in GDSC and CCLE in this dissertation, it is likely that the same errors, as well as new ones,
exist in the data collected from large biological experiments more broadly. Deep data exploration
is always a necessary first step. Additionally, in this chapter, we identify aspects of the experimen-
tal design of drug screening studies that can be improved to aid in the mitigation of such errors
in future studies. Implementing these design techniques, such as plate randomization, consistent
replication, and the release of full experimental data, will increase the range of statistical methods
that can be applied to future drug screening data.

While we advocate for more intentional experimental designs in future drug screening stud-
ies, we also acknowledge the large amounts of drug screening data that already exist. Therefore,
Chapter 3 focuses on mitigating the effects of technical errors in existing datasets. In particular,
we introduce a data processing technique that aims to handle the errors outlined in Chapter 2. We
frame data normalization as counterfactual estimation and carefully apply this framework to the
GDSC drug screening data through a tailored normalization approach. In other words, we devel-
oped a normalization technique that is able to handle the non-optimal plate designs, incredible
frequency of missing data, and lack of standardization in plate layouts that GDSC contains. While
our normalization method improves upon existing methods, we continue to advocate for the im-
plementation of the experimental design suggestions from Chapter 2. Their use in future studies
will make a wider range of statistical tools feasible for normalization.
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Finally, in Chapter 4, we move from data collection, cleaning, and processing into data analy-
sis. The nPC-LDA with FAST-CV algorithm we developed was motivated by the computational
difficulties of analyzing drug screening data, but its utility is not limited to that setting; rather, it
is appropriate for any high-dimensional application. The FAST-CV method does, however, handle
a unique feature of drug screening studies particularly well. The effectiveness of each drug in the
study needs to be separately modeled; this provides both challenges and opportunities for building
and evaluating classifiers. On one hand, this takes the challenges of any high-dimensional analysis
and multiplies it by several hundred drugs. On the other hand, we mitigate the adverse effects of
fitting hundreds of models by downdating large matrix calculations for each drug. This feature is
relevant for any application where the same feature matrix is used across many classifiers.

Together, the chapters of this dissertation provide opportunities for improving the entire work-
flow of analyzing drug screening studies, as well as other high-throughout biological experiments.
As extensively discussed, however, large-scale drug screening studies are incredibly complex.
Therefore, there are several areas where this research can be extended.

For instance, there are opportunities for more work to be done on understanding and identifying
technical variation in newly produced drug screening data. One strategy involves creating a set of
error detection metrics that give quality scores for each microplate or each drug-cell line combina-
tion in the study. We have done preliminary work to create metrics for identifying such errors as
checkerboard pattern, spatial gradients, and extreme outliers. Each metric quantifies the extent to
which one type of error exists on a given plate. Creating valid scores will allow us to eliminate low
quality drug screening data from a future analysis. Many of the difficulties of this goal are similar
to the challenges outlined in Chapters 2 and 3. Specifically, there are many complex plate layouts
used in drug screening studies and there is no standardization in layouts across (or even within)
experiments. Therefore, these error detection metrics will either have to be extremely flexible or
tailored to a specific study. Further, most plates in drug screening studies contain more than one
type of technical error. These metrics need to be able to detect one type of error in the presence of
many others. This is a challenging problem. The development of the nPC-LDA with FAST-CV al-
gorithm, however, provides us with a fast validation method. If our metrics are effective, we expect
the remaining data to be high quality and therefore to perform better in drug efficacy classification.

Additionally, we are interested in pursuing more work on experimental design for drug screen-
ing studies. In particular, we can focus on ways in which those designs can be paired with specific
data processing methods. For instance, in existing drug screening studies, there seems to be no
clear method behind the use of biological replicates. This includes how many are performed,
which doses are replicated, and where that replication occurs on the plate. Carefully designing
a plate with an associated data normalization method, however, may lead to the best use of the
collected data. This will allow us to know that technical errors can be removed. Further, making
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an explicit connection between the experimental design and the quality of downstream data might
encourage the use of more complicated, and more effective, designs up front.
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APPENDIX A

Large-Scale Cancer Drug Screening Studies

Much of this work focuses on processing and analyzing data from large-scale cancer drug screening
studies. These studies are often the first step in the drug discovery process. Researchers will
consider a wide range of potential anti-cancer drugs, including experimental compounds, clinically
approved drugs that may be effective off-label, and drugs in clinical development (Yang et al.,
2013). In a drug screening study, these compounds are tested on a wide range of cancer cell lines.
These cell lines consist of cancer cells that have been extracted from a patient’s tumor and kept
growing in a laboratory. Cancer cell lines are useful for testing new treatments.

Drug screening experiments are performed on microplates, often 96-, 384-, or 1536-well plates.
The general experimental procedure for each plate is as follows:

1. Place culture media in each well. Note: plate design may include unused wells around the
plate edges that do not receive culture media.

2. Seed every well with the specified density of cells from the cell line under consideration. The
same cell line will be placed in every well. Note: plate design may include blank control
wells that do not receive any cells.

3. Add drug to each well; different drugs and different drug concentrations may be applied to
each well on the plate. Plate design may also include untreated control wells that received
cells, but do not receive any drug.

4. Allow the microplate to incubate for a set amount of time, e.g., 72 hours.

5. Add stain to each well.

6. Scan the plate to obtain an intensity measurement for each well.

The intensity measurement for a given well represents the number of active cells in that well. A
high intensity indicates the presence of many active cells, implying that the drug was not effective
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at inhibiting cell growth. On the other hand, a low intensity indicates the presence of few active
cells in that well, implying that the drug was effective at inhibiting cell growth. Overall, each
intensity is a measure of drug efficacy.

The data from such large-scale cancer drug screening studies is often paired with genomic in-
formation about the cell lines under consideration. Such genomic information can include gene
expression levels, methylation levels, copy number variation, and mutation status. Together, these
data sources are used to identify genetic features (e.g., specific genes or mutations) that are predic-
tive of drug efficacy. For instance, on a simple scale, we want to identify a set of genes that have
different expression levels in cell lines where Drug X is effective and in cell lines where Drug X is
ineffective. This setting is further discussed in Chapter 4.

In this dissertation, we specifically use pharmacogenomic data from the Genomics of Drug
Sensitivity in Cancer (GDSC) project and the Cancer Cell Line Encyclopedia (CCLE) (Yang et al.,
2013; Barretina et al., 2012). More details about these databases are provided in each chapter.
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APPENDIX B

Appendices for Technical Variation in Drug
Screening Studies

B.1 Data Retrieval

GDSC We obtained data from the Genomics of Drug Sensitivity in Cancer (GDSC) Project (Yang

et al., 2013). Plate layouts, raw sensitivity data, fitted parameters for sigmoidal dose-response
curves, and R code were downloaded from Github (https://github.com/CancerRxGene;
Jan. 2018). Details about tested compounds, cell lines, and the experimental procedure were
retrieved from the GDSC website (https://www.cancerrxgene.org/ and https://

www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Home.html).
Unless otherwise noted, AUC estimates used in our analysis were provided by GDSC. When we

calculated our own estimates, we calculated AUC as the area under the relative viabilities without
fitting a dose-response curve. Relative viabilities were calculated as raw intensities divided by the
median untreated control intensity. We did not cap our relative viabilities or AUC estimates at 1.

CCLE We obtained processed drug sensitivity data from the Cancer Cell Line Encyclopedia
(CCLE) (https://portals.broadinstitute.org/ccle/data; Jul. 2019) (Barretina

et al., 2012). We also obtained the raw drug sensitivity data (https://www.nature.com/
articles/s41586-018-0722-x) (Barretina et al., 2019).

In the CCLE study, each compound was tested over 8 concentrations with 3.16-fold dilution
and a maximum concentration of 8 µM. Before doing our analysis, we removed all drug-cell line
combinations with missing intensities; only those with available measurements for all 8 doses were
included.

Intensities for the vast majority of wells on CCLE plates were not released; the most complete
plates have intensities for fewer than 10% of wells. CCLE documentation indicates that wells
flagged as invalid have not been released. Additionally, correspondence with a former CCLE
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investigator indicates that privately owned compounds from Novartis may have been tested on
these plates, but not included in the public release.

CCLE reports a single AUC estimate for each drug-cell line combination, which is the result
of taking the median across all replicates. Therefore, to do our analysis, we recalculated AUC
estimates for each replicate individually. We calculated AUC as the area under the relative viabil-
ities without fitting a dose-response curve. Relative viabilities were calculated as raw intensities
divided by the median untreated control intensity. We did not cap our relative viabilities or AUC
estimates at 1, with the exception of Figure B.1. In this figure, we capped relative viabilities at 1
to more closely match CCLE’s processing methods.

