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ABSTRACT

The lifecycle of a deep learning application consists of five phases: Data collection, Architecture
prototyping, Training, Analysis, and Deployment. There is a significant cost—both human and
computational—in all phases of this life cycle. Given the increasing dominance of deep learning
across industry and commerce, reducing these costs while maintaining high performance would
have a significant impact. To that end, this work focuses on Architecture prototyping and Training,
and proposes new techniques that improve their efficiency, by reducing the number of Floating
Point Operations (FLOPs), and performance.

Prototyping deep neural networks (DNNs) for hardware-constrained environments is done either
manually, through architecture search, or pruning. Manual and architecture search algorithms
require long processing times and large-scale resources to obtain optimal solutions, which limit their
usability. While pruning algorithms operate more efficiently than previous approaches, they are
not effective at modeling the uncertainty in information flow between layers and their downstream
impact when pruning. In Chapters 3 and 4, we propose a single-shot model pruning approach that
uses a probabilistic framework to model the uncertainty and decrease the redundancy in information
passed between layers.

Within our framework, we use conditional mutual information (CMI) to measure the strength of
contributions between filters in adjacent layers. In addition, we incorporate information from the
weight matrices to balance the contributions from CMI, computed from the activations. Further, we
tackle the practical challenges built into pruning pipelines like, the time complexity to determine the
upper pruning limit or sensitivity for each layer of the DNN. Our main takeaway is a state-of-the-art
single-shot model pruning pipeline, which has a performance of 72.60% on ResNet50-ILSVRC2012
with a sparsity of 68.93%. Overall, our pruning approach reduces the number of FLOPs computed
during inference by 51.52%.

The second phase we focus on is Training, which scales its time and resource consumption based
on factors like dataset, epochs, and many others. Several algorithms like low-precision computations
and distributed training focus on making training more efficient. However, they require either a
large number of computational resources or rely on approximations that do not fully match the
performance of their original counterparts. Instead, we follow the curriculum learning paradigm,
which regulates the DNN-Dataset interaction from the data side to improve performance while
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simultaneously affecting computational load and other properties of training.
In Chapters 5 and 6, our primary focus is obtaining high-performing solutions with mini-

mal modifications. Then, we expand our goals to include improved efficiency and adversarial
robustness—important traits for real-world deployment. To concurrently tackle such interconnected
goals, we introduce a feature-based curriculum in Chapter 6 that uses the difference in activation
values, between the original and noise-perturbed inputs, to identify and remove samples susceptible
to attacks. By comparing our curriculum against standard and adversarial training regimes we high-
light how our curriculum improves performance in both categories. Overall, our curriculum-based
approach to Training reduces 63.8 TFLOPs.

By proposing techniques that target the prototyping and training phases of the DNN lifecycle, we
reduce the number of computations performed, and thereby the burden imposed by their repeated use
when developing DNN-based solutions. By imposing multiple constraints during their development
and training, we enable shorter and more resource-friendly development of DNNs; we also ensure
the addition of robustness using an orthogonal perspective to traditional adversarial training that
doesn’t compromise the performance of DNNs.
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CHAPTER 1

Introduction

1.1 Motivation

Data TrainingArchitecture
Prototyping
 Deployment

Analysis


Figure 1.1: Illustration of the five phases of a DNN solution’s development life cycle, 1) Data
collection, 2) Architecture Prototyping, 3) Training, 4) Analysis, and 5) Deployment. These phases
are designed to constantly provide feedback to each other to iteratively refine and obtain a solution.

The field of deep learning has received a lot of engagement in recent years, primarily due
to the ever-expanding capabilities of deep neural networks (DNNs). Across domains like object
recognition [1], detection [2], face recognition [3], [4], geolocation using photos [5], lip-reading [6]
and many more, DNNs constantly push the boundaries of performance that can be achieved and, in
doing so, improve over human-level performance. Inspired by the potential of DNNs to solve real-
world problems by directly learning patterns from data, businesses are actively pursuing DNN-based
solutions to help optimize their workflow, the services they offer and improve the performance of
their products. The continuous increase in investment in AI [7], [8] and the growing number of
executives who have reported a decrease in costs and an increase in revenue [9] when incorporating
AI further reinforce the burgeoning demands for AI in the industry.

With every business problem comes unique requirements, constraints, and domain-specific
information, which necessitates context-specific solutions. While adopting a solution across similar
domains is convenient, transferring knowledge across starkly different applications is difficult. For
example, consider the limitations of traditional deep learning models when transferring to unique
domains like medical and hyper-spectral imaging or alternative tasks within a domain [10]–[12].
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The challenge of varied priors, constraints, data types, and underlying physical systems is difficult
to overcome when transferring DNN solutions. Thus, we need to develop custom deep learning
solutions to satiate the demands of industrial problems. This, in turn, brings a sharp focus on
understanding how to develop DNN solutions and what are its underlying processes.

In general, there are five phases in the development life cycle of a DNN solution as shown in
Fig. 1.1, 1) Data, 2) Architecture Prototyping, 3) Training, 4) Analysis, and 5) Deployment. The
Data and Deployment phases act as the entry and exit points to the entire development life cycle,
with the Architecture Prototyping, Training, and Analysis phases forming the core. Typically, the
development process begins with the Data phase, which includes the collection, preparation, and
processing of relevant data. The difficulty associated with this phase, measured by the quality and
quantity of data needed, is dictated by the real-world context where the solution will be placed.
The process of prototyping novel architectures needs to account for multiple external factors such
as available time budget, deployment cost, and resource availability, to name a few. Training
imparts desired properties to a model, and Analysis highlights the flaws and improvements across
all of the life cycle’s phases. Finally, the deployment phase includes the supporting infrastructure,
maintenance, and transfer of the designed solution to hardware, which then can be employed to
solve real-world problems.

The tightly coupled modules of Architecture Prototyping and Training are simultaneously
fundamental to the entire life cycle while offering some of the largest bottlenecks in terms of the
amount of resources, cost, and time consumed. These phases offer a straightforward entry point
to improving the development life cycle while other phases like data collection, analysis, and
deployment are often labor intensive and less approachable. An improvement in the efficiency of
the aforementioned core phases will have large implications for the operational requirements of
developing a DNN as well as the final model itself.

1.2 Efficiency: The Guiding Principle

This dissertation focuses on improving the efficiency of Training and Architecture Prototyping by
reducing the number of FLOPs consumed, in each phase as well as the solution, while maintaining
a high level of performance. Reducing the number of FLOPs in each phase is important since
the process of designing and obtaining a DNN solution requires repeated execution of the core
phases of the developmental life cycle. Often, a typical development life cycle for a single machine
learning model is 6-18 months [13], [14], with some requiring longer investments in labor, time, and
money. In addition, when placed in the real world, the outcome of such dedicated developmental
life cycles is constrained to perform well on limited resources, often with real-time inference as
a pre-requisite. Examples of limited resources include restrictions on the total energy available,
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memory budget, low-precision computations, and a lower number of computations to improve
inference time. Improving the efficiency on both the above-mentioned fronts leads to a shorter
development process and a lower footprint solution that is efficient in its execution, thereby making
the entire process and outcome resource and time friendly.

In this dissertation, we modify each phase individually to highlight their contributions to the
overall efficiency gain. When prototyping architectures, we explore the notion of using a single
pass to adapt and sparsify existing DNN architectures to match user or hardware constraints. Doing
so offers a reprieve from developing efficient architectures from scratch, which is a significantly
more time process. In addition, using a single pruning pass to generate sparse networks minimizes
computational overheads. From the dataset and training perspective, we explore the notion of using
a more optimal subset of the original training data to reduce the overall computational load and
training time while maintaining a high level of performance. We formally introduce each of these
approaches and describe them further below.

1.2.1 Architecture Prototyping

In general, prototyping DNN architectures is a highly iterative process that uses the feedback
from training, among other phases, to inform its evolution. Manual approaches to this process
often embed novel ideas and expand on insights from existing work [15]–[21]. However, an
important caveat of their development process is that they are time and labor-intensive. Optimization-
based architecture search approaches [22]–[25] offer a reprieve from the manual labor involved
in prototyping new architectures by defining constraints in a broad search space within which
algorithms are allowed to find an optimal DNN architecture. But, optimization-based development
has extreme convergence times, on the order of days to weeks, and is built on the assumption that
large-scale resources are available. Both these approaches to prototyping new DNNs pose a clear
disadvantage, given our emphasis on efficiency.

DNN pruning adapts any existing DNN architecture to user- or hardware-based constraints by
removing redundant portions of the DNN. This process builds on the assumption that standard
DNN architectures are over-parameterized (Fig. 1.2), with a steep increase in the number of
parameters compared to the size of commonly available datasets to improve performance, and
contain a large amount of redundant information that we can remove without compromising
performance. While pruning does not deliver a strictly novel DNN architecture from scratch, like
manual or even optimization-based approaches, it does allow the user to leverage the space of
existing work in the field of deep learning, spanning decades of research. In addition, pruning
can quickly assess redundancy and adapt existing architectures, unlike the previous methods. By
combining the advantages offered by pruning, we can ensure a faster development process and a
final DNN architecture that requires minimal resources to function. Hence, we adopt DNN pruning
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Figure 1.2: The exponential growth of the number of parameters in DNNs of state-of-the-art
algorithms [26]. However, existing works in DNN pruning have shown that there is a lot of
redundancy in large DNNs.

as our approach to prototyping DNN architectures that we can deploy in resource-constrained
environments.

1.2.2 Training

Training is the critical process that defines the evolution of a DNN’s weights. It derives its
influence from several factors that include the choice of a dataset, optimizer, hyper-parameters,
precision of computations, and others. Its primary focus is on imparting high generalization
performance alongside other desirable properties like adversarial robustness [27], [28], improved
prediction confidence [29], [30], and many others [31], [32]. Given our emphasis on improving
the efficiency of the training process and the number of different factors that influence it, there
a multiple approaches to realizing our goal. Examples of existing approaches towards realizing
this goal include alternative optimization schemes [33]–[35], distributed training [36], [37], low-
precision computations [38], [39], etc.

Alternative optimization schemes [40], [41] focus on improving the convergence in the general
non-convex problem space of DNNs. However, they do not always guarantee faster convergence
than standard mini-batch SGD and often neglect evaluating other desirable properties we expect
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from real world solutions. Distributed learning approaches assume the availability of large-scale
resources and focus on identifying more efficient communication patterns across each node of the
hardware. While they offer additional value when placed alongside other approaches, individually
they do not adhere to our goal of efficiency. Low-precision computations offer an inexpensive and
faster alternative to standard double precision floating point operations. However, their common
implementations do not match the performance of their high-precision counter-parts or require a
large number of computations to achieve similar levels of performance [42], [43].

Curriculum learning targets efficiency from the perspective of the dataset, by organizing and
scheduling the data shown to the DNN during training, similar to the “curriculum” used to teach hu-
mans from a young age [44], [45]. This approach helps on two fronts, maintaining high performance
and improving efficiency. When organizing data, curriculum learning uses difficulty measures to
assess the quality of samples and curate a more optimal subset of training data. The optimal subset
requires lower memory to store and improves accuracy. In this dissertation, we propose a curriculum
learning variant inspired by negative mining that focuses on improving generalization performance
with minimal overheads. Then, we extend our takeaways to further maximize our returns from
curriculum learning by using noise injection to curate an optimal training subset that simultaneously
tackles performance, efficiency, and adversarial robustness. Our approach offers a reprieve from the
large memory consumed by training data, and the time to preprocess and load it by simply removing
a noisy subset of data. In affecting the original dataset, a curriculum’s regulatory effect permeates
through the DNN and readily offers a complementary strategy to the other methods discussed.

1.3 Contributions

In this dissertation, our main contributions revolve around making two key phases more efficient:
Architecture Prototyping (Section 1.3.1) and Training (Section 1.3.2). Our primary goal when
tackling the prototyping phase is to use DNN pruning to reduce the number of parameters that
make up a DNN, including a reduction in the total number of Floating Point Operations (FLOPs)
and memory footprint while maintaining high generalization performance. By making the process
of pruning more efficient and obtaining a sparse outcome, we improve on two fronts concurrently.
When discussing the efficiency of the training process, our primary goal is to maintain high
performance while reducing the overheads associated with curriculum learning, including the
reduction of FLOPs used to train the DNN.

1.3.1 Jumpstarting Architecture Prototyping: Neural Network Pruning

Mutual information (MI) [46], [47] offers a grounded and analytical perspective on the relation-
ship between two variables, specifically how observing information from one variable informs us
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about the second variable. Conditional Mutual Information (CMI) is a logical expansion of MI,
which measures the relationship between two variables when a third was already observed. When
placed in the context of neural network pruning, CMI offers a unique measure of the relationship
between two filters from adjacent layers in the context of all the contributions from different filters
in the previous layer.

In this dissertation, we introduce a probabilistic framework for pruning that uses CMI as a
measure of dependency between filters. In using CMI, we control the amount of information passed
down to succeeding layers. Larger values indicate stronger relationships, highlighting filters that are
essential contributors to the information generated. Filters with smaller CMI values are removed
since they contribute less, relatively. This idea forms the basis of all our works on neural network
pruning. In addition to CMI, one-shot pruning is a critical philosophy underlying our probabilistic
framework. In one-shot pruning, we do not allow the update of a DNN’s parameters until pruning
across the entire DNN is complete. Taking it a step further, pruning itself is performed only once.
We adhere to these philosophies since they embed the notion of efficiency in to the process itself,
allowing it to become the guiding principle.

Building around the idea of using CMI, we propose a novel formulation of CMI that is faster
than our original formulation and incorporates the contributions of the underlying weight matrix,
the primary approach to pruning across a large amount of prior work. With a functional core
idea, we then solve more practical issues built-in to the pruning pipeline like the manual effort to
determine the upper pruning limits of each layer in the DNN and analyze the sensitivity of filters to
being pruned, all while ensuring the entire process is automated. Putting our contributions under a
single-shot pruning framework allows us to generate slim models, thereby accounting for efficiency
and performance in both process and outcome.

1.3.2 Extracting More from Less: Curriculum Learning

Data-level curriculum learning follows the idea of organizing and scheduling the delivery of
samples to the DNN during the training phase. Individual data samples are evaluated based on
difficulty as measured using a pre-defined criterion like changes in gradient, loss, prediction values,
etc. [48], [49]. The main focus of data-level curriculum approaches is maximizing the generalization
performance.

Our first contribution towards achieving improved performance is exploring the notion of
incrementally introducing class labels. In this work, we exploit ideas similar to negative mining
by using a subset of the training data as a single “negative” class and improving the feature
representations learned during the early training phase, when the ground-truth labels of different
categories are introduced to the DNN incrementally. Most importantly, we introduce the notion of
learning curricula over labels as opposed to samples and how this improved the learning process.
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We did so while maintaining the same number of training epochs as mini-batch SGD. Effectively,
we were able to extract more performance with no overheads.

Our combined observations on the adversarial susceptibility of pruned neural networks and
the takeaways from our curriculum learning foray spurred our second contribution in extracting
more performance from less information. We propose a novel algorithm that simultaneously targets
improved generalization performance and adversarial robustness while using only a subset of the
data, thereby tackling Performance, Efficiency and Robustness concurrently. For this purpose, we
use the difference in activation values between the original training data and their noise-perturbed
counterparts to identify and remove samples susceptible to noise. Crucial to our idea was the
assumption that samples highly susceptible to noise exist near the decision boundaries and thus have
a strong impact on the evolution of a DNN. By highlighting and removing samples highly susceptible
to noise, we improve the learning process and directly affect the generalization performance and
adversarial robustness of the DNN solution. Thus, we improve the efficiency of the training process
while making no assumptions about the type of noise used to perturb the training samples.

1.4 Thesis and Impact Statement

Through innovations in neural network model compression-via-pruning and curriculum learning,

our work enforces a higher level of efficiency in process, for architecture development and training,

as well as outcome than prior work. Specifically, we introduce and build upon a probabilistic pruning
framework based on CMI, that balances the contributions from the weight matrices underlying the
DNN with those obtained from mutual information. In addition, we use this framework to solve
more practical concerns built-in to pruning frameworks like the large number of trials to figure out
the upper pruning limit of each layer in the DNN as well as the sensitivity of each filter to being
pruned. Combing these contributions, we provide an automated single-shot pruning framework
capable of handling any feedforward DNN. Further, our work in curriculum learning addresses
improvements in both performance and adversarial susceptibility while reducing the number of
FLOPs computed during training.

The direct impacts of our contributions are the reduction in time and cost involved in the
iterative design process of developing DNN solutions. Our solution is built to be flexible and quick
in adapting any existing DNN architecture to a variety of constraints. On a macro-scale, we believe
that using multiple factors to constrain the development of DNNs, from a nascent stage, is a definite
way to build-in important properties. By doing so, we can address lower level goals like efficiency
and calibration as well as higher level goals like a sustainable development process with a lower
carbon footprint.
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CHAPTER 2

Related Work

In the following sections, we divide the discussion of related works into four main subsections.
Sections 2.1 and 2.2 emphasize works in the domain of neural network compression and relevant

literature on multivariate dependency measures. Sections 2.3.1 and 2.3.4 describe prior work in
curriculum learning and adversarial training, and discuss how these ideas are interlinked Throughout
discussing various prior works, we provide context and comparisons to the ideas discussed in the
dissertation.

2.1 Neural Network Compression-via-Pruning

At the highest level, there are many strategies we can use to help compress DNNs while
maintaining high performance. Examples of such approaches include low-rank approximations
of weight matrices [50], quantization of weights stored [51], knowledge distillation from high
capacity to slim networks [52], and pruning [53]–[55]. Low-rank approximation and quantization
fundamentally change the values stored in the weight matrices by modifying their precision or
approximating them. While these methods offer a speed-up in inference time, their final performance
isn’t sufficiently high compared to other approaches in the field of DNN pruning. Knowledge
distillation relies on the existence of a fully pre-trained model from which logits or features can be
distilled and thus, requires a large amount of storage memory and resources. All of the approaches
outlined violate our principle of efficiency while offering diminished performance returns.

In this dissertation, we focus on DNN pruning since it comprises a flexible framework that
offers a variety of resolutions at which we can prune a network, from individual weights to entire
channels, with minimal memory requirements and without significantly weakening generalization
performance. Based on the underlying philosophy, there are two broad categories among pruning
approaches: 1) methods that use a deterministic constraint on the weight matrices, and 2) methods
that use a probabilistic framework to reduce the redundancy and maintain the flow of information
between layers
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2.1.1 Deterministic Constraints

Direct Constraint on Weight Matrices: Some of the earliest works in pruning use the second-
order relationship between the objective function and weights of the network to evaluate and remove
unimportant values [56], [57]. The recent surge in size and complexity of DNN architectures makes
it impossible to compute second-order relationships during training and pruning since they have a
complexity of O(W 2). Since then, directly thresholding weights using their magnitude [53], [58]
or ||.||n-based constraints [59], [60] have become more popular due to their simplicity and ease
of implementation. While most of the existing methods exploited the relationship between the
magnitude and importance of a filter or between the objective function and various weights, more
recent advances in the field opt to use data-driven logic to derive the importance of various filter
weights. The earliest examples of such methods include ThiNet [54], which poses the reconstruction
of features with the removal of channels as an optimization problem, NISP [61], where the feature
rankings from the final layer are propagated through the DNN and used derive the importance of
various filters, and APoZ [62] which evaluates the percentage of zeros in the feature map to assess
which filters can be pruned.

The common consensus among a broad swathe of prior work in this domain is to apply the
deterministic constraints for pruning during or after the training phase. Attempting to maximize
the benefits of training sparse networks, there has been a recent shift towards applying constraints
for pruning at initialization. Tanaka et al. [63] iteratively prune weights with the lowest “synaptic
strength”, Lee et al. [64] prune weights that are least salient for the loss, and Wang et al. [65] prune
weights that most harm or least benefit gradient flow. However, this sub-domain of pruning is in
relatively early stages of development, and thus its results have not improved over other existing
approaches [66]. Regardless of where the direct constraints are placed, they often do not account
for the downstream impact of pruning or are built on the assumption of a purely deterministic
relationship between filters. Instead, we use a probabilistic framework to maintain the flow of
information between layers while also expanding to a hybrid formulation that uses a weight-based
to overcome these issues.
Modification of Objective Function: We can induce sparsity in the weight matrix by modifying
the objective function to include regularization terms that force the weights to swing between
extremely small or normal values. This method is distinct from directly applying constraints on the
weight matrices since it affects the natural evolution of the weights instead of only applying a binary
mask. The regularization terms used to modify the objective function range from simple constraints
like l0/1-norms on individual weights or structures (channel, filter, layer) [67], [68] to more complex
norms like l2,1 [69] and group-lasso-based objective functions in [70]–[72]. Expanding upon these
ideas, there are a number of works that use more nuanced constraints like balancing individual
vs. group sparsity [73], [74], and and adding discrimination-aware losses at intermediate layers to
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enhance and easily identify important channels [75].
Some of the most exciting and recent trends in pruning focus on the fusion of concepts like

meta-learning [76], where sparsity-inducing regularizers are used to learn latent vectors that help
decide on evolution and choice of weight values, and GANs, where an adversarial learning paradigm
optimizes a loss based on the comparison of features derived from a baseline network, to generate a
sparse DNN [55]. Apart from optimizing over a fundamentally different set of objective functions,
which are harder to optimize, methods that modify the objective function require multiple iterations
of pruning and fine-tuning to ensure stability during training. In this dissertation, we want a
more controlled setup to study and compare the effects of pruning a network against its original
counterpart. Thus, we avoid strong comparisons against methods that modify the objective function.

2.1.2 Probabilistic Frameworks

Among existing works in pruning, probabilistic frameworks offer an alternative modelling
perspective to pruning that accounts for the uncertainty in relationships between filters and layers.
Under the umbrella of probabilistic frameworks, there are two broad categories of approaches,
bayesian and non-bayesian. Bayesian methods use variational bayesian inference as the basis of
their approach, with a focus on estimating the posterior distribution of weights using the ELBO
algorithm [77], [78]. Fundamentally, these approaches offer a theoretically sound basis for pruning.
However, they require strong assumptions on the prior distribution of weights, which helps induce
sparsity across the network. In addition, their performance on large-scale datasets has more room to
grow, with VGG being the largest DNN used in Louizos et al. [78], and Zhao et al. [77] providing
minimal comparisons against ResNet50 baselines on ILSVRC2012.

Non-bayesian approaches to pruning pursue information-theoretic measures to model the flow
of information through the network. When comapred to bayesian approaches, information-theoretic
measures make lesser assumptions and are applicable under a variety of conditions. Examples of
non-bayesian approaches include Luo and Wu [79], who suggest entropy of activations as a measure
to establish the importance of filters, and VIBNet [80], where they use the information bottleneck
principle to minimize the redundancy between adjacent layers. While they are adept at reducing
redundancy and maintaining the flow of information between layers, they have similar weaknesses
as the bayesian approaches in terms of their low performance at extreme sparsity levels.

Information-theoretic measures offer multiple flexible formulations that have the potential to
incorporate multiple sources of data and establish a theoretically grounded measure of information
flow in the DNN. Thus, we use CMI as the basis of our pruning approaches and expand our
comparisons to include lightweight and heavyweight networks in order to showcase its strengths.
Further, we explore multiple formulations of CMI to steadily improve the speed of pruning, overall
sparsity and final performance.
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2.2 Multivariate Dependency Measures

Mutual Information (MI) is the foundational idea behind our works on neural network pruning. It
is a measure used to estimate multivariate dependencies, and we use it to understand the relationship
between filters in adjacent layers and remove filters that contribute less information. Plugin and
direct estimation are the two general approaches used to estimate MI. Plugin estimators like Kernel
Density Estimators (KDEs) [81], KNN estimators [82], and others [83], [84] form the bulk of
early works in computing multivariate dependency. However, plugin estimators need to accurately
estimate the probability density function of input variables. This, when combined with their large
run-time complexity, renders them highly unscalable to high-dimensional information.

To overcome the issues faced by plugin estimators, direct estimators for Renyi-entropy and
MI [83], [84], and the Henze-Penrose divergence measure [85] have been proposed. They provide
manageable run-time complexity while avoiding direct knowledge of the density function. Crucial
to the functioning of many direct-estimation methods is the use of graph-theoretic ideas, such as
the Nearest Neighbour Ratios [86], which uses the k-NN graph to estimate MI, and the minimum
spanning tree used to estimate the GMI [87]. These graph-based approaches help make the
evaluation of MI more computationally tractable.