B.2 Within-Study Replication

Both GDSC and CCLE have intra-study replication, and we used these repeated measurements to
evaluate AUC agreement within each study. We found varying levels of consistency across cell
lines for each drug (Table B.1; Figure B.1).

For CCLE, we also considered concordance for narrowly effective and broadly effective com-
pounds, defining these classes as in Safikhani et al. (2016b). We identified broadly effective
compounds as those with an AUC median absolute deviation (MAD) > 0.13 (7 compounds:
NVP-BAG500-NX-4, NVP-LBH589-CU-2, NVP-LBN777-NX-1, NVP-LBN816-AA-1,
NVP-LBW624-NX-2, NVP-LEE850-NX-1, and NVP-LFE158-NX-3). We identified nar-
rowly effective compounds as those with an AUC MAD ≤ 0.13 and more than 5 cell lines with an
AUC less than 0.8 (remaining 20 compounds). Pearson correlation tends to be higher for broadly
effective drugs (mean: 0.78; median 0.78, standard deviation: 0.07) than for narrowly effective
drugs (mean: 0.60; median 0.64, standard deviation: 0.13).

Drug n All AUC All IC50 n Sensitive IC50

AZD6482 829 0.47 0.46 115 0.28
Refametinib 801 0.84 0.83 290 0.74
PLX-4720 844 0.71 0.67 42 0.69
Pictilisib 758 0.55 0.54 358 0.47

Table B.1: Within-study agreement for GDSC drugs. Pearson correlation for the four replicated GDSC
drugs. The Sensitive IC50 column (and corresponding n) only considers cell lines with an IC50 esti-
mate below the maximum tested dose. AUC and IC50 estimates were provided by GDSC.
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Figure B.1: Within-study agreement for CCLE drugs. AUC estimates for the 27 drugs replicated within
CCLE. Each point is one cell line. Pearson correlation (mean: 0.65; median: 0.65; standard deviation:
0.14) and the number of cell lines tested is provided for each drug. Note that CCLE reports a single AUC
estimate for each drug-cell line combination, which is the result of taking the median across all replicates.
To construct these plots, we calculated AUC estimates for each replicate individually. Relative viabilities
were capped at 1 to match CCLE’s processing methods.
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B.3 Spatial Effects

All GDSC plates scanned at WTSI (n = 6, 682 plates) have untreated control wells in columns 2
and 23 or in columns 3 and 23. We used these wells to estimate the magnitude of horizontal plate-
wide spatial effects. For each plate, we calculated the absolute difference between the median of
the log2 intensities of the untreated controls in the left column (2 or 3) and the median of the log2

intensities of the untreated controls in the right column (23). For 52.5% of plates, this difference
is greater than 0.1; for 14.5% of plates, this difference is greater than 0.25.

The location of control wells on GDSC plates scanned at MGH and on all CCLE plates do
not allow a similar quantification of horizontal spatial effects for those settings. Additionally, the
plate layouts of all GDSC and CCLE plates do not allow a similar quantification of vertical spatial
effects.

We also investigated the consistency of spatial effects across plates. For each of the 125 different
plate layouts in the GDSC study, we calculated the median intensity for each untreated control well,
with the median taken across the hundreds of plates designed with that layout. For several of those
layouts, a clear spatial gradient was visible, highlighting the systematic nature of these spatial
artifacts (Figure B.2).

a b

c d

Figure B.2: Visualizing spatial effects in GDSC. (a) Spatial effects in the untreated control wells on a
GDSC plate. The control wells in columns 2 and 23 are used to quantify the magnitude of horizontal spatial
effects. (b) Median spatial effects in the untreated control wells, where the median for each well is taken
across all plates of this format (n = 232 plates). (c) Spatial effects in the untreated control wells on a GDSC
plate. The control wells in columns 3 and 23 are used to quantify the magnitude of horizontal spatial effects.
(d) Median spatial effects in the untreated control wells, where the median for each well is taken across all
plates of this format (n = 414 plates).
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B.4 Checkerboard Pattern

To quantify the amount of checkerboard pattern present on a GDSC plate, we considered only the
untreated control wells. This ensures that no biological signal in the drugged wells influences our
measure.

Checkerboard pattern is characterized by alternating wells of high and low intensity. When a
strong checkerboard pattern is present, the majority of wells are surrounded by wells with higher
(or lower) intensities. Therefore, for each untreated control well, we determined if the intensity
in that well was greater than or less than the mean of the intensities in the surrounding untreated
control wells. Due to the structure of GDSC plates, most wells were compared to the mean of
the two wells on either side. If the well of interest was greater than the mean of the surrounding
wells, it was assigned a value of +1; if it was less than the mean of the surrounding wells, it was
assigned a value of -1. All wells other than the untreated controls were assigned values of NA and
not included in the calculation.

The values of ±1 and NA were placed in a matrix with the same format as the scanned plate.
This matrix was then multiplied element-wise with a pre-constructed checkerboard matrix (a ma-
trix with alternating +1 and -1). We summarized the resulting matrix by taking the proportion of
+1’s minus the proportion of -1’s. A value of 0 indicates no checkerboard pattern in the untreated
controls, while a value of +1 or -1 indicates a perfect checkerboard pattern. We calculated this
measure for all GDSC plates, excluding 96-well plates which only have 6 untreated control wells
(n = 13, 182 plates).

To identify plates that suffer from a checkerboard pattern, we considered the absolute value
of this checkerboard measure. Figure B.3 shows the untreated control wells for two plates with

Figure B.3: Quantifying checkerboard pattern in GDSC. Two untreated control heatmaps with a checker-
board pattern. Both plates have checkerboard measure = 0.5. Any plate with checkerboard measure ≥ 0.5
is considered to have substantial checkerboard pattern.
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a visible checkerboard pattern and an absolute checkerboard measure of 0.5. Any plate with an
absolute checkerboard measure≥ 0.5 is considered to have substantial checkerboard pattern (9.8%
of plates).

The layout of CCLE plates prohibited us from constructing a similar measure to quantify
checkerboard pattern in the CCLE study.

B.5 Batch-Specific Outliers and Noise

We found several groups of plates in both GDSC and CCLE with consistent technical artifacts.
These include GDSC plates containing drug AZD6482 (drug 1066) scanned on November 9, 2011
(Figure B.4a), CCLE plates in batch 2009 12 16 PM (Figure B.4c), GDSC plates containing
drug KIN001-260 scanned on June 21, 2012, and GDSC plates containing drug sepantronium
bromide scanned on October 4, 2012.

B.6 Drug Sensitivity Measures

IC50 estimates are a commonly used measure of drug sensitivity in large pharmacogenomic studies.
We did not focus on IC50 in our analysis, however, because of its many challenges. For example,
spatial effects can have a large impact on the accuracy of IC50 estimates, and IC50 estimation
depends heavily on the method used to fit dose-response curves.

Additionally, IC50 is only a meaningful measure of drug sensitivity if the observed relative
viabilities cross 50%. When they do not, IC50 cannot be reported or the reported value will be
outside the range of tested drug concentrations and, therefore, less reliable. GDSC and CCLE
handle this situation differently: GDSC reports extrapolated IC50 estimates, while CCLE reports
the maximum tested drug concentration as the IC50. In both situations, it is not clear how to
interpret the reported value.

For other drug-cell line combinations, IC50 does not capture the most important biology. Con-
sider, for instance, a drug-cell line combination with a sigmoidal dose-response relationship that
has an upper asymptote at 1 and a lower asymptote at 0.5. In this situation, it is important to note
that, while this drug cuts cell growth in half, larger doses will not cause more growth inhibition.
IC50 cannot capture this relationship.

It has been shown that values based on growth rate inhibition, like GR50, are better at measur-
ing drug efficacy than IC50; however, GR50 cannot be calculated without information about cell
seeding and cell growth (Hafner et al., 2016). The provided GDSC and CCLE data does not allow
the calculation of GR50. Therefore, in this paper, we use AUC to measure drug sensitivity. We
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a

b

c

d

Figure B.4: Batch-specific outliers and noise in raw GDSC and CCLE data. (a) Three GDSC scans from
November 9, 2011 showing batch-specific outliers. Most plates of this format scanned on this day have
extremely low intensities in columns 5 and 6 of row 7. The outliers are clear in the corresponding dose-
response curves. Relative viabilities and curves are calculated as in the GDSC study. (b) A noisy GDSC
heatmap with inconsistent intensities in control wells and unexpected jumps in drugged wells. (c) Two scans
from CCLE Batch 2009 12 16 PM showing batch-specific outliers. Most plates in this batch have extremely
low intensities in rows 26 and 28 of column 23. The outliers are clear in the corresponding dose-response
curves. (d) A noisy CCLE heatmap with inconsistent intensities in control wells and unexpected jumps in
drugged wells.

calculate AUC as the area under the relative viabilities and do not fit a dose-response curve. We
discuss challenges with AUC estimation in the main text.