While most methods fall into either plugin or direct categories, Morteza et al. [88] propose
a hybrid approach. This approach combines the fast run-time implementation of hash-tables,
which have an average complexity of O(1), with an error convergence rate akin to plugin methods,
thus merging the advantages of both the estimation approaches. In this dissertation, we begin by
exploring the use of the conditional GMI [87] measure to assess the dependency between filters
and remove filters that contribute less. Once we establish its viability for one-shot pruning, we
then derive the conditional version of the MI measure proposed in Morteza et al. [88] and use it to
combine information from the weights as well as the activations to measure the flow of information.

2.3 Efficient Training

Training guides the evolution of a DNN’s weights through the interaction between a chosen
dataset and DNN architecture using backpropagation [89]. This phase dictates the quality of
the learned model including its performance, calibration, and adversarial robustness among a
number of other desirable targets. In this dissertation, our approach to improving the training
phase closely resembles the ideas discussed in curriculum learning, which controls the training
process by affecting how the dataset is organized and presented to the DNN. While standard
curriculum learning emphasizes the improvement of performance, we extend our discussion to
adversarial training and how alternative curricula enhance the robustness generated from standard
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adversarial training. Finally, we push the boundary of existing work by combining improvements in
performance, adversarial robustness and efficiency, to design a curriculum packaged as a plug-and-
play module that requires minimal modifications to incorporate into a standard training pipeline
for DNNs. In the following sections, we discuss relevant works from multiple domains that have
inspired our works.

2.3.1 Curriculum Learning

Curriculum learning for DNNs is inspired by the teaching paradigm used by humans to organize
and present information in an orderly fashion [44], [45]. The earliest formulations of curricu-
lum learning emphasized faster convergence to a high quality solution [90]–[92]. Often, data
was organized based on the “difficulty” of samples using external ranking methods that include
manual [90], [93], [94] and predictions from alternative DNNs [95]–[97], or internal rewards like
loss-based [98]–[100], and others [49], [101].

Focusing more on the quality of convergence in DNNs, a number of works relax the assumption
of faster convergence while exploring various ways to organize and schedule data [101], [102].
However, more recently there has been a shift towards using feedback from the model being trained
to modify the organization of the training data, including the variation of the amount of data used
to train the model [48], [49], [103]. However, across most works in curriculum learning there has
always been an emphasis on improving the generalization performance of the final solution, be it on
a standard dataset, small datasets [104] or corrupted datasets [102]. However, general curriculum
learning pays little attention to adversarial robustness.

In this dissertation, we explore a label-based curriculum that breaks the mould of sample-
level difficulty while establishing improved performance. Additionally, we consider robustness to
adversarial attacks a key trait required of DNNs, especially when we consider their application in a
safety critical real-world context like medical or health applications. From a methodological point of
view, our approach moves away from using gradients, loss value, predictions or the change in those
values to identify difficult samples [49], [105]–[107] and instead focus on label- and feature-level
curricula that can be easily extended to different architectures. To boost efficiency, we focus on hard
sampling to permanently remove samples from the training set instead of recycling them during the
training phase [48].

2.3.2 Label Smoothing

Label smoothing techniques regularize deep networks by penalizing the objective function based
on a pre-defined criterion. Such criteria include using a mixture of true and noisy labels [108],
penalizing highly confident outputs [109], and using an alternate deep network’s outcomes as

12



ground-truth [110]. Bagherinezhad et al. [111] proposed the idea of using logits from trained
models instead of just one-hot vectors as ground-truth. Complementary work by Miyato et al.

[112] used the local distributional smoothness, based on the robustness of a model’s distribution
around a data point, to smooth labels. The work closest to our work in this dissertation was proposed
in Szegedy et al. [113], where an alternative smooth target distribution was used to replace the
one-hot vector across the entire dataset. In our work, we propose to only alter the ground-truth label
vector for samples that are misclassified. By targeting samples that are misclassified, we improve
the entropy of their ground-truth vectors, thus facilitating the DNN to correct itself. We identify
misclassified examples using a prior copy of the model being trained, which helps avoid external
computational overhead and only uses a small set of operations.

2.3.3 Incremental Learning and Negative Mining

The core structure of our label-based curriculum is strongly inspired from incremental and
continual learning. Often, incremental/continual learning focus on learning over evolving data
distributions with the addition of constraints on the storage memory [114], [115], distillation of
knowledge across different distributions [116], [117], assumption of a single pass over data [118],
[119], etc. In our approach, we depart from the assumption of evolving data distributions. Instead,
we adopt the experimental pipeline used in incremental learning to introduce new labels at regular
intervals, while still using the entire dataset and thus maintaining the same data distribution.

To extract more performance out of any standard dataset, we take cues from negative min-
ing [120]–[122]. In general, negative mining approaches generate “negatively” associated pairs of
data samples by randomly associating samples, using uncertainty-based metrics [123], [124] and
incorporating intra-class correlation as a method to pick samples that are rarely associable [120].
Since we primarily focus on learning from classification datasets, we pursue the the idea of intro-
ducing ground-truth labels incrementally and using the data whose ground-truth labels have not
been introduced as negative samples. Doing so encourages the diversity of negative samples and
allows the DNN to learn stronger representations for the classes which have been introduced.

2.3.4 Adversarial Training

Adversarial training approaches expose the DNN to a variety of adversarial perturbations during
the training phase to increase their robustness to being attacked [27], [125]. The approaches
themselves span a large spectrum of ideas based on their choice of target and method of approach.
For example, the most common type of adversarial training involves choosing an adversarial attack
to create perturbations to the input during training [126], [127]. At the other end of the spectrum, a
number of works emphasize the theoretical robustness guarantees when conforming to lp-bounded
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attacks. The advent of adversarial training spawned a variety of different adversarial attacks [128]–
[130] resulting in a symbiotic cycle of development between these two domains.

A common issue with adversarial training is the strong decrease in performance on natural
testing data that accompanies the improved robust accuracy. To combat the trade-off between clean
and robust accuracy in standard adversarial training a number of recent works propose the use of
early stopping [131] or a student-teacher setup to learn from smooth logit distributions derived
from pre-trained DNNs [132]. While these approaches focus on improving the natural and robust
accuracies, their test bed does not cover a wide range of adversaries, thus limiting the scope of their
study.

To that end, curriculum-based adversarial training approaches were introduced to improve the
convergence of the final DNN over traditional adversarial training. Examples of such methods
include gradually increasing the strength of adversaries to improve robustness [133], using the least
adversarial data among confidently misclassified samples [134] and many more [135]. An important
reason they perform well could be due to their ability to reduce overfitting and their use of relatively
weaker attacks during the start of the training phase [136]. However, they rarely provide time or
efficiency comparisons to standard or alternative adversarial training regimes.

Most recently, efficient adversarial training has received a lot of attention since it is guided
by a number of desirable targets like improved adversarial robustness and efficiency. Wang et al.

[137] propose a dynamic and efficient adversarial training methodology that automatically learns to
adjust the magnitude of perturbations during the training process. While their theoretical analysis,
computational complexity, and performance comparisons offer strong insights, their results are
limited to fixed DNN backbones. Shafahi et al. [138] offer an inexpensive alternative of recycling
gradient computations performed during backpropagation to generate adversarial examples. Wong
et al. [139] review FGSM-based adversarial training and offer multiple key suggestions that
extend FGSM’s viability to quickly obtain highly robust DNNs. Each of the above methods that
propose a more efficient adversarial training approach focus on modifying the algorithm used
to generate adversaries while retaining the complete training set. However, in this dissertation
we address training efficiency by using a feature-based curriculum to directly reduce the training
data available, thus offering a complementary approach that can work alongside any traditional or
efficient adversarial training algorithm.

14



CHAPTER 3

Mutual Information-based Neural Network Pruning

3.1 Motivation
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Figure 3.1: Weight-based pruning does not consider the dependency between layers. Instead, it
suggests the removal of connections with small weight values. Mutual information-based pruning
computes the value of information passed between layers, quantified by the MI value, and suggests
the removal of weights from the latter layer. Doing so improves the flow of information while
reducing redundancy. In this example, we calculate MI using the entropy of weight values.

Most prior pruning works that apply a deterministic constraint on the weights of the network,
which form the bulk of existing work on neural network pruning, assume that the values stored in
the weight matrix of a filter indicate its importance. Evaluating a filter’s importance purely from its
weights is insufficient since it does not consider the dependencies between filters across layers. For
example, a subset of filters might contribute important information downstream and thus need to be
retained, or a filter’s contribution could be compensated elsewhere in the layer. Regardless of how
the deterministic constraints are modeled, they do not account for any form of uncertainty.

An important takeaway from the deficiencies of common deterministic constraints on the weight
matrix is that a higher weight value does not always represent its true importance. Consider the
example shown in Fig. 3.1, where a simple weight-based criterion suggests the removal of small
valued weights. However, the MI score in this example, which we use to measure the information
shared between layers and thus the dependency between pairs of filters, values the first layer’s
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weights over the latter layer. If we follow the intuition provided by the MI scores, our pruned
network ensures minimal redundancy and passes the majority of information to the next layer.

3.2 Mutual Information-based Neuron Trimming

Activations from each layer Compute Dependencies

Sort

Threshold

.....

...............

Prune Deep Network

Train
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Re-train/

Fine-tune


Output Output

Figure 3.2: Illustration of the different components of MINT when pruning filters in layer l + 1.
Between every pair of filters in layers (l, l + 1), we compute the conditional geometric mutual
information (GMI), using the activations from each filter as the importance score. We define the
total number of filters in each layer by N (l) and N (l+1). The conditional GMI score indicates the
importance of a filter in layer l’s contribution towards a filter in layer l+ 1. We then threshold filters
based on the importance scores to ensure that we only retain filters that pass the majority of the
information to successive layers. Finally, we retrain the network once to recover performance.

Using the intuition provided by MI, we propose Mutual Information-based Neuron Trimming
(MINT) as a novel approach to pruning deep networks by stochastically accounting for the depen-
dency between layers. In Fig. 3.2, we outline the general framework of one-shot pruning we follow
and the main components of our algorithm. In one-shot pruning, we partition the entire process,
from one end to the other, into three phases, 1) training, 2) pruning, and 3) re-training. An important
facet of having three distinct phases is that the pruning of weights happens during the middle phase,
and we do not update the weights of the network at any point during pruning. The re-training phase,
mirroring the training setup, allows for the compensation of any lost accuracy. All three phases are
executed only once. We emphasize the necessity of following such a one-shot pruning approach: It
is critical to reducing the time spent adapting and pruning existing DNN architectures.

Within the pruning stage, we use a graph-based criterion (Friedman-Rafsky Statistic [140]) to
estimate the conditional geometric mutual information (GMI), inspired by Sekeh and Hero [87], to
measure the dependency between filters of successive layers. On evaluating all such dependencies;
between filters of every pair of adjacent layers in the network, we sort and threshold a desired
percentage of the importance scores, thereby identifying and removing unimportant weights and
filters. By retaining filters that contribute the majority of the information passed between layers, we

16



ensure minimal impact of pruning on downstream layers. In the following sections, we outline our
algorithm before delving into its details.

3.2.1 Setup

First, we define the general setup of a prototypical DNN and the mathematical formulae
associated with its various components. For a DNN containing a total of L layers, we compute the
dependency (ρ) between pairs of filters in every adjacent set of layers. Here, the layer l is closer to
the input while layer l + 1 is closer to the output among the chosen pair of consecutive layers. The
activations for a given layer l + 1 are computed as,

F (l+1)(x(l)) = σ
(
w(l)x(l) + b(l)

)
, (3.1)

where x(l) ∈ Rm×d, m is the total number of samples, d is the feature dimension and x(l) is
the input to a given layer used to compute the activations. σ() is an activation function, w(l) ∈
RN(l+1)×N(l)×H×W , and b(l) are the weights and bias. Moving forward, we avoid using the layer
superscript in different components for the sake of readability.

3.2.2 Algorithm-specific Notations

• F (l+1)
i : The activations from the selected filter i in layer l + 1.

• N (l+1) : Total number of filters in layer l + 1.

• S
F

(l+1)
i

: The set of indices that indicate the values that are retained in the weight vector of the
selected filter.

• ρ(): The dependency between two filters, computed using I(X;Y|Z) (importance score).

• F (l)
j : The set of all filters excluding F (l)

j in layer l.

• δ: Threshold on importance score to ensure only strong contributions are retained.

3.2.3 Core Algorithm

In every iteration of MINT (Alg. 1), we find the set of weight values in w to retain while we
zero out the remaining.

• For a given pair of consecutive layers (l, l + 1), we compute the dependency between every
filter in layer l + 1 with filters in layer l. The main intent of framing the algorithm in this
perspective is that the activations from layers closer to the input have a direct effect on
downstream layers, while the reverse is not true for a forward pass of the network.
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ALGORITHM 1: MINT pruning algorithm for filters of layers (l, l + 1)
for Every pair of layers (l, l + 1), l ∈ 1, 2, . . . , L− 1 do

for F (l+1)
i , i ∈ 1, 2, . . . N (l+1) do

Initialize S
F

(l+1)
i

= ∅;
for F (l)

j , j ∈ 1, 2, . . . N (l) do
ρ(F

(l+1)
i , F

(l)
j ) = I(F

(l+1)
i , F

(l)
j | F

(l)
j );

if ρ(F
(l+1)
i , F

(l)
j ) ≥ δ then

S
F

(l+1)
i

= S
F

(l+1)
i
∪ index(F

(l)
j )

end
end

end
end

• Using the activations F () for the selected filters, (F
(l+1)
i , F

(l)
j ), we compute the conditional

GMI (Eqn. 3.5) or ρ() between them, given all the remaining filters in layer l. This conditional
dependency captures the relationship between filters in the context of all the contributions
from the preceding layer. Since the activations of layer l + 1 are weighted combinations
of activations from all the filters in the previous layer, we need to account for this when
considering the dependence of activations between two selected filters.

• Based on the strength of each ρ(F
(l+1)
i , F

(l)
j ), the contribution of filters from the previous layer

is either retained/removed. We define a threshold δ for this purpose, a key hyper-parameter.

• S
F

(l+1)
i

stores the indices of all filters from layer l that are retained for a selected filter F (l+1)
i .

The weights for the retained filters are left the same, while we zero out the weights for the
entire kernel in the remaining filters. In the context of fully connected layers, we retain or
zero out specific weight values.

Group Extension While evaluating dependencies between every pair of filters allows us to take a
close look at their relationships, it does not scale well to deeper or wider architectures. To address
this issue, we evaluate filters in groups rather than individually. We define G as the total number of
groups in a layer, where each group contains an equal number of filters. We explore in depth the
impact of varying the number of groups in Section 3.3.4. Although there are multiple approaches
to grouping filters, in this work, we restrict ourselves to sequential grouping, where we construct
groups from consecutive filters. There is no explicit requirement for a pre-grouping step before our
algorithm so long as we use a balanced grouping of filters.
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Finer Details We construct MINT based on the assumption that majority of information from the
preceding layer is passed forward, and the filter in consideration can selectively retain contributions
for a subset of previous filters. This assumption allows us to work on isolated pairs of layers with
minimal impact on downstream layers because retaining filters with high MI will ensure the passage
of a large percentage of the information to the next layer. By retaining as much information as
possible between layers we ensure that the amount of critical information passed to layers further
downstream is maintained. We provide an implementation of our method on GitHub 1.

3.2.4 Conditional Geometric Mutual Information Estimation

In this section, we describe the conditional GMI estimator used to compute ρ() in Alg. 1. We
proceed by first defining conditional GMI estimation as featured in [87] before providing details
on a close approximation of their method we use to calculate multivariate dependencies in our
algorithm.

Definition We first define a general form of GMI denoted by Ip: For parameters p ∈ (0, 1)

and q = 1 − p consider two random variables X ∈ Rdx and Y ∈ Rdy with joint and marginal
distributions f(x,y), f(x), and f(y) respectively. The GMI between X and Y is given by

Ip(X;Y) =
1

4pq
×

[∫∫ (
fXY (x,y)− qfX(y)fY (y)

)2
pfXY (x,y) + qfX(x)fY (y)

dx dy − (p− q)2
]
. (3.2)

Considering the special case of p = q = 1/2 in Eqn. 3.2 we obtain,

I(X;Y) = 1− 2

∫∫
fXY (x,y)fX(x)fY (y)

fXY (x,y) + fX(x)fY (y)
dx dy. (3.3)

The conditional form of this measure, proposed in [87], is,

I(X;Y|Z) = EZ [I(X;Y|Z = z)] , where (3.4)

I(X;Y|Z = z) = 1− 2

∫∫
fXY |Z(x,y|z)fX|Z(x|z)fY |Z(y|z)

fXY |Z(x,y|z) + fX|Z(x|z)fY |Z(y|z)
dx dy. (3.5)

Relating the Estimator to MINT The estimation procedure, outlined in Algorithm 2, is based
on the minimal spanning tree (MST). If we assume a data set UN = {(xi,yi, zi}Ni=1, we divide it
randomly into three equal parts of n samples each, Un, U2, and U3. Denote U2n := U2 ∪ U3.

In step 2 of Algorithm 2, we use set U2n in the Nearest Neighbour Bootstrap algorithm [141]
(Algorithm 3). We generate a data set Ũn consisting of n samples given a data set U2n with 2n

1https://github.com/MichiganCOG/MINT
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ALGORITHM 2: Conditional MI Estimator
Require: Divide UN in two subsets Un and U2n with sample sizes n and 2n, respectively.

1: Divide UN in two subsets Un and U2n with sample sizes n and 2n, respectively.
2: Find set Ũn from Nearest-Neighbor bootstrap (Alg. 3) with n sample size using U2n.
3: Ûn ← Un ∪ Ũn
4: Construct MST on Ûn
5: Rn ← # edges connecting a node in Un to a node of Ũn
6: Î ← 1− Rn

n
Ensure: Conditional MI estimator Î .

ALGORITHM 3: Nearest-Neighbor Bootstrap
Require: Data set U2n := (X2n,Y2n,Z2n) =

{
(xi,yi, zi)

2n
i=1

}
.

1: Divide U2n into two equally sized distinct subsets U2 and U3.
2: Ũn = ∅.
3: For u2 = (x2,y2, z2) ∈ U2 do
4: Let u3 = (x3,y3, z3) ∈ U3 be the sample s.t. z3 is the Nearest Neighbor of z2 in the

dataset U3.
5: Let ũ3 = (x2,y3, z2) and Ũn = Ũn ∪ {ũ3}.

Ensure: n conditional independent sample Ũn.

i.i.d samples from a distribution f(x,y, z). Essentially, this generates conditionally independent
samples. The estimator of I(X;Y|Z) is the FR test statistic, Rn := Rn(Un, Ũn) which is the total
number of dichotomous edges in a graph constructed by first generating an Euclidean minimal
spanning tree (MST) on the concatenated data set Un ∪ Ũn.

MINT takes advantage of the estimator by providing a set of activations from a neuron as
the data to the estimator. Thus, for groups of neurons, we have a multi-dimensional vector of
activations, which correspond to X,Y, and Z. Following Algorithm 2, we get a scalar value as the
CMI measure. Note: Within the MINT, we apply the conditional GMI estimator, indicated as the
function ρ(), on a set of activations obtained from each filter we consider.

Computational Complexity For pruning algorithms we generally consider training-time cost as
less important than test-time impact. The computational complexity of our pruning method has
a bottleneck of O(E log V ), which is created by the algorithm used to generate the MST. Here,
vertices (V ) correspond to the number of neurons in a group. Also, there is an additional dependency
on the number of activations used to approximate the value of a neuron (dimensionality in the MST).
To provide some context for our computational complexity, if we consider the computation of a
hessian [56], with no assumptions on the underlying structure, the time complexity would be of the
orderO(N2), where N denotes the size of the weight matrix. Despite the computational complexity
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bottleneck, our proposed algorithm offers a significantly high compression ratio, which leads to
strong test-time impact.

3.3 Evaluation

In this section, we outline the various protocols used to evaluate our algorithm before discussing
its performance in comparison to existing benchmarks (Section 3.3.3), analyzing the impact of
critical hyper-parameters (Section 3.3.4) and characterizing our algorithm from multiple perspectives
to provide a more holistic evaluation of its behavior (Section 3.3.5).

3.3.1 Datasets, Models and Metrics

Dataset Our experiments are conducted on three distinct datasets, MNIST [142], which contains
hand-written images of digits, CIFAR-10 [143], a 32 × 32 pixel set of natural images across 10
categories and ILSVRC2012 [144], the 1000 class variant of the ImageNet 2012 dataset.

Models We evaluate a Multi-Layer Perceptron model’s performance on the MNIST dataset,
VGG16 [145] and ResNet56 [146] on CIFAR-10, and ResNet50 on ILSVRC2012. These represent
the common dataset-DNN benchmarks used to validate the performance of pruning algorithms.

Metrics We use three distinct metrics to evaluate the quality of our pruning algorithm.

• Parameters Pruned (%): The percentage of parameters removed from the baseline network.
A higher value alongside good performance indicates a superior method.

• Test Accuracy (%): The best performance on the testing set, upon training, for baseline
networks, and re-training, for pruning methods.

• Memory Footprint (Mb): Memory consumed when storing the weights of a network in CSR
format under “npz” files.

An ideal pruning algorithm is expected to have a high value for Parameters Pruned (%) and Test
Accuracy (%) while retaining a small Memory Footprint (Mb).

3.3.2 Experimental Setup

We outline the hyper-parameters used during each stage of our experimental pipeline, training,
pruning and retraining. The values are provided here in an effort to help users replicate our
experiments.
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MLP VGG16 ResNet56

Epochs 30 300 300
Batch Size 256 128 128
Learning Rate 0.1 0.1 0.01
Schedule 10, 20 90, 180, 260 150, 225
Optimizer SGD SGD SGD
Weight Decay 0.0001 0.0005 0.0002
Multiplier 0.1 0.2 0.1

Table 3.1: Training setups used to obtain pre-trained network weights.

MLP VGG16

Epochs 30 300
Batch Size 256 128
Learning Rate 0.1 0.1
Schedule [10, 20] [90, 180, 260]
Optimizer SGD SGD
Weight Decay 0.0001 0.0005
Multiplier 0.1 0.2

Table 3.2: Retraining setups used to obtain final performance listed in Table 3.4.

ResNet56 ResNet50

Epochs 300 130
Batch Size 128 64
Learning Rate 0.1 0.1
Schedule [90, 180, 260] [30, 60, 90, 100]
Optimizer SGD SGD
Weight Decay 0.0002 0.0001
Multiplier 0.1 0.1

Table 3.3: Retraining setups used to obtain final performance listed in Table 3.4.

Training Setup: In Table 3.1 we outline the setups used to obtain trained models from which
mutual information (MI) estimates are computed. A standard pretrained model from PyTorch [147]
zoo was used for the ResNet50-ILSVRC2012 experiments.
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Pruning Setup: For the conditional geometric mutual information (GMI) estimate we provide a
set of parameters describing the number of groups per layer, G as well as the number of samples
per class, m. We use the average activation across a filter’s dimensions as the samples for GMI
computations.

• MLP - MNIST: Between FC 1 and FC2, G is set to 250 and 100 while between FC 2 and
FC 3 it is set to 300 and 10. 650 samples per class are used to compute the conditional GMI
estimates.

• VGG16 - CIFAR10: All the layers between Convolution 4 and Linear 1 use G = 64 while
m = 650. γ = 0.45 is used for Convolution layers 5, 6, 7, and 8.

• ResNet56 - CIFAR10: m is set to 500 samples per class. All the layers between Convolution
1 and Convolution 19 use G = 16, Convolution 20 to 37 use G = 32 while layers up to
Convolution 55 use G = 64. We skip pruning Convolution layer 16, 20, 38, and 54.

• ResNet50 - ILSVRC2012: m is set to 5 samples per class. All the convolution layer use
G = 64. We skip pruning the final linear layer.

Retraining Setup: Tables 3.2 and 3.3 outline the setups used to obtain the final values used in
Table 3.4. While retraining, the MLP took approximately 1-2 minutes, VGG16 took ∼ 1.5 hours,
ResNet56 took ∼ 2.5 hours and ResNet50 on ILSVRC2012 took close to a week on 1 GPU.

3.3.3 Comparison Against Existing Work

As a first step in showcasing MINT’s abilities, we compare it against State-Of-The-Art (SOTA)
baselines in network pruning. The baselines in Table 3.4 are arranged in ascending order of the
percentage of parameters pruned, from top-down. Our algorithm outperforms most of the SOTA
pruning baselines across the number of pruned parameters by maintaining high accuracy and
reducing the memory footprint of the network. We note that while most of the pruning baselines
listed use multiple prune-retrain steps to achieve their result, we use only a single step to match or
outperform them.

In Fig. 3.3 we take a deeper look at how the overall compression % is spread throughout the
network. Comparing Figs. 3.3a, 3.3b and 3.3c, we can establish the strong influence of datasets
and network architecture on where redundancies are stored. In the cases of VGG16 and ResNet56,
training with CIFAR-10 leads to the storage of possibly redundant information in the latter portion of
the networks. The early portions of the network are extremely sensitive to pruning. ResNet50 when
trained on ILSVRC2012 forces compression to be more spread out across the network, possibly
indicating the spread of redundant features at different levels of the network.
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Method Params. Pruned(%) Test Acc. (%) Memory(Mb)

MLP
MNIST

Baseline N.A. 98.59 0.537
SSL [70] 90.95∗ 98.47 N.A.
Network Slimming [67] 96.00∗ 98.51 N.A.
MINT (δ = 0.645) 96.20∗ 98.47 0.022

VGG16
CIFAR-10

Baseline N.A. 93.98 53.868
Pruning Filters [148] 64.00 93.40 N.A
SSS [71] 73.80 93.02 N.A
GAL [55] 82.20 93.42 N.A.
MINT (δ = 0.850) 83.46 93.43 9.020

ResNet56
CIFAR-10

Baseline N.A. 92.55 3.109
GAL [55] 11.80 93.38 N.A.
Pruning Filters [148] 13.70 93.06 N.A.
OED [70] 43.50 93.29 N.A.
NISP [61] 43.68 93.01 N.A.
MINT (δ = 0.184) 52.41 93.47 1.552
MINT (δ = 0.208) 57.01 93.02 1.461

ResNet50
ILSVRC2012

Baseline N.A. 76.13 91.157
GAL [55] 16.86 71.95 N.A.
OED [70] 25.68 73.55 N.A.
SSS [71] 27.05 74.18 N.A.
NISP [61] 43.82 71.99 N.A.
ThiNet [54] 51.45 71.01 N.A.
MINT (δ = 0.1000) 43.01 71.50 52.365
MINT (δ = 0.1101) 49.00 71.12 47.513
MINT (δ = 0.1103) 49.62 71.05 46.925

Table 3.4: MINT is easily able to compete with SOTA pruning methods across all our evaluated
benchmarks, using only a single prune-retrain step. Baselines use multiple prune-retrain steps
and are arranged in increasing order of Parameters Pruned(%). We highlight a subset of available
methods in pruning literature in the table. ∗ indicates comparison of layer 2’s weights.

3.3.4 Hyper-parameter Empirical Analysis

We take a closer look at three critical hyper-parameters that help MINT scale well to deep
networks, (a) the number of groups in a layer, G, (b) the number of samples per class, m, used to
compute the conditional GMI, and (c) γ, a hyper-parameter used to limit pruning for each layer of a
DNN. We look into how each of them impacts the percentage of parameters pruned while ensuring
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Figure 3.3: Illustration of compression % per layer for the best MINT-compressed networks from
Table 3.4. We observe a characteristic peak in compression towards the later layers of both VGG16
and ResNet56 when trained on CIFAR-10. However, compression is spread over the course of
the entire network for ResNet50. The green stars indicate layers we avoid pruning due to high
sensitivity.
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Figure 3.4: (a) An increase in the number of groups per layer allows for finer grouping of filters,
which leads to more accurate GMI estimates and thresholding. Thus, there is a steady increase in
the number of parameters that we can removed to achieve > 98.50% performance. (b) Keeping
G = 20, we observe that increasing the number of samples per class improves the GMI estimate
accuracy, which in turn allows for better thresholding and an increase in Parameters Pruned(%).
The values on top of the bar plots are Test Accuracy(%). (c) Varying γ using a linear or quadratic
dependence on G shows a positive correlation to parameters pruned, while using a constant value
forces irregular behaviour.

we maintain > 98.50% accuracy on MNIST-MLP.

Group size G directly corresponds to the number of filters that are grouped together when
computing conditional GMI and thresholding. Higher G leads to a lower number of filters per
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group, which should allow for a more fine-grained computation of multivariate dependency and
thereby more precise pruning. In this experiment, we set m = 250. Results in Fig. 3.4a match our
expectations by illustrating the increase in the percentage of parameters pruned to maintain the
desired performance.

Samples per class The number of samples per class directly impacts the final number of activa-
tions used to compute the conditional GMI. The GMI estimator should improve its estimates as the
number of samples per class and the total number of samples increase. In this experiment, we fix
G = 20. Fig. 3.4b validates our expectation by showing a steady improvement in the percentage of
parameters pruned as the number of samples per class, and total number of samples increases.

Limit on pruning per layer In the description of Alg. 1, we use δ as a threshold on ρ() values
to help retain only those dependencies that contribute a majority of information to the next layer.
However, in practice since the ρ() values are not normalized w.r.t. each other, there are cases when
certain layers can be fully removed when the δ parameter is large. In order to protect the network
from such behaviour, we use an additional threshold called γ to cap the maximum percentage of
filters that can be removed from a selected layer. If the pruning ratio within a layer exceeds the
value of γ, then γ is used to re-evaluate δ such that it falls within the desired pruning ratio. The new
temporary value of δ is computed using the ρ() values within the pair of layers considered, and is
only used prune filters in the selected pair of layers.

Fig. 3.4c illustrates the impact of γ on the percentage of parameters pruned in the MNIST-
MLP experimental setup. Here, we observe a relatively steady increase in the maximum number
of parameters pruned as the number of groups (G) increases, when no γ is provided or when a
linear/quadratic dependence on G is used to compute γ. However, when γ is fixed at 0.8, we
observe irregular behaviour, where the maximum percentage of parameters removed decreases with
an increase in G. We posit that this behaviour arises from two factors, (a) the varied sensitivity of
different layers is not compensated for by a fixed γ value, and (b) the difference in G values lead to
varied GMI estimates which account for more uncertainty in measurement.

3.3.5 Characterization of MINT

While there are a number of standard metrics used to compare neural network pruning methods,
the original intent in compressing them was to deploy them in real-world scenarios. In such contexts,
characterizations like robustness to adversarial attacks, the ability to reflect true confidence in
predictions, and other such properties are highly desirable. To understand the behavior of MINT-
pruned models in real-world settings, we empirically analyze the variation in features captured,
calibration statistics and adversarial robustness of MINT-pruned models.
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Original ResNet56

MINT-compressed ResNet56

Target: Bird Target: Dog Target: Cat

Figure 3.5: Visualizations using GradCAM [149] illustrate the decrease in effective portions of the
image that contribute towards specific target classes in MINT-compressed ResNet56 (row 2) when
compared to the original un-pruned network (row 1).

Feature Representations While the core idea behind MINT is to retain filters that contribute the
majority of the information passed to the next layer, in using a subset of the available filters we
remove a certain portion of the information passed downstream. Fig. 3.5 compares the portions
of the image that contribute towards the desired target class, using GradCAM [149], between the
baseline (top row) and MINT-compressed networks (bottom row). We observe that the use of a
subset of filters in the compressed network has reduced the effective portions of the image that
contribute towards a decision. In addition, there are minor modifications to the features captured as
well. This idea is illustrated by the removal of contributions from the background portions of the
image, in the baseline network, and an emphasis on the jowls of the dog in the MINT-compressed
network (middle column).

Adversarial Susceptibility To understand the impact of pruning networks in the context of
adversarial attacks, we use two common adversarial attack algorithms, Iterative FGSM [150], which
doesn’t exclusively target a class, and Iterative-LL [151], which targets the selection of the least
likely class. Fig. 3.6 shows the response of the original and MINT-compressed networks to both
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Figure 3.6: By enforcing the use of an important subset of filters from all the available ones, MINT-
compressed networks begin to overvalue their importance. MINT-compressed networks seem more
susceptible to targeted and non-targeted adversarial attacks when compared to the original network.
Here, ε refers to the ε ball in l∞ norm.
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Figure 3.7: We observe that MINT-compressed networks act as a regularizer to decrease the
Expected Calibration Error (ECE), when compared to the original network and better match the
ideal curve. Here, calibration statistics measure the agreement between the confidence output of the
network and the true probability. The red line indicates the ideal trend.

attacks. We clearly observe that MINT-compressed networks are more vulnerable to targeted and
non-targeted attacks. We posit that the reduction in the number of filters used and in the available
redundant features are the reason MINT-compressed networks are vulnerable to adversarial attacks.
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Calibration Error Calibration statistics [152], [153] measure the agreement between the confi-
dence provided by the network and the actual probability. These measures provide an orthogonal
perspective to adversarial attacks since they measure statistics only for in-domain images, while
adversarial attacks alter the input. Fig. 3.7 highlights the decrease in Expected Calibration Error
(ECE) for the MINT-compressed networks in comparison to their original counterparts. The plot
illustrates that the histogram trend is closer to matching the ideal trend indicated by the linear red
curve. After pruning, the sparse networks seem to behave similar to a regularizer by focusing on a
smaller subset of features and decreasing the ECE. On the other hand, the original networks contain
many levels of redundancies which could translate to overfitting and having higher ECE.

3.4 Conclusion

In this work, we introduced MINT as a novel approach to network pruning in which the
dependency between filters of adjacent layers, computed using conditional GMI, is used as a
measure of importance. This idea helps retain filters that pass the majority of the information
through layers, thereby maintaining high test set accuracy. By building a stochastic measure of
dependency, MINT-compressed networks achieve highly competitive pruning performances to
SOTA baselines. This, in spite of competing against methods which use multiple fine-tuning/re-
training steps while MINT uses a single prune-retrain step. When characterizing the behavior
of MINT-compressed networks, we observe that it behaves like a regularizer and improves the
calibration error of the network. However, a reduction in the number of filters used and redundancies
makes pruned networks susceptible to adversarial attacks.
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CHAPTER 4

Hybrid Neural Network Pruning

4.1 Motivation

Our prior work in MINT helped establish the use of mutual information (MI) as a means to yield
high-performing pruned neural networks. However, the use of a minimum spanning tree (MST)
algorithm as the backbone for computing MI creates a large bottleneck in terms of computational
complexity. Specifically, the computational complexity of an MST is O(E log V ), where vertices
(V ) correspond to the number of neurons in a group. In addition, the dimensionality of an MST is
also affected by the number of activations used to approximate the information content of a neuron.
Both these factors force long run times during the pruning phase. While the commonly accepted
trade-off for pruning algorithms is that training time cost is less important than test-time impact, in
this dissertation we strive to consistently improve the efficiency of the pruning process and further
reduce the amount of time spent in the pruning phase.

When reviewing the two broad approaches to neural network pruning, we observed that pruning
approaches based on applying deterministic constraints on weight matrices are straightforward
to implement and leverage the underlying structure of the weight matrices, but they often do not
account for the downstream impact of pruning filters. On the other hand, probabilistic frameworks
focus on reducing the redundancy between layers using information theoretic measures or variational
bayesian inference but are not fast or efficient at modeling the sensitivity of filters at an individual
level. In a sense, the two types of methods are converses: one’s weakness is remedied by the
other. Yet, to the best of our knowledge, there is no recent work that combines both approaches and
improves upon them. This provides an opportunity to simultaneously leverage the strengths of both
approaches to pruning while mitigating their weaknesses.

Finally, there are several unresolved practical issues that exist in pruning pipelines, e.g., the
labor-intensive process of analyzing the sensitivity of different layers to pruning or determining
the upper limit on pruning percentage for each layer of the DNN. Each of these issues requires
repetitive testing and evaluation, which consumes a lot of time, resources, and energy from both a
human and computational point of view. If we include the number of resources and time spent in

30



100

80

11
20

. . . . . .

.

.

.

.

.

.

. . . . . .

.

.

.

.

.

.

.

Figure 4.1: Illustration of the three major components of SNACS that help prune connections
between layer l and l + 1. First, we propose the hash-based ACMI estimator to compute the
connectivity scores between filters in layer l + 1 and all the filters in layer l. These connectivity
scores are thresholded to obtain the set of filters that we prune. Next, to protect the network from
being excessively pruned, we define a custom set of operating constraints, based on the degradation
of activation quality at various pruning levels, to decide on the upper pruning percentage limit for
layer l + 1. Finally, we compute the sensitivity of filters in l + 1 as the sum of normalized weights
between chosen filters in layer l + 1 and all the filters in layer l + 2. We sort and threshold the
sensitivity values to create a subset of sensitive filters that we protect from pruning. Combining the
information from all three highlighted components, we prune layer l + 1.

iteratively pruning and fine-tuning DNNs, the computational overhead to execute a pruning pipeline
is exorbitant. By tackling these practical issues, we can not only reduce the resources and time
consumed to prune DNNs, but we can also pave the way to fully automating the pruning pipeline.

4.2 Slimming Neural Networks Using Adaptive Connectivity Scores

Building atop the probabilistic framework proposed in MINT, we propose Slimming Neural

networks using Adaptive Connectivity Scores (SNACS) as a hybrid single-shot pruning method
in which we unify the benefits of the two broad categories of pruning approaches while solving
practical issues associated with the pruning pipeline. Fig. 4.1 outlines the three main components of
our proposed algorithm.

Firstly, we introduce the Adaptive Conditional Mutual Information (ACMI) measure, which
incorporates weights as a scaling function within the framework of conditional mutual informa-
tion [154], [155]. The ACMI measure evaluates the connectivity between pairs of filters across
adjacent layers and prunes unimportant filters. In this work, we explore different ways to balance
the contributions from the weight matrices and the mutual information computed from activations.

Secondly, to remove the manual effort involved in setting the upper pruning limit of each layer
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in a DNN, we jointly try to optimize them using a custom set of operating constraints. These
constraints are based on the degradation in quality of activations at various levels of compression,
as dictated by the ACMI measure. By jointly constraining the optimization of various layers in a
DNN, the upper pruning limits follow the hierarchical pattern of features learned in neural networks,
where we can prune the layers closest to the output the most.

Finally, we encapsulate the importance of a filter using our newly proposed Sensitivity criterion,
defined as the sum of a filter’s contributions (normalized weights) to filters in the succeeding layer.
Using this measure, we curate a subset of relatively less sensitive filters that can be pruned based on
their connectivity scores, while we protect highly-sensitive filters from any form of pruning. The
sensitivity criterion behaves like a strong prior in deciding the set of filters that contribute important
information and thus need to be protected from any form of pruning. In the following sections, we
outline our algorithm before describing each component in detail.

4.2.1 Algorithm-specific Notations

We assume that a given DNN has a total of L layers where,

• SENSITIVE FILTERS() : Function that returns the indices of a subset of filters that need to be
protected from pruning, computed using sensitivity (Section 4.2.5).

• F (l+1)
i : Activations from the selected filter i in layer l + 1. We also overload this notation to

represent the indexing scheme of the selected filter.

• N (l+1) : Total number of filters in layer l + 1.

• S
F

(l+1)
i

: The set of filter indices whose values are pruned from the weight vector.

• η() : Connectivity score between two filters computed using ACMI (Section 4.2.3).

• F (l)
j : Activations from the set of all filters excluding F (l)

j in layer l. We also overload this
notation to represent the indexing scheme of the selected filters.

• δ: Threshold on connectivity scores to ensure only strong connections are retained.

• γ(l+1) : Upper limit on pruning percentage for layer l + 1 defined using the constraints in
Section 4.2.4.

• W (l+2) : Weight matrix of layer l + 2.

• W̃ (l+2)(i, j) : Indexing element in ith row and jth column of the weight matrix of layer l + 2

averaged over the height and width dimensions.
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4.2.2 Core Algorithm

( ) ( ) ( )

Filter in layer  Conditional Filter in layer  Filter in layer  Selected Filter

Layer

 

Layer

 

Sensitive filter in layer 

Setup:

Figure 4.2: An illustrative example of computing ACMI, η(), between activations of filters in layers
l + 1 and l. In each η() computation, the arrows indicate the filters between which we compute the
connectivity score while taking into consideration the activations from the remaining filters in layer
l. These steps are repeated for every possible pair of filters except for highly sensitive filters in layer
l + 1, where η need not be computed since their connections (lines between filters) are not pruned.

ALGORITHM 4: SNACS pruning between filters of layers (l, l + 1)
for Every pair of layers (l, l + 1), l ∈ 1, 2, . . . , L− 1 do

Compute γ(l+1);
for F (l+1)

i , i ∈ {1, 2, . . . N (l+1)} \ SENSITIVE FILTERS
({

1, 2, . . . N (l+1)
})

do
Initialize S

F
(l+1)
i

= ∅;
for F (l)

j , j ∈ 1, 2, . . . N (l) do
Compute η(F

(l+1)
i , F

(l)
j |F

(l)
j );

if
(
η(F

(l+1)
i , F

(l)
j |F

(l)
j ) ≤ δ and

∑
i |SF (l+1)

i
|/(N (l+1)N (l)) < γ(l+1)

)
then

S
F

(l+1)
i

= S
F

(l+1)
i
∪ index(F

(l)
j )

end
end

end
end

The overall goal of SNACS is to find the set of filters that contribute minimally to the flow of
information between layers and prune their values from the weight matrix. Similar to MINT, we
apply SNACS between every pair of filters in adjacent layers of a pre-trained DNN where,

• We identify a subset of sensitive filters in layer l + 1 that need to be protected from pruning
and iterate over the remaining insensitive filters in layer l + 1.

• To measure the connectivity score, η, between filters in layers l and l + 1, we apply our
proposed hash-based ACMI estimator to the activations from each set of filters. Fig.4.2 shows
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an example of this process. The connectivity score evaluates the strength of the relationship
between two filters in the context of contributions from all the remaining filters in layer l.

• If the connectivity score is lower than a threshold level δ, and the number of pruned filters
does not exceed the pre-determined upper limit, denoted by γ(l+1), we add the index of the
filter to S

F
(l+1)
i

. The weights for retained and protected filters/neurons are untouched, while
we zero out the weights for the entire kernel/elements in pruned filters/neurons.

In the practical implementation of Alg. 4, we determine the value of δ by thresholding η values
from a chosen layer to remove sufficient weights and match the predetermined γl+1. Once we prune
the filters that contribute the least across all the layers of the DNN, we proceed to re-training the
network using a setup that mirrors the training phase of the pre-trained DNN. Across Alg. 4, we note
that SNACS does not contain a continual feedback loop to update weights when pruning. Instead,
we take only a single retraining pass after pruning. Compared to iterative pruning approaches, which
often continually fine-tune to compensate for the performance lost due to pruning, SNACS falls
firmly in the domain of single-shot pruning methods.

Complexity of Algorithm There are 2 primary factors which affect the complexity of Alg. 4, 1)
the number of groups associated with each layer l and l + 1, and 2) the total number of layers in the
DNN. The internal double FOR loop has an upper bound of O(N (l)N (l+1)) if the number of groups
defined matches the number of filters in each layer. The outer FOR loop, used to iterate over pairs
of adjacent layers, is executed a total of L− 1 times.

4.2.3 Adaptive Conditional Mutual Information

In the following sections, we introduce Adaptive Mutual Information, a non-linear dependency
measure that is based on f -divergence [155], [156], extend it to a conditional formulation, and
discuss the hash-table-based estimator used to compute ACMI.

Definition Let X and Y be Euclidean spaces and let PXY be a probability measure on the space
X ×Y . Here, PX and PY define the marginal probability measures. Similar to Yuri et al. [154], for
a given function (x, y) ∈ X × Y 7→ ϕ(x, y) ≥ 0, the Adaptive Mutual Information (AMI), denoted
by Iϕ(X;Y ), is defined as,

Iϕ(X;Y ) = E
PXPY

[
ϕ(X, Y )g

(
dPXY
dPXPY

)]
, (4.1)

where dPXY

dPXPY
is the Radon-Nikodym derivative, and g : (0,∞) 7→ R is a convex function and

g(1) = 0. Note that when dPXY

dPXPY
→ 1 then Iϕ → 0.
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Bounds on AMI Recall the definition of AMI (Eqn. 4.1). For the particular case of g, g(t) =
(t−1)2
2(t+1)

, we have

Iϕ(X;Y ) =
1

2
E

PXPY

[
ϕ(X, Y )

(
dPXY
dPXPY

+ 1

)]
− 2 E

PXPY

[
ϕ(X, Y )h

(
dPXY
dPXPY

)]
, (4.2)

where h(t) =
t

t+ 1
. When dPXY

dPXPY
= 1, then the minimum value of Iϕ is zero. Further, when

PXY and PXPY have no overlapping space then the second term in (4.2) becomes zero. Therefore,
bounds on Iϕ is given as,

0 ≤ Iϕ(X, Y ) ≤ 1

2
E

PXPY

[
ϕ(X, Y )

(
dPXY
dPXPY

+ 1

)]
. (4.3)

Adaptive Conditional Mutual Information Let X , Y , and Z be Euclidean spaces and let PXY Z
be a probability measure on the space X ×Y ×Z . We presume PXY |Z , PX|Z , and PY |Z are the joint
and marginal conditional probability measures, respectively. PZ defines the marginal probability
measure on the space Z . Following Yuri et al. [154], the Adaptive Conditional Mutual Information
(ACMI), denoted by Iϕ(X;Y |Z), is defined as,

Iϕ(X;Y |Z) = E
PZPX|ZPY |Z

[
ϕ(X, Y, Z)g

(
dPXY |Z

dPX|ZPY |Z

)]
. (4.4)

In SNACS, we focus on the particular case of g(t) = (t−1)2
2(t+1)

, as introduced in Berisha and Hero [157].
Using this formulation allows for Iϕ ∈ [0, 1] and symmetric behaviour, which are critical to the
functioning of our algorithm, as well as a number of other properties which allow for statistical
analysis as highlighted in Berisha et al. [158]. Note that when ϕ = 1, the ACMI in (4.4) becomes
the conditional geometric MI measure proposed in Salimeh and Hero [159]. Next, we propose a
hash-based estimator of ACMI to approximate the connectivity score between filters.

Hash-based Estimator of ACMI Consider N i.i.d samples
{

(Xi, Yi, Zi)
}N
i=1

drawn from PXY Z ,
which is defined on the space X × Y × Z . We define a dependence graph G(X, Y, Z) as a directed
multi-partite graph, consisting of three sets of nodes V , U , and W , with cardinalities denoted as
|V |, |U |, and |W |, respectively and with the set of all edges EG. The variable W here is different
from the DNN weight matrix. Following similar arguments to Morteza et al. [88], we map each
point in the sets X = {X1, . . . , XN}, Y = {Y1, . . . , YN}, and Z = {Z1, . . . , ZN} to the nodes in
the sets V , U , and W , respectively, using the hash function H .

Here, H(x) = H2(H1(x)), where the vector valued hash function H1 : Rd 7→ Zd is defined
as H1(x) = [h1(x), . . . , h1(xd)], for x = [x1, . . . , xd] and h1(xi) = bxi+b

ε
c, for a fixed ε > 0, and
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random variable b ∈ [0, ε]. The random hash function H2 : Zd 7→ F is uniformly distributed on the
output F = {1, 2, . . . , F} where for a fixed tunable integer cH , F = cHN .

After the projection of values on to the dependence graph G(X, Y, Z), we define the following
cardinality,

Nijk = #{(Xt, Yt, Zt) s.t. H(Xt) = i, (4.5)

H(Yt) = j,H(Zt) = k},

which is the number of joint collisions of the nodes (Xt, Yt, Zt) at the triple (vi, uj, ωk). Let Nik,
Njk, and Nk be the number of collisions at the vertices (vi, ωk), (uj, ωk), and ωk, respectively. By
using Nijk, Nik, Njk, and Nk, we define the following ratios,

rijk :=
Nijk

N
, rik :=

Nik

N
, rjk :=

Njk

N
, rk :=

Nk

N
. (4.6)

Finally, using the above ratios we propose the following hash-based estimator of the ACMI measure
(4.4):

Îϕ(X;Y |Z) =
∑

eijk∈EG

ϕ(i, j, k)
rik rjk
rk

g

(
rijk rk
rik rjk

)
, (4.7)

summed over all edges eijk of G(X, Y, Z) having non-zero ratios.