74



a b Fi
gu

re
B

.5
:G

D
SC

an
d

C
C

L
E

A
U

C
es

tim
at

es
.A

U
C

va
lu

es
fo

ra
ll

(a
)G

D
SC

an
d(

b)
C

C
L

E
dr

ug
-c

el
ll

in
e

co
m

bi
na

tio
ns

(o
ne

re
pl

ic
at

e
w

as
ra

nd
om

ly
ch

os
en

fo
r

ea
ch

).
W

e
ca

lc
ul

at
ed

A
U

C
es

tim
at

es
as

th
e

ar
ea

un
de

r
th

e
do

se
-r

es
po

ns
e

ob
se

rv
at

io
ns

.
B

la
ck

ce
lls

in
di

ca
te

co
m

bi
na

tio
ns

th
at

w
er

e
no

t
te

st
ed

.
D

ru
gs

ar
e

or
de

re
d

by
ta

rg
et

pa
th

w
ay

an
d

ce
ll

lin
es

ar
e

or
de

re
d

by
tw

o
tis

su
e

ty
pe

de
sc

ri
pt

or
s,

si
te

an
d

hi
st

ol
og

y;
al

la
nn

ot
at

io
ns

ca
m

e
fr

om
G

D
SC

.B
ro

ad
ly

ef
fe

ct
iv

e
dr

ug
s

ar
e

ev
id

en
ce

d
by

bl
ue

st
ri

pe
s

ac
ro

ss
al

lc
el

ll
in

es
.

75



B.7 CCLE Drug L-685458

The slopes from regressing log2 intensity on log2 drug dose for CCLE drug L-685458 do not
indicate broad growth promotion. Instead, Figure B.6a shows slopes centered at 0 and indicates
that L-685458 is a mostly ineffective compound – some slopes are a little larger than 0, some are
a little smaller than 0, and some are much smaller than 0, corresponding to the few sensitive cell
lines.

a

b

Figure B.6: Interaction of technical error and plate design for drug L-685458. (a) Dose-response slopes
from regressing log2 intensity on log2 drug dose for all cell lines on which CCLE drug L-685458 was tested
(n = 2, 004 tests). (b) Slopes for a random sample of 50 cell lines that had drug L-685458 tested in both
column 18 and column 36. For the majority of cell lines, the slope from column 18 is less than the slope
from column 36.
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B.8 Location Effects in CCLE

For each drug in CCLE, we considered the correlation between replicated AUC estimates when
those replicates were tested in the same location on two different plates or in different locations on
two different plates. There was no within-plate replication in the CCLE study. In this investigation,
we found high correlation when both replicates were tested in the same location (mean: 0.76;
median: 0.77; standard deviation: 0.12) and low correlation when the replicates were tested in
two different locations (mean: 0.48; median: 0.54; standard deviation: 0.23; Figure B.7). This
indicates strong systematic differences in sensitivity based on location.

We found further evidence of these systematic differences when considering only the drug-cell
line combinations that were replicated in the same location. Among these, most drugs were tested
in multiple locations on different plates. Specifically, while both replicates of cell line A were
tested in a single location, and both replicates of cell line B were tested in a single location, the
locations for cell line A and cell line B could be different. For instance, for irinotecan, some cell
lines were replicated in rows 2 through 16 of column 33, while others were replicated in rows 17
through 31 of column 22.

As displayed in Figure B.8, these different locations can produce systematically different re-
sults. For some drugs, the amount of noise and level of concordance varies between well locations,
while for other drugs, the magnitude of AUC values differs. These systematic differences between
locations prevent sensitivity estimates for a single drug to be accurately compared across cell lines
or for a single cell line to be compared across drugs.
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Figure B.7: Location effects for CCLE. AUC estimates for replicated CCLE drug-cell line combinations.
The coloring indicates whether the replicates for each cell line were tested in the same location or in different
locations across plates. Only drugs that had replicates tested in both the same location and in different
locations are shown.
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Figure B.8: Location effects for CCLE cell lines tested in the same location across plates. AUC estimates
for replicated CCLE drug-cell line combinations that were tested in the same location across plates. Cell
lines are colored by the location in which both replicates were tested (row and column of the highest drug
dose).
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B.9 Challenges for Analytical Methods

Spatial adjustment We applied two traditional spatial adjustment methods to replicates in the
GDSC study: linear regression and loess regression. A linear adjustment method is particularly
relevant given the layout of GDSC plates and the considerable distance between some drugged
wells and the nearest control wells (Figure 2.1). Neither adjustment method, however, substantially
improved data quality or agreement between replicates (Figure B.9).

The ability of linear and loess regression to accurately estimate and remove spatial effects is
impaired by the confounding between biology (a gradient in well intensities caused by an effective
drug) and technical variation. Because of this confounding, these methods can pick up on bio-
logical effects and inadvertently introduce spatial bias to previously clean plates (Figure B.10ac).
Using an adjustment method based only on the untreated control wells avoids this problem and
does not hurt clean plates, but may not necessarily mitigate existing spatial bias. In particular, lin-
ear regression adjustments are unable to address non-linear spatial effects (Figure B.10b). Loess
handles non-linear spatial effects somewhat better, but because it is a “local” regression, it is hin-
dered by the non-representative locations of the control wells and, in particular, the large distance
between some drugged wells and the nearest control wells.

a

b

Figure B.9: AUC agreement does not improve with linear regression adjustment. AUC estimates for the four
drugs replicated within GDSC. The raw data has been adjusted for spatial effects using (a) linear regression
on all drugged and untreated control wells and (b) linear regression on all untreated control wells only. Each
point is one cell line. AUC values were calculated using the GDSC analysis pipeline. Pearson correlation is
provided at the top of each plot.
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b

c

Figure B.10: Technical error is challenging for traditional analytical methods. (a) The result of using linear
and loess regression to spatially adjust a clean GDSC plate with several effective drugs and (b) a GDSC
plate with non-linear spatial effects. Column 1 shows unadjusted data; column 2 shows adjusted data where
the adjustment is based on drugged wells and untreated control wells; column 3 shows adjusted data where
the adjustment is based on untreated control wells only. (c) Dose-response curves for an insensitive drug-
cell line combination before and after applying a linear regression adjustment. This adjustment technique
introduces spatial bias to a previously clean plate.
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Capped relative viabilities Capping relative viabilities at 1 can artificially increase agreement
in AUC between replicates. This is particularly true for CCLE where the untreated control inten-
sities are too low for many drug-cell line pairs (for 32% of the data, the median intensity of the
untreated controls is more than 0.1 log2 units smaller than the intensity in the wells treated with the
lowest drug dose). In these situations, normalizing with the untreated controls will result in many
large relative viabilities that will all be flattened to 1 during truncation, eliminating all variability.
Replicates that differ greatly before truncation could become identical after truncation. Because of
the low untreated control intensities in CCLE, some of the variability in relative viabilities above
1 is biologically meaningful and this information is lost (Figure B.11).

Parametric dose-response curves Drug-cell line combinations that contain a strong checker-
board pattern are not well-suited to the use of a parametric dose-response curve fitting method
(Figure B.12).

Figure B.11: Capping relative viabilities eliminates biology. Dose-response curves for two apparently sen-
sitive drug-cell line combinations (decreasing cell viability with increasing drug dose). Almost all relative
viabilities are larger than 1, so capping at 1 would remove all signal of interest.
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a b

Figure B.12: Dose-response curves with checkerboard pattern. (a) Two CCLE replicates. One shows the
cell line is sensitive to the drug with a dose-response relationship that could reasonably be modeled by a
sigmoid curve. All signal in the other replicate is obscured by checkerboard pattern. (b) A sigmoidal dose-
response curve cannot handle a severe checkerboard pattern. This curve is fit as in GDSC.
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APPENDIX C

Appendices for Flexible and Spatially Varying
Normalization for Well-Based Assays

C.1 Data Retrieval

We obtained data from the Genomics of Drug Sensitivity in Cancer (GDSC) Project (Yang et al.,
2013). Version 8.2 of the GDSC2 raw drug sensitivity data and annotations for tested compounds,
cell lines, and the experimental procedure were retrieved from the GDSC website (https://
www.cancerrxgene.org/downloads/bulk_download; November 2020).

C.2 Existing Relative Viability Methods

In Section 3.2.1, we introduced two relative viability normalization approaches. One approach is
from the Cancer Cell Line Encyclopedia (CCLE):

Vuc
ijk =

Yijk

Ũk

,

where Ũk is the median of the untreated control wells on plate k (Barretina et al., 2012). The other
relative viability approach is from GDSC:

V GDSC
ijk =

Yijk − B̄k

Ūk − B̄k

,

where B̄k is the mean of the blank controls on plate k and Ūk is the mean of the untreated controls
on plate k (Vis et al., 2016). In the main text, we chose to focus on the CCLE normalization (called
UC normalization) because it tends to have better performance than the GDSC normalization does.

The main difference between the CCLE and GDSC approaches is the use of the blank control
wells in the GDSC calculation. GDSC is using the mean of the intensities in the blank control
wells to estimate the intensity associated with zero cell viability. Each plate in a drug screening
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a

b

Figure C.1: Mean untreated and blank control well intensities. (a) Boxplots of the mean untreated and
blank control intensities for all GDSC plates (n = 7, 307 plates). The mean blank controls are negligible
compared to the mean untreated controls. (b) A close-up of the mean blank control distribution.

study, however, typically has very few blank control wells. In GDSC, they are all placed along the
plate edges. Therefore, blank controls can suffer from edge effects and introduce a large amount
of noise into the relative viability calculation (Mpindi et al., 2015).

Instead of relying on the blank control wells, CCLE uses an intensity of 0 to represent a viability
of zero. While this may introduce some bias by underestimating the true intensity of zero viability,
the amount of bias is likely not meaningful in practice (Figure C.1). Additionally, removing the
blank control wells, and their associated noise, from relative viability calculations can decrease
variability.

Further, the GDSC normalization summarizes the untreated and blank control intensities using
the mean; CCLE uses the median. The median is robust to outliers, which is an important feature
for drug screening data that can contain extremely high or low intensity wells. The median is a
better summary measure in this setting.

C.3 Outlier Detection

We developed and implemented three methods to detect outliers and perform quality control on the
raw data. If a drug-cell line combination was flagged by any of the methods, it was removed from
our analysis. In total, we removed 1,232 out of 232,441 drug-cell line combinations (0.5%) before
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Figure C.2: Example drug-cell line combinations that represent the boundary cases for each outlier detec-
tion method. These combinations were flagged and removed before we began our analysis.

doing any further analysis. We describe these quality control techniques below.

Angle-Based Method For each drug-cell line combination, we calculated the angle between
each set of three consecutive intensities. If all three intensities are equal, the angle will be 180
degrees. A small angle indicates the presence of an outlier. We flagged all drug-cell line combina-
tions with an angle smaller than 140 degrees (n = 743 observations; 0.3%).

Slope-Based Method For each drug-cell line combination, we calculated the slope between each
pair of consecutive intensities. If the two intensities are equal, the slope will be 0. A large and
positive slope indicates the presence of an outlier. We flagged all drug-cell line combinations with
a slope larger than 0.35 (n = 868 observations; 0.4%).

RMSE-Based Method For each drug-cell line combination, we fit a 4 parameter logistic dose
response curve and calculated the root mean square error (RMSE) between the observed intensi-
ties and the predicted values. A large RMSE indicates noisy data. We flagged all drug-cell line
combinations with RMSE larger than 0.25 (n = 393 observations; 0.2%).

C.4 Flexible Normalization for Drug Screening Studies

We develop a relative viability normalization method that estimates the counterfactual intensity for
each drugged well. This procedure uses two separate approaches to estimate the counterfactual
that we then combine into an ensemble method. We provide technical details for applying both
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the basic normalization method introduced in Section 3.3.2 and the extended method introduced in
Section 3.3.3 to the GDSC data.

C.4.1 Approach 1

The basic version of Approach 1 uses information from the untreated control wells to estimate the
counterfactual for each well on the plate. The extended version of Approach 1 uses information
from both the untreated control wells and the wells treated with the two lowest drug concentrations.
For the extended method, we label the untreated control wells and the two lowest dose wells
“untreated”.

C.4.1.1 Estimate of the Counterfactual

With the basic version of Approach 1, we estimate the counterfactual for all treated wells on plate
k with the median of the untreated control wells on that plate. We denote this estimate Ũk for all
wells on plate k.

The extended version of Approach 1 is more involved. We fit a loess regression to the “un-
treated” wells on each plate. Consider plate k. For each observation on this plate, the loess regres-
sion fits a degree 2 polynomial to the nearest 30% of the data using Tukey’s bisquare loss. The
number of wells used to fit the loess regression varies from plate to plate based on the number
and layout of non-missing wells (median: 51 wells; minimum: 36 wells; maximum: 85 wells).
The tuning parameter span = 0.3 was chosen via cross-validation. We then use the fitted loess
model to predict the counterfactual, or the untreated intensity, for each well on the plate. We denote
this estimate Ũijk for well (i, j) on plate k.

C.4.1.2 Estimated Error Distribution

We define εijk as the error of Ũk (or Ũijk for the extended approach) as an estimator for Y 0
ijk, and

define εijk = Ũk − Y 0
ijk. We estimate the distribution of εijk from the observed GDSC data. To

do so, we let Lijk (from Approach 2 in Section C.4.2) approximate Y 0
ijk. We then estimate εijk by

calculating the difference between Ũk and Lijk for every drugged well. This distribution has a long
right tail corresponding to the cell lines that are sensitive to the lowest drug doses (they will have
a small value of Lijk). This tail is not relevant to the distribution of εijk, however, so we flip the
left tail of the observed distribution around the mode to make it symmetric (Figure C.3). To model
this error distribution, we fit a t-distribution.
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Figure C.3: The estimated error distribution for Ũk, as in the basic version of Approach 1, as an estimator
for Y 0

ijk. This is the estimated f(ε) distribution.

C.4.2 Approach 2

Both the basic and extended approaches use information from the treated wells to estimate the
counterfactual. For a given instance of a drug-cell line combination, both approaches produce one
counterfactual estimate for all d consecutively drugged wells.

C.4.2.1 Estimate of the Counterfactual

With the basic version of Approach 2, we estimate the counterfactual for all d consecutive wells
on plate k treated with a given drug with the intensity in the lowest dose treated well. We denote
this estimate Lijk for well (i, j) on plate k.

The extended version of Approach 2 is more complicated. For each instance of each drug-cell
line combination, we calculate the UC normalized relative viabilities by taking the seven observed
drugged intensities and dividing by the median intensity of the untreated control wells on the plate.
We then fit a dose-response curve to the relative viabilities (details in Section C.4.2.2). From this
curve, we obtain the fitted values corresponding to the two lowest drug concentrations. We then
estimate the counterfactual for this drug-cell line combination with the average of these two fitted
values. We denote this estimate Lijk.
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C.4.2.2 Dose-Response Curve Fitting

We developed an iterative dose-response curve fitting procedure that is used in extended Approach
2. For a given drug-cell line combination, we iterate three times between fitting

(a) a penalized 4 parameter logistic curve with Huber loss; and

(b) a checkerboard regression with Huber loss.

At each iteration, the response vector is obtained by subtracting the most recent fitted values from
the originally observed UC relative viabilities. We use Huber loss in this procedure to minimize
the impact of outliers.

In fitting the 4 parameter logistic curve, we use a half-Huber penalty on the slope and lower
asymptote parameters. The penalties are defined as follows.

slope penalty =


0 slope ≥ −6.5

(slope + 6.5)2 −8.5 ≤ slope < −6.5

2× (|slope + 6.5| − 1) slope < −8.5

lower asymptote penalty =

(asymptote)2 asymptote ≤ 0.4

0.4× (|asymptote| − 0.2) asymptote > 0.4

Additionally, if the logistic fit is unable to be initialized or does not converge, we instead fit a
constant linear regression with Huber loss. This tends to occur when the dose-response relationship
is flat or increasing as drug dose increases.

For the checkerboard regression, we regress the response vector on the checkerboard vector
(−3

7
, 4
7
,−3

7
, 4
7
,−3

7
, 4
7
,−3

7
). We do not include an intercept term in this regression.

After fitting (a) and (b) three times, we obtain the final dose-response curve by fitting a penalized
4 parameter logistic curve with Huber loss to the final residuals (observed - final checkerboard fitted
values). This is the dose-response curve used to estimate the counterfactual in Approach 2.

C.4.2.3 Estimated Error Distribution

We define δijk as the error of Lijk as an estimator for Y 0
ijk, and define δijk = Lijk − Y 0

ijk. We
estimate the distribution of δijk using the observed data from GDSC. In particular, we calculate
the difference between Lijk values for adjacent (by both row and column) lowest dose wells. We
then take the negative absolute value of these differences; this produces the estimated values of
δijk (Figure C.4a).