Theorem 1. For given g(t) = (t−1)2
2(t+1)

and under the assumptions: (A1) The support sets X , Y ,

and Z are bounded. (A2) The function ϕ is bounded. (A3) The continuous marginal, joint, and

conditional density functions are belong to Hölder continuous class, [160]. For fixed dX , dY , and

dY , as N →∞ we have

Îϕ(X;Y |Z) −→ Iϕ(X;Y |Z), a.s. (4.8)

The proof of Theorem 1 is available in the Appendix A.

Implementation Overall, X, Y , and Z denote sets of activations derived from different filters,
and we obtain a scalar value (connectivity score) as the outcome of the ACMI estimator in (4.7).
The flexibility in defining function ϕ offers a way to connect the probabilistic framework of MI
to existing weight-based pruning approaches. In the experimental results, we explore a variety of
options for ϕ and empirically determine that a function defined on the weight matrix helps achieve
the highest pruning performance.

Complexity By extending the discussion provided in Morteza et al. [88], we find that the
estimation process is dependent on two main factors, the total number of samples, N , and the
dimensionality of each sample. From the original paper, we find that the computational complexity
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is linearly dependent on the number of samples as well as the dimensionality of the samples. In
our setup the dimensionality of a sample is capped by F (l)

j which includes activations from all the
filters in a layer excluding j. The exact value of this variable is dependent on the neural network
architecture over which ACMI is calculated.

4.2.4 Defining Upper Pruning Limit of Layers

To protect different layers of the DNN from being excessively pruned, we propose a set of
operating constraints to automate the joint definition of the upper pruning percentage limits of every
layer in the DNN. Our approach follows the trends in degradation of the quality of activations when
we prune a layer to varying extents. At each layer, we collect the performances of an SVM model
with an RBF kernel (α(l)

c ), trained on a subset of activations from the un-pruned version of the layer
and tested on the same subset from the pruned version of the layer at various compression levels c,
where c ∈ {1, 2, 3, . . . , 99}. Here, we use the ground-truth labels from the dataset to train the SVM
model.

Once we have the performances of SVM models across all layers, we cycle through them, from
100 − 0%, to find the optimal threshold value such that the sum of compression levels of all the
layers, dictated by the selected threshold, adds up to our overall target pruning percentage. Each
layer’s pruning percentage is dictated by the highest compression level where the SVM model’s
performance exceeds the chosen threshold. The general trend we observe is higher the compression
level, the lower the SVM model’s performance. Thus, picking smaller performance thresholds leads
to the selection of higher compression levels in a layer. We select the highest compression level
from a range of possible values to avoid noisy and inconsistent behavior in SVM performances.
Mathematically, we optimize,

τ =
L∑
l=1

β(l)γ(l), (4.9)

where, β(l) is the ratio of the number the of parameters in layer l to the total number of parameters
across the DNN, and τ denotes the desired pruning percentage across the DNN. Fig. 4.3 illustrates
this process using an example of four layers.

It is important to note that the statistics computed from the SVM models across all layers can
be executed in parallel, at an average of 36s per SVM model. This is an important distinction
in comparison to prior work, where optimization involves computing the permutation of pruning
percentages across various layers (order of 99l). Across each such permutation, the entire network
needs to be retrained/fine-tuned, which can take anywhere from a couple of hours (CIFAR-10) to
a week (ILSVRC-2012). This cost is significantly higher when compared to the simple forward
pass across the DNN and training time for an RBF-SVM model used in our approach. Our core
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Figure 4.3: The selection process for upper pruning limits for each layer of a DNN is based on
using a fixed threshold (dotted line) over the SVM models’ performances such that the weighted
sum of Pruned(%) allocated to each layer, the x coordinate where the threshold intersects the curve
latest, matches the overall sparsity τ .

contribution to this work is a systematic approach to deciding the upper pruning percentage limits
across all layers of the DNN. Previous works often relegate this information to the final chosen
values without disclosing how they arrived at them. We provide the γ values for all layers of each
DNN architecture in Section 4.3.2.

4.2.5 Sensitivity of Filters

A common assumption made during pruning is that all filters in a layer have the same downstream
impact and hence can be characterized solely using the magnitude of their weights. In contrast,
probabilistic pruning aims to maintain the flow of information between a pair of layers, but they
consider all filters equally important. Taking into account each filter’s impact on succeeding layers
is an effective tool to assess their importance and protect filters that contribute the majority of
information from being pruned.

We define a sensitivity criterion, λ(F l+1
i ), that can be used to sort filters in their order of

importance. Using this, we curate a subset of filters that are critical and hence need to be protected
from pruning while the remaining filters are pruned using the steps in Alg. 4. To evaluate the
sensitivity of filters in layer l+1, we look at the weight matrix of its downstream layer l+2, W (l+2),
and assess the contributions from filters in l+1 to those in l+2. Here,W (l+2) ∈ RN(l+2)×N(l+1)×H×W ,
where H and W are the height and width of the filters in layer l + 2. For a given filter, the sum
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of normalized contributions across all the filters in l + 2 is its overall sensitivity, λ(F
(l+1)
i ). It is

defined as,

λ(F l+1
i ) =

N(l+2)∑
fc=1

W̃ (l+2)(fc, i)
/
C(l+2)(fc), (4.10)

where C(l+2)(fc) =
N(l+1)∑
fp=1

W̃ (l+2)(fc, fp). (4.11)

Here, C(l+2) is the normalization constant used to relate the weights of filters from l+ 1 contributing
to the same filter in l + 2, and W̃ (l+2) is the weight matrix of l + 2 averaged over the height and
width.

Once we obtain the order of sensitivity values for filters in a given layer, we define a threshold
of highly-sensitive filters that remain untouched after empirically comparing the improvement in
performance at similar pruning levels with and without protecting sensitive filters. This comparison
is critical to ensure that only sensitive filters, which contribute the majority of the information down-
stream, remain untouched. This idea also helps improve the overall compression performance since
less sensitive filters can be pruned more without compromising the quality of information flowing
between layers to a large degree. After empirically comparing the degradation in performance of
the SVM model, between the case when all the filters are pruned and the case when we protect a
variable percentage of sensitive filters, we determine the set of highly-sensitive filters to protect
from pruning and return their indices to Alg. 4.

4.3 Evaluation

We divide our results into three subsections, formatted as an ablative study. Section 4.3.3 focuses
on the validation of the ACMI estimator and evaluation of its run-time and choice of ϕ, to highlight
the impact of using our ACMI estimator in place of the MST-based estimator used in MINT. Here,
the upper pruning limits are manually defined, with the help of artificial limits placed on the SVM
model accuracy, to mimic prior work. In Section 4.3.4, we detail the results of applying SNACS
(ACMI + Automated upper pruning percentage limits) across four Dataset-DNN combinations.
Within this section we focus on drawing strong comparisons against single-shot pruning approaches
while also highlighting how competitive SNACS is amongst approaches that use a modified objective
function or iterative pruning. Finally, in Section 4.3.5 we discuss the impact of adding our sensitivity
measure as a way to prioritize and fully protect important filters from being pruned. We begin by
outlining the various datasets, preprocessing techniques, models and metrics used in our experiments.
Our implementation is available at https://github.com/MichiganCOG/SNACS.
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4.3.1 Datasets, Preprocessing, Models and Metrics

Datasets and Preproceesing We use two distinct datasets in our experiments, CIFAR-10 [143]
and ILSVRC2012 [144]. CIFAR-10 dataset is a 10 class subset of the original 80 million tiny
images dataset. The dataset split contains 50000 images for training, split as 5000 images/class,
and 10000 images for testing where there are 1000 images/class. Each image in the dataset is
originally 32 × 32 × 3. For preprocessing, we randomly crop the image after padding 4 pixels,
then we randomly flip the image horizontally before normalizing its values using mean (0.4914,
0.4822, 0.4465) and std. (0.2470, 0.2435, 0.2616) for each channel respectively. During testing, we
normalize the images and provide them to the DNN.

The ILSVRC2012 dataset contains 1000 different classes of images totalling to about 1.2 million
images overall for training and 50000 images for validation. The number of images per class varies
between 732 to 1300. For preprocessing, we randomly crop the image in to 224× 224× 3, then
we randomly flip the image horizontally before normalizing its values using mean (0.485, 0.456,
0.406) and std. (0.229, 0.224, 0.225) for each channel respectively. During testing, we resize the
original image to 256× 256× 3, take a center crop of size 224× 224× 3 before normalizing it and
providing it to the DNN.

Models We evaluate VGG16 [145], MobileNetv2 [161], and ResNet56 [146]’s performance
on CIFAR-10, and ResNet50’s on ILSVRC2012. These represent the common dataset-DNN
benchmarks used to validate the performance of pruning algorithms.

Metrics We use three distinct metrics to evaluate the quality of our pruning algorithm.

• Pruning (%): The percentage of parameters removed when compared to the total number of
parameters in the un-pruned DNN (Conv and FC only).

• Test Accuracy (%): The best performance on the testing set, upon training, for baseline
networks, and re-training, for pruning methods.

• FLOPs (%): The percentage of FLOPs reduced when compared to the non-pruned original
DNN.

Apart from the above metrics, we also use run-time to compare speed of estimators. An ideal
pruning algorithm is expected to have a high value for all metrics list above.

4.3.2 Experimental Setup

Throughout our experiments we use four major Dataset-DNN combinations, CIFAR10-VGG16,
CIFAR10-ResNet56, CIFAR10-MobileNetv2 and ILSVRC2012-ResNet50. Table 4.1 lists the main
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VGG16 ResNet56 MobileNetv2

Epochs 300 300 350
Batch Size 128 128 128
Learning Rate 0.1 0.01 0.1
Schedule 90, 180, 260 150, 225 150, 250
Optimizer SGD SGD SGD
Weight Decay 0.0005 0.0002 0.00004
Multiplier 0.2 0.1 0.1

Table 4.1: Training setups used to obtain pre-trained network weights.

VGG16 ResNet56 ResNet50

Epochs 300 300 100
Batch Size 128 128 64
Learning Rate 0.1 0.1 0.1
Schedule [90, 180, 260] [90, 180, 260] [30, 60, 90]
Optimizer SGD SGD SGD
Weight Decay 0.0005 0.0005 0.0001/0.00003
Multiplier 0.1 0.2 0.1
Label Smoothing 0.35 0.15 0.8,0.85,0.8,0.8

Table 4.2: Base retraining setup used to obtain final performance listed in Table 4.7.

hyper-parameters used to train the VGG16, ResNet56, and MobileNetv2 networks and obtain their
baseline performances. Pre-trained weights for ILSVRC2012-ResNet50 are used to compute ACMI
values. Tables 4.2 and 4.3 list the basic hyper-parameters used to retrain the VGG16, ResNet56,
MobileNetv2 and ResNet50 networks and obtain their final performance.

Procedure for Upper Pruning Percentage Limit of Layers Across all the experiments, when
using our set of operating constraints to define γ, we collect the performance of an SVM model
across c ∈ {1, 2, . . . , 99}.

4.3.2.1 Hyper-parameters for Evaluation of Estimator

Run-Time To compare the improvement offered by our hash-based ACMI estimator, we choose
the Minimum Spanning Tree-based (MST) CMI estimator from MINT as the nearest competitive
baseline. In this experiment, we apply both estimators over the 9th convolution layer of VGG16. To
ensure fair comparison, we use ACMI with ϕ = 1 as well as ‖weights‖2 where weights are scaled
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MobileNetv2

Epochs 350
Batch Size 128
Learning Rate 0.1
Schedule 150,250
Optimizer SGD
Weight Decay 0.00004
Multiplier 0.1
Label Smoothing 0.7

Table 4.3: Base retraining setup used to obtain final performance listed in Table 4.7.

1 ‖weights‖2 ‖weights‖22 exp(
−‖weights‖22

2
) ‖act‖2

δ 0.9865 0.9925 0.9925 0.988 0.995
γ(1) 00.00 00.00 00.00 00.00 00.00
γ(2) 00.00 00.00 00.00 00.00 00.00
γ(3) 21.02 21.02 21.02 21.02 00.00
γ(4) 51.02 51.02 51.02 51.02 96.02
γ(5) 61.03 51.02 51.02 71.02 51.02
γ(6) 86.03 91.01 91.01 86.03 96.02
γ(7) 91.01 91.01 91.01 91.01 86.03
γ(8) 91.01 91.01 91.01 91.01 91.01
γ(9) 96.02 96.02 96.02 96.02 96.02
γ(10) 91.01 91.01 91.01 91.01 91.01
γ(11) 91.01 91.01 91.01 91.01 91.01
γ(12) 66.01 66.01 66.01 66.01 61.03
γ(13) 91.01 91.01 91.01 91.01 91.01
γ(14) 00.00 00.00 00.00 00.00 00.00

Pruned (%) 84.02 84.12 84.17 84.46 76.13

Table 4.4: Hyper-parameters specific to the ϕ function used final performance; the best possible
final performance ≥ 93.43%. Here, act refers to the activations and γ values are represented as %.

to be between [0, 1] within each layer, use the grouping formulation introduced in MINT as well as
a manual threshold δ on the ACMI values. Here, we vary G values for both the layer l and l + 1 (8
and 9) over 16, 32, 64, 128 and 256. We use an average run-time from 10 trials, except for groups
128 and 256 for the MST-based estimator for which we use 2 trials. Most importantly, we set 200
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‖weights‖2‖act‖2 exp(−‖weights‖22‖act‖22
2

)

δ 0.880 0.919
γ(1) 00.00 00.00
γ(2) 00.00 00.00
γ(3) 41.01 36.03
γ(4) 56.03 61.03
γ(5) 61.03 56.03
γ(6) 81.03 86.03
γ(7) 86.03 96.02
γ(8) 91.01 86.03
γ(9) 96.02 91.01
γ(10) 96.02 96.02
γ(11) 91.01 81.03
γ(12) 61.03 71.02
γ(13) 91.01 86.03
γ(14) 00.00 00.00

Pruned (%) 82.59 76.99

Table 4.5: Hyper-parameters specific to the ϕ function used final performance; the best possible
final performance ≥ 93.43%. Here, act refers to the activations and γ values are represented as %.

samples per class which results in a total of 2000 samples of activations used by the estimators.

Selection of ϕ We implement a number of possible functions and evaluate them over the CIFAR10-
VGG16 experimental setup. The exact hyper-parameters used to obtain ACMI values and the final
test accuracy are provided in Tables 4.2, 4.3, 4.4 and 4.5. We maintain G = 64 throughout these
experiments. The retraining performances are based on the highest Pruning (%) at which the model
has a test accuracy that matches or exceeds 93.43% (from MINT).

4.3.2.2 Hyper-parameters for Large Scale Comparison

The basic setup to obtain the final results presented in Table 4.7 are listed under Tables 4.2 and
4.3. The main differences in the pruning setup between these experiments and the ones listed under
Estimator evaluation are, 1) we avoid using a separate δ parameter and instead prune layers up to
γ(l), and 2) we use label smoothing [113]. In Fig. 4.4, we illustrate the γ values obtained through
our set of operating constraints used to define the upper pruning percentage limit for all layers in
the DNN.
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Figure 4.4: Illustration of the γ values obtained through our operating constraints used to define the
upper pruning percentage limits for a DNN.
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Figure 4.5: (Fig. 4.5a) An increase in the number of samples while dimensionality of input variables
are held constant shows steadily decreasing MSE. (Fig. 4.5b) Increasing the dimensionality of input
variables while the total number of samples are constant shows a steady decline of the MSE. Overall,
the trends observed in both experiments match the expectations from a valid estimator.

4.3.3 Estimator Evaluation

Validation To observe the performance of the estimator when the number of samples is varied, we
set the dimensionality of X, Y to one, and Z to two. This setup is used to mimic the dimensionality
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Figure 4.6: (4.6a) When comparing run-times between the MST-based estimator used in SNACS
and our hash-based ACMI estimator, our estimator provides up to 27× speedup in run-time. (4.6b)
Across different selections of the scaling function in our estimator, the run-times scale similarly as
the number of groups increases.

difference, at a small scale, in our experiments. We vary the number of samples in the range
∈ {500, 1000, 5000, 10000, 15000, 20000, 25000}. To observe the impact of a change in dimension-
ality on the estimator’s performance, we restrict the total number of samples to 5000 and vary the
dimensions of X, Y , and Z across {3, 10, 20, 30, 50}. In both the setups, we sample data from a
multivariate normal distribution where the covariance matrix is set to identity and µ = 0.

Fig. 4.5 shows the results of our experiments where, in Fig. 4.5a, we observe a steady decrease
in MSE as the number of samples is increased. This matches our expectation of a good estimator
where an increase in the number of samples improves the overall estimation accuracy and thus,
reduces the MSE. Fig. 4.5b illustrates the steady increase in MSE when the number of samples is
held constant but the dimensionality of the input variables grows larger. Further, the trends from
secondary curves with ϕ = exp(−‖act‖22

2
) show that the inclusion of a scaling term improves the

overall performance. Thus, our observations match the expected trends from a valid estimator.

Run-time Comparison We provide a comparison between the run-time taken to compute the
dependency scores across convolution layer 9 in VGG16 using our proposed ACMI estimator and
the MST-based estimator used in MINT. For this experiment, we use three distinct estimators, the
MST-based estimator from MINT, our ACMI estimator with ϕ = 1 and ϕ = ‖weight‖2. Here,
weight values are re-scaled between [0, 1]. To provide a fair comparison, we adopt the grouping
concept introduced in MINT. From Fig. 4.6, we make two important observations, 1) run-time
increases with an increase in group size across both estimators, and 2) relative to the run-time
from the MST-based estimator, our estimator is faster by at least 17×. Thus, we show that our
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ϕ function Pruning (%)

constant = 1 84.02
‖weights‖2 84.12
weights2 84.17
exp(−weights2

2
) 84.46

‖act‖2 76.13
‖weights‖2‖act‖2 82.59
exp(−weights2‖act‖22

2
) 76.99

Table 4.6: We compare the maximum compression performance of a variety of ϕ functions when
maintaining a test accuracy ≥ 93.43%. ϕ = exp(−weights2

2
) performs the best, and we use this in all

further experiments.

estimator significantly reduces the overall run-time required to compute conditional MI across a
DNN. Further, the run-time for one of the largest computational bottlenecks is massively reduced
irrespective of the scaling function used in ACMI.

Selection of ϕ There are several potential functions we can associate with ϕ. In Table 4.6, we
illustrate a variety of functions and their performance, w.r.t. the Pruning (%) while maintaining an
accuracy ≥ 93.43% in the VGG16-CIFAR10 setup. The main differences between Section 4.3.3
and MINT [162] are the inclusion of ACMI and the manual definition of upper pruning percentage
limits using artificially capped SVM model accuracies (0.8). From Table 4.6, we observe that most
variants of ϕ outperform SNACS including ϕ = 1. Furthermore, we find thatϕ = exp(−weights2

2
)

performs the best when compared to all the options for ϕ we explore. Thus, we set this as the
default ϕ throughout all further experiments.

4.3.4 Comparison Against Existing Work

When compared to existing single-shot pruning methods, from Table 4.7, we observe that
SNACS outperforms all of them by a significant margin to establish new SOTA performances.
Our consistently high results establish our hybrid pruning framework as one of the top performing
single-shot algorithms. A combination of improved estimates from the hash-based ACMI estimator
(Table 4.6) and the joint definition of upper pruning percentage limits for each layer in the DNN are
the main contributors to our high performance.

Fig. 4.7 helps put SNACS’s performance in perspective of pruning approaches that use either
sparsity-inducing objective functions or iterative re-training setups. In general, we expect a decrease
in performance with an increase in the number of parameters pruned. Often, iterative approaches
achieve the highest compression while suffering a minimal drop in testing accuracy, with methods
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Method Pruning (%) Test Acc. (%) FLOPs (%)

CIFAR-10
VGG16

Baseline N.A. 93.98 N.A.
l1-norm [59] 64.00 93.40 34.18
Variational Pruning [77] 73.34 93.18 39.29
SSS [71] 73.80 93.02 41.60
MINT [162] 83.46 93.43 N.A.
Network Slimming [67] 88.52 93.80 50.94
X-Nets [163] 92.33 93.00 N.A.
Bayesian Compression [78] 94.50 91.00 N.A.
SNACS(τ = 0.96) 96.16 91.06 67.85

CIFAR-10
ResNet56

Baseline N.A. 92.55 N.A.
l1-norm [59] 13.70 93.06 27.28
Variational Pruning [77] 20.49 92.26 20.17
NISP [61] 42.60 93.01 43.61
FSDP [164] 50.00 92.64 N.A.
SCOP [165] 56.30 93.64 56.00
MINT [162] 57.01 93.02 N.A.
SNACS(τ = 0.685) 68.59 93.38 36.89

CIFAR-10
MobileNetv2

Baseline N.A. 93.66 N.A.
SCOP [165] 36.10 94.24 40.30
SNACS(τ = 0.55) 55.00 94.28 28.52

ILSVRC2012
ResNet50

Baseline N.A. 76.13 N.A.
SSS [71] 38.82 71.82 43.04
NISP [61] 43.82 71.99 44.01
MINT [162] 49.62 71.05 N.A.
X-Nets [163] 50.00 72.85 50.00
SCOP [165] 51.80 75.26 54.60
SNACS (τ = 0.60) 54.99 74.68 34.51
SNACS (τ = 0.65) 59.67 74.37 39.04
SNACS (τ = 0.70) 64.51 73.59 45.65
SNACS (τ = 0.75) 68.93 72.60 51.52

Table 4.7: Using a single train-prune-retrain cycle, SNACS is among the top performers across all
the Dataset-DNN combinations. Baselines are ordered according to increasing Pruning (%).

that use joint optimization sprinkled across the entire range of Pruning (%) values. Single-shot
methods are often the weakest performers, given that they get the fewest attempts to account for the
loss in accuracy after pruning. However, across each dataset-DNN combination, our algorithm is
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Figure 4.7: Comparison of single-shot (green) vs. non single-shot (red) pruning approaches across
our benchmarks. SNACS, despite being a single-shot approach, is highly competitive with the best
performing iterative methods.

highly competitive with the best pruning approaches regardless of variations in optimizers, iterative
pruning pipelines, modified objective functions, or layer-by-layer fine-tuning. SNACS remains
competitive at high sparsity levels despite using a single prune-retrain step.

An important distinction between our pruning approach and other single-shot methods we
compare against is that we avoid pruning early layers to a large extent, as shown in Fig. 4.8. Given
that a large portion of FLOPs are concentrated in the early layers of the network, the percentage
of FLOPs reduced by our SNACS is slightly lower when compared to methods like X-Nets [163],
which preemptively prunes the network before training, or SSS [71], which optimizes a different
objective function altogether. Interestingly, on closer inspection of Fig. 4.8, we observe a minimal
correlation between the patterns of high and low γ values achieved in MINT and our work. While
MINT showcases minimal pruning in the early and middle sets of layers, SNACS focuses on the
middle and final set of layers, avoiding the early layers. We believe this variation stems from the
fact that γ values in MINT are co-opted from prior works where the focus was on individual layers,
while in SNACS, the joint definition of γs helps capture trends across multiple layers while trying
to optimize the performance-sparsity tradeoff.

We observe that in SNACS, DNNs are more forgiving when pruning layers closer to the output
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Figure 4.8: On observing the compression performance per layer in the ILSVRC2012-ResNet50
experiment, SNACS can achieve high Pruning (%) while focusing only on the middle and latter
layers while avoiding the early layers. Interestingly, the pattern of pruning in MINT and SNACS is
extremely different.

Method Pruning (%) Test Accuracy (%)

CIFAR-10
ResNet56

Baseline N.A. 92.55
SNACS (ours) 68.59 93.38
SNACS + sensitivity (ours) 68.96 93.41

Table 4.8: By saving a small percentage of sensitive filters, we can further improve the overall
Pruning (%) while maintaining high Test Accuracy (%).

than input since the retraining phase allows them to overcome the loss of abstract concepts learned in
later layers but not fundamental structures when compressing the earlier layers of the network. Our
observations are matched by the discriminant scores in Gkalelis and Mezaris [164] and the median
oracle ranking statistics per layer from Molchanov et al. [166]. However, these observations are
in direct contrast to previous works which identify portions of the network closer to the input as
being pruned first [55], [71]. We hypothesize that their outcomes stem from the modification of the
objective function and subsequent training of the baseline network. In our approach and those in
[164], [166], we remove filters based on a pre-defined criterion without modifying the loss function.
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Figure 4.9: Illustrations of filters retained (white) and pruned (black) w/o and with sensitivity-
based pruning. When protecting important filters from pruning, all its associated connections are
maintained (red highlight). An interesting impact of sensitivity is that the connections pruned can
be completely modified when compared to their counterpart w/o pruning. This is illustrated by the
pruning mask of convolution 46.

4.3.5 Sensitivity Evaluation

Experiments in Sections 4.3.3 and 4.3.4 assume that all filters contributed equally to the
information flow downstream and hence, the connectivity scores are the only constraint used for
pruning. In this section, we highlight the impact of using the sensitivity criterion to prioritize the
pruning of relatively weaker filters while protecting more sensitive filters from pruning on the
CIFAR10-ResNet56 experimental setup. In Figs. 4.9a and 4.9b, we illustrate the 2D pruning masks
generated by our algorithm, where the colors black and white represent filters that are removed and
retained, respectively, and we observe three distinct behaviours. Firstly, when a filter is protected
from pruning, an entire row representing all of its associated connections, are retained. Secondly,
in addition to this we also observe an increase in the number of weights pruned from filters that
are not protected. This is illustrated by an increase in the number of black pixels overall. Finally,
when the sensitivity criterion is applied to layers which were previously not pruned to a large extent
(Fig. 4.8 Convolution 32, 34, and many others) we observe a complete restructure in the way filters
are pruned. Fig. 4.9b highlights this trend, which showcases an increase in the overall pruning of
the layer as well as a stark difference in how it is pruned. All these observations put together lead
to an overall improvement in the Pruning (%) with the inclusion of sensitivity, while maintaining
high Test Accuracy (%) as shown in Table 4.8. In Table 4.9 we highlight the difference in γ values
achieved in each case.

Across the results presented in Table 4.8, the percentage of filters protected from pruning is
maintained at an optimal level. We determine the optimal combination of high sparsity and accuracy
by constraining the % of filters saved to a value such that SVM model performance is higher than
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w/o Sensitivity with Sensitivity

γ(27) 0.699 0.699
γ(28) 0.4794 0.4394
γ(29) 0.1591 0.5507
γ(30) 0.5390 0.7041
γ(31) 0.3691 0.5117
γ(32) 0.9794 0.1796
γ(33) 0.089 0.3183
γ(34) 0.7392 0.6611
γ(35) 0.2695 0.4287
γ(36) 0.7294 0.8261
γ(37) 0.8896 0.7739
γ(38) 0.8398 0.8198
γ(39) 0.6699 0.799
γ(40) 0.9699 0.9299
γ(41) 0.8698 0.7927
γ(42) 0.899 0.8999
γ(43) 0.2399 0.2299
γ(44) 0.9499 0.8957
γ(45) 0.3498 0.5817
γ(46) 0.899 0.8898
γ(47) 0.7199 0.7099
γ(48) 0.8898 0.8759
γ(49) 0.9199 0.8813
γ(50) 0.9599 0.9599
γ(51) 0.9699 0.9699
γ(52) 0.9799 0.9699
γ(53) 0.9799 0.9799
γ(54) 0.9799 0.9799

Compression(%) 68.59 68.96

Table 4.9: Comparison of γ values in CIFAR10-ResNet56 when sensitive filters are protected.

the case when no filters are protected. The performance comparison is restricted to the SVM model
only and no re-training is necessary. When we relax this constraint (Table 4.10), we observe that
the performance levels drop by a significant amount while the sparsity level is lower than expected.
This highlights the necessity of maintaining our constraints to obtain the optimal combination of
high sparsity with accuracy.
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Layer % Saved Sparsity (%) Test Accuracy (%)

Layer 28

30 15.03 92.83
34 15.03 93.05
38 14.35 92.88
45 55.07 93.41
50 48.92 92.71
54 45.89 93.24
60 39.74 93.10

Layer 44

25 26.97 92.97
30 54.83 93.13
35 48.55 93.28
40 58.17 93.41
45 53.58 92.96
50 48.99 93.50

52.5 45.92 92.86

Table 4.10: Deviating the % of filters saved from our optimal constraints forces lower sparsity levels
with bad testing performance. Optimal values are highlighted in bold.

4.3.6 Conclusion

In this work, we establish SNACS as a hybrid pruning framework where ACMI provides
faster overall run-time and improved estimation accuracy. We offer new state-of-the-art levels of
compression using a single train-prune-retrain cycle. At a fundamental level, by jointly constraining
the definition of upper pruning limits across all layers of a DNN, we identify that early layers
do not tolerate any form of pruning, and latter layers can be pruned to large extents. Finally, by
using sensitivity as a strong prior for deciding which filters need to be pruned, we induce larger
pruning performance. Our observations on the interplay between sensitivity and ACMI highlight an
interesting direction for future work for hybrid pruning methods. Overall, we improve the run-time
and performance of our previously established pruning framework while addressing a number of
practical challenges associated with it.

52



CHAPTER 5

Incremental Label Curriculum

5.1 Motivation

Curriculum learning is a long-standing approach that extracts more performance with the same
or lesser information. The main philosophy behind curriculum learning is the organization and
scheduling of data with respect to difficulty. The notion of difficulty in samples has evolved since its
original formulation, mirroring the perspective of human annotators, to being more model-centric.
However, standard curriculum learning comes with the caveat of using only a subset of the data,
be it easy or difficult, at varying segments of the training phase. This approach reduces the total
amount of information made available to the DNN, not to mention the diversity in data while adding
the overhead of identifying “difficult” samples. An alternative means of organizing training data
while maintaining the entire training set could be leveraged to improve the learning process during
the early training phase, thus ensuring higher generalization performance and improved quality of
learned features.

In addition, traditional classification setups for DNNs find it difficult to learn and match the one-
hot distribution of ground-truth vectors. We can attribute their inability to the function approximation
generated using common activations as well as the content of the input image. Often, the image
contains information pertaining to multiple categories of data in the input or feature embedding
space, thus, making it more difficult to learn strict one-hot encodings. By smoothing out the one-hot
distribution to include components that contribute to the content of the input image, the DNNs can
learn to approximate distributions akin to what we would expect in the real world.

5.2 Learning from Incremental Labels and Adaptive Compensation

Inspired by an alternative outlook on Elman’s [167] notion of “starting small”, we propose
LILAC, Learning with Incremental Labels and Adaptive Compensation, a novel algorithm that
uses label-based curriculum and label-smoothing to regulate the learning process of DNNs. LILAC
works in two phases, 1) Incremental Label Introduction (IL), which emphasizes gradually learning
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Figure 5.1: Illustration of the components of LILAC using a four-label dataset example. The
Incremental Label introduction (IL) phase introduces new labels at regular intervals while using the
data corresponding to unknown labels (pseudo-label) as negative samples. Once we have introduced
all the labels, the Adaptive Compensation (AC) phase of training begins. Here, we use a prior copy
of the network to classify training data. If a sample is misclassified, then a smoother distribution is
used as its ground-truth vector in the current epoch.

labels instead of samples, and 2) Adaptive Compensation (AC), which regularizes the outcomes
of previously misclassified samples by modifying their target vectors to smoother distributions
(Fig. 5.1).

In the first phase, we partition data into two mutually exclusive sets: S, a subset of ground-truth
(GT) labels and their corresponding data; and U, remaining data associated with a pseudo-label (ρ)
and used as negative samples. Once we train the network using the current state of the data partition
for a fixed interval, we reveal more GT labels and their corresponding data and repeat the training
process. By contrasting data in S against the entire remaining dataset in U, we consistently use all
the available data throughout training, thereby overcoming one of the primary issues in curriculum
learning. The setup of the IL phase, inspired by continual learning, allows us to flexibly space
out the introduction of new labels and provide the network with enough time to develop a strong
understanding of each class.

Once we reveal all the GT labels, we initiate the AC phase of training. In this phase, we replace
the target one-hot vector of misclassified samples with a smoother distribution, thus limiting the
alteration of target vectors to only necessary samples. We obtain the misclassified samples from a
previous version of the network being trained. The smoother distribution provides easier values for
the network to learn while using a previous copy of the network helps avoid external computational
overhead. Our intended effect in using a smoother distribution is to increase the entropy of the

54



Step 1: Partition Data Step 2: Sample Mini-batch Step 3: Balance Mini-batch

Label 1

Label 2

Label 3

Label 4

Pseudo
Label

Figure 5.2: Illustration of the steps in the IL phase when (Top) only one GT label is in S and
(Bottom) when two GT labels are in S. The steps are 1) partition data, 2) sample a mini-batch of
data and 3) balance the number of samples from U to match those from S in the mini-batch before
training. Samples from U are assumed to have a uniform prior when being augmented/reduced to
match the total number of samples from S. Values inside each pie represent the number of samples.
Across both cases, the number of samples from S determines the final balanced mini-batch size.

target vector. In the following sections, we describe the IL and AC phases in detail.

5.2.1 Incremental Label Introduction

In the IL phase, we partition data into two sets: S, a subset of GT labels and their corresponding
data; and U, the remaining data marked as negative samples using a pseudo-label ρ. Over the
course of multiple intervals of training, we reveal more GT labels to the network according to a
predetermined schedule. Within a given interval of training, the data partition is held fixed, and we
uniformly sample mini-batches from the entire training set based on their GT label. However, for
samples from U, we use ρ as their label. There is no additional change required in the objective
function or the outputs of the model when we sample data from U. By the end of this phase we
reveal all GT labels to the network.

For a given dataset, we assume a total of L labels are provided in the ascending order of their
value. Based on this ordering, we initialize the first b labels and their corresponding data as S and
the data corresponding to the remaining L − b labels as U. Over the course of multiple training
intervals, we reveal GT labels in increments of m, a hyper-parameter that controls the schedule of
new label introduction. Revealing a GT label involves moving the corresponding data from U to S
and using their GT label instead of ρ.

Within a training interval, we train the network for E epochs using the current state of the data
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partition. First, we sample a mini-batch of data based on a uniform prior over their GT labels. Then,
we modify their target vectors based on the partition to which a sample belongs. To ensure the
balanced occurrence of samples from GT labels and ρ, we augment or reduce the number of samples
from U to match those from S and use this curated mini-batch to train the network. After E epochs,
we move m new GT labels and their corresponding data from U to S and repeat the entire process
(Fig. 5.2).

5.2.2 Adaptive Compensation

Once all the GT labels have been revealed and the network has trained sufficiently, we begin the
AC phase. In this phase, we use a smoother distribution for the target vector of samples that have
been misclassified. Compared to one-hot vectors, optimizing over a smoother distribution, with
an increased entropy, can bridge the gap between the unequal distances in the embedding space
and overlaps in the label space [168]. This overlap can occur due to common image content or
close proximity in the embedding space relative to other classes. Thus, improving the entropy of
such target vectors can help modify the embedding space in the next epoch and compensate for the
predictions in misclassified samples.

For a sample (xi, yi) in epoch e ≥ T , we use predictions from the model at e− 1 to determine
the final target vector used in the objective function; specifically, we smoothen the target vector for
a sample if and only if it was misclassified by the model at epoch e− 1. Here, (xi, yi) denotes a
training sample and its corresponding GT label for sample index i, and T represents a threshold
epoch value until which the network is trained without adaptive compensation. We compute the
final target vector for the ith instance at epoch e, tei , based on the model θe−1 using the following
equation,

tei =

( εL−1
L−1 )δyi + ( 1−ε

L−1)1, arg max
(
fθe−1(xi)

)
6= yi

δyi , otherwise
. (5.1)

Here, δyi represents the one-hot vector corresponding to GT label yi, 1 is a vector of L dimen-
sions with all entries as 1 and ε is a scaling hyper-parameter.

5.3 Evaluation

In this section, we discuss the performance of LILAC in the context of existing baselines (Sec-
tion 5.3.4) before analyzing the impact of key hyper-parameters on the training setup (Section 5.3.5)
and how they affect the IL and AC phases (Section 5.3.6). We begin by outlining the various
protocols used to evaluate the performance of all the algorithms used in the experiments.
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5.3.1 Datasets, Models and Metrics

Dataset We conduct our experiments on three distinct datasets, CIFAR-10, CIFAR-100 [143],
and STL-10 [169]. CIFAR-10 and 100 are the 10 and 100 class subsets of the tiny images dataset,
while STL-10 is a 10 class subset of the ILSVRC2012 dataset.

Models and Metrics We evaluate the performance of ResNet18 on CIFAR-10 and CIFAR-100,
and ResNet34 [146] on STL-10 using Average Recognition Accuracy (%) over five trials and their
Standard Deviation.

5.3.2 Baselines

1. Stochastic Gradient Descent with mini-batches (Batch Learning).

2. Standard Baselines

• Fixed Curriculum: Following the methodology proposed in Bengio et al. [90], we
create a “Simple” subset of the dataset, using data that are within a value of 1.1, as
predicted by a linear one-vs-all SVR model. We train the deep network on the “Simple”
dataset for a fixed period of time, which mirrors the total length of the IL phase, after
which we use the entire dataset to train the network.

• Label Smoothing: We follow the method proposed in Szegedy et al. [113].

3. Custom Baselines

• Dynamic Batch Size (DBS): DBS randomly copies data available within a mini-batch to
mimic variable batch sizes, similar to the IL phase. However, all GT labels are available
to the model throughout the training process.

• Random Augmentation (RA): This baseline samples from a single randomly chosen
class in U, available in the current mini-batch, to balance data between S and U in the
current mini-batch. This approach is in contrast to LILAC, which uses samples from all
classes in U that are available in the current mini-batch.

4. Ablative Baselines
• Only IL: This baseline quantifies the contribution of incrementally learning labels when

combined with batch learning.
• Only AC: This baseline shows the impact of adaptive compensation, as a label smoothing

technique, when combined with batch learning.

57



Parameters CIFAR10/100 STL10
Epochs 300 450
Batch Size 128 128
Learning Rate 0.1 0.1
Lr Milestones [90 180 260] [300 400]
Weight Decay 0.0005 0.0005
Nesterov Momentum Yes Yes
Gamma 0.2 0.1

Table 5.1: List of hyper-parameters used to in batch learning. Note: All experiments use the SGD
optimizer.

Types Training
Performance (%)

CIFAR 10 CIFAR 100 STL 10

Batch Learning 95.19 ± 0.190 78.32 ± 0.175 72.88 ± 0.642

Standard
Fixed Curriculum [90] 95.27 ± 0.112 77.89 ± 0.287 72.18 ± 0.601
Label Smoothing [113] 95.27 ± 0.111 79.06 ± 0.179 72.55 ± 0.877

Custom
Random Augmentation 95.27 ± 0.076 75.37 ± 0.480 73.67 ± 0.708
Dynamic Batch Size 95.22 ± 0.131 78.73 ± 0.264 72.66 ± 1.081

Ablative
Only IL (ours) 95.38 ± 0.135 78.73 ± 0.139 73.43 ± 0.903
Only AC (ours) 95.38 ± 0.170 78.94 ± 0.179 72.94 ± 0.530

Overall
LILAC (ours) 95.52 ± 0.072 78.88 ± 0.201 73.77 ± 0.838
LS + LILAC (ours) 95.34 ± 0.080 79.08 ± 0.307 73.59 ± 0.623

Table 5.2: Under similar setups, LILAC consistently achieves higher mean accuracy than batch
learning across all evaluated benchmarks, a property not shared by other baselines.

5.3.3 Experimental Setup

In Table 5.1 we list the general hyper-parameters used to train the batch learning portion of
every baseline. This setup covers the training beyond the IL phase for LILAC, DBS, RA, Only IL as
well as the Only AC baseline. Across all the methods we ensure that the total number of training
epochs, when all the labels in the dataset are known, is held constant.

5.3.4 Comparison Against Existing Work

Table 5.2 illustrates the improvement offered by LILAC over batch learning when using compa-
rable setups. We further break down the contributions of each phase of LILAC. Both, Only IL and
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Method CIFAR-10

Wide Residual Networks [170] 96.11
Multilevel Residual Networks [171] 96.23
Fractional Max-pooling [172] 96.53
Densely Connected Convolutional Networks [173] 96.54
Drop-Activation [174] 96.55
Shake-Drop [175] 96.59
Shake-Drop + LILAC (ours) 96.79

Table 5.3: LILAC easily outperforms the Shake-Drop network ([175]) as well as other top perform-
ing algorithms on CIFAR-10 with standard pre-processing (random crop + flip).

Only AC improve over batch learning, albeit to varying degrees. This highlights their individual
strengths and importance. However, we observe a consistently high performance across all bench-
marks only when we combine both phases. These results indicate that the two phases complement
each other.

The Fixed Curriculum approach does not offer consistent improvements over the batch learning
baseline across CIFAR-100 and STL-10, while the Label Smoothing approach does not outperform
batch learning on the STL-10 dataset. Both of these standard baselines fall short, while LILAC
consistently outperforms batch learning across all evaluated benchmarks. Interestingly, Label
Smoothing provides the highest performance on CIFAR-100. Since the original formulation of
LILAC is based on batch learning, we assume all GT vectors to be one-hot. Label Smoothing violates
this assumption. Instead, when we tailor our GT vectors according to the Label Smoothing baseline,
we outperform it with minimal hyper-parameter tuning, a testament to LILAC’s applicability on top
of conventional label smoothing.

The RA baseline highlights the importance of using all of the data in U as negative samples
in the IL phase instead of using data from individual classes. This idea is reflected in the boost
in performance offered by LILAC. The DBS baseline highlights the importance of fluctuating
mini-batch sizes, which occur due to the balancing of data in the IL phase. Even with the availability
of all labels and fluctuating batch sizes, the DBS baseline is easily outperformed by LILAC. This
indicates the importance of the recursive structure used to introduce data in the IL phase and the use
of data from U as negative samples. Overall, LILAC consistently outperforms batch learning across
all benchmarks while existing comparable methods fail to do so. When we extend LILAC to the
Shake-Drop [175] network architecture, with only standard pre-processing, we easily outperform
other existing approaches with comparable setups, as shown in Table 5.3.
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5.3.5 Hyper-parameter Empirical Analysis

Smoothness of Target Vector Throughout this work, we maintained the importance of using a
smoother distribution as the alternate target vector during the AC phase. Table 5.4 (Top) illustrates
the change in performance across varying degrees of smoothness in the alternate target vector. There
is a clear increase in performance when ε values are between 0.7-0.4 (mid-range). On either side of
this band of values the GT vector is either too sharp or too flat, which leads to a drop in performance.

Size of Label Groups We design LILAC to introduce as many or as few new labels as desired
in the IL phase. We hypothesized that developing stronger representations can be facilitated by
introducing a small number of new labels while contrasting them against a large variety of negative
samples. Table 5.4 (Bottom) supports our hypothesis by illustrating the decrease in performance
with an increase in the number of new labels introduced in each interval of the IL phase. Thus,
we introduce two labels each for CIFAR-10 and STL-10 and only one new label per interval for
CIFAR-100 throughout the experiments in Table 5.2.

Epochs in Training Interval When we vary E, the fixed training interval size in the IL phase,
we observe a dataset-specific behaviour. For datasets with a lower number of total labels, a higher
number of epochs provides better performance while, for datasets with more labels, a smaller
number of epochs yields better performance. Holding the alternate learning rate consistent, pacing
the introduction of new labels can have a tremendous impact on the subsequent hyper-parameters
used in LILAC.

Label Order In Table 5.5, we compare three different orders of label introduction during the IL
phase, 1) random label order, 2) difficulty-based label order, and 3) ascending label order. Here,
difficulty-based label order is obtained from the overall classification scores per label, using the
features from a trained model. Although these three orders do not constitute the exhaustive set
of possible label orderings, within these three options there is no definitive order that boosts the
performance of LILAC consistently. Thus, we employ ascending label order throughout our work.

5.3.6 Discussion: Impact of Each Phase

In this section, we take a closer look at the impact of each phase of LILAC and how they affect
the quality of the learned representations. We extract features from the second to last layer of
ResNet18/34 from 3 different baselines (Batch Learning, LILAC, and Only IL) and use these features
to train a linear SVM model and a k-means clustering model with hungarian job assignment [176].

Figs. 5.3 and 5.4 highlight the two key phases of our algorithm. First, the plots on the left-hand
side show a steady improvement in the performance of LILAC and the Only IL baseline once the IL
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Property
Performance (%)

CIFAR-10 CIFAR-100 STL-10

ε = 0.9 95.30 ± 0.072 78.48 ± 0.328 73.57 ± 0.980
ε = 0.8 95.34 ± 0.141 78.52 ± 0.118 73.54 ± 0.984
ε = 0.7 95.42 ± 0.189 78.72 ± 0.356 73.59 ± 0.872
ε = 0.6 95.36 ± 0.096 78.75 ± 0.180 73.77 ± 0.838
ε = 0.5 95.49 ± 0.207 78.88 ± 0.227 73.61 ± 0.810
ε = 0.4 95.52 ± 0.072 78.88 ± 0.201 73.54 ± 0.959
ε = 0.3 95.31 ± 0.125 78.66 ± 78.66 73.59 ± 0.955
ε = 0.2 95.36 ± 0.095 78.47 ± 0.093 73.57 ± 0.963

m: 1 95.32 ± 0.156 78.73 ± 0.139 73.27 ± 0.220
m: 2 (4) 95.38 ± 0.135 78.34 ± 0.209 73.43 ± 0.903
m: 4 (8) 95.29 ± 0.069 78.37 ± 0.114 72.30 ± 0.543

Table 5.4: (Top) The mid-range ε values, 0.7-0.4, show an increase in performance, while the edges,
due to either too sharp or too flat a distribution, show decreased performance. (Bottom) Only IL
model results illustrate the importance of introducing a small number of new labels in each interval
of the IL phase. Values in brackets are for CIFAR-100.

Property
Performance (%)

CIFAR-10 CIFAR-100 STL-10

E = 1 95.13 ± 0.175 78.21 ± 0.236 72.59 ± 0.476
E = 3 95.20 ± 0.200 78.73 ± 0.139 73.03 ± 0.380
E = 5 95.32 ± 0.044 78.57 ± 0.102 73.08 ± 0.996
E = 7 95.32 ± 0.156 78.44 ± 0.265 73.13 ± 1.460
E = 10 95.26 ± 0.185 77.98 ± 0.218 73.27 ± 0.220

Label Order: Rnd. 95.30 ± 0.146 78.35 ± 0.280 73.10 ± 0.861
Label Order: Difficulty 95.25 ± 0.156 78.42 ± 0.115 73.69 ± 0.849
Label Order: Asc. 95.32 ± 0.156 78.73 ± 0.139 73.27 ± 0.220

Table 5.5: (Top) Varying E, the fixed training interval size in the IL phase, shows a dataset-specific
behavior, with the dataset with lesser labels preferring a larger number of epochs while the dataset
with more labels preferring a smaller number of epochs. (Bottom) Comparing random label
ordering and difficulty-based label ordering against the ascending order assumption used throughout
our experiments, we observe no preference for any ordering pattern.
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phase is complete and all the labels have been introduced to the network. When we compare the
plots of CIFAR-10 and STL-10 against CIFAR-100, we see that all baselines follow the learning
trend shown by batch learning, with CIFAR-100 lagging behind slightly. Since there are a large
number of epochs required to introduce all the labels of CIFAR-100 to the network, the plots are
significantly delayed compared to batch learning. Conversely, since there are very few epochs in the
IL phase of CIFAR-10 and STL-10, we observe that the performance trend of Only IL and LILAC
quickly matches that of batch learning. Overall, the final performances of both LILAC and the
Only IL baseline are higher than batch learning, which supports the importance of the IL phase in
learning strong representations.