As expected, the empirical distribution of these differences has a lot of mass close to 0. This
corresponds to the small amounts of noise in any estimator for the counterfactual. Further, this
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Figure C.4: (a) The estimated error distribution for Lijk, as in the basic version of Approach 2, as an
estimator for Y 0

ijk. This is the estimated g(δ) distribution. (b) The transformed g(δ) distribution that we use
for modeling. We use a Box-Cox transformation, raising the errors to the 0.14 power.

distribution has a small amount of mass far away from 0, corresponding to the cell lines that are
sensitive, even at the lowest drug doses. These values are large and negative because Lijk < Y 0

ijk

when the drug is effective. Finally, there is no mass greater than 0 because Lijk should be no larger
than Y 0

ijk.
To model this error distribution, we use a Box-Cox transformation. We fit a t-distribution to the

optimally transformed differences (|diff|0.14; Figure C.4b).

C.5 Evaluating Normalization Performance

We applied both the UC normalization method and our new normalization technique to the drug
screening data from GDSC. We used several methods to compare their performance.

C.5.1 Area Under the Curve (AUC)

We used two different methods to calculate AUC for each instance of each drug-cell line com-
bination. The first approach uses the trapezoid method to calculate the area under the relative
viabilities. The second approach uses numerical integration to calculate the area under the fitted
dose-response curve, where the curve was fit using the iterative procedure outlined in Appendix
C.4.2.1. We discuss results using the numerically integrated AUC in the main text.
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C.5.2 Agreement Between Replicates

To evaluate normalization performance, we compared AUC estimates across replicated drug-cell
line combinations. Specifically, for each drug, we calculated the absolute difference in AUC for
cell lines with repeated measurements. The median of these absolute differences is a measure of
agreement across replicates for that drug. A small median absolute difference, and a distribution
of differences close to zero, indicates good agreement.

To compare the performance of our normalization method to the existing UC method, we com-
pared median absolute differences across the two normalizations. We let d̃UC

i and d̃EML
i be the

median absolute difference for drug i for the UC normalization and our normalization, respec-
tively. We defined three performance categories as follows:

(a) our normalization increases agreement if d̃UC
i − d̃EML

i > 0.01;

(b) our normalization decreases agreement if d̃UC
i − d̃EML

i < −0.01; and

(c) our normalization does not change agreement if |d̃UC
i − d̃EML

i | ≤ 0.01.
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APPENDIX D

Appendices for Computationally Efficient
Approximate Cross-Validation for High-Dimensional

Linear Discriminant Analysis

D.1 Approximate β̂1 for Fast Leave-One-Out Cross-Validated
nPC-LDA

Let Z be an n × p predictor matrix where each row indicates an observation and each column
indicates a feature. Let Z = UDV ⊺ be the singular value decomposition of Z, where U is n × n,
D is n × n, and V is p × n. Let W = ZV = UD be the projection of Z onto the right singular
vectors, V . Let Y be an n × d class indicator matrix such that Yik = 1 if observation i is in class
k and 0 otherwise. In this section, we let i = 1, . . . , n index observations, and k = 1, . . . , d index
classes.

Let nk be the number of training observations in class k and π̂k = nk

n
be the proportion of

training observations in class k. We let π̂k be the estimated prior probability of an observation
belonging to class k and π̂ = (π̂1 . . . π̂d)

⊺ be the vector of all estimated prior probabilities such that
π̂1 + · · ·+ π̂d = 1. Further, let µ̂k = 1

nk

∑
i:Yik=1 Wi be the estimated mean vector for class k. We

note 
µ̂1

...
µ̂d

 = (Y ⊺Y )−1Y ⊺W = OYW,

where OY is the ordinary least squares operator of Y . Further, let

Σ̂k =
1

nk

∑
i:Yik=1

(Wi − µ̂k)
⊺(Wi − µ̂k),

92



and define

Σ̂ =
d∑

k=1

nk

n
Σ̂k.

We can also write

Σ̂ =
1

n
W ⊺RYW

where RY = I − Y (Y ⊺Y )−1Y ⊺ is the residual operator of Y . We note, however, that Σ̂ has rank
n− d and is therefore singular. To create an invertible modified covariance matrix, we replace the
d null eigenvalues of Σ̂ with a small, non-zero value, λ. In practice, we choose λ to be the median
of the eigenvalues of G = ZZ⊺. The resulting regularized covariance matrix is defined as

Σ̃ = Σ̂ + λPW−1Y ,

where PW−1Y is the projection operator of W−1Y and is defined as

PW−1Y = P(UD)−1Y

= D−1U−1Y (Y ⊺U−⊺D−⊺D−1U−1Y )−1Y ⊺U−⊺D−⊺

= D−1U−1Y (Y ⊺UD−2U−1Y )−1Y ⊺UD−1.

With these definitions, we can now construct our nPC-LDA classifier. Let Z̃ be an out-of-
sample observation. We assign Z̃ to the class that produces the largest nPC-LDA score; the largest
score indicates that Z̃ is closest to the training observations in that class. We obtain the d × 1

nPC-LDA score vector for Z̃ by calculating Z̃β̂1 + β̂0, where β̂1 and β̂0 are estimated from the
in-sample (training) data. Specifically, β̂1 = V Σ̃−1µ̂ and β̂0 = log(π̂)− 1

2
µ̂⊺Σ̃−1µ̂. In this section,

we are only interested in the calculation of β̂1, and thus note:

Z̃β̂1 = Z̃V Σ̃−1µ̂

= Z̃V [
1

n
W ⊺RYW + λPW−1Y ]

−1(OYW )⊺

= nZ̃V (DU⊺)[(UD)W ⊺RYW (DU⊺) + (nλ)(UD)PW−1Y (DU⊺)]−1(UD)W ⊺O⊺
Y

= nZ̃Z⊺[(ZZ⊺)RY (ZZ
⊺) + (nλ)UDPW−1YDU⊺]−1(ZZ⊺)O⊺

Y

= nZ̃Z⊺[(ZZ⊺)RY (ZZ
⊺)+

(nλ)UDD−1U−1Y (Y ⊺UD−2U−1Y )−1Y ⊺UD−1DU⊺]−1(ZZ⊺)O⊺
Y
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= nZ̃Z⊺[(ZZ⊺)RY (ZZ
⊺) + (nλ)Y (Y ⊺(ZZ⊺)−1Y )−1Y ⊺]−1(ZZ⊺)O⊺

Y

= n Z̃Z⊺(ZZ⊺)−1︸ ︷︷ ︸
P1

[RY + (nλ)(ZZ⊺)−1Y (Y ⊺(ZZ⊺)−1Y )−1Y ⊺(ZZ⊺)−1]−1︸ ︷︷ ︸
P2

O⊺
Y︸︷︷︸

P3

We can further simplify P2 by using the Woodbury matrix inverse identity. Let H = Y (Y ⊺Y )−1/2

and K =
√
nλ(ZZ⊺)−1Y (Y ⊺(ZZ⊺)−1Y )−1/2 and define

A =
[
−H K

]
and B =

[
H⊺

K⊺

]
.

Then we can write

P2 = [In − Y (Y ⊺Y )−1Y ⊺ + (nλ)(ZZ⊺)−1Y (Y ⊺(ZZ⊺)−1Y )−1Y ⊺(ZZ⊺)−1]−1

= [In −HH⊺ +KK⊺]−1

= [In + AI2dB]−1

= In − A(I2d +BA)−1B (by Woodbury),

which gives us

Z̃β̂1 = n Z̃Z⊺(ZZ⊺)−1︸ ︷︷ ︸
P1

[In − A(I2d +BA)−1B]︸ ︷︷ ︸
P2

O⊺
Y︸︷︷︸

P3

.

Now, let us consider the leave-one-out (LOO) setting where the out-of-sample observation Z̃ =

Zi and the training data Z = Z−i. In this setting, an approximate nPC-LDA score, Ziβ̂1, is
easy to calculate. In particular, in Section D.1.1, we show that the P1 term ZiZ

⊺
−i(Z−iZ

⊺
−i)

−1

simplifies to −1
G−1

ii

G−⊺
i Di, where G = ZZ⊺ and Di is the n × n identity matrix with the ithcolumn

removed. Further, in Section D.1.2, we show that the matrix (I2d+BA)−1BO⊺
Y is stable whether it

is calculated in a LOO manner or with the full data. Therefore, we can approximate the calculation
of Ziβ̂1 in a pseudo-LOO way that improves computation time.

D.1.1 Calculating ZiZ
⊺
−i(Z−iZ

⊺
−i)
−1

Recall Z is an n × p predictor matrix and G = ZZ⊺. Let g0i be the ith column of G with the ith

element set to 0, and define Ui and C as follows:
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g0i =



gi,1
...

gi,i−1

0

gi,i+1

...
gi,n


Ui =



gi,1 0
...

...
gi,i−1 0

0 1

gi,i+1 0
...

...
gi,n 0


=

g0i ei

 C =

[
0 −1
−1 0

]
.

Further, define Di as the n × n identity matrix with the ithcolumn removed; therefore, Di is an
n× n− 1 matrix.