The plots on the right-hand side highlight the similarity in behavior of Only IL and LILAC
before AC. However, afterward, we observe that the performance of LILAC overtakes the Only IL

baseline. This trend is a clear indicator of the improvement in representation quality when AC is
applied. Additionally, from Fig. 5.3, we observe that inherently the STL-10 dataset results have
a high standard deviation, which is reflected in the middle portion of the training phase, between
the end of the IL and the beginning of the AC phase, and it is not a consequence of our approach.
To further support the importance of the AC phase, we provide examples in Fig. 5.5 of randomly
sampled data from the testing set that are incorrectly classified by the Only IL baseline and correctly
classified by LILAC.

5.4 Key Takeaways

In this work, we proposed LILAC, which rethinks curriculum learning based on incrementally
learning labels instead of samples. This approach helps kick-start the learning process from a
substantially better starting point while making the learned embedding space amenable to adaptive
compensation of target vectors. Both these techniques combine well in LILAC to show the highest
performance on CIFAR-10 for simple data augmentations while easily outperforming batch and
curriculum learning and label smoothing methods on comparable network architectures. Overall,
we use the improved starting point to obtain a higher quality of solution, while maintaining the
same number of epochs the DNN has complete knowledge of the GT label set. We provide an
implementation of LILAC at https://github.com/MichiganCOG/LILAC.
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Figure 5.3: Plots on the (Left) show the common learning trend between all baselines, albeit slightly
delayed for CIFAR-100, after the IL phase, while those on the (Right) show steady improvement
in performance after applying AC when compared to the Only IL baseline. Final supervised
classification performances on representations collected from LILAC easily outperform those from
batch learning and Only IL methods.
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Figure 5.4: Unsupervised classification performance on representations collected from LILAC
easily outperforms those collected from Batch Learning and Only IL methods. The plots on the left
show the common learning trend between all baselines after IL while plots on the right show steady
improvement in performance after applying AC when compared to the baselines.

(a) CIFAR-10 (b) CIFAR-100 (c) STL-10

Figure 5.5: Illustration of 8 randomly chosen samples that were incorrectly labelled by the Only IL
baseline and correctly labelled by LILAC, highlighting the importance of AC.
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CHAPTER 6

Targeting Performance, Efficiency and Robustness

6.1 Motivation

When developing deep neural network (DNN) solutions, accuracy or performance metrics are
often a key point of emphasis. While performance is critical, the computational load and security of
the final solution play an equally important role in a real-world setting. Our prior work on MINT
and SNACS helped establish state-of-the-art benchmarks for one-shot pruning of neural networks
resulting in low computational load at inference while maintaining high accuracy. However, when
empirically analyzing the adversarial response of our pruned neural networks and standard mini-
batch SGD, we observe that they are highly susceptible to being attacked. Thus, addressing their
adversarial vulnerability is crucial to enable their widespread adoption in real-world settings.

While our work in pruning addressed efficiency from an architecture prototyping and inference
perspective, the training process still scales uncompromisingly with the choice of model, dataset,
GPU memory, and other factors. LILAC helped us understand the field of curriculum learning
and how organizing and scheduling limited data can improve the learning process with minimal
overhead. To further improve the efficiency of the training process, we explore the idea of finding
an optimal subset of data to improve generalization performance [177]. By reducing the amount of
data used to train a DNN we can simultaneously target improvements in performance and efficiency.
We take it a step further by jointly constraining the development process to satisfy Performance
(P), Efficiency (E), and Robustness (R) or PER goals so that we can significantly reduce the cost
and resource consumption of DNN solutions while simultaneously making them more secure from
attacks.

6.2 Concurrently Achieving Performance, Efficiency and Adversarial
Robustness in Deep Neural Networks

To effectively tackle all three PER targets simultaneously, we propose CAPER, a method to
Concurrently Achieve improvements in Performance, Efficiency, and Robustness. Our algorithm is
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built on the assumption that there exists a subset of the original training data that negatively impacts
the decision boundaries learned by the final model [177]. In CAPER, we identify and remove
this subset of data by using a function of the distance between features, specifically between the
original inputs and their noise-perturbed counterparts. With the addition of noise, a higher value
of this heuristic indicates a large deviation from standard features, which correlates with samples
easily affected by noise and closer to the learned decision boundaries. Thus, these samples have
a large impact on the learning process. By removing these samples, we use only a subset of the
available data to train the model. In doing so, we reduce the overall training time while regularizing
the learning process, whereby we simultaneously improve the generalization performance and
adversarial robustness.

CAPER’s idea of retaining a subset of the training data draws strong parallels from conventional
curriculum learning. Instead of using changes in loss/gradients/predictions, in CAPER, we use noise
injection and the subsequent feature distance as a measure to remove samples. An interesting way to
conceptualize our approach is by looking at it as the interaction between the dataset and DNN, where
the DNN is held constant while we regularize the dataset by penalizing certain samples and removing
them. This regularization effect on the learned decision boundary has the intended consequence
of improved adversarial robustness. In this work, we analyze adversarial robustness from two
perspectives, 1) where the source and target are the same model, and the alternative 2) where the
source model can be different from the target. While the first scenario establishes robustness to a
known model, the second scenario measures the robustness of DNNs to attacks designed on a variety
of backbones, a property we define as in-Transferability. Through our experimental validation, we
highlight the difference in how robustness is imparted to a DNN using CAPER when compared to
standard adversarial training [27], [28], [178]. Keeping this distinction in mind, we build CAPER
atop adversarial training regimes and highlight its complementary behavior.

In the following sections, we provide a summary of the standard training setup for classification
before taking an in-depth look at CAPER. We begin by defining key notations.

6.2.1 Algorithm-specific Notation

• ε : Smoothing value for ground-truth label vector when loss is evaluated.

• τ : Training epoch at which CAPER is applied.

• mi : Binary value indicating whether the ith sample is retained or removed.

• H() : Function used to project features to lower dimensions.

• D() : Distance function.
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• Õ(l) : Sensitivity-based subset of filters used to capture features.

• ξi : Overall instability score for each sample in the training data.

• α() : Window function that assigns multipliers to instability values from different layers.

• γ : Number of samples removed from training data.

6.2.2 Standard Setup

When training an L layer DNN for classification, the input variables are denoted by {(xi, yi)}Ni=1

∼ (X, Y ), where N represents the total number of samples. Here, xi ∈ RH×W×3, is the input RGB
image and yi ∈ {1, 2, . . . , C} is the ground-truth label in a dataset with C classes. The output of
layer l is denoted by,

f (l)(x
(l−1)
i ) = σ(W (l)x

(l−1)
i + b(l)) , (6.1)

assuming an activation function σ(), f (l) ∈ RN×O(l)×h(l)×w(l) , where O(l) denotes the output dimen-
sion of layer l, h(l), w(l), W (l), and b(l) represent the output height, width, weights and biases of
layer l, respectively. The general loss function used to train this setup is,

L(X, Y ) = min
W

1

N

N∑
i=1

`(F (xi), yi) , (6.2)

where F () denotes the output of the entire DNN. For classification, `() is the multi-class cross-
entropy loss.

6.2.3 Proposed Algorithm

In CAPER, we focus on removing a subset of the training data that negatively impacts perfor-
mance. We begin by training a DNN using the complete training dataset up to τ epochs. At the
chosen epoch τ << E, where E is the total number of training epochs, we compare the distance
between features of standard inputs and their noise-perturbed counterparts. Here, we generate the
noise-perturbed counterparts by applying additive gaussian noise to the input images. The intuition
behind this approach is that in identifying samples that are highly susceptible to noise, we highlight
data points that are close to and have a strong impact on the decision boundary. Since these samples
are readily susceptible to noise, removing them allows the DNN to learn better decision boundaries
from a more regularized set of data, leading to improved generalization and adversarial robustness.
In our approach, a large distance between the features highlights samples highly susceptible to noise.
We use the distance values to generate a binary mask, remove those samples from the dataset and
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continue to train using the remaining subset of data. We explain the processes underlying CAPER
below.

6.2.3.1 Basic Setup

In CAPER, we modify the loss function used to learn the weights of the DNN by masking the
contributions from the noisy subset of data after epoch τ :

L(X, Y ) = min
W

1

||m||0

N∑
i=1

mi`ε(F (xi), yi). (6.3)

Here, m ∈ {0, 1}N is the binary mask vector defined using our heuristic based on the distance
between features. Once we determine the value of m at epoch τ , it remains fixed throughout
the remaining training epochs. An extremely small value of τ would force the capture features
that aren’t coherent, while large values of τ would significantly reduce the expected efficiency
gain. Instead, we choose a relatively small but balanced value for τ to obtain coherent features
and maximize our gain in efficiency. In addition, we use the cross-entropy loss modified by label
smoothing [113] (`ε), where the smoothing operation on the one-hot ground-truth vector is,

yls = (1− ε)× 1y +
ε

C
. (6.4)

Here ε is the smoothing value and 1y is a one-hot vector at the ground-truth label.

6.2.3.2 Capturing Feature Distance

To ascertain the value of m, we begin by capturing the distance between features, specifically
between the original input and their noise-perturbed counterparts, at a chosen epoch τ across
different layers in the DNN. To generate the noise-perturbed counterparts, we apply additive
gaussian noise to the input. Mathematically, we denote the capture of features from the desired
layer l as,

f(xi) = σ(Wxi + b), (6.5)

f(xi + δi) = σ(W (xi + δi) + b).

Here, δi ∼ N (0, 0.5), with dimensionality matching the input. Note: We drop the layer superscript
to improve readability hereon. To avoid inconsistencies between the effects of applying δi indepen-
dently at multiple layers, we apply δi directly on the image and observe its effects at downstream
layers. Furthermore, to ensure that the noise is in the same feature space as the image, we apply the
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noise to the normalized image.
Once we obtain the features from each layer, we compute the distance D(.) between correspond-

ing pairs of features. Here,

∆f(i) = D(H(f(xi)), H(f(xi + δi))) = ||H(f(xi))−H(f(xi + δi))||2, (6.6)

where H(.) is a projection function that maps the features into a lower dimensional space, and
∆f(i) ∈ R1×O(l) . The function H : RO(l)×h(l)×w(l) → RO(l)×P , where P << h(l) × w(l) and O(l)

denotes the filter counts from layer l. While (6.6) depicts the l2-norm version of the distance
function, the formulation itself is not limited to it. Beyond capturing the distance, we further
normalize ∆f(i) values across samples to ensure that the distances remain comparable. We propose
normalizing them on a channel-wise basis using the following equation,

∆f̂(i, q) =
∆f(i, q)− min

n∈1,...,N
∆f(n, q)

max
n∈1,...,N

∆f(n, q)− min
n∈1,...,N

∆f(n, q)
. (6.7)

Here, i ∈ {1, 2, . . . , N}, q ∈ {1, 2, . . . , O(l)}, and ∆f̂(i, q) ∈ [0, 1].

6.2.3.3 Sensitivity Constraint

When collecting features across all the filters of a layer (6.5) we implicitly make the assumption
of uniform importance across all filters. However, from DNN pruning literature [59], [61] we know
that there are a number of filters that provide redundant information. Reducing their contribution
does not hurt the performance of DNNs. Following this line of thought, we adopt the notion
of sensitivity from SNACS to capture features from a subset of filters that provide important
information. While there are many different ways to utilize sensitivity, in this work we threshold
the value of sensitivity to obtain a subset of the filters (Õ(l))) from which we derive our features.
Doing so allows us to leverage the learned structure of the weight matrices in identifying sensitive
filters while reducing the overall memory consumed to store features. The exact number of filters
used for each DNN backbone is provided in the experiment-specific setup (Section 6.3.2).

6.2.3.4 Computing the Binary Mask

While ∆f̂ captures the distance between features from a specific layer, we expand the formula-
tion of CAPER to include sensitivity when aggregating distances across multiple layers of the DNN.
To do so, we include ξ(l)i , the instability of a sample measured as the average ∆f̂ across filters in a
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given layer.

ξ
(l)
i =

∑Õ(l)

q=1 ∆f̂(i, q)

Õ(l)
, i ∈ {1, . . . , N}. (6.8)

By combining the contributions of ξ(1)i , ξ
(2)
i , . . . , ξ

(L)
i across multiple layers we obtain the overall

instability of a sample, ξi, given as,

ξi = ξ
(1)
i α(1) + . . .+ ξ

(L)
i α(L), (6.9)

where α() denotes a window function that provides scalar multipliers used to combined the instability
values obtained from different layers.

To identify the optimal values of α we would have to solve the system of equations shown
below, 

ξ
(1)
1 ξ

(2)
1 . . . ξ

(L)
1

...
... . . .

...

ξ
(1)
N ξ

(2)
N . . . ξ

(L)
N

 ∈ R(N×L)


α(1)

...

α(L)

 ∈ R(L)
≥0 , (6.10)

where the final accuracy is the metric over which we need to optimize. Given the practical constraints
in solving this system of equations, where the LHS is ill-defined and the size of the system matrix
forces any operation on it to be expensive, we explore a restricted set of functions, including 11:L

2
,

1L
2
:L, a gaussian distribution and finally 1L, to find the best performing α. Once we set α, we can

evaluate ξi. Using these values, we compute m as:

mi =

0 if ξi is in the top γ values of ξ

1 o.w .
(6.11)

By controlling γ, we use mi to reduce the amount of the training data held in memory and the
overall FLOPs required during training. Once m is applied, the DNN is then trained with the
remaining subset of data from epochs τ to E.

ILSVRC2012 Implementation CAPER scales across the size and depth of a DNN as well as the
number of samples in a dataset. To efficiently execute CAPER on ILSVRC2012, which has over 1
million images, we re-purposed the algorithm to function in two phases instead of one. In the first
phase, we compute D(.) from (6.6) across samples of each label and summarize them using their
mean value to ascertain the difference heuristic over labels. This is similar to assessing the prior
over the ten worst performing labels. In the second phase, we refine our search space to samples
across the ten labels with the highest difference in values and re-capture the heuristic across the
samples from only these labels. Doing so allows us to avoid comparing statistics across a million
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samples. Instead we simplify the comparison to samples across ten labels, which is approximately
13000. Thus, we reduce the overall amount of memory consumed.

6.3 Evaluation

The experimental results section is divided into three main parts, where each subsection aligns
with one of our PER goals. The first discusses the performance of CAPER in the context of the
state-of-the-art curriculum learning algorithm from Zhou et al. [48]. The second part emphasizes
the adversarial robustness of CAPER, in the context of normal as well as adversarial training, under
a variety of adversarial attacks. The third part demonstrates the improvement in efficiency.

6.3.1 Datasets, Models, Attacks, User-specific Hyper-parameters

We outline the datasets, DNNs, types of adversarial attacks, metrics and key hyper-parameters
used across our experiments.

Datasets We use five primary datasets to evaluate our proposed method, CIFAR-10, CIFAR-
100 [143], STL-10 [169], miniImagenet [179] and ILSVRC2012 [144]. Among these datasets, we
restrict our adversarial robustness comparisons to CIFAR-10/100 to match existing literature. For
miniImagenet, we use a custom-generated and balanced training-and-testing split that we make
available alongside our code.

DNN Architectures We use four DNN architectures to evaluate CAPER in the context of standard
curriculum learning, VGG16 [180], MobileNet [181], DenseNet [173], [182] and ResNet50 [16]. In
addition to these architectures, we use ResNet18 and PreActResNet18 in adversarial robustness
comparisons. We choose these networks to help represent a wide variety of architectural backbones.
Each of the four main DNNs has two distinct versions, one suitable for the CIFAR datasets and
another for the remaining datasets.1

Adversarial Attacks And Metrics We explore the effect of a variety of adversarial attacks like
MIFGSM [183], FFGSM [139], DI2FGSM [184], APGDDLR [128], APGDCE, PGD [27] and
CW [185] using the code from [134], [186]. To measure the performance of various algorithms,
we use standard Accuracy(%) over the testing set. For adversarial robustness, we measure Robust
Accuracy(%) over the perturbed testing set, illustrated by the radius of the polar plots. Finally, we
use total FLOPs, measured as one pass over the entire DNN scaled across the entire training phase,

1Detailed descriptions of these model variants are provided at https://github.com/MichiganCOG/Q T
ART.
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to compare the improvement in efficiency across different training methods. Across all experiments,
we provide average statistics over five trials for accuracies unless stated otherwise.

CAPER: Hyper-parameters Within CAPER, τ is an extremely important parameter that influ-
ences the amount of efficiency gain we expect. For experiments in Section 6.3.3, we set τ = 50

for all DNN-Dataset combinations except ResNet50-CIFAR-10, for which we set it to 100. We
generate results on ILSVRC12 using τ = 15. Experiments under Section 6.3.4.1 use τ = 35 and 15

when comparing against Rice et al. [131] and Cui et al. [132], respectively, and the remaining
use τ = 50. Throughout our experiments, we fix H(.) as the mean value across the h(l) × w(l)

channels. Within the ablation study used to understand the impact of alternative window functions,
α() ∈ {11:L

2
, 1L

2
:L, a gaussian distribution, and finally 1L}. Apart from the ablation study, we use

α = 1L across the remaining experiments. Finally, we list all the values of γ, the number of samples
removed from the training data, within each experimental subsection.

6.3.2 Experiment-specific Setup

For the purpose of repeatability we provide the hyper-parameters for different baselines used in
our experiments below.

6.3.2.1 Curriculum Comparison

Tables 6.1 and 6.2, describe the hyper-parameters used for our baseline (SGD) models while
Tables 6.3 and 6.4 describe the hyper-parameters used for the DIHCL algorithm [48]. For the
ILSVRC2012 experiments, we use Epoch=100, Batch=64, Lr=0.1, Sched. = 30,60,90, Opt.=SGD,
Decay=0.00003, Mult.=0.1 and Mtm= True, with τ = 15. Code for the DIHCL algorithm was
provided from https://github.com/tianyizhou/DIHCL. For CAPER, we re-use the
hyper-parameters in Tables 6.1 and 6.2 while experimenting on values for γ and ε, after setting
τ = 50. Only for DenseNet on CIFAR-10 we set τ = 75. The final values of ε and γ for the results
in Tables 6.9 and 6.10 are,

• For the CIFAR-10 experiments, γ = 125, 125, 50, 5 and ε = 0.7, 0.1, 0.0, 0.3 for VGG16,
MobileNet, DenseNet and ResNet50 respectively.

• For the CIFAR-100 experiments, γ = 250, 50, 50, 50 and ε = 0.5, 0.7, 0.1, 0.2 for VGG16,
MobileNet, DenseNet and ResNet50 respectively.

• For the STL-10 experiments, γ = 12, 12, 25, 12 and ε = 0.3, 0.5, 0.0, 0.1 for VGG16, Mo-
bileNet, DenseNet and ResNet50 respectively.
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VGG16 MobileNet DenseNet ResNet50

Epochs 300 / 200 350 / 200 300 / 300 300 / 300
Batch 128 / 128 128 / 128 64 / 64 128 / 128
Lr 0.1 / 0.1 0.1 / 0.1 0.1 / 0.1 0.1 / 0.1
Sched. 90,180,260 / 60,120,160 150,250 /90,180,260 150,225 / 150,225 90,180,260 /90,180,260

Opt. SGD / SGD SGD / SGD SGD / SGD SGD / SGD
Decay 0.0005 / 0.0005 0.00004 / 0.0001 0.0001 / 0.0001 0.0002 / 0.0002
Mult. 0.2 / 0.2 0.1 / 0.2 0.1 / 0.1 0.1 / 0.1
Mtm. True / True False / True False / False True / True

Table 6.1: Training setups for mini-batch SGD (Baseline) on CIFAR-10 / CIFAR-100 respectively.
Here, MobileNet uses cosine LR scheduling for CIFAR-100.

VGG16 MobileNet DenseNet ResNet50

Epochs 300 / 300 450 / 200 450 / 300 1000 / 300
Batch 32 / 64 64 / 128 64 / 64 128 / 128
Lr 0.01 / 0.01 0.1 / 0.1 0.1 / 0.1 0.1 / 0.1
Sched. 200 / 90,180,260 300,400 /90,180,260 300,400 / 150,225 300,400,600,800 /90,180,260

Opt. SGD / SGD SGD / SGD SGD / SGD SGD / SGD
Decay 0.0005 / 0.0005 0.0005 / 0.0001 0.0005 / 0.0001 0.0005 / 0.0002
Mult. 0.1 / 0.2 0.2 / 0.2 0.2 / 0.1 0.2 / 0.1
Mtm. True / True True / True False / False True / True

Table 6.2: Training setups for mini-batch SGD (Baseline) on STL-10 / miniImagenet respectively.

• For the miniImagenet experiments, γ = 50, 125, 125, 5 and ε = 0.1, 0.7, 0.3, 0.1 for VGG16,
MobileNet, DenseNet and ResNet50 respectively.

• Finally, for the ILSVRC2012 experiment, γ = 11700 and ε = 0.3.

6.3.2.2 Ablation: Window Functions

In studying the effects of a variety of window functions, we observe an improvement in overall
γ as well as the final testing Accuracy (%). We list the number of filters, post sensitivity, and the ε
used to compute the final performance for each DNN.

• For VGG16, we use a subset of 17 filters and ε = 0.7.

• For MobileNet, we use a subset of 16 filters and ε = 0.5.
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VGG16 MobileNet DenseNet ResNet50

Epochs 300 / 300 350 / 300 300 / 300 300 / 300
Bandit Alg. EXP3 / EXP3 EXP3 / EXP3 EXP3 / EXP3 EXP3 / EXP3
Mean Teacher True / True True / True True / True True / True
Loss Fb. True / True True / True True / True True / True
Batch Size 128 / 128 128 / 128 128 / 128 128 / 128

Table 6.3: Training setups for DIHCL on CIFAR-10 / CIFAR-100 respectively. MobileNet uses a
schedule of [0 5 10 15 20 30 40 60 90 140 210 300 350].

VGG16 MobileNet DenseNet ResNet50

Epochs 300 / 300 350 / 300 300 / 300 300 / 300
Bandit Alg. UCB / TS UCB / TS UCB / TS UCB / TS
Mean Teacher True / True True / True True / True True / True
Loss Fb. False / False False / False False / False False / False
Batch Size 128 / 128 128 / 128 64 / 64 128 / 128

Table 6.4: Training setups for DIHCL on STL-10 / miniImagenet respectively.

• For DenseNet, we use a subset of 12 filters and ε = 0.0.

• For ResNet50, we use a subset of 12 filters and ε = 0.3. We list the optimal results from
τ = 100 for α = 1L

2
:L and α = N (0, 1).

6.3.2.3 Adversarial Robustness

The adversarial training algorithms we use were cloned from https://github.com/l

ocuslab/fast adversarial. Most of the adversarial attacks were cloned from https:

//github.com/Harry24k/adversarial-attacks-pytorch. PGD20 and CW
loss-based attacks were ported from https://github.com/zjfheart/Friendly-Adv

ersarial-Training.

6.3.2.4 Adversarial Attacks

In general, we use the default settings provided for all the adversarial attacks throughout our
experiments. We highlight some of the specifications (variable names) for each attack below,

• MIFGSM: ε = 8/255., α = 2/255., decay=1.0, iterations=5.

• FFGSM: ε = 8/255., α = 10/255..
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PreActResNet18

Epochs 200
Batch 128
LR schedule piecewise
LR max 0.1
LR one drop 0.01
LR one drop epoch 100
Attack PGD
Epsilon 8
Attack iters 10
restarts 1
PGD-alpha 2

Table 6.5: Training setup for [131] on CIFAR-10.

• DI2FGSM: ε = 8/255., α = 2/255., decay=0.0, steps=20, resize rate=0.9, diversity prob
=0.5, random state=False.

• APGD: ε = 8/255., steps=100.

• CWLoss: steps=30,ε = 0.031, step size=0.031/4, category=’Madry’, rand init=True.

• PGD20: steps=20, ε = 0.031, step size=0.031/4, category=’Madry’, rand init = True.

6.3.2.5 Standard Adversarial Training

In this section, we list the hyper-parameters used to train Rice et al. [131] and Cui et al. [132]
in Tables 6.5 and 6.6. For CAPER, we re-use the hyper-parameters from the original algorithms
alongside our selection of γ and ε while setting τ = 35 and 15 respectively. Specifically,

• For the CAPER+[131], γ = 245 and ε = 0.1.