Here, we show that ZiZ
⊺
−i(Z−iZ

⊺
−i)

−1 = −1
G−1

ii

G−⊺
i Di. To begin, we consider the matrix G +

UiCU⊺
i and notice it is equivalent to G with the elements in the ith row and column zeroed out

(except element (i, i)). It follows that (G + UiCU⊺
i )

−1
−i−i = (G−i−i)

−1, where the subscript −i−i

indicates a matrix with the ith row and column removed. Therefore, we can write:

ZiZ
⊺
−i(Z−iZ

⊺
−i)

−1 = g⊺i,−i(G−i−i)
−1

= g⊺i,−i(G+ UiCU⊺
i )

−1
−i−i

= g⊺0i(G+ UiCU⊺
i )

−1Di

= g⊺0i
[
G−1 −G−1Ui(C

−1 + U⊺
i G

−1Ui)
−1U⊺

i G
−1
]
Di,

where gi,−i is g0i with the ith element removed. The last equality follows from the Woodbury
matrix inverse identity. To get the desired result, we must further simplify this expression. We start
by calculating (C−1 + U⊺

i G
−1Ui)

−1.

G−1g0i = G−1



gi1
...
gii
...
gin


−G−1



0
...
gii
...
0


= ei −G−1

i gii

G−1Ui = G−1

g0i ei

 =

ei −G−1
i gii G−1

i


95



Ui
⊺G−1Ui =

[
gi1 . . . 0 . . . gin

0 . . . 1 . . . 0

]
ei −G−1

i gii G−1
i


=

[
−g0i⊺G−1

i gii −g0i⊺G−1
i

1−G−1
ii gii G−1

ii

]

=

[
−(1−G−1

ii gii)gii 1−G−1
ii gii

1−G−1
ii gii G−1

ii

]

The final equality follows because g0i
⊺G−1

i = giG
−1
i − giiG

−1
ii = 1− giiG

−1
ii .

We recognize that C−1 = C and can write:

Ui
⊺G−1Ui + C−1 =

[
−(1−G−1

ii gii)gii −G−1
ii gii

−G−1
ii gii G−1

ii

]
.

Next, we calculate the determinant of this matrix and then invert it:

|Ui
⊺G−1Ui + C−1| = G−1

ii gii(G
−1
ii gii − 1)− (G−1

ii gii)
2 = −G−1

ii gii

(Ui
⊺G−1Ui + C−1)−1 =

−1
G−1

ii gii

[
G−1

ii G−1
ii gii

G−1
ii gii −(1−G−1

ii gii)gii

]

=

[ −1
gii

−1
−1 (1−G−1

ii gii)

G−1
ii

]

We have obtained an expression for (Ui
⊺G−1Ui+C−1)−1, and we now focus on calculating the

remaining expressions needed for the full calculation.

Ui
⊺G−1Di =

[
− e⊺i −G−⊺

i gii −
− G−⊺

i −

]
Di =

[
−gii
1

]
G−⊺

i Di

The last equality follows because multiplying a matrix by Di ignores the ith column, which is the
only column where ei is non-zero.
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(Ui
⊺G−1Ui + C−1)−1Ui

⊺G−1Di =

[ −1
gii

−1
−1 (1−G−1

ii gii)

G−1
ii

][
−gii
1

]
G−⊺

i Di

=

[
0

gii +
(1−G−1

ii gii)

G−1
ii

]
G−⊺

i Di

=

[
0

1

]
G−⊺

i Di

G−1
ii

g0i
⊺G−1Ui =

[
−(1− giiG

−1
ii )gii 1− giiG

−1
ii

]

g0i
⊺G−1Ui(Ui

⊺G−1Ui + C−1)−1Ui
⊺G−1Di = (1− giiG

−1
ii )

G−⊺
i Di

G−1
ii

g0i
⊺G−1Di = (e⊺i −G−⊺

i gii)Di = −giiG−⊺
i Di

g0i
⊺[G−1 −G−1Ui(Ui

⊺G−1Ui + C−1)−1Ui
⊺G−1]Di = −giiG−⊺

i Di − (1− giiG
−1
ii )

G−⊺
i Di

G−1
ii

=
−1
G−1

ii

G−⊺
i Di

Thus, we have successfully shown that ZiZ
⊺
−i(Z−iZ

⊺
−i)

−1 = −1
G−1

ii

G−⊺
i Di. This result makes it

quite fast and simple to obtain ZiZ
⊺
−i(Z−iZ

⊺
−i)

−1 at each LOO iteration when the matrix G−1 is
already known.

D.1.2 Stability of (I2d +BA)−1BO⊺
Y

As derived above, we can calculate the nPC-LDA scores for an out-of-sample observation Z̃ as
follows:

Z̃β̂1 = nZ̃Z⊺(ZZ⊺)−1[In − A(I2d +BA)−1B]O⊺
Y .

In this section, we focus on speeding up the calculations of (I2d + BA)−1B]O⊺
Y within the LOO

loop. We notice that all of the matrices involved in this calculation are fairly low-dimensional: in
the full data setting, B is 2d×n, A is n× 2d, and OY is d×n. The resulting matrix has dimension
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2d × d and does not grow with n. This indicates that the values in (I2d + BA)−1BO⊺
Y will not

substantially change whether this matrix is calculated with the full data (n samples) or with the
full data minus the ith observation (n − 1 samples). Indeed, we have observed this stability to
be true for simulated data. In particular, we let β̂1,(−i) be the estimated value of β1 calculated
without observation i in the ith LOO CV iteration. We have found that the values of Ziβ̂1,(−i) do
not meaningfully differ whether (I2d + BA)−1BO⊺

Y is calculated with n or with n − 1 samples.
Therefore, we do not need to separately calculate this term at each CV iteration. Instead, we
calculate it once with the full data and insert it into the Ziβ̂1,(−i) calculation at each CV iteration
for our FAST-CV algorithm.

D.2 Approximate β̂0 for Fast Leave-One-Out Cross-Validated
nPC-LDA

As described in Section D.1, the nPC-LDA score for an out-of-sample observation, Z̃, is calculated
as Z̃β̂1+ β̂0. In this section, we are interested in the calculation of β̂0 = log(π̂)− 1

2
µ̂⊺Σ̃−1µ̂, where

µ̂ is the p× d sample mean feature matrix and Σ̃ is the p× p modified sample covariance matrix.
When β̂0 is calculated via this formula within the LOO cross-validation loop, however, it can

reduce classification accuracy. Consider observation i. Without loss of generality, let this observa-
tion belong to class 1. For the ith LOO CV iteration, observation i will be left out of model training.
The sample mean of the features for class 1, therefore, will be calculated from the remaining n1−1
class 1 observations and will be anti-correlated with observation i. Specifically, if the values in Zi

are large and positive, the values in the sample mean feature vector for class 1 will decrease when
Zi is excluded. This anti-correlation will decrease the cross-validation classification accuracy.

Therefore, instead of estimating β0 within the LOO loop, we calculate it with the full data. This
means that the β̂0 used for predictions for out-of-sample observations is the same value used to
obtain the LOO scores. Specifically, we calculate

β̂0 = log(π̂)− 1

2
OYGb̂1,

where OYZ = µ̂ and b̂1 = n(ZZ⊺)−1[In−A(I2d+BA)−1B]O⊺
Y such that Z⊺b̂1 = β̂1 as in Section

D.1.
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D.3 Additional Simulation Results

In our simulations, we need to manage lengthy computation times. Therefore, when assessing
CV accuracy rates, we vary the number of replicates with n: 3000 replicates were performed for
n = 6, 1800 replicates for n = 10, 900 for n = 20, 300 for n = 60, 180 for n = 100, 90 for
n = 200, 36 for n = 500, and 18 for n = 1000. These numbers of replicates were selected so that
n×Nrep = 18000. Despite these precautions, we were unable to perform accuracy simulations for
“correct” LOO CV for PC-LDA with r = 3 and r = 50 principal components due to impractical
computation needs.

When using simulations to assess computation time, we take the median time across 10 repli-
cates for all values of n and p. If the median computation time for a classification method, for
given values of n and p, exceeds 2,000 seconds, we do not test that method at the next value of n
and the same value of p.