• For the CAPER+[132], γ = 350 and ε = 0.3.

6.3.2.6 Efficient Adversarial Training

We list the hyper-parameters used to train Wong et al. [139] and Shafahi et al. [138] in
Tables 6.7 and 6.8. For CAPER, we re-use the hyper-parameters from the original algorithms
alongside our selection of γ and ε while setting τ = 50. Specifically,
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ResNet18

Epochs 100
Batch 128
Decay 0.0002
LR 0.1
Mtm. 0.9
Epsilon 0.031
Steps 10
Step size 0.007

Table 6.6: Training setup for [132] on CIFAR-100.

VGG16 MobileNet DenseNet ResNet50

Epochs 300 350 300 300
Batch 128 128 64 128
LR min 0.0 0.0 0.0 0.0
LR max 0.1 0.1 0.1 0.1
Sched. Cyclic Cyclic Cyclic Cyclic
Opt.r SGD SGD SGD SGD
Decay 0.0005 0.00004 0.0001 0.0002
epsilon 8 8 8 8
alpha 10 10 10 10
delta-init Random Random Random Random
Mtm. True True True True

Table 6.7: Training setup for [139] on CIFAR-10.

• For the CAPER+[139], γ = 125, 250, 25, 12 and ε = 0.1, 0.5, 0.2, 0.3 for VGG16, MobileNet,
DenseNet and ResNet50 respectively.

• For the CAPER+[138], γ = 12, 125, 5, 25 and ε = 0.5, 0.3, 0.1, 0.7 for VGG16, MobileNet,
DenseNet and ResNet50 respectively.

6.3.3 Curriculum Comparison

In this experiment, our main goal is to compare the performance of CAPER against mini-batch
SGD training and highlight how we can improve performance while only retaining a subset of our
training data. Additionally, we compare against the state-of-the-art curriculum learning method
DIHCL [48], which prioritizes the removal of samples throughout the training process. We extend
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VGG16 MobileNet DenseNet ResNet50

Epochs 300 350 300 300
Batch 128 128 64 128
LR min 0.0 0.0 0.0 0.0
LR max 0.1 0.1 0.1 0.1
Sched. Cyclic Cyclic Cyclic Cyclic
Opt.r SGD SGD SGD SGD
Decay 0.0005 0.00004 0.0001 0.0002
epsilon 8 8 8 8
Mtm. True True True True

Table 6.8: Training setup for [138] on CIFAR-10.

DNN Algorithm CIFAR-10 CIFAR-100 STL-10 miniImagenet

VGG16

Baseline 94.04 74.23 82.75 70.95
Random 93.19 71.63 80.38 67.57
DIHCL 94.03 72.89 79.71 66.07
CAPER 94.47 (γ = 125) 75.06 (γ = 250) 83.01 (γ = 12) 71.61 (γ = 50)

MobileNet

Baseline 93.50 72.75 77.95 64.62
Random 92.31 71.15 73.86 62.11
DIHCL 88.97 61.58 75.40 49.37
CAPER 93.62 (γ = 125) 74.97 (γ = 50) 80.04 (γ = 12) 66.92 (γ = 125)

DenseNet

Baseline 95.13 76.95 85.55 73.78
Random 93.88 74.18 82.39 71.23
DIHCL 94.72 76.03 85.82 64.34
CAPER 95.16 (γ = 50) 77.74 (γ = 50) 85.83 (γ = 25) 75.97 (γ = 125)

ResNet50

Baseline 95.63 79.27 72.77 68.76
Random 95.27 76.71 69.29 64.69
DIHCL 95.83 79.71 73.58 66.86
CAPER 95.75 (γ = 5) 79.78 (γ = 50) 73.40 (γ = 12) 69.77 (γ = 5)

Table 6.9: Across most datasets CAPER achieves the best performance when compared against
mini-batch SGD, DIHCL, and Random baselines. Here, bold refers to the best performance while
underline refers to the second best method.

their code to accommodate our datasets and DNN architectures while maintaining their training
protocols.

From Table 6.9, across all combinations of datasets and DNN architectures, we observe that our
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DNN Algorithm ILSVRC2012

ResNet50
Baseline 76.32
DIHCL 76.33*

CAPER (Ours) 76.62 (γ = 11700)

Table 6.10: CAPER achieves the best performance even after removing 11700 samples across 10
classes. Here, bold refers to the best performance while underline refers to the second best method.*
indicates numbers cited by authors. ILSVRC2012 results are across one trial.

algorithm easily outperforms the baseline mini-batch SGD setup, even with the removal of a subset
of the training data. To ensure fair comparison, we use the same hyper-parameter setups across
mini-batch SGD and our method.

More interestingly, when we observe the performance of DIHCL adapted to our selection
of dataset-DNN pairs, we see that it consistently exhibits strong performances on the ResNet
architectures. This, in conjunction with DIHCL’s propensity to perform significantly worse than
randomly removing the same number of samples as in CAPER (marked in Table as Random) across
the other tested architectures points toward the strong affinity of the training setup used in DIHCL
to residual architectures. Despite this, the performance of CAPER in conjunction with the starkly
different training setup used in DIHCL (which includes cyclic learning rate schedules, a teacher-like
copy of the DNN, etc., and no explicit fine-tuning of DIHCL’s hyper-parameters) still improves
upon DIHCL in most cases. This improvement is further highlighted when applying CAPER to the
ILSVRC2012 dataset (Table 6.10), where we can significantly outperform DIHCL and standard
mini-batch SGD, even with the removal of 11700 samples. For more context, we remove the
11700 samples within the span of 10 classes, which is similar to removing nine entire classes with
approximately 1300 images each.

6.3.3.1 Ablation: Window Functions

Across all the results presented in Tables 6.9 and 6.10, we use α = 1L, which results in the
collection of features from the last convolutional layer. In this section, we compare and contrast
four different window functions to identify the impact of comparing features across multiple layers
of a DNN and its potential benefits. Based on Table 6.11, there are two main observations. First,
the use of additional layers in assessing the susceptibility of samples to noise often allows for an
increase in γ when compared to the case of 1L, with minor trade-offs in performance. Second, in
conjunction with the first observation, α = 11:L

2
shows the best Accuracy(%) across our restricted

set of window functions. These results highlight the regularization affect our method imposes on
the DNN, regardless of the location at which we ascertain the distance between features. Further, by
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Window Function VGG16 MobileNet DenseNet ResNet50

Baseline 94.04 93.50 95.13 95.63
α = 1L 94.47 (γ = 125) 93.62 (γ = 125) 95.16 (γ = 50) 95.75 (γ = 25)
α = 11:L

2
94.49 (γ = 300) 93.66 (γ = 150) 95.28 (γ = 50) 95.78 (γ = 50)

α = 1L
2
:L 94.41 (γ = 300) 93.59 (γ = 150) 95.22 (γ = 50) 95.72 (γ = 50)

α = N (0, 1) 94.43 (γ = 250) 93.61 (γ = 125) 95.16 (γ = 300) 95.74 (γ = 100)

Table 6.11: Assessing the susceptibility of samples to noise using multiple layers boosts γ as
well as Accuracy (%). α = 11:L

2
provides the best performance. The optimal result for each

CIFAR10-DNN-α combination is given in the table.

assessing distances across layers other than the final one in the DNN, we can reduce the relationship
between specific task-oriented information and how we assess noisy samples, allowing CAPER to
be more extensible to alternative tasks.

6.3.4 Adversarial Robustness

In this subsection, we compare and contrast the adversarial robustness of CAPER-based training
against a variety of adversarial attacks on CIFAR-10/100. Specifically, we measure adversarial
robustness to attacks where the source and target models are the same as well as the case when
multiple source models are used to generate the attacks for a single target. To ensure parity and
high efficiency, we avoid comparing results across methods with and without adversarial training
and restrict CAPER to use α = 1L.

6.3.4.1 Adversarial Source = Target

Curriculum-based Comparison Using Fig. 6.1, we establish two main observations, 1) in
multiple instances, DIHCL reduces the robustness of DNNs, when compared to mini-batch SGD
training, and more importantly, 2) CAPER significantly improves the robustness of DNNs to multiple
adversarial attacks. We hypothesize two possible reasons why DIHCL reduces the adversarial
robustness of a variety of DNNs. First, the repeated sampling with replacement and steady decline
in the number of available samples does not allow for a stable learning environment to help address
adversarial robustness. Secondly, the use of gradients/loss/prediction values or their change has
a direct impact on the set of samples removed and, therefore, the final adversarial robustness. A
deeper dive into the correlation between the selection procedure and the final outcomes could help
provide more insight.

79



MIFGSM

FFGSM

DI2FGSM

APGDDLRAPGDCE

PGD20

CW

MIFGSM

10
20

40
60

75

Baseline DIHCL CAPER
MIFGSM

FFGSM

DI2FGSM

APGDDLRAPGDCE

PGD20

CW

MIFGSM

10
20

40
60

75

(a) VGG (γ = 125)

MIFGSM

FFGSM

DI2FGSM

APGDDLRAPGDCE

PGD20

CW

MIFGSM

5
10

20
30

40

(b) MobileNet (γ = 125)

MIFGSM

FFGSM

DI2FGSM

APGDDLRAPGDCE

PGD20

CW

MIFGSM

1
5

10
15

23

(c) DenseNet (γ = 50)

MIFGSM

FFGSM

DI2FGSM

APGDDLRAPGDCE

PGD20

CW

MIFGSM

5
10

20
30

40

(d) ResNet (γ = 25)

Figure 6.1: Curriculum-based Comparison: Across all DNN architectures, CAPER matches and
often significantly improves upon the adversarial robustness of mini-batch SGD training and DIHCL.
Methods with the largest area of plot are preferred.
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Figure 6.2: Standard Adversarial Training Comparison: Largest improvements from adversarial
training are observed for MIFGSM, FFGSM, DI2FGSM, APGDCE, and PGD attacks. More
generally, the addition of CAPER atop adversarial training methods improves their robustness.
Results are provided across one trial. γ values are 245 and 350 for CAPER+[131] and CAPER+[132]
respectively.

Standard Adversarial Training Comparison Adversarial training approaches impart robustness
to DNNs by exposing them to multiple examples of adversarial input during the training phase. A
key component of such an approach is the retention and modification of the entire training dataset
to create different adversarial examples. We use Rice et al. [131], with settings corresponding
to their validation-based early stopping setup on CIFAR-10, and Cui et al. [132], with settings
corresponding to ResNet18 for both natural and robust models on CIFAR-100, as representatives
for standard adversarial training.

When using CAPER alongside standard adversarial training, we observe an improvement in
performance over the original adversarial training methods across most adversarial attacks, as shown
in Fig. 6.2. We emphasize that these improvements are in addition to an increase in Accuracy(%),
from 82.66% to 83.14% for PreActResNet18 and from 69.22% to 69.61% for ResNet18. While the
original methods emphasize a balanced improvement in Robust Accuracy(%) and Accuracy(%), the
addition of CAPER atop these methods allows us to maintain their original benefits while further
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Figure 6.3: Efficient Adversarial Training Comparison: Consistently, the largest improvements from
efficient adversarial training is observed for various types of FGSM attacks. However, in general,
the addition of CAPER atop efficient adversarial training methods improves the robustness of the
DNN. Results provided for methods using [138] are across one trial. γ values are 125/12, 250/125,
25/5, and 12/25 for CAPER+Wong et al. [139] and CAPER+Shafahi et al. [138], respectively,
across VGG16, MobileNet, DenseNet, and ResNet50.

improving on their efficiency and adversarial robustness.

Efficient Adversarial Training Comparison Efficient adversarial training approaches focus on
optimizing the quality of adversarial input during the training phase to impart adversarial robustness
quickly. These methods align more closely with our efficiency and robustness goals, while standard
adversarial training methods emphasize the trade-off between robustness and performance. We use
Shafahi et al. [138] and Wong et al. [139], with modifications to the training hyper-parameters to
match our baselines, as representatives for efficient adversarial training.

Our first observation based on Fig. 6.3 is the high level of robustness shown by all DNNs to
APGDDLR and APGDCE attacks across both efficient adversarial training and CAPER-based
training. In addition, when using CAPER-based adversarial training, DI2FGSM, MIFGSM and
FFGSM consistently shows the largest magnitude of improvement. Finally, similar to the previous
scenario’s results on standard adversarial training, adding CAPER atop common efficient adversarial
training approaches further boosts their performance against all adversarial attacks.

General Takeaways The increase in Robust Accuracy(%) across multiple types of adversarial
training approaches support our hypothesis that CAPER is complementary to adversarial training.
While CAPER removes noisy samples from the training set to make it more cohesive, it does not
harm the robustness offered by exposing DNNs to various examples of adversarial input. These
improvements are in addition to a strong increase in the standard Accuracy(%) metric as well. An
interesting and important takeaway from these results is that they support the notion of an optimal
training subset [177] during both adversarial and normal mini-batch SGD training.
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Figure 6.4: CAPER-based training boosts the mean Robustness Accuracy(%) across multiple
sources of adversaries. In our experiments, we use all four possible DNN architectures to generate
attacks. γ values are 125/12, 250/125, 25/5 and 12/25 for CAPER+Wong et al. [139] and CAPER
+Shafahi et al. [138] respectively across VGG16, MobileNet, DenseNet and ResNet50.
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Figure 6.5: CAPER-based adversarial training algorithms consistently have some of the lowest
deviation in performance, thus ensuring in-Transferability.

6.3.4.2 Adversarial Sources 6= Target

We define in-Transferability as the robustness of DNNs to attacks designed on a variety of
DNN backbones. To measure in-Transferability, we use the mean and standard deviation of Robust
Accuracy (%) when a selected model is attacked using adversaries generated from all four of the
DNN architectures used in our experiments. We specifically demand that standard deviation in
performance is minimized, in addition to high average performance, since a high deviation indicates
that the robustness is dependent on the type of DNN backbone used to generate adversaries.

In Figs. 6.4 and 6.5, we highlight the mean and standard deviation of Robust Accuracy(%) when
we take into account adversaries generated across all four possible DNN architectures. Across
almost all DNN-adversarial attack combinations, the average Robust Accuracy(%) for CAPER-
based approaches improves on the original adversarial training approach. The only exception is
on VGG16 for APGDCE and APGDDLR attacks, which fall within one standard deviation of
the original approach’s performance. From the standard deviation point of view, Shafahi et al.

[138]-based training has lower values when compared to Wong et al. [139]-based training across
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DNN
TFLOPs Reduced

CIFAR-10 CIFAR-100 STL-10 miniImagenet

VGG16 9.83 11.8 8.85 36.9

MobileNet 3.55 0.711 0.276 0.104

DenseNet 1.45 16.1 20.4 63.8

ResNet50 6.5 16.3 8.61 23.6

Table 6.12: Illustration of the improvement in efficiency offered by CAPER during the training
phase. The baseline number of FLOPs is calculated by assuming a simple forward pass through the
DNN. For reference an Nvidia Jetson Nano offers 0.5 TFLOPs.

Algorithm
TFLOPs Reduced

VGG16 MobileNet DenseNet ResNet50

CAPER + Wong et al. [139] 9.83 3.55 1.61 3.9

CAPER + Shafahi et al. [138] 9.43 3.55 0.161 8.13

Table 6.13: The addition of CAPER atop existing efficient adversarial training methods improves
upon the overall FLOPs reduced during the training phase. The baseline number of FLOPs is
calculated by assuming a simple forward pass through the DNN. Results for CAPER+[138] are
across one trial. For reference an Nvidia Jetson Nano offers 0.5 TFLOPs.

all DNNs except ResNet50, both with and without CAPER. Overall, our results closely resemble
the standard deviation of existing efficient adversarial training approaches while improving the
in-Transferability of DNNs to a variety of adversarial attacks.

A broader takeaway from our results is the distinctly visible pattern of performances, average and
standard deviation, between [139] and [138], with some degree of architectural specificity (Residual
vs. the rest). A further study into their relationship could help highlight factors essential in designing
adversarial training approaches to have intended consequences. Overall, the common trend of
improved mean Robust Accuracy(%) with low standard deviations highlights our CAPER-based
adversarial training as a definite way to ensure in-Transferability across several DNN architectures.

6.3.5 Time Efficiency Comparison

The third of our targets deals with efficiency, specifically decreasing the amount of computations
performed during the training phase. To understand the impact of CAPER on efficiency, we observe
the number of FLOPs reduced by CAPER when compared against the number of FLOPs computed
by an appropriate baseline method, measured as a single forward pass over a DNN scaled over the
entire training phase. We compute the number of FLOPs for each Algorithm-Dataset-DNN triplet
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using their respective hyper-parameter settings listed under the experimental setup (Section 6.3.2).
From Table 6.12, we observe a strong increase in the number of FLOPs reduced across a

variety of Dataset-DNN combinations when compared to standard mini-batch training. When we
extend this comparison to the ILSVRC2012 dataset, we save 4.08 PFLOPs, which comes close
to almost an entire epoch of training. Since our approach uses hard sampling to remove noisy
samples permanently from the training set, the computation and comparison of FLOPs are easier
than DIHCL, which uses sampling with replacement. Practically, we permanently remove the noisy
samples from the dataloader and do not use excess memory to access them throughout the remainder
of the training phase.

As a complementary piece to standard adversarial training, we have already demonstrated the
improvement in Robust Accuracy(%) as well as improved in-Transferability of adversarial attacks.
These improvements are supplemented by a reduction in the number of FLOPs computed during
training, as shown in Table 6.13. Regardless of the adversarial training algorithm in question, be it
[131] or [132], where we observe a maximum reduction of 22.5 TFLOPs or efficient adversarial
training algorithms shown in Table 6.13, where we have a maximum reduction of 9.83 PFLOPs,
there is a significant gain in efficiency when using CAPER. Overall, when combining the benefits
of performance, efficiency, and robustness, CAPER manages to successfully deliver on all of our
targets

6.4 Discussion and Limitations

Adversarial Response When comparing the performance of CAPER, with and without the
addition of other adversarial training regimes, we find their performance across FFGSM, MIFGSM,
and DI2FGSM extremely similar, often within 5% of each other. The importance of this observation
is further highlighted by the fact that we do not expose the model to any adversarial input during
training. This outcome suggests that our approach could provide an inexpensive alternative to
boosting performance across FGSM-based attacks while complementing existing adversarial training
approaches.

Performance vs. Adversarial Robustness The trade-off between performance and adversarial
robustness is a commonly known and accepted fact. A number of works like Rice et al. [131] and
others try to resolve this by aiming to improve on both fronts simultaneously. From our results
on adversarial robustness, we observe a sharp drop in Accuracy(%) when we apply any form of
adversarial training, regardless of the underlying DNN architecture. Only CAPER+Shafahi et

al. [138] on ResNet50-CIFAR10 comes within 4% of the highest performance we achieve in
curriculum-based comparison (Table 6.14). While there are differences in the settings and hyper-
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Algorithm
Accuracy(%)

VGG16 MobileNet DenseNet ResNet50

Best from Table 6.9 94.47 93.62 95.16 95.83

Wong et al. [139] 76.58 80.66 74.10 79.19
CAPER+Wong et al. [139] 79.75 83.29 75.96 79.28
Shafahi et al. [138] 80.86 82.17 83.69 91.64
CAPER+Shafahi et al. [138] 82.62 82.97 84.73 92.55

Table 6.14: There is a still a significant gap between the improved Accuracy(%) achieved by
adversarial training and results from Table 6.9 which suggests there is still room for improvement
in this domain. Results for [138]-based experiments are across 1 trial.

parameters suggested by the original authors of the adversarial training works, we find that there is
still room for improvement when it comes to bridging the gap between improving Accuracy(%) and
Robust Accuracy(%) simultaneously.

DenseNet Performance Throughout our experiments on adversarial robustness, specifically in
curriculum-based comparisons, DenseNet has offered the smallest magnitude of robustness and
improvement in performance. While there could be many contributing factors, we hypothesize
that DenseNet’s foundational building block of continuously retaining and combining features
from previous blocks is one of the main reasons why standard mini-batch, DIHCL, and even
CAPER-based training does not provide a strong improvement in adversarial robustness. A more
comprehensive combination of the features across the entire DNN might help overcome the current
issue and improve its overall adversarial robustness.

Limitations In introducing the notion of noise injection to identify and remove samples, we
limited the scope of the kind of noise used to perturb the samples to only gaussian. The correlation
between noisy samples and the different kinds and levels of noise is a key emphasis of our future
work in this domain. An important restriction to our methodology is the emphasis on a relatively
large sweep on the number of samples removed from the training set. The outcome of the number
of samples removed can span extremely small or large values. As part of our ongoing effort to adapt
our work to multiple domains, we plan to formulate this as an optimization constraint. Finally, we
acknowledge that our results are based on a relatively small set of parameter sweeps, including
the use of only one α function, and there are some alternative hyper-parameter combinations still
unexplored.
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Potential Negative Impacts Since we reduce the total amount of training data provided to the
model, we risk losing some of the representational depth and complexity in the learned features.
This is especially important when considering the impact of weaker pretraining on downstream
tasks. In addition, our core idea revolves around removing data points that have a high proclivity of
being ambiguous. One possible implication of the removal of such data points could be a reduction
in the fairness of the overall model since such data points could be part of an underrepresented set of
data. From an adversarial robustness perspective, when using the l2 metric distance as a sensitivity
measure, we risk exposing our feature embeddings to alternative forms of adversarial attack.

6.5 Key Takeaways

Overall, we establish CAPER as an algorithm that simultaneously tackles improvements in
performance, efficiency and adversarial robustness. The use of noise-injection in CAPER to identify
and remove noisy samples helps modify the feature embedding leaned by DNNs in a favourable
manner. In doing so, there is a strong improvement in classification accuracy achieved via a more
efficient training process. We also establish high adversarial robustness and in-Transferability
by incorporating CAPER like a plug-and-play module atop existing adversarial training methods.
Our goal is to jointly target PER in an effort to develop more cost and resource efficient training
protocols, with a view to reducing the environmental impact of developing DNNs.
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CHAPTER 7

Future Directions and Conclusion

In this dissertation, we have proposed techniques that reduce the number of FLOPs during
inference and training, as well as improve the sparsity of DNN architectures and adversarial
robustness while maintaining a high level of accuracy. The central idea to reducing the number of
parameters and FLOPs of a DNN architecture was the use of a one-shot DNN pruning framework
which was based on mutual information. At a process level, the use of a single train-prune-retrain
setup avoids iterative pruning or retraining steps and condenses the architecture development and
training phase into a tighter loop. In Chapter 3, we introduce the use of conditional geometric mutual
information in a one-shot pruning framework as a method that takes into account the uncertainty
in the relationships between filters. In SNACS (Chapter 4), we propose the adaptive conditional
mutual information measure as an approach to balance the contributions from activations with those
from the weights. The final product of our contributions to pruning is a slim and resource efficient
DNN that contains lesser number of parameters and FLOPs, thereby reducing the required storage
memory and inference time.

When aiming for efficiency in training, we need to be well aware of a large number of external
factors that affect the underlying process and outcome. As a step towards understanding the
relationship between dataset and DNN from the data’s perspective, we used a label-based curriculum
in LILAC (Chapter 5), with no changes to the preprocessing or experimental hyper-parameters,
to elevate the performance of a DNN. Combining our takeaways from LILAC and the adversarial
susceptibility of DNNs, pruned or otherwise, we pushed the boundary on concurrently tackling
performance, decrease computations and adversarial robustness with a minimal plug-and-play
algorithm, CAPER (Chapter 6). CAPER explores the use of feature-differences across the DNN to
identify and remove samples that strongly affect the evolution of a DNN’s weights. Overall, our
contributions to curriculum learning have yielded techniques that break the mould of sample-based
curricula and instead provide simple modules that not only elevate the performance and security of
DNNs but allow users to quickly achieve it.

Despite the strides and advancements made in this dissertation, there are many open challenges
in both Architecture Prototyping and Training that offer new avenues for research. Our work on
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neural network pruning ensured a single train-prune-retrain step was sufficient to generate slim
DNNs. However, there is a gap in the level of sparsity that can be achieved by a one-shot pruning
approach in comparison to iterative pruning approaches. One of the main reasons for this gap in
achievable sparsity is the concept of layer collapse [63]. By integrating novel uncertainty-based
measures into the training phase, we can push the limits of the sparsity achieved by probabilistic
pruning. Another possible advantage to integrating pruning into the training phase would be the
large number of iterations with which algorithms can compensate for the reduction in capacity
when pruning. Further, Tanaka et al. [63]) have already shown the benefit of iterative setups in
avoiding layer collapse. In addition, this integration should able to remove the individual pruning
and retraining steps, further reducing the time taken to develop DNNs.

The evolution of weights in DNNs through the course of training is a complex interaction
between dataset, DNNs and the optimization algorithm used. While we have addressed the chal-
lenge of simultaneously tackling performance, efficiency and robustness, through the use of feature
differences, the theoretical relationship between a true optimal dataset and DNN remains unad-
dressed. Understanding their relationship can help shed more light on how to collect and prepare
new datasets, reduce the amount of resources and time spent on it, and the issues plaguing existing
datasets. By posing the development of DNNs as a multifaceted optimization objective with several
constraints that emphasize real-world applicability, we believe that researchers can identify a smarter
and more resource efficient way to develop DNNs, with significantly lesser environment impact.
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APPENDIX A

SNACS: Proof of Theorem 1

A.1 Proof of Theorem 1

Recall our estimator in 4.7,

Îϕ(X;Y |Z) =
∑

eijk∈EG

ϕ(i, j, k) αijk g

(
rijk
αijk

)
, (A.1)

where αijk =
rik rjk
rk

. The expectation of Îϕ is derived as,

E

 ∑
eijk∈EG

ϕ(i, j, k) αijk g

(
rijk
αijk

) ∣∣EG
 =

∑
eijk∈EG

E
[
ϕ(i, j, k) αijk g

(
rijk
αijk

) ∣∣Eijk] , (A.2)

where Eijk is the event that there is an edge between the vertices vi, uj , and ωk in the dependency
graph G(X, Y, Z). Let hash function H1 map the N i.i.d points Xk, Yk, and Zk to X̃k, Ỹk, and Z̃k.
Following the notations used in Morteza et al. [88], we denote E=1

i be the event that there is
exactly one vector from X̃i that maps to vi using H2. Similarly, we define E=1

j and E=1
k . We denote

E=1
ijk := E=1

i ∩ E=1
j ∩ E=1

k and let E=1
ijk be the complement set of E=1

ijk.
We simplify Eqn. A.2 by splitting it into two parts: without collision and due to collision. Based

on the law of total expectation we have,

=
∑

eijk∈EG

P (E=1
ijk|Eijk)E

[
ϕ(i, j, k) αijkg

(
rijk
αijk

) ∣∣E=1
ijk, Eijk

]

+
∑

eijk∈EG

P (E=1
ijk|Eijk)E

[
ϕ(i, j, k) αijk g

(
rijk
αijk

) ∣∣E=1
ijk, Eijk

]
. (A.3)

Step 1 Bias on w/o collision: Similar to Lemma 7.3 in Morteza et al. [88], we derive,

P (E=1
ijk|Eijk) = 1−O

(
1

εdN

)
, d = dX + dY + dZ . (A.4)
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This is because all three |V |, |U , and |W | are upper bounded by O(ε−d). Note that ε is a function of
N . Additionally from [88] we infer the following results:

E[αijk] =
E[rik] E[rjk]

E[rk]
+O

(√
1

N

)
. (A.5)

Note that (A.5) is implied based on the fact that V(αijk) ≤ O(1/N) which is proved by applying
Efron-Stein inequality under assumptions (A1) and (A3), similar to arguments in Lemma 7.10 from
[88]. In addition, we have

E
[
rijk
αijk

]
=

E[rijk]

E[αijk]
+O

(√
1

N

)
, (A.6)

E
[
rijk
αijk

]
= P (E≤1ijk) E

[
rijk
αijk
|E≤1ijk

]
+ P (E>1

ijk)E
[
rijk
αijk
|E>1

ijk

]
, (A.7)

where by using similar arguments as in Eqn. 56 from [88], we have P (E≤1ijk) = 1−O(
√

1/(εdN)).
Therefore, P (E>1

ijk) = O(
√

1/(εdN)). Further the second term in Eqn. A.7 is the bias because of col-
lision of H , which will be proved in the following section, that is upper bounded by O(

√
1/(εdN)).

Let xD and xC respectively denote the discrete and continuous components of the vector x,
with dimensions dD and dC . Also let fXC

(xC) and pXD
(xD) respectively denote density and pmf

functions of these components associated with the probability measure PX . Let X have dC and dD,
Y have d′C ,d′D, and Z have d′′C , d′′D as their continuous and discrete components, respectively. Then
it can be shown that,

E[rijk|E≤1ijk] =P (XD = xD, YD = yD, ZD = zD)εdC+d′C+d
′′
C (f(xC , yC , zC |xD, yD, ZD)

+ ∆(ε, q, γ)), (A.8)

where densities have bounded derivatives up to the order q ≥ 0 and belong to the Hölder continuous
class with smoothness parameter γ. Note that ∆(ε, q, γ)→ 0 as N →∞. Now from Eqns. 50, 51,
and 53 in [88] and from Eqn. A.5, A.6 above, under assumptions (A1) and (A3), we derive

E
[
rijk
αijk
|E≤1ijk

]
=
dPXY Z PZ
dPXZ PY Z

+ ∆̃(ε, q, γ) +O

(√
1

N

)
, (A.9)

where H(x) = i, H(y) = j, H(z) = k, and as N →∞, ∆̃(ε, q, γ) −→ 0.
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Step 2 Bias because of collision: Let X̃ =
{
X̃i

}LX

i=1
, Ỹ =

{
Ỹi

}LY

i=1
, Z̃ =

{
Z̃i

}LZ

i=1
respectively

denote distinct outputs of H1 with the N i.i.d points Xk, Yk, Zk as inputs. We denote LXY Z :=

|X̃ ∪ Ỹ ∪ Z̃|, LXZ := |X̃ ∪ Z̃|, and LY Z := |Ỹ ∪ Z̃|.

Bϕ : =
∑

eijk∈EG

P (E=1
ijk|Eijk)E

[
ϕ(i, j, k) αijk g

(
rijk
αijk

) ∣∣E=1
ijk, Eijk

]

≤
∑
i,j,k∈F

P (E>1
ijk)E

[
1Eijk

ϕ(i, j, k) αijk g

(
rijk
αijk

) ∣∣E>1
ijk

]
, (A.10)

where E>1
ijk = E>1

i ∩ E>1
j ∩ E>1

k , and E>1
i is the event that there are at least two vectors from X̃i

that map to vi using H2. Once again, using the law of total expectation, then the RHS of Eqn. A.10
becomes,

=
∑
i,j,k∈F

P (E>1
ijk)

(
P (Eijk|E>1

ijk)E
[
ϕ(i, j, k) αijk g

(
rijk
αijk

) ∣∣E>1
ijk, Eijk

]
+ P (Eijk|E>1

ijk)E
[
ϕ(i, j, k) αijk g

(
rijk
αijk

) ∣∣E>1
ijk, Eijk

])
=
∑
i,j,k∈F

P (Eijk)P (E>1
ijk|Eijk)E

[
ϕ(i, j, k) αijk g

(
rijk
αijk

) ∣∣E>1
ijk, Eijk

]
. (A.11)

The equality in Eqn. A.11 is obtained based on Bayes error and g = 0 on the event Eijk. Now
recalling Eqn. A.4, using Eqn. 4.3 we bound the last line in Eqn. A.11 by,

O

(
1

εdN

) ∑
i,j,k∈F

P (Eijk)E
[
ϕ(i, j, k) (rijk + αijk)

∣∣E>1
ijk, Eijk

]
. (A.12)

This implies that,

Bϕ ≤ O

(
1

εdN

) ∑
i,j,k∈F

P (Eijk)
(
E
[
ϕ(i, j, k)rijk

∣∣E>1
ijk, Eijk

]
+E

[
ϕ(i, j, k)αijk

∣∣E>1
ijk, Eijk

])
= O

(
1

εdN2

) ∑
i,j,k∈F

P (Eijk)
(
E
[
ϕ(i, j, k) Nijk

∣∣E>1
ijk, Eijk

]
+E

[
ϕ(i, j, k)

NikNjk

Nk

∣∣E>1
ijk, Eijk

])
. (A.13)
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If we extend our discussion to all the possible mappings from H1 we obtain,

= O

(
1

εdN2

)∑
x̃,ỹ,z̃

pX̃,Ỹ,Z̃(x̃, ỹ, z̃)
∑
i,j,k∈F

P (Eijk)(
E
[
ϕ(i, j, k) Nijk

∣∣E>1
ijk, Eijk, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

]
+ E

[
ϕ(i, j, k)

NikNjk

Nk

∣∣E>1
ijk, Eijk, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

])
.

Let us define,

Aijk :=
{
r : H2(X̃r) = i,H2(Ỹr) = j,H2(Z̃r) = k

}
,

Ak :=
{
r : H2(Z̃r) = k

}
,

Aik :=
{
r : H2(X̃r) = i,H2(Z̃r) = k

}
,

Ajk :=
{
r : H2(Ỹr) = j,H2(Z̃r) = k

}
. (A.14)

Let Mr, be the number of the input points (X,Y,Z) mapped to (X̃r, Ỹr, Z̃r). Therefore for
i, j, k we can rewrite Nijk as

Nijk =

LXY Z∑
r=1

1Aijk
(r)Mr. (A.15)

Similarly M ′
r, M̃s, and M t are defined the number of the input points mapped to (X̃r, Z̃r), (Ỹs, Z̃s),

and Z̃t, respectively and we can write

Nik =

LXZ∑
r=1

1Aik
(r)M ′

r, Njk =

LY Z∑
s=1

1Ajk
(s)M̃s, Nk =

LZ∑
t=1

1Ak
(t)M t. (A.16)
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Under the assumption that ϕ is bounded, we have

Bϕ ≤ O

(
1

εdN2

)∑
x̃,ỹ,z̃

pX̃,Ỹ,Z̃(x̃, ỹ, z̃)
∑
i,j,k∈F

P (Eijk)

( LXY Z∑
r=1

P
(
r ∈ Aijk

∣∣E>1
ijk, Eijk, X̃ = x̃, Ỹ = ỹ,

Z̃ = z̃
)
E
[
Mr

∣∣E>1
ijk, Eijk, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

]
+

LXZ∑
r=1

LY Z∑
s=1

LZ∑
t=1

P
(
r ∈ Aik, s ∈ Ajk, t ∈ Ak

∣∣E>1
ijk,
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E

[
M ′

rM̃s

M t

∣∣E>1
ijk, Eijk, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
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. (A.17)

Next we find the probability terms:

P
(
r ∈ Aijk

∣∣E>1
ijk, Eijk, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

)
=
P
(
r ∈ Aijk, E>1

ijk|X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)

P
(
E>1
ijk|X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

) .

(A.18)
We first find the denominator of Eqn. A.18 first. We define a = 1 when i = j = k and a = 3 for the
case i 6= j 6= k:

P
(
E>1
ijk|X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

)
= 1− P

(
E=0
ijk|X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

)
− P
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)
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(
F − a
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)LXY Z
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LXY Z
F a

(
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)
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L2
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)
. (A.19)

Further,

P
(
r ∈ Aijk, E>1

ijk|X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)

= P
(
r ∈ Aijk|E>1
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)
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(
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)
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)
. (A.20)
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Combining Eqn. A.19 and A.20 yields

P
(
r ∈ Aijk

∣∣E>1
ijk, Eijk, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

)
= O

(
1

LXY Z

)
.

Now we simplify the following term:

P
(
r ∈ Aik, s ∈ Ajk, t ∈ Ak

∣∣E>1
ijk, Eijk, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

)
. (A.21)

First we assume that X̃v 6= Ỹv 6= Z̃v for v = r, s, t. Then

P
(
r ∈ Aik, s ∈ Ajk, t ∈ Ak

∣∣E>1
ijk, Eijk, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
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)
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)
= O
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LXZLY ZLZ

)
. (A.22)

Next assume that X̃v = Ỹv = Z̃v for v = r, s, t, therefore H2(X̃v) = H2(Ỹv) = H2(Z̃v), for
v = r, s, t. Then,

P
(
r ∈ Aik, s ∈ Ajk, t ∈ Ak

∣∣E>1
ijk, Eijk, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

)
= δijkO

(
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LXY Z

)
. (A.23)

By using Eqns. A.23, A.22, and A.21 in Eqn. A.17 we obtain an upper bound on bias with collision:
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Re-arranging the expectation term we get,
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pX̃,Ỹ,Z̃(x̃, ỹ, z̃)

(
O

(
N

LXY Z

)
+

(
O

(
N

LXZLY ZLZ

)
+O

(
1

LXY Z

)))
E

[ ∑
i,j,k∈F

1Eijk

]

≤ O

(
1

εdN2

)∑
x̃,ỹ,z̃

pX̃,Ỹ,Z̃(x̃, ỹ, z̃)

(
O

(
N

LXY Z

)
+(

O

(
N

LXZLY ZLZ

)
+O

(
1

LXY Z

)))
LXY Z

≤ O

(
1

εdN

)
. (A.25)

Hence as N −→∞, the bias estimator due to collision tends to zero i.e. Bϕ −→ 0.

Step 3 Combine Results: Let us denote N ′ijk, N ′ik, N ′jk, and N ′k respectively as the number of the
input points (X,Y,Z), (X,Z), (Y,Z), and Z mapped to the bins (X̃i, Ỹj, Z̃k), (X̃i, Z̃k), (Ỹj, Z̃k),
and Z̃k using H1. We define the notations r(i) = H−12 (i) for i ∈ F and s(x) := H1(x) for
x ∈ X ∪ Y ∪ Z . Then from Eqn. A.9, we have

E

[
N ′s(X)s(Y )s(Z)N

′
s(Z)

N ′s(X)s(Z)N
′
s(Y )s(Z)

]
=
dPXY Z PZ
dPXZ PY Z

+ ∆̃(ε, q, γ) +O

(√
1

N

)
. (A.26)

We simplify the first term in Eqn. A.3 as,

∑
i,j,k∈F

P (E≤1ijk)E
[
1Eijk

ϕ(i, j, k) αijk g

(
rijk
αijk

) ∣∣E≤1ijk]
=

(
1−O

(
1

εdN

)) ∑
i,j,k∈F

E
[
1Eijk

ϕ(i, j, k) αijk g

(
rijk
αijk

) ∣∣E≤1ijk]
=
∑
i,j,k∈F

E
[
1Eijk

ϕ(i, j, k)
NikNjk

NkN
g

(
NijkNk

NikNjk

) ∣∣E≤1ijk]+O

(
1

εdN
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=
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i,j,k∈F

E

[
1Eijk

ϕ(r(i), r(j), r(k))
N ′r(i)r(k)N

′
r(j)r(k)

N ′r(k)N

g

(
N ′r(i)r(j)r(k)N

′
r(k)

N ′r(i)r(k)N
′
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+O
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1

εdN

)
. (A.27)
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Lets denote

β(r(i), r(j), r(k)) =
N ′r(i)r(j)r(k)N

′
r(k)

N ′r(i)r(k)N
′
r(j)r(k)

.

Therefore the last line in Eqn. A.27 is equal to

=
1

N

∑
i,j,k∈F

E

[
ϕ(r(i), r(j), r(k))

N ′r(i)r(j)r(k)
β(r(i), r(j), r(k))

g
(
β(r(i), r(j), r(k))

)]
+O

(
1

εdN

)

=
1

N
E

[
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i=1

ϕ(s(X), s(Y ), s(Z))

β(s(X), s(Y ), s(Z))
g
(
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(
1

εdN

)
, (A.28)

where,

β(s(X), s(Y ), s(Z)) =
N ′s(X)s(Y )s(Z)N

′
s(Z)

N ′s(X)s(Z)N
′
s(Y )s(Z)

.

The expression in Eqn. A.28 equals:

= EPXY Z

[
E
[
ϕ(s(X), s(Y ), s(Z))

β(s(X), s(Y ), s(Z))
g
(
β(s(X), s(Y ) , s(Z))

)∣∣∣X = x,Y = y,Z = z
]]

+O
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1
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= EPXY Z
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+ ∆̃(ε, q, γ) +O

(√
1
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)
+O

(
1

εdN

)
, (A.29)

where h(t) = g(t)/t and Eqn. A.29 is derived by borrowing Lemma 7.9 from [88]. Hence from
Eqn. A.29 and Eqn. A.3, and the fact that ∆̃(ε, q, γ) −→ 0 as N →∞, we conclude

E
[
Îϕ(X;Y |Z)

]
−→ EPXY Z

[
ϕ(X, Y, Z)h

(dPXY Z PZ
dPXZ PY Z

)]
, as N →∞. (A.30)

This completes the proof.
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[81] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual information,” Physical

review E, 2004.

[82] K. R. Moon, K. Sricharan, and A. O. Hero, “Ensemble estimation of mutual information,”
in 2017 IEEE International Symposium on Information Theory, 2017.

[83] J. C. Principe, D. Xu, J. Fisher, and S. Haykin, “Information theoretic learning,” Unsuper-

vised adaptive filtering, 2000.

[84] H. H. Yang and J. Moody, “Data visualization and feature selection: New algorithms for
nongaussian data,” in Advances in neural information processing systems, 2000.

105



[85] N. Leonenko, L. Pronzato, V. Savani, et al., “A class of rényi information estimators for
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Garnett, Eds., Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http:
//papers.neurips.cc/paper/9015-pytorch-an-imperative-style-

high-performance-deep-learning-library.pdf.

[148] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for efficient
convnets,” arXiv preprint arXiv:1608.08710, 2016.

[149] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam:
Visual explanations from deep networks via gradient-based localization,” in Proceedings of

the IEEE international conference on computer vision, 2017, pp. 618–626.

[150] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial exam-
ples,” arXiv preprint arXiv:1412.6572, 2014.

[151] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,”
arXiv preprint arXiv:1607.02533, 2016.

[152] M. P. Naeini, G. Cooper, and M. Hauskrecht, “Obtaining well calibrated probabilities using
bayesian binning,” in Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[153] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural networks,”
in Proceedings of the 34th International Conference on Machine Learning - Volume 70,
ser. ICML’17, Sydney, NSW, Australia: JMLR.org, 2017, pp. 1321–1330.

[154] Y. Suhov, I. Stuhl, S. Yasaei Sekeh, and M. Kelbert, “Basic inequalities for weighted
entropies,” Aequationes mathematicae, 2016.

112

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109%2Fcvpr.2016.90
https://doi.org/10.1109%2Fcvpr.2016.90
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


[155] T. Cover and J. A. Thomas, Elements of information theory. Chichester: 1st edn. John Wiley
& Sons, 1991.

[156] I. Csiszár and P. C. Shields, “Information theory and statistics: A tutorial,” J. Royal Statist.

Soc. Ser. B (Methodology.), 2004.

[157] V. Berisha and A. O. Hero, “Empirical non-parametric estimation of the fisher information,”
IEEE Signal Processing Letters, vol. 22, no. 7, pp. 988–992, 2014.

[158] V. Berisha, A. Wisler, A. O. Hero, and A. Spanias, “Empirically estimable classification
bounds based on a nonparametric divergence measure,” IEEE Transactions on Signal

Processing, vol. 64, no. 3, pp. 580–591, 2015.

[159] S. Yasaei Sekeh and A. O. Hero, “Geometric estimation of multivariate dependency,”
Entropy (Women in Information Theory), 2018.
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[178] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel, “Ensem-
ble adversarial training: Attacks and defenses,” in International Conference on Learning

Representations, 2018.

[179] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., “Matching networks for one shot
learning,” Advances in neural information processing systems, vol. 29, pp. 3630–3638,
2016.

114

https://arxiv.org/abs/1311.6510
http://arxiv.org/abs/1311.6510


[180] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” in 3rd International Conference on Learning Representations, ICLR 2015, San

Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun,
Eds., 2015. [Online]. Available: http://arxiv.org/abs/1409.1556.

[181] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted
residuals and linear bottlenecks,” in 2018 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, Computer Vision
Foundation / IEEE Computer Society, 2018, pp. 4510–4520. DOI: 10.1109/CVPR.2018.
00474. [Online]. Available: http://openaccess.thecvf.com/content%5C_
cvpr%5C_2018/html/Sandler%5C_MobileNetV2%5C_Inverted%5C_

Residuals%5C_CVPR%5C_2018%5C_paper.html.

[182] G. Huang, Z. Liu, G. Pleiss, L. Van Der Maaten, and K. Weinberger, “Convolutional
networks with dense connectivity,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2019.

[183] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting adversarial attacks
with momentum,” in 2018 IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, Computer Vision Foundation /
IEEE Computer Society, 2018, pp. 9185–9193. DOI: 10.1109/CVPR.2018.00957.
[Online]. Available: http://openaccess.thecvf.com/content%5C_cvpr%
5C_2018/html/Dong%5C_Boosting%5C_Adversarial%5C_Attacks%5C_

CVPR%5C_2018%5C_paper.html.

[184] C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, and A. L. Yuille, “Improving transferabil-
ity of adversarial examples with input diversity,” in IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, Computer
Vision Foundation / IEEE, 2019, pp. 2730–2739. DOI: 10.1109/CVPR.2019.00284.
[Online]. Available: http://openaccess.thecvf.com/content%5C_CVPR%
5C_2019/html/Xie%5C_Improving%5C_Transferability%5C_of%5C_

Adversarial%5C_Examples%5C_With%5C_Input%5C_Diversity%5C_

CVPR%5C_2019%5C_paper.html.

[185] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of neural networks,” in
2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26,

2017, IEEE Computer Society, 2017, pp. 39–57. DOI: 10.1109/SP.2017.49. [Online].
Available: https://doi.org/10.1109/SP.2017.49.

[186] H. Kim, “Torchattacks: A pytorch repository for adversarial attacks,” arXiv preprint

arXiv:2010.01950, 2020.

115

http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Sandler%5C_MobileNetV2%5C_Inverted%5C_Residuals%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Sandler%5C_MobileNetV2%5C_Inverted%5C_Residuals%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Sandler%5C_MobileNetV2%5C_Inverted%5C_Residuals%5C_CVPR%5C_2018%5C_paper.html
https://doi.org/10.1109/CVPR.2018.00957
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Dong%5C_Boosting%5C_Adversarial%5C_Attacks%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Dong%5C_Boosting%5C_Adversarial%5C_Attacks%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Dong%5C_Boosting%5C_Adversarial%5C_Attacks%5C_CVPR%5C_2018%5C_paper.html
https://doi.org/10.1109/CVPR.2019.00284
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Xie%5C_Improving%5C_Transferability%5C_of%5C_Adversarial%5C_Examples%5C_With%5C_Input%5C_Diversity%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Xie%5C_Improving%5C_Transferability%5C_of%5C_Adversarial%5C_Examples%5C_With%5C_Input%5C_Diversity%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Xie%5C_Improving%5C_Transferability%5C_of%5C_Adversarial%5C_Examples%5C_With%5C_Input%5C_Diversity%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Xie%5C_Improving%5C_Transferability%5C_of%5C_Adversarial%5C_Examples%5C_With%5C_Input%5C_Diversity%5C_CVPR%5C_2019%5C_paper.html
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49

	DEDICATION
	ACKNOWLEDGEMENTS
	Table of Contents
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Motivation
	Efficiency: The Guiding Principle
	Contributions
	Thesis and Impact Statement

	Related Work
	Neural Network Compression-via-Pruning
	Multivariate Dependency Measures
	Efficient Training

	Mutual Information-based Neural Network Pruning
	Motivation
	Mutual Information-based Neuron Trimming
	Evaluation
	Conclusion

	Hybrid Neural Network Pruning
	Motivation
	Slimming Neural Networks Using Adaptive Connectivity Scores
	Evaluation

	Incremental Label Curriculum
	Motivation
	Learning from Incremental Labels and Adaptive Compensation
	Evaluation
	Key Takeaways

	Targeting Performance, Efficiency and Robustness
	Motivation
	Concurrently Achieving Performance, Efficiency and Adversarial Robustness in Deep Neural Networks
	Evaluation
	Discussion and Limitations
	Key Takeaways

	Future Directions and Conclusion
	APPENDICES
	SNACS: Proof of Theorem 1
	Proof of Theorem 1

	BIBLIOGRAPHY