In the main text, we present simulation results for p = 20,000. Here, we present additional
results for p = 100,000 and 500,000; this allows us to evaluate how the performance of nPC-
LDA, with both LOO CV and FAST-CV, and PC-LDA with a fixed number of PCs and various
CV schemes varies with p in addition to how it varies with n. All tested methods show largely the
same behavior for every value of p we examined.
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Figure D.1: Mean CV accuracies for a PC-LDA classifier with r = 3 and p = 20,000, p = 100,000, and
p = 500,000. Sample size (n) is displayed on a square-root scale. The black dashed lines indicate the
theoretical classification accuracy rates for a PC-LDA classifier with 3 principal components built on the
generated data. “Incorrect” CV involves only calculating the principal components on the full data, while
“correct” CV involves calculating the principal components for each individual CV training set. Note: 10-
fold CV cannot be run for small sample sizes. Also, the simulations for n = 1000 and p = 500, 000 were
too memory-intensive to complete.
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Figure D.2: Mean CV accuracies for a PC-LDA classifier with r = 50 and p = 20,000, p = 100,000,
and p = 500,000. Sample size (n) is displayed on a square-root scale. The black dashed lines indicate the
theoretical classification accuracy rates for a PC-LDA classifier with 50 principal components built on the
generated data. “Incorrect” CV involves only calculating the principal components on the full data, while
“correct” CV involves calculating the principal components for each individual CV training set. Note: PC-
LDA with 50 PCs cannot be run for sample sizes smaller than 50.
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Figure D.3: Mean CV accuracies for nPC-LDA obtained via LOO CV and FAST-CV for p = 20,000, p =
100,000, and p = 500,000. Sample size (n) is displayed on a square-root scale. The black dashed lines
indicate the theoretical classification accuracy rates for an nPC-LDA classifier built on the generated data.
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Figure D.4: Median computation times for p = 20,000, p = 100,000, and p = 500,000. Computation time
(in seconds) is displayed on the log10 scale. The most computationally intensive algorithms were only run
at small sample sizes.
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D.4 Additional Pharmacogenomic Data Results

We obtained all real data from the Genomics of Drug Sensitivity in Cancer (GDSC) project (Yang

et al., 2013). For this application, we used version 8.2 of the GDSC2 data. This includes summa-
rized drug efficacy values, gene expression levels, methylation values, and cell line tissue type and
histology data, all retrieved from the GDSC website (https://www.cancerrxgene.org/
downloads/bulk_download; March 2021).

D.4.1 Multiclass Tissue Type Classification

To test the performance of nPC-LDA with FAST-CV on multiclass data, we predicted two aspects
of cancer cell line tumor type from gene expression data. We considered a tissue type label with 19
classes: non-small cell lung cancer (n = 109 cell lines), urogenital system (n = 102), leukemia (n
= 82), aero-digestive tract (n = 79), lymphoma (n = 66), small cell lung cancer (n = 61), nervous
system (n = 56), skin (n = 55), digestive system (n = 51), breast (n = 50), large intestine (n = 49),
bone (n = 38), kidney (n = 33), pancreas (n = 32), neuroblastoma (n = 29), lung (n = 22), soft
tissue (n = 21), myeloma (n = 18), and thyroid (n = 15). We also considered a tumor histology
label with 11 classes: carcinoma (n = 566 cell lines), lymphoid neoplasm (n = 125), glioma (n =
52), malignant melanoma (n = 52), haematopoietic neoplasm (n = 40), neuroblastoma (n = 31),
Ewing’s sarcoma/peripheral primitive neuroectodermal tumour (n = 22), mesothelioma (n = 21),
osteosarcoma (n = 10), rhabdomyosarcoma (n = 8), and chondrosarcoma (n = 5). We removed 18
histologies with fewer than 5 cell lines each.

The nPC-LDA algorithm produces similar estimates of model performance metrics whether
implemented with classical LOO CV or with FAST-CV. This is true for both tissue type (estimated
confusion matrix in Figure D.1) and histology (estimated confusion matrix in Figure D.2). The
FAST-CV method achieves this model performance with substantially shorter computation times
than the other tested methods (Table D.3).

Overall, nPC-LDA with FAST-CV performs well in settings with large numbers of classes and
with large amounts of class imbalance, in terms of both classifier performance and computation
times.
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carcinoma 561 1 0 0 0 2 1 1 0 0 0
chondrosarcoma 2 2 0 1 0 0 0 0 0 0 0

Ewings sarcoma/pPNET 0 0 22 0 0 0 0 0 0 0 0
glioma 2 0 0 49 0 0 1 0 0 0 0

haematopoietic neoplasm 0 0 0 0 34 6 0 0 0 0 0
lymphoid neoplasm 1 0 0 0 1 123 0 0 0 0 0
malignant melanoma 5 0 0 0 0 0 47 0 0 0 0

mesothelioma 4 0 0 0 0 0 0 17 0 0 0
neuroblastoma 1 0 1 1 0 0 1 0 27 0 0
osteosarcoma 4 0 0 0 0 0 0 0 0 6 0

rhabdomyosarcoma 3 0 1 0 0 0 0 0 0 0 4

(a)

carcinoma 561 1 0 0 0 2 1 1 0 0 0
chondrosarcoma 1 2 0 1 0 0 0 0 0 0 1

Ewings sarcoma/pPNET 0 0 22 0 0 0 0 0 0 0 0
glioma 1 0 0 50 0 0 1 0 0 0 0

haematopoietic neoplasm 0 0 0 0 34 6 0 0 0 0 0
lymphoid neoplasm 1 0 0 0 1 123 0 0 0 0 0
malignant melanoma 5 0 0 0 0 0 47 0 0 0 0

mesothelioma 3 0 0 0 0 0 0 18 0 0 0
neuroblastoma 1 0 1 1 0 0 1 0 27 0 0
osteosarcoma 4 0 0 0 0 0 0 0 0 6 0

rhabdomyosarcoma 3 0 1 0 0 0 0 0 0 0 4

(b)

Table D.2: Estimated confusion matrix for classification via nPC-LDA with (a) FAST-CV and (b) LOO
CV to predict tumor histology (k = 11 classes) from gene expression levels in the GDSC study (n = 932
cell lines). The nPC-LDA algorithm performs well even when classes are seriously imbalanced. Histologies
with fewer than 5 observations were not included in this analysis. pPNET is a peripheral primitive neuroec-
todermal tumour.
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Time (s)
Model Performance Estimation Tissue Type Histology

nPC-LDA FAST-CV 16.5 15.2
nPC-LDA LOO CV 1244.4 1097.7

Random Forest OOB voting 458.9 343.7
MASS::lda LOO CV 724.0 710.6

MLDA 10-fold CV 675.2 598.2

Table D.3: Computation speed for predicting cell line tissue type and histology from gene expression levels.
The nPC-LDA algorithm with FAST-CV has substantially shorter computation times than the other tested
methods.

D.4.2 Drug Efficacy Classification

In our drug efficacy classification analysis, we discretize the AUC estimates provided by GDSC
into calls of “sensitive” and “insensitive” using a cutoff of 0.85. Drug-cell line combinations
with an AUC ≥ 0.85 are labeled “insensitive” and drug-cell line combinations with an AUC <

0.85 are labeled “sensitive” (Figure D.5). This discretization causes many drugs to have seriously
imbalanced classes. This makes it difficult to evaluate model performance, particularly when the
features are not highly predictive. To combat this, for each drug, we down-sample the majority
class in the training data to create a subset with balanced classes. We then use this subset to train
the nPC-LDA algorithm and random forests. In our analysis, we considered the 147 drugs with at
least 10 observations per class, after down-sampling.

0
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Insensitive
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Figure D.5: Histogram of all GDSC-provided AUC estimates colored based on the discretized “sensitive”
and “insensitive” classes.
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D.4.3 Expanded Drug Efficacy Classification

The speed of nPC-LDA with FAST-CV lets us investigate how classifier performance varies with
different response data and different predictor data.

Simple Binary Response First, we consider how varying the simple binary class threshold m

affects classifier performance. We vary this threshold from 0.4 to 0.9 and label cell lines with
AUCs smaller than m as “sensitive” and cell lines with AUCs larger than m as “insensitive”. Table
D.4 shows the median model performance for each threshold. In this analysis, the median is taken
across the n = 32 drugs for which there were sufficient data at all tested thresholds, defined as
at least 10 cell lines in each class. When the classes are imbalanced, we down-sample from the
majority class to impose balance and improve the interpretability of model performance estimates.
Figure D.6 shows boxplots of model performance at each tested threshold.

Binary Response without Moderate AUCs Next, we perform binary classification where cell
lines with moderate AUC values are dropped from the analysis. Specifically, we define our binary
classes as follows: cell lines are labeled “sensitive” if AUC < m1 and “insensitive” if AUC > m2,
such that m1 < m2. Again, we focus on the n = 32 drugs with at least 10 cell lines in each
class for all tested thresholds. We further down-sample from the majority class to impose balance.
This technique tends to achieve better median model performance than simple binary classification
(Figure D.7).

Methylation Data Finally, we predict drug efficacy (as binary response without moderate AUCs)
from methylation data and from a concatenation of gene expression and methylation data (Table
D.5, Figures D.8 and D.9). The combination of data sources does not perform better than gene
expression data on its own.
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Threshold Accuracy F1-score MCC
0.4 0.818 0.820 0.640
0.45 0.819 0.822 0.638
0.5 0.809 0.805 0.623
0.55 0.789 0.788 0.578
0.6 0.772 0.763 0.546
0.65 0.730 0.726 0.460
0.7 0.722 0.728 0.446
0.75 0.698 0.690 0.396
0.8 0.676 0.671 0.353
0.85 0.679 0.673 0.360
0.9 0.658 0.642 0.320

Table D.4: Median model performance estimated via FAST-CV for predicting binary drug efficacy from
gene expression data with nPC-LDA. The binary class labels were assigned based on several AUC thresholds
between 0.4 and 0.9. The stated model performance is the median across the n = 32 drugs for which there
were sufficient data for all tested thresholds.
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Figure D.6: Model performance estimated via FAST-CV for predicting binary drug efficacy from gene
expression data with nPC-LDA. The binary class labels were assigned based on several AUC thresholds
between 0.4 and 0.9. Model performance tends to increase as the class threshold decreases. The boxplots
contain data for the n = 32 drugs that have sufficient cell lines in both classes at all tested thresholds.
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Figure D.7: Median nPC-LDA F1-score and MCC estimated via FAST-CV for binary classification based
on gene expression data. AUC values between the lower threshold (m1) and the upper threshold (m2) are
discarded. Both measures of model performance tend to be better for smaller values of m1. At each set of
thresholds, we performed classification for the n = 32 drugs that have sufficient cell lines in both classes at
all tested thresholds. The median is taken across these drugs.
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Gene Expression Methylation Both
m1 m2 Accuracy F1-score MCC Accuracy F1-score MCC Accuracy F1-score MCC
0.40 0.45 0.820 0.820 0.643 0.800 0.800 0.600 0.821 0.827 0.643
0.40 0.50 0.828 0.829 0.658 0.812 0.808 0.625 0.824 0.828 0.655
0.40 0.55 0.857 0.851 0.715 0.808 0.805 0.616 0.812 0.812 0.630
0.40 0.60 0.868 0.863 0.742 0.833 0.828 0.668 0.836 0.843 0.673
0.40 0.65 0.866 0.870 0.734 0.844 0.839 0.689 0.844 0.839 0.689
0.40 0.70 0.855 0.857 0.719 0.850 0.851 0.704 0.875 0.875 0.750
0.40 0.75 0.849 0.845 0.702 0.857 0.849 0.722 0.844 0.839 0.689
0.40 0.80 0.862 0.866 0.735 0.852 0.848 0.707 0.857 0.857 0.742
0.40 0.85 0.856 0.859 0.714 0.833 0.837 0.676 0.861 0.857 0.728
0.40 0.90 0.858 0.851 0.722 0.833 0.833 0.671 0.875 0.875 0.750
0.45 0.50 0.824 0.830 0.650 0.824 0.824 0.647 0.825 0.829 0.651
0.45 0.55 0.841 0.839 0.684 0.825 0.825 0.656 0.828 0.844 0.670
0.45 0.60 0.862 0.859 0.725 0.845 0.849 0.695 0.840 0.846 0.682
0.45 0.65 0.864 0.861 0.734 0.824 0.816 0.647 0.826 0.829 0.659
0.45 0.70 0.847 0.841 0.695 0.849 0.850 0.699 0.833 0.837 0.681
0.45 0.75 0.843 0.854 0.694 0.853 0.848 0.707 0.845 0.844 0.691
0.45 0.80 0.866 0.866 0.738 0.845 0.843 0.691 0.844 0.840 0.700
0.45 0.85 0.868 0.869 0.737 0.826 0.820 0.651 0.845 0.840 0.693
0.45 0.90 0.865 0.867 0.734 0.843 0.851 0.688 0.845 0.833 0.693
0.50 0.55 0.798 0.794 0.600 0.810 0.800 0.622 0.829 0.821 0.660
0.50 0.60 0.819 0.815 0.642 0.828 0.819 0.656 0.818 0.816 0.640
0.50 0.65 0.810 0.800 0.623 0.811 0.803 0.623 0.810 0.811 0.624
0.50 0.70 0.818 0.816 0.645 0.824 0.822 0.651 0.833 0.833 0.667
0.50 0.75 0.831 0.829 0.665 0.817 0.821 0.646 0.816 0.821 0.646
0.50 0.80 0.845 0.838 0.691 0.803 0.800 0.616 0.816 0.808 0.640
0.50 0.85 0.852 0.843 0.707 0.833 0.836 0.668 0.843 0.841 0.685
0.50 0.90 0.837 0.836 0.675 0.828 0.821 0.657 0.853 0.841 0.712
0.55 0.60 0.791 0.790 0.586 0.775 0.776 0.564 0.778 0.785 0.561
0.55 0.65 0.780 0.774 0.562 0.786 0.780 0.573 0.800 0.795 0.601
0.55 0.70 0.784 0.786 0.570 0.786 0.776 0.574 0.788 0.782 0.592
0.55 0.75 0.809 0.801 0.621 0.804 0.798 0.611 0.804 0.792 0.625
0.55 0.80 0.812 0.805 0.625 0.807 0.795 0.621 0.811 0.797 0.622
0.55 0.85 0.835 0.830 0.673 0.821 0.808 0.647 0.830 0.820 0.660
0.55 0.90 0.826 0.819 0.654 0.817 0.804 0.638 0.826 0.820 0.666
0.60 0.65 0.772 0.760 0.549 0.750 0.744 0.511 0.772 0.752 0.544
0.60 0.70 0.774 0.770 0.548 0.769 0.760 0.548 0.781 0.767 0.564
0.60 0.75 0.785 0.779 0.572 0.783 0.768 0.569 0.785 0.776 0.571
0.60 0.80 0.794 0.785 0.590 0.781 0.768 0.568 0.783 0.774 0.569
0.60 0.85 0.816 0.803 0.637 0.806 0.792 0.614 0.809 0.800 0.619
0.60 0.90 0.815 0.804 0.634 0.793 0.787 0.588 0.820 0.812 0.640
0.65 0.70 0.751 0.738 0.505 0.741 0.723 0.488 0.753 0.739 0.508
0.65 0.75 0.762 0.757 0.525 0.745 0.734 0.495 0.756 0.746 0.514
0.65 0.80 0.768 0.770 0.537 0.764 0.753 0.532 0.780 0.774 0.567
0.65 0.85 0.782 0.775 0.571 0.762 0.758 0.524 0.765 0.763 0.529
0.65 0.90 0.798 0.790 0.598 0.761 0.751 0.527 0.775 0.762 0.554
0.70 0.75 0.741 0.731 0.484 0.727 0.719 0.453 0.740 0.728 0.481
0.70 0.80 0.741 0.727 0.486 0.737 0.720 0.477 0.746 0.738 0.492
0.70 0.85 0.767 0.764 0.535 0.744 0.740 0.493 0.761 0.753 0.530
0.70 0.90 0.797 0.785 0.599 0.766 0.757 0.533 0.759 0.762 0.519
0.75 0.80 0.708 0.711 0.418 0.700 0.681 0.402 0.713 0.699 0.427
0.75 0.85 0.733 0.724 0.467 0.712 0.701 0.426 0.727 0.727 0.460
0.75 0.90 0.753 0.755 0.508 0.724 0.713 0.453 0.747 0.730 0.497
0.80 0.85 0.706 0.699 0.413 0.683 0.668 0.367 0.702 0.693 0.413
0.80 0.90 0.739 0.731 0.482 0.714 0.696 0.432 0.717 0.706 0.435
0.85 0.90 0.689 0.687 0.380 0.685 0.667 0.370 0.696 0.685 0.391

Table D.5: Median nPC-LDA performance estimated via FAST-CV for binary classification based on gene
expression data, methylation data, and the concatenation of both datasets. AUC values between the lower
threshold (m1) and the upper threshold (m2) are discarded. At each set of thresholds, we performed classifi-
cation for the n = 32 drugs that have sufficient cell lines in both classes at all tested thresholds. The median
is taken across these drugs.
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Figure D.8: Median nPC-LDA performance estimated via FAST-CV for binary classification based on
methylation data. AUC values between the lower threshold (m1) and the upper threshold (m2) are dis-
carded. All three measures of model performance tend to be better for smaller values of m1. At each set of
thresholds, we performed classification for the n = 32 drugs that have sufficient cell lines in both classes at
all tested thresholds. The median is taken across these drugs.
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Figure D.9: Median nPC-LDA performance estimated via FAST-CV for binary classification based on
both methylation and gene expression data. AUC values between the lower threshold (m1) and the upper
threshold (m2) are discarded. All measures of model performance tend to be better for smaller values of
m1. At each set of thresholds, we performed classification for the n = 32 drugs that have sufficient cell
lines in both classes at all tested thresholds. The median is taken across these drugs.
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